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1. Introduction

Flood modelling is among the most challenging scientific task because it covers a
wide area of complex physical phenomena associated with highly uncertain and non-linear
processes where the development of physically interpretive solutions usually suffers from
the lack of recorded data.

The objective of the Special Issue, titled “Modern Developments in Flood Modelling”,
is to define and discuss several related topics, aiming to provide new insights within the
geoscientific domain on the use of new remote sensing datasets in the service of flood
modelling, on new methodologies addressing complex problems such as joint probability
theory and rainfall maximum modelling at different temporal scales, and on strategies for
reproducing catastrophic events in data-scarce areas and modelling flood risk with new
tools in coastal areas.

This Special Issue comprises thirteen contributions tackling the above-mentioned goals.
Our issue received a high number of diverse submissions, with an 82% acceptance rate.

2. Contributed Papers

The articles in this Special Issue address a wide variety of topics reflecting the chal-
lenges mentioned above. Their details are briefly presented below.

The paper “Regional Ombrian Curves: Design Rainfall Estimation for a Spatially
Diverse Rainfall Regime” [1] by Theano Iliopoulou, Nikolaos Malamos and Demetris Kout-
soyiannis demonstrates new insight in modelling regional ombrian curves (I.D.F curves)
by providing a new parsimonious model of the extreme rainfall properties at any point
in a given area. The curves were constructed following a newly revisited mathematical
formulation of single-site curves coupled with a new regionalization approach. The results
showed that the model efficiently captures the spatial variability of extreme rainfall in the
area, covering scales from 5 min to 48 h.

The paper “Forensic Hydrology: A Complete Reconstruction of an Extreme Flood
Event in Data-Scarce Area” [2] by Aristoteles Tegos, Alexandros Ziogas, Vasilis Bellos
and Apostolos Tzimas presents a state-of-the-art approach to reconstructing catastrophic
flooding events in data-scarce areas. The study focused on the recent catastrophic flooding
event, namely medicane Ianos, which substantially affected the town of Karditsa, Greece.
A rainfall–runoff CN-unit hydrograph model was combined with a hydrodynamic model
based on a 2D shallow water equations model. Having used numerous remote sensing
rainfall datasets along with satellite flooding footage and videos posted to social media sites
such as Facebook, the catastrophic event was reconstructed efficiently in a high-complexity
area associated with low-lying flooding fluvial and pluvial water paths.
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The paper “Predicting Urban Flooding Due to Extreme Precipitation Using a Long
Short-Term Memory Neural Network” [3] by Raphaël A. H. Kilsdonk, Anouk Bomers and
Kathelijne Wijnberg presents a long short-term memory (LSTM) neural network model to
predict flood time series at 230 manhole locations present in the sewer system of the city of
Amersfoort. According to the authors, it is the first time that an LSTM was applied to such a
large sewer system in addition to a wide variety of synthetic precipitation events in terms of
precipitation intensity. It was concluded that the LSTM could accurately predict the timing
and volume of flooding for the large number of manholes for historic precipitation events
and that the LSTM was able to reduce forecasting times, demonstrating the applicability of
using this methodology as an early flood-warning system in urban areas.

The paper “Flood Exposure of Residential Areas and Infrastructure in Greece” [4] by
Stefanos Stefanidis, Vasileios Alexandridis and Theodora Theodoridou exhibits the first
nationwide spatial assessment of flood exposure in residential areas and infrastructures
in Greece. Spatial analysis and open access data were used to illustrate the variations in
flood exposure. The ratio of the urban fabric, transportation and social, industrial and
commercial infrastructures in 100-year flood zones was evaluated, as well as the spatial
pattern of the exposure. Based on the authors’ view, the proposed methodology could serve
as a roadmap for integrated flood risk assessment, as the results can be easily overlaid with
other spatial data for further analysis.

The paper “Identifying Modelling Issues through the Use of an Open Real-World Flood
Dataset” [5] by Vasilis Bellos, Ioannis Kourtis, Eirini Raptaki, Spyros Handrinos, John Kalo-
giros, Ioannis Sibetheros and Vassilios Tsihrintzis deals with the reconstruction of the flood
wave that hit the town of Mandra (Athens, Greece) on 15 November 2017. The flash flood
event was caused by a huge storm which was part of the Medicane Numa-Zeno. The works
used in the reconstruction were associated with (a) the post-event collection of 44 maximum
water depths and (b) hydrodynamic simulation employing the HEC-RAS and MIKE FLOOD
software. Calibration strategies in computationally demanding cases were considered, and
whether the calibrated parameters can be blindly transferred to another simulator (informed
modeling) was tested.

The paper “Differentiated Spatial-Temporal Flood Vulnerability and Risk Assessment
in Lowland Plains in Eastern Uganda” [6] by Godwin Erima, Isa Kabenge, Antony Gidudu,
Yazidhi Bamutaze and Anthony Egeru was developed to map flood inundation areas along
the Manafwa River, Eastern Uganda, using HEC-RAS integrated with SWAT models. The
aim was to evaluate the predictive capacity of SWAT by comparisons with streamflow
observations and to derive, using HECRAS, the flood inundation maps. The overall
outcome demonstrated the benefits of combined modeling systems in predicting the extent
of flood inundation.

The paper “Numerical and Physical Modeling of Ponte Liscione (Guardialfiera, Molise)
Dam Spillways and Stilling Basin” [7] by Monica Moroni, Myrta Castellino and Paolo De
Girolamo provides new insights into dam-related studies by combining computational
fluid dynamics and physical models. The work deals with the 1:60 Froude-scaled numerical
model of the Liscione (Guardialfiera, Molise, Italy) dam spillway and the downstream
stilling basin. The model was scaled according to the Froude number, and fully developed
turbulent flow conditions were reproduced at the model scale. From the analysis of the
results of both the physical and the numerical models, it was found that the stilling basin is
undersized with a significant impact on the erodible downstream river bottom in terms of
scour depths.

The paper “Wetland Vulnerability Metrics as a Rapid Indicator in Identifying Nature-
Based Solutions to Mitigate Coastal Flooding” [8] by Narcisa Gabriela Pricope and Greer
Shivers presents a rapid method to quantify changes in ecosystem dynamics with the use of
wetland vulnerability assessments to prioritize potential locations for NBS implementation.
Exposure risk using 100- and 500-year special flood hazard areas, 1–10 ft of sea level rise
scenarios and high-tide flooding and sensitivity using time series analyses of Landsat
8-derived multispectral indices were quantified. The work underlines the critical impor-
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tance of conserving or restoring brackish and freshwater marshes and swamp forests, even
though they represent a minority of the wetland types present in the highly populated
Atlantic Coastal Plain region.

The paper “Trivariate Joint Distribution Modelling of Compound Events Using the
Nonparametric D-Vine Copula Developed Based on a Bernstein and Beta Kernel Cop-
ula Density Framework” [9] by Shahid Latif and Slobodan Simonovic demonstrates the
use of a D-vine copula in the nonparametric fitting procedure to model trivariate joint
probability analyses of storm surges, river discharge and rainfall in compound flood risk
assessments. A trivariate distribution can demonstrate the risk of compound phenomena
more realistically, such as storm surges, rainfall and river discharge, rather than considering
each contributing factor independently or in pairwise dependency relations. This work
introduced the vine copula approach in a nonparametric setting by introducing Bernstein
and Beta kernel copula density in establishing trivariate flood dependence.

The paper “Assessing the Impact of the Urban Landscape on Extreme Rainfall Charac-
teristics Triggering Flood Hazards” [10] by Yakob Umer, Victor Jetten, Janneke Ettema and
Gert-Jan Steeneveld presents a configuration of the WRF model developed for the city of
Kampala, Uganda. The use of the WRF model to study the deep convection over Kampala
required a special configuration, which requires the proper position and extent of the city in
order to better consider the spatial contrast between the city and Lake Victoria. The study
provides an explicit and alternative satellite-derived urban fraction in the WRF model.
The study contributes to the emerging understanding of the usability of high-resolution
urban fractions from remote sensing images to properly account for the impact of urban
heterogeneity on extreme rainfall events.

The paper “Water Level Forecasting in Tidal Rivers during Typhoon Periods through
Ensemble Empirical Mode Decomposition” [11] by Yen-Chang Chen, Hui-Chung Yeh,
Su-Pai Kao, Chiang Wei and Pei-Yi Su demonstrates a parsimonious model that performs
ensemble empirical mode decomposition (EEMD) and stepwise regression to forecast
the water level of a tidal river. The proposed model is conceptually simple and highly
accurate, providing reliable forecasts for a given location 1 h ahead using the observed
ocean components at the down-stream gauging stations and the corresponding stream
component the water stages at the upstream gauging stations.

The paper “Evaluation of Various Resolution DEMs in Flood Risk Assessment and
Practical Rules for Flood Mapping in Data-Scarce Geospatial Areas: A Case Study in
Thessaly, Greece” [12] by Nikolaos Xafoulis, Yiannis Kontos, Evangelia Farsirotou, Spyri-
don Kotsopoulos, Konstantinos Perifanos, Nikolaos Alamanis, Dimitrios Dedousis and
Konstantinos Katsifarakis investigated flood modelling sensitivity against geospatial data
accuracy using the following DTM resolutions in a mountainous river sub-basin of Thes-
saly’s Water District (Greece): (a) open 5 m and (b) 2 m data from Hellenic Cadastre (HC)
and (c) 0.05 m data from a topographical mission using an unmanned aerial vehicle (UAV).
RAS-Mapper and HEC-RAS were used for 1D (steady state) hydraulic simulation regarding
a 1000-year return period. The flood modelling results were analyzed via a statistical
analysis based on the correlation matrix presenting linear relationships between input data
variables (i.e., elevation, slope, sinuosity ratio) and cross section-specific results, including
flow characteristics (i.e., Froude number, hydraulic radius), flood extents and flow depths.
The correlation results indicated strong linearities, namely riverbed elevations vs. cross-
section ID numbers, and weaker linearities (e.g., riverbed elevations and hydraulic radii
and Froude number vs. flood extents).

The paper “CoastFLOOD: A High-Resolution Model for the Simulation of Coastal
Inundation Due to Storm Surges” [13] by Christos Makris„ Zisis Mallios, Yannis Androul-
idakis and Yannis Krestenitis demonstrates a new numerical code (CoastFLOOD) with
high-resolution (5 m × 5 m) raster-based, storage-cell modelling of coastal inundation via
Manning-type equations in a decoupled 2D formulation at local-scale (20 km × 20 km) low-
land littoral floodplains. The new model is based on the well-established LISFLOOD model
and uses outputs of either regional-scale storm surge simulations or satellite altimetry data
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for sea level anomalies. The presented case studies demonstrated model applications at
10 selected coastal sites of the Ionian Sea (east-central Mediterranean Sea) and confirm the
capability of the new model to reproduce past flooding events.

3. Conclusions

Since we have been conducting research in the field of flooding for more than a decade,
and considering the remaining challenges within flooding assessment research, this Special
Issue was a great opportunity to discover ideas and promote new techniques across the
geosciences community.

As Guest Editors, we are enthusiastic about the successful completion of the SI, as it
presents highly diverse and valuable works. We trust that the selected research papers will
be a valuable contribution to the domain of geosciences in the years to come.
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Regional Ombrian Curves: Design Rainfall Estimation for
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Abstract: Ombrian curves, i.e., curves linking rainfall intensity to return period and time scale, are
well-established engineering tools crucial to the design against stormwaters and floods. Though the
at-site construction of such curves is considered a standard hydrological task, it is a rather challenging
one when large regions are of interest. Regional modeling of ombrian curves is particularly complex
due to the need to account for spatial dependence together with the increased variability of rainfall
extremes in space. We develop a framework for the parsimonious modeling of the extreme rainfall
properties at any point in a given area. This is achieved by assuming a common ombrian model
structure, except for a spatially varying scale parameter which is itself modeled by a spatial smoothing
model for the 24 h average annual rainfall maxima that employs elevation as an additional explanatory
variable. The fitting is performed on the pooled all-stations data using an advanced estimation
procedure (K-moments) that allows both for reliable high-order moment estimation and simultaneous
handling of space-dependence bias. The methodology is applied in the Thessaly region, a 13,700 km2

water district of Greece characterized by varying topography and hydrometeorological properties.

Keywords: ombrian curves; intensity–duration–frequency curves; rainfall extremes; regionalization;
regional frequency analysis; spatial rainfall; design rainfall

1. Introduction

Ombrian (from the Greek word ‘óμβρoς’ meaning rainfall) curves are a standard
engineering tool in the form of a mathematical relationship linking rainfall intensity to
timescale and return period, usually known as ‘intensity-duration-frequency’ curves. This
term, albeit widely used, appears to be a misnomer, considering that ‘duration’ does not
refer to the actual duration of a rainfall event but rather to the (arbitrary) time scale of
averaging the rainfall intensity, while ‘frequency’ is not meant to be frequency but its
reciprocal, i.e., return period. To oppose this common confusion (and having in mind the
Aristotelian principle that science presupposes clarity—or saphenia [1]), the term ‘ombrian
curves’ has been used as an alternative name in the past [2–5] and has been adopted here
as well.

Ombrian curves have been used in hydrology since the works of Sherman [6] and
Bernard [7] and own their popularity to their practical benefits when design problems
affected by rainfall extremes are of interest. Although the typical curves have been con-
structed mostly following an empirical fashion, over the past decades, there have been
several attempts to provide a theoretical basis for their modeling, e.g., [8–10], with the
most recent advance being their full upgrade to multi-scale models of rainfall intensity [2].
At this point, it could be argued that the issue of deriving the curves for single sites has
been efficiently tackled both at the practical level, with diverse methodologies providing
satisfactory results for small scales, of the order of minutes to a few days (see the review by
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Svensson and Jones [11]), and at the theoretical level as well, achieving their full modeling
validity over any scale of interest [2,3].

At the same time, there have been various efforts to produce regional ombrian curves,
a considerably more demanding task that is essential when hydrological analyses for large
areas are to be performed, and design rainfall estimates are required for multiple sites.
This is the case when regional flooding is studied, e.g., when large-scale flood protection
works and urban stormwater networks are to be constructed. Even more, the construction
of regional curves is critical when rainfall data for at-site analysis are missing, as is often
the case. As such, the construction of ombrian curves at regional scales and even at the
national level has been a priority for various countries, with a notable early example being
the construction of regional curves in the US [12].

Broadly, the construction of regional ombrian curves can follow two different approaches:

(a) the at-site, independent fitting approach, which consists of separately fitting the
curves to multiple gauged sites and using spatial interpolation methods to map the
parameters over the whole region.

(b) the regional, simultaneous fitting approach, which consists of appropriately pooling
the data together and obtaining a single model valid over the entire area, which is, in
essence, the inverse approach to (a).

Frameworks based on the first approach are older yet still in use, e.g., [12–14], as this
approach is easier to apply. Indeed, the task of constructing the curves for a single site is
more straightforward, and the same is true for the mapping of the parameters in space,
given the ample availability of geostatistical software. However, an important limitation
of this approach is that results are very sensitive to data from single stations, which are
often short and fragmented and can be impacted by large sampling uncertainty. A further
issue with automated spatial interpolation methods is that their structure is obscure and
cannot be easily modified, making their results not always interpretable. For instance, it
is known that both the number and spatial distribution of available stations impact the
reliability of the geostatistical method, but the former is not easy to assess. In this respect,
Malamos and Koutsoyiannis [15] note that kriging requires a large number of available
data points (at least 100, according to Oliver and Webster, [16], or 50–100 according to other
studies [17]), in order to produce a reliable estimation of the variogram. The same authors
propose a bilinear surface smoothing (BSS) model [18,19] that is shown to have superior
performance to Universal kriging in terms of bias and heteroscedastic behaviors of the data,
as well as a more interpretable theoretical structure.

On the other hand, having a single spatial model is a theoretically more powerful
approach since it allows simultaneously using all observations to limit uncertainty by
‘substituting space for time’; i.e., the principle behind the well-known ‘regional frequency
analysis’ [20]. Nonetheless, the simultaneous use of all stations in the estimation process
is challenging, for it requires a rigorous estimation framework to handle the underlying
assumptions that control the information content of the pooled records. These are related
to the different record lengths of the stations and the presence or not of spatial dependence
among them. The most well-known framework of this type is the regional frequency
estimation based on the L-moments [20,21]. Yet the latter is founded on the inter-site
independence assumption and has been shown to decrease in accuracy as the level of
dependence increases [22]. To explicitly address the effect of the spatial dependence in
the data, a new regional frequency estimation framework has been proposed that allows
high-order properties estimation from spatially correlated data by means of ‘knowable’
moments’ (K-moments of high order [2,23]). Separate space dependence models have
been employed in other approaches (e.g., [24]). Evidently, the issue of regional frequency
analysis is still an evolving research subject.

Aside from the choice of the theoretical framework for the regional estimation, the
formulation of a regionalization approach for the extreme rainfall properties is an addi-
tional demanding task that has to be performed in approach (b). The literature on the
different types of regionalization techniques for frequency analysis is vast and extensively
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covered by previous works [11,25]. The simpler approach considered is the estimation of
a common frequency distribution by directly pooling together all stations of a homogenous
region [26]. This is a reasonable approach for small areas or areas with limited spatial
variability but is less efficient for complex regimes. In such cases, an extension of the same
concept is to delineate the region by identifying homogenous sub-regions and pool the
data within them, allowing for the possible variation only of a site-specific scale parameter,
known as the ‘index-rainfall’. This is a widely used approach [11,20,25,27,28], inspired
by a similar method in flood frequency analysis, the so-called ‘index-flood’ method [29].
Considerable limitations of the approach relate to the subjectivity of detecting clusters
in complex regimes and the arising of spatial discontinuities at the clusters’ boundaries.
Remediation to these issues is the ‘region of influence approach’, which, instead of using
fixed boundaries regions, employs individual regions of varying boundaries centered at the
site of interest [30]. Irrespective of the arrangements of each method, the need to model the
spatial variability of the site-specific parameter(s) still emerges and is often treated through
standard interpolation and geostatistical methods as in approach (a).

In this sense, several frameworks resort to a combination of the two approaches
(e.g., [28,31,32]). Namely, the data are pooled together for the distribution fitting after
being proportionally adjusted by a site-specific parameter, which itself is obtained for
a given grid by interpolation methods. This approach bypasses the difficulty of identifying
sub-regions based on hydrological similarity and is characteristically called ‘regionless’ or
‘boundaryless’ [25,32].

The scope of this work is to construct regional ombrian curves by exploiting and
combining recent advances in the different methodological components of the analysis and
integrating them into a new framework for regional frequency analysis of rainfall extremes.
The latter is based on:

1. An advanced estimation method of extreme values based on high-order moment
estimation while respecting space dependence [2].

2. A couple of flexible spatial smoothing models [18,19] to describe the spatial variability
of extreme rainfall without resorting to uncontrolled interpolation.

3. A formulation of ombrian curves, which is revisited through recent theoretical devel-
opments in the field [2].

This is the first time that the K-moments framework, by now used in frequency
estimation for several hydrometeorological variables [23,33,34], has been put into practice
in regional frequency estimation of rainfall extremes. This is also the first time that the
BSS model framework has been employed for the regionalization of extreme rainfall. As
a proof-of-concept, the framework is applied in the region of Thessaly (Greece), utilizing
data from 55 stations over a 13,700 km2 basin area. The large spatial scale, together with
the hydrological complexity of the case study, form a challenging test for the methodology,
from which new insights into regional rainfall frequency analysis are gained.

2. Methodology

2.1. Mathematical Form of the Ombrian Relationship

Koutsoyiannis ([2]; Chapter 8) recently developed a framework advancing typical
ombrian curves to stochastic models of rainfall intensity, valid over any scale supported
by the data. This type of ombrian model arises directly from the stochastic properties
(dependence structure and marginal distribution) of rainfall intensity and their (non-
simple) scaling behavior, and, as such, it can also be applied for simulation of the rainfall
process [35]. The framework in [2] can be applied at any time scale, arbitrarily large, to
produce the ombrian relationship linking rainfall intensity x to any timescale k and return
period T. We note, though, that for large time scales the mathematics becomes somewhat
involved. Here we apply the framework only for small time scales, for which a Pareto
distribution for the non-zero rainfall intensity is justified. (For larger scales, this should be
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replaced by a Pareto–Burr–Feller distribution.) In this case, the Pareto distribution quantile
is given as [2]:

x = λ(k)

(
P(k)

1 T/k
)ξ − 1

ξ
, ξ > 0 (1)

where P(k)
1 is the probability wet, λ(k) is a scale parameter and ξ is the tail-index of the

Pareto distribution. Both P(k)
1 and λ(k) are functions of the timescale obtained as [2]:

P(k)
1 =

1 − ξ

1/2 − ξ

μ2

γ(k) + μ2 (2)

λ(k) =
μ(1 − ξ)

P(k)
1

=
(1/2 − ξ)

(
γ(k) + μ2)
μ

(3)

where μ is the mean intensity (constant at all time scales) and γ(k) is the climacogram of
the process, i.e., the function of the variance across timescale, which can follow different
models [2]. A simplification of Equations (1)–(3) is possible based on the following assump-
tions stemming from the fine-scale behavior of rainfall. For small time scales, of the order
of minutes to a few days:

• P(k)
1 ∝ k, and hence we can set the quantity β(k) := k/P(k)

1 = β = constant in Equation (1).
• γ(k) � μ2, and thus we can neglect the latter term in their sum.
• we select the generalized Cauchy-type model for the climacogram:

γ(k) = λ2
1

(
1 +

(
k
α

)2M
) H−1

M

(4)

where α and λ1 are scale parameters, with dimensions of time [t] and [x], respectively, and
H, M are dimensionless parameters in the interval (0, 1), controlling the long-range (Hurst-
Kolmogorov dynamics) and local scaling of the process (fractal behavior) of the process,
respectively. For M we take the neutral value M = 1/2 as default. We note though that if
the focus is on even smaller temporal scales, this value (M = 1/2) can be inappropriate.

These simplifying assumptions result in some violations of a full stochastic consistency,
as detailed in [2]. However, at small scales, the violations are negligible [2,3]. By virtue of
these simplifications, the ombrian relationship is given as:

x = λ2
1
(1/2 − ξ)

ξμ

(
1 +

k
α

)2H−2
((

T
β

)ξ

− 1

)
(5)

Setting λ = (1/2 − ξ)λ2
1 / ξμ and η = 2 − 2H, Equation (5) can be rewritten as:

x = λ
( T/β)ξ − 1
(1 + k/α)η , ξ > 0 (6)

where the following five parameters are involved, λ an intensity scale parameter in units
of x (e.g., mm/h), β a timescale parameter in units of the return period (e.g., years), α
a timescale parameter in units of timescale (e.g., h) with α ≥ 0, η a dimensionless parameter
with 0 < η < 1, and ξ > 0 the tail index of the process.

It is easily observed that Equation (6) can be written concisely as the quotient of two
separable functions b(T) and a(k) of the return period and the timescale, respectively, in
the form:

x =
b(T)
a(k)

(7)
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with

a(k) =
(

1 +
k
α

)η

(8)

being a function of time scale, in wide use as an approximation [2,36] but here resulting
as a consequence of the climacogram, and b(T) a function of the return period that is
analytically derived from the distribution function of the rainfall intensity.

In the case that the return period of the rainfall intensity is determined based on
rainfall exceedances extracted from the full series (i.e., Peaks over Threshold, POT), a Pareto
distribution can be generally assumed for modeling the rainfall intensity, as implied in
Equation (6). However, if the return period is determined based on series of annual maxima
(AM) of rainfall intensity, then both long-term empirical evidence and theoretical arguments
support the use of the Extreme Value Type 2 (EV2) distribution from the Generalized
Extreme Value (GEV) distribution family [37–39]:

F(y) = exp

(
−
(

1 + ξ
(y

ν
− ψ

))− 1
ξ

)
, y ≥ ν

(
ψ − 1

ξ

)
(9)

where ψ (dimensionless), ν > 0 (units same as in y) and ξ > 0 (dimensionless) are location,
scale, and shape parameters, respectively. It should be mentioned that the case of ξ < 0 is
not appropriate for maximum rainfall, since it presumes the existence of an upper limit
for the variable, which is inconsistent with the physical reality. Furthermore, the case of
ξ = 0, i.e., assuming a Gumbel (Extreme Value Type 1—EV1) distribution for the maximum
rainfall intensity, is also not supported by worldwide empirical evidence and is to be
avoided in general [37]. Therefore, it is not developed herein, but further details for this
case are given in Koutsoyiannis [2].

Equivalently, the EV2 distribution as given by Equation (9) can be re-parameterized
consistently to Equation (6) as follows:

F(y) = exp

(
−Δ

β

( y
λ
+ 1

)− 1
ξ

)
(10)

where β = (1 − ξψ)1/ξΔ and λ = (1 − ξψ) ν/ξ and ξ > 0.
The variable y represents either the rainfall intensity x or, equivalently, the product

x a(k) (Equation (7)). Solving Equation (10) in terms of y and substituting F(y) = 1 − Δ/T,
where Δ = 1 year for annual maxima, yields:

yT = λ
(
(−(β/Δ) ln(1 − Δ/T))−ξ − 1

)
(11)

Therefore, by substituting Equations (8) and (11) in (7), the following generalized form
of ombrian curves for annual maxima is derived:

x = λ
(−(β/Δ) ln(1 − Δ/T))−ξ − 1

(1 + k/α)η , ξ > 0 (12)

It is easily shown that for small return periods, Equation (6) deriving from a Pareto
distribution yields higher intensity than Equation (12), whereas for larger return periods
(T > 10 years), the two are practically indistinguishable, given that for small Δ/T holds
ln [1 − (Δ/T)] = −(Δ/T)− (Δ/T)2 − · · · ≈ −Δ/T. Therefore, even in the case that the
model fitting is based on Equation (12), i.e., when annual maxima are used (which is also
the case here), it is safer, from an engineering point of view, to express the final model used
to obtain design rainfall in the form of Equation (6). Yet, the availability of either POT or
AM series determines which of Equation (6) or (12), respectively, will be used for model
fitting. Following a slightly different parameterization, Equations (6) and (12) were also
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proposed by Koutsoyiannis et al. [8] for small scales, which nevertheless are sufficient for
most engineering applications of ombrian curves, namely those involving flood analyses.

The advantage of this simplified approach is precisely the separability of a(k) and b(T)
functions that allows for a two-step procedure for the parameter estimation. This turns
out to be convenient for typical applications and even more for regional analyses, as will
be shown next. It also has attractive flexibility in using different sources of data. Namely,
a reliable determination of the timescale parameters α and η requires data from fine-scale
records, whereas the parameters of the function b(T), including the highly uncertain tail
index, are better inferred from daily raingauge data, which are usually more systematic
and less prone to erroneous recordings [8].

2.2. Regionalization Method: Bilinear Surface Smoothing Models for the 24 h Average Annual
Rainfall Maxima

The target of the regional model is to generalize Equation (6) or (12) in space, achieving
their applicability for any set of coordinates in a given area. To efficiently describe the
spatial heterogeneity in a region without resorting to a great number of parameters and
uncontrolled interpolation, we should make an assumption on which parameters we con-
sider as regionally varying. It is reasonable to begin by applying diagnostics for the spatial
heterogeneity of rainfall in the study area, both in terms of the a(k) and b(T) functions’
parameters, bearing in mind that selected parameters should be reliably estimated from
single-site data. Following this rationale and supported by the available data, which in our
case are series of annual maxima at different temporal scales, as shown in Section 3.2, we
choose to spatially model the parameter λ of Equation (12). This corresponds to the scale
parameter of the EV2 distribution, which is proportional to the mean value of the process,
i.e., the average annual maxima at each location for any timescale. Since the transformation
between timescales is controlled by the a(k) function, it suffices to model the average
maxima at a single, convenient timescale. We choose the 24 h scale due to the much greater
availability of daily data in the study region. Depending on the need to apply further com-
plexity, the location parameter of the EV2 distribution could be another option for spatial
modeling. Yet it is not advisable to spatially model the highly uncertain shape parameter
(i.e., the tail index) based on single-site data unless long-term empirical evidence supports
a spatial variation thereof. Parameters α and η, which control the timescale transformations
of the curves, are very sensitive to the existence of sub-daily data [8], which are scarce in
the study region, and thus, they do not constitute good choices for spatial modeling either.
For these reasons, we apply common values for the rest of the parameters over the whole
area. The choice of the mean of the AM distribution as the parameter to be regionalized
has been proven to be a robust choice in regional frequency analysis, dating back to the
index-flood method [29] and several applications thereafter (see [11]).

Having chosen to spatially model only the λ parameter related to the mean value of
the annual maxima series, we have to identify a model for the spatial variation. As already
discussed in the introduction, a large region with complex topography cannot be efficiently
treated as a homogenous area. In this case, instead of identifying several sub-regions, which
may give rise to abrupt changes in the final results with questionable physical basis, it is
better to explicitly model the process at any given point in the area of interest. Towards this
‘regionless’ modeling approach, we apply a framework of spatial smoothing modeling that
is described next.

We apply two versions of a bilinear surface smoothing model proposed by Malamos
and Koutsoyiannis [18,19], generalizing in 2D a previous numerical smoothing and interpo-
lation method [40,41]. A brief overview of the mathematical framework is presented since
it is detailed in the aforementioned publications. The general idea behind both methods is
to compromise the trade-off between the objectives of minimizing the fitting error and the
roughness of the fitted bilinear surface, therefore termed bilinear surface smoothing (BSS).
The larger the weight of the first objective, the rougher the surface will appear, while the
opposite is true for a larger weight of the second objective.

12



Hydrology 2022, 9, 67

The mathematical framework of BSS suggests that fitting is meant in terms of mini-
mizing the generalized cross-validation error (GCV; [42]) between the set of the given data
points and the corresponding estimates. The general estimation function, ẑu, for point u on
a plane, according to the BSS method, is:

ẑu = du (13)

where du is the value of the fitted bilinear surface d at that point.
The BSS method can be extended by the introduction of an additional explanatory

variable (bilinear surface smoothing with an explanatory variable; BSSE) at a denser dataset
compared to that of the main variable, as follows. We assume that at the locations of the
given data points, we also know the value of an explanatory variable t, and therefore for
each point z there corresponds a value t. In this case, the general estimation function for
point u is:

ẑu = du + tueu (14)

where du, eu are the values of two fitted bilinear surfaces at that point, namely d and e,
while tu is the value of the explanatory variable at that point. This is not a global linear
relationship but a local linear one as the quantities du and eu change in space.

In the case of the BSS, there are four adjustable parameters for surface d: the numbers
of intervals along the horizontal and vertical direction, respectively, i.e., mx, my, and the
corresponding smoothing parameters τλx and τλy. The incorporation of the explanatory
variable for the BSSE case adds two more adjustable parameters: the smoothing parameters
τμx and τμy corresponding to surface e. The values of all the smoothing parameters are
restricted in the interval [0, 1) for both directions [18]. When the smoothing parameters
are close to 1, the resulting bilinear surfaces exhibit greater smoothness, whereas, for small
values of these parameters, interpolation among the known points is obtained.

A desirable feature of the method for regional analyses is the fact that it is proven reli-
able even in the case of few and scarce data, in contrast to common geostatistical methods
that require a denser data network to be applied reliably (e.g., to estimate a semivari-
ogram) [15]. It is important to note that the method is also parsimonious in terms of the
number of parameters and the choices involved in the modeling. This is evident when
compared to the standard kriging framework, in which one has to decide among the n
different types of the method, among the 4 n standard variogram types (i.e., spherical,
exponential, Gaussian and power), and also identify the values for the range, sill, and
nugget, resulting in a total of 12 n choices, depending on the selected number of kriging
methods. This increases the complexity of the approach and may increase the subjectivity
as well, given that an objective framework for basing these decisions is lacking.

2.3. Bilinear Surface Smoothing Model Parameters Estimation

As mentioned, the parameter estimation methodology for both the BSS and BSSE
methods is based on the minimization of GCV error, and therefore, there is no effect in
terms of heteroscedasticity. For a given combination of the bilinear surface segments, mx
and my, the minimization of GCV error results in the optimal values of τλx, τλy and τμx,
τμy. This can be repeated for several trial combinations of mx and my values until the
global minimum of GCV is reached.

Both variants of the method are applied, one taking into account only the coordinates
of the stations (BSS) and the second one exploiting as well the elevation of the stations
(BSSE) as an additional explanatory variable. In the second case, a digital elevation model
of the wider area (Thessaly and neighboring areas) with 90 m resolution at the equator
(SRTM; [43]) is employed both for extracting the elevation at the stations’ coordinates and
for making estimations for any point in the given grid.

For the objective evaluation of the two methods, two statistical indices, the root mean
square error (RMSE) and the mean absolute error (MAE), are compared in terms of (a)
performance using all data and (b) the leave-one-out cross-validation performance, i.e.,
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when the estimation at each coordinate set is performed by omitting the known value at
that position. This analysis is presented in Section 4.1.

2.4. Timescale Parameters Estimation

The simplified version of the ombrian model also allows for a simplified fitting proce-
dure. By utilizing the separability of functions a(k) and b(T) in this version, an independent,
two-step fitting approach can be used, as introduced by Koutsoyiannis et al. [8]. Namely,
Equation (12) can be written as:

(
1 +

k
α

)η

x = λ
(
(−(β/Δ) ln(1 − Δ/T))−ξ − 1

)
(15)

From this expression, it is easy to see that for the different timescales kj the stochastic
variables y

j
:= a

(
kj
)
x = (1 + k/α)η x have a common distribution function, with the y

j
for

the different kj being samples of it. Let then, y
ji

:= a
(
kj
)
xji of length n = ∑

j
nj denote the

merged sample of all sub-samples xji of size nj corresponding to timescale kj. Let also rji
denote the rank of each sub-sample xji in the merged sample y

ji
so that the mean rank of

each sub-sample is given as rj = ∑
i

rji/nj. Replacing all rji with the mean rank value rj

we obtain a sample of n values, with n1 equal to r1, n2 equal to r2 etc. Then the mean and
variance estimators are, respectively:

r :=
1
n ∑

j
njrj (16)

γr :=
1
n ∑

j
nj

(
rj − r

)2
(17)

If no ties are present among the different ranks, then r = (n + 1)/2.
Following the assumption that the samples are from the same distribution, given by

the right-hand side of Equation (15), then each rj should be close to the mean r while the
variance should be minimal. Therefore, we can find the parameters α and η as the values
that minimize the estimate of the variance γr from the observations xji. The original values
y

ji
could be used as well instead of the ranks, yet the use of the ranks makes the estimation

process more robust to outliers. In order to improve the fit to the higher quantile region,
we could also use a part of the data of each sample belonging to the highest 1/2 or 1/3 of
the data [8]. In this study, the highest 1/2 is used.

The limited availability of sub-daily stations, in combination with their short records,
hinder the reliable estimation of the time scale function parameters at each station separately.
It is also pointed out that parameter α is very sensitive to small scales intensities and ideally
requires sub-hourly data to be reliably estimated [8]. Given that few stations have data at
such scales, to limit uncertainty, we apply the methodology described above simultaneously
to the sample of all fine-scale raingauges. In particular, we identify the set of the time scale
parameter values as the one that minimizes the sum of all stations’ variances, each of which
is given by Equation (17).

2.5. Regional Estimation of Distribution Parameters through K-Moments

Having estimated the α and η parameters, it remains to specify the parameters of the
b(T) function through the following procedure. We form the pooled sample comprising
all stations’ annual rainfall maxima at the 24 h scale after first standardizing (dividing)
them by their theoretical mean value, given by the spatial smoothing model. To the pooled
standardized sample of annual maxima, we fit the EV2 distribution using the method of
the non-central K-moments [2,23]. K-moments are newly proposed moments developed
with the aims of being knowable for very large orders (depending on the sample size) and
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also interpretable in terms of order statistics. They are closely related to the probability-
weighted moments [44], but their formulation is simpler and more intuitive, which are
attractive qualities similar to the ones of the L-moments [21]. The distinctive feature of
K-moments, though, is that they are tailored to perform extreme-oriented analyses, as they
enable reliable estimation of very high-order moments. What is more, each high-order
K-moment estimate can be directly assigned a return period, which provides a direct means
to empirical estimation of probability, alternative to order statistics. Furthermore, this
estimation can be appropriately modified in the case that there is bias due to dependence [2].
In particular, K-moments allow straightforward estimation of high-order moments even for
spatially dependent data, which is a rare property. Namely, typical regional applications of
L-moments do not go beyond the 4th moment (L-kurtosis) estimation. This advantage of
K-moments is exploited in the regional frequency analysis, which is particularly sensitive
to high-order moments.

Koutsoyiannis [2,23] has introduced several variants of K-moments, of which here we
use the simplest non-central variant, defined as:

K′
p := pE

[
(F(x))p−1x

]
(18)

for the moment order p ≥ 1. K′
p has the important property that it equals the expected

value of the maximum of p independent stochastic variables identical to x, i.e.,

K′
p = E

[
max

(
x1, x2, . . . , xp

)]
(19)

The estimators of the non-central K-moments are given by the following formulae:

K̂′
p =

n

∑
i=1

binp x(i:n) (20)

binp =

{
0, i < p

p
n

Γ(n−p+1)
Γ(n)

Γ(i)
Γ(i−p+1) , i ≥ p ≥ 0

(21)

where x(i:n) is the ith smallest variable in a sample x, of size n, (the ith item of the sample
in ascending order) and p is the order of the moment, which can be any positive number
p ≤ n. In addition, the following holds:

n

∑
i=1

binp = 1 (22)

The fact that binp = 0 for i < p means that as the moment order increases, fewer data
are used in the estimation, until only one is left, the maximum, when p = n, and bnnn = 1.
For p > n, binp = 0 for every i, 1 ≤ i ≤ n, and the estimation becomes impossible. The first
order non-central K-moment is the mean value of the sample.

K-moment values can be assigned a return period as follows [2]:

T
(

K′
p

)
Δ

= pΛp ≈ Λ∞ p + (Λ1 − Λ∞) (23)

where Λ1, Λ∞ are coefficients depending on the distribution function. For the EV2 distribu-
tion it is shown [2] that the Λ coefficients are functions of the shape parameter ξ:

Λ1 =
1

1 − exp
(
−(Γ(1 − ξ))

− 1
ξ

) (24)

Λ∞ = Γ(1 − ξ)
1
ξ (25)
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For validation purposes, the following relationship of empirical return periods based
on order statistics is also used, which is shown to provide an unbiased estimate of the
logarithm of the return period [2]:

T(i:n)

Δ
=

n + e1−γ − 1
n − i + e−γ

=
n + 0.526

n − i + 0.561
(26)

The procedure outlined above could be directly applied for assigning return periods
to the K-moments of any single station, and the parameters of the EV2 distribution could
be obtained by minimizing an error metric (e.g., MAE or RMSE) between the theoretical
quantiles and the empirical K-moments, or between the corresponding return periods.
However, for the pooled sample, the resulting information gain, and thus the maximum
return period that can be estimated from the data, is a function of the sample’s dependence
structure. It is well known that in the case of cross-correlated variables, the quantity of
information for the variable corresponds to a smaller sample of length compared to the
case of independence but still greater than that of an individual station.

The framework of K-moments allows for the effect of dependence to be explicitly
accounted for in the estimation of the return period. This is achieved through proper
modification of the order of the moments of the unified sample, p’, which in turn modifies
the estimation of the return period. In particular, let n1 denote the sample length of each
station, m denote the number of stations, and n = m n1 denote the size of the merged
sample, and then the following methodology is applied [2]:

• For p ≤ n1 we set p′ = p.
• For p > n1 the following approximation is used. We estimate the equivalent Hurst

parameter H, based on the spatial correlation of the stations ρ:

H =
1
2
+

ln(1 + ρ)

2 ln 2
(27)

Based on the estimated H the following coefficient is used for bias correction, ΘHK:

ΘHK(n, H) ≈ 2H(1 − H)

n − 1
− 1

2(n − 1)2−2H (28)

Then the modified orders of the moments are obtained as:

p′ ≈ 2Θ + (1 − 2Θ)(p − n1 + 1)((1+Θ)2) + n1 − 1 (29)

and their corresponding return periods are adjusted accordingly based on Equation (23).

It is obvious that n1 controls the maximum moment order, which is unaffected by
dependence. In the case that the stations have different lengths, n1 can be estimated as the
average record length of all stations (here, n1 = 42). An increased value of n1 suggests that
the information gain is also increasing, as fewer return periods are modified downwards,
while the opposite is true when n1 decreases. In order to bypass the uncertainty regarding
the modification of the return periods based on the estimated correlation structure, a good
strategy is to use for model calibration only the moment orders up to n1, and employ
the higher moments for validation. In so doing, the moments used in the calibration are
still much more than the ones used in regular moment fitting procedures (typically up to
3 or 4 orders), while a second-moment set is also available for validation.

To transform the parameters of the EV2 distribution (expressed as in Equation (10)) of
the standardized 24 h rainfall maxima to the final ombrian b(T) parameters, we use the
following procedure. Let uT denote the 24 h annual maximum rainfall value for return
period T standardized by its mean value μ. Then the rainfall intensity for any station at the
24 h timescale is x(24 h)

T = μ uT/24, where μ is the mean value used in the standardization.

Likewise, the quantity yT := x(24 h)
T (1 + 24/α)η , whose distribution defines the function
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b(T) of the ombrian relationship will be yT = μ uT(1 + 24/α)η/24. Consequently, the
variable y shares the same distribution function with the variable u with the same shape
and location parameters, and scale parameter proportional to the one of u by a factor of
μ (1 + 24/α)η/24, i.e.,

ξ = ξu, β = βu, λ = λu μ (1 + 24/α)η/24 (30)

where the subscript u denotes the standardized rainfall maxima at the 24 h scale and
α is expressed in h. It is recalled that the mean value μ for each location used in the
standardization is derived from the BSS/BSSE models.

In this way, parameters α and η, which are estimated simultaneously from all stations,
in combination with the parameters of the distribution of the standardized maximum
24 h rainfall values and the spatially modeled mean value of the process by the BSS/BSSE
models fully determine the ombrian curves, as given by Equations (6) and (12).

3. Data

3.1. Study Area

The study region is the geographic area of the Water District (WD) of Thessaly
(~13,700 km2) which is one of the 14 WD of Greece. The district extends mostly within
the administrative region of Thessaly, while it also includes a small part of the region
of Central Greece and a small part of the Western and Central Macedonia region. The
topography of the area is characterized by the existence of four mountain ranges in its
perimeters, Olympus-Kamvounia in the north, Pindus in the west, Othrys in the south, and
Pelion-Ossa in the east, which surround the Thessalian plain that rests in the central area
(Figure 1a). The Thessalian plain contains the largest part of the water bodies of the district
and is traversed by the Pineios river and its tributaries. It is also the largest agricultural area
in Greece, with lowland topography making it prone to frequent and heavy flooding [45,46].
A recent flood event of the 18–19 September 2020 triggered by a Mediterranean cyclone has
caused human and livestock losses and extensive structural and agricultural damages to
the area, sparking a revitalization of the decade-long initiatives for improving the area’s
flood protection design and strategy [47]. The climate of the Western region is continental,
while the Eastern region has a typical Mediterranean climate, while the rainfall pattern
exhibits strong differences between the lowlands and the mountain regions [48]. These
characteristics of the study region, namely its hydrometeorological diversity, vast spatial
extent, and criticality of flood risk, make it a challenging case study for the application of
the methodology.

3.2. Data Processing and Quality Control

The construction of ombrian curves is based on rainfall intensity data at a range of
timescales, typically starting from fine scales, i.e., 5 to 60 min, and extending to the 24 or
48 h scale for common applications. To this aim, we assemble a set of 17 rainfall records
from tipping buckets and telemetric stations, recording data at the 5–30 min timescale and
61 rainfall records from daily raingauges. The data are obtained from the Public Power
Corporation (PPC) of Greece, the Hellenic Ministry of Environment and Energy (HMEE),
the Hellenic Ministry of Agricultural Development and Food (HMADF), the Hellenic
Ministry of Agriculture (HMA), the Hellenic National Meteorological Service (HNMS)
and the meteo network [49] of the National Observatory of Athens. The properties of the
stations are detailed in Tables S1 and S2 of the Supplementary material.

We aggregate the original series at a range of timescales from 5 min to 48 h, with
k =0.08, 0.17, 0.25, 0.5, 1, 2, 6, 12, 24, 48 h (depending on data available at the finest
scale), and we extract the maximum rainfall depth at each scale h(k) for all hydrological
years. Accordingly, we compute the corresponding rainfall intensity at the given scale as
x(k) = h(k)/k, thus deriving the empirical rainfall intensities corresponding to the annual
maxima of the hydrological years. The reason for using AM series instead of POT or even
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the full data series for the estimation of the extremes is that several historical records are
available only in this form.

 

(a) (b) 

Figure 1. (a) Spatial extent and elevation of the study region (Thessaly’s Water District in Greece).
(b) Geographic location of the 55 rainfall records, from daily raingauges and sub-daily tipping-buckets,
with data at the 24 h scale (used in the BSS/BSSE models and the EV2 distribution modeling).

We note that the choice of the starting point for the aggregation is arbitrary, and
a change thereof would likely result in adifferent estimate. For this reason, it was a common
hydrological practice in the past to either take the maximum estimate resulting from all
possible positions of the starting point or ‘inflate’ the given estimate by a specific factor,
known as the Hershfield coefficient [50]. Although this practice aims for safer estimates
from an engineering point of view, in theory, all realizations of a stochastic process are
equivalent, and there is no theoretical basis to ‘correct’ them. In fact, by correcting the
series, we distort its stochastic properties and, instead of studying xτ

(k), the behavior of
wτ

(k) := max
j

(
xτ+j

(k), j = 0, . . . k − 1
)

is studied, which is a different stochastic process [2].

Hence, we do not apply the Hershfield coefficient.
To ensure a good quality dataset for our analysis, we use stations that have at least

12 years of data, and we undertake quality checks based on hydrological experience in
the study area. In particular, we perform spatial consistency checks excluding stations
with systematically lower recordings in comparison to neighboring ones. In addition, we
perform hydrological consistency checks, i.e., to ensure that single-site empirical maximum
rainfall is consistent with hydrological experience worldwide, suggesting an unbounded
right tail of sub-exponential type [37,38]. We note that poorly maintained raingauge records
(e.g., in remote mountainous areas) sometimes exhibit maximum rainfall recordings of the
same (or nearly the same) amount due to spillage effects during storm events. In this case,
a bounded GEV distribution might falsely emerge.

After screening with these criteria and excluding stations with severe inconsisten-
cies, the resulting set of stations includes 48 daily raingauge stations, 7 of which are at
locations gauged by tipping buckets as well, and 14 sub-hourly tipping bucket/telemetric
stations. The estimation of the extreme properties and of the average 24 h AM rainfall
(Sections 2.3 and 2.5) is based on the set of daily raingauge stations due to the latter being
more and of larger record lengths. Yet, maximum rainfall data at the 24 h scale are also
employed from the fine-scale rainfall stations when daily raingauge data are not available
at the same location. Taking the latter into account, the distribution properties of the
maximum rainfall are estimated using a combined set of 55 samples of 24 h annual rainfall
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maxima, whose spatial distribution is depicted in Figure 1b. The set of the 14 fine-scale
rainfall stations is used in the estimation of the timescale parameters (Section 2.4).

4. Results

4.1. Fitting of the Bilinear Surface Smoothing Models

Before fitting the regional model, we explore the spatial variability of the rainfall
regime by identifying the variations in the mean and standard deviations of the rainfall
intensity and the possible association with the elevation of the stations. In Figure 2, it can
be seen that the first two moments of the rainfall intensity across scales follow a similar
statistical behavior, and, therefore, it is reasonable to apply common timescale parameters
(i.e., the function a(k)). In terms of the average annual maxima at the 24 h scale, there also
appears to be a positive association with the stations’ elevation, although this is not verified
in all cases (Figure 3). Therefore, it seems that the elevation might serve as an explanatory
variable, but it needs to be incorporated into a more general spatial model identifying
additional patterns of the rainfall maxima in space.

Figure 2. Mean and standard deviation of the empirical rainfall intensities for 5 min to 48 h scales for
the 14 fine-scale rainfall stations.

Figure 3. Average annual rainfall maxima (mm) at the 24 h scale vs. the stations’ elevation.

To explore the suitability of elevation as an explanatory variable in an objective manner,
we evaluate its performance within the BSS/BSSE model framework, comparing the results
from both versions. In the BSSE case, the stations’ altitudes are derived from a digital
elevation model of the area (Thessaly and neighboring areas) with 90 m resolution at the
equator (SRTM; [43]), which is also used for the estimation of the average maximum rainfall
at each point in space.

The parameters deriving from the optimization are mx = 3, my = 5, τλx= 0.550,
τλy= 0.005 for the BSS model and mx = 4, my = 12, τλx= 0.068, τλy= 0.001, τμx= 0.621,
τμy= 0.451 for the BSSE model. In order to compare the model fits we compute RMSE
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and MAE (a) for the fit of both models using all the data and (b) for the fit applying the
leave-one-out cross validation method. Results are shown in Table 1.

Table 1. Results from the BSS and BSSE models fitting.

Spatial Smoothing Model BSS BSSE

Parameters mx= 3, my = 5,
τλx= 0.550, τλy= 0.005

mx= 4, my= 12,
τλx= 0.068, τλy= 0.001,
τμx= 0.621, τμy= 0.451

A. All data

RMSE (mm) 9.0 7.0

MAE (mm) 7.3 5.3

B. Leave-one-out cross validation

RMSE (mm) 12.5 10.8

MAE (mm) 9.8 8.1

It is seen that the BSSE model involving elevation as an additional explanatory variable
is found superior in both comparisons, which is expected by hydrological experience in the
area and also supported by previous applications for annual rainfall in Central Greece [19].
Accordingly, the BSSE model is applied to estimate the 24 h average annual maxima in the
center points of a 2 × 2 km grid of the study region, as shown in Figure 4. It is observed
that both the Thessaly plain and the surrounding mountain ranges are strongly identified
in the resulting rainfall patterns.

Figure 4. Spatial estimation of the 24 h average annual maximum (AM) rainfall (mm) by the
BSSE model.

4.2. Construction of the Regional Ombrian Curves

To estimate a common value of the timescale parameters that would be representative
of all stations, we optimize the fit for all stations by simultaneously minimizing the sum of
all 14 variances as estimated from each station by Equation (17). This optimization results to
parameters α = 0.03 and η = 0.64 which are considered representative for the whole region.

To estimate the distribution parameters, we first divide each annual maxima value at
the 24 h scale by its modeled mean value as estimated by the BSSE model (Figure 4). To
take space dependence into account, as explained in Section 2.5, we compute the spatial
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correlation of the 55 standardized annual maxima series at the 24 h scale. This is estimated to
be ρ = 0.17 corresponding to H = 0.61 (Equation (27))—a moderate value. The standardized
series are then unified into one for the estimation of the b(T) parameters.

As explained above, we determine n1 as the mean record length of the stations
(n1 = 42), following the rationale outlined in Section 2.5. We recall that n1 is equal to
the maximum moment order, which need not be modified for spatial dependence bias.
Higher moment orders (corresponding to higher return periods) are adapted for spatial
dependence. In the approach we follow herein, we choose to fit the model only up to the
moment order not impacted by dependence bias. This set of 42 moments is to be used as
a calibration set, while we also use the remaining higher 2305 moments as a validation
set (Figure 5).

Figure 5. Empirical K-moments of the pooled standardized 24 h rainfall annual maxima sample, their
theoretical values by the EV2 distribution and the corresponding return periods.

Using the method of the non-central K-moments, we fit the EV2 distribution to the
unified sample of all standardized annual maxima at the 24 h scale minimizing the MAE
between the empirical first 42 K-moments and the respective quantiles of the EV2 distri-
bution. In Figure 5, it is seen that the fit is excellent for all 42 K-moments (MAE = 0.00489,
RMSE = 0.00471), which constitute the calibration set, and there is also good agreement
between the theoretical and empirical moments for higher orders, albeit some deviations in
the area of higher return periods. Still, we have to note that very high orders are impacted
by the spatial dependence structure of the data, whose estimation is in turn impacted by
higher uncertainty. In any case, the use of higher return periods as a validation set proves
that the fitting is robust.

Taking into account the results of the BSSE model and following the parameter trans-
formations described in Section 2.5, the values of the four common parameters are derived
as shown in Table 2, whereas the spatial distribution of the regionally varying λ parameter
is shown in Figure 6. Note that the λ values are analogous to the average maxima values
predicted by the BSSE model (Figure 4), as implied by Equation (30).
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Table 2. Ombrian parameters α, η, ξ, β of Equations (6) and (12). Parameter λ is analytically derived
at any point in space through the BSSE model.

α (h) η (-) ξ (-) β (years) λ (mm/h)

0.03 0.64 0.18 0.013 Geographic distribution shown
in Figure 6 for all grid points.

Figure 6. Spatial estimation of the scale parameter λ (mm/h).

4.3. At-Site Verification

To ensure that the spatial model is in agreement with the at-site empirical behavior, we
compare the theoretical to the empirical curves as derived for various stations in characteris-
tic locations of the WD. In Figure 7, we show the theoretical quantiles (as given by Equation
(12)) of the rainfall intensities for the daily raingauges at six locations representative of the
different rainfall regimes of the area, while in Figure 8, the same plots are shown for a wider
range of scales that are available from the sub-daily rainfall stations. For the return period
estimation of the empirical intensities, we also plot the estimates from the order statistics
by Equation (26), in addition to the K-moments. Figures 7 and 8 show that the empirical
distribution functions are generally in good agreement with the theoretical ones, with some
notable yet non-systematic deviations in the area of higher return periods. The presence of
measurement uncertainty is also evident in certain deviations, in the area of higher return
periods, between the empirical intensities estimated from the daily raingauges and the
sub-daily resolution gauges (Figure 8). The latter are, however, of shorter length compared
to the daily gauges.

Taking into account the large sampling variability of rainfall and the spatial extent
of the area, the results are deemed acceptable. Yet there are also a few cases in which the
model does not capture well the single stations’ behavior due to spatial differences between
neighboring sites. Such an example is shown in Figure 9 for two stations in the Pertouli
area, where it becomes apparent that the approach favors modeling the spatially average
behavior between the two stations. It is obvious that in such cases of spatial uncertainty,
a model perfectly capturing single stations’ behaviors becomes less relevant; rather, the
importance of robustness in the regional framework is highlighted.
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 7. Theoretical and empirical distributions of 24 h and 48 h annual maximum intensities
(depending on the available samples) in characteristic stations of Thessaly’s WD: (a) Agchialos,
(b) Amarantos, (c) Zappeio, (d) Farkadona, (e) Spilia and (f) Molocha. The empirical intensities
plotted based on order statistics are also shown for validation.
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(a) (b) 

  
(c) (d) 

Figure 8. Theoretical and empirical distributions of annual maximum intensities at 10 min to 48 h
scales (depending on the available samples) from sub-daily stations of Thessaly’s W.D.: (a) Trikala
(meteo), (b) Karditsa, (c) Metaxas and (d) Loutropigi. When available the empirical intensities at the
24 h and 48 h scales from the daily raingauges are shown as well. The empirical intensities plotted
based on order statistics are also shown for validation.
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(a) 

 
(b) 

Figure 9. Example of the model fitting to two neighboring stations (from (a) meteo and (b) HMEE) at
the Pertouli area with significant deviations in the stations’ recordings.

5. Discussion and Conclusions

Ombrian curves have been around in hydrological engineering for approximately
a century and are considered a standard task for at-site modeling. In this work, we address
the more complex problem of constructing ombrian curves at regional scales that are of
practical interest to the hydrologist in regional flood studies and in the common case that
single-site data are either not available for the catchment of interest or the catchment is
too large to characterize based on single-site data, e.g., [51]. Even more, constructing the
curves by regional fitting is a powerful approach to limit estimation/sampling uncertainty
resulting from short-length single records. As such, regional rainfall modeling has been
an active research field in hydrological literature. The approach devised herein aims to
create a framework for regional ombrian curves that incorporates recent advances in the
field of regional frequency analysis and regionalization approaches within a theoretically
consistent formulation of ombrian curves. The approach is tested in a challenging case
study of the Thessaly WD in Greece, which shows a large variability of rainfall patterns
stemming from its complex topography and large extent (~13,700 km2).

The curves are constructed following the newly revisited mathematical formulation of
single-site curves by Koutsoyiannis [2] coupled with a new regionalization approach that
is developed herein. Four common parameters are identified, and one spatially varying
scale parameter is employed. The site-specific scale parameter is explicitly modeled by
a spatial smoothing model (BSSE) that employs elevation as an additional explanatory
variable and produces a continuous 2D surface for the average 24 h annual maxima regime.
This 2D surface suffices to model the spatial heterogeneity of the curves without involving
cluster analysis for delineation of homogenous regions and avoiding related discontinuities
and abrupt changes in the parameter space. The result is a model explicitly describing
maximum rainfall at any point in a given space, which simplifies hydrological design.
The BSSE model is selected for being more interpretable and less involved in parametric
choices than common geostatistical software, while its robustness in cases of high spatial
uncertainty has been documented [15]. We note that a map of the average maximum
regime could also be used instead if already available. Still, the explicit incorporation of
a surface smoothing model into the framework guarantees the consistency of the final
spatial estimates to the point data.

The approach is also based on recent advances in the analysis of extremes, namely
the use of reliable high-order moment estimators that account for the effect of the spatial
dependence structure in assigning return periods (K-moments; [2]). This enables a rigorous
fitting procedure aiming at minimizing the estimation uncertainty while respecting spatial
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dependence. To our knowledge, this is the first time that such a high number of moments
(42 for estimation and 2305 for validation) is estimated from a sample of spatially correlated
data with a provision for space dependence bias.

Results show that the model efficiently captures the spatial variability of extreme
rainfall in the area covering scales from 5 min to 48 h, and its estimates are robust even
under increased spatial uncertainty due to inconsistencies among the point data, which
were present in a few cases.

A few modifications to the present approach would be required if one were to general-
ize the model over greater time scales, above the order of a few days [2]. While this task is
not of direct use to flood estimation and typical applications, it is to be considered in view
of a multi-purpose rainfall model at the regional scale. Further research is also required
on the effect that spatial dependence exerts on the estimation of high return periods and
the accompanying uncertainty bounds. This task is demanding as results are expected to
depend on the assumed type and magnitude of the spatial dependence structure. Yet this
research represents a first step toward significantly increasing the number of moments that
can be justifiably employed in regional analyses of extremes.
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www.mdpi.com/article/10.3390/hydrology9050067/s1, Table S1: Properties of the daily raingauges
(coordinates, elevation, source and record length) used in the analysis, Table S2: Properties (coor-
dinates, elevation, source and record length) of the sub-daily raingauges (tipping-buckets) used in
the analysis.
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Abstract: Floods are lethal and destructive natural hazards. The Mediterranean, including Greece,
has recently experienced many flood events (e.g., Medicanes Zorbas and Ianos), while climate change
results in more frequent and intense flood events. Accurate flood mapping in river areas is crucial
for flood risk assessment, planning mitigation measures, protecting existing infrastructure, and
sustainable planning. The accuracy of results is affected by all simplifying assumptions concerning
the conceptual and numerical model implemented and the quality of geospatial data used (Digital
Terrain Models—DTMs). The current research investigates flood modelling sensitivity against
geospatial data accuracy using the following DTM resolutions in a mountainous river sub-basin of
Thessaly’s Water District (Greece): (a) open 5 m and (b) 2 m data from Hellenic Cadastre (HC) and (c)
0.05 m data from an Unmanned Aerial Vehicle (UAV) topographical mission. RAS-Mapper and HEC-
RAS are used for 1D (steady state) hydraulic simulation regarding a 1000-year return period. Results
include flood maps and cross section-specific flow characteristics. They are analysed in a graphical
flood map-based empirical fashion, whereas a statistical analysis based on the correlation matrix and
a more sophisticated Machine Learning analysis based on the interpretation of nonlinear relationships
between input–output variables support and particularise the conclusions in a quantifiable manner.

Keywords: hydraulic simulation; flood maps; digital elevation model; random forests; UAV mapping;
DEM sensitivity; DEM errors; HEC-RAS; flood extent; flood risk assessment

1. Introduction

Floods are natural disasters that can have severe impacts on human lives, infrastruc-
ture, and the environment [1,2]. Floods can occur due to various reasons, such as heavy
rainfall, river overflow, coastal storm surges, or tsunamis. The response of mountain basins
to intense rainfall is rapid, mainly due to large slopes, while precipitation is spatially and
temporally variable [3]. Mountain basin floods are often flashy [4], allowing limited time
for warnings. Flash floods usually occur in mountain river catchments draining less than
1000 km2 [5]. They constitute a common, extremely dangerous natural hazard and they
are responsible for many deaths [6,7]. Their impacts on various socioeconomic activities
are extremely diverse [8,9]. Around 40% of flood-related deaths in Europe between 1950
and 2006 are linked to flash floods [10]; still, there is a lack of relevant data, especially
reliable discharge estimates [4]. The Mediterranean region is one of the most flood-prone
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areas in the world due to its unique geographic, climatic, and environmental conditions,
with floods occurring on average every two years; floods are one of the most lethal and
destructive natural hazards [11] there. Greece is also affected by floods that are mainly
caused by heavy rainfall (e.g., flood in the city of Karditsa caused by Medicane Ianos [12]),
river overflow, and flash floods (e.g., flood in Mandra with 24 fatalities caused by Medi-
cane Numa-Zenon [13]). Greece has also experienced many flood events during the last
decades [7].

One of the most effective ways to reduce the impacts of floods is to develop and
implement flood management plans that include prevention, preparedness, response, and
recovery measures. Flood mapping is a crucial tool for flood management planning as it
enables the a priori identification of flood-prone areas, and the estimation of flood extent,
flow depth and characteristics, and flood frequency [14]. There are several challenges in
modelling floods using informed modelling, such as data quality issues, uncertainty in
input parameters, and the need for improved model calibration. Flood model parameters
are of grey-box nature and their global use is not suggested but rather should be carefully
adopted [13]. Moreover, advanced modelling approaches supported by detailed spatial in-
formation are not always the answer. They are extremely computationally and data-greedy
in order to overcome uncertainties [15]. Most of the time, a compromise between simulation
accuracy and time defines the simulation scheme/model used. Hence, 1D flood modelling
can be implemented, especially in data-scarce areas. In such cases, open real-world datasets
can improve flood modelling [12]. The use of forensic hydrology, reconstructing flood
events through field observations, hydrological and hydraulic modelling, and geomor-
phological analysis, is an established method to overcome the lack of data and provide
valuable insights into past events and inform future flood risk management strategies [12].

An essential tool for successful flood risk management is accurate flood mapping. This
requires the use of high resolution and accurate Digital Elevation Models (DEMs) [16]. High
resolution does not always guarantee DEM accuracy, especially when dense vegetation and
canopy are involved and the mapping is based on orthophotos. In such cases, the accuracy
also depends on the vegetation filtering techniques used.

Current research investigates flood modelling sensitivity against geospatial data accu-
racy, in a case study concerning a part of the mountainous Enipeas river basin of Thessaly’s
Water District (Greece). The methodology that is implemented in the current research is
graphically presented step-by-step in Figure 1. In particular, the following DEMs for the
study area concerning flood modelling (flood area) are tested: (a) open 5 m resolution
DEM data (DEM_5 m) from the Hellenic Cadastre (HC; [17]), (b) open 2 m resolution
DEM data (DEM_2 m) from the HC, and (c) sub-meter (0.05 m) resolution DEM data
(DEM_0.05 m) from a research team’s own designated Unmanned Aerial Vehicle (UAV) to-
pographical mission. The US Army Corps of Engineers’ software [18] RAS-Mapper [19] and
HEC-RAS 1D [20] are used for 1D (steady state) hydraulic simulations (Sims) regarding a
1000-year return period for the three different DEMs (DEM_5 m = Sim 1; DEM_2 m = Sim 2;
DEM_0.05 m = Sim 3). Results include 2D flood maps graphically presenting spatial flood
extents and flow depths, as well as flow characteristics for every cross-section of the hydro-
graphic network, such as Froude number, hydraulic radius, and flood extent. In the absence
of an ideal terrestrial mapping mission using land-based topographical instruments of the
studied hydrographic network, DEM_0.05 m and the resulting hydraulic simulation (Sim 3)
are assumed to be the “ground truth”. Thus, the investigation focuses on the comparison
of the results of the two open data-based simulations, Sim 1 and Sim 2, against the closer to
the truth Sim 3 results.
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Figure 1. Graphical abstract of the methodology implemented to investigate the sensitivity of flood
risk mapping via 1D hydraulic simulations vs. various DEM resolutions. Aim: conclude on study
area features that render the use of more accurate but costly and time-consuming UAV mapping
imperative and decide on the next best free alternative option in Greek reality [29,42].
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The flood modelling results are analysed in a graphical flood map-based empirical
fashion, whereas a statistical analysis, based on the correlation matrix, and a more sophis-
ticated Machine Learning (ML) analysis, support and particularise the conclusions in a
quantifiable manner; the ML-assisted analysis is based on the interpretation of the non-
linear relationships between input–output variables (i.e., DEM, sinuosity, slope vs. flow
extents, flow depths, flow characteristics). The goal is to track the errors in the simulation
results and trace them back to the initial features that generated them, in relation to the
selected DEM; this way, one can conclude on the features that render the use of the more
accurate, but costly and time-consuming, UAV mapping imperative, while deciding on the
next best free alternative DEM (5 m or 2 m) option in Greek reality.

The practical aim of this paper is to produce practical rules for optimal hydraulic
simulation of a river basin, in terms of minimization of in situ topographical mapping costs
without compromising the hydraulic simulation accuracy. This way, one can decide on
which hydrographic network sections (if any) of any river basin demand UAV or other
accurate mapping or not and what the free alternative is. This requires a transparent
and detailed presentation of the implemented and proposed methodology so that the
conclusions can be generalized.

2. Materials and Methods

This section presents the study area and all stages of the implemented methodology,
with their discrete steps, as presented in the graphical abstract (Figure 1), mentioning
all data sources and methods along the way. Stage 1 (see Section 2.2) refers to data pre-
processing, including procurement and processing/manipulation of topography, hydrology,
geology, soil, land uses, and precipitation data. Stage 2 (see Section 2.3) refers to hydro-
logical simulations, including calculation of hydrological parameters and production of
hydrographs, required as input for the hydraulic simulations included in Stage 3. Stage 3
(see Section 2.4) produces 2D flood maps and cross-section-specific results that are analysed
in Stage 4 (see Section 2.5) via three different approaches: (a) empirical, (b) statistical, and
(c) interpretation of non-linear relationships using Machine Learning.

2.1. Study Area

The Thessaly Water District (EL08; [21]) includes two main river basins: (a) the Pinios
river basin and (b) the Almyros-Pilion basin. The study area is located in the district’s
southern section, being part of the Pinios basin. It specifically lies in the north-west
of Mount Othris, being a part of the mountainous river basin of Enipeas river (code
GR00080004002203). Figure 2 presents the location of the study area, and the wider study
area (where the hydrological simulations are conducted; shortly referred to as “hydro area”)
as a part of the Thessaly Water District and the Enipeas river basin. Figure 3 presents the
specific study area where the hydraulic simulations are conducted (shortly referred to as
“flood area”), as a part of the wider “hydro area”.

2.2. Data Pre-Processing (Methodology Stage 1)
2.2.1. Topographic Data (Step 1)

The geospatial data utilised in this research come from HC [17] and a private UAV
mission. DEM_5 m is actually the “Digital Elevation Model-DEM-LSO (5 m)” dataset
series, as presented by HC [22], which “is a 5 m pixel size grid compilation (1:5000 cadastral tile
distribution), deriving from the Large Scale Orthophotos project. It is a homogenous systematic point
grid which refers to terrain elevation and creates an Earth Elevation Model”. RAS-Mapper [19] is
used to convert DEM_5 m into DTM_5 m (research product P1a; see Figure 1); the respective
map is provided as Appendix A File SM1 (see Appendix A for details).

32



Hydrology 2023, 10, 91

 

Figure 2. (a) Map of Greece, (b) Thessaly Water District, and (c) Enipeas river basin and wider studied
catchment (hydro area) with the studied hydrographic network.

DEM_2 m is actually the “Digital Elevation Model-DEM-LSO25” dataset series as
presented by HC [23], which “is a 2 m pixel size grid compilation (1:2500 cadastral tile
distribution), for the entire country from airphotos taken between 2014 and 2016, deriving
from the Large Scale Orthophotos 25 cm (LSO25) project. It is a homogenous systematic
point grid which refers to terrain elevation and creates an Earth Elevation Model”. RAS-
Mapper [19] is used to convert DEM_2 m into DTM_2 m (P1b_flood for “flood area” and
P1b_hydro for “hydro area”; see SM2a and SM2b, respectively).

DEM_0.05 m is produced by the research team’s own designated UAV topographical
mission. Structure-from-Motion (SfM) photogrammetry using photographs obtained by
UAVs is increasingly being utilised for producing high resolution DEMs. The UAV used is
WingtraOne GEN II. The flight took place on 3 March 2022 and lasted about 20 min to survey
the “flood area” of approximately 1.05 km2. The DEMs are interpolated from point clouds
that represent entire landscapes, including terrain, vegetation, and infrastructure [24]. In the
current research, the vegetation filtering is conducted with the standard method of Agisoft
Metashape software application [25]. RAS-Mapper [19] is used to convert DEM_0.05 m
into DTM_0.05 m (P1c; see SM3). DTM_0.05 is contained within the boundaries of the UAV
mapping (DEM_0.05 m) where the hydraulic simulations are conducted (flood area), as
presented in Figure 3.
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Figure 3. Study area of Enipeas river basin where the hydraulic simulations are conducted (flood
area) as a part of the wider study area where the hydrological simulations are conducted (hydro area),
together with the hydrographic network, the sub-catchments, and available meteorological stations.

