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In recent decades, flash floods have become a major natural disaster and show a
continuously increasing trend on a worldwide scale. The magnitude of the damages
associated with flash floods requires forecasting and monitoring strategies to understand
the vulnerability factors, analyze the mechanisms of flash floods, and mitigate disasters.

Research efforts are needed to improve early warning mechanisms, risk control, and
hazard prevention that could obviously aim at a reduction in casualties, social impacts,
and economic losses. New technical approaches such as surface monitoring and combined
hydrologic–hydrodynamic models are in development and are offering useful information
for field managers.

The main causes of flash flood disasters can be investigated by analyzing the hy-
drological and hydrodynamic process of flash flood disaster events. The simultaneous
flooding of tributaries and the main river has been identified as one of the main causes to
amplify the discharge peak in the main river. Therefore, the monitoring and forecasting of
tributaries’ discharge may be an effective solution to issuing a flash flood early warning.
Meanwhile, subgrade water damming that serves to mitigate flash flood impact, however,
may exaggerate the risk of a flash flood disaster if a subgrade water damming structure
collapses due to extreme weather conditions. Thus, artificial efforts to a mitigate flash flood
disaster should be discussed and assessed.

Recently, the sediment-transport-related geomorphological evolution of mountain
rivers drew considerable attention when assessing flash flood propagation. Due to sediment
deposition in local mild reaches, the flash flood stage under a significant change in the
riverbed morphology essentially differs from that under relatively stable river morphology,
which is likely to result in the incorrect warning of flash flood disasters.

Debris flows might be triggered by storms and flash floods, which have not yet
been understood. Well-designed flume experiments may help researchers to deepen the
understanding of the triggering mechanisms of debris flows, as well as the dynamic
characteristics of debris flows under different impact factors.

Data-driven approaches are considered appropriate to predict flood behavior due
to the availability of an increasing number of high-quality data. Models with different
complexities from simple regression to complex machine learning can be applied for the
hydrological prediction and susceptibility map establishment of flash floods. Specific
treatments, such as parameter regionalization, have a good potential to improve the model-
ing performance.

Flash flood disaster prevention and mitigation have not only been studied with
the development of different approaches, but they have also been practiced with these
appropriate approaches. However, the relationship between different socio-economic
effects and flash flood disaster prevention and control should be discussed, which can offer
information for good planning and policies for a further support of flash flood disaster
prevention and mitigation.

Water 2023, 15, 1700. https://doi.org/10.3390/w15091700 https://www.mdpi.com/journal/water
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The Special Issue Flash Floods: Forecasting, Monitoring and Mitigation Strategies includes
major flash flood disaster event analysis; the key factors for flash floods and monitoring
strategies; field observations for flash flood processes; the modeling and forecasting of
flash flood events; a risk assessment for flash floods; and the prevention and mitigation
measures for flash floods. It includes twelve research papers.

Three papers describe flash-flood-caused hazard events which have recently happened
in small mountain catchments in China. Different mechanisms triggering flash flood
disasters occurred across different regions. One paper is about discharge peak amplification
caused by simultaneous flooding for tributaries and main river. The second paper addresses
the impact of the collapse of subgrade water damming on the severity of the disasters.
The third paper details the coupling effect of flow and sediment transport to exaggerate
the flash flood dynamics, which caused a disaster. With the insights of these three papers,
common causes for mountain basin flash flood disasters can be checked.

Post-event reanalysis can be effective and necessary for identifying the causes of flash
flood disasters which can be implemented using hydrologic and hydrodynamic approaches.

By developing a new distributed hydrological model named China-FFMS that simu-
lates the evolution of natural disasters and make an assessment, Hao et al. [1] simulated the
8.12 flash flood disaster that occurred in the Liulin county of Hubei province on 12 August
(“8.12”) and the paper includes the data collected from the national flash flood disaster
investigation and assessment. They identified that the main factor leading to the disaster
was the overlapped peak flow where the Dunne flood peak of three different tributaries
from the upper reach met together at the same time, and the peak flow of the Lianhua river
at the downstream of Liulin County also arrived at the same time as the upstream peak,
which obstructed the flood’s progress and increased the damage of the disaster.

When a hydrodynamic model is coupled with a hydrological model, the simulation can
provide not only flood discharge routing but also the evolution of flood stage, which, once
overbank, a flooding disaster is caused in theory. Hao et al. [2] numerically investigated
the “7.20” flash flood in the Wangzongdian river basin by establishing a hydrological–
hydrodynamic model using limited measured data. The extreme rainstorm accounting
for flooding in mountainous areas and the collapse of subgrade water damming led to the
high-level flood quickly flowing into Wangzongdian Village over a short distance, causing
a serious disaster.

In mountain basins, the sediment supply and its delivery have a significant impact
on the geomorphological change in steep rivers with sediment deposition and erosion
processes, thus determining the geometric boundaries where flash floods evolve. Therefore,
Yang et al. [3] used a depth-averaged two-dimensional hydrodynamic model to simulate a
flash flood that occurred in Sanjiang Town, Sichuan, China, on 20 August 2019. Inflows
and sediment deposition were the main factors that contribute to flash flood enlargement
in confluence and bifurcation streams. This study deepened the understanding that flow
in the supercritical slope runs at a very fast velocity and seldom deposits sediment in the
steep channel, while most sediment is transported to the streams with flat hydraulic slopes.

Currently, an increasing sense of awareness has been realized that the triggering
of flash floods may cause other kinds of natural water-sediment-related disasters such
as debris flows. Two papers, therefore, addressed the importance of mountain gully
debris flows in a strong earthquake area and the periglacial debris flow in Southeast Tibet.
Zhang et al. [4] designed a lateral erosion flume model experimental device to explore
the erosion characteristics of debris flow. In total, 18 groups of incomplete orthogonal
experiments were conducted to investigate the effects of the unit weight of debris flow, the
content of fine particles, and the longitudinal slope gradient of the gully. The major finding
demonstrates that the erosion width, depth, and volume decrease with the increase in the
fluid bulk density and increase with the increase in the gully slope and the unit weight of
debris flow has the greatest impact on the erosion degree of the side slope. Du et al. [5]
analyzed the importance of potential indicators to the development of periglacial debris
flows in the Parlung Zangbo Basin of southeast Tibet and introduced three machine learning
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approaches combined with the borderline resampling technique for predicting debris
flow occurrences. They found that temperature, precipitation, and vegetation coverage
are closely related to the development of periglacial debris flow in the study area. By
testing and comparing several scenarios, the best model of predicting debris flow events
was suggested.

Precipitation data as the input driving the hydrological process, as well as the quality
and representation and data source, control the performance of hydrological modeling.
Guo et al. [6] Evaluated the performance of three precipitation products (rain gauge obser-
vations, CMADS, and TRMM) in the hydrological modeling of the Danjiang River Basin
(DRB) with the SWAT model at monthly, daily, and spatial scales. Simulation calibration
and validation were performed at three hydrological stations using the SWAT Calibration
Uncertainties Program (SWAT-CUP). This study finally provides a reference for choosing
precipitation datasets in watersheds like the DRB where ground-based rain gauge data
are unavailable.

Apart from precipitation, the surface condition of the catchment may largely influence
the runoff and sediment generation. Ding et al. [7] numerically assessed the impact of
grass coverage degrees and spatial arrangements on the runoff and sediment yield both on
the hillslope and gully slope. The relative contribution of hillslope and gully side account
for the total erosion on the entire hillslope gully system was analyzed, which helps to
understand the validity of the policy on soil and water conservations in Loess Plateau. This
study highlighted the importance of vegetation coverage in reducing soil erosion and the
need for further research on the impacts of different vegetation coverage and arrangement
patterns on the slope gully system.

Data-driven approaches are becoming increasingly popular to predict flood behavior.
As the quantity of historical data is becoming larger and the quality is better due to
systematical monitoring techniques, different data-driven approaches, such as logistic
regression and machine learning, can be applied. El-Rawy et al. [8] provided a method
for flood risk assessment by incorporating principal component analysis and logistic
regression in the Sinai Peninsula, Egypt, using hydro-morphometric parameters. Cross-
validation of the model was conducted to ensure reliability and robustness. A flash flood
susceptibility map with four categories of risks (low, moderate, high, and very high) was
established for the Sinai Peninsula that can be useful for authorities and decision makers
in impact assessment, flash flood management, and the planning and implementation of
mitigation measures.

Wang et al. [9] studied the influence of different methods on the parameter regionaliza-
tion of distributed hydrological model parameters in hilly areas of Hunan Province, China.
Shortest distance, attribute similarity, support vector regression, generative adversarial
networks, classification and regression tree, and random forest methods were evaluated to
create parameter regionalization schemes, with 426 floods of 25 catchments for calibration
and 136 floods of 8 catchments for verification. The study showed that the random forest
model is the most stable solution and significantly outperforms other methods and can im-
prove the accuracy of flood simulation in ungauged areas with parameter regionalization,
which is of great significance for flash flood forecasting and early warning.

The regionalization method can be also applied in the process-based modeling of flash
floods. Williams et al. [10] applied a rainfall regionalization method to construct flash
flood hyetographs with several return periods using the flash flood shape of the historical
event that occurred in the Tlalnepantla River basin, Mexico. A semi-distributed model in
HEC-HMS was used to obtain the outflow hydrograph and hydrodynamic model in Iber,
and Hec-Ras 2D to simulate free surface flow was used for a hydrological–hydrodynamic
two-dimensional analysis. This study successfully estimated the potential consequences of
synthetic design storms on the site and provided insights into the study of flash floods at
the global level, highlighting the need for a methodology for threat assessment.

With effective modeling approaches, a flash flood early warning system can be de-
signed and established for disaster mitigation, such as for a reduction in causality and
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economic loss. Arganis et al. [11] developed a pilot impacts-based flood early warning de-
cision support system for the Vaisigano River in Samoa. The flood early warnings decision
support system alerted the hazard monitoring and emergency responders of imminent
flooding with up to 24–48 h lead time, with information of a specific context and real-time
automated river monitoring and forecast. It includes a web-based information portal which
enables interaction with the decision support information tools, which was conducted in a
practice of operational testing during the 2020/2021 tropical cyclone season in Samoa.

Finally, to mitigate the hazard impact of flash flood on mountain area residents and the
environment, China has implemented a two-decadal flash flood prevention and mitigation
project, which is still under operation currently. Therefore, whether these projects with
recent advanced technology and methods are useful for the prevention and mitigation of
flash flood disasters in a mountain area is important for sustainable investment, policy, and
research. Zhang et al. [12] applied the Kaya identity and a Logarithmic Mean Divisia Index
(LMDI) approach to quantitatively measure the driving effects of interannual changes
in economic loss related to flood disasters in China. Five flood-related driving effects,
including demographic effect, economic effect, flash flood disaster control effect, capital
efficiency effect, and loss-rainfall effect, were evaluated. This paper shows that the flash
flood disaster control effect most obviously reduced flood-related economic losses, and
non-engineering measures for flash flood prevention and control have been implemented
since 2010, achieving remarkable results. The discussion of the relationship between flood-
related economic loss and flash flood disaster prevention and control in China adds value
for the adjustment and formulation of future flood disaster prevention policies.

This collection of papers highlights the efforts of researchers in mitigating flash flood
disasters, involving deepening the understanding of the causes triggering the disasters
with existing cases, finding appropriate modeling approaches, and practicing disaster
mitigation. This topic is a good example, which not only inspires the future research
direction for flash floods but also supports the current practice of flash flood disaster
prevention and mitigation.
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Abstract: In the past decade, more than 300 people have died per year on average due to mountain
torrents in China. Mountain torrents mostly occur in ungauged small and medium-sized catchments,
so it is difficult to maintain high accuracy of flood prediction. In order to solve the problem of the
low accuracy of flood simulation in the ungauged areas, this paper studies the influence of different
methods on the parameter regionalization of distributed hydrological model parameters in hilly
areas of Hunan Province. According to the terrain, landform, soil and land use characteristics of each
catchment, we use Shortest Distance, Attribute Similarity, Support Vector Regression, Generative
Adversarial Networks, Classification and Regression Tree and Random Forest methods to create
parameter regionalization schemes. In total, 426 floods of 25 catchments are selected to calibrate the
model parameters, and 136 floods of 8 catchments are used for verification. The results showed that
the average values of the Nash–Sutcliffe coefficients of each scheme were 0.58, 0.64, 0.60, 0.66, 0.61
and 0.68, and the worst values were 0.27, 0.31, 0.25, 0.43, 0.35 and 0.59. The random forest model
is the most stable solution and significantly outperforms other methods. Using the random forest
model to regionalize parameters can improve the accuracy of flood simulation in ungauged areas,
which is of great significance for flash flood forecasting and early warning.

Keywords: mountain torrents; distributed hydrological model; parameters regionalization; machine learning

1. Introduction

Hunan Province is located in the southeast inland of China, with abundant rainfall but
extremely uneven temporal and spatial distribution. Due to frequent and high-intensity
rainfall and short confluence time in hilly areas, the flood rises and falls steeply, which can
very easily cause mountain torrents. The climate, underlying surface and geomorphic types
in hilly areas are diverse, and most of them are areas without data. This is an important
challenge for flood forecasting and early warning in hilly areas.

The hydrological model is an important tool for understanding the laws of hydro-
logical science, analyzing hydrological processes and studying hydrological cycle mech-
anisms [1]. How to identify hydrological parameters in ungauged areas accurately is an
important area of research for PUB (Prediction in Ungauged Basins). The regionalization
method is usually used to determine the parameters of hydrological models for ungauged
basins at present, and the commonly used methods include shortest distance, attribute
similarity, regression, average, machine learning, etc. The main idea of the regionaliza-
tion method is to analyze the relationship between model parameters and characteristic
attributes of basins, and the parameters of the hydrological model for ungauged basins are
deduced from the calibration results of gauged basins [2].

The parameter transplant method includes the shortest distance method and the
attribute similarity method. Among them, the distance approach refers to finding one
or more basins adjacent to the research object in the geographical location. The attribute

Water 2023, 15, 518. https://doi.org/10.3390/w15030518 https://www.mdpi.com/journal/water
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similarity method is used to find a basin that is similar to the research basin in attributes.
Young achieved the ideal result of parameter transplant by computing the spatial distance
between 260 catchments in the UK [3]. Parajka et al. selected indicators such as watershed
area, average slope, watershed latitude, river network density, vegetation coverage, drought
index, etc., to analyze the similarity of watershed attributes and complete parameter
transplantation. The results show that attribute selection plays a decisive role in the
performance of transplantation [4]. Li et al. compared the shortest distance method with
the attribute similarity method and pointed out that the performance of transplantation
results is affected by the density of hydrological stations, and it is easier to achieve better
results in areas with dense hydrological stations [5].

The parameter regression method is mainly used to establish the functional relation-
ship between watershed characteristics and model parameters. Yokoo et al. established a
multiple linear regression equation between the Tank model parameters and soil, geology
and land use data [6]. Cheng et al. established a regression equation between the SCS model
parameter CN, concentration time and soil, land use, average slope and river length [7].
Based on the parameter regionalization method combining spatial proximity and stepwise
regression analysis, Yao et al. found that stepwise regression analysis can effectively deduce
the sensitive parameters [8]. Sun et al. pointed out that the parametric regression method
is prone to the phenomenon of “the same effect of different parameters”, and the basin
properties screening is highly subjective, which is not suitable for small samples [9].

Machine learning research mainly includes SOM classification and the CART decision
tree method. Yi et al. used hierarchical clustering analysis HCA and unsupervised neural
network SOM methods to divide the sub basins of Dianchi Lake basin into 7 groups based
on 16 physical characteristics, and they believed that the basin parameters of the same
group can be transplanted to each other [10]. Ragettli et al. took 35 basins in different
regions of China as the research object, comprehensively considering the physical properties
of watersheds and the spatial distance of watersheds; the CART tree model was used to
optimize the parameter transplantation rules, and the results show that the CART tree has
better parameter adaptability [11]. Liu et al. conducted a parametric zoning study on 19
small catchments in Henan Province; the success rate of parameter transplantation based
on the CART tree is about 20% higher than that of random transplantation [12].

The advantage of the CART tree is that it is easy to interpret and the mapping between
basin characteristics and transplantation rules is intuitive. In recent years, with the advent
of machine learning algorithms, more and more models have been used to create parameter
transplantation schemes. However, many machine learning algorithms usually require
a large number of samples, and data showing that hydrological model modeling can be
used for parameter calibration is often very limited, so it is necessary to reasonably build
a large number of learning samples, or to study intelligent algorithms suitable for small
sample research. In this study, 33 small and medium-sized catchments in Hunan Province
were taken as examples. We constructed distributed hydrological models of these catch-
ments and selected four machine learning models—Support Vector Regression, Generative
Adversarial Networks, Classification and Regression Tree, and Random Forest—to create
different parametric regionalization schemes and compared them with two traditional
methods—Shortest Distance and Attribute Similarity. By analyzing the transplantation
results of different schemes, it can provide a reference for determining the parameters of
the distributed hydrological model in ungauged areas, which is very valuable for flash
flood forecasting and early warning.

