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A New Approach for Improving GNSS Geodetic Position by Reducing Residual Tropospheric
Error (RTE) Based on Surface Meteorological Data
Reprinted from: Remote Sens. 2023, 15, 162, doi:10.3390/rs15010162 . . . . . . . . . . . . . . . . . 9

Fei Yang, Jinyang Wang, Hongsen Wang, Xu Gong, Lei Wang and Bin Huang

Assessment of the Water Vapor Tomography Based on Four Navigation Satellite Systems and
Their Various Combinations
Reprinted from: Remote Sens. 2022, 14, 3552, doi:10.3390/rs14153552 . . . . . . . . . . . . . . . . . 33

Lukasz Borowski, Jacek Kudrys, Bartosz Kubicki, Martina Slámová and Kamil Maciuk
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Fractal Nature of Advanced Ni-Based Superalloys Solidified on Board the International Space
Station
Reprinted from: Remote Sens. 2021, 13, 1724, doi:10.3390/rs13091724 . . . . . . . . . . . . . . . . . 223
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For high-quality scientific communication in the field of technical and natural sciences, it
is of utmost importance to ensure clarity of the text, logical mathematical argumentation, and
the possibility of verifying the obtained theoretical results using appropriate experiments.

The publication of research results requires the skill of scientifically communicating
relevant data and their mutual logical connection into a purposeful and comprehensi-
ble whole.

In the domain of electronic navigation, satellite navigation (GNSS) is one of the
most important modern complex systems. GNSS is a key infrastructure for supporting
the development and improvement of not only navigation and civil engineering infra-
structures but also power grid systems, banking operations, global transportation sys-
tems, and global communication systems. Today, GNSS requires the use of several po-
sitioning networks and sensors, such as radio networks and micro electromechanical
systems (MEMS), among others. Earth’s atmosphere, especially the ionosphere, tropo-
sphere, etc., is a huge laboratory where multiple processes and phenomena occur that
directly affect the propagation of electromagnetic waves. Like all complex systems, GNSS
technology also undergoes certain evolutionary stages. Some factors affecting the future
evolution of GNSS technology include the appearance of new signals and frequencies and
the use of complementary technologies, but in the domain of GNSS technologies, it is
essential to study the impact of space weather on GNSS systems. Another area of research
related to GNSS technologies is vertical Total Electron Content (TEC) distribution and
anomalies related to earthquakes and volcanic eruptions on Earth.

There are many challenges that must be addressed, because they affect the reliability,
accuracy, and all other essential parameters of GNSS systems. This Special Issue seeks
to address some of these issues by publishing manuscripts on topics such as GNSS risk
assessment, different effects of space weather disturbances on the operation of GNSS
systems, environmental impacts on the operation of GNSS systems, GNSS positioning
error budgets, TEC special features in volcano eruptions. A total of 17 scientific papers
are published. Some specific updates and improvements presented in this Special Issue
include the following:

− Contribution to the research of the effects of Etna volcano activity on the features
of the Ionospheric Total Electron Content behaviour—In this paper [1], volcanic
activity was modeled using volcanic radiative power (VRP) data obtained using the
Middle InfraRed Observation of Volcanic Activity (MIROVA) system. The estimated
minimal night TEC values were averaged over defined index days of the VRP increase.
During the analyzed period of 19 years, volcano activity was categorized according
to pre-defined criteria. The influence of current space weather and short-term solar
activity on TEC near the volcano was systematically minimized. The results showed

Remote Sens. 2023, 15, 1182. https://doi.org/10.3390/rs15051182 https://www.mdpi.com/journal/remotesensing1
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mean/median TEC increases of approximately +3 standard deviations from the overall
mean values, with peak values placed approximately 5 days before the VRP increase
and followed by general TEC depletion around the time of the actual volcanic activity
increase. Additionally, a TEC oscillation pattern was found over the volcano site
with a half-period of 6.25 days. The results mainly indicate that the volcanic activity
modified the ionospheric dynamics within the nearby ionospheric region before the
actual VRP increase, and that the residual impact in the volcano’s surrounding area
could be attributed to terrestrial endogenous processes and air–Earth currents. These
changes could be detected according to criteria predefined in the research: during
quiet space weather conditions, while observing night-time TEC values, and within
the limits of low short-term solar influence.

− Lithosphere Ionosphere Coupling Associated with Seismic Swarm in the Balkan
Peninsula from ROB-TEC and GPS—The authors of [2] detected and analyzed pre-
earthquake ionospheric anomalies (PEIAs) using TEC data from the Royal Observatory
of Belgium (ROB), and analyzed coseismic ionospheric disturbance (CID) using verti-
cal TEC (VTEC) from the GPS stations in earthquake preparation areas. The results
showed that PEIAs appeared to increase continuously from 08:00–12:00 UT in the
3 days before a seismic swarm of Mw > 5.0. The ionosphere over the seismogenic
zones exhibited large-scale anomalies when multiple seismogenic zones of the Balkan
Peninsula spatially and temporally overlapped. Moreover, the TEC around the earth-
quake centers showed a positive anomaly lasting for 7 h. In a single seismogenic
zone in Greece, the TEC around the earthquake center reached over +3.42 TECu. In
addition, the CID observed from GPS stations showed that with the increase in the
number of earthquakes, the ionosphere over the seismogenic area was more obviously
disturbed, and after three strong earthquakes, the TEC suddenly decreased over the
seismogenic area and formed a phenomenon similar to an ionospheric hole. The
authors suggested that a lithosphere–atmosphere–ionosphere coupling mechanism
existed before the seismic swarm appeared in the Balkan Peninsula, and earthquake-
induced VTEC anomalies occurred more frequently within a 3–10-day window before
the earthquake; this phenomenon was particularly evident when multiple seismogenic
zones overlapped spatiotemporally.

− Multi-Station and Multi-Instrument Observations of F-Region Irregularities in the Taiwan–
Philippines Sector—This paper [3] presents a multi-station and multi-instrument sys-
tem, organized and proposed for ionospheric scintillation and equatorial spread-F
(ESF) specification and their associated motions in the Taiwan–Philippines sector.
The issues related to the scintillation and ESF event observed on 26 October 2021,
under magnetically quiet conditions, are presented and discussed. The authors
first indicated the existence of a plasma bubble in the Taiwan–Philippines sector
using FormoSat-7/Constellation Observing System for Meteorology, Ionosphere, and
Climate-2 (FS7/COSMIC2) GPS/GLONASS radio occultation observations. The au-
thors verified the latitudinal extent of the tracked plasma bubble using recorded
ionograms from the Vertical Incidence Pulsed Ionospheric Radar located at Hualien,
Taiwan. Thye also discussed the spatial and temporal variabilities of two-dimensional
vertical scintillation index VS4 maps based on simultaneous GPS L1-band signal mea-
surements from 133 ground-based receivers located in Taiwan and the surrounding
islands. They used two high-sampling, software-defined GPS receivers and character-
ized targeted plasma irregularities by carrying out spectrum analyses of the received
signal. They found that the derived plasma irregularities moved eastward and north-
ward, and the smaller the irregularity scale, the higher the spectral index and the
stronger the scintillation intensity at lower latitudes in the target irregularity feature.

− Landslide Deformation Prediction Based on a GNSS Time Series Analysis and Re-
current Neural Network Model—The authors of this paper [4] developed a novel
Attention Mechanism with a Long Short-Term Memory Neural Network (AMLSTM
NN) model based on Complete Ensemble Empirical Mode Decomposition with Adap-

2



Remote Sens. 2023, 15, 1182

tive Noise (CEEMDAN) landslide displacement prediction. The CEEMDAN method
was implemented to ingest a landslide Global Navigation Satellite System (GNSS)
time series. The AMLSTM algorithm was then used to realize prediction work, in
conjunction with multiple impact factors. The Baishuihe landslide was adopted to
illustrate the capabilities of the model. The results showed that the CEEMDAN-
AMLSTM model achieved competitive accuracy and has significant potential for
landslide displacement prediction.

− CubeSat Observation of the Radiation Field of the South Atlantic Anomaly—This
paper [5] presents the results of one-and-a-half years of observations of the South
Atlantic Anomaly radiation field, measured using a CubeSat in polar orbit with an
elevation of 540 km. The position was calculated using an improved centroid method
that took into account the area of the grid. The dataset consisted of eight campaigns
measured at different times, each with a length of 22 orbits (~2000 min). The radiation
data were combined with GPS position data. Westward movement was detected
at 0.33◦/year and southward movement at 0.25◦/year. The position of the fluence
maximum featured higher scatter than the centroid position.

− Fractal Nature of Advanced Ni-Based Superalloys Solidified on Board the Interna-
tional Space Station—In this paper [6] presents advanced analytical techniques for
describing experimentally obtained microstructures analyzed on cross-sectional im-
ages of different samples. The samples were processed on the International Space
Station using a device from the Materials Science Laboratory-Electromagnetic Lev-
itator (MSL-EML) based on electromagnetic levitation principles. The authors also
applied several aspects of fractal analysis and obtained important results regarding
fractals and Hausdorff dimensions related to the surface and structural characteristics
of CMSX-10 alloy samples. Using scanning electron microscopy (SEM) (Zeiss LEO
1550), the authors analyzed the microstructures of samples solidified in space and suc-
cessfully performed fractal reconstruction of the samples’ morphologies. The fractal
analysis was extended to microscopic images based on samples solidified on Earth,
establishing new developments in knowledge of their advanced structures.

− GNSS-IR Snow Depth Retrieval from Multi-GNSS and Multi-Frequency Data—In this
paper [7], the authors analyzed SNR data of the Global Positioning System (GPS),
Global Orbit Navigation Satellite System (GLONASS), Galileo satellite navigation
system (Galileo), and BeiDou navigation satellite system (BDS) from the P387 station
of the U.S. Plate Boundary Observatory (PBO). Lomb–Scargle periodogram (LSP)
spectrum analysis was used to compare the difference in reflector height between
the snow-free and snowy surfaces in order to determine the snow depth, which was
compared with the PBO snow depth. First, the different frequency results of the multi-
GNSS system were analyzed. The retrieval accuracy of the different GNSS systems
was analyzed through multi-frequency mean fusion. The joint retrieval accuracy of the
multi-GNSS system was analyzed through mean fusion. The results showed that the
different frequencies of the multi-GNSS system had a strong correlation with the PBO
snow depth, and that the accuracy was better than 10 cm. The multi-frequency mean
fusion of different GNSS systems could effectively improve the retrieval accuracy,
which was better than 7 cm. The joint retrieval accuracy of the multi-GNSS system
was further improved, with a correlation coefficient (R) of 0.99 between the retrieval
snow depth and the PBO snow depth, and the accuracy was better than 3 cm.

− Determination of Navigation System Positioning Accuracy Using the Reliability
Method Based on Real Measurements—In this paper [8], a new method was pre-
sented for determining navigation system positioning accuracy based on a reliability
model where the system’s operation and failure statistics were referred to as life and
failure times. Based on real measurements, the method proposed in this article was
compared with the classical method (based on the 2DRMS measure). In the analy-
ses, real (empirical) measurements were made using the following principal modern
navigation positioning systems: the Global Positioning System (GPS) (168′286 fixes),
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the Differential Global Positioning System (DGPS) (900′000 fixes), and the European
Geostationary Navigation Overlay Service (EGNOS) (900′000 fixes). Research per-
formed on real data showed that the reliability method provided a better estimate of
navigation system positioning accuracy compared to the 2DRMS measure.

− Evaluating Total Electron Content (TEC) Detrending Techniques in Determining Iono-
spheric Disturbances during Lightning Events in A Low Latitude Region—In this
paper [9], TEC was detrended using several methods to show this impact. Informa-
tion from the detrended TEC may or may not necessarily represent a geophysical
parameter. Two commonly used detrending methods, the Savitzky–Golay filter and
polynomial fitting, were evaluated during thunderstorm events in Hong Kong. A
two-step detection and distinguishing approach was introduced alongside linear cor-
relation in order to determine the best detrending model. The Savitzky–Golay filter
on order six and with a time window of 120 min performed best in detecting lightning
events, and had the highest moderate positive correlation of 0.4. Moreover, the best
time frame was 120 min, which suggests that the observed disturbances could be
travelling ionospheric disturbance (TID), with lightning as the potential source.

− Seasonal and Interhemispheric Effects on the Diurnal Evolution of EIA: Assessed
by IGS TEC and IRI-2016 over Peruvian and Indian Sectors—In this paper [10], the
global total electron content (TEC) map in 2013, retrieved from the International
Global Navigation Satellite Systems (GNSS) Service (IGS), and the International Refer-
ence Ionosphere (IRI-2016) model were used to monitor the diurnal evolution of the
equatorial ionization anomaly (EIA). The statistical analyses were conducted during
geomagnetically quiet periods in the Peruvian and Indian sectors, where equatorial
electrojet (EEJ) data and reliable TEC were available. The EEJ was used as a proxy to
determine whether the EIA structure was fully developed. To characterize dynamics
accounting for the full development of EIAs, the authors defined and statistically
analyzed the onset, first emergence, and peaks of the northern and southern crests
based on the proposed crest-to-trough difference (CTD) profiles. These time points
extracted from IGS TEC showed typical annual cycles in the Indian sector, which can
be summarized as being of winter hemispheric priority, i.e., the development of EIAs
in the winter hemisphere was ahead of that in the summer hemisphere. Additionally,
the same time points showed abnormal semiannual cycles in the Peruvian sector, that
is, EIAs develops earlier during two equinoxes/solstices in the northern/southern
hemisphere. The authors suggested that the onset of EIAs is a consequence of the
equilibrium between sunlight ionization and ambipolar diffusion. The latter term was
not considered in modeling the topside ionosphere in IRI-2016, which resulted in a
poor capacity of IRI to describe the diurnal evolution of EIAs. The meridional neutral
wind’s modulation of the ambipolar diffusion can explain the annual cycle observed
in the Indian sector, while the semiannual variation seen in the Peruvian sector might
be due to additional competing effects induced by the F-region height changes.

− A Graph Convolutional Incorporating GRU Network for Landslide Displacement
Forecasting Based on Spatiotemporal Analysis of GNSS Observations—In this pa-
per [11], a novel graph convolutional incorporating GRU network (GC-GRU-N) was
proposed and applied to landslide displacement forecasts. The model conducts
attribute-augmented graph convolution (GC) operations on GNSS displacement data
with weighted adjacency matrices and an attribute-augmented unit to combine fea-
tures, including the displacement, the distance, and other external influence factors,
to capture spatial dependence. The output of multi-weight graph convolution is then
applied to the gated recurrent unit (GRU) network to learn temporal dependencies.
The related optimal hyper-parameters were determined via comparison experiments.
When applied to two typical landslide sites in the Three Gorge Reservoir (TGR), China,
GC-GRU-N outperformed the comparative models in both cases. The ablation experi-
ment results showed that the attribute augmentation, which considers external factors
of landslide displacement, can further improve the model’s prediction performance.
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− Regional Ionospheric Corrections for High Accuracy GNSS Positioning—This pa-
per [12] aimed to evaluate the accuracy of a local/regional ionospheric delay model
across Australia using a linear interpolation method. The accuracy of the ionospheric
corrections was assessed as a function of both different latitudinal regions and the
number and spatial density of GNSS Continuously Operating Reference Stations
(CORSs). This research showed that, for a local region of 5◦ latitude × 10◦ longitude in
mid-latitude regions of Australia (~30◦ to 40◦S) with approximately 15 CORS stations,
ionospheric corrections with an accuracy of 5 cm can be obtained. In Victoria and
New South Wales, where dense CORS networks exist (nominal spacing of ~100 km),
the average ionospheric correction accuracy can reach 2 cm. For sparse networks
(nominal spacing of >200 km) at lower latitudes, the average accuracy of ionospheric
corrections was within the range of 8 to 15 cm; significant variations in the ionospheric
errors of some specific satellite observations during certain periods were also found.
In some regions such as Central Australia, where there are a limited number of CORSs,
this model was impossible to use. On average, centimeter-level-accuracy ionospheric
corrections can be achieved if there are sufficiently dense (i.e., nominal spacing of
approximately 200 km) GNSS CORS networks in the region of interest. Based on the
current availability of GNSS stations across Australia the authors proposed a set of
15 regions of different ionospheric delay accuracies with extents of 5◦ latitude × 10◦
longitude across continental Australia.

− Retrieval of Soil Moisture Content Based on Multisatellite Dual-Frequency Combina-
tion Multipath Errors—In this paper [13], the authors defined a soil moisture inversion
method based on a multisatellite dual-frequency combined multipath error: a mul-
tipath error calculation model of dual-frequency carrier phase (L4 Ionosphere Free,
L4_IF) and dual-frequency pseudorange (DFP) without an ionospheric effect was
constructed. The data of five epochs were selected before and after the time point of
the effective satellite period to define the multipath error model and error equation,
and the delay phase for soil moisture retrieval was solved. The proposed method was
verified using Plate Boundary Observatory (PBO) P041 site data. The results showed
that the Pearson correlation coefficients (R) of the L4_IF and DFP methods at the P041
station were 0.97 and 0.91, respectively. To better verify the results’ reliability and the
proposed method’s effectiveness, the soil moisture data of the MFLE station, about 210
m away from P041 station, were used as the verification data in this paper. The results
showed that the delay phase solved using the multipath error and soil moisture were
strongly correlated. The Pearson correlation coefficients (R) of the L4_IF and DFP
methods at the MFLE station were 0.93 and 0.86, respectively. In order to improve the
inversion accuracy of GNSS-IR soil moisture, this paper constructed the prediction
model of soil moisture using linear regression (ULR), a back propagation neural net-
work (BPNN), and a radial basis function neural network (RBFNN), and evaluated the
accuracy of each model. The results showed that the soil moisture retrieval method
based on a multisatellite dual-frequency combined multipath error can replace the
traditional retrieval method and effectively improve the time resolution of GNSS-IR
soil moisture estimation.

− Comparative Study of Predominantly Daytime and Nighttime Lightning Occurrences
and Their Impact on Ionospheric Disturbances—In this paper [14], the hourly occur-
rence of lightning and its impact on ionospheric disturbances, quantified using the rate
of total electron content index (ROTI), were assessed. The linear correlation between
diurnal lightning activity and ROTI in the coastal region of southern China, where
lightning predominates in the daytime, was initially negative, contrary to a positive
correlation in southern Africa, where lighting predominates in the evening. After
appreciating and applying the physical processes of gravity waves, electromagnetic
waves, and the Trimpi effect arising from lightning activity, and the time delay impact
they have on the ionosphere, the negative correlation was overturned to a positive
one using cross-correlation.
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− Phase Centre Corrections of GNSS Antennas and Their Consistency with ATX Catalogues—
In this paper [15], the results of research on the adequacy of antenna phase centre
correction (PCC) variations are presented following an analysis of its component—
the antennas’ phase centre offset (PCO). Height differences were determined using
different independent methods: EUREF Permanent Network (EPN) combined solu-
tions, Precise Point Positioning (PPP), and the single baseline solution. The results of
GNSS processing were attributed to direct geometric levelling outputs. The research
was conducted within the Global Positioning System (GPS) only, and the experiment
was based on a comparison of the height differences between four GNSS antennas
located on the roof of a building: two permanent station antennas and two auxiliary
points. The antennas were located at similar heights; precise height differences were
determined via geometric levelling, both at the beginning and the end of the session.
Post-processing was conducted with the use of a GPS system, precise ephemeris, the
adopted antenna correction model, and a zero-elevation mask. For one of the antennas,
a change in the antenna characteristic model from IGS08 to IGS14 led to an 8 mm
difference in height. Older antennas used in the national (or transnational) permanent
network need individual PCCs.

− Assessment of the Water Vapor Tomography Based on Four Navigation Satellite
Systems and Their Various Combinations—In this paper [16], experiments in Hong
Kong were conducted to analyze and assess the performance of GPS, BDS, GLONASS,
Galileo, and their combinations in water vapor tomography. The numerical results
showed that the number of available signal rays varied widely in the four satellite
systems, and the value could be increased by the combination of satellite systems. The
combinations also increased the number of voxels crossed by the signal rays, but this
value was not directly related to the number of available signal rays; the number and
distribution of the voxels with sufficient signal rays, which were most closely related
to the structure of the tomographic model, showed no obvious differences in the four
satellite systems and their combinations. Comparative results of slant water vapor
(SWV), estimated using GNSS data and water vapor density derived from radiosonde
data, revealed that the differences in the water vapor tomography of the four satellite
systems were small, and their combinations resulted in limited improvement in the
tomographic results.

− A New Approach for Improving GNSS Geodetic Position by Reducing Residual Tropo-
spheric Error (RTE) Based on Surface Meteorological Data—In this paper [17], a study
was performed based on GLONASS positioning solutions and the accompanying me-
teorological parameters in a defined and harmonized temporal-spatial frame of three
locations in the Republic of Croatia. A multidisciplinary approach-based analysis
from a navigational science point of view was applied. The residual amount of satel-
lite positioning signal tropospheric delay was quantitatively reduced by employing
statistical analysis methods. The result of the statistical regression was a model that
correlates surface meteorological parameters with RTE. Considering the input data,
the model has a regional character, and it is based on the Saastamoinen model of zenith
tropospheric delay. The verification results showed that the model reduced the RTE,
and thus, increases the geodetic accuracy of the observed GNSS stations (with hori-
zontal components of position accuracy of up to 3.8% and vertical components of up
to 4.37%, respectively). To obtain these results, the root mean square error (RMSE) was
used as the fundamental parameter for position accuracy evaluation. Although it was
developed based on GLONASS data, the proposed model also showed a considerable
degree of success in the verification of geodetic positions based on the Global Position-
ing System (GPS). The purpose of the research, and one of its scientific contributions,
was that the proposed method can be used to quantitatively monitor the dynamics
of changes in the deviations of X, Y, and Z coordinate values along coordinate axes.
The results showed that there is was distinct interdependence of the dynamics of Y
and Z coordinate changes (with almost mirror symmetry), a result which had not
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previously been investigated or published. The resultant positions of the coordinates
were created by deviations in the coordinates along the Y and Z axes; in the vertical
plane of space, the deviations of the coordinate X (horizontal plane) were mostly
uniform and independent of deviations along the Y and Z axes. The proposed model
showed the realized state of the statistical position equilibrium of the selected GNSS
stations, which were observed using RTE values. Although it is of regional character,
the model is suitable for application in larger areas with similar climatological profiles
and for users who do not require the achievement of a maximum level of geodetic
accuracy using Satellite-Based Augmentation Systems (SBAS) or other more advanced,
time-consuming, and equipment-consuming positioning techniques.

A series of scientific papers were published in this Special Issue that have made a sig-
nificant scientific contribution to its thematic domain (more detailed scientific contributions
are presented for each published article); however, there are many questions and unknowns
to be solved using appropriate scientific methods and research, for example, investigating
and establishing the regularity of the dynamics of changes in the user coordinates X, Y,
Z along the coordinate axes x,y,z as a function of the ionospheric delay of the satellite
signal, or the effects of the influence of volcanic eruptions on satellite determination of the
user’s position.

Just as science itself has no end or completion, the scientific research conducted in the
domain of this Special Issue is neither finished nor completed; however, it will continue
to be conducted in the future, with the aim of developing a deeper understanding of and
scientific explanations for a series of processes related to this topic.
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Abstract: Positioning error components related to tropospheric and ionospheric delays are caused
by the atmosphere in positioning determined by global navigation satellite systems (GNSS). De-
pending on the user’s requirements, the position error caused by tropospheric influences, which
is commonly referred to as zenith tropospheric delay (ZTD), must be estimated during position
determination or determined later by external tropospheric corrections. In this study, a new approach
was adopted based on the reduction of residual tropospheric error (RTE), i.e., the unmodeled part
of the tropospheric error that remains included in the total geodetic position error, along with other
unmodeled systematic and random errors. The study was performed based on Global Navigation
Satellite System (GLONASS) positioning solutions and accompanying meteorological parameters
in a defined and harmonized temporal-spatial frame of three locations in the Republic of Croatia.
A multidisciplinary approach-based analysis from a navigational science aspect was applied. The
residual amount of satellite positioning signal tropospheric delay was quantitatively reduced by
employing statistical analysis methods. The result of statistical regression is a model which correlates
surface meteorological parameters with RTE. Considering the input data, the model has a regional
character, and it is based on the Saastamoinen model of zenith tropospheric delay. The verification
results show that the model reduces the RTE and thus increases the geodetic accuracy of the ob-
served GNSS stations (with horizontal components of position accuracy of up to 3.8% and vertical
components of position of up to 4.37%, respectively). To obtain these results, the Root Mean Square
Error (RMSE) was used as the fundamental parameter for position accuracy evaluation. Although
developed based on GLONASS data, the proposed model also shows a considerable degree of success
in the verification of geodetic positions based on Global Positioning System (GPS). The purpose
of the research, and one of its scientific contributions, is that the proposed method can be used to
quantitatively monitor the dynamics of changes in deviations of X, Y, and Z coordinate values along
coordinate axes. The results show that there is a distinct interdependence of the dynamics of Y and Z
coordinate changes (with almost mirror symmetry), which has not been investigated and published
so far. The resultant position of the coordinates is created by deviations of the coordinates along the
Y and Z axes—in the vertical plane of space, the deviations of the coordinate X (horizontal plane) are
mostly uniform and independent of deviations along the Y and Z axes. The proposed model shows
the realized state of the statistical position equilibrium of the selected GNSS stations which were
observed using RTE values. Although of regional character, the model is suitable for application in
larger areas with similar climatological profiles and for users who do not require a maximum level of
geodetic accuracy achieved by using Satellite-Based Augmentation Systems (SBAS) or other more
advanced, time-consuming, and equipment-consuming positioning techniques.

Keywords: GNSS; tropospheric error; surface meteorological data; statistical position equilibrium;
Saastamoinen model of zenith tropospheric delay
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1. Introduction and Background

A total satellite positioning error budget can be decomposed in satellite, receiver, and
propagation medium components. The latter refers to atmospheric layers that affect the
path of satellite navigation signals, namely the ionosphere and the troposphere. In addition,
other present errors with a measurable and significant impact on GNSS positioning include
signal multipath errors, receiver noise error, satellite and receiver clock errors, and satellite
orbital error [1–3].

Tropospheric error is caused by the propagation of a radio navigation signal through
the lowest layer of the atmosphere. In general, the troposphere is divided into two layers:
the wet (non-hydrostatic) layer (with a height of up to about 10 km above the Earth’s surface)
and the dry (hydrostatic) layer (which is 10–40 km above the Earth’s surface) [4,5]. These
layers cause delays in satellite navigation signals. The troposphere is a non-dispersive
medium; therefore, the magnitude of this error component does not depend on signal
frequency and cannot be determined as is the case with ionospheric delay. Tropospheric
error (which is the reduction of radio navigation signal propagation speed and its deviation
from the geometric path and is also commonly called tropospheric delay) can be modeled
based on the fundamental meteorological parameters of the troposphere: temperature,
humidity, and atmospheric pressure [6–10]. Various models have been developed to
predict and reduce tropospheric delay with different scopes of application, including the
following: the Two-Quartic Hopfield model (n/a) ((n/a)—not specified or valid for any
elevation angle.) [11], the Saastamoinen model (10◦ and above) [12], the Modified Hopfield
model (n/a) [13], the Marini model (10◦ and above) [14], the Davis et al. model (Cf A)
(5◦ and above) [15], the Ifadis model (2◦ and above) [16], and the Askne and Nordius
model (n/a) [17], etc. The above models allow the value of the tropospheric delay to
be estimated with varying degrees of accuracy depending on the input components of
the model (including dry, wet, or total delay and with or without mapping function);
therefore, they have different elevation angles of mapping function (given in the brackets).
Tropospheric delay caused by the wet component is a consequence of the presence of water
vapor in all its forms in the upper layer of the troposphere (up to 10 km). Tropospheric
delay is partly caused by non-hydrostatic causes; as such, the zenith wet delay (ZWD)
is much smaller in absolute terms (several millimeters) than the zenith hydrostatic delay
(ZHD—which reaches several tens of centimeters) [4]. The ZWD cannot be accurately
modeled using surface meteorological data due to the extreme space and time volatile
features of water vapor. With existing tropospheric models, the error caused by ZWD can be
reduced by up to 10–20% of its actual value [18]. The causes of the wet component are not
in hydrostatic equilibrium; therefore, models based on the partial pressure of water vapor
or relative surface humidity do not provide sufficient accuracy. They require empirical
constants that vary spatially and temporally [19], although approaches and models for
ZWD estimation are being developed based on surface meteorological parameters [20].

The causes of the hydrostatic component of the zenith delay (or atmospheric dry
gasses and the non-dipole component of water vapor refraction [18]) are in hydrostatic
equilibrium [19] and are therefore determined relatively simply and precisely using the
Saastamoinen model. Both components form the ZTD. Approaches of existing tropospheric
delay models for ZHD and ZWD differ, and certain models [21–26] of ZTD usually include
a non-hydrostatic zenith component which depends primarily on the temporal-spatial
distribution of water vapor and the height of the distribution, with the influence of water
vapor being the most important. Considering that the insufficient modeling capabilities of
the non-hydrostatic causes of tropospheric delay in the zenith direction limit the accuracy
of the mapping function for other signal elevation angles, the separation of the mapping
function from the zenith delay allowed the development of a number of new models of
mapping functions [27–32]. Such models can combine hydrostatic and non-hydrostatic
causes and can be combined with tropospheric delay in the zenith direction. This results
in hybrid models separated by hydrostatic and non-hydrostatic causes. In general, tropo-
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spheric errors in GNSS measurement range from 2–2.4 m in the zenith direction and 25 m
at horizontal elevation angles [33,34].

The new approach used in this study investigates the overall effect of tropospheric delay
on the accuracy of the GNSS geodetic position of the selected area. Several studies [10,35]
show the relationship between tropospheric delays based on radiosonde signal measure-
ments and deviations from position accuracy where the main effect was found to be the
atmospheric refraction expressed by the number of N units, which is a value that varies
greatly in time and space [36–38]. In this way, it is possible to combine the influence of
the tropospheric delays in radio signals (usually with peak values up to several tens of
millimeters) with the amounts of slant tropospheric errors in the GNSS system which can
reach several tens of meters.

A model of empirical character is proposed which combines the value of the non-
modeled geodetic position RTE GNSS with the meteorological surface parameters of the
observed positions. Rather than determining the appropriateness of a particular model
of tropospheric delay (either in the zenith or slant direction), the goal of the presented
research was to determine the existence of structural dynamics of deviations of x, y, and
z coordinates based on the observed GNSS stations in the function of reducing the non-
modeled tropospheric error based on relevant and real surface meteorological data.

The basis for determining tropospheric errors within GNSS position accuracy errors
was the Saastamoinen model. The proposed model, together with the previously modeled
part of the tropospheric error, reduces the tropospheric error of the GNSS position by
correlating the unmodeled portion of the tropospheric error with real meteorological
parameters, thereby increasing the overall geodetic accuracy of the determined position.

The following section presents the methodology used in the development of the pro-
posed model, including data collection, statistical regression, and the proposed model
validation. The obtained verification results for each location and time period are presented
in the third section. The performance of the proposed model and the periodicity charac-
teristics of RTE are presented and discussed in the fourth section, including its potential
suitability with GPS. Concluding remarks and possible directions for further research are
given in the final section.

2. Methodology

The development of the presented model is based on combined GLONASS positioning
solutions and meteorological data from GNSS reference stations in the mid-latitudes of
the Republic of Croatia. Positioning solutions were calculated based on position data in
the Receiver Independent Exchange (RINEX) 2.0 compressed format [39]. Initial theories
regarding the development of the model included the assumption that the propagation
medium error, the user segment, and the microenvironment errors have a constant time–
space character. Initial limitations of the proposed model include:

• The presented methodology implies the creation of the most mutual and frequent
alignment of positional and meteorological parameters, and thus the choice of used
regional GNSS stations is conditioned (the availability of regional meteorological
records is within a 10-min frequency).

• In accordance with the initial spatial limitation, the selection of available GNSS po-
sitional data measurements was limited to the GPS and GLONASS, and there was
no possibility of using records from other GNSS systems. As a full-fledged part of
the GNSS, GLONASS data were used due to their relative underrepresentation in
similar research.

• The main goal of the research was to determine a possible statistically significant
correlation between realistic surface meteorological parameters and the geodetic
accuracy of GNSS position deviations. Therefore, the model was developed based
on positional and meteorological data with a geographical resolution of 3.7◦ × 2.9◦
(geographical grid) which declared as of regional character.
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• The format of the available GNSS data limited the possibilities of their processing.
Therefore, single-frequency (L1) positioning and the Klobuchar model for ionospheric
delay were used. Input clock parameters and ephemerides are contained in the
navigation message (including the broadcast ephemerides and clock parameters).
Processing of solid tides and multipath corrections was not accessible.

• Other more accurate positioning techniques, such as PPP (Precise Point Positioning)
or RTK (Real-time Kinematics), were not supported.

2.1. Time Frame of the Study

The time frame used for the creation and validation of the proposed model covers the
year 2019. The model verification was performed using data from 2014 and 2015. Data
from the same locations were analyzed since the model verification required the mutual
compatibility of meteorological and GLONASS data at all stages of the study.

2.2. Meteorological Data Collection

The set of meteorological input data was determined based on the relationship between
the propagation of radio signals through the neutral atmosphere and tropospheric dynamic
processes. Hydrostatic and non-hydrostatic causes of tropospheric delay were identified.
The independent input variables for the model were: pressure P (hPa), temperature T (◦C),
precipitation water PWV (mm), precipitation Pr (mm), and relative humidity Rh (percent).
Meteorological data can be interpolated from existing numerical weather models (NWM),
which is acceptable for analyzing existing tropospheric models, but not for developing a
new model according to the selected regional model development. Therefore, in this study,
meteorological data collected using automatic meteorological instruments at selected GNSS
locations were used by the State Hydrometeorological Institute of the Republic of Croatia
(DHMZ) [40] as a source of meteorological data. The time resolution of the meteorological
data was 10 min.

Given the current limitations of available data sources, the study was based on the well-
known approach of determining the tropospheric error by determining pseudoranges [10].
The used data delimit the area from 42.60◦ to 46.38◦ North latitude and from 15.22◦ to 18.11◦
East longitude with an altitude range from 64.3 m to 457.9 m above sea level (Figure 1).

Figure 1. The wide geographic area of selected GNSS measuring stations.
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The climatological profiles of the observed locations differ. According to the Köp-
pen climate classification, which is determined based on the average annual course of air
temperature and precipitation, Čakovec is classified as Cb (which is a moderately warm,
rainy climate with an average monthly temperature of the coldest month between −3 ◦C
and 18 ◦C) [41]. At the same time, the warmest month of the year has an average tem-
perature of less than 22 ◦C [40]. There are no particularly dry months in the year, and it
is the area with the least precipitation in the cold season. Čakovec has a humid climate
according to Thornthwaite’s climate classification which is based on the ratio of the amount
of water needed for potential evapotranspiration and expressed by the humidity coefficient
IP/E [41]. Zadar and Dubrovnik belong to areas with a temperate climate with long and hot
summers (Ca-mark according to the Köppen climate classification), while Zadar belongs
to an area with a subhumid (semi-humid) climate in terms of the humidity coefficient
IP/E [42]. Dubrovnik has a humid climate due to heavier precipitation. Water vapor and
precipitation amounts are the main meteorological input parameters for determining the
non-hydrostatic zenith component of the GNSS position. The above measurement locations
do not have significantly pronounced differences in their humidity coefficients; as such,
they represent a suitable choice for creating the proposed model, which is also applicable
to larger geographical areas with similar climate profiles.

2.3. Geographic GNSS Data Collection

The study was carried out based on data from locations equipped with GNSS stations
that provided predicted meteorological parameters with adequate time resolution. There-
fore, measuring stations in the Regional Reference Frame Sub-Commission for Europe
(EUREF) in Čakovec, Zadar, and Dubrovnik were selected. The basic stations’ data are
listed in Table 1 [43].

Table 1. General data from the EUREF measuring stations used (made by authors according to [43]).

Station Log City Latitude ϕ (◦ N) Longitude λ (◦ E) Elevation h (m)
ECEF (ETRS 89) Coordinates 1 (m)

x y z

CAKO00 HRV Čakovec 46.387 16.439 222.1 4,227,250.7 1,247,280.6 4,595,193.3
DUB200 HRV Dubrovnik 42.650 18.110 457.9 4,465,932.8 1,460,581.6 4,299,308.5
ZADA00 HRV Zadar 44.113 15.227 64.3 4,425,737.1 1,204,734.5 4,417,173.4

1 Earth centered, earth fixed coordinate system (The European Terrestrial Reference System, 1989).

2.4. Model Development

The development of the model involves the harmonization of two parallel input
components: the value of the geodetic deviation of the user’s position caused by the tropo-
spheric error and the temporal-spatial harmonization of the corresponding meteorological
input data.

2.4.1. Determination of the Size of the Tropospheric Error

Basically, the determination of the tropospheric error by measuring the pseudorange
can be conducted in two ways:

(i) by determining and removing all systematic and random errors; and
(ii) by determining the deviation from the known position using a preselected tropo-

spheric model and estimating the deviation residuals as unknown parameters [25].
In the first method, the pseudorange is calculated according to the general formula [10]:

Ri
A = ρi

A + δρmul + δρrel + cδA − cδi + Ii
A + Ti

A + ei
A (1)

where Ri
A is the pseudorange from position A to satellite i; ρi

A is the geometric distance; c is
l speed of light; Ii

A, Ti
A is ionospheric and tropospheric delay; cδA, cδi is the satellite orbit

and clock error; δρmul is the multipath trajectories error; δρrel is relativistic error; and ei
A is

the random error.
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The multipath error δρmul can be determined programmatically, usually based on the
receiver and antenna equipment manufacturer. Sources of ionospheric delay, relativistic
errors, satellite orbit errors, and clock errors are included in the navigation message or,
in the case of post-processing, from the appropriate ground truth data. In any case, it is
necessary to perform software processing to ensure appropriate data sources are used for
additional corrections. For additional verification, the values of the isolated and determined
tropospheric delays of a known position were compared with the values determined using
the radiosonde signals or another system [10].

The model development was based on the determination of the user’s position in
accordance with the selected modeling approach and its initial limitations. It was obtained
by determining the pseudoranges and isolating the accuracy deviation from the user’s
position caused by the tropospheric error within the total positioning error. A position
determined in this way can be defined in a simpler form as the difference between the
signal reception time which is determined based on its clock and time (determined by the
satellite clock), which can be represented with the following expression [4,44]:

PS
r,i = c

(
tr − ts

)
(2)

where PS
r,i is the pseudorange of the i-th satellite; tr is the time of the signal reception

determined by the receiver clock (s); and ts is the time of signal transmission determined
by the satellite clock (s).

The misalignment of the satellite and receiver clocks (with input data contained in
the navigation message), the ionospheric, tropospheric, and measurement error, and the
expression (2) takes the form (3) by introducing the parameters of the geometric distance
between the antennas of the satellite and the receiver:

PS
r,i = c

(
(tr + dtr(tr))−

(
tS + dTS(tS))) + εP

= c
(
tr − tS)+ c

(
dtr(tr)− dTS(tS))+ εP

=
(

ρS
r + IS

r,i + TS
r + c

(
dtr(tr)− dTS(tS))+ εP

= ρS
r + c

(
dtr(tr)− dTS(tS))+ IS

r,i + TS
r + εP

(3)

where IS
r,i is the geometric distance between the satellite and receiver antenna; dtr, dTS is

the receiver and satellite clock offset; IS
r,i is the ionospheric error; TS

r is the tropospheric
error; and εP is the measurement error.

The conversion of the geodetic position into a data set in ECEF ETRS89 format with
values expressed in meters is expressed according to the following expressions:

el2 = f (2 − f ) (4)

ν =
a√

1 − el2 sin φ2
r

(5)

rr =

⎛⎜⎝(ν + h) cos φr cos λr

(ν + h) cos φr sin λr

ν
(
1 − el2) sin φ f

⎞⎟⎠ (6)

where λr is the geodetic longitude; φr is the geodetic latitude; h is the ellipsoidal height; a is
the semi-major axis of the reference Earth ellipsoid (6,378,137 m); el2 is the first numerical
eccentricity of the ellipsoid; and f is the flattening coefficient of the reference Earth ellipsoid.

The Saastamoinen model of tropospheric zenith correction was used, and the present
parameters were transmitted in the navigation message as a common source of input
program corrections for all measuring stations and periods and for standardizing other
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program settings. The input program parameters for pressure, absolute temperature, and
partial pressure are determined by the expressions of the standard atmosphere model [44]:

P = 1013.25·
(

1 − 2.2557·10−5h
)5.2568

(7)

T = 15 − 6.5·10−3h + 273.15 (8)

e = 6.108·exp
(

17.15 T − 4684
T − 38.45

)
· hrel
100

(9)

where P is the total air pressure (hPa); T is the temperature in degrees Kelvin; e is the partial
atmospheric pressure (hPa); h is the geodetic altitude above sea level; and hrel is the relative
humidity. The applied Saastamoinen model uses a constant relative humidity value of 70%.

The tropospheric correction in this configuration was calculated using the following
algorithms [45,46]. For the mapping function in the selected program setting, the Niell
model is calculated according to the expression [47–49]:

m(ε) = mw(ε){1 + cot ε·(GN cos z + GE sin z)} (10)

where ε is the signal elevation angle; z is the signal zenith angle; GN is the tropospheric
gradient in the north direction; GE is the tropospheric gradient in the east direction; and
mw is the non-hydrostatic mapping function of the non-hydrostatic Niell (New) Mapping
Functions (NMF).

The total tropospheric delay was calculated according to the following expression:

dtro = md(ε)dz
d + m(ε)(dz

tot − dz
d) (11)

where dtro is the total tropospheric delay; dz
d is the hydrostatic component of zenith tro-

pospheric delay (in meters and determined by the Saastamoinen model); dz
tot is the tropo-

spheric total zenithal retardation; and md is the (NMF) hydrostatic mapping function. The
parameters of tropospheric gradients and total tropospheric delay in zenith direction were
estimated using the extended Kalman filter (EKF) [45]. The parameters for the correction
of the ionospheric delay (A—the numerical coefficient of the maximum total free electron
content in the ionospheric layer F2; F—the index of solar activity; and Ap—the daily in-
dex of geomagnetic activity) included in the GLONASS navigation message (broadcast
ionosphere model) [47] have the following form:

Pion = (α0, α1, α2, α3, β0, β1, β2, β3)
T (12)

The determination of ionospheric delay IS
r ˆ (m) was performed using Klobuchar’s

model due to single-frequency computing. Despite the efficiency of Klobuchar’s model,
more effective reducing of the ionospheric delay would be achieved using an iono-free
combination or dual-frequency receiver. However, considering the format of available
input data, a single-frequency receiver with the Klobuchar model was used. Input data
regarding clock parameters and ephemerides were sent in the navigation message (broadcast
ephemerides and clock parameters) and used in calculations in the following form [44,46,50]:

Peph(tb) =
(

x, y, z, νx, νy, νz, ay, ay, az, τn, γn
)

(13)

In addition, the initial software setup included a single positioning mode and a 3◦
elevation mask value (due to the scope of applicability of the NMF mapping function)
to isolate the deviation in the geodetic accuracy of the user’s position caused by the
tropospheric error component.
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2.4.2. Statistical Analysis and Model Development

The remaining value of the tropospheric error was determined based on the difference
in the geodetic accuracy of the position determined both with and without tropospheric
correction (using the Saastamoinen model). It is important to emphasize that, in addition to
the tropospheric component, such determined deviations still contain several unmodeled
systematic and random errors, including the residual ionospheric error, the satellite position
and clock error, errors related to multipath, and solid tides. However, the only input
difference when comparing the accuracy of the geodetic position was the application of
the Saastamoinen model of tropospheric correction (as the other applied algorithms were
identical); therefore, the effect of the resulting final difference between the two models can
be deterministically attributed to the tropospheric component within the total geodetic
position error.

The difference in geodetic accuracy of the user’s position can be analyzed as a function
of the influence of the applied Saastamoinen model of tropospheric delay correction since
all other parameters were set identically in both cases. This provided the theoretical basis
for quantifying the effect of the Saastamoinen model on improving the geodetic accuracy
of the observed GNSS positions.

The resulting RTE value of the known position caused by the non-modeled part of
the tropospheric delay was subjected to a statistical regression procedure to determine
the correlation with real meteorological surface parameters. Statistical correlation with its
positive parameters are the basis for developing a mathematical model to reduce RTE as a
function of surface meteorological parameters (as independent input variables).

The stages in the creation of the proposed model are shown in Figure 2.

Figure 2. The proposed model development.

Meteorological independent input variables are as follows: T is the temperature (◦C);
Pr is the precipitation (mm); Rh is the relative humidity (percentage); PWV is the precipita-
tion water (mm); P is the pressure (hPa); and ΔXM, ΔYM, and ΔZM are deviations along
the x, y, and z axes in the proposed model (m).

The proposed model contains a mathematical expression for each axis as the observed
deviation from the exact geodetic position followed the ECEF coordinate system. The
final form of the proposed model is shown as follows. The amounts of the coefficients of
the input predictors are the result of the regression analysis that describes the form and
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intensity of the mutual connection between the meteorological input predictors and the
output variable RTE. For the X axis, the model component ΔXM has the form:

ΔXM =
√−4.66541 − 0.01108Rh + 0.07062P + 0.11806Pr − 0.05187T + 0.1246PWV (14)

For the Y axis, the model component ΔYM has the form:

ΔYM = −
(√

0.06656 − 0.00004Rh − 0.00003P + 0.00041Pr + 0.000047T − 0.00345PWV
)

(15)

For the Z axis, the model component ΔZM has the form:

ΔZM = − 1
7.17152 − 0.01049Rh − 0.00407P + 0.12603Pr − 0.03837T + 0.01937PWV

(16)

The final form of the proposed model (PSi) is based on an extension of the existing
Saastamoinen model and represents the sum of the corrections made by the Saastamoinen
model and the proposed model for each axis:

PSi = MS +

⎧⎨⎩
ΔXM
ΔYM
ΔZM

(17)

where MS is the correction value realized by the Saastamoinen model (in m).

2.4.3. Validation of the Proposed Model

Validation was performed using the cross-validation method with a 50:50 train-test
ratio. Common statistical indicators of significance of the model components for a single
coordinate axis include p value, multiple correlation coefficients, multiple determination,
and adjusted determination coefficient. The results are shown in Table 2.

Table 2. Statistical indicators of the proposed model validation.

Multiple
Correlation

Multiple
Determination

Adjusted
Determination

Coefficient
p-Value

X axis 0.115 0.013 0.013 0.00037
Y axis 0.034 0.001 0.001 0.00273
Z axis 0.092 0.008 0.008 0.00019

The obtained results show statistically significant correlations (upper limit p = 0.05),
i.e., there is a statistically significant correlation between the independent input variables
(the meteorological parameters) and the dependent output variable (RTE) for each coor-
dinate axis, expressed by the Equations (14)–(16). The obtained correlation coefficients
show: (i) the presence of a statistically significant correlation between the input predictors
and the dependent variable in all components of the proposed model; (ii) a statistically
significant prediction of the criterion variable by the input predictors in all components of
the proposed model; and (iii) a statistically significant relationship between the obtained
correlation, the number of samples (the input records), and the number of input variables
(the predictors) of all components of the proposed model. Although the existence of a
statistically significant connection between the input predictors and the output RTE vari-
able is shown, the realized adjusted determination coefficients show different connection
intensities, which is evident considering the associated low values of the coefficients of the
input predictors in the model component for the y axis.

3. Results and Findings

The verification of the proposed model was performed using independent input
data and meteorological data from the same locations for the period of 2014–2015. The
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coordinates of the geodetic positions for the period of 2014–2015 were calculated in an
identical way and with the same input algorithms as the geodetic positions for 2019. The
proposed model was created on this basis. The fundamental parameter that highlights the
success of the proposed model is the reduction of the RMSE deviation of the positional
accuracy compared to the positional accuracy achieved exclusively by the Saastamoinen
model. The verification process was performed separately for each location and period.
The movement of the coordinates along the coordinate axes in the horizontal and vertical
planes and the inversion of the deviation of individual coordinates were observed using
the proposed validated and verified empirical model; for example, y and z are complexly
and graphically shown on a series of diagrams provided in Appendix A of the paper.

3.1. Verification for Čakovec Location

The correction values generated by the proposed model are shown in Table 3.

Table 3. Values of RTE corrections by the proposed model for Čakovec GNSS location (in m).

City Year Range x y z

Čakovec
2014

Max 1.69 −0.13 −0.31
Min −0.64 −0.17 −0.71

2015
Max 1.61 −0.12 −0.35
Min −0.85 −0.18 −0.75

The proposed model generates negative RTE correction values for coordinate axes y
and z for 2014 and 2015. For the x axis, corrections were made in the range of −0.65 m to
1.69 m (for both years). The absolute amounts of the corrections range from 0.04 m (y-axis
in 2014) to 2.46 m (x-axis in 2015).

The values of the RMSE, the standard deviation (STD), and the associated statistical
parameters for the Čakovec GNSS position are shown in Table 4.

Table 4. Comparison of RMSE, STD, range, and median values for the Čakovec GNSS location
obtained using the Saastamoinen model and the proposed model (in m).

Saastamoinen Model Proposed Model

2014 x y z x y z
Max 27.731 15.087 26.671 27.110 15.257 27.168
Min −21.003 −17.843 −20.919 −21.186 −17.690 −20.328

RMSE 3.666 2.246 4.676 3.565 2.245 4.518
STD 3.593 2.244 4.400 3.553 2.244 4.396

Median 0.753 −0.113 −1.517 0.355 0.045 -0.969
2015 x y z x y z
Max 23.429 12.394 20.610 22.653 12.549 21.036
Min −15.533 −15.782 −23.515 −15.842 −15.621 −22.958

RMSE 3.681 2.355 4.111 3.539 2.362 4.036
STD 3.464 2.355 4.027 3.436 2.355 4.025

Median 1.318 −0.024 −0.815 0.925 0.136 −0.280

Application of the proposed model shows that values of the minimum and maximum
deviations do not change significantly with ranges remaining approximately within the
usual scale. There was a noticeable tendency for one deviation value to decrease while the
opposite value increased and their absolute range values remained the same. Moreover,
both minimum and maximum deviation values of the z axis decreased in the proposed
model for the observed year of 2014.

The 2014 results showed a simultaneous improvement in the accuracy of the position
RMSE value, which is the basic parameter for the success of the proposed model. Improve-
ments in accuracy were obtained for the x-axis (10.04 cm/2.73%), y-axis (0.09 cm/0.04%),
and z-axis (15.85 cm/3.38%). At the same time, the parameter STD improved for the x- and
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z-axis, and the value STD decreased for the y-axis (−0.03 cm/−0.01%). An improvement
of the measurement frequency distribution was also observed. In 2014, the median value
obtained with the proposed model for all axes decreased and approached the initial value
of the deviation (zero), and in 2015, an improvement of the median value of the x- and
z-axes and a deterioration of the y-axis was observed. An improvement in position accu-
racy was seen when comparing the RMSE values over the indicated period. For 2015, the
proposed model simultaneously improved the x-axis position accuracy (14.26 cm/3.87%)
and the z-axis accuracy (7.56 cm/1.84%), but it simultaneously worsened the y-axis position
accuracy (−0.75 cm/−0.32%). It is clear that an overall improvement in position accuracy
was achieved when observing the ratio of improvement and the deterioration of the overall
position accuracy at the same time.

3.2. Verification for Zadar Location

The correction values generated by the proposed model are shown in Table 5.

Table 5. Values of RTE corrections based on the proposed model for Zadar GNSS location (in m).

City Year Range x y z

Zadar
2014

Max −0.67 −0.17 −0.80
Min 0.90 −0.12 −0.29

2015
Max −0.85 −0.18 −0.86
Min 0.88 −0.11 −0.28

It can also be seen that the values of generated RTE corrections for the GNSS station in
Zadar were negative for the y and z axes in the observed period and ranged from −0.85 m
to 0.9 m for the x axis. The absolute corrections’ values ranged from 0.055 m (y-axis in 2014)
to 1.74 m (x-axis in 2015). The statistical parameters RMSE, STD, range, and median for the
Zadar GNNSS position are shown in Table 6.

Table 6. Comparison of the achieved values of RMSE, STD, minimum, maximum, and median values
for the Zadar GNSS position obtained using the Saastamoinen model and the proposed model (in m).

Saastamoinen Model Proposed Model

2014 x y z x y z
Max 24.007 14.924 43.551 23.987 15.070 43.995
Min −68.814 −28.262 −69.978 −69.145 −28.093 −69.437

RMSE 4.266 2.565 5.235 4.233 2.556 5.008
STD 4.257 2.554 4.737 4.232 2.554 4.737

Median 0.284 −0.279 −2.129 0.076 −0.124 −1.520
2015 x y z x y z
Max 31.536 16.820 25.550 31.410 16.971 25.978
Min −50.777 −20.134 −37.990 −50.937 −19.988 −37.365

RMSE 4.312 2.505 4.147 4.233 2.521 4.133
STD 3.836 2.498 4.130 3.809 2.498 4.127

Median 2.051 0.105 −0.372 1.859 0.260 0.219

Comparison of the parameters showed that the proposed model did not have a signifi-
cant effect on the reduction of the final values of the accuracy deviations, and the range of
the minimum and maximum values remained approximately the same. However, there was
a significant change in the grouping values of the measurement frequencies for 2014 in all
coordinate axes. For 2015, a positive shift of the median was obtained for the x and z axes,
and an additional deviation from the zero value was registered for the y axis (0.26 m versus
0.10 m). The 2014 results showed an improvement in the accuracy of the RMSE value of the
position at the same time for all axes. Accuracy improvements were obtained for the x-axis
(3.33 cm/0.78%), the y-axis (0.9 cm/0.37%), and the z-axis (22.71 cm/4.33%). The parameter
STD improved for the x-axis, and the value STD decreased for the y-axis (−0.03 cm/−0.01%)
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and the z-axis (−0.006 cm/−0.001%). For 2015, the results of the predictive model showed
the RMSE values of the x-axis (11.21 cm/2.6%) and the z-axis (1.45 cm/0.35%), while the
y-axis had a decrease in the RMSE value (−1.65 cm/−0.65%). The same tendency was seen
in the parameter STD: the x-axis and z-axis obtained improvements, and a deterioration of
the y-axis STD value (−0.03cm/−0.01%) was recorded.

3.3. Verification for Dubrovnik Location

The correction values generated by the proposed model for the Dubrovnik GNSS
location are shown in Table 7.

Table 7. Values of the RTE corrections based on the proposed model for the Dubrovnik GNSS
location (in m).

City Year Range x y z

Dubrovnik
2014

Max 1.69 −0.13 −0.36
Min −0.65 −0.18 −0.71

2015
Max 0.80 −0.11 −0.29
Min −0.96 −0.18 −0.82

The values shown indicated that the model generated negative correction amounts of
RTE for the y- and z-axes over the observed two-year period and values within the limits
of −0.96 m to 1.69 m for the x-axis. The values of the absolute correction amounts ranged
from 0.047 m (y-axis in 2014) to 2.33 m (x-axis in 2014). The values of the RMSE, standard
deviation (STD) and associated statistical parameters for Dubrovnik GNSS position are
shown in Table 8.

Table 8. Comparison of the realized values of RMSE, STD, range, and medians for the Dubrovnik
GNNSS position obtained using the Saastamoinen model and the proposed model (in m).

Saastamoinen Model Proposed Model

2014 x y z x y z
Max 56.471 43.660 66.975 56.238 43.820 67.519
Min −40.470 −34.888 −49.833 −41.077 −34.733 −49.264

RMSE 4.519 2.736 5.457 4.532 2.711 5.218
STD 4.514 2.687 4.796 4.497 2.687 4.798

Median −0.176 −0.455 −2.424 −0.542 −0.297 1.867
2015 x y z x y z
Max 47.847 13.006 24.051 47.525 13.184 24.494
Min −28.606 −21.630 −21.456 −29.167 −21.458 −20.922

RMSE 4.313 2.602 4.337 4.291 2.598 4.226
STD 4.180 2.598 4.185 4.175 2.598 4.186

Median 1.134 −0.120 1.096 1.047 0.038 −0.538

Analysis of the presented accuracy parameters showed that the proposed model
contributed to a deterioration of the RMSE value in 2014 for the x-axis (−1.35 cm/−0.3%),
while it improved the accuracy of the other two axes, especially the z-axis (23.87 cm/4.37%),
and also the y-axis (2.5 cm/0.92%). As for the two previously observed positions, there was
no significant change in the value for the deviations range. An improvement in accuracy
was observed for the median parameter in 2014 in the y and z axes, and an increase in
the deviation was recorded for the x axis (from -0.17 m to 0.54 m). The parameter STD
improved in the x-axis (1.78 cm/0.39%) and worsened in the y-axis (−0.004 cm/−0.001%)
and z-axis (−0.12 cm/−0.02%).

For 2015, the proposed model improved the accuracy (parameter RMSE) of the x-axis
(2.2 cm/0.57%), y-axis (0.3 cm/0.13%), and z-axis (11.15 cm /2.52%). The value of STD also
improved for the x-axis, while it decreased for the y-axis (−0.03 cm/−0.01%) and the z-axis
(−0.14 cm/−0.03%). At the same time, there were shifts in the median value toward the
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central value for all axes, with shifts on the y-axis (from −1.679 to 0.03 m) and the z-axis
(from −3.84 to 0.53 m).

4. Discussion

Summary results of the verification procedure for the observed locations are presented
in Table 9. The table contains data obtained by comparing the RMSE and STD parameters
of the position accuracy obtained using the Saastamoinen model and the proposed model
for all observed locations within the observed time frame.

Table 9. Total results of RMSE and STD values achieved using the proposed model.

City & Year
RMSE & STD

Tendency

x y z

[%] [cm] [%] [cm] [%] [cm]

Čakovec, 2014
RMSE −2.739 −10.043 −0.042 −0.094 −3.389 −15.851
STD −1.118 −4.020 0.014 0.033 −0.075 −0.331

Čakovec, 2015
RMSE −3.875 −14.267 0.322 0.758 −1.840 −7.569
STD −0.827 −2.867 0.007 0.016 −0.047 −0.192

Zadar, 2014
RMSE −0.781 −3.335 −0.374 −0.962 −4.338 −22.717
STD −0.572 −2.438 0.012 0.031 0.001 0.006

Zadar, 2015
RMSE −2.600 −11.214 0.659 1.652 −0.355 −1.475
STD −0.725 −2.783 0.013 0.033 −0.055 −0.229

Dubrovnik, 2014
RMSE 0.300 1.356 −0.920 −2.518 −4.374 −23.873
STD −0.395 −1.783 0.001 0.004 0.026 0.127

Dubrovnik, 2015
RMSE −0.517 −2.232 −0.132 −0.343 −2.572 −11.156
STD −0.119 −0.500 0.014 0.036 0.0346 0.144

Positive values represented an increase in RMSE and STD values, i.e., a decrease in
position accuracy, while negative values represented a decrease in the aforementioned
statistical parameters, i.e., an increase in geodetic position accuracy. The graphical results
of the performance of the proposed model are shown in Figures 3 and 4 where the curve
represents the relative value (in percentages) and the columns represent the absolute
amount (in cm).

Figure 3. Movement of RMSE deviation values using the proposed model from the exact geodetic
position of the observed locations expressed in absolute (right y-axis) and relative (left y-axis) values.
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Figure 4. Movement of the parameter STD using the proposed model of observed locations expressed
in absolute (right y-axis) and relative (left y-axis) values.

The presented results of RMSE as the main performance parameter showed that the
proposed model improved the overall geodetic accuracy of the observed positions. The
x-axis position deviations decreased for five measurements, while the deviations in the
y-axis and especially in the z-axis decreased simultaneously (Dubrovnik, 2014).

The model for the y-axis achieved a decrease in the deviation in four measure-
ments, while where there was an increase in the deviation in the remaining measurements
(Čakovec, 2014 and Zadar, 2015), and there improvement in the accuracy of the position
along the second horizontal x-axis was achieved in addition to the improvement achieved
along the vertical z-axis.

The results of the obtained STD values as measures of the variability of the obtained
results were half-hearted (partial). Improvement was obtained in nine measurements and
worse results were obtained in the other nine measurements, as shown in Figure 4. It is
important to point out that the absolute amounts of the obtained worse results were within
the limits of 0.0014 cm to 0.1448 cm, although they were nominally worse than the STD
value obtained using the Saastamoinen model. Considering the mentioned amounts, the
obtained worse results can be ignored in further interpretation of the results and evaluation
of the study’s success.

4.1. Model Suitability for Application within the GPS

The proposed model shows a certain degree of success in the application within the
GPS, although it was developed on the basis of GLONASS position records. The results
showing the movement of the RMS parameter are shown in Figure 5.

The proposed model generally increases geodetic accuracy throughout the verification
period. The RMS value of the x-axis deviation for all cities in the entire verification period
reduced with absolute reduction amounts ranging from 3.29 cm to 32.26 cm (1.32–11.08%).
At the same time, the geodetic accuracy decreased along the y-axis for the absolute values
from 1.64 cm to 4.77 cm (1.09% to 5.54%). In the z axis, the model showed a variable
result: it achieved an improvement in four of the six measurements (in absolute amounts
from 0.65 cm to 2.49 cm, i.e., 0.34% to 1.23%). In the remaining two measurements, the
proposed model degraded geodetic accuracy (varying from 3.55 cm to 16.32 cm, i.e., 1.78%
to 7.95%). Differences in the model’s ability to reduce the residual tropospheric delay
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of the satellite signal when compared to GPS are due to a number of reasons, including
the different spatial constellation of systems, differences in modulations of the satellite
navigation signals, etc. For adequate results within the GPS, a regression analysis should
be performed as a function of the interdependence of meteorological input predictors and
RTE output variables based on GPS positional data, which further observes and analyzes
the dynamics and variations of RTE movements.

Figure 5. Movement of the RMSE deviation value using the proposed model from the exact geode-
tic position of the observed locations obtained using a GPS system and expressed in absolute
(right y-axis) and relative (left y-axis) values.

As expected, the results do not achieve an improvement as with the GLONASS system.
Given the time and space limitations of the research, GLONASS was chosen as an affirmed
part of the GNSS system since the main goal of the research was the development and
adoption of a methodology based on statistical analysis. However, the verification of the
proposed model using GPS data showed the potential of the adopted approach and the
possibility of further development based on the input of multi-GNSS positioning data for a
wider GNSS application.

4.2. Periodic Effect of the Proposed Model on the Positioning Accuracy

The proposed model showed the possibility of a quantitative influence on the re-
duction of the tropospheric error which increases the accuracy of GLONASS positions.
The tropospheric error is a stochastic phenomenon due to natural causes; however, the
conducted research proves the possibility of developing a statistically significant correlation
between tropospheric dynamics (expressed as a set of meteorological parameters) and the
improvement of GNSS position accuracy. The regularity of the movement of the absolute
differences of the values of RTE according to the proposed and Saastamoinen models
can be observed; thus, indirectly, the movement of the geodetic accuracy achieved via
the GLONASS system can also be observed. The annual motions shown in Figures 6–8
(see Appendix A for additional Figures A1–A7) show the annual oscillation for each posi-
tion axis. The value for the x-axis is shown in the upper part of the graph, while the middle
part of the graph shows the values for the z-axis, and the lower part of the graph shows the
realized values for the z-axis. The property of periodicity of the motion manifests itself at
smaller temporal resolutions—for example, at quarterly or monthly time frames—regardless
of the selected GNSS position (see Appendix A: GNSS Position Zadar 2015).
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Figure 6. Movement of the absolute difference of the parameter RTE at the GNSS position Čakovec
in 2014.

Figure 7. Movement of the absolute difference of the parameter RTE at the GNSS position Zadar
in 2014.
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Figure 8. Movement of the absolute difference of the parameter RTE at the GNSS position Dubrovnik
in 2014.

The annual trends in the difference of shown absolute RTE deviations clearly indicate
the seasonal nature of the tropospheric error. On the x-axis, the difference in absolute RTE
deviations typically reaches a maximum in the winter months, although the upper values
of the deviations may also occur in the later periods of spring or autumn, i.e., in summer in
the case of climatological deviations for the mentioned seasons.

The same pattern of correlation of the differences in absolute deviations from RTE
along the y and z axes is evident in the other two observed GNSS positions. There are
differences in the absolute values (amounts) of the RTE deviation difference, but there are
no differences in the general distribution of the measured RTE deviation difference.

4.3. Observations on the Specifics of the Conducted Research

The dynamic specificities of the presented relationship between the positioning accu-
racy and the absolute values of the RTE difference are shown in the vertical level in the
direction of the z-axis (regarding the relationship with the zenith angle of the incoming ra-
dio navigation signal) and in the horizontal plane in the direction of the y-axis. The vertical
plane is defined by the y- and z-axes; therefore, improvement in the positional accuracy
is expressed in such a way that the increase in deviation along the y-axis is followed by a
decrease in deviation along the z-axis and vice versa. At the horizontal level, the deviation
along the x-axis is somewhat proportionally related to the value achieved along the y-axis.
Simultaneous deviations along the y- and z-axis show the mutual relationship achieved at
the vertical level which they jointly define in the observed space as the starting point.

It is possible to define the RTE vector using the origin in the center O of the coordinate
space (Oxyz) based on analytical interpretation of the accuracy dynamics of GNSS positions
(observed based on the movement of the difference of the absolute values of RTE realized by
the Saastamoinen model and the proposed model where the reduction of the parameter RTE
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improves the geodetic accuracy of the GNSS position). The motion of the RTE vector within
the stationary Oxyz system describes the translational motion of the RTE parameter/point
within the available (six) degrees of freedom. The proposed model shows improvement of
the RTE parameter within the observed Oxyz system of taking the position (or the reduction
of the RTE parameter) independent of time where the specified property of the Oxyz system
is also independent of time [51]. Therefore, it is justified to conclude that the observed GNSS
system has reached a state of statistical position equilibrium. The original assumption was
that a decrease in the RTE parameter leads to a decrease in the tropospheric error which
increases the geodetic accuracy of the position. The observed GNSS GLONASS system also
reaches this state due to the realized movement of the RTE parameter.

5. Conclusions

The proposed model showed its success by reducing deviations from exact GNSS
geodetic positions by acting on the non-modeled part of the tropospheric error. The basis of
the proposed model was the existing Saastamoinen model, and correction values (obtained
using the proposed model) for each axis should have been added to this model. The
proposed model needs meteorological input parameters which can be interpolated from a
given standard weather model depending on availability; alternatively, standard predicted
input values can be used (as is the case of the absence of meteorological parameters in the
Saastamoinen model).

The proposed model was verified at the same GNSS stations within a two-year period.
The proposed model showed an improvement in position accuracy achieved by reducing
the residual tropospheric error when compared to the Saastamoinen model. The model
did not achieve a simultaneous improvement in all axes for all locations during the entire
verification period, but it demonstrated superiority over the Saastamoinen model. Im-
provements in the horizontal axes of the position up to a maximum of 3.87% were achieved
(14.26 cm), while the accuracy of the second horizontal axis reduced by 0.65% (1.65 cm) for
two measurements. At the same time, the accuracy of the height component of the position
improved in all measurements to a maximum of 4.37% (23.87 cm).

The proposed model must be used programmatically (software) as a complement to the
Saastamoinen model, although there are certain limitations in terms of the geographical area
of application, i.e., the possibility of application in areas with similar climate profiles. At
the same time, the optimal application areas of the proposed model are found in stationary
and dynamic systems to determine the position of the user in real time with lower accuracy.
Therefore, it is clear that the model can be used within the existing application areas of the
Saastamoinen model with all existing limitations and advantages.

An additional result of the applied methodology and the use of the RTE parameter
is the statistical position equilibrium of the observed GNSS GLONASS positions defined
by the oscillation around the central position values within the Oxyz-space. The model
was developed based on GLONASS position data; however, it also shows a certain level
of success in the verification of geodetic positions based on GPS position. The possible
continuation of this research includes applying this suggested approach to developing a
model based on multi-GNSS positioning data and verifying its effectiveness with other
available GNSS systems. Future research of this type will be focused on determining the
positional statistical balance of the X, Y, and Z coordinates along the x, y, and z coordinate
axes as a function of various satellite navigation arguments.
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Abbreviations

The following abbreviations were used in the manuscript:
DHMZ Croatian Meteorological and Hydrological Service
ECEF Earth Centered, Earth Fixed
EKF Extended Kalman Filter
EUREF Regional Reference Frame Sub-Commission for Europe
GLONASS Global Navigation Satellite System
GNSS Global Navigation Satellite System
GPS Global Positioning System
NMF (New) Mapping Functions
NWM Numerical Weather Models
PPP Precise Point Positioning
PWV Precipitable Water Vapor
RINEX Receiver Independent Exchange
RMSE Root Mean Square Error
RTE Residual Tropospheric Error
RTK Real-time Kinematics
SBAS Satellite-based Augmentation Systems
STD Standard Deviation
ZHD Zenith Hydrostatic Delay
ZTD Zenith Tropospheric Delay
ZWD Zenith Wet Delay

Appendix A

Figure A1. Movement of the absolute difference of the RTE GNSS Čakovec position parameter
in 2015.
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Figure A2. Movement of the absolute difference of the RTE GNSS Zadar position parameter in 2015.

Figure A3. Movement of the absolute difference of the RTE GNSS Zadar position parameter in 2015.
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Figure A4. Movement of the absolute difference of the RTE GNSS Zadar position parameter in the
period July–September 2015.

Figure A5. Movement of the absolute difference of the RTE GNSS position parameter in Zadar,
July 2015.
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Figure A6. Movement of the absolute difference of the RTE GNSS position in Zadar, August 2015.

Figure A7. Movement of the absolute difference of the RTE GNSS position parameter in Zadar,
September 2015.
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Abstract: With the gradual improvement of Galileo and the opening of BDS-3 services, water vapor
tomography based on multi-GNSS can be effectively carried out to reconstruct three-dimensional
water vapor distribution. In this paper, experiments in Hong Kong were conducted to analyze
and assess the performances of GPS, BDS, GLONASS, and Galileo and their combinations in water
vapor tomography. Numerical results show that the number of available signal rays varies widely
in the four satellite systems, and the value can be increased by the combination of satellite systems;
the combinations also increase the number of voxels crossed by signal rays, but this value is not
directly related to the number of available signal rays; the number and distribution of the voxels with
sufficient signal rays, which most closely related to the structure of the tomographic model, show no
obvious differences in the four satellite systems and their combinations. Comparative results of slant
water vapor (SWV) estimated by GNSS data and water vapor density derived from radiosonde data
reveal that the differences in the water vapor tomography of the four satellite systems are small, and
their combinations have limited improvement in the tomographic results.

Keywords: GNSS meteorology; water vapor; tomography; multi-GNSS

1. Introduction

Since the concept of GNSS meteorology was first proposed by Bevis et al., the water
vapor information derived from GNSS has drawn increasing attention in the meteorological
and GNSS communities [1]. The precipitable water vapor (PWV), which refers to the height
of an equivalent column of water vapor [2], has been widely validated to achieve mm-level
accuracy based on the conversion of GNSS zenith tropospheric delay [3]. Further, the
three-dimensional water vapor information can also be inversed by using GPS signals as
scanning rays in the research area, which is called water vapor tomography.

Braun et al. first proposed the concept of GPS water vapor tomography [4] and
Flores et al. first realized it using the data from the Kilauea network in Hawaii [5]. The
research region, covered by ground GPS receivers, is discretized into finite voxels according
to its latitude, longitude, and altitude, and the unknown estimated parameter of the voxels
are assumed to be constant during a given period. The GPS-derived slant water vapor is
regarded as the observations for water vapor tomography.