2.2.2. Hydrology-Related Data and Calculations (Step 2)

Using the software ArcGIS Pro v3.1.0 [26], the “hydro” studied area is divided into
sub-basins/catchments (P2a; see Figure 3 and SM4) based on DTM_2 m in conjunction with
orthophotos derived from HC [23] and satellite images. The finer of the two resolutions
available in the wider “hydro” study area DTM_2 m is used, as it allows for a finer
representation of the low- and very low-slope areas of the study area, as well as various
technical structures such as embankments. Figure 4 presents the “hydro” area, together
with the hydrographic network. The latter derives from the River Basin Management Plans
of the Water District of Thessaly [27], in conformation with the Water Framework Directive
(2000/60/EC; [28]) and comprises the main stream sections of Enipeas hydrographic
network (P2b; see SM5).

A more accurate stream centerline (part of the hydrographic network in the “flood”
area) is also produced in this step (P2c and P2c_DTM; see SM6a,b), derived from the most
accurate DTM_0.05 m. This will be used for the hydraulic simulation. Moreover, although
not needed for the simulations, the respective stream centerlines derived from DTM_5
m (P2d and P2d_DTM; see SM7a,b) and DTM_2 m (P2e and P2e_DTM; see SM8a,b) are
produced to be used for comparison and deduction of conclusions in the last section of
the paper. All stream lines are produced using ArcGIS Pro. All of the geomorphological
characteristics of the sub-catchments of the “hydro” area are presented in Table 1. Step 2
ultimately features use of the Giandotti methodology [29] for the calculation of the six
concentration times (Table 1), one per sub-catchment (P2f; see SM9).
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Figure 4. Digital Terrain Model of 2 m × 2 m resolution (DTM_2 m) of the study area (“hydro”) used
for the delineation of the sub-catchments and hydrographic network (see SM2a and SM5).

Table 1. The geomorphological features of all sub-catchment areas, together with the respective
concentration times, lag times, and Areal Reduction factor (ARF).

Sub-
Catchment

Area (km2)
Length of

Main River
(km)

Mean Sub.
Elevation

(m)

Outlet
Elevation

(m)

Time of
Concentration

(h)

Lag Time
(h)

Areal
Reduction

Factor
CNc

Sub 1 141.21 14.339 538.95 375.00 6.74 4.04 0.89 71
Sub 2 121.68 17.867 731.95 375.00 4.69 2.81 0.88 71
Sub 3 96.26 13.416 842.28 344.73 3.33 2.00 0.87 55
Sub 4 30.30 8.362 426.47 360.23 5.31 3.19 0.92 74
Sub 5 6.72 3.156 416.9 344.72 2.22 1.33 0.93 63
Sub 6 3.19 2.287 397.29 327.23 1.58 0.95 0.94 55

2.2.3. Geological and Soil Data (Step 3)

The most reliable sources for geological/soil data and, consequently, hydrolithological
data are the European Soil Data Center (ESDAC) [30–33], the Soil Map of Greece by the
Greek Payment Authority of Common Agricultural Policy (OPEKEPE; [34]), and the River
Basin Management Plan for the Water District of Thessaly (RBMP-EL08) [27]. The main
source of the soil data is OPEKEPE; the available separate soil map tiles are scanned
and georeferenced on the “hydro” area using ArcGIS Pro (P3a; see SM10). The soil map
does not cover the full extent of the study area. The missing data are drawn by the
hydrolithological map provided by RBMP-EL08 [27]. The available data from ESDAC
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successfully validate the other sources. The soil types of OPEKEPE are linked to the
respective hydromorphy and are categorised into classes (A: high; B: moderate; C: low; D
and E: very low infiltration rates), whereas the RBMP map also categorises the soil types
concerning the hydrolithological characteristics. The resulting merged hydrolithological
map is presented in Figure 5 (P3b; see SM11).

 
Figure 5. Hydrolithological map of the study area by merged OPEKEPE [34] and RBMP [27] data
(see SM11).

2.2.4. Land Use Data (Step 4)

The determination of the land cover was based on CORINE land cover data [35]. The
land use map is presented in Figure 6 (P4; see SM12). All information regarding CORINE
land cover classes and the respective land cover area per sub-catchment are presented in
SM14 (P6).

2.2.5. Precipitation Data Hyetograph Production (Step 5)

The only available meteorological stations in the study area (hydro) are those located
at Anavra and Skopia, as presented in Figure 3. In order to be on the safe side and
investigate the worst-case scenario regarding rainfall intensity, the higher-elevation Anavra
station is selected; it always provides greater precipitation heights. Under these data-scarce
conditions, following the methodology by Koutsoyiannis et al. [36], the Intensity Duration
Frequency (IDF) curve was designed, using the proposed equation:

i(t, T) =
λ′ · (Tκ −ψ′)(

1 + t
θ

)n , (1)

where i is the max point rainfall intensity of duration t for a return period of T; θ and η

are parameters to be estimated, with θ ≥ 0 (in time units) and 0 < η < 1; κ > 0 is the shape
parameter; λ’ > 0 is the scale parameter; and ψ’ is the location parameter.
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Figure 6. Land use map derived from CORINE [35] (see SM12).

The parameters proposed by the IDF Report v4 [37] (supporting documents of [27])
for the Anavra station and for a return period of 1000 years are presented in Table 2. The
resulting function and IDF curve are presented in Figure 7.

Table 2. Parameters used in the IDF curve equation [36], regarding the Anavra station and a 1000-year
return period.

Water District
Code

Station ID
Station
Name

X (m) Υ (m) Z (m) κ λ′ ψ′ θ n

GR08 355 Anavra 372,326.71 4,327,100.77 208 0.092 592.3 0.768 0.042 0.639

Next, the point rainfall intensity is transformed to areal rainfall intensity using the
respective Areal Reduction Factor (ARF) per sub-catchment, calculated by [36,37]:

ϕ = max

(
1 − 0.048 · A0.36−0.01·ln A

d0.35 , 0.25

)
, (2)

where A is the river basin area (km2) and d is the rainfall duration (h).
The ARF values per sub-catchment are presented in Table 1 (sources: [38–41]). The

respective design hyetographs per sub-catchment are produced (P5; see SM13) based on
the IDF curve using the Alternate Block Method [42,43].
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Figure 7. The IDF function and curve (point rainfall intensity vs. time) for the Anavra station for a
return period of 1000 years.

2.3. Hydrological Simulation (Methodology Stage 2)

All current hydrological simulations are conducted using the Hydrologic Engineering
Center—Hydrologic Modelling System (HEC-HMS), developed by the US Army Corps
of Engineers [18]. HEC-HMS is a widely used and established tool that can simulate all
hydrological processes of a watershed, including precipitation, infiltration, evaporation,
snowmelt, and runoff. It is used for the design and management of water resource in-
frastructure, such as dams, reservoirs, and water supply systems. The transformation of
precipitation into runoff for every sub-catchment was conducted using the Soil Conserva-
tion Service—Curve Number (SCS-CN) [44] unit hydrograph method, whereas losses are
estimated using the SCS-CN model.

2.3.1. Curve Numbers (Step 6)

SCS-CN is a simple, widely used, and efficient method for determining the amount
of runoff from rainfall, even in a particular area. A Curve Number (CN) [42] expresses
the percentage of precipitation that will runoff as a function of the area’s hydrologic soil
group, land use, treatment, and hydrologic condition. Based on Chow et al. (1988; [42]),
Koutsoyiannis and Xanthopoulos (1999; [45]) provided updated CN values, used in current
research. There are various land uses in every sub-catchment, hence the weighted Curve
Number (composite) value CNc is calculated [46]. The estimation process is presented in
SM14, whereas the calculated CNc values are presented in Table 1.

2.3.2. Lag Time Estimation (Step 7)

Following the SCS methodology [44] and the HEC-HMS Technical Reference man-
ual [47], the lag times for each sub-catchment are estimated (Table 1). Lag time refers to the
delay between the occurrence of rainfall and the peak discharge of a river. It depends on
size and shape of the catchment, soil type, and vegetation cover.

2.3.3. Hydrograph Production (Step 8)

Following the SCS methodology [44], hydrographs are produced (P8; see SM15) using
HEC-HMS, applying the well-established Muskingum river routing method to all reaches.
Parameters such as reach length and slope are estimated using topographical data, namely
DTM_2 m. The nine hydrographs refer to the three junctions and six sub-catchments
created by the studied Enipeas basin (hydro area) model, as presented in Figure 8.
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Figure 8. HEC-HMS hydrological model of the studied (hydro) area, featuring its six sub-catchments
and three junctions, with detail of the calculated design discharges used in HEC-RAS.

2.4. Hydraulic Simulation (Methodology Stage 3; Steps 9, 10, 11)

All current hydraulic simulations are conducted using the Hydrologic Engineering
Center—River Analysis System (HEC-RAS 1D) developed by the US Army Corps of Engi-
neers [48]. It is a powerful tool for hydraulic modelling, based on a 1D numerical system,
able to simulate steady/unsteady flow conditions. HEC-RAS can be used for a variety of
hydraulic analyses, including floodplain mapping, bridge and culvert design, dam safety
evaluations, sediment transport studies, and water quality modelling. The model solves
equations for conservation of mass and momentum to calculate water surface elevation,
flow velocity, and other hydraulic characteristics. It exhibits a user-friendly interface and
features tools such as RAS-Mapper [19], supporting a range of data input formats, including
DEMs, topographic maps, and surveyed cross-sections and post-processing utilities for
displaying and analysing simulation results.

Although there is only one shared hydrological simulation applied in the wider
“hydro” area, there are actually three hydraulic simulations, namely 1D implementations of
the HEC-RAS 1D model, corresponding to the three input DTMs applied in the “flood” area:
(a) Sim 1 uses DTM_5 m, (b) Sim 2 uses DTM_2 m, and (c) Sim 3 uses DTM_0.05 m. All three
Sims share the river centerlines (Step 2; products P2c, P2d, P2e), as well as the bank lines,
produced by DTM_0.05 m, which is assumed to be the “ground truth”. Sims 1–3 also share
270 cross-sections positioned in an interval of approximately 20 m along the river centerline
(see SM23). For all Sims, two Manning coefficient values are used, one for the main channel
(n = 0.08) and a different one for the overbanks (n = 0.07). The values were decided after
observations of satellite images and orthophotos and in situ inspection, based on Chow
et al. (1988; [42]) and the HEC-RAS hydraulic reference manual [48]. The values were
adjusted, as [42] suggests, based on river irregularities, variation in channel cross-section,
obstructions, vegetation, and meandering. The contraction and expansion coefficients for
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all Sims are assumed to be equal to 0.1 and 0.3, respectively [48]. The maximum flow (sic.)
values in the respective HEC-HMS-produced hydrographs of junctions J2 (539.3 m3/s; see
SM15, page 1) and J3 (556.1 m3/s; see SM15, page 3) are used as steady flow discharges
in all hydraulic simulations (Figure 8). Concerning upstream and downstream boundary
conditions, the energy grade line slope values are assumed to be equal to the riverbed slope
values [48].

Step 9 in Stage 2 of the applied methodology features Sim 1, namely HEC-RAS 1D
simulation of the hydraulic model based on DTM_5 m, producing the respective W_5 m
flood extent map (P9a; see SM16), the respective y_5 m flow depths map (P9b; see SM17),
and calculating the flow characteristics. The fc_5 m flow characteristics selected to be
investigated for their involvement in the propagation of errors generated by the lower
resolution DEMs are presented per cross-section in SM18, including meter mark, hydraulic
radius, Froude number, and flood extent.

Step 10 in Stage 2 of the applied methodology features Sim 2, namely HEC-RAS 1D
simulation of the hydraulic model based on DTM_2 m, producing the respective W_2 m
flood extent map (P10a; see SM19) and the respective y_2 m flow depths map (P10b; see
SM20), and calculating the fc_2 m flow characteristics (P10c; see SM18).

Step 11 in Stage 2 of the applied methodology features Sim 3, namely HEC-RAS 1D
simulation of the hydraulic model based on DTM_0.05 m produces the respective W_0.05
m flood extent map (P11a; see SM21) and the y_0.05 m flow depths map (P11b; see SM22),
and calculating the fc_0.05 m flow characteristics (P11c; see SM18).

2.5. Post-Processing and Analysis (Methodology Stage 4)

Stage 4 features the post-processing of the results of the three hydraulic simulations
(Sim 1–3) via (a) empirical (Step 12) and (b) statistical (Step 13) analysis as well as (c) use of
Machine Learning for the interpretation of non-linear relationships of variables vs. results
(Step 14).

The production of conclusions concerning the free DEMs and the UAV-produced DEM
in relation to the hydraulic simulation results requires an initial conventional comparative
analysis of the results of the three simulations (Sim 1–3). This demands the post-processing
of the results, including graphical representation in the form of comparative maps (i.e.,
flood extend maps, flow depths maps, and maps with centerlines produced from the
various DTMs), for the empirical but informed conclusion production. These are presented
and discussed in the “Results and discussion” section (Section 3.1).

These initial conclusions must be supported by a more quantitative statistical analysis
of cross-section-specific variables and results. Specifically, the correlation coefficient (Pear-
son product-moment correlation coefficient), a measure of linear association between two
variables, is calculated between all involved input data and variables (Sim/DTM-specific or
common for all Sims/DTMs) and results (flood extents, flow depths, flow characteristics).
The calculated correlation matrix can be used to support the empirical conclusions of Step
12, but also help explore other patterns, namely the factors that magnify and propagate
errors originating from lower resolution DEMs in various sections.

As the investigation process is actually a root cause analysis concerning the impact of
the various DEM resolutions on the hydraulic simulation, a more sophisticated method
to interpret the nonlinear dependencies between variables and results is needed. A well-
documented methodology from Machine Learning, Random Forest (RF) importance [49],
is utilised. An interval (t_lower, t_upper) is defined, where the residuals are reasonably
small, and RF is fitted on the residuals that are larger than t_upper and lower than t_lower,
observing the mean node impurity of the forest as a feature importance proxy. The key
insight here is to include a gaussian noise “dummy” variable, uncorrelated with the
target variable, as an additional feature, which is known to have no impact on the target
output. By using the importance of this variable as a baseline, conclusions can be drawn
on the importance of the other variables that have larger importance compared to the
“dummy” variable, also including the error bars. This implementation should overcome the

40



Hydrology 2023, 10, 91

theoretical weakness of the statistically limited dataset, due to the study of a geospatially
data-scarce area.

3. Results and Discussion

3.1. Comparative Analysis Based on Produced Maps (Step 12)

The production of empirical conclusions is mainly based on the comparative analysis
of flood extent and flow depth maps. Figure 9 presents the flood extents for all three
Sims projected on the same map (see SM24). It includes the five identified river sections
exhibiting different sinuosity ratios (SR) in order to investigate the possible correlation be-
tween SR and simulation errors in lower resolution Sims 1 and 2. For a finer, more detailed
comparison of the flood extent maps’ differences, comparative maps for all combinations
are available as Appendix A (SM25: W_5 m vs. W_0.05 m; SM26: W_2 m vs. W_0.05 m;
SM27: W_5 m vs. W_2 m). The red line, representing the UAV-produced flood extents
of Sim 3 (W_0.05 m) is assumed to be the “ground truth”, namely the closest to the truth
available flood extents (inundated area = 0.7 km2). Although Sim 1 and Sim 2 flood extents
(W_5 m and W_2 m, respectively) constitute reliable simulations and provide satisfactory
approximations, there are many errors, as presented in Tables 3 and 4. Inundation areas
produced by Sim 1 and Sim 2 are 0.836 km2 and 0.896 km2, respectively. Most of the errors
are overestimations rather than underestimations (Table 3), at least being on the safe side.

 

Figure 9. Flood extents of the three hydraulic simulations (Sim 1 = W_5 m; Sim 2 = W_2 m;
Sim 3 = W_0.05 m) projected on the same map (separate maps in SM16, SM19, SM21).

Table 3. Area differences (km2) of flood inundated regions between Sim 1 and Sim 3 (W_5 m–W_0.05 m)
and Sim 2 and Sim 3 (W_2 m–W_0.05 m) as overall error, overestimations, and underestimations.

Flood Extent Error
Overall Error
Area (km2)

Overestimation
Area (km2)

Overestimation
Area (%)

Underestimation
Area (km2)

Underestimation
Area (%)

W_5 m vs. W_0.05 m 0.144 0.143 99.31% 0.001 0.69%
W_2 m vs. W_0.05 m 0.242 0.219 90.50% 0.023 9.50%
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Table 4. Flood extent and flow depth statistics for the three simulations.

Sim

Flood Extent Flow Depth

Area (km2)
Algebraic Error
(vs. Sim 3; km2)

Algebraic Error
(vs. Sim 3; %)

Min (m) Max (m)

1 0.836 0.144 17.22% 0.002 5.979
2 0.896 0.242 27.01% 0.002 11.474
3 0.700 - - 0.002 11.397

As presented in Table 3, the overall flood extent error of free DEM-based Sims (1 and
2) vs. the “ground truth” (Sim 3), expressed as the total area (km2) of overestimation and
underestimation, is 70% larger for Sim 2 (0.242 km2 or 27.01% of the respective inundation
area) compared to Sim 1 (0.242 km2 or 17.22% of the respective inundation area). This is
rather counter-intuitive: W_5 m is closer to the “ground truth”, whereas W_2 m exhibits
extended overestimations (0.219 km2). Moreover, the most alarming result is that, while
Sim 1’s error is 99.31% overestimations, and only 0.69% underestimations (area-wise),
Sim 2 exhibits 0.023 km2 underestimations, approximately 10% of all its errors (Table 3).
Examples of serious underestimations are indicated on Figure 9, e.g., in river section 5
(SR = 2.2). These underestimation errors are possibly risky, as they are not on the safe
side. Overall, it is observed that there seem to be more errors in the sinuous and especially
meandering sections of the river. Particular consideration should be given in areas where
tributary streams converge to the main river (see Figure 9); these areas can be mistakenly
considered as of greater than the actual importance flood-wise, due to their simulated
extensive flooding.

Figure 10 presents the flow depth maps for all Sims side-by-side, whereas Figure 11
presents the flow depth differences between Sim 1 and Sim 3, and Sim 2 and Sim 3,
respectively. Whereas Sim 2’s range of flow depths (0.002 m–11.474 m) generally matches
the respective range of Sim 3 (0.002 m–11.397 m; Table 4), a closer inspection reveals an
inconsistency in their spatial distribution (Figure 10). With that in mind, Sim 1, though
generally underestimating the flow depths, is in principle closer to Sim 3, and hydraulically
more accurate. This is apparent in Figure 10, as the higher flow depths are positioned on
the river centerline in Sim 1 (just like Sim 3). This is not the case for Sim 2, where the flow
seems inconsistent and does not follow the real river centerline. Sim 1’s flow depth errors
(compared to Sim 3 “ground truth”) range from −9.89 m to +5.85 m, whereas Sim 2’s errors
range from −7.47 m to +11.47 m. Sim 1 generally tends to underestimate flow depths up to
33% more than Sim 2, compared to the “ground truth”, whereas Sim 2 tends to overestimate
them up to 96% more than Sim 1. Considering the spatial distribution of flow depth errors,
Sim 1 overestimates flow depths in a smaller area than Sim 2, while underestimating them
in a larger area (Figure 11).

In search of the root of the errors in flood extents and flow depths, the meandering sec-
tion of the river is selected to be scrutinised, as it is observed to exhibit extreme differences.
Figure 12a presents the elevation differences between DTM_5 m and DTM_0.05, whereas
Figure 12c presents the resulting flood extents of Sim 1 and Sim 3 (W_5 m and W_0.05 m)
together with the flow depth differences between Sim 1 (y_5 m) and Sim 3 (y_0.05 m). In a
similar fashion, Figure 12b presents DTM_5 m vs. DTM_0.05, whereas Figure 12d presents
the resulting W_5 m and W_0.05 m, together with y_5 m vs. y_0.05 m. Figure 13 presents
the locations of the two selected cross-sections, featured in detail in Figure 14.

42



Hydrology 2023, 10, 91

 

Figure 10. Flow depths of the three hydraulic simulations (Sim 1 = y_5 m; Sim 2 = y_2 m;
Sim 3 = y_0.05 m; for separate hi-res maps see SM17, SM20, SM22).

 

Figure 11. Flow depth differences between Sim 1 and Sim 3 (y_5 m−y_0.05 m) and Sim 2 and Sim 3
(y_2 m−y_0.05 m), presented only for the intersection of the respective inundated areas.
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Figure 12. A section of the “flood area” (meandering) presenting differences in elevation (a) DTM_5 m
vs. DTM_0.05 m, (b) DTM_2 m vs. DTM_0.05 m and flow depths for (c) Sim 1–Sim 3 and (d) Sim
2–Sim 3.

 

Figure 13. Exact locations of two selected cross-sections (172 and 196; see SM23) in the meandering
part of the river in the “flood area”, featured in detail in Figure 14.
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Figure 14. The geometry of the three versions of (a) cross-section 172 and (b) cross-section 196; (see
SM23) as derived from DTM_5 m (blue), DTM_2 m (green), and DTM_0.05 m (red). DTM_5 m
captures the general geometry, whereas DTM_2 m fails to delineate the main channel.

It is apparent that DTM_5 m exhibits elevation underestimations in most of the
surveyed area (Figure 12a). The areas where it overestimates elevation are limited and
marginally inside the banks, never on the centerline, hence managing to capture the geome-
try of the cross-sections (Figure 14). On the other hand, DTM_2 m generally underestimates
elevation and overestimates near and inside the banks, even on the centerline, hence being
unable to capture the true geometry of the cross sections (Figure 14). This practically
results in the altering of the river pathways, as explicitly delineated in Figure 15, that
simultaneously presents the river centerlines, as automatically produced based on DTM_5
m, DTM_2 m, and DTM_0.05 m, respectively. Whereas the DTM_5 m-derived centerline is
a good approximation of the “ground truth” DTM_0.05 m, the DTM_2 m-derived centerline
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exhibits serious deviations, especially along the meandering sections. These errors in the
initial topography data propagate and are the root causes of the errors in flood extent and
flow depth results (Figure 12c,d). This is also obvious in Figure 14, where the water surface
elevations (flow depths; y) vary significantly. A closer look reveals a strong connection of
the errors in DTMs with the mapping of dense vegetation and canopy, especially in DTM_2
m, despite the fact that its resolution is in principle higher than DTM_5 m.

 

Figure 15. River centerlines derived from the 3 DTMs projected on the same map (see SM30) for
comparison purposes. All simulations are based on “ground truth” centerline (by DTM_0.05 m).

3.2. Statistical Analysis Based on Correlation Matrix (Step 13)

The correlation matrix presenting correlation coefficient values between all involved
input data and variables (Sim/DTM-specific or common for all Sims/DTMs) and results
(flood extents, flow depths, flow characteristics) are presented in Figure 16. The values of
interest are highlighted and discussed.

There is an almost linear relationship between riverbed elevations of all DTMs (in
relation to the real centerline derived by DTM_0.05 m) and the cross-section ID (consecu-
tive) numbers. The strong linearities are explained by the fact that rivers flow downhill
and riverbeds exhibit a positive slope in the vast majority of their length. Hence, the
larger the ID number of a cross-section, the lower the respective elevation. Although this
is expected, the correlation coefficient values (Cc) are (stronger to weaker correlations)
Cc_0.05 m = −0.99, Cc_5 m = −0.98, and Cc_2 m = −0.95. The small variations support the
previous findings, indicating better riverbed elevation approximation (compared to the
“ground truth” DTM_0.05 m) by DTM_5 m, rather than DTM_2 m.

Another interesting correlation is the relationship between riverbed elevations (Z) and
the respective cross-section-specific flood extents (top widths; W). Again, the “ground truth”
correlation between Z_0.05 m and W_0.05 m is the highest in value (Cc_0.05 m = +0.71),
followed by Cc_5 m = 0.6 and finally Cc_2 m = 0.55. The absolute value of any of the
aforementioned Cc is rather random. A finding worth mentioning is the variation in Cc
that supports the claim that the closest fit between DTM_5 m and DTM_0.05 m, compared
to DTM_2 m, also results in a closest fit between W_5 m and W_0.05 m, compared to W_2
m. This pattern continues in the relationship between the hydraulic radius values (R), as
well as Froude number (Fr), and the respective W for each Sim. Sim 1 results are closer to
Sim 3 compared to Sim 2. Specifically, the variation of the impact of R on W concerning Sim
2 is extreme: while Cc_0.05 m = −0.7 and Cc_5 m = −0.53, Cc_2 m is positive and equal
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to +0.39. Finally, the correlations between the flood extents themselves support the main
argument: Cc_5 − 0.05 = +0.82, Cc_5 − 2 = +0.81, and Cc_2 − 0.05 = +0.71.

 

Figure 16. Correlation matrix presenting correlation coefficient values between all involved input
data and variables (Sim/DTM-specific or common for all Sims/DTMs) and results (flood extents,
flow depths, flow characteristics). Values of interest are highlighted.

3.3. Machine Learning for Interpretation of Nonlinear Relationships (Random Forests)

The histograms of Figure 17 present the distribution of errors of Sim 1 and Sim 2
flood extent errors, compared to Sim 3. The distributions indicate larger errors for Sim 2
compared to Sim 1, and are skewed, also indicating nonlinearities in the error generation
and propagation. This is why the method of feature importance calculation using Mean
Decrease in Impurity (MDI) is implemented with Random Forest. After a series of tests,
the interval (t_lower, t_upper) is empirically selected as (−10, +1), so that the remaining
negative and positive value sets of the distribution are split equally.
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Figure 17. Histograms of the errors of Sim 1 and Sim 2 vs. “ground truth” Sim 3, indicating skewed
distributions and nonlinear dependencies.

Following the already presented methodology, using a random noise feature as the
“dummy” variable as a means of comparison, the feature importance of the following
variables and variable errors regarding their impact on flood extent error ΔW are tested:
sinuosity (SR; fixed, see Figure 9), rolling sinuosity (SR/30 sections), error of riverbed
elevations (ΔZ), error of hydraulic radii (ΔR), and error of Froude number values (ΔFr).
Figure 18 presents the MDI for the aforementioned features. Specifically, Figure 18a presents
results for Sim 1 vs. Sim 3 (W_0.05 m–W_5 m) and the feature importance of SR, SR/30
sections, Z_5 m–W_0.05 m, R_5 m–R_0.05 m, and Fr_5 m–Fr_0.05 m. Figure 18b presents
results for Sim 2 vs. Sim 3 (W_0.05 m–W_2 m) and the feature importance of SR, SR/30
sections, Z_2 m–W_0.05 m, R_2 m–R_0.05 m, and Fr_2 m–Fr_0.05 m.

As far as Sim 1 flood extent errors are concerned, SR, ΔR, and ΔFr seem to be equally
important. This can be interpreted as follows: the DEM_5 m intrinsic errors propagate
up to the flood extent results in the sections of increased sinuosity, driven especially by
the resulting errors in the hydraulic radius and Froude number values calculation. On the
other hand, Sim 2 flood extent errors’ origin and root cause are different. The feature that
stands out is the hydraulic radii of the cross-sections; their importance is far higher than the
respective features related to Sim 1 errors. These results fully support the earlier conclusions
drawn by the flood maps-based comparative analysis (Step 12) and the correlation matrix-
based statistical analysis (Step 13). The hydraulic radii per cross-section are distorted
in the main channel in Sim 2, due to the DEM_2 m production process failing to filter
dense vegetation.
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Figure 18. Random Forest-calculated feature importance for fixed sinuosity ratio SR, rolling SR per 30
cross-sections, ΔZ (0.05 m–5 m), ΔR (0.05 m–5 m), ΔFr (0.05 m–5 m), and a dummy variable (random
noise) using Mean Decrease in Impurity (MDI) for (a) ΔW (0.05 m–2 m) and (b) ΔW (0.05 m–5 m).

4. Conclusions

This paper investigates flood modelling sensitivity against two sets of open access
geospatial elevation data (5 m and 2 m resolution, respectively), derived from the Hellenic
Cadastre, and an own designated Unmanned Aerial Vehicle topographical mission (0.05 m
resolution). A case study is used concerning a part of the mountainous Enipeas river basin
of Thessaly’s Water District (Greece).

The first step of the proposed methodology includes a flood maps-based comparative
analysis so that experts can empirically draw conclusions on the specific studied river
catchment. In the current case study, most of the flood extent errors are overestimations
rather than underestimations, at least being on the safe side. Though counter-intuitive, the
DEM_5 m-derived (Sim 1) flood extents are closer to the “ground truth”, whereas DEM_2
m-derived (Sim 2) extents are extensively overestimated, while also exhibiting relatively
alarmingly high underestimations, which are not on the safe side and can have potentially
catastrophic implications if used for design purposes. The sections of increased sinuosity
ratio, especially the meandering river sections, seem more prone to flood modelling errors.
The same applies for junctions of the main channel with modelled, or not, tributary streams.
Concerning flow depth results, Sim 1 generally underestimates them and is, in principle,
closer to DEM_0.05 m-derived Sim 3, and hydraulically more accurate. The reason is
that, although Sim 2 range of flow depths is generally correct, their spatial distribution is
inconsistent, as is the flow that does not follow the real river centerline.

The root of the errors concerning flood extents and flow depths lies in the topogra-
phy data used. DEM_5 m mostly underestimates elevation, but manages to capture the
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geometry of the cross-sections, whereas DEM_2 m generally underestimates, but overes-
timates inside the critical zone of the main channel, near and inside the banks, even on
the centerline; it is unable to capture the true geometry of the cross sections, practically
altering the river pathways. This is more intense in the meandering river sections. The
map-based analysis indicates that the true cause is the inability of DEM_2 m to capture the
elevation of the ground in areas of dense vegetation and canopy, usually being wider in the
meandering river sections. In absence of detailed information concerning the surveying
process followed by the Hellenic Cadastre, and specifically the classification and filtering
of the vegetation (tree removal), one can only speculate on the true source of this error. On
the other hand, DEM_5 m, though constituting a lower resolution product, seems more
suitable for approximating the real terrain.

The flood modelling results are also analysed via a statistical analysis, based on the
correlation matrix presenting linear relationships between input data variables (i.e., eleva-
tion, slope, sinuosity ratio) and cross section-specific results, including flow characteristics
(i.e., Froude number, hydraulic radius), flood extents, and flow depths. The correlation
results indicate strong linearities where expected (riverbed elevations vs. cross-section
ID numbers), and weaker where expected (i.e., riverbed elevations and hydraulic radii
and Froude number vs. flood extents). Nevertheless, the important finding the statistical
analysis has to offer is the quantifiable proof of the superiority of DEM_5 m-derived Sim 1
compared to the DEM_2 m-derived Sim 2 results, which supports the preceding empirical
analysis conclusions. This is suggested by the fact that correlations of the analysed variables
and flood extent results constantly follow the classification (stronger-to-weaker) Sim 3 >
Sim 1 > Sim 2. The simple comparison between the correlation of the cross section-specific
flood extents of Sim 1–Sim 3 and Sim 2–Sim 3 also supports the argument.

As the conventional approaches fail to identify the nonlinear dependencies of the root
cause analysis and error propagation tracking side of the research problem, the proposed
methodology finally implements a more sophisticated Machine Learning (ML) analysis,
specifically Random Forest importance. The ML approach results further support and
solidify the earlier conclusions drawn by the flood maps-based comparative analysis and
the correlation matrix-based statistical analysis. The failure of the DEM_2 m production
process to map the terrain in areas of dense vegetation and wide canopy leads to unreal
cross-section geometries and inserts critical errors in the respective hydraulic radii, really
important at least in 1D hydraulic analyses. These errors further propagate to the flood
extent results, as the RF importance approach robustly indicates.

As far as the general proposed methodology is concerned, for deciding the best
available alternative DEM of an accurate but costly UAV-based or in situ ground survey-
based DEM, no step is redundant. The flood map-based comparative analysis by experts is
the main and key evaluation tool and cannot be replaced by a statistical or even a more
sophisticated Machine Learning-based analysis. Machine Learning methods can interpret
nonlinear dependencies but depend on the way they are implemented and are susceptible
to parameter errors. Nevertheless, they provide further insight on the root and cause of
the error and the propagation mechanism, while identifying additional error patterns. The
proposed stages and steps should be implemented as an integrated methodology.

The conclusions of the current paper and related research can be summed up as steps
of a suggested procedure for the optimal hydraulic simulation of a river basin, in terms of
minimisation of in situ topographical mapping costs without compromising the hydraulic
simulation accuracy:

1. Approximate the real river centerline, as accurately as possible, utilising any available
source and technique possible. A realistic approach would be the use of the most
recent and high resolution open-source DEM available, in order to automatically
produce an approximate river centerline, calibrated by recent satellite imagery (e.g.,
google earth) and orthophotos (e.g., Hellenic Cadastre in Greek reality), supported by
in situ inspection if possible or necessary.
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2. In river areas exhibiting one or more of the following characteristics: (a) dense vegeta-
tion or/and wide canopy, (b) meandering sections, (c) junctions of the main channel
with tributary streams, or/and generally (d) centerline-bank lines derived from the
available DEM diverging from the real centerline-bank lines, proceed to UAV-based
mapping (combined with an a-posteriori vegetation removal process) or in situ topo-
graphical ground surveying.

3. In areas not belonging to the previous category, if more than one open-source DEM
is available, the implemented and proposed methodology of this paper should be
followed in order to select the one that inserts and propagates less errors in the
hydraulic simulations. In Greek reality, just use the DEM_5 m by Hellenic Cadastre,
as it is proven to be more efficient for, at least 1D, hydraulic simulations, rather than
the higher resolution DEM_2 m.

4. Future research should include more case studies of different terrain characteristics,
such as sinuosity, lush and weak vegetation areas, etc., combined with real in situ
topographical ground surveying and validated flood extents and flow depth mea-
surements. The larger datasets will also provide further credibility to the Machine
Learning-based analysis. In the proposed methodology, 2D hydraulic simulations
(e.g., using HEC-RAS 2D) should be tested to check their sensitivity vs. the various
spatial resolution DEMs. Finally, more sophisticated ML techniques, such as Gradient
Boost Algorithms, Fuzzy Cognitive Maps, and Self Organizing Maps, can be used for
root cause analysis.
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Appendix A

The supporting information presented in detail in Table A1 of Appendix A, can be
downloaded at: https://drive.google.com/drive/folders/1L6_Whis8PSO5ArZjJTT375
ClNRMYPMNt?usp=share_link (accessed on 26 February 2023).

Table A1 presents the list and relevant information concerning the Appendix A referred
to in the text.

Table A1. List of Appendix A and relevant information.

Nr Product Filename Description

SM1 P1a SM1-(P1a) DTM5 m flood.pdf

Map of the DTM_5 m covering only the “flood
area”, derived from DEM_5 m by Hellenic

Cadastre open data, only covering the
“flood area”.

SM2a P1b_hydro SM2a-(P1b_hydro) DTM2 m hydro.pdf
Map of the DTM_5 m covering the full “hydro

area” derived from DEM_2 m by Hellenic
Cadastre open data.
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Table A1. Cont.

Nr Product Filename Description

SM2b P1b_flood SM2b-(P1b_flood) DTM2 m flood.pdf
Map of the DTM_5 m covering only the “flood

area”, derived from DEM_2 m by Hellenic
Cadastre open data.

SM3 P1c SM3-(P1c) DTM0.05 m.pdf Map of the DTM_0.05 m derived from a research
team’s UAV survey mission in the “flood area”.

SM4 P2a SM4-(P2a) subcatchments.pdf Map of the 6 sub-catchments’ delineation.

SM5 P2b SM5-(P2b) hydrographic network.pdf Map of the hydrographic network in the “hydro
area” derived by RBMP [27].

SM6a P2c SM6a-(P2c) river centerline by DTM0.05
m.pdf

Map of the river centerline, derived from
DEM_0.05 m, in the delineated “flood area”.

SM6b P2c_DTM SM6b-(P2c_DTM) river centerline by
DTM0.05 m on DTM.pdf

Map of the river centerline, derived from
DEM_0.05 m, on the respective DTM in the

delineated “flood area”.

SM7a P2d SM7a-(P2d) river centerline by DTM2 m.pdf Map of the river centerline, derived from DEM_2
m, in the delineated “flood area”.

SM7b P2d_DTM SM7b-(P2d_DTM) river centerline by DTM2
m on DTM.pdf

Map of the river centerline, derived from DEM_2
m, on the respective DTM in the delineated

“flood area”.

SM8a P2e SM8a-(P2e) river centerline by DTM5 m.pdf Map of the river centerline, derived from DEM_5
m, in the delineated “flood area”.

SM8b P2e_DTM SM8a-(P2e_DTM) river centerline by DTM5
m on DTM.pdf

Map of the river centerline, derived from DEM_5
m, on the respective DTM in the delineated

“flood area”.

SM9 P2f + P7 SM9-(P2f + P7) geomorphology + time conc.
+ time lags.xlsx

An excel file presenting the sub-catchment
characteristics and the respective calculations.

SM10 P3a SM10-(P3a) soil data map A soil data map presenting the available soil data
concerning the “hydro area”, derived from [34].

SM11 P3b SM11-(P3b).pdf hydrolithological map.pdf

A hydrolithological map presenting the drainage
characteristics of the “hydro area”, derived from

the respective soil data (SM11; [34]), where
available, and [27] in the remaining areas.

SM12 P4 SM12-(P4) land uses map.pdf A land uses map of the “hydro area”, derived from
CORINE [35].

SM13 P5 SM13-(P5) 6 hyetographs.xlsx
An excel file presenting the hyetographs per

sub-catchment based on the Anavra station IDF
curve using the Alternate Block Method [42,43].

SM14 P6 SM14-(P6) Land cover and CN per
subcatchment.xlsx

An excel file presenting the CNc estimations per
sub-catchments with the respective calculations.

SM15 P8 SM15-(P8) 9 hydrographs.pdf
A pdf file with the 9 hydrographs (3 hydrographs
for the 3 junctions and 6 for the 6 sub-catchments)

produced during Step 8 of Stage 2.

SM16 P9a SM16-(P9a) flood extents map W_5 m.pdf
Map of the flood extents simulated by Sim 1 with

the automatically derived centerline by the
respective DTM_5 m.

SM17 P9b SM17-(P9b) flow depths map y_5 m.pdf
Map of the flow depths simulated by Sim 1 with

the automatically derived centerline by the
respective DTM_5 m.
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Table A1. Cont.

Nr Product Filename Description

SM18 P9c + P10c +
P11c

SM18-(P9c + P10c + P11c) flow
characteristics.xlsx

An excel file presenting the selected flow
characteristics for all Sims (fc_5 m, fc_2 m,

fc_0.05 m).

SM19 P10a SM19-(P10a) flood extents map W_2 m.pdf
Map of the flood extents simulated by Sim 2 with

the automatically derived centerline by the
respective DTM_2 m.

SM20 P10b SM20-(P10b) flow depths map y_2 m.pdf
Map of the flow depths simulated by Sim 2 with

the automatically derived centerline by the
respective DTM_2 m.

SM21 P11a SM21-(P11a) flood extents map W_0.05
m.pdf

Map of the flood extents simulated by Sim 3 with
the automatically derived centerline by the

respective DTM_0.05 m.

SM22 P11b SM22-(P11b) flow depths map y_0.05 m.pdf
Map of the flow depths simulated by Sim 3 with

the automatically derived centerline by the
respective DTM_0.05 m.

SM23 - SM23-Map with cross-sections.pdf A pdf file presenting all 270 cross-sections of the
flood area created in an interval of 20 m

SM24 P9a + P10a +
P11a

SM24-(P9a + P10a + P11a) flood extents
maps.pdf

Map of all simulated flood extents (W_5 m, W_2
m, W_0.05 m).

SM25 P9a vs. P11a SM25-(P9a + P11a) flood extents maps.pdf Map of simulated flood extents of Sim 1 and Sim
3 (W_5 m vs. W_0.05 m).

SM26 P10a vs. P11a SM26-(P10a + P11a) flood extents maps.pdf Map of simulated flood extents of Sim 2 and Sim
3 (W_2 m vs. W_0.05 m).

SM27 P9a vs. P10a SM27-(P9a + P10a) flood extents maps.pdf Map of simulated flood extents of Sim 1 and Sim
2 (W_5 m vs. W_2 m).

SM28 - SM28-DTM5 m-DTM0.05 m.pdf
Map of elevation differences between DTM_5 m

and DTM_0.05 m in a selected meandering
section of the river.

SM29 - SM29-DTM2 m-DTM0.05 m.pdf
Map of elevation differences between DTM_2 m

and DTM_0.05 m in a selected meandering
section of the river.

SM30 - SM30-all river centerlines.pdf Map of all three centerlines derived from the
respective DEM.

SM31 - SM31-y_5 m-y_0.05 m.pdf Map of flow depth differences between Sim 1
and Sim 3 (y_5 m-y_0.05 m).

SM32 - SM32-y_2 m-y_0.05 m.pdf Map of flow depth differences between Sim 2
and Sim 3 (y_2 m-y_0.05 m).
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Abstract: On 18 September 2020, the Karditsa prefecture of Thessaly region (Greece) experienced a
catastrophic flood as a consequence of the IANOS hurricane. This intense phenomenon was charac-
terized by rainfall records ranging from 220 mm up to 530 mm, in a time interval of 15 h. Extended
public infrastructure was damaged and thousands of houses and commercial properties were flooded,
while four casualties were recorded. The aim of this study was to provide forensic research on a
reconstruction of the flood event in the vicinity of Karditsa city. First, we performed a statistical
analysis of the rainfall. Then, we used two numerical models and observed data, either captured
by satellites or mined from social media, in order to simulate the event a posteriori. Specifically,
a rainfall–runoff CN-unit hydrograph model was combined with a hydrodynamic model based
on 2D-shallow water equations model, through the coupling of the hydrological software HEC-HMS
with the hydrodynamic software HEC-RAS. Regarding the observed data, the limited available
gauged records led us to use a wide spectrum of remote sensing datasets associated with rainfall,
such as NASA GPM–IMREG, and numerous videos posted on social media, such as Facebook, in or-
der to validate the extent of the flood. The overall assessment proved that the exceedance probability
of the IANOS flooding event ranged from 1:400 years in the low-lying catchments, to 1:1000 years in
the upstream mountainous catchments. Moreover, a good performance for the simulated flooding
extent was achieved using the numerical models and by comparing their output with the remote
sensing footage provided by SENTINEL satellites images, along with the georeferenced videos posted
on social media.

Keywords: IANOS; medicane; Karditsa; HEC-HMS; HEC-RAS; remote sensing; SENTINEL

1. Introduction

Floods are among the most destructive natural hazards, and are caused by river
overflows, flash floods of ephemeral streams, pluvial floods in the cities, floods in the
coastal zone, and floods due to a potential dam or a levee failure, and with several time
scales, ranging from large-scale to flash floods. Having identified a growing concern that
the flood risk is increasing in Europe and globally, joint scientific efforts are necessary for
establishing a reliable flood risk management framework [1]. The latter, associated with
the increasing stress to the system due to urbanization and the changing climate, led the
European Union to set in force the new Flood Directive 2007/60, which aims to provide a
thorough investigation of the flooding risk in vulnerable areas with the use of advanced
hydrological and hydrodynamic environmental approaches, and minimizing the flooding
risk with structural and non-structural measures [2].
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In accordance with Koutsoyiannis et al., 2012 [3], the main categories of potential
flooding areas in Greece are associated with large rivers with insufficient capacity to route
the natural flood and floods caused in ephemeral streams, whose cross-section dimensions
have been significantly reduced by anthropogenic activities (land use change, urban sprawl).
The latter, in conjunction with the limited available gauge network in the Greek catchments,
offers a great challenge to the geoscience scientific community, to gather all the publicly
available sources and use them within a consistent flood management framework. Flood
risk management is associated with complex uncertainty sources related to hydrological,
hydraulic, environmental, and social phenomena, and these sources significantly influenced
the recent flooding event in Karditsa city [4].

IANOS was an intense medicane formed over the warm Mediterranean Sea. Following
a path of approximately 1900 km, the medicane affected Greece, resulting in four casualties
in Karditsa prefecture and devastating damage in the western and central parts of Greece.
Analysis of the available observations showed that IANOS was the most intense medicane
ever recorded in the Mediterranean [5]. The 15-h rainfall records ranged from 220 mm
in Karditsa city up to 530 mm at the Plastiras dam rainfall gauge station. The flooding
event was followed by extended public infrastructure deterioration, bridge collapses, soil
sliding, and high debris flow, which were well documented by Zekkos et al., 2020 and Lolli
et al., 2022 [6,7].

Several reconstructions of extreme flood events can be found in the literature, such
as Borga et al. (2007) [8] and Costabile et al. (2013) [9]. Recently, similar works have been
presented, providing coupled hydrological and hydraulic modelling of severe past flood
events in Greece [10–14]. In this work, we followed the forensic hydrology framework, as
proposed by Ramirez and Herrera (2016) [15], in which a reproduction of an extreme event
has the following phases: (a) information gathering and integration; (b) hydrometeorologi-
cal and hydrological analysis; (c) hydraulic analysis; (d) integrative analysis; and (e) final
diagnosis.

According to this framework, first we used the full spectrum of available remote and
gauge information to inform the spatial variability of the rainfall depths over the catchment
study area. In addition, we collected observed data using new technologies, such as a
remote sensing (SENTINEL platform), which indicated the flood inundation area, and
crowdsourcing (videos uploaded to Facebook), which indicated the arrival time of flooding
and the water depths. Then, we estimated the return period of the event and applied a
rainfall–runoff hydrological model in the Kaletzis catchment (with runoffs at Karditsa city),
using the HEC-HMS software, and having as an input, findings from the previous phase.
The result of this phase was the derivation of the flood hydrographs that hit the greater
area of Karditsa city. This is the next phase input, namely the hydraulic analysis. For this
phase, a 2D hydrodynamic model was used for the flood propagation through the urban
and peri-urban areas. The results of this phase were validated against the data collected
during the first phase.

To our knowledge, this study is the first integrated hydrological–hydrodynamic anal-
ysis implemented for the greater area of Karditsa city, and in which a plausible check is
performed regarding the results derived by numerical modelling, using a wide spectrum
of satellite datasets and crowdsourced data, aiming to tackle the main challenge, which is
the lack of flood-related data and measurements.

2. Materials and Methods

2.1. Study Area

Karditsa city is located in the south-western part of the Thessaly region, Karditsa
prefecture, Greece (Figure 1). It has a population of approximately 42,000 people, based
on the 2011 population census. The city lies within the Kaletzis river catchment, and two
rivers are drained south and east of the city, which are named Gavrias and Karampalis,
respectively (Figure 1c). The Kaletzis catchment has an area of 653.8 km2, while the
average elevation of the watershed is 254.8 m. The maximum river length is estimated
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to be 66.11 km. The main sub-catchments of Kaletzis relevant to the study (marked in
Figure 1c) are the (a) upstream and downstream Karampalis stream catchments, which
runoff at the south-eastern part of Karditsa city; and (b) three upstream catchments of
the Gavrias stream, which runoff into the south-western part of the city, and through a
man-made canal are conveyed to the Karampalis river. The determination of the land
cover was based on CORINE land cover data. The majority of the watershed is covered by
agricultural areas and forest–mountainous areas.

Figure 1. (a) Greece, (b) study area location within Greece and (c) catchments and rivers of the study
area.

On 18 September 2020, the city of Karditsa was hit by the extreme medicane IANOS.
An intense rainfall that lasted approximately 15 h had as a consequence severe economic
losses and damage to public assets, transportation networks, buildings, and agricultural
areas, including four human losses. The city of Karditsa was flooded by extreme river
overflows, mainly from the Karampalis river, and most of the urban city area remained
flooded for over two days. Rainfall records from local gauges and remote sensing datasets
are detailed in the forensic analysis presented herein. It should be noted that the city has
a sewer stormwater gravity system, which, however, failed before the river’s flooding.
Although the pluvial flood component contributed to the flooding in the city area, it
was considered a small part of the fluvial flooding volume of the most intense medicane
ever recorded in the Mediterranean, as the extreme precipitation magnitude recorded in
the mountainous area suggests. The focus of the present work was given to the fluvial
components that led to the extreme flooding of the greater Karditsa area, and the pluvial
mechanism was excluded from further analysis.

2.1.1. Remote Sensing Flooding Records

The catchment area is ungauged, without the presence of flow and level gauge stations
along the river system, and a reliable flood simulation is a challenging scientific task, since
there are no records to validate the numerical results. Some rainfall gauges are operated by
various authorities, such as the Public Power Company, National Observatory, and Minister
of Public Works. In our analysis, due to the absence of a monitoring system, remote sensing
dataset has been used to estimate the rainfall patterns of the IANOS event, which is in line
with previous studies on event-based flood hydrological modelling [16–18]. Specifically,
the following remote sensing rainfall has been considered for further use:
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• MSWEP Multi-Source Weighted-Ensemble Precipitation
• GPM-IMREG (Global Precipitation Measurement) NASA
• CMORPH, Climate Prediction Center National Weather Service National Oceanic and

Atmospheric Administration (NOAA)
• PERSIANN-CCS (Precipitation Estimation from Remotely Sensed Information using

Artificial Neural Networks- CHRS Irvine)

GPEM-IMREG products and PERSIANN-CCS were selected based on record event
availability.

Two re-analysis products were also collected for investigating the daily rainfall spatial
extents over the catchments, namely:

• ERA5 land (ECMWF) (ERA5-Land hourly data from 1981 to present)
• MERRA land (Modern-Era Retrospective analysis for Research and Application)

Global Modeling and Assimilation Office NASA.

More details on the/reliability of the remote sensing rainfall dataset for reproducing
the real rainfall pattern are presented below (see Section 3.2).

In order to investigate the flooding event and support the modeling efforts, nine
flooding remote sensing recordings were collected by SENTINEL-1 and SENTINEL-2
associated with two delineation products and seven grading products, produced by the
Copernicus Emergency Management Service (EMS). Remote sensing products are shown
in Figure 2. Records are available for 20 September 2020 and 24 September 2020, two and
five days after the main event respectively. A third post-processing map was used, and
it is associated with the maximum combined flood extent captured by SENTINEL and
provided by Zekkos et al., 2020 (see Figure 2c) [6].

Figure 2. Remote sensing flooding footage products: (a,b) Copernicus EMS–Mapping products and
(c) Copernicus Sentinel-1 and Sentinel-2 in map by Zekkos et al. [6].
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2.1.2. Crowd Sourcing Data

Public evidence is critical for the confirmation of a flood wave propagation [19], and
therefore numerous videos posted on social media along with photos were gathered to
use in the validation of the flooding extent and evolution. Nine videos were collected,
which were well-distributed along the floodplain and highlight the importance of relevant
information in analyzing complex flooding events. All of the aforementioned information
was used in combination with Google Maps to identify (when that was possible) the
location of each element-record (Figure 3). Based on the characteristics of the damage
estimation records, the use of this dataset was restricted to the validation of the flood
extent.

 

Figure 3. Spatial distribution of the IANOΣ flood data (event of 18 September 2020) collected by
social media videos in comparison to a simulated flood map (refer also to Section 3.4 for more photo
records) at 9 positions.

61



Hydrology 2022, 9, 93

2.2. Hydrological Model Set-Up

The Hydrologic Engineering Center—Hydrologic Modelling System (HEC-HMS)
software was developed by the US Army Corps of Engineers and incorporates several
rainfall–runoff models, for the determination of the hydrological response of the catch-
ments of a river. It is one of the foremost and most globally well-known software tools
for the hydrological simulation of flood relief schemes, drainage, flood early warning
systems, dam design, debris flows simulation, etc. [13,20,21]. The Kalentzis catchment was
delineated and divided into 16 sub-basins using the HEC-GeoHMS extension in ArcGIS.
Terrain preprocessing and basin processing tools were used to generate the basin model file
containing the drainage network and delineated catchment. Precipitation was estimated
using the Thiessen polygon method and suitable weights for each subbasin were defined
to create a meteorological model. Remote sensing rainfall datasets and gauged rainfall
records were compared to identify the most suitable rainfall pattern. More details on the
aforementioned comparison are provided below. As an outcome, gauged precipitation
data from the Karditsa (sub-hourly) and the Plastiras dam (15-min) gauging station were
selected.

In general, HEC-HMS allows for the separate modelling of hydrological processes;
loss, transformation, baseflow, and routing, with several models for each process. The
selection of the model for each process should be based on the catchment characteristics,
data availability, and whether the simulation is event-based or continuous. The SCS-CN
unit hydrograph method was selected to simulate the transformation, in conjunction with
the deficit and constant loss method, and the recession baseflow model. The lag time tp,
which is a parameter required by the methodology, was defined as the time period between
the centroid of excess rainfall and the peak discharge. The later was calculated for each
sub-basin using the Giandiotti equation [22], in order to derive the time of concentration.
Average soil-moisture condition was selected considering the active irrigation period for the
extended irrigation areas in low-lying catchment areas, and a small rainfall of about 10 mm
occurred before the main flooding event.

Regarding the routing method, the well-known Muskingum–Cunge model was ap-
plied to all reaches, with a Manning n coefficient equal to 0.040. Parameters such as
reach length and slope were estimated using topographical data. The overall hydrological
schematization follows the technical specification of the Flood Directive implementation in
Greece, and more details are provided by Papaioannou et al. [23].

2.3. Hydrodynamic Model Set-Up

The HEC-RAS software was used for the hydraulic routing simulation of the flood
hydrograph through the Karditsa town stream network. It is a well-known software devel-
oped by the Hydrologic Engineering Center (HEC) of the U.S Army Corps of Engineers
and used for river flood modelling and floodplain management [4,11]. Since the data
availability was limited (lack of detailed river surveys, extended low-lying flood plains)
and as the urban and peri-urban area of Karditsa city is quite complex, having multiple
hydraulic directions due to a low-lying surface, we selected the two-dimensional (2D) mode
of the HEC-RAS software. The latter mode is either based on the full form of the 2D shallow
water equations (2D-SWE) or in 2D diffusion wave equations, which were selected after a
sensitivity analysis, with respect to numerical accuracy and computational time. The latter
approach was successfully applied in similar projects in the past, especially in data-scarce
areas [11,13,24]. It should be mentioned that the hydrodynamic model setup was developed
in line with the Flood Directive contracts, as previously outlined by Papaioannou et al. [23].

The importance of DEM accuracy has been highlighted by several authors, especially
in two-dimensional hydraulic–hydrodynamic modelling applications [25–27]. To meet
these requirements, a DEM with a horizontal resolution of 5 × 5 m generated from aerial
images collected from 2007 to 2009 and provided by the National Cadastre and Mapping
Agency S.A. (NCMA) was used in this study.
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A critical parameter in hydrodynamic modelling applications is the selection of the
roughness coefficient in the entire computational area [28]. In this work, we coupled the
corresponding values proposed in Greek Flood Management Plans [29] informed by LAND
COVER maps.

One of the modelling challenges was the representation of various hydraulic structures,
such as bridges, culverts, weirs, etc., with respect to the cell size and their false description
within the DEM. A non-detailed DEM spatial resolution, in combination with the appearance
of natural or artificial structures close to the flood mitigation works and hydraulic structures,
can lead to distortions of the elevation and by extension to their false representation within
the DEM. To overcome this problem, a sensitivity analysis was carried out at the locations
where structures exist. In order to represent the structure’s roughness and potential blockage
effect during the flood event, a local increase of the Manning coefficient was justified. A
sensitivity analysis was also carried out, regarding the optimal computational grid size,
which influences the modelling accuracy [27] and the computational time substantially.
Based on this analysis, we selected a squared grid-size of 20 m.

3. Results

3.1. Extreme Statistical Analysis of Plastiras Reservoir Annual Runoff

As previously described, there is lack of long-term reliable gauge records in the riverine
system, which would offer the capability to understand the complex transformation from
rainfall to real runoff. To overcome this problem and in order to assess the exceedance
probability of the IANOS flooding event, an annual extreme statistical analysis was carried
out for 12-years of the annual max daily water level of the Plastiras reservoir located in the
west of the study area. The reservoir is a multipurpose reservoir operating for 70-years
and having irrigation, water supply, and tourism uses [30,31]. HYDROGNOMON software
was used to fit numerous suitable statistical distributions [32].

EV2-max was selected as an appropriate statistical distribution, after applying the
Kolmogorov–Smirnov test. Figure 4 visualizes that the daily 3-m reservoir level rise ap-
proximately corresponds to a 1-in-200-year event (according to the theoretical distribution).
The statistical analysis is shown herein only for indicative purposes, since the 12-year time
record was insufficient for demonstrating a reliable extreme statistical analysis.

Figure 4. EV2-max statistical distribution on annual the max reservoir level (y-axis daily reservoir
raising level in m, x-axis normal distribution).
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3.2. Rainfall–Runoff Analysis

A comparative analysis was performed for the spatial variability of the rainfall regime,
using a suite of the available remote sensing dataset rainfall records and rainfall gauge records
at fine time scale. For the hydrometeorological formation of the extreme phenomenon, the
readers are encouraged to study the work presented by Karagiannidis et al., 2021 [5].

As outlined above, three NASA GPM–IMREG products were assessed, named accord-
ing to the initial assessment of the satellite records, and specifically the “Early”, the “Late”,
and the “Final” products, which include further post-processing based on the ground
meteorological observations. The “Final” product has significant differences in comparison
with the corresponding “Early” and “Late” versions, due to the use of a climate change
adjustment factor. It significantly underestimates the magnitude of the precipitation and
presents a “buffered” and smooth temporal distribution, contrary to the data captured by
local, ground measurements. Therefore, it fails to reproduce the IANOS rainfall spatial
event. It seems that the “Late” product is the most suitable for describing the spatial
variability of the extreme meteorological event, since it presents a better fit for the ground
measurements of the representative ground stations for the study area, in terms of total
precipitation, as well as the temporal distribution of precipitation. Figure 5 depicts the
NASA satellite products for different time records. The higher rainfall records in the vicinity
of the study area for both Early and Late products can be seen.

 

Figure 5. Records of different remote sensing NASA GPM-IMREG datasets (Early, Late, Final) for
three time intervals on 18 September 2020: (a) Early; 11:00–12:00, (b) Early; 19:00–20:00, (c) Early;
22:00–23:00, (d) Late; 11:00–12:00, (e) Late; 19:00–20:00, (f) Late; 22:00–23:00, (g) Final; 11:00–12:00,
(h) Final; 19:00–20:00, (i) Final; 22:00–23:00.

Except for the above, two reanalysis remote sensing products were also gathered and
analyzed in conjunction with three NASA GPM–IMREG estimates: the ERA5 land-CNR
and the MERRA land-NASA reanalysis products. Both of them underestimate the rainfall
in comparison with the NASA-GPM–IMREG, as observed in Figure 6.
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Figure 6. Records of different remote sensing datasets for three time intervals on 18 September 2020:
(a) NASA (Late); 11:00–12:00, (b) NASA (Late); 19:00–20:00, (c) NASA (Late); 22:00–23:00, (d) CNR
Hydrological Institute; 11:00–12:00, (e) CNR Hydrological Institute; 19:00–20:00, (f) CNR Hydro-
logical Institute; 22:00–23:00, (g) ERA-5 land; 11:00–12:00, (h) ERA-5 land; 19:00–20:00, (i) ERA-5
land; 22:00–23:00.

Following on from the above comparative analysis, it can be concluded that NASA’s
and CNR’s remote products show better agreements and greater rainfall depths in the south
and southeast of the study area. In contrast, ERA5 land (ECMWF) shows higher rainfall
depths in the southwest of the study area. Figure 7 exhibits the daily cumulative rainfall
depths retrieved by the aforementioned remote sensing products. The NASA GPM–IMREG
Late product shows a higher daily rainfall depth of up to 200 mm and a better performance
for the greater area of the city of Karditsa. ERA-5 and CNR products present substantially
lower records, of up to 100 mm.

All the remote sensing products failed to provide accurate rainfall records in compar-
ison with the gauged rainfall records. Specifically, the 15-min records from the Plastiras
dam gauge station west of the study area exhibit a relatively higher record of approxi-
mately 530 mm in the 15-h time period on the 18 September 2020. Karditsa’s rainfall gauge
station provides a lower record of 220 mm for the same record period (Figure 8).

Although the remote sensing precipitation products underestimated the magnitude
and intensity of the phenomenon, they provided useful insights regarding the evolution
and spatial variation of the phenomenon. The spatial information revealed, indicates that
the available gauging stations captured the spatial variability of the event’s precipitation
and could be used for the hydrological investigation. In the light of the above analysis, the
gauge rainfall records were the most suitable for the flooding event analysis; and following
a Thiessen analysis, the point records of Plastiras dam station and Karditsas station were
mapped over the sub-catchment of the study area. The mountainous sub-catchments have a
significantly higher rainfall input, influenced by the Plastiras dam record representing 30%
of the total catchment study area. The low-lying catchments were impacted by Karditsa’s
station rainfall record.
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Figure 7. Cumulative remote daily records for the three different gridded precipitation products:
(a) NASA (Late), (b) CNR Hydrological Institute and (c) ECMWF ERA-5 land.

 

Figure 8. Rainfall gauge records: (a) Karditsa, (b) Drakotripa and (c) Plastiras dam.

The final output of the HEC-HMS software is depicted in Figure 9. Specifically, three
flood hydrographs are presented at the junctions of interest. For the J5 junction of the
Gavrias river (which is located in the southwest part of the city), the maximum peak flow
was simulated as about 630 m3/s, while the time to peak was estimated as about 12 h.
The Karampalis upstream junction J6 peak flow was estimated as about 600 m3/s, while
Karampalis downstream junction peak flow was estimated as about 1400 m3/s. At the latter
junction, the Gavrias river and upstream Karampalis are connected. The latter provided a
specific event discharge ranging from 5.06 to 10.5 m3/s*km2. It is worth mentioning that
the time to flooding responses of the Gavrias and upstream Karampalis sub-catchments
coincided, leading to a very high peak flow in the east part of the city.
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Figure 9. Generated hydrographs at river junctions (hm3: cubic hectometres).

In order to quantify the return period of the IANOS event, three rainfall scenarios
were developed using the intensity–duration–frequency curves of Karditsa station, namely
T = 50 years, 100 years, and 1000 years. The latter was developed as part of the national
implementation of the Flood European Directive [33]. A recent framework presents more
insights into the regional implementation of the intensity–duration–frequency in the study
area [34], and it is recommended for defining the extreme rainfall depths for different
exceedance probabilities.

Figure 10 shows the plots of the estimated return period with respect to the flows (a
and b), as well the flooding volumes (c and d), which are the equivalent volumes extracted
by the flow event hydrographs. It was calculated that the IANOS flooding event’s return
period is around 400 years for the downstream low-lying catchments and about 1000 years
for the upstream mountainous catchments. Most interestingly, the flooding volume return
periods were estimated as being 1000 years for the low-lying areas, and for the upstream
catchments reaching 10,000 years, highlighting the catastrophic nature of the flooding event.

Figure 10. Estimated return period event: (a) flows at Gavrias junction (J5), (b) flows at Karambalis
downstream junction (J4), (c) volumes at Gavrias junction (J5), (d) volumes at Karambalis upstream
junction (J6).
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3.3. Flood Mapping

Figure 11 presents the maximum water depths and the maximum flood extent simu-
lated by the HEC-RAS software, having as an input the HEC-HMS output for each junction
point, namely J4, J5, and J6. An extensive overflow of the upstream Karampalis river
was observed in the south part of the city areas. The Garvias river was flooded in the
northwest part of the city. Its overflow was directed to the north, while the remaining
flows were routed through the man-made canal in the north part of the town as well. It is
worth mentioning that the extreme flows from the upstream Karampalis catchments had
as a consequence the overtopping of the Gavrias river and the railway rail embankments.
These overflows were propagated from the north floodplains to the city center through the
complex urban stream network. The most severe overflows that impacted the city were
observed in the east Karampalis river, downstream of the junction with the Gavrias river.

Figure 11. IANOS flood extent map.

For the main channel of the river, the maximum water depth was simulated as
about 5 m, while the corresponding maximum water depth in floodplain was about 1 m.
All the simulations demonstrated that the city was hit by a significant flooding wave
coming from the west, east, and north.

3.4. Validation

Since remote flooding footage is critical for validating the performance of our simu-
lations, three satellite flooding footages were used to compare the simulated flood extent
with the observed flood extend [35]. In this vein, two SENTINEL satellites images were
acquired from the Copernicus EMS service: (a) the first refers to approximately 35 h
(date 20 September 2020) after the estimated peak flow of the flood event; (b) the second
refers to the flooding extent 5 days after the event. In addition to this dataset, a post-event
flood image was acquired by Zekkos et al., 2020 [6] and is also presented here. Post-event
satellite images of the same day or the next day after the flood were sought, in order to
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supplement the analysis with an as recent as possible flood extent delineation. However,
the cloud coverage was dense for these dates, significantly reducing the potential of those
images for useful flood extent delineation.

Figure 12 shows the simulated flood extent, in comparison to the observed flood
extent provided by the satellites. The performance, in terms of the main flooding extent
and the capturing of the main, overland flood pathways, was satisfactory. As expected, the
simulated flood extent was greater than the three observed extents. The observed footage
is a snapshot, referring to significantly later observation times, varying from 1.5 to 5 days
post-event; while the simulated flood represents the maximum flood extent during the
development of the phenomenon. It can be safely assumed that, in the period following
the flood, the overflows were drained through the town’s sewer network.

Figure 12. Flood extent map—simulation results comparison with: (a) EMS Flood capture
of 20 September 2020, (b) EMS Flood capture of 24 September 2020 and (c) combined flood extend
assessment by Zekkos et al., 2020 [6].

In addition to the remote sensing data, crowdsourced photos and videos captured by
social media were used, in order to perform a plausible check of the simulated flood maps
and evolution of the simulated flood. Numerous georeferenced photos were posted on
Facebook approximately 12 h after the peak flow. Some of these are depicted in Figure 13.
Furthermore, several posted videos exist, which are provided in the appendix. As men-
tioned in the previous section, the town’s sewer system was submerged during and after
the flood event. As the gauging records reveal, extreme precipitation was recorded in the
mountainous part of the basin. Although the pluvial flooding component contributed
to the flooding in the city area, it was considered a small part of the fluvial flooding vol-
umes. Therefore, we focused our analysis on the fluvial flood component, coming from the
Gavrias, upstream Karampalis, and downstream Karampalis rivers.
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Figure 13. Simulated flood map vs. photo records in 9 positions (continuous numbering from Figure 3).

Flood depth estimations were made based on the crowdsourced data. Two sets of
estimations were carried out. Photos of the next day (19 September 2020, see Figure 13)
were utilized to estimate the depth that the flood reached (positions 10 to 18). These depths
were compared with the maximum simulated depth in those positions. Furthermore,
videos capturing the evolution of the flood were utilized to estimate the depth at the time
of the video capture (see Figure 3, points 1 to 9). The depth estimation was conducted
based on expert judgment and knowledge of the area. In order to validate the model, the
simulated flood depth was calculated for the corresponding observation points (1 to 18).
Due to the uncertainty of the depth estimations based on the photos and videos, as well
as the fact that the areas captured in the photos do not represent a single, specific point,
the corresponding modelling depth was calculated for an area of 1 cell radius (when larger
areas were depicted in photos, larger areas were used from the model results), as a range
of values. The range of the simulated depth values was compared to the estimated ones
in Figure 14.

 

Figure 14. Modelled vs observed water depths based on the crowdsourced dataset.

Based on this comparison, the estimated observed values lie within the range of the
simulated depths. The modelled (averages) depths overestimated the estimated actual
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depths by about 0.25 m or less in the majority of positions considered. Additionally, the
spatial (between observation) variation of the estimated observed values is consistent with
the variation of the corresponding modelled (averages) depths. Based on the above, and
taking into account the various factors of uncertainty, the agreement between modelled
and observed values is considered satisfactory.

4. Discussion

Herein, we discuss how our analysis can contribute to existing knowledge, in order to
reconstruct past flooding events using a suite of remote sensing datasets, limited gauged
records, rainfall-runoff modelling, and 2D-hydrodynamic modelling. The main findings
and issues for further consideration are presented below:

1. Both the rainfall spatial and temporal variability is of high importance in order to
reconstruct a past flood event with reliability, especially in small catchments with
high complexity (Bellos et al., 2020 [10]). Topography in smaller scales (such as local
horographic phenomena) is a factor that can significantly affect the meteorological
conditions of the atmosphere. For this reason, the scientific community has turned its
attention to meteorological satellite and meteorological radar products, in order to
derive distributed rainfall data, both in space and time. However, in our study the
remote sensing rainfall dataset at fine time scale (namely 30 min records) seemed to
underestimate the order of magnitude of the storm, in comparison with the ground
meteorological stations. This is probably due to the fact that the space step of the
satellite product is rather large and smoothens the extreme rainfall intensity, which
was (fortunately) captured by the ground observations. Needless to say, this is not a
global conclusion, but an ad hoc remark based on our study. In the end, there are no
doctrines for reconstructing a flood event: all the available rainfall products should be
evaluated and used.

2. The latter agrees with the recent global analysis presented by Pradhan et al., 2022 [36],
an analysis of an extreme event in Mexico [37], highlighting the requirement for
further improvements to achieve a higher rainfall estimate accuracy [38]. Similar
results were presented by a comparative evaluation of GPM IMERG Early, Late,
and Final hourly precipitation products over the Sichuan Basin, China [39]. Most
interestingly, our findings, where the Early-run product was found to have a better
performance than the Late and Final IMERG products, agrees with recent research
on the Evaluation of IMERG GPM products during Tropical Storm Imelda [40]. An
additional source of rainfall data is also the meteorological radars, which can achieve a
better accuracy and denser resolution for both space and time. Finally, the importance
of expansion of the ground meteorological network should not be underestimated. In
the end, ground observations are the only “reality”, compared with the proxy data
provided by satellite and radar products.

3. Integrated catchment modelling is the most significant tool for reconstructing a past
flood event. In our case study, we linked a rainfall–runoff model with a 2D hydrody-
namic model and compared the model output with crowdsourced data. Regarding
rainfall–runoff modelling, caution should be taken when assessing the time of concen-
tration of different sub-catchments and assuming the pre soil moisture conditions of
the catchment. All these parameters are very sensitive for reliable flow estimates in
ungauged catchments and have already been referred to in previous studies [41–43].