2. Materials and Methods

2.1. Study Area

Hunan Province is located on the South Bank of the middle reaches of the Yangtze River.
The general geomorphological characteristics are that it is surrounded by mountains in the
east, south and west, hills in the middle, plains and lakes in the north, and an asymmetric
horseshoe basin that was high in the southwest and low in the northeast. XueFeng mountain
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runs through the central part of the province from southwest to northeast, which divides the
whole province into two parts: mountainous area and hilly area. Due to the comprehensive
influence of monsoon circulation and the geomorphic conditions, the mid subtropical
monsoon humid climate with obvious continental characteristics is formed. Mountain
torrents occur frequently because of the complex topography, developed water system and
abundant rainfall. The average annual precipitation in Hunan Province is 1450 mm, but the
distribution of precipitation is uneven in time and space, and the interannual variation is
large, with an average annual variation of 1200–1800 mm. The province’s annual average
water surface evaporation is 736.5 mm, with a variation range of 600–900 mm.

2.2. Data Collection

Taking 33 hydrological stations with observation data from 1979 to 2020 in Hunan
Province as examples, we collected the ASTER GDEM V2 dataset, land use layer and
soil type layer in Hunan Province. At the same time, a distributed hydrological model
of all hydrological stations was established with 30 min as the simulation step. In this
study, 426 floods in 25 catchments were selected to calibrate the model parameters, and the
regionalization scheme was determined by comparing the simulation results of the other
8 catchments. Figure 1 shows the distribution of hydrological stations.

Figure 1. Distribution of hydrological stations.

The smallest catchment is HengBanQiao, with a catchment area of 31 km2, and the
largest catchment is FeiXian, with a catchment area of 3659 km2. The hydrological data
collection is shown in Table 1.
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Table 1. Information of study stations.

Station Name
Area
(km2)

Data Years
Number of

Floods
Number of

Rain Stations
Number of
Sub Basins

Type

NingXiang 2250 2013–2020 18 65 174 calibration
ShiBaZi 564 2013–2020 18 17 50 calibration
FeiXian 3659 2013–2020 28 157 257 calibration
FenShi 923 2013–2020 24 27 69 calibration

ZhaiQian 392 2015–2020 8 11 31 calibration
JingTouJiang 173 2014–2019 4 9 14 calibration
ShenShanTou 2930 2014–2019 5 71 227 calibration
CaoLongTan 350 2013–2015 6 7 22 calibration

HeTan 445 2014–2020 7 13 34 calibration
HengBanQiao 40 2014–2020 13 5 2 calibration

HuaQiao 81 2013–2020 22 6 5 calibration
MaXiPu 342 2012–2020 24 4 25 calibration

ShanXiQiao 1211 2013–2020 12 24 82 calibration
LianYuan 154 1979–2020 39 17 11 calibration

LouDi 1556 2014–2020 17 58 112 calibration
HongYan 711 2014–2019 8 17 55 calibration

HuangQiao 2689 2012–2019 14 76 211 calibration
SheBu 1434 2013–2020 9 38 109 calibration

MaoPing 2114 2014–2020 9 54 163 calibration
HongYanXi 190 2012–2020 20 4 11 calibration

DaLuPu 635 2013–2020 29 18 47 calibration
HaoFu 440 2013–2020 26 10 35 calibration

LanShan 305 2013–2020 32 25 19 calibration
JiaYi 1475 2013–2020 16 32 96 calibration

LiangShuiKou 865 2012–2020 18 17 65 calibration
LuoLingQiao 340 2012–2020 16 21 30 verification

JiaHe 1501 2012–2020 31 58 103 verification
CaoJiTan 387 2013–2020 13 9 30 verification

ShuangFeng 1552 2014–2020 10 36 115 verification
DongKou 928 2013–2020 13 18 66 verification

JiShou 788 2012–2020 26 30 56 verification
ZhuXiPo 699 2013–2020 15 18 53 verification

ShuangFengTan 444 2013–2020 12 20 35 verification

2.3. Modeling Approaches
2.3.1. Distributed Hydrological Model

Based on the ASTER GDEM V2 dataset, the sub basin and river are extracted by GIS
tools. The resolution of the DEM data grid is 30 m, and the area of the sub basin is controlled
within 10–30 km2. At the same time, the attributes of sub basins and rivers are extracted,
including basin area, slope, longest concentration path, average altitude, average drop
(average elevation minus outlet elevation), river length, river section gradient, geomorphic
unit hydrograph, etc.

The Xinanjiang model is adopted for runoff generation computation [13–15]. A three-
layer evaporation model is used to calculate watershed evaporation. The total runoff
produced by rainfall is computed according to the concept of saturated runoff, and the
influence of the uneven underlying surface on runoff yield area is considered by the water
storage curve of the basin. In the aspect of runoff component division, according to the
runoff production theory of “hillside hydrology”, the total runoff is divided into saturated
surface runoff, soil water runoff and groundwater runoff by a reservoir with limited volume,
a side hole and a bottom hole. The unit hydrograph is used to convert the surface runoff
into the overland flow, and the linear reservoir model is used to calculate the interflow and
groundwater flow, and is finally incorporated into the river network. Figure 2 shows the
structure of the Xinanjiang model.
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Figure 2. Computation flow of the Xinanjiang model.

Table 2 shows the parameters of the Xinanjiang model, all of which need to be deter-
mined through parameter calibration.

Table 2. Physical meanings and units of model parameters.

Parameter Physical Description Unit Param Range

1 K Ratio of potential evapotranspiration to pan evaporation [-] 0.5–1.2
2 Um Averaged soil moisture storage capacity of the upper layer [mm] 10–40
3 Lm Averaged soil moisture storage capacity of the lower layer [mm] 50–90
4 Dm Averaged soil moisture storage capacity of the deep layer [mm] 10–80

5 C Coefficient of the deep layer that depends on the proportion
of the basin area covered by vegetation with deep roots [-] 0.1–0.3

6 B
Exponential parameter with a single parabolic curve, which
represents the non-uniformity of the spatial distribution of
the soil moisture storage capacity over the catchment

[-] 0.1–0.9

7 Im
Percentage of impervious and saturated areas in
the catchment [-] 0.0–1.0

8 Sm

Areal mean free water capacity of the surface soil layer,
which represents the maximum possible deficit of free
water storage

[mm] 10–80

9 Ex
Exponent of the free water capacity curve influencing the
development of the saturated area [-] 0.1–2.0

10 Kg
Outflow coefficients of the free water storage to
groundwater relationships [-] 0.1–0.5

11 Ki
Outflow coefficients of the free water storage to
interflow relationships [-] 0.1–0.5

12 Ci Recession constants of the lower interflow storage [-] 0.1–0.99
13 Cg Recession constants of the groundwater storage [-] 0.5–0.999

The geomorphic unit hydrograph model is adopted for overland flow concentration
computation, which is based on the results of DEM data analysis (Figure 3).
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Figure 3. Flow direction and flow concentration routes.

The flow direction of each grid is analyzed according to the D8 algorithm [16], and the
probability density distribution function of concentration time is determined by computing
the time of each water particle falling on the surface of the basin reaching the outlet, so
as to further determine the geomorphic unit hydrograph [17]. Based on the principle of
energy conversion, this improves the formula of flow velocity and unifies the formula of
slope velocity and river velocity [18], as shown in Formula (1).

v =

√
2μ′g ∑n

k=1 sin θk
2 nkΔhk

n
(1)

where μ′ is the energy residual coefficient and its range is [0,1], θ is the slope angle of the
grid outflow direction, n is the total number of grids in the basin upstream of the target
grid (including the target grid), g is the gravity acceleration, Δh is the elevation difference
between the target grid and the outflow grid, N is the number of inflow grids of the target
grid, nk and vk are the number of upstream grids and the average flow velocity of the kth
inflow grid, respectively.

The Muskingum model is used for river network flow concentration [19,20]. Continuous
flood routing is realized by segment-by-segment estimation of the model parameters [21].

2.3.2. Evaluation Criteria

To evaluate the suitability of the proposed model for the studied Basin, the Nash–Sutcliffe
Coefficient of Efficiency (NSCE) is chosen to analyze the degree of goodness of fit [22],
which is defined as:

NSCE = 1 − ∑N
i=1(Qs(i)− Q0(i))

2

∑N
i=1

(
Q0(i)− Q

)2 (2)

where Qo(i) and Qs(i) are the observed and simulated flow, respectively, N is the number of
data points, and Q is the mean value of the observed flow. According to national criteria
for flood forecasting in China [23], the scheme is excellent when the average NSCE reaches
0.9. When the average NSCE is greater than 0.7 and less than 0.9, the effect of this scheme
is better. This scheme is for reference only; if the average NSCE is greater than 0.5 but less
than 0.7, it may not be accurate. Otherwise, the results of the performances of parameter
calibration are unsatisfactory for online flood forecasting.

2.3.3. Parameter Optimization Method

The shuffled complex evolution (SCE-UA) method is used to optimize the model
parameters. The SCE-UA algorithm is a nonlinear hybrid algorithm which combines the
advantages of the genetic algorithm and the simplex algorithm, and is based on information
exchange and biological evolution laws. It can effectively solve the problems of multi-peak,
multi-noise, discontinuity, high-dimension and non-linearity in parameter optimization.
Figure 4 shows the calculation flow of the SCE-UA algorithm. This method can efficiently
and quickly search for the global optimal solution of model parameters [24,25]. There
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are 14 parameters that need to be optimized in this study, including 13 parameters of the
Xinanjiang model (see Table 1) and 1 parameter of the geomorphic unit hydrograph (μ′). μ′
is the energy residual coefficient and its range is [0,1].

 

Figure 4. Flow of the shuffled complex evolution (SCE-UA) method.

According to the evaluation criteria, the larger the NSCE, the better the simulation
effect. Therefore, this study aimed to find the highest mean value of NSCE. Since the goal of
the SCE-UA algorithm is to find the minimum, Equation (3) is used as the objective function.

F = 1 − ∑t
i=1 NSCEi

t
(3)

where F is the value of objective function, t is the number of floods.

2.3.4. Parameter Regionalization Scheme

The Shortest Distance, Attribute Similarity, Support Vector Regression, Generative
Adversarial Networks, Classification and Regression Tree and Random Forest method
are used to determine the parameter regionalization scheme, and the final scheme is
determined by comparing the simulation results of different methods. For readability,
Table 3 lists the abbreviations representing the different methods.

Table 3. Abbreviation of parameter regionalization methods.

Abbreviation Method Name Abbreviation Method Name

SD shortest distance GAN generative
adversarial networks

AS attribute similarity CART classification and
regression tree

SVR support vector
regression RF random forest
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(1) Shortest Distance (SD)

The nearest basin is determined by computing the spatial distance between the centroid
coordinates of the study basin and other basins, and the model parameters of the nearest
basin are directly applied to the distributed model of the study basin.

D = 2R sin−1

√
sin

(
Lat1 − Lat2

2

)2
+ cos(Lat1)cos(Lat2)sin

(
Lon1 − Lon2

2

)2
(4)

where D is the distance, R is the radius of the earth, about 6,378,137 m, and Lon1, lat1, lon2
and Lat2 are the centroid coordinates of the two basins.

(2) Attributes Similarity (AS)

The area (A, km2), average slope (P), average elevation (E, m), average elevation drop
(H, m), shape coefficient (L), soil type S = {s1, s2, s3} (s1, s2 and s3 are the percentages of clay,
silt and sand, %) and land use U = {u1, u2, u3, u4} (u1, u2, u3, u4 are the percentages of forest,
grass, cultivated land and other, %) were selected for similarity analysis. The components
of U and S range in value from 0 to 1, so no additional processing is required. However, for
other attributes, the maximum value method is used for normalization, as follows: collect
the maximum values MaxA, MaxP, MaxE, MaxH and MaxL of attribute A, P, E, H and L in
33 catchments, and then let C = {A/MaxA, P/MaxP, E/MaxE, H/MaxH, L/MaxL}, then C is
the normalized result. The similarity index of catchment x and catchment y was defined as
Formula (5):

T =
cos

(
Sx, Sy

)
+ cos

(
Ux, Uy

)
+ 1 − D

(
Cx, Cy

)
3

(5)

where D(a,b) and cos(a,b) are Euclidean distances and cosines value of two vectors a and
b, respectively.

D(a, b) =

√
n

∑
i=1

(ai − bi)
2 (6)

cos(a, b) =
∑n

i=1 aibi√
∑n

i=1 ai
2
√

∑n
i=1 bi

2
(7)

where T is the similarity index, and its range is [0,1]. The larger the T value, the greater the
similarity between the two catchments. Select the basin most similar to the study basin and
transplant its parameters.

(3) Support Vector Regression (SVR)

The essence of a support vector machine (SVM) is to map the non-linear function
relationship to the linear problem of high-dimensional space, and then find the optimal
regression hyperplane in this high-dimensional space, so that all samples are the minimum
distance from the optimal hyperplane [26]. Support Vector Regression (SVR) is a method
based on a support vector machine to deal with regression problems. It is used to study the
relationship between input variables and numerical output variables, and to predict the
output value of new variables. It retains the advantages of a support vector machine and is
mainly used in the case of a limited or small number of samples [27].

(4) Generative Adversarial Network (GAN)

The generative adversarial network (GAN) is an unsupervised learning model consist-
ing of a discriminator and a generator [28]. The generator automatically generates data,
learns the distribution of real samples, and generates pseudo samples that are close to real
samples. The discriminator has to distinguish between real samples obtained from the data
and fake samples generated by the generator. The two models are iteratively optimized
through continuous confrontation training, so that the data distribution generated by the
generator is as close as possible to the real data distribution. When the probability of each
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output of the discriminator is basically 1/2, it indicates that the model has reached the
optimal state.

(5) Classification And Regression Tree (CART)

The CART (Classification and Regression Tree) algorithm is a decision tree classifica-
tion method. It uses a dichotomy recursive segmentation technique to divide the current
sample set into two sub sample sets, so that each non leaf node generated has two branches.
The decision tree is a weak learning algorithm [29]. The improvement of classification
accuracy depends on the reasonable construction and pruning of the tree structure. The
CART algorithm generates a decision tree based on the training dataset, and the generated
decision tree should be as large as possible. The validation dataset is used to prune the
generated tree and select the optimal subtree. At this time, the minimum loss function is
used as the pruning standard.

(6) Random Forest (RF)

Random forest model generates multiple different datasets from the original dataset
by sampling with put back [30]. The CART tree is used as a weak classifier, and each
sub-dataset corresponds to a classifier. Each decision tree selects the attribute with the
strongest classification ability for node splitting, without pruning to maximize growth. All
final generated decision trees form a random forest. The model can be used for classification
or regression prediction, the result of which is determined by the classifier voting.

Based on the above, Figure 5 shows the flow of parameter regionalization. When SVR,
GAN, CART and RF are selected for parameter transplantation. The analysis steps are
as follows:

(1) For each calibrated catchment A, use the model parameters of any catchment B to
compute the average Nash–Sutcliffe coefficient NSCEa-b. Collect all catchment A
attributes, catchment B attributes, NSCEa-b as training dataset for model training. In
this study, the sample size of the training set is 25 × 25.

(2) For each verified catchment C and calibrated catchment D, use the trained model to
take the attributes of C and D as input to predict the mean NSCE, and the parameter
group with the highest predictive value is used as the model parameter of C.

egionalization 

Regionalization 

 

Figure 5. Flow of parameter regionalization method.
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3. Results

3.1. Model Parameter Optimization

The SCE-UA algorithm is used to automatically optimize the model parameters
of 25 hydrological stations, and the objective function is to obtain the highest average
Nash–Sutcliffe coefficient. The results of parameter calibration are shown in Table 4.

Table 4. Simulation results of calibration.

Station NSCE Station NSCE Station NSCE

NingXiang 0.78 HengBanQiao 0.80 MaoPing 0.77
ShiBaZi 0.76 HuaQiao 0.61 SheBu 0.83
FeiXian 0.79 MaXiPu 0.72 HongYanXi 0.83
FenShi 0.84 ShanXiQiao 0.79 DaLuPu 0.82

ZhaiQian 0.77 LianYuan 0.86 HaoFu 0.80
JingTouJiang 0.87 LouDi 0.78 LanShan 0.67
ShenShanTou 0.83 HongYan 0.74 JiaYi 0.86
CaoLongTan 0.85 HuangQiao 0.74 LiangShuiKou 0.87

HeTan 0.79

It can be seen that there are 23 hydrological stations with an average NSCE between
0.7 and 0.9, and 2 between 0.5 and 0.7. According to national criteria for flood forecasting
in China, most calibration parameters meet the requirements of online flood forecasting.
The distributed model based on the Xinanjiang model and geomorphic unit hydrograph is
stable and suitable for most areas of Hunan Province.

The calibration parameters were fed into the distributed model to simulate 426 floods
in 25 catchments. Taking LianYuan Station as an example, the calibration result is shown in
Figure 6.

Figure 6. Comparison of observed and simulated hydrograph of LianYuan station.