In modeling the GPS water vapor tomography, it is found that the geometric distribu-
tion of the observed signals is an inverted cone due to the fixed structure of GPS sites and
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satellites [6]. The direct effect caused by this phenomenon is the presence of tomographic
voxels without signal rays passing through, especially at the lower and edge layer of the
area of interest. It also makes many voxels be penetrated by only a very small number of
signals. From the perspective of the water vapor tomography model, it often leads to a
large number of zero elements appearing in the coefficient matrix, which becomes a sparse
matrix [7]. This is the fundamental cause of the ill-posed problem in GPS water vapor
tomography, which seriously restricts its stable and high-accuracy solution. Obviously,
enriching the observation equation of the GPS water vapor tomography is an effective
way to overcome the above problem by introducing various observation information, and
related research has been carried out.

Based on voxel horizontal boundary selection and non-uniform symmetrical division,
Chen et al. and Yao et al. proposed an optimized approach of horizontal voxel division to
introduce more signal rays penetrated from the top layer into the observation equation [8,9].
The similar effect can be obtained by the method of constructing the tomographic buffer
area carried out by Trzcina et al. and Sa et al. [10,11]. These methods are limited to specific
tomographic regions and certain experimental periods. Adavi et al. explored how to use
the constructed virtual reference sites to augment location-specific GPS observations [12].
The virtual signals were also introduced to the tomography model using the calculated
mapping function and ZWD/PWV of corresponding site and the elevation and azimuth
of specified virtual satellite [6,13]. Studies have shown that it is a feasible method to
incorporate the GPS signal rays passed through form the side face into the tomography
model; for example, Zhao et al. constructed the unit scale factor for these signals using the
radiosonde and reanalysis data [14], Zhang et al. and Hu et al. established the height factor
models adapted to these signals from side face [15,16]. In addition, Zhao et al. tried to
extend the observations of GPS sites outside the tomographic region into the tomography
model based on the GPT2w and TMF models [17,18]. The above methods all rely on
external data or models and tend to introduce new error for the observation information.
On the other hand, some have attempted to add multi-source observation information from
various sensors into the GPS tomography model, such as the COSMIC occultation data [19],
the GNSS-R data [20], the InSAR data [21,22], WRF output data [23], LEO constellation-
augmented data [24], PWV data derived from FY-3, and MODIS [25,26]. However, the
spatiotemporal resolution, availability, and consistency with the tomographic region are the
factors that seriously restrict the fusion of the above observations into the tomography model.

It is more reasonable and convenient to construct the GNSS water vapor tomography
model together with the observations from GPS and the other three satellite navigation
systems. Bender et al. simulated GPS, GLONASS, and Galileo data and introduced the
method for obtaining three-dimensional water vapor information by tomography technique
in multi-satellite systems [27]. Wang et al. compared the tomographic accuracy of BDS
and GPS based on simulated data, and showed that the result using 9 satellites of BDS is
basically comparable to that of GPS [28]. Xia et al. and Benevides et al. carried out the water
vapor tomography experiments of GPS combined with GLONASS and GPS combined with
Galileo in Hongkong and Lisbon regions, respectively [29,30]. Dong et al. and Zhao et al.
utilized the measured data derived from different numbers of BDS2 satellites and combined
it with GPS and GLONASS data to construct the tomography model in Wuhan and Guiyang,
respectively [31,32]. With the gradual improvement of Galileo and the opening of BDS-3
services, the above experiments based on simulated data or incomplete satellite data cannot
fully reflect the current status of water vapor tomography based on multi-GNSS. Therefore,
this paper aims to explore the differences between the four satellite navigation systems
and their combination in water vapor tomography, including the modeling process and the
reconstructed results.
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2. Materials and Methods

The observations in GNSS water vapor tomography are the slant water vapor (SWV)
which can be converted from slant wet delay (SWD) as follows [33]:

SWV =
106

ρw × R
mw

(
k3
Tm

+ k2 − mw
md

× k1

) × SWD (1)

where ρw refers to the liquid water density with the unit of g·m−3; R = 8314 Pa·m3·K−1·kmol−1

denotes the universal gas constant; mw and md represent the molar mass of water and
the dry atmosphere and their values are 18.02 kg·kmol−1 and 28.96 kg·kmol−1, respec-
tively; Tm is the weighted mean temperature, which can be calculated by using surface
temperature [34,35]; k1, k2, and k3 are the empirical physical constants, which are equal to
77.60 K·hPa−1, 70.4 K·hPa−1, and 3.739 × 105 K·hPa−1, respectively [36]. After mapping
the zenith wet delay (ZWD) and the wet delay gradients into the elevation direction, the
SWD can be obtained as follows [37]:

SWD = mw(ele)× ZWD
+ mw(ele)× cot(ele)× (Gw

NS × cos(azi) + Gw
WE × sin(azi)

) (2)

where mw indicates the wet mapping function and the global mapping function (GMF) was
used in this paper; ele and azi denote the satellite elevation and azimuth angles, respectively.
Gw

WE and Gw
NS represent the wet delay gradient parameters in the east-west and north-south

directions, respectively. Affected by water vapor along the signal ray, ZWD is the wet
component of zenith total delay (ZTD) which is the primary parameter retrieved from GNSS
observation. To obtain ZWD, the zenith hydrostatic delay (ZHD) should be subtracted
from ZTD [38]. In this paper, the Saastamoinen model is used to calculate the accurate
ZHD using the pressure measurements as follows [39]:

ZHD =
0.002277 × Ps

1 − 0.00266 × cos(2ϕ)− 0.00028 × H
(3)

where ϕ and H denote the latitude and geodetic height of the GNSS site, respectively. Ps is
the measured surface pressure.

In the water vapor tomography, the SWV value is also an integral expression of
water vapor along the slant path from the ground receiver and GNSS satellite, given by
the following:

SWV = 10−6·
∫

ρ(s)ds (4)

where ρ(s) in g·m−3 denotes the water vapor density and ds refers to the path traveled
by a satellite signal ray. After discretizing the tomographic region into finite voxels, the
observation equation of GNSS water vapor tomography can be established based on the
distances of GNSS signal rays crossing the divided voxel and the unknown estimated water
vapor density with each voxel. It can be expressed as follows:

SWV =
n

∑
i=1

di·xi (5)

where n represents the total number of divided voxels in the research region. di denotes
the distance of signal rays inside voxel i, which can be calculated by using the coordinates
of GNSS sites and satellites. xi refers to the water vapor density of voxel i, which is the
unknown estimated parameter.

In water vapor tomography, two types of constraints are widely used in tomographic
modeling along with the observation equation, one is the horizontal constraint and the other
is vertical constraint, since a spatial relation exists between water vapor in a specific voxel
and its surrounding ones. For the horizontal constraint, it assumes that the distribution of
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water vapor density is relatively stable in the horizontal direction within a small region,
and represents the relationship between the water vapor density of a certain voxel and
those of its adjacent voxels in the same layer. For the vertical constraint, it refers to the
exponential relationship between the water vapor density of voxels for two consecutive
layers. These two constraints can be expressed as follows:

wh
1x1 + wh

2x2 + · · ·wh
i−1xi−1 − xi + wh

i+1xi+1 + · · ·wh
mxm = 0 (6)

xi − wv
i+mxi+m = 0 (7)

where m is the total number of voxels in the same layer. wh and wv denote the horizontal
weighted coefficient and the vertical weighted coefficient, respectively. The horizontal
weighted coefficient is constructed based on the Gaussian inverse distance weighted func-
tion as the following equation:

wh
i−1 = − e−

d2
i,i−1
2σ2

m
∑

j=1
e−

d2
j,i

2σ2

(8)

where d is the distance between the two voxels. j is a number from 1 to m, represented the
voxel ordering of the same horizontal layer. σ denotes the smoothing factor. The vertical
weighted coefficient is constructed based on exponential function as follows:

wv
i+m = e(hi+m−hi)/Hs (9)

where h represents the height of the corresponding voxel and Hs refers to the water vapor
scale height with an empirical value of 1.5 km [40]. Note that each voxel has corresponding
equations for horizontal and vertical constraints.

Thus, the tomography model for water vapor reconstruction can be established by
combining the observation equation of multi-GNSS and the two types of constraint equations.⎛⎜⎜⎜⎜⎜⎜⎝

yG
swv

yC
swv

yR
swv

yE
swv
0
0

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝

AG
AC
AR
AE
H
V

⎞⎟⎟⎟⎟⎟⎟⎠·x (10)

where yswv denotes the vector with SWV values derived from these four satellite systems;
A represents the coefficient matrices of the observation equation for different types of satel-
lite systems; H and V are the coefficient matrices of the horizontal and vertical constraints,
respectively. The tomography solution of the unknown water vapor density vector x can
be obtained as follows:

x̂ =
(

AT
GPG AG + AT

CPC AC + AT
RPR AR + AT

EPE AE + HT PT H + VT PVV
)−1

·(AT
GPGyG

swv + AT
CPCyC

swv + AT
RPRyR

swv + AT
EPEyE

swv
) (11)

where P represents the weighting matrices of different equations, which are determined by
an optimal weighting method using the variance components estimation and homogeneity
test [41]. Note that the number of satellite systems in Equations (8) and (9) can be adjusted
in the experiment.

3. Results

3.1. Experimental Description

In this paper, the Hong Kong satellite Positioning Reference Station Network (SatRef)
was selected to conduct the water vapor tomography experiment. We divided this research

36



Remote Sens. 2022, 14, 3552

region into 560 voxels ranging from 113.87◦ to 114.35◦, from 22.19◦ to 22.54◦, and from
0 to 8 km for longitude, latitude, and altitude, respectively; that is, a voxel of 8 × 7 in
the horizontal direction and 10 layers in the vertical direction. As shown in Figure 1,
thirteen GNSS sites (T430, HKKT, HKLT, HKSL, HKNP, HKMW, HKPC, HKLM, HKOH,
HKSC, HKST, HKSS, HKWS) in this region were used to provide SWV in the tomography
modeling, and one GNSS (HKQT) and one radiosonde (45004) site were selected to validate
the results of the water vapor tomography.

 

Figure 1. Distribution of GNSS, radiosonde sites, and the horizontal structure of the voxels.

We utilized the GAMIT 10.71 software to estimate the tropospheric parameters in-
cluding ZTD and gradient parameters using the four GNSS systems. In this process,
the elevation cutoff angle was set to 15◦, the IGS precise ephemeris was adopted. Three
MEGX stations (JFNG, URUM, and LHAZ) were incorporated into the solution model to
reduce the strong correlation of tropospheric parameters caused by the short baseline. The
processing strategies were set to LC_AUTCLN and BASELINE modes, meaning that the
ionosphere-free linear combination was selected and the orbital parameters were fixed,
respectively. The tropospheric parameters, including troposphere delay gradients and ZTD
at 4 and 2 h intervals, are estimated and interpolated to a 30 s sampling rate in the GAMIT
software. After calculating the ZHD using the measured pressure recorded by an automatic
meteorological device, the SWV values of each satellite system were obtained by using
Equations (1) and (2).

In this experiment, the GNSS observation data of one month from DOY 121 to
151, 2021 were selected to conduct the modeling and solution of water vapor tomog-
raphy. For each tomographic solution, the period covered is 0.5 h. To assess the per-
formance of water vapor tomography based on different satellite systems and different
combinations of satellite system, each tomographic solution has 15 results, including
those of a signal satellite system, the combination of two satellite systems, the combi-
nation of three satellite systems, and the combination of four satellite systems, namely
GPS (G), BDS (C), GLONASS (R), Galileo (E), GPS+BDS (GC), GPS+GLONASS (GR),
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GPS+Galileo (GE), BDS+GLONASS (CR), BDS+Galileo (CE), GLONASS+Galileo (RE),
GPS+BDS+GLONASS (GCR), GPS+BDS+Galileo (GCE), GPS+GLONASS+Galileo (GRE),
BDS+GLONASS+Galileo (CRE), and GPS+BDS+GLONASS+Galileo (GCRE). Note that
both BDS-2 and BDS-3 were included in the experiment.

3.2. Experimental Analysis

The number of satellite signal rays available for the four satellite systems in each
tomographic solution is counted and their averages during the 31 days from DOY 121 to
151, 2021 are shown in Figure 2. It can be seen that the BDS has the largest number (704) of
available signal rays, followed by GPS, Galileo, and GLONASS with the average values
of 507, 329, and 351, respectively. The percentages of available signal rays in BDS that
exceed GLONAA and Galileo are more than 100%, achieving 114% and 101%, respectively.
Compared with GPS, the value also reaches 39%. The number of signal rays used in GPS is
the most stable during the experimental period, the difference between the maximum and
minimum value is less than 100 with the standard deviation (STD) being only 23. While
the other three satellite systems have obvious fluctuations in the number of available signal
rays, with the differences between the maximum and minimum value far greater than 100
and the STDs reach 51, 48, and 34 for BDS, GLONASS, and Galileo, respectively. Note that
the average number of signal rays used in Galileo is greater than that of GLONASS, but
there are still days when GLONASS has more available signal rays than Galileo. When the
satellite systems are combined, only the available signal rays of RE have just reached the
level of BDS and the other combinations are all obviously improved compared with these
single systems, especially since the average number of signal rays used in the combination
of four systems could be close to 2000.

 

Figure 2. Average number of signal rays used in each solution based on different satellite systems
during the experimental period.

The number of voxels passed through by signal rays for the four satellite systems in
each tomographic solution is also counted, and their average values are shown in Figure 3.
It was observed that the GPS has the largest number of voxels crossed by signal rays,
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followed by BDS, GLONASS, and Galileo with average values of 425, 424, 392, and 377,
respectively. Corresponding to the 560 voxels in the entire tomographic region, the coverage
rate of the four satellite systems reaches 75.9%, 75.4%, 70%, and 67.3%, respectively. Note
that GPS and GLONASS with fewer available signal rays have more penetrated voxels than
BDS and Galileo, respectively, and in fact, their differences are relatively small. In addition,
the number of voxels crossed by signal rays for the four satellite systems all show a certain
fluctuation during the experimental period.

 

Figure 3. Average number of voxels penetrated by signal rays in each solution based on different
satellite systems during the experimental period.

When combining the satellite systems, the number of crossed voxels and their coverage
rate is counted and shown in the form of a histogram in Figure 4. It can be seen that
the number and coverage rate of voxels are increased after the combinations compared
with single satellite system. In addition, the performances of the three-satellite systems
combination are better than those of the two-satellite systems combination, and four satellite
systems combination outperforms the three-satellite systems combination. Specifically,
combination of GCRE achieved the best performance with the number and coverage rate
of voxels of 468 and 83.6%, respectively.

In the tomographic experiment, we found the existence of voxels that were only
penetrated by a few signal rays, thus the concept of voxels crossed by sufficient signal
rays was introduced from the relevant literature [7]. Based on the fact that a ray crossed a
minimum number of voxels when the signal ray passed vertically through the tomographic
region, the minimum probability that a voxel will be penetrated by a ray could be calculated.
In this experiment, the value is 10/560, namely 1.79%. Then, the value of minimum
probability multiplied by total SWV used is regarded as the criteria to determine whether a
voxel is crossed by sufficient signal rays. Therefore, the number of voxels passed through
by sufficient signal rays for the four single satellite systems and their combinations are
counted and listed in Table 1 during the experimental period. It was observed that GPS
had the largest number of voxels penetrated by sufficient signal rays among the four
single systems, and only 7 voxels more than Galileo with the least effective voxels. After
the combinations, the number of voxels increased but very little and the value of the
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combination of four system was only 278. Regarding the coverage rate, the difference of
those 15 values in Table 1 is even smaller.

 

Figure 4. Average number of voxels penetrated by signal rays in each solution based on different
combination during the experimental period.

Table 1. Average number of voxels penetrated by sufficient signal rays based on different satellite
systems and different combinations during the experimental period.

Combinations Number Coverage Rate

G 271 48.4%
C 268 47.9%
R 265 47.3%
E 264 47.1%

GR 278 49.6%
GC 273 48.8%
GE 274 48.9%
CR 272 48.6%
CE 270 48.2%
RE 271 48.4%

GCR 277 49.5%
GEC 276 49.3%
GRE 276 49.3%
CRE 275 49.1%

GCRE 278 49.6%

Further, the situation that each voxel passed through by signal rays in a certain
tomographic solution (UTC 11:45–12:15, DOY 137, 2021) is shown in detail in Figure 5,
in which the black and white rectangles represent the voxels crossed by sufficient and in
sufficient signal rays, respectively. Note that only the four single satellite systems and the
combination of the four systems are illustrated in this figure. It is observed in the figure
that the distribution of the black and white rectangles for different systems is very similar,
especially in the lower and middle layers. From this point, for water vapor tomography in
Hong Kong, the selection of a single satellite system or multi-GNSS combination has little
effect on the structure of the tomographic model.
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Figure 5. Distribution of voxel with sufficient signal rays at each layer for GPS, BDS, GLONASS,
Galileo, and a combination of GCRE.

41



Remote Sens. 2022, 14, 3552

4. Discussion

To assess the performance of water vapor tomography using different satellite systems,
SWV of the GNSS sites for validation were computed using these 15 tomographic results
and the distances of signal ray in each voxel based on the observation equation established
in Equation (5). The 15 tomography-computed SWV were then compared with the GAMIT-
estimated SWV (as a reference). Figure 6 shows the change of tomography-computed vs.
GAMIT-estimated SWV residuals with elevation angle during the experimental period
for the four single systems. The change of the SWV residuals has the same trend in the
four satellite systems, and they decrease as the elevation angle increases. It is observed
that the residuals of four systems all ranged from −10 to 10 mm, and most of them
concentrated between −2.0 and 2.0 mm. The percentage of absolute residuals smaller
than 2.0 mm are 86.9%, 88.1%, 85.7%, and 85.3% for GPS, BDS, GLONASS, and Galileo,
respectively. The largest absolute residual of the four satellite systems is 8.46, 9.63, 9.37,
and 9.91 mm, respectively. We obtained the SWV residuals for various combinations of
satellite systems, which also follow a decreasing trend with increasing elevation. These
ranges and concentrated areas of the SWV residuals are unchanged compared with the
four single satellite systems.

Figure 6. Scatter diagram of the change of SWV residuals with elevation angle for the four satel-
lite systems.
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To further assess their performance, SWV values were grouped into individual eleva-
tion bins of 5◦, i.e., all SWVs with an elevation angle between 15 and 20◦ were evaluated as
a single unit. Thus, the RMSE of each elevation bin for these 15 tomographic results was
calculated and is shown in Figure 7. It can be seen from the left panel that the GLONASS
and Galileo performance is not as good as the BDS and GPS at low elevation angles. As the
elevation angle increases, their differences become very small. BDS achieved the best RMSE
with a value of 1.59 mm, followed by GPS, Galileo, and GLONASS. In fact, the differences
between these RMSEs are small and the values do not exceed 0.2 mm. Considering the
magnitude range of SWV, these differences can be negligible. After the combinations,
the RMSE of SWV residuals in each elevation bin were shown in the middle and right
panels, which are the combination of two systems and multi systems, respectively. The
RMSE difference of the SWV residuals for various combinations is relatively small in each
elevation bin. Specifically, the RMSEs of whole SWV residuals are 1.66, 1.59, 1.75, 1.74, 1.68,
1.64, 1.67, 1.62, 1.63, 1.60, 1.59, 1.64, 1.65, 1.65, and 1.63 mm for G, C, R, E, GC, GR, GE, CR,
CE, RE, GCR, GCE, GRE, CRE, and GCRE, respectively. Considering the magnitude range
of SWV values, the differences of RMSE mentioned above not more than 0.2 mm could
be negligible. Therefore, it is concluded that the tomographic results of different satellite
systems and different combinations have little difference in SWV validation.

Radiosonde data are well suited as a reference to validate the accuracy of the water
vapor tomography results, since they can provide a water vapor density profile with high
precision based on the atmospheric parameters obtained at different altitudes. Figure 8
illustrates the water vapor density comparisons between radiosonde data and these 15 to-
mographic results for different altitudes on UTC 11:45–12:15, DOY 137, 2021, which is
consistent with the time of tomographic solution shown in Figure 5. It is clear from the
profiles that the water vapor density decreased with increasing height. The water vapor
density profiles reconstructed by these 15 tomographic results conform with those derived
from radiosonde data. From Figure 8, it is difficult to observe the difference in the water
vapor density reconstructed by different satellite combinations. Therefore, the radiosonde
comparison of 31 days from DOY 121 to 151, 2021 was conducted and the statistical results
were listed in Table 2 to further illustrate their performances. From the mean value of
RMSE, the difference between the WVD results reconstructed by single system tomography
is 0.05 gm−3, and BDS and GPS outperforms GLONASS and Galileo slightly. Compared
with the single system, improvement can be observed from the WVD results reconstructed
after the satellite system combination. The largest improvement appears from the Galileo
with a RMSE of 1.46 gm−3 to the combination of GCR with a RMSE of 1.30 gm−3. The
number of satellite systems in the combination (two, three, or four satellite systems) did not
present an obvious impact on the WVD results reconstructed by water vapor tomography.

Table 2. Statistical results of the water vapor density composition between radiosonde and tomo-
graphic results of different combinations during the experimental period.

Combinations
RMSE (gm−3) Coverage Rate

Max Min Average

G 1.98 0.52 1.42
C 2.05 0.57 1.41
R 2.08 0.51 1.45
E 2.13 0.58 1.46

GR 1.92 0.53 1.33
GC 1.96 0.48 1.34
GE 2.04 0.61 1.41
CR 2.09 0.56 1.34
CE 1.95 0.57 1.36
RE 2.01 0.61 1.40

GCR 1.95 0.44 1.30
GEC 1.97 0.50 1.34
GRE 2.01 0.49 1.36
CRE 2.02 0.59 1.37

GCRE 1.97 0.53 1.32
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Figure 7. Comparison of SWV residuals in each elevation bin for various combinations.
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Figure 8. Water vapor density comparisons between radiosonde and 15 tomographic results.

5. Conclusions

In this paper, the performances of the four navigation satellite systems and their
combinations in the water vapor tomography were analyzed and assessed using the GNSS
data of SatRef in Hong Kong. In the tomographic modeling, the signal rays that can be
used, the voxels crossed by signal rays, and the number and distribution of the effective
voxels were computed and counted for these different combinations. For the tomographic
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results, the GAMIT-estimated SWV of HKQT and the water vapor density derived from
radiosonde were selected as references to assess these 15 tomographic solutions.

In the experimental period, the average number of available signal rays was 507,
704, 329, and 351 for GPS, BDS, GLONASS, and Galileo, respectively. Combining satellite
systems in water vapor tomography can increase the number of available signal rays,
especially as the value of four-system combination reaches close to 2000. The average
number of voxels crossed by signal rays are 425, 424, 392, and 377 for GPS, BDS, GLONASS,
and Galileo, respectively, showing that the number of penetrated voxels is not entirely
determined by the number of available signal rays. The combinations improved the
number of voxels crossed by signal rays; for example, the number and coverage rate of
penetrated voxels achieved by GCRE are 468 and 83.6%, respectively. When the voxels
with sufficient signal rays are concerned, these 15 tomographic solutions differ very little
in both number and coverage rate. The distribution diagram of effective voxels based
on black and white rectangle also indicated the small differences in the 15 solutions. The
numerical statistics showed that the RMSE in SWV comparison are 1.66, 1.59, 1.75, 1.74,
1.68, 1.64, 1.67, 1.62, 1.63, 1.60, 1.59, 1.64, 1.65, 1.65, and 1.63 mm for G, C, R, E, GC, GR,
GE, CR, CE, RE, GCR, GCE, GRE, CRE, and GCRE, respectively. In the comparison with
radiosonde data, the average RMSE are 1.42, 1.41, 1.45, 1.46, 1.33, 1.34, 1.41, 1.34, 1.36,
1.40, 1.30, 1.34, 1.36, 1.37, and 1.32 gm−3 for these 15 tomographic results. The above
comparisons indicated that the differences in the tomographic results of a single satellite
system are small, and the combinations of satellite systems have limited improvement in
the water vapor tomography results.

In the follow-up research, the impact of different satellite systems and their combi-
nation on water vapor tomography need to be explored in more representative regions.
In addition, the number, distribution, and density of GNSS stations in the research region
is another important factor determining the structure of the tomographic model. Thus,
it is necessary to pay more attention to the influence of the GNSS sites on water vapor
tomographic results in the case of a determined satellite system.
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Abstract: Changes of the antenna models on permanent global navigation satellite system (GNSS)
stations can lead to jumps and discontinuities in the coordinate time series. In this paper, the results
of research on the adequacy of the antenna phase centre corrections (PCC) variations are presented
by analysing its component—the antennas’ phase centre offset (PCO). For this purpose, height
differences were determined using different and independent methods: EUREF Permanent Network
(EPN) combined solutions, Precise Point Positioning (PPP), and the single baseline solution. The
results of GNSS processing were referenced to direct geometric levelling outputs. The research was
conducted only within the global positioning system (GPS) system due to the compatibility of one of
the receivers, and the experiment was based on a comparison of the height differences between four
GNSS antennas located on the roof of a building: two permanent station antennas and two auxiliary
points. The antennas were located at similar heights; precise height differences were determined by
geometric levelling, both at the beginning and the end of the session. Post-processing was conducted
with the use of the GPS system, precise ephemeris, the adopted antenna correction model, and a
zero-elevation mask. For one of the antennas, a change of the antenna characteristic model from IGS08
to IGS14 leads to an 8-mm difference in height. Older antennas used in the national (or transnational)
permanent network need individual PCC.

Keywords: PCC; GNSS; GPS; antenna; calibration; EPN

1. Introduction

The correct calibration of global navigation satellite system (GNSS) antennas is the
basis for precise satellite positioning and plays a key role in many aspects of positioning
and navigation [1,2]. In general, GNSS antennas have a well-defined antenna phase centre
(APC, Figure 1) and should be described by the azimuth (α) and elevation (β) functions [3].
The APC determined by phase centre variation (PCV) is a shift in position depending on
the observed elevation angle and azimuth with regards to the satellite [4]. The antenna
reference point (ARP) is a physical point where the antenna height above the physical point
is measured [5]. The antenna phase centre offset (PCO) is the difference between the ARP
and the mean electrical APC defined by the intersection of the vertical antenna axis of
symmetry with the bottom of the antenna [6]. The combination of PCO and PCV is called
phase centre corrections (PCC).
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Figure 1. A phase shift due to antenna model change.

Depending on the accuracy and quality of solutions needed to be achieved, absolute
and relative antenna calibration models are used. For many years, relative phase centre
corrections were made based on measurements on a short baseline referred to as a reference
antenna (The Dorne Margolin T of Allen Osborne Associates antenna—AOAD/M_T),
with the arbitrary assumption that the PCV of the reference antenna is zero [7,8]. Absolute
correction for an antenna can be obtained either by measurement in an anechoic chamber [9]
or by field measurements on a short baseline using a robot mount [10].

As the research shows, the problem of the antenna calibrations is not new, but it still
experiences issues with proper assumptions regarding calibrations and the correctness of
calculations. Different antenna calibration models impact, among other things, estimated
station positions. Some empirical research tests show a relative vertical offset exists with
the same model of antennas of up to 1 mm, while horizontal offsets are negligible [11].
The research conducted by Baire et al. showed agreement to the level of 2 mm in the case
of horizontal offsets and 5 mm in the case of the height component based on daily static
Precise Point Positioning (PPP) sessions [3]. A variety of studies have been conducted
for the establishment of new calibration methods, e.g., [11–14]. The differences in model
calibrations between the robot and anechoic chamber have an impact on the coordinates: up
to +/− 2 mm for the horizontal and +/− 10 mm for the height component [15]. Over 10 mm
of the height component difference occurs when individual antenna corrections by GEO++
are comparable to igs08.atx [16]. Moreover, in specific conditions, it is worth considering
the impact of other environmental phenomena, such as multipath interference [17,18],
antenna mounting [19,20], the near-field effect, or seasonal snow cover [21]. Analyses
performed for EUREF permanent network (EPN) stations show that the change to the new
catalogue of absolute calibration models (from IGS08.ATX to IGS14.ATX) might have an
impact on stations’ coordinates. Phase centre corrections (PCC) are an integral part of high
accuracy GNSS applications [22]. The research showed on more than 40 PCC models that
the magnitudes of the PCO shifts among different versions of the antenna files (Antex) were
above 1 mm [23]. The differences between the antenna model (mean) and the individual
PCC may cause a discrepancy of 10 mm for the horizontal and vertical components, but
this does not usually exceed 2 mm for the horizontal and 4 mm for the vertical ones [24].

50



Remote Sens. 2022, 14, 3226

Based on this knowledge, an analysis of the selected antenna models, TRM57971.00
NONE and ASH70195C_M SNOW, was performed. These antennas are used on EPN’s
KRA1 (TRM57971.00 NONE) and KRAW (ASH70195C_M SNOW) stations (Kraków, Poland).
The stations are located close to each other (3.5 m), which is a convenient situation for the
verification of their individual characteristics by comparison to the catalogue ones. The
study consisted of several analyses. The first was focused on differences of the studied
models in the igs08.atx and igs14.atx catalogues. The second was the difference in height
between the antenna ARP, as calculated by different satellite methods. Additionally, height
differences were referenced to the auxiliary stations (KR01 and KR02) and to precise spirit
levelling. The third analysis gathered archival material based on several experiments that
have been conducted since 2011.

2. Methods

The paper is focused on the changes of the ellipsoid height, which are measured to the
ARP. The height and the horizontal component are revealed in the current international
terrestrial reference frame (ITRF2014). Along with the reference frame change, GNSS
receiver antenna calibration models are also changed to be consistent with the current
realisation of the frame. In the epoch under analysis, the International GNSS Service (IGS)
provided data on 316 GNSS permanent stations. After the introduction of the ITRF2014,
113 of these changed their reported heights due to the antenna calibration parameter
changes. The values of the estimated height offset are shown in Figure 2, which are based
on IGS data.

 

Figure 2. Height offset due to antenna model changes; red marks indicate positive height changes,
blue marks indicate negative changes, and white indicates that no changes occurred. The ‘whiskers’
show the amount of height offset.

As an example, the difference between the I08.ATX and I14.ATX calibration models
for the TRM57971.00 NONE antenna is shown in Figure 3. The −1.8-mm PCO difference
for the G01 (GPS L1) frequency and high PCV elevation dependent differences for the R01
(GLONASS L1) frequency are clearly seen.

Figure 4 shows PCV variations of the TRM57971.00 NONE antenna between the
ATX08 and ATX14 antenna models for two (G01 and G02) GPS signal frequencies. Azimuth
elevation differences vary from −1.5 mm to 1.5 mm. The largest differences are in the
northwest vs. southeast directions, which are up to 1.5 mm, while, in the perpendicular
direction (northeast vs. southwest), the situation is the opposite, with a difference of up
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to −1.5 mm. Such maximum differences appear only for the nearest-to-horizon satellites,
which have the smallest impact on the GNSS processing due to weighting. Differences for
satellites with the highest elevation (located in the centre of the circles) are close to 0.

Figure 3. PCO and PCV difference between I08.ATX and I14.ATX calibration data for the TRM57971.00
NONE antenna.

  
Figure 4. PCV variations between ATX08 and ATX14 for two GPS signal frequencies for the
TRM57971.00 NONE antenna.

In general, changes in the station heights mean that the antenna model changes or
suggests an inaccurate calibration model of the antenna’s PCO or/and PCV. Detailed
research has been performed for the ASH701945_C antenna. This type of the antenna,
with various domes, is still used at stations including IENG, KELY (NONE), BOGI, KRAW
(SNOW), and SKEO (OSOD). The ASH701945C_M SNOW antenna was calibrated by Geo++
GmbH on 25 March 2011 with the use of a single antenna [4]. Six others had individual
calibrations, not KRAW or BOGI. It is possible that the antenna used at the KRAW station
has distinctive characteristics other than those determined by Geo++. To check on this, an
experiment on the KRAW antenna was conducted. In contrast to robot or anechoic chamber
experiments, the authors used an analysis of the short baselines between the different
permanent (KRAW and KRA1) and auxiliary stations (KR01 and KR02).
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3. KRAW and KRA1 Stations

The pair of antennas KRAW and KRA1 are located on a five-storey university building
about 3.5 m away from each other. This is an unusual circumstance, which is beneficial
for GNSS networks [25], but very few permanent reference stations are located in this way.
The oldest station KRAW has continuously collected data since the end of 2002, while
the younger KRA1 has been collecting data since 2010 [26]. In 2005, the characteristics of
the gravity field (acceleration and gradient) were measured for the KRAW station, and a
station normal height was determined [27]. Up to 2018 to 2019, the station’s equipment
did not change (brand and model). The KRAW used an Ashtech UZ-12 receiver with
an ASH70195C_M SNOW antenna. In 2019, a new receiver was introduced, a LEICA
RX1200 GGPRO (without changing the antenna). The KRA1 uses a Trimble NETR5 re-
ceiver with a TRM57971.00 NONE antenna. In 2018, the KRA1 antenna was replaced
by another TRM57971.00 NONE model with individual PCC. For the KRAW station, the
ASH70195C_M SNOW antenna was not calibrated individually.

During the experiments on quasi-geoid modelling, it was found that the antenna’s
calibrations might be inaccurate [28]. It was suspected that the ellipsoidal height difference
between the stations is of the opposite sign to their coordinates in the EPN network [29].
To verify this situation, a test survey was organised. It was based on a comparison of the
height differences between the stations (KRAW and KRA1) and temporary stations KR01
and KR02 (with TRM57971.00 NONE antennas), as well as an analysis of the archival data.
The Trimble antennas at KR01 and KR02 are commonly used in GNSS permanent networks.
Exactly the same type was tested at Wuhan University by the absolute method (the field
robot); the test showed the high repeatability of the obtained calibrations: σN = 0.17 mm,
σE = 0.12 mm, and σU = 0.30 mm [12]. The same model of antennas on KRA1, KR01,
and KR02 guaranteed that the impact of the differences between the antennas would not
be significant. The only difference was the power supply system (different model). The
antennas were located at similar height levels, with a distance of about 3.5 m from each
other (Figure 5).

 

Figure 5. Location of the KRAW and KRA1 permanent stations on the roof of the AGH-UST buildings
with the temporary KR01 and KR02 stations.
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The observation sessions took place over 12 days in December 2016. The precise
differences in height were defined by GPS post-processing. As the height difference
reference value, the results of geometric levelling (Zeiss KoNi 007) were used. The levelling
was conducted both at the beginning and the end of the GPS session.

4. Results

The difference in heights between KRAW, KRA1, KR01, and KR02 was calculated
by post-processing of the observations. Due to the KRAW Ashtech UZ-12 receiver capa-
bility, only the GPS system was used. Post-processing was based on the final IGS orbits,
the igs08.atx antenna corrections model, and a zero-elevation mask. Height differences
obtained from precise levelling were compared with those derived from EPN-combined
solutions, PPP calculated with Bernese GNSS Software (BGS) [30], Nevada Geodetic Labo-
ratory (NGL, [31]), a network solution, a single baseline solution (GNSS Solutions 3.80.8,
Trimble Business Centre 3.50), and other archive materials. In GNSS Solutions, only the
elevation-dependent PCV version of the antenna characteristics was used.

Height differences obtained from precise levelling and GNSS solutions showed several
discrepancies. Height differences between the KRA1 antenna reference point and the three
other measured stations (KRAW, KR01, and KR02) from GNSS post-processing are affected
by the inaccuracy of the antenna PCO and PCV. The analysis shows that the height of the
KRAW station antenna (ASH70195C_M SNOW) from GNSS processing (EPN combined
and PPP solutions) is 16 mm too high in comparison to the levelling results (Figure 6).
This may indicate the inadequacy of the ASH70195C_M SNOW calibration data. A lower
disagreement was obtained in the case of the TRM57971.00 NONE antenna (KR01 and
KR02 stations). This discrepancy was about 5 mm for PPP solutions and 2 mm for network
solutions. The differences obtained by single baseline solutions using the Trimble Business
Centre (TBC) and GNSS Solution engineering software show far fewer discrepancies, not
exceeding 0.4 mm. This is due to the very short baseline between the measured points.

  

Figure 6. Differences between the heights obtained with PPP and a network solution (left) and single
baseline solutions (right) [32].

The height difference of KRAW–KRA1 was calculated based on the EPN weekly
combined SINEX (Software INdependent Exchange format) solutions from 2010 to 2016
(1564 to 1877 GPS weeks, Figure 7). During weeks when igs08 and igb08 were in use, there
were some inaccurate solutions, which may be treated as gross errors. Despite that, clearly
visible is the change in ellipsoidal height difference after the introduction of the IGS14
system (after GPS week 1933 [33]). The offset is up to about 8 mm (Figure 7). It is surprising
that, during the short time between the introduction of the IGS14 system and individual
phase corrections for the KRA1 antenna (week 1986), the height difference was closest to
levelling (−0.5 mm) from any network calculation.
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Figure 7. The time series for the height difference between KRAW–KRA1 calculated by EPN on the
basis of several antenna correction catalogues (IGS ATX files) [32].

Alternatively, an independent PPP calculation was used—the Nevada Geodetic Lab-
oratory (NGL). The facility provides permanent, fully, and freely available PPP results
based on globally distributed permanent GNSS station data. Based on these data, the ellip-
soidal height differences between station KRAW and KRA1 for the period 2009.7–2022.0
GPS weeks 1569–2190) were analysed (Figure 8). The results showed a mean difference
+1.83 mm (green line) and were compared to precise geometric levelling −6.2 mm (red
line). Both data provided inaccurate results, which was not a surprise, as they were based
on the different antenna characteristics (IGS Antex files) of the KRAW antenna.

Figure 8. Height difference between KRA1–KRAW from NGL–PPP (navy dots), systematic difference
from levelling −6.2 mm (red line), and mean difference 1.83 mm (green line) [31].

The archival materials regarding the height differences between the KRAW–KRA1
stations consist of: two independent sets of post-processing results from 2008 to 2011 calcu-
lated during the Polish integration of the base geodetic network with reference permanent
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stations ASG-EUPOS (BGS), EPN combined solutions 2013–2014, PPP (BGS) 2012–2014,
and the post-processing of various short GPS observations (Trimble Business Centre 3.50—
TBC) 2011–2016 (Table 1). The short GPS observations consist of various 4-h, 8-h, and
12-h sessions, the calculations of which were also checked in GNSS Solutions 3.80.3 and
Geonet 2006 software [29]. The differences between them are negligible, which allows us
to show a single (mean) value achieved by the most often-used software. The compat-
ibility of the short observation post-processing (TBC, GNSS Solutions, or Geonet 2006)
and spirit levelling (−6.2 mm) results is noticeable when the more sophisticated solutions
(e.g., PPP network solutions) give opposite values. The most contrary are values from PPP
(BGS) 2012–14; the differences in the levelling result were as much as 20 mm. All of them
used IGS08 antenna characteristics or only the elevation-dependent PCV model (GNSS
Solutions). Surprisingly, such popular “engineering” software (e.g., TBC) achieved better
results, comparable to spirit levelling, than the BGS (both short baseline calculations and
PPP). The origin of the advantage of this type of software is not clear. It is probably that,
for very close stations, the single baseline solutions, based only on the L1 frequency, give
better results.

Table 1. Archive values of differences between the KRA1–KRAW stations.

Archive Data Δh (mm) σ (mm)

Warsaw University of Technology 2008–2011 (BGS) [34] 5.5 -
PAN Space Research Centre 2008–2011 (BGS) [35] 7.3 -

EPN Combined Solution 2013–2014 [29] 11.0 1.5
PPP (BGS) 2012–2014 [29] 14.7 -

Trimble Business Centre 2011–2016 [29] −6.9 0.5
MUT Combined Solutions igs14.atx 2017 [36] −0.5 2.2

MUT * Combined Solutions igs14.atx 2018–2022
(KRA1—individual PCC) [36] 1.1 2.7

* Military University of Technology Analysis Coordination Centre.

Finally, the results of the height difference between the KRAW–KRA1 station were es-
timated by geometrical levelling, using a series of observations from 2011 to 2022 (Figure 9).
Its most probable value is −6.2 mm ± 0.2 mm (Figure 10).

Figure 9. Height difference between KRA1 and KRAW from the levelling from 2011 to 2022.
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Figure 10. Height difference (m) between the KRAW and KRA1 antenna reference points from precise
levelling.

5. Discussion

Modern manufactured antennas are of better repeatability than older models, i.e.,
exhibiting less deviation from the pattern (average) in antex files. This is the case for, e.g.,
the Trimble Zephyr Geodetic 2 (TRM57971.00 NONE) antenna used in the experiment. In
selected stations (e.g., KRAW and BOGI), antennas are still being used that date back to the
1990s. Their characteristics may differ from the accepted standards. Therefore, it can be
postulated that individual characteristics should be developed for them, so that they do
not introduce errors to the network in which they work (IGS, EPN, etc.). However, their
individual calibrations are a matter of debate due to costs.

We checked the KRAW station based on a KRA1–KRAW overpass survey and the
additional temporary stations KR01 and KR02. Archival materials from various authors
were also collected. As a result of the analysis of these materials, it can be stated that the
antenna (Ashtech ASH70195C_M SNOW) of the KRAW station has different characteristics
from those revealed in the IGS files of the subsequent versions. Azimuth elevation is
mostly dependent on the lowest-over-horizon satellites [4,37], which have the smallest
weights in processing. Thus, this aspect has the smallest impact. PPP processing shows
a systematic shift in the KRAW–KRA1 height difference at the level of +1.8 mm, while
measurements directly from levelling show a −6.2-mm difference. This may result in
incorrect altitude results and have an adverse effect on, e.g., fitting the global geopotential
model into the national height frame. Therefore, old stations that are included in the
national (or transnational) permanent network need individual PCC. The tested network
solutions, both PPP and baseline solutions [34,35], were not resistant to the impact of real
KRAW antenna characteristics, different from any analysed ATX catalogue. As a result, the
permanent stations’ ellipsoid heights in network solutions may be subject to systematic
errors. Even using advanced and renowned software (Bernese GNSS Solutions), such
errors cannot be detected. The analysis showed that a calculation strategy based on a short
baseline L1-only solution may detect the error, even if the popular “engineering” software
is used (Trimble Business Centres, GNSS Solutions, Geonet).

The question arises as to what the optimal solution for old antennas is—the determi-
nation of individual characteristics (PCC) or replacement with a new antenna (also with
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individual PCC). In other words, should the old stations be partially or fully modernized?
For the analysed station KRAW (antenna ASH70195C_M SNOW), a full upgrade had the
advantage of introducing four GNSS systems compared to the existing GPS-only. Especially,
introduction of the Galileo system may benefit the station solution [38,39], e.g., decreasing
the positioning error statistics for GPS + Galileo combinations [40] despite Galileo still not
providing the same satellite availability as GPS [41]. Concluding the results and achieve-
ments in the investigation of PCC by other authors [16,19,21,24], we are inclined to say that
the time of antennas from the 1990s should be completed and full modernization carried
out, despite the higher costs.
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Environ. Eng. 2007, 1, 53–60.
28. Borowski, Ł. Determination of normal heights of ASG-EUPOS stations illustrated with an example od KRAW station. In

4th Doctoral Seminar on Geodesy and Cartography; Biryło, M., Ed.; Wydawnictwo UWM: Olsztyn, Poland, 2012; pp. 19–25.
ISBN 978-83-7299-766-1.

29. Borowski, Ł. Zastosowanie Sieci ASG-EUPOS Do Modelowania Lokalnej Quasi-Geoidy. Ph.D. Thesis, AGH University of Science
and Technology, Krakow, Poland, 2015.

30. Dach, R.; Lutz, S.; Walser, P.; Fridez, P. Bernese GNSS Software Version 5.2; University of Bern, Bern Open Publishing: Berne,
Switzerland, 2015; Volume 47, ISBN 1879621142.

31. Blewitt, G.; Hammond, W.; Kreemer, C. Harnessing the GPS Data Explosion for Interdisciplinary Science. Eos 2018, 99, 485.
[CrossRef]

32. Borowski, Ł.; Kudrys, J. Adequacy of GNSS antenna calibration model—Case study Abstract. In Proceedings of the EUREF 2017
Symposium, Wrocław, Poland, 17–19 May 2017.

33. Dawidowicz, K. IGS08.ATX to IGS14.ATX change dependent differences in a gnss-derived position time series. Acta Geodyn.
Geomater. 2018, 15, 363–378. [CrossRef]

34. Liwosz, T.; Rogowski, J.; Kruczyk, M.; Rajner, M.; Kurka, W. Wyrównanie Kontrolne Obserwacji Satelitarnych Gnss Wykonanych na
Punktach Asg-Eupos, Euref-Pol, Euvn, Polref i Osnowy i Klasy Wraz z Oceną Wyników; Warsaw Univeristy of Technology: Warsaw,
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Abstract: Space weather events adversely impact the operations of Global Navigation Satellite
Systems (GNSS). Understanding space weather mechanisms, interactions in the atmosphere, and
the extent of their impact are useful in developing prediction and mitigation models. In this study,
the hourly lightning occurrence and its impact on ionospheric disturbances, quantified using the
Rate of Total electron content Index (ROTI), were assessed. The linear correlation between diurnal
lightning activity and ROTI in the coastal region of southern China where lightning predominates
in the daytime was initially negative contrary to a positive correlation in southern Africa where
lighting predominates in the evening. After appreciating and applying the physical processes of
gravity waves, electromagnetic waves and the Trimpi effect arising from lightning activity, and the
time delay impact they have on the ionosphere, the negative correlation was overturned to a positive
one using cross-correlation. GNSS has demonstrated its capability of revealing the impact lightning
has on the ionosphere at various times of the day.

Keywords: GNSS; lightning; ROTI; gravity wave; daytime; nighttime

1. Introduction

The wide spatio-temporal advantages of Global Navigation Satellite Systems (GNSS)
have made it an effective tool not only in positioning and navigation but also in studying
and monitoring weather events. Geomagnetic and solar radiation, which are the key
drivers of ionospheric plasma variations have been extensively observed using GNSS [1–4].
Tropospheric weather events such as cyclones [5–8], earthquakes [9–13], and/or man-made
events such as rocket launches [14] and explosive bursts [15] have also been observed to
cause plasma variations through the use of GNSS.

Thunderstorms/lightning, another troposphere weather event, has also garnered
interest in the GNSS scientific community for adopting the advantages of GNSS to gain
more insight into its activities. In recent GNSS lightning studies, Osei-Poku et al. [16]
evaluated common total electron content (TEC) detrending techniques during lightning
events. Rahmani et al. [17] probed the vertical coupling effect of a thunderstorm on the
lower ionosphere. The ionospheric response to thunderstorms in West Africa has been
reported by Ogunsua et al. [18], whereas Tang et al. [19] and Liu et al. [20] presented
gravity waves resulting from thunderstorms. Blanc et al. [21] also showed gravity wave
measurements in the ionosphere following thunderstorms in Europe. Lay [22] reported
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acoustic wave activity above thunderstorms. Amin [23] also studied the hourly lightning
activity and its effect on the ionosphere using GNSS in southern Africa.

The quest to harness GNSS for more insightful studies about lightning continues. As
a recommendation in their work, Amin [23] suggested the use of more long-term data to
study the correlation between hourly lightning activity and irregular ionospheric events
as their study had a limited dataset with few case studies. The use of long-term data
would provide more consistent, reliable, and insightful information In this regard, this
current study uses four-year long-term data to study the relationship between the hourly
lightning activity and the rate of the TEC index (ROTI) in the low-latitude coastal sea region
of southern China. Similar techniques used in Amin [23] are deployed for an effective
comparison. The results are compared to Amin [23] and those in other geographical regions.
The initial results in this present study showed a negative linear correlation between hourly
lightning activity and ROTI as opposed to the positive linear correlation in Amin [23]. One
reason could be attributed to lightning interactions with the ionosphere in the different
geographical regions. In the subsequent sections, the data and methods used are described.
Further investigations are made to find and discuss the physical mechanisms underlying
the differences in the results. The derived conclusions are then presented.

2. Data and Methods

2.1. Lightning Data

The lightning data is from a local lightning network in the coastal region of southern
China. The network consists of about 17 Vaisala LS8000 sensors that provide the geolocation
and source peak currents of lightning in the area [24]. The number of times a current is
recorded is positively correlated with lightning activity [25]; a day with a lightning count
greater than 10,000 is deemed a “lightning day” [16]. The data span is from 2014 to 2017.

2.2. GNSS Data

The local GNSS data were obtained from the Hong Kong Satellite Reference (HK
SatRef). The GNSS receivers have a sampling rate of 30 s. Information on the network is
given in the works of Ji et al. [26] and Kumar et al. [27]. More information on HK SatRef is
available at the website of the Hong Kong Survey Department (https://www.geodetic.gov.
hk/en/rinex/downv.aspx, (accessed on 14 June 2019)).

2.3. Method
2.3.1. ROTI

ROTI defined by Pi et al. [28] as the root mean square of the TEC rate is used to char-
acterize ionospheric irregularity. ROTI could be used as a proxy for the scintillation [29,30].
ROTI is computed from the GNSS data as follows. First, a 15◦ elevation cut-off angle was
used to eliminate the multipath effect [6]. A geometry-free linear combination of pseudo-
and carrier-phase signals was then used to compute slant TEC (STEC) at 30 s sampling
intervals. STEC was converted to vertical TEC (VTEC) by applying a mapping function
using Equation (1) below, where Re is the earth’s radius, θ is the elevation angle at the
ionospheric pierce point (IPP) of the signal–receiver path, and hi is the ionospheric single
layer, approximated at 350 km.

VTEC =

√
1 −
(

Recos θ
Re + hi

)2
∗ STEC (1)

Finally, at five-minute intervals of the rate of TEC (ROT), ROTI was computed accord-
ing to Equation (2), where ROT and ROTI are in TEC units (TECu: 1 TECu = 1016 e/m2)
and the notation 〈·〉 is the averaging operation [31].

ROTI =
√
< ROT2 > −< ROT >2 (2)
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ROTI as shown in Equation (2) is usually for a single satellite-receiver pair. ROTI values
exceeding 0.2 TECu are used to indicate that ionospheric scintillation has happened [32].
However, ROTI average (ROTIavg) is the average value of ROTI over 30 min for all satellites
received by a single station; following Oladipo et al. [33], a scintillation is deemed to occur
for a ROTIavg value exceeding a threshold of 0.8 TECu. To effectively compare this study to
that of Amin [23], ROTIavg is adopted.

2.3.2. Hourly Occurrence

For the diurnal hourly occurrence, the number of times lightning occurred and ROTIavg
was greater than the threshold were accumulated within hourly intervals for all days in
each year. A correlation is then looked for between the lightning and ROTIavg hourly occurrences.

2.3.3. Selection Criteria

To avoid the geomagnetic storm and solar radiation effects, only days with disturbance
storm time (Dst) greater than −30 nT [34] and solar flux index (F10.7 index) less than 150 sfu
(solar flux units, 1 sfu = 10−22 watt per square meter-hertz) [35] were selected. Table 1
shows the total number of days for the years 2014–2017 that had lightning activity only.

Table 1. Number of lightning days in each year void of geomagnetic storm and solar radiation effects.

Year Number of Lightning Days

2014 85
2015 81
2016 108
2017 102

3. Results

According to Tang et al. [19], the stations of HK Satref are quite close, hence their
observations are similar. Only the observations from one station (HKOH) are presented.

Figure 1 shows the ROTIavg from 2014 to 2017. In Figure 1, the highest values are
mostly in the nighttime and between 0.07–0.2 TECu; this indicates that a scintillation is
often a nighttime event. This is coherent with Tang et al. [31] and Ji et al. [26] who have
shown that a greater percentage of ROTI lies between 0.02 and 0.05 TECu in the Hong
Kong region. In this present study, the ROTIavg threshold is set at 0.075 TECu instead of
0.8 TECu, unlike Oladipo et al. [33] but the same as Nishioka et al. [36], who suggested
a scintillation threshold of 0.075 TECu in the Asian region. More so, the years 2014–2017
are at the declining phase of the 24th solar cycle [37] where scintillation values are low
compared to the high solar active years of 2002 and 2012 in Oladipo et al. [33] and Amin [23],
respectively. Also, Jacobsen [38] and Liu et al. [39] have demonstrated that GNSS receiver
types, configurations, and sampling rates influence ROTI values. These differences in ROTI
values (thresholds) arising from the technique used, GNSS receiver configurations, and
geographic location should be important factors to consider when developing regional and
global models.
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Figure 1. ROTIavg for the years 2014–2017. The abscissa axis shows the local time (LT: UT + 8) in
hours. The ordinate axis shows the months of the year. The color bar shows the ROTIavg values
in TECu.

On the diurnal hourly occurrence, the number of times lightning occurred and the
ROTIavg was greater than 0.075 TECu were accumulated within hourly intervals for all days
in each year. Panels a to d in Figure 2 show the annual hourly diurnal ROTIavg occurrence
against that of the lightning occurrence. All years showed a similar trend. The trend reveals
that the lighting occurrence peaked before that of ROTIavg. This resulted in negative linear
correlation values of −0.364, −0.41, −0.371, and −0.421 with significant values (p-value) of
0.05, 0.04, 0.05, and 0.04 at a confidence interval of 95% (α = 0.05) in chronological order
from 2014 to 2017 as seen in panels e to h in the right column in Figure 2. The p-values
indicate that despite being negative, the linear correlation is statistically significant. This
implies that as lightning increases, ROTI decreases and vice versa. These are contrary to
observations in Amin [23] where both lightning and ROTIavg peaked at the same time in
the evening resulting in positive linear correlation values. As the objective of this study is
to find the relationship between lightning and ROTI, reasons are discussed to explain the
differences between this observation and that of [23].
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Figure 2. Panels in the left column (a–d) show the diurnal hourly occurrence of ROTIavg and lightning.
Panels in the right column (e–h) are scatter diagrams showing the linear correlation between the
diurnal hourly occurrence of lightning and ROTIavg for the respective years.
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4. Discussions

The objective of this work is to appreciate and understand the relationship between
hourly lightning activity and ionospheric irregularities (ROTI) through the use of long-term
data. The initial results seen in Figure 2 show a negative linear correlation contrary to the
positive linear correlation reported in Amin [23]. One reason for the observed differences
in linear correlation could be attributed to the interaction between local variations in
mesoscale and the topographic nature of the geographic region [40,41] resulting in different
diurnal trends of lightning. That is, different regions tend to respond to lightning differently.
From the observed data and results in other studies, there seems to be a common trend
in the diurnal pattern of lightning. Places in the northern hemisphere seem to have a
common pattern. Likewise, places in the southern hemisphere. For instance, Figure 5 in
Williams et al. [42] shows a similar pattern of diurnal lightning as observed in this current
study, and their Figure 6 is similar to that of Figure 5.13 of Amin [23]. In Figure 5 of
Williams et al. [42], Australia, which is in the southern hemisphere, shows a broad peak of
lightning from noon, which lasts until about 23:00 local time (LT). This pattern is similar
to that of South Africa, also in the southern hemisphere. Brazil also shows a similar trend
as seen in Pinto et al. [40]. In Figure 6 of Williams et al. [42], French Guyana, which is in
the northern hemisphere and in South America, exhibits a lightning peak of around 15 LT,
which lasts for about 3 h (till 18 LT). This pattern is similar to that of Hong Kong. Other
similar trends are observed in the Indian region [43] and the United States [41,44], all in
the northern hemisphere. The broad width of the lightning peak observed in the southern
hemisphere regions should cover their peak time of ROTIavg, which happens in the evening
(mostly between 20 and 23 h). Statistically, lightning and ROTIavg having similar trends
and with their peaks coinciding at the same time stands a high chance of giving a positive
linear correlation value, whereas peaks that occur far apart at different times would give a
negative linear correlation value.

Correlation may not necessarily mean causation. Possible mechanisms influencing the
diurnal correlations in this work and that of Amin [23] are the lightning activity interactions
with the ionosphere through lightning-related current and electrical discharges [45,46] and
processes of gravity and electromagnetic wave [24,47–49].

A thunderstorm with lightning activity may affect the electron density in the lower
ionosphere (particularly the D-layer) through two basic physical processes: the gravity
wave (GW) due to the convection and thunder [47] and the electromagnetic wave (EM) due
to the lightning [24]. The GW will generate a disturbance of the mesosphere (60–90 km)
and the lower thermosphere (above 90 km), thus of the neutral atmosphere, which drags
electrons from the ionosphere. Although the GW is a transversal wave, any changes in its
amplitude generated from a lightning discharge will perform as a longitudinal wave that
propagates upwards at the speed of the order of sound in air. The higher the air density,
the stronger and faster the GW. Therefore, the GW due to the lightning and thunder and
the thunderstorm convection disturbance would be stronger and faster as it propagates
in the lower (higher air density) D-layer during the daytime than it does in the higher
(lower air density) D-layer during the nighttime. The GW due to the lightning and thunder
and the thunderstorm convection disturbance on ROTI lags the lightning activity due to
its very low propagation speed at a high altitude. Theoretical studies have shown that
the GW needs about one to several hours to propagate to higher altitudes depending on
speed and period [50]. Using the wave model of Row [51] and Francis [52], which assumes
that the GW propagates upwards through the atmosphere, Taylor et al. [53] found that the
GW from a thunderstorm took about six hours before reaching the airglow layers (80 km
above ground surface), which implies a vertical velocity of about 5 ms−1. In Figure 2,
the time delay between lightning and ROTIavg is about 5–7 h, similar to that observed
by [53]. At an altitude of 350 km and a time delay of 5–7 h, the vertical velocity of the
GW would be approximately 10–15 ms−1. These observations show that the average
vertical velocity of the GW is about 5–15 ms−1 confirming the low propagation speed of
the GW. Also, the GW is predominant in the horizontal component which takes a relatively
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longer time to reach higher atmosphere heights [19,20,54]. This could best account for the
difference in peak times of lightning and the ROTI pattern in this study, where lightning
is predominantly in the afternoon. Again, Lay [22] made an observation where lightning
occurring predominantly in the daytime (14–16 LT) had its related ionospheric disturbances
around 00–02 LT similar to the observations in the left panels in Figure 2. Thus, lightning
that occurs predominantly in the afternoon sees the ionospheric disturbance some hours
later leading to an initial negative linear correlation.

Lightning-generated electromagnetic waves (EM) on the other hand propagate at
the speed of light and reach the lower ionosphere almost immediately after the lightning
activity has taken place. The strength of the impact of the EM on ROTI depends on the
density of the electrons present. The higher the electron density, the stronger the impact.
Theoretical simulations have shown that the EM could lead to a reduction in electron
density at lower altitudes and an increase in electron density at higher altitudes in an
ionospheric D-layer due to Joule heating effects [55–57], which have also been proven by
lightning sferics observations [24,58,59]. Lightning sferics also produce very-low-frequency
(VLF) discharges that contribute to the Trimpi effect. The Trimpi effect refers to transient
perturbations caused by electron precipitation on sub ionospheric propagating waves [60].
The perturbations associated with sferics take only about 0.6 s to begin. Also, the Trimpi
effect is only observed in nighttime ionospheric conditions and not daytime [61,62]. There-
fore, the lightning-generated EM and the Trimpi effect would have a stronger impact on
ROTI during the nighttime than during the daytime. The appearance of the impact of
the EM and Trimpi effect on ROTI is almost on par with the time the lightning activity
happened. Thus, lightning that occurs predominantly in the evening sees an ionospheric
disturbance almost instantly leading to a positive linear correlation.

To further illustrate the time of lightning dominance and the time lags of its associated
ionospheric disturbance, two diurnal zone divisions are made. That is, 07–17 and 18–06 LT
to represent the daytime and evening time zones, respectively [30]. In Figure 2, 2014–2017
have similar lightning and ROTIavg trends. Some days are selected to illustrate this further
as most of the individual days have similar observations. The assessment is done by finding
the cross-correlation between lightning and ROTI instead of the linear correlation. Cross-
correlation studies different variables to identify their similarity and draws characteristics
relative to each other based on time to derive new information. Pseudorandom noise
codes (PRN) from the individual satellite-receiver pairs available at the time ROTI lags the
lightning are presented to provide extra evidence of ionospheric disturbances. The TEC
of the PRN is detrended using the Savitzky–Golay filter of order 6 and window length of
120 min [16]. Detrended TEC (DTEC) is filtered with a bandpass of frequencies between 1
and 2.8 MHz and 4.2 and 8.2 MHz to derive ionospheric gravity (IGW) and ionospheric
acoustic (IAW) waves, respectively, from lightning [17,63]. A filtered DTEC amplitude
above 0.08 TECu and 0.025 TECu [63] and ROTI greater than 0.2 TECu signify the presence
of IGW, IAW, and ionospheric disturbances, respectively. The selected days for the daytime
and evening are presented in Figures 3 and 4, respectively. The left panels of the top rows
for each day in Figures 3 and 4 show the ROTIavg and lightning counts. The right panels of
the top rows show the cross-correlation between the ROTIavg and lightning counts from
the left panel. The bottom rows show the DTEC, IGW, IAW, and ROTI of the PRN, which
was available at the time ROTI lags the lightning. The magenta lines are the thresholds of
IGW, IAW, and ROTI.
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Figure 3. Some selected days (21 November 2015, 27 July 2015, 22 July 2015) where lightning was
predominantly in the daytime (07–17 local time) and its cross-correlation with ROTIavg (top rows

of each day). The associated ionospheric disturbances are also indicated by DTEC, IGW, IAW, and
ROTI (bottom rows of each day) by satellites that passed some hours after the lightning activity. The
magenta lines show the threshold of ±0.08 TECu, ±0.025 TECu and 0.2 TECu for IGW, IAW and
ROTI respectively.
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Figure 4. Some selected days (9 August 2015, 11 July 2016, 2 July 2015) where lightning was
predominantly in the evening (18–06 local time) and its cross-correlation with ROTIavg (top rows

of each day). The associated ionospheric disturbances indicated by DTEC, IGW, IAW, and ROTI
(bottom rows of each day) by satellites that passed at the time of lightning activity. The magenta lines
show the threshold of ±0.08 TECu, ±0.025 TECu and 0.2 TECu for IGW, IAW and ROTI respectively.
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Figure 3 shows the days with lightning predominantly in the daytime. In panels
b, h, and n in Figure 3, ROTIavg is seen to have a negative time lag of about 4 h to the
lightning activity but is strongly positively correlated. The time of the disturbances as
seen in the PRNs in the bottom rows confirms the delay. The negative time lags; however,
positive coefficients indicate that the disturbances are associated with lightning, which can
be attributed to the delayed impact of the gravity wave mechanism from the predominantly
daytime lightning on the ionosphere.

Figure 4 shows the days with lightning predominantly in the evening. From panels b, h,
and n in Figure 4, ROTIavg is seen to have a time lag of zero to a few minutes to the lightning
activity and with strong positive correlation coefficients. The time of the disturbances as
seen in the PRNs in the bottom rows is on par with the lightning activity. The time lag
of zero to a few minutes and the positive coefficients indicate that the disturbances are
associated with lightning, which can be explained by the almost immediate impact of the
electromagnetic wave mechanism and the Trimpi effect resulting from the predominantly
nighttime lightning on the ionosphere.

Following the mechanisms of the gravity wave, electromagnetic wave, and the Trimpi
effect as discussed above, cross-correlation of the lightning and ROTIavg counts from the
left panels in Figure 2 yielded positive correlation values of 0.89, 0.82, 0.72, and 0.61 for
2014 to 2017, respectively as shown in Figure 5. The values are similar to 0.86 reported by
Amin [23]. This shows that the diurnal hourly lightning activity and associated ROTIavg
have a positive correlation.

Figure 5. Cross-correlation of lightning and ROTIavg counts from left panels in Figure 2.
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The observations in Figures 3–5 confirm that ionospheric disturbances from lightning
occurring in the afternoon take a relatively longer time to manifest, whereas those due to
lightning occurring in the evening are almost immediate. Using cross-correlation provides
a better means of accessing the relationship between lightning activity and its associated
ROTI at various times of the day. The cross-correlation coefficient is statistically significant
when its absolute value is greater than the expected cross-correlation coefficient (ECCF),
which is computed as [64].

ECCF =
2√

n − |k| (3)

where n is the total number of observations and k is the number of observations between
zero and the point of the maximum cross-correlation value on the lag axis. Negative and
positive k are to the left and right of zero on the lag axis, respectively.

Table 2 is a summary of the cross-correlation coefficients of days and years in Figures 3–5
and their ECCF. The observations of the days in Figures 3 and 4 are at 30 min intervals,
whereas those of the years in Figure 5 are at hourly intervals. The cross-correlation coeffi-
cients being greater than the ECCFs show that lightning activity is significantly positively
correlated with its associated ROTI regardless of the time of day the lightning was predominant.

Table 2. Cross-correlation coefficient of days and years in Figures 3–5 and their ECCF.

Cross-Correlation Coefficient n k ECCF

Days in Figure 3
21 November 2015 0.76 48 −9 0.32

27 July 2015 0.76 48 −6 0.31
22 July 2015 0.8 48 −11 0.33

Days in Figure 4
9 August 2015 0.76 48 0 0.3

2 July 2015 0.89 48 −1 0.29
11 July 2016 0.92 48 −1 0.29

Years in Figure 5

2014 0.89 24 −8 0.5
2015 0.82 24 −8 0.5
2016 0.71 24 −8 0.5
2017 0.6 24 −7 0.4

5. Conclusions

In this work, a correlational study between hourly lightning activity and ROTI was
carried out using long-term data. The data were from 2014 to 2017 with the study area
being Hong Kong. The linear correlation between the hourly lightning activity and ROTI
was negative compared to a similar study in southern Africa, where the correlation was
positive. The initial differences in linear correlation values between this present study and
that in southern Africa are attributed to the time differences at which lightning and ROTI
peaked. Although lightning peaked in the daytime in Hong Kong, its associated ROTI
peaked in the evening. For southern Africa, both lightning and ROTI peaked at the same
time in the evening. Probing further, this current study found that the ROTI resulting
from lightning predominantly in the daytime lagged due to slow propagation of gravity
wave mechanisms but did not lag when lightning was predominantly in the evening
due to electromagnetic waves and the Trimpi mechanisms. The temporal discrepancy
could be explained by either or both mechanisms and it would require simulations to
confirm their likelihood. Using datasets obtained from radio occultation missions such
as COSMIC would be effective for quantifying these mechanisms and their perturbations
at the various layers of the ionosphere. Unlike the linear correlation that showed that
predominantly daytime lightning is negatively correlated with its ROTI, cross-correlation
offered a better means to access the lightning activity–ROTI relationship. Cross-correlation
revealed the time delays and showed that the lightning activity and its associated ROTI are
positively correlated, which can be explained by the physical mechanisms. The results and
observations have shown that GNSS can reveal the impact lightning activity has on the
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ionosphere at various times of the day. The models for ionospheric scintillation simulations,
prediction, and forecasting purposes based on lightning activities should consider and
incorporate this observation when being developed.
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Abstract: Global navigation satellite system interferometric reflectometry (GNSS-IR) is a new type of
microwave remote sensing technology that can measure soil moisture content (SMC). GNSS-IR soil
moisture retrieval methods based on the satellite signal-to-noise ratio (SNR) and triple-frequency
signal combination have the following shortcomings: SNR does not always exist in the original
GNSS file, and the number of triple-frequency signal observation satellites is small, resulting in
GNSS-IR soil moisture observation time resolution being low. Based on the above problems, in
this study, we constructed a soil moisture inversion method based on multisatellite dual-frequency
combined multipath error is proposed: the multipath error calculation model of dual-frequency
carrier phase (L4 Ionosphere Free, L4_IF) and dual-frequency pseudorange (DFP) without ionospheric
effect is constructed. We selected the data of the five epochs before and after the time point of the
effective satellite period to construct the multipath error model and error equation, and we solved the
delay phase for soil moisture retrieval. We verified the method using Plate Boundary Observatory
(PBO) P041 site data. The results showed that the Pearson correlation coefficients (R) of L4_IF and
DFP methods at P041 station are 0.97 and 0.91, respectively. To better verify the results’ reliability
and the proposed method’s effectiveness, the soil moisture data of the MFLE station about 210 m
away from P041 station are used as the verification data in this paper. The results showed that the
delay phase solved by multipath error and soil moisture strongly correlate. Pearson correlation
coefficients (R) of L4_IF and DFP methods at MFLE station are 0.93 and 0.86, respectively. In order
to improve the inversion accuracy of GNSS-IR soil moisture, this paper constructs the prediction
model of soil moisture by using the linear regression (ULR), back propagation neural network
(BPNN) and radial basis function neural network (RBFNN), and evaluates the accuracy of each model.
The results showed that the soil moisture retrieval method based on multisatellite dual-frequency
combined multipath error can replace the traditional retrieval method and effectively improve the
time resolution of GNSS-IR soil moisture estimation. To perform highly dynamic monitoring of soil
moisture, higher retrieval accuracy can only be obtained with a small epoch multipath error.

Keywords: GNSS-IR; soil moisture content; multisatellite combination; dual-frequency pseudorange;
dual-frequency carrier phase combination; multipath error; phase delay

1. Introduction

Soil moisture content (SMC) is the physical quantity that characterizes the degree of soil
wetting and drying. As an indispensable environmental factor on the surface, SMC plays
an active role in weather forecast, climate research, slope stability prediction, and accurate
prediction of flood disasters [1–4]. Global Navigation Satellite System interferometric
reflection (GNSS-IR) is a new microwave remote sensing technology that mainly uses
the interference effect generated by the direct and surface reflection signals obtained at
the GNSS receiver to invert the surface parameters according to the characteristics of the
interference signals [5–9].
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In recent years, many scholars have made remarkable achievements in soil moisture
retrieval using GNSS-IR technology. Larson et al. observed that the ground-reflected signal
captured by a geodetic-quality Global Positioning System (GPS) antenna is sensitive to soil
moisture, so the GPS signals can be used to sense soil moisture. They first proposed using
GPS SNR retrieval of soil moisture, confirming the feasibility of SNR data retrieval [10–12].
Zhang et al. used Bei Dou Navigation Satellite System (BDS) and GPS SNR to invert
volumetric soil moisture (VSM) changes and wheat growth, and compared the results
with the original observation values. The experimental results showed that GPS L1/L2
and BDS B1/B2/B3 frequencies in VSM retrieval are consistent with in situ VSM [13].
Liang et al. estimated the near-surface soil moisture using SNR data, corrected the original
phase by obtaining the amplitude and phase of the SNR interferogram, weakened the
influence on vegetation change, and established a genetic algorithm back propagation
neural network (BPNN) model for soil moisture retrieval. Their experiments showed that
the correlation between retrieval results and soil moisture was substantially improved [14].
Han et al. proposed a semiempirical signal-to-noise ratio model as a curve-fitting model to
reconstruct direct and reflected signals from SNR data and extract frequency and phase
information. The results showed that the soil moisture retrieval effect of the reconstructed
signal, with a height angle of 5–15◦, was more accurate, and the fitting quality increased by
about 45% [15].