4. The question raised by Apel et al., 2009 [44] is still valid, in respect to how detailed
we need to be in flood modelling. In our case, the 2D hydrodynamic modelling of an
extended low-lying irrigated area exhibited a satisfactory performance in reproducing
an extreme event; however, 2D-modelling has some shortcomings (e.g., of blockage
bridge assessment under high debris rates). It is recommended that the modelling
analysis should be always considered in conjunction with the available survey infor-
mation, as well datasets for validation. We should highlight that we cannot exclude

71



Hydrology 2022, 9, 93

a priori any modelling option (2D or full 1D hydrodynamic modelling) and this is
subject of the data availability in each case study.

5. Our analysis introduced a data-driven integrated hydrological–hydrodynamic as-
sessment of a major past fluvial event, including several datasets for validating our
model approaches. It was based on a deterministic approach, which is the current
practice for natural hazards and exhibited satisfactory results herein. However, given
the complexity and uncertainty associated with the hydrological and hydrodynamic
components, probabilistic flood mapping approaches [2,4], coupled hydrological–
hydrodynamic physically-based numerical modelling [45], and the recent hybrid-
stochastic approaches are strongly recommended [46], especially when we deal with
real-world engineering design.

6. It is generally accepted that flood studies suffer from a lack of data. The majority of
the basins are ungauged, and in gauged basins an extreme and violent event, such as
a flood, can destroy the monitoring system. Forensic hydrology gives a framework
in which proxy data are mined from several sources, such as human observations
(crowdsourced data). Recent technological advances, namely cell phones with good
cameras, widespread internet access, and social media platforms, let us to derive this
kind of data for flood studies more easily. A novel part of our study was the use
of distributed public information posted on Facebook. This information seems to
be a treasure trove for validating complex flooding events in data-scarce areas with
unavailable gauged records. This has already been documented by several recent
studies [47,48] and is strongly recommended for similar future studies.

5. Conclusions

The IANOS hurricane was an extreme hydrometeorological event, which caused
catastrophic flooding in the Karditsa prefecture, with four casualties and extended infras-
tructure damage. The aim of this study was to present a combined approach of hydrological
and hydrodynamic analysis with remote sensing and crowdsourced data analysis for the
reconstruction of this flood event in the vicinity of Karditsa city, which was flooded by
overtopping flows from the surrounding river system. The data availability was rather
limited: there were few rainfall gauges, while there was no monitoring system for either
flow or water level stages in the rivers of the area. First, an analysis of the rainfall spatially
variability over the catchment was carried out using numerous freely available remote
rainfall datasets, along with data captured by rainfall gauges. The analysis showed that
all the remote sensing datasets underestimated the rainfall depths, and a rainfall–runoff
analysis was performed using gauged rainfall along with a rainfall–runoff CN approach
for assessing the river flows at representative river nodes. Although the examined remote
sensing datasets were not used as input data, they provided useful insights regarding the
evolution and spatial variation of the phenomenon, proving to be an asset of added value
for the study. The flows were estimated as being 1:400 years in the low-lying catchments
and 1:1000 years using as a design scenario the IDF curve of the Karditsa gauge station.
Investigation of the severity of the event was supplemented by a statistical analysis of the
annual maximum water levels in a reservoir adjacent to the study area. The flows were then
mapped using the HEC-RAS software and a validation was made using remote sensing
footage, photos, and videos posted on social media. The overall modelling performance
was satisfactory and highlighted the importance of gathering all the available records for
revealing past flood events.

In addition, the advantages of using remote sensing datasets are unique in flood
modelling, underlining the need for introducing new concepts and frameworks in flood
risk management analysis.
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Abstract: The present work deals with the reconstruction of the flood wave that hit Mandra town
(Athens, Greece) on 15 November 2017, using the framework of forensic hydrology. The flash flood
event was caused by a huge storm event with a high level of spatial and temporal variability, which
was part of the Medicane Numa-Zenon. The reconstruction included: (a) the post-event collection of
44 maximum water depth traces in the town; and (b) the hydrodynamic simulation employing the
HEC-RAS and MIKE FLOOD software. The derived open dataset (which also includes additional data
required for hydrodynamic modeling) is shared with the community for possible use as a benchmark
case for flood model developers. With regards to the modeling issues, we investigate the calibration
strategies in computationally demanding cases, and test whether the calibrated parameters can be
blindly transferred to another simulator (informed modeling). Regarding the calibration, it seems
that the coupling of an initial screening phase with a simple grid-search algorithm is efficient. On
the other hand, the informed modeling concept does not work for our study area: every numerical
model has its own dynamics while the parameters are of grey-box nature. As a result, the modeler
should always be skeptical about their global use.

Keywords: forensic hydrology; flood modeling; open dataset; HEC-RAS; MIKE FLOOD

1. Introduction

Floods occur in both rural and urban environments and are among the most destruc-
tive natural hazards, creating huge economic losses and casualties at global scale [1,2].
Impervious surfaces pose a major effect on watershed hydrology [2], since urban sprawl
affects total runoff volumes, peak flow rates, and catchment response times. Moreover,
discharges, associated with storm events with high and/or low probability of occurrence
before development, increase after urban development takes place [3]. The combined
effects of urban development and climatic variability may affect the urban water cycle [1].
Moreover, extreme urbanization and the projected climate change have led the scientific
community to focus more on urban flood risk, urban flood dynamics and flood mitigation
measures, estimation of return periods of extreme events through extreme value analysis,
in both quantitative and qualitative terms, and the update of intensity–duration–frequency
curves [4–12].
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In our era, physically based simulators are the main tools used for simulating the
flow dynamics driven by urbanization, land use/land cover (LULC) changes, and climatic
variability in the urban environment [7]. The main approach employed is the 1D approach.
However, 1D-1D, 1D-2D, and 2D approaches are also applied [13]. Various uncertainties,
both aleatory and epistemic, are associated with these models and this is mainly because of
the model structure, initial and boundary conditions, input and forcing data. Moreover,
the rational estimation of the various parameters, incorporated in these models, requires a
calibration procedure [14]. For example, parameters regarding the proper coupling of 1D
flow in the sewer system with 2D flow on the surface of the catchment include the proper
representation of buildings and other obstacles to the flow, the estimation of mass losses
due to infiltration or interception, or the estimation of energy losses due to friction, among
others [14].

Accurate simulation of flood events is extremely difficult. The main reason for this is
associated with the absence of a proper dataset which can be used for model calibration-
validation purposes, especially in urban catchments which are partially gauged or com-
pletely ungauged. It should be noted herein that even in a gauged urban catchment the
monitoring system is often destroyed during a flood. The framework of forensic hydrology,
as proposed by [15], which comprises five steps (i.e., information gathering; hydrometeoro-
logical and hydrological analysis; hydrodynamic analysis; integrative analysis; and final
diagnosis), pays special attention to data collection for a proper reconstruction of the event.
Some recent studies propose the post-event data collection using some proxies as measure-
ments, which are mainly the maximum flood depths at several observational points [16,17],
while other studies are based on data derived by flood event reconstruction using physical
modelling [18,19]. Other strategies with potential merit are the crowd sourcing of data
derived by social media, also focusing on water depths at specific time moment [20], and
finally, remote sensing data, providing flood extents at various time points [21].

This paper is divided in two parts. In the first part, we describe and share a full
dataset, deposited in Zenodo platform, acquired using the forensic hydrology framework
at the site. The flood dataset is associated with the catastrophic flood event that hit Mandra
town in Athens, Greece, on 15 November 2017, causing 24 casualties. The purpose of this
open dataset is to provide a complete dataset for benchmarking flood simulators. In the
second part, we focus on the second and third steps of forensic hydrology framework.
Specifically, we reconstructed the flood event with the assistance of commercial, physically
based simulators, and we investigate some practical issues regarding flood modeling, which
can be summarized as follows: (a) the strategy for calibrating the required parameters
with respect to the computational burden; (b) the potential transferability of the calibrated
parameters from one software to the other, in order to identify if the calibrated parameters
are of global or grey-box nature.

2. Materials and Methods

2.1. Study Area

The town of Mandra is located in Attica, in the western part of the greater metropolitan
area of Athens, Greece (Figure 1). It is built at the outlet of two catchments, namely Agia
Aikaterini and Soures catchments (Figure 1), which are part of the greater river system
of Sarantapotamos, and extends along the eastern-southeastern foothills of Mt. Pateras
(1130 m).

The storm event under study caused the severe Mandra flood, which occurred between
the 14 November 2017 at 23:00 UTC and the 15 November 2017 at 12:00 UTC and was part
of the Medicane Numa-Zenon. It was a highly localized phenomenon with extreme spatial
and temporal variability. According to the National Observatory of Athens (NOA), which
recorded the rainfall field with a mobile X-band polarimetric weather radar (XPOL), the
total rainfall on Mt. Pateras, above Nea Peramos and Mandra, exceeded 200 mm in depth
during the 6-h main storm event, with instant rainfall intensities reaching peak values
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of up to 120–140 mm/h, while the accumulated rainfall in 10 h reached nearly 300 mm
(Figure 2, left).

 

Figure 1. General location of Mandra town and the Agia Aikaterini and Soures catchments.

Figure 2. Accumulated rainfall depth recorded between 14 November 2017 at 22:30 and 15 November
2017 at 08:30 GMT (left); Joyplot of the 100 input hydrographs computed at Mandra town starting
from 14 November 2017 at 22:30 until 15 November 2017 at 13:30 (right).

The response of the storm was a flash flood wave, which hit the town during the night,
with catastrophic consequences. It is one of the biggest multi-fatality flood events recorded
in Greece. Several researchers reconstructed the event, simulating the flood hydrographs at
the inlet of the town [8,22–28].

In this work, the input hydrographs were taken from a previous study [29] which
reconstructed the flood dynamics of Agia Aikaterini catchment using a 2D-SWE-based
simulator named FLOW-R2D [23]. A parametric and input data uncertainty analysis was
performed. Therefore, the output was an ensemble of 100 hydrographs at the outlet of
the catchment and at the inlet of the town (Figure 2, right). The uncertainty band of the
flood discharge peak ranges between 120 m3/s and 220 m3/s, while the median was about
180 m3/s. This peak is in accordance with the post event rough estimation of the flood
peak made by [24].
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2.2. Data Collection

The research team visited the field four days after the flood event, and specifically, on
19 November 2017. During the visit, they derived a dataset of 44 maximum water depths
using the dry mud or leaf footprints on several building walls as a proxy indication. The
depth was measured with a measuring tape while the exact coordinates were recorded
with a hand-held GPS. Figure 3 depicts a general view of the observation points while
Figures 4–7 depict some indicative photos taken in the field. The majority of the observation
points are along the two main streets of Mandra, since the major flood impact was observed
in these roads. Specifically, the roads are Vaggeli Koropouli str. and Str. Nik. Rokka
str., which are the extensions of Agia Aiakterini str (which in fact is the extension of the
ephemeral Agia Aikaterini stream).

 

Figure 3. Location of observation points across Mandra town.

 

Figure 4. Indicative observation points in Mandra town (in roads): the observed maximum depths
are 0.64 m (up & left), 1.01 m (up & right), 0.54 m (down & left), 1.70 (down & right).
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Figure 5. Indicative observation points in Mandra town (inside the buildings): the observed maxi-
mum depths are 1.15 m (left), 1.90 m (middle), 1.06 m (right).

 

Figure 6. Uncertainty issues at the observation points: the finally selected values for the observed
maximum depths are 0.80 m (left), 1.01 m (right).

 

Figure 7. Example of the of the urban drainage system failure.

Specifically, Figure 4 is a representative photo of flood traces observed in the roads
while Figure 5 is a representative photo of flood traces observed inside buildings. At some
points, local inhabitants had marked with a green line the flood maxima. This information
was used carefully, employing engineering judgement and after cross checking. It should
be noted that the guidance of the locals in the field was substantial in order to address the
uncertainties of the measurements and provided and increased reliability of the dataset. For
example, the building in Figure 6 (left) has two mud traces: the lower trace denotes the real
flood depth maximum, while the higher denotes mud splashing as a result of turbulence
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from obstacles. The flood mark depicted in Figure 6 (right) is also another point which is
characterized by uncertainties. All these issued were addressed doing forensic research
and with the assistance provided by the local community in the form of small discussions,
interviews, etc.

Finally, Figure 7 depicts an example of the sewer system failure. We should mention
here that the main storm sewer system is underground and was designed for a maximum
flood capacity of 10 m3/s. The main pipe of the latter system is below the Agia Aikaterinin
str. and its extensions (Vaggeli Koropouli str. and Str. Nik. Rokka str.) crossing the town.
Based on the field visit and the interviews with the locals, it seems that the sewer system
did not work (it was destroyed or filled with debris) and the flow inside the system was
negligible compared to the flood wave that hit the town. For this reason, we did not include
urban drainage flow in our hydrodynamic analysis.

2.3. Hydrodynamic Simulators

For the hydrodynamic simulations, we used two well-known 2D hydrodynamic
models, namely the HEC-RAS [30] and the MIKE-FLOOD [31,32] pieces of software. Both
simulators are based on the 2D Shallow Water Equations (2D-SWE), either in their full
form or in the simpler diffusion wave form, while the equations are solved using the finite
volume method. In this study, we exploited the 2D diffusion wave mode for both software
since the full form of 2D-SWEs numerical instabilities were observed.

We used the same input data, parameters, and boundary conditions in both models.
Specifically, the digital terrain model (DTM), the friction coefficients, the internal boundaries
defined by the buildings, and the forcing 100 hydrographs as defined from the above-
mentioned uncertainty analysis were introduced in both software. It should be noted
that only the inflow of Agia Aikaterini catchment (and not Soures catchment inflow) was
considered, since it was the only driver for the flood observed inside the town.

The computational area consists of a polygon of 1.6 km2 area. The digital terrain
model (DTM) which was used for geographical information was derived from the National
Cadastre & Mapping Agency of Greece with a spatial resolution of 5 m. The internal
boundaries for the buildings were manually designed with the assistance of satellite images
in the Google Earth platform. For both pieces of software, the lateral boundaries of the
computational domain were assumed to have a no-slip condition (solid boundaries) in order
to preserve the water volume, while for the downstream boundaries the open boundaries
mode was selected.

Regarding the HEC-RAS software, we manually inserted (233) flow breaklines around
urban blocks, and then modified the mesh by generating orthogonal cells around the
breaklines, thus improving the computational speed and accuracy of the model. For the
whole mesh, 121,583 cells were generated with the average cell area being about 13 m2.
For the upstream boundaries, we used the mode of the input hydrograph (which requires
no additional parameters), while for the downstream boundaries we selected the open
boundaries, which are based on the Manning equation and require an extra parameter,
namely the energy slope Sf. The time step was selected to be equal to 10 s.

The Manning coefficient of the computational domain nr was assumed to lie in a
plausible range of values and was calibrated. Since HEC-RAS software is not capable
of including internal solid boundaries, buildings are represented with a local increase
of roughness, a common methodology in the relative literature [33]. Therefore, we used
two more Manning coefficients, nh and nl (high and low), for dense and less dense urban
blocks, respectively.

Regarding the MIKE software, we performed a similar procedure in order to generate
the mesh, but with triangular elements. Specifically, we generated a mesh comprising
22.264 elements, with an average area of 70 m2, while the smallest permitted triangular an-
gle was 23◦. For the upstream boundaries, we also used the mode of the input hydrograph,
while for the downstream boundaries, we selected the open boundaries as well which
required no additional parameters. A constant eddy viscosity coefficient was selected with
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a value equal to 0.1, while the time step ranged between 0.001 and 0.002 s. Finally, the
wet-dry threshold was given a value equal to 0.005 m.

In contrast to HEC-RAS, MIKE FLOOD has the option to represent the buildings with
a free-slip boundary condition. Therefore, there was no need to introduce new parameters
in order to simulate the flood in a built-up area. Figure 8 depicts the computational area,
the building footprints, and the upstream/downstream boundaries, while Figure 9 depicts
the mesh generation for both pieces of software in an indicative part of the town.

 

Figure 8. Computational area, upstream/downstream boundaries and buildings footprint used for
HEC-RAS and MIKE FLOOD software.

 

Figure 9. Mesh generation with HEC-RAS (left) and MIKE FLOOD (right) software.

2.4. Calibration Strategy

Although 2D hydrodynamic simulators have a strong physical base, they incorporate
several grey-box parameters whose values, instead of being unique, adopted from hand-
books or good practice guidance, lie in a plausible range. It is recommended that these
parameters should be calibrated against relevant on-site measurements [14,34]. In theory,
the latter simulators shall be calibrated against both water depths and flow velocities. How-
ever, the difficulty in finding observed velocities led us to limit the calibration only using
maximum water depths. Moreover, the use of this kind of simulator for flood simulation
has as a consequence an extremely high computational burden, which is exacerbated in
cases where procedures, such as calibration, optimization, and uncertainty quantification,
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are employed. For example, each HEC-RAS simulation required approximately 2 h while
each MIKE simulation required 4 h in an Intel(R) i7-4790 CPU/3.60 GHz.

Overall, it is not necessary or feasible to incorporate all the parameters of a model
in such processes if we aim at an efficient optimization. To this end, sensitivity analysis,
a process aiming to screen the most influential parameters on model results, can help
modelers and practitioners identify a model’s key input parameters, and thus reduce
computational cost.

The two most common classifications of sensitivity analysis methods are the global
sensitivity analysis (GSA) and the local sensitivity analysis (LSA). It is not in the scope
of the present work to describe in detail sensitivity analysis approaches and for further
information the reader is referred to [35]. In recent literature, a wide variety of sensitivity
analysis methods are presented (e.g., local methods, global methods, qualitative, quantita-
tive methods) from different scientific fields [36,37]. Two of the most widely used sensitivity
analysis methods are Sobol’s sensitivity analysis method [38] and the screening technique
proposed by [39]. The latter is one of the most widely used sensitivity analysis methods as
it is easy to implement and is not time consuming [7,36].

Specifically, Morris [39] introduced the concept of elementary effects and proposed a
sensitivity analysis method which is based on the computation of the mean and standard
deviation of elementary effects in order to determine the effects of input parameter on the
final result. According to [35], the input parameters may have: (i) negligible; (ii) linear and
additive; or (iii) nonlinear or involved in interactions with other parameters. The mean
of the elementary effects is used to assess the overall effect of the input parameter on the
final result, while the standard deviation is used as a metric for the interactions with other
parameters. However, [40] proposed to use the absolute mean instead of the mean in order
to not introduce type II errors. In the present work, the sampling strategy proposed by [39]
was used. Overall, the Morris elementary effects method can be categorized as a GSA
approach, and it is simple, robust, and has low computational burden compared to other
GSA methods (e.g., Sobol’s method, GLUE etc.).

In the present study, we performed the calibration phase of the simulation only with
HEC-RAS and we divided it in two stages: (a) First, we performed a GSA for the required
model parameters using the SAFE toolbox [41] in order to reduce the dimensional space
through parametric screening. Then, (b) we performed a grid-search calibration. The
required five parameters were: a) the Manning coefficient for the roads, nr; (b) the Manning
coefficient for the urban blocks (high value), nH; (c) the Manning coefficient for the urban
blocks (low value) nL; (d) the confidence interval of the uncertainty band of the upstream
hydrograph, CI; and (e) the downstream energy slope, Sf. The range of values assigned to
each of the five parameters are presented in Table 1.

Table 1. Parametric range.

Parameter Lower Limit Upper Limit

nr [s/m1/3] 0.03 0.06
nH [s/m1/3] 40 60
nL [s/m1/3] 15 25

CI [%] 10 90
Sf [-] 0.01 0.03

3. Results

3.1. Flood Dataset

Table 1 presents the maximum water depths measured at the 44 observation points,
with their coordinates in both the Greek Geodetic Reference System 1987 (GGRS87) and the
World Geodetic System 84 (WGS84).

In this link (https://zenodo.org/record/7140750, accessed on 3 October 2022), the
reader can also download the full dataset on the Zenodo platform. The dataset consists of
the following:
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1. The maximum water depths recorded at the 44 points after the event with their
coordinates in both GGRS87 and WGS84 systems, as shown in Table 2.

2. The digital terrain model (DTM) of the greater area with a resolution of 5 m, as
provided by the National Cadastre and Mapping Agency of Greece.

3. A shape file with the boundaries of the computational area used for both HEC-
RAS and MIKE FLOOD software, which coincide with the boundaries of the town
of Mandra.

4. A shape file with the Mandra urban blocks footprint, as were manually drawn on
Google Earth platform.

5. The ensemble of 100 hydrographs as depicted in Figure 2, which serve as the inflow
from Agia Aikaterini catchment to Mandra town. They are derived by implementing
the FLOW-R2D hydrodynamic simulator at the catchment scale, having as an input
the rainfall field captured by the weather radar during the Mandra flood event [23].

6. The rainfall field of the greater area with a spatial resolution of 200 m and a temporal
resolution of 2 min, recorded by the X-band weather radar of the National Observatory
of Athens.

Table 2. Maximum water depths measured at the field.

Gauge
X, Y

(GGRS87)
ϕ, λ

(WGS84)
Depth (m)

1 455668.2588, 4214030.3444 38.075555095412, 23.496248974378 3.00
2 455714.0308, 4213859.4439 38.074017108644, 23.496781377525 1.41
3 455618.1325, 4214089.9909 38.076090202058, 23.495673789261 1.91
4 455648.7464, 4214045.8128 38.075693548981, 23.496025555384 2.60
5 455715.7245, 4213941.2321 38.074754298656, 23.496795637049 2.00
6 455714.7635, 4213840.7551 38.073848713598, 23.496790884875 2.40
7 455708.8934, 4213757.7429 38.073100288440, 23.496729087177 1.90
8 455718.1527, 4213696.6548 38.072550190317, 23.496838421089 2.60
9 455711.4275, 4213686.7258 38.072460378003, 23.496762362771 2.40

10 455693.3690, 4213585.9232 38.071551023452, 23.496562711634 3.30
11 455683.1461, 4213546.1162 38.071191767747, 23.496448625272 2.44
12 455694.2735, 4213521.9724 38.070974717633, 23.496576973349 2.00
13 455724.7554, 4213510.6998 38.070874612326, 23.496925173983 2.80
14 455815.0195, 4213431.7319 38.070167321865, 23.497959080654 2.43
15 455893.3008, 4213392.0692 38.069813674021, 23.498853945292 1.17
16 455950.5524, 4213396.1206 38.069852967810, 23.499506375731 1.28
17 456148.2251, 4213517.7609 38.070958813396, 23.501752448480 1.56
18 456149.9273, 4213543.6000 38.071191768069, 23.501770274694 0.88
19 456244.9914, 4213542.7794 38.071188961397, 23.502854094564 1.55
20 456349.9641, 4213582.0807 38.071548216307, 23.504048435197 1.19
21 456405.9467, 4213583.0278 38.071559443195, 23.504686605580 1.68
22 456498.3168, 4213604.9584 38.071761523636, 23.505738338489 3.00
23 456555.1662, 4213651.3694 38.072182522132, 23.506383639558 2.47
24 456597.3211, 4213639.6230 38.072078676069, 23.506864940258 1.19
25 456662.0088, 4213690.0413 38.072536158243, 23.507599370013 1.87
26 456690.6165, 4213659.3707 38.072261108064, 23.507927367552 1.06
27 455950.3622, 4213418.8560 38.070057859161, 23.499502811367 1.15
28 455722.5295, 4213734.9355 38.072895404700, 23.496885956174 2.00
29 455761.5685, 4213956.7620 38.074896496719, 23.497317344483 1.70
30 455764.4553, 4213970.1369 38.075017177319, 23.497349431868 1.30
31 455770.2635, 4213945.5041 38.074795460034, 23.497417170265 0.81
32 455783.0573, 4213940.4525 38.074750556643, 23.497563343334 1.10
33 455811.7063, 4213918.1875 38.074551291492, 23.497891341098 1.16
34 456228.1013, 4213834.3580 38.073815970735, 23.502643747389 1.01
35 456335.9814, 4213774.6124 38.073282717248, 23.503877306043 0.28
36 456306.8247, 4213760.7545 38.073156420710, 23.503545742317 0.61
37 456333.7110, 4213759.3652 38.073145194065, 23.503852350022 1.21
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Table 2. Cont.

Gauge
X, Y

(GGRS87)
ϕ, λ

(WGS84)
Depth (m)

38 456346.2390, 4213821.5813 38.073706513488, 23.503991391677 1.01
39 456344.8884, 4213802.9037 38.073538118443, 23.503977130532 0.62
40 456422.4147, 4213797.8190 38.073496019748, 23.504861299648 0.54
41 456529.0244, 4213792.8917 38.073456726769, 23.506077031385 0.46
42 456528.4916, 4213751.4763 38.073083448814, 23.506073467053 0.54
43 456557.3220, 4213703.9877 38.072656842958, 23.506405030212 0.91
44 456652.5360, 4213731.8215 38.072912246041, 23.507488849352 0.78

3.2. Calibration Phase

As previously described, we first performed the GSA in order to reduce the number
of parameters to be calibrated, and therefore, reduce the dimensional space. Based on
engineering judgement and similar studies [23], we assumed that the trajectory number
was equal to 15. Hence, the required number of HEC-RAS simulations was equal to 90.

For each simulation, we calculated the root mean square error (RMSE) between the
simulated and the observed maximum water depths. Based on this value, the SAFE toolbox
calculates the mean and the standard deviation of the elementary effects.

Figure 10 depicts the results of the sensitivity analysis. It seems that the CI is by far
the most influential parameter regarding the RMSE. The impact of the forcing driver in the
model output is in accordance with similar flood studies [42]. The second most influential
parameter is the Manning coefficient of the computational domain nr, while the remaining
Manning coefficients and the energy slope required at the downstream boundaries seem to
have a negligible impact on the RMSE.

Figure 10. Sensitivity analysis results.

Based on the previous analysis, we then focused on the pair of the most influential
parameters (CI, nr). Therefore, we implemented a grid-search calibration, in order to find the
optimal combination of the pair values. Assuming a step of 10% for the CI (which according
to Table 1 ranges from 10% to 90%) and 0.01 s/m1/3 for the nr (which according to Table 1
ranges from 0.03 s/m1/3 to 0.06 s/m1/3), we produced 9 × 4 = 36 scenarios with different
combinations of CI and nr, while the other parameters (nH, nL and Sf) were assigned the
average values 50 s/m1/3, 20 s/m1/3 and 0.02, respectively, according to Table 1.

Then, we performed again the hydrodynamic analysis for these scenarios, and we
defined as an objective function the RMSE of the simulated maximum flood depths against
the observed data. Figure 11 (up, left) depicts the dimensional space of the objective
function. Since the target was the combination of the CI and nr values for which the RMSE
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is minimized, it can be deduced that these values are 40% and 0.06 s/m1/3, respectively
(denoted by red star in the figure), while the RMSE value is equal to 0.70 m.

Figure 11. Dimensional space for the optimization function used for the grid-search calibration (up
& left); Runs are sorted from maximum to minimum RMSE (up & right); Confidence Interval CI in
respect to the run number with 5-period moving average denoted by the black line (down & left);
Manning coefficient nr in respect to the run number with 5-period moving average denoted by the
black line (down & right).

It should be noted that the optimization procedure is trapped in the boundaries, which
means that the dimensional space is not sufficiently explored. If the runs are sorted from
the maximum until the minimum RMSE, it can be observed (Figure 11, up, right) that the
objective function can be further minimized, but not that much. Taking into account the
computational cost, we did not perform additional runs. Finally, Figure 11 (down, left and
down, right) depicts the general trend of the calibrated parameters CI and nr in respect
of the run number, as previously sorted. It seems that the parameters tend to reach their
optimal values as the calibration is in progress. This is not a proof that we achieved the
global optimum, but it is a strong indication that we avoided the equifinality issue.

3.3. Calibrated HEC-RAS vs. Informed MIKE FLOOD

Since we assumed that we identified the optimal combination for the HEC-RAS
parameter values, we then tried to identify whether we can inform MIKE FLOOD with
these values. With this blind test, we aimed to investigate whether these calibrated values
have a global nature or are model-specific.

As previously described, MIKE FLOOD includes the option for representing the
buildings using a free-slip condition, which in general is better practice than the other two
available methodologies in the literature, namely the local increase of the elevation or of the
Manning coefficient [33]. Therefore, there is no need for estimating the Manning coefficient
for the urban blocks. Besides, there is also no need for estimating a parameter for the
downstream open boundaries, in contrast with HEC-RAS which requires the energy slope
Sf. In order to make a meaningful comparison, MIKE FLOOD configuration (computational
area, boundary conditions, bathymetry, boundaries of buildings) was the same as in
HEC-RAS. Furthermore, for the MIKE-FLOOD simulations, the forcing driver was the
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hydrograph with the optimal value of CI = 40%, as described in the previous section,
while the Manning coefficient of the computational domain nr was given the optimal
value of 0.06 s/m1/3. It was found that the RMSE metric was significantly bigger than the
corresponding RMSE derived by HEC-RAS, which was equal to 1.63 m

Figure 12 depicts the comparison of the observed maximum flood depths vs. the
simulated results derived from HEC-RAS and MIKE FLOOD. The inundation maps shown
in Figures 13 and 14 are derived with the calibrated HEC-RAS and the informed MIKE
FLOOD, respectively, and depict the maximum water depths. Figure 15 depicts the differ-
ences between the calibrated HEC-RAS and the informed MIKE FLOOD, for maximum
water depths, while Figure 16 depicts the distribution of the residuals.

Figure 12. Comparison of the maximum flood depths derived by field observations: HEC-RAS
simulation and MIKE FLOOD simulation.

 

Figure 13. Results of the calibrated HEC-RAS for maximum water depths.
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Figure 14. Results of the informed MIKE FLOOD for maximum water depths.

 

Figure 15. Calibrated HEC-RAS minus informed MIKE FLOOD for maximum water depths.
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Figure 16. Distribution of the residuals HEC minus MIKE.

There is an area of the city where both models failed to reproduce the flood suffi-
ciently, either overestimating or underestimating the maximum observed flood depths
(gauges 29–41). This is probably due to each model’s structure and the simplifying assump-
tions regarding the validity of the diffusion wave model. For the remaining observation
points, the calibrated HEC-RAS seems to capture the flood characteristics reasonably well.
On the other hand, the informed MIKE FLOOD seems to overestimate flood depths in
a systematic way. The residual (HEC-RAS minus MIKE FLOOD results) shows that an
overestimation of flood depths by MIKE FLOOD compared to the ones by HEC-RAS occurs
in the upstream and the main computational area, while in some parts of the downstream
computational area we observe the opposite. The residual distribution ranges from –5 m
(MIKE FLOOD is overestimating compared to HEC-RAS) to 1 m (HEC-RAS is overestimat-
ing compared to MIKE FLOOD). It should be noted that the abstraction is performed just
for the intersection between these two flood extents.

4. Discussion and Concluding Remarks

Our work had a dual objective: First, to perform forensic research, collecting post-
event flood data in the field, and second, to investigate several modelling issues regarding
the use of well-known flood simulators in this kind of complex case studies. More specifi-
cally, in this paper we presented and shared a flood dataset for the Mandra flood event,
which occurred in the greater metropolitan area of Athens, Greece, on 15 November 2017.
This real-world flood dataset was used to calibrate flood simulations by the HEC-RAS
software and used to inform the MIKE FLOOD software. The open flood dataset should
be welcome given the scarcity of this kind of data. Since many simulators are usually
verified with numerical experiments and analytical or simplified physical models, this
dataset can potentially contribute to benchmarking robust flood simulators, tested in real
world case studies.

The major findings of our work consist of: (a) the lessons learned from a post-event
data collection in the field; (b) the calibration issues raised from a computationally de-
manding simulator; (c) the answer to the research question regarding the global use of the
calibrated parameters.

As far as the first finding is concerned, it seems that a post-event forensic research is
feasible, in terms of resources and equipment. Since urban flooding is characterized by
mud flows, there are lot of clues for the maximum water depth observed in several points.
The drawback is the absence of data indicating the time evolution of the phenomenon and
flow velocity data. The participation of the locals in the field survey was of high importance
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in order to derive a reliable and representative flood dataset. Small interviews and chats
could provide answers for several unclear points.

Regarding the second finding, the proposed two-phase calibration procedure, includ-
ing the parametric screening and the grid-search methodology, seems to be an efficient
way of reducing the computational demand of the simulator. Although the calibration
procedure seems to be trapped in the boundaries of the dimensional space, there are strong
indications that the optimized pair of parameters gives the optimal result for these model
structures, without equifinality problems.

Finally, the concept of the informed modeling does not seem to work. Possible reasons
for this are the differences regarding the way in which buildings are represented, as well as
the different form of the downstream open boundaries and the mesh structure. However,
we strongly highlight that the systematic overestimation of MIKE FLOOD against the
observed data does not indicate that one software is better than the other, but that every
software has its dynamics, and the transferability of parameter values cannot be performed
in blind trust, while the direct calibration of model input parameters is a must. This
reinforces the belief that the flood model parameters are of grey-box nature and their global
use should be avoided or adopted with the utmost care.
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Abstract: Storm surges due to severe weather events threaten low-land littoral areas by increasing
the risk of seawater inundation of coastal floodplains. In this paper, we present recent developments
of a numerical modelling system for coastal inundation induced by sea level elevation due to storm
surges enhanced by astronomical tides. The proposed numerical code (CoastFLOOD) performs high-
resolution (5 m × 5 m) raster-based, storage-cell modelling of coastal inundation by Manning-type
equations in decoupled 2-D formulation at local-scale (20 km × 20 km) lowland littoral floodplains.
It is fed either by outputs of either regional-scale storm surge simulations or satellite altimetry data
for the sea level anomaly. The presented case studies refer to model applications at 10 selected coastal
sites of the Ionian Sea (east-central Mediterranean Sea). The implemented regular Cartesian grids
(up to 5 m) are based on Digital Elevation/Surface Models (DEM/DSM) of the Hellenic Cadastre.
New updated features of the model are discussed herein concerning the detailed surveying of terrain
roughness and bottom friction, the expansion of Dirichlet boundary conditions for coastal currents
(besides sea level), and the enhancement of wet/dry cell techniques for flood front propagation over
steep water slopes. Verification of the model is performed by comparisons against satellite ocean
color observations (Sentinel-2 images) and estimated flooded areas by the Normalized Difference
Water Index (NDWI). The qualitative comparisons are acceptable, i.e., the modelled flooded areas
contain all wet area estimations by NDWI. CoastFLOOD results are also compared to a simplified,
static level, “bathtub” inundation approach with hydraulic connectivity revealing very good agree-
ment (goodness-of-fit > 0.95). Furthermore, we show that proper treatment of bottom roughness
referring to realistic Land Cover datasets provides more realistic estimations of the maximum flood
extent timeframe.

Keywords: coastal flooding; numerical modelling; storm surge; sea level elevation; inundation maps;
Manning coefficient; raster grid

1. Introduction

Storm surges, i.e., a (spatially) broad-scale and abnormal elevation of sea level in
coastal areas due to severe weather events (storms, tropical cyclones, hurricanes, typhoons,
etc.), threaten low-land littoral areas by increasing the risk of seawater inundation of coastal
floodplains and low-lying urban environments [1]. This threat intensifies when high seas
due to storm surges (meteorological residual of sea level rise) are combined with high
astronomical tides (storm tides) [2]. The projected possible Mean Sea Level Rise (MSLR) due
to probable future environmental changes in the climatic scale can also further stimulate the
intensity of such phenomena on the coastal zone. Moreover, future projections of cyclone
characteristics have shown that detrimental extreme events of marine storminess, such
as heavy precipitation, windstorms, and storm surges, are strongly associated with each
other and can drive coastal flood hazards in a combined way over the Mediterranean
basin [3,4]. Thus, storms may affect the sea level elevation on the shoreline/waterfront in
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two ways: (a) by increasing the Sea Surface Height (SSH) due to the inverted (or inverse)
barometer effect (low-barometric atmospheric pressure), and (b) by winds pushing seawater
onshore. The floodwater in coastal areas can overtop physical obstacles or artificial barriers
(e.g., dunes and knolls or seawalls, levees, embankments, and armoured slopes), and
consequently inundate large parts of inland rural and urban areas. Coastal inundation is
mainly responsible for land loss, erosion, damages to onshore infrastructure and properties,
environmental degradation of coastal aquatic ecosystems, saltwater intrusion in coastal
aquifers, and, occasionally, human casualties, etc.

1.1. Research Theme

The most prominent natural hazard induced by episodic bursts of SSH or (semi-
)permanent long-term MSLR is coastal flooding and/or the inundation of littoral lowlands,
with various significant implications for the coastal communities and environments [5].
Several studies have presented investigations of the coastal vulnerability due to the im-
pact of MSLR and storm surges, related flood hazards, and damage assessment in the
eastern and western Mediterranean littorals; e.g., Moroccan and Egyptian coasts [6–8];
NE Mediterranean coastal zone [9]; Ebro river delta in Spain (NW Mediterranean) [10];
coastal inundation risk assessment due to combined land subsidence and MSLR in southern
Italy [11]; estimation of 49 cultural World Heritage Sites in low-lying Mediterranean coastal
areas until 2100 [12]; potential MSLR-induced inundation in the central Mediterranean
(Malta) for susceptibility assessment and risk assessment scenarios to lead policy action [13].
Hauer et al. [14] assessed the exposure of the U.S. population to coastal flooding due to
MSLR, while Kulp and Strauss [15] showed that the latest developments in assessments
and error corrections of Digital Elevation Models (DEM) have induced a rise in estimates of
global vulnerability to MSLR and related coastal flooding. A robust model implementation
for such phenomena producing realistic inundation hazard maps is crucial in terms of
coastal management, the study of risk, flood hazard mitigation, first-level response to
disaster, and decision support.

In this paper, we present recent developments of a numerical model for coastal inun-
dation on littoral floodplains induced by sea level elevation due to storm surges (Coast-
FLOOD) [16], potentially enhanced by astronomical tides (and MSLR, not investigated in
this paper). The model performs numerical simulations of hydraulic flood flow on inland
coastal domains covering local-scale areas up to a few hundred km2 [17,18]. The inunda-
tion model can be forced either with sea level observations (e.g., in situ measurements
from tide-gauges and satellite-derived data) or with modelling outputs of regional-scale
simulations for storm surges [17]. The High-Resolution Storm Surge (HiReSS) [19] has
been used in operational forecast mode for short-term marine weather predictions (sea
level and currents) [20,21], providing boundary conditions for CoastFLOOD simulations
over adjacent coastal zones [17]. Furthermore, it has been applied as the Mediterranean
Climatic Storm Surge (MeCSS) model in climatic studies for long-term hindcasts [9] or
future projections of storm surge patterns in the Mediterranean Sea [22–24].

CoastFLOOD performs detailed modelling of the rather shallow and slow process of
seawater uprush and flood routing due to episodic, mid- or long-term sea level elevation,
i.e., induced by storm surges/tides. It is a very fine resolution, raster-based, 2-D horizontal,
mass balance flood model for coastal inlands, following the simplified concept of a reduced
complexity form of the Shallow Water Equations (SWEs) running on a storage-cell GIS
domain [25–27]. Only the large-scale low-frequency phenomena of coastal inundation
due to storm surges and tides are simulated by the model, which does not consider the
high-frequency processes of coastal flooding due to wave run-up. The storm-induced
SSH on the coastline feeds the seawater surge on the littoral floodplain via a set of 2-D
decoupled Manning-type flow equations. The floodwater inundation on the coastal terrain
is simulated on a very high resolution (dx = 2–5 m) ortho-regular Cartesian raster grid.
Land elevation data are derived by the post-processing of available DEM datasets by the
Hellenic Cadastre [28], available in 4600 × 3600 m2 ground tiles by the projection of the
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Hellenic Geodetic Reference System 1987 (HGRS87). The detailed features of the model are
discussed in Section 2.

1.2. Literature Review

Numerous 2-D horizontal models exist for the simulation of the mid- to long-term
coastal inundation due to storm tides with or without the influence of MSLR. The most
representative and established flood inundation model suites have been developed for river
flooding and fluvial inundation but can be also used for seawater inundation in coastal
areas (Table 1).

Table 1. Representative 2-D inundation model suites for river flooding, also used in coastal areas.

Model References Concept and Applications

LISFLOOD-FP
CAESAR-LISFLOOD [29–34]

Reduced complexity inertial formulation of the SWEs leading to 2-D horizontally
decomposed Manning-type volumetric flow equations mainly applied in coastal
areas with rivers, optionally coupled to a Landscape Evolution Model (LEM)
simulating the geomorphic development of flood basins.

MIKE FLOOD 2D [35,36]
The well-known proprietary flood model suite combining different modules,
MIKE URBAN, MIKE 11, and MIKE 21, for urban sewerage systems overflows,
river/channel flood discharges, and coastal drivers applied in coastal cities.

HEC-RAS 2D [37,38]
The classic non-commercial flood modelling system combining 1-D/2-D for river
flood flow and fluvial plain inundation with the coastal floodplain extent due to
sea level changes simulated with the ADCIRC hydrodynamic model.

SOBEK-2DFLOW
(Overland Flow) [39,40]

Based on complete Saint Venant equations; a fully hydrodynamic 2-D simulation
engine for steep floodwater fronts, wetting and drying processes, subcritical and
supercritical flow, including rainfall runoff; applications combine pluvial floods
with storm surge influence in urban areas.

FLO-2D [41] Reduced complexity 2-D Manning-type volumetric flow storage cell simulator
coupled to JMA storm surge model.

Multi-Scale Nested
MSN-Flood model [42,43] High-resolution multi-scale modelling of coastal flooding due to tides, storm

surges, and river flows specifically for urban coastal inundation.

FloodMap-Inertia [44]

An urban flood inundation model neglecting the convective acceleration term in
the momentum equation, coupled to ADCIRC for sea level on its coastal boundary,
assuming that the floodplain is filled with water by an embankment-type of
river-littoral boundaries essentially acting as a continuous, broad-crested weir,
through which flow exchange occurs between channel and floodplain.

Floodity [45]
An anisotropic dynamic mesh optimization (DMO) technique for 2-D double
control-volume and a finite element adaptive mesh model for urban coincidental
flood modelling.

Delft Flooding System
Delft-FLS) [46]

Overland flow simulation by the 2-D Saint-Venant equations on a rectangular,
staggered grid with a finite difference method employing a shock-capturing
numerical scheme suitable for rapidly modeling varying flows over rough terrains,
including flow through defense breaches and around buildings (minimum depth
of 0.01 m distinguishes “dry” from “flooded” cells).

Unstructured Tidal,
Residual, Intertidal,
Mudflat version 2
(UnTRIM2)

[47]

A semi-implicit, Eulerian-Lagrangian finite difference/finite volume model,
governed by 3-D SWEs with Boussinesq approximation solved for free surface
elevation, water velocities (and salinity) in a Cartesian coordinate system on an
unstructured orthogonal grid including both 3-D barotropic and baroclinic
processes (tide, wind, and gravitationally-driven circulation).

Sea, Lake, and
Overland Surges
from Hurricanes
(SLOSH)

[48,49]

A polar-grid storm surge model with gradually varying cell sizes covering a basin
extending from the possibly flooded inland area up to deep water, with a
dedicated computation scheme on a B-grid to simulate wetting and drying
processes. Water surface elevation differences act as hydraulic load for floodwater
propagation to the surrounding grid cells.

Stevens Estuarine
And Coastal
Ocean Model (sECOM)

[50,51]

A successor model to the Princeton Ocean Model (POM) family of models; a 3-D,
free surface, hydrostatic, primitive equation estuarine and coastal ocean
circulation model with a wetting-drying flood model approach along free
moving boundaries.
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Table 1. Cont.

Model References Concept and Applications

Xie-Pietrafesa-Peng
(XPP) model [52,53] A HM-C mass-conserving inundation wetting/drying scheme coupled

to POM-3D.

Cellular Automata
(CA) modules [54,55]

A simplified, grid-based, Saint-Venant equations, 2-D shallow hydrodynamic
module discretized in time, space, and state, with local spatial interaction and
temporal causality, also optionally running on a triangular finite element mesh.

Within this modelling framework, Hubbert and McInnes [56] introduced a storm
surge inundation model through treatment of the coastal boundary configured to pass
through the velocity grid points on the staggered grid in a stepwise manner and define
wet/dry cells in inland areas based on a predefined threshold of local water depth on
each cell. Nevertheless, many researchers have discussed the practical need for reduced
physical complexity approaches [57] to adequately simulate 2-D flood inundation [58]
compared to the full-scale 3-D hydrodynamic or 2-D SWE modelling of complex flood flow
routing [59–66]. The latter mainly applies to 2-D river floodplain flows, but it is equally
valid for 2-D coastal plain flooding either by waves or storm tides. Nevertheless, proper
testing and validation of flood inundation models [67] intended for specific hydrodynamic,
hydraulic, or hydrological processes dictate the concept of equifinality in model imple-
mentation [68]. Our case outlook is to adequately simulate (in terms of robustness and
computational resources availability) the coastal inundation extents (including a fine 2-D
horizontal local distribution of water heights) and the response times of coastal flood
maxima within an oversimplified methodological framework minimizing the uncertainty
of parametric analysis and dependence on unreliable or insufficient (topographic and land
use) input [69].

1.3. Research Incentive

The proposed model follows the conceptual framework of reduced complexity flood
inundation approaches on high-resolution computational grids in a way to balance between
the reliability and practicality of applications in the coastal zone [41,44,70–72]. Hence, we
introduce a recently developed in-house model (CoastFLOOD) specifically designed for
fine-scale hydraulic flooding of seawater in littoral areas. It is specifically built to work in
operational mode, meeting the need to be easily coupled to a coarser large-sale storm surge
model (e.g., HiReSS) written in the same programming language and using similar coding
modules and job execution tactics. Our goal was to further formulate proper and detailed
input for spatially varying Manning roughness coefficients, especially fitted to 2-D coastal
floodplains. This way we can uphold the physical properness, assist the calibration process
and the robust performance of the model in a timely manner for operational forecasting,
and engineer consulting purposes [73,74].

The scope of the study is to further evaluate the impact of detected sea level vari-
ations (either by modelling or monitoring procedures) on seawater inundation patterns
over several characteristic regions of the Greek coastal zone. Kulp and Strauss [75] have
discussed the necessity to minimize errors in DEMs to avoid underestimations of coastal
vulnerability due to MSLR-induced flooding. Therefore, the CoastFLOOD model is tested
in tandem with an updated dataset of land elevation derived from a DEM with a resolution
of dx = 2–5 m that covers 10 selected lowland areas along the Ionian Sea coastline. These
have been identified as highly impacted areas by intense flooding events in the past [17].

The model domains include various urban and suburban settlements, rural coastal
plains, environmentally protected areas (lagoons, estuaries, wetlands, and aquatic habitats),
touristic infrastructure areas, recreational coastal zones with sandy beaches, and coastal
regions accumulating several activities (e.g., aquaculture, fisheries, navigational transporta-
tion, seaport commerce, etc.). Coastal inundation hazard maps are produced to estimate
the littoral flooding variability over the Greek coastline. Model validation is performed for
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the operational forecast mode of CoastFLOOD simulations against fine-scale satellite obser-
vations (by Sentinel-2 images at 10-m resolution), producing the Normalized Difference
Water Index (NDWI) [76,77]. Model results are also compared to a static level, enhanced
“bathtub” inundation approach with “eight-side rule” hydraulic connectivity [78–82].

New model features are also presented, concerning the detailed surveying of terrain
roughness and bottom friction, the expansion of Dirichlet boundary conditions for coastal
currents (besides sea level), the enhancement of a wet/dry cell technique for flood front
propagation over positive/negative steep terrain slopes, etc.

All of the methodological information regarding the model setup, parameterization
features, numerical schemes, and computational grids are thoroughly described in Section 2.
Case study characteristics and datasets for model validation are presented in Section 3.
The results regarding coastal flooding are analysed in Section 4. A discussion of the study
findings is presented in Section 5, followed by a section of concluding remarks (Section 6).

2. Methodology

2.1. Conceptual Approach of Storm Surge Inundation

The basic concept of our modelling approach refers to implementing a set of simplified
continuity and momentum conservation equations for the simulation of rather shallow
and slow inundation processes [16,18]. These are primarily (or solely) driven by the sea
level elevation on the coastline and secondarily by the estimation of the barotropic coastal
current as long as it has an onshore direction. Therefore, we simulate the sluggish seawater
flooding on the low-lying coastal areas that is induced by a slow surface flow due to storm
surge, unlike the fast-evolving undulating flows that are caused by swell and wind-wave
action on the coast.

The model’s advantageous feature is that it can be applied at very high spatial resolu-
tions (e.g., dx = 1–5 m) for a geophysical-scale flow, while the feeding input of SSH, acting as
the hydraulic head that defines the piezometric load on the boundary conditions, can be of
wider scales (e.g., O(Dx) = 1–10 km) [17]. This allows for a practically efficient compromise
between the validity of representation of the governing physics and operational model
adequacy for hydraulic engineering problems in large-scale environmental flows. The
chosen raster modelling approach adopts a (horizontally) decomposed uniform flow ap-
proximation for coastal floodplain flow, which is mainly dominated by gravity and friction
to calculate the momentum balance [18]. This is a reasonable approximation for gradually
evolving (laminar) flows over mild sloping floodplains in rural or natural areas; however, it
may be an oversimplification for unsteady hydraulic flows in complex urban environments,
where turbulent effects play a starker role in rapidly varying topographies. Neglecting
pressure and/or inertial terms of the momentum equation may lead to erroneous repre-
sentation of the floodwater flow characteristics in the built environment. Nevertheless,
the assumed model approach has been shown in the past to be able to adequately predict
the horizontal extents of inundation and the floodwater height in inland areas even if
they lie in urban regions. The simplified kinematic scheme of the Manning-type hydraulic
flow allows for numerical applications on regular gridded domains of large areas, typi-
cally incorporating up to 15 × 106 model grid cells, testing the limits of modern available
computational resources.

2.2. Numerical Model for Hydraulic Flow in Coastal Flooding

CoastFLOOD [16–18] is an in-house numerical model built on a FORTRAN-95 code,
that solves the depth-averaged, 2-D horizontal, mass balance, flood flow equations [25–27,29].
These have produced a series of 2-D floodplain applications [70,72,83] particularly imple-
mented in coastal case studies [84–88]. The latest version of the model, presented herein,
has been enhanced in terms of bottom roughness treatment to include cases in:

(a) Rural plains with agricultural zones and farmlands, wild flora or natural vegetated
fields, forests, bare or stony lands, pastures, and grasslands, etc.;

(b) Wet inland areas, such as shores, estuaries, lagoons, river deltas, beaches, etc.;
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(c) Urban and sub-urban areas with engineered coasts, built waterfronts, ports and
coastal protection structures, roads, highways, railway networks, dense building construc-
tions or open spaces and parks, mildly or highly developed built environments, etc.

The robustness of similar model approaches (e.g., LISFLOOD-FP, FLO-2D, Flood-
map) has been validated and applied in 2-D floodplains in coastal areas or fluvial land-
forms [29,80,83,89]. CoastFLOOD also follows a simplistic finite difference scheme for
hydraulic flow inundation, running on very fine resolution raster grids, able to reproduce
the surge-induced 2-D flood on the coast [17,18]. Propagation of the floodwater front is
decomposed in two horizontal Cartesian x- and y-directions, allowing for discrete zonal
and meridional components of the flow, respectively, for inland flood routing [26,71,90].

The simplified form of the 2-D equations for conservation of mass (continuity) and
momentum are discretized over an ortho-regular grid of rectangular cells (Figure 1a), in
order to reproduce the evolution of a 2-D Manning-type flow between neighbouring cells
over the entire floodplain [58]. The floodwater flow between adjacent cells is mainly driven
by the hydraulic head created by the inter-cell difference of water surface height in all
four cardinal directions of the horizon (Figure 1). Thus, the continuity equation relates the
floodwater volume of an arbitrary cell to the volumetric flows in and out of it, during a
typical timestep of the numerical solution. This is written in the form of generic volumetric
(Equation (1)), (analytic) spatially discretized volumetric and piezometric head (Equations
(2) and (3)), grid- and time-discretized (Equation (4)) equations, as:

∂V
∂t

= Qin
x − Qout

x + Qin
y − Qout

y (1)

∂Vi,j

∂t
= Qxi−1/2,j − Qxi+1/2,j + Qyi,j−1/2 − Qyi,j+1/2 (2)

∂hi,j

∂t
=

Qxi−1/2,j − Qxi+1/2,j + Qyi,j−1/2 − Qyi,j+1/2

∂x·∂y
(3)

ht′
i,j = ht

i,j + dt · Qt
xi−1/2,j−Qt

xi+1/2,j+Qt
yi,j−1/2−Qt

yi,j+1/2
dx·dy or

ht′
i,j = ht

i,j + dt ·
((

θ · Qt
xi−1/2,j−Qt

xi+1/2,j+Qt
yi,j−1/2−Qt

yi,j+1/2
dx·dy

)
+

(
(1 − θ) · Qt′

x i−1/2,j−Qt′
x i+1/2,j+Qt′

y i,j−1/2−Qt′
y i,j+1/2

dx·dy

)) (4)

where, V is the volume with Vij referring to cell (i,j), i and j being the x- and y-directions of
the Cartesian grid; +1/2 in indexing denotes the intercell positioning of flow parameters; t
is the time and dt the timestep of temporal discretization (hence, t’ = t + dt at the follow-
ing timestep in the solution scheme); Qx and Qy are the volumetric flow rates between
adjacent floodplain cells in the zonal x- and meridional y-directions of the Cartesian grid,
respectively; Qin and Qout are the incoming and outgoing volumetric flow rates in a typical
grid cell within the generic representation of the equations; h is the local floodwater height
above each grid cell’s land elevation, z; dx and dy are the cell dimensions in the zonal x-
and meridional y-directions of the Cartesian grid, respectively; θ is a numerical weighting
coefficient, which determines whether the equations are fully solved or partially implicitly
for θ < 1 or explicitly for θ = 1 [58]. The explicit scheme is the norm, but both options are
provided in the CoastFLOOD model. Note that the scalar magnitude of local water height,
h, is calculated on each cell’s centre or any adjacent cell’s centre, e.g., hi,j or hi+1,j or hi,j−1,
while the vectorial magnitude of flow rate, Q, is calculated on either of the side faces of each
cell or either of the side faces of any adjacent cell, e.g., Qi−1/2,j or Qi,j+1/2; hence, practically
rendering the solution scheme on a staggered grid (Figure 1b).
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Figure 1. Depiction of the prototype Cartesian raster grid formulating a typical computational
domain in CoastFLOOD model; (a) discretization of the staggered grid cells (at their centres and faces)
with dx and dy dimensions, over an i−j coordinate system on the Cartesian x- and y-directions (zonal
and meridional directions of the horizon); (b) notation of scalar parameter floodwater height h at the
centres of the grid cells and decoupled vectorial parameter volumetric flow rate, Qx and Qy, between
adjacent cells (at their interfaces). The shaded cell is the main cell of parametric numerical calculation
at each timestep. Arrow directions represent the positive values of flow pathways between grid cells;
i.e., from floodwater flow upstream areas to downstream ones.

This way, we allow for each floodplain grid element to function as an individual
storage cell, letting a simplified formulation of the momentum equation derive inter-cell
fluxes. Equations in x- and y-directions can be written in the form of an analytic kinematic
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function based on Manning’s law, permitting the decomposed calculation of the flow rate
in each grid cell, reading in generic form:

Q =
h5/3

f low

n
·
(

hupstream − hdownstream

CellWidthzonal

)1/2

·CellWidthmeridional (5)

where, CellWidthzonal ≡ dx and CellWidthmeridional ≡ dy are generic notations of cell dimen-
sions in horizontal directions; indices upstream and downstream refer to generic representations
of, e.g., (i − 1,j) and (i + 1,j) cells for (i,j) central element of numerical calculation at each
timestep; n is the Manning’s coefficient of roughness for bed friction inclusion; hflow is
the flow depth between two adjacent cells, i.e., defined as the difference of the highest
floodwater surface elevation from Mean Sea Level (MSL), H, minus the maximum bed
elevation, z, between two neighbouring cells (Figure 2).

The spatially discretized version of Equation (5) further reads:

Qin
x =

h5/3
f lowx,in

n
·
( hi−1,j − hi,j

dx

)1/2

·dy , Qout
x =

h5/3
f lowx,out

n
·
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dx

)1/2

·dy

Qin
y =

h5/3
f lowy,in

n
·
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dy

)1/2

·dx , Qout
y =

h5/3
f lowy,out

n
·
(hi,j − hi,j+1

dy

)1/2

·dx

(6)

where, again, indices in and out denote incoming and outgoing flows.
The spatiotemporally discretized form of Equation (6) corresponding to placement on

a typical model grid (Figure 1b) is written as:

Qt
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(7)

where t is the current time and can be also substituted by t’ to represent the needed values
in Equation (4), and hflow in absolute discretised notation (Figure 2) can be calculated based
on the equation:

h f lowxi−1/2,j
=

(
max

{
Hi−1,j, Hi,j

}− max
{

zi−1,j, zi,j
})

(8)

The exponent hflow
5/3 refers to a Manning law approach for the flood propagation and

can be used under the assumption of a uniform laminar flow over a flat rectangular cell
(dx = dy wide grid element) of constant depth.

Equations (5)–(7) describe the reduced complexity versions of the momentum equa-
tions, which are typically based on a semi-analytical approach for hydraulic flows, such as
the aforementioned Manning-type equation. Alternately, the user can choose to incorporate
the 2-D finite difference approximation of a similar equation for diffusive waves [58]:
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Figure 2. Depiction of flood front propagation over typical grid cells in the CoastFLOOD model’s
2-D x-z plane (graphs (a,b)) and wet/dry cell expansion in pseudo-3-D projection (graph (c)). (a–d)
Schematic representation of Qx and hflow, i.e., the flow depth between two adjacent cells, defined
as the difference of the highest floodwater surface elevation from MSL zero-level, H, minus the
maximum bed elevation, z, between two neighbouring cells either (i,j) and (i + 1,j) in graphs a and
c, or (i − 1,j) and (i,j) in graphs (b,d). (e) Illustrative representation of progressive inundation front
by discretized floodwater flow propagation and encroachment on an elevating model grid with
explicitly modelled micro-topography at arbitrary (n1 − n3 · t) timesteps. Yellow-brown cube-cells
refer to ground, while blue ones refer to floodwater.

2.3. Time Discretization—Numerical Schemes

The abovementioned discretized Equations (4) and (7)–(10) are solved with the use of
appropriate boundary and initial conditions using certified numerical techniques. Coast-
FLOOD incorporates (user-identified) solvers that implement either an explicit (θ = 1)
forward-time and centered-space (FTCS) finite difference scheme or an implicit (θ < 1)
backward-time and centered-space (BTCS) algorithm to obtain predictions of Qx, Qy, and
h at any given timestep. The choice of θ is a prerequisite from the CoastFLOOD user,
resulting in different levels of solution complexity/stability and higher model runtimes
for the implicit scheme. For θ = 1, the Q and h, at t’ can be explicitly computed by the
known quantities at t (floodplain flows Q can be initially calculated by Equations (8)–(11)).
Consequently, floodwater depths h can be updated by Equation (4a). Explicit algorithms
are preferred for their coding simplicity and straightforward integration schemes on a
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staggered ortho-regular raster grid. Nevertheless, numerical stability is ensured by very
small model timesteps, e.g., dt < 10 s, according to the Courant-Friedrichs-Lewy (CFL)
criterion, C:

C = uxdt/dx < 1 (11)

e.g., for C ≤ 0.5, the timestep should practically be dt ≤ (0.5hi,jdx2)/Qx, where ux = Qx/Ax
and Ax = dx·hi,j in a typical grid cell. To ensure numerical stability, the following CFL
condition, with α = 0.3–0.7, is proposed by [27,33]:

dtmax = a·dx/
√

ghij < 1 (12)

Practically, based on Equation (13), for values of, e.g., h = 0.001–1.5 m and dx = 5 m, the
minimum achieved timestep should roughly range between dtmax ≈ 35–0.35 s, respectively
(for corresponding α = 0.7–0.3). Nonetheless, the aforementioned dt values refer to an upper
threshold value, while even lower timesteps may be needed in the course of cell-by-cell
numerical solution. Previous studies have proposed the following adaptive timestep [71],
based on the Von Neumann condition, especially for the diffusive wave case, as shown in
Equations (9) and (10):
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This is supposed to eliminate “chequerboard” numerical oscillations, induced when dt
becomes large, which essentially occurs for very low hi,j values and consequently low flood
flow rates (and floodwater velocities). However, in the CoastFLOOD model, the practical
lower/upper cut-off dt values are set to 0.5 s ≤ dt ≤ 5 min (e.g., for dx = 5 m), allowing for
reasonable computational times and the avoidance of lagging in the numerical solution,
respectively. Likewise, to avoid further instabilities in the advancing iterations of the nu-
merical solution (notably in high floodwater depths, hi,j, or highly uneven elevation levels
of adjacent cells), we adopt a flow rate limiter, especially for the most classic case of 2-D
floodplain flow being controlled by momentum Equation (7). The flow limiter (minimum
Q threshold) can also prevent instabilities in adjacent areas of very large differences in
floodwater depth [25]:
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(14)

for a concomitant min/max limiter of floodwater velocity that reads 0.01 m/s ≤ ux =
Qx/Ax ≤ 5 m/s. Similar equations apply to the y-direction of the flow. With this numerical
treatment, the user can actually prevent over- or under-shooting of the numerical solution.
The flow limiter essentially ensures that floodwater depth change in an arbitrary cell at t is
not adequately large to reverse the y flow entering or exiting the cell at t’ [71]. Q values
derived by Manning’s equation are replaced, when overestimated, with values strictly
determined by model domain parameters (dx and dt). If a small dt or large dx is chosen, the
limiter is nearly eliminated. Therefore, the results of the CoastFLOOD model, like many
other storage-cell codes for flood flows, are far from invariant with respect to dx and dt.
Their optimal choice is a matter of experience, taking into account the extents of the entire
case study domain and its low-lying areas, etc. Moreover, this approach may undermine
the simulations in terms of correctly predicting the advance of flood fronts and the volume
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of floodwater in inundated areas [91]. The choice of smaller CFL numbers, C << 0.5; hence,
smaller dt can address this discrepancy.

The coastal flooding phenomena, induced by storm surges, may last from several
hours up to a few days, i.e., resulting in simulations of 2–4 × 104 to 2–5 × 105 timesteps, for
a few hours up to 3 days duration of the studied flood event, given that dt ≤ 1 s. Depending
on the number of inland grid cells to be flooded (e.g., up to 40 × 106 elements), this means
that the estimated computational times range from one hour up to more than half a day
on a PC with a 10th generation 12-core Intel® i7-CPU, 10750H, @2.60 GHz, with 64 GB
RAM and 1 TB SSD hard disk 860 QVO. For the case of the implicit scheme, where Q and h
variables depend on unknown quantities at t’, an iterative solution technique (e.g., finite
difference Preissmann scheme [92]) adds even more computational burden and time. Of
course, the implicit scheme allows for larger timesteps in the O(5–10) mins, given the slow
evolution of flood events over inundated plains.

The meridional- and zonal-direction decompositions of the flood flow components
allow the derived 1-D flow equations for overland seawater propagation to be numerically
and separately calculated for each grid cell face on a typical 2-D raster [90]. This makes the
calculation of flood routing an easy task, through the use of a simplistic nearest neighbour
or quad-tree search algorithm for the downstream cells. The latter are defined as dry or
wet (for hij > 0.005 m) and then they are saved and/or updated in a storage cell matrix
at every simulation timestep. To this end, the effective water flow depth between two
neighbouring cells, hflow, which is defined by the difference between the highest possible
water level in adjacent grid elements and their largest land elevation, z (Figure 2), is not
allowed to exceed the maximum threshold of hflow ≤ max(hi,j) = SSH−zi,j. The x- and
y-direction decoupling of flood flow propagation may not represent the diffusive nature
of the inundation wave spreading on the floodplain; however, it has been shown [83] that
more complicated treatments of floodplain flows have yielded no significant improvements
compared to reduced complexity models [70] when evaluated against Synthetic Aperture
Radars (SAR) data.

2.4. Computational Domain and Raster Grid

The numerical grid formulation (terrain discretization) for typical, reduced complexity
models of coastal inundation by storm surges follows the trends in the development of high-
resolution topographic gridded data. Namely, DEMs represent bare earth or ground surface
topography, excluding trees, buildings, and any other surface objects, while Digital Surface
Models (DSMs) capture the land surface, including vegetation and manmade structures,
such as buildings and infrastructures. DEMs are used to construct the entire model domain
(mainly focused on natural areas, rural environments, wild lands, etc.), whilst DSMs are
implemented within urban and suburban areas to include the flow obstruction by the built
environment.

To firstly identify the low-lying areas along the Greek coastal zone and secondly
create the detailed topographical input for the storm tide inundation simulations with
CoastFLOOD, the GIS datasets of land elevation were retrieved from the official Greek
service for the comprehensive recording of real-estate and property metes-and-bounds [28].
There are two available high-resolution DEMs in coastal and inland regions with spatial
resolution dx = 2 m and 5 m. The rectangular model domains were produced by post-
processing of the available polar coordinate geospatial data in the World Geodetic System
1984 (WGS84) to HGRS87. The DEM’s geometric accuracy is less than 0.70 m, while its
absolute accuracy is less than 1.37 m with a 95% confidence level [17]. Similarly, the
DSM’s accuracy is less than 0.32 m, while its absolute accuracy is less than 1 m with a 95%
confidence level. The DSM has an even finer resolution of dx = 0.8 m, and thus its datasets
were extrapolated to fit the fixed model’s computational domains of dx = 2–5 m.

To avoid the underestimation of the storm surge effect driving the flood flow from
any possible convex or crooked part of the coastline (no matter how complex it might be
or what orientation the shoreline has in the domain), a cross-type scan of the model grid
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(N→S and S→N in the meridional direction; W→E and E→W in the zonal direction) is
applied in every timestep (Figure 3). This way, the volumetric flow rates’ signs (Figure 2c,d)
are corrected, based on the propagation of the flood front from all directions of the horizon,
and thus the wet/dry storage cell matrix is updated with every possible change in water
level of each grid element in the model domain (Figure 3). This is a step forward from
traditional coastal inundation modeling that considers flood propagation from only one
boundary at a time.

Figure 3. Depiction of the cross-type scanning process of the numerical grid by the computational
domain in the CoastFLOOD model. Red and blue arrows represent the numerical propagation scan
direction of the grid cells on zonal and meridional, x- and y-axis, for i = 1, N and j = 1, M (and reverse),
respectively, applied at each timestep.

The discrepancies of the DEM/DSM are crucial factors of accuracy in CoastFLOOD
simulations of flooded areas, even if the highest available resolution raster grid is used to
include topographic details of the natural and urban parts of the coastal domain [93]. Coast-
FLOOD does not consider the effects of porous bed percolation and ground infiltration,
flows in sewerage and drainage systems (e.g., conduits, bridge culverts, wells, shafts, etc.).
However, this is not considered a crucial issue, as these constructions are usually saturated
with fresh water or drainage/sewage waters from surface runoffs. Coastal inundation
usually occurs within a compound flooding incident; i.e., concurrently to river flooding
and/or urban flooding due to heavy rainfall and strong runoffs relevant to the storm event
also driving the onshore sea surge [37].

2.5. Model Parameterization

Bottom friction is the main parameterization feature of reduced complexity flood
inundation models. The calculation of hydraulic flows requires the specification of flow re-
sistance or bed roughness in a parametric approach. As the typical model cell’s dimensions
and depth are assumed to be uniform for each grid element, an effective Manning’s bottom
roughness coefficient, n, at grid unit scale can be determined as a calibration parameter.
Seenath [94] thoroughly discussed issues of achieved improvement in prediction modelling
of coastal flooding (more in terms of inundated area extents) based on the fine representa-

106



Hydrology 2023, 10, 103

tion of spatially distributed friction over the case study domain against a uniform n value
all over the model grid.

The CoastFLOOD model incorporates both solutions, i.e., considering the friction
effect of the floodplain terrain on the inundation flow either by defining a distributed,
effective, grid-scale Manning’s n on each cell of the model’s raster domain or by proposing
a representative “global” effective grid-scale n coefficient (on the entire domain or large
homogenous parts of it). By integrating the relevant literature [74,80,94–101], we created
a detailed collective ensemble of proposed Manning coefficient n values discretized at
36 increments (Table 2). These values are specifically fitted to 2-D coastal floodplain flows
and refer to the most common and less likely types of (natural or artificial) ground material.

Beven [102] argued that a predetermination of bottom roughness parameters at each
computational grid point was rarely possible due to scaling problems, i.e., differences
between the in situ observation scale and the model grid scale, and other data availability
constraints. However, the recent development of the CORINE Land Cover (CLC) inven-
tory [103] provides a robust record of land cover in 44 classes for Europe. CLC uses a
minimum mapping unit of 25 ha for areal phenomena and a minimum width of 100 m for
linear phenomena; here, we use the latter. CLC is mainly produced on a country/state-level
by visual interpretation of fine-resolution satellite imagery from Sentinel-2 and Landsat-8
(for gap filling) products, with the latest time consistency referring to 2017–2018.

Table 3 presents a detailed matching catalogue that we have created for all 36 discrete
cases of CoastFLOOD’s Manning coefficient listings in Table 2 to the CLC-2018 codes that
refer to data of as many possible natural and manmade land cover types. CLC is available
in both raster and vector formats; in our case studies, we used the second one, because it is
easier to align the land cover data to the constructed model domains. Specifically, for each
of the study areas, CLC data were retrieved in QGIS using its boundaries as a reference.
Then, a Manning coefficient n was assigned to each vector polygon representing a specific
land use, using the matching between n and land use from Table 2. Finally, a raster image
with the same dimensions and spatial resolution as the Manning n matrix and the model
grid was created. If no CLC are available, a parametric calibration of bottom roughness can
be undertaken in order to identify empirical values for the Manning coefficient. Terrain
heterogeneities on the sub-grid level can cause discrepancies in the representation of land
cover texture, thus Manning’s n is commonly used as a determinative calibration parameter
rather than a physical factor of actual field friction.

Table 2. CoastFLOOD 2-D modified floodplain Manning coefficient list.