3.2. Regionalization Schemes

The shortest distance, attribute similarity, support vector regression, generative adver-
sarial networks, classification and regression tree, and random forest models are selected to
construct and verify the parameter regionalization scheme.

According to the catchment attributes, the results of SD and AS can be directly cal-
culated. The centroid coordinates and basic attributes of the 33 catchments are shown in
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Table 5, including east longitude (lon, ◦), north latitude (lat, ◦), area (A, km2), average slope
(P), average elevation (E, m), average elevation drop (H, m), shape coefficient (L), and the
percentages of forest (u1), grass (u2), cultivated land (u3), other (u3), clay (s1), silt (s2) and
sand (s3). These attributes were extracted during sub-watershed division.

Table 5. Information of typical watershed characteristics.

Station
Name

Centroid
Coordinates

Basic Attributes Land Use (%) Soil Type (%)

lon lat A
(km2)

P E (m) H (m) L u1 u2 u3 u4 s1 s2 s3

NingXiang 112.2487 28.0972 2250 0.160 167.36 145.36 0.208 49.8 1.9 42.4 5.9 44.3 55.5 0.2
ShiBaZi 112.3625 28.0153 564 0.125 113.57 77.57 0.289 45.2 1.4 49.6 3.8 42.3 57.7 0.0
FeiXian 112.2963 25.6634 3559 0.213 395.16 261.16 0.244 49.8 5.5 38.3 6.4 18.3 74.9 6.8
FenShi 112.5636 25.2776 923 0.241 500.12 287.12 0.380 59.4 5.0 29.0 6.6 31.5 68.2 0.3

ZhaiQian 113.9350 26.0667 392 0.345 1140.59 428.59 0.629 87.8 5.2 2.7 4.3 16.8 83.2 0.0
JingTouJiang 112.0796 26.9399 173 0.181 227.96 118.96 1.113 57.7 1.7 38.9 1.7 64.1 35.9 0.0
ShenShanTou 112.2196 27.0911 2930 0.176 175.06 134.06 0.131 49.0 1.6 45.9 3.5 47.0 53.0 0.0
CaoLongTan 110.4173 28.8383 350 0.457 533.01 434.01 0.093 95.3 0.2 3.6 0.9 31.9 68.1 0.0

HeTan 109.1290 27.1854 445 0.372 616.32 274.32 0.391 84.4 4.0 10.1 1.5 90.1 9.9 0.0
HengBanQiao 110.5267 27.3562 31 0.323 757.67 274.67 0.424 89.5 1.2 8.5 0.8 61.1 38.9 0.0

HuaQiao 110.2038 27.6833 81 0.279 500.44 314.44 2.249 86.6 0.8 11.7 0.9 86.5 13.5 0.0
MaXiPu 110.4492 28.2416 342 0.383 386.66 297.66 0.119 88.6 0.8 9.3 1.3 87.7 12.2 0.1

ShanXiQiao 110.5982 27.5358 1211 0.342 803.06 651.06 0.173 86.6 3.6 8.3 1.5 64.0 36.0 0.0
LianYuan 111.6015 27.6335 154 0.229 248.27 128.27 0.508 54.1 2.7 36.8 6.4 59.0 41.0 0.0

LouDi 111.7627 27.8257 1556 0.236 312.35 239.35 0.220 52.6 4.6 35.3 7.5 61.9 36.0 2.1
HongYan 110.3664 26.8192 711 0.294 634.08 303.08 0.302 78.7 1.1 18.5 1.7 66.4 33.6 0.0

HuangQiao 110.5639 26.7795 2689 0.226 515.43 274.43 0.268 58.3 1.4 37.1 3.2 30.5 69.3 0.2
SheBu 111.6256 27.1677 2114 0.155 322.56 137.56 0.233 38.1 3.9 51.3 6.7 42.9 57.1 0.0

MaoPing 112.5982 27.4498 1434 0.164 154.98 122.98 0.298 58.9 0.8 38.0 2.3 23.1 76.9 0.0
HongYanXi 109.5954 29.3404 190 0.367 689.85 322.85 0.393 84.2 1.4 13.9 0.5 42.8 57.2 0.0

DaLuPu 111.5408 24.8728 635 0.232 487.37 269.37 0.223 54.0 5.3 35.6 5.1 18.8 80.4 0.8
HaoFu 111.4058 25.7095 440 0.328 565.82 365.82 0.528 77.5 1.7 19.1 1.7 58.4 41.6 0.0

LanShan 112.1479 25.2640 305 0.340 675.70 428.70 0.352 82.7 1.2 12.0 4.1 54.8 45.2 0.0
JiaYi 113.9674 28.7773 1475 0.274 316.37 248.37 0.276 77.5 2.5 17.0 3.0 44.6 55.4 0.0

LiangShuiKou 110.0255 29.6915 865 0.471 778.04 496.04 0.338 94.2 0.2 5.4 0.2 32.3 67.7 0.0
LuoLingQiao 113.3727 28.5341 340 0.170 113.07 77.07 0.652 65.2 1.2 29.9 3.7 70.0 30.0 0.0

JiaHe 112.2656 25.3685 1501 0.263 511.87 337.87 0.276 66.2 2.7 26.1 5.0 36.8 54.3 8.9
CaoJiTan 113.1137 26.3820 387 0.197 179.50 90.50 0.352 63.2 1.5 32.5 2.8 50.7 44.6 4.7

ShuangFeng 112.0508 27.4016 1552 0.164 175.11 118.11 0.301 40.4 2.9 51.6 5.1 20.5 79.5 0.0
DongKou 110.4491 27.1576 928 0.362 756.60 458.60 0.454 93.5 0.8 4.9 0.8 56.5 43.5 0.0

JiShou 109.5497 28.3203 788 0.356 621.50 453.50 0.208 81.5 3.0 14.0 1.5 58.3 41.7 0.0
ZhuXiPo 111.6941 28.1490 699 0.353 422.86 310.86 0.450 81.3 2.1 14.4 2.2 90.0 8.3 1.7

ShuangFengTan 110.5954 29.3742 444 0.360 591.95 446.95 0.257 87.0 0.6 11.2 1.2 66.1 32.5 1.4

According to the coordinates of the center of the basin, the centroid distance between
the verification basin and the calibration basin is calculated by Formula (3), and the calibra-
tion basin with the closest distance is selected, and its model parameters are used directly.
Normalize the basin properties, calculate the similarity index between the verification basin
and the calibration basin using Formula (4), and transfer the model parameters with the
highest similarity. Table 6 shows the transplant results of the SD and AS methods.

For SVR, GAN, CART and RF methods, we need to collect samples and train the
model first. This required cross-validation of the model parameters for 25 catchments. We
apply 25 groups of parameters to the flood simulations of 25 catchments and calculate the
mean NSCE.

Figure 7 shows the 25 × 25 cross-validation results for the samples. Among the
625 samples, there are 121 samples with a Nash–Sutcliffe coefficient greater than 0.7,
accounting for 19.4% of the total number of samples; 138 samples with a Nash–Sutcliffe
coefficient between 0.6 and 0.7, accounting for 22.1%; 112 samples with a Nash–Sutcliffe
coefficient between 0.6 and 0.7, accounting for 17.9%; and 254 samples with a Nash–Sutcliffe
coefficient less than 0.5, accounting for 40.1%. These samples are used as input to train
four models of SVR, GAN, CART and RF, and the results of different parameter groups are
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used to predict eight verification basins, and the optimal results are selected for parameter
transplantation. The Nash–Sutcliffe coefficients of the simulation results are shown in
Table 7.

Table 6. Transplant results of SD and AS methods.

Station Name

SD AS

Transplant
Station

NSCE
Transplant

Station
NSCE

LuoLingQiao JiaYi 0.66 LianYuan 0.86
JiaHe LanShan 0.69 JiaYi 0.31

CaoJiTan ZhaiQian 0.27 LianYuan 0.61
ShuangFeng ShenShanTou 0.75 MaoPing 0.74

DongKou HengBanQiao 0.29 HaoFu 0.72
JiShou MaXiPu 0.71 ShanXiQiao 0.46

ZhuXiPo LouDi 0.60 HeTan 0.72
ShuangFengTan CaoLongTan 0.64 HongYan 0.69

Average Value 0.58 0.64

 

Figure 7. Cross validation results of parameter transplantation.
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Table 7. Transplant results of machine learning methods.

Station Name
NSCE

SVR GAN CART RF

LuoLingQiao 0.75 0.71 0.65 0.78
JiaHe 0.55 0.69 0.51 0.65

CaoJiTan 0.42 0.43 0.61 0.64
ShuangFeng 0.25 0.57 0.35 0.64

DongKou 0.80 0.78 0.80 0.65
JiShou 0.75 0.71 0.71 0.75

ZhuXiPo 0.52 0.64 0.57 0.59
ShuangFengTan 0.79 0.78 0.66 0.72

Average Value 0.60 0.66 0.61 0.68

4. Discussion

It can be seen from Table 6 that two groups, CaojiTan-ZhaiQian and DongKou-
HengBanQiao, performed poorly when using the transplantation parameters of the SD
method, with average NSCE of 0.27 and 0.29, respectively. When the AS method was used
for transplant parameters, two groups had poor results, namely JiaHe-JiaYi and JiShou-
ShanXiQiao, with average NSCEs of 0.31 and 0.46, respectively. Table 8 shows the attributes
of these groups of catchments.

Table 8. Information on basin attributes.

Station Name CaoJiTan ZhaiQian DongKou HengBanQiao JiaHe JiaYi JiShou ShanXiQiao

Basin Attributes

Area (km2) 387 392 928 31 1501 1475 788 1211

Average Slope 0.197 0.345 0.362 0.323 0.263 0.274 0.356 0.342

Average Elevation (m) 179.5 1140.59 756.6 757.67 511.87 316.4 621.5 803.1

Average Elevation Drop
(m) 90.5 428.59 458.6 274.67 337.87 248.4 453.5 651.1

Shape Coefficient 0.352 0.629 0.454 0.424 0.276 0.276 0.208 0.173

Land Use (%)

Forest 63.2 87.8 93.5 89.5 66.2 77.5 81.5 86.6

Grass 1.5 5.2 0.8 1.2 2.7 2.5 3 3.6

Cultivated Land 32.5 2.7 4.9 8.5 26.1 17 14 8.3

Other 2.8 4.3 0.8 0.8 5 3 1.5 1.5

Soil (%)

Clay 50.7 16.8 56.5 61.1 36.8 44.6 58.3 64

Silt 44.6 83.2 43.5 38.9 54.3 55.4 41.7 36

Sand 4.7 0 0 0 8.9 0 0 0

It can be seen from Table 8 that DongKou and HengBanQiao are not only close, but also
most of the attributes are similar except for the area and average drop. The area of DongKou
is 931 km2, and the area of HengBanQiao is 31 km2. Their average drops are 458.6 m and
274.67 m, respectively. It is obvious that the different areas will lead to large differences in
concentration time, and the average drop may significantly affect the concentration speed,
which is the most critical factor affecting the geomorphic unit hydrograph [18]. Similarly,
compared with JiaHe and JiaYi, their attributes are very similar, except for average elevation
and drop. Therefore, we can infer that if the attributes of two catchments are very close, but
their average drop difference is significant, this is likely to cause a failed transplantation.
The opposite conclusion cannot be established. Table 6 shows an example with the best
results (LuoLingQiao-LianYuan). The average NSCE of transplantation can reach 0.86,
which is excellent according to the evaluation criteria. However, the attributes of the two
catchments, including the average drop, differed significantly (as shown in Table 5).
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From the above cases, it can be seen that the applicable conditions and scope of
parameter transplantation are relatively complex, and a single factor cannot be considered
in isolation. When multiple attributes are considered for parameter transplantation, the
results may not be satisfactory for catchments with similar attributes sometimes, so precisely
defining the similarity index is a challenge.

In contrast, machine learning methods can discover more hidden rules in data. How-
ever, the methods of machine learning cannot all achieve satisfactory results. Comparing
only the average NSCE, the results of SVR and CART were even worse than the AS method.
In order to better compare the performance of different methods, Table 9 shows the optimal
value, worst value and average value obtained using different methods. Figure 8 shows
the average NSCEs for the different methods.

Table 9. Comparison of parameter regionalization schemes.

Items
NSCE

SD AR SVR GAN CART RF

Best 0.75 0.86 0.80 0.78 0.80 0.78
Worst 0.27 0.31 0.25 0.43 0.35 0.59

Average 0.58 0.64 0.60 0.66 0.61 0.68

 

Figure 8. Validation results of regionalization schemes.

It can be seen from Table 9 that the average and worst Nash–Sutcliffe coefficients of the
simulation results using the random forest model are the highest. Among the best NSCE
results in Table 9, AR > SVR ≥ CART > RF ≥ GAN > SD, with AR performing best and SD
performing worst. The worst result of NSCE is RF > GAN > CART > AR > SD > SVR; RF is
the best and SVR is the worst. According to the NSCE average results, RF > GAN > AR >
CART> SVR > SD; RF performed the best and SD performed the worst.

Table 10 summarizes the validation results of the different methods and shows the
percentage of catchments with an average NSCE greater than 0.9, greater than 0.7 and less
than 0.9, greater than 0.5 and less than 0.7, and less than 0.5.
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Table 10. NSCE statistical results.

NSCE SD AR SVR GAN CART RF

≥0.9 0 0 0 0 0 0
0.7–0.9 25% 50% 50% 50% 25% 37.5%
0.5–0.7 50% 25% 25% 37.5% 62.5% 62.5%

<0.5 25% 25% 25% 12.5% 12.5% 0

It can be seen from Table 10 that all of the NSCE results of RF are greater than 0.5,
which is not achieved by all of the other methods. According to national criteria for
flood forecasting in China, if the average NSCE is less than 0.5, the simulation result is
unsatisfactory for online flood forecasting. Therefore, the RF model has better performance
than the other methods.

Figure 9 lists the importance of each attribute in the RF model. The most important
attribute for prediction using the RF model is the percentage of cultivated land area within
the transplanted catchment, followed by the area and average elevation of the calibration
catchment. It is well known that slope is a significant impact on hydrological models.
However, from the parameter importance of the RF model, the influence of slope is smaller
than that of cultivated land, which may be another issue that needs further research.

Figure 9. Importance of attributes in RF model.

5. Conclusions

In this study, the distribution hydrological models of 33 small and medium-sized
catchments in Hunan Province were constructed. The model parameters of 25 catchments
were calibrated by using the SCE-UA algorithm. The parameter regionalization scheme
including Shortest Distance (SD), Attribute Similarity (AS), Support Vector Regression
(SVR), Generative Adversarial Networks (GAN), Classification and Regression Tree (CART)
and Random Forest (RF) were validated using data from eight catchments. The main
conclusions are as follows:

(1) A total of 426 floods of 25 catchments were selected to calibrate the model parameters.
Among the simulation results of these 25 catchments, there are 23 catchments with an
average NSCE greater than 0.7, and 2 between 0.5 and 0.7. According to national crite-
ria for flood forecasting in China, most calibration parameters meet the requirements
of online flood forecasting. The distributed model based on the Xinanjiang model and
geomorphic unit hydrograph is suitable for most areas of Hunan Province.

(2) Based on the watershed attributes and cross validation results of model parameters,
six parameter regionalization schemes including SD, AR, SVR, GAN, CART and
RF were generated, and 136 floods of 8 catchments were used for verification. The
average values of the Nash–Sutcliffe coefficients of each scheme were 0.58, 0.64, 0.60,
0.66, 0.61 and 0.68, and the worst values were 0.27, 0.31, 0.25, 0.43, 0.35 and 0.59. The
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Nash–Sutcliffe coefficients of the RF model are all greater than 0.5, which cannot be
achieved by other methods. The RF model is the most stable solution and significantly
outperforms other methods. Using the random forest model to regionalize parameters
can improve the accuracy of flood simulation in ungauged areas, which is of great
significance for flash flood forecasting and early warning.

(3) The applicable conditions and scope of parameter transplantation are relatively com-
plex, and a single factor cannot be considered in isolation, and the attributes of adjacent
catchments may also vary greatly. The result of the attribute similarity method is not
very stable, and transplantation can fail when most of the attributes of two catchments
are similar, but if the attributes are very different, sometimes good results will be
achieved. According to the parameter importance analyzed by the RF model, the
slope is not so important, while the cultivated land area is the key to decision making.
This result goes against common sense and deserves further research.

There are many factors that affect the accuracy of parameter transplantation. In prac-
tice, continuous data collection is required to improve the quality of the underlying dataset.
With the accumulation of data and the continuous improvement of the regionalization
model, the accuracy of parameter transplantation can be improved.
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Abstract: Using data sourced from 15 periglacial debris flow gullies in the Parlung Zangbo Basin
of southeast Tibet, the importance of 26 potential indicators to the development of debris flows
was analyzed quantitatively. Three machine learning approaches combined with the borderline
resampling technique were introduced for predicting debris flow occurrences, and several scenarios
were tested and compared. The results indicated that temperature and precipitation, as well as
vegetation coverage, were closely related to the development of periglacial debris flow in the study
area. Based on seven selected indicators, the Random Forest-based model, with its weighted recall
rate and Area Under the ROC Curve (AUC) greater than 0.76 and 0.77, respectively, performed the
best in predicting debris flow events. Scenario tests indicated that the resampling was necessary to the
improvement of model performance in the context of data scarcity. The new understandings obtained
may enrich existing knowledge of the effects of main factors on periglacial debris flow development,
and the modeling method could be promoted as a prediction scheme of regional precipitation-related
debris flow for further research.