Jin et al. used SNR data to solve the different frequency phases of the SNR sequence
by spectrum analysis and the least-squares method and fused the dual-frequency phase
observation values with the entropy method. Finally, the fusion results were combined
with the measured soil moisture to establish an empirical model to retrieve soil moisture.
The results showed that the dual-frequency fusion method can effectively improve
retrieval accuracy [16]. Ran et al. used the detrended signal-to-noise ratio (DSNR)
sequence and proposed an arc-editing method to edit the DSNR sequence. Only the
DSNR data with the typical interference mode chord waveform were retained, and
the arc editing method of SMC retrieval was compared with the conventional method.
The experimental results showed that the proposed method had higher SMC retrieval
accuracy than the traditional method and could improve the retrieval accuracy of SMC
in undulating terrain [17]. Han et al. proposed a method to reduce the impact of direct
signal components by signal reconstruction and normalization according to the variation
law of SNR. The results showed that under the high rough surface conditions, the
normalized amplitude strongly correlated with in situ soil moisture. The quadratic
model was used to invert soil moisture from the normalized amplitude, and the retrieval
error was less than 0.085 cm3 cm−3 [18]. Li et al. proposed a new soil moisture estimation
method based on SNR data. A solution to SNR AAF was constructed based on the
relationship between the amplitude attenuation factor (AAF) of the signal-to-noise
ratio in in situ observations and soil moisture. The results showed that the measured
soil moisture value was in good agreement with the estimated soil moisture range of
0.35–0.45 cm3 cm−3, and the RMSE was less than 0.012 cm3 cm−3 [19].

Roussel et al. obtained the amplitude and phase from SNR data and proposed a
Global Navigation Satellite System reflectometer interference pattern technique to estimate
the temporal variation in soil moisture content around a single earth antenna. Satellite
signal-to-noise ratio (SNR) observation data with two satellite altitude angles of 2–30◦ and
30–70◦ were used. The experimental results showed that the method could effectively
invert soil moisture [20]. Yu et al. proposed a combined linear method for snow depth
retrieval using the phase of GPS triple-frequency signals. This method is independent of
geometric freedom and is not affected by the ionospheric delay. The results showed that
the accuracy of snow depth retrieval based on triple-frequency multipath error and SNR
was high [21]. Zhang et al. proposed two new SMC estimation methods: triple-frequency
carrier phase (TRFCP) and triple-frequency pseudorange (TRFP). The experimental results
showed that the phase delay estimated by the two methods strongly correlates with Plate
boundary observation (PBO) SMC [22]. Shen et al. proposed a BDS Medium Earth Orbit
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(MEO) and Inclined Geosynchronous Satellite Orbit (IGSO) satellite multisatellite soil
moisture retrieval method based on SNR observations. This method weakens the influence
of environmental differences in different directions by considering the satellite repetition
period. The experimental results showed that the estimation results of BDS IGSO and MEO
soil moisture agreed with the in situ soil moisture fluctuation. They verified that the BDS
MEO satellite could effectively capture sudden rainfall [23].

According to the above research results, most scholars have focused on analysing SNR
data for GNSS-IR soil moisture retrieval. However, GNSS-IR soil moisture retrieval based
on SNR observations has the following problems: SNR is useless for most GNSS users,
as SNR does not always exist in the original GNSS file [9]; the performance of GNSS-IR
with SNR as the system input depends, to a large extent, on the observation quality of
SNR and whether the direct component (trend term) of SNR is successfully removed [21].
However, the actual SNR is often impure by abnormal noise, so the multipath SNR was
obtained using a low-order polynomial to draw the trend term to characterize multipath
information. Owing to the above two reasons, GNSS-IR performance based on SNR time
series may be seriously inaccurate. At present, some scholars have used the triple-frequency
signal combination for GNSS-IR snow depth detection and soil moisture retrieval, but the
number of triple-frequency signal observation satellites is small, resulting in the time
resolution of GNSS-IR retrieval of surface physical parameters being low. The duration
of the signal-to-noise ratio for the effective satellite elevation angle is shorter, which is
basically maintained at about 0.5–2 h, which is not conducive to enabling highly dynamic
monitoring of soil moisture.

Based on the above problems, to compensate for the shortcomings of SNR observation,
including too few triple-frequency signal satellites and low time resolution, by combining
the current multimode and multifrequency development pattern of GNSS, GNSS can play a
positive role in environmental monitoring. As such, GNSS-IR soil moisture retrieval based
on multifrequency linear combination observation has not yet been studied. In this study,
we constructed a soil moisture retrieval method based on multisatellite dual-frequency
combined multipath error by constructing the dual-frequency pseudorange (DFP) and the
dual-frequency carrier phase (L4 Ionosphere Free, L4_IF) multipath error calculation model
affected by deionosphericity. We selected the five epochs before and after the time point of
the effective satellite period and used a total of eleven epoch data to construct the multipath
error model and error equation. We solved the delay phase for soil moisture retrieval. We
used Plate Boundary Observatory (PBO) P041 (Boulder, CO, USA) site data to verify the
proposed method and further verified the method by using the soil moisture data of MFLE
station close to P041 station, which effectively improves the time resolution of GNSS-IR soil
moisture estimation. To realize the high dynamic monitoring of soil moisture, this paper
uses the multipath error of fewer epochs to calculate the delay phase for SMC inversion.
Because soil moisture is often affected by vegetation cover, soil temperature, air humidity
and other factors, to better improve the inversion accuracy of GNSS-IR soil moisture, we
use ULR, BPNN and RBFNN to construct soil moisture prediction models and evaluate the
accuracy of each model.

2. Materials and Methods

2.1. GNSS-IR SMC Retrieval Principle
2.1.1. GNSS Multipath Error Principle

In the actual measurement, the signal received by the GNSS receiver antenna is not
only the signal directly from the satellite but also the signal reflected by the surface. The
direct and the reflected signals entering the receiver antenna interfere with each other, which
causes the observation value to deviate from the actual value and produce the multipath
error. According to the roughness of the reflective surface of the ground, the two main
types of reflection are diffuse reflection and specular reflection [22,24]. For convenience,
we assume that multipath error is only caused by specular reflections. Figure 1 shows that
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direct signal and reflected signal generate corresponding interference effects at the receiver
to form a composite interference signal.

 

Figure 1. Schematic diagram of GNSS-IR SMC retrieval. After the satellite sends the signal, the
right-handed circular polarized (RHCP) antenna receives the direct signal and the surface reflected
signal, producing an interference effect at the receiver. A is the GNSS receiver antenna; B is the
reflection point position of GNSS satellite signals passing through the ground; O is the footing
point of the vertical line between the over-reflection point and the GNSS satellite direct signal; θ is
the elevation angle of the satellite; S1 is the direct satellite signal received by the receiver antenna;
S2 is the reflected signal reflected by the object’s surface around the receiver antenna and enters the
antenna; H is the vertical height from the antenna phase center to the ground.

The elevation of the GPS satellite (θ) determines the path delay ΔS, which is the extra
distance travelled by the reflected signal compared to that of the direct signal.

ΔS = 2H sin θ, (1)

By substituting carrier wavelength λ into Equation (1), the phase delay δϕ(t) corre-
sponding to the path delay can be expressed as:

δϕ(t) = 2π
ΔS
λ

=
4πH

λ
sin θ(t), (2)

where λ is the carrier wavelength; t is the observation epoch. The phase delay is related
to the antenna height, carrier wavelength and satellite elevation angle; that is, for a given
antenna height and carrier signal, the phase delay is a function of the elevation angle.
Equations (1) and (2) only consider the geometric delay and ignore the phase contribution
of the Fresnel reflection and antenna radiation.
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The amplitude AC and phase difference β(t) of the reflected signal compared to the
direct signal can be expressed as:⎧⎪⎨⎪⎩

AC =
√

A2
d + A2

m + 2Ad · Am · cos δϕ(t)

β(t) = tan−1
[

κ·sin δϕ(t)
1+κ·cos δϕ(t)

] , (3)

where Am = κ · Ad, κ is the amplitude attenuation factor (AAF); SC is the composite signal;
AC is the amplitude of SC. The factor β(t) is the composite excess phase with respect to the
direct phase, which can be approximately expressed as [21]:

β(t) =
(

Am

Ad

)
· sin δϕ(t) = κ · sin δϕ(t), (4)

When only specular reflection is considered, the composite signal formed by the
superposition of the direct signal and the reflected signal SC can be expressed as [21]:

SC = SL + SM = Ad cos(ω0t) + Am cos[ω0t + δϕ(t)] = AC cos[ω0t + βt], (5)

where SL and SM are the direct and reflected signals, respectively; Ad and Am are the
amplitudes of the direct and reflected signals, reflectively; ω0 is the angular frequency of
the signal.

2.1.2. Calculation of Multipath Error of Linear Combination of Observations

If only the influence of atmospheric delay error is considered, the GNSS code measure-
ment pseudorange and carrier phase observation equation can be approximately described
as [25]:

Pi = ρ + c(δtR − δtS) + T + Ii + E + MPi + εpi, (6)

λi ϕi = ρ + c(δtR − δtS) + T − Ii + E + Mϕi + εϕi − λi Ni, (7)

where i is the carrier number; ϕ is the carrier phase observation value; ρ is the geometric
distance between the receiver and the satellite; c is the propagation velocity of electro-
magnetic waves in a vacuum; δtR and δtS are the clock difference between the receivers
and satellite clock, respectively; N is the ambiguity of the whole week; λ is the carrier
wavelength; MP and Mϕ are the pseudorange and carrier multipath error, respectively; T
and I are the tropospheric and ionospheric delay errors, respectively; ε represents other
unmodeled errors.

2.1.3. Error Calculation of Dual-Frequency Pseudorange Multipath

As shown in Equations (6) and (7), when i is 1 and 2, Equations (6) and (7) can
be differentiated, respectively. Considering |MPi| � |Mϕi|,

∣∣εpi| � |εϕi
∣∣ is as shown in

Equations (8) and (9).

P1 − λ1 ϕ1 = 2I1 + MP1 + εϕ1 + λ1N1, (8)

P2 − λ2 ϕ2 = 2I2 + MP2 + εϕ2 + λ2N2, (9)

The relationship between carrier frequency f and ionospheric delay I is:

I2 =
f 2
1

f 2
2

I1, (10)
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By subtracting the L1 and L2 carrier phase observation equations and taking into
account Equation (10), we obtain:

λ1 ϕ1 − λ2 ϕ2 = I2 − I1 + λ1N1 − λ2N2 =

(
f 2
1

f 2
2
− 1

)
I1 + λ2N2 − λ1N1, (11)

Therefore, as shown in Equation (12):

I1 =
(λ1 ϕ1 − λ2 ϕ2 + λ1N1 − λ2N2)× f 2

2
f 2
1 − f 2

2
, (12)

Therefore, the pseudorange multipath error equation at L1 band is:

MP1 = P1 − λ1 ϕ1 − 2I1 − εP1 − λ1N1

= P1 − f 2
1 + f 2

2
f 2
1 − f 2

2
λ1 ϕ1 +

2 f 2
2

f 2
1 − f 2

2
λ2 ϕ2 + K(N1, N2, εP1),

(13)

Similarly, the pseudorange multipath error equation in L2 band is:

MP2 = P2 − 2 f 2
1

f 2
1 − f 2

2
λ1 ϕ1 +

f 2
1 + f 2

2
f 2
1 − f 2

2
λ2 ϕ2 + K(N1, N2, εP2), (14)

where MP1 and MP2 are the multipath errors of the L1 and L2 carriers, respectively; P1 and
P2 are the pseudorange observations of the L1 and L2 carriers, respectively; f1 and f2 are
the frequencies of the L1 and L2 carriers, respectively; λ1 and λ2 are the L1 and L2 carrier
wavelengths, respectively; ϕ1 and ϕ2 are the observed values of L1 and L2 carrier phases,
respectively; N1 and N2 are the ambiguities of L1 and L2 carriers, respectively; εP1 and εP2
are other unmodeled errors.

In Equations (13) and (14), K(N1, N2) is the integer ambiguity combination, which is
usually a constant and does not affect the overall trend in the pseudorange multipath error.
If no cycle slip occurs, it can be omitted. Therefore, the main factors affecting the quality of
pseudorange multipath error are the noise in pseudorange observations and the accuracy
of carrier phase observations and code pseudorange observations. If cycle slip occurs in
carrier phase observations, it affects the value of pseudorange multipath error. Therefore,
for the pseudo-range multipath error in each period, cycle slip detection and repair are
required. We selected the multipath error MP2 of the L2 carrier as the research object.

The dual-frequency pseudorange multipath can be calculated by the linear combina-
tion of the pseudorange observations and the carrier phase observations, which can be
expressed as [26]:

MP1 = P1 −
f 2
1 + f 2

2
f 2
1 − f 2

2
λ1 ϕ1 +

2 f 2
2

f 2
1 − f 2

2
λ2 ϕ2, (15)

MP2 = P2 − 2 f 2
1

f 2
1 − f 2

2
λ1 ϕ1 +

f 2
1 + f 2

2
f 2
1 − f 2

2
λ2 ϕ2, (16)

2.1.4. Multipath Error Calculation of Dual-Frequency Carrier Phase Linear Combination

For carrier phase observables, isolating the multipath from several other effects, such
as the satellite antenna pseudorange and ionospheric and tropospheric delay, is difficult.
However, when considering the multipath, the carrier phase contains two quantities: the
phase of the direct signal and the composite excess phase with respect to the direct phase.
Thus, the GNSS phase observation for carriers L1 and L2 can be expressed as [27]:{

L1 = λ1ψ1 + λ1β1(t)

L2 = λ2ψ2 + λ2β2(t)
(17)
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where ψ1 and ψ2 represent the phase of the direct signal; β1(t) and β2(t) are the composite
excess phase with respect to the direct phase.

In GNSS positioning, the carrier phase of the direct signal can be expressed as:

λiψi = ρ + Ii + T + Δ, (18)

where i = 1 or 2, which is the two signals with different frequencies. The geometric distance
between the GNSS satellite and antenna is represented by ρ, Ii represents ionospheric delays,
T represents tropospheric delays, and Δ accounts for all other carrier-independent effects.
To isolate the multipath, the dual-frequency carrier-phase combination L4 is the L1 − L2
combination of carrier phase measurement, and its mathematical expression is [9,27]:

L4 = L1 − L2 = I1 − I2 + λ1β1(t)− λ2β2(t), (19)

Equation (19) eliminates the satellite clock error, receiver clock error, and tropospheric
delay, as well as the geometric distance between the satellite and the receiver. That is the
observed value of L4 is affected by both ionospheric delay and phase error. Therefore, when
analyzing the multipath error, a suitable method must be adopted to weaken the influence
of the ionospheric delay on the multipath error. The high-order polynomial is used to fit the
L4 multipath error, and the dual-frequency linear combination multipath error that is not
affected by ionospheric delay is obtained, which is the L4-free (L4_IF) observation value.

2.2. Establishment of Model Error Equation

According to Equations (1) and (2), the phase delay and path delay are functions
of the elevation angle and reflector height. The reflector height changes with the SMC,
which contributes to the change in the phase delay and path delay [12]. demonstrated that
the agreement between H and the SMC was not as strong as that between δϕ(t) and the
SMC. Therefore, the phase delay can be used to characterize the change in the SMC. To
accomplish this, Equation (5) must be linearized first. Thus, the error equations can be
expressed as:

β(t) + Vβ(t) = κ0 sin δϕ0 + sin δϕ0Vκ + κ0 cos δϕ0Vδϕ, (20)

where β(t) can be easily calculated through Equations (16), (17) and (19). Vβ(t) is the
residuals corresponding to the DFP multipath error and L4_IF multipath error. κ0 denotes
the initial value of the AAF. The initial value of the phase delay, i.e., δϕ0, can be calculated
by incorporating the wavelength (λ), antenna height (H), and elevation angle (θ) into
Equations (1) and (2), respectively. Vκ and Vδϕ are two unknown correction parameters
corresponding to κ0 and δϕ0 that need to be solved. To ensure the reliability of the solution
and to avoid the influence of the excessive difference in multipath errors on the correction
parameter solving, we assumed that the SMC remained the same in the short term (e.g.,
within 5 min) and employed a total of 11 multipath errors to solve the correction parameters
through unweighted least squares adjustment. It is worth mentioning that the number of
multipath errors is not limited to 11, but should be greater than or equal to the number of
the correction parameters to be solved.

2.3. Solving the Phase Delay

The least-squares adjustment method is used to solve the delay phase. The L4_IF
method is taken as an example to illustrate the solving process of the phase delay. For the
11 multipath errors of one observation session for a single GPS satellite, 11 error equations,
such as Equation (20), can be obtained. Then, these error equations can be expressed by the
following matrix:

Vβ(t)
11 × 1

=
A

11 × 2
X

2 × 1
− l

11 × 1
, (21)
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where
Vβ(t)

11 × 1
=
[
Vβ1 Vβ2 Vβ3 · · · Vβ11

]T , (22)

X
2 × 1

=
[
Vk Vδϕ

]T , (23)

A
11 × 2

=

[
sin δϕ0 sin δϕ0 sin δϕ0 · · · sin δϕ0

κ0 cos δϕ0 κ0 cos δϕ0 κ0 cos δϕ0 · · · κ0 cos δϕ0

]T

, (24)

l
11 × 1

= [β1 − κ0 sin δϕ0 β2 − κ0 sin δϕ0 β3 − κ0 sin δϕ0 · · · β11 − κ0 sin δϕ0 ]
T , (25)

where β(t) represents the L4_IF multipath error, Vβ(t) is the residual for β(t). The sub-
scripts 1, 2, 3, . . . , 11 denote the serial number of the selected 11 multipath errors. Thus,
based on unweighted least-squares adjustment (VTV = min). X can be obtained by the
following formula.

X =

[
Vκ

Vδϕ

]
=
(

AT A
)−1 ×

(
ATl
)
=

N−1

2 × 2
W

2 × 1
, (26)

where N = AT A;W = ATl. Because its rank equals one, N is rank deficient, which leads
to a non-unique solution of X. Therefore, to obtain a unique solution, pseudo-inverse
adjustment was adopted.

X =

[
Vκ

Vδϕ

]
=

N−
2 × 2

W
2 × 1

, (27)

where N−1 and N− is the Kelley inverse and the pseudo-inverse of N, respectively. Thus,
the adjusted phase delay and AAF can be obtained:[

κ̂

δ̂ϕ

]
=

[
κ0 + Vκ

δϕ0 + Vδϕ

]
, (28)

The diurnal phase delay representing the trend of the soil moisture change, namely
the mean of the adjusted phase delay of twelve observation sessions, can be obtained by
the following formula:

δϕi =
δ̂ϕi,1 + δ̂ϕi,2 + δ̂ϕi,3 + · · ·+ δ̂ϕi,12

12
, (29)

where the subscript i equals 1, 2, 3, . . . , 78, and represents the ith day; the numbers 1, 2, 3,
. . . , 12 represent the serial number of observation sessions on a single day.

2.4. Data Sources

The experimental data are from the USA. Plate Boundary Observatory (PBO). We
selected the GPS observation data of the P041 station (Figure 2) and the SMC data col-
lected by the P041 and MFLE stations (https://cires1.colorado.edu/portal/) (accessed on
10 September 2021). The days of the year (DOYs) of selected observation data are between
45 and 131 of 2014 (Note: 57, 67–69, 71, 82, 94, 104, 105 days of soil moisture data are
missing and have been eliminated).

The PBO SMC consisted of the site averaged SMC on a daily timescale, and the median
SMC value of all satellite tracks for each day was used [22]. (https://data.unavco.org/
archive/gnss/products/) (accessed on 15 September 2021). Located in Colorado, USA, and
positioned at an altitude of 1728.8 m, the P041 station (39.9495◦N, 105.1943◦W). The MFLE
station is about 210 m away from the P041 station, its altitude is 1727.3 m, and its position
is longitude and latitude (39.9476◦N, 105.1944◦W). The soil moisture data of the MFLE
station is used to further verify this method’s reliability. In view of this, this paper takes
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P041 station as the research station, MFLE station as the verification station, and MFLE
station is very close to P041 station, as shown in Figure 2. The surrounding environment
of P041 and MFLE stations are shown in Figure 3 (https://www.unavco.org) (accessed
on 25 September 2021). The GNSS receiver and related parameters of the P041 station are
shown in Table 1.

Figure 2. GNSS test site locations. P041 and MFLE stations, Boulder, CO, USA.

Figure 3. Station conditions: (a) Environment around P041 station; (b) environment around MFLE
station. Note: GNSS test site locations: P041 and MFLE, Boulder, CO, USA (https://www.unavco.org)
(accessed on 25 September 2021).
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Table 1. Receiver and its related parameters at the P041 site.

Project Parameter

Type of receiver POLARX5
Sampling interval 15 s
Type of antenna TRM59800.80
Antenna height 1.90 m

The P041 and MFLE stations can be seen in Figure 3a,b, respectively. They are located
in a flat and open area, and the surrounding vegetation is scarce, and the land cover
consists of exposed soils and short grasses. This paper selects the experimental data for
the late winter and early spring. Therefore, the surface reflection signal is less affected by
vegetation attenuation.

Figure 4 shows the observed SMC and precipitation data series corresponding to the
time (DOYs: 45-131,2014) of selecting GNSS observation data from P041 and MFLE stations,
which are presented in a line graph and a histogram, respectively. As demonstrated in
Figure 4, six significant indigenous precipitation events occurred during the experiment,
with a maximum precipitation of 24.8 mm, mainly during DOYs 63–66, 92–93, 102–103,
109–110, 127–128 and 130–131. Continuous precipitation led to a significant nonlinear
increase in the SMC. As precipitation decreased or stopped, there was a decrease in the
SMC. Evidently, precipitation was the primary factor that caused sudden changes in the
SMC. The precipitation at the P041 and MFLE stations during the experimental period was
appropriate and suitable for SMC retrieval.

Figure 4. The soil moisture rainfall diagram during the experimental period.

3. Experiment and Results

3.1. Experimental Technical Scheme

Figure 5 shows the flow chart of the SMC retrieval technique used in this study.
The technical route we followed can be divided into three parts: (1) We first pre-
processed the GNSS-IR data: the carrier phase, pseudorange observation data, azimuth,
elevation angle, and epoch extraction. We extracted other data parameters from the
observation (OBS) file and navigation (NAV) file collected by GNSS receivers. (2) We
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determined the initial values of phase delay and amplitude attenuation factor, then
constructed the dual-frequency carrier phase linear combination multipath error model
and dual-frequency pseudorange multipath error model, and then calculated the mul-
tipath errors of the two models separately. We fit the ionospheric linear combination
(L4), namely the simple difference between L1 and L2 (L4 = L1 − L2), with a high order
to obtain L4_IF. We used a 10-degree polynomial fitting. (3) By constructing the error
equation, we solved the delay phase. Then, we performed the delayed phase combina-
tion representing the variation trend in SMC and the retrieval SMC analysis. (4) Taking
the multipath error of the five epochs before and after as the observation value, we
calculated the dual-frequency pseudorange multipath error and the dual-frequency
carrier-phase combination error and determined the initial phase and the amplitude
attenuation factor (AAF). According to Equation (5), we established the model error
equation. We used the Lomb–Scargle periodogram (LSP) and least-squares adjustment
method to solve the delay phase. In solving the delay phase, the Pearson correlation
coefficient (R) between the phase delay and SMC was used to characterize the changing
trend between the delay phase and soil moisture.

 

Figure 5. The technical process we followed for multisatellite dual-frequency combined multipath
error SMC retrieval. Note: RTKLIB is an open-source program package for standard and precise posi-
tioning with GNSS (global navigation satellite system). RTKLIB consists of a portable program library
and several APs (application programs) utilizing the library (http://www.rtklib.com/) (accessed on
10 February 2022).

3.2. SMC Retrieval
3.2.1. Choice of Elevation Angle

Given the lack of measured soil moisture data, we selected the soil moisture value
from the P041 station estimated with the new GPS L2C carrier SNR as the reference value.
The soil moisture value of the PBO site is based on a value per day and is the median value
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estimated by all satellites [22]. As soil moisture changes more during the day than that
at night and more GPS satellites are visible during the day than at night, to simplify the
calculation, generally, only four and eight observation periods are selected at night and
day, respectively. As such, we used twelve observation periods every day. To ensure the
solution’s reliability and avoid excessive differences in multipath errors from affecting the
parameter solution, we assumed that the soil moisture remained constant for a short time
(e.g., within 5 min). We used the multipath error of the element used as the observation
value for 11 multipath errors in total.

To provide a more intuitive view of the number of GPS satellites visible during the day
compared to at night, Figure 6 shows the change in elevation of almost all GPS satellites at
site P041 on 19 February 2014 (DOY: 2014–050). Figure 6 shows that more GPS satellites
are visible during the day than at night, and the duration of a single GPS satellite being
visible during l day is generally about 2.5–8 h, and the period at a low satellite elevation
angle (<30◦) is shorter, being maintained at about 0.5–2 h.

Figure 6. Changes in the elevation angles of almost all GPS satellites at P041.

Figure 7 shows the linear combination of GPS satellite G22 (DOY: 2014-050) observa-
tions at the test site. The multipath error varied with the elevation angle of the satellite. The
black curve represents the change trend in MP2 multipath error and L4_IF multipath error
over time, and the red parabola represents the change trend in satellite elevation angle
with time. Figure 8 shows that the satellite elevation angle occurs between 13:30 and 21:30.
The time gradually increases to the maximum value and then slowly decreases until the
satellite disappears. The changes in the MP2 multipath error and L4_IF multipath error are
closely related to the satellite elevation angle. When the satellite elevation angle is low, the
MP2 value oscillation amplitude can reach several meters, and the L4_IF value oscillation
amplitude is relatively large. When it is high, the oscillation amplitudes of the MP2 value
and L4_IF value decrease accordingly. For increased accuracy, we selected the data at the
lower elevation angle as the experimental data, as shown in Figure 8.

Figure 8 shows the multipath error of the linear combination observations of the GPS
satellite G22 (DOY: 2014-050) at a satellite elevation of 5–25◦ for the test site GPS satellite.
Figure 8 shows that as the satellite elevation angle increased, the multipath error showed a
downward trend, which indirectly indicated that the carrier pseudorange and carrier phase
observations of low-elevation satellites are more susceptible to the influence of multipath
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errors; it provides a theoretical basis for the selection of GNSS-IR satellite altitude angle.
The satellite elevation angles in this experiment were all limited to 5–25◦.

Figure 7. The multipath error varies with satellite elevation angle: (a) dual-frequency pseudorange
multipath error; (b) dual-frequency carrier phase linear combination of multipath errors.

Figure 8. The multipath error of low elevation angle varies with the sine value of satellite elevation
angle: (a) the dual-frequency pseudo multipath error MP2; (b) the dual-frequency carrier phase linear
combination multipath error L4_IF for removing ionospheric delay.

3.2.2. Choice of Azimuth

Satellite signal reflection point trajectory is a function of satellite elevation, azimuth,
and antenna height. The reflection point trajectory reflects the position of the satellite
relative to the receiver at a certain moment, from which the spatial information of the
reflected soil can be obtained. Therefore, the advantages of the satellite reflection point
trajectory map can be used, and the satellite azimuth angle can be considered to ensure as
much consistency of the multiperiod multipath environment as possible. We selected the
area with more visible satellites as the azimuth angle range at the experimental site.

87



Remote Sens. 2022, 14, 3193

Given the spatial differences in soil moisture and surface environment in the study
area, the soil moisture at different locations was not entirely consistent, which led to
the difference between the retrieval results based on the observation values at different
reflection locations. In addition, not all DFP observations and L4_IF observations of the
satellite elevation state contain the physical information of the surface reflector. Therefore,
we needed to select observation values based on the study area environment, satellite
elevation angle, and satellite azimuth angle to improve the accuracy of GNSS-IR soil
moisture retrieval. As shown in Figure 9, as the reflection area of the soil was roughly the
same, and on the premise of ensuring the number of satellites in each period, we selected
an azimuth angle range of 30–330◦. The satellites all had continuous observation values
when their elevation angle was 5–25◦, providing relatively sufficient observation data.

Figure 9. The projected trajectory of the P041 (DOY: 2014-065) satellite at an elevation of 5–25◦.

3.2.3. Selection of Effective Satellites

The Fresnel reflection region of a GNSS signal is a set of ellipses related to the elevation,
azimuth, and antenna height of a satellite. The first Fresnel reflection region contributes
the most to the reflected signal, and the reflection medium change in the reflection zone
strongly affects the relevant physical characteristics of the reflected signal.

The semimajor and semiminor axes of the ellipse of the first Fresnel reflection region
of the ground-based GNSS-R can be determined by [28]:

Sx = h · cot θ, (30)

Sy = 0, (31)
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a =

√
λh sin θ

sin2 θ
, (32)

b =

√
λh sin θ

sin θ
, (33)

where Sx is the projection position of the reflection point on the ground connecting the
satellite and the receiver; Sy is the position of the receiver projection point; a and b are
semimajor and semiminor axes of the first Fresnel reflection region; h is the distance from
the antenna phase center to the reflection surface; λ is the carrier wavelength; θ is the
elevation angle of the GNSS satellite.

Figure 10 shows the first Fresnel reflection region ellipse group of the GPS L2
carrier when the satellite azimuth was 0◦, the satellite elevation was 5–25◦, and the
receiver antenna height was 1.9 m. The horizontal axis represents the distance from
the receiver antenna to the direction of the satellite, and the vertical axis represents
the distance perpendicular to the direction of the receiver antenna and satellite. When
the satellite elevation angle increases, the Fresnel reflection region shrinks, and the
reflection center is closer to the GNSS receiver. The area of the ellipse can be obtained
from the semimajor and semiminor axes of the ellipse, that is, the area of the first Fresnel
reflection region. Using the first Fresnel reflection region can avoid the influence of
other multipath sources, such as tall buildings, vegetation, and water; maximize the
unity of the reflection medium in the reflection zone; and be used for the design of
the experimental plan. Therefore, the Fresnel reflection region provides a certain basis
for determining the location of soil moisture sample collection points and selecting
effective satellites. The change in the reflection medium in the Fresnel reflection region
considerably affects the signal received by the receiver.

Figure 10. First Fresnel reflection region for GPS L2 frequency at different elevation angles.

Figure 11 shows the first Fresnel reflection region map of station P041 (DOY: 2014-065).
When the satellite elevation angle was 10◦, the reflection point was up to 21 m away from
the receiver. If slopes or other interference sources are near the measurement area, the
first Fresnel reflection region should be introduced to reduce the excessive soil moisture
retrieval error caused by different soil reflection media. The lower the satellite elevation
angle, the larger the region of the first Fresnel reflection. When the elevation angle range
is limited, the azimuth angle of each GPS satellite does not change much. Therefore, the
calculation of the first Fresnel reflection region can ensure the unity of the medium in
the reflection region, meaning that the homogeneity of the soil can be more accurately
assessed and can provide a certain basis for other factors such as experimental planning
and satellite selection.
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The maximum power spectral density can be used to characterize the quality of a
multipath error signal to a certain extent. Spectrum analysis using the Lomb–Scargle
method can be used to judge satellite signal quality [22,29]. A satellite track should
have a relatively stable singular dominant frequency for the same reflecting surface.
In general, the dominant frequency’s power spectral density (PSD) should be at least
twice as high as the power of the noise or the second most powerful frequency in the
periodogram [22,30].

 

Figure 11. First Fresnel reflection region map of station P041 (DOY: 2014-065): GPS satellite distribu-
tion in the first Fresnel reflection region of station P041 when satellite elevation angle was (a) 10◦;
(b) 25◦.

Figure 12a,b show that the power that meets the dominant frequency should be at
least twice the power of the secondary main peak frequency, and that the quality of satellite
data is higher. We used the PSD of dual-frequency pseudorange and dual-frequency
carrier phase combined multipath error as the main auxiliary tool for satellite selection.
Figure 12c,d lack any dominant frequency, which could have introduced substantial errors
in the subsequent parameter estimation. Therefore, we also discarded such satellites when
selecting satellites.

Based on the above analysis, after limiting the satellite elevation angle to about
5◦–25◦ and after further considering the dual-frequency multipath error for satellite
selection, we used twelve time periods every day: eight evenly distributed in the daytime
and four and evenly distributed in the nighttime. Although the multipath error duration
of a single GPS satellite in a day is generally about 2–8 h, the corresponding duration of
the low satellite elevation angle multipath error is shorter, basically maintained at about
1 h. As a result, even fewer GPS satellites are available at low elevations. Therefore,
we selected only one GPS satellite for each observation period. Combining satellite
elevation angle, satellite reflection trajectory, satellite azimuth, first Fresnel reflection
area, station environment, spectrum analysis, etc., Table 2 shows the results of the twelve
time periods on 6 March 2014.
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Figure 12. Multisatellite dual-frequency combined multipath error Lomb–Scargle periodogram.
Spectrum analysis diagrams of the (a,c) dual-frequency carrier phase combined multipath error
(L4_IF;) (b,d) dual-frequency pseudorange multipath error (MP2).

Table 2. Satellite selection results at site P041 on 6 March 2014 (DOY: 2014-065).

Observation Period
Number

GPS Satellite Number
(PRN)

Azimuth
(/◦)

Height Angle
(/◦)

GPS Time
(hh:mm:ss)

1 PRN16 170.75–171.16 6.08–7.05 01:28:45–01:31:15

2 PRN03 44.55–44.68 14.72–15.69 03:28:45–03:31:15

3 PRN26 239.89–240.82 24.45–25.25 05:58:45–06:01:15

4 PRN20 50.47–51.46 12.70–12.94 07:58:45–08:01:15

5 PRN24 221.92–222.65 13.37–14.22 09:58:45–10:01:15

6 PRN04 67.64–68.26 7.66–8.46 11:28:45–11:31:15

7 PRN15 156.52–157.09 14.87–15.82 12:28:45–12:31:15

8 PRN05 57.21–57.69 11.33–12.21 14:28:45–14:31:15

9 PRN16 275.01–275.94 6.19–6.73 15:28:45–15:31:15

10 PRN31 184.73–184.91 8.41–9.47 17:58:45–18:01:15

11 PRN25 73.92–75.11 22.27–22.47 19:58:45–20:01:15

12 PRN16 170.75–171.17 6.09–7.05 20:58:45–21:01:15
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3.3. GNSS-IR SMC Retrieval Results

To obtain the parameters that characterize the change trend in soil moisture, we used
the multipath error as the system input, and the amplitude attenuation factor and phase
delay were the parameters to be estimated. We ignored the impact of the satellite elevation,
soil moisture changes in the short term, and the amplitude attenuation factor and phase. The
delay was a constant in the short term, and we obtained the error equation by linearizing
Equation (5). The initial value of the phase delay was determined using Equation (2), where
the satellite elevation angle is the satellite elevation angle corresponding to the first soil
moisture sample collection time, considering that the soil surface reflectivity is between
0.3 and 0.8 [21]. In this study, we focused on the amplitude and phase of multipath error,
so the actual value of κ is not required. Taking an κ initial value κ0 = 0.3, we ignored the
complex effect of antenna gain mode.

Considering the small changes in the sine values of antenna height and satellite height
and our focus on the changing trend in the phase delay, we used the same initial phase
delay value for all periods of data processing. For the solution of the parameters, we
adopted the indirect adjustment method based on least squares, and the data processing
followed these principles:

(1) Cycle slip detection and repair were conducted on the observed carrier phase value;
(2) We assumed that the amplitude attenuation factor and phase delay did not change in

a short time;
(3) To avoid the large difference between the delay phase and the acquisition time of

soil moisture, considering the necessary observation number, taking the acquisition
time of soil moisture as a reference, we took the multipath error of five epochs
before and after as the observation value. That is, we ignored the change in the
delay phase with satellite elevation angle in the short term. We regarded the
multipath error selected in each period as the repeated observation of the same
parameter. According to Equations (15) and (16), the dual-frequency pseudorange
multipath error MP could be calculated; According to Equation (19), the dual-
frequency carrier-phase combination multipath error L4 could be calculated. We
performed high-order fitting (we used 10-degree polynomial fitting) of L4 to remove
the influence of ionospheric delay and obtain L4_IF. According to Equation (2), the
initial value of the delay phase and the initial value of AAF (κ0) are determined.
According to Equation (5), we constructed the error equation of the corresponding
method, and performed the Lomb–Scargle periodogram (LSP) and least square
adjustment method. We solved each period to obtain a delay phase representing
the change trend in soil moisture.

Combining the results of daily satellite selection, for the selected single satellite, we
calculated the multipath error according to the dual-frequency signal of 11 epochs before
and after the corresponding time. Combining the above principles and methods, we
obtained the delay phase corresponding to the time of soil moisture acquisition through
adjustment. Therefore, one phase delay could be calculated for each observation period,
and 12 phase delays could be calculated for 12 observation periods in a day. By averaging
the 12 results, we obtained the average phase delay, which is the daily phase delay. On
a daily time scale, the L4_IF method and the DFP method were calculated separately
to obtain the corresponding daily phase delay, and Time trends of soil moisture and
delayed phase at P041 and MFLE stations were plotted (Figures 13a,b and 14a,b).
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(a) Correlation between dual-frequency carrier phase linear combination (L4_IF) model and SMC. 

(b) Correlation between DFP multipath model and SMC. 

Figure 13. P041 station; correlation between Delay Phase and SMC.

To further test the L4_IF method and the DFP method, 50 d of the P041 and MFLE
SMC, respectively, and the estimated phase delay were employed to build an empirical
model, and the other 28 d of data were used to verify the model. The modelling method
employed was unary linear. In the relationship between soil moisture and phase delay, in
this study, we used the phase delay as the independent variable (x) and the soil moisture as
the dependent variable (y) to perform univariate linear regression modeling. We obtained
the scatter plot and regression shown in Figure 15.
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(a) Correlation between dual-frequency carrier phase linear combination (L4_IF) model and SMC. 

(b) Correlation between DFP multipath model and SMC. 

Figure 14. MFLE station; correlation between Delay Phase and SMC.

To better reflect the soil moisture retrieval performance of the two methods of P041
and MFLE stations, we performed precision statistical analysis on each method separately,
and the statistical results are shown in Table 3.

Soil moisture is often affected by vegetation cover, soil temperature, air humidity and
other factors. In addition, due to the difference between the actual reflection conditions
of GNSS satellite signals and the hypothetical ideal reflection conditions, the relationship
between multi-path induced phase delay and soil moisture becomes complicated, which
makes the ordinary linear model not necessarily able to describe the trend of soil moisture.
Compared with other analytical models, the neural network model is less sensitive to the
influence of soil flatness, surface vegetation and soil surface roughness. Therefore, in order
to improve the inversion accuracy of GNSS-IR soil moisture, BPNN and RBFNN were used
to construct soil moisture prediction models, and the prediction results were compared
with those of ULR model, and the accuracy of each model was evaluated.
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Figure 15. For the P041 station; scatter diagram of the SMC and regression equation based on (a) the
L4_IF method; (b) the DFP multipath model. For the MFLE station; scatter diagram of the SMC and
regression equation based on (c) the L4_IF method; (d) the DFP multipath model.

Table 3. Statistical table for accuracy comparison between L4_IF and DFP methods.

Station ID Method Correlation Coefficient (R) STD (cm3 cm−3) MAE (cm3 cm−3) RMSE (cm3 cm−3)

P041
L4_IF 0.97 0.040 0.037 0.014

DFP 0.91 0.040 0.038 0.026

MFLE
L4_IF 0.93 0.047 0.043 0.029

DFP 0.86 0.047 0.049 0.042

Note: The STD in Table 3 is the error standard deviation; the MAE in Table 3 is mean absolute error; the RMSE in
Table 3 is root-mean squared error.
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The phase delay and measured soil moisture of P041 and MFLE stations calculated
based on L4_IF method and DFP method were used as data sources, and the training set
and test set were divided according to the ratio of 7:3. That is, 50 d data were used as
training set data, and 28 d data were used as test set data. BPNN and RBFNN are used to
model. Figures 16 and 17 show the comparison between the predicted values of the three
models of the two methods corresponding to the P041 station and the MFLE station and
the measured values of soil moisture.

Figure 16. For P041 station; comparison between the predicted values of three models and measured
values of soil moisture (a) the L4_IF method; (b) the DFP multipath model.

In order to better reflect the prediction results of three prediction models for soil
moisture and the comparison results between different models, the accuracy of L4_IF
and DFP methods corresponding to the three models of P041 and MFLE stations were
statistically analyzed. The statistical results are shown in Table 4.
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Figure 17. For the MFLE station, comparison between predicted values of three models and measured
values of soil moisture (a) the L4_IF method; (b) the DFP multipath model. Note: The P041_SMC
in Figure 16a,b are SMC value of the P041 station; the MFLE_SMC in Figure 17a,b are SMC values
of the MFLE station; the ULR_SMC in Figures 16 and 17 are unitary linearity regression model
predictive value; the BPNN_SMC in Figures 16 and 17 are back propagation neural network model
predictive value; the RBFNN_SMC in Figures 16 and 17 are radial basis function neural network
model predictive value.

Table 4. Statistical table for precision comparison of three models of L4_IF and DFP methods.

Station ID Method Model STD (cm3 cm−3) MAE (cm3 cm−3)

P041

L4_IF
ULR 0.040 0.037

BPNN 0.039 0.034
RBFNN 0.039 0.035

DFP
ULR 0.040 0.038

BPNN 0.033 0.033
RBFNN 0.039 0.038

MFLE

L4_IF
ULR 0.047 0.043

BPNN 0.039 0.037
RBFNN 0.045 0.042

DFP
ULR 0.047 0.049

BPNN 0.042 0.046
RBFNN 0.047 0.049

Note: The STD in Table 4 is error standard deviation; the MAE in Table 4 is mean absolute error; the ULR in
Table 4 is unitary linearity regression; the BPNN in Table 4 is back propagation neural network; the RBFNN in
Table 4 is radial basis function neural network.
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4. Discussion

From the above experimental results can be drawn, Figures 13a,b and 14a,b show
multiple apparent peaks in the phase delay and soil moisture, and the overall change
trend has a strong consistency. For the P041 station, the correlation coefficients between
the soil moisture and phase delay calculated based on the L4_IF multipath error and the
DFP multipath error are 0.97 and 0.91, respectively. For the MFLE station, the correlation
coefficients between the soil moisture and phase delay calculated based on the L4_IF
multipath error and the DFP multipath error are 0.93 and 0.86, respectively, which are
statistically significant. Figure 15a–d shows that the soil moisture values obtained using
the L4_IF and DFP methods both fluctuate around the linear regression equation built by
each, and the deviation is slight. The L4_IF and DFP methods have a statistical significance
level of 0.01 and 0.05, respectively, regarding soil moisture retrieval. The probability values
of the two methods are close to zero (P ≈ 0), indicating that the correlation between
the estimated phase delay and soil moisture at the P041 and MFLE stations is significant.
Figures 16 and 17 show that the fitting degree between the predicted and measured values
of the BPNN model and RBFNN model is better than that of the ULR model, and the error
is smaller.

Table 3 shows that the standard deviation and absolute average error of the L4_IF
and DFP methods are the same, but the root mean square error of the L4_IF method is
smaller than that of the DFP method. Therefore, the L4_IF method is generally more
accurate than the DFP method. The observation precision of the carrier phase is much
higher than that of the pseudorange. To better compare the L4_IF and DFP methods, we
used the error propagation law to compare the error level of L4_IF and DFP. Assuming
that the observation error of the dual-frequency carrier phase has the same standard
deviation of 1 mm (σ0 = σ1 = σ2 = 1mm), the standard deviation of the GPS C/A code
measurement pseudorange observation value is 2.93 m. Therefore, the error standard
deviation of the L4_IF method is σL4 =

√
2σ0 = 1.41 mm, and that of the DFP method is

σMP2 = 2.93 m σL4 < σMP2 , also means that the quality of the multipath error of the L4_IF
method is higher than that of the DFP method, so the L4_IF method obtained a higher
correlation coefficient and root mean square error.

Table 4 shows that for the L4_IF and DFP methods of P041 and MFLE stations, the
prediction results of the BPNN model are better than the RBFNN model and ULR model,
and the RBFNN model is slightly better than the ULR model. The reasons may be as
follows. Firstly, soil moisture is affected by vegetation cover, soil temperature, air humidity
and other factors, and multipath reflection is not an imaginary mirror reflection, which
makes it difficult to characterize other nonlinear characteristics between delay phase and
soil moisture by using simple linear or exponential models. Secondly, the BPNN algorithm
can correct the dielectric constant difference caused by weakening soil roughness, and has
a certain inhibitory effect on surface fluctuation, soil roughness and vegetation.

5. Conclusions

Based on the analysis of the multipath error generation mechanism and the calculation
model of GNSS measurement, we constructed a soil moisture retrieval method based
on multisatellite dual-frequency combined multipath error. We proposed a method of
estimating soil moisture using two combined dual-frequency signals. We used the L4_IF
and DFP methods, which are independent of geometric distance, to estimate soil moisture.
We verified the proposed method using the archived data set and SMC data of the P041
and MFLE stations. We drew the following conclusions through experimental analysis:

(1) The delay phases obtained by the multipath error solution and the soil moisture are
strongly correlated. For the P041 station, the R values of the L4_IF and DFP methods
are 0.97 and 0.91, respectively. For the MFLE station, the R values of the L4_IF and DFP
methods are 0.93 and 0.86, respectively. Because the observation error of the L4 linear
combination is low and the change in the ionospheric delay in the short term is small,
we used the high-order fitting to further weaken the influence of the ionospheric
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delay. The L4_IF method has higher R and soil moisture estimation accuracy than the
DFP method. When the BPNN model, RBFNN model and ULR model are used to
predict soil moisture, the results show that the prediction results of the BPNN model
are better than the RBFNN model and ULR model, and the RBFNN model is slightly
better than the ULR model. The results show that BPNN can improve the inversion
accuracy of GNSS-IR soil moisture.

(2) Since the calculation of the phase delay only requires a small amount of multipath
error compared to the soil moisture retrieval based on the SNR, the proposed method
does not require the diagnostic signal frequency, and only a tiny number of epoch
multipath errors needs to be used to calculate the delay phase. So, achieving high-
time-resolution GNSS-IR SMC retrieval is easier. Therefore, this method can be used
to easily obtain high-time-resolution and accurate soil moisture estimations.

(3) Given the changes in soil moisture, the reflectivity of the surface changes, which
in turn will lead to changes in the amplification, attenuation factor κ, and phase
delay. A further new finding is that the phase delay and the amplification attenuation
factor κ based on the L4_IF method show the same change trend, and the Pearson
correlation coefficient between them is 1. Conversely, the phase delay based on the
MP2 method and the amplification attenuation factor κ show the opposite trend, and
the Pearson correlation coefficient between them is −1. These results show that the
phase delay is closely related to the amplification attenuation factor κ. In other words,
the amplification and attenuation factor κ can also be used for soil moisture estimation,
which can obtain the same result as the phase delay. For the sake of brevity, this article
does not list the research results of the amplification and attenuation factor κ.

If SNR does not exist in the original file of GNSS and the number of GNSS satellites
with triple-frequency signals is still limited, the L4_IF method and DFP method proposed
in this paper can be used as alternative methods for monitoring through GNSS-IR so as
to enrich the data source of GNSS-IR soil moisture inversion and improve the ability of
GNSS to serve environmental monitoring. However, it should be noted that not all satellite
observations are suitable for estimating soil moisture, and different satellite selections will
lead to different results. Therefore, the effective selection of satellites is still a challenge.
Because this method does not need to diagnose the signal frequency and only needs
less epoch multipath error to calculate the delay phase, it is easier to achieve higher time
resolution of GNSS-IR soil moisture inversion. Soil moisture inversion based on a multipath
error enriches GNSS-IR data sources and enhances the reliability of GNSS-IR.
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Abstract: Centimetre-level accurate ionospheric corrections are required for a high accuracy and
rapid convergence of Precise Point Positioning (PPP) GNSS positioning solutions. This research aims
to evaluate the accuracy of a local/regional ionospheric delay model using a linear interpolation
method across Australia. The accuracy of the ionospheric corrections is assessed as a function of both
different latitudinal regions and the number and spatial density of GNSS Continuously Operating
Reference Stations (CORSs). Our research shows that, for a local region of 5◦ latitude ×10◦ longitude
in mid-latitude regions of Australia (~30◦ to 40◦S) with approximately 15 CORS stations, ionospheric
corrections with an accuracy of 5 cm can be obtained. In Victoria and New South Wales, where dense
CORS networks exist (nominal spacing of ~100 km), the average ionospheric corrections accuracy
can reach 2 cm. For sparse networks (nominal spacing of >200 km) at lower latitudes, the average
accuracy of the ionospheric corrections is within the range of 8 to 15 cm; significant variations in the
ionospheric errors of some specific satellite observations during certain periods were also found. In
some regions such as Central Australia, where there are a limited number of CORSs, this model was
impossible to use. On average, centimetre-level accurate ionospheric corrections can be achieved if
there are sufficiently dense (i.e., nominal spacing of approximately 200 km) GNSS CORS networks in
the region of interest. Based on the current availability of GNSS stations across Australia, we propose
a set of 15 regions of different ionospheric delay accuracies with extents of 5◦ latitude ×10◦ longitude
covering continental Australia.

Keywords: Global Navigation Satellite Systems (GNSS); Continuously Operating Reference Station
(CORS); Precise Point Positioning (PPP); ionospheric corrections; ionospheric model

1. Introduction

Applications of the Global Navigation Satellite Systems (GNSS) Precise Point Position-
ing (PPP) technique are rapidly increasing due to the methods computational efficiency,
low communications bandwidth requirement and relative accuracy. PPP users can obtain
position solutions with centimetre- to decimetre-level accuracy in static and kinematic
modes [1–3]. The main advantage of PPP compared to differential based GNSS position-
ing techniques (e.g., Real Time Kinematics, RTK) is that PPP is based on the State-Space
Representation (SSR) of corrections approach [4,5]. The SSR approach allows for GNSS-
PPP-related errors such as satellite orbits and clocks to be modelled using a global sparse
network of GNSS Continuously Operating Reference Stations (CORS) infrastructure. This
removes the need for users to operate nearby base stations (i.e., base line < 100 km) or
within a local GNSS CORS network. However, a drawback of PPP is its relatively long
solution convergence time, which limits its adoption in real-time applications requiring
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almost instantaneous centimetre-level positioning accuracy [4]. Tens of minutes to a few
hours is required for PPP solutions to provide coverage to centimetre-level accuracy [6,7].
A significant amount of research effort has been invested in the past decade to reduce the
solution convergence time [8,9]. One known solution is to strengthen the PPP underlin-
ing measurement model by including externally computed, accurate ionospheric delay
estimates into the end-user PPP algorithms [10–14].

For single-frequency PPP, ionospheric models such as the Klobuchar and the Global
Ionospheric Maps (GIMs) estimated from a sparse global CORS network are applied.
The accuracy of the ionospheric corrections derived from these models is approximately
15–20 TECu and 2–4 TECu, respectively [15], where one Total Electron Content unit
(1 TECu) = 16 cm of ionospheric correction on L1 frequency. While these ionospheric
correction models are useful in aiding precise single-frequency positioning, ionospheric
corrections at 2–4 TECu are not sufficiently accurate to accelerate PPP convergence times
from a few hours to minutes. PPP that uses two or more frequencies eliminates the need
for an ionospheric model, as dual-frequency GNSS receivers can remove the first order
(~99%) ionospheric delays by forming the ionosphere-linear combination. However, this
linear combination of two signals, whilst removing the effects of the ionospheric delays,
increases the noise amplification factor by three. This weakens the measurement model in
dual-frequency PPP and results in a long solution convergence time of typically a couple of
hours [12,16].

To facilitate a fast solution convergence time of a few minutes for PPP, the ionospheric
corrections need to be accurate to less than one decimetre, that is, <~0.6 TECu. This
requires the use of high-density local/regional CORS infrastructure networks to accurately
estimate the ionosphere delay corrections, as in the case of network-based RTK. Hence,
the terminology of “PPP-RTK” being a hybrid between the global PPP solutions and
high-density local-network-based RTK solutions. The convergence time of a PPP-RTK
solution depends on the accuracy of the ionosphere corrections (typically < 10 cm), which is
dependent on the combination of the density of the local CORS networks and its latitudinal
extent [17].

Geoscience Australia, through its Positioning Australia program, aims to accelerate the
adoption and development of GNSS positioning technology and applications in Australia.
The aim will be achieved by integrating and upgrading the country’s GNSS space-based
infrastructure via the deployment of a Satellite-based Augmentation System (SBAS), and
ground-based CORS infrastructure networks to provide high accuracy, high reliability
fit-for-purpose GNSS positioning services throughout its territory [18]. The Analysis Centre
Software (ACS), called ‘Ginan’, is a GNSS processing toolkit developed by Geoscience
Australia for processing GNSS observations for geodetic applications, as well as computa-
tions of GNSS corrections products to enable high-accuracy GNSS applications. Ginan is a
free-to-use open source and is made up of two distinct software entities: The Precise Orbit
Determination (POD) and the Parameter Estimation Algorithm (PEA). PEA uses a Kalman
filter to estimate precise satellite orbits from a global CORS network, as well as satellite
clocks, vertical TEC and zenith troposphere delays. A country like Australia presents
challenges when designing and developing a high-accuracy national GNSS positioning
service. Australia is a vast landmass, most of which is sparsely populated and cannot
economically justify hosting a high-density CORS network. Furthermore, Australia extends
from 10◦ to almost 44◦ south, providing ionospheric disturbances at different scales.

This research assesses the achievable accuracy of a local ionospheric delay model for
Australia based on the linear interpolation method. The assessment will be conducted by
taking into consideration the number and spatial density of the GNSS CORS networks.
The model is populated with points where the ionospheric effects are known—because
these have been calculated based on readings taken at CORS. The effect of the ionosphere
at a given point is calculated using a linear interpolation to that point from the known
(CORS) points. As Australia has a large and sparsely populated landmass (its population
and infrastructure are mainly concentrated along the coast), the density of the GNSS CORS
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networks across the continent is not uniformly distributed. Thus, it is also of interest
to identify the optimum number of GNSS CORS stations, and the corresponding spatial
density required to achieve centimetre-level ionospheric corrections, thus realising the
ambition of the Australian Government Positioning program. The goal of this research
is to contribute towards our understanding of the regions in Australia that may require
the additional investment and densification of CORS infrastructure for enabling high-
accuracy positioning. The accuracy of the derived ionospheric corrections will be evaluated
as functions of different latitudinal regions and the spatial density of the GNSS CORS
networks across Australia. The Ginan toolkit will be used to generate between-satellite
single-difference ionosphere delay estimates. These estimates will then be used to derive a
series of regional ionospheric grid maps that are 5◦ latitude × ~10◦ longitude in size.

2. Methodology

2.1. Ionosphere Delay Estimation Using PPP Technique

PPP calls for the explicit modelling and estimation of biases on the GNSS measure-
ments. For this purpose, the undifferenced uncombined PPP measurement model is
characterised as follows [19]:
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where Ls
r, f and Ps

r, f are the carrier phase and pseudorange measurements corresponding to
satellite s, station r and frequency f ; Rs

r is the geometric distance; c is the speed of light; dtr
and dts are the receiver and satellite clock errors, respectively; τs
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pseudorange measurements, respectively; bs
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f are the satellite hardware delays of the

carrier phase and pseudorange measurements, respectively; ε s
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P, f are the carrier
phase and pseudorange measurement noises, respectively.

It is worth noting that the effects of the antenna phase centre offset and phase centre
variation, solid earth tides, phase windup and relativistic effects have been corrected in the
measurements. The Ginan toolkit is now capable of generating rapid and ultra-rapid orbit
parameters, but, for the purposes of this research, the International GNSS Service (IGS)
final products were used to correct for the satellite orbital errors.
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Therefore, the
(

Ls
r,IF

)
and
(
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)
can be written as follows:
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Equations (7) and (8) can be used to estimate the station positions, the satellite clock
offset cdts

IF = cdts + Bs
IF, station clock offset cdtIF,r = cdtr + Br,IF and the tropospheric

delays τs
r , as well as the real valued ambiguity As

r,IF consisting of ambiguity plus the
satellite and receiver hardware biases as shown in (9).
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The use of a wide-lane combination for ambiguity resolution is helpful due to their
longer wavelength. Here, the Melbourne–Wübbena combination [20–22]
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is used to isolate and resolve the wide-lane ambiguities Ns
r,WL = Ns

r,1 − Ns
r,2. Equation (10)

can be rewritten as
As

r,MW = βr,MW − βs
MW + Ns

r,WL (11)

where βr,MW and βs
MW are Melbourne–Wübbena combination receiver and satellite biases.

Once the wide-lane ambiguities have been solved, the ambiguity on the GPS L1 carrier
phase can be isolated and resolved as well, as shown in (12).
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For enabling global PPP solutions, the satellite positions or orbits, the satellite clock
offset dts

IF and the phase bias estimates for GPS L1 and GPS L2 (b′s1, b′s2) can be used to
deliver ambiguity-resolved PPP solutions to the end user.
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To obtain the ionosphere delay estimates used in this research, the carrier phase
measurements for L1 and L2 were corrected using (15) and (16).
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The phase biases can be precisely estimated with the use of a global CORS network,
and there are no errors associated with ambiguities once they are solved. Thus, the noise
level of the corrected measurements is expected to be dominated by the un-modelled errors
in the carrier phase measurement.

The geometry-free combination of these measurements can be used to obtain a precise
estimate of the ionospheric delay (Is

r ) on the L1 = 1575.45 MHz carrier.
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It is worth noting that the ionosphere delay measurements obtained this way are slant
ionospheric delay measurements between the line of sight from a GPS satellite to a receiver.
These measurements are subject to the receiver and satellite hardware. For a carrier phase
measurement, the delay estimation of 1.0 cm on L1 equates to 0.16 TECu.

2.2. GINAN Parameter Estimation Algorithm Processing

The Parameter Estimation Algorithm (PEA) is one of two components in the Ginan
toolkit to process GNSS raw observations. The PEA reads observations in both RINEX and
RTCM3 formats and is capable of estimating satellite clocks and zenith troposphere delays.
The PEA application can be run on a Linux server that has sufficient memory (>8 GB) to
cope with the data from a network of 80–250 stations [23].

In this research, the slant ionospheric delay corrections were derived from the geometry-
free combination of GPS measurements (Equation (17)). To remove the receiver hardware
bias, between-satellite single-differences (SD) of the ionospheric delay corrections at each
CORS station in the test region were used, except one station, which is used for model
evaluation purposes. The satellite hardware bias was still included in the ionospheric delay
measurement in comparisons.

To compute the SD ionospheric corrections at every epoch, the measurements were
subtracted from each visible satellite with respect to one of the reference satellites, which
was the most common satellite in view in a local region.

ISD = Isi − Iso (18)

where Isi and Iso are the ionospheric delays for each visible satellite (si) and reference
satellite (so), respectively.

The SD ionospheric corrections (ISD) for each satellite include outliers (1% of data)
occurring in the processing. To remove the outliers, we discarded the values larger than
three standard deviations from the mean of all I delays of that satellite observed by all
stations in the local network.

Once the SD ionospheric corrections for each epoch were computed, linear interpo-
lation of the SD ionospheric corrections was carried out for all stations in a test region,
except for one station (treated as the evaluation station). The interpolation forms a surface
of ionospheric delays that fits with all ionospheric pierce points for at least 5 CORS stations
in the test region to map the corrections for each single GPS satellites. From this mapping,
the interpolated ionospheric delay corrections at the evaluation station were calculated
and subsequently compared with the actual measured values. The differences between the
interpolated ionospheric corrections and measured values at the evaluation CORS station
were computed to evaluate the achievable accuracy of the ionospheric linear interpolation
model. In this study, the accuracy presents the reliability of the ionospheric delays esti-
mated from the regional mapping and the actual measurement. The mean accuracy was
then taken as an average of all the accuracy retrieved on a whole day.

3. Results

3.1. Evaluation of the Ionospheric Corrections in Different Parts of Australia

Figure 1 shows the current distribution of the Australian GNSS CORS networks along
with its states and territories. As Australia has a large and sparsely populated landmass,
the density of the GNSS CORS networks is not uniformly distributed. Hence, it is of interest
to evaluate the achievable accuracy of a linearly interpolated ionospheric corrections
model based on the existing configuration of GNSS CORS networks. Furthermore, as the
ionospheric effects vary as a function of latitude, it is therefore of importance to evaluate
the ionospheric corrections in different regions. A series of analyses were undertaken based
on selected test regions defined by latitudinal changes from low to mid-latitudes. The
width (change in latitude) of test regions was defined as 5◦ latitude starting from 10◦S to
45◦S, and the length (change in longitude) varied according to the respective test regions.
In general, it varied between 8◦ to 12◦ longitude, starting from 110◦E to 155◦E.
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Figure 1. A map showing the geographical distribution of the Australian GNSS CORS networks
(blue point). The test regions have a latitudinal width of 5◦ north south, whereas the longitudinal
length varies between 8 to 12◦ east west.

More than 100 Australian CORS stations with emphasis on state-wide infrastructure
networks were used to assess the latitudinal variation in the interpolated ionospheric delay
corrections over Australia. An additional 70 global CORS stations were also selected to
supplement and strengthen the processing model. Only GPS measurements were processed
and used for estimating ionospheric corrections. An example of the geographic distribution
of the selected CORS stations used is presented in Figure 2.

Figure 2. A map showing the geographical distribution of the GNSS stations (red aasterisks) used to
compute the ionospheric corrections for the Victoria region. Respective statewide CORS stations in
New South Wales (NSW), Australian Capital Territory (ACT), Western Australia (WA), North Territory
(NT), Queensland (QLD) and South Australia (SA) were used to derive ionospheric corrections for
those regions.
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3.1.1. Victoria (VIC), New South Wales (NSW) and Canberra (ACT)

The State of Victoria is in the mid-latitude region between 34◦S to 39◦S. Victoria
has the densest GNSS CORS network in Australia, with an average distance between
stations of 80 km. One hundred and twelve state-wide Victorian stations were selected
to assess the variability of the ionospheric corrections. The time series plots of the left
of Figure 3 show the precision of the SD ionospheric corrections on 6 May 2021 at two
Victorian CORS stations, ALBU and ANGS. The bar charts on the right of Figure 3 show
the accuracy (difference) of the ionospheric model at these two stations. The accuracy was
computed based on the differences between the interpolated ionospheric corrections and
measured values at the evaluation CORS station. It is important to note that the measured
slant ionospheric corrections at the evaluation stations were not used in generating the
interpolation model. In addition, only values from 3 to 24 UT (LT = UT + 10) were
considered in the evaluation, as the PPP network processing required a couple of hours for
the solution to converge and stabilise. For a dense network in Victoria, a linear interpolation
method of SD slant ionospheric corrections can reach an average accuracy of less than 5 cm,
with a mean accuracy of 1.2 cm for ALBU station and 0.8 cm for ANGS station. There were
some occasions where large variations can be found up to 10 cm, but 99% of the delay
accuracy was distributed within 5 cm.

Figure 3. Results of the slant ionospheric corrections comparison at two Victorian CORS stations,
ALBU and ANGS on 6 May 2021. (Left) Time series plots showing the precision (mean accuracy)
of the SD slant ionospheric corrections of each satellite-receiver path based on linear interpolation
method. (Right) Bar charts showing the accuracy (difference between the estimated and interpolated
values) and distribution of the accuracy.

To evaluate the accuracy of the ionospheric corrections as functions of the CORS
network density (e.g., average distance between station) and number of stations used
in generating the ionospheric corrections, three scenarios with different CORS network
configurations were simulated as shown in Figure 4a–c. The three scenarios were (a) 112 sta-
tions with an average between-station distance of 80 km; (b) 40 stations with an average
between-station distance of 120 km; (c) 15 stations with an average between-station distance
of 200 km. Figure 4d–f shows the mean accuracy for each station in the corresponding
network. From the analysis, large differences were mainly observed at stations located
at the region border and away from the network. In scenario (c), two stations (i.e., LIPO
and CA10), located at the latitude of 34◦S and far away from the network, showed larger
differences than in scenarios (a) and (b).
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Figure 4. (Top: a–c) Three test scenarios in Victoria to assess the relation between the accuracy of the
interpolated ionospheric corrections as function of the density of the CORS network configurations.
The orange rectangles show the test area of 5◦ latitude ×10◦ longitude, and the red asterisks present
for the CORS stations. (Middle: d–f) Plots showing the mean accuracy for each station in the
corresponding network. (Bottom: g–i) Plots showing the accuracy of the interpolated ionospheric
corrections as a function of the average separation distance between the testing station and its three
nearest stations in the local network.

To examine the relation between the mean accuracy and the position of a testing
station in a regional network, we calculated an average distance from the testing station to
three nearest CORS stations, herein known as the average distance. Figure 4g–i presents
the accuracy as a function of the average distance of the testing station in the network. For
a region of 5◦ latitude ×10◦ longitude with 112 stations (g), the ionospheric corrections
accuracy of 1 to 2.5 cm can be obtained with the average distance below 80 km, whereas
approximately 3 cm and 4 cm mean accuracies can be reached with average distances of
approximately 100 km and up to 200 km, respectively. These values are also the same as for
the network of 40 stations (h). For a network of 15 stations (i), 13 stations with an average
distance around 200 to 250 km have a mean accuracy from 2 to 4 cm, whereas two CORS
stations situated at the border of the test region between VIC and NSW, approximately
300 km from the three nearest stations, have a mean accuracy of up to 6 cm. Therefore, it
can be concluded that the number of stations and spatial distribution play major roles in
influencing the achievable accuracy of the ionospheric corrections model.

To further validate the scenario with 15 stations evenly distributed in the 5◦ × 10◦
area, it was of interest to investigate if the inclusion of additional stations around the border
would strengthen the ionospheric modelling around the border region, thus improving the
overall accuracy of the corrections. Figure 5 (left) is a map of 15 CORSs with 10 VIC stations
plus 5 neighbouring NSW stations. In this set up, the CORSs were well distributed across
the test region compared to the previous test scenarios in Figure 4c. The average distance
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between the testing station to the three nearest stations in this test region is from 200 to
300 km. With this network configuration, an average of 5 cm accuracy can be achieved
for all stations in the local area. The NSW and ACT areas also have a dense GNSS CORS
network with an average distance of 120 km and an even distribution. Using this simple
interpolation, we can achieve an accuracy below 5 cm.

Figure 5. (Left) Maps of 15 CORS stations including names of ten stations in VIC and five stations
(CWRA, RANK, WGGA, DLQN and OXLY) from the neighbouring NSW. The red asterisks present
coordinates of those stations. (Middle) The average accuracy of the interpolated ionospheric correc-
tions for each station on 6 May 2021. (Right) The accuracy as a function of the average separation
distance of the testing station to the three nearest stations in the network, same as Figure 4.

3.1.2. North Territory (NT) and East Coast of Queensland (QLD)

Northern Territory (NT) and the northern part of Queensland (QLD) are in the low-
latitude region (~0◦ to 30◦S), where the electron density is expected to be higher than the
mid-latitude region. In the NT and west QLD, the GNSS networks are sparse. In fact, the
majority of the GNSS stations in QLD are located along the east coast, where the population
concentrates. In NT, there are approximately nine stations covering an area of 5◦ latitude
×8◦ longitude. The yellow box in Figure 6 shows the test region defined for NT.

Figure 6. Map showing the GNSS CORS stations (red stars) in NT and QLD. The yellow box indicated
the nominated test region for NT.

Figure 7 shows the differences between the interpolated ionospheric corrections and
the measured values for each of the nine NT CORS stations on 6 May 2021. Based on
the observations on this day, all stations show a high variation of up to 5 m, particularly
between 3:30 to 8 UT, corresponding to 12:00 to 17:30 LT. These high variations occurred
during the afternoon, when the Equatorial Ionospheric Anomaly (EIA) is at maximum
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density and were observed from some GPS satellites located on the north of the testing
station. This caused a large deviation since the signals of those satellites pass through the
EAI, where the high electron density content is.

Figure 7. Plots showing the differences between the interpolated and measured ionospheric correc-
tions as function of time at the nine NT CORS GNSS stations on 6 May 2021. The colours represent
for different satellite observations.

Upon closer inspection of the results, as shown in Figure 8 (note that the y-axis
scale is in centimetres), differences of up to 50 cm are also found between 13 to 17 UT,
corresponding to 22:30 to 2:30 LT. These high variations occurred around midnight LT and
were observed from most GPS satellites of the testing station. This potentially indicates the
effects of mid-night ionospheric density disturbance occurring in the low-latitude region,
which were not present in the mid-latitude region.

Figure 8. Plots showing the differences between the interpolated and measured ionospheric correc-
tions as function of time at the nine NT CORS GNSS stations on 6 May 2021. This figure is the same
as Figure 7, but the y-axis scale is decreased from 5 m to 50 cm.
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To further investigate of this phenomenon, GNSS station data along the east coast of
QLD were processed to evaluate and determine the latitudinal extent of these ionospheric
disturbances. The testing region included a dense CORS network from 15◦ to 30◦S within
142◦ to 152◦E. Three test areas of 5◦ latitude ×5◦ longitude and 5◦ latitude ×8◦ longitude
were defined for the QLD east coast (Figure 9), each consisting of 14 CORS stations. The
red stations with IDs in Figure 9 are the testing stations used in the ionospheric corrections
interpolation. A high variation in ionospheric delays can be seen at stations with latitudes of
up to 20◦S during these time periods; and the variation diminished as the latitude increased.

Figure 9. Plots showing the differences between the interpolated and measured ionospheric correc-
tions as a function of time at some testing stations on 6 May 2021. The dash boxed in the station map
show three testing areas. The red stations with names on the station map are the testing stations. The
colours in the right boxes represent for different satellite observations. The dash-orange rectangle
indicates some high variation in ionospheric delays.

3.1.3. South Australia (SA), Western Australia (WA) and Central Australia

Additional test regions in South Australia (SA), Western Australia (WA) and Central
Australia as shown in Figure 10 were selected for evaluation. Each of these test regions
cover 5◦ latitude with a varying longitude of 8◦ to 10◦ depending on the availability of
the stations’ data. Based on the results presented in this figure, the blue regions provide
a higher average accuracy of less than 8 cm. The orange regions, on the other hand, give
an average accuracy between 5 and 15 cm. Those accuracies correspond to the latitudes
(mid/low) and the distribution of GPS stations (high/less) in the test regions.
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Figure 10. Evaluation of the accuracy of the ionospheric corrections in the test regions of South
Australia (SA), Western Australia (WA) and Central Australia. The blue and orange boxes show the
testing regions where the mean accuracy achieved is below 8 cm and up to 15 cm, respectively. The
arrows link from the testing stations to the corresponding figures of mean accuracy of each station in
the test region.

3.2. Day-to-Day Accuracy of the Ionospheric Corrections during Ionosphere Quiet and
Disturbed Days

To assess the accuracy of the ionospheric corrections for a day-to-day period, seven
days of GNSS measurements from 6 to 9 May (DOY 126 to 129) and 11 to 13 May (DOY 131
to 133) 2021 were processed for two test regions in WA and QLD as shown in Figure 11.
DOY 130 was excluded due to the unavailability of station data for the testing. These
two test regions have a similar number and density of GNSS CORS stations and are in
different latitudes.

Figure 11. Two long-term testing areas in WA and QLD (dash boxes). The red stars are testing stations
in each region. The blue stars are stations around Australia processed with PEA. Note that 15 stations
around and inside the boxes were used for conducting interpolation at each testing region.

Figure 12 shows the mean accuracy of the interpolated ionospheric corrections for QLD
(top) and WA (bottom) for the seven-day study period. In the WA region, the day-to-day
mean accuracy seems stable and varies within 5 cm. In QLD, a higher variation is observed
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in the day-to-day mean accuracy, from 2 cm to 10 cm. On DOY 133, the mean accuracy at
the NEBO station reaches 12 cm and is likely caused by its location situated at the border.
The reason for the differences observed in these two regions could be based on the latitude
as well as the distribution of the CORS stations in that region. The QLD test region is
situated in the low latitude, whereas the WA test region is in the mid-latitude. Even though
the number of CORS stations used in the ionospheric corrections interpolation in two
regions is similar, the WA CORS stations are located nearer to each other (approximately
120 km) compared to those of QLD (more than 200 km).