A/A n Description of Areas’ Characteristics

1 0.001 open water

2 0.0115 concrete surfaces

3 0.010 rural driveways (dirt road and granules)

4 0.012 urban land uses (asphalt mixtures and other urban surface features: artificial stones, paving blocks,
lightweight aggregate concrete), concrete rooftop, playground, yard, barren land

5 0.013 main asphalt roads (national, regional highway networks, autobahns, etc.)

6 0.015 brick terrain, unidentified high and low development urban environment, inland open waters
(reservoirs, lakes, ponds, lagoons, estuaries)

7 0.017 city streets (asphalt, concrete, etc.)

8 0.018 unidentified/unclassified urban terrain

9 0.020 clean to gravelly earth pathways (pebbles with a small portion of cobbles), muddy/sandy open waters
and sandy terrains, sea bottom (saturated wet sand or silt-sand) and channel beds

10 0.030 bare unidentified/unclassified soil
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Table 2. Cont.

A/A n Description of Areas’ Characteristics

11 0.022 bare land, stone paved road and ceramic sett, or paving sett pathways

12 0.029 stony cobble lands, pastures, and farmlands

13 0.025 manmade structures, gravel beds and pathways (pebbles with nominal diameter: dn50 = 4–64 mm,
cobbles: dn50 = 64–256 mm)

14 0.0375 cultivated fields and pasture, grassland (including prairies, steppes, plains)

15 0.0425 isolated sand/gravel(mixed) pits, estuary channels, and uneven urban areas

16 0.029 emerged sloping sandy beaches, sand dunes

17 0.030 managed grasslands

18 0.0115 unclassified/unidentified rural areas

19 0.033 grass surfaces

20 0.035 short stiff grass areas

21 0.0575 weeds with or without structure

22 0.0555 heavy brush floodplains

23 0.040 arable land plains, heavy/coarse gravel (boulders: dn50 >= 256 mm) areas, unclassified grassland, and
shrubs (including savannah, meadow, veldt, pampa, tundra)

24 0.050 unclassified trees, open development areas (containing parks, streets of rural character)

25 0.055 herbaceous wetlands

26 0.067 emerged barriers

27 0.140 hardwood woodland and cultivated woodland

28 0.086 unclassified wetlands (including watersheds, salt/fresh marshes, bottomland hardwood, swamps,
mangrove swamps, seagrass flats, forest swamps)

29 0.100 forest land and unidentified forest trees evergreen forest, pasture, hay, crop, vegetation

30 0.120 deciduous forest, natural grassland, herbaceous lands

31 0.150 mixed forest, shrubs, scrub, emergent herbaceous wetlands

32 0.240 cultivated vegetation

33 0.300 unidentified densely built urbanized zones (uncharacterized structures)

34 0.320 very dense tall (long trunk) trees forest (jungles, etc.)

35 0.368 very dense and/or stiff grasslands (reedy bamboo, etc.)

36 0.400 very dense small forest trees and thick shrubs

Table 3. Matching of Table 2’s A/A for Manning coefficient list to Corine Land Cover (CLC) data.

A/A CLC Code Description of CLC Label Areas’ Characteristics

4–8 111, 112 Continuous urban fabric, Discontinuous urban fabric

10–8 121 Industrial or commercial units

5–7 122 Road and rail networks and associated land

4–2 123 Port areas

4–5 124 Airports

3 131 Mineral extraction sites

6–4 132, 133, 141 Dump sites, Construction sites, Green urban areas

4–7 142 Sport and leisure facilities

23–14 211, 212 Non-irrigated arable land, Permanently irrigated land
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Table 3. Cont.

A/A CLC Code Description of CLC Label Areas’ Characteristics

14 213 Rice fields

22 221 Vineyards

30 222 Fruit trees and berry plantations

29–30 223 Olive groves

12–14 231 Pastures

27 241 Annual crops associated with permanent crops

27–32 242 Complex cultivation patterns

21–29 243 Land principally occupied by agriculture, with areas of natural vegetation

29–32 244 Agroforestry areas

29–34 311 Broad-leaved forest

30–34 312 Coniferous forest

31–34 313 Mixed forest

19–30 321 Natural grasslands

22–30 322 Moors and heathland

32 323 Sclerophyllous vegetation

31 324 Transitional woodland-shrub

16–15 331 Beaches, dunes, sands

12–9 332 Bare rocks

29–32 333 Sparsely vegetated areas

10 334, 335 Burnt areas, Glaciers and perpetual snow

28 411, 412, 421, 422 Inland marshes, Peat bogs, Salt marshes, Salines

1–16 423 Intertidal flats

6 511, 512, 521, 522 Water courses, Water bodies, Coastal lagoons, Estuaries

1 523 Sea water

2.6. Input Data: Boundary and Initial Conditions, Simulation Time Limit

A basic assumption of the CoastFLOOD approach, except for the steady state forcing
of the flood flow on the coastal boundary with smoothly varying sea level maxima, is the
non-treatment of the floodwater ebbing phenomenon. The model considers the spatiotem-
porally local wetting and drying of individual cells during the numerical solution, yet the
computations are ceased when floodwater reaches the farthest area from the coastline or
the waterfront. Thus, the model is not allowed to simulate the large-scale drying phase of
floodwater receding back to the sea after the storm surge begins to decrease on the marine
coastal boundary.

The application of a flood inundation model to a specific coastal area requires the
definition of boundary conditions (mainly shoreline sea level and optionally onshore
currents), topographic features (land elevation), and local flow resistance (bottom friction)
as model parameters that control the flow characteristics. If the SSH on the coastline
exceeds the MSL, then Equations (4) and (7) or (8) are activated with a value of h(t) ≡ SSH(t)
on the seaside boundary (ghost) cell, used to calculate the initial volume flux to all adjacent
shoreland cells and then onto the floodplain cells. This implies that CoastFLOOD is driven
by a Dirichlet-type boundary condition referring to local values of h = SSH−z (where z is
the land elevation of a raster grid cell) [18], i.e., even for sea level timeseries SSH(t) varying
in the tidal cycle on the seaward side of the computational domain [17]. These conditions
should last for at least a few hours and up to 3 days, given that the storm-induced sea

109



Hydrology 2023, 10, 103

level does not abruptly change in time but follows the slow smooth variation of the tidal
constituent. Furthermore, this approach is ideal for particular scenarios of long-term MSLR
or Total Water Level (TWL) on the coastline [104,105].

Although this approach actually ignores the momentum exchange effects between
neighbouring cells in the floodplain and therefore introduces a restricted physical interpre-
tation of the flow characteristics, it can capture all of the dominant features of the shallow
seawater onshore flow, which leads to the rather slow propagation process (thus, seawater
flux may be neglected) of coastal inundation [26,30,57,83,94]. To include the barotropic
current’s effect on the momentum flux of the first land cell adjacent to the seawater cell,
we added an impromptu Qxs = Ucx·dy·hflowx (similar to Qys; where Uc is the storm surge-
induced current velocity decoupled in Cartesian components Ucx and Ucy) added to the
calculated Qx, Qy of Equations (7) and (9) or (10), only for the “first” dry shoreland cell. Its
inclusion does not seem to drastically influence the inland flood inundation extent, but it is
a step towards improvement of the physical representation of onshore seawater flow.

The storm tide (integrating surge and tide) levels can be extracted either from ocean
modelling (Section 2.6.1) or from tide-gauge recordings and satellite altimetry (Section 2.6.2).
The seawater elevation input can be entered as a boundary condition, representing the
land-sea interface, on any cell in the computational domain.

2.6.1. Coupling with a Storm Surge Model

We coupled CoastFLOOD with the operational forecast model HiReSS, which sim-
ulates storm surges at both regional and local scales [17,19,21,106]. The latter is a 2-D
horizontal SWE hydrodynamic circulation model for the simulation of sea level varia-
tions and depth-averaged currents, applied in large regional marine bodies and marginal
seas [9,20,22–24], including several combined processes, such as:

• barotropic circulation hydrodynamics by momentum conservation and continuity
SWEs;

• inverse barometer effect, i.e., the response of sea level to the atmospheric pressure
gradient of large barometric systems;

• shear stresses of wind on the sea surface;
• Earth gravity and geostrophic effects (Coriolis force);
• interaction of surge-driven sea level and astronomical tides by a static model [107]

approach based on the equilibrium theory of tides [108];
• ocean bottom friction;
• turbulence of horizontal eddies based on the eddy viscosity concept and the Smagorin-

sky model approach;
• interaction with coastal wave-induced currents by incorporating radiation stress terms

in nearshore surf zones;

The model has been applied in operational forecast mode for short-term marine
weather predictions and has been thoroughly validated, during the past 15 years, in the
Mediterranean region against field data from in situ tide-gauge observations of storm-
induced episodic SSH due to severe weather conditions or the derived Sea Level Anomaly
(SLA; SLA = SSH−MSL) in inter-annual tidal cycles [2,17,20,21]. Its climatic mode coun-
terpart, MeCSS, has also been evaluated for long-term historical simulations of mean and
extreme storm surge patterns in the Mediterranean basin during (>30-year) reference peri-
ods [9,18,22–24,104,105]. Furthermore, the HiReSS model is the official numerical tool of the
Operational Forecast Platform (OFP) Wave4Us, recently incorporated into the METEO.GR
node managed by the National Observatory of Athens [109–111]. It is also advocated
on a global scale by the Accu-Waves OFP [112] over several regional and marginal seas
(e.g., Red Sea, Yellow Sea, Black Sea, Java Sea, NW Atlantic Ocean, etc.), gulfs, straits, and
local aquatic bodies (e.g., Gulf of Finland, Osaka Gulf, Tokyo Gulf, Persian Gulf, English
Channel, etc.), producing sea level forecasts for safer navigation in 50 important ports
around the globe [113].
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2.6.2. Boundary Conditions from Sea Level Observations

The model can also be forced by sea level observations on the study areas’ coastlines,
which are represented in the computational domain by marginal dry cells of the model
grids during Still Water Level (SWL) conditions. Observations can be derived either
from satellite altimetry (SLA) of the Copernicus Marine Service (CMS) that covers the
last 30-years [114] or tide-gauges, located along the coastline [115]. The spatial resolution
of the CMS product is 1/8◦ (~13 km), and it is provided in a daily step while the initial
coverage of the dataset extends over all European seas. The Level L4 data are produced
by merging observations of Topex/Poseidon, ERS1/2, Jason 1-2-3, Sentinel (3A/B and
6A), HaiYang-2A/B, Saral[-DP]/Altika, Cryosat-2, ENVISAT, and GFO altimetry missions.
These satellite SLA fields have been previously used to evaluate the sea level variability
in the Mediterranean Sea [116,117]. The tide-gauge observations can be derived from the
Intergovernmental Oceanographic Commission (IOC) system. The IOC field data [115] have
higher temporal resolution (e.g., 10-min step), but their spatial coverage along the coastline
is coarser than the satellite or modelling data based on the locations of the tide-gauges,
which are usually operated inside ports. Here, we focus on CoastFLOOD simulations
forced by satellite-derived SLA data (see Section 4.2).

The CoastFLOOD simulations provide tide/surge-induced flooded areas due to satel-
lite recordings or realistically modelled values of daily SLA or SSH values, respectively.
From these, the timeseries’ maxima are extracted, SLAmax or SSHmax, and are separately
simulated together with several extreme case scenarios of onshore TWL, typical of the
east-central Mediterranean and the Greek coastal zone; i.e., 0.5, 1, 1.5, and 2 m [23,104,105].
The latter produce reference values of Flooded Areas (FA) in regions prone to coastal
inundation, assisting in the normalization of flood extents in different case studies.

3. Case Studies and Data for Model Validation

3.1. Case Study Areas

The CoastFLOOD model was tested at 10 selected case study areas of the western
Greek coastal zone (Figure 4), which are rather frequently inundated by storm surges of
the Ionian Sea. Similar to tropical storms, peculiar low-pressure atmospheric systems
may form in the western and central Mediterranean (namely Medicanes) and propagate
from the westernmost cyclogenesis centers of the basin towards the Ionian and Adriatic
Seas, making landfall on the western shores of the Italian and Balkan Peninsulas [118–121].
These events are known to threaten the selected case study areas, located in coastal lowland
regions prone to inundation (Figure 4a). Thus, the latter were chosen based on a series
of recorded coastal (and/or compound) flooding events that were recently reported in
mass media (i.e., some examples out of numerous documented flood inundation impacts
in provincial and metropolitan Greek areas; Figure 4b–e):

• Manolada-Lechaina coastal zone (Area 1), east of Patra city, north-western Pelopon-
nese, southeastern Ionian Sea, recorded during October 2021 storm Ballos [122] fol-
lowed by incidents during December of the same year (December 2021).

• Vassiliki Bay (Area 2; Figure 4c) on the southern coast of Lefkada Island, northern
Ionian Sea, recorded on 17 November 2017 [123] and on 18 September 2020 [124].

• Preveza coast (Area 3; Figure 4e), west-central Epirus, northern Ionian Sea, recorded
on 30 November 2021 [125].

• Igoumenitsa port (Area 4), north-western Epirus (north Ionian Sea), recorded on 12
November 2017 [126].

• Cephalonia Island (including the Livadi coastal area in its southern bay; Area 5), central
Ionian Sea, recorded on 18 September 2020 [127] during Ianos Medicane [17,120,121].

• Patra city (Area 10), broader metropolitan area in north-eastern Peloponnese, Rio town’s
flooded seafront during Ianos Medicane [17,120,121], on 18 September 2020 [128].
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Figure 4. (a) Map of selected study areas to apply the CoastFLOOD model; Areas 1: Manolada-
Lechaina, 2: Vassiliki bay, 3: Preveza coastal area, 4: Igoumenitsa port, 5: Livadi bay, 6: Kalamata,
7: Argostoli, 8: Kyparissia, 9: Laganas, 10: Patra city; (b) Depiction of boat wreck due to the
passage of Ianos Medicane (September 2020) over Lefkada Island; (c) Storm seawater inundation of
November 2017 in Area 2 (Vassiliki, Lefkada Island); (d) impact of “Ballos” (October 2021) storm on
a touristic beach on Corfu Island; (e) storm surge coastal inundation at the seafront of Preveza (in
November 2021).

Other interesting flood-prone areas (Figure 4a) frequently impacted by sea level
elevation on the Ionian coastline comprise the towns of Kalamata (Messenia, southern
Peloponnese; Area 6) and Argostoli (east Cephalonia Island, Ionian Sea; Area 7), the rural
areas of Kyparissia (north-western Messenia, south-western Peloponnese; Area 8), and
Laganas (southern Zakynthos Island, Ionian Sea; Area 9).

3.2. Observational Data for Model Evaluation

The coastal model validation was based on comparisons of simulation results against
ocean colour images collected by the Sentinel-2 satellite with a spatial resolution of
10 m freely distributed by the Copernicus Data Space Ecosystem (CDSE) or Sentinel
Hub [129,130]. To estimate the observed coastal inundation during stormy conditions, a
remote sensing technique of Sentinel-2 raster images was used to compute the NDWI [131]
on coastal areas affected by storm surges, shown to oversee any alterations in water content
on the Earth’s surface aquatic resources [132]. Several researchers have used NDWI in the
past to assess flood extents due to hurricane-led storm surges, e.g., in the Gulf of Mexico,
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or to identify coastlines [133,134]. NDWI is computed based on Band3 and Band8 bands of
the ocean colour images:

NDWI =
Band3 − Band8
Band3 + Band8

(15)

where Band3 is the Visible Green Light (VGL) and Band8 is the Near-Infrared Radiation
(NIR) of the spectrum.

Herein, we use NDWI to identify (wet) flooded areas on low coastal inlands following
a storm surge event with two different procedures (see Section 4). In the first case, a
satellite image taken on 14 December 2021 was used to calculate the NDWI > 0 on the raster
grid, corresponding to “wet” cells of the study area (given that they are not all flooded
by seawater, but by rainwater from precipitation or surface runoff as well). The second
approach involved the estimation of flooded areas using two separate satellite images, the
one before (15 September 2020) and the second after (20 September 2020) the recorded Ianos
Medicane’s storm surge that occurred on 17–18 September 2020 (due to the unavailability
of datasets on these exact dates); the difference of the two calculated NDWIs was used to
estimate the inundated area [17]. Specifically, after calculating the individual NDWI for
each cell of the domain and both images, the difference in NDWIdif of post-storm NDWI
minus pre-storm NDWI was calculated on each pixel of the raster grid. It was assumed
that pixels with |NDWIdif| > 0.15 corresponded to remaining wet ground (areas that were
very likely flooded during the storm). To identify areas that were flooded likely due to the
storm surge, the NDWI values of the second image were filtered to exclude the already wet
cells before the storm surge. Notably, the areas identified as inundated by stormwater had
NDWIdif > 0.5 in many instances, confirming the result. To avoid misinterpretations, we
mainly considered lowland areas close to the coastline (with hydraulic connectivity to the
sea), nevertheless there is no safe method yet able to distinguish the source of floodwater
(e.g., tidal surge, drainage or runoff, and rainfall) based on the NDWI technique.

An important limitation of the comparison with remote sensing NDWI fields is that
satellite images are susceptible to the timeframe they refer to or are available in, namely
due to the absence of satellites over the study regions during the storm event or due to
cloud contamination, a process very common during storms, cyclones, and Medicanes. A
second limitation of the NDWI method is that the water accumulation due to intense water
precipitation or surface runoff from surrounding higher ground into bilged lowlands (e.g.,
cesspools, dugouts, sumps, pits, fosses, and cisterns) can contaminate the derived NDWI
fields of humid surfaces or wetted areas, thus deregulating the coastal model validation
procedure. Nevertheless, the NDWI method is essential for model performance testing of
the occurrence of characteristic coastal hazard events.

3.3. Enhanced Bathtub Module for Model Validation

The CoastFLOOD model was compared with a static level “bathtub” approach in-
undation module [78,135]. This method easily identifies the flood-prone low-lying areas
with ground elevation below a predefined threshold, e.g., an estimation of coastal seawater
level maximum, z < SSH or z < TWL. The bathtub technique is known to be oversimpli-
fying in terms of physical processes and can produce serious overestimations of coastal
flood extents [34,136]. Therefore, an enhanced bathtub module with hydraulic connectivity
(Bathtub-HC) was adopted [81,137,138]. To this end, we applied a nearest neighbour search
algorithm following the ‘eight-side rule’ in order to identify the potential floodwater flow
path between neighbouring raster-grid cells in both cardinal (cross-orthogonal) and ordinal
(diagonal) directions of the horizon. This way, the unsubstantial excessive estimations of
possible seawater inundation in coastal lowlands was restricted.

The Bathtub-HC method is known to provide fast and adequately robust estimations
of flooded coastal area extents, yet they are practically more conservative than those by
SWE models. Compared to the CoastFLOOD model, this method neglects the floodplain
terrain sloping topography, the bottom friction effects, etc. Thus, it can predict the flooded
areas, but it cannot account for flood duration, detailed floodwater height, and fluxes
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(velocities) that dynamically affect the onshore and overland floodwater flow. Hence, the
Bathtub-HC results are usually only implemented as a reference level for potentially wet
inland cells in evaluative assessments of reduced complexity numerical models [16–18].
Moreover, bathtub methods can collaterally identify and depict lowland bilge areas (e.g.,
pits, fosses, puddles, and cisterns) that can accumulate water from rainfall and surface
runoff, unlike SWE coastal flooding models, which only account for seawater floods [17].

Convenient field data of coastal inundation based on in situ observations of floodwater
height and extents are literally very rare, while their fitness for model verification is
not always suitable due to several reasons [30]. There are no available floodwater level
gauges in coastal areas (there are only a very few downstream of river embankments in
fluvial floodplains), at least in Greek (scarce- or no-data) study areas of interest. Reduced
complexity models of coastal flooding need field data for verification on geophysical scales
(10–100 km wide) of observation and implementation. Therefore, only satellite data can
serve as in situ references for impacted areas due to seawater flooding. The latter are
susceptible to the timeframe they may be available in (e.g., the absence of satellite data
during storm events, cloud contamination of satellite images, etc.). Uncertainty regarding
the contribution of possible sources of recorded inundation besides storm surges (e.g.,
waves, rainfall, drainage) may obfuscate the derivation of inundated area coverage due to
storm-induced floods.

4. Results

We examined the adequacy of the inundation model predictions under realistic severe
storm surge conditions (Section 4.1) and simplified bathtub estimations (Section 4.2), on
the Ionian Sea coasts of Greece. Idealized (extreme) and realistic (maxima from 2017–2021
period) scenarios of coastal flooding are also presented in Section 4.3.

4.1. Model Verification against Satellite Data during Severe Storm Surge Conditions

Two areas and events were used for qualitative verification of the coastal flooding
model’s performance due to a lack of imperative satellite data. In the Manolada-Lechaina
study area, there was unfortunately no satellite data availability during October 2021, when
storm Ballos hit. However, NDWI could be estimated on 14 December 2021, when another
storm surge incident was traced based on the retrieved SLA datasets. These depictions
serve as reference for qualitative comparisons with the modelled output of CoastFLOOD.
Figures 5 and 6 present flood maps of model simulations overlaid by satellite-tracked wet
regions. The CoastFLOOD results are driven on the coastal boundary of the Manolada-
Lechaina study area by recorded SLA values on 14 December 2021 (see Section 2.6.2). The
zoomed-in maps of Figure 6 depict the overlap of NDWI-identified wet areas by satellite
images above flood inundation model output focusing on the mainly affected northern
and southern parts of the study area. In general, the CoastFLOOD simulations seem to
reproduce the coastal flooding mechanism in areas that are more-or-less affected (wetted)
by stormy weather during the timeframe of analysis. Furthermore, model results may
overpredict the momentary depiction of flood extents, as derived by the NDWI method
based on the recorded image on 14 December 2021 at 09:24:01 (hh:mm:ss). However, there
is no guarantee that the satellite data represent the actual situation of floodwater extents
during the storm-induced high seas.
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Figure 5. Map of estimated flooded areas as depicted by NDWI satellite data (purple colour) overlaid
on CoastFLOOD simulation results driven by recorded SLA values on 14 December 2021 (blue colour)
for the Manolada-Lechaina study area, north-western Peloponnese (western Greece). The flooded
areas’ extents are superimposed over a background of recent GoogleEarth satellite images.
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Figure 6. Zoom-in maps from the estimated flooded areas in Figure 5 as depicted by NDWI satellite
data (purple colour) overlaid on CoastFLOOD simulation results driven by recorded SLA values on
14 December 2021 (blue colour) for the Manolada-Lechaina study area; upper map: northern part,
lower map: southern part. The flooded areas’ extents are superimposed over a background of recent
GoogleEarth satellite images.
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Figure 7 portrays the estimated flood map in the Livadi study area (Area 7; Figure 4a),
based on a heuristic approach of NDWI differences before and after the landfall of Ianos
Medicane on the study area [16,17,120,128], depicted on a 0.1–1.0 scale of values, overlaid
on the CoastFLOOD simulation results. The latter were driven by HiReSS-modelled SSH
(see Section 2.6.1) from operational forecasts by the WaveForUs system on 17 September
2020 [17,109]. The predicted flood extents (red patches) on the southern coastal zone of
Cephalonia Island overlap and include the traced wet areas by remote sensing (purple
patches). A large wet area (shown in shades of purple) in the northern part of the study
area, set off of the model-predicted flooded area, is considered to be hydraulically detached
from the impacted area due to the storm surge. These areas usually act as drainage
bilges that are usually flooded with water originating from local intense rainfall and/or
stormwater surface runoff from the surrounding hills and mountains. An extreme case
scenario of TWL = 1 m, typical for a possible cumulative sea level increase due to the
combined effects of surges and waves, is also provided (yellow patches) for comparison of
the flood-prone littorals against the actually impacted touristic coastal areas. The extreme
case flooded extents may reach a 250-m distance onshore in the southern part of the study
area, occasionally reproduced by the model for the actually recorded SLAmax, too, while
not along the entire beach stretch. An intrusion of floodwater around 167 m from the
coastline, where the beach dunes are located parallel to the shoreline contour, is further
plausibly reproduced by the model for both SLAmax and TWL cases on the north-western
part of the coast. For the extreme TWL case, the model further predicts a 458-m inland
flood extent on the northern part of the study area, but this is not reproduced by the
SLAmax = 0.262 m simulations as the area is not hydraulically connected to the sea by an
equally low land pathway.

4.2. Model Validation against the Bathtub-HC Approach

To validate the CoastFLOOD model’s efficiency to reproduce the highest possible
flood extent (on the safe-side in terms of engineering) in coastal plains, we implemented the
performance metric goodness-of-fit, GoF, between the modelled (CoastFLOOD; subscript:
modCF) and the estimated (Bathtub-HC; subscript: estBHC) flooded area, FA, extents [26,30]:

GoF =
FAmodCF ∩ FAestBHC

FAmodCF ∪ FAestBHC

(16)

where FA is defined by the amount of flooded grid cells by the CoastFLOOD model and
Bathtub-HC estimations, respectively. The two predictions exactly overlap each other if
GoF = 1 and no intersection of FAs occurs for GoF = 0 [94]. In the simulated test cases shown
in Figures 8–11, the CoastFLOOD model agreement compared to Bathtub-HC was very
high, i.e., GoF > 0.95 (see captions of Figures 8–11 for actual values), for several scenarios of
SLA as a driver of coastal inundation, ranging from a recorded SLAmax ≈ 0.25 m (minimum
SLAmax recorded in Area 1) to extreme cases of TWL = 1.0–1.5 m. The model was able to
evenly reproduce the estimated maximum inundation extent over lowland areas using the
bathtub approach. As expected, it was slightly underestimated compared to the latter, yet,
therefore, CoastFLOOD shows a more realistic perspective of littoral inundation, given the
error of the retrieved DEM/DSM topography and the boundary conditions (SLA on the
coastline) provided by satellite observations.
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Figure 7. Map of estimated flooded and wet areas as depicted by NDWI differences by satellite data
before and after Ianos Medicane passage from the study area (white-to-purple colour shift correspond-
ing to 0–1 of NDWI values; method description in Section 3.2), overlaid on CoastFLOOD simulation
results driven by HiReSS-modelled SSH from operational forecasts by the WaveForUs system, during
the Ianos Medicane landfall on 17 September 2020 (red colour) flood extent magnitude, for the Livadi
study area, on Cephalonia Island, in the Ionian Sea. Modelled flood area extents for an extreme case
scenario of TWL = 1 m is also provided in yellow color. The insert map presents a zoomed-in depic-
tion of the main impacted area corresponding to 17 September 2020, SLAmax = 0.262 m underlaid
below the identified wet areas by the NDWI methodology (white-to-purple color).

118



Hydrology 2023, 10, 103

Figure 8. (a) Maps of estimated flooded areas as depicted by Bathtub-HC approach (red colour) and
CoastFLOOD simulations (blue colour), driven by SLAmax = 0.253 m during December 2021, for the
Kalamata coastal zone (Area 6), in Messenia of the southern Peloponnese. The insert maps present
zoomed-in depictions of the main impacted areas showing the good agreement of the two methods
and the superimposed discrepancies of flood extents on the boundaries of the floodwater “wet”
regions (GoF = 0.972). (b) Maps of estimated flooded areas as depicted by Bathtub-HC approach
(purple colour) and CoastFLOOD simulations (green colour), driven by an extreme scenario of
TWL = 1.5 m, for the same study area, including respective zoom insert maps (GoF = 0.993). The two
results overlap each other in such a way that Bathtub-HC red and purple areas are barely visible.
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Figure 9. Maps of estimated flooded areas as depicted by Bathtub-HC approach (red colour) and
CoastFLOOD simulations (blue colour), driven by SLAmax = 0.25 m during December 2021, for the
Manolada-Lechaina coastal zone (Area 1), in north-western Peloponnese. The insert maps present
zoomed-in depictions of the main impacted areas showing the good agreement of the two methods
and the superimposed discrepancies of flood extents on the boundaries of the floodwater “wet”
regions (GoF = 0.951).

120



Hydrology 2023, 10, 103

Figure 10. Map of estimated flooded areas as depicted by Bathtub-HC approach (purple colour) and
CoastFLOOD simulations (green colour), driven by an extreme case scenario of TWL = 1.5 m, for
the Preveza coastal case study (Area 3), in western Epirus. The insert map presents a zoomed-in
depiction of the main impacted areas showing the good agreement of the two methods in tandem
with the superimposed discrepancies of flood extents on the boundaries of the floodwater “wet”
regions (GoF = 0.984).

121



Hydrology 2023, 10, 103

Figure 11. Map of estimated flooded areas as depicted by Bathtub-HC approach (purple colour) and
CoastFLOOD simulations (green colour), driven by an extreme case scenario of TWL = 1 m, for the
Argostoli coastal inlet (Area 7), in Cephalonia Island; the good agreement of the two methods is
depicted in tandem with the superimposed discrepancies of flood extents on the boundaries of the
floodwater “wet” regions (GoF = 0.96).

Figures 8 and 9 present maps of flooded areas driven by storm surge maxima of
SLA > 0.25 m in Kalamata (Area 6) and Manolada-Lechaina (Area 1) with a plausible,
nearly perfect overlap of the two methodologies, only showing “wet-area” differences
(i.e., Bathtub-HC overestimations) in inland areas far away from the coastal boundary.
Similar flood model behaviour is observed for an extreme case scenario of TWL = 1.5 m
in one of these study areas. Figures 10 and 11 present maps of flooded areas driven by
storm tide extremes of TWL ≥ 1 m in Preveza (Area 3) and Argostoli (Area 7), with an
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equally persuasive overlap of the two methodological results. The inland flood-prone
areas identified through the Bathtub-HC approach are obviously located in inclined higher
grounds on the maximum boundary of the floodwater extent modelled with CoastFLOOD.
The model achieves similar performance in both the natural and urban settings.

4.3. Flooding Scenarios of Realistic and Extreme Sea Level Conditions

Within the framework of setting up an operational modelling platform for storm surge
flooding in Greece towards a robust Early Warning System for coastal hazards [51,139–143],
we presented CoastFLOOD outputs in the selected study areas.

Figure 12 shows a map of operationally modelled flooded areas, driven by a mild
storm surge of SLA = 0.23 m (a maximum record in the 2017–2021 period) and additional
extreme case scenarios of TWL = 0.5–2.0 m, for the coastal zone of Kyparissia (Area 8;
north-western Messenia, south-western Peloponnese). The impacted areas associated
with the satellite-derived sea level mainly refer to the first few tens of meters from the
shoreline, which are more pronounced in the northern part of the Kyparissia coast. In
general, the occurred storm surge maximum presented no serious impacts on the waterfront
of the port area (marina and fishing harbour), but in the case of an extreme event (e.g.,
TWL ≥ 1.5 m), the flood expanse could locally reach up to 100–150 m onshore from the
shoreline extending along the entire coastal stretch. In that case, the residential areas
behind the port infrastructure can also be affected. The use of a global effective grid-scale
Manning coefficient (n = 0.02 corresponding to A/A 9 of Table 2), compared to a properly
distributed field of gridded n values based on CLC datasets in the area, does not highly
affect the estimation of the flood extent and the location of impacted areas, but it drastically
influences the calculation of the timespan for maximum flood reach, rendering it from
almost half an hour to 49.2 min (0.82 h; Table 4), respectively.

Table 4. Timeframe for Maximum Flood Inundation Reach, tMIR.

SLA (m) 0.2–0.3 0.5 1 1.5 2

Study Area tMIR (h)

Laganas 4.25 3.61 4.45 6.40 8.87

Kyparissia 0.82 0.72 1.12 1.98 2.21

Kalamata 3.96 5.13 25.76 28.59 32.79

Patra 14.46 15.93 50.12 77.39 81.97

Vassiliki 0.18 0.45 1.11 4.21 8.90

Livadi 0.22 0.49 5.33 19.87 38.43

Igoumenitsa 0.20 0.32 0.93 3.76 5.28

Argostoli 0.67 1.57 6.97 9.23 10.18

* The two highlighted rows correspond to exceptional cases of counterintuitively higher values of tMIR for
lower values of SLA = 0.2–0.3 m.

Figure 13 presents the map of simulated flood extents, due to a recorded SLAmax =
0.266 m and four hypothetical extreme case scenarios of TWL = 0.5–2.0 m, for the coastal
study areas on Zakynthos Island (Area 9) pertaining to Laganas beach (south) and the
coastal town of Zante (north), the main port of the island. The southern beach of Laganas
with the small fishing harbour on its south boundary cape is mainly impacted. The affected
coastal stretch expands for several km along the entire Laganas bay with a cross-shore
floodwater uprush of a maximum of 500 m inland for the extreme case of TWL = 2 m. The
Zakynthos seaport in the northern part of the study area does not present any crucial im-
pacts for regular SLAmax < 0.3 m, but in the case of extreme events (e.g., TWL ≥ 1.5 m), the
leeward breakwater/jetty and parts of the secondary harbour’s docks may be overtopped
by high seas. The suburban coasts can be also affected by extreme sea levels, increasing the
coastal flood risk for the adjacent coastal residencies.
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The situation of storm surge impacts is similar for the coastal areas of Patra (Area 10),
Vassiliki (Area 2), and Igoumenitsa (Area 4), presented in Figures 14–16. In the city of
Patra, the town of Igoumenitsa, and their peri-urban coastal settings (Figures 14 and 16),
the lowland shores can even be flooded by rather low values of storm surge maxima (e.g.,
SLA = 0.24–0.28 m); nonetheless, the impacts of inundation can be quite high with flood
extents reaching hundreds of meters inland for the extreme cases of SLA or TWL > 1 m;
i.e., by combining the tidal surge with the wave-induced run-up. In these two study areas,
the urban spaces, where high-density populations and revenue-oriented assets are located,
including the port-related infrastructure, open air locales, and road networks, are more
exposed to surge-flood inundation. However, in Vassiliki bay (Area 2; Lefkada Island,
Figure 15), the natural coastal sites and the surrounding touristic residencies may be more
likely to be impacted by extreme seawater floods, rather than the small harbour in the
north-eastern part of the bay.

Figure 12. Map of estimated flooded areas as depicted by operational CoastFLOOD simulations,
driven by an in situ recorded SLA = 0.23 m and four extreme case scenarios of TWL = 0.5–2.0 m, for
the coastal study area of Kyparissia (Area 8; north-western Messenia, south-western Peloponnese),
including a local marina harbour.
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Figure 13. Map of estimated flooded areas as depicted by operational CoastFLOOD simulations,
driven by an in situ recorded SLA = 0.266 m and four extreme case scenarios of TWL = 0.5–2.0 m, for
the coastal study area of Laganas (Area 9; southern Zakynthos Island, Ionian Sea), also including
Zakynthos’ main port in the northern part.
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Figure 14. Map of estimated flooded areas as depicted by operational CoastFLOOD simulations,
driven by an in situ recorded SLA = 0.239 m and four extreme case scenarios of TWL = 0.5–2.0 m,
for the city of Patra (Area 10; north-eastern Peloponnese), also including the main port in the central
part, the rural coastal areas of Achaia around the main urban settlement, and the town of Rio in the
northern part of the graph.
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Figure 15. Map of estimated flooded areas as depicted by operational CoastFLOOD simulations,
driven by an in situ recorded SLA = 0.274 m and four extreme case scenarios of TWL = 0.5–2.0 m, for
the coastal study area of Vassiliki bay (Area 2; south-western Lefkada Island), also including a small
fishing harbour port in the north-eastern part of the bay.
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Figure 16. Map of estimated flooded areas as depicted by operational CoastFLOOD simulations,
driven by an in situ recorded SLA = 0.28 m and four extreme case scenarios of TWL = 0.5–2.0 m,
for the coastal town of Igoumenitsa port (Area 4; North-western Epirus) with its port. Insert map
presents the zoomed-in depiction of the northern port area.

An interesting feature is the formulation of the timeframe for maximum flood inunda-
tion reach, tMIR, in some study cases. The pattern of tMIR is similar and, in general, increas-
ing for the ascending values of SLAmax = 0.2–2 m, except from the Laganas and Kyparissia
case studies (highlighted in Table 4) and the lower values of recorded SLAmax = 0.2–0.3 m,
for which tMIR is counterintuitively quite high; i.e., larger than the tMIR of larger SLAs
and consequent inundation extents. However, this is probably reasonable because lower
SLA values on the coastline drive much slower inundation flows than larger storm surge
levels, since shoreline SLA/SSH acts as the main formulation factor of the hydraulic head
of the flood front propagation. The latter is valid given the peculiarities of the topographic
formulation of the studied area. Nevertheless, this fact reveals that the CoastFLOOD model,
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with proper treatment of the bottom roughness (Manning coefficient n), can produce rather
plausible estimations of the time evolution of flood inundation phenomena.

5. Discussion

During the last two decades, with the rise in available computational power and
resources, the approach of reduced complexity in flood modelling has become the norm
for the estimation of coastal inundation due to sea level increase and the lack of available
field observations, in order to support Integrated Coastal Zone Management (ICZM) and
strategic decision-making. ICZM requires spatiotemporally broad estimations in large-
scale domains, O(x) = 10–100 km, yet with high-resolution modeling on grid cells with
O(dx) = 1 m. High-frequency and/or robust updated field data (topographies, transient
water areas, reliable DEM/DSM, etc.) in the highly changing coastal zone are hitherto
rather limited, making it difficult to feasibly apply the multiple fine-resolution simulations
needed at a regional scale in littoral areas. To this end, proper hydraulic models with quick
solvers, that neglect secondary effects of turbulence, hypercritical flows, local acceleration
terms in the momentum equations, water infiltration and percolation at the bed, etc., such
as CoastFLOOD, presented herein, can provide a computationally viable alternative for
modelling flood inundation in the coastal environment [26,83,94,99].

The x- and y-direction decoupling of the lower order semi-analytical flow equations
in such models may undermine the reproduction of diffusive effects in the hydrodynamic
flow of floodwater masses, but the proposed approach is rather simple and allows for
easy numerical coding that is computationally robust and produces very similar results to
more sophisticated models for flood wave propagation [58,60,83,100]. Thus, on each grid
element, the mass and momentum conservation principles are translated into simplified
semi-analytic hydraulic equations for continuity (based on floodwater depth and hydraulic
head calculation) and volumetric flow rates (Manning-type flow driven by a hydrostatic
approach for the piezometric load and bottom friction). These can be separately solved on
the centre and faces of the grid cells of a finely discretized domain. The main advantage of
such a method for flood routing is the easy use of a wet/dry cell storage module [58,91].

The main disadvantages of reduced complexity flood models are the oversight of
sub-grid scale features of the flow (e.g., cavitation, recirculation, aeration, debris advection,
and viscosity effects) [144] and fine-scale spatial features (e.g., drainage systems, sewers,
conduits, bridge culverts, pools, and drillings). Nevertheless, if one needs to find spatially
broad-scale information regarding the inundated areas’ extents and the floodwater level
in them, and not the full details of the transient flood hydrodynamics, then neglecting the
aforementioned effects on the flow is plausible. The secondary fine-scale topographical
features of small engineering structures (open canals and conduits, etc.) should play a role
in properly modelling the flood flow only in the beginning of the inundation process, when
these technical structures are empty and have adequate depth. After enough time, these
open channel formations become filled either with rainwater or with seawater, allowing the
floodwater to only flow above the hydraulic structures’ crests, and this is what we approach
herein. Another relevant issue is the exclusion of floodwater percolative interaction with the
porous bed and the downward infiltration to the aquifer. However, these flows are usually
very slow processes compared to the hydraulic propagation of flood fronts, and thus they
cannot significantly influence the hydrodynamics of inundation (this might not be the case
for extreme TWL > 1 m in Patra city, where floods that reach maximum duration might
range between 2–3.5 days; Table 4). Moreover, the soil on which the floodwater propagates
should probably be saturated with rainwater from the storm. Hence, seawater should
flow as a runoff on the floodplain’s saturated ground surface. Furthermore, inundation
in coastal areas is apparently a combined result of river/watershed, precipitation, and
ocean (compound) flooding. Therefore, there is a need to integrate fluvial floods with
(pluvial) surface runoff and coastal water run-up in order to model flood inundation in
littoral lowlands.
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A matter that may cause uncertainties in coastal flood flow prediction in urban envi-
ronments is the depiction of topographic details that are finer than the available DEM/DSM
resolution or their vertical accuracy; i.e., the inclusion of outdoor microstructures (uneven
pavements, sidewalk fringes, raised curbs, fences, roadblocks, bumps, and obstacles, etc.),
stairs, gates, doors, and basement windows at ground level. These can either prevent the
free flood flow or absorb floodwater, draining it inside buildings and basements. These
effects cannot be taken into account by the model but seem to only be significant in densely
built/populated urban spaces and not on coastal floodplains, such as the studied coastal
zones of the Ionian Sea that were presented here (excluding Patra city; Area 10). The typical
model grid cell should not exceed the upper thresholds of O(dx) = 10–100 m given that
the characteristic flood flow depths range between 0.1–1.5 m and Manning’s n fluctuates
between 0.001–0.4 s·m−1/3, respectively. The larger spatial discretization step used herein
is dx = 5 m, which is considered quite fine. Consequently, the choice of a zero-inertia
model that can reduce the complexity of floodplain hydraulics to an imperative minimum
representation of the flow equations is acceptable for slow (big volumetric flow changes
occur in timescales >> dt) and shallow (vertical changes in floodwater flow depths are prac-
tically a lot smaller than horizontal ones or the typical cell width dh << dx) flood flows [58].
Neglecting inertia terms can only play a local role, in the sense that the ability of 2-D re-
duced complexity models to reproduce flood propagation has been corroborated by several
researchers in the past based on comparisons with available field data and other model
approaches [71,83,90]. It is clear that the spatial resolution and the consequent timestep of
the numerical solution are the most crucial factors in defining robust simulations for this
kind of reductionistic modelling approaches. These issues are adequately addressed in the
CoastFLOOD simulator, offering computational efficiency, ease of coding for GIS raster-
based applications, broad-scale (regional flood reach) simulations, and repeatability from a
pragmatic management perspective for engineers, scientists, and managing authorities.

The lack of field data for calibration and validation may be the major constraint in
the further verification of reduced complexity flood inundation models for coastal areas.
The recent evolution of remote sensing products and their available resolutions seems
to partially address this issue in a qualitative manner. The inherent discrepancies to
distinguish the source of floodwater (e.g., tidal surge, wave action, drainage or runoff,
and rainfall) is a problem for the quantitative validation of coastal flooding modelling
due to storm tides in tandem with MSLR [71,145]. Therefore, we also compared our
hydraulic flood model results with a Bathtub-HC approach. However, when using the
latter, one should consider issues arising from the omission of bottom friction leading the
analysis by exaggerated flood vulnerability estimations. Several coastal managers have
inferred that the latter can lead to overprotective engineering solutions, excessive defence
schemes, and inflated investment against flood protection. Despite this, we believe that
a Bathtub-HC method should always be applied to indicate low-lying flood-prone areas
in the coastal zone to formulate an idea about potentially inundated areas and to direct
the more focused (high-resolution) coastal flooding approaches under extreme sea level
elevation in the future.

Finally, model implementations in areas that are too large might require rather large
timestep values (given the available computational resources and timeframes, especially
in operational mode), which may lead to chequerboard-type oscillations in the numerical
solution, not easily suppressed or relaxed, especially in areas with small gradients of
the floodwater free-surface and subsequent slow evolution of the flow. CoastFLOOD
solves this issue with the use of a proper CFL criterion within an adaptive time-stepping
algorithm [27,33,71,90,91].

Thus, CoastFLOOD has been recently upgraded to include very detailed depictions
of bottom roughness (based on recently available land cover data), the influence of storm
surge-led currents on the coastline boundary, fine-scale DEM/DSM, and the enhancement
of wet/dry cell techniques for flood front propagation over steep water slopes. These
techniques have been proposed by other researchers in the past, and we included them as
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options in this new updated code. An additional novelty is related to the very fine-scale
DEM/DSM of dx = 2 m, providing high detail of the domain terrain. Moreover, a cross-type
scan of the model grid (N→S/S→N in the meridional direction; W→E/E→W in the zonal
direction) is now applied in every timestep, thus allowing for plausible estimations of the
flood front propagation from any direction of the horizon or peripheral boundary, while
some coastal inundation models still only allow one-way flood propagation; i.e., either
from south/north or west/east.

Future research should include even finer scale simulations and comparisons with
model formulations considering local acceleration terms in tandem with the proper depic-
tion of details over and around coastal structures, port infrastructure, beach land formations,
and rocky shores in the model grid. The treatment of sub-grid topographical features (weirs,
drainage holes on embankments, drainage trenches and channels under bridges, sewer-
age networks, etc.) should also be included in future developments of the CoastFLOOD
model. Incorporating a breaching mechanism for sand dunes and coastal embankments
should also be implemented. An additional consideration is to combine a percolation and
subterranean infiltration module to account for ground porosity effects on the floodplain,
together with a simple approach for the evaporation of inundated seawater. The latter can
always contribute to more long-term simulations that may result in different patterns of
floodplain water storage, floodwater encroachment and conveyance, as well as possible
backwater effects from flood flux blockage, etc.

Therefore, we believe that, although it presents no ground-breaking scientific novelty,
it provides very much needed technical innovations, i.e., a first national-level OFP for surge-
induced coastal floods established in Greece since the 1980’s concepts of flood hydraulics
for coastal (optionally combined with fluvial-deltaic) inundation by storm surges and sea
level elevation in general.

6. Conclusions

In this study, we present applications using a new code (CoastFLOOD), developed
in FORTRAN-95, for a classic modelling approach of 2-D hydraulic flood flow in coastal
areas. CoastFLOOD is built on the concept of high-resolution, storage-cell, mass balance
flood inundation for coastal lowlands, following the simplified approach of Manning-type
flow equation, under a reduced complexity concept, running on a GIS raster-based domain.
Although a detailed physical representation of turbulent floodwater hydrodynamics is
overlooked, CoastFLOOD relies on computational efficiency and the delivery of stable
simulations with robust results. The model’s performance is evaluated for the case of
predicted (i.e., ocean modelling) or observed (i.e., satellite altimetry) storm surges affected
by tidal components of sea level elevation (also termed as storm tides). The proposed
methodology and numerical model could be applied in operational applications as well
as studies of long-term mean sea level rise or short-term extreme scenarios of total water
levels, also considering an estimative mean condition for wave runup, but mainly excluding
the high-frequency phenomena, such as the undulating sea surface uprush and backwater
effects due to waves, etc.

The flood extent identification was based on the computation of the NDWI index
derived from remote sensing ocean color data by Sentinel-2 satellite. The verification of
the model was performed for two cases of recorded storm surges in the Ionian Sea; the
first during a storm in December 2021 in the Manolada-Lechaina coastal zone (Area 1;
north-western Peloponnese, western Greece), and the second in September 2020 during
the Ianos Medicane landfall in Livadi bay (Area 5; southern Cephalonia Island [17]). The
comparison of CoastFLOOD simulation results against NDWI-identified flooded areas
show that our model can reproduce the coastal flooding mechanism in areas that are more-
or-less affected (wetted) by stormy weather during the timeframe of analysis. The model
results maybe overpredict the recorded flood extents because the satellite data are not
totally accurate to represent the actual situation of floodwater extents during the storm
surge, since the satellite does not usually coincide with the peak of the storm surge due to

131



Hydrology 2023, 10, 103

cloud contamination, and thus, it is not representative of the maximum flood reach. In the
model’s defence, the predicted flood extents on the southern coastal zone of Cephalonia
Island (Area 5) definitely overlap and include the wet areas traced by remote sensing, and
that is on the safe side in terms of engineering and coastal management. Moreover, some
available soft data (visual proof and pictures from social and mass media reports) can also
be used to corroborate the general performance of the model [30].

The validation of the CoastFLOOD model’s efficiency to reproduce the highest possible
flood extent in coastal plains was also tested against an efficient Bathtub-HC approach. The
agreement between the two approaches is quite high with very high GoF [30,91,94] scores
(>0.95) for both the realistic sea level and extreme scenario TWL cases. Furthermore, we
show that proper treatment of the bottom roughness with spatially distributed Manning
coefficients referring to realistic land cover datasets can formulate a more realistic estimation
of the timeframe for reaching maximum flood inundation extents. Therefore, the bottom
friction parameter is defined as the main calibration feature. The realistic reproduction
of the flooded inland areas’ roughness, based on different representations of the land
cover information by CLC datasets, was investigated in detail. Specifically, we created a
matching list of all CLC-2018 codes to a detailed set of discrete types for earth/ground
material that correspond to a detailed list of different assigned Manning coefficient values
in the CoastFLOOD model. The use of a horizontally distributed field of gridded Manning
coefficient values (based on the CLC) compared to a global effective value of a grid-
scale Manning coefficient did not highly affect the estimation of the flood extent and the
location of impacted areas in agreement with previous studies [94]. However, it drastically
influenced the calculation of the timespan for maximum flood reach. Moreover, it was
shown that the latter heavily depends on the levels of the storm-induced sea level on the
coastline, which acts as the hydraulic head of flood front propagation; i.e., lower storm
surge heights may drive much slower inundation flows than larger ones. Hence, the
proposed model also shows an intuitively correct sensitivity to realistic representations of
floodplain friction, especially if it is applied in areas with complex topographies. The use
of highly variable friction coefficients for coastal flood modelling should provide better
predictions for the duration of an inundation event, which is crucial to first-level responders
and coastal zone managers. Still, it is concluded that the detailed depiction of topography
is the key constraint on robustly formulating and realistically simulating the floodwater
flow for the accurate determination of the maximum flood extent.

The most probable explanation for any discrepancy in comparisons of modelled and
observed flood extents in the coastal zone is the uncertainty of field data concerning the
actually occurred flood rates. Thus, large uncertainties of the latter, mainly stemming from
the sources of seawater inundation, except from storm tides, e.g., wind waves and swell,
make it difficult to develop a definite benchmark case dataset with which to robustly test the
performance of storm-induced coastal inundation models. Indeed, it has been argued [30]
that for random coastal inundation events, storm surge flooding usually coincides with
wave overtopping, making it very difficult to produce any reliable observation dataset
capable of being used as a reference against competing coastal model formulations in
a meaningful way. Hence, as a future research step, there is a need to incorporate a
treatment of boundary conditions in the CoastFLOOD model as a varying timeseries of non-
deterministic values in order to avoid substantial underestimations of coastal inundation
and potentially relevant risk.

The Ionian Sea’s coastal zone in Greece is eventually threatened by storm surge
inundation in an annual cycle, with likely coastal flooding events occurring during mid-
autumn (late September—early- to mid-October) and during December or early January,
as also pointed out in [17,23,118–120]. The impacts are not very pronounced for usual
storm surge levels (<0.3 m) but can be severe for extreme cases of total water levels (>0.6 m
as found in future climatic projections along the Greek coastal zone [23,104,105]), e.g., in
coastal urban areas (Igoumenitsa, Patra, and Kalamata).
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Conclusively, we presented a robust, easy-to-use, numerical tool for coastal inundation
due to storm surge/tide flooding, under the reduced complexity notion, imperatively
needed for operational forecasts of storm impact. Nonetheless, it can hopefully be useful
for both operational applications and projected climatic studies of coastal inundation under
extreme scenarios to help coastal zone managers, policymakers, and involved stakeholders
to better estimate the characteristics of coastal (or compound) flooding under conditions of
environmental change.
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Abstract: In this study, a novel model that performs ensemble empirical mode decomposition
(EEMD) and stepwise regression was developed to forecast the water level of a tidal river. Unlike
more complex hydrological models, the main advantage of the proposed model is that the only
required data are water level data. EEMD is used to decompose water level signals from a tidal river
into several intrinsic mode functions (IMFs). These IMFs are then used to reconstruct the ocean and
stream components that represent the tide and river flow, respectively. The forecasting model is
obtained through stepwise regression on these components. The ocean component at a location 1 h
ahead can be forecast using the observed ocean components at the downstream gauging stations, and
the corresponding stream component can be forecast using the water stages at the upstream gauging
stations. Summing these two forecasted components enables the forecasting of the water level at a
location in the tidal river. The proposed model is conceptually simple and highly accurate. Water
level data collected from gauging stations in the Tanshui River in Taiwan during typhoons were used
to assess the feasibility of the proposed model. The water level forecasting model accurately and
reliably predicted the water level at the Taipei Bridge gauging station.

Keywords: ensemble empirical mode decomposition (EEMD); flood period; tidal river; water
level forecasting

1. Introduction

An estuary is a transition zone with complex flow conditions in which a river enters
the ocean. Complex factors contribute to the water level in tidal rivers; the water level
is affected by not only the upstream river discharge but also ocean tides [1]. The water
level in a tidal river changes because of the interaction between riverine and marine factors.
Because of the rotation of the Earth and the varying strength of the gravitational pull
from the Moon and Sun, the water level varies quasiperiodically every 12.25 h or twice
every lunar day. [2]. Longer-period effects from storms and seasonal fluctuations influence
salinity. Flooding from the upstream basin can alter the salinity profile and interrupt the
tidal cycle [3]. A major climate factor affecting estuaries is wind; wind creates waves, which
affect water circulation and the mixing of fresh and seawater [4]. Upon circulation and
mixing, the 2% difference in the densities of fresh and seawater creates a pressure gradient
in the horizontal direction that affects the water flow [5]. This density difference is largely
caused by differences in temperature and salinity; however, salinity is by far the dominant
factor affecting tidal river dynamics [6]. Considering all the aforementioned information,
accounting for all physical processes in tidal rivers is challenging. These hydrological
processes are complex, have mutual interactions, and are the driving forces [7] for other
sedimentological, biological, and chemical processes. It is not easy to develop a model that
can deal with all hydrological processes in tidal rivers. No simple conventional method
can accurately forecast the discharge and water level in tidal rivers.
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Because of the extremely unsteady flow conditions of tidal rivers or estuaries, fore-
casting their water levels is a difficult task. Theoretical and empirical approaches are
commonly used to perform this task. The hydrological processes in a tidal river are unique,
and the water level in a tidal river is continually changing because of the interactions
of riverine and marine processes. The factors affecting water levels include the shape
of the tidal river, astronomical tides, wind, salinity, temperature, sediment, flood, storm
surge, and other factors that are too complex to model directly. Consequently, the hydro-
dynamic processes of tidal rivers are complex, nonstationary, and nonlinear [8]. Many of
the concepts or principles identified by modeling other watercourses have been applied
to forecast water levels in tidal rivers. The theoretical approach is based on continuity,
momentum, and energy equations. However, a major disadvantage of theoretical meth-
ods is that the required parameters are usually difficult to determine from the observed
data; in particular, the discharge is challenging to measure [9]. Although there are lots of
open-source models available for free, programming and executing a newly developed
model is time-consuming and costly. Some hydraulic models apply the mass conservation
and momentum principle [10–12] to forecast water levels and current velocities during
spring and neap tidal cycles. Hydrological routing, which is a simpler technique than that
of hydraulic models, uses a continuity equation combined with a storage indication curve
to forecast estuary water levels [13]. These hydraulic and hydrological models usually
apply numerical methods to obtain results. Artificial neural networks (ANNs) have been
widely used for data mining. An ANN is a black-box technique that can be used for water
resource management and modeling hydrological processes [14–16]. An ANN can also be
applied for forecasting tidal river water levels [8,17].

The variation in the water level of tidal rivers with time can be regarded as a signal.
Some methods for signal processing analysis, such as the Fourier [18,19] and wavelet [20,21]
transforms, are often used to analyze historical data for forecasting tidal river or estuary
water levels. The Fourier transform can only be applied to linear and stationary processes,
and wavelet transforms can only be applied to linear and nonstationary processes. However,
the hydrological processes in tidal rivers are nonlinear and nonstationary. A novel method
of handling nonstationary and nonlinear data is the Hilbert–Huang transform (HHT),
which was proposed by Huang et al. [22,23]. The HHT is a method of decomposing an
original signal into many intrinsic mode functions (IMFs) with a trend. The fundamental
process of the HHT is the empirical mode decomposition (EMD) or ensemble EMD (EEMD)
method, which involves breaking down a signal into various IMFs. Since their introduction,
the EMD and EEMD methods have rapidly grown in popularity and have been effectively
applied to estuaries [24,25], oceans [26,27], and other engineering fields, including water
resources [28,29].

In this study, a conceptual model was developed for forecasting tidal river water
levels during a flood period (Figure 1). The proposed model only requires water level
data for prediction. EEMD is applied to decompose the water levels in tidal rivers into
several IMFs. The IMFs decomposed through EEMD usually have a physically meaningful
correspondence to physical data [30–33]. The water level in a tidal river is affected by
many factors, such as tide, topography, friction, and river flow [24], in a complex man-
ner. However, these data are difficult to obtain and thus cannot be used to develop a
sophisticated model. By contrast, water level data can be easily collected. IMFs can be
obtained through EEMD; however, because of a lack of data, the factors affecting IMFs
cannot be determined. Therefore, the developed model was simplified by dividing IMFs
into two groups: ocean and stream components. These components were used to establish
regression methods for forecasting the contribution of each component to the water level.
By adding the contributions from the two forecasted components, the water level in tidal
rivers can be obtained. Finally, the water stages of the Tanshui River in Taiwan during
typhoon periods were used as an example to demonstrate the calculation procedures and
validate the reliability and accuracy of the proposed model.
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Figure 1. The approach used for forecasting water level in a tidal river.

2. EEMD and Stepwise Regression

2.1. EEMD Method

Huang et al. [23] proposed the EMD method, which is an intuitive and adaptive
data analysis method. In EMD, basis functions are derived from the original signals. The
aforementioned method directly resolves energies by using the intrinsic time scale of the
original data, which are decomposed into several simple harmonic functions (i.e., IMFs)
with different periodicity. An IMF is a simple oscillatory mode corresponding to a simple
harmonic function and must satisfy the following two requirements. First, in the entire data
set, the number of extrema and the number of zero-crossings must be equal or differ at most
by 1. Second, at any point, the mean value of the envelopes defined by the local maximum
and minimum is 0. Thus, EMD is used to decompose an original signal into multiple IMFs
with different frequencies and a residual signal. These IMFs form a complete and nearly
orthogonal basis for the original signal. An IMF can have variable amplitude and frequency
along the time axis. The EMD method differs from wavelet and Fourier analysis in that the
basis is not predetermined. Consequently, the characteristics of the original signal can be
fully reflected. The EMD method is intuitive, direct, and self-adaptive.

The procedure of extracting an IMF is called sifting. Figure 2 presents an example
of the sifting process for the time series of water level X(t). This process involves the
following steps:

A. The local maxima and minima in X(t) are identified, as shown in Figure 2a.
B. Cubic spline is used on the local maximum and minimum values to generate two

curves approximating the envelopes, namely, the upper and lower envelopes, as
displayed in Figure 2b.

C. A mean curve is calculated from the two envelopes, as illustrated in Figure 2c. The
mean is expressed as follows:

m(u) =
Eu(t) + El(t)

2
(1)

where m(t) is the mean, Eu(t) is the upper envelope, and El(t) is the lower envelope.
A variable d(t) is defined as follows:

d(t) = X(t)− m(t) (2)

where d(t) is the difference between X(t) and m(t). If d(t) does not meet the stopping
criterion, d(t) is set as the new X(t) value, and the aforementioned steps are repeated to
differentiate the extremes until d(t) reaches the stopping criterion.
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Figure 2. Definition of sifting: (a) Original data (water levels hydrograph); (b) Upper and lower
envelopes; (c) Local mean value of the envelopes.

An excessive number of selection cycles can reduce the physical meaning of the
IMF’s instantaneous frequency and amplitude; thus, a stopping criterion must be set. The
stopping criterion is based on the amplitude, energy, and phase. Common stopping criteria
include the standard deviation, an S-number criterion [34], and an evaluation function [35].
In this study, the S-number criterion was used, where S is the maximum number of selection
cycles. A selection cycle is terminated when the number of extreme values matches the
number of zero-crossings.

The d(t) value that meets the stopping criterion is set as an IMF, namely, Cj(t), where
j is a value from 1 to n. The residual Rj(t) is the new Xj+1(t) value, as expressed in the
following equation:

Rj(t) = Xj+1(t) (3)

EMD is then repeated to obtain additional IMFs. The final IMF n is recorded as Cj=n(t).
The term X(t) represents the superposition of various IMF components (Cj(t) and Rn(t)) and
is expressed as follows:

X(t) =
n

∑
j=1

Cj(t) + Rn(t) (4)
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In EMD, the problem of mode mixing occurs. Mode mixing is a problem in which an
IMF produced through EMD decomposition contains components of different frequencies.
Mode mixing is caused by intermittent signals and noise. In particular, mode mixing occurs
because of unpredictable random noise contained in the original signal infiltrating the
IMFs. This intermittent, irregular noise affects the determination of the upper and lower
envelopes. Consequently, two signals of different time scales can be classified as one IMF, or
signals of the same time scale might be separated into two IMFs. Mode mixing eliminates
the physical significance of the IMF. To overcome this challenge, Wu and Huang [36]
proposed the EEMD method, in which white noise is introduced to eliminate the effect of
the original noise and obtain mode-consistent IMFs. EEMD is performed as follows. First,
a white noise signal wi(t) is added to the original signal to form an ensemble. Second, the
ensemble is subjected to EMD decomposition into several IMFs. Third, the first and second
steps are repeated by adding white noise on each time scale.

Because white noise is stochastic and uniformly distributed on every component, its
effect can be eliminated as its ensemble number increases; that is, if sufficient white noise
addition cycles are performed, the obtained solution approaches the true answer, and the
goal of eliminating noise and mode mixing can be achieved. According to statistical theory,
the influence of the added noise and its relation to the ensemble number is expressed
as follows:

εn =
ε√
n

(5)

where n is the ensemble number, ε is the amplitude of the added white noise, and εn is the
standard error. The noise-added signal based on the aforementioned relation is represented
as follows:

XE(t) = X(t) + ε × noise(t) (6)

The signal in Equation (6) is subjected to EMD decomposition. The IMFs at different
frequencies are obtained from the ensemble average of each component.

Each IMF (Cj(t)) calculated through EEMD inherits the physical meaning of the original
data. Therefore, EEMD is often applied in geographic research [36]. Tidal river water
level is profoundly influenced by tides. If EEMD is used for analysis, water level can be
decomposed into mutually independent IMFs with corresponding frequencies. Thus, the
frequency of each IMF can be compared with the tidal frequency in the studied area. If an
IMF has periodicity, it is likely to be related to tides. Therefore, IMFs generated from water
level data can be classified into two groups: tidal functions and flood functions. By adding
all tidal IMFs, the ocean component can be obtained; similarly, the stream component can
be obtained by summing the remaining IMFs.

2.2. Stepwise Regression Analysis

Stepwise regression, which is a multiple linear regression technique, is an efficient
method of selecting the most useful explanatory variables. This method is a modification
of forward selection. The general idea behind stepwise regression is that at each stage of
selection, all model variables are evaluated using the partial F-test based on a preselected
critical value.

Initially, the candidate variables are identified. Stepwise regression with forward
selection begins with no variables in the regression model. Let the set of all possible
variables be x1, x2, . . . , xm. In stepwise regression, the model is initially fitted with only one
variable. After fitting the variable xi, the fit is checked using the critical F value. Models
with two variables are then considered. The optimal regression model with variables xi
and xj is selected using the F-test and is included in the model. This process continues until
the F-test indicates that the inclusion of further functions is not useful, at which point a
final model is obtained.
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The key task in forecasting tidal river water levels involves constructing regression
models for the ocean and stream components. The goal of the ocean- and stream-component
regression models is to establish the relationship between the downstream and upstream
water levels, respectively, and the forecasted values at the site of interest. By summing the
forecasting values obtained from these two regression models, the water level of a tidal
river can be predicted.

3. Study Area and Data Descriptions

In this study, water level data from the Tanshui River in Taiwan were used to evaluate
the proposed model. As illustrated in Figure 3, the tributaries of the Tanshui River include
the Keelung River, Hsin-Tien River, and Dahan River. The Tanshui River is formed by the
merger of the Tanhan River and Xindian River. The largest tributary of the Tanshui River
is the Keelung River. The Hsin-Tien River is approximately 21 km long and runs south
to north through Taipei to the Taiwan Strait. The main stream of the Tanshui River has
a length of 158.7 km and drains 2575 km2 in north Taiwan. It originates from a 3529 m
high mountain with an average gradient of 1:122. In Figure 3, the circle denotes the tidal
area of the Tanshui River [37]. Tides in the Taiwan Strait primarily comprise the four tide
components O1, K1, M2, and S2; the tide level data mostly comprise the principal lunar
semidiurnal constituent. Semidiurnal tides are the most influential tides in the Tanshui
River. The average tide level at the river mouth gauging station is 0.03 m, with the average
tide range being 2.19 m, spring tide range being 2.89 m, and maximum tide range being
3 m because of the contraction of the channel cross section and wave propagation. The
difference between the two tidal ranges each day is small, and the tidal range of diurnal
tides is approximately 1/5th that of semidiurnal tides.

The Tanshui River flows past the Taipei metropolitan area, which is Taiwan’s political
and cultural center. Taipei, which is situated in a low-lying basin, is susceptible to flooding.
A flood control system was constructed in Taipei beginning in 1970. This system includes
dams, levees, pumping stations, floodways, and a warning system and is designed to
withstand floods with a 200-year return period. Typically, no water flows in the Erchong
Floodway on ordinary days. If extreme flooding occurs, the water from the Tahan River
and Hsin-Tien River is redirected to the floodways and purged downstream in the Tanshui
River. The flood warning system must accurately forecast water levels during flood
periods. Therefore, gauging stations operated by the 10th River Management Office were
established within the Tanshui River estuary region to collect water levels for flood routing;
these stations include Tudigonbi, the Taipei Bridge on the Tanshui River, the Shinhai Bridge
on the Tahan River, and the Chung Cheng Bridge on the Hsin-Tien River.

The narrowest cross section of the Tanshui River is located at the Taipei Bridge. Conse-
quently, when flooding occurs, the velocity and water level at this spot increase considerably,
which often results in serious damage. Therefore, forecasting the water level at the Taipei
Bridge is an essential task for the flood warning system. In this study, EEMD was conducted
to construct a water level forecasting model for flood warnings at the Taipei Bridge. The
results of EEMD were used to assess the reliability and accuracy of the proposed model.
Floods from the Tahan River and the Hsin-Tien River upstream of the Tanshui River and
tides downstream of the Taipei Bridge affect the water level at the Taipei Bridge. Therefore,
the stream component at the Taipei Bridge was forecast using data from the gauging station
at the Shinhai Bridge on the Tahan River and the station at the Chung Cheng Bridge on the
Hsin-Tien River, which is located upstream of the Taipei Bridge. The ocean component at
the Taipei Bridge was forecast using data from the Tudigonbi station located downstream
of the Taipei Bridge. Finally, by adding the forecasted stream and ocean components, the
water level forecast at the Taipei Bridge was obtained.
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Figure 3. Study area and gauging stations.

The proposed model requires water level data for the Tudigonbi, Shinhai Bridge, and
Chung Cheng Bridge stations to forecast the water level at the Taipei Bridge. The water
level at each gauging station during typhoon periods differs considerably from that on
ordinary days. Therefore, in this study, 15 typhoon or heavy storm events with complete
water level data from 2004 to 2015 were used to establish a model for forecasting estuarine
water levels. High-water data were selected as those from the period starting 1 day before
the issue of a typhoon warning and ending the day after lifting the warning. A total of
10 out of the 15 events were further categorized for calibrating the proposed model; the
remaining five events were used to verify the model. Table 1 lists the starting and ending
times and the highest and lowest water levels at the Taipei Bridge for each typhoon event.
Figure 4 presents the water level at each gauging station during Typhoon Soudelor; all
gauging stations had an atypically high water level. The water level at the Chung Cheng
Bridge and Shinhai Bridge, which are located at the boundary of the tidal area, increased
sharply because of flooding. The water level at the Taipei Bridge also increased; however,
this increase was smaller than those at the Chung Cheng Bridge and Shinhai Bridge. The
only station close to the river mouth, namely, the Tudigonbi station, also exhibited a higher
water level than usual; however, the difference was small. The periodic regularity of the
water level disappeared for all gauging stations.

Table 1. Summary description of water levels at the Taipei Bridge during typhoons.

Phase Typhoon Duration Water Level (m)

Max. Min.

Calibration

Nock−Ten 22/10/2004–27/10/2004 1.88 −1.11
Haitang 15/7/2005–21/7/2005 1.93 −1.34
Matsa 2/8/2005–7/8/2005 3.62 −1.13

Longwang 29/9/2005–4/10/2005 1.83 −1.12
Fung−Wong 25/7/2008–30/7/2008 1.98 −1.13

Fanapi 19/9/2010–21/9/2010 1.56 −0.91
Saola 29/7/2012–4/8/2012 5.28 −1.09
Soulik 10/7/2013–14/7/2013 2.88 −1.15

Kong−Rey 26/8/2013–23/8/2013 1.68 −0.74
Soudelor 5/8/2015–10/8/2015 5.17 −1.01

Verification

Mindulle 27/6/2004–4/7/2004 2.38 −1.58
Kalmaegi 15/7/2008–19/7/2008 1.81 −1.12
Sinlaku 10/9/2008–17/9/2008 3.45 −0.91
Trami 19/8/2013–23/8/2013 2.85 −1.15

Dujuan 26/9/2015–30/9/2015 3.78 −1.21
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Figure 4. Water level hydrographs during Typhoon Soudelor.

4. Practical Applications

All hydrographs of the 15 events were connected, and EEMD was conducted to obtain
the IMFs. The uppermost plot of Figure 5 presents the gauge height (G) at the Taipei Bridge,
and the subsequent curves are represented in IMF1 to IMF8. IMF1, IMF2, IMF3, and IMF4
had periodicity; that is, these IMFs exhibited a pattern of cycles that repeat at intervals.
Table 2 lists the periodicity for all IMFs at each gauging station. The frequencies (dividing
the number of times an event occurs by the duration) of IMF1 and IMF2 for each station
were approximately 0.0805 h−1, which is similar to the M2 tidal component frequency
presented in Table 3. This result suggests that IMF1 and IMF2 represent the influences of
the semidiurnal tides. The periodicity of IMF3 for all stations was close to the principal
solar or lunar diurnal constituent (P1 and O1 in Table 3), which indicated that diurnal tides
contributed to the IMF3 component. IMF5, IMF6, IMF7, and IMF8 were clearly related
to the tides. Therefore, IMF1–IMF4, which exhibited periodicity, were classified as ocean
components, and the remaining IMFs were classified as stream components. Thus, the
following equation is obtained:

OC = IMF1 + IMF2 + IMF3 + IMF4 (7)

SC = G − OC (8)

where OC is the ocean component and SC is the stream component.