Keywords: periglacial debris flow; southeast Tibet; small sample imbalanced data; prediction model;
random forest

1. Introduction

The term ‘periglacial debris flow’ here refers to a special torrent containing a large
amount of sediment and rocks formed by the mechanisms such as ice avalanches, rock
avalanches, snowmelt, permafrost degradation, and glacier lake outbursts in the margin of
modern glaciers and snow-covered areas. As an important type of mountain disaster in
high-latitude and high-altitude areas, the periglacial debris flow presents great destructive
power because of its huge scale, sudden outbreak, and rapid process, and it is widely
distributed in, e.g., Switzerland, France, Italy, Russia, Canada, the USA and China. In
recent decades, with the increase in extreme weather events caused by global warming,
periglacial debris flow events have become more and more frequent, which has attracted
extensive attention from academia and society [1–4].

As one of the most sensitive areas to global climate change on the earth [5], periglacial
debris flow events in southeast Tibet have increased significantly in recent decades [6].
Simultaneously, with the increase in human activities, there are more and more reports
of debris flow blocking traffic, inundating houses, and causing casualties, which has
brought great trouble to the production and life of local people [3,7,8]. As a result, relevant
prevention work is becoming a focus of public attention.

It is difficult to implement engineering measures to control periglacial debris flows be-
cause of the harsh environment at high-altitude areas. Monitoring and early warning have
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become the main means of corresponding disaster prevention and mitigation. Therefore,
it is crucial to clarify the initial conditions and formation mechanism of the debris flow
process. Previous studies have shown that the formation and development of periglacial
debris flow not only is related to general precipitation and topographic factors but also
is significantly affected by temperature changes [1,6]. Because of the phenomenon of ice
segregation, the ice-filled frozen rock joint is widely developed in the glacier area [9]. When
the temperature rises and the ice and snow melt, the originally stable rock mass may fail
and collapse with a massive magnitude caused by the mechanisms of unloading and brittle
fracture [10]. For the permafrost, the so-called thaw consolidation effect caused by the
temperature rise will increase the pore water pressure of the soil and then trigger landslides
and debris flows [11].

The loose materials of periglacial debris flows mainly come from ice avalanche, rock
avalanche and freeze–thaw erosion in high-altitude areas. In many cases, these materials
have high potential energy and large volume [2–4]. Under the erosion and infiltration
of snowmelt water, they are easy to roll off the hillside, causing vibration liquefaction
and saturation liquefaction [12]. Therefore, unlike commonly reported rainfall-related
debris flow events [13–15], periglacial debris flows may erupt even without significant
precipitation [16]. Apparently, the compound action of temperature and precipitation is a
catalyst for stimulating the transformation of these loose materials to debris flows. Even
worse, greater uncertainty in the occurrence and propagation of debris flows has resulted
from the effects of material accumulation and scale upgrades as materials roll downslope,
in which the destruction and formation of cascade barrier dams continues [3].

Accordingly, it is evident that the formation mechanism of periglacial debris flows
is more complicated than the common type of debris flows triggered by a rainfall–runoff
process. Although previous case studies have provided some qualitative knowledge
and techniques, the results from mechanism analysis based on energy conservation and
mechanical balance are not universal and remain hard to popularize. In addition, due to the
difficulty of observation in high-latitude and high-altitude areas, the empirical relationships
between periglacial debris flows and potential influencing factors are also insufficient.
Therefore, how to quantitatively identify the main impact factors of regional debris flow
development under the constraints of poor mechanism knowledge and insufficient data
and then establish a feasible event-based prediction model is not only the need of disaster
prevention and mitigation but also of great scientific research significance.

Machine learning, here refers to a method of data analysis whereby rule-structured
classifiers for predicting the classes of newly sampled cases are obtained from a “training
set” of pre-classified cases [17], has become a research hotspot in academia in recent years.
As a kind of general theory and technology in big data analysis, machine learning has
performed outstandingly in many fields. In the field of mountain disasters, Costache [18]
compared the application performance of different machine learning models and their
hybrid algorithms in a risk assessment of mountain torrents in typical watersheds in
Romania, and the results showed that the model with hybrid algorithms had the best
accuracy (AUC > 0.87). Zhou et al. [19] divided the step-like landslide displacement in
the Three Gorges Reservoir Area into trend term and periodic term, and they believed
that using the particle swarm optimization–support vector machine (PSO–SVM) model
better represented the relationship between reservoir water-level fluctuations and periodic
displacement than the traditional method. Liang et al. [13] used Bayesian network (BN),
SVM, and artificial neural network to assess the hazard pattern of debris flow in mainland
China and found that the BN method provided the best detection accuracy. Focusing
on the post-fire debris flow event in California (USA), some scholars built multi-element
index systems from the aspects of rainfall, terrain, vegetation, soil erodibility, and disaster
degree, and used machine learning algorithms, such as logistic regression, decision tree,
and naive Bayes, to establish classification models to estimate the occurrence rate of debris
flow [14,15,20]. The AUC of relevant models could reach more than 0.7.
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It is true that the machine learning algorithms have achieved many successes in
the above areas. However, most of the cases come from the risk or hazard assessment of
mountain disasters, whereas real-time prediction of disaster-prone events is rarely involved.
In most cases, the applied algorithm requires a large-scale data set to obtain more reliable
results, such as lower risk of overfitting and higher AUC [21,22]. In addition, for the
prediction of debris flow with strong uncertainty, the imbalance between positive and
negative samples, i.e., the debris flow events occurred or not, is quite common. Although
the influence can be reduced by resampling or weight adjustment, in theory [23–25], few
relevant successful cases have been reported.

Accordingly, based on the highly available remote sensing data and the real-time
temperature and precipitation information, this study took the imbalanced small sample
data of typical periglacial debris flow gullies in the Parlung Zangbo Basin of southeast
Tibet as an example. Then, we (1) established a comprehensive index system using analysis
methods such as field survey, geostatistical analysis, and geographic information system
(GIS)-based map algebraic calculation; (2) analyzed the main indicators of regional debris
flow development quantitatively utilizing correlation analysis, recursive feature elimination
based on support vector machine (SVM-RFE) and GainRatio to select the monitoring and
early warning indicators; (3) integrated the intelligent resampling technique to optimize
the data samples; and finally (4) built the classification models for comparative tests and
prediction scheme optimization.

2. Materials and Methods

2.1. Study Area

The Parlung Zangbo River is located northeast of the Yarlung Zangbo River between
the Eastern Himalayas and the Nyainqentanglha Mountains. It is a tributary of the Yarlung
Zangbo River with the largest discharge. There are steep slopes, deeply incised valleys,
and developed faults in this area. The Parlong Zangbo River originates from the Azar
Glacier in the south of Lake Ranwu, which is about 4900 m.a.s.l. It flows from southeast to
northwest and then enters the Yarlung Zangbo River at an altitude of about 1540 m. The
relative elevation difference in the basin is between 1500 and 4000 m.

Affected by the warm moist flow from the Bay of Bengal, the basin has abundant
precipitation and contrasting seasons of rain and drought. The average annual precipitation
is nearly 900 mm, mainly from May to October [26]. The annual average temperature is
between 10 and 12 ◦C, and the distribution of vertical temperature gradient is obvious.
Generally, the climate in the low-altitude valley is warm and humid, where lush forests,
agriculture and animal husbandry economy have developed. In contrast, the high-altitude
area of the basin is occupied by a typical frigid alpine climate, where the marine glaciers
and their heritage (i.e., ice lakes) are widely developed [27]. Specially, this high-altitude
area is characterized by severe cold and freezing weathering, and consequently broken
surface materials, collapse, landslide, and other gravity processes are distributed widely. In
short, it is a typical monsoon-type periglacial debris flow disaster-prone area in China, and
it is reported that 67 debris flow gullies have been identified in the Ranwu–Peilong section
only before 1999 [28].

According to literature investigation, field investigation and observation, a certain
number of debris flow records have accumulated in the Parlung Zangbo basin since the
1950s [29]. However, considering that global warming has caused significant changes in
the local debris flow development environment [6], applicability of the early part of these
data is limited. Thus, we selected 23 debris flow events that have occurred in 15 debris
flow gullies in the Ranwu–Peilong section between 2012 and 2020 as the research objects
(Figure 1, Table 1). The gullies are characterized by a total area of 1–28 km2, with their
outlets elevated at 2400–3800 m and having an over 30◦ average slope. The bedrock of
these gullies is composed of granite gneiss, slate and quartzite, and the low-altitude part of
the gullies is basically a forest covered area [7]. These established the general geographical
features of the regional periglacial debris flow gullies.
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Figure 1. Debris flow gullies and precipitation stations in the Ranwu–Peilong section of the Parlung
Zangbo Basin.

Table 1. Debris flow events recorded in the study area from 2012 to 2020.

Gully
No.

Gully
Area

(km2)
Event
No.

Date Time
Possible
Causes

Monitoring
Station

1 Bitong 24
DF1 2016-09-05 06:30 Snowmelt, Precipitation PEILONG

DF2 2018-07-11 03:00 Snowmelt, Precipitation GUXIANG

2 Chaobu 16 DF3 2017-08-03 17:00 Ice and Snow melt GUXIANG

3 Chidan 28 DF4 2016-09-05 11:00 Snowmelt, Precipitation PEILONG

4 Dada 3 DF5 2020-07-10 16:10 Snowmelt, Precipitation TIANMO

5
East
Lapu 4

DF6 * 2013-07-05 21:00 Snowmelt, Precipitation
MIDUI/

SONGZONGDF7 * 2014-07-24 20:00 Snowmelt, Precipitation

DF8 2018-05-22 17:00 Snowmelt, Precipitation

6 Guxiang 25 DF9 2020-07-09 21:00 Ice and Snow melt GUXIANG-2

7 Jiaolong 22 DF10 2016-09-05 —— Snowmelt, Precipitation PEILONG

8 Jiurong 7

DF11 * 2014-08.18 23:00 Snowmelt, Precipitation

SONGZONG
DF12 * 2014-08-23 02:00 Snowmelt, Precipitation

DF13 * 2015-08-04 22:30 Snowmelt, Precipitation

DF14 * 2015-08-20 07:40 Snowmelt, Precipitation
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Table 1. Cont.

Gully
No.

Gully
Area

(km2)
Event
No.

Date Time
Possible
Causes

Monitoring
Station

9 Midui 1 DF15 * 2015-08-19 23:30 Snowmelt, Precipitation MIDUI/
SONGZONG

10 Motuo 3 DF16 * 2015-08-19 22:30 Snowmelt, Precipitation BOMI/
SONGZONG

11 Rongqian 5 DF17 * 2015-08-19 18:30 Snowmelt, Precipitation BOMI/
SONGZONG

12 Shalong 15 DF18 * 2015-08-19 21:00 Snowmelt, Precipitation SONGZONG

13 Tianmo 18 DF19 2018-07-11 03:00 Snowmelt, Precipitation GUXIANG

14
West

Jiazong 2

DF20 * 2012-09-22 09:00 Snowmelt, Precipitation

MIDUIDF21 * 2013-07-05 21:00 Snowmelt, Precipitation

DF22 * 2013-07-31 18:00 Snowmelt, Precipitation

15 Zhuonong 5 DF23 * 2015-08-19 19:20 Snowmelt, Precipitation BOMI/
SONGZONG

Note: Data from Deng et al. [7], Zeng et al. [30], Li et al. [31], and field observation; * refers to the events used for
training and validation.

2.2. Method

The quantitative analysis methods used in this paper mainly include Pearson cor-
relation analysis, Borderline Synthetic Minority Over-Sampling Technique (Borderline
SMOTE), Random Forest (RF), and Support Vector Machine (SVM). Because these methods
have many separate applications reported [13–15,32], in this study, we provided only the
necessary introductions to the main machine learning algorithms.

2.2.1. Borderline SMOTE

In this study, we summarized the prediction of debris flow occurrence into a bivariate
classification problem, that is, the events with or without debris flow. Data from 23 debris
flow events in 15 debris flow gullies were collected in the study area. Excluding the 9 events
used for testing after 2015, only 14 events relevant to 8 gullies could be used for training
and validation (Table 1). According to the monitoring results of the other gullies during
a debris flow event period, we expanded the training data to 165 samples, of which 16
were positive samples of debris flow (12 events plus two events used twice by using two
different but adjacent precipitation stations), and 149 were negative samples of non-debris
flow (Figure 2). The ratio of positive and negative samples was close to 1:10. Hence, it was a
typical imbalanced small sample data set. If these data were trained directly without special
processing, it could be found that even if all positive samples were judged to be negative,
the accuracy of the model, i.e., the ratio of correctly judged samples to the whole sample
set here, still reached 91%, which was not the desired result. Therefore, we introduced a
resampling technique for such data sets.

Commonly used resampling techniques include over-sampling and under-sampling.
They can achieve the purpose of balancing data by directly copying minority class samples
or subtracting redundant information from some of the majority class samples. Obviously,
the over-sampling makes the decision boundary more specific and easily leads to over-
fitting, whereas the under-sampling directly reduces the potentially useful information.
To eliminate these adverse effects, Chawla [23] proposed the Synthetic Minority Over-
Sampling Technique (SMOTE); the fundamental idea of this technique is to extract several
of the nearest congener samples b around the selected minority class center sample a and
then interpolate any points on the ab line as the new synthetic samples.
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Figure 2. The preparation process of the data set for training and validation.

Technically, SMOTE can alleviate the overfitting phenomenon caused by ordinary
oversampling to a certain extent, but treating all minority samples equally also causes
problems, such as high variance (overgeneralization) or data overlap of the new data sets.
In addition, the classification idea of SVM tells us that the samples located at the decision
boundary often play a decisive role in correct classification [33], and the expansion of
these samples is usually more valuable. Accordingly, Hui [34] proposed an improved
version of SMOTE (i.e., Borderline SMOTE), which can determine the decision boundary
based on the proximity relationship between each minority sample and the surrounding
majority samples. Then, only the minority samples near the boundary (i.e., the danger
zone) can be interpolated linearly, such that the new data set can be more prominent in the
decision boundary.

The method can be divided into two types (i.e., Borderline SMOTE-1 and Border-
line SMOTE-2). The difference between these two types is that the Borderline SMOTE-1
performs ordinary SMOTE interpolation on the minority samples of danger zone after
the decision boundary has been determined, whereas the Borderline SMOTE-2’s minority
center samples will be connected with the neighboring majority samples for interpolating
new samples. Theoretically, Borderline SMOTE-1 is more helpful to highlight the decision
boundary. In this study, we used Borderline SMOTE-1 to interpolate the 16 positive samples
from the 165 samples of the training set, to make the ratio of positive and negative samples
1:1. Then, a training set of 298 samples was obtained (Figure 2). The specific algorithm was
implemented in Python.

2.2.2. Random Forest (RF)

The RF, a representative method of ensemble learning [35], was selected as one of the
basic classifiers to avoid possible overfitting phenomenon. In essence, it is a collection
of weak classifiers containing multiple decision tree structures. For classification, the
algorithm generates a result through the “voting” of each decision tree [36]. RF can be
regarded as an application extension of the information entropy theory. The construction
of a decision tree (i.e., the basic unit of RF) follows the basic principle of rapidly reducing
system entropy [37].

For a sample set, the Decision Tree model can take the following steps: First, the total
value of information entropy of each feature will be calculated according to the probability
that the attributes (such as high, medium, or low) of different input features (such as
temperature, precipitation intensity, or slope) appear in each output category (e.g., the event
occurs/does not occur). Second, based on the principle of rapidly reducing information
entropy, the input feature with the most reduced information entropy is selected as the root
node to classify the samples according to attribute differences of different features. If the
output category corresponding to these samples is pure or single (e.g., debris flows occur
in all samples with precipitation intensity exceeding 15 mm/h), the sample set under this
attribute will not be subdivided downward as a leaf node. On the contrary, for the samples
in non-leaf nodes, repeat these two steps until all the leaf nodes are generated.

Because the samples are inevitably mixed with noise data, the overfitting phenomenon
may occur after the samples are completely subdivided into the final leaf nodes, which
affects the generalization performance of the model [38]. Therefore, in the modeling process,
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the splitting scale of a decision tree generally can be controlled within a certain range based
on specific principles or standards, such as setting a GainRatio rate or Gini coefficient. The
RF resamples the number and feature of samples before building the decision tree, which
means that each time, only part of the data in the total set is taken to build the tree [35]. In
this way, many decision trees can be obtained according to the different samples collected.
Because only part of the data in the total set is extracted each time, the interference of noisy
data can be effectively reduced. Therefore, the probability of overfitting in the RF model is
theoretically lower [35,39].