Figure 12. The mean accuracy of the interpolated ionospheric corrections for the testing stations at
QLD (top) and WA (bottom) during 6 to 9 May (DOY 126 to 129) and 11 to 13 May (DOY 131 to
133) 2021.

The one-week study period included a geomagnetic storm with Kp = 7 on 12 May
2021 (DOY 132). Day 132 is the most disturbed day and day 126 (6 May) is in the list of
quiet days in May 2021 [24,25]. However, based on the results presented in Figure 12, it
appeared that there were little differences observed in the mean accuracy. In fact, the mean
accuracy on some quiet days can be higher than those on the disturbed day.

For further investigation, data from two days: one ionospheric quiet day on 6 May
2021, and one ionospheric disturbed day on 12 May 2021, and from different testing regions
across Australia, were selected for comparison. The results presented in Figure 13 are for
NT, WA, NSW, and VIC. From this study, no large differences in accuracy were observed
between the ionospheric quiet and disturbed day. However, a larger standard deviation
was observed during the disturbed day than the quiet day and, in some instances, reached
70 cm in NT, which indicates that the ionospheric delays were more varied during the
disturbed period.
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Figure 13. Comparison of average accuracy in quiet day (Q on 6 May 2021) and disturbance day (D on
12 May 2021). The blue and red markers show the mean accuracy of the testing stations, whereas
the green and pink stars present the standard deviation of the accuracy on the quiet and disturbance
day, respectively.

4. Discussion

The achievable accuracy of a local ionospheric delay model using the linear interpola-
tion method in Australia has been evaluated to understand the impact of the ionosphere
on GNSS positioning in different latitudinal regions, as well as the number and spatial
density of GNSS stations in Australia. With dense CORS networks (nominal spacing of
100 km or less) in VIC, NSW and ACT, 1 to 5 cm accurate ionospheric corrections can be
obtained with a simple linear interpolation ionospheric model. In fact, approximately a
one-centimetre-level accuracy can be obtained most of the time if all stations in the current
networks in this region are processed and used in the ionosphere modelling. Referring to
Section 3.1, it was found that, with at least 15 GNSS stations (nominal spacing of 200 km and
well geographically distributed) for a region of 5◦ latitude ×10◦ longitude, a mean accurate
ionospheric correction within 5 cm can be obtained when a user stands on this region.

For other regions in mid latitudes, the mean accuracy obtained varied depending
on the distributions of CORS stations and their availability. The mean accuracy obtained
from the valuation can be around 5 cm or up to 15 cm (Figure 10). For those mid regions,
the mean accuracy is not varied much for day-to-day variation. It largely depends on the
spatial distribution of the station network. The linear interpolation in our method is feasible
from five CORS stations. Therefore, for the testing stations with the numbers of CORS
stations around 10, to maximise the achievements, some surrounding stations nearby the
border of the network can be used to interpolate. Therefore, the area can be extended, not
only using stations in the size of testing.

For low-latitude regions, overall, a mean accuracy of 8 cm can be obtained. However,
high variations in ionospheric corrections were found during the afternoon (or daytime LT)
or midnight. As presented in Section 3.2, Figure 7 shows the discrepancy of ionospheric
delays during 5 to 8 UT on 6 May 2021 for some specified satellites observed at all stations.
The data from those stations were further examined during the week and it was found that
these variations often occurred in a low latitude from 3 to 8 UT (daytime in LT). To better
understand this phenomenon, we selected the location of high variations in ionospheric
delays of each satellite during daytime, which has an accuracy larger than 50 cm. It was
found that those high variations occurred at the north of the testing station, where the
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GNSS signal paths were of a low elevation. The north side of stations at NT is the equatorial
regions and NT is located in the equatorial ionospheric anomaly, so those variations may
be caused by electron density irregularities that affected some receiver-satellite paths. The
magnitude of those values varied day by day. Figure 14 presents the findings of two
example stations, BRLA and DODA. The subplots on the top show the differences between
the interpolated and measured ionospheric corrections as a function of time at BRLA and
DODA on 6 May 2021, which are the same as those presented in Figure 7. The subplots on
the bottom of Figure 14 are the sky paths of all GPS satellites received during 5 to 10 UT
observed at the two stations. More than a 50 cm accuracy is marked by red crosses, which
are in low elevations at the north of the testing station (the black asterisk at each figure).

Figure 14. (Top) The differences between the interpolated and measured ionospheric corrections as a
function of time of stations BRLA and DODA on 6 May 2021. (Bottom) The sky paths of all satellites
received during 5 to 10 UT observed by BRLA and DODA stations. The line colours represent each
GPS satellite. The red crosses show an accuracy higher than 50 cm. The black asterisk at each figure
shows the location of testing station BRLA or DODA.

High variations were also observed for most satellites during midnight LT as presented
in Figure 8. The 50 cm deviations that occurred around midnight on 6 May could be caused
by a substorm-like activity that regularly took place during quiet days [26]. Based on the
SME index [27], the substorm-like activity coincided with these high variations. Wave
activity, which can occur from substorm activity, such as travelling ionospheric disturbances,
are often larger in amplitude in the equatorial/low-latitude region compared with the
midlatitude region [28]. Therefore, these may explain the high variations observed.

The mean accuracy of the interpolated ionospheric corrections compared with the
measurement was found to be comparable between the ionospheric quiet of 6 May and
disturbed days in the minor storm of 12 May. However, a larger standard deviation was
observed during the disturbed day than the quiet day, indicating a variability of ionospheric
delays during the disturbed period in the Australian region. The impact of the storm is
different globally. In this minor storm, the impact was noticed in the South American sector
with 60%, whereas less impact was found in Australia [29].

From this research, the desirable size of the region/grid for the mapping of the
SD ionospheric corrections using the linear interpolation of ionospheric corrections is 5◦
latitude ×10◦ longitude. This recommendation is based on the current configuration and
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availability of GNSS CORS networks across Australia. Continental Australia can be divided
into 15 regional/local maps, labelled as 1 to 15 and marked by different colours in Figure 15.

Figure 15. A map showing the recommended regions for mapping of the SD ionospheric corrections
and the achievable accuracy using a simple linear interpolation method. The blue dots represent
CORS stations in our testing. The labels of 1 to 15 describe 15 regional maps that are divided based
on the available testing stations.

The regions in this map can be explained as:

(1) Region 0 covers multiple islands of Indonesia and there were no available GNSS
stations; therefore, it is not included for analysis.

(2) Regions 1 and 2 are in the low latitudes of 10◦ to 20◦S, where the high electron density
and the variation in the equatorial ionospheric anomaly are found. The ionospheric
corrections around midnight or low-elevation GNSS satellites below 20 deg during
daytime can be high. With the current available CORS networks in NT and northern
QLD, 8 cm level ionospheric corrections can be obtained in Region 2, while additional
GNSS stations will be required to be installed in Region 1 (northern WA) if centimetre-
level accurate ionospheric corrections will be needed in this area.

(3) Regions 3, 5, 9 and 12 are in the mid latitudes from approximately 20◦ to 35◦S. The
mid-latitude regions were less impacted by equatorial ionospheric disturbances. In
these regions, the current available GNSS CORS networks are sparse. Nevertheless,
it was found that 5 to 12 cm level accurate ionospheric corrections can be obtained
in these regions. In the eastern corner of WA, where the borders of SA and NT meet,
i.e., Regions 4 and 8, no evaluation was undertaken due to an insufficient number of
GNSS stations.

(4) Regions 6, 7, 10, 11, 13, 14 and 15 are also in the mid latitudes covering 20◦ to 45◦S. For
these regions, a high number and dense CORS networks exist. Therefore, the average
obtainable accuracy of the ionospheric corrections is within 2 to 8 cm.

This map is a reference based on the temporal valuable data in different regions in
Australia. The precise accuracy may change based on the number of CORS station networks
and the availability of data in each region. However, we can basically estimate how good
the ionospheric delays are using a simple interpolation of the local network compared to
the real measurement.

5. Conclusions

The aim of this research was to assess the achievable accuracy of a local ionospheric
delay model for Australia using the linear interpolation method. The assessment was

118



Remote Sens. 2022, 14, 2463

conducted by taking into consideration the impact of the ionosphere in different latitudi-
nal regions, i.e., low and mid latitudes, as well as the number and spatial density of the
GNSS CORS networks that exist in Australia. To summarise, local/regional ionospheric
modelling using the linear interpolation method can produce the centimetre-level accu-
rate ionospheric correction required for high-accuracy GNSS positioning. Based on our
observations, centimetre-level accurate ionospheric corrections can be achieved if there are
sufficiently dense (i.e., nominal spacing of approximately 200 km) GNSS CORS networks in
the region. The achievable accuracy could be dependent on the latitudinal region (i.e., low
or mid latitude) and the time of day, as well as the number and spatial density of the
GNSS CORS network. For a large geographic country like Australia where CORS networks
are not uniformly distributed, consideration for CORS network investment will mainly
depend on the socioeconomic benefits and return of investment. To obtain centimetre-level
ionospheric corrections across Australia using a simple linear interpolation, we propose a
framework of 15 regional ionospheric maps of 5◦ latitude ×10◦ longitude with a minimum
of 15 CORS stations in each map region to cover continental Australia.
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Abstract: Landslide displacement prediction is crucial for the early warning of slope failure but
remains a challenging task due to its spatiotemporal complexity. Although temporal dependency has
been well studied and discussed, spatial dependence is relatively less explored due to its significant
variations of the spatial structure of landslides. In this study, a novel graph convolutional incorporat-
ing GRU network (GC-GRU-N) is proposed and applied to landslide displacement forecasts. The
model conducts attribute-augmented graph convolution (GC) operations on GNSS displacement data
with weighted adjacency matrices and an attribute-augmented unit to combine features, including
the displacements, the distance, and other external influence factors to capture spatial dependence.
The output of multi-weight graph convolution is then applied to the gated recurrent unit (GRU)
network to learn temporal dependencies. The related optimal hyper-parameters are determined
by comparison experiments. When applied to two typical landslide sites in the Three Gorge Reser-
voir (TGR), China, GC-GRU-N outperformed the comparative models in both cases. The ablation
experiment results also show that the attribute augmentation, which considers external factors of
landslide displacement, can further improve the model’s prediction performance. We conclude that
the GC-GRU-N model can provide robust landslide displacement forecasting with high efficiency.

Keywords: spatiotemporal analysis; landslide displacement prediction; attribute-augmented;
deep learning

1. Introduction

Landslides are a harmful environmental and geological phenomenon, occurring fre-
quently worldwide [1,2]. They are gradually formed by the long-term interactions of
both natural and human factors under specific geologic and geographic conditions. The
occurrence of landslides is irreversible, and a severe landslide may induce a series of
geological environmental disasters and form a disaster chain, posing severe threats to
human life and built infrastructures [3]. Thus, analyzing and predicting geological haz-
ards using monitoring data collected from various sources is essential to mitigate these
severe devastations.

Time series landslide displacement, directly reflecting the deformation and stability
of a slope, is the most critical dataset to understand landslide characteristics and infer
its future development [4]. For instance, the Global Navigation Satellite System (GNSS),
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measuring surface motion at a very high frequency and accuracy, is a powerful tool to help
diagnose the progression of landslide movement. For this reason, these datasets enable
deep-learning models to be trained for predicting the future state of surface deformation.

Deep-learning approaches, as suggested, are superior to traditional statistical methods
in many applications, especially in time-series prediction [5,6]. Representative statisti-
cal models, such as multivariate regression models (MLR) [7], auto-regressive integrated
moving average (ARIMA) [8], and others, are widely used for a single time series forecast-
ing [8–12], while they neglect the potential relationship among multiple time series in the
monitoring network under similar geological conditions. By comparison, deep-learning
methods integrate various processing layers and produce abstract learning features and
nonlinear dependencies from multidimensional datasets [6,11,13], making them sound
alternatives in landslide displacement forecasting.

Given the outstanding performance in time-series forecasts, recurrent neural networks
(RNN) and their variants [14], such as long short-term memory (LSTM) and gated recurrent
unit (GRU), have achieved impressive results in the prediction of land displacements based
on GNSS time-series data [9,10]. These models can solve the problems of nonlinear dynamic
characteristics in complex time series, thus being particularly suitable to predict time-series
landslide displacement. The workflows of these methods are approximately the same:
select representative GNSS monitoring stations and plot the curve of displacement–time
to analyze the deformation; next, the monitoring data of specific stations will be adopted
for modelling one station by one station; as each displacement–time curve only shows the
evolution characteristics of a single monitoring point, the model predictions only reflect
the displacement behaviour of a single location.

However, landslide-displacement prediction is a spatiotemporal task because the
evolution of the landslide process often exhibits spatial and temporal characteristics. The
existing time-series forecast model only explores temporal features, ignoring the under-
lying spatial correlations. Thus, it is difficult to comprehensively assess the displacement
changes of the entire monitoring system and reveal the future state of the landslide as a
whole. Several studies have utilized convolutional neural networks (CNNs) to explore the
spatial dependencies and build prediction models in traffic forecasting problems [6,15–17].
However, CNN-based models only consider the absolute distance relationship among
stations in Euclidean space. Compared with CNN, graph convolutional networks (GCNs)
can handle neighbourhood information in non-Euclidean spaces, providing a more feasible
way to model spatial dependencies within a monitoring network [13,17,18].

Based on the problems mentioned above and inspired by current encouraging results
in traffic forecasting problems, there is a need to combine GCN and RNN models to build a
collaborative prediction model to capture spatial and temporal features for spatial–temporal
forecast problems. However, displacement prediction of a landslide relies not only on
historical GNSS measurements and the spatial correlations of the monitoring network but
also on internal geological conditions and various external factors, such as hydrologic
conditions [19–22], anthropogenic factors, etc. For example, in China’s Three Gorges
Reservoir area, many landslides are triggered and accelerated by seasonal precipitation
and the fluctuation of reservoir water level [17,19]; thus, the impact factors in predicting
landslide deformation are indispensable during modelling.

To the best of the authors’ knowledge, there is currently no related work focusing on
addressing the prediction of rainfall reservoir-induced landslide displacement from a holis-
tic perspective combining the external incentive factors. Inspired by current encouraging
results in traffic forecasting problems [13,18], we propose a novel deep-learning method
named graph convolutional incorporating gated recurrent unit network (GC-GRU-N). In
the GC-GRU-N, the monitored GNSS time-series displacements, the distance, and other
external triggering factors are integrated to construct the GCN module handling the spatial
dependency; the GRU module model’s temporal dependence captures long-term depen-
dencies by considering landslide displacement time series. This architecture is expected to
inherit the merits from both GCN in extracting spatial dependencies and GRU in capturing
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temporal correlation features. The main contributions are twofold. First, we have extended
GCN for spatial data imputation in the GNSS network deployed on the landslides. Second,
we introduce a graph deep-learning framework to predict landslide displacement in time
and space.

2. Methods

Landslide displacement forecasting is a spatiotemporal prediction task because the
evolution of landslide movement often exhibits spatial and temporal characteristics. This
paper proposes a deep-learning framework to predict the landslide displacement based
on the spatiotemporal analysis of the time series monitoring data. This framework is
expected to inherit the merits from both GCN in extracting spatial dependencies and GRU
in capturing temporal correlation features.

The workflow is shown in Figure 1. According to the GNSS monitoring network struc-
ture and the obtained time-series datasets, pro-processing is conducted to obtain spatial and
temporal attributes as the model inputs. Then, the GCN module is employed to handle spatial
dependencies, while the GRU module is used to capture temporal dependencies. This paper
uses tensorFlow2.1, Python3.6, and Matlab2020 to conduct the experiments and analysis.

 

Figure 1. The workflow of the proposed model.
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2.1. Study Area and Dataset

Since the Three Gorges Reservoir (TGR) was used in 2003, the fluctuated water level
has changed the rock and soil physical and mechanical properties around the reservoir [19].
Over 4200 landslides are distributed in this region, and the majority of these landslides
show characteristics of multiple triggers and reactivations [4]. The Baishuihe landslide and
the Shuping landslide (Figure 2) are two typical recurrence reservoir landslides that have
attracted the concern of researchers for a long time. As shown in Figure 2, both landslides
are located on the south bank of the Yangtze River and spread into the Yangtze River.

 

Figure 2. Location of the study area and the overall view of the two landslides.

The Shuping landslide has an elevation of between 65 m and 400 m and is about 650 m
wide. It is a south–north-oriented slope with a gradient varying from 22◦ in the upper part
to 35◦ in the lower part. The overall sliding mass is about 27 million m3 with a thickness of
approximately 40–70 m [19]. According to the field investigation, this landslide is divided
by a valley into two blocks (Figure 2).

While the maximal dimensions of the Baishui landslide in the north–south and east–
west are 780 m and 700 m, respectively, it has a volume of about 12.6 million m3 with an
average thickness of approximately 30 m [20]. The field investigation and monitoring data
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have confirmed that the landslide has a relatively flat central part with more significant
gradients in the upper and lower parts of the landslide. It can also be categorized as two
blocks (Figure 2).

The two landslides were re-activated by the first impoundment of the TGR, and since
then, visible cracks have gradually formed [19,20]. Two GNSS networks were deployed to
study the displacement characteristics during landslide evolution (Figure 2). The displace-
ment dataset was collected monthly by the Trimble GPS receiver with a plane accuracy of
5 ± 1 ppm. The measurements of the reservoir water level were collected daily by the water
level indicator provided by the China Three Gorges Project Development Corporation.
The precipitation observations were collected daily by the rain gauge provided by Zigui
County Meteorological Bureau. These collected datasets (from July 2003 to March 2013 for
the Baishuihe landslide; from September 2007 to May 2015 for the Shuping landslide) are
presented in Figures 3 and 4. It can be inferred from Figures 3 and 4 that:

(1) The TGR became fully operational in November 2008 when its highest water level
reached 175 m. Since then, the reservoir water level has fluctuated between 145 m and
175 m in a year, exhibiting seasonal changes due to artificial flood control.

(2) The rainy season of the study area lasts from June to October each year. The rainfall
data also display seasonal variations due to monsoon influences. In contrast, the
reservoir began impounding at the end of the wet season in October and quickly
reached the maximum water level and maintained this from November to February,
with a cycle opposite to the precipitation conditions.

(3) The historical GNSS measurements of both landslides also show evident seasonal
patterns. The displacements increase from April to September per year and remain
relatively stable from October to April in the next subsequent year. The displacements
rise with the drawdown of the reservoir water level and during the period of increased
rainfall in the wet season.

Figure 3. Monitoring data in time series of the Baishuihe landslide.
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Figure 4. Monitoring data in time series of the Shuping landslide.

Thus, the seasonal characteristics of the evolution of the landslides are a joint effort of
the precipitation and the fluctuation of reservoir water levels, with a period of about a year.

2.2. Data Processing
2.2.1. Representation of the Spatial Correlation

Our framework defines the GNSS monitoring network structure as a weighted graph
G = (V, E, W). The monitoring sites are regarded as nodes, symbolized by V, and E is a finite
set of edges representing the connection between the nodes. The numbers of the edges are
N(N − 1)/2, where N is the number of monitoring stations of the network, W ∈ RN×N is a
weighted adjacency matrix representing the correlation between the nodes (Figure 5).

 

Figure 5. The diagram of a weighted graph and adjacency matrix.
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Generally, the deformation characteristics of a landslide at different parts vary with
the monitoring site’s location. The spatial correlation of monitoring sites in the GNSS
network graph shows a strong place dependence. Thus, the weighted adjacency matrix is
calculated using the Gaussian similarity functions based on spatial proximity. As given
in Equation (1), weights wij of edges eij representing the spatial correlation between nodes
(vi, vj) can be calculated.

w(i, j) = exp(−‖vi − vj‖2/2σ2) (1)

where ‖vi − vj‖2 denotes the spatial dependence between nodes (vi, vj), and σ is the
standard deviation controlling the width of the neighbourhoods.

The weighted adjacency matrix can be expressed as Equation (2), where a more
significant weight indicates a higher correlation between the two neighbourhood nodes.

Aw =

⎛⎜⎜⎜⎜⎝
0 w(1, 2) · · · w(1, N)

w(2, 1) 0 · · · w(2, N)
...

...
. . .

...
w(N, 1) w(N, 2) · · · 0

⎞⎟⎟⎟⎟⎠ (2)

2.2.2. Representation of the Temporal Correlation

The spatial and temporal attributes are two critical elements of landslide displacement
prediction. This section will explore the node features that can represent the temporal
correlation. Once the displacement data are collected through the GNSS monitoring system,
preprocessing is needed before analysis. Outlier removal and missing value imputation are
first carried out, followed by denoising and normalization. This study applies a wavelet-
based denoising method to remove the random noise and improve the data quality. Then,
the monitoring date is normalized into the range from 0 to 1 by max-min normalization to
eliminate dimensional effects.

A feature matrix X ∈ RN×P is defined, which contains the time-series information
of the monitoring stations (nodes). Where N is the number of monitoring stations in the
network, P denotes the number of node time-series features, such as the length of the
historical time series. X ∈ RN×t represents the displacement at each monitoring station
at time t. Thus, the input [Xt-n, . . . , Xt−1, Xt] is a sequence of n historical displacement
dataset, and [Xt+1, . . . , Xt+T] is the predicted displacement in the following T time series.

2.2.3. Attribute Augmentation by Incorporating External Factors

Generally, the dynamic movement of a landslide is subject to internal geological
conditions and external triggering factors [4,21]. As for landslides on the reservoir bank of
TGR, the fluctuation of the reservoir water level and varying precipitation are two main
external factors influencing landslide behaviours [22,23]. However, the studies using GCN
to learn spatial dependencies often adhere to a single measure (e.g., distance) to represent
the weights in the adjacency matrix [24,25] without considering the effects of the external
trigging factors, which inevitably hampers the model performance given the complexity of
landslide deformation patterns.

In this study, we apply attribute-augmented graph convolution operations on GNSS
observations. The attribute-augmented unit integrates features of the displacements time
series, the synchronous precipitation and the water level fluctuation to represent the contri-
bution of the external dynamic triggering factors. The augmented matrix with weighted
adjacency matrices is incorporated into the forecast model to enhance the extraction of
realistic spatiotemporal dependency.

An attribute matrix D ∈ RN×(k∗t) stands for k external factors at time t. It considers
that the effects of the triggering factors on the landslide displacements show significant
time lags. We use an extended time window m + 1 to express the attribute informa-
tion instead of the original one at time t; that is, the attribute matrix Dk is denoted by
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Dk
t−m,t = [Dk

t−m, Dk
t−m−1, . . . , Dk

t ]. Then, the attribute-augmented matrix S can be inferred
by combining the feature matrix X and the attribute matrix D:

St = [Xt, D1
t−m,t, D2

t−m,t, . . . , Dk
t−m,t] (3)

Thus, the displacement prediction task can be regarded as learning the function f to
predict the displacements, as shown in Equation (4):

f (G, X|D) = [Xt+1, . . . , Xt+T ] (4)

2.3. Data Modelling
2.3.1. Spatial Dependence Modeling by GCN

Acquiring complex spatial dependence is one of the critical problems in spatiotemporal
predicting. Traditional CNN-based models can capture local spatial features but are only
usable in Euclidean space, such as a regular grid [15]. The GNSS monitoring network
deployed on a landslide is a graph structure rather than a two-dimensional grid, which
means the traditional CNN cannot capture the spatial dependence correctly.

Recently, the GCN model has received widespread attention, extending convolutional
operations to non-Euclidean domains. It has been gradually applied in image classification
and traffic road networks and has demonstrated that the spatial structure captured by
GCNs improves the forecasting accuracy [26].

Given an adjacency matrix A and a feature matrix X, the GCN model builds a filter
to handle specific spectral information in the Fourier domain. The filter, working on the
nodes (e.g., monitoring sites) of a graph (e.g., GNSS network structure), focuses on the
nodes’ spatial features and measures their closeness by its first-order neighbourhood.

The GCN model learns the topological relationship between the nodes and their
surrounding nodes for each node. Then, the encoder generates the latent representations
for all geographical units of the monitoring network and the attributes of the nodes with
graph convolution to obtain spatial dependence. As a result, similar units obtain similar
representations, which are then used by the decoder for predicting.

As shown in Figure 6a, the GCN model can be constructed by stacking multiple
convolutional layers to learn higher-order similarities between the nodes in the graph. The
propagation of the GCN can be formulated as:

yl+1 = σ(D̃− 1
2 ÃD̃− 1

2 ylWl) (5)

where σ(.) represents the nonlinear sigmoid function, such as the ReLU. Ã = A + I is a
self-connection structure matrix with an identity matrix I. D̃ is the diagonal node degree
matrix of Ã, represents as D̃ = ∑j Ãij. Wl is a weight matrix for the l-th neural network
layer. yl is a node-level output of l layer with y0 = X.

 

Figure 6. The architectures of two deep-learning models: (a) the graph convolution networks; (b) the
gated recurrent units.
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2.3.2. Temporal Dependence Model by GRU

Acquiring temporal dependence is another crucial problem in landslide displacement
spatiotemporal predicting. The recurrent neural network (RNN) has achieved impressive
results given the outstanding time series forecasts [14]. However, traditional RNN has
limitations for long-term forecasts due to deficiencies, such as gradient disappearance and
explosion [27].

The LSTM model [28] and the GRU model [29] are proposed to address these prob-
lems. The basic principles of LSTM and GRU are almost identical. They all incorporate
gated mechanisms and can handle longer sequences of tasks. Compared to LSTM, GRU
combines the forget gate and the input gate into an update gate, decreasing the data flow;
thus, it has a more straightforward structure, fewer parameters, and faster convergence
speed [30]. Therefore, we have chosen the GRU model to learn temporal dependence from
the displacement time series data.

The data flow of the GRU is illustrated in Figure 6b. xt denotes the model inputs
at time t, ht−1 is the hidden state at time t − 1, all the subscript letter indicates time, rt
stands for the reset gate, ut represents the update gate, ct is the memory content stored,
and ht denotes the output state. The update gate ut is used to control the degree of the
status information transmission from time t − 1 to time t; the larger the value of ut, the
more critical the previous state. The reset gate tensor rt controls the influence of time t − 1
on-time t; the smaller the value of rt, the weaker the effect.

The GRU obtains the monitoring information at time t, by taking the hidden status
at time t − 1 and the current monitoring information while capturing the monitoring
information at the present moment; the model still retains the changing trend of historical
monitoring information and can capture temporal dependence.

2.3.3. Spatiotemporal Model Using GC-GRU-N

To capture both spatial and temporal features from landslide monitoring data, we
propose a new deep learning model (GC-GRU-N) based on graph convolutional network
(GRU) and gated recurrent unit (GRU). In the model, an attribute-augmented graph con-
volution operation with weighted adjacency matrices and an attribute-augmented unit is
employed to represent the spatiotemporal correlations of the monitoring network, and the
obtained results will be used as the model inputs.

The architecture of the model is shown in Figure 7. The upper part shows the process
of spatiotemporal displacement prediction. The GCN module is used to model spatial
dependencies, while the GRU module is used to model temporal dependencies. A fusion
layer is implemented to incorporate extracted features from both space- and time-domain.
The model predicted displacement could be represented as f (A, S) with A the weighted
adjacency matrix and S the attribute-augmented matrix.

The lower part (marked by a dashed box) gives a specific structure of a T-GCN cell.
In each model cell, ht−1 denotes the output at time t − 1, gc(.) is the graph convolution
process, ut, rt are the update gate and reset gate at time t, and ht denotes the output at
time t. The calculation process of spatiotemporal displacement prediction is shown below:

ut = σ(Wu · [gc(St, A), ht−1] + bu) (6)

rt = σ(Wr · [gc(St, A), ht−1] + br) (7)

ct = tanh(Wc · [gc(St, A), (rt ∗ ht−1)] + bc) (8)

ht = ut ∗ ht−1 + (1 − ut) ∗ ct (9)

where σ(.) and tanh(.) represents the sigmoid function, W and b stand for the weights and
biases in the training process, respectively. * denotes the matrix multiplication.
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Figure 7. The overall process of spatiotemporal prediction.

2.3.4. Evaluation Metrics of the Prediction

To evaluate the model performance, we introduce three evaluation indicators, namely
the mean absolute error (MAE), the mean absolute scaled error (MASE), and the root mean
square error (RMSE) [31]. These metrics are widely used in the regression tasks, defined
as follows:

MAE =
1
n

n

∑
t=1

∣∣Yt − Ŷt
∣∣ (10)

MASE = mean

(∣∣∣∣∣ ej
1

n−1 ∑n
t=2|Yt − Yt−1|

∣∣∣∣∣
)

(11)

RMSE =

√
1
n∑n

t=1

(
Yt − Ŷt

)2 (12)

where n is the length of time series, Yt represents the actual measurement, Ŷt denotes the
predicted value, and ej = ∑n

t=1
∣∣Yt − Ŷt

∣∣ indicates the forecast error for a given period j (the
number of forecasts). MAE can reflect the absolute error of the prediction result. MASE
is a favourable property to calculate the time-series forecast errors, which can be used to
compare forecasts across data sets with different scales. RMSE can more accurately reflect
the similarity between the predicted and the observed sequence.

3. Experiments and Results

3.1. Analysis of the Spatiotemporal Correlation

Generally, the deformation of a landslide varies spatially at different parts of the
landslide body (e.g., [19,20]). The spatial–temporal correlation of each monitoring site
in the GNSS network shows a strong location dependence. This section analyzes the
measurements on each monitoring site to determine their spatiotemporal relations. To
do so, we introduce grey relational analysis (GRA) to help estimate the correlation of
monitoring points [19]; it is believed that the value of grey relational degree (GRD) greater
than 0.6 denotes a close correlation.
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For the Shuping landslide, all monitoring stations (Figure 2) are deployed on the active
block. As shown in Table 1, for any neighbouring connection, their GRD values are greater
than 0.6, implying a strong spatial–temporal correlation among them. We select two pairs
of adjacent monitoring points (ZG85 with SP-2 and ZG85 with ZG87) and plot the observed
deformation time series. The results are illustrated in Figure 8a,b, showing the strong
consistency of each pair. The calculated GRD value is 0.8 and 0.87, respectively, suggesting
a strong spatiotemporal correlation between them. From these GNSS observations on the
east block (Figures 2 and 4), the landslide deforms locally obviously, indicting an unstable
state. Still, it does not mean that the whole landslide is moving, or that the landslide
is likely to occur, unless it is already entering an accelerated deformation stage with an
increasingly accelerated velocity.

Table 1. Grey relation analysis results of the Shuping landslide.

Point ZG85 ZG86 ZG87 ZG88 SP-2 SP-6

ZG85 1 0.78 0.87 0.82 0.80 0.84
ZG86 0.78 1 0.88 0.75 0.86 0.85
ZG87 0.87 0.88 1 0.88 0.87 0.88
ZG88 0.82 0.75 0.88 1 0.83 0.82
SP-2 0.80 0.86 0.87 0.83 1 0.75
SP-6 0.84 0.85 0.88 0.82 0.75 1

  

  

Figure 8. (a–d) Deformation over time of adjacent monitoring points of different pairs.

For the Baishuihe landslide, two stations, namely ZG93 and ZG118, are installed in
the more active block, with the rest monitoring stations at the other block (Figure 2). It
can be seen from Figures 2 and 8c that monitoring sites located at the more active block
exhibit almost identical displacement trends (GRD = 0.74). At the other monitoring sites
in another block, the measured displacements are relatively small, fluctuating to within
20 mm per month. The GRD between these sites is larger than 0.6, reflecting remarkable
similarity in displacement trends. Generally, the correlation decreases with increasing
distance. However, for stations located at different blocks (e.g., ZG92 and ZG93), the
monitoring displacements still show similarity in local features (Figure 8d), with the value
of GRD equalling 0.54 (Table 2).
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Table 2. Grey relation analysis results of the Baishuihe landslide.

Point ZG91 ZG92 ZG93 ZG94 ZG118 ZG119 ZG120

ZG91 1.00 0.69 0.51 0.76 0.52 0.79 0.77
ZG92 0.69 1.00 0.54 0.70 0.57 0.65 0.65
ZG93 0.51 0.54 1.00 0.59 0.74 0.54 0.59
ZG94 0.76 0.70 0.59 1.00 0.59 0.72 0.71

ZG118 0.52 0.57 0.74 0.59 1.00 0.55 0.54
ZG119 0.79 0.65 0.54 0.72 0.55 1.00 0.68
ZG120 0.77 0.65 0.59 0.71 0.54 0.68 1.00

In summary, the spatiotemporal correlation of monitoring sites in the GNSS network
shows medium to strong relations. Grey relational analysis (GRA) results also show a
strong location dependence consistent with the results calculated by Gaussian similarity
functions. It confirms that the landslide displacement prediction should consider the
spatiotemporal relationship between monitoring points.

3.2. Model and Parameter Setting
3.2.1. Model Inputs

In the experiments, GNSS measured displacements acquired monthly (from July 2003
to March 2013 for Baishuihe landslide, from September 2007 to May 2015 for Shuping
landslide), the associated daily reservoir water level and precipitation are used, all of which
are normalized to the interval from 0 to 1 using the max–min normalization. These datasets
are further divided into a training dataset and a test dataset. The training dataset (from
July 2003 to August 2011 for Baishuihe landslide, from September 2007 to March 2014 for
Shuping landslide) of the input layer are taken as inputs in the training process, and the
remaining dataset is used to evaluate the performance of our proposed method.

For the input layer, the training dataset of single GNSS displacement time series can be
denoted as Dm = {d1, d2, . . . , dm}, m represents the length of the time series. GNSS observa-
tions from July 2003 to August 2011 for the Baishuihe landslide and from September 2007
to March 2014 for the Shuping landslide are taken separately as training datasets in the
training process. The remaining GNSS observations are used to evaluate the performance
of our proposed method.

The way of sample division from each training dataset is shown in Figure 9. A sliding
window with window length equals l and step size equal n is used. Thus, the length of
each obtained sample is l (2 ≤ l < m), represented by Dtrain = {dm−l, dm−l+1, . . . , dm−1}
with the last y (1 ≤ y < l) serving as label sample and the other values (l − y) used as the
sample input.

 
Figure 9. The sample division of a single time series.
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In this paper, the sliding window size is set to 6 by taking account of the typicality
and quantity of the training samples, which stands for the half-cycle of the external factors
to facilitate the recurrent layer to capture the temporal dynamics. The first five are input
samples, the last 1 marked as the label. As suggested by [32], the model error increase as
the value of y increases; thus, we set it to 1. Therefore, the dimension of the training sample
is 93 and 74, separately. The test datasets are treated in the same way.

For the Baishuihe landslide, a 7 × 7 weighted adjacency matrix Aw is first construed
using the Gaussian similarity function based on the spatial proximity of the deployed
GNSS monitoring stations (Section 2.2.1). Then a feature matrix X with a size of 7 × 117 is
constructed to represent the temporal displacement of each station. The number of rows
equals the number of stations; the number of columns equals the measured displacement
time series. Thus, in the same way, the dimension of Aw and X for the Shuping landslide is
6 × 6 and 6 × 93, respectively.

As illustrated in Section 2.1, for both landslides, the fluctuation of the reservoir wa-
ter level and varying precipitation are two main external factors influencing landslides
behaviours. We introduce an attribute-augmented unit that integrates features of the dis-
placements, the seasonal rainfall, and the water level fluctuation to represent the effect
of external influencing factors on landslide deformation. The augmented matrix with
weighted adjacency matrices is incorporated into the forecast model to enhance the extrac-
tion of realistic spatial–temporal dependency, and the derived results will be used as the
model inputs.

3.2.2. Model Parameters and Settings

Our proposed model has four hyper-parameters: the learning rate, the number of
training iteration epochs, the number of hidden units, and the batch size. In the experiment,
we empirically set the learning rate to 0.001 and the batch size to 32 [33]. However, the
numbers of training iteration epochs and hidden units are two crucial parameters that
may affect the prediction precision and, therefore, should be determined by designed
comparison experiments. The ReLU is employed as the activation for each convolutional
layer and the Adam optimizer for minimizing the loss function (Equation (13)).

loss =
n

∑
t=1

(Yt − Ŷt)
2/n (13)

where n is the time series length, Yt represents the actual measurement, Ŷt denotes the
predicted value.

Comparison experiments for selecting the optimal hyper-parameters are performed
by setting the number of hidden units to 64 first to analyze the changes of the prediction
precision with a varying number of training epochs designed to be {100, 250, 500, 1000,
1500, 2000}. Figure 10 shows the variation of metrics with different training epochs. The
horizontal axis represents the number of training epochs, and the vertical axis represents
the variation of the metrics; it can be seen that when the training epochs equals 1000,
the metrics obtain a minimum value. Thus, the model reaches its optimal performance.
Accordingly, in the following comparison experiments, we set the training epochs value to
1000 to analyze the changes of the prediction precision with varying numbers of hidden
units; these numbers are designed to be {8, 16, 32, 64, 100, 128}. Figure 11 gives the variation
of metrics with different hidden units. The horizontal axis represents the number of hidden
units, and the vertical axis represents the variation of the metrics. It can be seen that when
the hidden units equal 64, the metrics obtain a minimum value. Thus, the model reaches its
optimal performance. Consequently, in the following experiment, the number of training
epochs and hidden units is set to be 1000 and 64, respectively.
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Figure 10. The variation of metrics with different training epochs.

 
Figure 11. The variation of metrics with different hidden units.

3.3. Predicted Results and Analysis
3.3.1. Predicted Results Using the GC-GRU-N

To prove the effectiveness of the proposed model, we use four classical prediction
models, which are MLR, ARIMA, SVR, and LSTM, to compare with the GC-GRU-N model
for the two study sites. This section also conducts comparative analysis using the temporal
graph convolutional network (T-GCN) without attribute augmentation to verify the model
enhancement using the attribute-augmented graph convolution (GC) operations. We
evaluate the effect of the GC-GRU-N model from two aspects: prediction performance and
modelling time.

As the above-mentioned classical prediction models can only realize single time-
series prediction, the model predictions only reflect the displacement behaviour of a single
monitoring station. Thus, for a GNSS network with m stations, classic models need to
calculate m times separately to obtain the displacement forecasts of all stations. The GC-
GRU-N utilizes a feature matrix Xm×n (Section 3.2.1) to represent the displacement over
time of each station, predicting the displacement of the entire monitoring system.

The predicted results of the Baishuihe landslide and the Shuping landslide by the
proposed model are shown in Figures 12 and 13, respectively. The predictions of each
monitoring station are consistent well with the actual observations as a whole. According
to Figures 6 and 7, measurements of several monitoring stations show mutational transition
appeared in September each year; a more significant prediction error arises at this abrupt
state with a maximum of 16.66 mm and 30.35 mm, respectively. The maximum error does
not exceed 10 mm for the rest of the year. It could be due to fewer samples being available
for the mutation state than for the other states because a monthly prediction time scale is
used due to data acquisition limitations. Generally speaking, as the number of samples for
mutation state increases, e.g., with daily-scale displacement, the model’s errors gradually
decrease. In addition, since the GCN captures spatial features by constantly moving a
smooth filter in the Fourier domain, it might also lead to the peaks being smoother.
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Figure 12. Comparison diagram of the overall prediction of landslide displacement; the vertical
purple line represents the absolute error.

Figure 13. Comparison diagram of the overall prediction of landslide displacement; the vertical
purple line represents the absolute error.
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3.3.2. Comparative Experiments

The performance of the forecast models is shown in Table 3. Our proposed model
has outperformed the other five models in terms of three evaluation indicators in two
study areas (Table 3). The errors of models such as MLR, ARIMA, and SVR are relatively
large, resulting in poor prediction performance. However, the LSTM as a neural network
model is better than traditional machine learning models (SVR) and time series models
(MLR and ARIMA). Compared with the LSTM model, the GC-GRU-N and the T-GCN
model can better describe the displacement trend because the model structure captures
the spatial feature of the monitoring network. Consequently, the prediction accuracy of
the GC-GRU-N is effectively enhanced. For the Baishuihe landslide, the three metrics of
GC-GRU-N are 3.682 mm of MAE, 0.477 of MASE, and 4.429 mm of RMSE, respectively.

Table 3. The performance of different forecast models.

Model

Evaluation Index

Average
Time

Baishuihe Shuping

MAE/mm MASE RMSE/mm MAE/mm MASE RMSE/mm

The proposed 3.682 0.477 4.429 6.123 0.353 8.321 44.88 s
T-GCN 4.707 0.61 6.183 7.071 0.401 9.796 19.93 s
MLR 7.514 0.974 12.319 13.548 0.782 17.566 986.435 s

ARIMA 6.718 0.87 10.041 10.953 0.632 13.917 0.534 h
SVR 6.765 0.877 10.512 13.936 0.804 16.734 349.971 s

LSTM 5.981 0.727 8.401 8.825 0.509 12.788 229.936 s

In the following discussion, we use the RMSE as the primary metric to represent the
model’s performance. The RMSE of the GC-GRU-N model and T-GCN model are reduced
by approximately 64% and 50% compared with the MLR model. In comparison, the RMSE
of the T-GC-GRU-N model and T-GCN model are around 56% and 38% lower than that of
the ARIMA model. Compared with the SVR model, the RMSEs of the GC-GRU-N model
and T-GCN model are reduced by 58% and 41%, respectively. In contrast, the RMSEs of the
T-GC-GRU-N model and T-GCN model are decreased by 47% and 41% compared with the
LSTM. Compared with the GC-GRU-N model, the T-GCN model is less effective because
the T-GCN considers the spatial features and ignores the impact of the external factors on
landslide displacement.

In terms of computation time, T-GCN is the most efficient model amongst all tested
models, only requiring 19.93 s (Table 3). The proposed GC-GRU-N achieves competitive
training efficiency ranking top two, taking 44.88 s, followed by the LSTM model costing
229.936 s. The GC-GRU-N is slower than T-GCN because the method needs to develop a
unit to represent the effects of the triggering factors during convolution operation. The
SVR takes 349.971 s, slightly higher than LSTM. In contrast, the modelling time of the MLR
model and the ARIMA model is much longer than other methods presented in this paper,
requiring 986.435 s and 0.534 h, respectively. In summary, the GC-GRU-N is significantly
efficient considering its high accuracy among other advanced models.

Results of the ZG93 station installed on the Baishuihe landslide and the ZG85 station
deployed on the Shuping landslide are depicted in Figure 14. The predictions of the
proposed model are consistently well with the actual deformation trend and superior
to other methods as a whole. Despite sometimes overreacting to rapid decreases and
producing underestimated results at abrupt increases, our model outperforms all other time
series forecast models at both landslides. This result indicates that the graph convolution
with spatial correlation consideration scheme can efficiently capture the dynamics in the
landslide monitoring.
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(a) (b) 

 
(c) (d) 

Figure 14. Comparison results of the proposed model and five other models. Results of ZG93
installed on the Baishuihe landslide are shown in figure (a,b), and that of ZG85 deployed on the
Shuping landslide are shown in figure (c,d).

Specifically, MLR and ARIMA as statistics methods can also depict the variation trend
of landslide displacement, but with more significant overestimated or underestimated
errors. The LSTM model is more efficient and shows more promising results than the SVR
model in the machine-learning-based models, especially in predicting displacement around
transition states. However, sudden rapid changes in the evolution may increase the model’s
errors. This could be due to fewer samples being available for the mutation state.

The T-GCN and the GC-GRU-N models capturing spatial and temporal features have
achieved more promising time-series forecasts. The T-GCN model gives a lower prediction
accuracy. This is because the T-GCN model only considers the spatial features, and ignores
the external factors impacting landslide displacement. In summary, the GC-GRU-N as
a spatial and temporal mode is significantly efficient with high accuracy amongst other
models in landslide displacement forecasting.

3.3.3. Ablation Experiment and Analysis

Ablation is utilized to demonstrate the importance of attribute enhancement to improve
model performance. It refers to an attribute-augmented unit in the forecast model. We design
the ablation experiment as the following: only consider the rainfall factor or the reservoir water
effect, and both factors together (Figure 15). Table 4 shows the results for the Baishuihe landslide,
with the T-GCN representing a model without an attribute-augmented unit. According to
Table 4, the performance gains of using an attribute-augmented unit is apparent.

Figure 15. Comparison results of the ablation experiments considering only the rainfall factor or the
reservoir water effect, and both factors together. The solid black line represents the original value.
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Table 4. Ablation Experiments with different settings.

Evaluation
Index

T-GCN
The Proposed Model (the Baishuihe Landslide)

Rainfall R.w.l Both Factors

MAE/mm 4.707 3.724 3.704 3.682
MASE 0.610 0.491 0.489 0.477

RMSE/mm 6.183 4.442 4.434 4.429
Note: R.w.l is the reservoir water level.

We also use the RMSE as the primary metric to represent the model’s performance. As
the experiment considers the rainfall factor alone, the reservoir water level factor alone,
and both factors together, the RMSE values of the proposed model are 4.442 mm, 4.434 mm,
and 4.429 mm, respectively, all of which are lower than that of the T-GCN (6.183 mm).
Specifically, the ablation experiment demonstrates the effectiveness of assembling the
external inducing factors in graph convolutional network, and the best performance in
all indicators is achieved when both factors are considered simultaneously. As shown in
Figure 15, the predictions of considering both trigging factors are consistent well with the
actual deformation trend, which is superior to the other two scenarios and is still valid
around transition states, including rapid decrease and abrupt increase conditions.

4. Discussion

4.1. Advantage of the Proposed Method

Unlike the time-series forecast models that only explore temporal features and focus
on a single point, this paper presents a new deep learning architecture that considers the
spatial and temporal correlation for landslide displacement prediction. More specifically,
the spatial correlation of the entire monitoring system and the temporal dependency of
the monitoring time series are explored to establish the forecast model predicting the
displacement of the monitoring network instead of a specific station. Considering the
displacement prediction of a landslide relies not only on historical GNSS measurements
and the spatial correlations of the monitoring network but also on various external in-
centive factors. An attribute-augmented unit is designed to integrate weighted adjacency
matrix, displacements, and triggering factors to enhance the capture of spatial–temporal
dependency serving as the model inputs.

To the best of the authors’ knowledge, there is currently no related work focusing
on addressing the prediction of rainfall reservoir-induced landslide displacement from a
holistic perspective combining the external incentive factors. This paper presents a new
deep learning GC-GCN-N model based on the GCN and GRU models, which effectively
utilizes the spatial and temporal features contained in the model input data. The results
show that the proposed model outperforms comparative models in both landslides over
our study site in China’s Three Gorge Reservoir (TGR).

4.2. Shortcoming and Outlook of the Proposed Method

As shown in Figures 6 and 7, several GNSS-monitored displacements show mutational
transitions in September. Accordingly, significant prediction error often appears at this
abrupt state (Figures 12–14), which is true to other forecast models. Considering the
monthly data-acquisition limitation, this could be due to fewer samples available for the
mutation state than for the other states. Thus, the model’s errors probably gradually
decrease as the number of samples for the mutation state increases. In addition, the GCN
captures spatial features by constantly moving a smooth filter in the Fourier domain, which
might also lead to the peaks being smoother.

Limited datasets in geohazard domains might be a prevalent phenomenon. Results of
the Shuping landslide and the Baishuihe landslide also show that the number of motoring
stations in a GNSS network also affects the prediction result. As monitoring equipment and
data transmission technology advance, daily, hourly, and even minute-scale displacements
could be collected and predicted in real time. Additionally, several other solutions have
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emerged in different domains for handling dataset limitations, including data augmenta-
tion [34], synthetic data [35], and transfer learning [36].

Data augmentation refers to increasing the number of data points without changing the
label. For example, variable factors include random noise, and adequate time characteristics
can be employed to enlarge the time-series data [34]. Although not real data, synthetic
data contain the same patterns and statistical properties as actual data, generated by a
deep-learning model called generative adversarial networks (GAN) [35]. Transfer learning
uses knowledge from other relevant datasets or an existing model to construct new models
that lack enough training data to provide an alternative solution [23,36].

In this study, periodic rainfall and reservoir water level fluctuations are the main
factors triggering landslide kinematic evolution in the TGR area. Therefore, we consider
only these two trigging factors. Subsequent studies might include more complicated
datasets to establish a more comprehensive model. For example, factors affecting landslide
motion can consist of other essential characteristics of landslides, such as strata lithology,
slope aspect and angle, etc.

5. Conclusions

This research develops a new deep-learning approach for landslide displacement
forecasting called GC-GCN-N, which combines the GCN and the GRU. The architecture
inherits the merits from both GCN in extracting spatial dependencies and GRU in capturing
temporal correlation features to tackle the spatiotemporal landslide displacement forecast.
In the proposed model, (1) a weighted adjacency matrix is built to interpret the spatial
correlations between all monitoring stations, (2) a feature matrix is assembled to handle
the time-series measurements of all monitoring stations, (3) an attribute-augmented unit is
designed to represent the effects of the triggering factors and integrate the matrix mentioned
above into a single graph convolutional network, and (4) a novel neural network-based
approach is developed to enable to process the above graph-structured data. Experiments
have been carried out on two landslides in Three George Reservoir, China. Compared with
the MLR model, the ARIMA model, the SVR model, the LSTM model, and the T-GCN
model, the GC-GCN-N model outperforms other forecasting models at both landslide sites.
In summary, the GC-GCN-N model successfully captures the spatial and temporal features
from the landslide monitoring dataset, showing great potential for other spatiotemporal
forecast tasks.
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Abstract: The global total electron content (TEC) map in 2013, retrieved from the International
Global Navigation Satellite Systems (GNSS) Service (IGS), and the International Reference Ionosphere
(IRI-2016) model are used to monitor the diurnal evolution of the equatorial ionization anomaly
(EIA). The statistics are conducted during geomagnetic quiet periods in the Peruvian and Indian
sectors, where the equatorial electrojet (EEJ) data and reliable TEC are available. The EEJ is used as
a proxy to determine whether the EIA structure is fully developed. Most of the previous studies
focused on the period in which the EIA is well developed, while the period before EIA emergence
is usually neglected. To characterize dynamics accounting for the full development of EIA, we
defined and statistically analyzed the onset, first emergence, and the peaks of the northern crest and
southern crest based on the proposed crest-to-trough difference (CTD) profiles. These time points
extracted from IGS TEC show typical annual cycles in the Indian sector which can be summarized
as winter hemispheric priority, i.e., the development of EIA in the winter hemisphere is ahead of
that in the summer hemisphere. However, these same time points show abnormal semiannual
cycles in the Peruvian sector, that is, EIA develops earlier during two equinoxes/solstices in the
northern/southern hemisphere. We suggest that the onset of EIA is a consequence of the equilibrium
between sunlight ionization and ambipolar diffusion. However, the latter term is not considered
in modeling the topside ionosphere in IRI-2016, which results in a poor capacity in IRI to describe
the diurnal evolution of EIA. Meridional neutral wind’s modulation on the ambipolar diffusion can
explain the annual cycle observed in the Indian sector, while the semiannual variation seen in the
Peruvian sector might be due to additional competing effects induced by the F region height changes.

Keywords: GPS TEC; EIA; diurnal evolution; seasonal variation

1. Introduction

The equatorial ionization anomaly (EIA) is the result of ionization and electrodynamic
processes in the ionosphere, representing a plasma density trough at the equator and two
crests approximately 15◦ to the north and south. The formation process of EIA can be
characterized as a fountain effect. That is, the daytime E region wind dynamo produces an

Remote Sens. 2022, 14, 107. https://doi.org/10.3390/rs14010107 https://www.mdpi.com/journal/remotesensing143



Remote Sens. 2022, 14, 107

eastward electric field to move the plasma upward via E×B force; the increasing gravita-
tional potential and pressure gradient would finally result in ambipolar diffusion, which
transports the equatorial source plasma downward/poleward to the north and south, to
create double plasma density crests [1–10].

Extensive studies have investigated the development of the EIA under various condi-
tions configured by solar radiation, season, local time (LT), longitude, and geomagnetic
disturbances, to reveal the impacts of those parameters on the ionizations, electrodynamics,
and neutral dynamics behind the fountain effects. Yeh et al. [1] found that EIA crests
generally begin to appear at 0900 LT, and the farthest latitude of the crests during daytime
is correlated with the level of the fountain effect and the local ionospheric total electron
content (TEC). Liu et al. [2] reported that the crest-to-trough ratio (CTR) of EIAs observed
by the CHAMP satellite gradually increases from morning to noon, reaching its maxi-
mum value between 1800 and 1900 LT as a result of pre-reversal enhancement (PRE).
Xiong et al. [3] reported that the electron density and magnetic latitudes of both EIA crests
peak at approximately 1400 LT. The local time variation of the electron density crest during
daylight hours is similar to that of the trough but with a 1–2 h delay [4].

Another interesting aspect of the EIA is the interhemispheric asymmetry, which
is most pronounced during solstitial seasons. In the morning hours, the crest in the
winter hemisphere generally forms earlier and has a greater magnitude than that in
the summer hemisphere; during the afternoon, the summer hemisphere features the
larger EIA crest [3,6–10]. The transition time of this interhemispheric EIA asymmetry
occurs at around 1200–1400 LT, depending on solar activity levels [6,7]. In addition, this
transition time is a function of observed altitude, since the time lag of fountain effects
varies with height [3]. Interhemispheric EIA asymmetry has also been reported during
equinoxes [7,10,11]. Neutral wind variations associated with displacements of the ge-
ographic and geomagnetic equators as well as magnetic declination angles have been
proposed as the main factors affecting EIA asymmetry [10]. Balan et al. [11] argued that the
displacement of the geographic and geomagnetic equators is a more significant factor than
the declination angle.

The above-mentioned studies mainly focus on the EIA that exhibits clear double crests
signature. However, before the first emergence of EIA double crests, the fountain-like
processes had already been launched, but this stage receives much less attention in the
research community. In detail, the sunlit ionization process is instantaneous, while the
mechanical transportation process is much slower. Thus, at the beginning, stronger sunlit
ionization actually would cause faster plasma accumulation at the subsolar position near
the equator. The fountain effects take time to compete against the uneven ionization, to
form EIA. The contributions of various physical processes during different stages of the
EIA diurnal evolution are still not well known. In particular, the dynamic process before
the emergence of the EIA crest is usually neglected and had not been investigated yet.

Note that the sunlit ionization and electrodynamical transportation have different ref-
erence equators, i.e., the geographic and geomagnetic equators. The displacement between
the two equators varies at different longitudes, which would significantly impact the EIA
evolution. Moreover, meridional thermospheric wind, which drags the ion along with it, is
reported to impact the EIA evolution in two opposite ways. On the one hand, the transequa-
torial thermospheric wind pushes the plasma along the field line to contribute/counter the
ambipolar diffusion in the winter/summer hemisphere, leading to a winter hemispheric pri-
ority during EIA’s development [6,7]. On the other hand, the transequatorial thermospheric
wind would lift/lower the F region height in the summer/winter hemisphere, leading to
stronger/weaker intensity (i.e., TEC) of EIA crest [11–13]. It can be seen that the inclusion
of thermospheric neutral wind effects could make the EIA evolution more complicated,
the dominant seasonal cycles at different longitudes are still not well understood, and the
physical processes and mechanisms involved are still in debate [6,7,12–14].

We dedicate this study not only to monitoring the interhemispheric asymmetry in a
traditional way that focuses on the intensity of EIA, but also to trying to characterize the
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detailed time evolution to clarify the dynamical competition and cooperation between the
sunlit ionization, ambipolar diffusion, and neutral wind drag. The TEC maps provided
by IGS [15] are used under the geomagnetic quiet condition in 2013 in the Peruvian and
Indian sectors. At low geomagnetic latitudes, these two sectors are both deployed with
magnetometers to retrieve an equatorial electrojet (EEJ) that can be used as a proxy to
select days with developed EIA, and GNSS receivers that provide reliable TEC product to
investigate the seasonal and interhemispheric effects on the diurnal evolution of EIA. The
International Reference Ionosphere (IRI-2016) model, widely recognized as a powerful tool
to represent the climatological behavior of the ionosphere [16–19], is also adopted to check
whether the empirical model can capture the real features of the EIA evolution.

In Section 2, we provide descriptions of the datasets. In Section 3, we introduce
how the geomagnetic quiet days and days with well-developed EIAs are sorted out.
Section 4 presents the seasonal/local variation of EIA, followed by detailed statistics of
crests and trough variations. The crest-to-trough difference (CTD), is defined and described
in Section 4.2. The EIA onset time, first emergence and peaks are further derived from
CTD profiles and we presented the statistical results. In Section 5, we discuss the physical
mechanisms involved. Conclusions of this study are provided in Section 6.

2. Dataset

2.1. IGS TEC Maps and the IRI-2016 Model

The IGS TEC data is an interpolated data product based on the TEC measurements
from ground-based GNSS receivers that are distributed mainly over the continents [15].
Thus, the IGS TEC should provide trustable EIA observation over Indian and Peruvian
sectors. The dataset has a time resolution of 15 min and spatial resolution of 2.5◦ × 5◦ in
geographic latitude and longitude.

The distribution of GPS receivers over the oceanic region is much sparser than the
continents, IGS TEC was found to overestimate Jason-2/3 derived TEC by more than
5 TECU [20]. This overestimation would possibly impact the climatological behavior of the
retrieved EIA features. Thus, whether the IGS TEC is suitable to be extendedly applied to
the longitudes over the oceanic region remains unclear. We choose another candidate data
source from the IRI-2016 model, a widely used empirical ionospheric model, and it was
recently improved with a new hmF2 model based on a new database from the worldwide
network of ionosondes [17,19]. The IRI-2016 is used to retrieve the EIA feature and compare
with IGS TEC data. This comparison would not only help to assess the performance of the
empirical model in describing the regional EIA evolution, but also evaluate the feasibility
of whether the empirical model can be applied to extend EIA study over the oceanic region.

For a given location, time, and date, the IRI model provides monthly averages of the
ionospheric parameters, including electron density, electron temperature, ion temperature,
ion composition, and TEC from an altitude range of 50–2000 km [17–19]. Options were set
to calculate the TEC from the IRI-2016 model: The fof2 storm model was switched off, the
Shubin-cosmic option was used for the hmf2 model, and NeQuick was used as the topside
model. The maximum height of the TEC calculation was set to 2000 km.

2.2. The EEJ Derived from Ground-Based Magnetometers

Ground-based paired magnetometer measurements over the Peruvian and Indian
sectors in 2013 were utilized to estimate the equatorial electrojets (EEJ). As a narrow current
that flows in the E region above the magnetic equator, EEJ can be extracted by removing
the solar quiet (Sq) current that barely shows latitudinal dependence [21]. To estimate the
EEJ, we calculated the differences of the horizontal (H) component of the geomagnetic field
between the paired magnetometer, as the residual horizontal magnetic field is recognized
to be caused by the EEJ [22]. The measurements of Huancayo (HUA, −12.05◦ N, −75.33◦ E,
0.59◦ dip latitude) and Fuquene, (FUQ,18.11◦ N, −66.15◦ E, 17.06◦ dip latitude) are used for
the Peruvian sector, and Tirunelveli (TIR, 8.7◦ N, 77.8◦ E, 0.59◦ dip latitude) versus Alibag
(ABG, 18.6◦ N, 72.9◦ S, 13.67◦ dip latitude) are used for the Indian sector [19].
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2.3. Horizontal Wind Simulated by TIEGCM

To estimate the neutral wind effects on the development of EIA, the horizontal wind
simulated from the Thermosphere Ionosphere Electrodynamics General Circulation Model
(TIEGCM) is adopted. The TIEGCM is a first principle and physics-based model driven by
a high-latitude electric field [23], solar EUV, and UV spectral fluxes parameterized by the
F10.7 index [24].

3. Methodology and Methods

3.1. Sorting Geomagnetic Quiet Days Using Kp Index

Kp index is a quasi-logarithmic index, ranging in steps of 1/3 from 0 to 9, to quantify
the level of the geomagnetic disturbance on a global scale [25,26]. All the data used in this
study were firstly sorted under geomagnetic quiet conditions when the daily mean Kp
values were less than 3.

3.2. Sorting Developed EIA Using EEJ as a Proxy

Note that sometimes the EIA structure is dismissed, which could not be used to
monitor the time evolution of EIA. Thus, we firstly determine whether the EIA appears
for further statistics. As mentioned previously, the formation of EIA is a product of the
eastward zonal electric field; thus, the intensity of the zonal electric field could be a good
indicator for the EIA development. However, the direct measurement of the electric field
is rare; an alternate option is EEJ, which serves as a proxy to quantify the daytime zonal
electric field. The EEJ refers to a narrow band of intense electric current flowing above the
equatorial dip in the daytime E-region driven by the E-region electric field and conductivity.
The EEJ mainly flows eastward corresponding to an eastward electric field, the infrequent
westward flow of EEJ is called counter electrojet (CEJ) corresponding to a westward electric
field. The EEJ is considered to be a suitable proxy for EIA intensity. Stolle et al. [27]
found correlation coefficients greater than 0.8 between EEJ strength and EIA intensity.
Venkatesh et al. [28] discovered that the daily summed EEJ strength had correlations of
0.62 and 0.72 with the EIA crest amplitude and latitude, respectively.

Figure 1 shows examples of a weak EEJ profile (Figure 1a) and a CEJ profile (Figure 1b),
with associated TEC maps for the day. The double-crest structure barely formed as the EEJ
intensity was relatively weak (Figure 1a), while the CEJ resulted in a single peak at the
equator, meaning that the EIA was inhibited completely.

It is reported that the strength of the EIA shows a better correlation with integrated
EEJ values than the daily maximum of EEJ [28]. In addition, the time delay of the EIA
response to EEJ strength is 2–3 h [27,28]. To identify the days with weak EEJ or CEJ, the
averaged ΔH at an LT bin of 0800–1200 is calculated first. Please note that the Weak EEJ
or CEJ were combined to be referred to as WEC in this study. Days with WEC were then
determined when the averaged ΔH components were less than the threshold value; the
remainder of the quiet days were recognized as EEJ days. Our experiments (not shown
here) showed that the EEJ intensity was generally higher in the Peruvian sector than in the
Indian sector, probably as a result of tidal effects. Thus, we chose two thresholds, ~70 nT
and ~20 nT of averaged EEJ intensity during 0800–1200 LT for the Peruvian and Indian
sectors, respectively.

Figure 2 shows the day numbers of the WEC and EEJ cases at longitudes of −75◦ E
and 75◦ E, which represent the Peruvian and Indian sectors, respectively. The WEC case
showed a preferential occurrence during the two solstices at both longitudes, consistent with
previous studies which had found that the EEJ is characterized by solstitial minima [29–31].
However, for a given longitude, the WEC showed specific seasonal preferences as well.
There were more WEC days around the December Solstice (Nov, Dec, Jan, Feb) than the
June Solstice (May, Jun, Jul, Aug) in the Peruvian sector, with this preference being reversed
in the Indian sector. Considering the northward–southward deviation of the dip equator
from the geographic equator at both the Indian and Peruvian longitudes, this implied that
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more WEC occurred when the dip equator is in the summer hemisphere. One may also note
that the WEC day is missed in Mar, Apr, Aug, Sep, and Oct in the Indian sector (Figure 2b).

 

Figure 1. Two examples of the GPS-measured TEC map at Indian sector during (a) a weak EEJ day
and (b) a CEJ day.

Figure 2. Number of days with EEJ signatures and weak EEJ or CEJ signatures at (a) Peruvian sector
and (b) Indian sector.
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4. Results

4.1. Overview of EIA during EEJ and Weak EEJ/CEJ Days

Figure 3 shows the TEC maps during EEJ days in the Peruvian and Indian sectors. The
data shown in the left, middle, and right columns represent different seasons: December
Solstice (Dec. S., which includes Nov, Dec, Jan, and Feb), June Solstice (June. S., which
includes May, Jun, Jul, and Aug), and equinoxes (March, April, September, October),
respectively. The daily EEJ was first plotted in Figure 3a,d; solid black lines represent
four-month averages.

Figure 3. Seasonal averaged TEC maps over the Peruvian and Indian sectors during EEJ days when
the averaged EEJ intensity at 0800–1200 UT was relatively high during three seasons of December
Solstice (left column), June Solstice (middle column) and equinoxes (right column). (a) EEJ profiles
of Peruvian sector; (b) GPS TEC at Peruvian sector; (c) IRI-2016 derived TEC at Peruvian sector;
(d–f) are organized in a same format as (a–c) but for the Indian sector.
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For GPS TEC observations at both Peruvian and Indian sectors, the most prominent
feature of EIA is the interhemispheric asymmetry. During two solstices, the crests in the
winter/summer hemisphere are stronger during morning/afternoon hours. Moreover, the
stronger crest generally resides at a higher latitude. An exception is that at the Peruvian
during Dec. S., the southern crest (in the summer hemisphere) was stronger first, which
lasted an interval of 0800–0900 LT; afterward, the northern crest (in the winter hemisphere)
turned out to be dominant. During equinoxes, interhemispheric asymmetry still exists in
that a stronger northern/southern appeared in the Peruvian/Indian sector. Similar seasonal
and longitudinal variations of the interhemispheric asymmetry have been investigated by
many studies. Those studies generally accepted that the displacements of the geographic
and geomagnetic equators, the different geomagnetic declinations, and the meridional
neutral wind show clear seasonal and longitudinal variations, which affects the diurnal
evolution of EIA [3,6–9,11].

The developed EIA signatures can also be characterized by the IRI-2016, neverthe-
less, with a lower absolute TEC level by approximately 20 TECU, compared with the
GPS TEC. In the Peruvian sector, IRI-2016 performed stronger crests in the summer hemi-
sphere. However, in the Indian sector, the northern crest is persistently stronger than the
southern crests. Hence, it can be noticed that the IRI-2016 performed quite a different inter-
hemispheric asymmetry pattern compared with that of the GPS observations, especially
during equinoxes.

On WEC days (Figure 4), as expected, the EIA barely formed as observed by the GPS
TEC. The Peruvian sector even showed a single-peak structure over the equator during the
December Solstice and two equinoxes, indicating that the fountain effect was completely
inhibited. For the developed EIA, the intensity is weaker than that during EEJ days; that
is, the double crest was narrower, and the TEC values were reduced by approximately
15 TECU and 5 TECU in the Peruvian and Indian sectors, respectively. Note that during the
equinoxes there are no WEC days for the Indian sector as displayed in the statistical day
numbers in Figure 2b, thus the corresponding TEC data were not available (Figure 4d–f).

Figure 4. Cont.
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Figure 4. Similar to Figure 3, but during days that the average EEJ intensity at 0800–1200 UT was
relatively low (refer to WEC days) at Peruvian sector (a–c) and Indian sector (d–f). The lack of
equinox results in (d–f) is due to that the WEC days are not found.

However, TEC values predicted by the IRI-2016 model on WEC days remained at
nearly the same levels as those during EEJ days, indicating that the model cannot capture
an inhibited EIA signature. For a given time, the IRI-2016 predicted the result in terms of
the monthly averaged value. Hence, this inherent characteristic of the empirical model
would result in unreliable predictions for days with unusual space weather occurring
during geomagnetic quiet times such as CEJs. To successfully ascertain the characteristics
of daytime EIAs, we excluded those types of WEC days in the following analysis.

4.2. Crest-to-Trough Differences (CTD)

Despite the EIA intensity, it is easy to notice in Figures 3 and 4 that the local time
of the first appearance of the crests also showed interhemispheric asymmetry. That is, a
stronger crest corresponding to earlier emergence. Extensive studies have investigated
the interhemispheric asymmetry of the EIA intensity; hence, in the following, we provide
another perspective to investigate asymmetrical behavior concerning the time evolution
of EIA. In particular, to assess the time evolution of EIA, we defined crest-to-trough
difference (CTD):

CTD = TECoff-equator − TECequator (1)

That is, the difference between the TEC at off-equator (set as fixed dip latitude bin of
10◦–15◦ N/S) and the TEC at the equator (set as fixed dip latitude bin of 2.5◦ S–2.5◦ N),
where the EIA crest and trough normally reside, respectively. Note that the ‘crest’ location
we defined here is not the accurate position of the EIA crest; thus, the calculation of CTD
does not require the presence of a clear EIA crest feature.

Another criterion used to quantify the developed EIA intensity is the crest-to-trough
ratio, defined as the ratio of the mean of the northern and southern EIA crest peak value to
the minimum TEC in the EIA trough:

CTR = (TECncrest + TECscrest)/(2 × TECtrough)) (2)

CTR is much more extensively used in other studies [2,3,27,32,33]. The CTR provides
information on the overall intensity of the developed EIA normalized by the background
TEC at the EIA trough. As we intend to monitor the full development of the EIA throughout
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the daytime, even when the EIA crests have not been developed, the defined CTD is a more
suitable parameter to achieve the goal.

Figure 5 shows an example of the northern crest-to-trough difference (NCTD) and
southern crest-to-trough difference (SCTD), extracted from GPS TEC and IRI TEC maps
(Figure 5a,b). GPS TEC measurements (Figure 5a) show that at 0600–1000 LT the double
crest had not been developed and CTD experienced a falling and then a rising (Figure 5c).
The falling occurred right after the sunrise, due to that the ionization creates more plasma
around the equator. The rising should be related to the ambipolar diffusion that transports
equatorial plasma to higher latitudes. Thus, the transition of the falling and rising marks
the time that the transportation term dominates, i.e., the net accumulation of plasma at the
off-equator exceeds that at the equator. This transition is marked as the inflection points on
the CTD curved in the morning hours and is defined as the onset of EIA.

Figure 5. Top panels: TEC at Indian sector as a function of local time and dip latitude, using data
from (a) IGS GPS TEC and (b) IRI-2016. Bottom panels: Local time evolution of the extracted NCTD
and SCTD from (c) IGS GPS TEC and (d) IRI-2016. Dash curves are the original calculation from TEC
data; solid curve is the smoothed results. The triangles, circles, and diamonds mark the time of the
onsets, first emergences, and the peaks of the EIA crests during the evolution.

In the GPS TEC map (Figure 5a), the EIA northern crest appears earlier than the
southern crest, at a local time near 0900. The emergence of the EIA has been marked as
circles on the CTD (Figure 5c) curves as the CTD equals 0, which also exhibit northern
crest priority. However, the local time of the marked emergence lags behind the crest’s
appearance on the TEC map (Figure 5a). This is because the calculation of CTD set the crest
at fixed latitudes of 10◦–15◦ N/S, while the real emergence of the EIA crest appeared at
latitudes closer to the magnetic equator where the fountain effects launch. After the first
emergence, CTD grows continuously, representing the development of EIA. The peaks of
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the CTD mark that the EIA is fully developed and the TEC at the EIA crest reaches its peak
value. Thus, we mark the peak CTD in the afternoon as the peaks of EIA.

Figure 5b,d show the IRI-2016 predicted TEC map and the corresponding CTD profiles,
respectively. Besides a clearly different morphology of EIA structure (Figure 5b) compared
with the GPS TEC measurements (Figure 5a), the IRI-2016 derived CTD also exhibited
abnormal local time evolution. In detail (Figure 5d), there is no post-sunrise falling that ends
in negative vales for NCTD; SCTD showed persistent positive value during 0700–2300 LT.
Thus, the onset, as well as the first emergence of the EIA crest, can neither be identified
on the IRI-2016 CTD. Only the peaks of the EIA crest can be marked as the peaks of CTD
profiles. Note that a similar situation is a common feature for IRI-2016, though the three
time points can be occasionally identified.

In summary, the local time of the onset, first emergence, and peak of EIA crest can be
identified from GPS TEC measurement, while IRI-2016 cannot regularly capture the real
time evolution process of the EIA development.