Table 2. Frequency (hr−1) of the gauging stations.

Station IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7

Chung Cheng Bridge 0.0805 0.0805 0.0400 0.0218 0.0075 0.0049 0.0027
Shinhai Bridge 0.0805 0.0805 0.0415 0.0213 0.0098 0.0052 0.0025
Taipei Bridge 0.0805 0.0805 0.0388 0.0186 0.0100 0.0049 0.0025

Tudigonbi 0.0805 0.0805 0.0388 0.0174 0.0091 0.0049 0.0025
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Table 3. The classical tidal type.

Type Characterizes Name
Cycle

(Hour/Cycle)
Frequency

(hr−1)

Semidiurnal tides

K2 Lunisolar diurnal constituent 11.9672 0.0836
S2 Principal solar semidiurnal constituent 12.0000 0.0833
M2 Principal lunar semidiurnal constituent 12.4206 0.0805
N2 Large lunar elliptic semidiurnal constituent 12.6583 0.0775
2N2 Second large lunar elliptic semidiurnal constituent 12.9054 0.0790

Diurnal tides

K1 Lunisolar diurnal constituent 23.9345 0.0418
P1 Principal solar diurnal constituent 24.0659 0.0416
O1 Principal lunar diurnal constituent 25.8193 0.0387
Q1 Large lunar elliptic constituent 26.8684 0.0372

Overtides
S4 Solar quarter constituent 6.0000 0.1667
M4 Large lunar quarter constituent 6.2103 0.1610
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Figure 5. Water level hydrograph and IMFs of data from the Tanshui River at the Taipei Bridge.
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Figure 6 presents the results of the EEMD decomposition of the water level at the Taipei
Bridge into ocean and stream components. The results reveal how tides and upstream
discharge affect the water level at the Taipei Bridge.

The lag time of the ocean components at the Taipei Bridge is related to the tides.
Therefore, the regressors for forecasting the 1 h ahead ocean component (at t + 1) are the
neighboring values of the ocean component at the Taipei Bridge and Tudigonbi for up to 3 h
before the event (i.e., from t − 2 to t). A suitable linear regression model is given as follows:

OCT, t+1 = β0 + β1OCT,t + β2OCT,t−1 + β3OCT,t−2 + β4OCD,t + β5OCD,t−1 + β6OCD,t−2 (9)

where OCT and OCD indicate the forecasted ocean components at the Taipei Bridge and
Tudigonbi, respectively; the subscripts t − 2, t − 1, t, and t + 1 indicate the time; and β0, β1,
. . . , β6 are the regression coefficients. By fitting Equation (9) to the ocean component data
of the calibration phase by using the stepwise regression method, the following equation
is obtained:

OCT, t+1 = −0.004 + 1.791OCT,t − 0.456OCT,t−1 + 0.213OCT,t−2 − 1.052OCD,t−1 (10)
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Figure 6. Water level, ocean component, and stream component hydrographs of the Tanshui River at
the Taipei Bridge.

Figure 7 presents a comparison of the observed ocean component (OCo) and forecasted
ocean component (OCp) and reveals that the water levels forecast through EEMD and
stepwise regression are consistent with the observed water levels in the model calibration
and verification processes. This figure also indicates that the proposed model can effectively
reflect tidal dynamics.
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Linear regression was conducted to forecast the stream component at the Taipei Bridge.
The forecasted stream component at time t + 1 is a function of the stream components at the
Chung Cheng Bridge and Shinhai Bridge at times t, t − 1, and t − 2. Stepwise regression
was applied to produce the following stream component forecasting model:

SCT, t+1 = 0.042 + 1.333SCC,t − 1.311SCC,t−1 + 0.503SCS,t (11)

where SCT,t+1 is the forecasted stream component of the Taipei Bridge at time t + 1; SCC,t−1 is
the stream component of the Chung Cheng Bridge at time t − 1; and SCC,t and SCS,t are the
stream components of the Chung Cheng Bridge and Shinhai Bridge at time t, respectively.
Scatter plots of the observed and forecasted stream components in the calibration and
verification phases are displayed in Figure 8. The terms SCo and SCp denote the observed
and forecasted stream components, respectively. All the data points fall on or near the line
of agreement between the observed and predicted results, which indicates the accuracy of
the forecasted stream components.

Figures 9 and 10 present a comparison of the water levels forecast by the proposed
model and the observed water levels in the calibration and validation phases. The fore-
casted water level is the sum of the forecasted ocean and stream components. The forecasted
water levels of the proposed model are highly accurate. A comparison of the forecasted
and observed water levels indicates that tidal amplitude, phase, and spring and neap tide
modulations are accurately captured by the proposed model. Furthermore, the forecasted
peaks are similar to the observed peaks. Therefore, the effect of floods on the water level in
a tidal river can also be accurately forecast by the proposed EEMD model.

The quantitative metrics used for evaluating the accuracy of the proposed model were
correlation coefficient (ρ) and root-mean-square error (RMSE), which are defined as follows:

ρ =
∑

(
Gp − Gp

)(
Go − Go

)
√

∑
(
Gp − Gp

)2
∑

(
Go − Go

)2
(12)

RMSE =

√
∑

(
Gp − Go

)2

N
(13)

where Gp and Go are the forecasted and observed water levels, respectively; Gp and Go are
the means of the forecasted and observed water levels, respectively; and N is the number
of data sets. Table 4 lists the statistics corresponding to Figures 7–10. All correlation
coefficients are close to unity. The RMSEs are between 0.10 and 0.17 m. These values are
considerably smaller than the water level range. These statistical measures indicate that
the proposed model is accurate, and its predictions are consistent with the observations;
thus, this model can effectively forecast the water level in a tidal river.

Table 4. Summary of performance metrics carried out by comparing observations and forecasts.

Phase RMSE (m) ρ

Ocean component Calibration 0.10 0.986
Verification 0.13 0.978

Stream component Calibration 0.14 0.937
Verification 0.12 0.969

Water level
Calibration 0.18 0.971
Verification 0.17 0.976
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Figure 7. Accuracy of 1 h ahead ocean component forecasting during typhoons: (a) calibration phase;
(b) Verification phase.
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Figure 8. Accuracy of 1 h ahead stream component forecasting during typhoons: (a) Calibration
phase; (b) Verification phase.
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Figure 9. Comparison between 1 h ahead forecasted water levels and observed water levels during
typhoons for calibration phase: (a) Typhoon Nock−Ten; (b) Typhoon Nock−Ten; (c) Typhoon
Matsa; (d) Typhoon Longwang; (e) Typhoon Fung−Wang; (f) Typhoon Fannapi; (g) Typhoon Saola;
(h) Typhoon Soulik; (i) Typhoon Kong−Rey; (j) Typhoon Soudelor.
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Figure 10. Accuracy of 1 h ahead water−stage forecasting during typhoons at verification phase: (a) Ty-
phoon Mindulle l; (b) Typhoon Kamaegi; (c) Typhoon Sinlaku; (d) Typhoon Trami; (e) Typhoon Dujuan.

5. Summary and Conclusions

Numerous factors affect hydrological processes, and data collection in estuaries is
challenging. Therefore, forecasting tidal river water levels is a difficult task. The proposed
EEMD-based model is simpler than other hydrological and hydraulic models. EEMD
does not require the numerous uncertain parameters used in other flooding simulation
algorithms for forecasting water levels in tidal rivers, such as Manning’s coefficient, channel
bed elevation, energy slope, and cross-sectional area. The only input data required by the
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proposed model are water level data, which are comparatively easy to obtain. Moreover,
the proposed simple model does not require complex theories or computations; only EEMD
and stepwise regression are used. First, EEMD is used to decompose the water level into
ocean and stream components as the regressors representing the two influential factors for
the water level of tidal rivers: the tides and river flow. Estuarine water level forecasting can
then be achieved by separately performing stepwise regression on the ocean and stream
components at downstream and upstream locations, respectively, and summing the results
for a target location.

A successful implementation of the proposed methodology was demonstrated in a
case study of the Tanshui River, which is a tidal river. A water level forecasting model
was constructed to forecast the 1 h ahead water level at the Taipei Bridge. The qualitative
results, RMSEs, and correlation coefficients indicate that the developed model can achieve
accurate water level forecasting during high-water-level periods in tidal rivers. Moreover,
the clear physical meaning of each component reveals the simplicity and reliability of the
proposed model.

The comparison of the proposed model and the other methods for forecasting water
levels in tidal rivers, such as the Variational Mode Decomposition method, should be
performed in the future. If additional data on tidal rivers can be obtained, water level
components can be decomposed into other groups apart from only ocean and stream
components, which can enable a more reliable and accurate model to be established for
forecasting water levels in tidal rivers.
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Abstract: Worldwide, floods are the most common and widespread type of disaster during the 21st
century. These phenomena have caused human fatalities, destruction of infrastructures and properties,
and other significant impacts associated with human socioeconomic activities. In this study, the
exposure of infrastructure (social, industrial and commercial, transportation) and residential areas to
floods in Greek territory was considered. To accomplish the goal of the current study, freely available
data from OpenStreetMap and Corine 2018 databases were collected and analyzed, as well as the flood
extent zones derived under the implementation of the European Union’s (EU) Floods Directive. The
results will be useful for policy-making and prioritization of prone areas based not only on the extent
of flood cover but also on the possible affected infrastructure types. Moreover, the aforementioned
analysis could be the first step toward an integrated national-wide flood risk assessment.

Keywords: flood exposure; geospatial analysis; open-access data; infrastructure

1. Introduction

Floods are the most common type of natural disaster with devastating effects on
local communities and infrastructure [1–4]. They can induce fatalities [5], major economic
damage [6], and considerable effects on socioeconomic activities [7,8]. Thus, reliable flood
risk assessment and resilience design of cities is a key priority for sustainable development.
Despite the improvements in flood mitigation measures and technological advancements,
floods continue to endanger human lives [9]. This is mainly due to the increasing human
settlements and economic assets in floodplains, land-use change, and climate crisis [10,11].

The Sixth Assessment Report of the Intergovernmental Panel on Climate Change
(IPCC) highlighted that extreme precipitation events will become more frequent in the
near-future period over Europe [12]. Additionally, the natural water retention by land
use is expected to decrease according to the forecasts of future urban land expansion [13].
Therefore, an increase in the likelihood and negative impacts of flood events is foreseen.

Floods are natural phenomena that cannot be prevented. Nevertheless, it is feasible
and desirable to reduce their adverse outcomes, especially near residential areas and critical
infrastructure. The costly floods that occurred at the beginning of the 21st century across
Europe prompted the European Parliament to establish a Directive (2007/60/EC) on flood
risk management. In the framework of this directive, the European Union (EU) Member
States conducted flood risk management plans focused on the protection, prevention, and
preparedness against flooding. Therefore, national-scale flood hazard maps were created,
for different return period scenarios, by coupling hydrological and hydraulic modeling.
Such maps provide crucial spatial information for flood risk assessment [14].

Several studies have been conducted on various aspects of floods. The majority of
scholars look into post-flash flood analysis in terms of hydrological modeling and inun-
dation mapping [15–19]. Nowadays, the use of Unmanned Aerial Vehicle (UAV) has been
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widely used as an alternative for post-flood surveys and data collection [20,21]. Moreover,
the advantages of numerical weather prediction (NWP) models and rainfall radar were
exploited, and flood forecasting and nowcasting approaches were developed [22–24]. Fur-
thermore, numerous researchers have applied multi-criteria analysis (MCA) and machine
learning (ML) techniques to provide flood susceptibility maps [25–28].

To the best of the author’s knowledge, flood exposure analysis has garnered much
global attention. However, flood exposure assessments of infrastructures are rare and
focused on specific regions [29]. Large-scale approaches have been performed mainly in
the United States [4,30], whereas, in Europe, the majority of the studies are focused on
transportation networks. [3,31,32].

This study investigates the flood exposure of residential areas and infrastructure in
Greece by combining open-access data with geospatial analysis. The proposed approach
has the benefits of using easily accessible data, as well as simple and timeless GIS analysis
for flood exposure assessment. Despite growing interest from academics and government
agencies, this is the first quantitative nationwide assessment in the country. The outcomes
provide insights for identifying areas where flood risk reduction should be prioritized. The
methodology developed herein is easily transferable to other EU member states and can be
scaled to a pan-European level.

2. Materials and Methods

2.1. Study Area

Greece is one of the EU’s 27 member countries. It is located at the southern edge of
the Balkan Peninsula (Southeast Europe), at the crossroads of Europe, Asia, and Africa,
and shares borders with Albania to the northwest, Northern Macedonia, and Bulgaria to
the north, and Turkey to the northeast. The Aegean Sea lies to the east of the mainland,
the Ionian Sea to the west, and the Sea of Crete and the Mediterranean Sea to the south
(Figure 1).

 

Figure 1. Location map of the study.

The country covers an area of approximately 132,000 km2 and has a population of
almost 10.7 million. It has a complex terrain, a highly diverse landscape, and the longest
coastline in the Mediterranean (13,676 km), featuring numerous islands. According to
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the Köppen–Geiger climate classification, the climate is predominantly the temperate
Mediterranean, with large areas of northern Greece classified as semi-arid and fewer
regions, mostly at higher elevations, classified as humid continental [33]. However, due to
the country’s orography and climate type, precipitation over Greece presents great spatial
and temporal variability. The precipitation pattern has significant seasonality, with the
rainy season occurring in the fall, winter, and early spring and the dry season occurring
throughout the summer months [34,35]. The Pindus Mountain range, which runs from
northwest to southwest of the country, mainly affects the spatial variability of precipitation,
and two distinct precipitation zones are determined. These are the wet zone to the west and
the dry zone to the east [36]. Despite the fact that in the western part of Greece the highest
amount of rainfall is recorded, most floods occur in the eastern part due to the proximity
of urbanized areas to ephemeral torrential streams [37]. Also, the monthly distribution of
flood events showed that November is the month with the richest flood records, followed
by October [37].

2.2. Geospatial Analysis and Datasets

Flood exposure refers to valuable societal elements (such as people, infrastructure, etc.)
located in floodplains [38]. The most common method is the spatial overlay between
the flood hazard zones and assets. Spatial analysis of flood exposure presupposes the
availability of geospatial data for assets and well-established flood hazard zones. This
challenge is particularly addressed for national exposure analysis.

For the study’s needs, various datasets were collected and processed. These datasets
included residential areas, infrastructure, records of flood fatalities, and flood inundation
maps. All the above datasets were organized in GIS thematic layers using the ArcGIS
(v.10.7) software package. The outline of the methodology is presented in the following
figure (Figure 2).

 
Figure 2. The overall workflow of the methodology.

Based on the Corine Land Cover (CLC 2018) dataset, the urban fabric (CLC codes:
1.1.1. & 1.1.2) and industrial and commercial units (CLC code: 1.2.1) were determined.
The transportation infrastructure was extracted from the OpenStreetMap (OSM) dataset
considering the major road types (motorway, trunk, primary and secondary roads) as well
as the railway network. These features are nearly complete in OSM, since most European
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countries have more than 95% of their roads and railways mapped [39]. Additionally,
OSM crowdsourced data is used to identify social infrastructure such as physical facilities
and spaces where the community can access social services. These include health-care
services, education and training, social housing programs, police, courts, and other systems
for justice and public safety, as well as arts, cultural, and recreational facilities. To that
end, the following vector data were exported and grouped: schools, universities, colleges,
kindergartens, hospitals and clinics, nursing homes, community centers, sports centers,
stadiums, campsites, archeological sites, monuments, art centers, theaters, museums, police
and fire stations, court houses, airports and ports, and wastewater plants. Flood fatalities
are analyzed by taking into account a recently developed dataset (FFEM-DB) for the Euro-
Mediterranean region, covering the 1980–2020 period [40]. The flood hazard is represented
by flood extent zones created as part of the implementation of the EU flood directive
(2007/60/ EC) and the associate flood risk management plans. These maps are accessible
through the Hellenic Ministry of Environment and Energy (Special Secretary for Water).
The dataset includes three inundation depth maps corresponding to flood return periods of
50, 100, and 1000 years. In this analysis, the flood extent zones related to the probability
of flood occurrence once 1 in 100 years were selected, as it is compatible with the national
guidance on the design return period of flood defenses. Afterward, the Nomenclature of
Territorial Units for Statistics Level 3 (NUTS 3) established by Eurostat was used for the
comparative analysis of the results. A summary of the aforementioned datasets and their
sources are presented in the following table (Table 1).

Table 1. Summary of the input datasets and sources used in this study.

Data Dataset Data Source Data Accessibility Format

Urban Fabric
Corine Land Cover

(CLC 2018)
Copernicus Land

Monitoring Service

https://land.copernicus.eu/pan-european/
corine-land-cover/clc2018?tab=download

(accessed on 10 October 2021)

vector

Industrial and
Commercial Units vector

Transportation Infrastructure
OpenStreetMap

(OSM) Geofabrik Download Server
https://download.geofabrik.de/europe/

greece.html
(accessed on 1 April 2022)

vector

Social
Infrastructure vector

Flood Fatalities
Historical Records

Flood Fatalities of the
Euro-Mediterranean region

Database (FFEM-DB)
4TU Centre for Research Data

https://data.4tu.nl/articles/dataset/
EUFF_2_0_European_Flood_Fatalities_

database_/14754999/2
(accessed on 1 April 2022)

csv

Flood Extent Zones
Flood Risk Management

Plans
(2007/60/EC)

Hellenic Ministry of
Environment and Energy

(Special Secretary for Water)

http://floods.ypeka.gr:
8080/geoserver/frmc2018100/wfs?

(accessed on 15 November 2020)
vector

Nomenclature of Territorial
Units for Statistics—level 3

(NUTS 3)
Eurostat

Geographic Information
System of the Commission

(GISCO)

https://ec.europa.eu/eurostat/web/gisco/
geodata/reference-data/administrative-

units-statistical-units/nuts
(accessed on 1 April 2022)

vector

Analyzing flood exposure, the ratio of residential areas and infrastructure located in
flood zones was estimated, considering the area of the urban fabric and industrial and
commercial units, the length of transportation infrastructure, and the amount of social
infrastructure.

3. Results and Discussion

The percentage coverage of flood extent zones per NUTS 3 provides an overview of
the distribution of flood-prone areas over Greece, while historical records of flood fatalities
give insights into areas where the surrounding environment may result in human losses
during flood occurrences.

The highest coverage by flood extent zone is observed in Imathia (EL521) with a
percentage equal to 24.3%, followed by Pella (EL524) and Florina (EL533) with percentages
of 18.4% and 17.1%, all located in Northern Greece. Particularly high values (>10%) are
also found in Karditsa and Trikala (EL611), Larissa (EL612), Kilkis (EL523), and Arta and
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Preveza (EL541) (Figure 3). The results are justified by the fact that these areas are drained
by large rivers and have correspondingly large floodplain areas.

Figure 3. Spatial distribution of flood extent zones coverage per NUTS 3 in Greece.

On the contrary, the majority of flood fatalities were reported due to flash floods in
ephemeral torrential streams [41]. Twenty-seven (27) deaths occurred in West Attika (EL306)
mostly (21/27) as a consequence of the on 15 November 2017 (21/27) and twenty-one (21)
deaths in Evia (EL642) as a result of two severe occurrences on 23 August 1990 (9/21) and
9 August 2020 (8/21). Furthermore, there were more than five deaths in the following areas:
Cyclades Island (EL421), Argolida and Arkadia (EL651), Thessaloniki (EL522), Northern
Athens (EL301), East Attica (EL305), and Corinthia (EL652). The distribution of findings
shows that the deadliest floods occur in metropolitan centers and tourist areas (Figure 4).
Economic development and population growth in these areas drive the expansion of built-
up areas and human interventions within streambeds, intensifying flooding. Flood hazard
assessment in such environments revealed that anthropogenic factors are the driving
agents of flood genesis rather than natural factors [42]. Worth bearing in mind that most
of these areas are typical wildland-urban interface (WUI) areas, as housing expands in
and near forests [43]. Therefore, the probability of fire occurrence is higher. Despite the
ecological disaster of a wildfire, flash floods follow due to the complete or partial loss of
vegetation [44,45].

At a national level, the exposure ratio of residential areas and infrastructure located
in flood zones are illustrated in the next figure (Figure 5) in ascending order. Only 5.5%
of social infrastructures are located in flood zones at the lower end, compared to 12%
of industrial and commercial units at the highest end. The ratio of urban fabric and
transportation was found equal to 9.4% and 7.3%, respectively.

The spatial analyses show that the exposure ratios of the urban areas and infrastruc-
tures vary between NUTS 3. In general, northern and central Greece have the highest ratio
in most of the examined categories, while particularly high values are also present in the
Peloponnese (southern Greece).
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Figure 4. Spatial destitution of flood fatalities at the NUTS 3 level over Greece.

Figure 5. The ratios of residential areas and infrastructure located in flood zones in Greece.

The areas of an industrial and commercial unit are occupied by manufacturing, com-
merce, financial operations, and services. The existence of this infrastructure in floodplains
affects various sectors of the economy, with cascading effects on the local community.
As a result, methodologies for estimating commercial damage in flood risk assessments
and developing probabilistic models suitable for pan-European applications using openly
available data have been developed [46]. The flood exposure analysis of these areas re-
vealed that the higher exposure ratio (37.6%) was found in Karditsa and Trikala (EL611),
followed by 34.3% in Pella (EL524) and 33.6% in Argolida and Arkadia (EL651). Also, the
two most populated metropolitan areas in Greece, the Central Athens sector (EL303) and
Thessaloniki (EL522), have a large proportion of industrial and commercial units located
in flood zones (29.2% and 28.5%, respectively). The spatial distribution and the analytical
graphical representation of the results can be seen in Figures 6 and 7 respectively.
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Figure 6. Spatial distribution of the ratio of industrial and commercial units in flood zones per NUTS 3.

Figure 7. Graphical representation of the ratio of industrial and commercial units in flood zones per
NUTS 3 in descending order.

Another crucial element, regarding flood risk, is the transportation infrastructure.
The direct effects include material damage to infrastructure, disturbances in the traffic
management systems, difficulties in evacuation and rescue operations, and last but not
least, fatalities. Indirect effects may include passenger and cargo delay costs [47]. The
accessibility of the road network during flood events is fundamental for evacuations and
avoiding casualties [48]. Vehicle-related incidents account for an important part of flood
fatalities both internationally [49,50] and in Greece [51]. It has also been acknowledged
that individuals ignore warning signs or even drive into flooded waterways [52]. To that
end, flood risk assessment of the transportation infrastructure is a necessity and integrated
approaches have been applied [3]. Recently, national scale studies examined the resilience
assessment of transport assets in a multi-hazard environment [53,54]. Our analysis emerged
that 45.3% of transportation network length is located in the flood extent zone in Imathia
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(EL521) and 43.0% in Pella, followed by Peiraeus Nisoi (EL307) (37.4%) and Thessaloniki
(EL522) (23.4%). Rather high percentages (>20%) were also found in Argolida and Arkadia
(EL651), Karditsa and Trikala (EL611), and Florina (EL533). The spatial distribution of the
ratio transportation infrastructure located in the floodplain can be seen in Figure 8 and the
graphical analysis of the results in descending order in Figure 9.

Figure 8. Spatial distribution of the ratio of transportation infrastructure in flood zones per NUTS 3.

Figure 9. Graphical representation of the ratio of transportation infrastructure in flood zones per
NUTS 3 in descending order.

The identification of residential areas located in floodplain zones is very important as it
is directly related to economic damage to individuals’ properties and is more likely to have
adverse effects on local communities. Moreover, it can affect real estate values and be a tool in
the housing market [55]. Currently, most homeowners are uninsured against flood damage,
while the obligation for flood insurance is enforced when a purchase is completed through
the establishment of a new bank loan. Insurance against floods should be a requirement for

162



Hydrology 2022, 9, 145

houses nearby ephemeral streams or rivers. The ratio and the spatial distribution of the urban
fabric in flood zones could be the first step for the determination of the insurance fees [56]. The
end-user, insurance companies, in this case, could use these data as services (DaaS). Regarding
the Greek territory, the highest ratio of the urban fabric in flood zones (36.7%) was found in
Imathia (EL521), followed by Florina (EL533) and Pella (EL524) with ratios equal to 35.8% and
31.4% respectively. Noteworthy that these were the regions with the largest flood extent zones.
Also, high ratios, approximately 20.0% were recorded in Karditsa and Trikala (EL611) and
Argolida and Arkadia (EL651) (Figures 10 and 11).

Figure 10. Spatial distribution of the ratio of the urban fabric in flood zones per NUTS 3.

Figure 11. Graphical representation of the ratio of the urban fabric in flood zones per NUTS 3 in
descending order.

Social infrastructures are related to national well-being and security. Due to their sig-
nificance, reducing flood risk to these infrastructures has raised the concern of the scientific
community [30]. The exposure of social infrastructure to flood endangers vulnerable groups
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of the population. In such places, the evacuation and rescue are more complex. Moreover,
the damage to certain social infrastructure during flood events makes the coordination and
operational function of local authorities more difficult. The geospatial analysis emerged that
the highest ratio of social infrastructure in flood zones appeared in Larisa (EL612) (61.8%)
followed by Pieria (EL525) (52.8%) and Argolida and Arkadia (EL651) (43.6%). Notably, seven
other NUTS 3 units, namely Arta and Preveza (EL541), Pella (EL524), Kilkis (EL523) Laconia
and Messenia (EL653), Magnisia (EL613), Florina (EL533) and Karditsa and Trikala (EL611),
have more than 20% of their social infrastructure in floodplains. The spatial and graphical
representation of the results are given in the following figures (Figures 12 and 13).

Figure 12. Spatial distribution of the ratio of social infrastructure in flood zones per NUTS 3.

Figure 13. Graphical representation of the ratio of social infrastructure in flood zones per NUTS 3 in
descending order.
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Summarizing the results, it was found that Karditsa and Trikala (EL611), as well as
Pella (EL525), had more than a 20% flood exposure ratio for all the examined types of
infrastructures and urban fabric.

The analysis highlights critical infrastructure exposure to floods and identifies the
areas with the highest ratios in the Greek territory. This research can be the first step toward
an integrated physical and social vulnerability assessment [57]. Furthermore, it provides
useful insights to stakeholders and policymakers for spatial planning and scheduling of
flood prevention projects. Besides the classical structural measures, natural-based solutions
must be considered, such as the management of forest ecosystems not only for wood
production but also to enhance their protective role. Therefore, the protection of forests
from abiotic and biotic disturbances in prone areas should be a priority to avoid vegetation
damage in the mountainous watersheds, which subsequently increases flooding in the
lowland areas. The findings of such studies should not be restricted to the scientific
community but should be communicated to the general public in order to raise awareness
about human interventions in streambeds and the protection of the environment as a flood
prevention measure.

The spatial overlay of assets and infrastructure with floodplains is particularly im-
portant as it has cascading effects on local communities. These results could be a toolkit
for local authorities, which are in charge of operational functions, obligations, and civil
protection tasks for the protection of life, property, and the local economy. The knowledge
of elements at risk facilitates procedures in prevention, preparedness, and response as well
as enhances resilience at a local scale.

This knowledge sets the way for the introduction of nature-based solutions as local
mitigation efforts move forward. The term “Nature-Based Solutions” (NBS) refers to a
recent approach shift for flood risk management (FRM) towards solutions that employ
elements, procedures, and management techniques that arise from nature to enhance water
retention and reduce flooding [58]. They benefit low-level floods in smaller, more often
flooded watersheds and help communities become more resilient to the effects of climate
change, such as flooding. They also slow the passage of rain through the terrain into streams
and rivers, preventing coastal flooding from tidal seas. Using nature-based solutions offer
other benefits in addition to reducing flooding. For instance, they can reduce soil erosion in
rivers and streams, increase species diversity in rivers and streams, and help fight global
warming by storing carbon. Although nature-based solutions can lower the danger of
flooding, they are not a component of traditional risk management [59]. More people must
embrace nature-based solutions as the go-to infrastructure for combating climate change.
These solutions should be viewed as important infrastructure to reduce climate change and
safeguard our communities in order to build resilience to its effects.

Our approach is efficient on a national scale, although some limitations exist. The flood
extent zones used in this study are derived from the Hellenic Flood Risk Management Plans
(FRMP) conducted in the frame of the 2007/60/EC directive implementation. According
to the project technical specifications, hydraulic modeling was not performed in streams
with small watersheds (10 km2), and floodplain areas of less than 25 km2 were not further
investigated unless significant historical flood records were reported. To that end, some
streams were excluded from the analysis and are not considered herein. A detailed mapping
of flood extent zones has to be conducted at a local scale and will be the basis for a holistic
flood exposure analysis. A target of future research could be the expansion of the analysis
to a pan-European scale and also evaluate the effect of flood exposure on land prices.

4. Conclusions

This study introduces the first nationwide spatial assessment of flood exposure in
residential areas and infrastructures in Greece. Spatial analysis and open access data
were coupled to illustrate the variation of flood exposure at the national and NUTS 3
levels. Specifically, the ratio of the urban fabric, transportation, social, industrial, and
commercial infrastructures in 100-year flood zones was evaluated as well as the spatial
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pattern of the exposure. These categories were selected due to their devastating effects on
local communities.

The flood exposure ratio of the aforementioned assets and facilities ranges from 5.5%
to 12% at a national level. Nevertheless, some NUTS 3 level regions show particularly high
ratios in certain categories. The results indicate that northern and central Greece generally
have a high flood exposure ratio. Moreover, the outputs of this study detect places where
further actions should be prioritized to evaluate and reduce flood risk.

The developed methodology could act as a roadmap for integrated flood risk assess-
ment. The spatial results can be easily overlaid with other spatial data for further analysis,
while the methodology is highly transferable as it is based on open-access geospatial data.
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Abstract: Flood mitigation in low-gradient, tidally-influenced, and rapidly urbanizing coastal loca-
tions remains a priority across a range of stakeholders and communities. Wetland ecosystems act as a
natural flood buffer for coastal storms and sea level rise (SLR) while simultaneously providing in-
valuable benefits to urban dwellers. Assessing the vulnerability of wetlands to flood exposure under
different SLR scenarios and vegetation responses to climatic variability over time allows for manage-
ment actions, such as nature-based solutions, to be implemented to preserve wetland ecosystems
and the services they provide. Nature-based solutions (NBSs) are a type of green infrastructure that
can contribute to flood mitigation through the management and restoration of the ecosystems that
provide socio-environmental benefits. However, identifying the flood mitigation potential provided
by wetlands and the suitability for NBS implementation depends on the ecological condition and
environmental exposure. We propose that wetland vulnerability assessments can be used as a rapid
method to quantify changes in ecosystem dynamics and flood exposure and to prioritize potential
locations of NBSs implementation. We quantified exposure risk using 100- and 500-year special
flood hazard areas, 1–10 ft of sea level rise scenarios, and high-tide flooding and sensitivity using
timeseries analyses of Landsat 8-derived multispectral indices as proxies for wetland conditions
at subwatershed scales. We posit that wetland areas that are both highly vulnerable to recurrent
flooding and degrading over time would make good candidate locations for NBS prioritization,
especially when they co-occur on or adjacently to government-owned parcels. In collaboration with
local governmental agencies responsible for flood mitigation in the coastal sub-watersheds of the City
of New Bern and New Hanover County, North Carolina, we conducted field verification campaigns
and leveraged local expert knowledge to identify optimal NBS priority areas. Our results identified
several government-owned parcels containing highly vulnerable wetland areas that can be ranked
and prioritized for potential NBS implementation. Depending on the biophysical characteristics of
the area, NBS candidate wetland types include brackish and freshwater marshes and riverine swamp
forests, even though the predominant wetland types by area are managed loblolly pinelands. This
study underscores the critical importance of conserving or restoring marshes and swamp forests and
provides a transferable framework for conducting scale-invariant assessments of coastal wetland con-
dition and flood exposure as a rapid method of identifying potential priority areas for nature-based
solutions to mitigate coastal flooding.

Keywords: wetlands; nature-based solutions; flood mitigation; coastal flooding; tidal watersheds

1. Introduction

Wetlands are essential ecosystems that provide value and services to society such as
flood mitigation, pollutant sequestration, and valuable natural habitat areas [1–3]. Wetland
ecosystems are widely responsible for the purification and infiltration of excess stormwater
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in rapidly urbanizing communities, resulting in decreases in permeable surface cover.
A wetland that is 1 acre in size can store approximately one million gallons of water
when in functional condition [4]. Wetland water storage capacity along with the slowed
velocity of floodwaters moving through wetlands can lower flood amplitudes and reduce
the potential for destruction caused by a flooding event [4]. Watersheds located in the
temperate climate zone require at least 3–7% wetland land cover to provide adequate flood
mitigation and suitable water quality to surrounding built and natural communities [2]. In
2011, the global monetary value of coastal wetland ecosystem services was estimated to be
worth $20.4 trillion per year or 43.1% of global ecosystem service value per year despite
accounting for roughly 15% of all natural wetlands [5]. While coastal wetlands may make
up a small portion of globally distributed wetland types, the value and services that they
provide society are far too great to be lost.

Natural ecosystems such as wetlands are subject to natural and anthropogenic pres-
sures, including climate change, that increase vulnerability to natural hazards and result
in decreased ecosystem resilience [6,7]. Vulnerability refers to the degree that a system is
at risk to or unable to cope with impacts brought forth by climate change or other envi-
ronmental stressors and is composed of exposure, sensitivity and adaptive capacity [7,8].
Resilience refers to a system’s ability to rebound following a disturbance, such as a natural
hazard, or cope with changes fueled by an altering global climate [9]. When occurring in
tandem, natural and anthropogenic pressures on wetlands can lead to poor management
practices, conversion to other land uses, or wholesale ecosystem destruction [10–12]. The
marginal value of wetlands and the services they provide increase as populations increase,
to a point, and then degrades to the point that ecosystem services including flood and
pollution mitigation abilities are diminished or lost [2]. Decreases in wetland areas and
their ecosystem service capacities increase risk to surrounding areas due to a decreased
ability for wetlands to capture, store, and slow down inundation following a flood event.
Identifying wetland areas that are experiencing decreases in vegetative health metrics and
increases in flood risk is beneficial in determining possible management interventions to
sustain ecosystem services in rapidly urbanizing coastal communities [10,11,13]. Geospa-
tial technologies allow for the collection, inventory, and analysis of wetland vulnerability
related to natural hazard and ecosystem-based data by entities seeking to assess a wetland’s
ability to perform ecosystem services [1,10,13]. Coastal communities frequently affected
by natural hazards, such as hurricanes or storms, are at risk from extensive flooding and
related infrastructure damage with long-term detrimental effects on the natural and built
environments, as well as human livelihoods and life losses. The USA Atlantic coastal
region experiences multiple types of flooding due to the presence of the Atlantic Ocean,
rivers, and natural hazards that can frequently lead to compound flood risks and, as such,
compound flooding needs that must be considered when devising management solutions
to mitigate flood risk to coastal communities.

Typically, flood mitigation is managed by gray infrastructure solutions and more
recently green infrastructure solutions. Gray infrastructure practices refer to traditional ap-
proaches to water management and natural hazards mitigation through human-engineered
solutions, such as digging drainage ditches, creating concrete stormwater systems, and
utilizing hardened structures like seawalls to protect coastlines [14,15]. Green infrastructure
practices refer to hybridized infrastructure systems that improve societal and ecosystem
resiliency to natural hazards concurrently by relying on natural ecosystems to address
flooding. Stormwater wetlands, rain gardens, and permeable pavement are examples of the
types of green infrastructure solutions being increasingly implemented in urban areas [14].
A subset of green infrastructure, nature-based solutions (NBSs), are management actions
that require the use of ecosystems and their services to address societal issues, such as
climate change impacts or flood mitigation and abatement [16]. Wetlands as a nature-based
solution are highly effective at providing areas for water regulation while also providing
recreation opportunities and thus present an optimal solution to flood mitigation in urban
areas [17]. Prioritizing wetland ecosystems for restoration to aid in natural hazard reduction
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requires knowledge of what locations reduce exposure to flooding from natural hazards
and future sea levels and protect vulnerable communities and infrastructure [18,19]. Neces-
sary restoration steps can be taken to decrease the severity of flood damage by preserving
landscapes proven to mitigate flood waters and implementing NBSs that promote healthy
wetlands by identifying degraded wetlands based on site-specific metrics. Yet, for the
introduction of NBSs to be a successful approach at mitigating flood inundation in at-risk
wetland ecosystems, the process must also be cost effective in order to garner support
from the implementing parties [20,21]. We posit that by assessing the vulnerability level of
wetlands to increased flooding and as a function of long-term vegetative health metrics,
rapid assessments of potential NBS suitability can be undertaken.

Loss of wetland cover and vegetation can be accelerated by increased frequencies of
inundation events fueled by natural hazards, sea level rises, or saltwater intrusion into
freshwater systems [22]. Even small fractions of wetland loss caused by sea level rise
require management interventions to reestablish and prevent further degradation and, in
this context, NBSs have proven to be a cost-effective way to leverage degrading wetland
areas to enhance coastal resilience [22]. However, conducting wetland vulnerability assess-
ments in highly populated coastal communities with fragmented wetland cover remains a
challenge, particularly when high-resolution site-specific data may not be available and
the complexity of a localized geospatial assessment may go beyond the skill sets of local
jurisdictions. To determine the applicability of NBSs on a localized scale, the ability to
perform a vulnerability assessment with localized data must be addressed first so that
determining suitability for NBSs is not overwhelming to accomplish. While the IPCC has
laid the groundwork for definitions and an approach to undertake ecosystem vulnerabil-
ity assessments [8], it would be shortsighted to imply that a single approach is the only
available method to conduct a vulnerability assessment [23].

Coastal wetlands can be difficult to monitor with traditional methods that are largely
comprised of collecting in situ data due to resource needs and the reduced accessibility of
wetland landscapes [24]. Utilizing remote sensing and geospatial technologies to monitor
wetlands can help overcome some burdens of access and resource needs due to the presence
of publicly available data and the ability to collect data in areas that are not easily accessible
with the use of uncrewed aerial vehicles (UAVs), crewed aerial vehicles, and satellite
technology [24]. While remote sensing and GIS can help alleviate some of the hardships of
collecting wetland data, oftentimes the spatial and temporal resolution of the imagery are
inappropriate for the scales necessary to assess localized, fragmented wetland status. Yet,
existing satellite and aerial vehicle-collected data can provide medium to high resolution
geospatial data at temporal resolutions high enough to use for accurate analysis [24].

We rely solely on freely and publicly available geospatial data to demonstrate a rapid
approach to identifying vulnerable wetland sites and determine wetland locations where
NBS implementation can be used to support flood mitigation efforts across a gradient of
watershed development in a coastal area. We analyzed wetland condition and wetland
restoration areas in New Hanover and the City of New Bern, NC by: (1) computing
flood exposure levels to coastal flood inundation, (2) undertaking a time series analysis
of Landsat 8 multispectral data to determine trends in vegetation health metrics from
2014–2021 (wetland sensitivity), (3) creating a combined wetland vulnerability assessment
composed of both exposure and sensitivity results, and (4) analyzing and prioritizing
suitable parcels for NBS implementation centered around highly vulnerable wetland areas.

2. Materials and Methods

2.1. Study Areas

The climate of North Carolina (NC) is humid and subtropical, marked by cold winters
and warm summers that bring forth large amounts of precipitation, with total annual
precipitation amounts varying from 34.8 inches (2007) to 68.4 inches (2018), and mod-
erate to high vulnerability to tropical storms. Coastal NC experiences a hurricane level
storm roughly once every 3 years because of its location along the coast of the Atlantic

171



Hydrology 2022, 9, 218

Ocean in addition to smaller storms with damaging impacts stemming from winds, storm
surge flooding, and heavy rainfall; rising sea levels have also contributed to increases
in tidal flooding events that damage infrastructure by overwhelming the transportation
and stormwater networks [25]. The low-lying topography of the coastal part of the state
not only compounds flood vulnerability but also means that the region is characterized
by expansive wetlands, such as managed loblolly pineland/upland forested wetlands
(24.7% of all wetlands) or bottomland hardwood/riverine swamp forest (22.3%), composed
primarily by flood-resistant species such as cypress, black gum, and red maple trees [26].

This research was designed in consultation with local government representatives in
two NC municipalities at different stages of resilience and flood mitigation planning: the
City of New Bern Development Services, where resilience measures to reduce flood impacts
are well underway, and the New Hanover County (NHC) Office of Recovery and Resilience,
where coordinated resilience planning is still in the early stages. We selected two HUC-12
subwatersheds in each of the two respective communities to conduct a wetland vulnerabil-
ity analysis, engage repeatedly with relevant stakeholders, and create an NBS prioritization
scheme. In New Hanover County, with input from NHC representatives, we selected
the Smith Creek and Masonboro Island–Mason Inlet subwatersheds (Figure 1), which are
both heavily populated, tidally-influenced urban watersheds characterized primarily by
freshwater and salt/brackish marshes respectively that lacked any vulnerability assessment
on exposure and sensitivity to natural hazards (Figures S1 and S2). For New Bern, we
selected the City of New Bern–Trent River and City of New Bern–Neuse River (Figure 1),
both urban, semi-tidally influenced watersheds characterized by the presence of primarily
freshwater marsh and bottomland hardwood/riverine swamp forest mixed with managed
pinelands located in Craven County (Figures S3 and S4). Both watersheds historically
contain problematic areas for stormwater inundation and, hence, the City of New Bern,
the NC Ecosystems Enhancement Program, and the NC Clean Water Management Trust
Fund are currently working to create functional wetlands that can sequester floodwater
inundation through NBSs in the Neuse River.

2.2. Data Sources

This research integrates existing publicly available geospatial data to create a wetland
vulnerability assessment and determine exposure and sensitivity based on flood inundation
scenarios and spectral indices that are used as proxies for vegetative health metrics. All
data used in this study is summarized in Table 1 by source, data format, and location. The
data is made available and described sequentially below in Section 2.3.

All data were projected to the North American Datum (NAD) 1983 StatePlane North
Carolina Federal Information Processing Standards (FIPS) 3200 Feet and we used the most
current North Carolina Department of Environmental Quality (NCDEQ) Wetlands GIS
dataset as a location mask for this study since we focused on wetland areas specifically.
Exposure and sensitivity results are shown only for locations deemed to be a wetland
by this dataset. The sea level rise and Federal Emergency Management Agency (FEMA)
special flood hazard areas in vector format were resampled to a common 30 m spatial
resolution upon rasterization and inclusion into the final model.

2.3. Wetland Vulnerability Analysis
2.3.1. Flood Exposure

The data utilized to determine the exposure risk included 100- and 500-year FEMA
flood zones, high-tide flooding, and sea level rise datasets provided by the National
Oceanic and Atmospheric Administration (NOAA) (Table 1). The various exposure datasets
provide potential flood inundation data that will present the overall flood risk of an area
by examining multiple types and projections of flood hazards, not a single inundation
circumstance. Utilizing FEMA flood zones to determine flood risk has the main drawback
of not always accurately predicting every area that may experience flooding, but it is a
nationally recognized dataset that influences government responses to flood events. While
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flooding can certainly occur outside of the typical 100- and 500-yr special flood hazard
areas, locations in flood zones face a higher likelihood of recurrent flooding at the parcel
levels. The NOAA high-tide flooding is the only feature already in raster format with
a spatial resolution of 8.94 ft (2.72 m) for New Hanover County and 8.88 ft (2.70 m) for
the City of New Bern. The 2 special flood hazard areas and 10 sea level rise scenarios,
1 through 10 ft, were rasterized to the same spatial resolution and coordinate system as
the high-tide flooding layer for optimal overlay of raster cells and accuracy. Lastly, the
ArcGIS Pro Cell Statistic tool was used to create a sum overlay between the 13 exposure
datasets (Figure 2). The final summed dataset was then categorized into three grouped
categories using a quantile classification scheme, with values 1 through 4 grouped and
reclassified into a new low exposure class (1), where (1) indicates low flood exposure,
values 5–8 were reclassified as (2) and indicated medium exposure to flood inundation,
and values 9–12 grouped and reclassified into a high flood exposure class (3) [23]. The final
exposure results were extracted to only the areas of wetlands determined by the NCDEQ
wetland and wetland restoration areas datasets.

Figure 1. New Hanover County, NC study areas consisting of the Masonboro Island–Mason Inlet
and Smith Creek subwatersheds.
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Table 1. Wetland vulnerability assessment datasets and sources.

Dataset Data Source
Data Format
(Spatial Resolution)

Link to Dataset and Dataset
Technical Documentation

High-tide flooding NOAA Raster (~2.7 m) https://coast.noaa.gov/slrdata/ (accessed on
1 January 2022)

Sea level rise (1–10 ft) NOAA Vector https://coast.noaa.gov/slrdata/ (accessed on
1 January 2022)

FEMA special flood hazard
areas (100- and 500-yr) NC FRIS Vector https://fris.nc.gov/fris/Home.aspx?ST=NC

(accessed on 1 January 2022)

Landsat 8 multispectral
imagery derived indices
(NDVI, NDMI, and SAVI);
12 time steps 2014–2021

USGS Raster (30 m) https://earthexplorer.usgs.gov/ (accessed on
1 January 2022)

Wetlands and wetland
restoration areas NCDEQ Vector

https://deq.nc.gov/about/divisions/coastal-
management/coastal-management-gis-
data/download-coastal-wetlands-spatial
(accessed on 1 January 2022)

Parcels NC One Map Vector https://www.nconemap.gov/pages/parcels
(accessed on 1 January 2022)

Figure 2. Summary of workflow steps to compute a wetland vulnerability assessment.

2.3.2. Wetland Vegetation Sensitivity

Wetland sensitivity was determined by identifying trends in vegetation indices de-
rived from moderate-resolution Landsat 8 multispectral data for every year with data
available since 2014, with less than 10% cloud cover at peak vegetative productivity (June
to September). Based on drought data published by the US Drought Monitor produced
by the National Oceanic and Atmospheric Association, the United States Department of
Agriculture, and the University of Nebraska–Lincoln, no conditions above abnormally dry
were reported for the dates when the Landsat 8 data was collected aside from one instance
of slight moderate drought around the 07/27/2019 collection date [27]. No hurricanes oc-
curred directly before or on the date that any of the LS imagery was collected. We computed
yearly spectral indices to identify the chlorophyll concentrations present in the vegetation
and vegetation moisture content for wetland areas within our study sites. By including
the results of commonly utilized spectral indices for each study site over multiple years
into a change detection analysis, changes in vegetative productivity and the directionality
changes in productivity are identifiable and can be integrated into future management
practices aiming to protect wetland ecosystems and their services. We posit that wetlands
that are experiencing a decrease in productivity or condition can be readily identified and
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possible management can be introduced to restore the vegetation in a given area if there is
a significant trend over time. We used three indices: the Normalized Difference Vegetation
Index (NDVI), a widely used index to determine vegetation chlorophyll concentrations
as a measure of productivity and a plant’s ability to photosynthesize [28]. Secondly, we
computed the Soil-Adjusted Vegetation Index (SAVI) because of its ability to measure
chlorophyll present in live biomass while also mitigating the impacts of soil reflectivity [29].
Integration of SAVI in this coastal area is important because of the common presence of
bare soil found in fluctuating tidal environments. Thirdly, we computed the Normalized
Difference Moisture Index (NDMI) as a proxy for moisture in soils and vegetation and
when monitoring vegetation disturbances [30,31]. Finally, we combined the three vegeta-
tion indices in the LandTrendr tool in ArcGIS Pro to compute changes over the time steps
of Landsat data with a snapping date of 6/30 for the 12 time steps of imagery collected
between 2014 and 2021 (Table S1). The LandTrendr output was a change analysis dataset
that contains model coefficients that were then input into the Run Generate Trend Raster
tool used to perform a Mann–Kendall significance test (Figure S5). We then utilized the
z-score band to break the data into confidence intervals, creating three categorized values
with 1 being increasing trends in vegetation index metrics, 2 being no trend, and 3 being
decreasing trends.

2.3.3. Combined Wetland Vulnerability Assessment

Exposure and sensitivity results were combined and evaluated to determine where ar-
eas of high flood exposure and decreasing trends in vegetative condition overlap using the
Weighted Sum tool whereby exposure was given a 55% weight while the sensitivity rasters
will have a combined weight of 45% between the three indices (Figure 2). By having the ex-
posure data at a slightly higher weight, areas of physical vulnerability to flooding will hold
a slight dominance over decreases in vegetation health, which was deemed helpful when
attempting to locate areas to implement flood-mitigating nature-based solutions [32,33].
Sekovski et al. (2020) determined the weights for their study by calling on experts in the
environmental science field who were familiar with the localized processes of their study
area to determine what extent each of their variables were contributing to coastal vulnera-
bility. We then classified the results of the weighted sum analysis into low, medium, and
high wetland vulnerability to inundation. Lastly, the highest risk areas were extracted to
determine potential NBSs suitability relative to existing government-owned parcels under
the assumption that areas characterized by a statistically significant decrease in vegetative
health metrics between 2014–2021 and high exposure to flood risks are more susceptible to
wetland loss.

2.3.4. Site Suitability for Nature-Based Solutions

To determine suitable sites for nature-based solutions based on the combined wetland
vulnerability analysis, we used state parcel data created by NC One Map to find parcels
that are already in government ownership, preferably unused, and located close to areas
deemed highly vulnerable following analysis. The types of nature-based solutions being
recommended for implementation following this study would be those that improve
wetland ecosystem services and extent, such as bioretention, wetland restoration or the
creation of new stormwater wetlands. The type of wetland nature-based solution able
to be implemented is dependent on the size of a parcel deemed suitable. We conducted
several site visits to locations in both New Hanover and Craven Counties during the
month of July 2021 that consisted of geotagged photos and field inspections with relevant
managing stakeholders to identify areas of the highest recurrent flood risk as well as expert-
proposed candidates for NBS implementation following the presentation of our modeling
results. The site visits not only provided critical on-the-ground information on existing
risk and vulnerability to the built infrastructure but helped further solidify our working
relationships with the managing stakeholders and potential decision makers in adopting
and implementing NBSs at the selected sites.
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3. Results

As anticipated, in both New Hanover County and the City of New Bern, all four
subwatersheds examined show the highest flood exposure risk for wetlands located on
the coast and near the major hydrologic features in the region. In the Masonboro Island–
Mason Inlet subwatershed, the majority of the wetlands on the barrier islands and directly
surrounding the tidal creek hydrologic features are exposed to flood inundation (Figure 3).
The main portions of the tidal creeks and barrier islands marking the coastline show
high flood exposure risk with 20.3% of the entire subwatershed at some risk to flood
inundation (Table 2). All the tidal creeks located within the Masonboro Island–Mason Inlet
subwatershed are also highly populated areas that are historically at risk from repeated
flooding during relatively small storm events or even sunny day or high-tide flooding.
The Smith Creek subwatershed experiences the highest flood risk along wetlands located
close to the Cape Fear River (Figure 3) and experiences compounding flood risks, such
as a combination of tropical storms, riverine flooding, and sea level rise exacerbated by
high-tide flooding. While the inland portion of Smith Creek shows a lower flood exposure
overall, the presence of cleared, drained, and cutover wetland types in the area could
contribute to decreased flood sequestration due to lack of functional wetlands able to
perform ecosystem services (see Figure S2). In total, 7.4% of the Smith Creek subwatershed
experiences some level of flood exposure (Table 2) as does the downtown area of the city of
Wilmington, and the communities of Kings Grant, Forest Hills, and Murrayville.

In the City of New Bern–Neuse River and the City of New Bern–Trent River subwater-
sheds, the highest flood exposure characterizes wetland areas along the Neuse River and
mouth of the Trent River (Figure 3). In the City of New Bern–Neuse River subwatershed,
14.7% is exposed to recurrent flooding, with 5.1% of the entire subwatershed falling into the
high exposure level (Table 2). The wetland areas with highest vulnerability to flooding are
those found directly at the mouth of the Trent River where it branches off from the larger
Neuse River. This subwatershed contains the historic downtown New Bern along with
a vast majority of the city’s incorporated areas and citizens. Overall, 5.7% of the City of
New Bern–Trent River subwatershed is exposed to tidal and SLR-induced floods, with 2.9%
of the entire subwatershed falling into the high exposure category (Table 2). High flood
exposure makes up the largest area of flood exposure in the City of New Bern–Trent River
subwatershed followed by low flood exposure composing 1.9% of the entire subwatershed.
The Neuse River Bridge dissects through wetlands that show to have a high flood exposure
on the western side of the structure and a mixture of low to medium flood exposure on
the eastern side. Having a major transportation structure located within areas with high
exposure to flooding can lead to infrastructure damage or failure over time as sea level
rising scenarios and natural hazards causing flood inundation to continue to amplify [34].
These analyses do provide a cursory and standardized approach to visualizing areas of the
highest risk and exposure to compound inundation and thus represent useful planning
tools in the process of NBS suitability assessment.

Our next step involved conducting a 12-year vegetation change analysis aimed at
quantifying areas of vegetation condition decline, stability, or improvements for our four
subwatersheds focusing solely on wetlands as defined by the NCDEQ. Even though we
calculated trends (and their relative statistical significance) based on SAVI (Figure S6) and
NDMI (Figure S7) indices and all three vegetation indices directionality are included in
our final combined vulnerability metric, below we only show and discuss in detail the
results of the NDVI trend analysis. In the Masonboro Island/Inlet area, more than 24% of
the wetlands included in our analysis show a decreasing vegetation trend based on the
time series of NDVI extracted from Landsat imagery (Table 3 and Figure 4). This area was
highlighted as having a decreased vegetation condition that is contiguous along the barrier
island and the main stems of the major tidal creek inlets, and characterizes a much larger
proportion of the study area compared to all of the other three study locations. For the
other locations, the majority of wetlands analyzed exhibit no significant trend in vegetation
response, while only marginal increases in vegetation response are recorded, with the

176



Hydrology 2022, 9, 218

highest proportion occurring in the Smith Creek watershed region. For our Craven County
study locations, we see a similar pattern of highest vegetation response declines in the
tidally influenced zones, although the Neuse River is located a distance away from the
coast (Figure 4).

Figure 3. Flood exposure results of the Masonboro Island–Mason Inlet and Smith Creek subwater-
sheds in New Hanover County, NC (left map) and City of New Bern–Neuse River and the City of
New Bern–Trent River subwatersheds in New Hanover County, NC (right map).

Table 2. Flood exposure risk for the four study areas as total area (acres) and a percentage of the
HUC affected.

Masonboro Island–Mason Inlet Smith Creek

Flood exposure level Area impacted % of HUC-12
impacted Areas impacted % of HUC-12

impacted
Low 214.0 1.6% 262.5 3.1%
Medium 209.3 1.6% 68.2 0.8%
High 2265.5 17.1% 300.6 3.5%
City of New Bern–Neuse River City of New Bern–Trent River

Flood exposure level Areaimpacted % of HUC-12
impacted Areaimpacted % of HUC-12

impacted
Low 428.5 7.5% 108.6 1.9%
Medium 118.0 2.1% 55.0 0.9%
High 293.7 5.1% 170.6 2.9%
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Table 3. Summary of the NDVI-based time series analysis z-score results for our four study areas in
acres and as a percentage of the HUC-12 impacted.

Masonboro Island–Mason Inlet Smith Creek

Time series z-score trend Area impacted % of HUC-12
impacted Area impacted % of HUC-12

impacted
Increasing 192.3 1.4% 156.4 1.8%
No Trend 2225.4 16.8% 2323.9 27.2%
Decreasing 3226.1 24.3% 1254.5 14.7%
City of New Bern–Neuse River City of New Bern–Trent River

Time series z-score trend Area impacted % of HUC-12
impacted Area impacted % of HUC-12

impacted
Increasing 94.8 1.6% 39.7 0.7%
No Trend 1268.0 22.0% 1224.1 20.9%
Decreasing 732.4 12.7% 628.2 10.7%

Figure 4. NDVI time series wetland sensitivity results for the Masonboro Island–Mason Inlet and
Smith Creek subwatersheds in New Hanover County, NC.

Finally, we combined the flood exposure and vegetation sensitivity metrics into a
single metric called wetland vulnerability, reclassified from its numeric values into three
categories: low, medium, and high vulnerability to inundation as a function of wetland
condition (Table 4). In New Hanover County, the majority of wetland areas in the Mason-
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boro Island–Mason Inlet subwatershed located on the Atlantic Coast are ranked as highly
vulnerable areas (Figure 5). The portions of the five smaller hydrologic features within
the Masonboro Island–Mason Inlet subwatershed located directly on the coast are also
ranked as highly vulnerable when combining exposure to inundation and the high rate of
vegetation decline resulting from the sensitivity analysis. The Smith Creek subwatershed
shows high vulnerability immediately adjacent to the Cape Fear River but the ranking
declines towards the medium ranking as the hydrologic feature moves inland. Overall,
as was the case with the vegetation analysis, the Masonboro Island–Mason Inlet shows
many highly vulnerable areas with roughly 11.7% of the subwatershed’s total area deemed
highly vulnerable to the combined effects of inundation and declining vegetation conditions
(Table 4).

Table 4. Combined wetland vulnerability assessment metrics for the four study areas in acres and as
a percentage of the HUC-12 impacted.

Masonboro Island–Mason Inlet Smith Creek

Wetland
Vulnerability Rating Areaimpacted % of HUC-12

impacted Area impacted % of HUC-
12 impacted

Low 196.8 1.5% 245.9 2.9%
Medium 743.8 5.6% 273.9 3.2%
High 1555.5 11.7% 70.2 0.8%
City of New Bern–Neuse River City of New Bern–Trent River

Wetland Vulnerability Rating Area impacted % of HUC-12
impacted Area impacted % of HUC-12

impacted
Low 381.0 6.6% 94.0 1.6%
Medium 325.9 5.7% 158.4 2.7%
High 40.9 0.7% 38.6 0.7%

In Craven County, a relatively smaller proportion of the study areas were ranked as
highly vulnerable to the combined effects of inundation and vegetation declines, with the
highest concentration of highly vulnerable areas in the northeastern portion of the City of
New Bern–Trent River subwatershed, where there is existing transportation infrastructure
and two hydrologic features, the Neuse and Trent rivers, along with smaller hydrologic
features that branch off from the Trent River (Figure 5). The wetland areas in the City of
New Bern–Neuse River subwatershed that were determined to be at high vulnerability
are those directly bordering the Neuse River and the smaller hydrologic systems along the
river’s coastline, primarily classified as medium or low overall vulnerability (Table 4).

The final step consisted of stratifying our results based on parcel ownership in order to
identify potential sites for nature-based solution implementation, relative to data collected
in the field during our site visits (Figures 6 and 7). The optimal type of parcel for potential
NBS implementation is already in government ownership located close to wetland areas
identified as high vulnerability or containing high vulnerability areas, even if not spa-
tially contiguous. Interestingly, the locations considered by county managers to be highly
problematic in the New Hanover Pages Creek watershed, for instance, show medium
overall vulnerability in our model ranking and are not co-located with government-owned
parcels, which partially explains the relative lack of success mitigating for repeated flooding
occurring in those locations (Figure 6).

In Craven County on the other hand, where resilience planning efforts are currently
well underway, our vulnerability ranking overlapped closely with areas considered highly
at risk by City of New Bern Development Services officials who are implementing NBSs in
the Stanley White Recreation Area and the Jack Smith Creek locations (Figure 7).
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Figure 5. Wetland vulnerability assessment of the Masonboro Island–Mason Inlet and Smith Creek
subwatersheds, NC showing categorical vulnerability rankings.

Spatially, it is important to identify specific locations and parcels that contain high
proportions of wetlands ranked as highly vulnerable to inundation and present potential
opportunities for NBS implementation (Table 5). In some instances, parcels larger than
65 hectares are deemed almost 70% vulnerable and, when those parcels are also contiguous
and cover large spatial extents that protect significant residentials areas (Figure 8B), they
present huge opportunities for brackish or saltwater marsh restoration that can benefit
both ecosystems and humans. In New Hanover County, the Smith Creek subwatershed
contains 25 government-owned parcels in total, while the Masonboro Island–Mason Inlet
subwatershed contains 83 government-owned parcels identified as highly vulnerable,
which are all nearly exclusively freshwater marsh ecosystems. Introducing a wetland-
centered, nature-based solution project within any of these parcels has the potential to
help mitigate flood inundation from the downtown Wilmington and Hightsville areas that
contain historic structures and densely populated areas (Table 5 and Figure 3).
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Figure 6. Wetland vulnerability assessment results, government-owned parcels, and locations identi-
fied in the field during site visits in the Page’s Creek area within the Masonboro Island–Mason Inlet
subwatershed, NC overlaid on NAIP imagery.

In New Bern, the City of New Bern–Neuse River subwatershed contains six government-
owned parcels and the City of New Bern–Trent River subwatershed contains two government-
owned parcels exhibiting high vulnerability to inundation and vegetation declining in
condition, primarily located in the Neuse River, making them difficult to access and not
the best area for implementation to protect societal infrastructure from flood inundation.
The two government-owned parcels in the City of New Bern–Trent River subwatershed
are considered highly vulnerable areas that are exclusively freshwater marshes (Table 5).
In the City of New Bern–Trent River, 10.2% of the Lawson Creek Park parcel showed
the presence of highly vulnerable areas while only 2.53% of the Clermont parcel showed
high vulnerability (both characterized by freshwater marshes and riverine swamp forests
in about equal proportion), making Lawson Creek Park the most optimal government-
owned location for NBS implementation subwatershed (Figure 9C). Utilizing a park as
a location to implement a NBS is a fantastic opportunity because not only is the parcel
already government owned, but it is also in a location that is visited frequently by the
public that could be utilized as an environmental educational tool. While not exhaustive,
these results show opportunities afforded when using freely available and public data for
the quick identification of potential NBSs locations as a function of exposure to risk and
ecosystem sensitivity that can be used to both enhance ecosystem functions and benefit the
built and infrastructural system.
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Figure 7. Wetland vulnerability assessment results, government-owned parcels, and locations identi-
fied in the field as potential NBS sites in the Trent River subwatershed in New Bern, NC overlaid on
NAIP imagery.

Table 5. Highest vulnerability parcels in the Smith Creek subwatershed, Masonboro Island–Mason
Inlet, Neuse subwatershed, and the Trent River watershed.

Parcel Name Total Parcel Area (ha)
Total Area
Vulnerable (ha)

% of Parcel Vulnerable

Smith Creek
Marne Dr Tract 20.11 5.36 26.68
Lot 19A Princess Place Park 0.26 0.08 33.84
PT Love 5.51 2.06 37.46

Masonboro Island–Mason Inlet
Landfall Natural & Scenic Preservation Area 1 67.23 45.01 66.94
Channel Acres 1.92 1.13 59.03
Landfall Natural & Scenic Preservation Area 2 17.94 8.86 49.39

Neuse River
Goose Island 1.76 0.50 28.7
Bluff island 7.04 1.69 24.1
Trim Cypress Island 2.43 0.44 18.4
Oaks Rd 1.11 0.14 13.4

Trent River
Lawson Creek Park 56.51 5.78 10.2
Clermont 5.91 0.14 2.53
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Figure 8. Overlap between the highest vulnerability areas and government-owned parcels of the
Masonboro Island–Mason Inlet superimposed on NAIP imagery; (A) shows the Page’s Creek area,
(B) shows the Howe’s Creek area, (C) shows the areas around Wrightsville Beach before the main
island, and (D) shows Masonboro Island.
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Figure 9. Overlap between the highest vulnerability areas and government-owned parcels in both
New Bern study areas superimposed on NAIP imagery; (A) shows the Oaks Rd parcel, (B) shows the
vulnerable islands in the Neuse River, (C) shows the Lawson Creek Park parcel, and (D) shows the
Clermont parcel.
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4. Discussion

The Masonboro Island–Mason Inlet subwatershed contains the highest area of wet-
lands and wetland restoration areas (20.3% of the entire subwatershed), which are vulnera-
ble to flood inundation based on the sea level rise, high-tide flooding, and FEMA 100-yr
and 500-yr flood zone data collected for the flood exposure analysis. It also contains the
largest area experiencing a decreasing trend in wetland vegetation conditions (22.5% of
the area showing a decreasing trend in NDMI values and a 23.4% decreasing trends in
both NDVI and SAVI over the last 12 years was considered). While all four subwatershed
examined here are coastal, the Masonboro Island–Mason Inlet area is the only one that
directly borders the Atlantic Ocean, resulting in a higher inundation exposure due to the
lack of a buffer region between the ocean and the wetland landscapes located closely to
urbanized areas. The City of New Bern–Trent River subwatershed has the lowest area
vulnerable to high flood exposure (2.9% of the total area) and decreases in wetland veg-
etation health metrics of the study areas were examined (10.7% for NDVI and SAVI and
11.8% for NDMI metrics per total area). Wetlands directly along the coast may experience
much more rapid deterioration of vegetation with increasing sea levels, tidal inundation,
and more frequent instances of flood events. We advance the notion that NBS implemen-
tation would be beneficial in wetland areas located near major hydrologic features that
have a high exposure level to flood inundation scenarios and are experiencing decreasing
health metrics indicative of healthy and productive vegetation, such as chlorophyll and
moisture concentrations. Leveraging existing wetland areas as a nature-based solution
is a natural tool to mitigate climate change impacts in coastal urban areas where flood
inundation is common due to sea level rise, tidal flooding, and natural hazards bringing
forth heavy precipitation and storm surges [17]. The introduction of NBSs to conserve and
restore wetlands, such as brackish and freshwater marshes and riverine swamp forests, in
urban areas simultaneously preserves biodiversity and the ecological balance of existing
waterbodies by providing water sequestration and purification services [14]. Finally, the in-
troduction of NBSs further provides vegetated areas with aesthetic and recreational values
that allow citizens to connect with nature and enhance their mental wellbeing [14]. Overall,
while NBSs in the coastal environment (either on the land part of a coast or in nearshore
waters) are very efficient at mitigating the effects of extreme fast-evolving processes that
lead to episodic coastal flooding (waves and surges), they are less efficient in decreasing
the inundation effects of very slow long-term processes, such as mean SLR induced by
climate change [17,18]. A notable exception is provided by marsh ecosystems that have
the ability to collect sand and sediments and raise their surface elevation over time as SLR
progresses [18].

As global climate change and sea level rises along the world’s developed coastlines
intensify, coastal zones will continue to experience higher vulnerability to flood inundation
and ecosystem degradation [22]. While localized scale actions cannot mitigate these effects,
implementing NBSs to protect and restore wetland ecosystems and associated ecosystem
services can contribute to mitigating flood inundation and the impacts of climate extremes
in urbanized coastal communities [16,17]. Especially in low-lying coastal areas, increasing
compounding flood risks associated with storm surge and heavy precipitation are likely
to continue to co-occur [34]. Areas that are typically only submerged during high tides
will likely experience increases in time spent submerged with the sea level rise, which
can lead to complete submergence over time and declines in vegetation conditions as
species are unable to cope with changing environmental conditions or migrate quickly
enough [34]. The impacts of rising water levels from sea level rise and natural hazard events
will lead to structures located along the bodies of water to experience submergence and
inundation, which will in turn impact societal infrastructure such as stormwater systems,
buildings, and roadways [34]. Yet many municipalities or small urban centers do not
have the capacity to run complex models to simulate their exposure to flood risks and
prioritize potential interventions in areas that experience recurrent inundation and that
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may even be bought out (New Hanover County Office of Recovery and Resilience, personal
communication, 2021).

Although proposed as a rapid assessment method with high transferability and repli-
cability, this work has several important limitations and areas of improvement, primarily in
computing the wetland sensitivity metric as presented here. Currently, North Carolina does
not have any wetland-species-specific classification data available for geospatial analyses.
While it would be difficult to create a statewide or subwatershed-level dataset identifying
individual wetland vegetation species, it would certainly increase the accuracy of geospatial
assessments of wetland vegetation conditions without relying on the collection of field
observations. The NCDEQ wetland data utilized for this study does identify wetland types
but does not go into depth regarding a full species breakdown for every location given the
statewide scope of the dataset. The NCDEQ data does provide an idea of what types of
species are commonly present within each wetland type to give those utilizing the data an
idea of what species are more than likely present in each wetland community. Determining
specific wetland vegetation species can be necessary for a remote sensing-based wetland
assessment due to variations in spectral properties between species, along with precipita-
tion variations that control species spectral responses [35,36]. Certain species of wetland
vegetation—such as Juncus roemerianus, commonly known as black needlebrush—can
have levels of chlorophyll and moisture slightly lower than the typical healthy vegetation
that can result in false declining condition trends when utilizing remotely sensed data
and spectral indices alone [35]. Species like cordgrass and juncus have a much sparser
canopy composition relative to other wetland vegetation like phragmites, which leads
to higher reflectance values in the red wavelength range and lower values in the near
infrared than other wetland species [35]. Higher values in the red wavelength region infer
a lower chlorophyll concentration which could impact the results of spectral indices if not
accurately accounted for when undertaking a geospatial assessment of wetlands using
remotely sensed data [35]. Ground truthing and taking site observations of vegetation
communities are helpful steps to confirm species present in a study area so the ecosystem
dynamics and structure of wetland areas are accurately described. Although some species
of wetland vegetation may present lower spectral profiles than typical healthy vegetation
due to structure and composition, the goal of this analysis was to determine the overall
trends in vegetation conditions based on spectral signatures present in moderate-resolution
satellite data and not to observe the values of the indices alone. For a wetland vegetation
patch to be determined as increasing or decreasing in terms of its spectrally based indices
(whether NDVI, SAVI or NDMI), there would have to be a shift in values over time that
is atypical and maintains temporal consistency. If a species has consistently lower values
in the metrics calculated here, the lower values alone would not cause an area to present
either decreasing or increasing trends when considered over time. Secondly, to increase the
accuracy of future vulnerability assessments, higher resolution multispectral data can be
utilized, such as Sentinel-2 or in situ collected unoccupied aerial systems (UAS) imagery.
We chose to utilize Landsat 8 data because it is widely accepted and available in the geospa-
tial community along with the Analyze Changes using LandTrendr specifically created by
Esri for the ArcGIS Pro software to be used with Landsat data. Drawbacks of utilizing a
method that requires obtaining in situ UAS data is the difficulty of collecting data on a
large scale, such as at the HUC-12 level, in developed areas and the resource intensity in
the way of equipment, time, and workforce [24]. Increasing publicly available wetland
inventory data that elaborates on types of species found in an area would be beneficial
for geospatial analysis when retrieval of small scale, field-based data is not possible. With
advancements in technology leading to high spatial and temporal resolution imagery data
becoming widely available, remote sensing and GIS could be employed more frequently to
monitor wetland areas, especially in areas that are difficult to traverse on the ground.