We used the RF plug-in in WEKA software to train, validate, and test the debris flow
prediction model. Generally, it is believed that the two most important hyperparameters
of RF modeling are the number of decision trees and the maximum number of features
selected per sampling [40,41], i.e., numiterations and numfeatures in WEKA, respectively.
The Gridsearch method was used to adjust the hyperparameters, firstly. However, it
was found that for some algorithms, there was still the possibility of overfitting, or the
given results consumed unnecessary computing power. In view of these situations, the
hyperparameters were adjusted manually based on the results of Gridsearch so as to
reduce calculation consumption while ensuring the accuracy. Finally, we determined that
the numiterations was 70 and the numfeatures was 3. In addition, considering that the
GainRatio can be used to reflect the relative importance of each feature, the GainRatio
method was used to investigate the contribution of each indicator to the occurrence of
debris flow in the preliminary indicator selection phase.

2.2.3. Support Vector Machine (SVM)

SVM is originally formulated as a binary classifier that obtains the optimal hyperplane
by setting the maximum interval between the two classes of samples [33]. When using some
specific modes, such as decomposing the multiclass datasets into multiple binary subsets,
SVM can also be used to deal with multiclass problems. Because the setting of maximum
interval requires only a small number of samples (i.e., the support vectors) that are closest
to the hyperplane, this method is relatively friendly to small sample data sets [21]. The
maximum interval can be classified into two types, i.e., the soft interval and the hard
interval. The hyperplanes of the hard margin strictly distinguish all samples, which is
suitable for linearly separable data sets. The soft margin means that a slack variable is
added to select the optimal hyperplane on the premise of pursuing the maximum interval
width. It is suitable for a data set that has a few outliers but is still linearly separable in
general. When the data set is linearly non-separable, SVM introduces the kernel functions
to map the samples into high-dimensional space, transform it into a linearly separable data
set, and then finish the classification work.

The objective function of SVM not only has a loss function that reflects the accuracy
of the fitting but also includes a regularization term that expresses the complexity of the
model [25,33]. As a result, the optimization goal is not only to reduce the empirical risk
but also to consider the structural risk of the model to avoid generating complex models
that produce the overfitting phenomena due to the pursuit of local optima [42]. Thus, the
generalization ability of the SVM model can be improved. The hyperparameters that need
to be paid attention to in the actual operation of SVM are the C (penalty-factor) in the loss
function term and the σ2 in the kernel function (usually a Gaussian kernel function). The
higher the C value is set, the greater the weight of the loss function term in the objective
function, which will seek to further reduce the empirical risk, and then the model will be
more prone to overfitting. Otherwise, the weight of the regularization term in the objective
function is increased in a disguised way, and the generalization ability of the model will be
strengthened, but there may be underfitting for the model classification. The higher the σ2

value in the kernel function, the smoother the generated function, the more samples can
become the support vectors, and the more likely the final model is to be underfitted.

This study used the LibSVM plug-in in WEKA to train, validate, and test the debris
flow prediction model. According to the results of Gridsearch and manual tests, we
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decided to use the SVM model with radial basis kernel function for prediction, where
gamma (corresponding to 1/2σ2) = 0.0001, and cost (corresponding to C) = 1. Using the
weights generated by SVM for each feature in the process of solving the maximum interval,
the relative importance of each feature could be calculated, i.e., the so-called SVM–RFE
algorithm. This algorithm was employed to investigate the contribution of each indicator
to the occurrence of debris flow. The linear SVM classifier (LibLINEAR plug-in in WEKA)
was also introduced into the modeling to compare the performance of linear and nonlinear
classifiers intuitively.

2.3. Data and Indicators
2.3.1. Data Sources

In this study, remote sensing and meteorological data with high availability were
collected as the main information sources, mainly involving precipitation, temperature,
landform, geology, vegetation, and snow cover (Table 2).

Table 2. Data types and sources.

Type Content Sources

Precipitation

Hourly data of the stations of PEIlONG, BOMI, GUXIANG,
SONGZONG, MIDUI on the day and the adjacent days of

debris flow events in 2012–2018, and daily data of the 10 days
before the event day; hourly data of GUXIANG-2 and

TIANMO stations on the day and the adjacent days of debris
flow events in 2020, and daily data of the 7 days before the

event day

Data from 2012 to 2018 collected from the Bomi Geologic
Hazard Observation Station of the Institute of Mountain

Hazards and Environment, CAS; data of 2020 sourced from
the field observation

Temperature
Daily maximum, minimum, and average data of Bomi station
in 2012–2020 and Tianmo station in 2020 on the event day and

the 15 days before the event day

Data of the Bomi station collected from the China
Meteorological Data Service Centre; data of the Tianmo

station sourced from the field observation

Landform DEM of the Parlong Zangbo Basin SRTM 90 m DEM and ASTER 30 m GDEMv2

Geology National 1:2.5 million geological map of China National Geological Archives Data Center, China

Vegetation Cover NDVI of the study area in typical months from 2012 to 2020 MODIS 500 m monthly synthetic product

Snow Cover Snow cover products from 2012 to 2015 Maximum_Snow_Extent MOD_Grid_Snow_500 m products
of MOD10A2

2.3.2. Basic Indicators

- Meteorology

In view of the natural relationships between the development of periglacial debris flow
and the changes in precipitation and temperature, many scholars have explored the indica-
tive factors of debris flow events according to these two factors. The precipitation indicators
included antecedent precipitation, precipitation intensity, and precipitation duration, and
the temperature indicators included accumulated temperature and average temperature.
Based on outcomes from previous studies and the convenience of data collection [29,43–45],
we selected 14 potential indicators, including accumulated effective precipitation over
3/5/10 days before the event (A3/A5/A10), maximum and average precipitation intensity
of the event day (before the event, of course, Ia/Im), precipitation duration (D), temperature
rise rate before the flood season (March to July normally, Tr), coefficient of variation of the
daily temperature range over 5/10/15 days before the event (Cv

5/Cv
10/Cv

15), antecedent
three-day effective accumulated temperature (greater than 0 ◦C, Ta), and the average daily
temperature over 5/10/15 days before the event (T5/T10/T15).

The antecedent accumulated effective precipitation (A3/A5/A10) was calculated based
on the Antecedent Precipitation Index (API, formula 1, Deng et al. [7]).

r0 = kr1 + k2r2 + k3r3 + . . . +knrn (1)
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where r0 is the antecedent accumulated effective precipitation (mm) of the event
day (day 0); k is a constant reflecting surface runoff, which is related to soil texture and
infiltration capacity; and rn is the maximum regional precipitation (mm) on the nth day
before day 0.

It has been reported that the moraine soil in the study area was coarse in general [46],
which was consistent with results from the field investigation of this research (Figure 3).
Accordingly, it was considered that the gully soil of the study area had good permeability,
and the two parameters (i.e., n and k) of the formula were set as 3 and 0.5 (A3), respectively.
In addition, the scenarios of n = 5/k = 0.6 (A5) and n = 10/k = 0.7 (A10) were set to
understand the influence of different parameter settings on the prediction of debris flow
events (Table 3).

Table 3. Precipitation indicators data of related stations in training/validation phase (2012–2015).

No.
Precipita-

tion
Station

Year Date
Event
No. *

D
(h)

I a

(mm/h)
I m

(mm/h)
A 3

(mm)
A 5

(mm)
A 10

(mm)

1

BOMI

2012 09-21 1 2 0.8 1.0 10.0 14.2 21.3

2 2012 09-22 1 1 1.0 1.0 5.8 9.4 16.2

3 2012 09-22 2 3 2.0 5.0 5.8 9.4 16.2

4 2012 09-22 3 13 1.4 4.0 5.8 9.4 16.2

5 2013 07-05 1 2 0.8 1.0 0.1 0.3 2.8

6 2013 07-05 2 9 2.1 4.5 0.1 0.3 2.8

7 2014 07-23 1 4 1.9 4.5 2.9 3.7 6.9

8 2014 07-24 1 1 1.5 1.5 5.7 7.2 10.7

9 2014 07-24 2 4 1.0 2.0 5.7 7.2 10.7

10 2014 07-24 3 4 1.8 3.5 5.7 7.2 10.7

11 2014 07-25 1 3 0.8 1.5 6.5 8.8 12.6

12 2014 08-18 1 1 1.0 1.0 4.4 8.5 14.7

13 2014 08-22 1 3 0.8 1.0 4.5 5.8 10.4

14 2014 08-22 2 1 1.0 1.0 4.5 5.8 10.4

15 2014 08-22 3 3 0.7 1.0 4.5 5.8 10.4

16 2014 08-22 4 2 1.3 1.5 4.5 5.8 10.4

17 2014 08-22 5 2 1.8 2.0 4.5 5.8 10.4

18 2014 08-23 1 14 1.0 3.5 7.3 9.4 14.1

19

SONGZONG

2012 09-21 1 3 1.2 1.5 10.8 15.5 22.5

20 2012 09-21 2 4 1.9 2.5 10.8 15.5 22.5

21 2012 09-22 1 11 2.9 7.0 12.5 17.7 25.8

22 2012 09-23 1 10 1.6 2.5 28.4 36.7 49.0

23 2013 07-05 1 5 1.3 3.0 0.8 0.9 2.8

24 2013 07-05 2 1 1.5 1.5 0.8 0.9 2.8

25 2013 07-06 1 4 1.8 3.0 6.4 7.7 10.3

26 2014 07-23 1 1 1.5 1.5 0.4 0.6 2.4

27 2014 07-24 1 3 1.0 1.5 0.9 1.2 2.7

28 2014 07-24 2 2 3.0 2.5 0.9 1.2 2.7

29 2014 08-18 1 2 5.0 2.5 2.7 6.4 11.7

30 2014 08-22 1 4 0.6 2.5 3.9 5.3 9.4
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Table 3. Cont.

No.
Precipita-

tion
Station

Year Date
Event
No. *

D
(h)

I a

(mm/h)
I m

(mm/h)
A 3

(mm)
A 5

(mm)
A 10

(mm)

31 2014 08-23 1 9 2.4 5.0 8.6 11.5 16.2

32 2015 08-03 1 2 4.0 2.5 0.0 0.0 0.2

33 2015 08-04 1 3 3.2 6.0 6.5 7.8 9.1

34 2015 08-04 2 2 3.8 5.0 6.5 7.8 9.1

35 2015 08-17 1 2 1.0 1.0 1.0 1.3 2.1

36 2015 08-17 2 3 1.2 1.5 1.0 1.3 2.1

37 2015 08-17 3 4 0.6 1.0 1.0 1.3 2.1

38 2015 08-18 1 1 1.0 1.0 7.0 8.6 10.3

39 2015 08-19 1 9 1.1 2.0 11.4 14.7 18.3

40 2015 08-19 2 10 2.5 6.0 11.4 14.7 18.3

41

MIDUI

2012 09-22 1 17 1.3 3.0 3.9 5.9 10.3

42 2012 09-22 2 13 1.2 3.0 3.9 5.9 10.3

43 2012 09-23 1 1 1.5 1.5 15.6 19.9 26.3

44 2012 09-23 2 9 1.5 5.5 15.6 19.9 26.3

45 2013 07-04 1 4 1.8 2.5 0.0 0.0 1.4

46 2013 07-05 1 2 1.5 1.5 2.8 3.3 4.8

47 2014 07-23 1 1 1.0 1.0 1.6 2.3 3.7

48 2014 07-23 2 2 1.0 1.0 1.6 2.3 3.7

49 2014 07-23 3 2 1.3 1.5 1.6 2.3 3.7

50 2014 07-24 1 6 2.1 3.5 3.4 4.7 6.4

51 2014 08-22 1 4 0.8 1.0 0.9 2.1 5.4

52 2014 08-23 1 9 1.7 2.5 3.1 4.5 7.3

53 2014 08-24 1 8 1.6 3.5 8.6 11.2 15.1

Note: * means event number on that day.

Considering that the debris flow events in the study area mainly occurred from July to
September, the event may have been related to the amount of ice and snow melting from
March or April every year. Therefore, we selected the daily average temperature and days
from March to July of each year to construct the scatter diagram and used the slope of
the linear trend equation of the scatter diagram to reflect the temperature rise rate in this
period (Figure 4) and to obtain the indicator of the temperature rise rate before the flood
season (Tr).

Figure 3. Grain size characteristics of samples from typical debris flow gullies in field investigation.
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Assuming that the more severe the temperature change before the event, the more
conducive it would be to freeze–thaw erosion and loose material accumulation, we added
the coefficient of variation of the daily temperature range over 5/10/15 days before the
event (Cv

5/Cv
10/Cv

15), which were calculated by the coefficient of variation of the differ-
ence between daily maximum temperature and minimum temperature over 5/10/15 days
(Table 4). To further investigate the influence of short-term temperature change on the
development of periglacial debris flow, the indicators of antecedent three-day effective
accumulated temperature (greater than 0 ◦C, Ta) and the average of daily temperature over
5/10/15 days before the event (T5/T10/T15) were also calculated.

y = 0.1361x + 4.0983
R² = 0.8281

y = 0.0991x − 7.221
R² = 0.8429

y = 0.1285x − 31.18
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Figure 4. Scatter plot between daily average temperature and day sequence from March to July of
each year (missing data for April 2012 and May 2014).

Table 4. Temperature indicators data of BOMI station in training and validation phase in 2012–2015
(unit: ◦C).

Year Date Cv
5 Cv

10 Cv
15 T5 T10 T15 T a

2012 09-22 0.29 0.37 0.37 14.1 13.7 14.4 43.3

2012 09-21 0.30 0.38 0.38 13.8 13.8 14.6 44.0

2012 09-23 0.40 0.44 0.41 13.9 13.4 14.1 39.6

2013 07-06 0.11 0.26 0.29 18.7 17.5 17.5 56.8

2013 07-04 0.14 0.33 0.30 17.9 16.8 17.5 55.8

2013 07-05 0.11 0.29 0.30 18.5 17.2 17.6 56.4
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Table 4. Cont.

Year Date Cv
5 Cv

10 Cv
15 T5 T10 T15 Ta

2013 07-31 0.26 0.30 0.33 18.5 18.0 17.8 54.3

2014 07-23 0.23 0.34 0.29 18.1 17.2 17.6 56.6

2014 07-25 0.23 0.24 0.30 18.2 17.2 17.4 53.6

2014 07-24 0.20 0.36 0.30 18.4 17.1 17.5 55.1

2014 08-18 0.55 0.39 0.32 14.6 16.3 17.2 42.0

2014 08-22 0.26 0.42 0.35 16.3 15.6 16.5 48.9

2014 08-23 0.30 0.41 0.35 16.0 15.3 16.2 45.8

2014 08-24 0.35 0.42 0.36 15.6 15.0 16.0 44.2

2015 08-04 0.15 0.19 0.25 17.3 17.2 16.6 54.6

2015 08-03 0.14 0.19 0.25 17.0 16.8 16.5 53.4

2015 08-17 0.31 0.37 0.31 18.8 17.9 17.9 54.2

2015 08-18 0.46 0.41 0.38 18.0 18.0 17.7 50.6

2015 08-19 0.46 0.49 0.43 17.0 17.9 17.6 47.8

2015 08-20 0.38 0.53 0.48 15.9 17.5 17.3 44.4

- Topography

Topographic relief has had a great influence on runoff generation and flow confluence
as well as on the storage and release of gravitational potential energy from loose materi-
als. Hence, it is one of the preconditions for the development of periglacial debris flow.
In this study, we selected five indicators, including watershed height difference (Hd), gully
gradient of mainstream (Gg), concave or convex characteristic from longitudinal profile (P),
watershed average slope (Sa), and slope aspect (As), to reflect the influences of topographic
factors (Table 5).

In practice, the longitudinal profile of the gully mainstream was extracted first using
the three-dimensional analyst function in GIS. Then, we obtained Hd by calculating the
difference between the outlet elevation and maximum elevation; calculated Gg from the
ratio of Hd to the projection length of the longitudinal profile by arctangent function
transformation; characterized P by a quantitative method (Formular 2); and obtained Sa
by calculating the average slope using the zonal statistical function of GIS. The As was
summarized based on several main slope aspects of each watershed.

Table 5. Topographic and geological characteristics of the eight debris flow gullies in the training set.

Gully Hd (m) Sa (◦) Gg (◦) As P (%) F L

Zhuonong 1832.62 32 11.4 East–Northwest −65.5 0.33 Extremely hard

West Jiazong 1858.96 37 34.0 South–Southwest −12.6 0.00 Extremely hard

Shalong 1508.94 32 13.4 Southwest–West −3.8 0.31 Secondary
hard

Rongqian 1993.82 32 29.4 South–Southwest −4.9 0.10 Extremely hard

Motuo 1510.14 27 28.6 East–Southeast −2.2 0.25 Extremely hard

Midui 1262.14 34 31.8 East–Northeast 4.2 0.33 Secondary
hard

Jiurong 1751.91 36 23.5 West–Northwest −28.0 0.21 Secondary
hard

East Lapu 1563.89 36 30.1 South–Southwest 3.1 0.10 Extremely hard
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P = (a1 − a2) / a2 (2)

where P is the concave or convex characteristic of a longitudinal profile (%), and a positive
value means that the profile is mainly convex, whereas a negative value is opposite; a1 is
the area of the profile; and a2 is the triangle area enclosed by the three vertices of the profile.