4.3. Time Evolution of EIA: Seasonal and Longitudinal Effects

In the last subsection, the time points of the onset, first emergence, and peak during
the evolution of EIA can be marked on the CTD profiles. Figure 6 presents the variations of
these time points as a function of months in 2013.

Figure 6. Local time of the onsets (solid lines), emergence (dash lines), peaks (dotted lines) of the EIA
northern crest (green) and southern crest (red), at Peruvian (a–c) and Indian sector (b–d), extracted
from GPS TEC (top panels) and IRI-2016 (bottom panels). The data gap in Figure 6c,d is due to that
the time points sometimes cannot be identified in the IRI model.

Results from GPS TEC (Figure 6a,b) revealed that the patterned annual variations were
generally shared by the three time points. The time lag between the first emergence of EIA
crests with the onset is ~2 h, and it takes another ~4 h for the EIA crest to reach peak values.
Specifically, semiannual and annual cycle patterns in the Peruvian and Indian sectors,
respectively, can be captured. Take the onset of the northern EIA crest as an example, the
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semi-annual cycle (Figure 6a) is characterized by an earlier onset time near two equinoxes
and a later onset time near two solstices; the annual cycle (Figure 6b) is characterized by an
earlier onset time in the winter and a later onset time in the summer. As for the southern
crests, the time points generally exhibit reversed seasonal patterns compared with those of
the northern crests, except that the emergence time at the Peruvian sector (Figure 6a) stays
constantly near 1200 LT throughout the year 2013. Besides, the semiannual variation of the
onset of the southern crest at the Peruvian sector is not as prominent as the northern crest,
resulting in an earlier onset of southern crest than northern crest during winter seasons,
which is similar to that at the Indian sector.

Figure 6c,d show the IRI-2016 predictions. As has been mentioned above, the onset
and the emergence of EIA sometimes cannot be identified from IRI-2016 data. It can be
witnessed that the onset and emergence data are sparse, due to the incapability for identify-
ing those time points on CTD profiles. Nevertheless, the available time points generally
predicted earlier onset and emergence, compared with those of the GPS observations. Inter-
estingly, the annual cycle of EIA onset time is a prevailing phenomenon in both Peruvian
and Indian sectors, while GPS revealed a semiannual cycle seen in the Peruvian sector.
However, a similar semiannual cycle seen in GPS observation can be found on the peak time
of the northern crest in the Peruvian sector (Figure 6c). Besides, the emerging time of the
southern crest also exhibits semiannual variation (Figure 6c), but in the same phase of the
time points of the northern crest seen in GPS observations (Figure 6a). It can be concluded
that, although the semiannual cycle can be occasionally found on the emerging and peak
time of EIA crest from IRI-2016, the onset time of EIA still shows the classic picture that the
crest in the winter hemisphere develops earlier than that in the summer hemisphere. Note
that the IRI-2016 derived peak time of EIA sometimes shows abnormal values (e.g., April
at Peruvian sector, July and August at Indian sector, as shown in Figure 6c,d); this also
indicated the inaccuracy of the IRI-2016 in retrieving EIA evolution.

The annual cycle shown in the Indian sector represents a classical picture of the neu-
tral wind modulated ambipolar diffusion during the development of EIA. That is, the
transequatorial wind blows from the summer hemisphere to the winter hemisphere, which
pushes the plasma equatorward and poleward along the field line (referred to as pile-up
effects) in the summer and winter hemispheres, respectively. These neutral wind effects
contradict/favor the ambipolar diffusion in the summer/winter hemisphere; hence, the de-
velopment of EIA crest in the summer/winter hemisphere is inhibited/promoted, resulting
in that the time points of EIA’s development show clear winter hemispheric priority.

Take the onset of the northern crest during the winter season as an example, the
essential difference between the annual cycle (Indian sector, Figure 6b) and the semiannual
cycle (Peruvian sector, Figure 6a) occurs during winter seasons. That is, the semiannual
cycle consists of a delayed northern crest onset during northern winter (Figure 6a), which
ought to occur earlier (Figure 6b) to exhibit the annual cycle. Thus, the fundamental
question is what causes the retarded EIA northern crest development that is supposed to
be advanced.

5. Discussion

The semi-annual cycle is a common feature on the overall intensity of plasma density
at low and middle latitudes, which appears as density maximums at two equinoxes. The
causes of the semi-annual cycle are discussed as follows. There is the ratio of atomic oxygen
to molecular nitrogen O/N2, which also shows similar semiannual variation, especially
at middle latitudes [34]. In detail, during high O/N2 ratio seasons (i.e., equinoxes), the
chemical recombination rate is low, which causes a relatively high plasma density. He
O/N2 ratio is higher in the winter hemisphere, leading to a higher ionization rate [35].
However, this effect is more suitable to explain the middle latitudes winter anomaly [36]
rather than that at low latitudes, since the hemispheric difference in the O/N2 ratio is
smaller in the low latitudes during the daytime. Thus, the O/N2 ratio is less likely to
contribute to the interhemispheric asymmetry of EIA’s evolution seen in this study.

153



Remote Sens. 2022, 14, 107

In addition to the O/N2 ratio, the semi-annual cycle is also the property possessed by
the daytime equatorial E×B drift that exhibits two equinoctial maximums and two solstitial
minimums [37,38], via atmospheric tides modulated E-region dynamo [39]. Hence, the
E×B drift is widely recognized as a major mechanism for the appearance of semiannual
variation of the general EIA intensity [33]. However, there exist arguments regarding the
E×B drift effects on the detailed EIA morphology. Wu et al. [40] attributed the semiannual
variation of the northern EIA crest location to the E×B drift, while Liu et al. [14] doubt the
mechanism as the daytime EEJ shows poor correlation with the EIA crest location.

The semiannual cycle of either the O/N2 ratio or the E×B drift is a global phenomenon,
if the O/N2 ratio or the E×B drift is indeed involved in altering the efficiency of the EIA
development, the earlier onset during equinoxes should also be witnessed in the southern
hemisphere, and in other longitudes (i.e., Indian sector). However, this is not supported by
the current observations. Hence, neither the O/N2 ratio nor the E×B drift is responsible for
the abnormal semiannual variation of the onset, emergence, and peaks of the EIA at the
Peruvian sector, at least in a sole way.

The meridional neutral wind is recognized as the major impact of the asymmetric
development of EIA. Thus, we raise a question of whether the semiannual cycle seen in the
Peruvian sector is due to the local abnormal neutral wind configurations. To answer the
question, the neutral wind result from TIEGCM simulation during two solstices and two
equinoxes is adopted, during the geomagnetic quiet periods. Note that when discussing
the pushing effects from neutral wind to plasma, the zonal wind contribution under the
presence of magnetic declination should be considered. Hence, the effective magnetic
meridional neutral wind velocity (U) could be written as:

U = Uθ cos D + Uϕ sin D (3)

where Uθ (positive southward) and Uϕ (positive eastward) are the meridional and zonal
wind velocities, and D (positive eastward) is the declination angle [11]. Figure 7 presented
the effective magnetic meridional wind as a function of local time and dip latitudes, in
the Peruvian sector and Indian sector during March Equinox, June Solstice, September
Equinox, and December Solstice. The dashed lines mark the dip equator; the two shaded
bars in each plot mark the ‘fixed crest’ defined in this study at dip latitude of 10◦~15◦ S/N.

To illustrate the wind’s effects on the ambipolar diffusion during the initial stage of
the EIA development, we focus on regions of the equatorward side of the two ‘fixed crests’
(regions between the dip equator and the crests, 0◦~10◦ S/N in dip latitude). All three
time points shown in Figure 6 are generally within 0600~1500 LT, so we focus on this local
time bin.

In the Peruvian sector, the southward winds prevail through geomagnetic low latitude
regions (i.e., regions between two shaded bars), except for the region near the northern
crest (still in the geographic southern hemisphere) during December Solstice. For the
southern crest, the southward wind is strongest/weakest at June Solstice and December
Solstice, respectively. Thus, the promotion of the ambipolar diffusion to the southern crest is
most/least prominent at June/December Solstice, which should result in the earliest/latest
onset of EIA southern crest, consistent with the results shown in Figure 6a (red solid line).
For the northern crest, the strongest southward wind occurs during June Solstice, while
the northward wind appears during December Solstice. Thus, the ambipolar diffusion is
inhibited/promoted during June/December Solstice that would result in an earlier/latest
onset of northern EIA crest, which is inconsistent with the observed semiannual cycle
(Figure 6a).
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Figure 7. Effective magnetic meridional winds (positive northward). Avergaed winds centered on
the days of (a,b) March Equinox, (c,d) June Solstice, (e,f) September Equinoxes, and (g,h) December
Solstice, at Peruvian (left column) and Indian sector (right column). The dash line marks the dip
equator, the two shaded bars in each plot mark the ‘fixed crest’ defined in this study at dip latitude of
10◦~15◦ S/N.

In the Indian sector, the locations at both the northern and southern crests exhibit
the strongest northward wind during December Solstice and the strongest southward
wind during June Solstice. Hence, the ambipolar diffusion is severely retarded/promoted
near southern/northern crest during December Solstice, and vice versa for June Solstice,
resulting in an annual cycle on the onset of EIA, which is consistent with the observations
(Figure 6b). We conclude that, under the assumption that the meridional wind only takes
direct effects on the ambipolar diffusion, the wind configuration simulated by the TIEGCM
would result in the typical annual cycle (winter crest priority) of the EIA evolution in both
Peruvian and Indian sectors.

Note that the classical scenarios of the transequatorial wind effect on EIA have been
challenged in both simulation [12,13] and observations [14]. Abdu [12] showed that the
northward thermospheric wind would drive both the southern and northern EIA crest
to move southward (upwind direction) in simulations, while the height of the F region
is lifted/lowered near the northern/southern crest. Liu et al. [14] found an abnormal
annual variation of EIA in the American sector; that is, the northern EIA crest resides at
the highest/lowest latitude during local summer/winter when the southward/northward
winds prevail, consistent with upwind seasonal movement of EIA crest proposed by
Abdu [12], but contradicting the classical scenarios of the transequatorial wind effect.
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So far, the physical mechanism of the tilt (in upwind direction) development of EIA
has not been addressed either in the aforementioned simulation studies [12] or observa-
tional study [13]. Nevertheless, the mechanical effects of neutral wind would push the
plasma not only equatorward/poleward but also upward/downward. The uplifting of the
ionosphere leaves a depleted bottom side which encourages more ionizations; hence, the
TEC should increase, and vice versa. In other words, though the equatorward wind retards
the ambipolar diffusion, the accumulation of TEC near the EIA crest can still be accelerated
by the uplifting of the ionosphere. In the same manner, the poleward wind that lowers
the ionosphere would retard the speed of the growth of TEC near the EIA crest. Near the
northern EIA crest at the Peruvian sector, the northward winds only occur at December
Solstice (Figure 7h) when the F region resides at lower altitudes [41]. Thus, during the
development of EIA, the TEC growth of the northern crest might be retarded, resulting in a
delayed onset.

We emphasized that the above-proposed opposite neutral wind effects on the EIA
evolution would depend on the longitude (magnetic declination) seasons, and possibly the
solar activities. Hence, it is necessary to extend this study to a longer interval and more
longitudes to further validate the proposed scenario.

6. Conclusions and Future Work Remarks

The study adopted the IGS TEC map and IRI-2016 to investigate the seasonal, inter-
hemispheric variations on the time evolution (onset, first emergence, and peak) of EIA at
Peruvian and Indian sectors. Major findings are listed below:

1. Three time points can be concluded as: The onset occurs at 0600–1000 LT; the first
emergence occurs at 0900–1200 LT; the peak occurs at 1200–1500 LT.

2. The onset, first emergence, and peak of EIA show semiannual/annual cycle at the
Peruvian/Indian sector. The annual cycle is characterized by a winter priority; that
is, the EIA crest during local winter/summer develops earliest/latest. The semian-
nual is characterized as the northern/southern crest developing earlier during two
equinoxes/solstices.

3. The winter priority of the annual cycle can be explained by the transequatorial neu-
tral wind that pushes the plasma along the field line to suppress/promote the EIA
development in the summer/winter hemisphere. The semi-annual cycle might be
associated with the effect of the neutral wind on the modulation of the F region height,
which significantly alters the TEC.

4. We suggest that the transequatorial wind would not only influence the EIA develop-
ment via the modulation of ambipolar diffusion but also alter the F region height to
further modulate the TEC growth speed. The two effects could be in a completive
relationship, which causes complex seasonal variations of the EIA development. More
studies are needed to further validate this mechanism.

5. The IRI-2016 outputs generally underestimated the TEC value and showed abnor-
mal interhemispheric asymmetry, and sometimes cannot correctly characterize the
different stages of the EIA evolution, while the IGS TEC presented a more convincing
pattern of the EIA evolution. We suggest that the lack of zonal electric field data that
launches the ambipolar diffusion results in IRI’s poor ability to describe the diurnal
EIA evolution, and we indicate that the empirical model needs to be further improved.
Thus, the I[2]RI-2016 model is not a good candidate to extend this study to longitudes
where the GNSS observation is inadequate.

An interesting question remains: Why the F region height effect seems invalid in
the Indian sector where the development of EIA showed typical winter crest priority. A
possible explanation is that this competition varies at different longitudes/seasons/solar
activity levels. In the future, by including the ionosonde data, we intend to extend this
study to more longitude sectors and longer time intervals to further address the competition
between the modulation of ambipolar diffusion and F region height variations.
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Abstract: Total Electron Content (TEC) from Global Navigation Satellite Systems (GNSS) is used to
ascertain the impact of space weather events on navigation and communication systems. TEC is
detrended by several methods to show this impact. Information from the detrended TEC may or may
not necessarily represent a geophysical parameter. In this study, two commonly used detrending
methods, Savitzky–Golay filter and polynomial fitting, are evaluated during thunderstorm events
in Hong Kong. A two-step approach of detection and distinguishing is introduced alongside linear
correlation in order to determine the best detrending model. Savitzky–Golay filter on order six and
with a time window length of 120 min performed the best in detecting lightning events, and had
the highest moderate positive correlation of 0.4. That the best time frame was 120 min suggests that
the observed disturbances could be travelling ionospheric disturbance (TID), with lightning as the
potential source.

Keywords: TEC; detrending; Savitzky–Golay; polynomial; lightning

1. Introduction

Total electron content (TEC) obtained from Global Navigation Satellite Systems (GNSS)
can be used to ascertain the impact of space weather events on communication and navi-
gation systems. The spatio-temporally wide range of capabilities of GNSS make it useful
in studying these impacts. One technique in using GNSS to reveal weather impacts is by
detrending the original TEC [1]. That is, a best fit model or method is first fitted or applied
to the original TEC, then the difference between the original TEC and the best fit model is
computed. The difference obtained can determine amplitude, frequency, and other signal
changes in case of a weather event.

Over time, different best fit models have been used. Each best fit method produces
different results, which may or may not necessarily detect the impact a weather event
makes on the signal or adequately show the occurrence of the event. In using GNSS
for space weather event studies, extensive studies have been done on geomagnetic
storms [2–4], earthquakes [5,6], and typhoons [7–9]. The fitting methods have been
mostly used in these studies to detect travelling ionosphere disturbance (TID) and other
ionosphere irregularities.

Thunderstorms/lightning, a troposphere weather event, have recently garnered in-
terest from the scientific community in the context of harnessing the spatio-temporal
capabilities of GNSS to help understand some characteristics of this weather event. Thun-
derstorm studies in the mid-latitude US plains by Lay, et al. [10] pointed out that ionosphere
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gravity waves (IGW) damp out before a thunderstorm dies out, contrary to a recent study
by Rahmani, et al. [11] in the same study area but at a different time period. Ogunsua,
et al. [12] also reported on the ionosphere’s response to thunderstorms in the West African
and Congo sector of the equatorial region, stating that thunderstorm impact on the iono-
sphere at nighttime is negligible compared to the daytime. Mahmud M [13], who also
studied thunderstorm events over Southern Africa, showed that a strong correlation exists
between hourly lightning and ionosphere irregularity event occurrence. Recent studies by
Tang, et al. [14] and Liu, et al. [15] showed the characteristics of thunderstorm generated
ionosphere gravity waves (IGW) in the Southern China region.

In contributing to the GNSS and thunderstorm related studies, this study assesses
two commonly used fitting methods, the Savitzky–Golay and polynomial methods, to
detect lightning events as they have been used to detect the presence of other space events.
These two methods have been demonstrated in the existing literature to best indicate the
incidence of weather events. The study area is Hong Kong, a low latitude region in the
southern China coastal region. In the following sections, a description of the detrending
methods is briefly discussed. A two-step approach, used to detect and distinguish lightning
from non-lightning events using the detrending methods, is introduced, followed by the
results. Discussions on the results and derived conclusions are then presented. Aside from
the obvious visual changes in amplitude, statistical means were also used to choose the
best fitting method.

2. Materials and Methods

2.1. Detrending Methods

The detrending or best fitting methods adapted in this study are briefly discussed below.

2.1.1. Savitzky–Golay Filter

This filter is named after Abraham Savitzky and Marcel Golay, who first made it
known as a solution to smooth out noise in data from a chemical spectrum analyzer.
The filter falls into category of low-pass time domain filters that smooth out high data
variability [16] and is used in many applications, such as electrocardiogram denoising [17],
vegetation monitoring and GNSS-TEC changes. The filter operates by the convolution
process, with least squares fitting of successive subsets in a given time window [18]. The
formulae and detailed explanation are found in the original work of Savitzky, et al. [19].

2.1.2. Polynomial Filtering

This kind of filter first approximates the entire data set by repeatedly evaluations at a
given order. Given a time series F(t) function measured from series x1, x2, x3, . . . .xi, the
polynomial P is obtained in Equation (1) as

Pn(X) = q1(Xn) + q2

(
Xn−1

)
+ . . . . + qn(X) + qn+1 (1)

where qn are quantities derived based on P using least squares and n is the order. The
residuals, or the difference between F(t) and P(X), are computed to filter out gross effects
from F(t), from which some useful information can be obtained. An example using TEC
time series can be found in Rahmani, et al. [11].

2.2. GNSS Data

The local GNSS network was used to characterize the TEC changes in Hong Kong.
The network referred to as Hong Kong Satellite Reference (HK SatRef) covers the entire
Hong Kong area. Information on the network is given in the work of Ji, et al. [20]. More
details can be obtained from the Hong Kong Survey Department website (https://www.
geodetic.gov.hk/en/rinex/downv.aspx (accessed on 14 June 2019)). The American Global
Positioning System (GPS) constellation comprising thirty-two satellites was used. Figure 1
shows the study area and GNSS network.
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Figure 1. Study area showing the Hong Kong GNSS network. GNSS receivers are colored triangles
and circles with their names written beside them. The image shown was obtained from the Hong
Kong Geodetic Survey Department website. (https://www.geodetic.gov.hk/en/satref/satref.htm,
accessed on 14 June 2019).

In order to detect ionosphere irregularities caused by lightning, the well-known geom-
etry free linear combination of pseudo- and carrier-phase signals was first used to compute
the Slant TEC (STEC) from observations at a sampling interval of 30 s. An elevation cut-
off angle of 15◦ was set to eliminate the multi-path effect [9]. The computed STEC was
converted to Vertical TEC (VTEC) by applying a mapping function in Equation (2) below,
where Re is the earth’s radius, θ is the elevation angle at the ionosphere pierce point (IPP)
of the signal–receiver path, and hi is the ionospheric single layer, approximated at 350 km.

VTEC =

√
1 −
(

Recosθ

Re + hi

)2
∗ STEC (2)

VTEC was then detrended using the two detrending methods stated above to get
detrended TEC (DTEC), using Equation (3):

DTECmodel = VTECorg − VTECmodel (3)

where VTECorg is the original VTEC, VTECmodel is the VTEC obtained from the fitting
model and DTECmodel is the detrended TEC derived according to Equation (3). The unit of
VTEC and DTEC is Total Electron Content Units (TECU; 1 TECU = 1016 e/m2 ). Orders
of 3 and 6 and time window lengths 30, 60, 90 and 120 min [13,21,22] were selected for
Savitzky–Golay, and orders of 3, 5 [23,24], 6, [1,12,25], and 10 [11] were used for polynomial
fitting. The selected parameters for detrending are summarized below in Table 1.

2.3. Thunderstorm/Lightning Data

At very low frequency and low frequency (VLF/LF), lightning discharges produce
electric current in the lower D layer of the ionosphere [26]. Lightning data were obtained
from a local VLF/LF network in the low-latitude region of Southern China. Total current
generated is strongly correlated with lightning activity [27]; a day with a lightning count
greater than 10,000 was deemed as a “lightning day”.
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Table 1. Detrending methods and their selected parameters.

Savitzky–Golay

Order Window (min)

3 30 60 90 120
6 30 60 90 120

Polynomial

Order 3 5 6 10

2.4. Selection Criteria

A total of nine days in the months of July and August 2015 were used in this study.
The days were grouped into three sets of three. The first (9th to 11th July) and third (1st
to 3rd August) sets comprise three continuous non-lightning days before and after the
second (17th to 19th July) set of lightning days respectively. The lightning counts for the
days are as follows: 319, 1277 and 91 for 9th to 11th July; 200,435, 75,078, and 33,709 for
17th to 19th July; and 6875, 1775 and 1589 for 1st to 3rd August. All days were void of
geomagnetic storm or solar condition events. The disturbance storm time (Dst) and solar
condition index (F10.7 index) were less than −30 nT [28] and 150 [8], respectively. Figure 2
shows the Dst and F10.7 indices for the set of days.

Figure 2. Dst (panels a–c) and F10.7 (panels d–f) indices for the set of days. Dst index is greater than −30 nT and F10.7
index is less than 150 sfu, indicating the days were void of geomagnetic activity and solar condition.

In determining which detrending method was most suitable for detecting and
distinguishing lightning days from non-lightning days, the detection and distinguishing
conditions (2DC) approach was used. For the detection condition, because electrical
discharge from lightning takes about three hours to travel to higher ionosphere heights,
the changes in DTEC amplitude, mostly an increment, may be observed after 3 h
of lightning occurrence and last 1–2 h. Being able to show this change using the
DTEC method indicates that the DTEC method can detect lightning activity. For the
distinguishing condition, anomalous behaviour of DTEC amplitude was checked on
non-lightning days against that of lightning days. A non-lightning event day is expected
to have one absolute maxima constant as the DTEC amplitude or value throughout,
as there is no or little lightning or other space weather events to cause such changes.
This constant value is then set as the threshold with which to assess lightning days.
As indicated under the detection condition, lightning is expected to cause changes to
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DTEC amplitude or value. The absolute maximum value of lightning days is compared
to the threshold from a non-lightning day. When the increased value is greater than the
threshold, a lightning day has either been distinguished from non-lightning days or
not. A DTEC method achieving this is said to have both detected lightning activity and
distinguished lightning days from non-lightning. Furthermore, 2DC is explained using
the following example. Day 1 is a non-lightning day, Day 2 is a lightning day, and the
detrending method is DM. First, DM is used to detrend TEC on Day 1. The DTEC on
Day 1 was mostly between ± 0.5TECu. Next, TEC on Day 2 is detrended. DTEC on
Day 2 was initially ±0.1TECu but at the time of lightning increased to ±0.5TECu. At
this point, DM has met the detection condition, and hence is able to detect lightning,
but not the distinguish condition, as the DTEC maxima for both days are the same. If
Day 2 DTEC at time of lightning increased to, for instance, ±1TECu, DM would have
successfully detected and distinguished Day 1 from Day 2. On the other hand, should
Day 2 DTEC remain at ±0.1 throughout the entire period, DM could neither detect nor
distinguish lightning events from non-lightning event. Figure 3 shows the flow chart
of 2DC.

 
Figure 3. Flow Chart .showing the Detection and Distinguish Condition (2DC).

The evaluation was done on the basis of each satellite–receiver pair rather than an
average of TEC over a station, in order to obtain greater detail. Satellites passing from the
time of lightning occurrence to about 3 h afterwards were investigated.

3. Results

The results are presented in ascending order of set of days. The days in each set
are also presented in chronological order. For brevity, the parameters in Table 1 are
shortened as follows: polynomials are prefixed by the letter P, followed by the order.
For instance, the polynomial of order 3 is represented as P3. That of Savitzky–Golay is
prefixed as sgf, followed by the order and window length. For example, the Savitzky–
Golay of order 3 with a window length of 30 min is represented as sgf_3_30. Figures
showing the lightning count and current are also presented. With TEC and DTEC, the
stations of the HK SatRef are quite close; hence, similar observations are made by most
stations at a given time [14]. Only observations from station HKOH meeting the criteria
in Section 2.4 are presented. A plot of TEC and DTEC for a given satellite in a day has
six rows. The first row comprises the original and fitted TEC of P3, P5, P6 and P10
while the second row comprises their respective DTEC. The third row also comprises
the original and fitted TEC of sgf_3_30 to sgf_3_120, with the fourth row comprising
their respective DTEC. The fifth and last rows follow the same order as the third and
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fourth rows for sgf_6 parameters. All of the subsequent figures presented showing TEC
and DTEC in this section follow the same format.

3.1. First Set of Days (Quiet Days before Lightning Events)
3.1.1. 9th July

This day was the first day of non-lightning days before lightning days. The upper and
lower panels of Figure 4 show the lightning count and current, respectively. Few counts are
seen from 00–01 local time (LT: UT + 8). Figures 5 and 6 show the TEC-DTEC for satellites
of pseudorandom noise code (PRN) 1 and 13. PRN 1 was chosen as it covered the time
with no lightning (09–20LT), while PRN 13 was specifically chosen as it covers the time of
the few lightning counts.

Figure 4. Lightning activity on 9th July. The (upper panel) shows the counts; the (lower panel) is
the current.

From panel e of Figure 5, P3 recorded DTEC values between ±3TECu for PRN 1.
The amplitudes remained same during the time the satellite was available. For P5, PRN
1 had an amplitude of DTEC of about ±0.5TECu, which remained same throughout the
periods. On PRN 13, P5 and P6 had similar characteristics to P3. For P10 the amplitude
of DTEC was about ±0.3TECu, which is 0.2 less than that of P5 and P6 on PRN 1. Similar
observations to P5 on PRN 13 were made by P10.

Observations on PRN 1 reveal the quiet day phenomena, as no change in amplitude
was seen. Increased amplitude on PRN 13 also reveals that P3, P5, P6 and P10 could detect
low lightning counts, around 00–01 LT.

sgf_3_30 had an amplitude of DTEC of about ±0.03TECu on PRN 1, shown in panel
m of Figure 5, which remained same throughout the day. For sgf_3_60, the amplitude of
DTEC was about ±0.1TECu compared to sgf_3_30. sgf_3_90 had an amplitude of DTEC of
±0.5TECu, which was constant for the whole day for PRN 1. sgf_3_120 also had a DTEC
amplitude of ±0.2TECu on PRN 1. With PRN 13, sgf_3 parameters saw an increase in
amplitude about the same time as lightning. Sgf_3_30 saw an increase to ±0.1TECu, and
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that of sgf_3_60 to ±0.6TECu. The increases in amplitude for sgf_3_90 and 120 are no
different than the amplitude recorded on PRN 1.

Figure 5. TEC and DTEC for PRN 1 on 9th July, 2015. Original TEC are in black solid lines and modelled TEC are in
dashed colored lines. In panels (a–d) are the original TEC and modelled TEC of P3, P5, P6 and P10, respectively. Their
respective DTECs are in panels (e–h) with colors corresponding to their modelled TEC. Panels (i–l) show the original TEC
and modelled TEC of sgf_3_30, sgf_3_60, sgf_3_90, and sgf_3_120. Their respective DTECs are in panels (m–p), with colors
corresponding to their modelled TEC. Original and modelled TEC of sgf_6_30, sgf_6_60, sgf_6_90, and sgf_6_120 are in
panels (q–t), with their respective DTEC in corresponding colors in panels (u–x). The horizontal axis is hours in local time
(LT: UT + 8). The vertical axis is in TEC units.

The DTEC amplitude of sgf_6_30 was mostly between ±0.01TECu, and remained
constant for the whole day on PRN 1. That of sgf_6_60 was between ±0.03TECu compared
to sgf_6_30. For sgf_6_90 and 120, the amplitude was about ±0.05TECu compared to
sgf_6_30 and sgf_6_60. On PRN 13, sgf_6_30 saw an increase in amplitude of about
±0.05TECu, while sgf_6 30, 90 and 120 saw an increase of about ±0.2TECu during the time
of the lightning count.

In all, most parameters had their DTEC amplitude constant throughout the day,
and were thus able to represent a quiet day. Sgf parameters had lower amplitudes
compared to polynomials.

3.1.2. 10th July

This day was the second of the non-lightning days before lightning days. Figure 7
shows the lightning count and current. Few lightning counts were seen at 08–09 and
18–20 LT. Figure 8 shows the TEC-DTECs for PRN 13.
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Figure 6. TEC and DTEC for PRN 13 on 9 July 2015. Original TEC are in black solid lines and modelled TEC are in dashed
colored lines. In panels (a–d) are the original TEC and modelled TEC of P3, P5, P6 and P10, respectively. Their respective
DTECs are in panels (e–h), with colors corresponding to their modelled TEC. Panels (i–l) show the original TEC and
modelled TEC of sgf_3_30, sgf_3_60, sgf_3_90, and sgf_3_120. Their respective DTECs are in panels (m–p), with colors
corresponding to their modelled TEC. Original and modelled TEC of sgf_6_30, sgf_6_60, sgf_6_90, and sgf_6_120 are in
panels (q–t), with their respective DTECs in corresponding colors in panels (u–x). The horizontal axis is hours in local time
(LT: UT + 8). The vertical axis is in TEC units.

Figure 7. Lightning activity on 10th July. The (upper panel) shows the counts; the (lower panel) is
the current.
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Figure 8. TEC and DTEC for PRN 13 on 10th July 2015. Information about figure panels is same as that of Figures 5 and 6.

From panels f–h of Figure 8, P5, P6 and P10 all had a constant amplitude of ±0.5TECu.
P3 had the highest DTEC value at ±4TECu. The amplitudes remained the same for the
whole period.

Sgf_3_30 had an amplitude of DTEC of about ±0.05TECu on PRN 13 in Figure 8, and
remained constant. Panels n–p in Figure 8 show that sgf_3_60, 90 and 120 had a constant
amplitude of ±0.2TECu on PRN 13.

For sgf_6_30, the DTEC amplitude was ±0.02TECu and remained constant for the
whole period on PRN 13 (panel u of Figure 8). Sgf_6_60, 90 and 120 recorded DTEC
amplitudes of ±0.05TECu throughout the period of PRN 13

Similar to 9th July, most parameters had their DTEC amplitude constant throughout
the day, and were thus ably to represent a quiet day. Sgf parameters had lower amplitudes
compared to polynomials.

3.1.3. 11th July

This day was the last of the non-lightning days before lightning days. Compared to
the previous days in this set of days, 11th July virtually had no lightning count, making
it an ideal example of a truly quiet day. Figure 9 shows the lightning count and current.
Figure 10 shows the TEC-DTECs for PRN 2. Most satellites had similar observations
to PRN 2.
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Figure 9. Lightning activity on 11th July. The (upper panel) shows the counts; the (lower panel) is the current.

Figure 10. TEC and DTEC for PRN 2 on 11th July 2015. Information about figure panels is same as that of Figures 5 and 6.
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From Figure 10, the polynomial and sgf parameters had constant amplitudes through-
out the period of PRN 2. DTECs for all the parameters had similar characteristics to those
of 9th and 10th July; this example thus represents a typical quiet day.

3.2. Second Set of Days (Lightning Days)
3.2.1. 17th July

This was the first of the lightning days. Lightning happened for the whole day, with
a peak count around 15–17 LT. After 22 LT, the lightning activity reduced to a minimum.
Lightning activity is shown in Figure 11. TEC and DTEC of PRN 13 and 21 are shown in
Figures 12 and 13 to check the changes in DTEC for the first peak expected at 18LT and
second peak expected at 01LT, respectively.

Figure 11. Lightning activity on 17th July. (Upper panel) shows the counts; (lower panel) is
the current.

Since it takes about three hours for lightning to effect changes in TEC, and the change
lasts for about three hours, amplitude changes for the first peak (15–17LT) can be expected
to be around 20–23LT, while for the second peak (22LT) they can be expected to show
changes of around 00–02LT. In panels e–g in Figure 12, P3, P5 and P6 show the same
amplitude values throughout. No increase is seen in the DTEC amplitude values. For P10
in panel f, DTEC amplitude increases to ±0.5TECu at the expected time. P10 was thus able
to detect the lightning event on PRN 13. In Figure 13, the DTEC amplitude drops sharply
at the expected hour of 01LT from 1 to −2TECu for P5, P6 and P10, signifying a detection.
P3 also records a similar observation, though this is not as obvious as P5, P6 and P10.

For the sgf_3 parameters, only sgf_3_30 and 60 could detect the lightning event on
PRN 13 in Figure 12. Their amplitudes increased to ±0.04 within the expected time range.
Sgf_3_90 and 120, on the other hand, had constant DTEC amplitude. For the second
lightning peak at 22LT, all of the sgf_3 parameters could detect it within the expected time
range. Their amplitudes increased to between ±0.2–0.4TECu, as seen in panels m to p in
Figure 13.

Sgf_6_30 could not detect the first lightning peak but did detect the second. Sgf_6_60,
90 and 120 detected both lightning peaks as increase in amplitude, as seen in panels v to x
in Figures 12 and 13.
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Figure 12. TEC and DTEC for PRN 13 on 17th July 2015. Information about figure panels is same as that of Figures 5 and 6.

Figure 13. TEC and DTEC for PRN 21 on 17th July 2015. Information about figure panels is same as that of Figures 5 and 6.
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P5, P6 and P10 could detect lightning events; although the change in amplitude
for lightning and non-lightning days were similar, the DTEC amplitude values of sgf
parameters indicating the presence of lightning were higher compared to the quiet non-
lightning days.

3.2.2. 18th July

This was the second of the lightning days. Lightning happened for the whole day,
with peaks around 15LT. At 21LT, a small peak was also seen. Figure 14 shows the lightning
event. DTEC-TEC are shown for PRN 5 in Figure 15, as its time of availability covered the
expected time of the amplitude changes of the two peaks, 18LT for the peak at 15LT and
23LT for that at 21LT.

Figure 14. Lightning activity on 18th July. (Upper panel) shows the counts; (lower panel) is the current.

Figure 15. TEC and DTEC for PRN 5 on 18th July 2015. Information about figure panels is the same
as that of Figures 5 and 6.
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With peak counts around 15 and 21LT, changes in DTEC amplitude were expected
around 18 and 23LT. P3, P5 and P6 had constant amplitudes of ±3TECu, and hence were
not able to detect the lightning event. P10 first saw an increase in amplitude of about
± 0.5TECu, then a reduced amplitude of ±0.2TECu, and finally another increase to
±0.5TECu. These increments all happened at the expected time of amplitude change,
indicating that P10 could detect the lightning event. From panels m to p in Figure 15, sgf_3
parameters all saw amplitude changes at the expected time. Sgf_3_30 recorded ±0.06TECu,
while sgf_3_60, 90 and 120 all recorded ±0.2TECu at the expected time of DTEC changes.
Sgf 6 parameters also showed an increase in DTEC amplitude at the expected time. Sgf_6_30
recorded ±0.03TECu and sgfs 6_60, 90 and 120 all recorded ±0.07TECu.

P10 and all of the sgf parameters therefore detected the lightning activity on this day.

3.2.3. 19th July

This was the last of the lightning days. Lightning happened from 08–09LT and reoccurred
from 16–07LT. The peak periods were 16–17, 19–20 and 23–03LT, with DTEC amplitude
changes expected at 11, 23 and 02LT, respectively. PRN 15 was available at 20–02LT, covering
the expected time changes of the second peak period and hence able to be investigated.
Figures 16 and 17 show the lightning activity and DTEC for PRN 15, respectively.

Figure 16. Lightning activity on 19th July. (Upper panel) shows the counts; (Lower panel) is the current.

Less useful information could be derived from the DTEC of P3 (panel e of
Figures 17 and 18). P5, P6 and P10 made similar observations to PRN 15. An increase
in amplitude of ±2TECu was seen around 22–23LT, and the amplitude changes occur at
the expected time.
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Figure 17. TEC and DTEC for PRN 15 on 19th July 2015. Information about figure panels is the same as that of Figures 5 and 6.

Figure 18. Lightning activity on 1st August. (Upper panel) shows the counts; (lower panel) is
the current.
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Sgf_3_30, 60, 90 and 120 all saw an increase in DTEC amplitude at the expected
time. Similar observations were also made by the sgf_6 parameters. Sgf_3_30 recorded
±0.06TECu, while sgf_3_60, 90 and 120 all recorded ±0.2TECu at the expected time of
DTEC changes. Sgf 6 parameters also showed an increase in DTEC amplitude at the
expected time. Sgf_6_30 recorded ±0.03TECu, sgf 6_60 and 90 recorded ±0.1TECu, and
6_120 recorded ±0.2TECu.

P5, P6,P5, P10 and all the sgf parameters were able to detect the lightning activity on
this day.

3.3. Third Set of Days (Quiet Days after Lightning Events)
3.3.1. 1st August

This day was the first of the non-lightning days after lightning days. Few lightning
counts were seen at 11–12, 16–18 and 21–22 LT. Figures 18 and 19 show the lightning
activity, TEC and DTEC of PRN 11.

Figure 19. TEC and DTEC for PRN 11 on 1st August 2015. Information about figure panels is the
same as that of Figures 5 and 6.

P3, P5, P6 and P10 all had constant DTEC amplitude of ±0.2 on PRN 7, as seen in
panels e to h of Figures 20 and 21. The Sgf_3_and 6 parameters all had constant DTEC
amplitudes. Sgfs 3_30, 3_60, 6_30, 6_90 and 6_120 had amplitudes of about ±0.02TECu,
while 3_90 and 3_120 all had ±0.1TECu. All of the DTEC techniques used were able to
show that this day was a quiet day, having constant DTEC amplitudes.

3.3.2. 2nd August

This day was the second non-lightning day after a lightning day. Figure 20 shows the
lightning activity in terms of current and count. Few lightning counts are seen at 14–19 or
03–04 LT. Figure 21 shows TEC and DTEC for PRN 5.

Less useful information could be derived from the DTEC of P3 in panel e of Figure 21.
P5, P6 and P10 had a constant DTEC amplitude of about ± 0.1TECu. Sgf parameters also
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had constant amplitude throughout. Sgf_6_30 recorded ±0.02TECu. Sgfs 3_30, 6_60, 6_90
and 6_120 recorded ±0.05TECu, while 3_90 and 3_120 had ±0.1TECu.

The constant amplitude shown by the detrending techniques indicate that this day
was a quiet day.

Figure 20. Lightning activity on 2nd August. (Upper panel) shows the counts; (lower panel) is
the current.

Figure 21. TEC and DTEC for PRN 5 on 2nd August 2015. Information about figure panels is the
same as that of Figures 5 and 6.

3.3.3. 3rd August

This was the last non-lightning day in the third set of days. Figure 22 shows the
lightning activity for this day. Few lightning counts were seen, mostly at 14–19LT. Figure 23
show the time of passage of PRN 4 and its respective TEC and DTECs.
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Figure 22. Lightning activity on 3rd August. (Upper panel) shows the counts; (lower panel) is the current.

Figure 23. TEC and DTEC for PRN 7 on 3rd August 2015. Information about figure panels is the same as that of Figures 5 and 6.

All detrending parameters for PRN 4 had constant DTEC amplitudes at the time of its
passage. The polynomials had higher values compared to the those of sgf. The constant
amplitude once again indicates that this day was a quiet a day. The amplitudes recorded
by the detrending parameters were similar to those of other non-lightning days.
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Table 2 provides a summary of which DTEC method and parameters were able to
detect lightning events on lightning days and to represent the quiet nature of non-lightning
days according to the 2DC approach for the results enumerated above.

Table 2. Summary of which DTEC parameters could indicate non-lightning and lightning events. R means represent, D
means detected, ND means not detected.

Day/DTEC Method P3 P5 P6 P10 sgf_3_30 sgf_3_60 sgf_3_90 sgf_3_120 sgf_6_30 sgf_6_60 sgf_6_90 sgf_6_120

First set of days
9th July R R R R R R R R R R R R
10th July R R R R R R R R R R R R
11th July R R R R R R R R R R R R

Second set of
days

17th July D D D D D D D D D D D D
18th July ND ND ND D D D D D D D D D
19th July - D D D D D D D D D D D

Third set of days
1st August R R R R R R R R R R R R
2nd August R R R R R R R R R R R R
3rd August R R R R R R R R R R R R

4. Discussion

From the results in Section 3 and Table 2, all of the detrending methods had
individual DTEC amplitudes that were mostly the same or constant during both sets
of non-lightning days at the time of passage of the satellites (panels e–h, m–p, and
w–x of Figures 6, 8, 10, 19, 21 and 23). Days without changes in amplitude show that
the ionosphere was quiet, which truly reflects the weather events, as there were no
geomagnetic storms, lightning events, or sunspots.

During the lightning days, P5, P6 and P10 could detect lightning events using the 2DC
approach. DTEC amplitude increased, as seen in panels e to h of Figures 13 and 17. This
observation agrees with Rahmani, et al. [11] and Ogunsua, et al. [12], who used P10 and P6
respectively to detect the occurrence of lightning. The amplitude values, however, were no
different from those of non-lightning days. The amplitude for non-lightning days was on
average between ±0.5–5TECu. Lightning days at the time of expected DTEC changes also
recorded increases in amplitude values between ±0.5–5TECu. This does not show a clear
distinction between the lightning days and non-lightning days. Thus, the distinguishing
condition of 2DC was not met. This non-distinction could be the reason Kumar, et al. [29]
reported no difference between lightning and non-lightning days, and makes polynomials
less suitable for distinguishing lightning days.

Coster, et al. [30], suggests the accuracy of DTEC is about ±0.05TECu. Any fluctuations
above this could be a disturbance. The Savitzky–Golay parameters mostly had ±0.05TECu
on non-lightning days and saw an increase to about ±0.06–2TECu on lightning days
(panels m–p and w–x of Figures 12, 13, 15 and 17), in agreement with this suggestion.
This further suggests that the Savitzky–Golay filters were better at detecting lightning
activity and representing the quiet activity of non-lightning days. Sgf_3_30, 6_30, 6_60 and
6_120 mostly had amplitudes of ±0.05TECu on non-lightning days and saw an increase to
±0.06–0.2TECu at the time of expected DTEC amplitude changes on lightning days. These
parameters were therefore able to detect lightning events and distinguish lightning days
from non-lightning days using 2DC. Sgf_3_90 and 3_120 had amplitudes of ±0.1TECu
on non-lightning days (panels o and p of Figures 6, 8, 10, 19 and 21) and an increase to
the same value at the time of expected DTEC changes on lightning days (panel o and p
of Figures 12, 15 and 17). These two parameters, like the polynomials, could only detect
lightning activity, not distinguish between lightning and non-lightning days. The time
window of 90 to 120 min is the typical period of TIDs. Sgfs 3_90, 3_120, 6_90 and 6_120
being able to detect DTEC changes affirms that lightning can induce TIDs as, suggested by
Mahmud M [13]. Another interesting observation can be seen in Figure 5: DTEC amplitude
changes are observed on PRN 13, although 9th July was a non-lightning day. PRN 13
passed at a time about 1–2 h after the few lightning counts on 9th July, as seen in Figure 8.
It could be that PRN 13 passed directly over the location of the lightning strokes, and was
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therefore able to detect them. This also confirms the observation by Qin, et al. [31] that
even a small lightning stroke can effect changes in the ionosphere.

As the Savitzky–Golay parameters sgf_3_30, 6_30, 6_60, 6_90 and 6_120 met all the
conditions in 2DC, further evaluation through statistical means was deployed to choose
the most suitable parameter. Linear correlations between lightning count and DTEC on
lightning days for the PRNs presented in Section 3 above were conducted. The significant
level (α) for accuracy assessment was 0.05, and the correlation coefficients and p-values for
each PRN are presented in Table 3. Figure 24 shows the respective scatter diagrams of the
correlations for these parameters.

Table 3. Correlation coefficients between lightning counts and DTEC values from the various parameters during lightning
days. PRNs are placed in brackets. E is the scientific notation for base ten.

CORRELATION COEFFICIENT P-VALUE

DTEC Meth-
od/Satellite

17th July (13) 17th July (21) 18th July (5) 19th July (15) 17th July (13) 17th July (21) 18th July (5) 19th July (15)

sgf_3_30 −0.0532432 0.212518 0.1380252 0.2172065 0.1844358 1.837E-07 6.041E-05 2.313E-09
sgf_6_30 0.0205577 0.2196998 0.3005218 0.3456595 0.6085514 6.823E-08 5.672E-19 3.204E-22
sgf_6_60 −0.0195246 0.0597396 −0.0388213 0.1613585 0.6266822 0.1469133 0.2613414 1.015E-05
sgf_6_90 0.0040953 0.5853365 0.465207 0.4095069 0.9187456 1.245E-55 2.789E-46 2.492E-31
sgf_6_120 0.34839 0.2449198 0.3050079 0.4778427 3.23E-19 1.603E-09 1.599E-19 1.554E-43

Figure 24. Scatter diagram for correlation between lightning count and DTEC amplitude in TECu
on lightning days. Columns 1 to 4 are for the parameters sgf_3_30, 6_30, 6_60, 6_90 and 6_120,
respectively. Row 1 (panels a–e) is for PRN 13 on 17th July. Row 2 (panels f–j) is for PRN 21 on 17th
July. Row 3 (panels k–o) is for PRN 5 on 18th July. Row 4 (panels p–t) is for PRN 15 on 19th July.
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From Table 3 and Figure 24, the DTEC amplitudes were mostly moderately posi-
tively correlated to lightning. The sgf_6_120 parameter was the most consistent with
lightning count for all the days and PRNs, with an average moderate positive correla-
tion of about 0.5. With such consistency and moderate positive correlation, sgf_6_120
was selected as the most suitable after meeting the conditions of 2DC. The time frame
of 120 min further suggests that the disturbances could be TIDs, with lightning as
the potential source. The coefficient of 0.4–0.5, though moderate, could be deemed
as significant. Gravity waves in equatorial regions correlated with equatorial plasma
bubbles (EPB) was 0.2. Though a weak correlation, this was consistent over a long
period of time, and given the multiple sources of EPBs it should not be neglected. [32]
Lightning is also a source of gravity waves [14], and a relative higher correlation of
0.4 could equally be deemed significant. The findings from the sgf confirms studies in
other disciplines, such as medicine, that a Savitzky–Golay filter can represent physical
parameters and events and provide detail which could otherwise be missed.

5. Conclusions

In this study, two commonly used TEC detrending methods were evaluated for the
detection of lightning events in a low latitude region. The results show that a Savitzky–
Golay filter of order 6 with a time window length of 120 min best detected the occurrence
of lightning compared to the other parameters used in the study. The evaluation was done
on the individual satellites rather than the average TEC over a station, as in some studies
cited [13]. The individual satellite approach offers a better view than the average approach,
as some minute details may be missed or cancelled out during the averaging. In addition,
the best time frame being 120 min shows the potential of lightning to inducing TID. Further
investigation is suggested in order to explore this observation.
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Abstract: In navigation, the Twice the Distance Root Mean Square (2DRMS) is commonly used
as a position accuracy measure. Its determination, based on statistical methods, assumes that the
position errors are normally distributed and are often not reflected in actual measurements. As a
result of the widespread adoption of this measure, the positioning accuracy of navigation systems is
overestimated by 10–15%. In this paper, a new method is presented for determining the navigation
system positioning accuracy based on a reliability model where the system’s operation and failure
statistics are referred to as life and failure times. Based on real measurements, the method proposed
in this article will be compared with the classical method (based on the 2DRMS measure). Real
(empirical) measurements made by the principal modern navigation positioning systems were used
in the analyses: Global Positioning System (GPS) (168’286 fixes), Differential Global Positioning
System (DGPS) (900’000 fixes) and European Geostationary Navigation Overlay Service (EGNOS)
(900’000 fixes). Research performed on real data, many of which can be considered representative,
have shown that the reliability method provides a better (compared to the 2DRMS measure) estimate
of navigation system positioning accuracy. Thanks to its application, it is possible to determine the
position error distribution of the navigation system more precisely when compared to the classical
method, as well as to indicate those applications that can be used by this system, ensuring the safety
of the navigation process.

Keywords: navigation positioning system; positioning accuracy; reliability method; Global Po-
sitioning System (GPS); Differential Global Positioning System (DGPS); European Geostationary
Navigation Overlay Service (EGNOS)

1. Introduction

The main goal behind positioning systems is to provide air [1–5], land [6–10] and
marine navigation [11–15] applications with such accuracy that the process is carried out
safely. Such applications may include the following: a ship entering a port, driving a car
along a route, landing an aircraft at an airport, stopping a tram on a platform, etc. The
decision to qualify a positioning system as safe for a given navigation application is made
based on a comparison of the position error characterizing the system with the minimum
navigation requirements for a specific application specified in normative documents, such
as radio navigation plans [16–19] and other recommendations or regulations [20–24]. These
requirements most often include the following: positioning accuracy, availability, continuity,
fix rate, integrity, operation range, reliability [25].

There is no doubt that, for decades of navigation development, it is the positioning
accuracy that has been, and still is, the decisive factor for the use of a system for a specific
navigation task, while the availability level of a specific position error is related to the
threat that a positioning failure may pose to the safety of an object. Hence, air navigation
requires top positioning availability. Figure 1 presents a synthesis of the requirements for
different navigation applications in terms of the maximum permissible position error and
its availability. The requirements found in various normative documents were used for
the analysis.
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Figure 1. Requirements for navigation positioning systems. Own study based on [16–24,26].

Figure 1 shows that each of the navigation applications should use a system with
adequate positioning accuracy. This means, among other things, that a system with a
positioning accuracy of 100 m cannot be used in hydrography as it requires a system with
a positioning accuracy of less than 20 m for order 2, 5 m for orders 1a/1b, 2 m for special
order and 1 m for exclusive order.

The navigation system positioning accuracy refers to the overlap between the statistics
of the measured position coordinates and their real values or values assumed to be real
(most often the average value from latitude (ϕ) and longitude (λ) measurements) [19].
A position accuracy measure is its error, which can be evaluated with reference to any
dimension: plane (2D) or space (3D). In navigation, a position error is defined as the radius
of the circle or sphere within which a certain proportion of position determinations should
statistically fall. It is commonly accepted in navigation that position error statistics refer to
95% of the population, as the safety of the navigation process depends largely on the naviga-
tion system positioning accuracy. The Twice the Distance Root Mean Square (2DRMS(2D))
is used as a position accuracy measure. Its determination starts with the calculation of the
DRMS(2D), which is the square root from the sum of the squares of the standard deviations
of the position coordinates relative to ϕ and λ, as per the following relationship:

DRMS(2D) =

√(
sϕ

)2
+ (sλ)

2, (1)

where: sϕ—standard deviation of the geodetic (geographic) latitude; sλ—standard devia-
tion of the geodetic (geographic) longitude.

The probability of the DRMS(2D) lies in the 63.2–68.3% range and depends on the
relationship between the standard deviations. For sϕ = sλ, p = 0.63, while for the relation
sϕ = 10 ·sλ, p = 0.68.
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To provide greater statistical reliability of the DRMS(2D) in navigation, the 2DRMS(2D)
measure is commonly used, taking the following form:

2DRMS(2D) = 2
√(

sϕ

)2
+ (sλ)

2. (2)

In navigation literature, the 2DRMS corresponds to a probability lying in the range
95.4–98.2% and is related to the relationship between the standard deviations determined
with the two coordinates. Figure 2 shows the geometric interpretation of the position error.

 
Figure 2. Geometric interpretation of the concept of navigation system position error in 2D plane
using DRMS and 2DRMS values.

Taking the 2DRMS value as the primary position accuracy measure by a navigation
system is based on the assumption that ϕ and λ errors are normally distributed [27,28].
However, this belief has been questioned in several publications. The most important
standard describing Global Positioning System (GPS) accuracy characteristics [28] states
that the difference between the empirical value (64 m) and the theoretical value (83 m), as
determined by the 2DRMS measure, was as much as 19 m. Similar conclusions concerning
the inconsistency of the statistical distributions of Differential Global Positioning System
(DGPS) and GPS position errors were raised by Frank van Diggelen, but with much smaller
discrepancies [29].

The author’s research, conducted on various navigation positioning systems, has
repeatedly confirmed the existence of such discrepancies. They related to systems such
as DGPS and the European Geostationary Navigation Overlay Service (EGNOS) [30],
the Global Navigation Satellite System (GNSS) and geodetic networks and multi-GNSS
solutions [31–33].

Questioning normal distribution as a model for navigation positioning system errors
has prompted the search for other methods to determine the value of the position error
with 95% probability, as commonly used in navigation [27,28]. One of the methods based
on reliability theory has already been proposed in [25]. This method allows the navigation
system positioning availability to be determined for a specific (given) value of the position
error based on life and failure times, and not based on measurement errors. The positioning
system is fit when the position error does not exceed the allowable error. The failure period
is defined as the logical negation of the fit period. A comparison of both methods (classical
and reliability) is presented in Figure 3.
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Figure 3. Comparison of the classical and reliability methods for assessing the positioning system’s ability to meet the
accuracy requirements for a navigation application.

In the classical approach, for a fixed probability (usually amounting to 95%), the
position error (value of the 2DRMS) is calculated, whereas in the reliability method an
acceptable error value is determined first, and only then is its probability is calculated. In
the first method, the position error is a random variable and in the second method the
random variable is the life or failure time. In the first method, 1D errors are assumed to be
normally distributed and 2D errors are assumed to follow a chi-square distribution, while
in the second method, exponential distributions of life and failure times are assumed.

The characteristics of the classical (based on the normal distribution) approach are
as follows:

• The calculations are based on simple Root Mean Square (RMS) determination relationships;
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• Gross errors and outliers significantly affect RMS (ϕ) and RMS (λ), causing a change
in the 2DRMS measure;

• Errors are analysed, not as a function of time, but as a function of the subsequent
measurement error. The navigation process runs as a function of time. The problem of
missing synchronisation with time will emerge in the case of erroneous measurements
(recording errors, which have to be removed from the dataset).

The reliability approach has the following characteristics:

• The calculations are quite complex;
• Gross errors and outliers affect the life and failure times in the same way as the

other measurements;
• The analysis is carried out as a function of time, similar to the navigation process.

This paper aims to compare both methods and to evaluate the positioning system in
terms of its fitness for a specific navigation application, based on real measurement data
from the positioning system (long sessions). Therefore, the scientific purpose of this article
are as follows:

1. To propose a new (reliability-based) method to calculate position error values for a
navigation system with a probability of 95%;

2. To verify which method (classical or reliability) produces results closer to empiri-
cal data;

3. To check, based on empirical data, the actual measurements of GPS, DGPS and
EGNOS systems, whether the distributions of life and failure times for position errors
are, in fact, exponential. The other distributions most commonly used in statistics will
be tested: beta, Cauchy, chi-square, exponential, gamma, Laplace, logistic, lognormal,
normal, Pareto, Rayleigh, Student’s and Weibull.

To assess which of the methods allows for more precise determination of the statistical
value of the position errors, the measured position errors were sorted from the smallest to
the largest, and based on this the value of the error that is greater exactly than 95% of the
error population will be determined. In the navigation literature [34], this value is referred
to as the R95 measure.

This is the third article in a series of monothematic publications “Research on empirical
(actual) statistical distributions of navigation system position errors” [35–37]. The main
scientific aim of this series is to answer the question of what statistical distributions follow
the position errors of navigation systems such as GPS, Global Navigation Satellite System
(GLONASS), BeiDou Navigation Satellite System (BDS), Galileo, DGPS, EGNOS and
others. It must be emphasised that the purpose of both this paper and the whole series
of publications is not to analyse the causes of Position Random Walk (PRW), such as
ionospheric and tropospheric effects, multipath, noise, etc. This article rather analyses the
statistical distributions of 1D and 2D position errors resulting from PRW. The causes might
be very complex and probably deserve a separate series of publications.

2. Materials and Methods

2.1. Classical Method for Determining the Positioning Accuracy of a Navigation System with
95% Probability

The classical method for determining the positioning accuracy of a navigation system
is based on a statistical approach. The works of Gerolamo Cardano [38], Pierre de Fermat
and Blaise Pascal [39] on gambling, as well as the works of Christiaan Huygens [40]
constitute the foundation of modern statistics. In 1812, Pierre-Simon Laplace formulated
the classic definition of probability [41], which was mathematically formalised in 1933
by Andrey Kolmogorov [42], who gave the basic formulas of probability calculus and
its axioms. Although modern statistics is an extremely young branch of mathematics, it
is widely used in many fields, ranging from engineering [43] and economics [44] to the
scientific aspects of computer science [45]. In navigation, similar to other sciences, it is
assumed that the position errors of navigation systems are normally distributed. Major
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arguments justifying the use of normal distribution in research on positioning in navigation
include [46]: intuition and tradition, simplicity of the distribution [47], consistency with
the central limit theorem, as well as use as an approximation [48].

Position accuracy in navigation can be defined as a degree of conformance between
the estimated or measured position and its true position. Position accuracy can be deter-
mined as different types of statistic. These can be calculated related to the true values of
coordinates (predictable accuracy), or, if the actual position is not known, the mean position
(repeatable accuracy) is often used as an approximation to the actual position. Both position
solutions must be based on the same geodetic datum, e.g., the World Geodetic System
1984 (WGS-84) [19]. The most commonly used position accuracy measures in navigation
and transport are as follows: CEP (Circular Error Probable, 2D, p = 0.5), SEP (Spherical
Error Probable, 3D, p = 0.5), RMS (1D, p = 0.632–0.683), DRMS (2D or 3D, p = 0.632–0.683),
2DRMS (2D or 3D, p = 0.954–0.982) or 3DRMS (Triple Distance Root Mean Square, 2D or 3D,
p = 0.997). The description of individual measures is presented in detail in [34]. However,
the most common accuracy measure for assessing the positioning accuracy of navigation
systems is 2DRMS.

2.2. Reliability Method for Determining the Positioning Accuracy of a Navigation System with
95% Probability

To assess the possibility of using a positioning system in a specific navigation applica-
tion, a mathematical model based on the general theory of reliability has been proposed.
Navigation has long used elements of reliability theory in studies related to the assessment
of availability, continuity, integrity and reliability, but so far they have not been applied to
assess whether a positioning system meets a certain level of accuracy and to determine the
navigation system positioning accuracy [49].

Let us consider a positioning system that determines position as a function of time with
an error defined as δn. Let us choose a specific type (s) of navigation applications for which
we intend to check whether the positioning system meets the application requirements in
terms of accuracy and availability. These requirements are presented in [16–24,26]. Let us
run a measurement session of the positioning system of a representative length [37] and
calculate position errors as a function of time.

Figure 4 (top graph) shows the curve presenting the position error value as a function
of time for any positioning system, which should be evaluated in terms of its usability in
three exemplary navigation applications. Such applications include: road transport for
vehicle identification, with the maximum allowable position error being 1 m with 95%
availability, hydrography for orders 1a/1b, with the maximum allowable position error
being 5 m with 95% availability and harbour entrance and approach phase for large ships,
with the maximum allowable position error being 20 m with 99.7% availability.

Please note that in the presented graph (Figure 4a) the position error value varies as a
function of time. Because, near the starting point in this plot, the position error exceeds
20 m, it does not provide the accuracy required for the harbour entrance and approach
phase for large ships. This also means that a system with such an error cannot ensure the
safe positioning of this process. As a result of exceeding the maximum permissible position
error, the system’s fitness changes into an unfitness status, as reflected by the “0” values in
Figure 4d. After some time, the position error (Figure 4a) decreases to less than 1 m, which
means that, for some of the time, the system can be used in all applications. As a result
of the reduction in the position error value, for all its applications, the working state of
the system changes into a fitness status (Figure 4b–d). The graph (Figure 4a) presents the
maximum permissible error values for all three navigation applications (1 m, 5 m and 20 m).
If the position error exceeds any of these values, the working state changes. If the position
error is smaller than this set value, the system enters the fitness status, and if it is larger,
the system is in the unfitness status. Thus, the position coordinate determination can be
treated as a two-status stationary renewal process, in which the life and failure times will
become random variables, and not the position error as before (a classical approach) [50].
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Figure 4. The position error as a function of time (a) and three diagrams corresponding to the
operational status for: (b) vehicle identification; (c) orders 1a/1b; (d) large ships.

To be able to determine whether the system was fit or not, a U variable was introduced
which corresponds to the maximum allowable value of the position error. Let us write it
for the three applications under consideration as:

U =

⎧⎪⎨⎪⎩
1 m (p = 0.95) for road transport – vehicle identification

5 m (p = 0.95) for hydrography – orders 1a/1b

20 m (p = 0.997) for harbour entrance and approach phase – large ships

(3)

Assuming that the positioning process varies with time, it can be assigned two states.
The first is the life time for which the position error is less than the maximum permissible
position error corresponding to the given navigation application (δn ≤ U for number of
measurements (n) = 1, 2, . . . ). When the inverse relationship occurs (δn > U), the system is
in a failure time.

Let us assume that X1, X2, . . . correspond to the durations of life times and Y1,
Y2, . . . denote the durations of failure times, which are independent and have the same
distributions. Changing the durations of life and failure times results in the change of
the operational status of a positioning system (α(t)). Hence, Z′

n = X1 + Y1 + X2 + Y2 +
. . . +Yn−1+Xn become the moments of failure, while Z′′

n = Z′
n+Yn are the moments of life

(Figure 5) [26,51].

 

Figure 5. The fitness and unfitness statuses of a positioning system in accordance with the reliability
method. Own study based on [51].
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For the reliability method, it is necessary to introduce a number of additional as-
sumptions and designations [50]. It should be assumed that the Cumulative Distribution
Functions (CDF) of life (F(x)) and failure (G(y)) times are right-continuous:

P(Xi ≤ x) = F(x) , (4)

P(Yi ≤ y) = G(y) for i = 1, 2, . . . , (5)

and that the expected values and variances will take the form:

E(Xi) = E(x) , (6)

E(Yi) = E(y) , (7)

V(Xi) = σ2
1 , (8)

V(Yi) = σ2
2 for i = 1, 2, . . . , (9)

where: E(Xi)—expected value of the life time; E(Yi)—expected value of the failure time;
V(Xi)—variance of the life time; V(Yi)—variance of the failure time.

Moreover, it should be noted that:

σ2
1 + σ2

2 > 0. (10)

Based on the above assumptions, it is possible to determine the relationship between
the δn and U parameters. Thanks to this, the operational status of a positioning system can
be assigned as [26,51]:

U =

{
1 for Z”

n ≤ t < Z′
n+1

0 for Z′
n+1 ≤ t < Z”

n+1
for n = 0, 1, . . . . (11)

Let us define the navigation system positioning availability (A(t)) as the probability
that at any moment of t, δn will not be greater than the value of U [51]:

A(t) = P[δ(t) ≤ U], (12)

A(t) = 1 − F(t) +
t∫

0

[1 − F(t − x)]dHΦ(x), (13)

where:

HΦ(x) =
∞

∑
n=1

Φn(x) (14)

is a function of the renewal stream made up of the renewal moments of the navigation
system complying with a specific operation type, while Φn(t) is a distribution function of
the random variable Z”

n.
For the purposes of navigation applications, the distributions of life and failure times

are exponential. Therefore, their CDFs and Probability Density Functions (PDF) can be
calculated using the following formulas [50]:

f (t) =

{
λ · e−λ·t for t > 0

0 for t ≤ 0
, (15)

g(t) =

{
μ · e−μ·t for t > 0

0 for t ≤ 0
, (16)

F(t) =

{
1 − e−λ·t for t > 0

0 for t ≤ 0
, (17)
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G(t) =

{
1 − e−μ·t for t > 0

0 for t ≤ 0
, (18)

where: f(t)—PDF of the life time; g(t)—PDF of the failure time; λ—failure rate; μ—renewal rate.
When these assumptions are adopted, the final form of the availability can be noted

as [51]:

Aexp(t) =
μ

λ + μ
+

λ

λ + μ
· e−(λ+μ)·t, (19)

as for the limit value:

lim
t→∞

[
Aexp(t)

]
= Aexp =

1
λ

1
λ + 1

μ

=
μ

μ + λ
. (20)

2.3. Description of GPS, DGPS and EGNOS Measurement Campaigns

Three different navigation positioning systems, commonly used in world navigation,
were used to study the reliability method. They include GPS (measurements from 2013),
DGPS (measurements from 2014) and EGNOS (measurements from 2014).

GPS is a space-based radionavigation system owned by the United States Government
(USG) and operated by the United States Space Force (USSF). The GPS provides two
services, or levels of accuracy: the Precise Positioning Service (PPS) and the Standard
Positioning Service (SPS). The PPS is available to authorized users and the SPS is available
to all users. SPS is the standard specified level of positioning, velocity, and timing accuracy
that is available, without restrictions, to any user on a continuous worldwide basis. It
provides a global average predictable positioning accuracy of 8 m (p = 0.95) horizontally
and 13 m (p = 0.95) vertically and time transfer accuracy within 30 ns (p = 0.95) of Universal
Time Coordinated (UTC) (Figure 6a) [52].

DGPS is an enhancement of the GPS, carried out through the use of differential
corrections to the basic satellite measurements performed within the user’s receiver. The
DGPS is based on accurate knowledge of the geographic location of a reference station,
which is used to compute corrections to GPS parameters and the resultant position solution.
These differential corrections are then transmitted to DGPS users, who apply the corrections
to their received GPS signals or computed position. For a civil user of SPS, differential
corrections can improve navigation accuracy to better than 5 m (p = 0.95) (Figure 6b) [53,54].

EGNOS is Europe’s regional Satellite-Based Augmentation System (SBAS), which
is used to improve the performance of GNSS systems, such as GPS and Galileo. It has
been deployed to provide the safety of life navigation services to aviation, maritime and
land-based users over most of Europe. According to [55], the positioning accuracy of the
Open Service (OS) should be smaller than 3 m (p = 0.95) horizontally and 4 m (p = 0.95)
vertically (Figure 6c).

  
(a) (b) (c) 

Figure 6. Principles of: (a) GPS; (b) DGPS; (c) EGNOS. Own study based on [56].
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The following empirical data were used for the numerical analyses:

• The GPS measurements were carried out at a point with coordinates:
ϕ = 54◦32.585029′ N and λ = 18◦32.741505′ E (Poland). In March 2013, 168′286 fixes
were recorded with a recording frequency of 1 Hz. A typical 12-channel GPS code
receiver was used in the study;

• The DGPS measurements were carried out at a point with coordinates:
ϕ = 54◦31.756087′ N, λ = 18◦33.574138′ E and h = 68.070 m (Poland). In April 2014,
951′698 fixes were recorded with a recording frequency of 1 Hz. 900′000 fixes were
used for the analyses, which were the same as for EGNOS. A typical marine DGPS
code receiver was used in the study;

• The EGNOS measurements were carried out at a point with coordinates:
ϕ = 54◦31.756087′ N, λ = 18◦33.574138′ E and h = 68.070 m (Poland). In April 2014,
927′553 fixes were recorded with a recording frequency of 1 Hz. 900′000 fixes were
used for the analyses, which were the same as for DGPS. A typical land EGNOS code
receiver was used in the study.

3. Results

The research aims were formulated in the form of questions:

1. Do the empirical (actual) distributions of life and failure times for position errors
follow an exponential distribution?

2. Are there distributions other than exponential with a better fit?
3. Depending on the value of the error determining the fitness status (maximum permis-

sible position error for a navigation application), will the statistical distribution of life
times change or not?

Research on distributions of life times began with the analysis of GPS position error
results. A recording session of 168′286 fixes was studied. This can be considered statistically
representative, according to the analyses conducted in [37]. Figure 7 presents the graph of
the position error as a function of time. The figure also shows two accuracy values (1 m
and 2 m), which correspond to the requirements of road transport for vehicle identification
and hydrography for special order.

Figure 7. GPS position error as a function of time (168′286 fixes) and two decision thresholds corresponding to the
requirements of road transport for vehicle identification and hydrography for special order.

To automate the process of determining life and failure times, the position error values
needed to be assigned to one of the operational statuses: 1 (life status, when the temporary
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position error is below a pre-set limit value) or 0 (failure status, in the opposite case) at any
point in time. For this purpose, a calculation sheet was prepared in Mathcad 15 (Figure 8).

Figure 8. Mathcad worksheet for determining life and failure times based on the GPS 2013 measure-
ment campaign.

In the sheet shown in Figure 8, the calculations began with importing measurement
data consisting of position errors. The position error limit was then determined arbitrarily.
In the worksheet, it is 1m. Next, two vectors were created consisting of life (vector_11) and
failure (vector_10) times.

Both vectors were saved as text files and then uploaded to the EasyFit software, where
they were analysed for fit to typical statistical distributions. These distributions included:
beta, Cauchy, chi-square, exponential, gamma, Laplace, logistic, lognormal, normal, Pareto,
Rayleigh, Student’s and Weibull.

For GPS position errors, calculations were carried out for two variants, 1 m and
2 m, corresponding to example navigation applications such as from road transport for
vehicle identification (1 m) and hydrography for special order (2 m). In P-P plots, the
empirical probability distribution function is plotted against the theoretical distribution.
The observations are first sorted in descending order. The i-th observation is then plotted
on one axis as i

n (i.e., the value of the observed cumulative distribution) and the other
axis as F(xi), where F(xi) is the value of the theoretical probability distribution function for
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respective observation xi. If the theoretical cumulative distribution is a good approximation
of the empirical distribution, then the points on the diagram should be close to the diagonal.

The research began with an analysis of GPS failure times. The results of P-P plot
analyses are presented in Table 1. Moreover, the list of theoretical distributions with the
best (top) and worst fit can be seen next to each of the graphs.

Table 1. P-P plots of life and failure times for empirical GPS position errors (1 m and 2 m).

GPS

P-P Plot: Life Time for the Position Error Amounted to 1 m P-P Plot: Failure Time for the Position Error Amounted to 1 m

    
P-P Plot: Life Time for the Position Error Amounted to 2 m P-P Plot: Failure Time for the Position Error Amounted to 2 m

    

The analyses show that the assumption (very common in technology) that the life and
failure times follow exponential distribution is questionable. It is clear that, for distribution
function, values below 0.9 (both empirical and theoretical) are poorly fitted. On the contrary,
above this value the fit is very good, which may suggest that the failure (λ) and renewal
(μ) rates can be calculated very reliably on its basis. It has also been stressed that it is
not an exponential distribution but a lognormal distribution that provides a very good
approximation of the life and failure time statistics. Furthermore, analyses performed on
two different decision thresholds (1 m and 2 m) produced similar conclusions regarding the
mismatch between the empirical and theoretical (exponential) distributions for distribution
function values below 0.9.

Therefore, it is reasonable to conduct identical analyses for other navigation position-
ing systems such as DGPS and EGNOS. These analyses have been performed for a very
large sample of 900′000 fixes. Table 2 presents the PDFs of life and failure times, together
with the best-fit distributions for the DGPS system. Moreover, Table 2 shows the P-P plots
for DGPS and EGNOS systems.

The distribution of DGPS system life and failure times is similar to that of GPS,
although empirical data fit theoretical exponential distribution much better. On the contrary,
for EGNOS it is clear that the empirical distributions of life and failure times deviate
significantly from the theoretical distributions. However, as in the case of GPS and DGPS
systems, for values above 0.9, the fit is very good.
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Table 2. Statistical analysis of life and failure times for empirical DGPS and EGNOS position errors (1 m).