To further strengthen the results of this study, more in-depth evaluations of various
wetland types along the Atlantic coast would be a great indicator to determine if subwater-
sheds on the coast are overall experiencing greater impacts from increased flood intensity
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and wetland vegetation degradation than their riverine counterparts. Locations for poten-
tial NBSs do not have to be implemented on government-owned parcels alone. Utilizing
locations such as parks and public schools located in or near wetland areas provides good
alternatives given educational opportunities for schoolchildren and the public. The state
of North Carolina has a buyout system for property due to past inundation or high flood
risks that were bought out from private citizens largely funded by the Federal Emergency
Management Agency (FEMA) [37]. These lots would be another type of location that could
be utilized for the introduction of NBSs. FEMA buyout lots present many advantages
for NBS implementation for flood mitigation because they are already owned by a gov-
ernmental entity, are in a known area of high risk to flood inundation, and are excluded
from future re-developments [37]. Community outreach is also an avenue that could be
explored to determine if any local landowners are willing and able to implement some
form of nature-based solutions on private land to help combat future flood inundation.

Finally, while parcels optimal for NBSs can be identified through the results of a
wetland vulnerability assessment, there are multiple factors to consider prior to imple-
mentation. Local conditions should be considered as failing to do so can cause negative
impacts because mismatches between a solution and the socio-spatial context may lead to
the nature-based solution envisioned being no longer fit to address both environmental
and social needs [38]. The salvageability of the wetland vegetation, the connectivity of a
potential implementation location to hydrologic features, and the size of a parcel identified
for implementation can influence the effectiveness of an NBS. Wetland restoration efforts,
such as nature-based solutions, are likely to fail if the sources of degradation continue to
influence the area [39]. Due to the possibility of restoration failing because of upstream
stressors that cause degradation, it is necessary to identify the causes of degradation to an
area prior to implementation and eliminate or decrease said stressors [39]. Non-wetland
areas near wetland areas experiencing flood risks and decreases in vegetation health metrics
should also be considered for nature-based solution implementation, especially in devel-
oped and developing urban areas, to reduce flood exposure and devastating socio-economic
effects [40–42].

5. Conclusions

This study presents a simple and replicable workflow for identifying potential sites for
NBS implementation predicated on the utilization of freely and publicly available geospatial
datasets so that interested decision-making parties can easily implement it in natural areas
such as brackish and freshwater marshes and riverine swamp forests. In identifying
potentially suitable NBS implementation sites that leverage existing wetland locations,
irrespective of location near the coast or relatively inland, we rely on the assumption
that wetland areas at high flood risk and that exhibit decreasing vegetation condition
trends present an ideal opportunity to address both wetland conservation or restoration
as well as the impacts of flood inundation in urban areas. Especially when co-occurring
with large and underutilized or unutilized land parcels under government ownership,
the double advantage of preserving or restoring wetland ecosystem functions (depending
on the vegetation condition status highlighted by the multi-year trend analyses) and
providing inundation mitigation for the built environment makes nature-based solutions
an important consideration. Looking beyond wetland areas and government-owned parcels
may present other implementation areas that could assist in further restoring wetlands in
close proximity to those areas and helping mitigate flood risk in developed and urbanized
coastal communities at risk from recurrent inundation. Finally, this study underscores the
critical importance of conserving or restoring brackish and freshwater marshes and swamp
forests even though, proportionally and depending on location, they represent a minority
of wetland types present in the highly populated Atlantic Coastal Plain region.
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Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/hydrology9120218/s1. Figure S1. Wetland types of the Masonboro Island-Mason Inlet sub-
watershed (32,814.41 acres) per NCDEQ wetland data. Figure S2. Wetland types of the Smith Creek
subwatershed (21,136.41 acres) per NCDEQ wetland data. Figure S3. Wetland types of the City of
New Bern-Neuse River subwatershed (14,458.74 acres) per NCDEQ wetland data. Figure S4. Wetland
types of the City of New Bern-Trent River subwatershed (14,210.71 acres) per NCDEQ wetland data.
Table S1 Dates of Landsat 8 data utilized for the sensitivity time series analysis. Figure S5. Detailed
wetland vulnerability assessment workflow showing intermediary computational steps for ArcGIS
Pro implementation. Figure S6. SAVI time series wetland sensitivity results of the Masonboro Island-
Mason Inlet and Smith Creek subwatersheds in New Hanover County, NC. Figure S7. NDMI time
series wetland sensitivity results of the Masonboro Island-Mason Inlet and Smith Creek subwater-
sheds in New Hanover County, NC.
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Abstract: This study configures the Weather Research and Forecasting (WRF) model with the updated
urban fraction for optimal rainfall simulation over Kampala, Uganda. The urban parameter values
associated with urban fractions are adjusted based on literature reviews. An extreme rainfall event
that triggered a flood hazard in Kampala on 25 June 2012 is used for the model simulation. Observed
rainfall from two gauging stations and satellite rainfall from Climate Hazards Group InfraRed
Precipitation with Station data (CHIRPS) are used for model validation. We compared the simulation
using the default urban fraction with the updated urban fraction focusing on extreme rainfall amount
and spatial-temporal rainfall distribution. Results indicate that the simulated rainfall is overestimated
compared to CHIRPS and underestimated when comparing gridcell values with gauging station
records. However, the simulation with updated urban fraction shows relatively better results with
a lower absolute relative error score than when using default simulation. Our findings indicated
that the WRF model configuration with default urban fraction produces rainfall amount and its
spatial distribution outside the city boundary. In contrast, the updated urban fraction has peak
rainfall events within the urban catchment boundary, indicating that a proper Numerical Weather
Prediction rainfall simulation must consider the urban morphological impact. The satellite-derived
urban fraction represents a more realistic urban extent and intensity than the default urban fraction
and, thus, produces more realistic rainfall characteristics over the city. The use of explicit urban
fractions will be crucial for assessing the effects of spatial differences in the urban morphology within
an urban fraction, which is vital for understanding the role of urban green areas on the local climate.

Keywords: extreme rainfall; default urban fraction; Kampala; urban parameter; updated urban
fraction; WRF model

1. Introduction

Numerical weather prediction (NWP) models, such as Weather Research and Fore-
casting (WRF), are nowadays used for flood hazard modeling and forecasting in urban
areas [1,2]. However, simulating the spatial–temporal rainfall characteristics and struc-
tures that trigger flood hazards is challenging and complex to predict. The mechanisms
affecting rainfall are affected by many factors: the quality of initial and boundary con-
ditions, domain set, and parametrization schemes in model [3]. The urban landscape
characteristics, such as urban fraction and urban parameters, are essential factors in the
urban parameterization schemes that affect the simulated extreme rainfall triggering floods
in the urban areas. Changes in the urban landscape alter the near-surface radiation and
energy budgets, momentum, and water vapor in urban areas, which affect the initiation and
intensification of convective processes over a city [4]. Moreover, with an urban expansion,
a larger thermal contrast between the urban areas and the water body can result in stronger
low-level circulation [5]. Consequently, meteorological conditions alter; thus, it determines
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the formation of convection storms and intensive rainfall over urban areas [6–8]. In the
numerical weather prediction models, the impact of such urban surface change can be
handled through land-surface modeling implemented in parameterization schemes.

The WRF model is widely used to examine and assess the impact of the urban land-
scape on hydrometeorological processes leading to changes in high-intensity rainfall events.
In the WRF model, these processes are addressed using urban parameterization schemes,
for instance, the Single-Layer Urban Canopy Model (SLUCM) [9]. A variety of studies have
been carried out using the WRF model to improve its skills in assessing the impact of the
urban landscape on meteorological fields leading to extreme rainfall events [10–14].

However, the default urban fraction and the corresponding parameter in the WRF
model incorrectly represent the true extent and values of the urban surfaces for individual
cities. For instance, the default urban fraction in the WRF model, which is provided by
Moderate-resolution Imaging Spectroradiometer (MODIS) observational data, cannot fully
represent the correct extent and position of the urban area. Urban parameter values are
also site-specific and incorrectly represent a city’s extent and position; hence, it needs to be
updated, as suggested by [7,15–17]. Therefore, the correct representation of the city’s urban
fraction is required to optimally simulate the high-intensity rainfall distribution over the
urban area. This study uses the detailed and high-resolution urban fraction generated using
Landsat image instead of the default MODIS urban fraction. This Landsat image is highly
detailed and able to capture detailed urban features, such as wetlands and individual
urban fractions at 30 m resolution, which proved to be applicable for hydrological process
modeling leading to flooding in Kampala. Here, we updated the default urban fraction
in the WRF model primarily to represent the correct position and extent of the city and,
secondly, to use a consistent urban fraction for integrated flood hazard modeling and the
WRF model.

Several other urban fractions have been developed for different atmospheric modeling
purposes. For example, local climate zoning (LCZ) is designed to study the thermal
characteristics of urban areas [8,18], and in-homogeneous urban canopy parameters (UCP)
are developed for air quality modeling [6]. In this study, the urban fraction derived from
the Landsat image of 2016, initially developed for urban land-use planning and flood
management [19], is used in the WRF model. Therefore, this study is the first order
to study the role of the new urban fraction on rainfall and can improve the simulated
rainfall. In comparison, the next study can consider the detailed urban morphology and
also compare the current procedure with the existing procedure for a detailed study of
hydro-meteorological processes in urban areas. Assessing the effect of urbanization factors
on extreme rainfall is important to improve our understanding of how urban growth and
expansion affect localized meteorological and hydrological processes. In this research, we
ask how the proposed updated urban fraction for the WRF model is expected to improve
the accuracy of extreme rainfall simulation required for flood management, particularly in
data-scarce areas.

The aim of this paper is to configure the WRF model optimally with urban fraction
specifically developed for the city of Kampala, Uganda, and to evaluate the impact of
adjusting urban fraction and parameters on the simulated rainfall event. The use of the
WRF model to study the deep convection over Kampala requires a special configuration,
which requires the proper position and extent of the city for better consideration of the
spatial contrast between the city and Lake Victoria. This study is a pioneer in using an
explicit and alternative satellite-derived urban fraction in the WRF model and evaluating
its application in deep convection triggering the localized flood. The study provides a
detailed analysis of (1) the WRF model’s configuration with the adjusted urban fraction in
comparison with the default urban fraction; (2) the impact of the updated urban landscape,
which include both the updated urban fraction and adjusted urban parameters on the
simulated rainfall.
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2. Materials and Methods

This section presents the selected rainfall event and WRF model configuration, fol-
lowed by the methodology used in this study and model verification. The methodology
followed in this study begins with the WRF model in Section 2.2, which introduces the
model’s setting and configuration and the choice of the physical parameterizations used.
Section 2.3 presents the method to incorporate the updated urban fraction in the model, fol-
lowed by Section 2.4, which introduces different model simulations carried out in this study.
In Section 2.5, we present a strategy to verify and analyze the simulated rainfall results.

2.1. Study Area and Selected Event

This study was conducted in Kampala, the capital city of Uganda (polygon in dark
lines, Figure 1, Right), as a case study to test the method. The city is an ideal location to
test the method because it is one of the exemplary sub-Saharan African city’s experiencing
tremendous urban expansion over the last three decades that contributed to flooding. The
city is positioned on the shore of Lake Victoria and has an area of about 290 km2. Combined
with urban expansion, high-intensity rainfall events from tropical weather conditions,
soil infiltration properties, and lack of proper drainage systems are the main triggering
mechanisms for flooding [20].

The 25 June 2012 rainfall event that caused a localized flood event in Kampala was
selected for this study. For this event, two types of rainfall observations are present; rain
gauge measurements and satellites. On 25 June 2012, two rain gauge stations were in
operation in Kampala city: Automatic Weather Station (AWS) at the Makerere University
campus, recording at 10 min intervals, and Kampala Central station at 24 h intervals. The
24 h rainfall data of Kampala central station were collected from the Global Summary of the
Day (GSOD) dataset provided by the National Climatic Data Center (NCDC). At Makerere
University, a daily total of 66.2 mm was recorded, and Kampala Central station recorded
60 mm, which is a typical 2-year return period event [21].

In addition, satellite-estimated rainfall from Climate Hazards Group InfraRed Precip-
itation with Station data (CHIRPS) [22] was retrieved for model evaluation. CHIRPS is
considered one of the best rainfall products for decision-making in East Africa [23,24]. The
CHIRPS rainfall data has 0.05 degree (~5.5 km) spatial and daily temporal resolutions. For
the WRF model evaluation, the CHIRPS rainfall data is rescaled using linear interpolation
to the innermost domain of WRF spacing, which is 1 km × 1 km.

The selected rainfall event occurred in the transition between the two main rainy
seasons. Its weather systems are mesoscale and local scale systems, mostly convection
systems associated with the interaction of the urban areas with lake circulation and the
surrounding mountains [25,26]. The rainfall is often very localized and is characterized by
high-intensity rainfall events as it is associated with highly variable weather systems; hence,
available rain gauges are not sufficient to capture the spatial variability of these events.
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Figure 1. Study area: Kampala catchment boundary represented by dark line polygon; Gray line
rectangle indicates WRF d04 domain boundary and map of urban fraction in Kampala as derived
from the Landsat image [27].

2.2. The WRF Model Setting and Configuration

This study uses the WRF-ARW version 4 [28] with a two-way nested domain config-
uration. The WRF model setup consists of four domains centered on Kampala. The four
domains are a 27 km outer fixed domain (d01) and three fixed nest domains of 9 km (d02),
3 km (d03), and 1 km (d04) grid spacing, and all domains had 31 × 31 grid points as shown
in Figure 2 and Table 1, and conformed to the most recommended ratio of 1:3 by [29]. Each
model domain used the Mercator projection system with 38 vertical levels and a pressure
top of 50 hPa. As shown in Figure 2, Kampala is central in all four domains. Under Figure 2,
we further show land-use categories per gridcell and the default urban representation in
the innermost domain d04. The number of gridcells that will be changed to urban when
we used the updated urban fraction is later discussed in the results part (see Figure 3).

Rainfall simulation using mesoscale NWP models, such as WRF, requires a proper
selection of physics parameterization schemes. These parameterization schemes include
microphysics, Planetary boundary layer (PBL), cumulus, radiations, urban canopy, surface
layer, and land surface schemes. Based on the sensitivity assessment described in [3], we
selected Morrison microphysics, Grell Freitas cumulus parametrization, and ACM2 PBL
parameterization combinations for the 25 June 2012 event as the main rainfall-controlling
physics in the area. All parameterization schemes in the WRF model are applied for all
domains, while the urban canopy parameterization is only applied for the 1 km domain
following the procedure suggested by the WRF model manual. Initial and boundary
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conditions are retrieved from the ERA5 global Reanalysis Model, with a resolution of
30 km [30]. Following [26], the static lake surface temperature of Lake Victoria was set to
24 ◦C. The model simulation covers three days, from 24 June at 00:00 UTC to 26 June 2012
at 24:00 UTC, to allow spin-up of the atmospheric processes.

 

Figure 2. Upper: The Weather Research and Forecasting (WRF) model configuration using four
domains (d01, d02, d03, and d04); Bottom: Land-use categories and the default urban fraction
representation (RED POLYGON) in the innermost domain d04 of WRF.
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Table 1. Weather Research and Forecasting model settings used in the current study.

Model WRF v 4.1

Characteristics Domain 1 (d01) Domain 2 (d02) Domain 3 (d03) Domain 4 (d04)

Horizontal grid spacing 27 km 9 km 3 km 1 km
Horizontal Dimensions 31 × 31 × 31 31 × 31 × 31 31 × 31 × 31 31 × 31 × 31

Time step 60 s adaptive time step adaptive time step adaptive time step adaptive time step
Initial-boundary conditions ERA-5 (30 km) simulation of domain 1 simulation of domain 2 simulation of domain 3

Model run period 0000 UTC 24 June–1800 UTC 26 June 2012

The urban canopy model is one of the optional parameterization schemes imple-
mented in the WRF model to account for urbanization (Urban fraction) and associated
parameters for the meteorological processes through the energy partitioning modeling sys-
tem. The available urban canopy schemes in WRF are the multi-layer urban canopy model
(MUCM) [31] and the SLUCM [9]. The MUCMs incorporate building effect parametrization
(BEP) and a building energy model (BEM) [32], which are used to deal with sources and
sinks of heat. The SLUCM neglects the variation in building height and density in the
model grids and uses only a simplified street canyon (i.e., walls, roof, and roads) geometry
to represent urban surfaces. A study indicates that the MUCMs better simulate the extreme
rainfall amount and its spatial distribution compared to when using SLUCM [4]. However,
MUCM requires detailed building data and parameters, which are not easy to be acquired
based on the literature reviews or remotely sensed information; thus, it is challenging to
apply in a data-scarce area, such as Kampala.

In this study, the SLUCM scheme [33] was used to accommodate the urban surface’s
effects on simulated rainfall within the WRF model. The SLUCM scheme employs a com-
mon single-layer street canon representation of urban areas with its numerical framework
well-elaborated [34]. The scheme is simple mainly because it uninvolved the effect of build-
ing parameterization (e.g., variation in building height and building density) as in the case
of the Multi-Layer urban canopy model (MUCM) [31]. The SLUCM in the WRF model is
coupled to the NoahMP land-surface model through a parameter called “two-dimensional
urban fraction (FRC_URB2D)”. The NoahMP land surface model handles the non-urban
fraction (vegetation cover) of the grid, while the SLUCM handles the urban fraction part.
The detailed physics options and parametrization used in the SLUCM are found in [35–37].

The SLUCM requires an urban fraction (urban map) and urban parameters linked to
the urban fraction for model simulation. As the default urban fraction acquired from the
MODIS with all urban extent assigned to a single urban value does not represent the true
extent and position of a city, we updated the urban fraction based on the satellite-derived
urban fraction of Kampala.

2.3. Adjusted Urban Fraction

By default, the WRF model uses the land-use categories based on Moderate-resolution
Imaging Spectroradiometer (MODIS) observations [35]. With the WRF version 4 release,
the MODIS land-use data is updated and available at a resolution of 30 s with 20 land-use
categories [36]. This dataset contains the land-cover classification of the international
Geosphere-Biosphere program and is modified for the Noah land-surface model [37].
Within this land-use classification, the default urban fraction (base map in the WRF model)
is represented by the homogeneous urban fraction with all cell values assigned to 0.9
(HIR) (Figure 1). The default urban parameters dataset that is linked with this default
urban fraction is also provided as static data, as shown in Table 2 (second column). In
this study, the urban land-use fraction developed by [19] that is used for urban planning
and integrated urban flood modeling in Kampala was used. Simultaneously, the urban
parameters linked to the urban fraction were adjusted through a literature review [15,38,39].
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Figure 3. The default and updated urban fraction representation used in the model simulations. All
pixels in the inner domain of WRF represent 1 km. The default urban fraction (left) is from Noah LSM
based on MODIS observation [35], whereas the updated urban fraction is derived from a Landsat
image developed using the cellular automata model [19].

For the WRF modeling, we used the built-up fraction of the Landsat image (Figure 1)
to replace the default urban fraction in the WRF model’s preprocessing following a similar
procedure [40]. The updated urban fraction is derived based on the 30 m resolution Landsat
image 2016 [19]. This adjusted urban fraction is generated using a supervised classification
by sorting the satellite image pixels into three major urban land cover categories: Built-up,
including buildings and pavements; non-built, and bare soil. These three urban land cover
classes are developed as an array of cells, each with an associated fraction of land cover (for
built-up, vegetation, and bare soil), and finally, add up to 1, see [19] for details. Figure 1
shows that the urban fraction value is close to 1 in the high-intensity urban areas (i.e., areas
around the city center), while in the suburban areas, the urban fraction value approaches
zero. Here, the higher the intensity of built-up areas (urban fraction 1), the lower the
vegetation cover and vice versa. The new urban fraction exists at a higher spatial resolution
(i.e., 30 m) than the WRF innermost domain cell size, which is 1 km. To match the WRF cell
size, the new urban fraction cell size is rescaled, and the adjusted urban land-use fraction is
inserted into WRF following the input data format and processes [41,42].

2.4. Model Simulation Strategy

Three simulations are performed to distil the impact of changing urban fractions and
adjusted urban parameters used in the SLUCM. The first simulation (hereafter DUF_DUP)
uses the default urban fraction with the default urban parameters (Table 2, second column)
as a benchmark. The second simulation (hereafter DUF_AUP) uses the default urban
fraction (Figure 3) with adjusted urban parameters (Table 2, third column), where values
were adjusted based on literature [7,20], as shown in Table 2 (third column). The third
simulation (hereafter SUF_AUP) is with an updated land-use fraction based on the Landsat
2016 image, with the adjusted urban parameters. For the SUF_AUP simulation, we have
replaced the default homogeneous urban fraction with a heterogeneous urban fraction
to define Kampala’s more realistic urban representation. As already mentioned in the
introduction, the default urban parameter values in WRF, when no information is provided,
do not represent the urban surfaces of any city. Therefore, it is recommended not to use
these values as is. Hence, the possible fourth simulation using the updated urban fraction
with the default urban parameter values is not considered here.
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Table 2. Default and adjusted urban parameter values that are assigned to the urban fraction.

Default Urban
Parameter Value

Adjusted Urban
Parameter Value

Roof height (m) 7.5 15
Road width (m) 9.8 10
Roof width (m) 9.4 20

Standard deviation of roof height (m) 3 1.5

Albedo (−)
Roof 0.2 0.1
Wall 0.2 0.1
Road 0.2 0.15

Emissivity (−)
Roof 0.9 0.85
Wall 0.9 0.9
Road 0.95 0.95

Conductivity of materials (Cal cm−1 s −1 ◦C−1)
Roof 0.67 0.4
Wall 0.67 1
Road 0.404 0.8

Heat capacity of materials (Cal cm−3 ◦C−1)
Roof 1.00 × 106 1.20 × 106

Wall 1.00 × 106 1.20 × 106

Road 1.40 × 106 1.50 × 106

Total thickness of material layers (m)
Roof 0.05 0.50
Wall 0.05 0.30
Road 0.25 1.00

2.5. Model Verification

To evaluate the simulated rainfall in the innermost domain d04, we used the relative
error (RE) index of [43]. Model performance simulating the event is evaluated using
observed rainfall data from two gauging stations and CHIRPS data. The comparison
with the two gauging stations is carried out with respect to the gridcell daily rainfall
amount at the station locations. The comparison with the CHIRPS was carried out as
daily accumulated rainfall distribution over the Kampala catchment and the catchment
area-averaged amount as a relative error. The catchment area is the area covering the
greater Kampala, represented by a polygon indicated using a black line in Figure 1.

The RE index (Equation (1)) in percentages computes the simulated accumulated
24 h rainfall, S, with respect to observed rainfall at the station location, O. In the case of
comparing WRF with CHIRPS data, S and O are the average values of all grids inside the
innermost domain of WRF, while in case of 2 stations, the simulated WRF values, S, of
gridcell are taken which is located at the rain gauge station, O.

RE =
S − O

O
× 100 (1)

Each simulation (DUF_DUP, DUF_AUP, and SUF_AUP) will result in three RE mea-
sures; one for each gauging station and one for the area-averaged compared with CHIRPS.
To measure the overall magnitude of error for each simulation, the average relative error
(ARE) of the three evaluation locations is calculated based on the three absolute RE (i.e.,
RE at two gauging stations and area-averaged). The impact of adjusted model settings on
simulated extreme rainfall is also evaluated in the form of spatial distribution for objective
analysis in two main aspects: maximum rainfall amount and its spatial distribution in the
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catchment and time evolution. The event’s time evolution over two hours from 11:00 to
12:50 UTC is presented, similar to when the 25 June 2012 observed rainfall event occurred.

3. Results

This section presents the impact of the updated urban fraction in the WRF model,
including urban parameters on the simulated rainfall in terms of maximum accumulated
24 h rainfall amount and its spatial distribution and the time evolution of peak rainfall
amount distribution over two hours. Three simulations are intercompared as well as
validated against the observed rainfall from the CHIRPS and two rain gauge stations. The
evaluation focuses on the high-intensity rainfall event of 25 June 2012 that triggered the
Kampala flood hazard.

The following section describes the representation of the satellite-derived urban fraction in
the WRF model and its comparison with the default urban fraction. The impact of adjusted urban
parameters on the simulated rainfall and the comparisons are presented in Sections 3.2 and 3.3,
followed by a discussion and conclusion in Sections 4 and 5, respectively.

3.1. Updated Urban Fraction Representation

The new urban fraction for Kampala is different from the default urban fraction in two
main aspects: the fraction of urbanization and the spatial extent of the city.

The urban fraction parameter in WRF defines the percentage of the gridcell covered
by impervious urban surfaces, while the remaining fraction is treated as a pervious, veg-
etated surface. Figure 3 shows the default urban fraction of 0.9, implying that the city is
represented by a homogeneous high-intensity residential urban fraction (pixels value 0.9
as described by red color). Based on the Landsat image classification, the updated urban
fraction cells have an average value of 0.64, representing a lower-intensity urban residential
category. In the right-sided map, the city center is partly characterized by orange color
because uninhabitable wetlands (blue areas in Figure 3) are located next to high-intensity
pixels in the LandSat image. The highest urban fraction is (0.9) found on the city’s eastern
outskirts, where an all-terrain is suitable for constructing a building.

Another critical aspect of the new urban fraction map is its spatial extent. As shown
in Figure 3, the new urban fraction covers a broader area of about 50 pixels compared to
the default urban fraction. Croplands initially represented about 40 pixels, Broadleaf Forest
represented 7 pixels, and the rest with Natural Vegetation mosaics (see Figure 1). The
changes in croplands into the urban fraction are mainly located in the city’s eastern and
southern parts. In contrast, the change of Broadleaf Forest to the urban fraction is located
in the Northern part of the city.

3.2. Model Validation

The ability of the WRF model to properly simulate the event is evaluated through
a comparison with the gridcell daily rainfall amount in the d04 domain with the two
gauging stations. Table 3 summarizes the comparison of three WRF simulated gridcell-total
accumulated rainfall with the observation at the station locations AWS and GSOD and
area-averaged rainfall with that of CHIRPS. All three WRF simulations underestimated
rainfall compared to the observations at rain gauging locations, as indicated by RE’s large
negative values. In contrast, compared to the CHIRPS area-averaged rainfall amount
over the innermost WRF domain, all simulations are overestimated, but the SUF_AUP
simulation relatively performs better with RE = 13% for SUF-AUP vs. 50% for DUF_DUP.
Comparing the three simulations using the ARE, the SUF_AUP simulation performs better
with a relatively lower absolute error value of 53%.
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Table 3. Comparison of WRF rainfall with the stations (AWS and GSOD) and Area-averaged regrid-
ded CHIRPS rainfall for DUF_DUP, DUF_AUP, and SUF_AUP simulations for 25 June 2012 rainfall
events in Kampala, Uganda. The areal rainfall amount is the average of all grids in the innermost
domain of WRF.

Simulations
Gridcell-Rainfall AWS (mm) Gridcell-Rainfall GSOD (mm) Area-Averaged Rainfall (mm) ARE

AWS WRF RE (%) GSOD WRF RE (%) CHIRPS WRF RE (%) ARE (%)

DUF_DUP 66 25 –62 60 13 –78 16 24 +50 63
DUF_AUP 66 16 –75 60 13 –78 16 23 +44 66
SUF_AUP 66 21 –68 60 13 –47 16 18 +13 53

The spatial distribution of the total 24 h rainfall amount from CHIRPS [22] and 3 WRF
simulations are shown in Figure 4. Based on the CHIRPS rainfall, the maximum rainfall
accumulations are located to the southeast of the Kampala city catchment along Lake
Victoria’s coastline, with a peak accumulation of 43 mm at location X. It is worth noting
that the CHIRPS 24 h rainfall amount at the gauging stations is 30 mm, which is about a
half less than the amount observed at gauging stations. The insets in Figure 4b–d show the
different plots of the simulation with CHIRPS. The results of three WRF simulations, both
in terms of maximum accumulated rainfall and its spatial distribution, show not in good
agreement with that of CHIRPS rainfall. The difference in accumulated rainfall between
the CHIRPS and the DUF_DUP and DUF_AUP simulations is about 17 and 22 mm (dark
yellow color in the insets in the bottom-right corner in Figure 4b,c), respectively, while
in the other locations, the difference is negative (light yellow color). The result indicates
that the model simulations captured the spot with less daily rainfall than CHIRPS. In the
SUF_AUP simulation, the difference in accumulated rainfall between the CHIRPS and
the SUF_AUP simulation is 40 mm at the spotted location (red color in the insets in the
bottom-right corner in Figure 4d), which indicates that the location of simulated maximum
daily rainfall displaced place compared to CHIRPS. The maximum negative difference in
the accumulated rainfall above −60 mm is located in the city center in the case of SUF_AUP
(dark Blue color), which indicates that the peak simulated rainfall is displaced compared to
CHIRPS in all cases.

3.3. Impact on 24 h Rainfall Amount

This section presents the impact of the urban landscape on 24 h rainfall amount and the
inter-comparison between the three simulations (the DUF_DUP, DUF_AUP, and SUF_AUP)
and benchmarked with the CHIRPS observation.

In the DUF_DUP simulation, the maximum rainfall accumulation (80 mm) is located
in the southwest part of the Kampala catchment, as indicated by X in Figure 4b. Heavy
rainfall amount greater than the observed rainfall (i.e., 60 mm) extends from Lake Victoria
in the south/southeast to the northwest part of the Kampala catchment. In the DUF_AUP
simulation, the accumulated rainfall’s spatial distribution follows a similar distribution
pattern as DUF_DUP, except that the peak accumulation is higher (89 mm) at location X
Figure 4c. Moreover, the location of the cluster of peak accumulation moves further to the
northwest of the city (as indicated by Y in Figure 4c). In the simulation with the updated
urban fraction and its parameters (SUF_AUP), the spatial rainfall pattern changed. The
heavy rainfall is concentrated at the center of the city with a peak accumulation of 82 mm,
as shown in location X in Figure 4d. The heavy rainfall distribution indicates the cluster of
peak rainfall at three different locations (two along the coastline of Lake Victoria and one in
the city center).

200



Hydrology 2023, 10, 15

 

Figure 4. 24 h accumulated rainfall for (a) CHIRPS, (b) DUF_DUP, (c) DUF_AUP, and (d) SUF_AUP
simulations. The insets in the bottom-right corner in (b–d) are the difference in the 24 h accumulated
rainfall in the DUF_DUP, DUF_AUP, and SUF_AUP simulations from the CHIRPS observation,
respectively.

3.4. Impact on 2 h Rainfall Amount

The WRF model simulations are also examined to understand the precipitation event’s
time evolution over the catchment by giving special attention to the timing of the observed
event. Based on the Automatic Weather Station data, we know that the 25 June 2012 rainfall
event lasted for two hours, from 11:10 UTC to 12:50 UTC, and we use this duration as a
reference for the time evolution analysis. Figure 5 shows the cumulative rainfall curves
for the observation and three WRF simulations at the AWS location. For all simulations,
the event’s start is very close to the observation (i.e., about +/− 30 min), which is an
outstanding result given that rainfall is highly erratic. However, all simulations do not
adequately capture the end duration and time to the peak. Compared to observations, the
modeled storms start a half-hour earlier for SUF_AUP and a half-hour later for DUF_DUP
and DUF_AUP simulations. The time to peak (the time at the steepest slope attain) is
about an hour after the observation for both DUF_DUP and DUF_AUP simulations. In the
SUF_AUP simulation, the time to peak coincides well with the observed event but with a
lower rain rate per minute. The result is the cumulative rainfall for the duration equivalent
to the observation at the AWS location. However, due to the spatial and temporal variability
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of the simulated rainfall event, the analysis for a longer duration and also the analysis
at different gridcell can result in a different outcome. For example, the 2 h accumulated
rainfall of about 60–70 mm is simulated by all three simulations but at different locations
than the AWS (see Figure 6).

Figure 5. Cumulative rainfall curves for observation and three WRF simulations at the AWS location.
Gridcell-rainfall curves for the DUF_DUP, DUF_AUP, and SUF_AUP simulations are shown in three-
hour time windows from 10:00 to 12:50, equivalent to the observation at the AWS location. The 2 h
rainfall analysis focuses on the duration between 11:00 to 12:50, where the maximum peak intensity
was captured by AWS observation.

The spatial distribution of the 2 h rainfall over the catchment is examined in Figure 6.
In the same period of two hours, from 11:00 to 12:50, in the DUF_DUP simulation, the cluster
of maximum rainfall accumulation (61 mm) is located to the southeast of the Kampala
catchment area (i.e., on the edge of the catchment boundary) and extended further to the
northwest of the catchment boundary. In the DUF_AUP simulation, the pattern of rainfall
distribution over the catchment is similar to that of the DUF_DUP, but the maximum
rainfall accumulation (72 mm) is located in the northwest of the catchment area. In the
simulation in which an updated urban fraction is used (SUF_AUP simulation), the rainfall
pattern is different, with a single maximum rainfall accumulation (75 mm) located in the
city center. Moreover, with an updated urban fraction, the total volume of rainfall over the
urban catchment is less than when using the default urban fraction. The results suggest that
in addition to updated urban parameters, the change in the urban fraction (i.e., changes the
intensity of urban fraction and urban extent) alters the amount, structure, and propagation
of high-intensity rainfall over the city. Moreover, compared to the 24 h rainfall analysis, the
pattern and location of the simulated maximum rainfall clusters for 2 h are similar to that
of 24 h. However, the amount is less in the case of a 2 h duration. For instance, in the case
of a 2 h duration, the maximum rainfall accumulation is reduced by 17 mm for DUF_AUP
and 7 mm for SUF_AUP simulation. The reduction in rainfall amount for a 2 h duration is
mainly due to temporal variability of the simulated rainfall, which is linked to the more
prolonged instability in the atmosphere.
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Figure 6. 2 h accumulated rainfall distribution for model simulations for the period of 11:00–12:50
UTC on 25 June 2012 (the same period as the observed rainfall using AWS in Kampala): (a) DUF_DUP,
(b) DUF_AUP, and (c) SUF_AUP simulations.

A comparison of DUF_AUP and SUF_AUP simulations with the DUF_DUP simulation
over the catchment represents the impact of urban setting changes (Figure 7). The figure
presents the subtraction of the DUF_DUP simulation from the two experiments, as the
DUF_DUP is the reference against which we compare. The red color in the figure shows
where the simulation with the experiments produces more rainfall, while the blue color
gives the places the simulation with the default urban landscape produces more rainfall.
The average difference in accumulated rainfall between the DUF_AUP and the DUF_DUP
simulations is 22 mm (Figure 7a). The negative difference of less than −30 mm is located at
the Kampala catchment’s north, central, and southeast (dark blue color). In the SUF_AUP
simulation, the positive accumulated rainfall difference with the DUF_DUP simulation
is, on average, +14 mm, particularly in the city center and the northern part, outside the
Kampala catchment boundary (Figure 7b). The negative differences of less than −30 mm
are simulated at several locations, mainly in the city center, north and southeast of the
catchment (dark blue color).
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Figure 7. 2 h accumulated rainfall difference for the period of 11:00–12:50 UTC on 25 June 2012 (the
same period as the observed rainfall using AWS in Kampala): subtractions of DUF_DUP simulation
from (a) DUF_AUP and (b) SUF_AUP simulations.

The result also shows the inter-difference in the pattern and structure of the simulated
rainfall between the DUF_AUP and SUF_AUP simulations. As shown in the figure, except
in the southeast over Kampala city (red) and the furthest north of the city (blue), where the
differences are the same, the patterns differ a lot elsewhere.

4. Discussion

Updating urban fractions in the WRF model can have a scientific significance in urban
hydrometeorological modeling particularly to properly address the impact of urban surface
heterogeneity on meteorological variables. In this research, we assessed and evaluated the
impact of the updated urban fraction and urban parameters on the simulated high-intensity
rainfall that can be used for proper flood hazard modeling in the urbanized and data-scarce
area of Kampala, Uganda. The results indicate that the spatial distribution of the simulated
event is extremely changed with the updated urban fraction. The results can be further im-
proved by considering the effects of the explicit spatial differences in the urban morphology
within the urban fraction, which is essential for a detailed analysis of hydro-meteorological
processes and their impact on urban climate. This can be through comparison with the
previous landcover and urban fraction development approach commonly used the World
Urban Database and Access Portal Tools (WUDAPT) or Local Climate Zones (LCZ) in
the WRF model. In particular, the LCZ map that the WRF model often uses was already
developed for Kampala to study the variations in urban temperature and their links to
health issues in the urban area [18]. Furthermore, the quality of the modeling can be
improved by refining the WRF innermost domain resolution as close as that of the satellite
pixel sizes to capture the actual information provided by the satellite image.

The model simulation accuracy evaluation results with the relative error (RE) index
showed that the model reliably detects a cluster of maximum peak events over the city
when using the updated urban fraction. When comparing the overall magnitude of error
for each simulation, the SUF_AUP simulation performs better with a lower ARE score of
53%. The better performance when using an updated urban fraction is mainly due to the
correct simulation of the spatial distribution of extreme grid-value rainfall events compared
to when using the default urban fraction. The intercomparison between the simulations
indicated that the presence of the urban landscape alters both the pattern and propagation
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of high-intensity rainfall over the city, mainly due to the modification of moisture transport,
heat, and wind fields by the urban landscape, as indicated by [4,5].

However, there was an overall lower performance in terms of spatial distribution that
was observed for all simulations, which indicates that the simulated events are spatially
dislocated compared to observation. The main reason for the spatial discrepancies of the
simulated events is due to a lack of sufficient observation in the urban catchment of the
city for verification. Thus, two gauging stations cannot capture the simulated events across
the Kampala catchment. The CHIRPS, which is the grided observed data, also indicated
that the actual daily maximum rainfall in the southeastern part of the city as opposed to
the WRF simulation. Overcoming the data-scarcity problem requires the installation of
sufficient instruments in the catchment.

Our analysis showed that the updated urban landscape affected the location and
pattern and the simulated rainfall amount over the city in two ways:

(1) Impact on location and pattern of the simulated event: The location and pattern
of the simulated rainfall event are primarily affected by the updated urban parameters.
Notably, unlike the DUF_DUP simulation, in the DUF_AUP simulation, the clusters of
extreme rainfall concentration are increased and stretched from lake Victoria (south) to the
northwest outskirt of the city. Adjusting the urban parameters (Table 2), where most values
changed in favor of heat absorption by buildings during the daytime, is the main factor
causing the area’s simulated rainfall displacement, which is in agreement with similar
studies, for example, [7,20]. Moreover, the location and pattern of the simulated event are
also affected by the updated urban fraction, as indicated in the two-hour rainfall analysis
(Figure 6). Unlike the simulations that use the default urban fraction, the urbanization
intensity is low in the case of the SUF_AUP simulation, which results in low drag resistance,
leading to the cluster of peak events occurring in the city center. Moreover, compared to the
default MODIS-based Noah urban fraction [35], the SUF_AUP simulation uses the more
realistic extent of the city and fraction, resulting in a more realistic rainfall pattern compared
to when using the default urban fraction, particularly in capturing the location of the event
triggers the flood event. Consequently, the simulated extreme rainfall was moving south–
north over the urban area. In contrast, the results of DUF_DUP and DUF_AUP simulations
indicate that the cluster of extreme rainfall moves southwest, then northwest direction
while decreases in rainfall amount in the urban area. Similar studies also demonstrated
that the urban surface, through its surface resistance and drag force, plays a vital role
in hindering the movement and speed of rainfall systems from moving toward urban
areas [44,45].

(2) Impact on the amount of simulated peak event: updating urban parameters and
urban fraction affected the amount of the simulated peak event. With the DUF_AUP simu-
lation, peak rainfall event increases compared to the DUF_DUP simulation, particularly at
a 24 h time scale, which is expected as the adjusted urban parameters enhance instability in
the boundary layer. The presence of a high-urban fraction may act as a barrier that might
split the convective cells over the city, and the high moisture in the atmosphere, as indicated
by [44], may lead to an increase in the simulated rainfall. However, with SUF_AUP simula-
tion that uses a low-urban fraction, rainfall amount is decreased compared to when using
the default urban fraction (Figure 6), which is due to the reduced sensible heat flux that
might lead to hindered instability in the atmosphere. The result further indicated that for
the simulation with an updated urban fraction, although the considered urban extent (i.e.,
the area covered by urban grids) is more compared to the default urban fraction (Figure 3),
the cluster of simulated heavy rainfall is fewer. This result implies that urban land surface
heterogeneities are essential in affecting the mechanisms leading to the amount and spatial
distribution of high-intensity rainfall events.

In the end, it is essential to outline some limitations to using the current procedure
in the WRF model. One of the limitations is the stretched urban grid values created due
to the resampling of the Landsat urban fraction from 30 m resolution to the model’s 1 km
resolution. This shrinks the original grid values that represent high-intensity resident areas
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into grid values that resample more of low-intensity urban areas. Future studies further
refining the WRF downscaling into high resolution, for instance, 250 m, will reduce the
limitation introduced by rescaling grids. Another issue worth mentioning is that this study
applied the current procedure in a single city using a single rainfall event. Future studies
that will consider a greater number of rainfall events in the different urban areas can further
strengthen the simulation results.

5. Conclusions

The mesoscale WRF model’s standard representation of the urban areas is often not
representative of specific cities. Efforts have been made to incorporate the satellite-driven
urban fraction into the WRF model for the proper simulation of extreme rainfall over
Kampala, Uganda. The main approach is to utilize the high-resolution urban fraction
derived based on Landsat into WRF model configured at 1 km and compare the results
with the default urban fraction. Satellite urban fraction was initially developed for urban
flood modeling and then following the procedure in the WRF manual we used that for
WRF modeling, and urban parameters linked to the urban fractions were adjusted based
on the literature review. The 25 June 2012 rainfall event that caused a localized flood event
in Kampala was selected for this study. Three simulations were compared: first, with the
default settings for urban fraction and its parameters (DUF_DUP); second, the simulation
adjusting only the urban parameters (DUF_AUP); and finally, the simulation implementing
the new urban fraction in combination with adjusted urban parameters (SUF_AUP). The
peak rainfall and its spatial distribution over the Kampala catchment were evaluated using
observed data from two gauging stations and the CHIRPS satellite precipitation dataset.

The results indicated benefits in several aspects of using the updated urban fraction
over the default urban fraction. Mainly, the updated urban fraction represents the correct
position and extent of the city leading to changes in storm structure, evolution and intensity).
The results of this research indicate that the updated urban fraction in the WRF model based
on the Landsat image is valuable information for the proper simulation of a high-intensity
convective storm.

Compared to the observation, the spatial distribution and timing of convective storms
are well captured by the WRF model when using the updated urban fraction. However,
with all simulations, the WRF model overestimates rainfall compared to the CHIRPS and
underestimates compared to gridcell values at gauging stations. The discrepancies between
the model simulations and the CHIRPS observations are the known limitation of CHIRPS in
capturing the maximum rainfall amount. Additionally, due to the absence of a dense urban
gauging station network, there is no proper spatio-temporal record of the rainfall event
over the city. Based on the available observations, the SUF_AUP simulation with a more
realistic urban fraction and adjusted urban parameters shows relatively better performance
with the lowest ARE score compared to the other two simulations.

To assess the impact of the updated urban landscape on the simulated rainfall, we an-
alyzed rainfall distribution and amount for 24 h to understand the impact on the simulated
daily rainfall and 2 h for which flood hazards occurred. Our results showed that the WRF
model configuration with default urban fraction produces more peak rainfall amounts over
the city with its spatial distribution covering wider areas. In contrast, the updated urban
fraction has less cluster of peak rainfall events with less spatial distribution coverage within
the urban catchment boundary. The results indicated benefits in several aspects of using the
updated urban fraction over the default urban fraction. Mainly, the updated urban fraction
represents the correct position and extent of the city that produces peak rainfall amount
close to the observation. Moreover, the updated urban fraction represents the correct urban
intensity that leads to less effect on the simulated rainfall. This study demonstrated that
the explicit use of the satellite-derived urban fraction for NWP modeling is advantageous
over the standard urban classification, mainly in two aspects: First, it represents the cor-
rect extent and position of the urban area, and second, it is possible to produce a future
prediction of urbanization and then used in the NWP model for future impact assessment
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and local climate study. Thus, the study contributes to the emerging understanding of
the usability of the high-resolution urban fractions from the remote sensing image in the
NWP model to properly account for the impact of urban heterogeneity on extreme rainfall
events. Moreover, the proper updating of land-use/land cover information in the NWP
model contributes to improving model forecasting ability, particularly for the localized
early-warning system.
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Abstract: Extreme precipitation events can lead to the exceedance of the sewer capacity in urban
areas. To mitigate the effects of urban flooding, a model is required that is capable of predicting flood
timing and volumes based on precipitation forecasts while computational times are significantly low.
In this study, a long short-term memory (LSTM) neural network is set up to predict flood time series
at 230 manhole locations present in the sewer system. For the first time, an LSTM is applied to such a
large sewer system while a wide variety of synthetic precipitation events in terms of precipitation
intensities and patterns are also captured in the training procedure. Even though the LSTM was
trained using synthetic precipitation events, it was found that the LSTM also predicts the flood timing
and flood volumes of the large number of manholes accurately for historic precipitation events. The
LSTM was able to reduce forecasting times to the order of milliseconds, showing the applicability of
using the trained LSTM as an early flood-warning system in urban areas.

Keywords: machine learning; sewer model; LSTM neural network; urban sewer flooding

1. Introduction

Extreme precipitation events, of both short and long duration, can cause inundations
locally or downstream of a catchment due to raising river water levels [1]. This research
focuses on local flooding due to extreme precipitation events and more specifically on
urban flooding due to the exceedance of the sewer capacity. Pluvial urban flooding can
occur quite suddenly, and therefor, early flood warning systems with a short run time are
desired such that proper flood mitigation measures can be taken in time. Urban flooding
differs from flooding in other areas because of the large amount of impervious surface
area negating infiltration and increasing the load on sewer systems. Flooding in an urban
environment is caused by short extreme precipitation events where infiltration is negligible.
It is expected that flood probabilities will increase in the future due to an increase in
impervious surface area, causing more runoff to the sewer system. In addition, due to
climate change, it is expected that rainfall intensities will increase locally, resulting in higher
runoff volumes [2,3].

Numerical models are generally used to investigate the effects of extreme precipitation
events on inundation extents and to design sewer systems accordingly. These physics-
based models are computationally expensive. Since precipitation forecasts are generally
highly uncertain, especially for extreme local events, a probabilistic approach is required to
simulate all potential flood scenarios. Consequently, detailed physics-based models cannot
be used as a flood early warning systems. However, a fast prediction of the inundated areas
during extreme events ensures that flood mitigation measures can be taken on time. For this
reason, other approaches for the faster computation of flood predictions have been studied
in recent years (e.g., [4,5]). A commonly applied method to reduce computational load
is surrogate modelling, representing a second-level abstraction from the original system.
Response surface surrogate models, such as machine learning (ML) algorithms, are data-
driven models trained based on the input–output relations of a physically based model or
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field measurements. As a result, ML algorithms do not capture any physical components
of the original system. They are, once trained, extremely fast in predicting the output based
on a given input [6] and can do so on a continuous basis. For this reason, ML algorithms
have frequently been applied for water resources applications [6,7]. More specifically,
many studies have already shown the applicability of ML algorithms to predict (historic)
stream flow conditions, weather conditions, water quality and dike breaches accurately
(e.g., [8–13]). However, the use of ML algorithms for sewer applications is still limited, but
they have great possibilities in predicting sewer overflows based on precipitation forecasts.

Recent examples of ML algorithms for sewer system applications are presented
by [14,15]. Rjeily et al. [14] developed a data-driven modelling approach to predict water
depth variations within the most critical manholes in an urban drainage system. This
early flood warning system was trained using measurements of 10 storm events simu-
lated with a hydraulic model. Measured rainfall intensities and modelled water depth
variations in five manholes were used as the input and target output data, respectively.
Zang et al. [15] studied the accuracy of multiple ML algorithms to predict sewer overflow
of a combined sewer system into open water bodies causing heavy pollution. In total,
26 rainfall events resulting in sewer overflow were used to train the various ML algorithms.
Although both studies showed the potential of using ML algorithms as an early warning
system for sewer applications, these studies only used a few historic events to train the
algorithms, while using more samples can ensure better model performance since it is
more likely that the global minimum of the error function is found [16]. Therefore, it is
questionable if the trained the ML algorithms are able to generalise the system behaviour.
Furthermore, because of expected climate change, more extreme precipitation events may
occur than observed so far, but these events are not considered in the training data sets
if historic events are considered. Therefore, a synthetic data set with a wide variety of
rainfall events in terms of both rainfall intensities and rainfall patterns will be used in this
study. Additionally, the studies conducted so far only predicted sewer overflow at a few
predefined output locations while an overview of the entire sewer system is required to
make fair flood mitigation measures during extreme events. For this reason, the objective
of this research is to set up an ML algorithm that predicts flood volume time series for
all manholes present in a specific urban area, trained on a wide variety of rainfall events.
Only then will the developed ML algorithm have the potential to be used as an early flood
warning system by decision makers.

The methodology of this research is shown in Figure 1. First, the case study and the
numerical sewer model used to create the training data are described (Section 2). A synthetic
precipitation data set is constructed since no sufficient historic rainfall events resulting
in flood inundations exist and to enable the inclusion of a wider variety of precipitation
events than observed so far (Section 3). These synthetic rainfall events are used as input of
the numerical sewer model. An ML algorithm is constructed which is able to predict flood
volume time series for all manholes in the area as the target output, given a precipitation
time series as input (Section 4). The constructed ML algorithm is validated to determine the
final performance of the algorithm (Section 5.1). Furthermore, the algorithm is tested based
on radar rainfall measurements of a few historic extreme precipitation events (Section 5.2).
This paper ends with a discussion (Section 6) and the main conclusions (Section 7).
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Figure 1. Flow chart of the steps taken in the present research to set up an LSTM that is able to predict
inundation volumes at manhole locations.

2. Case Study and the Numerical Sewer Model

The residential area of Hooglanderveen in the city of Amersfoort, the Netherlands, is
chosen as a case study since frequent pluvial flooding occurs in this region. Although the
region of Hooglanderveen is chosen as a case study, the proposed methods in this study are
applicable to any residential area with a similar sewer system and topographical features.

Hooglanderveen is located in the northeast of Amersfoort (see Figure 2) and has a
surface area of approximately 1.75 km2.

Figure 2. Location of the study area of Hooglanderveen in Amersfoort, The Netherlands.

Especially in the northwestern region of Hooglanderveen, frequent pluvial flood-
ing is experienced, where surface levels are relatively low. The combined sewer system
present in Hooglanderveen is a type of gravity sewer and has 230 manholes, 4 pumps, and
3 overflows (Figure 3). These are all connected with sewer pipes (Figure 3). The sewer
system transports both precipitation runoff and domestic sewage to a sewage treatment
plant and can be divided into two components: (1) the major sewer system, consisting
of streets, inlets, ditches, and surface water channels, and (2) the minor sewer system,
composed of interconnected pipes, manholes, and pumps [1]. The major system can be
characterised as the surface system, whereas the minor system represents the subsurface
system. Flooding occurs whenever and wherever the discharge capacity of the inlet into
the minor system is exceeded. This can have several causes. First, flooding can occur when
precipitation intensity exceeds the discharge capacity of the inlet. Water cannot enter the
minor system and remains at the surface level. Second, the discharge capacity may be
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lower between some sewer pipes due to, e.g., clogging or smaller pipe diameters causing
water to flow back onto the streets through the inlets or manholes. Third, the combined
gravity-driven sewer system has a larger discharge capacity than the pump at the end of
the system. Therefore, a storage is designed in the minor system to accommodate this
difference in capacity. This storage is equivalent to approximately 7–9 mm of precipitation
in the Netherlands [17]. When the storage capacity is exceeded and more water enters the
system, storm water will exit via the overflows. If the capacity of the overflows is exceeded,
storm water will flood the streets.

In this study, an ML algorithm is set up to predict flooding in Hooglanderveen in
real-time precipitation forecasts. An ML algorithm is generally trained using field mea-
surements based on historical events or outcomes of model simulations. Since insufficient
measurements are available of historic precipitation events resulting in flooding in the study
area, a numerical sewer model will be used to generate the training data. The numerical
sewer model is a validated model built with the software Infoworks ICM. The sewer model
represents a one-dimensional (1D) model of the minor system and uses the shallow water
equations to solve the 1D flow. Only the surface area of the major system, without consid-
ering topographic gradients, is included in the model. Based on these areas, the shortest
flow paths to the nearest inlet is determined to compute the inflow from the major system
into the minor system. Henonin et al. [18] further details the modelling approach of such a
1D sewer model. The sewer model was calibrated using measurements and is used by local
ministries for flood risk evaluation.

Figure 3. Locations of important structures in the studied area and the level of sewer piping.

The sewer system has a slope from the southeastern to northwestern part of the study
area. Since it is a gravity-based sewer system, the general direction of the sewer flow
follows this slope. The model has as input a spatially uniform precipitation event and
provides as output flood volumes at each manhole in the area. Note that the output is a
flood volume and not a flood level, as topographic gradients of the surface level and the
flow along these topographic gradients are not included in the model.

3. Training and Testing Data

3.1. The Synthetic Precipitation Events

The sewer model computes flood volumes based on an input precipitation event.
In this study, synthetic events are considered to enable the inclusion of a wide variety of
precipitation events. These synthetic precipitation events are based on design events to
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test the sewer systems using numerical models in the Netherlands [19]. Spatially uniform
precipitation events are considered because of the relatively small size of the studied area.
For the construction of the synthetic precipitation training data set, statistics of the follow-
ing three precipitation characteristics are used [19]: precipitation duration, precipitation
intensity, and precipitation pattern. Combinations between the three characteristics are
made to generate unique precipitation events.

Due to the inherent early warning system that is proposed in the present research,
we focus on short-term, high-intensity flood events. For this, [19] recommends a precip-
itation duration of 4, 8, or 12 h. The minimum and maximum precipitation intensities
corresponding to a return period of 2 to 1000 years for a duration of 4 and 12 h are 28 mm
and 139 mm, respectively (Figure 4 shows the intensity curves for a return period of 2 to
1000 years). To generate the training data set, the precipitation intensities are divided into
six values with a minimum and maximum of 30 mm and 105 mm, respectively. The min-
imum value is taken as the rounded minimum value given by the precipitation curves
(Figure 4). The maximum value is set to a lower value than provided by the precipitation
curves since increasing the intensity to a value larger than 105 mm did not result in any
differences in model output in terms of flood complexity since the number of flooded
manholes remained constant. Only the flood volumes increased linearly.

Figure 4. Precipitation intensity curves, the dashed black lines indicate maximum and minimum for
the 4, 8, and 12 h durations.

In addition to the precipitation duration and intensity, seven distinct precipitation
patterns for short-term events are considered in the Dutch water policy [19]. These patterns
consist of a fraction of the total precipitation per hour. The seven precipitation patterns can
be described as follows (Figure 5):

• Uniform: General uniform shape with minor changes in precipitation intensity during
the event;

• One peak—12.5%: Pattern with one peak that has 12.5% of the total intensity in
the peak;

• One peak—37.5%: Pattern with one peak that has 37.5% of the total intensity in
the peak;

• One peak—62.5%: Pattern with one peak that has 62.5% of the total intensity in
the peak;

• One peak—87.5%: Pattern with one peak that has 87.5% of the total intensity in
the peak;

• Two peaks—short distance: Pattern with two peaks that has a small temporal distance
between the two peaks;

• Two peaks—large distance: Pattern with two peaks that has a large temporal distance
between the two peaks;
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With six precipitation intensity values, seven precipitation patterns, and three pre-
cipitation durations, the total amount of unique precipitation events is 126. The majority
of papers reviewed by [16] use a minimum data set size of 100 samples to train the ML
algorithms, indicating that the size of the data set should be sufficiently large to train the
ML algorithm properly. All possible values of each precipitation feature are shown in
Table 1.

Figure 5. Seven precipitation patterns for a duration of 8 h, with (a) Uniform; (b) 1 peak—12.5%;
(c) 1 peak—37.5%; (d) 1 peak—62.5%; (e) 1 peak—87.5%; (f) 2 peaks—short; and (g) 2 peaks—long.

Table 1. All possible values for each precipitation event feature.

Pintensities Ppatterns Pduration

30 mm Uniform 4 h
40 mm 1 peak—12.5% 8 h
60 mm 1 peak—37.5% 12 h
75 mm 1 peak—62.5%
90 mm 1 peak—87.5%

105 mm 2 peaks—short
2 peaks—long

3.2. Interpolation of Precipitation Patterns

The precipitation patterns provided by [19] have a time step of one hour, while the time
step of the sewer model is set to one minute to ensure accurate model results. For this reason,
the precipitation patterns are linearly interpolated to create realistic precipitation events.
Furthermore, to facilitate the operationally of a flood early warning system, the input time
series is made to mimic a conventional precipitation forecast. Based on expert opinion, it
was found that for short-term precipitation forecasts, a time step of 5 min is generally used.
Therefore, the input time series will be a cascading precipitation pattern with a time step
of 1 min, which changes its value after every 5 min (Figure 6). Due to this interpolation
method, the total precipitation is, at maximum, 2% lower than the value as defined.
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Figure 6. Example interpolation of an eight hour precipitation pattern with a peak of 37.5% of the
total precipitation (precipitation pattern as given in Figure 5c).

3.3. Historic Data

The synthetic data set is used to train, validate, and test the LSTM. However, this
raises the question whether the LSTM, trained on synthetic data, is capable of reproducing
the results of the sewer model on real-world precipitation data. To evaluate this, radar
precipitation data from historic extreme precipitation events were obtained. A list of three
reported flood events in Hooglanderveen was provided by the municipality of Amersfoort,
and related precipitation time series were obtained from precipitation radar data provided
by Hydrologic (Figure 7) and used as input for the sewer model. The time series start one
day prior to the date that a flood was reported, as there can be a delay between flooding and
reporting. All events show large peaks in precipitation up to 106 mm/h. This precipitation
peak is higher than the value used in the synthetic data set, having a maximum precipitation
of 88 mm/h.

Figure 7. Precipitation time series for historic flood events in Hooglanderveen. All time series start
one day prior to the reported flooding, as there can be a delay in reporting. This can be seen with
precipitation events 1 and 2.
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4. Construction of the Long Short-Term Memory (LSTM) Neural Network

In this study, the LSTM neural network proposed by [20] is used to predict flood
volumes for the 230 manholes in the sewer system of Hooglanderveen. Although many
neural network structures exist, LSTMs have shown to be most successful and are generally
applied to predict time series [21]. More specifically, LSTM has become the focus of deep
learning because of their powerful learning capacity in comparison to other recurrent
neural network (RNN) approaches [21]. To explain the concept of an LSTM, we first briefly
explain artificial neural networks (ANN) and recurrent neural networks (RNN).

4.1. The Concept of Neural Networks

An ANN is a network of interconnected neurons that translate an input to an output
using weights and transfer functions. A flowchart of a simple ANN is shown in Figure 8.
Here, the inputs (xi) are multiplied by their weights (wi), with the result being summed
and used as input for the transfer function of the neuron. The result of the transfer function
is then used as input for the output function. This output function is a linear function
for regression. The output function gives the output (y). The difference between the
predicted value and the observed value is then used to change the weights of the ANN.
This can be performed using various techniques, with the most common approach being
back-propagation with stochastic gradient descent [22]. The transfer function of a neuron
can be a linear function, sigmoid function, or any other function. When the ANN is
expanded to use more inputs and neurons, all inputs are connected to every neuron with
individual weights. One can add as many neurons, inputs. and outputs as desired and
can also vary the amount of layers of neurons. The parameters not trained by the neural
network, such as the choice of the number of neurons and the type of transfer functions,
are called hyper-parameters.

Figure 8. An illustration of a simple ANN. Here, we have multiple inputs (xi), connected to the
neuron with weights (wi). This output of the neuron is passed to the output (y) via a linear function.

A recurrent neural network is a type of artificial neural network (ANN) that uses
the output of previous time steps (yt−1) as input for the current time step (yt). Therefore,
the RNN is better equipped to predict time series than traditional ANNs [23]. However [24]
have shown that a simple RNN can barely store information for longer than 10 time steps.
Therefore, other approaches to an RNN have been studied, with one of the most commonly
applied being the LSTM proposed by [20]. More specifically, [15] compared the accuracy of
various neural network approaches in predicting sewer overflows. Even though the LSTM
had a relatively slower learning curve, the results of this type of neural network were most
promising for multi-step-ahead predictions [15]. This is because an LSTM has an added
cell state that is updated using transfer functions at each time step. This cell state is also
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used to predict the output of each time step, making it possible to store information for a
longer period.

4.2. The LSTM Set-Up

The sewer model input is a spatially uniform precipitation intensity time series, and
the output is a flood volume for each time step at each manhole in the studied area. The
LSTM is a ‘one-to-one’ recurrent neural network. This means that for each timestep of
the input, an output is calculated. The timesteps for the precipitation input time series,
sewer model output, and LSTM predictions are thus all equal to 5 min. Furthermore,
the LSTM set-up is similar to that of the sewer model with 1 input, 1 hidden layer, and
230 outputs (1 for each manhole). The number of neurons in the hidden layer and the
learning rate are determined using hyper-parameter optimisation. The LSTM is constructed
using Keras [25]. Keras is a high-level library used for machine learning applications. Keras
runs on Tensorflow [26], which is an open source machine learning software released by
Google in 2015.

The synthetic input–output data set, created with the sewer model, is split into training,
testing, and validation data sets. The training data are used to find an optimal set of
connection weights, the test data are used to choose the best network configuration (i.e.,
the hyperparameters: in this study, the number of neurons and the learning rate), and
the validation set is only used to evaluate the LSTM’s final performance in terms of
generalization ability [27].

The data set is divided according to the average of studies studied by [16]. They
found that 60%, 18%, and 22% of the total data were used for training, testing, and vali-
dation, respectively. In the present study, a split of 60%, 20%, and 20% is used. The input
precipitation time series are normalised to a [0, 1] range.

For the determination of the hyper-parameters of the LSTM, Bayesian hyper-parameter
optimisation is used. Due to the long training times for each configuration of the LSTM
(60 min+), grid search or random search hyper-parameter optimisation was not feasible.
The hyper-parameters determined were the number of neurons of the LSTM layer and the
learning rate. The sequential model built with Keras is comprised of two layers. The first
layer is the LSTM layer, in which the transfer functions were set to the standard functions.
The second layer is a Dense layer. This layer is a standard ANN layer of neurons with a
linear activation function. The layer consists of 230 units, which coincides with the amount
of target outputs in the model. The sequential model is compiled using the MAE loss
function for training.

4.3. The Performance Indicators

The performance indicators used to assess the predictive capability of the trained
LSTM are Nash-Sutcliffe efficiency (NSE) and coefficient of determination R2. The MAE
is used to train and test the LSTM, and the NSE and R2 are used to assess the predictive
ability of the LSTM on the validation data set.

The calculation of the MAE is shown in Equation (1). A value of 0 shows a perfect fit
between the observed and predicted values:

MAE =
1
n

n

∑
i=1

|yi − ŷi|, (1)

in which yi is the i-th predicted value, and ŷi is the i-th observed value.
The NSE is commonly used as a predictive measure of hydrological models. For some

precipitation events, manholes in the north of the area had NSE values approaching
negative infinity. No flooding occurred at these manholes and the (negative) flood volumes
in the sewer model results. However, the LSTM still predicted relatively high fluctuations.
The scale of these fluctuations were small, causing no wrong predictions in flooding.
These fluctuations around the mean did result in the NSE values approaching negative
infinity. Therefore, the bounded version of the NSE, proposed by [28] and called C2M
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(see Equation (2)), is applied instead. NSE values are now bounded to the interval [−1, 1],
providing a more usable mean NSE value of all manholes in the area:

C2M =

(
1 − ∑n

i=1(yi − ŷi)
2

∑n
i=1(yi − yμ)2

)
/
(

1 +
∑n

i=1(yi − ŷi)
2

∑n
i=1(yi − yμ)2

)
, (2)

in which yμ is the mean of the predicted values, and ŷμ is the mean of the observed values.
The last performance indicator used is the R2. The R2 measures the correlation between

the observed and predicted values. The Equation for R2 is shown in Equation (3):

R2 =
(∑n

i=1(yi − yμ)(ŷi − ŷμ))2

∑n
i=1(yi − yμ)2 ∑n

i=1(ŷi − ŷμ)2 (3)

5. Results

5.1. LSTM Validation Based on Synthetic Precipitation Events

After Bayesian optimisation, the LSTM has 636 neurons to predict the flood volumes
at the 230 manholes accurately and a learning rate of 0.01. The total run time of the
LSTM on the 25 precipitation events present in the validation data set was 1.89 s. During
this validation, the LSTM was capable of predicting if a manhole will flood with an
accuracy 99.60% (with a threshold value of 1 m3). Only in 0.26% of the precipitation events
was a flood predicted by the LSTM, while no flooding occurred during the sewer model
simulation (LSTM prediction > 1 m3 and sewer model prediction < 1 m3 in Figure 9). Only
in 0.14% of the precipitation events was the opposite applied, meaning that the LSTM
did not predict a flood while flooding occurred according to the sewer model (LSTM
prediction < 1 m3 and sewer model prediction > 1 m3 in Figure 9). This high accuracy,
in combination with the extremely low computation time, shows the potential of using an
LSTM as an early flood-warning system.

Furthermore, the flood volumes were predicted with high accuracy by the trained
LSTM. An average R2 of 0.99 and an average NSE of 0.87 for all manholes was found
(Table 2). However, only 38% of the manholes in the studied area experienced flooding on
the validation data set. The manholes that did not flood show a relatively low goodness-
of-fit. In these cases, the sewer model predicted mostly an almost constant negative flood
volume that varied slightly over time. A negative flood volume predicted by the sewer
model means that the water level is below the surface level and thus no flooding occurs.
For these situations, the LSTM predicts larger negative flood volume fluctuations since
the LSTM is sensitive to any change in the input parameters: even a small change in
the precipitation results in a different predicted flood volume. However, these volume
fluctuations predicted by the LSTM were still below 0.1 m3 and not relevant for flood
forecasting purposes.

Table 2. The hyper-parameter and evaluation values of the LSTM sequential model after Bayesian op-
timisation.

Performance Indicator Value

NSE (all manholes) 0.87
NSE (flooding manholes) 0.92

R2 0.99

Since the manholes that do not flood are not interested from an early flood warning
perspective, we only focus on the results of the flooded manholes. Figure 9 shows the
predicted flood volumes of the LSTM and sewer model for each time step of the 25 precip-
itation events present in the validation data. It shows that the LSTM predictions closely
resemble the sewer model output since most data points follow the linear 1:1 line. However,
the LSTM tends to slightly underpredict the flood volumes, and especially the peak, com-
pared to the sewer model output. On average, the peak values are underpredicted by 8.5%
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by the LSTM. This behaviour is a well-known problem with neural networks since they
are prone to systematically underpredict flood series for extreme events [13]. If accurate
prediction of the peak values is of high importance, LSTM performance can be increased
by, for example, postprocessing the flood volume predictions by applying an unscented
Kalman filter [29].

Figure 9. Scatter plot of the predicted and actual flood volumes for the LSTM regressor evaluated on
the synthetic validation data set (R2 = 0.99). Negative flood volume are plotted until −15 m3, no
more false negative or false positive values are observed past this value.

A map with the NSE values for the flooded manholes is shown in Figure 10. The NSE
values vary between 0.39 and 0.99, with an average value of 0.92. Higher NSE values
are generally found in the centre and northwest of the study area, where the most severe
flooding occurs. The LSTM predictions were less accurate in the southeastern region of the
study area, where the manholes only experience minor flooding because of the relatively
high surface levels.

Figure 10. The NSE values for each manhole in the case study area that experienced flooding from
the validation data set (NSE = 0.92). The NSE values were calculated with the predicted flood volume
time series by the LSTM network and sewer model. The NSE is calculated for each time series and a
mean is taken for each manhole. Dark grey manholes indicate locations where no flooding occurs.

Figure 11 shows the predicted flood volumes both by the LSTM and sewer model for
a manhole located in the centre of the study area, where extreme flooding occurs at most
manholes. This manhole has an average NSE of 0.95. A lag is generally present between
the peak of the precipitation event and the moment that flooding of the manholes starts
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to occur. The LSTM is able to predict this lag with high accuracy when compared to the
sewer model output. Furthermore, the LSTM is capable of predicting the general shape of
the flood volume hydrograph accurately, both in terms of the timing that flooding starts to
occur as well as the timing of the peak flood volume. However, again, the slight tendency
of the LSTM to underpredict the peak flood volumes is visible.

Figure 11. Flood volume time series, for the LSTM network validated on synthetic data, at a manhole
in the centre of the area (NSE = 0.95).

The predicted flood volumes by the sewer model and LSTM for a manhole located
in the southeastern part of the study area are shown in Figure 12. Here, the LSTM has an
average NSE of 0.39. Again, the shape of the flood hydrograph is predicted accurately, even
when a two-peaks event is considered. However, the underprediction of the peak value
is larger in this region of the study area. It seems that the LSTM has more difficulties in
accurately predicting flood volumes in cases of relatively sharp flood volume hydrographs,
with large differences between the flood volumes in two consecutive time steps. The accu-
racy of the LSTM predictions can therefore be improved by reducing the time step of the
training data set such that the change in flood volume within two consecutive time steps
is reduced.