- Geology

Geological indicators included lithologic hardness (L) and fault buffer (F, Table 5).
The indicator of L, mainly hard and sub-hard, was qualitatively classified based on field
investigation and the 1:2.5 million national geological map. The study area had many faults
according to the map, among which the most famous one named Jiali-Ranwu fault was
distributed in the south of the area, and the rest were mostly unproved faults. According to
the fault data provided by the map, we scored five buffers (1 km, 2 km, 3 km, 5 km, and 10
km) according to the distance to the fault (Figure 5), and then, the average value of each
gully watershed was extracted and normalized using the zonal statistics function of GIS to
obtain the F value.

Figure 5. Distribution of faults and their buffers in the study area.

- Underlying surface

Snow melting is one of the basic reasons for the formation of periglacial debris flow [1,10];
thus, the change of snow cover is an important consideration in the underlying surface
conditions. In contrast, the influence of vegetation on periglacial debris flow development
is more complicated. On the one hand, vegetation can enhance the strength of soil by root
system [47], and the hydrological effect of vegetation, such as intercepting rainfall and
extracting soil moisture, is also conducive to the stability of a slope [48]. On the other
hand, the surcharge load caused by plant weight and the transmission of drag force from
wind reduce the slope stability [49,50]. Therefore, vegetation can promote or inhibit the
formation of debris flows by increasing or reducing the supply of loose materials to a
certain extent.
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For the study area, vegetation can hardly affect the initiation of loose materials in
the glacier area. However, the forests in the low-altitude valley may play an important
role on the development of periglacial debris flow. Hence, the effects of vegetation and
snow cover would be focused on this part, including four indicators: antecedent spatial
scale Normalized Difference Vegetation Index (NDVIs), antecedent temporal scale NDVI
(NDVIt), average maximum snow cover rate (MSCa), and antecedent snow cover decrease
rate (ASCd). Among them, we calculated the antecedent NDVI indicators, basically, the
vegetation coverage of each gully watershed in the month before the debris flow events
in 2012–2020, based on the monthly synthetic product of MODIS 500 m NDVI (Table 6).
Considering that both interannual and regional differences on vegetation coverage were
significant, the NDVIt and NDVIs were obtained by normalizing the annual and regional
sequences, respectively, to reflect the impact of this factor comprehensively.

Table 6. NDVI changes of 15 debris flow gullies in the study area from 2012 to 2020.

Gully

NDVI

Training/Validation Phase Testing Phase

2012-08 2013-06 2014-07 2015-07 2016-08 2017-07 2018-04 2018-06 2020-07

Tianmo 0.12 0.18 0.20 0.70 0.40 0.51

Chidan 0.23 0.37 0.31 0.75 0.69

Jiaolong 0.12 0.16 0.17 0.51 0.37

Chaobu 0.13 0.20 0.52 0.83 0.64

Bitong 0.12 0.18 0.20 0.51 0.44 0.29 0.39

Dada 0.16 0.19 0.43 0.61 0.39

Guxiang 0.12 0.17 0.19 0.42 0.30 0.28

Zhuonong 0.24 0.48 0.31 0.69

West
Jiazong 0.16 0.42 0.28 0.43

Shalong 0.18 0.27 0.23 0.38

Rongqian 0.24 0.34 0.22 0.51

Motuo 0.29 0.47 0.38 0.62

Midui 0.06 0.11 0.08 0.16

Jiurong 0.34 0.41 0.42 0.57 0.22

East Lapu 0.26 0.30 0.23 0.32 0.04

Based on the products of MOD10A2 from 2012 to 2015, we calculated the proportion of
snow and cloud cover area of each watershed at training and validation phase, respectively.
The layers with more than 5% cloud were removed in this process, and the proportion of
the largest snow coverage area before the debris flow events was selected as the maximum
snow coverage rate of the current year. According to the difference between this maximum
rate and the latest snow coverage rate before the event, the ASCd could be calculated, and
the MSCa could also be obtained based on the average statistics of this maximum rate from
2012 to 2015 (Table 7).
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Table 7. Snow cover conditions of the eight debris flow gullies at training and validation phase in
2012–2015 (unit: %).

Gully
ASCd

MSCa
2012 2013 2014 2015

Zhuonong 89.2 93.6 86.0 93.0 86.5

West Jiazong 84.3 91.6 100.0 80.0 98.5

Shalong 43.8 100.0 80.1 94.5 93.1

Rongqian 93.7 100.0 83.9 79.5 77.5

Motuo 90.9 100.0 86.3 100.0 100.0

Midui 80.0 90.0 80.0 100.0 100.0

Jiurong 100.0 100.0 82.3 100.0 92.4

East Lapu 91.4 91.4 100.0 96.0 90.9

Based on the above-mentioned 25 indicators and the watershed area (A) of each gully,
a total of 26 preliminary indicators were selected and normalized for subsequent analysis.

3. Results and Discussion

3.1. Selection of Prediction Indicators

To avoid the possible interference from over-resampling, 165 events data without
resampling were used here for further indicator selection. Based on the principle of
reducing the indicators as much as possible and high operability, different methods such as
Pearson correlation and SVM-RFE were employed to determine the final indicators to be
included in the classification model.

First, we used Pearson correlation analysis to eliminate the variables with obvious
false correlation; that is, the correlation that cannot reflect the true relationship between the
two variables, even if it is statistically significant. The results indicated that 13 indicators
related to vegetation, temperature, and precipitation were significant with the development
of periglacial debris flow in the study area (Table 8 left). Most of them presented a positive
correlation except for the temperature rise rate before the flood season (Tr). As mentioned
before, periglacial debris flows usually occur with the increase in temperature [6]. However,
the relationship between Tr and debris flow events seemed to contradict this cognition:
that is, the faster the warming, the fewer debris flow events. Further analysis showed that
Tr was mainly related to the initial temperature in March of each year. The higher the initial
temperature level, the more limited the space for subsequent warming, and the slower
the warming rate (Figure 6), whereas a higher initial temperature may indeed lead to the
increase in snow melting rate and the occurrence of periglacial debris flow. Therefore, for
the indicator of Tr, its correlation with debris flow development cannot reflect the actual
relationship between temperature rise rate and regional debris flow occurrence; thus, the
indicator needed to be eliminated.
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−

Figure 6. Relationship between Tr and the average temperature of March from 2012 to 2015 (with the
Standard Error of Mean on daily average temperature of each March).

Furthermore, we employed SVM-RFE and the GainRatio method to investigate the
importance of the remaining 25 indicators in debris flow development, in which the
10-fold cross-validation was used in SVM-RFE. The results showed that although the
importance or correlation ranking of each indicator from the three methods was quite
different, the top indicators were highly similar, mainly the temporal sequences related to
vegetation, precipitation, and temperature. Conversely, the indicators reflecting the spatial
heterogeneity of landform, geology, and watershed characteristics ranked lower in general,
which might have been related to the range of selected sample data.

Statistically speaking, the method of sample expansion in this study limits the per-
formance of indicators reflecting spatial heterogeneity to a certain extent. The data from
165 events collected here included 16 events with debris flow and 149 events without debris
flow. The 16 events with debris flow were obtained based on eight gullies monitored by the
stations of Bomi, Songzong, and Midui from 2012 to 2015 (Table 1), while the 149 events
without debris flow were expanded from the same eight gullies on different dates. Taking
the debris flow event on 23 August 2014 in Jiurong gully as an example, on the event day,
if no debris flow was recorded in the other seven gullies, the seven gullies on 23 August
2014 would be registered as non-debris flow events. In addition, if no debris flow was
recorded in the other seven gullies on the day of 22 August 2014 or 24 August 2014, the
seven gullies on that day would also be registered as non-debris flow events. In this way,
many gullies have experienced almost the same frequency of debris flow and non-debris
flow events, and the difference of watershed indicators, such as the mainstream slope,
among these eight debris flow gullies is much smaller than that between debris flow gullies
and non-debris flow gullies [51,52]. Thus, it is difficult to find a significant correlation
between the indicators reflecting spatial heterogeneity and debris flow events in such a
data set.

According to the results from the three assessment methods (Table 8), indicators closely
related to the development of periglacial debris flow were NDVIt, D, Im, Ia, Cv

15, Cv
10,

Cv
5, T15, T10, A10, A5, and A3. Because the indicators in Im/Ia, Cv

15/Cv
10/Cv

5, T15/T10,
and A10/A5/A3 presented repeatability to some extent, we selected the indicator with the
highest comprehensive ranking of each category as an input of the classification model.
Considering that the comprehensive ranking of Sa was the highest among all spatial related
indicators, the final seven indicators were D, Im, Cv

15, T10, A3, NDVIt, and Sa.
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Table 8. Assessment methods of indicator selection and related ranking.

Rank Correlation Analysis SVM-RFE GainRatio

Coefficient Indicator Average Merit Indicator Score Indicator

1 0.42 ** NDVIt 23 ± 2.7 D 0.47 Cv
10

2 −0.36 ** Tr 22.5 ± 3.0 T10 0.47 Cv15

3 0.34 ** D 21.4 ± 2.6 A5 0.26 Cv
5

4 0.30 ** Cv
15 21.2 ± 1.5 T15 0.24 A3

5 0.27 ** T10 20.3 ± 4.1 Cv15 0.24 Im
6 0.26 ** Im 20.3 ± 1.1 A10 0.16 NDVIt
7 0.25 ** A3 19.8 ± 1.9 Im 0.11 T10
8 0.24 ** Cv

5 19.3 ± 2.1 Cv
10 0.11 T15

9 0.24 ** Cv
10 18.4 ± 1.4 NDVIt 0.11 D

10 0.23 ** A5 16.9 ± 5.2 Ia 0.06 Ia
11 0.22 ** Ia 15.1 ± 2.7 A3 0 A10
12 0.21 ** T15 14.1 ± 0.3 Sa 0 T5
13 0.19 * A10 12.4 ± 1.0 Hd 0 A5
14 0.11 Sa 8.8 ± 3.2 ASCd 0 MSCa
15 0.08 T5 8.8 ± 4.3 Cv

5 0 ASCd
16 0.06 ASCd 8.3 ± 2.8 T5 0 F
17 −0.06 L 8.1 ± 4.7 MSCa 0 P
18 0.039 A 6.8 ± 3.6 Gg 0 As
19 0.03 As 6.7 ± 1.9 As 0 NDVIs
20 −0.03 F 6.4 ± 2.65 P 0 Gg
21 −0.02 Ta 6.3 ± 3.55 NDVIs 0 A
22 −0.02 Hd 6.2 ± 3.25 Ta 0 Hd
23 0.02 P 5.7 ± 3.44 L 0 L
24 0.01 MSCa 4.1 ± 2.74 F 0 Sa
25 0.01 Gg 4.1 ± 3.05 A 0 Ta
26 0.01 NDVIs

Note: ** and * are the significance of 0.01 and 0.05, respectively.

3.2. Modeling and Comparative Analysis
3.2.1. Training and Validation

As mentioned in Section 2.2.1, after the indicator selection work, Borderline SMOTE-1
was used to obtained a balanced training set, and the data were imported into the RF, SVM
and Linear SVM (LSVM) models as the inputs, respectively. We employed the 10-fold cross-
validation to train and validate the binary classification process on whether the debris flow
occurred. Simultaneously, the precision rate, recall rate, Matthews Correlation Coefficient
(MCC), Receiver Operating Characteristic Curve (ROC) and other model assessment indices
were employed to evaluate the performance of each classification model. The calculation
formulas of the main assessment indices are as follows:

TPR or Recall = TP/(TP + FN) (3)

FPR = FP/(FP + TN) (4)

Precision = TP/(TP + FP) (5)

F-Measure = 2·Precision·Recall/(Precision + Recall) (6)

MCC = (TP·TN − FP·FN)/sqrt [(TP + FP)(TP + FN)(TN + FP)(TN + FN) (7)

All these indices are based on a fundamental concept named confusion matrix (Table 9),
which is a form of contingency table showing the differences between the true and predicted
classes for a set of labeled examples [53]. In the confusion matrix, TP and TN are the number
of true positives and true negatives, respectively, indicating that the predicted values are
the same as the true values, and the predicted values are positive and negative examples,
respectively; FN and FP are the number of false negatives and false positives, respectively,
indicating that the predicted values are opposite to the true values, and the predicted values
are negative and positive, respectively.

The assessment indices can evaluate models from different aspects. The true positive
rate (TPR) or recall rate reflects the ratio of correctly classified positive cases to the total
number of positive cases [54]; the false positive rate (FPR) represents the ratio of misclassi-
fied negative cases to the total number of negative cases, i.e., the false alarm rate in early
warning system. Precision refers to the ratio of true positive cases to all cases classified
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as positive. The F-Measure is the harmonic weighted average of precision rate and recall
rate, reflecting the comprehensive situation of the two indices [54]. The MCC describes
the correlation between the prediction set and the observation set, with a value range of
−1 to 1, and it is regarded as one of the most adaptable comprehensive evaluation indices,
which was applicable to imbalanced data sets [55]; and the AUC is the area under the
ROC curve [53], reflecting the probability that a positive sample is correctly classified. A
value of 1 meant that all positive samples can be correctly classified, and a value of 0.5
indicates that the performance of the classifier was no different from random classification.
Except for the FPR, the higher the value of the assessment indices, the better the model
classification performance.

Table 9. A typical confusion matrix.

True Class
Predicted Class

+ −
+ TP FN
– FP TN

Note: + and − are positive and negative cases, respectively.

The results showed that the RF-based model outperformed the SVM and LSVM-based
model (Table 10). The values of recall rate, F-Measure, MCC, AUC, and other major
assessment indices of the RF model in the training and validation phase all exceeded 0.95,
and the prediction performance on positive and negative events was equivalent. Although
the values of main assessment indices of the SVM model were also above 0.92, the recall
rate of the negative events was 8% lower than that of positive events, the weighted FPR of
the SVM model was more than three times higher than that of the RF model, and the MCC
was also 10.3% lower than that of the RF model. As a typical linear classifier, LSVM lagged
behind the SVM and RF-based model in almost all the assessment indices, reflecting the
complexity of periglacial debris flow prediction.

Further analysis of the confusion matrix showed that the SVM model had 17 false
predictions of negative events, which was much higher than that of the RF model, and
the number of false predictions of positive events was also higher than that of the RF
model (Table 11). In short, although the overall prediction accuracy of the two models
in the training and validation phase could reach a high level, the RF model was the
preferred solution.

Table 10. Comparison of the results from different models on periglacial debris flow prediction.

Phase Model Class TPR FPR Precision F-Measure MCC AUC

Training
and

Validation

RF
No 0.966 0.013 0.986 0.976

0.953 0.997Yes 0.987 0.034 0.967 0.977
WA 0.977 0.023 0.977 0.977

SVM
No 0.886 0.034 0.964 0.923

0.855 0.926Yes 0.966 0.114 0.894 0.929
WA 0.926 0.074 0.929 0.926

LSVM
No 0.765 0.342 0.691 0.726

0.425 0.711Yes 0.658 0.235 0.737 0.695
WA 0.711 0.289 0.714 0.711

Testing

RF
No 0.750 0.222 0.750 0.750

0.528 0.778Yes 0.778 0.250 0.778 0.778
WA 0.765 0.237 0.765 0.765

SVM
No 0.500 0.222 0.667 0.571

0.290 0.639Yes 0.778 0.500 0.636 0.700
WA 0.647 0.369 0.651 0.639

LSVM
No 0.375 0.111 0.750 0.500

0.311 0.632Yes 0.889 0.625 0.615 0.727
WA 0.647 0.383 0.679 0.620

Note: “Yes” for debris flow events and “No” for non-debris flow events; WA represents weighted average.
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Table 11. Comparison of results from different models on the confusion matrix.

Phase
Model RF SVM LSVM

Class No Yes No Yes No Yes

Training and
Validation

No 144 5 132 17 114 35
Yes 2 147 5 144 51 98

Testing No 6 2 4 4 3 5
Yes 2 7 2 7 1 8

3.2.2. Testing

According to the RF, SVM and LSVM models established by the training and validation
results, 17 events in 2016–2020 were imported into the model for testing (Table 12). The
results showed that the MCC and AUC of the RF model were 82% and 22% higher than
those of the SVM model, respectively (Table 10). Combined with the confusion matrix of
the test set (Table 11), it can be found that the prediction performance of both models on
debris flow events is good, and the recall rate can reach more than 0.77. The disadvantage
of SVM is reflected in the prediction of non-debris flow events: the recall rate is only 0.5,
which is much lower than that of RF (0.75).