DGPS

PDF: Life Time for the Position Error Amounted to 1 m PDF: Failure Time for the Position Error Amounted to 1 m

    

P-P Plot: Life Time for the Position Error Amounted to 1 m P-P Plot: Failure Time for the Position Error Amounted to 1 m

    

EGNOS

P-P Plot: Life Time for the Position Error Amounted to 1 m P-P Plot: Failure Time for the Position Error Amounted to 1 m

    

The following conclusions can be drawn from the empirical studies and theoretical
analyses carried out:

• The analysis of GPS data indicates that the lognormal distribution reflects the course
of the PDF of life and failure times determined for navigation system position errors
significantly better than the exponential distribution;

• For values above 0.9, the fit between theoretical and empirical distributions (exponen-
tial distribution) is very good in all the analysed cases;

• The results obtained from the GPS system also prove that increasing the decision
threshold from 1 m to 2 m causes a previously predictable change in the distributions
of life and failure times, which does not explicitly prove that this will affect the final
results of positioning accuracy calculations;

• Similarly, as in the case of GPS and DGPS systems, EGNOS exhibits similar properties
when it comes to fit between the normal distribution and the empirical data.

The next research stage was to determine the failure and renewal rates of the renewal
process. Both of these values made it possible to determine the course of the availability
function calculated for an arbitrary position error.

Finally, to present the position error distribution functions of the GPS, DGPS and
EGNOS systems, repeated calculations of the probability value corresponding to a given
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position error value ware performed. It has been assumed that to determine the distribution
function, the position error value was increased from 0, every 0.1 m, up to 4 m. The course
of distribution functions calculated based on the reliability model is presented in Figure 9.

Figure 9. Position error distribution functions of the GPS, DGPS and EGNOS systems calculated
using the reliability model.

Please note that the DGPS and EGNOS systems achieved positioning accuracies below
1 m (p = 0.95) on a very large and probably representative sample. Therefore, it is concluded
that both systems can be successfully used in navigation applications requiring positioning
accuracies of 1 m (p = 0.95), even though the official system characteristics given in [57] are
3 m (p = 0.95) horizontally and 4 m (p = 0.95) vertically.

It needs to be particularly emphasised here that it is not the purpose of this article
to establish the actual value of the position error of the studied systems, including the
EGNOS system. This paper aims to propose a new reliability model which will allow, as an
alternative to the classical method using the 2DRMS value, one to determine the navigation
system positioning accuracy and the corresponding probability.

4. Discussion

The presented reliability model requires an assessment of its accuracy. This can only
be carried out in relation to calculations performed directly on empirical (real) values.
The most reliable method of determining the position error value larger than 95% of the
population of the remaining errors is to calculate it by sorting the errors from the smallest
to the largest. This method of error determination is used in several publications [30,32,33].
There is no doubt that with a very large number of measurements this method produces
the most reliable results because it does not assume any statistical distribution of empirical
position errors. Therefore, to assess which of the two models (classical or reliability) is
closer to the true value, the R95 value obtained by the method of sorting the position errors
was used.

There are two curves presented in Figure 10. The first curve is the empirical distribu-
tion function of the sorted position errors (red) from the GPS system, which takes the value
of 2.039 m (p = 0.95). This is an R95 value that can be considered close to true due to a large
number of measurements (168′286 fixes). The distribution function calculated from the
proposed reliability model (green) reaches a value of 2.044 m (p = 0.95). In contrast, the
2DRMS value calculated in the classical way (blue) takes the value of 2.240 m (p = 0.95).
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Figure 10. Comparison of three methods for calculating position error values larger than 95% of the
population of remaining errors. Analysis of results for the GPS system.

From Figure 10, it follows that a much better approximation of the R95 value was
obtained by applying the reliability model than by using the 2DRMS measure.

To verify the accuracy of the reliability method on systems other than GPS, an identical
analysis was performed for DGPS and EGNOS systems. It needs to be emphasised that,
because the calculations used a very large sample of 900′000 fixes, the results can be
considered reliable and representative (Figure 11).

  
(a) (b) 

Figure 11. Comparison of three methods for calculating position error value larger than 95% of the population of the
remaining errors. Analysis of results for: (a) DGPS; (b) EGNOS.

Empirical distribution function graphs (obtained by position error sorting) and those
obtained based on the reliability model, for DGPS and EGNOS systems, prove that the
reliability model provided a better approximation of the true value than the commonly
used 2DRMS measure. For the DGPS system, the value considered to be the true R95
was 0.748 m. Calculation using the reliability model yielded 0.756 m (p = 0.95), while
the 2DRMS measure was 0.885 m. The same is true for the EGNOS system. The value
of the R95 was 0.854 m and the value calculated using the reliability model was 0.856 m,
whereas the value of the 2DRMS was 0.901 m. Please note that many authors [29] have
already noted the overestimation of the actual values by the 2DRMS measure, which is
confirmed by the results presented in Figures 10 and 11. Therefore, it may be concluded
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that the proposed reliability model calculates the R95 value much more accurately than the
classical model.

5. Conclusions

This paper proposes a new method, an alternative to the classical solution based on
the 2DRMS measure, for determining navigation system positioning accuracy, which, in its
essence, is based on the reliability model. The random variables are life and failure times
in the positioning process, and not, as was the case in the classical model, the position
errors. This method can be successfully used in assessing the suitability of a positioning
system for a specific navigation application. It allows for the calculation of the system’s
position error with a probability of 95% more accurately than using the classical approach.
The method was applied to determine the positioning accuracy of modern navigation
systems: GPS (168′286 fixes), DGPS (900′000 fixes) and EGNOS (900′000 fixes). Although
empirical distributions of life and failure times differ from the theoretical exponential
distribution (for distribution functions with a probability below 0.9), the method provides
high accuracy of the final results. An additional advantage of this method lies in the rather
simple calculation algorithm.

What was a surprising result of this research was that the lognormal distribution
presented a very good fit to the empirical data on life and failure times of all three systems
(GPS, DGPS and EGNOS). This requires additional analysis in future research.

Tests conducted on very large measurement samples have proven that the proposed
method provides a much more precise determination of positioning accuracy in navigation
systems compared to the 2DRMS measure. Thanks to its application, it is possible to
determine the position error distribution of the navigation system more precisely, as well
as to indicate applications that can be used by this system, ensuring the safety of the
navigation process.

It should be noted that the proposed method is not limited only to navigation position-
ing systems. With minor modifications, it can be successfully applied to the applications
listed in Figure 1, which all differ in positioning accuracy and availability. The R95 mea-
sure, which was used to compare two models (classical or reliability), is a narrow scope
of application. It is intended to determine the position error value for a strictly defined
confidence level of 95%.
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Abstract: Global navigation satellite system interferometric reflectometry (GNSS-IR) represents
an extra method to detect snow depth for climate research and water cycle managing. However,
using a single frequency of GNSS-IR for snow depth retrieval is often found to be challenging when
attempting to achieve a high spatial and temporal sensitivity. To evaluate both the capability of
the GNSS-IR snow depth retrieved by the multi-GNSS system and multi-frequency from signal-to-
noise ratio (SNR) data, the accuracy of snow depth retrieval by different frequency signals from
the multi-GNSS system is analyzed, and a joint retrieval is carried out by combining the multi-
GNSS system retrieval results. The SNR data of the global positioning system (GPS), global orbit
navigation satellite system (GLONASS), Galileo satellite navigation system (Galileo), and BeiDou
navigation satellite system (BDS) from the P387 station of the U.S. Plate Boundary Observatory
(PBO) are analyzed. A Lomb–Scargle periodogram (LSP) spectrum analysis is used to compare
the difference in reflector height between the snow-free and snow surfaces in order to retrieve the
snow depth, which is compared with the PBO snow depth. First, the different frequency retrieval
results of the multi-GNSS system are analyzed. Then, the retrieval accuracy of the different GNSS
systems is analyzed through multi-frequency mean fusion. Finally, the joint retrieval accuracy of the
multi-GNSS system is analyzed through mean fusion. The experimental shows that the retrieval
results of different frequencies of the multi-GNSS system have a strong correlation with the PBO
snow depth, and that the accuracy is better than 10 cm. The multi-frequency mean fusion of different
GNSS systems can effectively improve the retrieval accuracy, which is better than 7 cm. The joint
retrieval accuracy of the multi-GNSS system is further improved, with a correlation coefficient (R)
between the retrieval snow depth and the PBO snow depth of 0.99, and the accuracy is better than
3 cm. Therefore, using multi-GNSS and multi-frequency data to retrieve the snow depth has a good
accuracy and feasibility.

Keywords: GNSS-IR; snow depth; signal-to-noise ratio; multi-GNSS; multi-frequency; mean fusion

1. Introduction

Snow is an important part of the land hydrological cycle and global climate system.
Accurate real-time snow depth data are an important reference indicator for water resource
management and climate disaster warning [1,2]. Among the existing snow depth detection
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methods, in situ snow sensor measurement lacks time resolution, and global navigation
satellite system interferometric reflectometry (GNSS-IR), as a new microwave sensing
technology, has proven to be able to realize snow depth detection [3]. GNSS-IR is a kind of
satellite remote sensing technology that uses GNSS signals as the transmitting source to
realize the retrieval of the physical parameters of surface targets by receiving and processing
the interference effect of GNSS signals formed by direct and surface reflection [4–6]. At
present, this technology is mainly employed to retrieve the soil moisture content (SMC),
snow depth, and vegetation parameters [7–12].

In recent years, researchers have made remarkable achievements in GNSS-IR snow
depth detection. Larson et al. first proposed to extend the application of signal-to-noise
ratio (SNR) data observed by the traditional geodetic global positioning system (GPS)
receiver in order to detect snow depth [3]. Larson et al. conducted snow depth retrieval
using SNR data of a GPS L2C signal at multiple stations of the Plate Boundary Observatory
(PBO) and further verified the feasibility of this technology [13]. Later, Larson et al.
developed a snow depth retrieval algorithm based on GPS L1 SNR data, compared it
with the snow depth results of L2C signal retrieval, and found that the accuracy was
improved [14]. Tabibi et al. evaluated the value of GPS L5 SNR data in snow depth
detection, compared the results with the L2C signal, and found that there was no detectable
deviation in the L5 retrieval results [15]. Tabibi et al. proposed the global orbit navigation
satellite system multipath reflectometry (GLONASS-MR) SNR retrieval model, which
extended GPS-MR to multiple GNSS, and showed a strong correlation by comparing the
retrieval results of GPS L2C and GLONASS R2-coarse acquisition (C/A) signals [16]. Later,
Tabibi et al. used simulation and field measurements to evaluate the accuracy of GPS
and GLONASS combined multi-GNSS-MR snow depth retrieval. At the same time, the
variance factor was used to form the optimal multi-GNSS combined snow depth daily
sequence retrieval. Compared with the single signal snow depth retrieval results, the
accuracy was significantly improved [17]. Jin et al. used GPS L2P SNR data to retrieve
the snow depth, and compared it with GPS L1 C/A code results, which showed a high
correlation, indicating that using L2P SNR data can better estimate the snow depth [18].
Zhou et al. used GLONASS L1 SNR data for snow depth detection, and the accuracy
reached centimeter-level and showed a strong correlation with the measured data [19].
Zhou et al. also studied the retrieval of different signal combinations and proposed using
GPS L1, L2, and L5 signal multipath reflection and SNR combination for the retrieval of
snow depth. The results showed that this method can be effectively used for snow depth
detection [20].

The above scholars’ research on snow depth retrieval is based on GPS and GLONASS
observation data and has not been extended to other GNSS systems. To further analyze the
potential of other GNSS systems in snow depth detection, Wang et al. used the SNR data
of GPS L1 and BeiDou navigation satellite system (BDS) B1I signals to retrieve the snow
depth, finally reaching an accuracy of 5 cm in a day [21]. Wang et al. used multi-GNSS
system data to retrieve the snow depth and found that the trend of single signal retrieval
results of multi-GNSS system constellations was in good agreement, except for the GPS
precise code (P-code) signal. Then, the multi-GNSS system combination method based on
robust regression was used to combine the signal retrieval between constellations. The
results showed that the accuracy, availability, and time sampling of multi-GNSS system
combination retrieval were improved [22].

From the current research status, snow depth retrieval is mainly concentrated in
single or dual GNSS systems and single frequency SNR data, which is often found to be
challenging when attempting to meet the accuracy and time resolution requirements of
snow depth detection. Therefore, based on previous studies, this article conducts snow
depth retrieval using multi-GNSS and multi-frequency SNR data. For the case that the
antenna height of the GNSS receiver is unknown, the mean value of the multi-day Lomb-
Scargle periodogram (LSP) spectrum analysis results in the snow-free surface is used as
the initial reference reflector height of the multi-GNSS and multi-frequency GNSS-IR in the
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article. Then, the snow depth retrieval capability of the Galileo satellite navigation system
(Galileo) and BDS multi-frequency signal, which are rarely used to retrieve the snow depth,
except the GPS and GLONASS signal, are evaluated. A mean fusion of multi-frequency
retrieval results of different GNSS systems is proposed to improve the accuracy compared
with different frequencies of multi-GNSS system retrieval results. Finally, the multi-GNSS
system retrieval results are fused to further evaluate the accuracy of the GNSS combination
retrieval of snow depth. In this article, through the above process, the feasibility and
accuracy of multi-GNSS and multi-frequency GNSS-IR snow depth retrieval are evaluated.

2. Materials and Methods

2.1. GNSS-IR Snow Depth Retrieval Principle

The snow depth retrieval method used in the article is based on SNR data processing
of traditional geodetic GNSS receivers. The SNR is an indicator used to measure the signal
strength of global navigation satellites, which is mainly affected by antenna gain, satellite
transmission power, and multipath [23–25]. The multipath effect of the SNR decreases
with increasing satellite elevation angle. The direct and surface reflected signals will have
obvious interference effects at the receiver antenna when the satellite is at low elevation
angle. At the same time, the frequency of the reflected signal will also change with the
change in antenna height. The snow depth parameter can be obtained by comparing the
vertical distance difference between the reflection surface and the receiver antenna phase
center under snow-free and snow conditions.

Figure 1 shows that direct signal and reflected signal generate corresponding in-
terference effects at the receiver to form a composite interference signal, which can be
expressed as [24]:

SNR = A2
d + A2

r + 2Ad Arcos ϕ, (1)

where Ad and Ar are the amplitudes of the direct signal and the reflected signal, and ϕ is
the difference between the phases of the direct signal and the phases of the reflected signal
(the unit is rad), which can be expressed as [26]:

ϕ =
4πh

λ
sin θ, (2)

where λ is the wavelength of the signal; θ is the elevation angle of the satellite; h is
the vertical distance from the reflector to the antenna phase center; and the full text is
uniformly called the reflector height.

Because the change in snow depth parameters is only related to the reflected signal
in the composite SNR data, it is necessary to eliminate the direct signal in the composite
SNR to obtain the reflected signal part. In the article, the composite SNR data are fitted by
a cubic low-order polynomial, and the composite SNR is linearized before fitting [27]:

SNR(volts/volts) = 10
SNR(dB−Hz)

20 , (3)

After the trend of the direct signal sequence is fitted, the SNR sequence of the re-
flected signal that removes the influence of the direct signal can be obtained, which can be
expressed as SNRr [28]:

SNRr = Ar cos(
4πh

λ
sin θ + ϕ), (4)

f is the signal frequency of the multipath effect part in the SNR. After simplification, the
relationship reflector height and the satellite signal wavelength can be obtained as follows:

f =
2h
λ

h =
λ f
2

, (5)
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Figure 1. Schematic diagram of GNSS-IR snow depth retrieval. After the satellite sends the signal, the
right-handed circular polarized (RHCP) antenna receives the direct signal and the surface reflected
signal, and produces interference effect at the receiver. The snow surface reflector height (Hs) and
snow-free surface reflector height (Hs f ) are calculated, respectively, by analyzing the oscillation effect,
and the snow depth (hsd) is calculated by comparing the differences between them. θ is the elevation
angle of the satellite.

In the article, the LSP method is used to analyze SNRr, obtain f , and extract h [3,29,30].
As shown in Figure 1, the snow depth parameter is calculated by using the above method
by comparing reflector height in the case of snow-free and snow surfaces:

hsd = Hs f − Hs, (6)

where Hs f and Hs are the snow-free and snow surface reflector height, and hsd is the
snow depth.

Snow depth retrieval is mainly determined by snow and snow-free surface reflector
height. Wang et al. mentioned that non-planar reflecting surface and atmospheric refraction
in GNSS-IR techniques can lead to errors in reflector height. These two errors are mainly
considered in the sea level height retrieval, but rarely in the snow depth, as the snow
depth changes slowly, and the reflector height to snow depth is usually smaller than that
to the sea level [22]. The purpose of the article is to evaluate the ability of multi-GNSS
and multi-frequency GNSS-IR snow depth retrieval, without focusing on the actual error
impact caused by these two factors.

2.2. Data Source
2.2.1. Station Location and Surrounding Environment

This article selects GNSS observation data and snow depth data collected at the P387
station (Figure 2) of the PBO, which is located in Sisters, Oregon, the U.S., with an altitude
of 963.041 m. The specific location of the station is 44.29675◦N and 121.57446◦W. The data of
the P387 station is collected by SEPTENTRIO (SEPT) POLARX5 receivers and TRM59800.80
antennas pointing toward the zenith with a sampling frequency of 15 s. The terrain around
this station is flat without trees, and the signal acquisition conditions are good.

Figure 2 shows that, regarding the P387 site location and surrounding environment,
the terrain around P387 is flat. The ability of multi-GNSS and multi-frequency GNSS-IR
snow depth retrieval is key to the article. In order to reduce the influence of terrain on the
reflector height, the experimental region with small surface fluctuation is selected.
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(a) (b)

(c) (d) (e) (f)

Figure 2. P387 station conditions: (a) station location in the world; (b) site vision; (c) site north; (d) site south; (e) site east;
(f) site west.

At the same time, it can be seen that the vegetation around the P387 site is rare, and
that the vegetation type is lawn. The surface can be defined as bare soil in winter snow
stage. Therefore, with the melting of snow, the surface is gradually exposed, and the signal
reflected by the surface is less affected by vegetation attenuation. The surface should be
selected to be close to the bare soil in the subsequent analysis of snow-free reflection, so as
to reduce the influence of vegetation error caused by the reflector height of snow-free and
snow surface.

The roughness of snow surface will also lead to a retrieval error. In the article, the
snow surface is regarded as a plane when extracting the reflector height, and it is not
corrected temporarily.

For the above description, the calculation results of the reflector height in the snow-
free and snow surfaces will not cause significant errors due to the change in the position of
the mirror point. Therefore, the rise and fall stages of the satellite can be used as a signal
source when selecting the experimental data. Nevertheless, it is necessary to determine
whether it is a continuous observation period in advance in order to select the available
arc segment.

2.2.2. Selection and Analysis of Experimental Data

Figure 3 shows the PBO snow depth data between days of year (DOYs) 024 and 065
of 2017. The article also selects GNSS observation data at this time, and the observation
period selected in the article is when the snow has reached the deepest state, followed
by the process of ablation. The feasibility and accuracy of snow depth retrieval using
multi-GNSS and multi-frequency SNR data are verified by the change in the snow depth.

During the experiment period, when the GNSS signal is transmitted to the surface
receiver, the signal will pass through the atmosphere, and a signal refraction effect will
occur when passing through the troposphere. Williams et al. considered that tropospheric
delay will cause height error in the obtained vertical reflection distance [31]. Aiming at this
problem, this article gives the tropospheric delay information during the experiment, as
shown in Figure 4.
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Figure 3. Snow depth of P387 in the experimental period.

Figure 4. Atmospheric delay information of P387 station during the experiment.

As can be seen from Figure 4, the troposphere delay slowly changes during the 42 days
of experiment, and is basically the same. He et al. corrected the tropospheric delay error in
the process of retrieving coastal typhoon storm surge by using GNSS-IR signal, and the final
accuracy was only improved by approximately 0.5 cm, which can ignore its influence [32].
Therefore, the error caused by tropospheric delay is not especially corrected in the process
of snow depth retrieval.

2.2.3. Reflection Region Analysis

The effective reflection region of GNSS signal to the surface can be described by the
first Fresnel reflection region, which is a group of ellipses related to the receiver antenna
height, satellite azimuth, and satellite elevation angle.

Figure 5a shows the Fresnel reflection region of GPS G10 satellite with DOY of 024 in
2017 at P387 station. Assuming that receiver antenna height is 2 m, different color lines
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represent the reflection regions with different satellite elevation angles. With the increase
in the elevation angle, the Fresnel reflection region will be smaller. The figure shows the
Fresnel reflection region map of the satellite elevation angle of 5–25 degrees.

(a) (b)

Figure 5. Reflection region and reflection point track: (a) Fresnel reflection region around P387 station; (b) ground motion
trajectory of reflection points around P387 station.

It can be seen that the effective reflection region is related to the satellite elevation angle.
When the satellite elevation angle gradually increases, the effective reflection region will
be decrease in size, and will gradually approach the receiver antenna. Large interference
will occur when the satellite is at a low elevation angle. The larger the satellite elevation
angle, the less affected the satellite is by the multipath of surrounding signals. Therefore,
the signal data with low satellite elevation angle should be selected in the process of snow
depth retrieval.

Figure 5b shows that the trajectory of reflection points changes with the change in the
relative position between GNSS satellite and receiver, showing both different directions and
distributions at different arcs and the ground reflection point trajectory formed by some
satellites of the four GNSS systems. The combined signal sensing range of the four GNSS
systems is significantly expanded, which can provide more data sources and wider sensing
region, which is conducive to improving the time resolution of snow depth retrieval.

2.2.4. SNR Types

PBO provides multi-GNSS and multi-frequency SNR data in the observation data
of receiver independent exchange format (RINEX) version 3.03. The SNR types of P387
station mainly include S1C, S1W, S2L, S2W, and S5Q for GPS; S1C and S2C for GLONASS;
S1C, S5Q, S6C, S7Q, and S8Q for Galileo; S2I, S6I, and S7I for BDS; S1C, S2L, and S5Q for
quasi-zenith satellite system (QZSS); and S1C and S5I for satellite-based augmentation
system (SBAS). The data sampling interval is 15 s, and the specific information is shown in
Table 1.

Table 1 shows that the P387 station provides SNR data of different signal types of six
satellite systems. After reading the data, it is found that the QZSS and SBAS have fewer
satellites and no available arc segments. Therefore, this article does not consider using
QZSS and SBAS data for snow depth retrieval; instead, the SNR data of GPS, GLONASS,
Galileo, and BDS are used. In the article, multi-GNSS and multi-frequency SNR data are
used to retrieve the snow depth. In addition to GPS, the observation satellites will be
extended to other systems, which is of great help in improving the retrieval accuracy of
snow depth and expanding the observation range and time resolution.
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Table 1. Multi-GNSS and multi-frequency SNR types and description information provided by the P387 station.

Satellite
System

Frequency
Band/Frequency (MHz)

Channel or Code Carrier Phase SNR Types Yes/No Use

GPS

L1/1575.42
C/A L1C S1C

YES
Z-tracking and similar (AS on) L1W S1W

L2/1227.60
L2C(L) L2L S2L

Z-tracking and similar (AS on) L2W S2W
L5/1176.45 Q L5Q S5Q

GLONASS
G1/(1602 + k*9/16)

K = −7 . . . + 12 C/A L1C S1C
YES

G2/(1246 + k*7/16) C/A L2C S2C

Galileo

E1/1575.42 C L1C S1C

YES
E5a/1176.45 Q L5Q S5Q
E6/1278.75 C L6C S6C

E5b/1207.14 Q L7Q S7Q
E5(E5a + E5b)/1191.795 Q L8Q S8Q

BDS
B1/1561.098 I L1I S2I

YESB3/1268.52 I L6I S6I
B2/1207.140 I L7I S7I

QZSS
L1/1575.42 C/A L1C S1C

NOL2/1227.60 L2C(L) L2L S2L
L5/1176.45 Q L5Q S5Q

SBAS
L1/1575.42 C/A L1C S1C

NOL5/1176.45 I L5I S5I

Note: When reading RINEX 3.03, BDS 1I/Q/X and 2I/Q/X can be regarded as the same as 2I/Q/X in the current RINEX standard, and the
AS in Table 1 is anti-spoofing.

3. Experiment and Results

3.1. Experimental Technical Scheme

Figure 6 shows the experimental technical scheme of multi-GNSS and multi-frequency
GNSS-IR snow depth retrieval. It can be seen that the technical route of the article can
be divided into three parts: (1) GNSS-IR data preprocessing is carried out, where the
SNR, pseudo-random noise (PRN), satellite elevation angle, azimuth angle, and other
data parameters are extracted from the observation (OBS) file and navigation (NAV) file
collected by GNSS receivers; (2) the LSP method is used to analyze both the reflector
height of snow-free and snow surfaces and the difference between them in order to retrieve
the snow depth; (3) the multi-GNSS and multi-frequency GNSS-IR snow depth retrieval
results and PBO snow depth data are compared, and then the mean fusion analysis of the
multi-GNSS and multi-frequency GNSS-IR snow depth retrieval results is carried out.

Figure 6 shows that RTKLIB software is used for data processing in the article. By
reading the OBS file and NAV file in RINEX 3.03 format, the corresponding elevation angle,
azimuth angle, SNR, and other data can be extracted. In order to select the satellites in the
four GNSS systems that have available observation arc data in 42 days of the experimental
stage, this article finally sets the G10 satellite of GPS, R17 satellite of GLONASS, E12
satellite of Galileo, and C14 satellite of BDS as the experimental data source satellites. In
the article, the SNR data in the rising stage are mainly selected for processing. When
the retrieval results show abnormal values, the SNR data in the falling stage can be
selected as a supplement for retrieval. At the same time, the minimum elevation angle
threshold of 5 degrees can also be increased accordingly in order to achieve a more practical
retrieval value.
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Figure 6. The technical process of multi-GNSS and multi-frequency GNSS-IR snow depth retrieval.
Among the ele is the satellite elevation angle.

3.2. Extraction h
3.2.1. Multi-GNSS and Multi-Frequency SNR Sequence Extraction

In the article, multi-GNSS and multi-frequency SNR sequences are extracted by RTK-
LIB software. Figure 7 shows the rising SNR sequences of G10 (S1C, S2L, and S5Q), R17
(S1C and S2C), E12 (S1C, S5Q, S6C, S7Q, and S8Q), and C14 (S2I, S6I, and S7I) satellites in
the four GNSS systems on DOY 024 in 2017. Through data preprocessing, it is found that
the SNR values of G10 (S1W and S2W) are the same, and that the SNR difference with other
signal frequencies is significant. Therefore, these two types of SNR data are not used for
the experimental in the article. Figure 7 shows the SNR sequence change in the elevation
angle from low to high.
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(a) (b)

(c) (d)
Figure 7. Multi-GNSS and multi-frequency SNR sequences: (a) DOY 024: GPS SNR sequence;
(b) DOY 024: GLONASS SNR sequence; (c) DOY 024: Galileo SNR sequence; (d) DOY 024: BDS
SNR sequence.

Figure 7 shows that the SNR sequence has strong oscillation at a low elevation angle.
It is greatly affected by multipath at a low elevation angle, and the interference caused by
the direct signal and the reflected signal is obvious. When increasing the elevation angle,
the interference degree gradually decreases. Therefore, after removing the direct signal
from the SNR sequence, this article mainly selects the SNR sequence of the reflected signal
in the range of elevation angles of 5–30 degrees for snow depth retrieval. At the same time,
it can be seen that the SNR sequences of the four GNSS systems at different frequencies
have specific differences.

3.2.2. SNR Sequence Data Processing

In the article, the composite SNR sequence is linearized first, and then the linearized
SNR sequence is fitted by a cubic low-order polynomial to obtain the direct signal part.
The SNR sequence of the reflected signal is obtained by subtracting the composite SNR
sequence from the direct signal part. Figure 8 shows the processing of GPS S1C SNR data.

3.2.3. LSP Analysis Results of the Snow Surface

Based on the LSP method analysis of the SNR sequence of the multi-GNSS and
multi-frequency reflection signal of DOY 024 in 2017, the results are shown in Figure 9.

Figure 9 shows that there are some differences in the results of the multi-GNSS and
multi-frequency LSP analysis. Specifically, the S2L and S5Q results in GPS are 1.335 m and
1.330 m, which are consistent and close to 0.1 m compared with the S1C results. The results
of S1C and S2C in GLONASS are 1.230 m and 1.285 m, and the difference is 0.055 m. The
results of S1C, S5Q, S6C, S7Q, and S8Q in Galileo are 1.355 m, 1.285 m, 1.300 m, 1.315 m,
and 1.305 m. The difference between the maximum and the minimum is 0.070 m, and the
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deviation of S5Q, S6C, S7Q, and S8Q is slight. The results of S6I and S7I in BDS are 1.275 m
and 1.310 m, respectively, and the difference is slight. The difference between the results of
S6I and S2I is 0.095 m. From the above data, it can be seen that the LSP analysis results of
different GNSS systems are different, and that the results of different frequencies in each
GNSS system are also different, but the overall consistency is good. In the article, through
the LSP method analysis, the reflector height in the multi-GNSS and multi-frequency can
be obtained, and the LSP of the snow surface can be obtained.

(a) (b)

Figure 8. SNR sequence data processing: (a) GPS S1C SNR and direct signal fitting; (b) reflected
signal extraction.

(a) (b)

(c) (d)
Figure 9. Multi-GNSS and multi-frequency LSP analysis results: (a) GPS LSP results; (b) GLONASS
LSP results; (c) Galileo LSP results; (d) BDS LSP results.

3.2.4. LSP Analysis Results of the Snow-Free Surface

In order to weaken the difference between the multi-GNSS and multi-frequency LSP
results, this article proposes that the snow-free surface reflector height is analyzed by
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the multi-GNSS and multi-frequency LSP results. Using the above method, the four-day
accumulated data (satellites G10, R17, E12, and C14) of DOY 225–228 in 2017 were selected
for processing; this period is about October and belongs to the defined bare soil period.
This article selects the data of this period to process, which can reduce the influence of
surface vegetation on signal propagation. The multi-GNSS and multi-frequency reference
values were obtained by averaging the four-day LSP results.

Figure 10 shows that there are some differences in the results of multi-GNSS and
multi-frequency LSP. There are some differences between the results of GPS S1C, S2L, and
S5Q, but the results of a single frequency at 4 days are basically the same, with slight
deviation. The Galileo S5Q, S6C, S7Q, and S8Q results are basically the same, and S1C has
a specific difference, but the results of a single frequency at 4 days are basically the same.
The deviation of the BDS S6I and S7I results is slight, and the deviation of the S2I results is
significant at 225 and 228 on the annual accumulation day. The results of the GLONASS
S1C analysis showed a significant variation at 227 accumulated days, and the rest showed
good consistency. In the article, the snow depth is obtained through the comparison of
the reflector height of different GNSS systems at different frequencies under snow and
snow-free surfaces, which can better adapt to the use of multi-GNSS and multi-frequency
GNSS-IR technology. The reference value of the reflector height in different GNSS systems
at different frequencies is calculated, as shown in Table 2.

Figure 10. The snow-free surface reflector height reference value of multi-GNSS and multi-frequency
LSP analysis results.

Table 2. Multi-GNSS and multi-frequency LSP mean values of the snow-free reflector height.

Satellite System SNR Types Mean LSP of 4 Days/m

GPS
S1C 1.834
S2L 1.910
S5Q 1.918

GLONASS
S1C 1.815
S2C 1.914

Galileo

S1C 1.813
S5Q 1.866
S6C 1.854
S7Q 1.844
S8Q 1.854

BDS
S2I 1.810
S6I 1.826
S7I 1.830

212



Remote Sens. 2021, 13, 4311

Table 2 shows that the results of LSP at different frequencies of the four GNSS systems
are more than 1800 m, which is more in line with the actual situation and can be used as
the initial reference value of the reflector height of the snow-free surface.

3.3. GNSS-IR Snow Depth Retrieval Results
3.3.1. Multi-GNSS and Multi-Frequency GNSS-IR Snow Depth Retrieval Results

The snow depth is obtained by comparing and analyzing the difference in reflector
height under snow-free and snow surfaces. The results of the different frequency retrievals
of GPS, GLONASS, Galileo, and BDS are compared with the PBO snow depth data, and
the results are shown in Figure 11.

(a) (b)

(c) (d)

Figure 11. Comparison between multi-GNSS and multi-frequency GNSS-IR snow depth retrieval
results and PBO snow depth: (a) GPS snow depth retrieval results; (b) GLONASS snow depth
retrieval results; (c) Galileo snow depth retrieval results; (d) BDS snow depth retrieval results.

Figure 11 shows that the snow depth retrieval from the multi-GNSS and multi-
frequency SNR data has a trend that is similar to that of the PBO snow depth data. Among
them, the results of S1C in GPS are more biased than those of S2L and S5Q. The trend of
the S1C results in GLONASS is worse than that of S2C. The results of S1C in Galileo are
worse than those of S5Q, S6C, S7Q, and S8Q. The trend of the BDS S2I results is worse than
that of the S6I and S7I results.

3.3.2. Mean Fusion of Multi-Frequency Retrieval Results in the Four GNSS Systems

The results of the mean fusion of different frequencies in the four GNSS systems are
shown in Figure 12.

Figure 12 shows the consistency between the retrieval results of the four GNSS systems
and the PBO snow depth, where the trend is more consistent than the previous single
frequency retrieval results.
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3.3.3. Mean Fusion Retrieval Results of Multi-GNSS System

After the mean fusion of multi-frequency in the four GNSS systems, the retrieval
results of highly similar trends are obtained. To further improve the accuracy, the mean
fusion of the snow depth retrieval results of the multi-GNSS system is carried out, and the
final GNSS system retrieval results are obtained, as shown in Figure 13.

Figure 12. Mean fusion of multi-frequency retrieval results in the four GNSS systems.

Figure 13. Mean fusion retrieval results of multi-GNSS system.

Figure 13 shows that the mean fusion results between the multi-GNSS system are in
good agreement with the PBO snow depth results, and that the trend is basically the same.

4. Discussion

4.1. Accuracy Analysis between Multi-GNSS and Multi-Frequency GNSS-IR Snow Depth
Retrieval Results and PBO Snow Depth

The above retrieval results are further analyzed, and the retrieval results of different
frequency signals in multi-GNSS system are compared; the correlation coefficient (R) and
root mean square error (RMSE) are shown in Figure 14.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m)

Figure 14. Correlation and RMSE between multi-GNSS and multi-frequency GNSS-IR snow depth
retrieval results and PBO snow depth: (a) GPS S1C; (b) GPS S2L; (c) GPS S5Q; (d) GLONASS S1C;
(e) GLONASS S2C; (f) Galileo S1C; (g) Galileo S5Q; (h) Galileo S6C; (i) Galileo S7Q; (j) Galileo S8Q;
(k) BDS S2I; (l) BDS S6I; (m) BDS S7I.

Figure 14 shows the correlation of multi-GNSS and multi-frequency GNSS-IR snow
depth retrieval results compared with the PBO snow depth. Table 3 shows the specific R
and RMSE.
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Table 3. R and RMSE between multi-GNSS and multi-frequency GNSS-IR snow depth retrieval
results and PBO snow depth.

Satellite System SNR Types R RMSE/m

GPS
S1C 0.90 0.09
S2L 0.99 0.05
S5Q 0.98 0.08

GLONASS
S1C 0.83 0.10
S2C 0.97 0.10

Galileo

S1C 0.88 0.08
S5Q 0.95 0.07
S6C 0.94 0.06
S7Q 0.96 0.05
S8Q 0.95 0.06

BDS
S2I 0.86 0.09
S6I 0.95 0.05
S7I 0.93 0.06

Figure 14 and Table 3 show that the snow depth results of the GNSS-IR retrieval at
different frequencies of the four GNSS systems have a strong correlation with the PBO
snow depth. The R of the GPS S2L and S5Q results were 0.99 and 0.98, respectively, which
are highly correlated, whereas the R of the S1C was 0.90, which is relatively low. The R
of GLONASS S1C and S2C were 0.83 and 0.97, respectively. The correlation of S2C was
strong and that of S1C was weak. The R of Galileo S5Q, S6C, S7Q, and S8Q results was
approximately 0.95, and that of S1C was 0.88, which is rather weak. The R of BDS S6I and
S7I results was 0.95 and 0.93, showing a strong correlation, and that of S2I was 0.86, which
was rather weak. At the same time, the RMSE of the results of different frequencies of the
four GNSS systems and PBO data were basically in the range of 5 cm to 10 cm, and the
error was small. The above data show that the feasibility of retrieving the snow depth
using multi-GNSS and multi-frequency GNSS-IR is high. At the same time, for GPS S1C,
GLONASS S1C, Galileo S1C, and BDS S2I, the results in the four GNSS systems are rather
weak. From the above results, in addition to GPS and GLONASS signals, the Galileo and
BDS signals also have a good ability in snow depth retrieval.

4.2. Accuracy Analysis of Multi-Frequency Mean Fusion Results in the GNSS Systems

Mean fusion retrieval is carried out for multi-frequency retrieval results under the
four GNSS systems; the accuracy between the retrieval results and PBO snow depth are
further analyzed, as shown in Figure 15.

Figure 15 shows that the retrieval results of the four GNSS systems are obtained
by averaging the snow depth results of the GNSS-IR retrieval at multi-frequency. The R
between the GPS, GLONASS, Galileo, BDS, and PBO results was 0.99, 0.94, 0.97, and 0.95,
respectively, showing strong correlations. At the same time, the RMSE of the four GNSS
systems have been reduced to a certain extent, to basically in the range of 4 cm to 7 cm,
indicating that the mean fusion of different frequency retrieval results in the four GNSS
systems has a good effect on the improvement of retrieval accuracy, which can eliminate
the weak correlation of GPS S1C, GLONASS S1C, Galileo S1C, and BDS S2I.

Compared with the snow depth of the different frequency signal in the multi-GNSS
system retrieval results, the GNSS multi-frequency mean fusion method can effectively
improve the retrieval accuracy. The specific improvement accuracy is shown in Table 4.
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(a) (b)

(c) (d)

Figure 15. Mean fusion accuracy analysis of multi-frequency retrieval results in the four GNSS
systems: (a) GPS multi-frequency fusion; (b) GLONASS multi-frequency fusion; (c) Galileo multi-
frequency fusion; (d) BDS multi-frequency fusion.

Table 4. Comparison of different frequency signal in the multi-GNSS system retrieval results; multi-
frequency mean fusion accuracy increases in R and decreases in the RMSE.

Satellite System SNR Types Increases in R Decreases in the RMSE

GPS
S1C 9.1% 55.6%
S2L 0.0% 20.0%
S5Q 1.0% 50.0%

GLONASS
S1C 11.7% 30.0%
S2C −3.2% 30.0%

Galileo

S1C 9.3% 37.5%
S5Q 2.1% 28.5%
S6C 3.1% 16.7%
S7Q 1.0% 0.0%
S8Q 2.1% 16.7%

BDS
S2I 9.5% 44.4%
S6I 0.0% 0.0%
S7I 2.1% 16.7%

As can be seen from Table 4, the R of the GNSS multi-frequency mean fusion increases
by 11.7%, which is higher than a single frequency in multi-GNSS system retrieval results,
and the GLONASS S2C results decrease by 3.2%, but most of the results’ correlations are
improved. At the same time, the RMSE decreases by 55.6%, and though the retrieval
accuracy of Galileo S7Q and BDS S6I is not improved, the other accuracy has been greatly
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improved. This shows that the mean fusion of the GNSS multi-frequency retrieval results
can effectively improve the accuracy of the snow depth retrieval.

4.3. Accuracy Analysis of Mean Fusion Retrieval between Multi-GNSS System

The accuracy of multi-frequency fusion retrieval results has been improved to a certain
extent. Furthermore, the fusion accuracy of the retrieval results of the four GNSS systems
is analyzed, as shown in Figure 16.

Figure 16. Comparison of the mean fusion results of multi-GNSS system with PBO snow depth.

Figure 16 shows that the R between the mean fusion results of the multi-GNSS system
and PBO snow depth was 0.99, showing a strong correlation. At the same time, the RMSE
was 3 cm, and the error was also significantly reduced, indicating the effectiveness of
this method.

In order to further improve the combined retrieval accuracy of the GNSS system,
the GNSS multi-frequency fusion results are further mean fused. The fusion results are
compared with the four GNSS systems, and the results are shown in Table 5.

Table 5. Comparison of multi-frequency mean fusion; multi-GNSS system fusion accuracy increases
in R and decreases in the RMSE.

Satellite System Increases in R Decreases in the RMSE

GPS 0.0% 25.0%
GLONASS 5.1% 57.1%

Galileo 2.0% 40%
BDS 4.0% 40%

It can be seen from Table 5 that the accuracy of the results after multi-GNSS system
fusion is further improved. Compared with the results of GNSS multi-frequency fusion,
the R of the four GNSS systems are improved, except for GPS. GLONASS has the highest
increase of 5.1%. In terms of RMSE, GLONASS increased by 57.1%. The GPS is not
improved on R, but it is improved by 25% on RMSE. It can be seen from the above results
that the further fusion of the multi-frequency retrieval results of the four GNSS systems
can effectively improve the retrieval accuracy. Therefore, the multi-GNSS system combined
snow depth retrieval method has strong reliability.
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5. Conclusions

Snow is an important indicator to measure the global hydrological cycle and climate.
The accurate long-term monitoring of snow depth is helpful for water resource management
and climate disaster warning, and has important application prospects. Based on the
current GNSS-IR snow depth retrieval method, the temporal resolution is affected by the
number of sky satellite arcs, so multi-GNSS and multi-frequency GNSS-IR are introduced
as a supplement. The snow depth retrieval is carried out by using the multi-GNSS and
multi-frequency SNR data. The snow depth parameters are obtained by comparing the
LSP results of snow-free and snow surfaces. At the same time, the results are compared
and analyzed in terms of the PBO snow depth, and the correlation and error analysis of
the multi-GNSS and multi-frequency GNSS-IR mean fusion results are carried out. The
following conclusions are drawn through experimental analysis:

(1) QZSS and SBAS systems in multi-GNSS and multi-frequency SNR data provided by
PBO are not suitable for use due to the lack of observation arcs. The GPS S1W and
S2W data values are the same, and the other frequency SNR data difference is too
large and should not be used;

(2) The LSP results of the snow-free surface can be effectively used as the initial reflector
height reference value. The snow depth results of multi-GNSS and multi-frequency
GNSS-IR retrieval have a strong correlation with PBO snow depth data, and the RMSE
of different frequency retrieval results in the multi-GNSS system is between 5 cm and
10 cm. The correlation between the retrieval results of the GPS L1, GLONASS G1,
Galileo E1, and BDS B1 bands in the snow depth retrieval results is rather weak;

(3) The mean fusion of multi-frequency retrieval results in GPS, GLONASS, Galileo, and
BDS can effectively improve the accuracy and solve the relatively weak results in
some bands. The four GNSS systems retrieval results show a strong correlation, and
the RMSE is between 4 cm and 7 cm. Comparing the different frequency signals in
the multi-GNSS system retrieval results, the multi-frequency mean fusion increase by
11.7% in R and the RMSE decreases by 55.6%, which is the highest;

(4) The mean fusion accuracy of the retrieval results of the GPS, GLONASS, Galileo, and
BDS is significantly improved. The R between the retrieval results and the PBO results
is 0.99, and the retrieval accuracy is better than 3 cm, which significantly enhances
the accuracy. In the comparison of the multi-frequency mean fusion, the multi-GNSS
system fusion increases by 5.1% in R and the RMSE decreases by 57.1%, which is
the highest.

Compared with a single GNSS-IR signal, multi-GNSS and multi-frequency GNSS-IR
improves the accuracy, continuity, and time resolution of snow depth retrieval. A mean
fusion of multi-GNSS and multi-frequency GNSS-IR retrieval results can further enhance
the accuracy. With the development of global navigation systems, more types of signals
and perfect constellation structures will be provided. Multi-GNSS and multi-frequency
GNSS-IR will play a more critical role in the field of snow depth detection.
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Abstract: Materials science is highly significant in space program investigation, energy production
and others. Therefore, designing, improving and predicting advanced material properties is a crucial
necessity. The high temperature creep and corrosion resistance of Ni-based superalloys makes
them important materials for turbine blades in aircraft engines and land-based power plants. The
investment casting process of turbine blades is costly and time consuming, which makes process
simulations a necessity. These simulations require fundamental models for the microstructure
formation. In this paper, we present advanced analytical techniques in describing the microstructures
obtained experimentally and analyzed on different sample’s cross-sectional images. The samples
have been processed on board the International Space Station using the MSL-EML device based on
electromagnetic levitation principles. We applied several aspects of fractal analysis and obtained
important results regarding fractals and Hausdorff dimensions related to the surface and structural
characteristics of CMSX-10 samples. Using scanning electron microscopy (SEM), Zeiss LEO 1550, we
analyzed the microstructure of samples solidified in space and successfully performed the fractal
reconstruction of the sample’s morphology. We extended the fractal analysis on the microscopic
images based on samples solidified on earth and established new frontiers on the advanced structures
prediction.

Keywords: Ni-based superalloys; international space station; microstructure; morphology; fractal
reconstruction; Fractal Hausdorff dimension

1. Introduction

The superior creep resistance, high-temperature strength, and corrosion resistance
make Nickel-based superalloys the material class of choice for high-performance appli-
cations, such as turbine blades of aircraft turbines. The precipitation of an ordered cubic
gamma’ phase within the disordered cubic gamma phase with a similar lattice constant
leads to the combination of exceptional mechanical properties. While also Pt- and Pd-
based superalloys exist (the platinum-group-metals possess a similar fcc structure), their
higher costs make a broad commercial use still unfavorable. Common uses of Nickel-
based superalloys are turbine components for aircraft and land-based turbines for power
generation.

Manufacturing of turbine blades is usually performed by complex casting procedures,
such as investment casting and directional solidification. That route generally achieves
polycrystalline morphologies with equiaxed grains or grains aligned along the length
of the blade. Furthermore, for advanced performance, single-crystal turbine blades are
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manufactured, using specially designed alloy compositions, such as CMSX-10. Single-
crystalline components exhibit improved performance and lifetime compared with blades
of polycrystalline morphology.

1.1. Some Previous Results of Fractal Technique Application on Ceramics Samples
Short Description of the Applied Technique for the Grain Cluster Shape Reconstruction

An image from Figure 1 was imported into a pptx file and a well-definedgrid inserted
on it. Equally spaced yellow points were marked on a portion of the contour and the
following image was obtained (see Figure 2). Then, an ordered list of yellow points
was scaled and registered in a file. After a few simulations on the program Fractal Real
Finder [1,2], we find that with p = 10 and L = 2, a sufficiently good fit is obtained (pL = 100
points) (see the following plot in Figure 3).

 

Figure 1. A part of the microstructure morphology of BaTiO3 Ceramics sample.

 

Figure 2. Successful reconstruction of BaTiO3 sample structure by using fractal method.

 

Figure 3. Affine Fractal Regression of the reconstruction of BaTiO3 sample structure by using fractal
method.

The statistical Kolmogorov-Smirnov test, as well as the respective plot, strongly
confirms the good reconstruction of the original data. From the output of the program, the
relevant fractal coefficients are 0.161007796 and 0.188832965.
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With these estimated fractal coefficients, an upper estimative for the Hausdorff di-
mension (which will be denoted with D and explained more firmly in Section 2.1) was
computed as the solution of the nonlinear equation:

8
(

1
10

)D
+ 0.161007796D + 0.188832965D = 1. (1)

The calculated Hausdorff dimension is D = 1.06557. The result with fractal interpola-
tion has fractal dimension estimated as D = 1.40792. Why these two methods give fractal
dimensions so different? The difference between interpolation and regression is that the
first one finds a function that matches all points, and the second finds a function that
approximates the set of points, reducing the error of squared residuals. In practice, the
fractal interpolation method introduces between every two points the fractal spikes. This
provides a substantial over-estimative for the fractal dimension.

2. Materials and Methods

All samples have been processed and solidified from the liquid state onboard the In-
ternational Space Station. In Figure 4 we can see the largest space station in the world—the
International Space Station (ISS)—which was created as a result of cooperation between
Russia, Canada, the United States, Japan, and 11 other member countries of the European
Space Agency, including Germany and is in operation since about 20 years. The microstruc-
ture of these samples processed in space under microgravity conditions has been analyzed
by SEM (Scanning Electron Microscopy—Zeiss LEO 1550).

 

Figure 4. International Space Station (ISS). Picture taken by a crew member of the space shuttle
Atlantis after undocking from the space station (Image source NASA/Crew of STS-132).

The presented structure reconstruction we continued to apply on different micro-
superalloy samples, for example, please see Figures 5–8. for the visualization of the space
(Figures 5 and 6) and earth (Figures 7 and 8) samples under different magnifications.

An ingot of CMSX-10 was produced from the elemental materials by arc melting.
Subsequently, rods were produced by suction casting. Pieces were cut from the rod for
EDX investigation and suction casting of spheres of 6.5 mm diameter. The composition and
its homogeneity were confirmed by energy-dispersive X-ray spectroscopy (EDX), using an
Oxford Instruments Inca X-Sight 7426.

For further information on the EML on ISS, we refer to the literature. The facility,
developed and built by airbus defense and space, is centered around a high vacuum
experiment chamber that can be operated under high vacuum or in inert gas atmospheres,
such as argon or helium. Each sample is stored in an individual sample holder, of which
up to 18 are contained in an exchangeable sample chamber with a dedicated sample
transport system. For processing, the desired sample can be moved into the experiment
chamber. The core of the levitator consists of a coil system (SUPOS coil system) on which
two radiofrequency RF generators are connected. One generator is used to produce
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a quadrupole field, imposing the positioning forces onto the sample. The second RF
generator is used to establish a dipole field for heating the sample. The sample, being
loosely confined in a wire cage, was placed within the coils during the experiment, leading
to the free and extremely stable levitation of the sample.

CMSX-10 is a third generation single-crystal alloy, developed by Cannon Muskegon
for a temperature range of 850–950 ◦C, and is, e.g., used in the Rolls-Royce engine TRENT
800. The composition of the investigated CMSX-10 sample was chosen from Erickson
(please see Table 1 for the nominal compositions of the investigated sample).

 
Figure 5. Superalloy with magnification 1.50 KX.

 

Figure 6. Superalloy with magnification of 200 KX.

 

Figure 7. Superalloy with magnification of 104 KX.
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Figure 8. Superalloy with magnification of 2.00 KX.

Table 1. Nominal compositions of the investigated sample.

Composition in wt% CMSX-10

Ni Bal.

Al 5.7

Cr 2.0

Co 3.0

Mo 0.4

W 5.0

Ti 0.2

Re 6.0

Ta 8.0

Hf 0.03

Nb 0.1

2.1. Short Experimental Review on the Differences in Solidification of CMSX-10 in 1g and 0g

We solidified a CMSX-10 sphere of 6.5 mm diameter in microgravity onboard the
international space station. The sample showed high undercooling of about 140 K. Figure 9
shows the corresponding temperature-time diagram recorded for the sample using the
EML onboard the ISS. The sample was heated from the solid phase, then molten until
fully liquid at the alloys liquidus temperature Tliq = 1706 K, then the liquid was further
overheated until a maximum temperature of about 1900 K. Subsequently, the sample was
cooled freely. This way, the sample undercooled about 140 K below its equilibrium melting
point. In comparison, a sample was solidified on ground, while placed on a water cooled
copper mold. Due to heterogeneous nucleation on the contact area, this represents the case
of minimal undercooling. Figure 9 shows the temperature-time diagram recorded during
the relevant melt cycle performed on ISS in microgravity of the 6.5 mm sphere of CMSX-10.

227



Remote Sens. 2021, 13, 1724

Figure 9. Temperature-Time Diagram of the melt-cycle performed on the CMSX-10 sphere.

2.1.1. SEM Images of the Surface

We have done SEM images on the surface of two samples:

1. CMSX-10–solidified onboard the ISS, “0g-Sample”
2. CMSX-10–solidified on top of a water-cooled copper block, on the ground, in the

Arc-Melter, “1g-Sample”

A schematic overview of the situations is given in Figure 10.

 
Figure 10. Samples and the solidification conditions.

For each series, 5 magnifications (200, 500, 1000, 1500, 2000) have been used to take the
images. The images on the 0g sample were taken at a random position, since the sample
appears identical in every single spot. The images of the 1g sample were taken on the top
face (green arrow in Figure 10).

Images A, C, E, G, and I in Figure 11 are from the 0-g samples. Images B, D, F, H and J
on Figure 11 are from the 1-g samples.

Images A, C, E, G, and I in Figure 12 are from the 0-g samples. Images B, D, F, H and J
on Figure 12 are from the 1-g samples.

Images A, C, E, G, and I in Figure 13 are from the 0-g samples. Images B, D, F, H and J
on Figure 13 are from the 1-g samples.
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(A) 200x (B) 200x 

 

(C) 500x (D) 500x 

 

(E) 1000x (F) 1000x 
Figure 11. Cont.
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(G) 1500x (H) 1500x 

 

(I) 2000x (J) 2000x 

Figure 11. Series of 5 SEM images of the CMSX-10 surface of the 0-g sample (A,C,E,G,I) and the 1-g sample (B,D,F,H,J).

 

(A) 200x (B) 200x 

 
(C) 500x (D) 500x 

Figure 12. Cont.
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(E) 1000x (F) 1000x 

 
(G) 1500x (H) 1500x 

 
(I) 2000x (J) 2000x 

Figure 12. Series of 5 SEM images of the CMSX-10 surface of the 0-g sample (A,C,E,G,I) and the 1-g
sample (B,D,F,H,J).
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(A) 200x (B) 200x 

  
(C) 500x (D) 500x 

  
(E) 1000x (F) 1000x 

  
(G) 1500x (H) 1500x 

Figure 13. Cont.
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(I) 2000x (J) 2000x 

Figure 13. Series of 5 SEM images of the CMSX-10 surface of the 0-g sample (A,C,E,G,I) and the 1-g
sample (B,D,F,H,J).

2.1.2. Images of Cross-Sections

We have done SEM and optical images on the polished and etched cross-sections of
two samples (Figures 14–16):

3. CMSX-10–solidified onboard the ISS, “0g-Sample”.
4. CMSX-10–solidified by suction casting, on the ground, in the Arc-Melter, “1g-Sample”.

 

(A) (B) 

Figure 14. (A) 0g sample, (B) 1g sample.
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(A) (B) 

  
(C) (D) 

Figure 15. Optical images, 0g sample (A,C) and 1g sample (B,D).

  

(A) (B) 

Figure 16. Cont.
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(C) (D) 
Figure 16. SEM images, 0g sample (A,C) and 1g sample (B,D).

On the Figures 17 and 18 the EDX measurements on the cross section of the 0g-sample
are presented showing the partitioning coefficients.

Figure 17. EDX measurements on the cross section of the 0g-sample.

EDX measurements on the cross section of the 1g-sample show partitioning coeffi-
cients:

Figure 18. EDX measurements on the cross section of the 1g-sample.

2.1.3. Mathematical Fractal Analysis Technique

In order to describe the precise surface geometry, we introduced the concept of fractals
and applied a new method of fractal reconstruction. The fractal analysis of real images
was performed by using the technique based on a new affine fractal regression model.
This process exploits certain mathematical formulations [2–4] designated for obtaining the
coefficients of the equations system that best fit the data. The modeled system is:
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ϕ

(
x + j

p

)
= aj ϕ(x) + bjx + cj, (2)

where x ∈ [0 , 1), 0 ≤ j ≤ p − 1, and aj, bj, cj are the parameters (real numbers) to estimate,
with 0 <

∣∣aj
∣∣ < 1. The default domain is [0, 1).

The solution of this system is a function ϕ : [0, 1) → R and is called a fractal func-
tion [2]. In fact, it is proved [4] that such functions have a mathematical fractal structure,
meaning that the plot of their graph is a fractal curve. Theoretical mathematical prop-
erties and explicit solutions are provided [2,3]. This model is originated by the system
constructed by [5].

The fractal regression method consists of estimating the parameters aj, bj, cj such that
they fit the real data. Hence, we consider the form of the explicit solution of the problem
that depends on the p-expansion of numbers in [0, 1). For L = 2, this solution is:

ϕ(0) =
c0

1 − a0
, (3)

ϕ

(
ξ1

p

)
= aξ1

c0

1 − a0
+ cξ1 , ξ1 �= 0, (4)

ϕ

(
ξ1

p
+

ξ2

p2

)
= aξ1

(
aξ2

c0

1 − a0
+ cξ2

)
+ bξ1

ξ2

p
+ cξ1 , ξ2 �= 0. (5)

In order to obtain the best coefficients, the theoretical approach computes the SSR -
sum of square residuals in between the formal definition and the real values. Next, it uses
the partial derivatives of this SSR and equals to zero, for minimizing this error. The best
solution of the problem is given when:

∂SSR
∂aj

= 0,
∂SSR

∂bj
= 0,

∂SSR
∂cj

= 0, (6)

for all j = 0, 1, 2, . . . , p − 1. This is a problem with 3p parameters to estimate where the
equations to solve are nonlinear. The regression method is widely used as linear regression,
a much simpler model in data analysis science. For detailed information on this subject
see [6].

Parameters aj are the fractal coefficients and bj are the directional coefficients. Bigger
fractal coefficients mean strong fractal oscillations. Parameter p is the fractal period and L
is the fractal level of a curve defined by the system.

The mathematical analytical solution of this partial derivative system (for the fractal
regression) is not possible to compute and a numerical approach is needed. By applying
the newly available software Fractal Real Finder designed for the numerical computation
of the solution, we processed the given samples and estimated the curves and Hausdorff
dimension D. With an input of the real data, the program executes simulations and gives
an output with a fractal curve as modeled above. With the estimated fractal curves, we
may upper estimate the Hausdorff dimension.

Proposition. The Hausdorff dimension of the graph of the function ϕ solution of the
above system is upper bounded by the solution of:

p−1

∑
j=0

β j
D = 1, (7)

where β j = max
{

1
p ,
∣∣aj
∣∣}, 0 ≤ p ≤ p − 1.

The coefficients with fractal relevance are those aj such that
∣∣aj
∣∣ > 1/p.

All of these additional mathematical calculations with novelty solutions are highly
important for better understanding the fractal nature analysis applications in material
sciences and specifically for the research data in this paper. The fractal approach is based
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on the self-similarity of surfaces at different scales. Its superiority is that it is insensitive
to the structural details and the structure is specified by a single descriptor, the fractal
(noninteger) dimension D. So, the fractal surface analysis was used to describe, by a single
parameter, surface roughness over many orders of magnitude. The increasing value of
D represents an increasing surface roughness. It gives information on the measure of
complexity of different surface topographies. That way, fractal dimension becomes highly
suitable for the characterization of various topographies. Particularly, it is crucial in the
cases when the land or space microstructures have lots of irregular peaks and valleys that
cannot be easily defined and evaluated. Conclusively, fractal dimensions that we obtained
from SEM micrographs of surfaces indeed do give us a very good description of the overall
topography of the surface, due to the self-similarity.

3. Results

We implement the fractal structures that are originally coming from nature and beuni-
vocally corresponding to chaotic structures in the matter. We considered the microstructures
of different images samples. All samples have been processed onboard the International
Space Station. In this particular case, the fractal analysis is implemented as the most
effective. We applied several aspects of fractal analyses and obtained certain results regard-
ing the Hausdorff dimensions related to the surface and structural characteristics of the
CMSX-10 samples.

Several authors in the literature have investigated the mechanisms during the solid-
ification of CMSX-10. It is generally accepted, that a primary solidification takes place,
where the gamma-phase dendrites are formed. Subsequently, the interdendritic regions
are solidified, together with the precipitation of the gamma’-phase. The solidification
sequence of the interdendritic region is a subject of significant research and the assumed
solidification paths by different authors do vary [7]. The dendritic formation is common in
alloys where solute partitions between the solid and liquid phases. During the growth of
the crystal in the melt, solute and heat can accumulate ahead of the growth interface and
can lead to an unstable interface and dendritic solidification.

It is commonly observed in Ni-based superalloys, that the heavy elements, such as
W and Re are segregated to the gamma-dendrites, the lighter elements, Ti, Ta, and Al are
enriched in the remaining liquid [7–9].

3.1. Comparison of the Surface Images

Figures 10–12 (magnification 200 x) show that the 0g-sample shows larger dendrites
(shows larger areas of the same repetitive patterns) with the similar orientation, while the
1g-sample shows multiple smaller dendrites that are randomly oriented.

Comparing the images of the 1g-Sample in Figures 11–13 (higher magnifications) one
sees that there is only a little or no interdendritic phase. This could be an effect of gravity,
which leads to a segregation of the solute phase downwards into the sample. In contrast,
for the 0g-sample, there are no visible voids between the dendrite arms. The secondary
dendrite arm spacings are similar. It is understandable, that not only the gravity but also
the wetting of the solute phase with the solid dendrites influences the segregation of the
solute phase. Hence, it might be of interest for further studies to vary the gravitational
forces on the sample during solidification in a wide range between 0g and above 1g, in
order to get a better understanding of the influence of gravity on this segregation effect.

3.2. Comparison of the Cross-Section Images

Partitioning of the elements in the 1g and 0g-Sample are relatively similar, only Hf
and Re have a higher partitioning coefficient in the 1g-sample.

The 1g-Sample shows more small dendrites with finer secondary dendrite arm spac-
ings. The arm spacings are also dependent on the distance to the sample surface.

Voids between the primary dendrite arms can be found in the sample center for the
0g-sample, while this effect is not visible in the 1g-sample.
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3.3. Fractal Analysis of the Images Consolidated in Space

A part of an image from the CMSX-10 sample is given in Figure 19, where red points
are marked. After a few simulations on the program Fractal Real Finder, we find that with
p = 10 and L = 2, a good fit is obtained (pL = 100 points). The captured result is plotted in
Figure 20.

Figure 19. CMSX-10 marked part of the sample.

 

Figure 20. Affine Fractal Regression of the CMSX-10 reconstruction.

The statistical Kolmogorov-Smirnov test, as well as the the respective plot, confirms
the good reconstruction of the original data. From the output of the program, the relevant
fractal coefficients are −0.175388 and −0.229489. The list of estimated coefficients is
presented in Table 2.

Table 2. Estimated coefficients of image from the CMSX-10_ISS_post-flight_007.

0 1 2 3 4 5 6 7 8 9

aj 0.018 0.011 −0.046 −0.175 −0.229 −0.073 −0.044 −0.006 −0.038 −0.051

bj −0.03 0.401 −0.231 −0.861 1.046 0.778 0.032 0.069 0.008 0.063

cj 0.967 1.043 1.47 1.437 0.46 0.824 1.494 1.41 1.566 1.699

With these estimated fractal coefficients, an upper estimative for the Hausdorff dimen-
sion was computed as the solution of the nonlinear equation:

8
(

1
10

)D
+ 0.175388D + 0.229489D = 1. (8)

The calculated Hausdorff dimension is D = 1.0906.
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We successfully performed the fractal reconstruction of the sample morphology.
In the next result, the rebuilding of two samples consolidated in the space is analyzed.
The image A is depicted in Figure 21 and the image B is in Figure 22. In each image,

red dots have been placed to mark identified boundary lines.

 

Figure 21. Image A of marked superalloy part.

 

Figure 22. Image B of marked superalloy part.

With the software for numerical computation of the solution, Fractal Real Finder, we
obtain the coefficients given in Tables 3 and 4. For the image A, we used 12 fractal periods
(p = 12) and, for image B, 13 fractal periods (p = 13). Both simulations worked with two
fractal levels (L = 2).

Table 3. Estimated coefficients from Image A.

0 1 2 3 4 5 6 7 8 9 10 11

aj −0.14 0.09 0.059 0.055 0.097 0.268 0.025 −0.098 −0.012 0.043 −0.05 −0.015

bj −0.89 0.324 0.318 0.348 0.291 0.941 −0.651 −0.398 −0.49 −0.254 −0.813 −0.607

cj 5.487 3.788 4.03 4.103 4.072 3.009 4.062 3.987 3.462 2.513 2.513 1.702

Table 4. Estimated coefficients from Image B.

0 1 2 3 4 5 6 7 8 9 10 11 12

aj −0.051 −0.105 0.01 0.141 0.272 0.042 −0.066 −0.018 −0.158 0 0.133 0.028 −0.026

bj 0.63 0.599 0.262 0.453 0.128 0.004 −0.332 0.269 −0.191 0.155 −0.364 −0.831 −0.632

cj 1.873 2.685 3.155 2.75 2.862 3.257 3.587 3.226 3.683 0.955 2.713 2.447 1.835
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We performed the statistical Kolmogorov-Smirnov test for two samples, and it indi-
cates the goodness of the reconstructions.

The plot of the original data and the estimated curves for the image A and the image
B are given respectfully in Figures 23 and 24.

Figure 23. Fractal estimated curve from Image A.

Figure 24. Fractal estimated curve from Image B.

The relevant fractal coefficients, in the case of the image A, are a0, a1, a4, a5 and a7
and of image B, a1, a3, a4, a8 and a10. From the Proposition above, the upper estimators of
Hausdorff dimension are respectively D = 1.11368 and D = 1.16975.

3.4. Fractal Analysis of an Image Consolidated on Earth

A CMSX-10 spare arc-melter image (Figure 13J) was imported into a pptx file and
inserted a grid on it. Then, equally spaced red points were marked on a portion of the
contour and the following image was obtained (see Figure 25).

 

Figure 25. CMSX-10 spare_arc-melter image, with red points on contour.
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Then we defined a scale, and we imported the data into a tabulated file in the form of
an ordered list of these red points. We tried some options for the number of fractal periods
p and fractal levels L and simulated with the software Fractal Real Finder. The result fitted
very nicely with p = 10, L = 2 and pL = 100 points. The estimated coefficients are given in
Table 5.

Table 5. Estimated coefficients from the CMSX-10 spare-arc-melter image.

0 1 2 3 4 5 6 7 8 9

aj 0.051 −0.025 0.092 −0.07 −0.017 0.037 −0.001 0.025 0.192 −0.026

bj −0.58 0.101 0.032 −1.117 0.351 0.561 −0.653 0.334 0.462 −0.374

cj 3.588 2.859 2.474 2.899 2.111 3.057 1.407 0.818 0.544 0.363

The statistical analysis in the PAST software the Kolmogorov−Smirnov test for the
independent samples’ comparison of the equality of distributions showed undoubtedly that
these distributions could be considered equal. The test showed that the largest difference
between corresponding values was 0.06 and from p-value = 0.9921 > 0.05 we concluded that
the null hypothesis was not rejected, showing that there is no significant difference between
the distribution for the two samples. Please see the respective plot in Figure 26 showing
that the reconstruction of the sample morphology is with high accuracy acceptable.

 
Figure 26. Fractal estimated curve.

The relevant fractal coefficient is a8 = 0.1915881, and, consequently, the upper of the
Hausdorff dimension is D = 1.04007 (see Proposition above).

From the above results and discussion, it is obvious that fractals help to overbridge
the complex structures and processes leading towards controlled disorder and finally the
ordered structures [10,11].

Additionally, from the same image (Figure 13J) we selected a circular region and then
applied the fractal regression to compare the Hausdorff dimensions of the same sample, but
taking into consideration different contour and another fragment of the image. Figure 27
represents this selected region with a polar grid.

We considered the series of the radius (distance between the center point (in blue) and
the corresponding red point). We performed the fractal regression, and we obtained the
coefficients for the estimated fractal curve (see Table 6). The fit was done for 2 fractal levels
and 11 fractal periods.
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Figure 27. CMSX-10 spare_arc-melter image, with red points on contour with a polar grid.

Table 6. Estimated coefficients from Image J 2000x.

0 1 2 3 4 5 6 7 8 9 10

aj −0.079 −0.038 0.071 0.06 0.051 0.015 −0.035 −0.023 0.075 −0.033 −0.023

bj −0.488 0.733 1.136 −0.534 0.087 −0.904 −0.419 −0.095 0.843 −0.619 0.1

cj 2.102 1.552 2.247 3.309 2.994 2.979 2.158 1.751 1.742 2.566 1.891

None of the fractal coefficients have sufficient fractal relevance to estimating the
Hausdorff dimension bigger than 1, i.e., there is no estimated coefficient above 0.09 = 1/11.
Therefore, the estimated Hausdorff dimension is D = 1, which means the estimated fractal
oscillations are soft. Reconverting the estimated values back to polar coordinates, we
obtained the plot in Figure 28.

Figure 28. Fractal estimated curve from polar coordinates.

The use of the fractal principle is highly relevant for the evaluation and estimation
of dimensional properties of irregular structures in nature. Undoubtedly, they help us in
understanding the morphological organization of complex structures that appear in Space
and Earth [12–14].

4. Discussion

At the end of this very complex research overview, we obtained different results based
on the analysis which included different parameters from surface and cross-sections of
the samples studied by SEM and optical microscopy methods. Also, we included some
comparative results that inlight the phenomena at the space and land consolidation. From
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all of these points of view, the fractal analysis provides a better understanding of the
consolidation conditions influence on the final morphology of structures. Only fine fractal
microstructure analysis enables the comparative differences between the dendrites’ sizes,
their orientations and voids between the primary dendrite arms.

This is very important for the reason of similarities among the images of space and
land samples. Consequently, we can notify a very strong influence of the gravity in
the consolidation process, which makes certain differences at microstructures based on
different consolidation effects. We obtained certain differences among the land and space
Hausdorff dimensions of the samples, but possibly due to different starting conditions
in the experiments. However, we must highlight that the comparison of space and land
samples was not the target of this paper. The comparison of the basic sample data according
to fractal reconstruction could be a direction for some future researches. The aim of this
paper is the fractal reconstruction of different surface samples in order to achieve the
precise mathematical characterization of their roughness and consequently to predict and
design the desired microstructures.

In future research, we plan to analyze more deeply the observed differences between
space and land structures and try to reveal potential influences of the internal forces within
constituents of samples matter (cohesion and adhesion).

The more biomimetic similarity in our material structures related to nature is a ne-
cessity. In our future research, we can also include the questions and relations between
entropy and fractals.

5. Conclusions

The importance of these results lies in the fact that we can use these fractal dimensions’
characterizations for an additional understanding and insights of microstructures. Since
we achieved an improved possibility of getting reconstructed morphology of shapes,
we established a completely new perspective and frontiers on the advanced structures’
prediction. All this phenomenology is extremely important for the relativization of the scale
sizes in the space through fractal nature. In addition, in our further study, we extended
fractal analysis on the micro images based on the land-consolidated samples what could be
potentially very attractive for the future research in this area.

Finally at the end, when analyzing the data review of all presented experiments we
must underline the existence of the dominant internal forces in and between the dendrites.
It is necessary to emphasize the real influence of the mentioned forces especially at the
space conditions where there is no gravity. Besides, we can also mention the micro capillary
and surface tension effects.