Figure 12. Flood volume time series, for the LSTM network validated on synthetic data, at a manhole
in the southeast of the area (NSE = 0.39).

5.2. LSTM Evaluation Based on Historic Precipitation Events

To further test the LSTM, three historic precipitation events that caused flooding in the
area were identified. These historic precipitation events were simulated both by the sewer
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model and LSTM network to predict corresponding flood volumes. Again, the performance
of the LSTM model is compared against the sewer model predictions since this model is
used to train the LSTM. For this reason, the LSTM performance is at maximum as good as
the sewer model, and comparing LSTM predictions with field measurements does not give
a proper indication of the LSTM performance.

Also on the historic data set, the LSTM shows the high potential to be used as an early
flood warning system. In 94.4% of the precipitation events, the LSTM predicted correctly if
flooding occurred at one of the manholes (with a threshold of 1 m3). Only in 4.6% of the
precipitation events was a flood predicted by the LSTM, while no flooding occurred during
the sewer model simulation. Only in 1.0% of the precipitation events did the LSTM not
predict a flood while flooding occurred. This shows that the number of false positive and
false negative flood predictions has not increased compared to the validation using the
synthetic data set. Therefore, the ability of the LSTM to predict if a flooding occurs even
holds for scenarios deviating from those used during the training procedure.

Figure 13 shows the predicted flood volumes by the LSTM and sewer model for each
time step of the three historic precipitation events. This figure also shows that the LSTM is
able to predict if flooding occurs accurately. However, the tendency to underpredict flood
volumes is again present and is even more severe compared to the validation results based
on the synthetic data set. On average, the peak flood volumes are underpredicted by 34.3%.

Figure 13. Scatter plot of the predicted and actual flood volumes for the LSTM regressor evaluated
on the historic precipitation data set (R2 = 0.99). Negative flood volume are plotted until −15 m3, no
more false negative or false positive values are observed past this value.

During the validation based on the synthetic data set (Section 5.1), we found that the
average NSE increases if only the manholes that experience flooding are considered. When
we test the LSTM performance on historic precipitation events, we find an average NSE of
0.57 if only the flooded manholes are considered, while an average NSE of 0.61 is found
for all manholes (Table 3). This is probably caused by the low LSTM performance for the
manholes in the southeastern region (Figure 14), where the flood volume time series show
complex behaviours.
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Figure 14. NSE values for each manhole in the case study area that experiences flooding from the
historic data set (mean NSE = 0.57). NSE values have been calculated with the predicted flood
volume time series by the LSTM network and sewer model. The NSE is calculated for each time
series, and a mean is taken for the manholes. Dark grey manholes indicate locations where no
flooding occurs.

Table 3. Performance evaluation for the LSTM tested on historic data.

Performance Indicator Value

NSE (all manholes) 0.61
NSE (flooding manholes) 0.57

R2 0.99

Figures 15 and 16 show the predicted flood volumes by the LSTM and sewer model
for a manhole in the centre (NSE = 0.96) and southeast (NSE = −0.50) of the study area,
respectively. The hydrograph shape, in terms of the timing that flooding starts to occur and
the timing of the peak value, are predicted with high accuracy for the manhole located in
the centre of the study area. This shows that the LSTM performance does not significantly
change compared to the validation results on the synthetic data set for the region, where
the most frequent and severe flooding occurs. On the other hand, the predictive ability
in the southeastern region has decreased (Figure 16). Especially, the peak flood volume is
underpredicted significantly. However, again, the timing that flooding starts to occur and
the timing of the peak value are captured accurately by the LSTM. This shows that, despite
the fact that the total flood volumes are underpredicted, the LSTM still has potential to be
used as an early flood warning system in these regions.

The lower LSTM performance on the historic data set, compared to the synthetic data
set, is probably caused by the fact that the historic precipitation peaks are confined in a
smaller time span, compared to the synthetic training data set. Also in the synthetic training
data set, we already found that the the LSTM’s performance decreases for the manholes
where the flooding occurred in a relatively small time span (Figure 12). Furthermore,
the lower performance of the LSTM on historic rainfall events can be explained by the small
fluctuations and/or noise in the precipitation data. This shows that, in general, the LSTM
performs best when large and smooth precipitation intensities are given as input, resulting
in large flood volume time series and matching the precipitation patterns from the synthetic
training data set.

To increase the predictive ability of the LSTM, two adjustments are proposed: First,
the time step used in this study was 5 min. Due to the sudden nature of extreme precipita-
tion events, this relatively long time step results in a large increase in the flood volumes
in two consecutive time steps. Therefore, we recommend reducing this time step, which
will only increase the computation time of the sewer model used to generate the training
data and barely that of the LSTM. Second, the precipitation statistics were given in patterns
with a time step of 1 h. In this study, this pattern was linearly interpolated. By adjusting
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this interpolation approach, the sharp hydrographs observed in the historic data can be
recreated in the synthetic data set, ensuring that more events with confined peaks are
included in the training data set.

Figure 15. Flood volume time series, for the LSTM network validated on historic data, at a manhole
in the centre of the area (NSE = 0.96).

Figure 16. Flood volume time series, for the LSTM network validated on historic data, at a manhole
in the southeast of the area (NSE = −0.50).

6. Discussion

Many studies use historic data to train neural networks (e.g., [5,8,10,15]). However,
in this study, input–output relations of a numerical sewer model were used to train the
LSTM network. Furthermore, synthetic precipitations events were used to create the
training data set, adding two additional levels of abstraction from reality (e.g., [13,30,31]).
Making use of synthetic precipitation events ensures that a wide range of precipitation
characteristics, in terms of precipitation pattern, intensity, and duration, can be included
systematically. Section 5.2 showed that, even though the LSTM was trained on synthetic
precipitation events, it still accurately predicts which manholes will flood. This indicates
that the LSTM is able to respond to precipitation events not present in the training data accu-
rately due to the wide variety of events included in the training data set. This even applies
for precipitation events having higher rainfall intensities than present in the training data.

It must be noted that the developed LSTM only predicts flood volumes at maximum
as accurate as the sewer model used to train the LSTM. This means that errors present
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in the sewer model are inherently also present in the LSTM. Additionally, the LSTM is
only capable of predicting reliable outputs for the conditions it was trained for. For two
historic flood events, not presented in this paper, we found that flooding was observed by
inhabitants of Hooglanderveen while the sewer model, and consequently the LSTM, did
not predict any flooding. During these events, the measured precipitation intensities were
relatively low and would most likely not lead to any flooding in the area under normal
circumstances. Therefore, it might be that the inflow of some manholes was blocked by
leaves during the precipitation event, causing the inundation of the streets. The sewer
model was not designed to model these rare events and hence the LSTM is also not able to
include these processes in the predictions.

The computational costs of the LSTM are extremely low, with forecasting times in the
order of milliseconds for a single event. Due to the inherent variability in extreme flood
events, and the need for ensemble forecasting, many simulations are required. The LSTM
can be applied successfully for this purpose, providing a probability of flood volumes in-
stead of a deterministic forecast. This can be helpful for decision makers in their assessment
of possible damages caused by the extreme precipitation event.

Regarding the set-up of the LSTM, it was decided to develop a single LSTM network
for the entire Hooglanderveen sewer system. This has as advantage that flood volumes
at all manholes are computed based on a single input precipitation event. However,
setting up an LSTM network for the entire system increases the complexity of the network
significantly, compared to having a separate LSTM for each manhole. Consequently, the
training time is also significantly higher. Kratzert et al. [8] analysed the effect of setting
up a single LSTM to predict rainfall runoff for multiple catchments compared to using
multiple regional LSTMs each trained for a single catchment. They found that using a
single LSTM network to predict the runoff for multiple catchments results in slightly more
accurate predictions, especially in cases with a strong correlation in the predicted output at
the various catchments. Furthermore, they suggest that using a single LSTM for an entire
network reduces the risk of overfitting compared to setting up an LSTM network for each
desired output location [8]. For these reasons, setting up a single LSTM network to predict
all manholes in a sewer system is recommended despite the long training times involved.

7. Conclusions

The objective of this research was to construct an LSTM neural network that can pre-
dict location-based flooding due to extreme precipitation in an urban environment. For the
first time, such an LSTM was developed for a large sewer system covering many manholes.
Because insufficient measured data of extreme precipitation events were available, a numer-
ical sewer model was used to generate the training data covering a wide variety of synthetic
precipitation events in terms of precipitation intensities and patterns. The LSTM was set up
for the whole area of Hooglanderveen in Amersfoort containing 230 manholes. The trained
LSTM, having 636 neurons, predicted the flood volume time-series of all flooded manholes
with high accuracy, resulting in an average NSE of 0.92. Furthermore, the temporal aspects
of the flood wave, in terms of the duration of the flooding, as well as the timing of the
peak flood volume, were accurately predicted by the LSTM. Especially the locations with
frequent and severe flooding are predicted with high accuracy. Therefore, we conclude
that the behaviour of the existing numerical sewer model and its characteristics were
successfully reproduced by the LSTM.

Testing of the LSTM on observed historic data shows that the LSTM can also accurately
predict the temporal aspects of the flooding for historic precipitation events. Using a large
variety of synthetic precipitation events in the training data set ensured that the trained
LSTM was able to generalise, even though the historic precipitation patterns differ from
the synthetic data since the historic precipitation events are confined to a relatively short
interval with high-intensity precipitation. However, it was found that the LSTM tends to
underpredict flood volumes, especially for the relatively sharp flood volume hydrographs,
with large differences between the flood volumes in two consecutive time steps. In this

226



Hydrology 2022, 9, 105

study, a relatively large time step of five minutes was used to train the LSTM. Therefore,
the accuracy of the LSTM predictions can easily be improved by reducing this time step
such that the change in flood volume within two consecutive time steps is reduced.

The computational costs of forecasting a single event is exceptionally low, reducing
the forecasting time to the order of milliseconds, making the LSTM highly functional as an
early flood warning system. Furthermore, this extremely low computational cost makes it
possible to compute ensemble forecasts of pluvial flooding, using stochastic precipitation
forecasts instead of a single deterministic time series.
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Abstract: This study was conducted to map flood inundation areas along the Manafwa River, Eastern
Uganda using HECRAS integrated with the SWAT model. The study mainly sought to evaluate
the predictive capacity of SWAT by comparisons with streamflow observations and to derive, using
HECRAS, the flood inundation maps. Changes in Land-use/cover showed by decrease in forest
areas and wetlands, and conversions into farmlands and built-up areas from 1995 to 2017 have
resulted in increased annual surface runoff, sediment yield, and water yield. Flood frequency
analysis for 100-, 50-, 10-, and 5-year return periods estimated peak flows of 794, 738, 638, and
510 m3/s, respectively, and total inundated areas of 129, 111, 101, and 94 km2, respectively. Hazard
classification of flood extent indicated that built-up areas and commercial farmlands are highly
vulnerable, subsistence farmlands are moderately to highly vulnerable, and bushland, grassland,
tropical high forest, woodland, and wetland areas are very low to moderately vulnerable to flooding.
Results demonstrated the usefulness of combined modeling systems in predicting the extent of flood
inundation, and the developed flood risk maps will enable the policy makers to mainstream flood
hazard assessment in the planning and development process for mitigating flood hazards.

Keywords: Eastern Uganda; flood plains; flood hazard maps; HEC-RAS; return period; SWAT

1. Introduction

In recent years, variability in natural disasters has increased due to the changes in
global climate, land use/cover, and socio-economic development [1]. Statistics show that
318 natural disasters affected 122 countries worldwide in the year 2017 alone, the impacts of
which resulted in 9503 deaths, 96 million people affected, and USD 314 billion as economic
damages, and floods accounted for 38.3% of these disasters and 35% of deaths, affecting
59.6% of people’s livelihoods and 6.2% of economic damages [2]. Uganda, like other low-
income countries, is vulnerable to extreme weather events such as droughts and floods [3].
In Eastern Uganda, the low-lying areas of Butaleja district are vulnerable to flooding [4],
and more recently, in December 2019, floods led to four deaths, and over 2000 people were
displaced [5].

Flood inundation mapping plays an important role in designing sustainable plans,
protecting human properties and lives, and mitigating disaster risks [6]. It is also a crucial
step in developing flood hazard maps and conducting proper flood assessments [7]. Flood
inundation mapping usually requires repeated observations of the flooded area and inun-
dation extents through remote sensing images [8] or ground observations [9]. Obtaining
representative meteorological data for watershed-scale hydrological modeling can be dif-
ficult and time-consuming [10]. The difficulty in collecting data can be attributed to the
following reasons: (i) lack of reliable equipment, (ii) absence of a good archiving system
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and software to store and process the data, and (iii) lack of funds to organize data collection
campaigns [11]. It is also worth mentioning that once the data have been captured and
archived, accessing them is quite costly [12]. Weather stations based on the ground do not
always adequately represent the weather occurring over a watershed because they can
have gaps in their data series and can be far from the watershed of interest or recent data
are not available [13]. For data-scarce areas, hydrological and hydrodynamic models as
such play a critical role in flood simulations and risk assessment [14].

Hydrologic models rely on the parameterization of watershed properties and rainfall
patterns and depths to produce a flood hydrograph of discharge at discrete time steps [15].
These models have become widely used in flood forecasting, stream flow prediction, and
quantifying effects of climate change and land use impacts or other spatially distributed
properties. However, their limited routing methods do have some drawbacks in simulating
flows in large watersheds. Examples of hydrologic modeling tools include the wflow, Hy-
drologic Engineering Center–Hydrologic Modeling System (HEC–HMS), the Hydrologic
Simulation Program–FORTRAN (HSPF), Soil and Water Assessment Tool (SWAT), and
MIKE-SHE [15]. On the other hand, hydrodynamic modeling tools are based on the solu-
tions to St. Venant equations to calculate open channel flow. The most commonly used of
these models are either one-dimensional or two-dimensional. Widely used hydrodynamic
modeling tools include FLO-2d, Lisflood-FP (1D and 2D models), Water Quality Analysis
Simulation Program (WASP), CE-QUALW2, Environmental Fluid Dynamics Code (EFDC),
EPDRIV1, Hydrologic Engineering Center River Analysis System (HECRAS), MIKE11 (1-D
model), MIKE21 (2-D model), and SOBEK [15]. The comparison between models has been
a significant issue of debate in the scientific fraternity [16,17]. The resulting differences
are attributed mainly to the quality of topographic and input data [18] and less to the
complexity of the phenomenon itself [19]. Several studies have compared the performance
of 1D and 2D hydraulic models for river flood simulations [16,20] and have concluded
that all models have proven sufficiently accurate, but they still have discovered that flood
inundation modeling involves several sources of uncertainty such as (1) input data (bound-
ary and initial condition data, digital elevation models and channel bathymetry, hydraulic
structures, roughness parameterization), (2) model structure (1D, 2D, quasi 2D, 1D/2D),
and (3) internal model parameters. Furthermore, they emphasize the fact that no matter
the quality of the input data, provided the user does not properly fit the data into the
appropriate geometrical description of the model, the final results of the simulation will be
of considerably lower accuracy [16].

Combining hydrodynamic models with hydrological models often compliments and
overcomes the shortcomings of either type of modeling approach [21]. In the current
study, the hydrologic modeling tool, namely the Soil and Water Assessment Tool (SWAT),
is used to derive flow hydrographs at designated locations, which were then fed into
the hydrodynamic modeling tool, namely the Hydrologic Engineering Center’s River
Analysis System (HECRAS) for flood prediction. The SWAT and HECRAS programs
were adopted in this study because they are freely available, user-friendly, peer-reviewed,
are continuously improved and developed. The SWAT modeling system is a long-term,
continuous model simulation of the watershed developed by the United States Department
of Agricultural (USDA) [22]. SWAT has proven to perform well in streamflow and base-flow
simulations around the world and in complex catchments with extreme events [23] since it
allows the interconnections of different physical processes [24]. Additionally, the model
is recognized as suitable for investigating long-term impacts, particularly in watersheds
without conventional gauges [25]. HECRAS is one of the most commonly used modeling
systems to analyze channel flow and floodplain delineation [26]. HECRAS uses geometric
data representation as well as geometric and hydraulic computation routines for a network
of natural and constructed channels of the river. HECRAS has the ability to make the
calculations of water surface profiles for steady and gradually varied flow as well as for
subcritical, super critical, and mixed flow regimes. HECRAS is also capable of doing
modeling for sediment transport, which is notoriously difficult. The HECGeoRAS is a GIS
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extension with a set of procedures, tools, and utilities for the preparation of river geometry
GIS data to import into HECRAS, and it is used to generate the final inundation map [27].

In recent decades, many researchers have performed flood hazard mapping in various
parts of the world, as reported elsewhere [26]. Generally, basin-scale flood hazard mapping
is performed worldwide [26]; however, limited research exists in the literature for Uganda
river basins [28]. The main objective of this study was to analyze the inundation area along
the Manafwa River network and to assess the flood hazard in the Manafwa catchment. The
specific objectives pertaining to this study were to: (1) assess the land-use/cover changes,
(2) evaluate the impact of LULC on the hydrologic characteristics, (3) evaluate the predictive
capacity of the SWAT modeling system by comparisons with streamflow observations,
and (4) derive using HECRAS the flood hazard maps. In this study, we aim to address
one scientific question: (1) how suitable is the coupled hydrology-inundation model for
producing probability maps of flood plain areas for mapping vulnerability and risk areas
in a data-scarce area? Integrated modeling is the focus of this study because by using it
to simulate the rainfall depths at different probabilities, complete flood hazard maps are
obtained. Additionally, it can be used for other purposes in the design and analysis of flood
mitigation measures, as well as flood forecasting and warning systems. The novelty of
the present study is to combine the physically based distributed hydrologic model SWAT
with the hydraulic model HEC-RAS for flood prediction in Eastern Uganda, which has not
been conducted before for tropical catchments and for small watersheds. The study area is
an important hydrological region in Uganda, very populous with extensive areas of rice
cultivation, and no similar studies (to the authors’ knowledge) have been conducted in the
past on the Manafwa Catchment. The Office of the Prime Minister (OPM) in Uganda will
be in a position to strengthen the catchment planning process, and this will be a platform
for further studies to be carried out on other catchments in the country.

2. Materials and Methods

2.1. Study Area

The Manafwa catchment covers a total area of 502 km2 in the Mt Elgon region, located
in the eastern region of Uganda (Figure 1). The catchment is characterized by high relief in
the East, with altitudes ranging from 1041 to 4301 m above sea level, and its main stream
drains from Mt Elgon to Lake Kyoga in downstream. The annual mean temperature is
23 ◦C, and the mean annual rainfall is 1500 mm. The annual rainfall follows a bimodal
pattern, marked by the dry season covering the period of June–August (JJA) and December–
February (DJF); and the rainy season occurs during the months of March to May (MAM) and
short rains in September–November (SON). The geology in the Mt. Elgon region comprises
mainly Pre-Cambrian and Cainozoic rock formations, including volcanics, granites, and
sediments. The predominant soil type is Vertisols, regionally known as “black cotton soils”.
Generally, the soils in the highlands are clays, while those in the midlands and the lowlands
are clay loams or sandy. Land-use/cover changes in the catchment are characterized by
the conversion from natural forest to other land-use/cover types, especially crop lands
and grazing, due to the high population growth rate of 3.5% increasing demand for arable
lands for crop production. The catchment is also characterized by low-income generating
activities and weak infrastructural and service facilities.
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Figure 1. Map of the study area.

2.2. Hydrological Modelling
2.2.1. Model Input Data

In this study, the SWAT model [22] was used to simulate discharge data at the required
station in the catchment for the chosen time period. A 30-m spatial resolution digital
elevation model (DEM) from the Shuttle Radar Topography Mission (SRTM) downloaded
from https://earthexplorer.usgs.gov/ (accessed on 10 July 2018) was used to derive the
topographic information used for drainage pattern definition. A soil map was obtained
from FAO, Scale- 1:50,000 (2000); Land cover maps of 1995, 2008, and 2017 (Figure 2a–c) with
a spatial resolution of 30 × 30 m were obtained from National Forestry Authority (NFA),
which is the mandated institution required to frequently monitor land use/cover changes in
Uganda; Relative humidity, wind speed, solar radiation, and the minimum and maximum
air temperatures were obtained from the Climate Forecast System Reanalysis (CFSR),
which was designed based on the forecast system of the National Centers for Atmospheric
Prediction (NCEP) from 1981 to 2013 https://globalweather.tamu.edu (accessed on 10 July
2018). The rain gauge network of the area is very sparse, and as such, the precipitation
data were downloaded from CHIRPS for the 1981–2013 period. Daily discharge data were
acquired from the Directorate of Water Resources Management, MWE for the period of
1981–2013 obtained from the Manafwa river gauge (station ID 82212)
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(a)

(b)

Figure 2. Cont.
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(c)

Figure 2. (a) Land use land cover Map of 1995. (b) Land use land cover Map of 2008. (c) Land use
land cover Map of 2017.

2.2.2. Model Set-Up and Calibration

The initial model setup was carried out with the Arc SWAT 2012 (revision 664) using
the DEM. A total of 19 sub-catchments were defined with 73 Hydrologic Response Units
(HRUs) from a unique combination of land use/cover, soil type, and slope at thresholds
over the sub-catchment area of 10% for all categories. Surface runoff and infiltration were
computed using the Soil Conservation Services (SCS) curve number method. Evapotranspi-
ration was calculated based on the Penman Monteith method using the obtained climate
data (mean daily temperature, solar radiation, and wind speed). The lateral flow was
calculated using a kinematic storage model described in [22]. After the initial setup, the
model was calibrated and validated at a daily resolution using the Sequential Uncertainty
Fitting (SUFI-2) algorithm in the SWAT Calibration and Uncertainty Program (SWAT-CUP,
version 5.1.6.2) [22], following the procedures of [23]. The SUFI-2 program was applied for
parameter optimization, and Latin Hypercube sampling iteratively discarded the worst
simulations by rejecting the 2.5th and 97.5th percentile of the cumulative distribution.
Thus, the best 95% of simulations generated a parameter range (95% prediction uncertainty,
95PPU) rather than a single final parameterization. The uncertainty band (95PPU) was used
to account for the modeling uncertainty [22]. Calibration of the streamflow was performed
from the year 2000 to 2010, and the validation was performed from the year 2011 to 2013.

2.2.3. Model Performance Evaluation

In this study, the model performance during calibration and validation was evaluated
based on three quantitative statistics: specifically, the coefficient of determination (R2) using
Equation (1), the Nash-Sutcliffe efficiency (NSE) using Equation (2), and the percent bias
(PBIAS) using Equation (3). The coefficient of determination (R2) ranges between 0 and 1.0,
with high values indicating less error variance. The NSE, which was used as the objective
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function, ranges between −∞ and 1.0. An NSE of 1.0 indicates a perfect fit between the
simulated and observed data [29]. The optimal value of PBIAS is 0%, with positive and
negative values indicating model underestimation and overestimation bias, respectively.
The model performance was considered to be satisfactory if NSE ≥ 0.50, R2 ≥ 0.50, and
PBIAS ≤ ±25% [29].

R2 =
[∑n

i=1

(
Oi − Ò

)(
Pi − Ṕ

)
]
2

∑n
i=1 (Oi − Ò)

2
∑n

i=1 (Pi − ṕ)2
(1)

NSE = 1 − ∑n
i=1 (Oi − Pi)

2

∑n
i=1 (Oi − Ò)

2 (2)

PBIAS = 100∗ ∑n
i=1(Oi − Pi)

∑n
i=1 Oi

(3)

where Oi and Pi are the measured and simulated data, respectively, Ò and Ṕ are the means
of measured and simulated data, and n is the number of observations. The modeling
uncertainty was quantified as the P- and R-factor [22]. The P-factor measures the ability of
the model to bracket the observed data with the 95PPU. The P-factor is between 0 and 1,
where 1 means a 100% bracketing of the observed data. The R factor represents the width
of the 95PPU, ranges from 0 to 8, and should be below 1, implying a small uncertainty
band [22].

2.3. Hydraulic Modelling Using HECRAS

The hydraulic model used for our study is based on Hydraulic Engineering Center’s
River Analysis System (HEC-RAS), version 5.0.3 [30]. This model was designed to perform
1D steady flow as well as 2D unsteady flow simulations for a river flow analysis and
sediment transport and water temperature/quality modeling. The model uses geometric
data representation as well as geometric and hydraulic computation routines for a network
of natural and constructed channels of the river. The model required to discharge, DEM
as a boundary condition, and Manning’s roughness coefficient derived from LULC for
calibration. The Model was discretized into an equal number of grid cells of 30 m × 30 m,
i.e., equal geometry to maintain spatial uniformity. HECRAS modeling within the Manafwa
floodplain followed three steps (Figure 3).

Figure 3. Schematic of Data and Models for flood prediction and analysis.
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Step one—This preprocessing stage involved the manual digitization of thematic
vector layers (e.g., river network, stream centerline, river banks, flow paths, cross sections)
in ArcGIS 10.5. software based on the STRM DEM with 30 m spatial resolution and
generation of the attribute table for each of them. The DEM was used as an input in the
RAS mapper of HECRAS 2D to develop a Digital Terrain Model (DTM). The DEM data
were added to the New Terrain Layer dialogue of the RAS mapper in HECRAS 2D. A new
terrain layer was created with terrain files that were used for evaluation. This information
was saved in the terrain folder in GeoTiff format. In addition to GeoTiff, two more files
were created in. hdf and. vrt formats. The file. hdf was created in the RAS mapper, which
contained information on the raster data. The. vrt file helped visualize and display multiple
data. For visualizing flood plain, the model geometry was coupled to DTM, and the DTM
acted as a basis to create a 2D mesh using the polygon shapefile. The DEM and DTM were
used for computing the water surface elevations to visualize floodplain geometry and flood
risk analysis. The importance of DEM’s accuracy has been highlighted by several authors,
especially in two-dimensional hydraulic–hydrodynamic modeling applications [20].

Step two (Figure 3)—This processing stage involved the import of the required param-
eters (e.g., Manning roughness coefficient, hydrological data) into HECRAS software to run
the 2D flood simulation. Thereby, the Manning roughness coefficient (n) was calculated
based on land use/cover classes in combination with typical roughness coefficient tables for
each cross-section, stream centerline, and river bank intersections with values (built-up area:
n = 0.3; farmland: n = 0.025; bushland: n = 0.035; tropical high forest: n = 0.1; woodland:
n = 0.06; wetland: n = 0.04 [31]. Steady flow analysis was used instead of unsteady flow
analysis because, in the second case, the HECRAS software needs a hydrograph, which we
could not obtain from the local authorities. Thereby, to overcome this limitation, we used
the flow rate for the gauging station.

Step three—This post-processing stage involved exporting the HECRAS results to the
software and generating the flood patterns with the different recurrence intervals. The
validation of the results was performed by comparing the real discharge recorded at the
gauging station with the computed discharge hydrographs. A detailed description of
HECRAS is provided by [32,33].

2.4. Flood Hazard Analysis

To assess flood hazard, the DEM was converted into Triangulated Irregular Network
(TIN) format, and TIN showed that the Elevation of the study area ranged from 1070
to 4260 m (Figure 4). After that, the river cross-sections, stream centerline, stream bank
lines, flow lines, and other river geometry information were extracted from the TIN for
the HECGeoRAS model. The geometric data of the Manafwa River basin are shown in
Figure 5. At the same time, the Manning roughness coefficient (n) was calculated based
on land use/cover classes in combination with typical roughness coefficient tables for the
study area [30,31]. After the RAS geometry data preparation, the HEC-GeoRAS model was
used to generate the RAS GIS import file (final river geometry file) that was used as input
for HECRAS.
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Figure 4. TIN of the Manafwa River Basin.

Figure 5. Schematic view of the geometry of study river.

The outputs of HECGeoRAS preprocessing provided GIS to RAS import files; there-
after, two-dimensional hydrodynamic models were created in HECRAS 5.0.3 for the flood
frequency analysis of 5, 10, 50, and 100 years return periods. The Manning’s ‘n’ value,
flow data, and boundary conditions were inputted in the imported GIS2RAS file, and the
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HECRAS results were obtained. To perform HECRAS analysis, River discharge data were
used as the upstream boundary condition, while normal depth was used as the downstream
boundary condition. These boundary conditions require the input of the Energy Grade
Line (EGL) slope at the downstream boundary. The flow data obtained from SWAT and
geometry obtained from the DEM created were also inputted. The cross-sections were
created in HEC-GeoRAS. Thereafter, the water surface profiles were obtained, and the
sufficiency of cross-section coverage was checked. River cross-sections were used at 100 m
distance each, and 500 cross-sections were generated for the analysis. The 1D model was
connected to the floodplain, and a 2D computational mesh was created at 100 × 100 m grid
size. Although the cell size is rather large, considerable hydraulic details are still retained
within a cell using the 2D Geometric Preprocessor. The algorithm preprocesses cells and
cell faces to develop detailed hydraulic property tables (elevation versus wetted perimeter,
elevation versus area, roughness, etc.) based on the underlying terrain (5 × 5 m in this
case). As such, HEC-RAS can produce detailed results (for example, a cell can be partially
wet), which is an advantage over other models that use a single elevation for each cell [30].
The outputs were exported to GIS from HECRAS, and water surface TINs were created in
the Arc GIS environment. Thereafter, flood plain extent and depth grids were obtained,
and flood hazard maps for 5-, 10-, 50-, and 100-year return periods were prepared using
Arc GIS.

A flood hazard assessment was undertaken based on the flood water depth indicated
by the prepared flood map of the Manafwa watershed. For this, hazard levels were ranked
in terms of water depth, and these levels were determined by reclassifying the flood grid
water depth bounding cells. Five hazard levels were categorized based on water depth
such as very low (<0.5 m), low (0.5–1 m), moderate (1–1.5 m), and high (1.5–2 m) and very
high (>2 m) area bounded by each level calculated by modification of the scale used in the
MLIT methodology [34] and flood hazard maps were prepared.

2.5. Flood Vulnerability Analysis

The first step in vulnerability analysis was to identify the elements at risk in the study
area. In this study, elements at risk were identified by overlying the land-use/cover onto
flood inundation maps. LULC dataset was generated from the digital image classification
of Landsat, satellite images of 1995, 2008, and 2017 with a spatial resolution of 30 × 30 m,
downloaded from Global Land Cover Facility (https://glovis.usgs.gov/) (accessed 10 July
2018 (Table 1). Images from the same period (March–May), i.e., the first rainy season,
were selected in order to minimize the seasonal effect on the classification results. In
this study, supervised classification of the maximum likelihood algorithm was applied
to classify Landsat images into discrete LULC categories. The area was classified into
the following land-use/cover classes: built-up areas, bushlands, grassland, commercial
farmland, subsistence farmland, tropical high forest, woodland, and wetland. Information
collected during the field survey as ground-truthing point was used to assess the accuracy
of classification. The elements at risk identified for the study areas included commercial
farmland, subsistence farmland, and rural settlements (i.e., homesteads) because other land-
use/cover classes were not important from a flood risk point of view. Finally, inundation
layers were overlaid on the land-use/cover layer to obtain the overlaid zones. From
the ArcGIS overlay analysis, different sorts of inundation statistics were generated. The
land-use/cover areas under the influence of each flooding event were reclassified for the
calculation of the total vulnerable areas.

Table 1. Summary of Satellite Imagery used for Land cover change analysis.

Satellite Sensor Path/Row Date of Acquisition

Landsat 4–5 TM 171/059 2 April 1995
Landsat 7 ETM 171/059 12 March 2008

Landsat 8 OLI/TIRS LANDSAT 8 171/059 14 April 2017
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2.6. Flood Risk Analysis

The flood risk analysis included the combination of the results of both the vulnerability
analysis and the hazard analysis by intersecting the flood depth polygons prepared during
the hazard analysis with the land-use/cover vulnerability polygons. The resulting attribute
tables were reclassified to develop the land-use/cover-flood depth relationship. Potential
flood areas in terms of both the land cover vulnerability classes and water depth hazard
classes were then presented. Flood risk maps were then prepared by overlaying the flood
depth grids with the land-use/cover map. The following equation was used to generate
the flood risk map of the Manafwa catchment in the raster calculator of ArcGIS. Finally,
and based on Equation (4), flood risk was reclassified into five classes, as shown in Table 2

Risk Map = Hazard Map × Vulnerability Map (4)

Table 2. Classes of flood risk in Manafwa, which results from the product of hazard and vulnerability.

Flood Risk Value Risk Class (RC) Risk Level (RL)

<0.5 1 Very Low

0.5–1.0 2 Low

1.0–1.5 3 Moderate

1.5–2.0 4 Significant

>2.0 5 Extreme

3. Results

3.1. Land Cover Classification in Manafwa Catchment

There are eight land-use/cover types identified in the Manafwa catchment, which are
built-up area, bushland, commercial farmland, grassland, subsistence farmland, tropical
high forest, wetland, and woodland (Figure 6). Subsistence farmland, Tropical High forest,
wetland, and woodland were the dominant LULC types at the beginning of the study
period (Figure 6). However, bushland, wetland, and tropical high forests significantly
declined whilst subsistence farmland, commercial farmland, and woodland increased
during the 1995–2008 period. The period of 2008–2017 is characterized by an increase in
bushland, commercial farmland, and subsistence farmland with a marked decrease in the
tropical high forest, wetland, and woodland.
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Figure 6. Temporal change of land cover types in Manafwa catchment between 1995 and 2017.
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3.2. Model Calibration, Sensitivity, and Uncertainty Analysis

Through the sensitivity analysis of the SWAT model, 14 parameters with higher sensi-
tivity were selected to calibrate and verify the model (Table 3). Sensitivity was evaluated
based on t-stat values (a higher absolute value is more sensitive). Significance was also
determined based on the p-value. Sequential Uncertainty Fitting program (SUFI-2) flow
calibration was performed for the simulated results based on the sensitive parameters.
This was conducted by simulating the flow for 26-year period, including two-year warm
period from 1981–2013. The values of NSE and R2 (Table 4) after calibration are greater than
0.65, which is the best predictor of the model. After calibrating (2000–2010) and obtaining
acceptable values of NSE and R2, validation of simulated stream flow for 3-year period,
including one-year warm-up period from 2011 to 2013, was performed using monthly
observed flows. The results after validation were also checked using NSE and R2 and had
magnitudes greater than 0.65 and 0.77, respectively, for the 2008 and 2017 (Table 5), except
for 1995, which has an NSE value less than 1. The PBIAS also shows a good estimation
since the values are less than ±25%, except for 1995. The calibrated and validated stream
flow results showed a good agreement with the observed data (Table 4 and Figure 7)
and therefore indicate that the SWAT model is a good predictor of stream flow of the
Manafwa watershed.

Table 3. Flow sensitive parameters and their fitted value in SUFI2.

No Parameter Name Definition
Fitted
Value

Min
Value

Max
Value

t-Stat

1 R__CN2.mgt Initial SCS runoff curve number for moisture
condition II −0.24 −0.4 0.2 0.53

2 V__ALPHA_BF.gw Baseflow alpha factor (days) 1.52 1.04 1.55 0.09

3 V__GW_DELAY.gw Groundwater delay time (days) 35.26 −50.05 98.83 17.11

4 V__GWQMN.gw Threshold depth of water in the shallow aquifer −0.63 −0.77 0.12 −0.54

5 R__LAT_SED.hru Sediment concentration in later and groundwater
flow (mg/L) 59.56 43.68 74.52 −0.96

6 R__SOL_AWC(..).sol Available water capacity of the soil layer
(mm/mm) −0.30 −0.49 −0.06 −0.44

7 R__CH_K2.rte Effective hydraulic conductivity in main channel
alluvium (mm/h) 46.80 1.07 62.45 −1.53

8 R__CH_N2.rte Manning’s “n” value for the main channel 0.05 0.05 0.12 0.55

9 R__ESCO.hru Soil evaporation compensation factor −0.04 −0.05 0.50 0.15

10 R__OV_N.hru Manning’s “n” value for overland flow 16.04 6.49 16.88 0.56

11 R__SURLAG.bsn Surface runoff lag coefficient 15.19 12.34 17.29 0.91

12 R__RCHRG_DP.gw Deep aquifer percolation factor 1.29 0.92 1.42 0.10

13 R__GW_REVAP.gw Groundwater “revap” coefficient 0.47 0.28 0.76 1.72

14 R__SOL_K(..).sol Saturated hydraulic conductivity (mm/h) 3.37 3.06 5.81 −2.94

Table 4. Summary of calibrated and validated performance criteria.

Performance
Criteria

Calibration (2000–2010) Validation (2011–2013)
Accepted Range [24].

1995 LC 2008 LC 2017 LC 1995 LC 2008 LC 2017 LC

R2 0.94 0.79 0.94 0.81 0.78 0.79 R2 > 0.50

NSE 0.65 0.79 0.74 −1.72 0.69 0.69 NSE > 0.50

PBIAS −30.2 −12 −23.4 −68.8 −14.6 −11.7 PBIAS ≤ ±25%
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Table 5. Flooded areas (km2) in different Land cover types (1995–2017).

Land Cover Type Area (km2) Area (km2) Area (km2) % Change % Change % Change

1995 2008 2017 1995–2008 2008–2017 1995–2017

Built-up area 0.0 0.1 0.3 200.0

Bushland 2.0 1.8 3.2 −10.0 77.8 60.0

Commercial farmland 6.8 15.7 34.2 130.9 117.8 402.9

Grassland 0.0 0.1 0.01 −90.0

Subsistence farmland 57.3 65.5 67.9 14.3 3.7 18.5

Tropical high forest 1.5 1.2 1.1 −20.0 −8.3 −26.7

Wetland 53.4 35.8 12.3 −33.0 −65.6 −77.0

Woodland 7.7 8.5 9.7 10.4 14.1 26.0

Figure 7. Observed and simulated monthly streamflow hydrographs for the calibration period
of 2000–2010 and the validation period of 2011–2013 (separated by the vertical dashed line) for
2008 land Cover. Notes: Calibration; R2 = 0.79, NSE= 0.79 & PBIAS= −12; Validation: R2 = 0.78,
NSE = 0.69, and PBIAS = −14.0.

3.3. Inundation Areas Mapped

The analysis of flood inundation area indicated that a considerable increase in flood
inundation with increasing discharge of flood was shown from 5 years to 100 years return
period (Figure 8). The classification of flood depth areas indicated that 13–19% of the total
flooded areas had water depths greater than 2 m.
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<0.5 0.5– 1.0 1.0–1.5 1.5–2.0 >2.0
5 year Flood 46.7 18.5 11.4 9.6 13.8
10 year Flood 41.2 19.1 15.3 5.8 18.6
50 Year Flood 28.3 29 18 6 18.7
100 Year Flood 13.3 43.1 16 9.4 18.2
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Figure 8. Return Period–Flood Depth Relationship.

3.4. Floodplain Vulnerability

The land cover area under the influence of modeled flood showed that 42.7, 33.7,
10.8, and 5.3 km2 of subsistence farming area, forest commercial farming area, wetland,
and woodland area are respectively inundated by 5-year flood, and the total vulnerable
area is 94 km2 (Figure 9). The very high flood vulnerability areas covered 12.9 km2, and
high vulnerability areas occupied 9.0 km2. Moderate, low, and very low vulnerability
zones were 10.7, 17.4, and 43.9 km2, respectively. Similarly, 67.9, 34.2, 12.3, and 9.7 km2 of
subsistence farming area, forest commercial farming area, wetland, and woodland area
were respectively inundated by a 100-year flood, which showed flooded areas increased
with an increase in flooding intensity; mostly subsistence farming area was inundated by
different year floods, which was followed by commercial farming and wetland area. The
flood vulnerability results for the 100 Yr. return period showed that the total vulnerable area
is 128.7 km2. The very high flood vulnerability areas covered 23.4 km2, high vulnerability
areas occupied 12.1 km2, while moderate, low, and very low vulnerability zones were 20.6,
55.6, and 17.1 km2, respectively.

According to [35], integrated flood management and land cover change, along with
HECRAS hydraulic model simulations, are required for flood risk mitigation. Therefore,
land cover change in the Manafwa basin was analyzed in two time periods, and the
comparisons for the different two time periods shows that flooded area in Commercial
farming, subsistence farming, Bushland, and Woodland has increased, but flooded areas in
Wetland and Tropical High Forest decreased (Table 5).
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Figure 9. Flood Vulnerability Maps for different return periods.

3.5. Flood Risk Analysis

The classification of risk for the 5 YR and 100 YR return periods showed that commer-
cial farmland, subsistence farmland, and Built-up/Settlement areas were under extreme
risk of floods (Figure 10). The extreme flood risk areas covered 11.3 km2; significant risk
areas occupied 5.7 km2, while moderate, low, and very low-risk zones were 12.9, 15.9, and
48.2 km2, respectively. Similarly, for the 100 YR return period, the extreme flood risk areas
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covered 20.0 km2, and significant flood risk areas occupied 15.0 km2. Moderate, low, and
very low-risk areas were 24.0, 46.0, and 23.7 km2, respectively.

Figure 10. Flood Risk maps for different return periods.

The analysis of the relationship between the flood hazard level and settlement area
(Figure 11) indicated a gradual increase in the significant and extreme hazard classes in all
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return periods. There is no change in the very low, low, and moderate hazard classes in all
return periods.

5 Yr 10 Yr 50 Yr 100 Yr
<0.5 (Very Low) 0.1 0.1 0.1 0.1
0.5–1.0 (Low) 0.1 0.1 0.1 0.1
1.0–1.5(Moderate) 0.1 0.1 0.1 0.1
1.5–2.0 (Significant) 0.01 0.01 0.02 0.1
>2.0 (Extreme) 0.004 0.01 0.01 0.02
Total 0.3 0.3 0.3 0.4
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Figure 11. Risk Classification of Settlement Land Cover Type.

Similarly, Subsistence farming area under a very low hazard class (<0.5 m) is 22.2, 22.6,
18.9, and 11.9 km2 for return periods of 5–100 years (Figure 12). It also shows that there is a
gradual increase in the low, moderate, and extreme hazard classes.

5 Yr 10 Yr 50 Yr 100 Yr
<0.5 (Very Low) 22.2 22.6 18.9 11.9
0.5–1.0 (Low) 6.4 7.2 14.8 31.3
1.0–1.5(Moderate) 4.9 7.2 8.9 9.5
1.5–2.0 (Significant) 3.5 2.8 3.2 5.8
>2.0 (Extreme) 5.3 7.2 8.2 9.4
Total 42.4 46.9 54.0 67.9
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Figure 12. Risk classification of Subsistence Farming Land Cover Type.

In the commercial farming land cover type, there is a gradual increase in every return
period in the low, moderate, and extreme hazards and a gradual decrease in every return
period in the very low hazard (Figure 13).
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5 Yr 10 Yr 50 Yr 100 Yr
<0.5 (Very Low) 14.5 11.9 6.9 2.5
0.5–1.0 (Low) 6.5 7.8 10.8 13.8
1.0–1.5(Moderate) 2.9 3.7 5.3 5.3
1.5–2.0 (Significant) 3.9 1.4 1.5 2.7
>2.0 (Extreme) 5.9 9.1 9.6 10.0
Total 33.7 33.9 34.1 34.2
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Figure 13. Risk classification of Commercial Farming Land Cover Type.

4. Discussion

SWAT is one of the most widely used models when simulating water balance within
a basin [36]. However, the software has some limitations related mostly to a large num-
ber of input parameters. Sometimes, several parameters must be obtained or estimated
from global databases, equations, or other computer software [37]. The information
gave a satisfactory representation of the total flow behavior in the basin once the model
was calibrated for the different land coverage scenarios. The error metrics for calibra-
tion and validation periods in the Manafwa catchment were “good”, according to [29].
Ref [29] recommended that the general performance of objective functions on monthly
time step calibration are satisfactory if NSE > 0.50 and RSR ≤ 0.70, and if PBIAS ≤ ±25%
for streamflow.

The combination of Arc GIS and HECRAS 2-D flood simulation model indicates the
capability of simulating flood events and spatially depicting the degree of exposure or
vulnerability of the region towards a hazard event in terms of inundation extent and depth
of water levels. The model can be said to have generated reliable quantified output. This
hybrid approach provides quantified information on the water level depths and facilitates
access to the data at any point of interest. As there are no quantified data on the inundation
depths for flood hazards in the study region, the visualization and the quantification of
the flood risks, as facilitated by this approach, can generate invaluable information and
assist the decision-making authorities to making informed choices towards mitigating the
catastrophic effects of flooding disasters.

Whereas in literature, there is considerable debate about whether a 1D or a 2D model
provides a better representation of a flood event [21], it should be noted that even for
the most sophisticated models, the performance of models is influenced by the quality
of the source of information that is available for their parameterization, calibration, and
validation. This is especially critical in undeveloped countries where financial and data
sources are scarce. With regard to the calibration or validation of the model result, it could
have been improved if it had been possible to compare it to an actual flood event, e.g.,
upstream and downstream flow hydrographs, mapped and recorded inundation extents,
depths, or flow velocities. Such data were not available for the model area.
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The lack of appropriate infrastructures and data makes the development of FHA
difficult in African countries beyond the inclusion of this continent in global risk studies,
such as those cited in [38]. In most African countries, the 30 m spatial resolution digital
elevation model (DEM) from the SRTM project or the ASTER project, or the SRTM-derived
‘Bare-Earth’ DEM and Multi-Error-Removed Improved-Terrain (MERIT) DEM are the best
options. The lack of detailed DEMs can be considered as one but not the only key factor of
the limited FHA in Africa. Apart from the lack of DEMs for flood hazard analysis, the poor
quality or limited availability of flow data must be kept in mind [39].

The vulnerability assessment approach used in this study for identifying and provid-
ing a vulnerability rank based on land use/cover in the flood area is a simple yet powerful
approach. It not only identified the most to least vulnerable critical land-use/cover types
but also provided enough information for flood preparedness processes that could signif-
icantly reduce the impact. The approach could easily be extended for the vulnerability
evaluation of other infrastructures in order to estimate economic losses, the navigation
route of people, including high-density areas, and other region-specific important factors.
Moreover, futuristic higher magnitude flood events can be simulated to assess magnified
vulnerability and associated risks. Land use planning decisions could be made based on
flood inundation maps. Following such approaches will help save lives and resources at
the same time and provide a proven and more accurate way to contest the uncertainties of
the natural events causing floods.

It should be kept in mind that uncertainties exist in every stage of flood hazard
mapping, from the beginning of the process (data collection, model selection, parameter
selection, input data, model calibration, operation, and handling of the models) until
the outcome is obtained [40]. The main limitations of this study were data quality and
availability (e.g., missing rainfall and hydrologic data; unevenly distributed discharge and
water level gauges with varying time series length and missing data; little field survey
cross-section data and lack of hydraulic structure data along the river, such as bridges,
weirs, etc.) contributing to uncertainties and inaccuracy in the results. The accuracy of the
flood maps could be improved through the identification of possible sources of uncertainty
and uncertainty analysis; the sources of uncertainty include the DEM resolution. The
current 30 m is not sufficient and could lead to errors. We, therefore, recommended this
for further research, as well as the integration of better-quality data into the models if they
become available.

5. Conclusions

This study presented a systematic approach of coupling the hydrodynamic model
HEC-RAS with the hydrologic model SWAT in delineating flood inundation zones and
subsequently assessing the vulnerability of different land cover types in the Manafwa River
Watershed Eastern Uganda. The HEC-RAS flood simulation model was found to be capable
of simulating flood events and spatially depicting the vulnerability of the region towards a
hazard event in terms of inundation extent, whereas SWAT was proven to be an appropriate
tool in generating simulated flood hydrographs at desired locations. The calibration and
validation results of the streamflow generally show good agreement with the observations
in terms of R2, PBIAS, and Nash-Sutcliffe efficiency coefficient. This study demonstrates a
useful case study for applying the coupled hydrological and hydraulic models for flood
hazard mapping. The integrated model used in this study could also be used for the
analysis and design of possible structural measures and alternatives or be improved to
establish a flood forecasting and warning system. The real-time inundation maps generated
from forecasting systems are also an effective tool to inform relevant stakeholders and can
significantly assist in communication with residents in areas susceptible to flooding. In the
future, additional river survey data and high-resolution satellite images should be used
for calibrating the model and improving the accuracy of flood hazard mapping. More
hydro-meteorological observation stations are advocated to be installed in Manafwa and
its surrounding area to provide first-hand hydrological information.
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The results of the paper can be applied, especially in the areas of prevention, flood
risk management, and crisis management. By incorporating flood maps into the local
development plan of the catchment area, irresponsible expansion and densification of
construction near the watercourse or in areas with moderate and high degrees of flood
hazard could be prevented. In general, it is concluded that the use of integrated models to
develop probabilistic flood hazard maps is an important step in the future flood protection
of the Manafwa River Basin and similar river systems in Uganda and in the region. From
the methodological point of view, the importance of the paper can be seen in the universality
of the proposed steps to assess flood hazard and flood risk, which could be transferred
to other similar flood-prone areas. However, further case studies in other regions should
be undertaken to verify their general applicability. There are several potential research
directions that can be mentioned as the next step, such as the comparison of HECRAS
results with other 2D models such as Iber and BASEMENT. All three models are free,
and such a comparison will highlight the advantages and disadvantages of each model’s
structure as well as the assumptions for the applied location.
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Abstract: Low-lying coastal communities are often threatened by compound flooding (CF), which can
be determined through the joint occurrence of storm surges, rainfall and river discharge, either suc-
cessively or in close succession. The trivariate distribution can demonstrate the risk of the compound
phenomenon more realistically, rather than considering each contributing factor independently or in
pairwise dependency relations. Recently, the vine copula has been recognized as a highly flexible
approach to constructing a higher-dimensional joint density framework. In these, the parametric
class copula with parametric univariate marginals is often involved. Its incorporation can lead to a
lack of flexibility due to parametric functions that have prior distribution assumptions about their
univariate marginal and/or copula joint density. This study introduces the vine copula approach
in a nonparametric setting by introducing Bernstein and Beta kernel copula density in establishing
trivariate flood dependence. The proposed model was applied to 46 years of flood characteristics
collected on the west coast of Canada. The univariate flood marginal distribution was modelled
using nonparametric kernel density estimation (KDE). The 2D Bernstein estimator and beta kernel
copula estimator were tested independently in capturing pairwise dependencies to establish D-vine
structure in a stage-wise nesting approach in three alternative ways, each by permutating the loca-
tion of the conditioning variable. The best-fitted vine structure was selected using goodness-of-fit
(GOF) test statistics. The performance of the nonparametric vine approach was also compared with
those of vines constructed with a parametric and semiparametric fitting procedure. Investigation
revealed that the D-vine copula constructed using a Bernstein copula with normal KDE marginals
performed well nonparametrically in capturing the dependence of the compound events. Finally,
the derived nonparametric model was used in the estimation of trivariate joint return periods, and
further employed in estimating failure probability statistics.

Keywords: compound flooding; D-vine copula; trivariate joint analysis; Bernstein estimator; beta
kernel estimator; parametric copulas; kernel density estimation; return periods

1. Introduction

Compound events (CE) is a multidimensional phenomenon that can be defined by
the joint probability occurrence of two or more extreme or non-extreme events, which
may not be dangerous or devastating if considered individually [1–4]. However, CE can
have severe consequences if their underlying variables co-occur or are in close succes-
sion. On the global scale, the flooding events in low-lying coastal cities or the risk of
extreme compound phenomena have already been recorded and outlined in the previous
literature [5–7]. Climate change has already triggered a rising coastal water level called
sea level rise (SLR), increasing the frequency and severity of flooding, which threatens
coastal communities worldwide [8–10]. Coastal flooding can be significantly defined and
estimated by combining the driving forces, such as storm surge (oceanographic), rainfall
(or pluvial flooding) and river discharge (or fluvial flooding). These events can be inter-
linked through a common forcing mechanism, such as tropical or extra-tropical cyclones
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(or a low-atmospheric-pressure scenario). Among the different coastal flood drivers, a
storm surge event is often considered a significant flood-driving agent [11]. When com-
bined with rainfall (e.g., [2]) or with high river discharge (e.g., [10]), it can result in a
devastating situation.

Different mathematical or statistical frameworks are often pointed out in the demon-
stration of the compound phenomenon but still can lack a consistent or robust approach.
The traditional statistical evaluation of the CEs is usually a multivariate framework that ob-
serves the number of extreme joint episodes by targeting the most justifiable flood drivers.
For instance, take the studies performed by Coles [12], Coles et al. [13], Svensson and
Jones [14], Cooley et al. [15], Zheng et al. [16] and Zheng et al. [17]. In reality, the validity of
the univariate probability or frequency analysis (and return periods) is questionable. Due
to the multidimensional behaviour, it must demand an efficient framework that can reduce
the hydrologic risk much more efficiently.

In recent studies, copula functions gained more popularity than traditional multivari-
ate models and are recognized as highly flexible tools in the bivariate or multivariate joint
distribution analysis of hydro-meteorological observations [18–22]. In the modelling of CE
or flooding, the adequacy of different parametric class 2D copulas is tested by targeting
different contributing variables, for instance, storm surge (or storm tide) and rainfall, or
storm surge (or storm tide) and river discharge [23–28]. Such incorporations are limited
to bivariate joint cases employing 2D parametric class copulas to observe pairwise joint
dependencies. However, the more realistic and practical flood risk can be obtained by com-
pounding the joint distribution behaviour, including more relevant flood-driving agents
(e.g., storm surge, rainfall, and river discharge) simultaneously instead of their pairwise
dependencies. For instance, tropical cyclones in the coastal region can trigger storm surges,
rainfall and possible high-river-discharge events simultaneously; thus, the complex in-
terplay between them can exacerbate flooding in the coastal zones. Therefore, the risk of
coastal flooding can be analysed much more efficiently by considering the above triplet
variable simultaneously instead of just considering bivariate joint dependency.

The application of the 3D (or any higher dimension) copula in hydro-meteorological
modelling is minimal. Few previous works highlighted, for instance, the asymmetric,
fully nested Archimedean copula [29,30].; the meta-elliptical Student’s t copula [31]; the
Plackett copula [32]; and the entropy copula [33]. All such frameworks have some statistical
constraints and limitations when projected into higher dimensions. For example, the 3D
symmetric Archimedean copula models the dependencies between multiple random vari-
ables by employing single-dependence parameters or generator functions and thus cannot
preserve all pairwise dependencies [32,34]. Besides this, an asymmetric or fully nested
Archimedean (FNA) copula can be much more reliable than a symmetric structure. FNA
can individually approximate each random attribute pair through multiple parametric joint
asymmetric functions [35–37]. The faithful preservation of all the lower-level dependen-
cies among the targeted variables is still challenging based on the FNA structure. This
framework is only effective and practical when two correlation structures are identical or
near and lesser than the third correlation structure and are limited to a positive range [31].
Additionally, when considering more variables, the asymmetric FNA structure permits a
narrow range of mutual dependencies [18]. Therefore, to alleviate all such statistical issues,
the vine or pair-copula construction (PCC) approach is highly flexible and is a much more
practical way of constructing any higher-dimensional joint dependence by mixing multiple
2D (bivariate) copulas in a stage-wise hierarchical nesting procedure or conditional mixing
procedure [38–41].

In CE modelling, Bevacqua et al. [42] introduced a 3D vine copula for evaluating flooding
events in Ravenna, Italy. In a recent study, Jane et al. [43] introduced the vine framework in the
trivariate joint analysis of rainfall, ocean-side water-level and groundwater-level observations
in South Florida, USA. Besides the above two, other studies—for instance, Graler et al. [41],
Saghafian and Mehdikhani [44], Tosunoglu et al., [45], Latif and Mustafa [46]—often incor-
porated a vine copula under parametric distribution settings, thereby fitting the parametric-
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class 2D copulas with parametric marginal pdfs in the parametric fitting procedure. In
some previous literature, such as Silverman [47], Moon and Lall [48], Sharma et al. [49],
Kim et al. [50] and Karmakar and Simonovic [51], the performance of nonparametric kernel
density estimation (KDE) has been revealed to be much better than those of parametric
family functions. Due to the absence of any prior distribution assumption about their
marginals probability density function (PDF) type, KDE performed much more reliably,
especially suited for multimodal random samples. However, the copula function eliminates
the restriction to model any marginal distribution from the same family functions. The sub-
jective assumption of the joint PDF type of the fitted parametric copulas in the traditional
vine distribution framework is not much more effective at approximating joint structure,
which would be questionable. In other words, fixing the joint PDF of the dependence
structure to any specific or predefined copula class may fail to fully acknowledge the
flexibility of the copula fitted in the vine tree structure. Parametric copulas are frequently
used because of their simplicity. However, the parameter estimation procedures of the
fitted parametric models are time consuming using standard statistical techniques [52].
Rauf and Zeephongsekul [53] claimed that it could lead to spurious inferences and be
challenging if the underlying assumptions of the fitted parametric distribution are violated.
Fitting an appropriate parametric copula demands much more attention and extra caution,
which might bear the risk of uncertainty in their estimated joint exceedance values if an
inappropriate dependence structure is selected.

To deal with all the above-raised issues, introducing the nonparametric copula density
in the vine copula construction could be a better alternative where the 2D copulas could
adapt to any dependence structure without having any specific or fixed joint PDF form.
To do this, the Bernstein copula estimator and beta kernel copula density could be a good
choice for modelling multivariate copula density in nonparametric settings [54–58] and
reference therein. In reality, the Bernstein copula can provide higher consistency and lack
boundary bias problems [59], resulting in a better estimation of the underlying dependence
structure than an empirical copula estimate. Besides this, there is the performance of
beta kernel density is already proved by Rauf and Zeephongsekul [53] and Latif and
Mustafa [22]. The nonparametric copula density gained more attention in economics but is
rarely accepted in hydro-meteorological studies. Additionally, all the above nonparametric
frameworks are often limited to bivariate cases.

The main contribution of the present work is the first to incorporate the Bernstein
estimator and Beta kernel copula estimator in the nonparametric estimation of the 3D vine
copula density in the trivariate modelling of compound flooding (CF) events on the west
coast of Canada. The objective of the present study is (i) to incorporate and test the efficacy
of above-mentioned nonparametric copula densities in establishing the D-vine structure
and in determining trivariate joint cumulative distribution functions (JCDF),(ii) comparing
the performance with the semiparametric approach in the vine copula density, introducing
parametric copulas with nonparametric marginal pdfs and the parametric approach in the
vine copula. Finally, the selected best-fitted vine copula density is employed to estimate
trivariate joint return periods and in assessing hydrologic risk. Our recent study is the first
that incorporates the Bernstein estimator in flood modelling and confirms that this function
performed well compared to Beta copula density in the bivariate dependence modelling
of storm surge and rainfall events [60]. Our present study extends the previous bivariate
approach by dealing with three variables, integrating the impact of river discharge events
with storm surge and rainfall events in the risk of compound flooding (CF) events.

Pirani and Najafi’s [61] study already shows that the higher risk of compound extreme
on Canada’s west coasts is due to the joint impact of precipitation, extreme water level (also,
storm surge events) and streamflow discharge. Additionally, west or Pacific Canada’s coast
experienced higher coastal instability because of the higher risk of coastal water levels [62].
This paper is organized into four sections. After the introduction, the required theoretical
background of the nonparametric copula density and in development of the 3D vine copula
framework are discussed in Section 2. Section 3 of this manuscript presents the application
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of the developed trivariate distribution framework to a case study in compounding the
joint impact of rainfall, storm surge and river discharge events. This section comprises, for
instance, modelling univariate marginal distribution via nonparametric KDE, constructing
D-vine structure in the nonparametric fitting procedure via Bernstein and Beta copula esti-
mator, D-vine structure under the parametric fitting procedure and in the semiparametric
settings. This section also compares the model adequacy and performance of all three
developed D-vine structures in the trivariate CF dependence. Additionally, the best-fitted
trivariate structure is employed in estimating primary joint return periods for both AND
and OR-joint cases and also employed in the estimation of FP statistics. Finally, Section 4
provided the research summary and conclusions.

2. Methodology

2.1. Nonparametric Copula Density Estimator

Figure 1 illustrates the methodological workflow used in this study. Firstly, compound
flood variables’ marginal distributions are modelled using the nonparametric kernel density
estimation (KDE). The best-fitted parametric family distributions are adapted from our
previous study [63], and their performance is compared with the selected KDE in the present
study. The D-vine copula framework is developed under parametric, semiparametric
and nonparametric settings, and their performance is compared in describing the most
parsimonious flood dependence. The nonparametric vine density comprises multiple 2-D
copulas via the Bernstein and Beta kernel density with kernel density margins without
having any prior assumption about their marginal pdf and joint density function. The
parametric and semiparametric vine copula density defines through parametric class 2-D
copulas (i.e., Archimedean and Extreme value) with parametric and nonparametric via
KDE margins. The best-fitted trivariate structure is employed in the estimation of trivariate
joint return periods for both OR-and AND-joint cases and is further employed in estimating
FP statistics. In this study, the D-vine copula are developed for three different cases, each
defined by permutating the location of the conditioning variable. For instance, in case 1,
the river discharge event is a conditioning variable; in case 2, the storm surge event is a
conditioning variable; in case 3, the rainfall event is a conditioning variable.

Mirror image modification, transformed kernels, boundary kernels, etc., are a few
examples of nonparametric approaches in joint density estimation [64–66]. This study
introduces the beta kernel copula and Bernstein copula estimator for developing the D-vine
structure for the trivariate joint analysis of storm surge, rainfall and river discharge events
in relation to flood risk in the coastal regions. The beta kernel copula density was discussed
earlier by Brown and Chen [67], Harrell and Davis [54] and Chen [68]. It is naturally free
of boundary bias problems which are often encountered in the standard kernel estimator.
The consistency remains in the beta kernel density if the actual density is unbounded at the
boundary [69].

The 1D beta kernel density function for the given univariate variables, A1, A2, . . . , At,
is estimated by:

sh(a) =
1
t ∑t

i=1 K(Ai,
a
h
+ 1,

1 − a
h

+ 1) (1)

where “h” is the kernel’s bandwidth.
In Equation (1), the density of the beta kernel function with parameters q and v is

estimated by

K(a, q, v) =
aq(1 − a)vΓ(q)Γ(v)

Γ(q + v)
, a ∈ [0, 1] (2)

According to Charpentier et al. [52], multiplying the beta kernel densities can result in
beta copula joint density, known as the beta kernel copula, at point (a, b), as given below.

ch(a, b) =
1

ph2 ∑p
i=1 K(Ai,

a
h
+ 1,

1 − a
h

+ 1)× K
(

Bi,
b
h
+ 1,

1 − b
h

+ 1
)

(3)
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Figure 1. Workflow chart of the present study.

The bandwidth of Equation (3) is estimated by the rule of thumb (ROT) estimation
procedure, which is based on minimizing the asymptotic mean-integrated-squared error
(AMISE) statistics. For this, Nagler [70] pointed out the applicability of the Frank copula as
the reference copula. The ROT bandwidth estimation for the fitted 2D beta kernel estimator
of Equation (3) is estimated by

h =

(
1

8π
ς(c)
ξ(c)

) 1
3
n

−1
3 (4)

where “c” is assumed to be the Frank copula in Equation (4).
The efficacy of the Bernstein copula estimator is also tested and compared in con-

structing the D-vine structure together with beta kernel density. Lorentz [71] highlighted
that the Bernstein polynomial could be used to approximate any continuous functions
within a range of [0,1]. Tenbush [72] constructed bivariate joint density using the Bernstein
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estimator. Approximation of nonparametric joint density using the Bernstein copula can
provide higher consistency and remove boundary bias problems [57,73]. Additionally, it
can better estimate the underlying mutual correlation and good approximation with an
asymmetric and extreme dependency compared to an empirical copula approach [69].

Mathematically, the n-degree Bernstein polynomial is estimated by [57,69]:

B(n, w, z) =
(

n
w

)
zw(1 − z)n−w (5)

In Equation (5), w = 0, 1, 2, . . . , n ∈ N; 0 ≤ z ≤ 1.
Now, if X = (X1, X2) illustrates bivariate observations having a uniform marginal distribu-

tion over Yi = {0, 1, 2, . . . , ni} with grid size ni ∈ N and where i = 1, 2, then

y(w1, w2) = Y(∩2
I=1{Xi = wi}

)
, (w1, w2) ∈ [0, 1]2 (6)

Hence, for the 2D joint distribution case, the Bernstein copula density is estimated by;

c(x1, x2) = ∑n1−1
w1=0 ∑n2−1

w2=0 y(w1, w2)∏2
i=1 niB(ni − 1, wi, xi), (7)

where (x1, x2) ∈ [0, 1]2.

2.2. Univariate Kernel Density Estimation of Flood Margins

Parametric class functions are often restricted to prior distributional assumptions
about their univariate marginal pdfs. However, on the other side, the parametric functions
performed well if the given observation exhibited unimodality or symmetrical behaviour.
A nonparametric kernel density estimation (KDE) is identified as much more robust and
better performing in modelling the probability densities of different hydro-meteorological
characteristics, especially when the given observation departed from the symmetrical
behaviour or, say, bi- or multimodality [48,50,74,75]. Our present study tested the efficacy
of different KDE functions and compared their performance with the selected best-fitted
parametric distributions from our previous study [63].

Mathematically, the 1D kernel function can approximate a probability density structure
having the following statistical property.

∫ +∞

−∞
K(x)dx = 1 (8)

Furthermore, the kernel function can be represented by a general function:

Ko(x) =
1
o

K
(x

o

)
(9)

where “o” is the bandwidth of the fitted univariate kernel function.
By taking the average of Equation (9), the univariate kernel density estimator f̂o(x) of

the probability density function is estimated by

f̂o(x) =
1

po ∑p
i=1 Ko

(
x − Xi

o

)
(10)

where “p” is the observation counts. In fitting the kernel density to the given observational
samples, selecting an appropriate way of estimating kernel bandwidth is often essential;
otherwise, it may be attributed to either over-smoothing or under- or insufficient smooth-
ing (also called rough smoothing). For extended details about different statistical proce-
dures in kernel bandwidth estimation, readers are advised to read Sharma et al. [49] and
Jones et al. [76]. In our present analysis, the direct plug-in (DPI) method is used to esti-
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mate the bandwidth of the fitted kernel density [77–79]. Table 1 lists some kernel density
functions which are used in this study.

Table 1. 1-D Kernel density estimation (KDE) tested in the modelling of flood marginals.

SI No. Kernel Density Estimation K(x)

1 Normal =(2π)
−1
2 e−(x2)/2

2 Epanechnikov (or parabolic) = 0.75
(
1 − x2), |X| ≤ 1

= 0, otherwise

3 Biweight (or Quartic) = 0.9375
(
1 − x2)2, |x| ≤ 1

= 0, otherwise

4 Triweight 1.09375
(
1 − x2)3, |x| ≤ 1

= 0, otherwise

2.3. D-Vine Copula Structure in the Trivariate Modelling

The vine or pair-copula construction (pcc) is based on the decomposition of full multi-
variate density into a cascade of local blocks of the best-fitted 2D copulas modelled between
each random pair and their conditional and unconditional functions [38,39]. Two famous
decomposition steps in the vine framework are the canonical or C-vine and drawable or
D-vine [80,81]. The D-vine’s structure is highly flexible, and this is accepted widely [40,41,82].
The traditional approach in the vine framework considers multiple 2D parametric class
copulae in the stagewise hierarchy. A few statistical constraints with parametric copula
joint density are highlighted in Section 1. Therefore, it could be problematic if the vine
copula is constructed using the parametric class copulas. Due to this, we individually tested
the efficacy of the nonparametric method via beta kernel copula density and Bernstein
copula estimator in the 3D vine simulation for the given CF variables. This study also
compares the performances of the parametric and semiparametric approaches in the vine
simulation, where both frameworks are defined through multiple 2D parametric copulas.
The univariate marginal distribution is modelled using the kernel density estimations
(KDE) in both nonparametric and semiparametric and parametric class distributions in the
parametric vine approach.

Due to the involvement of three flood characteristics in characterizing C.F. events in
our study, the present 3D vine framework must demand three 2D copulae and two tree
levels, Tree 1 and Tree 2 (refer to Figure 2). For trivariate variables (A, B, C), the D-vine
structure can be mathematically expressed as

f(a, b, c) = f(a)·f(b|a)·f(c|a, b) (11)

f(b|a) = f(a, b)
f(a)

= cab(F(a), F(b))·f(b) (12)

f(c|a , b) =
f(b, c|a )

f(b|a) = cbc|a(F(b|a), F(c|a))·cac(F(a), F(c))·f(c) (13)

In Equation (11), the conditional cumulative distribution functions f(b|a) and f(c|a, b)
are estimated using the pair-copula densities. Additionally, F(a), F(b) and F(c) are the
fitted univariate margins. In Equation (12), Cab is the best-fitted 2D copula (parametric
class or nonparametric) for variables A and B. Our proposed framework selects the D-vine
with five nodes, three edges and two tree levels (Refer to Figure 2). We constructed a
D-vine copula framework for three cases. Each case was defined based on permutating
the conditioning variables (or variable placed at the centre of the selected D-vine structure;
refer to Figure 2). For instance, the D-vine structure 1 (case-1) was defined by selecting the
river discharge (RD) as a conditioning variable placed between storm surge (SS) and rainfall
(R) events. Similarly, D-vine structure 2 (case 2) and D-vine structure 3 (case 3) are defined
by placing storm surge and rainfall events as conditioning variables (refer to Figure 2). This
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permutation approach to considering each variable of interest as a conditioning variable
and selecting the best-fitted vine structure using the fitness test statistics can provide a
much more practical and flexible way to the vine copula approach.

 

Figure 2. Schematic diagram in the 3-D D-vine copula simulation for three different cases [Note: each
case of the D-vine structure is defined by permutating the location of the conditional variable, for
instance, D-vine structure-1 (River discharge as conditioning variable), D-vine structure-2 (Storm
surge as conditioning variable), D-vine structure-3 (Rainfall events as conditioning variable)].

Refer to Figure 2 (consider either case) for illustration; the best-fitted univariate flood
marginal distribution is selected after selecting the conditioning or centred variable (say
B or A or C). In constructing the D-vine framework nonparametrically, kernel density
estimation (KDE), obtained from Section 2.2, is selected to define flood marginal probability
distribution. After that, nonparametric copula density (refer to Section 2.1) is introduced
and tested via the Bernstein estimator and the beta kernel density estimator. Thus best-
fitted models are selected using the fitness test statistics for different tree levels (Tree 1 and
Tree 2, refer to Figure 2).