Compared with the performance in the training and validation phase, the LSVM-
based model performed significantly better in this phase, and some assessment indices
were even higher than that from the RF or SVM model. However, this is mainly because
the model predicted 13 of the 17 events as debris flow, which improved the recall rate of
debris flow events (0.889) but also enlarged the false alarm rate (0.625) simultaneously
(Table 10). The LSVM has no kernel function processing procedure, so it is only applicable
to the linearly separable datasets [21,33]. For the complex data set in this case, the classifier
is not competent for this prediction task.

If we focus on the prediction results of each event (Table 12), it can be found that
the outputs of the RF and SVM models are more sensitive to the precipitation indicators,
especially A3 (0.79 ** for RF and 0.573 * for SVM on Pearson correlation coefficient, the same
below) and Im (0.587 * for RF and 0.726 ** for SVM). In addition, the response of SVM to
temperature indicator is also outstanding, especially for Cv

15 (0.787 **). Taking the outputs
as the dependent variable and the seven indicators as the independent variable for stepwise
regression, the results showed that the goodness of fit from the SVM model was higher than
that from the RF model (Table 13). Although the processing mechanism of nonparametric
models (such as SVM and RF) does not depend on the correlation between the input and
output, the prediction result of SVM in this case seems to be closer to the linear relationships
between the indicators and the events, even with the support of kernel functions.
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Table 12. Prediction results of different models on the 17 events of the testing set.

No. Gully Date Station A3 D Im NDVIt Sa Cv
15 T10 Debris

Flow
RF SVM

1 Chidan 2016-09-05 PEILONG 21.75 15.00 4.70 0.69 30.70 0.43 16.80 Yes
√ √

2 Jiaolong 2016-09-05 PEILONG 21.75 15.00 4.70 0.37 36.20 0.43 16.80 Yes
√ √

3 Bitong 2016-09-05 PEILONG 21.75 15.00 4.70 0.44 34.50 0.43 16.80 Yes
√ √

4 Chaobu 2017-08-03 GUXIANG 3.10 1.00 0.20 0.64 35.00 0.17 18.30 Yes
√ ×

5 Chaobu 2017-08-02 GUXIANG 0.09 6.00 1.60 0.64 35.00 0.17 18.40 No
√ √

6 Guxiang 2017-08-03 GUXIANG 3.10 1.00 0.20 0.30 35.60 0.17 18.30 No
√ √

7 East
Lapu

2018-05-22 SONGZONG 0.00 0.00 0.00 0.04 36.00 0.21 14.00 Yes × ×

8 East
Lapu

2018-05-21 SONGZONG 0.00 0.00 0.00 0.01 36.00 0.21 13.10 No
√ √

9 Jiurong 2018-05-22 SONGZONG 0.00 0.00 0.00 0.22 36.00 0.21 14.00 No
√ √

10 Tianmo 2018-07-11 GUXIANG 12.94 10.00 3.10 0.40 37.70 0.24 18.20 Yes
√ √

11 Bitong 2018-07-11 GUXIANG 12.94 10.00 3.10 0.29 34.50 0.24 18.20 Yes
√ √

12 Guxiang 2018-07-11 GUXIANG 12.94 10.00 3.10 0.28 35.60 0.24 18.20 No × ×
13 Dada 2020-07-09 TIANMO 0.65 2.35 6.00 0.39 33.00 0.37 16.26 No

√ ×
14 Dada 2020-07-10 TIANMO 6.50 3.00 7.60 0.39 33.00 0.35 16.19 Yes

√ √

15 Tianmo 2020-07-10 TIANMO 6.50 3.00 7.60 0.51 37.70 0.35 16.19 No × ×
16 Guxiang 2020-07-08 GUXIANG-2 0.20 0.00 0.00 0.39 35.60 0.37 15.98 No

√ ×
17 Guxiang 2020-07-09 GUXIANG-2 0.35 3.80 2.33 0.39 35.60 0.37 16.26 Yes × √

Table 13. Main model parameters of the stepwise regression analysis based on test set.

Dependent Variable Independent Variable Standardized Coefficients t-Value p-Value F-Value Adjusted R2

RF outputs A3 0.790 4.986 0.000 24.862 0.599

SVM outputs Cv
15 0.818 5.891 0.000 19.167

0.694T10 0.338 2.433 0.029

The key of success classification for SVM is to find the support vectors. Borderline
SMOTE highlights the decision boundary through interpolation, so it is more conducive to
the classification of the SVM model, theoretically [19,56]. Actually, the optimal hyperparam-
eter value of gamma given by Gridsearch was 0.001. Under this condition, the weighted
recall rate, MCC, and AUC of SVM were 0.977, 0.953, and 0.977, respectively, which was
basically as good as those of the RF model. However, the model classified 16 of the 17 test
events into non-debris flow events, resulting in the recall rate of debris flow events being
only 0.11, i.e., the overfitting occurred. This indicates that the SVM algorithm is still prone
to overfitting even if the Borderline SMOTE is applied, whereas the RF shows better ro-
bustness at this point, partly because it is relatively less sensitive to the hyperparameter
setting [57].
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Some scholars believed that the ensemble learning-based RF model was insensitive
to the lack of input data [58]. In other words, even if there was no process of indicator
selection, theoretically, the model established by all indicators had a higher probability of
making an effective prediction, even in the absence of some input indicators in the testing
phase. In this study, we also tested the RF model built by 26 full indicators. The results
showed that the performance of the full indicator model was basically the same as that
of the simplified model in the phases of training, validation, and testing, presenting no
advantage in prediction accuracy. Moreover, full indicator modeling would have increased
the amount of calculation and affected the speed of model construction and response.
Considering the performance of the model and the cost of data collection and processing,
the early warning efficiency of the simplified model was obviously higher.

Another thing worth noting is that although the RF model shows acceptable accuracy
in this phase, there are still some shortcomings. First, the prediction effect for debris flow
events without precipitation is still poor, such as the seventh event in Table 12. Second, the
model takes the indicators reflecting spatial heterogeneity into account, but the influences of
these indicators are limited in prediction. For example, the Dada gully and adjacent Tianmo
gully share the same precipitation station; thus, most monitoring data are identical except
the NDVIt and Sa. However, for the events on 10 July 2020, the model cannot distinguish
whether debris flow occurred in these two gullies only based on the data difference of this
degree (Table 12). Therefore, the model proposed in this paper is still a regional prediction
model, and its spatial resolution cannot be accurate to specific gullies at present.

3.2.3. Comparison
I-D Model and I-D-A Model

The rainfall indicator method is currently the most widely used debris flow monitoring
and early warning method in the world. Its representative method is the power law
equation (I-D method) proposed by Caine [59]. This method assumes that the critical
rainfall intensity for debris flow is nonlinear with the rainfall duration. As the rainfall
duration increases, the critical rainfall intensity decreases accordingly. The traditional I-D
method does not consider the impact of antecedent rainfall, so its prediction accuracy may
be poor for watersheds with better vegetation coverage and greater water storage potential.
Fortunately, the so-called I-A method based on the relationships between antecedent
effective rainfall and rain intensity can make up for this shortcoming [7]. However, some
scholars have pointed out that the warning effect of the I-D method is better than that of
the I-A method for sandy soil areas with strong infiltration capacity [60].

The proposed RF model, i.e., the original model here, is essentially an event-based
prediction model for periglacial debris flow. By introducing the antecedent effective cumu-
lative precipitation (A3) of each event, the model can simultaneously consider the effects of
antecedent precipitation (A3), precipitation duration (D), and precipitation intensity (Im)
on the development of debris flow. Therefore, it is actually an I-D-A model. Herein, we
tested and compared the performance of the original model and the RF model without
A3, i.e., the I-D model in this paper. The results showed that the advantage of the I-D-A
model in the training and validation phase was not obvious, and the difference between
them was less than 3% in MCC, which was the assessment index with the largest difference.
On the contrary, in the testing phase, the classification accuracy of the I-D-A model was
significantly higher than that of the I-D model, and the difference between them in MCC
was more than two-fold. Without the support of A3, the false alarm rate for both positive
and negative samples increased (Table 14). Considering that this result is obtained even
in the area with good infiltration condition, which is reported as more suitable for the I-D
model [60], it is believed that the antecedent precipitation index is of great significance to
improve the performance of debris flow prediction model, at least in this case.
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Resampling Model and Non-Resampling Model

Previous studies have found that because of the modeling idea and model structure,
some machine learning algorithms are inherently capable of dealing with the imbalanced
data sets to some extent [19,59]. For this type of algorithm, such as the RF, even if the
original data are not resampled, a satisfactory classification result may be obtained. Herein,
we tested the RF model with the original non-resampled data. The results showed that the
resampling processing in this case was essential to improve the performance of the model.
In the training and validation phase, although the recall rate of the debris flow event was
only 0.625, the weighted recall rate exceeded 0.94 because of the larger weights on the
non-debris flow event. This resulted in the model predictions being more biased toward
non-debris flow events during the testing phase (Table 15). Compared with the original
model that had been resampled, the MCC of the non-resampled model had dropped by
32% in the training and validation phase, and the drop in the testing phase had reached
83%. The negative effect brought by the imbalanced data set was very significant.

SMOTE Model and Borderline SMOTE Model

The SMOTE is an intelligent oversampling algorithm commonly used in the current
academic community, and the Borderline SMOTE, as an improved version of SMOTE,
theoretically has a higher interpolation efficiency at the classification boundary. Using the
SMOTE from WEKA to expand the original 16 debris flow events by eight times, the ratio
of debris flow events to non-debris flow events was close to 1:1. We tested the RF model
built by this data set and compared it with the original model using Borderline SMOTE.
The results showed that in the training and validation phase, the SMOTE-based model
had almost the same performance as the original model (Table 14). In the testing phase,
however, the SMOTE-based model has a significantly lower recall rate for debris flow
events (Table 15), and its MCC was only 38% of the original model. The use of Borderline
SMOTE modeling is of practical significance for the improvement of prediction accuracy in
this case.

Based on the results of the three tests, it can be found that the situation with/without
the A3 test and the SMOTE/Borderline SMOTE test is similar; that is, the original model
presents obvious advantages only in the testing phase. This is partly due to the lack of data
in the testing set. However, it should also be noted that in each test, the assessment indices
of the original model were ahead of the other models in all phases (Table 14), indicating
that these two measures did improve the model prediction performance. On the contrary,
the result of whether to resample the test is quite different from that of the other two tests.
Regardless of the training and validation phase or the testing phase, the performance of the
model using the resampling technique (whether ordinary SMOTE or Borderline SMOTE) is
much better than that of the model without resampling, which indicates that the technique
is necessary for preprocessing the original small and imbalanced data set.
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Table 14. Comparison of prediction performance of RF models in different conditions.

Phase Model Class TPR FPR MCC ROC

Training and
Validation

Original
No 0.966 0.013

0.953 0.997Yes 0.987 0.034
WA 0.977 0.023

Without A3

No 0.946 0.020
0.927 0.995Yes 0.980 0.054

WA 0.963 0.037

Non-resample
No 0.980 0.375

0.664 0.947Yes 0.625 0.020
WA 0.945 0.341

SMOTE
No 0.966 0.028

0.939 0.995Yes 0.972 0.034
WA 0.969 0.031

Testing

Original
No 0.750 0.222

0.528 0.778Yes 0.778 0.250
WA 0.765 0.237

Without A3

No 0.500 0.333
0.169 0.736Yes 0.667 0.500

WA 0.588 0.422

Non-resample
No 0.750 0.667

0.091 0.729Yes 0.333 0.250
WA 0.529 0.446

SMOTE
No 0.750 0.556

0.203 0.750Yes 0.444 0.250
WA 0.588 0.394

Note: “Yes” for debris flow events and “No” for non-debris flow events; WA represents weighted average.

Table 15. Confusion matrix of prediction results of RF models in different conditions.

Model
Phase Training & Validation Testing

Class No Yes No Yes

Original No 144 5 6 2
Yes 2 147 2 7

Without A3
No 141 8 4 4
Yes 3 146 3 6

Non-resample No 146 3 6 2
Yes 6 10 6 3

SMOTE
No 144 5 6 2
Yes 4 140 5 4

4. Conclusions

Taking 15 typical periglacial debris flow gullies in the Parlung Zangbo Basin of south-
east Tibet as an example, this study preliminarily explored how to establish a periglacial
debris flow prediction model with acceptable accuracy and certain promotion value under
the constraints of insufficient mechanism knowledge and imbalanced small sample data.
Through field investigation and geostatistical analysis, a comprehensive index system
covering 26 indicators from vegetation, meteorology, geology, and geomorphology was
constructed firstly, and then seven of the indicators were selected as the recommended
monitoring and early warning indicators, which were used as the inputs of the classification
model after resampling. In addition, several comparative tests were also carried out for
understanding the performance of the established model, and the following conclusions
were drawn.

For the periglacial debris flow gully in the Peilong–Ranwu section of the Parlung
Zangbo Basin, various temperature and precipitation indicators, as well as vegetation
coverage, were closely related to the development of debris flow. Seven indicators,

47



Water 2023, 15, 310

i.e., (1) precipitation duration (D), (2) maximum precipitation intensity (Im), (3) coeffi-
cient of variation of the daily temperature range (Cv

15), (4) antecedent temperature (T10),
(5) antecedent accumulated precipitation (A3), (6) antecedent NDVI (NDVIt), and (7) aver-
age slope (Sa), were recommended as the monitoring and early warning indicators.

Based on these seven indicators, we constructed the periglacial debris flow prediction
model using the Borderline SMOTE and RF classification algorithm. The main assessment
indices, such as the weighted recall ratio, MCC, and AUC, exceeded 0.95 in the training and
validation phase, and most of them exceeded 0.7 in the testing phase, showing acceptable
accuracy under the limited sample data. Therefore, it is considered that the proposed
workflow and model, as a prediction scheme of regional precipitation-related periglacial
debris flow, have a certain promotion value for further research.

The performance of the SVM-based prediction scheme in this case is also acceptable.
However, compared with the RF scheme, the SVM scheme has a lower recall rate on non-
debris flow events, which means that this scheme may lead to a higher false alarm rate.
In addition, the SVM-based classification model may still have overfitting phenomenon
under the interpolation of Borderline SMOTE, while the RF based on ensemble learning
idea shows better robustness; that is, the model presents more stable performance under
the condition of imbalanced small sample data interpolation.

For imbalanced small sample data sets, resampling is necessary to improve the classifi-
cation accuracy of the model. In this case, the prediction results from the RF model without
resampling were more biased toward non-debris flow events, because the non-debris flow
events accounted for the majority of the data set. Compared with the RF model with resam-
pling, the prediction accuracy of the model without resampling had dropped significantly,
which could reach 83%.

The test results indicated that considering the antecedent accumulated precipitation
in a precipitation event helped to improve the model prediction accuracy, even for an
area with strong permeable sandy soil. Similarly, as an improved version of SMOTE, the
application of Borderline SMOTE was also of positive significance to the improvement of
model performance.
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Abstract: With digital information technology based on limited data, disaster simulation review is
an important guideline for analyzing disaster mechanisms, planning post-disaster reconstruction,
and improving defense capability. Taking the “7.20” flash flood in the Wangzongdian river basin as a
research area, a hydrological-hydrodynamic model was established using limited measured data. The
results showed that the extreme rainstorm caused flooding in mountainous areas and the collapse of
subgrade water damming, and the high-level flood quickly flowed into Wangzongdian Village in a
short distance, which was the main cause of this serious disaster. Considering the collapse due to
the congestion of the upstream bridge, the simulated flood flow in Wangzongdian Village reached
782 m3/s, which was basically consistent with the post-disaster survey results, with a relative error of
only +8%. The modeling strategy proposed in this paper is applicable in the review of sudden heavy
rainstorms and flash floods and can provide technical guidance for future flash flood simulation
review analysis in other areas.

Keywords: hydrological model; hydrodynamic model; disaster review analysis; heavy rainfall
in Henan

1. Introduction

Flash floods in China mainly refer to river floods caused by heavy rainfall in small
watersheds (within an area of 200 km2) in hilly areas, which are characterized by small
scope, short duration, high suddenness, and high destructive power, and are very likely to
cause massive casualties and socioeconomic losses [1]. According to the statistics of the
Ministry of Emergency Management of China, a total of 42 heavy rainfall events occurred
in China in 2021, with an average precipitation of about 659 mm, an increase in about 6%
over previous years, resulting in 59.01 million people being affected and an economic loss
of about 245.89 billion yuan [2]. It is of great significance to carry out a review simulation
analysis of flash floods in small mountain watersheds to understand the causes of flash
floods, to improve the flood prevention and mitigation capacity in mountainous areas of
China, to summarize prevention and control experience, and to establish and improve a
sound flash flood disaster prevention and control system [3]. The basic monitoring facilities
in China’s mountainous areas still need to be further improved, which makes it difficult
to obtain refined data and more difficult to review flash floods [4]. However, a refined
post-disaster review can be achieved on the basis of limited data by reasonably developing
a flash flood review strategy based on domestic models.