Further, it is crucially important to take into consideration that all of these phenomena
have been included in the understanding and explanations of the processes in the Space
bodies consolidations and even though the whole Space. This fact is not related to any of
the Space consolidation theories caused neither by the explosion nor by the high pressure
on the micro level. On the other hand, this focuses the roll of the gravity itself, when we
have the land consolidation processes and this can potentially provide much thorough
approach in the explanation of gravity effect even in the evolution.
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Pavel Kovář 1,* and Marek Sommer 2,3
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Abstract: The movement of the South Atlantic Anomaly has been observed since the end of the last
century by many spacecrafts equipped with various types of radiation detectors. All satellites that
have observed the drift of the South Atlantic Anomaly have been exclusively large missions with
heavy payload equipment. With the recent rapid progression of CubeSats, it can be expected that the
routine monitoring of the South Atlantic Anomaly will be taken over by CubeSats in the future. We
present one-and-a-half years of observations of the South Atlantic Anomaly radiation field measured
by a CubeSat in polar orbit with an elevation of 540 km. The position is calculated by an improved
centroid method that takes into account the area of the grid. The dataset consists of eight campaigns
measured at different times, each with a length of 22 orbits (~2000 min). The radiation data were
combined with GPS position data. We detected westward movement at 0.33◦/year and southward
movement at 0.25◦/year. The position of the fluence maximum featured higher scatter than the
centroid position.

Keywords: South Atlantic Anomaly; radiation measurement; CubeSat observation; radiation belts

1. Introduction

The Earth has two van Allen radiation belts, i.e., the inner and outer, which consist
of trapped high-energy charged particles. Most of the particles within the radiation belts
originate from solar winds and galactic cosmic rays [1].

The approximately dipolar magnetic field at low altitudes generated by Earth’s core is
tilted and shifted from the geographic pole. This creates a region with reduced magnetic
field intensity, namely the South Atlantic Anomaly (SAA), which is located approximately
on the eastern coast of Brazil. The SAA is a place where the radiation of the inner van
Allen belt approaches the closest to Earth [2,3]. One of the manifestations of the SAA is the
enhanced count rate of protons and electrons coming from the inner radiation belt [4].

The SAA region presents a threat to low Earth-orbiting satellites due to the high prob-
ability of single event upsets, failure of microelectronics and premature ageing, as well as
to astronauts and their health [5–7]. Therefore, the region has been thoroughly investigated
since its discovery. Many of the published papers have focused on the dynamics of the SAA,
mainly the variation in its intensity over time and its drift, to predict its future movement. It
has been observed that the SAA moves steadily in a northwest direction. This movement has
been registered by measurement of the magnetic field [8,9] and by radiation [2,3,10–21]. Table
1 summarizes the publications that have focused on examining the drift of the radiation
center of the SAA. As shown in previous studies, a large spread of drift velocities has been
reported. Such large discrepancies could be explained by the dependence of the particle
flux on the altitude and on particle energy, as described in [2], as many measurements
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were performed on different orbits with different instrumentation. Other phenomena
that influence the drift of the SAA and its velocity are sun modulation and “geomagnetic
jerks”. The effect of the solar cycle on drift velocity was described in [3,20,21]. The authors
of [19] theorized that the rapid short-term change in the drift of the SAA was caused by a
“geomagnetic jerk”, which was reported in 2003 by [22]. Geomagnetic jerks occur when the
secular acceleration of the magnetic field rapidly changes.

Table 1. Summarized results of measured South Atlantic Anomaly (SAA) drift rates.

Study
Westward Drift

(◦/Year)
Northward Drift

(◦/Year)
Altitude (km) Inclination (◦) Time (Year)

Konradi 1994 [14] 0.32 -

617
450
287
565

28.5
28.5
39
58

1990–1991

Badhwar 1997 [15] 0.28 ± 0.03 0.08 ± 0.03 438
393

50
51.65 1973, 1995

Bühler 2002 [16] 0.06 ± 0.05 0.06 ± 0.05 400 52 1994–1996

Ginet 2006 [17] 0.43 ± 0.13 - 410–1710 69
2000–2006
continuous

measurement

Grigorian 2008 [18] 0.1–1.0 0.1

307–393
220
400

500–2500
400
450

65
81.6
51.6
81.3
51.6
51.6

1960–2003

Fürst 2009 [19] 0.248 - 592 in 1996
488 in 2007 23

1996–2007
continuous

measurement

Casadio and Arino
2011 [20] 0.24 0.08

782–785
780
800

98.52
98.5
98.55

1991–2010
continuous

measurement

Qin 2014 [21] 0.3 0.09

813
833
804
833

98.7
98.6
98.5
98.7

1980–2010
Almost continuous

measurement

Schaefer 2016 [10] 0.36 ± 0.06 0.16 ± 0.09 840–860 99
2004–2013
continuous

measurement

Jones 2017 [3] 0.20 ± 0.04 –0.11 ± 0.01 400–600
1993–2011
continuous

measurement

Ye 2017 [2] Various (depends
on proton energy)

Various (depends
on proton energy) 512–687 81.7

1994–2007
continuous

measurement

Anderson 2018 [12] 0.277 ± 0.008 0.064 ± 0.008 DMSP F8–F18 DMSP F8–F18
1987–2015
continuous

measurement

Aubry 2020 [13]
0.639
0.329
0.256

–
–
–

715
1336
850

98
66
98

2000–2018
continuous

measurement

Another systematic error in the evaluation of SAA drift can be caused by different methods
of data processing. One of the most deployed methods for evaluation of the SAA position is
Gaussian or Weibull fitting of measured maxima data (flux, dose, and dose rates) over a period
of time and calculation of the SAA position based on the fit maximum [3,14–17,21]. In recent
years, a new interpolation method based on the calculation of the SAA centroid has been
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presented [12,13]. The shortcoming of the centroid method used in [12,13] is that it does
not consider cosine-latitude effects.

CubeSats have been used for many scientific studies in recent years. Although CubeSat
missions cannot fully replace mainstream space missions, they have proven to be a useful
and inexpensive platform for small payloads [23,24]. CubeSats have been used in scientific
fields of Earth science [25–27], space weather [28–30], and astrophysics [27,31].

Our 1U CubeSat Lucky 7 was launched with the primary objective of testing commu-
nication systems and global positioning systems (GPSs). The secondary objective was to
study the ionizing radiation field with two devices, i.e., a piDOSE radiation detector and a
silicon diode spectrometer. Due to the failure of the spectrometer, only data from piDOSE
were obtained.

The objective of this study is to prove that 1U CubeSats can be exploited for the long-
term monitoring of the SAA movement, as all measurements introduced in Table 1 were
done on professional large satellites. Moreover, this study focuses on the improvement of
the centroid method used for the localization of the SAA center.

In our study, we present a modest dataset of processed SAA location data gathered
by the radiation detector piDOSE flown on the Lucky 7 satellite. The SAA location was
derived from the radiation data by the centroid method normalized for cosine-latitude
effects. We show that the centroid method calculates the SAA location with much higher
accuracy than the maxima fitting method. Hence, fewer data are needed to evaluate the
SAA location when the centroid method is used. Such features might be crucial in the
case of 1U CubeSat, which has very limited power, and broadcasting resources and data
transfer to Earth might be problematic. We believe that lightweight, cost-effective CubeSats
equipped with radiation detectors such as piDOSE can be utilized for the continuous
monitoring of SAA drift in the future.

2. Instrumentation and Methods

2.1. CubeSat

The experimental data used for the preparation of this paper were measured by 1U
CubeSat Lucky 7 (Figures 1 and 2). Lucky 7 (catalogue no. 19038W) was launched from
Vostochny Cosmodrome by the Soyuz-2.1b rocket on 27 June 2019, to a quasi-synchronous
orbit of inclination of 97.5008◦ and altitude of 520 km. Regular scientific data were collected
until August 2019 after successful satellite testing. Examples of the points at which the
radiation was measured are shown in Figure 3.

 

Figure 1. Lucky 7 CubeSat.
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Figure 2. Lucky 7 block diagram.

Figure 3. Typical points of radiation measurements.

Lucky 7 CubeSat is a private project of two people, namely Jaroslav Laifr and Pavel
Kovar. Mr. Laifr developed and manufactured the satellite hardware including the power
supply, radiation detector, and camera. He registered the satellite. Pavel Kovar developed
the GPS receiver hardware and software and hardware and the software of the ultrahigh
frequency (UHF) satellite modem, including a single-layer communication protocol capable
of operating even at a high packet error rate. He is the author of the on-board computer
hardware and software. He designed a ground station modem as well as ground station
software.

The main component of the satellite is an onboard computer that integrates two
independent computers and UHF modems that control the satellite, collect scientific data,
and communicate with ground stations. The scientific module (Figure 4) is equipped with
the GPS receiver piNAV 2 [32–34], the radiation detector piDOSE [35,36], a spectrometer
and a low-resolution camera. The energy for satellite operation is generated by gallium
arsenide solar cells that are mounted on the five satellite panels. The radiation hardening
power supply is built from bipolar and silicon carbide transistors. Energy is stored in LiFe
batteries with a capacity of 4 Wh.
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Figure 4. Scientific module.

The Lucky 7 satellite can realize measurements up to 2048 min in duration. The on-
board computer saves to memory the number of pulses registered by a radiation detector,
position and time of the end of the measurement, and satellite statuses such as power
supply voltage, current, currents from the solar cells, the temperature of the detector, and
other subsystems.

2.2. PiDOSE

The piDOSE radiation detector is based on a PIN diode X100-7 coupled with a CsI:Tl
scintillator with dimensions of 4 × 8 × 8 mm. The detector operates in particle counting
mode. The energy deposition is not measured. The integration time is approximately
55 s. The data were converted to counts per minute and corrected for dead time. As
shown in [36], the detector can register protons with energies higher than 30 MeV. Since the
incident angle of particles and rotation of the satellite could not be determined, the counts
were 4 π normalized. Hence, isotropical irradiation is assumed. Although the irradiation
in the SAA is strongly directional, the satellite slowly rotates, which helps to mitigate the
different directional sensitivities of piDOSE. A typical observed radiation field is shown in
Figure 5.

Figure 5. Example of the measurement of the radiation field (number of registered particles per
minute (CMP)).

2.3. Position of the Measurement

As the satellite is not equipped with an altitude determination and control system,
the satellite slowly rotates. The rotation rate is determined from the current of individual
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solar panels or from the periodic variation in the carrier to noise (C/N0) indicator of the
GPS receiver. The rotation rate is not constant; the typical value is one turn per minute [34].
This rotation causes the GPS position to be unavailable some of the time [34]. The typical
availability of PNT (position, navigation, and timing) solutions is 80% of the time. The
problem was solved by extrapolation of the satellite position.

The following proposed interpolation algorithm is based on the satellite motion equa-
tion and its modification for the Earth-centered Earth-fixed (ECEF) coordinate system [37,38]:

dx
dt = Vx; dy

dt = Vy; dz
dt = Vz

dVx
dt = −μ

r3 x − 3
2 J2

0
μ.a2

e
r5 x
(

1 − 5z2

r2

)
+ω2x + 2ωVy

dVy
dt = −μ

r3 y − 3
2 J2
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e
r5 y
(

1 − 5z2

r2

)
+ω2y + 2ωVx

dVx
dt = −μ

r3 z − 3
2 J2

0
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e
r5 z
(

1 − 5z2

r2

) (1)

where (x, y, z) and
(
Vx, Vy, Vz

)
are the position and velocity vectors, respectively, of the

satellite in ECEF coordinates provided by the onboard GPS receiver; r =
√

x2 + y2 + z2

is a satellite radius; μ = 398600.4 × 109 m3/s2 is the standard gravitation parameter
of the Earth; J2

0 = 1082625.7 × 10−9 is the second-harmonic coefficient of geopotential;
ω = 7.292115 × 10−5 rad/s is the Earth rotation rate; and ae is the equatorial radius of the
reference ellipsoid.

The satellite position is calculated by numerical integration of (1) using the fourth-
order Runge–Kutta method [38].

The described algorithm enables the calculations of missing positions of the satellite
and also enables the transformation of the position measurement from the end of the
measurement cycle to its middle, as the satellite registers the position of the end of the
measurement.

The ECEF position is, then, transformed to the geometrical coordinates LLH (longitude,
latitude, and height) for further processing [38].

2.4. Position of the South Atlantic Anomaly (SAA)

The position of the SAA can be calculated as a centroid of the radiation field [13]. For
this purpose, the data should be transformed to the latitude-longitude grid, and then, the
centroid is calculated. The following formulas are presented based on [13]:

Latitudecentroid = ∑(Interpolated Flux × Flux′s Latitude)
∑ Interpolated Flux

Longitudecentroid = ∑(Interpolated Flux × Flux′s Longitude)
∑ Interpolated Flux

(2)

The problem with Equation (2) is that it does not consider the grid area; therefore,
the individual grid points have equal mass. The problem is that the grid area decreases
with latitude. Moreover, the method does not take into account that a one-degree grid is a
spherical surface, and data are processed in two-dimension (2D). The proposed method
is based on centroids in the space of constant curvature defined in [39]. The mass of
the individual grids is calculated as a product of the number of registered particles per
minute and grid area. The coordinates of the grid are transformed from the geodetic LLA
coordinates to the ECEF, then the ECEF centroid coordinates are calculated using (3) and
the results are transformed back to the LLH. The adjusted formulas for calculation of the
longitudinal ECEF (xc, yc, zc) coordinates of the centroid adjusted to the grid area size are
as follows:

xc =
∑(CPM(x,y,z)·cos(ϕ)·x)

∑ CPM(x,y,z)

yc =
∑(CPM(x,y,z)·cos(ϕ)·y)

∑ CPM(x,y,z)

zc =
∑(CPM(x,y,z)·cos(ϕ)·z)

∑ CPM(x,y,z)

(3)
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where λ and ϕ are coordinates of the grid in LLH, (x, y, z) are coordinates of the grid in
ECEF, and CPM(x, y, z) is the number of counts per minute in the grid.

2.5. Data Processing

The registered scientific data are downloaded by a ground station for further process-
ing. One dataset contains data from approximately 22 orbits. The data processing can be
summarized as follows:

(a) Calculation of the position of the satellite in the middle of the radiation detector,
counting time by the method presented in Section 2.3.

(b) Resampling data to a one-degree grid.
(c) Calculation of the position of the radiation maximum as a centroid of the measured

data (Section 2.4).
(d) Graphical presentation of the results.

3. Results

The radiation measurement in the SAA region is presented in Figure 6. The figure
displays the development of the radiation field expressed as the number of particles regis-
tered per minute (CPM counts per minute) over the measurement campaigns, including
the positions of the radiation maximum and centroid. The SAA positions are summarized
in Table 2.

Table 2. Development of the position of the SAA.

Measurement
Centroid Position

Long. Lat. [◦]
Max. Position
Long. Lat. [◦]

(a) 30 August 2019 −25.8637 −48.6520 −27 −49
(b) 30 September 2019 −26.1674 −48.4611 −24 −48

(c) 27 March 2020 −26.2771 −49.1253 −23 −50
(d) 10 October 2020 −26.4505 −48.8551 −29 −55

(e) 1 November 2020 −26.4186 −49.2932 −24 −53
(f) 17 November 2020 −26.5828 −48.7944 −26 −57
(g) 28 December 2020 −26.1477 −48.5793 −29 −53

(h) 2 January 2021 −26.6111 −49.0591 −30 −60

Figure 7 displays the north–south and east–west cross-sections of the SAA radiation
field measured in the individual campaigns.

The positions of the SAA radiation field maximum and centroid positions are also
displayed in Figure 8. It is evident that the position of the maximum features a much
higher scatter than the position of the centroid in which the scatter is considerably lower.
The details of the centroid position scatter are shown in Figure 9.

The development of the position of the centroid was interpolated by a first-order
polynomial (straight line), as shown in Figure 10. The resulting polynomials for latitude λF
and longitude ϕF are as follows:

λF = −0.00093d − 26.0229ϕF = −0.00062d − 48.65654 (4)

where d is the time in days from the first measurement (30 August 2019).
The position of the centroid is, therefore, moving by 0.00093◦ to the west and 0.00062◦

to the south per day, which is 0.34◦ to the west and 0.23◦ to the south per year.
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Figure 6. Development of the radiation field (CPM) in the SAA over measurements with the positions of the maximum of
radiation (cross) and centroid (circle). (a) 30 August 2019; (b) 30 September 2019; (c) 27 March 2020; (d) 10 October 2020; (e)
1 November 2020; (f) 17 November 2020; (g) 28 December 2020; (h) 2 January 2021.
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Figure 7. North–south and east–west cross-sections of the SAA radiation field.

Figure 8. Development of the SAA maximum and centroid.
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Figure 9. Development of the SAA centroid.

Figure 10. Straight line interpolation of the centroid position.

4. Discussion

The position of the South Atlantic Anomaly can be defined by various methods.
The most intuitive is the position of the maximum of the fluence function. Alternatively,
the position can be understood as a centroid of this function. In this paper, we applied
both methods.

The position of the fluence maximum observed by individual measurement campaigns
fluctuates more than the fluence centroid position. The positions of the fluence maxima
are more sensitive than the position of the centroid to measurement noise. Although the
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centroid method is relatively insensitive to the number of measurement points, it would
benefit from denser sampling of the SAA region. Denser sampling can be obtained by
selecting an orbit with higher inclination or by releasing a swarm of satellites.

Our results show the average westward movement of the SAA by 0.34◦/year, which
is in good agreement with previously reported measurements summarized in Table 1. The
data show an average southward movement rate of 0.23◦/year. Even though most of the
publications show northward drift, southward drift was also observed in [2,3,21]. The
inconsistency in the north–south direction can be explained by applying the improved
centroid calculation method that correctly takes into account grid area, in contrast to the
application of the less precise centroid position calculation method used in [13].

As shown in [2], the drift of the SAA in latitude is dependent on the energy range of
the protons that are measured. Protons within the SAA with lower energy tend to drift
towards the north, whereas the most energetic protons of the SAA move towards the south.
In [34], piDOSE was estimated to be sensitive to protons with energies larger than 30 MeV
due to the shielding of sensitive volume. Moreover, the latitudinal movement of the SAA
depends on the solar cycle [21]. Often, there was a shift in direction during the solar cycle
minima and maxima. Since our data captured the time of the solar cycle minimum, it can
be expected to observe a similar shift in SAA movement. Another effect that influences the
measurement of latitudinal movement is a systematic error caused by the fast latitudinal
movement of a satellite. The particle counting time is about one minute. In this time,
the satellite travels approximately four degrees in orbit which is projected mainly in the
latitude. The maximal error in the determination of the latitude position of the fluence
maximum within the counting time is two degrees. For the uniform distribution the mean
systematic error is about one degree. The error in the east–west direction is considerably
lower due to the slower movement of the satellite in longitude.

5. Conclusions

Our study has demonstrated that small, cost-effective 1U CubeSats can be successfully
used for the observation of SAA drift. Unlike the measurements introduced in Table 1,
which were performed on large and heavy-payload satellites, we used a simply designed
detector made of commercial off-the-shelf components that was able to operate for more
than 20 months in an increased-radiation environment.

The results show that the method using the fitting of maximum fluxes is suitable for
evaluating the drift rate in a large dataset. However, the centroid method normalized for
the cosine-latitude effect requires less data to reach the same accuracy. Hence, the latter
method is more suitable for CubeSats that have limited performance and data transfer.

We believe that a swarm of 1U CubeSats equipped with similar detectors could be
used as a system for continuously monitoring the movement of the SAA. The advantage
of such an approach is that individual CubeSats of the swarm can be placed in different
orbits and at more suitable inclinations that would allow denser sampling in the SAA
region. This would significantly improve the coverage and would allow more complex
analysis of SAA drift. Such information would be beneficial for designing more accurate
models of the SAA. As shown by [20], on the one hand, the drift of the SAA can change
suddenly due to “geomagnetic jerks”, which are not incorporated into the models. On
the other hand, several studies have shown strong periodicity in SAA movement [13,21]
which can be anticipated and foreseen by the models. For example, the ESA’s Space
Environmental Information System (SPENVIS) [8] models an average drift of the SAA of
0.3◦ in the westward direction and no movement in latitude, although a number of studies
have observed slight movements in the northward or southward direction.

Author Contributions: P.K. developed a satellite UHF communication system ground station, the
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Abstract: The prediction of landslide displacement is a challenging and essential task. It is thus
very important to choose a suitable displacement prediction model. This paper develops a novel
Attention Mechanism with Long Short Time Memory Neural Network (AMLSTM NN) model
based on Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN)
landslide displacement prediction. The CEEMDAN method is implemented to ingest landslide
Global Navigation Satellite System (GNSS) time series. The AMLSTM algorithm is then used to
realize prediction work, jointly with multiple impact factors. The Baishuihe landslide is adopted
to illustrate the capabilities of the model. The results show that the CEEMDAN-AMLSTM model
achieves competitive accuracy and has significant potential for landslide displacement prediction.

Keywords: GNSS time series analysis; landslide displacement prediction; attention mechanism;
deep learning

1. Introduction

Landslide disaster is one of the crucial topics in geological research [1]. The sustainable
development of economies and society is seriously threatened as a result of landslide
disasters [2]. Reliable early warning systems are a reasonable approach for landslide risk
reduction [3,4]. The mechanisms analysis and prediction of landslide movements are the
key components of landslide early warning [5–7]. Therefore, it is judicious to carry out
landslide displacement prediction.

Landslide displacement prediction models can be divided into two categories: phys-
ical models and numerical models [8,9]. Traditional physical models provide a physical
explanation for the prediction work according to geological theory [10]. Saito established
a three-stage theory of landslide creep failure in 1968 [11,12], and Hoek proposed the
extension line method to predict the time-displacement curve of Chilean landslides in
1977 [13]. However, physical models are deficient in their ability to meet the demands of
dynamic large landslide prediction [14–16]. With the rapid development of mathematical
statistical theory and intelligent algorithms, numerical models have become more popu-
lar [5]. Numerical models fully consider the complexity and nonlinearity of the landslide
evolution process and have higher prediction accuracy [5,17].

Advances in machine learning provide a powerful tool for numerical landslide model
research. Zhou et al. [17] used kernel extreme learning for landslide displacement pre-
diction. Zhu et al. [18] proposed a least squares support vector model and applied it to
prediction of the Shuping landslide. Among them, Recurrent Neural Networks (RNNs)
have particular advantages in dealing with sequential data [19,20]. Different from other
neural networks, RNNs are the deepest algorithms [21], and they can effectively process
data information with higher dimensions [22]. As a variant of RNNs, Long Short Term
Memory (LSTM) networks perform better at storing and transferring historical information
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than RNNs [23–26]. The utility of the LSTM in landslide research has been confirmed by
many scholars [27–30]. Thus, we choose an LSTM network for landslide displacement
prediction in this paper.

The Attention Mechanism (AM) is currently a powerful deep learning toolkit [31]. AM
is similar to the human visual observation mechanism that can transfer key information
from the input information [32]. AM has been successfully applied in several tasks, such as
natural language processing [31], translation [33], and image recognition [34]. Li et al. [35]
added the Attention Mechanism to the LSTM model and successfully realized the prediction
of personal mobility. Ding et al. [36] proposed a spatio-temporal attention LSTM model
for flood forecasting. Thus, we incorporate an Attention Mechanism with an LSTM neural
network to capture significant variation and improve the model’s performance.

Therefore, a novel model based on time series analysis and Attention Mechanism with
Long Short Term Memory (AMLSTM) was proposed to predict landslide displacement.
The Baishuihe landslide in China, Hubei province, is utilized for the experiment area.
First, we use the Complete Ensemble Empirical Mode Decomposition with Adaptive
Noise (CEEMDAN) algorithm to divide the total displacement into the trend term, the
periodic term, and the residual term. By analyzing the corresponding relationship between
displacement and external factors, a multiple factors AMLSTM model, is applied to predict
the displacement, and it is compared with a further four machine learning models. A series
of contrastive analyses are conducted to evaluate the performance of all of the models.
The results indicate that the proposed CEEMDAN-AMLSTM model performs best in
the experiment.

2. GNSS Time Series Analysis

2.1. Landslide Evolution Analysis

The evolution of landslides is the result of the interaction of geological conditions and
external factors [37]. The non-linear and non-stationary landslide displacement series are
particularly complex and changeable. Therefore, it is necessary to decompose the landslide
time series and forecast each component separately. The corresponding time series of the
landslide displacement can be expressed by the additive model:

yi = Ti + Si + Ri (1)

where yi is the cumulative displacement, Ti is the trend term, Si is the period term, and Ri
is the residual term.

2.2. Decomposition of Displacement Time Series

Many approaches have been recognized as being powerful tools for decomposing
landslide displacement time series, and they include moving average [38], wavelet analy-
sis [39], Variational Mode Decomposition (VMD) [40], and Empirical Mode Decomposition
(EMD) [41]. The EMD method is an adaptive method that is used to analyze non-linear
signals [42]. However, the model mixing problem constitutes an obstacle when using EMD.
To address this problem, the Complete Ensemble Empirical Mode Decomposition with
Adaptive Noise (CEEMDAN) method has been proposed in recent years [43]. Compared to
the more commonly used EMD method, it has a better separation effect and is noise free. It
has many applications in the fields of biological signal processing [44] and engineering [45],
but its application in the geological field still needs to be explored.

The CEEMDAN decomposes the complex signal into a finite number of Intrinsic Mode
Functions (IMFs). The basic process of the CEEMDAN is as follows [46]:

1. White Gaussian noises is added onto the lines of EEMD. The first IMF can be ex-
pressed as:

IMF1 =
n

∑
i=1

E1(x + εwi)

n
(2)
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where n is the number of decomposition, x is the original signal, ε is a fixed coefficient,
wi is the noise, and E(·) is the decomposition operator.

2. The first residual, r1, is calculated:

r1 = x − IMF1 (3)

3. For k = 2,3 . . . , K, the IMFk and the kth residual can be calculated by:

IMFk =
n

∑
i=1

E1(rk−1 + εEk−1(wi))

n
(4)

rk = rk−1 − IMFk (5)

4. The process is calculated until the last residual, R, does not have more than two
extrema points; the original signal can be expressed as:

x =
K

∑
k=1

IMFk + R (6)

3. Attention Mechanism—LSTM Foresting Framework

3.1. LSTM

Long Short Time Memory (LSTM) was proposed by Hochreiter and Schmidhuber
in 1997 [23]. The LSTM can learn information through a well-designed structure called
a “gate”. The gate can store and control the flow of information so that the state of the
previous time step can be transferred to the next time step. The LSTM algorithm has
three gates—update gate, forget gate, and output gate—to protect and control the cell
state explosion in training [25]. The internal structure of the unit memory is as shown in
Figure 1.

Figure 1. The internal structure of the Long Short Time Memory (LSTM) unit memory.

The
⊗

represents the element-wise product and
⊕

is the element-plus product. The
forget gate represents how much of the previous moment unit sate, ct−1, is retained by the
current moment, ct. The input gate determines how much of the current moment input,
xt, is saved in the unit state, ct. The output gate controls how much of the unit state, ct,
is transferred to the output value, ht, of the LSTM.
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Equations (7)–(12) show the calculation process of LSTM:

ft = σ
(

Wf ∗ [at−1, xt] + b f

)
(7)

ut = σ(Wu ∗ [at−1, xt] + bu) (8)

c̃t = tanh(Wc ∗ [at−1, xt] + bc) (9)

ct = ft ∗ ct−1 + ut ∗ c̃t (10)

ot = σ(Wo ∗ [at−1, xt] + bo) (11)

at = ot ∗ tanh(ct) (12)

where ft, ut, and ot are gating vectors that respectively store the forgotten, updated, and
output information of the storage unit memory; ct is the vector for the cell state; at is the
hidden state vector; σ is the sigmoid function; and xt is the input vector. Wf , Wu, Wc, and
Wo are linear transformation matrices whose parameters need to be learned, and b f , bu, bc,
and bo are corresponding bias vectors.

Through the connection of several unit memories, the information flow can be trans-
ferred as shown in Figure 2.

Figure 2. The workflow of LSTM.

3.2. Attention Mechanism

The Attention Mechanism is based on the visual Attention Mechanism found in human
observation [32]. This mechanism helps the model focus on the salient information. The
schematic of the Attention Mechanism layer is illustrated in Figure 3. The purpose of the
attention layer is to enable the model to pay more attention to the significant information.
Raffel et al. [47] proposed a reduced Feed-Forward Attention model, which was calculated
as follows:

scoret = v(at) (13)

wt =
exp(scoret)

∑T
k=1 exp(scoret)

(14)

s =
T

∑
t=1

wt ∗ at (15)
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where the score is the attention score, a is the state vector, v is the learnable function, w is
the weight, and s is the context vector.

Figure 3. Schematic of the Attention Mechanism.

3.3. Attention Mechanism—LSTM Model

Based on the previous discussion, this paper applied the Attention Mechanism with
LSTM (AMLSTM) model for landslide displacement prediction. The AMLSTM model
includes an input vector, LSTM hidden layers, an attention layer, a fully connected layer,
and output predicted values. The architecture of the AMLSTM model is shown in Figure 4.

Figure 4. Architecture of the Attention Mechanism with LSTM Neural Network (AMLSTM NN).
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3.4. Prediction Process with the Proposed Model

The basic flow of the proposed CEEMDAN-AMLSTM model is shown in Figure 5.
Firstly, the landslide cumulative displacement is decomposed into three components: the
trend term, the periodic term, and the residual term. The three terms are then predicted
separately. The trend displacement is expressed as a monotone increasing function un-
der the influence of internal geological factors. The prediction of the trend term can be
carried out by fitting the growth curve with the univariate AMLSTM model. During the
construction of the model, the displacement time series is put into the model only. The
periodic displacement fluctuates under the influence of two external triggers: rainfall and
reservoir water level. Therefore, a multivariable AMLSTM model is established and used
to predict the periodic term. Three time series, the historical periodic displacement, rainfall,
and reservoir water level are put into the model. Furthermore, the residual displacement
affected by random factors shows smooth fluctuation function. The univariate AMLSTM
model is adopted for the prediction work.

Figure 5. The architecture of the Complete Ensemble Empirical Mode Decomposition with Adaptive
Noise (CEEMDAN)-AMLSTM model for landslide displacement prediction.

In the prediction experiments, the majority dataset is used to train the model. The
original time series should be normalized and reshaped to meet the requirements of the
model. After the AMLSTM model is constructed, the prediction ability is tested and
demonstrated with the rest of the dataset.

Ultimately, the cumulative prediction displacement is obtained by adding the trend,
the periodic, and the residual prediction displacements. The prediction results should be
compared with the actual value to verity the performance.

3.5. Evaluation of Model Accuracy

Quantitative analysis were carried out to access the performance of the model. Three
criterions—Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and R2—were
employed to evaluate the prediction work. These metrics are described as follows:

RMSE =

√√√√ I
N

∗
N

∑
i=1

(yi − ŷi)
2 (16)

MAE =
1
N

∗
N

∑
i=1

|yi − ŷi| (17)
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R2 = 1 − ∑N
i=1(yi − ŷi)

2

∑N
i=1(yi − y)2 (18)

where yi is the measured value, ŷi is the prediction value, and y is the average value.

4. Experiment and Results

4.1. Study Area

The experimental area is located in Baishuihe, Zigui County, the Three Gorges Reser-
voir area of the Yangtze River in China. The Baishuihe landslide is located on the south bank
of the Yangtze River, with a longitude of 110◦32′09′′ and a latitude of 31◦01′34′′ (Figure 6a).
The slope is located on the south bank of the Yangtze River, spreading towards the Yangtze
River in a ladder shape. The elevation of the back edge of the landslide is 410 m, bounded
by the rock-soil boundary, and the front edge is about 70 m. It has been submerged below
the reservoir water level. The east and west sides are bounded by bedrock ridges, and the
overall slope is about 30◦. The length of the north-south direction is 600 m, the width of the
east-west direction is 700 m, the average thickness of the sliding body is about 30 m, and
the volume is 1.26×107 m3. Six Global Navigation Satellite System (GNSS) deformation
monitoring points were installed on the surface of the landslide to form three longitudinal
monitoring profiles (Figure 6b). The displacement was monitored once a month. Figure 7
shows the calculated displacement results from December 2006 to December 2012.

 
 

 

Figure 6. (a) Location map from Google Earth and (b) Locations of the monitoring Global Navigation
Satellite System (GNSS) stations on the landslide.
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Figure 7. Cumulative displacement monitoring data based on six GNSS points.

It can be seen from Figure 7 that the landslide deformation is characterized by stepwise
progressive creep deformation, and the landslide is still in the energy accumulation stage,
showing a slow creep deformation state. In this experiment, ZG118 and XD01, the two
points with the most abundant dataset, are selected for the prediction work. The measure-
ments from December 2006 to November 2011 are used for training and the measurements
obtained from November 2011 to November 2012 are used for testing. Each time interval
of the train and test dataset is one month. The cumulative displacements, the reservoir
water level, and the rainfall are plotted in Figure 8.

Figure 8. Relationship between rainfall, reservoir water level, and landslide displacement on ZG118 and XD01.

Figure 8 shows that the external periodic rainfall and reservoir water level both have
an important influence. The displacement of XD01 and ZG118 increased significantly
during a period of drastic decrease of the reservoir water level. For example, from May
2009 to July 2009, the reservoir water level dropped from 160 m to 145 m, and their periodic
displacement increased by 200~300 mm, presenting a large step. In addition, heavy rain
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also had an important effect on landslide displacement fluctuations. For example, from
August 2008 to September 2008, the reservoir water level basically did not change but,
due to the occurrence of 300 mm of heavy rain during this period, the landslide also
showed a large deformation of 200 mm. Therefore, the reservoir water level and rainfall
are considered to be the trigger factors of the Baishuihe landslide, leading to the occurrence
of the periodic term displacement.

4.2. GNSS Time Series Analysis

According to landslide analysis theory, the cumulative displacement can be decom-
posed into trend displacement, periodic displacement, and residual displacement using
the CEEMDAN algorithm. The results are as follows (Figure 9):

Figure 9. Three decomposed terms of the GNSS time series: (a) ZG118, (b) XD01.

4.3. Displacement Prediction
4.3.1. Trend Displacement Prediction

Trend displacement is driven by geological conditions. Therefore, the univariate
AMLSTM NN model is used to predict the trend displacement. In order to verify the
validity of the proposed model, the experiment will be benchmarked with LSTM, Random
Forest(RF), RNN, and Support Vector Machine(SVM). The prediction results of the test
dataset are shown in Figure 10.

It can be seen in Figure 10 that the trend displacement of the ZG118 and XD01 points
represent a smooth monotonically properties. The prediction work by the SVM shows the
worst, and the prediction values of the AMLSTM, LSTM, RNN, and RF models show high
agreement with the measured true value. The relative error analysis in Table 1 indicates that
the AMLSTM, LSTM, and RF have excellent performance in trend term prediction work.
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Figure 10. The prediction results of trend displacement by different methods: (a) ZG118, (b) XD01.
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Table 1. The accuracy assessment of trend displacement by different prediction models.

Model
RMSE MAE R2

ZG118 XD01 ZG118 XD01 ZG118 XD01

AMLSTM 2.6152 2.1254 1.6785 1.7849 0.9925 0.9981
LSTM 1.6773 3.5006 1.4072 2.2426 0.9969 0.9949
RNN 5.6158 4.8276 4.5776 4.4758 0.9655 0.9904
SVM 23.3985 23.7356 22.6717 23.5418 0.4018 0.7678
RF 1.4897 2.6540 1.3317 2.3943 0.9976 0.9971

4.3.2. Periodic Displacement Prediction

Periodic term is a key component for displacement prediction. According to the
analysis in Section 4.1, the external periodic rainfall and reservoir water level both have
an important influence. In this section, the periodic displacement will be predicted by the
multivariate AMLSTM, and the multivariate LSTM, the SVM, the RF, and the RNN are
used as benchmarks. The predictive periodic displacements by the five models are shown
in Figure 11 and Table 2.

Figure 11. The prediction results of periodic displacement by different methods: (a) ZG118, (b) XD01.
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Table 2. The accuracy assessment of periodic displacement by different prediction models.

Model
RMSE MAE R2

ZG118 XD01 ZG118 XD01 ZG118 XD01

AMLSTM 8.3714 6.1623 5.6456 4.5016 0.9404 0.9933
LSTM 10.9127 12.8428 8.5083 10.1266 0.8987 0.9711
RNN 16.1422 18.9561 14.5892 16.7908 0.7784 0.9371
SVM 15.4854 24.2245 14.236 20.2412 0.796 0.8972
RF 25.6368 22.3304 22.0298 18.298 0.441 0.9126

As shown in Figure 11, the predictions of the AMLSTM and LSTM methods are clearly
better than the others, and the quantitative analysis suggest that the AMLSTM achieved
the best performance, along with RMSE, MSE, and R2, in periodic displacement prediction.

4.3.3. Residual Displacement Prediction

Traditionally, the residual term can be regarded as the noise, which is removed during
the decomposition procedure. Throughout the test, the residual term does not belong to the
white noise. Therefore, the prediction work of this term is necessary. In this experiment, the
univariate AMLSTM, LSTM, SVM, RF, and RNN models are used to predict the residual
displacement prediction.

Compared with the trend and the periodic term, the residual term is harder to adopt
in a model because of its random characteristic. As shown in Figure 12 and Table 3, the
AMLSTM offers a better prediction effect than the other four models.

Figure 12. The prediction results of residual displacement by different methods: (a) ZG118, (b) XD01.
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Table 3. The accuracy assessment of residual displacement by different prediction models.

Model
RMSE MAE R2

ZG118 XD01 ZG118 XD01 ZG118 XD01

AMLSTM 5.1002 9.8401 4.2185 8.2213 0.7897 0.7132
LSTM 6.4204 11.9279 5.1768 9.7219 0.6667 0.5785
RNN 11.5546 17.0916 9.0241 12.5840 −0.0796 0.1346
SVM 9.7371 19.2705 8.2718 16.4355 0.2333 −0.1001
RF 13.8302 23.4540 10.1748 20.5233 −0.5467 −0.6296

4.3.4. Total Displacement Prediction

The predicted cumulative displacements can be obtained by taking the sum of the
trend, period, and residual displacements. The results are shown in Figure 13 and Table 4.

Figure 13. The prediction results of cumulative displacement by different methods: (a) ZG118,
(b) XD01.

271



Remote Sens. 2021, 13, 1055

Table 4. The accuracy assessment of cumulative displacement by different prediction models.

Model
RMSE MAE R2

ZG118 XD01 ZG118 XD01 ZG118 XD01

AMLSTM 8.5514 10.249 6.5395 8.0242 0.9748 0.9918
LSTM 11.7059 18.8873 7.8044 13.3813 0.9528 0.9723
RNN 20.4623 21.4569 17.6515 16.3575 0.8556 0.9634
SVM 29.1695 41.3469 25.6171 33.3799 0.7066 0.8673
RF 28.5883 32.0225 23.5398 26.5033 0.7182 0.9204

The results show that, although some of the prediction values slightly deviate from
the real measured data, the AMLSTM model shows the best performance, because this
model not only considers multiple external factors, but also optimizes the LSTM algorithm
by adding an attention layer. It can better reflect the response relationship between dis-
placement and trigger factors. Moreover, the cumulative displacements are predicted badly
by the SVM and RF models.

From a quantitative point of view, the RMSE and MAE of the AMLSTM model are
lower than the LSTM, RNN, SVM, and RF models. These results reveal that the AMLSTM
shows the most stable prediction performance. Secondly, the R2 of the AMLSTM are higher
than the others. The results indicate that the AMLSTM model has done the best accuracy
prediction work. Therefore, the superiority of the AMLSTM can be proved.

5. Conclusions

The traditional landslide prediction model directly deletes the residual items. More-
over, most classic deep learning prediction models do not highlight the impact of important
information on the results, so they cannot accurately predict the displacement. This paper
used the CEEMDAN and the Attention Mechanism, combined with the LSTM NN to estab-
lish a dynamic prediction model for landslide displacement prediction. To corroborate its
feasibility and applicability, the proposed model was applied to the Baishuihe landslide
area, and joint multiple impact factors were considered here for prediction. By comparing
to the prediction effects of other models, the prediction accuracy demonstrated a com-
petitive performance. The results strongly suggest the effectiveness and feasibility of the
AMLSTM model in landslide displacement prediction. This novel CEEMDANAM-LSTM
strategy can be recommended to other landslide prediction works and has great potential
in landslide risk assessment.

Author Contributions: Conceptualization, J.W. and G.N.; methodology, J.W.; software, J.W.; vali-
dation, S.W. and X.R.; formal analysis, S.G.; investigation, G.N. and S.G.; writing—original draft
preparation, J.W.; writing—review and editing, J.W. and H.L. All authors have read and agreed to
the published version of the manuscript.

Funding: This study was financially supported by the National Key Research and Development
Scheme Strategic International Cooperation in Science and Technology Innovation Program, grant
number: 2018YFE0206500. National Program on Key Basic Research Project (973 Program), grant
number: 2013CB733205.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The dataset we used in this paper includes the GNSS time series, rainfall and
reservoir water level data set of Baishuihe landslide provided by Chinese National Cryosphere
Desert Data Center (http://www.crensed.ac.cn/portal/, accessed on 9 February 2021). The authors
acknowledge Google Earth for providing the map and Origin software. Thanks to the editor Aguero
Gui and the anonymous reviewers.

Conflicts of Interest: The authors declare no conflict of interest.

272



Remote Sens. 2021, 13, 1055

References

1. Petley, D. Global patterns of loss of life from landslides. Geology 2012, 40, 927–930. [CrossRef]
2. Bejar-Pizarro, M.; Notti, D.; Mateos, R.M.; Ezquerro, P.; Centolanza, G.; Herrera, G.; Bru, G.; Sanabria, M.; Solari, L.; Duro, J.; et al.

Mapping Vulnerable Urban Areas Affected by Slow-Moving Landslides Using Sentinel-1 InSAR Data. Remote Sens. 2017, 9, 876.
[CrossRef]

3. Dai, F.C.; Lee, C.F.; Ngai, Y.Y. Landslide risk assessment and management: An overview. Eng. Geol. 2002, 64, 65–87. [CrossRef]
4. Intrieri, E.; Gigli, G.; Casagli, N.; Nadim, F. Brief communication “Landslide Early Warning System: Toolbox and general

concepts”. Nat. Hazard. Earth Syst. 2013, 13, 85–90. [CrossRef]
5. Corominas, J.; Moya, J.; Ledesma, A.; Lloret, A.; Gili, J.A. Prediction of ground displacements and velocities from groundwater

level changes at the Vallcebre landslide (Eastern Pyrenees, Spain). Landslides 2005, 2, 83–96. [CrossRef]
6. Huang, F.; Huang, J.; Jiang, S.; Zhou, C. Landslide displacement prediction based on multivariate chaotic model and extreme

learning machine. Eng. Geol. 2017, 218, 173–186. [CrossRef]
7. Casagli, N.; Catani, F.; Del Ventisette, C.; Luzi, G. Monitoring, prediction, and early warning using ground-based radar

interferometry. Landslides 2010, 7, 291–301. [CrossRef]
8. Ren, F.; Wu, X.; Zhang, K.; Niu, R. Application of wavelet analysis and a particle swarm-optimized support vector machine to

predict the displacement of the Shuping landslide in the Three Gorges, China. Environ. Earth Sci. 2015, 73, 4791–4804. [CrossRef]
9. Huang, J.; Griffiths, D.V. Return Mapping Algorithms and Stress Predictors for Failure Analysis in Geomechanics. J. Eng. Mech.

2009, 135, 276–284. [CrossRef]
10. Mufundirwa, A.; Fujii, Y.; Kodama, J. A new practical method for prediction of geomechanical failure-time. Int. J. Rock Mech. Min.

2010, 47, 1079–1090. [CrossRef]
11. Saito, M. Forecasting the Time of Occurrence of a Slope Failure. In Proceedings of the 6th International Conference on Soil

Mechanics and Foundation Engineering, Montreal, QC, Canada, 8–15 September 1965; Volume 2, pp. 537–541.
12. Saito, M. Forecasting time of slope failure by tertiary creep. In Proceedings of the 7th International Conference on Soil Mechanics

and Foundation Engineering, Mexico City, Mexico, 13–16 July 1969; Volume 2, pp. 677–683.
13. Hoek, E.; Bray, J. Rock Slope Engineering, Revised 2nd ed.; Publication of Institution of Mining & Metallurgy: London, UK, 1977.
14. Mohammadi, S.; Taiebat, H. Finite element simulation of an excavation-triggered landslide using large deformation theory. Eng.

Geol. 2016, 205, 62–72. [CrossRef]
15. Thiebes, B.; Bell, R.; Glade, T.; Jäger, S.; Mayer, J.; Anderson, M.; Holcombe, L. Integration of a limit-equilibrium model into a

landslide early warning system. Landslides 2014, 11, 859–875. [CrossRef]
16. Ma, J.; Tang, H.; Liu, X.; Hu, X.; Sun, M.; Song, Y. Establishment of a deformation forecasting model for a step-like landslide

based on decision tree C5.0 and two-step cluster algorithms: A case study in the Three Gorges Reservoir area, China. Landslides
2017, 14, 1275–1281. [CrossRef]

17. Zhou, C.; Yin, K.; Cao, Y.; Intrieri, E.; Ahmed, B.; Catani, F. Displacement prediction of step-like landslide by applying a novel
kernel extreme learning machine method. Landslides 2018, 15, 2211–2225. [CrossRef]

18. Zhu, X.; Xu, Q.; Tang, M.; Li, H.; Liu, F. A hybrid machine learning and computing model for forecasting displacement of
multifactor-induced landslides. Neural Comput. Appl. 2018, 30, 3825–3835. [CrossRef]

19. Graves, A.; Mohamed, A.R.; Hinton, G. Speech Recognition with Deep Recurrent Neural Networks. In Proceedings of the
2013 IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada, 26–31 May 2013; pp.
6645–6649.

20. Lipton, Z.C.; Berkowitz, J.; Elkan, C. A Critical Review of Recurrent Neural Networks for Sequence Learning. arXiv 2015,
arXiv:1506.00019.

21. Schmidhuber, J. Deep learning in neural networks: An overview. Neural Netw. 2015, 61, 85–117. [CrossRef]
22. Mirikitani, D.T.; Nikolaev, N. Recursive Bayesian Recurrent Neural Networks for Time-Series Modeling. IEEE Trans. Neural Netw.

2010, 21, 262–274. [CrossRef] [PubMed]
23. Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
24. Greff, K.; Srivastava, R.K.; Koutnik, J.; Steunebrink, B.R.; Schmidhuber, J. LSTM: A Search Space Odyssey. IEEE Trans. Neural

Netw. Learn. Syst. 2017, 28, 2222–2232. [CrossRef]
25. Gers, F.A.; Schmidhuber, J.; Cummins, F. Learning to Forget: Continual Prediction with LSTM. Neural Comput. 2000, 12, 2451–2471.

[CrossRef]
26. Graves, A. Supervised Sequence Labelling with Recurrent Neural Networks. Available online: https://doi.org/10.1007/978-3-64

2-24797-2 (accessed on 1 February 2012).
27. Xie, P.; Zhou, A.; Chai, B. The Application of Long Short-Term Memory (LSTM) Method on Displacement Prediction of

Multifactor-Induced Landslides. IEEE Access 2019, 7, 54305–54311. [CrossRef]
28. Xing, Y.; Yue, J.; Chen, C. Interval Estimation of Landslide Displacement Prediction Based on Time Series Decomposition and

Long Short-Term Memory Network. IEEE Access 2020, 8, 3187–3196. [CrossRef]
29. Xing, Y.; Yue, J.; Chen, C.; Cong, K.; Zhu, S.; Bian, Y. Dynamic Displacement Forecasting of Dashuitian Landslide in China Using

Variational Mode Decomposition and Stack Long Short-Term Memory Network. Appl. Sci. 2019, 9, 2951. [CrossRef]
30. Yang, B.; Yin, K.; Lacasse, S.; Liu, Z. Time series analysis and long short-term memory neural network to predict landslide

displacement. Landslides 2019, 16, 677–694. [CrossRef]

273



Remote Sens. 2021, 13, 1055

31. Parikh, A.; Täckström, O.; Das, D.; Uszkoreit, J. A Decomposable Attention Model for Natural Language Inference. arXiv 2016,
arXiv:1606.01933.

32. Bahdanau, D.; Cho, K.; Bengio, Y. Neural Machine Translation by Jointly Learning to Align and Translate. arXiv 2014,
arXiv:1409.0473.

33. Luong, M.; Pham, H.; Manning, C. Effective Approaches to Attention-based Neural Machine Translation. arXiv 2015,
arXiv:1508.04025.

34. Fu, Q.; Li, S.; Wang, X. MSCNN-AM: A Multi-Scale Convolutional Neural Network with Attention Mechanisms for Retinal Vessel
Segmentation. IEEE Access 2020, 8, 163926–163936. [CrossRef]

35. Li, F.; Gui, Z.; Zhang, Z.; Peng, D.; Tian, S.; Yuan, K.; Sun, Y.; Wu, H.; Gong, J.; Lei, Y. A hierarchical temporal attention-based
LSTM encoder-decoder model for individual mobility prediction. Neurocomputing 2020, 403, 153–166. [CrossRef]

36. Ding, Y.; Zhu, Y.; Feng, J.; Zhang, P.; Cheng, Z. Interpretable spatio-temporal attention LSTM model for flood forecasting.
Neurocomputing 2020, 403, 348–359. [CrossRef]

37. Desai, C.S.; Samtani, N.C.; Vulliet, L. Constitutive modeling and analysis of creeping slopes. J. Geotech. Eng. 1995, 121, 43–56.
[CrossRef]

38. Zhou, C.; Yin, K.; Cao, Y.; Ahmed, B. Application of time series analysis and PSO–SVM model in predicting the Bazimen landslide
in the Three Gorges Reservoir, China. Eng. Geol. 2016, 204, 108–120. [CrossRef]

39. Li, Y.; Sun, R.; Yin, K.; Xu, Y.; Chai, B.; Xiao, L. Forecasting of landslide displacements using a chaos theory based wavelet
analysis-Volterra filter model. Sci. Rep. 2019, 9, 1–9. [CrossRef] [PubMed]

40. Guo, Z.; Chen, L.; Gui, L.; Du, J.; Yin, K.; Do, H.M. Landslide displacement prediction based on variational mode decomposition
and WA-GWO-BP model. Landslides 2020, 17, 567–583. [CrossRef]

41. Xu, S.; Niu, R. Displacement prediction of Baijiabao landslide based on empirical mode decomposition and long short-term
memory neural network in Three Gorges area, China. Comput. Geosci. 2018, 111, 87–96. [CrossRef]

42. Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.C.; Shih, H.H.; Zheng, Q.; Yen, N.; Tung, C.C.; Liu, H.H. The empirical mode
decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. A Math. Phys. Eng.
Sci. 1998, 454, 903–995. [CrossRef]

43. Torres, M.E.; Colominas, M.A.; Schlotthauer, G.; Flandrin, P. A complete ensemble empirical mode decomposition with adaptive
noise. In Proceedings of the 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Honolulu,
HI, USA, 16–20 April 2011; pp. 4144–4147.

44. Colominas, M.A.; Schlotthauer, G.; Torres, M.E. Improved complete ensemble EMD: A suitable tool for biomedical signal
processing. Biomed. Signal Proces. 2014, 14, 19–29. [CrossRef]

45. Zhang, W.; Qu, Z.; Zhang, K.; Mao, W.; Ma, Y.; Fan, X. A combined model based on CEEMDAN and modified flower pollination
algorithm for wind speed forecasting. Energy Convers. Manag. 2017, 136, 439–451. [CrossRef]

46. Han, J.; van der Baan, M. Empirical mode decomposition for seismic time-frequency analysis. Geophysics 2013, 78, O9–O19.
[CrossRef]

47. Raffel, C.; Ellis, D.P.W. Feed-Forward Networks with Attention Can Solve Some Long-Term Memory Problems. arXiv 2015,
arXiv:1512.08756.

274



remote sensing 

Article

Contribution to the Research of the Effects of Etna Volcano
Activity on the Features of the Ionospheric Total Electron
Content Behaviour

Ivan Toman 1, David Brčić 2,* and Serdjo Kos 2
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Abstract: This research represents a contribution to the theory on the coupling of the volcanic
activity and the ionospheric dynamics, represented by total electron content (TEC) patterns and their
behaviour. The ionospheric response to the activity of the Etna volcano has been analysed using global
navigation satellite system (GNSS)-derived TEC values, employing data from International GNSS
Service (IGS) reference station near the volcano and on two distant IGS locations. Volcanic activity
has been modelled using volcanic radiative power (VRP) data obtained by the Middle InfraRed
Observation of Volcanic Activity (MIROVA) system. The estimated minimal night TEC values have
been averaged over defined index days of the VRP increase. During the analysed period of 19 years,
the volcano activity was categorised according to pre-defined criteria. The influence of current
space weather and short-term solar activity on TEC near the volcano was systematically minimised.
The results showed mean/median TEC increases of approximately +3 standard deviations from
the overall mean values, with peak values placed approximately 5 days before the VRP increase
and followed by general TEC depletion around the time of the actual volcanic activity increase.
Additionally, TEC oscillation pattern was found over the volcano site with a half-period of 6.25 days.
The main interpretation of results indicates that the volcanic activity has modified the ionospheric
dynamics within the nearby ionospheric region before the actual VRP increase, and that the residual
impact in the volcano’s surrounding area refers to terrestrial endogenous processes and air–earth
currents. Those changes can be detected during criteria predefined in the research: during quiet
space weather conditions, observing night-time TEC values and within the limits of low short-term
solar influence.

Keywords: ionosphere; volcanic activity; total electron content; ground-truth data; seismo-ionospheric
coupling

1. Introduction

The development of the ionospheric total electron content (TEC) determination meth-
ods, together with improving the means of volcanic activity monitoring, have allowed
for the sensing of the seismic processes and their possible couplings with the ionospheric
dynamics. The electromagnetic properties of Earth's upper atmosphere layers are mostly
dependent on the solar activity. Compared to solar influences, the seismic causes have
a smaller impact on the ionosphere, and details of their coupling mechanisms are still
not fully understood. The current body of the scientific literature reflects a substantial
amount of research and understanding of the relationships between Earth’s seismic activity
and resulting changes within the atmospheric layers. Although rarely emphasised, the
scientific knowledge on seismic effects on the ionosphere is one of the most intensively
researched areas that could lead to a more reliable earthquake and seismic prediction
models. An appropriate scientific review on the topic was presented in [1].
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Apart from the possibility to employ ionospheric anomalies for earthquake prediction,
there are other related and usable effects of seismo-ionospheric coupling, for instance,
on satellite communication and radio navigational electromagnetic signals [2]. The iono-
spheric layers physically modify the path of the satellite positioning signals, consequently
introducing a positioning error. The ionospheric delay is subject to various methods of
calculation, determination and estimation for high accuracy positioning requirements [3],
with TEC as a main indicator of the ionospheric behaviour.

As a dispersive medium feature, the ionospheric refraction depends on the operating
signal’s frequency. By accurately measuring the effects of the ionospheric delay, sound
insights into actual physical state of the ionosphere along the signal ray path can be
obtained. Using the data that arise from such examinations, it is possible to investigate a
connection between the seismic activity and its effects on the ionization.

The research efforts on relations between earthquakes and ionospheric anomalies are
summarised in [4] to a significant extent. The geophysical relationship between seismic
activity and associated ionospheric anomalies are generally described by the Lithosphere–
Atmosphere–Ionosphere Coupling (LAIC) models [5]. LAIC models explain these relation-
ships as a synergy between different ground surface, atmosphere and ionosphere processes
and anomalous variations, the latter being usually recognised as a short-term earthquake
precursor [5].

Compared to earthquakes, the effects of volcanic activity on ionospheric anomalies
are less investigated. Several authors have proved the high electrification of the volcanic
dust, such as in [6], where an electrification mechanism of the volcanic ash was simulated.
The authors have found that the dominant source of charging of ash particles occurs
as a consequence of the ejection of ions and atomic particles during fracture events of
solid silicate particles. Charged volcanic plume is often the reason for occurrence of
intense lightning from the volcanic dust clouds, repeatedly present during strong eruptions.
In [7], authors have also discussed the theory of ash particles fragmentation as a primary
mechanism of volcanic clouds charging.

Volcanic activity has a broad and complex effect on atmospheric electrical properties [8–10].
Apart from the charging of ash particles, the interaction with air ionization is found as the
emanation of radioactive radon gas from the ground. Atmospheric conductivity is greatly
modified by volcanic eruptions which affect air–earth electric currents and the global
atmospheric electrical circuit system. The global electrical circuit (GEC) model is developed
to explain atmospheric electric field and currents within Earth’s coupled atmosphere–
ionosphere–magnetosphere system. There are three major drivers of the atmosphere’s
electric field and currents [11,12]: thunderstorms, the ionosphere wind dynamo [13] and the
solar wind-magnetosphere dynamo [14]. The lithosphere dynamics can locally influence
conductivity of near-surface air layer following the radon emanation, changing the current
density and modifying the free electron content within the atmosphere [4]. In [15], authors
show that boundary layer resistance is decreased following the release of radon, increasing
the vertical GEC currents and finally modifying the charge transferred to and from the
ionosphere. We consider the possibility that volcanoes are able to exploit the similar
mechanism and influence the atmospheric charge to a certain degree.

In [16], the authors found that the ionospheric perturbations, as recorded by the
DEMETER satellite network, occurred during intense eruptive events of Etna volcano in
2006. An increase in ion density, particularly O+, was found when a satellite was located at
the approximate latitude of the Etna region. At that time, an electric very low frequency
(VLF) spectrogram recorded lightning activity in the region. All the findings showed the
close relationship between volcanic activity and atmospheric electricity, leading to the
possibility of volcanic influence towards ionospheric electrical properties, as discussed and
examined further.

Li et al. [17] analysed the coupling relationship between volcanic eruption and TEC
anomalies using Global Ionospheric Map (GIM) data before the 15 volcanic eruptions
indicated by Volcanic Explosivity Index 4+ (VEI4+). They found anomalies preceding 67%
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of the analysed eruption events. Approximately 80% of anomalies occurred between days
6 and 17 before eruptions. The occurrence rate of TEC anomalies before large eruptions
was related with the volcanic type and the geographical position. The probability of TEC
anomalies’ observations before the eruption decreased with latitude; in the equatorial
region, 80% of eruptions anomalies were found, but only 60% and 50% of eruptions in mid
and high latitudes, respectively, produced preceding TEC anomalies. However, statistical
uncertainty was found to be high due to scarce data.

TEC anomalies were analysed in [18] as a response to the Calbuco volcano eruptions.
Here, the method of approximation of a spherical wave propagating at a constant velocity
from a point source was employed. The authors showed that it is possible, by using dense
(30 s) frequency ionospheric GPS data, to calculate the position of the eruptive source
within several latitude/longitude degrees. In [19], the relation between volcanic events and
ionospheric anomalies was found as well. The total of 269 anomalies were found in relation
to 89 eruptions using satellite DEMETER data [20]. The two main types of anomalies were
the electrostatic turbulence, and the electromagnetic emissions with a maximum number
of those being recorded between 30 and 15 days before the surface volcanic activity. The
study on the impact of the 2011 Puyehue-Cordon Caulle volcanic eruption on the GPS
ionospheric delay also indicated the presence of ionospheric TEC anomalies several days
before the major eruption [21]. In [22], authors analysed global navigation satellite system
(GNSS)-derived short-term TEC response to the Merapi 2010 and the Kelud 2014 volcano
eruptions. They observed quasi-periodic oscillation of TEC values of a frequency ~4 mHz
(period ~250 s), which lasted for ~20 and ~120 min, respectively. Previously [23], it has
been shown that these oscillations are related to upward propagation of acoustic waves,
causing resonant oscillations in distinct frequencies.

In this paper, we investigated the longer-term relationship of the activity of Etna vol-
cano (Italy), measured by the Middle InfraRed Observation of Volcanic Activity (MIROVA)
system, and the ionospheric TEC behaviour calculated using ground-based, dual-frequency
GNSS measurements by the International GNSS Service (IGS) network [24]. Almost
20 years’ worth of data were analysed and filtered to select significant volcanic activ-
ity increases, rather than focusing on volcano eruptions solely. Identified events were
further used to investigate the ionospheric TEC dynamics for the same periods, with
the primary goal to detect possible anomalous TEC behaviour during days of significant
volcanic activity, with an emphasis on days preceding the activity.

In the following chapter, determinants of research fundamentals referring to iono-
spheric properties, TEC determination and the means of the volcanic activity tracking
are briefly provided. The research design and the methodology are defined, presented
and explained in the third chapter. The results are presented and discussed afterwards,
drawing inferences and conclusions on obtained findings.

2. Background

2.1. TEC Features and the Ionospheric Response to Solar Activity

The ionospheric layers react to the solar activity by changing the temperature and
ion production [25,26]. Depending on the user’s location on the Earth, the ionosphere
can be roughly divided in low-, mid- and high-latitude regions, each characterised by its
own processes and responses to the solar forcing [27,28]. There are various methods for
evaluation and monitoring of the solar activity.

Certain methods, such as solar radio flux (sfu) at 10.7 cm wavelength [29], solar
wind [30], or radio noise measurements at centimetre wavelengths [31] are direct, based
on instrumental measurements. The others are intermediary, based on the solar activity
evaluation effects, implying observations of indices such as sunspot number [32], and
planetary geomagnetic K, Kp and Dst indices [33–36].

The total electron content is considered as a basic parameter of the ionospheric electro-
magnetic properties and their variations. It is defined as a number of free electrons along
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an equivalent column having a cross-section of one square meter from the satellite to the
receiver’s antenna [37,38]. It is expressed in TEC units (TECu), where [2,39]:

1 TECu =
1016e−

m2 . (1)

The amount of the GPS ionospheric delay (Δt) can be expressed as [37]:

Δt =
40.3
c· f 2 TEC, (2)

where f is system operating frequency, and c is electromagnetic signal propagation speed.
The GNSS networks and respective ground-truth observations, data and products are

used to make accurate estimates of ionospheric TEC values [40–42]. As the magnitude of
the delay effect is proportional to inverse of the square of the frequency (2), it can be used
to directly estimate TEC values [43], using a linear combination of code (P) and carrier
phase (φ) measurements [44,45].

The difference in the signals’ reception delay can then be modelled as a sum of
the group delays caused by hardware (satellite (Total Group Delay—TGD) and receiver
(Receiver Differential Code Bias—rDCB)) biases and the ionospheric TEC. With the receiver
calibration and no code smoothing with delay adjustment to code-derived TEC, it is
possible to remove sources of error that result from estimation, instead of measurement
of the bias, smoothing-induced delay of code TEC, and smoothing-induced ionospheric
divergence bias of code TEC [45].

2.2. Specific Parameters of the Volcanic Activity

Used methods for volcanic activity monitoring can be classified as ground-based local,
and satellite-based measurements. The former usually consist of developing multidis-
ciplinary surveillance networks that include seismic, positional, tilt, visual and thermal
infrared cameras, infrasound, gravity, magnetic and other measurements by local ground-
based stations [46–48].

One of the first efforts in volcanic activity remote sensing can be found in [49], where an
airborne infrared radiometer was used to measure the activity of Hawaiian volcanoes. First
attempts to observe volcanic surfaces from the Earth’s orbits are described in [50]. Satellite-
derived thermal data within the infrared region between 0.7 and 20 μm are nowadays
frequently used as a tool to detect the presence of volcanic eruptions [51]. According to [52],
there are 18 satellite-based remote sensing systems which monitor the volcanic activity in
terms of radiation measuring, mostly in middle-infrared and thermal-infrared spectrum
bands. Notable examples are HOTSAT [53] and MIROVA system [54,55]. MIROVA is a
near real-time hot-spot detection system, developed to detect, locate and measure the heat
radiation sourced from the volcanic activity.

The main benefit of the system is a combination of the accuracy and ease of exporta-
bility of application to different volcanoes. It does not require the analysis of historical
data sets but rather produces results of the same quality as the algorithms, specifically
calibrated for any volcano target. The system is based on the analysis of the Middle Infrared
Radiation (MIR wavelength: 3.44–4.13 μm) extracted from the MODIS Level 1B data [56].
The extraction algorithm is based on spectral and spatial analysis of MIR data, providing
detection of heat sources ranging from 1 MW to more than 10 GW of radiated power.

3. Research Methodology

The presented research covered the period from March 2000 to December 2019, contain-
ing collected MIROVA data, GNSS observables and selected space weather measurements.
MIROVA dataset was obtained courtesy of a collaborative project between the Universities
of Turin and Florence (Italy) [57]; GNSS data were retrieved from IGS servers [58], and
space weather measurements were obtained from NASA Goddard Space Flight Center
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(GSFC) servers [59]. The MIROVA dataset of Etna thermal anomalies contains night-time,
daily measured values of volcanic radiative power (VRP) in Watts [60]. We defined criteria
for locating days of volcanic activity increase (VAI) as days with at least 25% of VRP higher
than the preceding day (ΔVRP), and with the absolute VRP value higher than the threshold
value. To analyse the ionospheric TEC dependence on the volcanic influence, i.e., its activity
magnitude, three different scenarios were defined depending on VRP threshold value, as
shown in Table 1.

Table 1. Volcanic radiative power (VRP) threshold values and number of corresponding days
within analysed Middle InfraRed Observation of Volcanic Activity (MIROVA) dataset for three VRP
threshold values and 5 different daily increases in VRP.

Criteria
VRP Threshold

Value

Number of Days that Satisfy Criteria with Daily VRP Increase

5% 15% 25% 35% 45%

A >1 × 108 W 445 402 350 293 226
B >4 × 108 W 260 236 201 167 121
C >8 × 108 W 172 156 131 111 78

The additional criteria requiring a 25% or more day-to-day increase in VRP were
defined, aiming to identify either beginning days of eruptions, or days with significant
increase in the activity without actual lava eruptions (in these cases, the radiation increase
occurred from the thermal energy build-up).

The comprehensive statistical analysis has been conducted evaluating different daily
VRP increase values (5, 15, 25, 35 and 45%, respectively), in order to examine the possibility
of random affectation and misleading results. The 25% of day-to-day VRP increase was
finally selected as a reference value for further calculations, representing a sound com-
promise between sufficient number of records which satisfy the criteria, and appropriate
number of cases of the volcanic activity increase.

The GPS observables have been obtained from the IGS network in the Receiver
Independent Exchange Format (RINEX) [61]. The TEC values were estimated using GPS-
TEC analysis software [62] following the standard methodology [63]:

Pj
r,4 = Pj

r,1 − Pj
r,2 = 40.3

TEC
f 2
1

− 40.3
TEC

f 2
2

+ (Br,1 − Br,2) +
(

Bj
1 − Bj

2

)
, (3)

φ
j
r,4 = φ

j
r,1 − φ

j
r,2 = 40.3

TEC
f 2
2

− 40.3
TEC

f 2
1

+ (br,1 − br,2) +
(

bj
1 − bj

2

)
− (N1 − N2), (4)

where j, r are satellite and receiver antenna points, respectively; P, φ are pseudorange and
carrier phase observations, respectively; TEC is the slant total electron content along the
propagation path (in TECu) with the ray path zenith angle χs �= 0

◦
; f1, f2 are operating

frequencies; Br, Bj are pseudorange code receiver and satellite hardware delay (in m), re-
spectively; br, bj are carrier phase receiver and satellite hardware delay (in m), respectively,
and N1, N2 are carrier-phase ambiguities (in m).

The simplified representation of the employed TEC determination method is shown
in Figure 1. The code difference observables were levelled with phase differences to the
correct TEC values, after which they were adjusted with code measurements.
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Figure 1. Total electron content (TEC) determination method based on ionospheric GPS dual-
frequency combinations. Adapted and modified on the basis of [64,65].

The daily DCB values were retrieved from the Global Ionospheric Maps (GIM) IONEX
files [66], employed to refine the ionospheric combinations. Vertical TEC (VTEC) values
were obtained by using slant TEC (STEC) to VTEC mapping function [67].

3.1. Mitigation of Short-Term Solar Activity and Other Non-Local Factors’ Impact on TEC Behaviour

The daily TEC values are strongly correlated to the solar activity, as shown in Figure 2.
The ionospheric TEC values were determined from ground-truth data at IGS Noto, and their
mean values were compared to 10.7 cm sfu [29], expressed in solar flux units
(1sfu = 10−22 Wm−2Hz−1).

Figure 2. Solar activity expressed as 10.7 cm radio flux (blue) and mean daily ionospheric TEC values
as calculated for IGS Noto (red) for the approximate period 2001 to 2018.
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The influence of diurnal solar activity represents a challenge in an effort to detect vol-
canic influences, and appropriate filtering of the solar impact was essential. By examining
various TEC subset patterns, we found that minimal night TEC values vary with solar
activity in an acceptably small degree (Figure 3). We utilised this observation for detection
of volcanic influence on ionospheric TEC along with larger solar effects. Hence, in further
analysis minimal night TEC values were considered to be generally unaffected by the solar
activity. In order to increase the confidence in practical validity of such an assumption, a
series of data analyses were performed to detect possible adverse effects of the remaining
solar influence.

Figure 3. Solar activity expressed as 10.7 cm radio flux (blue) and minimal night ionospheric TEC
values at IGS Noto (red).

Due to the night persistence of certain ionospheric layers, the minimal night TEC
cannot be considered absolutely unaffected. As an additional control parameter, analyses
of sfu, solar wind proton density and planetary Kp index were performed, thus confirming
generally quiet and stable space weather activity during the elaborated periods.

Other causes of TEC anomalies are not directly related to the solar activity. Travelling
Ionospheric Disturbances (TIDs) are propagating perturbations in the ionospheric electron
density which, if classified as medium scale, have horizontal wavelengths of 100–250 km [68,69].

All mentioned influences have to be considered when examining TEC dynamics in
terms of response to the volcanic and tectonic activity, since these affect the ionospheric
TEC to a significantly greater extent than the lithosphere dynamics. This is especially
important if a single, particular event is analysed.

The last used method to smooth out the mentioned effects was the TEC averaging over
the large number of events as per defined criteria. The assumption was that all non-local
forcing should equally affect the results over all employed, regional IGS stations. This
was done by averaging over a large number of events, rather than affecting one station
significantly more than the others, therefore allowing us to consider that the remaining
differences can be attributed to local effects with satisfying confidence.

3.2. Determination of Specific Parameters of the Volacno Activity and Ionospheric TEC Features’
Behaviour Relation

We have analysed the ionospheric TEC patterns around days of VAI at three IGS
reference stations, positioned on similar geographical latitudes: IGS Noto (Italy; 36.88◦N,
14.99◦E), IGS San Fernando (Spain; 36.46◦N, 6.21◦W) and IGS Nicosia (Cyprus; 35.141◦N,
33.396◦E). The IGS Noto was chosen due to its close vicinity to the Etna volcano
(distance = 96 km). The other two stations were selected as a control distant stations
(1878 km and 1672 km, respectively), geographically considered to be outside of the direct
volcano influence (Figure 4).
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Figure 4. Geographical positions of IGS Noto, IGS San Fernando and IGS Nicosia in relation to the
location of Etna volcano.

In addition, to directly compare TEC patterns during active and quiet volcanic periods,
the same calculation was repeated with reverse criteria; by selecting cases where VRP was
less than 1 × 106 Watts (total of 493 days), regardless of amount of relative change from the
previous day.

As per activity Criteria A, B and C, we extracted minimal night TEC values for defined
index days—30 days before and 20 days after the VAI, respectively. The mean value of
minimal night TEC was calculated for each index day. The same analysis was performed
independently for all locations. In addition, the median TEC values were also calculated
to assess the possibility of misleading results regarding the outliers’ influence. The mean
and median calculations of minimal TEC also increased the confidence in assumption that
non-local influences on TEC are statistically averaged in a similar manner for all analysed
IGS stations.

The preliminary results referring to specific patterns of TEC time-series dictated
further analyses. Pearson correlation coefficients between VRP and TEC time-series have
been calculated both for the whole period, and separately for the defined activity criteria
periods. The obtained 5-day lag of VRP increase after the TEC peak has been verified using
a normalised cross-correlation technique [70]. The observed TEC oscillatory pattern was
analysed with the Fast Fourier Transform (FFT) method [71,72], converting a function’s
time-domain into frequency-domain, with the results confirming the observed periodicity.