At first, using the most parsimonious 2D copulas, either parametric class (refer to Latif
and Simonovic [63]) or nonparametric (refer to Section 2.1), are selected for each flood pair,
say CAB and CC.B., the conditional cumulative distribution function (CCDFs), also called
the h-function, is estimated [41,82].

FA|B(a, b) = hA.B. =
∂CA B(F(A), F(B))

∂F(B)
and FC|B(C, B) = hC.B. =

∂CC B(F(C), F(B))
∂F(B)

(14)
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In the second Tree 2 level (refer to Figure 2), the CCDFs statistics estimated from Tree
1 level, using copula CAB and CC.B., is now input to describe another 2D copula in the
modelling of joint dependence of conditional pair (AC|B), such as CAC|B.

In the nonparametric vine copula approach, the 2D Bernstein copula estimator (refer to
Equation (7)) and beta kernel copula density (refer to Equation (3)) are tested individually
in both tree levels in the D-vine structures (for all three cases, refer to Figure 2). Our recent
study tested the adequacy of different parametric copulas, for instance, mono-parametric
Archimedean copulas, mixed or bi-parametric Archimedean copulas and rotated versions
(by 180 degrees) of mixed Archimedean copulas, etc., for the same flood pairs [63]. The
selected best-fitted 2D copulas from our previous study are now employed in fitting
bivariate flood pairs and estimating CCDFs in the first tree level (Tree 1), of the parametric
and semiparametric-based vine framework.

Finally, after selecting the most justifiable copula for each tree level for each D-vine
structure (case 1, case 2 and case 3) finally, the full trivariate joint density is calculated by

CA B C(a, b, c) = CA C|B
(

FA\B(a, b), FC|B(c, b)
)

· CA B · CC B (15)

2.4. Trivariate Joint Return Periods

Frequency analysis provides a mathematical relationship between extreme events
quantiles and their non-exceedance probabilities (or return period) by fitting the most
justifiable univariate or multivariate probability distribution function [83,84]. The return
period measures the mean or average inter-arrival time between the two design events [85].
The univariate return period’s validity is questionable in multidimensional extremes like
compound flooding due to the joint action of multiple drivers. In our current study, the
developed 3D joint framework is applied to estimate primary return periods, which are
further defined in two cases: OR-joint return period and AND-joint return period [86–89].
Different notations of return periods have their own importance that could depend upon
the nature of the undertaken problem. For example, just considering an OR-joint return
period or either AND-joint return period would be problematic [31]. A practical risk
assessment approach must consider different approaches in the return period estimations;
readers are advised to see Graler et al. [41] and Requena et al. [90].

Consider the trivariate events (A ≥ a OR B ≥ b OR C ≥ c), where either of the events
exceeds a specific threshold value; the OR-joint return periods are estimated using the
trivariate joint exceedance probability given below.

TOR
A, B,C(a, b, c) =

1
P (A ≥ a ∨ B ≥ b ∨ C ≥ c)

=
1

(1 − C(F(a), F(b), F(c))
(16)

where C(F(a), F(b), F(c)) is the trivariate joint cumulative distribution function (JCDF)
estimated using the best-fitted 3D vine copula structure.

Similarly, consider another trivariate joint dependency case (A ≥ a AND B ≥
b AND C ≥ c) where all the events exceed a specific threshold value simultaneously;
the AND-joint return periods are estimated by considering both trivariate joint cumulative
distribution function (JCDF) and bivariate JCDFs which are defined for each random flood
pair given below.

TAND
A, B, C(a, b, c) =

1
P (A ≥ a ∧ B ≥ b ∧ C ≥ c)

=
1

(1 − F(a)− F(b)− F(c) + C(F(a), F(b)) + C(F(b), F(c)) + C(F(a), F(c))− C(F(a), F(b), F(c)))
(17)

In Equation (17), C(F(a), F(b)), C(F(b), F(c)) and C(F(a), F(c)) are the bivariates
(JCDFs) obtained by fitting most parsimonious 2D copulas to targeted random pairs, and
C(F(a), F(b), F(c)) is the JCDF using the fitted 3D copula density.
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2.5. Failure Probability in the Hydrologic Risk Evaluation

In the hydrologic risk assessments of CE, consideration of only traditional joint primary
return periods would be ineffective in describing the risk of potential flood events during
the entire project design lifetime [10,91]. In recent studies, a hydrologic risk tool called
failure probability (FP) statistics [92,93] is highlighted and used efficiently. FP usually
defines the chance of potential flood hazards occurring at least once in a given project
design lifetime. FP statistics can define the risk of CF events more appropriately than just
visualizing their joint return periods. Few studies incorporated FP statistics in the bivariate
hydrologic risk assessments [10,94]. This study incorporated FP statistics in the trivariate
compound flood risk assessment, which can be mathematically expressed as

FPT = 1 − (1 − P)T (18)

where T is the arbitrary project lifetime.
Similarly, for the trivariate flood hazard scenario, the risk of failure for the OR-joint

case can be estimated by;

FPT = 1 − (1 − P (Rainfall ≥ r OR Storm surge ≥ s OR River discharge ≥ rd)T (19)

3. Application

3.1. Study Area and Defining the Compound Hazard Scenario

The complex interplay between oceanographic, fluvial and pluvial factors increases
the risk of extreme devastation in low-lying coastal communities worldwide. This study
introduces a nonparametric approach to constructing a 3D vine copula framework in
compounding the collective impact of rainfall, storm surge and river discharge in flooding
events. Our work introduces 46 years of selected flood characteristics collected at west
Canada’s coast in the trivariate joint probability analysis. The low-lying regions near
the Pacific coast and Fraser River are highly susceptible to flooding and often encounter
mature and extra-large tropical storms. When these storms are encountered in the coastal
mountains, they can result in devastating disasters, forming the potential for prolonged
impact. Fraser River is the longest river in the south of Metro Vancouver, BC, with an
annual discharge at its river mouth of 3550 m3s−1. This river flows for 1375 km and finally
drains out into the Strait of Georgia. Pirani and Najafi’s [61] study already identified that
the joint combination of tidal water extreme level, precipitation and river discharge can
increase the risk of coastal flooding at the Pacific west coast of Canada. The risk of extreme
water levels increases the risk of storm surge events. The same scenario can result in
devastating hydrologic or compound flooding when combined with high river discharge
and extreme rainfall events. The Environment Ministry of BC report [95] also reported the
expectation of a rise in sea level by about half a meter by the end of this 2050 and one meter
by the end of 2100. Besides this, according to Lemmen et al. [96], the impact of climate
change across Canada significantly increases the risk of extreme events.

This study searches the dependency for the annual maximum 24 h rainfall events
and their associated river discharge and storm surge events observed within a time lag of
±4 days from the date of annual maximum 24 h rainfall events. Our previous study [63] has
already confirmed that more significant dependencies can be observed when considering
the maximum storm surge and river discharge events within a time lag of ±4 days from the
calendar date of the annual maximum 24 h Rainfall events. At first, the coastal water level
(CWL) data were obtained of 1970 to 2018 from the New Westminster tidal gauge station
(station id = 7654) with their geographical coordinates (49.2

◦
N Lat and 122.9

◦
W Lon),

which were delivered by Fisheries and Ocean Canada. Secondly, the storm-surge data were
estimated by differencing observed CWL data and predicted water level or astronomical
tide data, which requires proper time matching between them. Canadian Hydrographic
Services (CHS) delivered the predicted tide data. Similarly, the rainfall data were collected
at by Haney UBC RF Admin gauge station (49

◦
15′52.1′′ N Lat and 122

◦
34′400′′ W Lon).
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Both storm-surge data and rainfall data were collected for the same calendar year. Third,
Environment and Climate Change Canada provided the streamflow discharge data col-
lected at the Fraser River at Hope (49

◦
23′09′′ N Lat and 121

◦
27′15′′ W Lon). It should be

noted that the nearest rainfall gauge station and streamflow discharge station were selected
within a radial distance of 50 km centring the selected tidal gauge station.

The annual maximum 24 h rainfall data were defined for each year using the daily-
basis rainfall events. The river discharge and storm surge data were selected by observing
their maximum values within a time lag of ±4 days from the date of annual maximum 24 h
rainfall events. Due to the missing data in the period between the years 1970 to 2018, we
considered 46 years of data in establishing a trivariate compound relationship between
the variable of interest. Supplementary Table S1 lists the descriptive statistics of targeted
compound flood (CF) driving agents. Supplementary Figure S1, S2a–c and S3a–c illustrate
the box plots, histogram plots and normal quantile-quantile (Q-Q) plots. From Figure S3c it
was found that river discharge observations exhibited more deviation from normality (or
straight line) compared to storm surge (Figure S3b) and rainfall events (Figure S3a).

3.2. Nonparametric Estimation in the Univariate Flood Marginals

Modelling the univariate flood marginal is a statistical procedure to infer the popula-
tion based on a finite random sample and is often a mandatory pre-requisite. Our previous
study, using the same dataset, confirmed that annual maximum 24 h rainfall and maximum
river discharge events exhibit no serial correlation and zero monotonic trends within their
time series [63]. Conversely, maximum storm surge (Time interval = ±4 days) events have
zero serial correlation but exhibit monotonic time trend behaviour, which is estimated
using the nonparametric Mann–Kendall (M-K) test [97,98] at 5% significance (or 95% confi-
dence interval). Besides this, homogeneity tests for the given time series were examined to
identify if changes occur within time series of flood characteristics, using Pettitt’s test [99],
the SNHT (standard normal homogeneity test) [100] and Buishand’s test [101]; refer to Sup-
plementary Table S2. It was found that both rainfall and river discharge events exhibited
homogenous behaviour, but storm surge events showed non-homogenous characteristics.
In the second row of Table S2, the estimated p-value for storm surge events is less than 0.05
for both the Pettit and SNHT tests. In conclusion, an independent and identical distribution
(i.i.d.) is required before introducing it into the probability distribution framework. Thus, a
differencing procedure was adopted to remove non-stationarity or de-trend storm surge
observations [63].

Table 1 introduces some frequently used kernel density estimations (KDE), whose
efficacy was tested in this study to model univariate flood margins. The bandwidth of
the fitted KDE was estimated using the direct plug-in (DPI) algorithm; refer to Section 2.2.
Table 2a–c list the fitted KDE and their estimated bandwidth. The adequacy of the fitted non-
parametric KDE models was tested by comparing empirical and theoretical probabilities.
The empirical probabilities were estimated using the Gringorten-based position-plotting
approach for each flood characteristic [102]. The cumulative distribution function (CDF) of
the fitted KDE was estimated via numerical integration technique or empirical approach
because of the lack of a closed form of probability density and cumulative distribution [50].
The goodness-of-fit (GOF) tests, such as mean-square error (MSE), root mean-square er-
ror (RMSE), Akaike information criterion (AIC), Bayesian information criterion (B.I.C.),
Hannan–Quinn information criterion (H.Q.C.) and mean absolute error (MAE), were esti-
mated for each fitted model [103–107] refer to Table 2a–c. It was found that normal KDE
performed best (minimum value of MSE., RMSE, AIC, BIC, HQC and MAE statistics) and
was selected for defining the marginal probability density function (PDF) of the maximum
24 h rainfall, maximum storm surge (Time interval = ±4 days) and maximum storm surge
(Time interval = ±4 days) events. The qualitative or graphical investigation, using the
comparative C.D.F. plots and probability–probability (P-P) plots (refer to Supplementary
Figure S4a–c and S5a–c), confirmed the suitability of the selected normal KDE.
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Table 2. Fitting univariate kernel density estimation (KDE) and their goodness-of-fit (GOF) test for
(a) Annual maximum 24 h Rainfall (mm) (b) Maximum Storm surge (Time interval = ±4 days) (m)
(c) Maximum River discharge (Time interval = ±4 days) (m3s−1).

(a)

Nonparametric
KDE

Estimated
Bandwidth (via
Direct-Plug-in

Method)

MSE
(Mean
Square
Error)

RMSE (Root
Mean Square

Error)

AIC (Akaike
Information

Criterion)

BIC (Bayesian
Information

Criterion)

HQC (Hannan-
Quinn

Information
Criterion)

MAE
(Mean

Absolute
Error)

Normal * 11.25 0.0003 0.0199 −358.22 −356.39 −357.53 0.015

Epanechnikov
(or parabolic) 24.90 0.0007 0.0281 −326.36 −324.53 −325.67 0.023

Biweight (or
Quartic) 29.50 0.0010 0.0316 −315.56 −313.73 −314.88 0.026

Triweight 33.50 0.0011 0.0342 −308.42 −306.59 −307.73 0.027

Parametric
GEV (Latif and

Simonovic
2022a [63]) **

Estimated
parameters via

Maximum
likelihood

estimation (MLE)
0.0009 0.0312 −312.97 −307.48 −310.91 0.024

location(mu = μ )
= 1494.64;

scale (sigma = σ) =
616.37;

shape (xi = ξ) = 0.31

(b)

Nonparametric
KDE

Estimated
Bandwidth (via
Direct-Plug-in

Method)

MSE (Mean
Square Error)

RMSE (Root
Mean Square

Error)

AIC
(Akaike In-
formation
Criterion)

BIC (Bayesian
Information

Criterion)

HQC (Hannan-
Quinn

Information
Criterion)

MAE
(Mean

Absolute
Error)

Normal * 0.07 0.0003 0.0175 −369.83 −368.00 −369.15 0.014

Epanechnikov
(or parabolic) 0.16 0.0007 0.0265 −331.95 −330.12 −331.26 0.020

Biweight (or
Quartic) 0.20 0.0008 0.0288 −324.17 −322.34 −323.48 0.022

Triweight 0.22 0.0009 0.0304 −319.30 −317.47 −318.61 0.023

Parametric
Normal

(Shahid and
Simonovic

2022a [63]) **

Estimated
parameters via

Maximum
likelihood

estimation (MLE) 0.0011 0.034 −306.56 −302.90 −305.19 0.026

mean (mu = μ) =
2.340757e−18;

sd (sigma = σ) =
1.676386e−01
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Table 2. Cont.

(c)

Nonparametric
KDE

Estimated
Bandwidth (via
Direct-Plug-in

Method)

MSE (Mean
Square Error)

RMSE (Root
Mean Square

Error)

AIC
(Akaike In-
formation
Criterion)

BIC (Bayesian
Information

Criterion)

HQC (Hannan-
Quinn

Information
Criterion)

MAE
(Mean

Absolute
Error)

Normal * 340.21 0.0005 0.0223 −347.61 −345.78 −346.93 0.017

Epanechnikov
(or parabolic) 753.16 0.0017 0.0415 −290.65 −288.82 −289.96 0.030

Biweight (or
Quartic) 892.25 0.0019 0.0444 −284.42 −282.60 −283.74 0.033

Triweight 1013.19 0.0022 0.0477 −277.81 −275.99 −277.13 0.037

Parametric
GEV (Shahid

and Simonovic
2022a [63]) **

Estimated
parameters via

Maximum
likelihood

estimation (MLE)
0.0008 0.0291 −319.15 −313.67 −317.10 0.022location (mu = μ )

= 1494.64;
scale (sigma = σ)

616.37;
shape (xi = ξ) = 0.31

(a) Note: Normal KDE (bold letter with single asterisk *) outperformed (minimum value of MSE, RMSE, AIC,
BIC, HQC and MAE), thus selected in defining the univariate marginal distribution of Annual maximum 24 h
Rainfall (mm) events. Additionally, the GEV distribution (double asterisk **) was selected as best-fitted when
comparing the performance of different 1-D parametric family distributions in modelling Annual maximum 24 h
Rainfall (mm) events (Latif and Simonovic 2022a [63]). (b) Note: Normal KDE (bold letter with single asterisk *)
outperformed (minimum value of MSE, RMSE, AIC, BIC, HQC and MAE), thus selected in defining the univariate
marginal distribution of Maximum Storm surge (Time interval = ±4 days). Additionally, Normal distribution
(double asterisk **) selected as best-fitted when comparing the performance of different 1-D parametric family
distributions in modelling storm surge events (Latif and Simonovic 2022a [63]). (c) Note: Normal KDE (bold
letter with single asterisk *) outperformed (minimum value of MSE, RMSE, AIC, BIC, HQC and MAE), thus
selected in defining the univariate marginal distribution of Maximum River discharge (Time interval = ±4 days).
Additionally, GEV distribution (double asterisk **) was best fitted when comparing the performance of different
1-D parametric family distributions in modelling river discharge events (Latif and Simonovic 2022a [63]).

Our previous study selected the generalized extreme value (GEV), normal and GEV
distribution fit that were best for the same dataset tested in the present study [63]). The
nonparametric KDE outperformed the others (refer to Table 2).

3.3. Incorporation of Nonparametric Vine Structure in the Trivariate Flood Dependence

Our previous study [63] already confirmed the existence of positive dependence
between flood attribute pairs, which was measured both parametrically via Pearson corre-
lation coefficient and nonparametric via Kendall’s tau (τ), and Spearman’s rho (ρ) at a 5%
significance level (95% confidence interval). At first, the nonparametric via 2D Bernstein
estimator and beta kernel estimator (refer to Equations (7) and (3)) were employed in the
bivariate dependence modelling of the rainfall–storm-surge, storm surge–river-discharge
and rainfall–river-discharge pairs (refer to Table 3. The beta kernel density and Bernstein
copula estimator can alleviate the risk of boundary bias problems. The Bernstein copula
can facilitate higher consistency and better approximate joint structure than the empirical
copula. The fitted beta kernel density bandwidth was examined using the rule of thumb
(ROT) approach by minimizing the AMISE statistics (refer to Equation (4) of Section 2.1).
Similarly, in fitting the 2D Bernstein copula estimator, their coefficient was adjusted by the
approach discussed by Weiss and Scheffer [58].
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Table 3. Fitting the nonparametric 2-D copula density and their goodness of fit (GOF) test to the
given flood attribute pair.

Flood Attribute Pairs
Nonparametric

2-D Copula
Density

Estimated
Bandwidth
(Only for

Beta
Kernel
Copula

Density)

MSE
(Mean
Square
Error)

RMSE
(Root
Mean

Square
Error)

MAE
(Mean

Absolute
Error)

K-S
(Kolmogorov–

Smirnov)

NSE (Nash–
Sutcliffe

model
Efficiency

Coefficient)

Annual Maximum 24 h
Rainfall (mm)-Maximum

Storm surge (Time
interval = ±4 days) (m)

Bernstein
estimator *

0.11

0.0013 0.0360 0.0290
D = 0.0869,

p-value = 0.99
0.980

Beta kernel
density 0.0014 0.0371 0.0295 D = 0.1521,

p-value = 0.66 0.979

Maximum Storm surge
(Time interval = ±4 days)

(m)-Maximum River
discharge (Time

interval = ±4 days) (m3/s)

Bernstein
estimator *

0.12

0.0012 0.0350 0.0270
D = 0.1521,

p-value = 0.66
0.981

Beta kernel
density 0.0014 0.0375 0.0295

D = 0.1521,
p-value = 0.66 0.978

Annual Maximum 24 h
Rainfall (mm)-Maximum

River discharge (Time
interval = ±4 days) (m3/s)

Bernstein
estimator

0.17

0.0011 0.0338 0.0258 D = 0.1956,
p-value = 0.34 0.981

Beta kernel
density *

0.0008 0.0298 0.0221
D = 0.1521,

p-value = 0.66
0.985

Note: Bernstein copula estimator (bold letter with an asterisk) fitted best for flood pairs rainfall and storm surge,
and storm surge and river discharge. Beta kernel copula density is most parsimonious for flood pair rainfall and
river discharge.

The nonparametric models’ performances were evaluated using various G.O.F. mea-
sures, for instance, MSE, RMSE, MAE, KS (Kolmogorov–Smirnov) [108] and NSE (Nash–
Sutcliffe model efficiency coefficient) [109]; refer to Table 3. The Bernstein copula estimator’s
performance was better for flood pairs (rainfall and storm surge) and (storm surge and
river discharge) (minimum values of MSE, RMSE, MAE and KS test and high NSE test
statistic). However, according to Table 3, the beta kernel density outperformed Bernstein
estimator for the rainfall and river discharge pair.

We constructed the D-vine copula for three cases. Each case defines a D-vine structure
by permutating the locations of conditioning variables. All the computation involved in
the establishment of 3D vine copula (also in fitting 2D nonparametric copula density) was
carried out using R software [110] with the libraries “kdecopula” [111] and “kdevine” [70].

1. D-Vine structure 1 (case 1) considers river discharge observation as a conditioning vari-
able by placing it at the centre of the vine structure (refer to Figure 2 and Tables 3 and 4).
In this structure, at first, the 2D beta kernel copula density and 2D Bernstein copula
estimator, which were selected as best-fitted from Table 3 for flood pair rainfall–river-
discharge and storm surge–river-discharge in the first tree level (Tree 1), were now
employed in the estimation of conditional cumulative distribution functions (CCDFs);
hRAIN RIVER DISCHARGE and hSTORM SURGE RIVER DISCHARGE (refer to Equation (14)).
The copula in the second tree level (Tree 2) was then identified using the above
estimated CCDDFs values as input. It was found that the Bernstein copula estimator
outperformed the beta kernel density to model joint dependence for the flood pair
(RAIN, STORM SURGE|RIVER DISCHARGE) CRAIN STORM SURGE|RIVER DISCHARGE
(which exhibited the minimum value of MSE, RMSE, MAE and KS and the higher
value of NSE test statistics). Finally, the full 3D trivariate joint density was obtained
using Equation (15).

2. Similarly, D-vine structure 2 (case 2) comprises storm surge events as a condition-
ing variable (refer to Tables 3 and 4 and Figure 2). In this vine framework, at
first, in the first tree level (Tree 1), the Bernstein estimator is identified as the most
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justifiable and thus is employed in the estimation of CCDFs hRAIN, STORM SURGE
and hRIVER DISCHARGE, STORM SURGE, followed by Equation (14). Secondly, in the
second tree level (Tree 2), the Bernstein copula estimator is selected as the most
parsimonious in establishing the dependence between of flood pair (RAIN RIVER
DSICHARGE|STORM SURGE) CRAIN RIVER DSICHARGE|STORM SURGE. Finally, using
Equation (15), the full trivariate joint density of the fitted vine structure is estimated.

3. D-Vine structure 3 (case 3) is defined by considering rainfall events as a condition-
ing variable placed in the centre of the selected D-vine structure (refer to Figure 2,
and Tables 3 and 4). The Bernstein estimator and beta kernel density were identified as
most justifiable and thus employed in the estimation the CCDFs hSTORM SURGE, RAINFALL
and hRIVER DISCHARGE, RAIN (followed by Equation (14)) in Tree 1. In the second
level (Tree 2), again the Bernstein copula estimator was identified as the most par-
simonious in modelling joint dependence of flood pair (STORM SURGE RIVER
DSICHARGE|RAINFALL) (refer to Table 4). Finally, followed by Equation (15), the
full trivariate joint density of the fitted vine structure was defined.

After approximating three different D-vine structures (case 1, case 2 and case 3), their
performances were compared using the fitness test statistics (MSE, RMSE, MAE, NSE
and K-S). The theoretical probability (CDF) was estimated using a developed 3D vine
structure for each case and compared with empirical observations for estimating the GOF
test statistics. Table 4 shows that the D-vine structure for case-2, considering storm surge
as a conditioning variable, performed better than other D-vine structures. The selected
structure exhibited the minimum MSE, RMSE and MAE values and a high NSE test value.
The above approach in the vine copula provided much better flexibility in selecting the best
vine model, not just by fixing the conditioning variable but by switching or permutating
the conditioning variable. For example, in the above case, when considering storm surges
as conditioning variables, the performance of the fitted D-vine copula got better than
considering either rainfall or river discharge events. Supplementary Figure S8 illustrates
the vine tree plot of the developed D-vine structure in the nonparametric fitting procedure.
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3.4. Comparing the Adequacy of Fitted Nonparametric D-Vine with Parametric and
Semiparametric Approaches in the D-Vine Copula Framework
3.4.1. Constructing D-Vine Structure in the Parametric Fitting Procedure

In the parametric vine approach, at first, the best fitted univariate marginal pdfs,
for instance, GEV (for rainfall), normal (for storm surge) and GEV (for river discharge)
distribution, were selected (refer to Table 2). This was followed by the same steps we
discussed in the last section. Three different D-vine structures (case 1, case 2 and case 3)
were considered by permutating the conditioning variables (refer to Figure 2). Our previous
study confirmed that Survival BB7 fit best for flood pair rain and river discharge, Survival
BB1 for storm surge–river-discharge and BB1 copula for the rain and storm surge pair [63].

For vine structure 1 (case 1, river discharge as conditioning variable; refer to Figure 2
and Table 5), both the selected 2D copulas (Survival BB7 and Survival BB1) were employed
in the estimation CCDFs, which became the input to define another 2D copula in the
second tree level (Tree 1). The present study tested different parametric copulas to fit
the D-vine structure’s second tree level (Tree 2) (refer to Supplementary Table S3a–c).
The parameters of the fitted copulas were estimated using maximum pseudo-likelihood
estimation (MPL) [112,113], and the performances of the fitted models were compared
using the Cramer–von Mises functional test statistics Sn, with the parametric bootstrap
procedure (N is the number of bootstrap samples = 1000) [114,115]. From Table S3a–c,
the Frank copula was identified as best for Tree 2 (D-vine structure 1, case 1), rotated BB6
270-degree copula for Tree 2 (D-vine structure 2, case 2) and Frank copula overall (D-vine
structure 3, case 3). The full trivariate D-vine structure (parametric settings) for each case
was obtained using Equation (15).

After developing vine structures for the given flood characteristics, their performances
were compared to select the most efficient D-vine structure developed under parametric
settings for three cases. From Table 5, it was found that D-vine structure-3 (case-3), with
rainfall as a conditioning variable, outperformed other vine structures (minimum values of
AIC, BIC, MSE, RMSE, MAE and K-S statistics and with high values of log-likelihood (L-L)
and NSE statistics).
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3.4.2. Constructing a D-Vine Structure with the Semiparametric Settings

2D parametric class copulas were incorporated with the nonparametric marginal pdf in
the semiparametric D-vine structure. Firstly, the best-fitted 2D parametric copulas for Tree-1
in all three cases of the D-vine structure (refer to Figure 2) were selected from our previous
study [63]. Refer to Section 3.4.1. Supplementary Table S4a–c shows different parametric
class 2D copulas fitted with an MPL-based parameter estimation procedure for estimating
the most justifiable bivariate density fitted to the second tree level (Tree 2). The investigation
found that the Frank copula was best for the D-vine structure-1 (case-1), the rotated BB6
270 degree one for vine structure-2 (case-2) and the Frank copula for D-vine structure-3
(case-3). Using Equation (15), the full trivariate vine copula joint density was estimated
for each fitted D-vine structure. The most justifiable semiparametric-based vine structure
was selected by comparing the performances of three different cases of D-vine structure.
Table 6 provides the summary details of the fitted D-vine structures. It was found that
D-vine structure 3 (case-3), considering rainfall as a conditioning variable, outperformed
all other possible D-vine structures (case-1 and case-2); it exhibited minimum values of
MSE, RMSE, MAE, K-S, AIC and BIC statistics and high values of model likelihood (L-L)
and NSE statistics.
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3.4.3. Comparison of the Models’ Performances (Nonparametric vs. Semiparametric vs.
Parametric Vine)

Section 3.3, Section 3.4.1, and Section 3.4.2 recognized the most justifiable vine struc-
tures, D-vine structure-2 (obtained via nonparametric vine approach), D-vine structure-3
(via parametric vine approach) and D-vine structure-3 (via semiparametric framework). We
performed an analytical and graphical comparison to check the adequacy of the selected
nonparametric D-vine density with parametric and semiparametric vine approaches fitted
to the given triplet flood variables. Refer to Table 7. The D-vine structure (case-2) defined in
the nonparametric setting outperformed the others (minimum values for MSE, RMSE, K-S,
MAE and high NSE test statistics). It was also observed that the performance of the selected
semiparametric D-vine structure (case-2) was better than that of the parametric D-vine struc-
ture (case-2) in the trivariate flood dependence. These results can further reveal how well
the performance of the incorporated vine getting improves when switching its marginal dis-
tribution from parametric to non-parametric and the copula joint density from parametric
to nonparametric joint pdf. The reliability and suitability of the selected D-vine structures
were examined further by comparing Kendall’s τ correlation coefficient estimated from
the simulated flood events (sample size N = 1000) using the best-fitted nonparametric
vine copula (D-vine structure-2), parametric vine (D-vine structure-2) and semiparametric
vine copula (D-vine structure-3) and compared with the empirical Kendall’s τ coefficient
estimated from the historical flood events (refer to Table 8). It was found that the obtained
nonparametric D-vine structure (case-2) exhibited a minimum gap or difference between
the empirical and theoretical Kendall’s tau statistics. These results confirm that the selected
nonparametric vine structure regenerates the historical flood dependence structure (or
correlation) much more efficiently. The same table also revealed that the semiparametric
vine approach better captures and regenerates flood dependence than parametric vine
copula density.

Table 7. Comparing the performance of the selected nonparametric D-vine structure with parametric
and semiparametric vine copula density.

Best-Fitted D-Vine Structure MSE RMSE MAE K-S NSE

Nonparametric settings
(D-vine structure-2 (case-2) *

0.0002 0.0153 0.0130
D = 0.152,

p-value = 0.66
0.995

Semiparametric settings (D-vine
structure-3 (case-3) 0.0005 0.0232 0.0185 D = 0.130 (0.82) 0.989

Parametric settings (D-vine
structure-3 (case-3) 0.00084 0.0290 0.0218 D = 0.152 (0.67) 0.982

Note: D-vine structure-2 derived in the nonparametric settings (bold letter with an asterisk) outperformed both
parametric and semiparametric approaches in the D-vine structure for trivariate CF events.

A graphical visual inspection was carried out to crosscheck the adequacy of the se-
lected D-vine structure-2 obtained nonparametrically. The overlapped scatterplots between
the observed samples (via historical flood) and simulated samples (using D-vine structure-2,
case-2) of sample size (N = 1000) were obtained; refer to Supplementary Figure S6a–c. It
was found that D-vine structure-2 (under nonparametric settings) performs adequately
since the simulated random sample (indicated by light grey colour) overlapped with the
natural mutual concurrency of the historical flood samples (red colour); refer to Figure
S6a–c. Supplementary Figure S7 illustrates a 3D scatterplot matrix of the generated flood
events (sample size N = 1000) using the selected nonparametric vine model. Supplementary
Figure S8 illustrates the vine tree structure of the most justifiable D-vine structure in the
nonparametric setting.
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In conclusion, the above investigations confirm that the nonparametric vine density
is much better in trivariate dependence analysis of CF events. This framework has no
prior distributional assumption about their copula joint density and its marginal behaviour.
Finally, the selected nonparametric vine density is employed to estimate trivariate joint
cumulative distribution functions (JCDF) and joint return periods.

3.5. Compound Flooding Events Risk Assessments

Flood frequency analysis (FFA) establishes an interrelationship between the flood
design quantiles and their non-exceedance probabilities by fitting the best-fitted univari-
ate or multivariate probability distribution function. Primary return periods comprise
two different joint cases, OR- and AND-joint. The fitted nonparametric D-vine structure
was employed in estimating trivariate joint cumulative distribution function (JCDF) and
trivariate return periods for OR- and AND-joint cases for different possible combinations
of flood events; refer to Table 9 and Equations (16) and (17). Table 9 also shows estima-
tions of the bivariate joint return periods using the best-fitted 2D nonparametric copula
density (refer to Table 3). It was found that the trivariate return periods for the AND-joint
case were higher than for the OR-joint case for the same flood combination. Similarly,
the bivariate AND-joint case was higher than the OR-joint case for the same flood pair
combinations. These results further reveal that the occurrence of trivariate flood events
simultaneously is less frequent in the “AND” case and more frequent in the “OR” joint case.
The same observations are also valid for the bivariate case. For instance, refer to Table 9: a
1-in-100-year flood event with the following characteristics—rainfall = 147.541 mm, storm
surge = 0.337486 m and river discharge = 5951.523 m3s−1—the trivariate OR- and AND-
joint return periods are 33.66 years and 3486.75 years. For the same flood characteristics
mentioned above, the bivariate return periods for OR- and AND-joint cases are 50.92 years
and 2744.23 years for flood pair rainfall and storm surge events; 50.26 years and 9633.91
years for storm surge and river discharge; and 50.29 years and 8517.88 years for rainfall
and river discharge pair events.

Table 9. Comparing primary return periods (univariate vs. bivariate vs. trivariate) for a different
possible combination of triplet flood events.

Estimated Flood Quantiles Using the Inverse Cumulative
Distribution Functions (CDFs) of Best-Fitted Marginal

Distribution via KDE
Bivariate Joint Return Periods (JRPs)

Trivariate Joint
Return Periods

(JRPs) Estimated
Using the

Best-Fitted D-Vine
Structure (Case-2)

Return
Period
(Years),

T

Annual
Maximum

24 h
Rainfall
(R) (mm)

Maximum
Storm Surge

(m) (SS) (Time
Interval

= ±4 Days)

Maximum
River

Discharge
(RD) (m3s−1)

(Time Interval
= ±4 Days))

OR-
JRP,
TOR

RS

AND-
JRP

TAND
RS

OR-
JRP,

TOR
SRD

AND-
JRP

TAND
SRD

OR-
JRP,

TOR
RRD

AND-
JRP,

TAND
RRD

OR-JRP,
TOR

RSRD

AND-
JRP,

TAND
RSRD

5 97.04 0.151 2573.15 3.08 13.17 2.84 20.52 2.88 18.91 2.06 15.95

10 110.73 0.228 3367.54 5.69 40.97 5.32 81.46 5.34 77.23 3.70 50.42

20 128.04 0.277 5408.36 10.77 139.73 10.31 328.39 10.32 318.89 7.02 173.06

50 143.42 0.316 5854.64 25.85 760.16 25.29 2162.62 25.30 2063.98 17.00 950.29

100 147.54 0.337 5951.52 50.92 2744.23 50.26 9633.91 50.29 8517.88 33.66 3486.75

It is observed from the above-estimated return periods (refer to Table 9) that it would be
preferable in practice to use trivariate return periods instead of the bivariate (or univariate).
The above results also reveal that the accountability of both primary joint return periods
is essential; just considering either AND-joint or OR-joint case would be problematic in
the hydrologic risk evaluation. They also depend on the nature of water-related problems,
which usually decide the importance of the different types of return periods.
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In our current study, the developed nonparametric D-vine model was employed
further in estimating the failure probability (FP) statistics. This risk approach examined
variation in the trivariate, bivariate and univariate flood hazard events measured by service
design lifetime for different return periods, such as 100 years, 50 years, 20 years, 10 years,
and 5 years; refer to Figure 3a–e. A trivariate flood hazard scenario was found to result
in higher-value FP than bivariate and univariate events. Both the trivariate and bivariate
(also univariate) hydrologic risk or FP statistics are reduced when the return increases. FP
statistics increase when there is an increase in the service design lifetime of the hydraulic
infrastructure under consideration. For instance, at the return period of 100 years, the
estimated value of FP statistics is 0.778 (for trivariate hazard scenario) and 0.629 (for
bivariate hazard scenario) at a 50 year design lifetime. When considering a higher design
lifetime, say 100 years, for the same return periods (100 years), the estimated value is
0.951 (for the trivariate hazard scenario) and 0.862 (for the bivariate scenario). Similarly, at
100-year return periods, the trivariate and bivariate hazard scenario is 0.933 and 0.832 (at
90 years design lifetime). When reducing the return periods to 50 years, the value is 0.995
and 0.971 at the same design lifetime (90 years).

From the above results, it is inferred that observing the joint behaviour of the storm
surge event, rainfall event, and river discharge is essential in reducing the risk of coastal
flood hazard. Considering the univariate probability analysis or even bivariate joint be-
haviour may underestimate the level of risk In conclusion, ignoring the trivariate probability
analysis would be a problem which could result in the underestimation of FP. Their joint
probability occurrence facilitates a better understanding and realization of extreme com-
pound scenarios. All the above-discussed analytical and graphical investigations are crucial
for sustainable design and planning in coastal flood management strategies.
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(a) (b)

(c) (d)

(e)

Figure 3. Assessments in the hydrologic risk of CF events for return periods (RPs) (a) 100 years,
(b) 50 years, (c) 20 years (d) 10 years, (e) 5 years [Note: A [red colour]—describing trivariate CF
hazard scenario for OR-joint case; B [green colour]—describing bivariate CF hazard scenario between
flood pair rainfall and storm surge for OR-joint case; C [blue colour]—describing bivariate CF hazard
scenario for flood pair storm surge and river discharge for OR-joint case; D [grey colour]—describing
bivariate CF hazard scenario for flood pair rainfall and river discharge for OR-joint case; E [pink
colour]—describing univariate hazard scenario through rainfall events; F [yellow colour]—describing
univariate hazard scenario through storm surge events; G [purple colour]—describing univariate
hazard scenario through river discharge events].
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4. Research Summary and Conclusions

This study incorporated the D-vine copula in the nonparametric fitting procedure to
model trivariate joint probability analysis of the storm surge, river discharge and rainfall in
the compound flood risk assessments. The common forcing mechanisms that can derive
multiple extreme events either successively or in close succession in the coastal regions can
exacerbate the impact of flooding events. A comprehensive compound flood risk under-
standing can demand the accountability of multiple flood-driving agents simultaneously
because the complex interplay between them can be devastating. The performance of
the parametric and semiparametric approach in the vine framework was also compared
with the proposed nonparametric vine density in the CF dependence. The traditional vine
framework was defined by incorporating multiple parametric class 2D copula densities
with parametric 1D univariate margins. This parametric density (and their marginal distri-
bution) approximation had some statistical constraints already discussed in Section 1. The
nonparametric via the Bernstein estimator and beta kernel copula estimator is a much more
comprehensive way of vine construction, where the fitted 2D copula densities between each
flood pair can adapt to any dependence structure without the requirement of any specific
or fixed probability density structure. Conversely, the semiparametric vine framework
integrated multiple 2D parametric class copulas with nonparametric marginal pdfs via the
Kernel density estimation (KDE). The main findings of this study are summarized below:

1. This study compounded the joint relationship between annual maximum 24 h rainfall
and their associated storm surge and river discharge observed within a time lag of
±4 days from the date of highest rainfall events. Our previous study [63] already
examined the degree of mutual concurrencies and confirmed a significant positive
correlation between selected flood contributing-variables.

2. Our previous study confirmed that rainfall and storm surge events did not exhibit any
significant trend or serial correlation (or autocorrelation). From our present study [63],
it was also confirmed that both variables are homogenous. However, the storm surge
events exhibited nonstationary behaviour (time trend with non-homogeneity), but no
serial correlation was identified.

3. The nonparametric Normal KDE is selected as the most parsimonious for all three
targeted flood variables (refer to Table 2a–c). Additionally, the results were the same
when comparing the performance with the best-fitted parametric function (GEV,
NORMAL, GEV [63]; refer to Table 2a–c. This further reveals that a lack of prior
distributional assumption can result in a better explanation of the targeted flood
marginal distribution behaviour.

4. The 3-D vine copula was constructed by permutating the conditioning variable’s loca-
tion, which resulted in three different D-vine structures. In constructing the D-vine
copula nonparametrically, it was found that the Bernstein copula fit best for flood
pairs rainfall–storm surge and storm surge and river discharge, and the beta kernel
estimator fit best for pair rainfall–river-discharge. All the selected nonparametric
2D copulas were employed in the 3D vine construction for three different D-vine
structures. The fitness test statistics confirmed that nonparametric D-vine structure-2
(case-2) performs better when considering storm surge as a conditioning variable
(with the Bernstein copula estimator fitted in both the first and second tree levels). It
is important to note that it is much more practical to consider each targeted variable
separately as a conditioning variable instead of just fixing it in the vine construc-
tion. This approach can generate multiple possible structures for selecting the most
justifiable one.

5. Similarly, the parametric and semiparametric vine fitting approaches selected D-vine
structure-3 (rainfall as a conditioning variable; refer to Tables 5 and 6) as the most
justifiable density based on different GOF test statistics.

6. Best-fitted models have been compared analytically, such as nonparametric, semi-
parametric, and parametric fitting-based D-vine structures. Results confirmed the
adequacy of the proposed nonparametric vine density. The model’s reliability was
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investigated analytically by comparing the theoretical and empirical Kendall’s tau.
Results revealed that the selected D-vine structure-2, in the nonparametric fitting
procedure, outperformed the others. In other words, the selected vine structure
regenerates historical flood events efficiently. The adequacy of D-vine structure-2
(Nonparametric framework) was further investigated graphically through overlapped
scatterplots between historical observation and generated samples. It is clearly noted
that the fitted model effectively captured the natural mutual dependencies of historical
flood events. In conclusion, our proposed vine copula density in the nonparametric
fitting is a much better alternative to the traditional parametric vine approach.

7. The best-fitted nonparametric vine density was employed to estimate trivariate pri-
mary joint return periods for OR- and AND-joint cases. The OR-joint case resulted
in lower return periods than the AND-joint case for the same flood combinations.
It was noted how important it is to take accountability for trivariate return periods
rather than just considering a bivariate (or univariate) approach, which would be
problematic and less efficient for solving different water-related decision-making.

8. The trivariate and bivariate joint CDFs were employed in estimating failure probabil-
ity (FP) statistics which highlight the hydrologic risk due to the compound effect of
rainfall, storm surge and river discharge events in the trivariate flood events. Investi-
gation revealed that FP statistics could be underestimated if neglecting the trivariate
joint probability analysis between targeted flood characteristics compared to when
considering the same flood variables in pairwise joint modelling. The FP statistics
were higher when considering trivariate joint distribution for the OR-joint event than
when considering bivariate joint dependency between flood pairs. The hydrologic risk
(trivariate, bivariate and univariate events) decreases with an increase in the return
periods. At the same time, hydrologic risk increases, followed by the service design
lifetime of hydraulic infrastructure under consideration. The same investigation also
found that the FP of univariate flood events is much lower than trivariate (and bivari-
ate) events. These further reveals that compound events may not be devastating if
each flood source variable is considered separately.

This study has a few limitations. Firstly, this study only considered 46 years of the
observational dataset. It might cause a source of uncertainty in the estimated outcomes.
It could be preferred to take long-term data to reduce or minimize the risk of inheritance
uncertainty. Secondly, our proposed model considers nonparametric distribution, both uni-
variate marginals and multivariate nonparametric copula density in the vine construction.
The model compatibility and performance have already been compared thoroughly with
the existing parametric (or semiparametric) vine framework. It could be denied that there
is much scope for applying this nonparametric framework to model the joint behaviour of
different possible extreme events across the world. Even though it is possible to extend this
proposed model to higher dimensional modelling for more than three variables. However,
on the other side, it might not be easy to extrapolate to high return levels. It needs to be
addressed in extreme event modelling. Our present study is not tackling this issue, which
will be considered in our further study.
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Abstract: Issues such as the design or reauditing of dams due to the occurrence of extreme events
caused by climatic change are mandatory to address to ensure the safety of territories. These topics
may be tackled numerically with Computational Fluid Dynamics and experimentally with physical
models. This paper describes the 1:60 Froude-scaled numerical model of the Liscione (Guardialfiera,
Molise, Italy) dam spillway and the downstream stilling basin. The k-ω SST turbulence model
was chosen to close the Reynolds-averaged Navier–Stokes equations (RANS) implemented in the
commercial software Ansys Fluent ®. The computation domain was discretized using a grid with
hexagonal meshes. Experimental data for model validation were gathered from the 1:60 scale physical
model of the Liscione dam spillways and the downstream riverbed of the Biferno river built at the
Laboratory of Hydraulic and Maritime Constructions of the Sapienza University of Rome. The model
was scaled according to the Froude number and fully developed turbulent flow conditions were
reproduced at the model scale (Re > 10,000). From the analysis of the results of both the physical
and the numerical models, it is clear that the stilling basin is undersized and therefore insufficient to
manage the energy content of the fluid output to the river, with a significant impact on the erodible
downstream river bottom in terms of scour depths. Furthermore, the numerical model showed that a
less vigorous jet-like flow is obtained by removing one of the sills the dam is supplied with.

Keywords: dams; numerical simulations; physical modeling; water management

1. Introduction

Water resource management in hydrology involves the processes of planning, devel-
oping and managing water resources. Climate change is making these processes more
difficult to deal with [1]. Water storage has always represented an essential task for human
activity, with significant implications for flood control or the generation of electricity. From
this point of view, dams represent a suitable system to divert water, control flooding and
produce hydroelectricity.

All these processes are sensitive to the complex three-dimensional flow effects involved
in dam hydrodynamics. To accurately study the hydrodynamics and the fluid–structure
interaction issues, Computational Fluid Dynamics (CFD) numerical tests together with
experimental models are considered within the present research study as mandatory tools
(as shown by [2,3]). CFD solves the governing equations of fluid-flow problems, i.e.,
the continuity, the Navier–Stokes and the energy equations. Because of the nonlinear
terms in these equations, analytical methods yield very few solutions. Then, numerical
methods, i.e., CFD, are used to obtain the required solutions. Numerical models prescribe
the discretization of the domain. The continuous spatial and temporal domain of the
problem must be replaced by a discrete one made up of grid points or cells and time
levels. The governing equations of the problem must be replaced by a set of algebraic
equations with the grid points/cells and the time levels as their domain. Finally, the
solutions at each grid point/cell are obtained when advancing from one time level to the
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next. Conversely, a physical model consists of the “physical” reproduction of a scaled
artifact and the phenomena that occur in it. Experimental tests performed on physical
models provide useful information on the entity and behavior of the variables involved
in the phenomena under investigation in a controlled environment. In general, those
quantities may be measured in a limited number of points within the domain.

The construction of a physical model can be time- and cost-ineffective. Moreover, a
physical model may be affected by scale effects, since not all physical conditions present
in nature are reproducible at a laboratory scale. This is especially true in the case of
turbulent phenomena. Then, in some cases, a numerical model is the only tool to answer
questions related, for instance, to the suitability of existing dams to manage discharge
increases with respect to the design values or modifications of the dam geometry. In
addition, numerical models make it possible to easily evaluate and compare different
scenarios. Nevertheless, the physical model, when available, represents an important tool
for verifying and calibrating the results provided by numerical models [4].

The remarkable technological advances of recent decades have made it possible to
develop increasingly refined numerical models, allowing the study of the temporal evo-
lution of the fluid features with a spatial resolution which can be very high. The authors
in [5–8] presented some of the first examples of numerical simulation applied to the re-
construction of flow over a spillway with a 3D Reynolds-averaged Navier–Stokes (RANS)
model. The reliability of numerical models in capturing the water surface profile along
dam spillways located in different parts of the world is demonstrated in a few contribu-
tions [9–15]. Ref. [16] investigated the hydraulic characteristics of the dam discharge flow
and its downstream impact by employing Reynolds-averaged Navier–Stokes equations
with the RNG k-ε eddy viscosity model for its turbulence closure, as well as the volume of
fluid method. Complex turbulent flow patterns, including collision, reflection and vortices,
were captured by three-dimensional simulation.

The published results encourage the use of numerical models for assessing the hy-
draulic performance of structures. Furthermore, [17] shows how 3D flood numerical
simulations can qualitatively and quantitatively assess flood hazards and serve as a visual
reference for the development of flood control schemes, providing an important foundation
for flood forecasting, dam design and flood control system application.

This paper describes the 1:60 Froude-scaled numerical model of the Liscione dam
spillway and the downstream stilling basin. The k-ω SST turbulence model was chosen
to close the Reynolds-averaged Navier–Stokes equations (RANS), due to its remarkable
robustness and reliability in simulations involving similar geometries. The Autocad ®

software was used to construct the geometry of the computational domain, whereas the
simulations were performed with the commercial software ANSYS Fluent ®. The discretiza-
tion of the domain was performed via the software provided by ANSYS (Fluent Meshing),
which guarantees the generation of a simply connected domain (Watertight Geometry).
Data for validating the numerical model were gathered by means of a 1:60 scale physical
model built at the Laboratory of Hydraulic and Maritime Constructions of the Sapienza
University of Rome. The model was scaled according to the Froude number and fully
developed turbulent flow conditions were reproduced at the model scale (Re > 10,000) [18].
In [19], the physical model, the experimental campaign conducted to investigate the key
hydrodynamical parameters such as hydraulic levels and hydraulic jump location are
described in detail. Furthermore, an innovative technical solution suitable to protect the
riverbed located just downstream of the stilling basin by means of artificial Antifer blocks
is also illustrated.

The Liscione dam was affected between 24 and 25 January 2003 by a serious rainfall
event that caused extensive damage. The rain intensity of the event was measured by two
weather stations and the related inflow and outflow rates were quantified. The outflow
rates turned out to be 830.0 m3/s, which caused the maximum allowed elevation into the
reservoir, i.e., 125.5 m a.s.l., to be overcome. The return period was 30 years. The event
caused extensive damage both upstream and downstream of the stilling basin: the failure
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and breakage of some concrete elements at the end of the dam chute on the right side of
the river; damaged and removed gabions on both the left and right banks, and displaced
the bottom protection in the central area of the riverbed.

The event demonstrated that the stilling basin of the Liscione dam was ineffective
in dissipating the flow energy content with potential severe effects on the stability of the
downstream unprotected riverbed due to massive erosion phenomena. To tackle the scour
issue, a few measures are available: the redesign of the existing stilling basin, the redesign
of the dam as a whole, replacing the dam elements that contribute to the formation of
jet-like flows downstream from the chute; and the implementation of protection strategies
employing boulders properly arranged in the riverbed downstream of the stilling basin.
The aim of this paper was to demonstrate that a validated numerical model, efficiently
implemented using a commercial software and a reasonably powerful PC, can be usefully
employed for the reconstruction of the hydrodynamics of existing dams which may need
either maintenance or upgrading works, such as in the case of flood discharge increments,
but also for the design of novel dams [20].

2. Materials and Methods

2.1. The Liscione Dam

The Liscione dam is located in the municipality of Guardialfiera in Molise (central
Italy). Its construction, which took place between 1967 and 1973, had as a main objective
the creation of an artificial reservoir, namely Lake Guardialfiera, by collecting water from
the Biferno river (Figure 1a).

The reservoir (Figure 1b), obtained with a barrier in loose materials sealed with a
bituminous conglomerate coating, was aimed at flood retention and water storage for
irrigation purposes. Figure 1c presents a detailed view of the main dam elements, i.e., the
surface spillway, chute, stilling basin and bottom outlet.

Important features of both the reservoir (Lake Guardialfiera) and the Liscione dam are
listed in Table 1. Characteristic discharge values and return periods of the catchment area
of the dam are shown in Table 2.

The dam surface spillway consists of an ungated ogee weir, 92 m long with a crest
elevation at 125.5 m a.s.l. (Figure 2a; detailed view in Figure 2b) and a gated weir with three
13 m wide openings, equipped with automatic flap gates with counterweights pivoted
at the sill (Figure 2a; detailed view in Figure 2c). The gate configurations are either open
(minimum elevation of 122.0 m a.s.l.) or closed, sharing the same elevation as the ogee weir
(i.e., 125.5 m a.s.l.). The gate drop takes place automatically and progressively as soon as
the reservoir water level reaches an elevation of 125.5 m a.s.l.

Water collected by the surface spillway is conveyed into the stilling basin via a chute.
The channel has a uniform rectangular section of 25 m in length and a horizontal develop-
ment that is 180 m long. If the water stored in Lake Guardialfiera reaches an elevation of
129 m a.s.l., the ungated ogee spillway and the gated spillway release discharge values of
1080 m3/s and 1174 m3/s, respectively.
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Stilling basin 

Chute 

Figure 1. (a) The investigated area: geographical framework [Map data: Google]; (b) overview of
the dam body and main elements; (c) detailed view of the main elements of the dam, i.e., surface
spillway, chute, stilling basin and bottom outlet.
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Figure 2. Surface spillway: (a) top view of the spillway; (b) ungated ogee weir (free Creager-type
sill); and (c) gated weir with three 13 m wide openings, equipped with automatic flap gates.

Table 1. Important features of the reservoir (Lake Guardialfiera) and the Liscione dam.

R
es

er
vo

ir Total volume
(millions of m3)

Useful storage
(millions of m3)

Dead storage
capacity

(millions of m3)

Reservoir
maximum

surface
(km2)

Surface of the
catchment area

(km2)

173.0 137.0 11.0 7.45 1043

D
am

Management
upper storage

elevation
(m a.s.l.)

Maximum
allowed water

elevation
(m a.s.l.)

Dam crest
(m a.s.l.)

Management
minimum

operating level
(m a.s.l.)

Minimum
foundation

height
(m a.s.l.)

125.5 129.0 131.5 92.0 71.5

Table 2. Characteristic discharge values and return periods of the Liscione dam catchment area.

Discharge inlet to the reservoir (m3/s) 1050 1800 2300 2650

Discharge at the spillways (m3/s) 830 1450 1850 2250

Return period (y) 30 200 500 1000
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To prevent dam overtopping, a bottom outlet is realized to convey water into the
stilling basin (Figure 1c). It consists of a tunnel with an internal diameter of 7.2 m, a length
of 309.5 m and a slope of 1%. Its intake is placed at an elevation of 76.4 m a.s.l. and the
outlet is at 73.5 m a.s.l. If the water stored in Lake Guardialfiera reaches an elevation of
129 m a.s.l., the bottom outlet is activated to drain a flow rate of approximately 500 m3/s.

To reduce the kinetic energy of water drained into the stilling basin, four nappe
splitters are placed at the end of the chute (Figure 3). To the same aim, the stilling basin is
equipped with four sills: the first one is placed downstream of the bottom outlet (sill#1),
two other sills are placed at the downstream boundary of the chute (sill#2, a sky-jump-like
sill, and sill#3) and the last one is at the end of the stilling basin (sill#4). Sill#4 is higher at
the hydraulic left of the stilling basin to better dissipate the energy, which in that area, due
to the slight curvature of the riverbed, may lead to massive erosion.

 

Figure 3. Dam elements aimed at reducing the kinetic energy of water drained into the stilling basin.

Downstream of the stilling basin, the central area of the first 500.0 m of the riverbed
was covered with 0.3 m thick Reno type bottom protection, and the right and left banks of
the riverbed protected by 1.0 m high gabions. After that distance, the riverbed presents the
natural waterway.

2.2. Experimental Investigation

The physical model was realized in the DICEA-Sapienza University of Rome Hydraulic
and Maritime Construction Laboratory. Referring to Figure 4, the physical model was
designed in such a way that the following requirements were met:

- The model tank (mimicking the prototype reservoir) dimensions made it possible
to include the surface spillway and to ensure a constant water level in the tank up
to the maximum tested flow rate, as occurs in reality, due to the large size of the
artificial basin. A preliminary investigation demonstrated that a tank with dimensions
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shown in Figure 4, i.e., approximately 150 × 210 m, was sufficient to guarantee the
above requirement;

- The physical model downstream section was set considering the area wherein the
river protection interventions were planned to take place. In addition, the model in-
cludes the river portion downstream of the stilling basin characterized by an irregular
planimetric geometry. Based on these requirements, the downstream closure section
of the model was set after the first river bend, as highlighted in Figure 4.

 

Figure 4. Area reproduced with the physical model.

Due the above requirements, the prototype dimensions of the area reproduced with
the physical model were 560.0 m as the longitudinal extension and roughly 210.0 m as
the maximum width (see Figure 4). A geometric reduction scale of 1:60 results from the
adoption of the dimensions reported above.

The components of the spillway, i.e., the three gates (in their lowered configuration),
the ogee weir, the chute, the bottom outlet terminus, the sills, and the stilling basin,
mimicking the prototype counterparts, are shown in Figure 5. A detailed description of the
physical model can be found in [19].
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(a) 

(b) 

Figure 5. Physical mode: (a) surface spillway; (b) chute, bottom outlet terminus, sills and stilling basin.

2.3. Numerical Simulations

A geometry similar to that tested experimentally was investigated with the numerical
model. Two sets of numerical simulations were carried out and will be described in the
following sections, namely the upstream tank that reproduces the Lake Guardialfiera and
the surface spillway (Model #1) and the complete model enclosing the upstream tank,
the surface spillway, the chute, the stilling basin, and a small portion of the riverbed
downstream of the stilling basin (Model #2). Runoff conditions on the surface spillway
were numerically reproduced by imposing a constant water level in the tank. In some
preliminary numerical tests, an upstream tank of dimensions larger than those employed
for the physical model were tested. No remarkable differences were noticed in terms of the
fluid-free surface features and fluid height above the surface spillway. Model #1 outcomes
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were employed to determine the stage–discharge rate curve, which was compared to the
experimental one. Model #2 outcomes made it possible to investigate the impact area of the
jet impinging into and downstream of the stilling basin. Simulations were performed both
considering the presence of the ski-jump sill (sill#2) at the foot of the chute and without it
to evaluate the distance of impingement of the jet outflowing from the spillway chute in
both cases.

To perform the numerical simulations of Model #1 and Model #2, the 3D drawings
of the spillway and of the whole dam in the model scale were realized with AutoCAD,
starting from the planimetric and cross-sections provided by the dam concessionaire and
appropriately compared with the technical drawings realized by the designer. These
drawings reported in Figure 6 were imported in Fluent in the Geometry component section
of the software.

(b) 

(c) 

(a) 

Figure 6. (a) Three-dimensional drawing of the infrastructure in the model scale carried out with
AutoCAD; (b) AutoCAD model of the surface spillway; and (c) AutoCAD model of the stilling basin.

Initially, the bathymetry was imported as an STL file built from information gathered
from the area Digital Terrain Model. Preliminary tests demonstrated that its influence on
the reconstructed water levels was negligible with respect to the analogous simulations
performed without implementing the lake bottom profile. For this reason, the bathymetry
was not included in the final configuration of both Models #1 and #2.

For all models, the computational domain was discretized using a grid with hexagonal
meshes. To verify the independence of the results from the mesh size, several simulations
were carried out, doubling the number of elements or, when an excessive computational
burden was expected, reducing the mesh size by at least 20% in each direction. Table 3
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shows the main features of the discretization adopted for the models listed above, specifi-
cally the minimum and maximum size of the grids and the total number of elements.

Table 3. Main features of the grids employed for both models.

Model # Model Description Resolution
Minimum
Size (mm)

Maximum
Size (mm)

Number of
Elements

1 Surface spillway
Low 10 20 259,148

High 5 12 887,386

2 The whole dam

Low 10 20 485,258

Medium 8 16 879,883

High 5 12 1,024,524

The computational domains for the geometries listed above are shown in Figure 7 for
Model #1 and Figure 8 for Model #2.

 

Figure 7. Computational domain for Model #1.

For both models, the inlet boundary condition was of the ”pressure inlet“ type. It
was provided by assigning the height of the free surface inside the upstream tank. The
“pressure outlet” boundary condition was set at the surfaces in contact with the atmosphere.
It was also applied on the walls of the step at the toe of the stilling basin. The step was
introduced in the numerical model following [21] since it makes the results more consistent
with the experimental evidence. The ”wall” boundary condition was assigned to the walls
of the dam body including the sills, the chute, and the bottom surface of the stilling basin.
The “no slip” condition was set, which prescribes the fluid to adhere to the interface with
the wall and moves with the same velocity, and zero velocity in our models since the walls
are fixed.

The Fluent software requires an initial value of the water volume fraction (WVF).
Inside the upstream tank, the WVF of a certain number of cells was assigned the value
1. Those cells were selected, ensuring a water level slightly above the free surface height
provided by the “Inlet” boundary condition. This made it possible to provide initial
conditions that were not too far from those of the final solution, considerably reducing the
computational cost of the simulations.
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Figure 8. Computational domain for Model #2.

Velocity values measured with a Pitot tube were used to validate the numerical models
(Figure 9).

 

Figure 9. Pitot tube placed at (roughly) half the chute length.
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These measurements were performed at a discharge rate of 1450 m3/s, i.e., the de-
sign flow rate for the hydraulic structure. The velocity profiles in two different points
were measured:

(1) At 0.14 m upstream from the chute, within the surface spillway volume;
(2) At 1.639 m downstream from the chute (see Figure 9).

3. Results

Model #1: Surface Spillway

The numerical model including the surface spillway was implemented using two
grids of different resolution. For both grids, the simulation was interrupted up to the
achievement of the steady-state condition for the flow field.

Table 4 presents the complete set of numerical simulations performed for Model #1,
namely the height of the free surface inside the upstream tank, the expected flow rate, the
turbulence model adopted and the grid resolution. The expected flow rate for a given
height of the free surface was determined from the experimentally achieved stage–discharge
rate curve.

Table 4. Height of the free surface inside the upstream tank, expected flow rate and turbulence model
adopted for Model #1.

Height of the Free
Surface Inside the

Upstream Tank (m)

Expected Discharge
(m3/s)

Turbulence Model Grid Resolution

0.21327 304 k-omega Low

0.22357 424 k-omega Low

0.22937 530 k-omega Low

0.24077 830 k-omega Low

0.24077 830 k-omega High

0.25697 1450 k-omega Low

0.25697 1450 k-omega High

0.26237 1650 k-omega Low

0.26237 1650 k-eps Low

0.26747 1850 k-omega Low

0.27897 2250 k-omega Low

Low discharges were simulated to characterize the initial portion of the stage-discharge
rate curve. Q = 830 m3/s was the maximum flow rate discharged from the spillway during
the event which occurred in January 2003, characterizing a rainfall event with a return
period of 30 years. Q = 1450 m3/s, Q = 1650 m3/s, Q = 1850 m3/s and Q = 2250 m3/s
correspond to a return period of 100 years, 200 years, 500 years and 1000 years, respectively.

Figure 10 qualitatively compares the hydrodynamics that occurred during the flood
event of January 2003 (Figure 10a), the outcome of the laboratory experiment (Figure 10b)
and the numerical model (Figure 10c).

Though the air entrainment at the prototype scale appears more evident, the physical
and numerical models present similar flow features.

To determine the best parameters to employ within the simulations, the numerical
model for a prototype discharge value equal to 1450.0 m3/s was run for both a low- and
a high-grid resolution. The k-omega SST model was used as a turbulent model. The
comparison between the hydrodynamics resulting from the numerical model (for the high
grid resolution case) and the physical model is presented in Figure 11. The numerical
model output of the low resolution case looks very similar to Figure 11a, and for this
reason, it was not presented. Moreover, the numerical model outputs are very similar to the
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water-free surface provided by the physical model. This suggests that the low-resolution
grid was sufficiently refined to describe the phenomenon under investigation. The grid
independence of the solution is further demonstrated by analyzing the velocity profile
located 0.14 m upstream from the chute, within the surface spillway volume where the Pitot
tube measurements were available for the discharge value under investigation. Figure 11c
presents the comparison between the velocity values at different heights calculated with the
high- and low-resolution models and corresponding values measured with the Pitot tube.
No remarkable difference can be noticed between the numerical profiles which appear to be
slightly overestimated with respect to the measured velocity values, as was to be expected
due to the intrusive nature of the measurement with the Pitot tube, which may affect the
magnitude of the velocity value detected. Considering this result, the low resolution grid
was employed for all simulations.

Figure 10. Comparison among the 2003 flow event (a) with a picture of the real event, (b) the physical
model output and (c) the result of the numerical simulation.

High resolution model—Discharge 1450 
m3/s Physical model—Discharge 1450 m3/s 

 

Figure 11. Cont.

295



Hydrology 2022, 9, 214

 

Figure 11. Comparison between the hydrodynamics resulting from the numerical model (for both
the tested grid resolutions) and the physical model.

A further test was conducted to choose the turbulent model providing the best results
in terms of similarity between the numerical output and physical model. The k-omega SST
and k-eps models were employed and, as shown in Figure 12, no remarkable differences
can be noticed between the output of the numerical model employing the k-omega SST
turbulence model and the output of the physical model. Once again, the free surfaces output
by the numerical models employing the k-omega SST and the k-eps turbulence models
look very similar. For this reason, the k-omega SST model was used for the simulations.

Turbulence model: k-omega SST— 
Discharge 1650 m3/s 

 

Physical model—Discharge 1650 m3/s 

 

 

Figure 12. Comparison between the hydrodynamics resulting from the numerical model (for both
the tested turbulence models) and the physical model.
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In order to quantitatively check the reliability of the numerical model, the discharge
computed for each model (and the corresponding water stage employed as the inlet
boundary condition) was compared to that employed within the experimental investigation.
The experimental procedure consisted in varying the discharge flowing through the model
and contextually measuring the water level within the upstream tank that reproduces the
modeled Lake Guardialfiera. Eighteen experiments were run with different values of the
discharge. The experimentally obtained stage–discharge rate curve was then compared
to that one used at the dam design stage and validated. The comparison was satisfactory
as the maximum error was roughly equal to 3% (refer to [19] for the complete procedure
employed to construct the experimental rating curve).

For the numerical model, the discharge was computed assuming a threshold value
for the simulated water volume fraction and computing the flow rate value as the product
of the average velocity and the area of the water section. Different threshold values were
considered, ranging from 0.3 to 0.7 with step 0.1, and the value 0.6 appeared to be the one
providing the best agreement between the experimentally detected rating curve and the
numerical one. The two curves are displayed in Figure 13.
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Figure 13. Rating curve from numerical simulations (Model #1) and experiments.

Simulations for Model #2 were conducted using three different sizes of the calculation
grid (10–20 mm, 8–16 mm, 5–12 mm). For all cases, the simulation continued until the
steady state was reached inside the dissipation tank.

As mentioned earlier, velocity values measured with a Pitot tube were used to deter-
mine the grid resolution to employ for further analysis. The investigated discharge value
was 1450 m3/s and the grid resolutions were those previously defined as low, medium,
and high. According to the results obtained for Model #1, the k-omega SST model was
used for the simulations.

Figure 14 presents the comparison between the velocity profiles reconstructed with
Model #2 at three different resolutions and the Pitot measurements at location 0.14 m
upstream the chute, within the surface spillway volume. No remarkable differences can be
noted for the different resolutions adopted for the simulations. Conversely, Figure 15 which
presents the same comparison at a location of 1.639 m downstream from the chute suggests
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that higher resolution is required for a better match. For this reason, further simulations
were conducted, employing the higher resolution.

 

Figure 14. Comparison between the velocity profiles reconstructed with Model #2 at three different
resolutions and Pitot measurements at location 0.14 m upstream from the chute and within the surface
spillway volume.

 

Figure 15. Comparison between the velocity profiles reconstructed with Model #2 at three different
resolutions and Pitot measurements at location 1.639 m downstream from the chute.

Table 5 presents the details of the simulations conducted recalling that Q = 830 m3/s
was the maximum flow rate discharged from the spillway during the event which occurred
in January 2003, characterizing a rainfall event with a return period of 30 years; whereas
Q = 1450 m3/s and Q = 1650 m3/s correspond to a return period of 100 and 200 years.
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Table 5. Height of the free surface inside the upstream tank, expected flow rate and the presence of
sill #2 for Model #2.

Height of the Free Surface
Inside the Upstream Tank

(m)
Expected Discharge (m3/s) Sill #2

0.24077 830 yes

0.25697 1450 yes

0.25697 1450 no

0.26237 1650 yes

0.26237 1650 no

Figure 16 presents the water volume fraction reconstructed with Model #2 for a
discharge value of 1650 m3/s when sill #2 is included in the numerical model.

Figure 16. Water volume fraction reconstructed with Model #2 for a discharge value of 1650 m3/s
and the presence of sill #2.

The effects of sill #2 on the hydrodynamics in the stilling basin and downstream areas
are quite evident and may be quantitatively appreciated in Figure 17 where a zoom in the
dissipation tank area is presented and compared to the experimental outcomes.

Figure 17 shows the images of the hydrodynamics in the stilling basin and the riverbed
downstream from the lateral view. The corresponding images below present the water
volume fraction computed by the numerical model. In each experimentally gathered image,
a 5 × 5 cm2 mesh (model scale) corresponding to a 3 × 3 m2 mesh at a prototype scale was
overlapped over the investigated area. The blue line corresponds to the end of sill #4 while
the red line defines the area of impact of the jet outflowing from the spillway chute. The
comparison between the images, both the experimental and numerical ones, clearly shows
the effect of the ski-jump sill removal, which produces a decrease in the distance between
the jet impact area and the stilling basin of roughly 12 m.
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(a) (b) 

(c) (d) 

Figure 17. Hydrodynamics in the stilling basin and the riverbed downstream from the lateral view
for a discharge value of 1650 m3/s and (a) ski-jump-like sill in place (c) is the output of the numerical
model); and (b) ski-jump-like sill removed (d) is the output of the numerical model).

4. Conclusions

In this paper, a comparison between a numerical and experimental model of the
Liscione dam was presented. The velocity and free surface elevation were the physical
quantities compared. It is not always possible to reproduce a large infrastructure (i.e., a
dam) in a laboratory. For this purpose, numerical models can be implemented as a useful
alternative. Numerically reproducing a dam also enables it to be made independent of the
scale (as it can be reproduced in a prototype scale). Nevertheless, it is mandatory to verify
the numerical results with experimental ones to validate the numerical simulations.

In the research presented herein, the results of the numerical simulations confirm the
outcomes of the experimental investigation, i.e., the dissipation tank is undersized and
therefore insufficient to contain the jet-like flow outflowing from the spillway chute. Due to
the high energy content of the current, a further jet-like flow is generated and introduced
into the riverbed downstream from the dam with important effects in terms of river
bottom erosion. The numerical model also made it possible to compare the hydrodynamics
when the ski-jump-like sill is kept or removed from the bottom of the chute. The model
clearly shows the beneficial effect achievable with the removal of this sill. It is worth
underlining the effectiveness of the commercial software employed in this investigation for
the Computational Fluid Dynamics simulations. The numerical model, properly validated
with the experimental outcomes, describes the hydrodynamics of the current for the various
discharge values under investigation fairly well. Such a validated model can then be
employed in the design stage to provide a qualitative visualization of the current for
different discharge values and quantitative information on the hydrodynamic features of
the flow.
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