4. Structural-Analytical Presentation of the Research Results

The following same-scale figures represent ionospheric TEC patterns through index
days according to defined Criteria A, B and C. Horizontal black lines denote mean minimal
values. Horizontal, dashed coloured lines represent ±1 standard deviation from the mean
value for the respective criteria. For the Criteria C (for IGS Noto), +2 and +3 standard
deviations from the mean value were added as red dotted lines.

The most notable feature within calculated TEC patterns is large and sharp TEC
enhancement located at approximately 5 days before the VAI, being most prominent for
the Criteria C (Figure 5). This abrupt increase refers to IGS Noto only.

Significantly larger variation of TEC values at IGS Noto can be considered as at least
partially attributed to the volcanic activity. However, in this phase other causes cannot
be excluded.

The magnitudes of the volcanic activity increase other than 25% were additionally
analysed, investigating the possibility of different impacts of VAI threshold values. The
pattern which is characterised with the TEC increase 5 days before the VAI is visible in each
case (Figure 6), being especially prominent as the VRP increases as well. Since the VRP
change did not affected the general pattern, the 25 % day-to-day VRP increase was selected
as a valid threshold reference. During the extreme activity increase (45 %—Figure 6e),
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additional TEC enhancements and depletions were observed, however, due to the small
number of days firm conclusions should not be drawn.

Figure 5. Mean values of minimal night TEC at IGS Noto for Criteria A (green), B (blue) and C (red).
The vertical line denotes the day of volcanic activity increase. Mean +/− 1 standard deviation for
respective criteria is added with dashed line of the same colour, and for Criteria C, mean +2 and
+3 standard deviations are added as red dotted lines.

Figure 6. Mean values of minimum night TEC at IGS Noto (y-axis) through index days (x-axis) for
different daily increase in the volcanic radiative power (VRP) value: (a) 5%, (b) 15%, (c) 25%, (d) 35%,
(e) 45% of daily VRP increase, respectively. Described TEC pattern is visible in all plots with slight
differences, as discussed in text.

The analysis was repeated for IGS San Fernando and IGS Nicosia (Figure 7), revealing
significantly different patterns when compared to IGS Noto (Figure 8).

These changes seem to result from noise rather than from a recognizable pattern,
especially in the case of IGS Nicosia where the pattern resembles uniform across the
whole period.

The median night TEC values were calculated further. According to the similarity
of derived time-series (Figure 9), we strengthen our confidence that the possible outlier
effects are not a prevalent cause of observed patterns within the analysed datasets.
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Figure 7. Mean values of minimum night-time TEC at IGS San Fernando (a) and Nicosia (b).

Figure 8. TEC patterns on IGS Noto, IGS San Fernando and IGS Nicosia during index days for the
Criteria C. The vertical line denotes the day of defined volcanic activity increase (VAI).

The results of median calculation arguably show similar TEC pattern around the VAI
compared to the mean calculation pattern, with the prominent peak more than +3 standard
deviations from the median value for the Criteria C.
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Figure 9. Median values of minimum night TEC at IGS Noto.

Before the observed peak, TEC oscillations (enhancements and depletions during
several days before the VAI) at IGS Noto can be also seen. Such a pattern seems to cease
with VAI. Applying the FFT method, two prominent peaks were found (Figure 10). The
largest oscillation is found to have a period of 12.5 days (half-period of 6.25 days), with the
second largest oscillation of 8.5 days (half-period of 4.25 days). This corresponds to the two
most prominent peaks in the frequency-domain data. The observed peaks are consistent
within all criteria.

Figure 10. Fast Fourier Transform of mean night TEC values during index days at IGS Noto.

When compared to distant locations, mean TEC values at IGS Noto show increased
amplitude and standard deviation. The most prominent anomalous TEC values were found
during the activity of Criteria C around the fifth day before the VAI. It can also indicate
that the major volcanic activity caused larger deviations in the ionospheric TEC values,
when compared to minor- or no-activity periods.

Distribution of minimal night TEC values for IGS Noto (Criteria C) is presented in
Figure 11. The majority of data distribution is similar between two datasets: during the
day of VAI (Figure 11a) and 5 days before (Figure 11b). The lack of large histogram values
additionally suggests that the outlier values have not significantly influenced the datasets.
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Figure 11. Minimal night TEC values distribution for IGS Noto, criteria C, for the day of VAI (a) and
5 days before VAI (b).

Basic statistical indicators of minimal night TEC values for all stations are presented in
Table 2. Data are shown for the whole dataset, as well as compared to the same indicators
for VAI and 5 days before VAI.

Table 2. Statistical indicators of minimal night-time TEC values during all criteria (Crit) as calculated for IGS San Fernando
(S), IGS Nicosia (NI) and IGS Noto (NO) for the whole dataset (All), the day of VAI and 5 days before VAI.

Crit Mean Median St dev Max Min

Station S NI NO S NI NO S NI NO S NI NO S NI NO

All - 2.112 2.099 2.139 2.110 2.110 2.160 0.232 0.240 0.441 3.330 3.480 4.580 0.120 0.110 0.020

VAI
A 2.097 2.099 2.142 2.090 2.110 2.170 0.191 0.207 0.492 3.070 2.810 3.700 1.050 1.030 0.020
B 2.113 2.097 2.134 2.100 2.110 2.170 0.205 0.216 0.503 3.700 2.810 3.700 1.050 1.030 0.020
C 2.122 2.071 2.140 2.105 2.110 2.180 0.147 0.240 0.501 2.680 2.810 3.700 1.570 1.030 0.020

5 days
before

VAI

A 2.102 2.094 2.161 2.100 2.100 2.180 0.154 0.247 0.438 2.670 3.120 3.320 1.480 0.230 0.090
B 2.112 2.100 2.188 2.100 2.120 2.195 0.161 0.293 0.441 2.670 3.120 3.320 1.610 0.230 0.090
C 2.113 2.082 2.243 2.115 2.120 2.230 0.163 0.280 0.346 2.670 2.770 3.320 1.610 0.230 0.780

The main difference between criteria, in relation to the whole dataset, was the notable
increase in mean and median TEC value for Criteria C, 5 days before VAI at IGS Noto
solely. The increase is present both compared to Criteria A and B at the same day, as well
as compared to Criteria C on VAI. Furthermore, the standard deviation at station Noto is
significantly larger when compared to other corresponding values. Absolute minimum
values for IGS Noto are significantly smaller than for other two stations. This might
indicate the possibility of almost complete temporary removal of free electrons from the
atmospheric column during certain stages of volcanic activity.

The space weather indices were calculated employing the same methodology of
averaging values over the index days (Figure 12).

There is no visible increase in solar flux and solar wind proton density, as well as in the
Kp index around the IGS Noto TEC peak days. In Figure 12c, magnitude of geomagnetic
disturbance on a 0–9 scale is presented in terms of planetary Kp index. Kp index is an
integer value, but here the mean value of respective integers over index days around VAI
is presented, yielding results as a float type. Both 10.7 cm sfu and Kp index, with the proton
density in a lesser amount (Figure 12b), indicate that the days that enter into Criteria B and
C, display increased solar activity compared to those of Criteria A. However, there are no
visible anomalies that could explain the peak in the night TEC values over IGS Noto.
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Figure 12. Mean values of 10.7 cm solar flux (a), proton density (b), Kp index (c) and VRP (d) during
index days for Criteria A (green), B (blue) and C (red).

The TEC pattern over IGS San Fernando follows 10.7 cm sfu and Kp values to a certain
extent. Given the dependence of TEC, it was expected to have a possible effect. Therefore,
it might be accredited to the remains of the day-time solar influence and geomagnetic
processes. Patterns derived from IGS Nicosia show a less similar shape compared to solar
parameters. Any remaining similarity between space weather indices and night TEC values
is absent in the pattern derived from IGS Noto.

The results of TEC pattern analysis during quiet volcanic periods are presented in
Figure 13. The patterns were compared using reverse criterion, i.e., non-active days (NAD),
with VRP < 1·106 W. The Figure scale was set as previously described.

The TEC patterns are similar, with the IGS Noto mean value being slightly lower than
that at San Fernando, and very similar to the case of IGS Nicosia and again, more variable
from day to day around NAD than patterns from both control stations. It should be noted
that, although these patterns represent generally quieter conditions, the volcano is never
absolutely inactive.

The correlation coefficients were calculated for VRP and TEC for all locations. As the
most prominent TEC peak was present 5 days before volcano activity increase, the lagged
correlation was performed with TEC time-series, shifted for 5 days before correlating with
the VRP (Table 3). The time lag of 5 days VAI increase after the TEC peak was verified
using the cross-correlation technique (Figure 14).
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Figure 13. Comparison of minimum night TEC patterns for IGS Noto, IGS San Fernando and IGS
Nicosia during non-active days (NAD).

Table 3. Five-day lagged Pearson correlation coefficients between time-series of VRP and TEC for all
locations, including whole datasets and defined criteria.

Station Whole Series Criteria A Criteria B Criteria C

5-day lag
Noto 0.005 0.181 0.231 0.251

San Fernando −0.026 −0.029 −0.098 −0.161
Nicosia −0.035 −0.037 −0.068 −0.052

Figure 14. Normalised cross-correlation between VRP and TEC mean values for Criteria C, IGS Noto.
The lag with maximum correlation value is equal to 5 days.

The largest correlation took place when a lagged correlation was performed for station
Noto, with increasing strength in pace with increasing activity criteria from lower to
higher levels. The higher correlation values at IGS Noto strengthen the confidence in the
conclusion that the observed TEC peak 5 days before VAI does represent a cause–effect
relationship between volcanic activity and the TEC values in nearby ionospheric areas.

5. Brief Overview of the Results’ Specifics

The presented results show larger night TEC deviations from the mean dataset value
for IGS Noto than those for IGS San Fernando. A general upward and oscillating trend in
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TEC pattern with a half-period of 6.25 days is notable until the time reaches the day of VAI,
with maximum values generally found around 5 days before. The periodicity analysis also
suggests that the pattern oscillation is further modulated with somewhat higher frequency,
having a half-period of 4.25 days and a smaller magnitude. Afterwards, a decrease in
night TEC values was observed and the pattern loses its wave-like features. The described
pattern seems to generally exist for all three activity criteria; however, it is most prominent
for the Criteria C, reaching the maximal enhancement at +3 standard deviations from the
mean value.

As the Criteria C contains a total of 131 days and is therefore considered to be a repre-
sentative sample, our argument is that the night TEC increase of +3 standard deviations
from the mean value cannot be explained by the random variability. As we could not
explain it in this way, or by examining various metrics of solar influence, by comparing
with two distant control stations, by considering possible data outlier influence on mean
values, or any other way, we conclude that the ionospheric TEC peak located at 5 days
before VAI has to be associated with the Etna volcano activity, and moreover, is caused by
the same activity. The mentioned enhancement was preceded with oscillatory behaviour
of ionospheric TEC; however, the peak was the most prominent observation. As the TEC
values increase with tightening criteria definition for the Etna activity level, it follows that
the TEC response is also dependent on the amount of the volcanic forcing. Most of the TEC
patterns’ variations were found within periods of the highest volcano activity.

The results suggest that the observed TEC variations are related to the volcano seismic
activity before the active phase of VRP increase. The observed increase in TEC values
perhaps can be explained with an increase in the available endogenous energy which
firstly produced an increase in air–earth currents. We propose a hypothesis that radon
emanation or other seismic-related pre-eruption factors modified the electrical conductivity
of the column of air by increasing the charge of boundary layer, leading to a change of
vertical electrical air–earth currents and subsequent local modification of GEC properties,
detectable as observed oscillations and peaks of the ionospheric TEC. Further investigation
of this phenomena, together with an explanation of possible causes and mechanisms of
action, remain a matter for future work.

6. Conclusions

The presented results suggest a causal correlation between the Etna volcano activity
and the surrounding ionospheric behaviour, providing insights referring to the mutual
relation between the two phenomena. Temporal coupling processes and the respective
ionospheric total electron content patterns as a consequent dependent variable were inves-
tigated. The volcanic influence was found to be present during the peak activity periods,
as well as before the actual increase in VRP. The conclusions are based on the analyses of
19 years of ionospheric and volcanic activity data. The specific volcanic activity scenarios
were distinguished and correlated with ionospheric TEC values.

The results suggest that 5 days before the commencement of a significant rise in
activity, ionospheric TEC within the volcano region sharply increases, followed by the
abrupt decline in values towards the day of VAI. The oscillatory pattern of TEC behaviour
is found to be present with a main oscillation half-period of 6.25 days. Larger variations
in TEC values were observed near the volcano site. A special care was taken in order to
exclude possible external influences in terms of the space weather activity, overall solar
influence, and possible outliers. Finally, we compared the TEC behaviour during volcano
activity with behaviours during non-active periods. The intensity of the TEC anomalous
behaviour was found to be positively related to the amount of forcing from the Etna volcano
activity and we have not been able to associate observed TEC behaviour prior to volcanic
activity increase to the solar forcing.

The proposed approach and presented findings represent a means of generalization of
the TEC behaviour pattern during phases before and at the instance of increased volcanic
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activity and eruptions, with the possibility of separation of the ionospheric activity as a
prognostic parameter.
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TEC Total Electron Content
TECu TEC unit
STEC Slant TEC
sfu Solar radio flux
GNSS Global Navigation Satellite System
LAIC Lithosphere–Atmosphere–Ionosphere Coupling
GEC Global Electrical Circuit
VEI4+ Volcanic Explosivity Index 4+
MIROVA Middle InfraRed Observation of Volcanic Activity
rDCB Receiver Differential Code Bias
TGD Total Group Delay
VRP Volcanic Radiative Power
VAI Volcanic Activity Increase
GIM Global Ionospheric Maps
IGS International GNSS Service
NAD Non-Active Days
FFT Fast Fourier Transform
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Abstract: With the rapid development of global navigation satellite systems (GNSS) and their
increasingly wide range of applications in atmospheric science, total electron content (TEC) data
are widely used in the theoretical study of layer coupling related to seismicity. This study detected
and analyzed pre-earthquake ionospheric anomalies (PEIA) by using TEC data from the Royal
Observatory of Belgium (ROB), and analyzed coseismic ionospheric disturbance (CID) with vertical
TEC (VTEC) from the GPS stations in earthquake preparation areas. The results show that PEIA
appear to increase continuously from 08:00–12:00 UT in the 3 days before a seismic swarm of
Mw > 5.0. The ionosphere over the seismogenic zones exhibited large-scale anomalies when multiple
seismogenic zones of the Balkan Peninsula spatially and temporally overlapped. Moreover, the TEC
around the earthquake centers showed a positive anomaly lasting for 7 h. In a single seismogenic
zone in Greece, the TEC around the earthquake center reached over +3.42 TECu. In addition, the CID
observed from GPS stations shows that with the increase in the number of earthquakes, the ionosphere
over the seismogenic area is more obviously disturbed, and after three strong earthquakes, TEC
suddenly decreased over the seismogenic area and formed a phenomenon similar to an ionospheric
hole. We conclude that a lithosphere–atmosphere–ionosphere coupling mechanism existed before the
seismic swarm appeared in the Balkan Peninsula. Earthquake-induced VTEC anomalies occurred
more frequently within a 3–10 day window before the earthquake. This phenomenon is particularly
evident when multiple seismogenic zones overlap spatiotemporally.

Keywords: TEC; ionosphere; seismic swarm; lithosphere-atmosphere-ionosphere coupling; CID

1. Introduction

With the development and advancement of space exploration technology, researchers
have paid increasing attention to seismic ionosphere detection and lithosphere–ionosphere
coupling. However, earthquake prediction has been in the exploratory stage because of
the complexities behind the causes of earthquakes. There are many reports regarding
pre-earthquake geological structural changes and other pre-earthquake anomalies related
to earthquakes; among these, the pre-earthquake ionospheric anomaly is a popular topic of
contemporary research [1–3].

Davies (1964) first detected abnormal ionospheric disturbances above the epicenter of
a 9.2 magnitude Alaskan earthquake [4]. Pulinets (2004) observed anomalies appearing in
electron densities of the ionospheric F region a few days before some strong earthquakes
through the analysis of GPS TEC and other ionospheric parameters from different dedicated
satellites [5]. The preliminary results from the above research show that the energy released
during seismogenesis can propagate upward into the Earth’s atmosphere, resulting in iono-
spheric disturbances. The identification of seismo-ionospheric anomalies was made from
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the analysis of different GNSS satellite measurements based on different statistical meth-
ods. For example, by using GPS TEC, Sanchez (2022) found TEC in the form of traveling
ionospheric disturbances (TIDs) within 1 h after the mainshock onset during an earthquake
in California [6]. Liu (2001) detected TEC 15 days before an earthquake (Mw 7.7) in Tai-
wan and found three anomalies that provided empirical evidence of earthquake-executed
ionosphere anomalies within five days before the mainshock [7]. Chen (2004) found a
significant correlation between anomalies and earthquakes in Taiwan and the anomalous
depression of the maximum plasma frequency in the ionospheric F2 layer by analyzing
these TEC anomalies [8]. Hobara (2005) found from a dedicated satellite’s mission over a
seismogenic zone that an abnormal ionospheric disturbance appeared during an 8.3 magni-
tude earthquake in Hachiko [9]. Ryu (2014) discovered earthquake–ionospheric coupling
by detecting ionospheric electron density (IED) data in seismic regions accompanied by
PEIA; this report suggested the possible coupling of the lithosphere and ionosphere by
the integration of TEC [10]. Similarly, Yao (2016) used a singular spectrum analysis of
the TEC time series around the epicenter of the Nepal earthquake and showed positive
ionospheric anomalies in the epicenter region before the earthquake [11]. Shah (2020) used
global TEC observation data to study ionospheric anomalies before and after earthquakes
at different latitudes, and found there were pre-earthquake disturbances and coseismic
responses in the temporal and spatial distribution of the TEC data [12]. Tariq (2021) studied
the ionospheric anomalies before earthquakes in Pakistan and Islamabad, and the results
showed positive anomalies in the ionosphere ten days before the two earthquakes [13].
In general, seismo-ionospheric anomalies appear either a few days to two weeks before
large earthquakes or around the earthquake time [14]. Various kinds of great earthquake
precursors have been reported so far, but there are few studies on the impact of the seismic
swarm on the ionosphere. Therefore, this paper comprehensively describes the ionospheric
disturbances of the Balkan–Greece seismic swarm with a case study of both the co- and
pre-seismic ionospheric disturbances of the seismic swarm.

2. Experimental Data

To avoid the interference of magnetic storms, earthquakes that occurred under ge-
omagnetic conditions during a quiet period were selected (Kp < 4, F10.7 < 100 and
Dst > −30 nT). The Kp and Dst indices were usually lower than 4 and greater than
−30 nT, respectively, which indicate that the geomagnetic activity is quiet [15,16]. The
seismic data were obtained from the United States Geological Survey (available online:
https://earthquake.usgs.gov/earthquakes/search/ (accessed on 10 July 2021)), which
provided the reference for calculating the radius of the seismogenic area [11,17]. We also
analyzed TEC data from GPS stations operating within the seismogenic zone of the seismic
swarm in the Balkan Peninsula (Figure 1). Further details are presented in Table 1.

We retrieved high-quality TEC data from the ROB by using GPS observations, and the
products consist of ionospheric vertical TEC maps over Europe, which were estimated in
near real-time every 15 min with 0.5◦ × 0.5◦ grids. The maps are available online with a
latency of ~3 min in IONEX format at: ftp://gnss.oma.be (accessed on 11 July 2021) and
as interactive web pages at: www.gnss.be (accessed on 11 July 2021) [18]. In addition, we
calculated the VTEC at seven GPS stations operating within the seismogenic zone of the
seismic swarm in the Balkan Peninsula (available online: https://www.epncb.oma.be/
(accessed on 12 July 2021)). The correlation index for the solar activity and geomagnetic
activity was obtained from the Goddard Space Flight Center of NASA (available online:
https://omniweb.gsfc.nasa.gov/ (accessed on 12 July 2021)).
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Figure 1. Geographic map of the locations of seismic swarm in the Balkan Peninsula in 2019.
Seismogenic zones are shown by circles. Earthquake information is shown with every epicenter
(circular). GPS stations are shown by filled hexagons.

Table 1. Details of the earthquakes that occurred in the Balkan Peninsula.

NO. Date (UT) Time (UT) Geog.Lat Geog.lon Mag (Mw) Depth (km) Regions
Radius of

Influence (km)

1 26 November 2019 02:54 41.5138 19.5256 6.4 22 Albania 487.5
2 26 November 2019 06:08 41.5708 19.4242 5.5 10 Albania 204.2

3 26 November 2019 09:19 43.2235 17.9118 5.3 10 Bosnia and
Herzegovina 168.3

4 27 November 2019 07:23 35.7174 23.2284 6.0 69 Greece 331.2
5 27 November 2019 14:45 41.5498 19.4787 5.3 10 Albania 168.3

3. Methods

3.1. Bilinear Interpolation

To determine the TEC of the earthquake center, we used the adjacent four grid points to
interpolate the TEC using the bilinear interpolation method. Figure 2 shows the ionospheric
grid interpolation diagram.

Figure 2. Schematic diagram of the ionospheric grid interpolation algorithm.
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According to the Lagrange interpolant, the ionospheric VTEC value of the interpola-
tion point was obtained. The formula is as follows:

T = T1
(X2−X1)(Y1−Y3)

(X − X1)(Y − Y3) +
T2

(X2−X1)(Y1−Y3)
(X2 − X)(Y − Y3)

+ T3
(X4−X3)(Y4−Y2)

(X − X3)(Y2 − Y) + T4
(X4−X3)(Y4−Y2)

(X4 − X)(Y2 − Y)
(1)

where X and Y are the coordinates of the undetermined interpolation point, the TEC is
represented with T, and the grid coordinates are Xi and Yi, respectively.

3.2. Method for PEIA

Because ionospheric variation is affected by many factors, such as solar activity, earth
rotation, geomagnetic conditions, and so on, it has a robust diurnal periodicity. The 15-day
moving median (MM) method is a quartile-based statistical analysis technique that is used
to express the dispersion of data in a powerful statistical technique proposed by Liu [19,20].
This technique is often used to check data anomalies and identify and strengthen periodic
signals. Thus, abnormal disturbances in the TEC time series can be extracted using a
quartile-based statistical technique. TEC data that were not disturbed by solar activity and
geomagnetic anomalies within 15 days before the earthquake were used. The median (Q2),
upper (Q1), and lower quartiles (Q3), and the interquartile range (IQR) were calculated. To
further improve the reliability of abnormal signals, the constraint method of 1.5 × IQR is
adopted [21]. For instance, in order to generate MM, UB and LB for the 16th day, the TEC
values for the first 15 days were utilized. Similarly, 15 days of TEC data from between the
2nd and 16th day were used to generate bounds for the 17th day. If more than one-third of
the data (e.g., eight hours are anomalous in a day) were greater or lesser than the UBs and
LBs in a day, this day was taken as anomalous [20].

TECup = Q2 + 1.5 · IQR
TEClow = Q2 − 1.5 · IQR
IQR = Q3 − Q1

(2)

where TEC is the median of the first 15 days at the same time, IQR is the quartile of
the first 15 days, and equals the IQR multiplied by 1.5 to delimit the upper and lower
thresholds. Likewise, TECup and TEClow are the upper and lower confidence limits of
the TEC, respectively, and if the observed TEC falls outside of either of the respective
bounds, it is declared that a lower or upper abnormal signal is detected, respectively. If the
observed value exceeds the upper threshold, a positive disturbance of the TEC is considered.
Meanwhile, when the variations in TEC are below the lower bound, it may be a negative
PEIA. The TEC exceptions were calculated as follows:

dTEC =

⎧⎨⎩
TEC − TECup while TEC > TECup
0 while TEClow � TEC � TECup
TEC − TEClow while TEC < TEClow

(3)

3.3. GNSS TEC Observations and Methods

The TEC from GPS stations operating within the seismogenic zone of the earthquakes
was estimated by measuring the phase and amplitude (at a rate of 50 Hz) and code/carrier
divergence (at 1 Hz) for each satellite, and the observation interval was 30 s. This calculates
the slant TEC (STEC) from the combined frequencies by pseudo-range and carrier-phase
measurements using the following equations [22,23]:

STEC =
f 2
1 f 2

2
40.28( f 2

1 − f 2
2 )
(L1 − L2 + λ1(N1 + b1)− λ2(N2 + b2) + ε)

STEC =
f 2
1 f 2

2
40.28( f 2

1 − f 2
2 )
(P1 − P2 − (d1 − d2) + ε)

(4)
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where f1 and f2 are carrier phase frequencies of GPS signals at the two ends, P and L
represent the pseudo-range and carrier phase observation of the delay path of the GPS
signal. λ, N, and ε are the wavelength of GPS signals, the ambiguity of the ray path, and
random residual of the GNSS signal along ray path, while b and d are the instrumental
biases of the carrier phase and pseudo-range of the derived signal. Moreover, the STEC
was converted into VTEC using the following equation [24]:

VTEC = STEC ∗ cos
(

arcsin
(

R sin z
R + H

))
(5)

where R and H are the radius of the Earth and the height of the top ionospheric layer in
atmospheric altitude, respectively. Z is the elevation angle of the satellite for the ionosphere
pierce point.

The ionosphere ranges from 60 km to 1000 km above the Earth’s surface; to simplify the
ionospheric model, the single-layer ionosphere assumption model is usually introduced.
So, in this work, the height of the top layer of the atmospheric altitude was taken as
350 km [25].

4. Analysis and Results

4.1. Geomagnetic Activity Background

The spatial ionospheric variation is closely related to the solar and geomagnetic activity
indices [26,27]. Thus, ionospheric anomalies caused by geomagnetism and solar activity
should be avoided, and abnormal ionospheric disturbances related to earthquakes were
obtained. Figures 3 and 4 show the time series for the F10.7, Dst, and Kp indices from
15 to 29 November 2019. The Dst index does not exceed −30 nT and the Kp index is less
than 4, indicating that the geomagnetic field is calm and in a quiet ionospheric period.
Therefore, the ionospheric anomalies caused by solar activity and geomagnetic activity can
be excluded, and other geophysical signals (e.g., solar and geomagnetic activities) can be
distinguished. The data were obtained from NASA’s website at: https://omniweb.gsfc.
nasa.gov/ (accessed on 15 July 2021).

Figure 3. Changes in F10.7, Dst, and Kp indices from 15 November to 29 November 2019.
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(a)

(b)

(c)

(d)

Figure 4. TEC time series diagram of ionospheric anomalies. The red line represents the lower bound
(LB), the green line represents the upper bound (UB), the blue line represents the total electron content
(TEC), the vertical dashed lines represent the mainshock, dTECu represents the PEIA. (a) TEC time
series of the Albanian earthquake center; (b) TEC time series of earthquake centers in Bosnia and
Herzegovina; (c) TEC time series of the central grid of the Greek earthquake; (d) TEC time series of
grid points at the confluence of the Greek and Albanian seismogenic regions.
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4.2. Time Series Analysis of Epicenter TEC

To observe the affected hours more closely, TEC data were obtained for 15 days at
the intersection of the four epicenters and two seismogenic zones, as shown in Figure 4,
where the red curve is the upper quartile threshold, the green curve is the lower quartile
threshold, the blue curve is the actual TEC value, and the pink and black vertical bars are
the earthquake occurrence times. If the TEC data exceeded the upper and lower quartile
thresholds, the TEC deviations were drawn on the red histogram at the bottom of the graph.
TEC deviations can be seen beyond the upper limits, 3–4 days before successive earthquakes.
We observed slight seismo-ionospheric anomalies 10 days before the earthquake. As shown
in Figure 4a, at 07:00 UT on 16 November 2019 (10 days before the earthquake), TEC first
appeared as a negative anomaly of −0.92 TECu, and at the same time of the next day
(17 November), it also appeared and reached −0.93 TECu. Then, the negative anomaly
gradually weakened and became a positive anomaly. The positive anomalies were initiated
at 08:45 UT on 22 November (4 days before the earthquake), and these positive anomalies,
occurred between 08:45 UT on 22 November and 15:45 UT on 23 November (3 days before
the earthquake). The maximum time interval of the anomaly was only 1 h. The peak of the
positive anomalies appeared at 17:45 UT on 21 November (5 days before the earthquake),
and reached 2.54 TECu. The anomalous characteristics of the epicenters of the Bosnia
and Herzegovina earthquakes were consistent with those of the Albania earthquake, as
shown in Figure 4b. This phenomenon could be explained because the epicenters of the
Bosnia and Herzegovina earthquakes were only 137.8 km apart from the epicenter of the
Albania earthquake and the two seismogenic zones coincided. However, as shown in
Figure 4c, with a single seismogenic zone at the epicenter, there was a negative anomaly of
TEC = −2.91 TECu at 23:30 UT on 15 November (11 days before the earthquake), which
is similar to the characteristics of the two previous epicenters, while the intensity of the
seismo-ionospheric anomalies had no continuity. Then, positive anomalies appeared at
17:30 UT on 22 November (5 days before the earthquake), with the peak at 03:00 UT on
23 November (3 days before the earthquake), and reached 3.42 TECu. Figure 4d shows
the seismic ionospheric anomalies in the area where the Albanian seismic zone meets the
Greek seismic zone. The positive anomaly characteristics at the intersection of seismogenic
zones were very similar to those in the Albania seismogenic zone, with both showing the
characteristics of continuous anomalies. Compared with the single earthquake area, the
seismic ionospheric anomalies were significantly different. In addition, earthquake-induced
VTEC anomalies occurred more frequently within a 3–10-day window with the approach
of the earthquake day. The intersection of seismogenic regions resulted in more frequent
ionospheric fluctuations. These results suggest that there is a certain correlation between
the intersection of seismogenic regions in time and space, and ionospheric disturbance.

4.3. TEC Changes in the Balkan Peninsula Seismic Swarm

In order to study whether CID are caused by various atmospheric waves (Rayleigh
surface waves, and internal gravity waves) generated by the seismic swarm, we investigated
the TEC responses to the Balkan Peninsula seismic swarm [28,29]. Figure 5 shows the VTEC
time series and the trajectory of the ionospheric penetration point (IPP) observed by the GPS
station in the earthquake area, where the orbit color matches the color of the observation
station. The pentagram on the orbit is the location of the satellite when the earthquake
occurs, and the pentagram color corresponds to the color of the earthquake center (when
the red earthquake center occurs, it corresponds to the red five-star position on the IPP
path, and the blue earthquake center corresponds to the blue five-star). The red arrow is
the direction in which the satellite moves.
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(a) 

(b) 

(c) 

Figure 5. Cont.
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(d) 

(e) 

Figure 5. The left panels present the time series of the original VTEC changes observed by different
satellites at different stations and the right panels present the corresponding IPP trajectory of the
satellite. Additionally, red, blue and green lines indicate the occurrence of an earthquake in the left
figure (the color corresponds to the source in the right figure). The small stars on the track represent
the IPP position of the satellite when the earthquake occurs (the color corresponds to the source in
the figure) and the red thread indicates the moving direction of the satellite in the right figure. (a) The
time series of the original VTEC changes observed by satellite 16 and the IPP trajectory of the satellite.
(b) The time series of the original VTEC changes observed by satellite 27 and the IPP trajectory of
the satellite. (c) The time series of the original VTEC changes observed by satellite 10 and the IPP
trajectory of the satellite. (d) The time series of the original VTEC changes observed by satellite 08
and the IPP trajectory of the satellite. (e) The time series of the original VTEC changes observed by
satellite 09 and the IPP trajectory of the satellite.

In the left plane of Figure 5a, we show the VTEC series from 1:00 UT to 5:00 UT
recorded by satellite 16 visible from different stations (except for the ZADA station, the
IPP longitude range is 11◦–13◦E) in the seismogenic area. For all stations, CID clearly
appear after the earthquake, with time lags of 1–2 h, This phenomenon is consistent with
the conclusion of Astafyeva [30,31], and the time needed for acoustic waves to travel from
the surface to the IPP. Interestingly, we found that when we compared the VTEC sequence
of ZADA station with that of TUC2 station, ZADA station is at the edge of the seismogenic
area, IPP also does not pass over the seismogenic area, and the fluctuation amplitude of
VTEC sequence is not very obvious. On the contrary, although the TUC2 station is not in the
earthquake preparation area, the IPP track is located above the earthquake preparation area
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and close to the focal center, and it can be clearly seen that it has been strongly disturbed.
In addition, it can also be observed that within 2 h before the arrival of the first main
earthquake, all stations were disturbed to varying degrees. The perturbation frequency
increased as the IPP positions got closer to the source center, with a fluctuation range of
0.1–0.5 TECu, and similar phenomena were observed on other satellites.

The TEC shows rising or falling curvature due to satellite elevation and latitude
changes, so it is difficult to observe abnormal conditions. Nevertheless, we observed
from the IPP path of satellite 27 (Figure 5b) and satellite 09 (Figure 5e) within 2 h, and
its latitude change rate was relatively low. It is obvious that compared with satellite 27
(Figure 5b), when the 6.3 Mw Albanian earthquake struck, CID was observed at all stations
on satellite 27. In particular, the ORID station is close to the center of the source, and the IPP
is also closest to the center of the source, and its variation in amplitude is large. Figure 5e
shows VTEC changes over the seismogenic area after three earthquakes. From the figure on
the right, we can see that the IPP of observation satellite 09 (Figure 5e) and the POZE, ZADA
and DUB2 stations monitor the VTEC in the upper half of the seismogenic area. In addition,
satellite 09 was observed at other stations, and its IPP position was located in the lower half
of the seismogenic area. The VTEC observed at the ORID, LARM, and PAT0 stations were
disturbed to the same extent, and VTEC change curves showed similar changes. However,
at the TUC2 station outside the seismogenic area, it was observed that the VTEC at the
edge of the seismogenic area was significantly different from other stations at UT 10:00.
Interestingly, the overall trend of VTEC still showed a downward trend, indicating that the
decrease in TEC after the earthquake may result from electronic transport. Therefore, it can
be inferred that the earthquake swarm will continuously interfere with the ionosphere over
the seismogenic area, and this interference will continue to increase with the increase in
the number of earthquakes. It is interesting that within 2 h after the earthquake, the VTEC
over this area decreased sharply (in the upper half of the seismogenic area). In order to
analyze this abnormal phenomenon, the earthquake swarm likely caused the formation of
ionospheric holes in the region [32]. In Figure 6b, at UT 9:00–10:00, the VTEC (satellite 22) in
the seismogenic area observed by the three stations was lower than 10 tecu. However, after
UT 11:00, when satellite 09 moved into the region, VTEC still showed a downward trend,
which preliminarily indicated that the ionosphere in this region was abnormal. Figure 6a
shows the change in VTEC on the day before the earthquake. It can be seen that its change
characteristics align with the daily change characteristics of the ionosphere. With time,
VTEC gradually increases.

(a) (b)

Figure 6. POZE, ZADA and TUB2 station observed the IPP position and VTEC changes of satellite 09
and satellite 22 at UT 9:00–12:30. The left panels present TEC disturbance (TEC) along the IPP
trajectories (trajectories are from left to right) in the vicinity of the epicenter on the previous day on
November 25 (a) and the right panels show the day of the event on November 26 (b).
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4.4. Observed Coseismic Ionospheric Disturbances in the Balkan Peninsula Seismic Swarm

To further analyze the CID, we examined TEC data with elevation angles higher than
20◦. The TEC disturbance (dTEC) was obtained by employing high pass filtering.

In Figure 7, we compare the IPP trajectories and dTEC of satellite 16, 10, and 09
observed at the GPS stations. Abnormalities can be seen in the dTEC after the onset
of the mainshock (26 November 2019) on earthquake day, but no such anomaly can be
noted on the previous day or on the day after, respectively. In addition, it can be clearly
seen that the anomaly of satellite 16 on the mainshock day is relatively weak, and the
anomalies of satellite 10 and satellite 09 are more intense on the mainshock day. The IPPs
of satellites 10 and 09 are approaching the source center. After three earthquakes in this
area (25 November 2019), we noticed that the variation in the dtec amplitude of satellite 09
was about 0.15 tecu. Therefore, from this spatiotemporal analysis, we concluded that the
intensified TEC disturbances in Figure 7 were likely of seismic origin.

(a) 

(b) 

Figure 7. Cont.
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(c) 

Figure 7. The upper panels present TEC disturbance (dTEC) was observed on three consecutive days
(25–27 November 2019, event day on 26 November 2019). The lower panels show their corresponding
IPP trajectory of the satellite. (a) TEC disturbance (dTEC) on the previous day on 25 November 2019,
on the event day on 26 November 2019, and on the day after on 25 November 2019, and the IPP
trajectories of the GPS Sat. 16. (b) TEC disturbance (dTEC) on the previous day on 25 November
2019, on the event day on 26 November 2019, and on the day after on 25 November 2019, and the
IPP trajectories of the GPS Sat. 10. (c) TEC disturbance (dTEC) on the previous day on 25 November
2019, on the event day on 26 November 2019, and on the day after on 25 November 2019, and the IPP
trajectories of the GPS Sat. 09.

5. Discussions

In this paper, the PEIAs associated with a seismic swarm in Balkan Peninsula were
studied. The TEC from ROB-TEC within the seismogenic zone showed significant en-
hancement before the mainshock day. Ionospheric anomalies caused by solar activity
and geomagnetic activity can be excluded, suggesting that earthquakes were the factor
in ionospheric anomalies. Temporal TEC from ROB-TEC showed profound variations
during the 3–10 days before the mainshock on relatively quiet storm days (Figure 4). Such
evidence has already been provided by multiple analyses of temporal TEC over epicentral
regions. They (Ulukavak (2020); Nico (2021); Nina (2020)) analyzed global earthquakes
with Mw ≥ 6 and possible ionospheric TEC anomalies that occurred before earthquakes.
The results of this study contribute to earthquake prediction in the short-term by provid-
ing empirical evidence [33–35]. Biagi revealed the INFREP Radio Network variations in
connection with six earthquakes (Mw > 5.0) that occurred in the Balkan Peninsula and
Adriatic Sea on 26 and 27 November 2019 [36]. All this information increases our knowl-
edge about the origin of different pre-seismic signals associated with the above-mentioned
catastrophic earthquakes.

In addition, with the increase in the number of seismogenic zones, the incidence
and intensity of ionospheric disturbance has increased, further analyses are needed to
quantify the variations with a more statistical and mathematical model and method to
convincingly prove such phenomena. However, there are many theories regarding the
existence of abnormal TEC from GPS measurements and some have provided enough
evidence for the connection of the lithosphere–atmosphere–ionosphere coupling system.
For example, Freund has proved the existence of stress-activated electric currents in rocks
that sweep through the mineral grains under stress dislocations and cause the peroxy links
to break, thus generating flow-down stress gradients, constituting an electric current with
attendant magnetic field variations and EM emissions. Further experiments have shown
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the generation of energetic charge barriers and their thermal conduction as fissure reactions
in the seismogenic zone, which could be an intrinsic source of earthquake–ionospheric
anomalies [37]. The main findings show that continuous earthquakes have repeatedly
triggered the generation of high-energy charge barriers in the seismogenic belt and their
heat conduction as crack reactions, which frequently affect the ionosphere.

On the other hand, CID observed by GPS stations (Figure 7) shows that with the
increase in the number of earthquakes, the ionosphere over the seismogenic area is more
obviously disturbed, which is consistent with the previous findings. For example, the far-
field CID following the 2015 Mw 7.8 Nepal earthquake was detected by GPS-TEC [38] as the
acoustic gravity wave induced by Rayleigh surface wave propagated into the ionosphere
and caused the electronic and plasma density oscillation.

It is worth noting that after three strong earthquakes, the TEC suddenly decreased over
the seismogenic area, forming a phenomenon similar to an ionospheric hole (Figure 6b).
In further studies, more statistical and mathematical models and methods are required
to prove such phenomena. There is evidence of a quantitative relationship between the
TEC depression rate of the ionospheric cavity caused by the tsunami earthquake and the
intensity of the tsunami earthquake [32,39]. However, more relevant observation data
are needed to analyze the ionosphere at different heights in the region and the relevant
meteorological data in the region are necessary for the generation of the ionospheric hole.
In conclusion, the abovementioned results provide an opportunity to study the correlation
between the ionosphere and earthquakes from multiple directions and angles for the earlier
detection of specific pre-seismic anomalies related to earthquakes.

6. Conclusions

In this study, we presented research on pre-seismic ionospheric anomalies and CID for
a seismic swarm in the Balkan Peninsula in November 2019. The results show that a larger
number of positive anomalies appeared in the seismogenic area on 23 November 2019
(3 days before the earthquake), and continuous positive anomaly disturbances appeared
in the grid points in the spatially overlapping seismogenic zones. Moreover, there was a
small range of negative anomalies in the seismogenic area 6–12 days before the earthquake,
although the interval was relatively long. We found that CID could be clearly observed at
the stations in the seismogenic area during each earthquake, and the degree of CID and
disturbance increased as the IPPs approached the center of the earthquake area. After
the three earthquakes, we also found a similar ionospheric hole phenomenon over the
seismogenic area, and a large area where the VTEC value plummeted over the seismogenic
area. The results showed that with the increase in the number of seismogenic zones, the
incidence and intensity of the ionospheric disturbance increased.

These findings suggest that there is synergy between different surface, atmospheric,
and ionospheric processes. However, further analysis is required to support the hypothesis
regarding lithosphere and ionosphere coupling during the earthquake preparation period
as mainshock responses, which will be left for a future work.
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Abstract: In this study, a multi-station and multi-instrument system, organized and proposed for
ionospheric scintillation and equatorial spread-F (ESF) specification and their associated motions
in the Taiwan–Philippines sector, is outlined. The issues related to the scintillation and ESF event
observed on 26 October 2021, at magnetic quiet conditions are presented and discussed. We first
indicate the existence of a plasma bubble in the Taiwan–Philippines sector by using the FormoSat-
7/Constellation Observing System for Meteorology, Ionosphere, and Climate-2 (FS7/COSMIC2)
GPS/GLONASS radio occultation observations. We verify the latitudinal extent of the tracked plasma
bubble using the recorded ionograms from the Vertical Incidence Pulsed Ionospheric Radar located
at Hualien, Taiwan. We further discuss the spatial and temporal variabilities of two-dimensional
vertical scintillation index VS4 maps based on the simultaneous GPS L1-band signal measurements
from 133 ground-based receivers located in Taiwan and the surrounding islands. We also operate two
high-sampling, software-defined GPS receivers and characterize the targeted plasma irregularities by
carrying out spectrum analyses of the received signal. As a result, the derived plasma irregularities
moved eastward and northward. Furthermore, the smaller the irregularity scale, the higher the
spectral index and the stronger the scintillation intensity were at lower latitudes on the aimed
irregularity feature.

Keywords: equatorial and low-latitude ionosphere; ionospheric irregularity; scintillation; radio
occultation observation; COSMIC; ionogram; GPS/GNSS

1. Introduction

Ionospheric scintillation has significant impacts on space-based radio communication,
wave propagation, and navigation system performance. The main effects of scintillation on
the transionospheric radio system are signal loss and/or phase cycle slips, which cause
difficulties in regard to locking the receiver signal. There is no doubt that satellite radio
signal scintillation is a consequence of a scattering mechanism, as radio waves are propa-
gating through random electron density (Ne) fluctuations, especially within the F-region
ionosphere, where the irregularity layer is sufficiently thick. Many excellent ionospheric
scintillation theory and observation reviews have been published [1–4]. Comprehensive
studies on the physics and theories of ionospheric irregularities and scintillations can also
be found in books by [5,6].

The effects of ionospheric scintillation are most intense in the equatorial region, mod-
erate at high latitudes, and minimum at middle latitudes [7]. At equatorial latitudes and
the time near and/or soon after sunset, the zonal neutral wind and conductivity gradient
caused by the sunset terminator interact develop an enhanced eastward electric field, called
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pre-reversal enhancement (PRE), generally at F-region heights [5,8,9]. As a result, the
ionosphere moves upward, develops steep density gradients and large-scale plasma deple-
tions in the bottom side F-region, and becomes unstable, triggering the Rayleigh–Taylor
(R–T) instability. The plasma depletions, called plasma bubbles, become populated with
mesoscale or small-scale irregularities and rise to great heights. These plasma bubbles,
extended in altitude, also map out along magnetic field lines to the north and south of the
magnetic equator, i.e., higher magnetic latitudes. These structured irregularities generally
move eastward by the action of a vertical oriented polarization electric field. Undergo-
ing a non-linear cascade process of electric field driving and wave-wave coupling [10],
irregular structures drift and vary from large- to small-scale. The spectral distribution of
irregularities includes a broad component associated with waves. Equatorial spread-F
(ESF) thus stems from high-frequency radar observations of the “spread” of the ionospheric
echoes in ionograms and can be used to describe equatorial and low-latitude F-region
instability phenomena. Scintillation and ESF activities attain a maximum value during high
sunspot activity periods, especially during equinoxes (March, April, September, and Octo-
ber), owing to the increased value of the background ionization density [11]. In particular,
low-latitude scintillation can be dictated by solar transients, such as magnetic storms [11].

Several techniques have been used to observe and study ionospheric irregularities
and scintillations. These include sounder, radar backscatter, in-situ measurements on-
board rockets or satellites, ground-based satellite beacon signal observations, space-based
navigation beacon observations using radio occultation (RO) techniques, etc. Earlier
investigations [12] developed an operational system, named the SCIntillation Network
Decision Aid (SCINDA), to nowcast and forecast scintillation. At the operator terminal,
the SCINDA data were combined with an empirical plasma bubble model to generate
three-dimensional maps of irregularity structures and two-dimensional outage maps for
the equatorial region in the American sector. In this study, another multi-station and
multi-instrument system, developed for ionospheric scintillation and ESF specification in
the Taiwan–Philippines sector, is outlined. The issues related to the scintillation and ESF
event observed on 26 October 2021, are presented and discussed. We shall first indicate the
existence of a plasma bubble in the Taiwan–Philippines sector using the FS7/COSMIC2
Global Positioning System (GPS) or GLObal NAvigation Satellite System (GLONASS) RO
observations. We shall verify the latitudinal extent of the tracked plasma bubble using the
recorded ionograms from the Vertical Incidence Pulsed Ionospheric Radar (VIPIR) located
at Hualien (23.89◦N, 121.55◦E, dip latitude 17◦N), Taiwan. We further discuss the spatial
and temporal variabilities of two-dimensional scintillation index maps based on the simul-
taneous GPS L1-band signal measurements from 133 ground-based receivers located in
Taiwan and the surrounding islands. We also operate two high-sampling, software-defined
GPS receivers and characterize the targeted plasma irregularities by carrying out spectrum
analyses of the received signal. Overall, we summarize the derived plasma irregularity
and ESF characteristics and point out a potential precursor for post-sunset scintillation and
ESF events.

2. System Description

Since June 2019, the Taiwanese American FS7/COSMIC2 program has been executing
active limb sounding of the Earth’s neutral atmosphere and ionosphere via GPS/GLONASS
RO observations from low-Earth orbiting (LEO) satellites. Similar to the prior mission,
FS3/COSMIC, the FS7/COSMIC2 is a six-LEO-satellite constellation mission but orbits
at 24◦ inclination and ~550 km altitudes (~720 km altitudes for parking orbits). It en-
hances the Global Navigation Satellite System (GNSS) receiver’s capability to receive
multi-channel (1.5 GHz and 1.2 GHz) GPS and GLONASS satellite signals and can pro-
vide more than 5000 RO observations per day within the region between the geographic
latitudes of ±40◦. Each RO observation can provide a set of limb-viewing measurements
on GNSS signal intensity and phase from the LEO satellite altitude to the Earth’s surface.
Those measurements can be further retrieved into Ne and limb-viewing scintillation index
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S4 profiles in altitudes [13,14]. In this study, we propose to identify a plasma bubble in the
Taiwan–Philippines sector by using the FS7/COSMIC2 GPS/GLONASS RO observations.
Meanwhile, the Taiwan–Philippines sector is defined as the ionospheric region located in
20◦ ± 15◦ N and 120◦ ± 15◦ E geographic coordinates, where the geomagnetic latitudes are
from ~−3◦ to 25◦.

The Hualien VIPIR is a modern ionospheric radar (also termed ionospheric sounder
or ionosonde) that fully digitizes complex signal records and uses multiple parallel receiver
channels for simultaneous signal measurements from multiple spaced receiving anten-
nas [15]. As a usual ionospheric sounder, the Hualien VIPIR transmits pulsed waveforms
in the medium- and high-frequency (MF/HF) bands and measures the envelope group
delays, i.e., virtual ranges, of ionospheric echoes to produce ionograms with ionospheric
trace h’(f) as a function of the radio carrier frequency. Details of the system can be found
in [16].

Other sources of scintillation observations are the 133 ground-based GPS receivers
located in Taiwan and the surrounding islands. They are operated and maintained by the
Central Weather Bureau (CWB) of Taiwan and routinely provide 1-Hz satellite navigation
system data (in the RINEX format). The online processing includes determinations of
scintillation index S4 and the two-dimensional vertical S4 map in the Taiwan–Philippines
sector. Based on earlier investigations [17], the theoretical and experimental analyses
show that scintillation index S4 values become underestimated when a sampling spatial
scale is larger than the first Fresnel zone (FFZ). We note that the 1-Hz sampling rate from
ground-based GPS receivers is high enough to determine complete S4 values but not to
characterize the signal scintillation spectrum. Thus, we have designed and implemented a
software-defined receiver in order to acquire and track GPS (and Satellite-Based Augmen-
tation System, SBAS) L1-band C/A code signals [18,19]. Compared with most commercial
GPS receivers, software-defined GPS receivers offer added flexibility and versatility by
implementing most functions in software. Another advantage of a software-defined GPS
receiver is that it could have a maximum sampling rate of 1000 Hz due to the L1-band
Coarse Acquisition (C/A) code duration of 1 millisecond, and the executing sampling rate
can be much higher than that of a usual commercial GPS receiver. Spectrum analyses on
the received signals of two software-defined GPS receivers located at Chungli (24.97◦N,
121.19◦E) and Hualien (23.89◦N, 121.55◦E), Taiwan will be used to characterize the targeted
ionospheric irregularities.

3. Results

This section presents the multi-station and multi-instrument observations of a scin-
tillation event that occurred in the Taiwan–Philippines sector on 26 October 2021, which
was at magnetic quiet conditions, referring to Kp indexes between 0+ and 2+. Figure 1
shows the geographical geometry of the F-layer irregularity observations obtained during
13:00~15:30 UT, i.e., 21:00~23:30 LT in Taiwan, on 26 October 2021, by the FS7/COSMIC2
GPS/GLONASS RO sounding experiment. Six (#1 to #6 observations) out of fourteen RO
observations were recorded and classified as scintillation observations according to their
maximum limb-viewing L1-band S4 values larger than 0.1 [14]. Their recording times,
which are the FS7/COSMIC2 LEO satellite orbiting times at the peak altitudes of RO obser-
vations, are used to identify the scintillation event period, at least from 13:54 to 14:59 UT.
For each RO scintillation observation, a set of RO limb-viewing links at a 15 s sampling
rate (between 150 and 450 km altitudes), which connects the occultation points to their
conjugate points, is shown in coded colors of L1-band S4 values to present the possible
projection area of ionospheric irregularities, and the trace of perigee points (or tangent
points) is also shown. We note that the first three (#1, #2, and #3) RO observations are
located near the magnetic equator and experience strong scintillations. The later three (#4,
#5, and #6) RO observations are located in the northeast directions of the observations #1,
#2, and #3 and could be their latitudinal mapping-out cases; thus, they experience weaker
scintillations. In contrast, as shown in Figure 1, the peak tangent point positions of the other
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eight RO observations without definable scintillations are located outside of the aimed
scintillation area covering observations #1 to #6.

Figure 1. Geographical geometry of the F-layer irregularity observations during 13:00~15:30 UT
on 26 October 2021, by the FS7/COSMIC2 GPS/GLONASS RO sounding experiment. Six out of
fourteen RO observations were obtained and classified as the scintillation observations #1 to #6. Sets
of limb-viewing links (at a de-sampling rate of 15 s and altitudes between 150 to 450 km) connecting
the occultation points to their conjugate points are shown in coded colors by L1-band S4 values to
present the possible projection area of ionospheric irregularities. The traces of limb-viewing tangent
points are also shown in black. The peak locations of the other eight RO observations without
scintillation are shown by green squares, the location of the Hualien VIPIR position is shown by a
black square, and two magnetic latitude lines at dip 0◦ and 17◦ are shown in brown.

Figure 2 shows the RO scintillation observations #1 and #4 with more information,
including the limb-viewing L1-band signal-noise-ratio (SNR) amplitude profiles at both the
occulting and calibrating sides, the resulting undersampling S4 profiles, and the retrieved
Ne profile. We note that the L2-band signals are much weaker and thus do not have
enough sensitivity to derive reliable S4 values to be shown in this paper. On the other
hand, the derived S4 values are from “undersampling” measurements because S4 values
become saturated and completed when a sampling spatial scale is less than the FFZ, but
otherwise, S4 values could be underestimated at undersampling conditions [17]. The
FFZ is defined by DF =

√
λL , where λ is the radio wavelength and L is the distance

from the irregularity position, which is assumed to be the tangent point position along
a limb-viewing GPS/GLONASS-LEO ray, to an LEO satellite position in this study. For
those tangent-point altitudes from 400 to 200 km, the FFZ scale sizes for the L1-band
signals are between 516 and 643 m. Therefore, the Fresnel frequency can be obtained via
fF = v/

√
2 DF, where v is the relative radio-scanning speed to the ionosphere. The derived

Fresnel frequency is thus approximately 2.1 (2.6) Hz at 400 (200) km altitude for a frozen
ionosphere. We note that the upward drift velocity of plasma irregularities is usually less
than 50 m/s [4], which is much lower than the vertical component (~2 km/s) of LEO satellite
velocity at F-region altitudes and can be ignored to estimate the corresponding Fresnel
frequency. We conclude that the sampling rate of FS7/COSMIC2 RO observations on the
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ionosphere is 1 Hz and less than the possible Fresnel frequencies of plasma irregularities,
and thus the derived S4 values should be underestimated at undersampling conditions.

Figure 2. Results of FS7/COSMIC2 RO scintillation observations #1 (left panel) and #4 (right panel)
as in Figure 1. Both figures show the limb-viewing L1-band SNR amplitude profiles at the occulting
(calibrating) side in black (grey) and the resulting undersampling S4 profiles in cyan. The retrieved
Ne profiles are shown in red.

As shown in Figure 2, strong and moderate fluctuations occur in the L1-band SNR
amplitudes of observations #1 and #4, respectively, from the occulting-side observations
but not from the calibrating-side observations. It indicates that the amplitude fluctuations
are induced by the ionospheric irregularities, which are located along the limb-viewing
links between the occultation points and their conjugate points, as shown in Figure 1. We
note that the strong amplitude fluctuations, i.e., large undersampling S4 values, as well as
the Ne fluctuations from observation #1, were distributed over a wider altitude region up
to the LEO orbiting altitude than those from observation #4, and the peak scintillations and
Ne irregularities happened around the F-layer electron density peaks. This is consistent
with the observations from the theoretic descriptions in the Introduction section.

Equatorial spread-F (ESF) features usually accompany equatorial plasma bubbles and
have been observed by numerous authors using ionosonde. In this study, we operated the
Hualien VIPIR, a modern ionosonde, and observed spread-F features from the ionograms
recorded between 13:19~15:04 UT, i.e., 21:19~23:04 LT, on 26 October 2021. The observed
ESF event lasted for approximately one hour and forty-five minutes. In Figure 3, the upper
ionogram shows two traces of one-hop F-layer echoes, where the upper trace is weaker
than the main trace and has higher altitudes with approximately 25 km differences at the
start (13:19 UT) of the ESF event. Furthermore, the lower ionogram shows a weak range
spread-F, which was recorded during the middle (13:49 UT) of the ESF event. We note
that the spread-F frequencies ranged from ~1.7 MHz up to 11.5 MHz, which presents the
top frequency of ordinary ionospheric echoes, i.e., foI. It is usually difficult to retrieve a
critical plasma frequency foF2 from ionograms with ESF, but not difficult to retrieve foI.
Multi-trace echoes could be interpreted as being due to the large-scale plasma depletion
that happened before an ESF event. Meanwhile, the range-type spread-F indicates the
existence of small-scale irregularities on the whole bottom side ionosphere.
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Figure 3. Two typical ionograms showing multi-trace echoes (upper panel) and weak range spread-F
(lower panel) observed at the start (13:19 UT) and mid (13:49 UT) of an ESF event by the Hualien
VIPIR on 26 October 2021. Note that the signals throughout all virtual ranges are radio frequency
interferences from other radio sources.

Figure 4 shows the geographical geometry of the ionospheric pierce points (IPP) of the
simultaneous GPS signal measurements at 14:42 UT on 26 October 2021, using the CWB
GPS receiving network. The IPP altitudes were designed to be 300 km in accordance with
the statistical peak scintillation or irregularity altitude retrieved from the FS7/COSMIC2
limb-viewing S4 and/or Ne profiles, as shown in Figure 2. Furthermore, the IPPs were
obtained at and limited by a minimum elevation angle of 45◦ from receivers to avoid
multi-path signals. In this study, we define the vertical scintillation index VS4 as the vertical
component of the normalized variance of the signal power intensity I as follows:

VS4 = sin(θ) × sqrt

⎛⎝
〈
(I − 〈I〉)2

〉
〈I〉2

⎞⎠ , (1)

where θ is the line-of-sight elevation angle from the receiver. We calculate VS4 values by
applying (1) and a 30-s duration window to 1-Hz L1-band signal amplitudes from the CWB
GPS data archives. We note that the use of VS4 to represent a vertical scintillation index is
based on an assumption in which irregular Ne distribution is a function of altitude only
along a transionospheric radio path. However, equatorial plasma bubbles are plume-like
structures from low altitudes [4], and the shapes of bubbles are extended vertically upward
and also stretched in the north-south direction along the magnetic field lines. Ref. [20] shows
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that GPS RO observations with high S4 values are much more likely to occur when the ray
paths are distributed in certain bubbles and more nearly aligned with the magnetic field.
The details of two-dimensional and even three-dimensional irregular Ne structures should
be figured out in future studies. Meanwhile, we can assume the observing irregularities
located at altitudes around 300 km to be the IPP altitude, and the corresponding FFZ scale
sizes (DF) of L1-band signals are between 239 and 275 m for elevation angles from 90◦
to 45◦. We note that GPS satellites have orbiting velocities of approximately 3.9 km/s, and
thus the corresponding IPP velocity is ~60 (80) meter/s at an elevation angle of 90◦ (45◦)
from the receiver. If we assume a frozen ionosphere, the resulting Fresnel frequencies fF
are between 0.18 and 0.2 Hz. Ref. [11] shows that, using extensive incoherent scatter radar
observations from Jicamarca, the daytime westward drifts are significantly smaller than the
nighttime eastward drifts, and during solar maximum, the maximum nighttime eastward
velocity increases up to about 160 m/s. Even if we include a 160 m/s IPP trace component
of plasma irregularity drift velocity, the resulting Fresnel frequencies fF are approximately
0.66 Hz and are also lower than the 1-Hz sampling rate for the CWB GPS receivers. This
means that the derived S4 values from the CWB GPS data are at complete conditions. As a
result, Figure 5 shows three developed structures on a two-dimensional VS4 map taken
at 13:24, 13:49, and 14:42 UT, which are approximately at the start, middle, and end of
the scintillation and ESF event. Referring to Figure 4 and the bottom panel of Figure 5
based on the same CWB GPS data at 14:42 UT, we derive a two-dimensional extended VS4
map deduced through relaxation by applying the red-black smoothing technique [21] on
point-distributed VS4 measurements. We execute one pass through the mesh updating the
“red” cells (like the red squares of a checkerboard) and another pass updating the “black”
cells (like the black squares) and so forth for two loops. It produces two more cell extents on
derived VS4 maps where the cell (latitudinal or longitudinal) resolution is 0.1◦, determined
approximately by the medium distance between neighboring GPS stations.

Figure 4. Geographical geometry of the IPPs of the simultaneous GPS signal measurements at 14:42
UT on 26 October 2021, and from 133 ground-based receivers located in Taiwan and the surrounding
islands. The dots colored in light blue, yellow, and red show the IPP positions at 300 km altitudes
for the lines of sights connecting GPS satellite #8, #21, and #27, respectively, which have a minimum
elevation angle of 45◦ from receivers. The positions of another two software-defined GPS receivers
located at Chungli (24.97◦N, 121.19◦E) and Hualien (23.89◦N, 121.55◦E), Taiwan, are shown and
labeled by “R1” and “R2”, respectively.

315



Remote Sens. 2022, 14, 2293

Figure 5. Three developed structures in two-dimensional VS4 map taken at 13:24 (upper panel), 13:49
(middle panel), and 14:42 UT (lower panel) on 26 October 2021, and derived by the simultaneous
GPS signal measurements from the CWB GPS receiving network.
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It is now generally accepted that radio scintillation caused by ionospheric plasma
irregularities can be characterized by fitting a power-law function with the spectral index
p to the derived signal spectrum [2,22–24]. According to the scintillation theory and
power spectra analyses [2,25], the intensity spectrum of weak and moderate scintillations
and power-law ionospheric irregularities should have more or less a flat portion at low
frequencies and start to roll off around the Fresnel frequency in the form f 1−p, where p
is defined as the spectral index and is near 4 in the irregularity power-law relationship.
Furthermore, the higher the spectral index, the stronger the scintillation intensity and the
smaller the irregularity scale.

As described in the last section, we also operate two high-sampling, software-defined
GPS receivers located at Chungli and Hualien, Taiwan separately to simultaneously receive
GPS signals. The locations of the Chungli and Hualien software-defined GPS receivers
are shown in Figures 4 and 5 and labeled by “R1” and “R2”, respectively. In this study,
L1-band C/A code signal amplitudes were recorded at a sampling rate of 50 Hz and for
a 70-s duration every five minutes. We obtain three L1-band signal scintillation patches
recorded by the Chungli software-defined GPS receiver at different data segments, which
are from 13:29 to 13:44 UT, 14:29 to 14:49 UT, and 13:44 to 14:19 UT on 26 October 2021, for
GPS satellites #8, #21, and #27 signal observations, respectively. The derived VS4 values are
consistent with CWB GPS observation results and are from 0.19 to 0.25, 0.16 to 0.22, and 0.14
to 0.19 for GPS satellites #8, #21, and #27 signal measurements, respectively. Figure 6 shows
the corresponding signal spectrums obtained via a Lomb periodogram algorithm [21]. We
note that above approximately 1 Hz, the power spectral densities (PSD) are near the noise
level where the minimum frequency of the noise level is defined as the deviation frequency
of the signal intensity spectrum [26,27]. The 50-Hz sampling rate is approximately one
order higher than the derived deviation frequency. Below 1 Hz, the PSDs are more or less
a flat portion at low frequencies and decay from their maxima at a break frequency of
fB toward the noise level in an approximately linear fashion on the log-log scale shown.
This indicates and confirms a power-law variation f 1−p of the plasma irregularity PSD
with the frequency as discussed. We note that the spectrum break frequencies of fB can
be treated as the experimental Fresnel frequencies and are approximately 0.07, 0.15, and
0.12 Hz, and the derived spectral index p values are 3.57, 4.36, and 3.59 for the L1-band
signal scintillation patches from GPS satellites #8, #21, and #27, respectively. Comparing
with the corresponding IPP positions shown in Figure 4 and the derived VS4 maps shown
in Figure 5, we note that the area with a higher spectral index p has a stronger scintillation
intensity. The spectrum analysis results of the L1-band signal scintillation patches recorded
by the Hualien software-defined GPS receiver are similar to those from the Chungli system
and are not shown in this study.
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Figure 6. Power spectrums and their spectral index p values of the L1-band signal scintillation patches
recorded by the Chungli software-defined GPS receiver from GPS satellites #8 (upper panel), #21
(middle panel), and #27 (lower panel). Three data segments are from 13:29 to 13:44 UT, 14:29 to 14:49
UT, and 13:44 to 14:19 UT on 26 October 2021, for GPS satellites #8, #21, and #27 signal observations,
respectively.

4. Discussion

As mentioned in the Introduction section, at the times near and/or soon after sunset,
an enhanced eastward electric field, i.e., PRE, causes the F-layer to move upward and
develop plasma depletions, triggering the Rayleigh–Taylor instability. As a result, the
plasma bubbles develop from the bottom side, and the instabilities cause ionospheric
irregularities and radio signal scintillations and intrude into the higher altitudinal and
latitudinal ionosphere.

In this study, a multi-station and multi-instrument system is organized and proposed
for ionospheric scintillation and ESF specification in the Taiwan–Philippines sector. The
FS7/COSMIC2 program can provide more than 5000 GPS/GLONASS RO observations
per day within the region between the geographic latitudes of ±40◦, i.e., approximately
seven RO observations per hour in the Taiwan–Philippines sector (between 20◦ ± 15◦N
and 120◦ ± 15◦E geographic coordinates). From the FS7/COSMIC2 RO measurements on
26 October 2021, the observed or retrieved limb-viewing SNR, S4, and Ne profiles have been
used to identify an ionospheric irregularity and scintillation event that happened from 13:30
to 15:00 UT, i.e., from 21:30 to 23:00 LT in Taiwan, and at magnetic quiet conditions. The
results also show that the Ne irregularities and limb-viewing radio intensity scintillations
are stronger and distributed into higher altitudes at the southernmost part of the Taiwan–
Philippines sector, i.e., near the geomagnetic equator, compared to those near the sector
center (geomagnetic latitude ~10◦N). Furthermore, as shown in the right panel of Figure 2,
the scintillation altitudes of the RO observation #4 and even observations #5 and #6 were
distributed at an altitude range of ~100 km only and around the F-layer Ne peaks. This
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could indicate that the irregularities at higher latitudes are the latitudinal mapping-out
facts from lower latitudes, and that there are stronger irregularities around F-layer peaks
because of greater conductivities.

More evidence of the longitudinal extent of plasma irregularities is also shown by the
two-dimensional VS4 maps derived from the CWB GPS data archive. As shown in Figure 5,
the significant scintillation event that happened on 26 October 2021, was also observed
by the CWB GPS receiving network. The series of VS4 maps shows plasma irregularities
distributed with a stronger intensity at lower latitudes and when moving eastward. This
indicates that the FS7/COSMIC2 could provide ionospheric irregularity and scintillation
observations scanning in different limb-viewing, i.e., near-vertical, directions, and more
than one hundred and thirty ground-based GPS receivers operated by the CWB could do it
in horizontal directions.

We note that the ground-based CWB GPS signal observations have a sampling rate of
1 Hz, which is higher than the possible maximum Fresnel frequencies fF of approximately
0.66 Hz and can thus complete the scintillation index S4 determination. However, the 1-Hz
sampling rate is not enough for irregularity spectral index determination, which needs the
rate to be approximately one order larger than its Fresnel frequency. In practice, spectrum
analyses applied to the high-sampling, software-defined GPS receiver measurements con-
form to a power-law variation f 1−p of plasma irregularity PSD with frequency. Meanwhile,
the derived spectrum break frequencies fB are more or less 0.1 Hz, which are all less than the
corresponding Fresnel frequencies fF of approximately 0.2 Hz for a frozen ionosphere. This
indicates that the targeted plasma irregularities moved northward too and had positive
velocity components along the IPP-tracing directions to decrease the relative radio-scanning
speed and the experimental Fresnel frequencies obtained by the derived fB values. In sum,
integrating the observations from the FS7/COSMIC2, the CWB GPS receiving network,
and two software-defined GPS receivers located in Taiwan, the experimental results show
that the targeted plasma irregularities moved eastward and northward. Furthermore, the
smaller the irregularity scale, the higher the spectral index and the stronger the scintillation
intensity at lower latitudes on the aimed irregularity feature.

As described, ESF features usually accompany equatorial plasma bubbles and can
also be observed and scaled from ionograms, as shown in Figure 2. Figure 7 shows
the time variations of the virtual ranges of ionospheric echoes at different sounding fre-
quencies fs of 1.72, 3.08, 4.72, 5.65, and 7.15 MHz from the Hualien ionograms recorded
on 26 October 2021. Figure 7 also shows the corresponding temporal profile of scaled
foI, which is approximately equal to foF2 without spread-F and/or sporadic E features
but higher than foF2 with spread-F features. We note that the sunset time of the day
was approximately 18:30 LT, i.e., 10:30 UT, at Hualien, Taiwan, and at a 300 km alti-
tude. As shown in Figure 7, the spread-F features happened and were observed between
13:19~15:04 UT, i.e., 21:19~23:04 LT. Furthermore, after 15:04 UT, i.e., the end of the ESF
event, the foI (foF2) values decreased, and the virtual heights of the fixed-frequency iono-
spheric echoes increased as usual facts of nighttime ionograms. Before 13:19 UT, i.e., the
start of the ESF event, the foI (foF2) values show more or less a flat portion, but the virtual
heights of fixed-frequency ionospheric echoes decreased except for those at a sounding
frequency of 1.72 MHz, which are actually one-hop and two-hop sporadic E echoes and
thus almost invariant in virtual heights. This indicates that after sunset and before the ESF
event, the peak ionospheric Ne values were approximately the same but the ionospheric
Ne values at the bottom side ionosphere were increased. This could be due to a strong
PRE, i.e., eastward electric field enhancement that happened near or after sunset on the
day and produced an equatorial fountain effect. As a result, the equatorial ionosphere
moved upward, developed steep density gradients and large-scale plasma depletions in
the bottom side F-region and became unstable, triggering the R–T instability. Meanwhile,
ionospheric plasma moved out along the geomagnetic field line and from the magnetic
equator to higher latitudes. In this study, such an equatorial fountain effect was not strong
enough to increase the peak Nes and foF2s but was strong enough to increase the Nes at the
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bottom side ionosphere in the low-latitude region, e.g., the Taiwan area. We found that a
post-sunset decrement of the virtual heights of fixed-frequency ionospheric echoes could
be a good precursor for post-sunset scintillation and ESF events.

Figure 7. Time variations of virtual ranges (referring to the left y-axis) of ionospheric echoes at
different sounding frequencies fs of 1.72 (dark blue), 3.08 (light blue), 4.72 (green), 5.65 (orange),
and 7.15 MHz (red) from the Hualien ionograms recorded on 26 October 2021. Another temporal
profile of scaled foI is also shown and referring to the right text. Note that the spread-F features were
happened between 13:19~15:04 UT, i.e., 21:19~23:04 LT in Taiwan.

5. Conclusions

Ionospheric irregularities and scintillations and their associated motions in the Taiwan–
Philippine sector have been observed and specified by the FS7/COSMIC2 data, the VIPIR
located at Hualien, Taiwan, 133 ground-based GPS receivers located in Taiwan and the sur-
rounding islands, and two high-sampling, software-defined GPS receivers. The integrated
system has the potential to provide scintillation intensities, zonal drift measurements, and
even three-dimensional irregularity structures. We also suggest that a post-sunset decre-
ment of the virtual heights of fixed-frequency ionospheric echoes could be a good precursor
for post-sunset scintillation and ESF events. In the future, we expect to identify the iono-
spheric conditions in the Taiwan–Philippines sector that led to the onset of plasma/R–T
instabilities and to forecast the growth and the timing/duration of each instability. An
examination of these instabilities will form the basis for the forecast of the timing and
severity of (GNSS) radio scintillations.
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