The improvement of numerical algorithms and the rapid development of computer
technology have guaranteed accurate and efficient flood analysis and simulation. Dis-
tributed hydrological simulations allow the reenactment of the effects of changes in differ-
ent hydrological elements on water cycle processes according to the spatial variability of
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the watershed’s underlying surface [5,6]. Shu et al. [7] put forward a distributed hydro-
logical model SHUD, which uses the finite volume method to solve surface-underground
coupling and uses the irregular triangular network to construct the basin simulation space
to realize the high-resolution numerical simulation of meters-kilometers in space and
seconds-hours in time. Zhao et al. [8] established a distributed hydrological model VRGL
for hilly regions by considering the role of soil-weathering bedrock interface in runoff
generation and carried out the application in Tunxi streams in humid, hilly areas in China.
The results showed that VRGL has good accuracy (the relative errors of peak discharge
and flood volume are within ± 20%) and can be used for flood forecasting in hilly areas.
Liu et al. [9] proposed a spatio temporally-mixed runoff model SKBY and the modular
distributed hydrological model FFMS by analyzing the transformation and combination
of small watershed infiltration and storage mechanism in two dimensions of time and
space. It was proved that the model improves the simulation accuracy of floods under
short-duration and heavy rainfall conditions. Hydrological models have been widely used
in flood forecasting and warning in China. However, the output results of the model are
the process of runoff generation obtained according to the hydrological conditions of the
basin, which cannot achieve the dynamic description of flood routing in the inundated
area [10]. Moreover, the simulation accuracy is greatly affected when the natural runoff
generation mechanism of the basin changes due to the topographic changes caused by
floods. The hydrodynamic model can not only simulate the evolution process of water flow
in the river course and floodplain but also the waterlogging in the urban and rural areas.
According to hydrodynamic calculation, the spatio-temporal variation of the submerged
area can be obtained. The finite volume method is a commonly used numerical calculation
method in the current hydrodynamic model. The numerical shallow water simulation
using a Godunov-type scheme for the riemann approximate solver has good accuracy and
is widely used [11,12]. Zhang et al. [13] established a two-dimensional hydrodynamic
model of rainfall-runoff based on the Godunov-type scheme with unstructured grids and
verified that with this model, the surface runoff movement could be finely simulated.

Scholars have conducted plenty of research on flash flood simulation review and
disaster-causing mechanism analysis. Liu et al. [14] compared flood simulations with three
methods: the watershed model method, reasoning formula method, and empirical formula
method, and concluded that the results of the watershed model method were more reason-
able. Zhang et al. [15] constructed a mountain hydrological model for the Guanshan River
basin by introducing the rainstorm interflow mechanism and found that the rainstorm
interflow mechanism is one of the important runoff generation mechanisms in small wa-
tersheds in humid mountainous areas, and it is considered that the hydrological model of
small mountain watershed with this mechanism is more effective in flash flood forecasting
and early warning. Sandrine et al. [16] simulated flash floods based on a distributed hy-
drological model and found that flash flood dynamics showed two phases: the first phase
was mainly controlled by soil properties, and the second phase was by rainfall due to soil
saturation. In summary, an accurate description of the geometry and underlying surface
characteristics of the small watershed and a clear understanding of the characteristics of
runoff generation are the keys to simulating the process of and analyzing the causes of
flash floods. However, when the natural geomorphological conditions of the region change
severely during the flooding process, the simulation results of the hydrological model often
deviate greatly from the actual results. Lin et al. [17] analyzed the inundation of flash floods
in small mountain watersheds based on one-dimensional and two-dimensional coupled hy-
drodynamic models, respectively, and verified that one-dimensional and two-dimensional
coupled hydrodynamic models can effectively simulate the flood characteristics and evolu-
tion process in a small mountain watershed. Zhang et al. [13] simulated and analyzed the
flood evolution after dam failure by using the dam failure model based on the Godunov-
type scheme. The two-dimensional hydrodynamic model can automatically adapt to the
change of flow regime and has unique advantages in the simulation of dam failure, dam
break, and other flood types. Segura et al. [18] simulated the 2007 flash flood of the Girona
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River in Spain by using the coupled hydrological and hydrodynamic model and found
that coupled model simulation considering geomorphological characteristics can help ana-
lyze flood causes and provide technical guidance for early warning. El-Saoud et al. [19]
found that infrastructure construction aggravated flash flood disasters to some extent by
using a hydrological model (HEC-1) with two-dimensional hydraulic modeling (HEC-RAS
5.0.7) software to draw the early warning map of flash flood risk in Mecca, Saudi Arabia.
Although the hydrodynamic model can describe flood routing in detail, the amount of
data required for modeling is relatively large, which is often limited by time, cost, and
local realities in flood review, so it is difficult to be widely used. At present, flash flood
disaster simulation reviews are mostly conducted by a single type of model. It is difficult
to accurately reproduce the whole process of flood development, whether the flood simu-
lation is realized by calculating the peak discharge through the hydrological model or by
calculating the submerged water depth through the hydrodynamic model. Therefore, there
is an urgent need for guidelines and strategy for the joint application of multiple models to
optimize the whole process simulation of watershed flood routing.

Compared with foreign specialized models of water resources, China has a late-
developing advantage in studying flood disasters based on hydrological and hydrodynamic
models. However, in practical applications, especially in flash flood simulation, it is still
necessary to develop appropriate model simulation strategies according to the extent of
post-disaster data collection. From 17 to 24 July 2021, Henan Province was hit by unusually
heavy rainfall, which triggered urban waterlogging and flash flood disasters, causing
serious loss of life and property. In this paper, a hydrological-hydrodynamic model was
used to analyze the “7.20” flash flood in Wangzongdian village based on national flash flood
investigation results and postdisaster field survey data. A rapid modeling strategy of flash
flood disasters using limited data was put forward based on the simulation results, helping
to quickly clarify the sources and causes of floods and providing important technical and
decision-making support for flash flood disaster prevention and early warning.

2. Research Materials

In July 2021, China’s Henan Province was hit by heavy rainfall. The daily rainfall in
Xingyang exceeded the historical extreme value, causing a significant impact on people’s
life and social production (Figure 1). According to statistics, this extraordinary rainstorm
left 242,069 population affected in Xingyang City, with an affected area of 21,745.05 hectares
of crops and 10,629 houses out of 3260 households collapsed. In addition, it caused varying
degrees of damage to 630 communication base stations, 5473.95 km of fiber optic cables,
44 base station houses, 13 small and medium-sized reservoirs, five erosion and torrent
control works, five rivers, two channels, and one irrigation station, resulting in direct
economic losses of 5.051 billion yuan in Xingyang City [20]. This disaster event was
selected for review to figure out the causes and mechanism of the disaster, which has
technical reference significance for disaster review analysis in other areas affected by flash
floods in China.

2.1. Study Area

Wangzongdian Village is located in the central part of Henan Province, a shallow hilly
area with complex topography, straddling the two major basins of the Yellow River and the
Huai River. Its rainfall varies greatly interannually and is unevenly distributed within the
year, with rainfall from June to September accounting for 65% of the annual rainfall. The
upstream catchment area of Wangzongdian Village is 21.95 km2, including three branch
ditches. The partially bare land in the upper reaches carried a large amount of sediment
flowing with flash floods, causing damage to villages and infrastructure along the lower
reaches of the river. Wangzongdian Village is surrounded by mountains on all sides, such
as Dalong Mountain, Xiaolong Mountain, Xiaoding Mountain, Jianshan Mountain, Matou
Mountain, and Jinjinggou Mountain. Such a geographical situation caused the flood to
flow down mountains and converge in Wangzongdian Village, which was prone to cause
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flood disasters. The distribution of the watershed and location of Wangzongdian Village
are shown in Figure 2.

  
(a) (b) 

Figure 1. Comparison of before and after the “7.20” flash flood disaster in Wangzongdian Village,
Henan Province. (a) before, (b) after.

 

Figure 2. Overview of the study area.

2.2. Data Collection

The digital data used to build hydrological and hydrodynamic models mainly include
terrain elevation data, small watersheds, water systems, nodes, soil texture, and land use.
Table 1 records the details and source of the data.
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Table 1. Basic data information of study area.

Data Type Resolution Time Data Source

Rainfall data - 2021 Rain gauge data

DEM 30 m 2021 Geospatial data cloud web site

Remote sensing image 2.5 m,30 m 2015

National flash flood
disaster investigation and assessment

Watershed 10~50 km2 2015

Land use 30 m 2015

Soil texture 30 m 2015

Dam break data - 2021 Postdisaster field survey data.

2.2.1. Underlying Attribute Data

The modeled watershed area of the upper reaches of Wangzongdian was 29.1 km2,
which was divided into 24 calculation units with an area of 0.16–1.6 km2. For each calcu-
lation unit, 75 items of basic attribute information, including spatial attributes, land use,
and soil type of the small watershed, were extracted, and the spatial topological relation-
ship with the small watershed as the unit was established, forming the basic data set of
Wangzongdian Village flash flood small watershed. Statistically, the land use type of the
watershed is dominated by arable land and forest land, accounting for 63% and 33% of the
whole, respectively. The main types of soils are sandy loam and sandy clay, accounting
for 66% and 34%, respectively. The distribution of land use, soil texture, and water system
in the Wangzongdian watershed is shown in Figure 3. The 30 m DEM data are shown in
Figure 4, and the red point is the dam-failure site.

   
(a) (b) (c) 

Figure 3. (a) Calculation unit division. (b) land use attribute data. (c) soil texture data.

2.2.2. Rainfall Data

By analyzing the measured rainfall data of Wangzongdian Rainfall Station, it was
found that the rainfall was wide in scope, large in amount, short in duration, and high in
rainfall level. From 8:00 a.m. on July 18 to 8:00 a.m. on 22 July 2021, the total rainfall was
764.5 mm, exceeding its annual average rainfall (608 mm) by 156.5 mm in Wangzongdian
Village, of which the maximum daily rainfall was 353 mm on July 20, exceeding half of
the annual average rainfall (58.05%), with a rain intensity of 58.5 mm/h from 2:00 a.m. to
3:00 a.m. [21,22]. All broke the extreme historical value of local meteorological observation
records. The cumulative and hourly rainfall distribution of Wangzongdian Village is shown
in Figure 5 below.

55



Water 2023, 15, 304

 
Figure 4. Digital Elevation data of Wangzongdian watershed.

 

Figure 5. Cumulative and hourly rainfall distribution of Wangzongdian Rainfall Station.

2.2.3. Post-Disaster Investigation Data

On the afternoon of August 6, 2021, Xingyang Municipal Water Resources Bureau
commissioned a five-person survey team from Zhengzhou Hydrology and Water Resources
Survey Bureau to investigate the river from upstream downward using instruments and
equipment such as total station, RTK, and UAV. The team finally selected a relatively
straight 100.4-m section of the channel segment as the survey section, as shown in the
following Figure 6 [23], and the red line refers to the measuring line for the cross section.
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Figure 6. A real shot of the survey section after the flood.

The survey team measured the upper, middle, and lower sections, and it was known
that the upper section was 60 m away from the middle section and the middle section
40.4 m from the lower section. According to the on-site survey of the river, the roughness n
was determined to be 0.032, the average section area A was calculated to be 144 m2, the
average wetted perimeter was 48 m, the hydraulic radius R was 2.99, and the surface slope
S was 0.006. By using the mathematical formula Q = 1

n AR2/3S1/2, the peak discharge was
preliminarily estimated to be 724 m3/s, and the average section velocity is 5.03 m/s. In this
study, the disaster survey data will be compared with the simulation results as the result of
actual measurement to verify the accuracy of the simulation results.

3. Simulation Analysis

3.1. Modeling Strategy

The crux of flash flood disaster simulation review lies in the collection of basic data
and the optimization of simulation methods. Due to the strong destructive power of flash
floods, had a great impact on the traffic and topography of the affected areas, which brought
great difficulties to post-disaster data collection. In this case, investigators were unable to
quickly collect all disaster-related data at one time, making the construction of the model
more challenging. In this paper, a two-phase flash flood disaster review strategy was put
forward, and different models were adopted to simulate and analyze the disaster according
to different phases of data collection:

In Phase I, the distributed flash flood hydrological model was mainly used to simulate
and review the disaster by using public data such as satellite remote sensing, collecting
information on watershed underlying surface and rainfall data monitored by meteoro-
logical and hydrological departments. The main goal of this phase was to analyze the
flood magnitude of the target flash flood disaster through simulation and to clarify the
flood source.

In Phase II, focusing on the refined hydrodynamic model simulation, based on the
simulation results of Phase I, a two-dimensional hydrodynamic model was constructed to
simulate and analyze the spatial and temporal changes of the flood routing and inundation
area in the more severely affected areas based on the actual measured, refined terrain, to
replay the flood occurrence, the collapse of embankments and dams, and the inundation
of villages and towns, to truly clarify the causes of flash flood disaster, and to provide
guidance for the design of embankments, buildings and roads in some villages and towns
in post-disaster reconstruction.

3.2. Modeling Tools
3.2.1. Hydrological Model

In this study, a modular small watershed flood analysis system, FFMS (Flash Flood
Modelling System), was used to simulate the flooding process. As a new generation of small
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and medium-sized watershed heavy rains and flooding simulation software developed
by the research team of China Institute of Water Resources and Hydropower Research,
this software integrated the advantages of computer programming languages such as C++,
Fortran, Java, and multi-format data pre- and post-processing technology supports the
automatic division of small watersheds and parameter extraction. Moreover, it can realize
modular parallel calculation of runoff generation and provide both intelligent parameter
calibration schemes and two-dimensional visualization and display [24,25]. The software
supports several domestic and international hydrological simulation methods (HEC, PRMS,
Xinanjiang model, spatio-temporal variable source mixed runoff model) for automatic
modeling and manual drag-and-drop modeling and has an intelligent expert parameter
database containing watershed underlying surface runoff generation and river channel
parameters under different conditions.

The hydrological simulation of the flash flood disaster in Wangzongdian was con-
ducted based on this model software. The model constructed a distributed hydrological
model of a small watershed in terms of planar mixing, vertical mixing, and temporal mixing
of excess infiltration/storage [26] by dividing different geomorphic hydrological response
units and generalizing the one-to-one correspondence between each small watershed ge-
omorphic hydrological response unit and different runoff generation mechanisms [27].
In particular, for flash flood runoff generation, the model used CARTO one-dimensional
unsaturated infiltration simulation method [28,29]. The soil moisture content domain
was discretized into an interval with constant moisture content, and the one-dimensional
infiltration equation was derived to quickly obtain the vertical displacement of the wet-
ting front. Considering the mutual suction between different moisture content units, the
lateral displacement of the wetting front was redistributed. Compared with Green-Ampt
and Richard’s equations, this method used a numerical scheme without estimating the
nonlinear gradient, which was more efficient and accurate [30].

3.2.2. Hydrodynamic Model

IFMS (Integrated Flood Modeling System) is a one- and two-dimensional visual
hydrodynamic simulation software developed by the China Institute of Water Resources
and Hydropower Research [31,32]. The software includes a 1D river network calculation
engine supporting complex hydraulic engineering scheduling simulation, a high-resolution
2D flood analysis calculation engine, and a fast unstructured grid generation tool. The
software is based on the GIS platform to complete model pre- and post-processing, which
can realize 1D and 2D flood simulation and urban pipe network and 2D model coupling
simulation. The software has strong visualization functions and simple operation, and
it has now realized the coupled calculation of hydrological and hydrodynamic models
with a CPU-GPU parallel computing strategy, which greatly improves computational
efficiency [33].

The two-dimensional shallow water equation of water depth average can be simplified
as follows:

∂h
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+
∂hu
∂x

+
∂hv
∂y

= 0 (1)
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2

gh2
)
= sy (3)

where, h is the water depth; u is the velocity in the x direction; v is the velocity in the y
direction; Sx, Sy are the source item

3.3. Modeling Process

The distributed hydrological model of the small watershed above Wangzongdian
Village was established by using FFMS software based on Wangzongdian small watershed
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basic data set layer data and rainfall data of main stations. The inverse distance weighting
method was used to obtain the rainfall at the surface of small watersheds, and the spatio-
temporal variable source mixed runoff generation simulation method was selected for
runoff generation calculation. The triangular generalized unit line method was used for
slope confluence, the linear reservoir method for base flow, and the motion wave method
for flood routing. This modeling process required a small amount of data and took a
short time.

Based on the high-resolution DEM data (Figure 4), the red point in the Figure is the
dam-failure site. Applied IFMS software to construct a two-dimensional hydrodynamic
model of a small Wangzongdian watershed. The guiding principle was that the dam-failure
formula was adopted to calculate the dam-failure site, and the results of the hydrological
model were still used as boundary conditions for other tributaries.

The required site survey data and laser point cloud measurement data for the dam
failure are shown in Figure 7. The calculation of the peak flow of the breach was based on
the empirical formula of the Research Institute of China’s Ministry of Railways [34].

Qmax = 0.27
√

g(L/B)1/10(B/b)1/3b(h0 − kh)3/2 (4)

where Qmax is the maximum flow rate of the dam bursting flood (m3/s); g is the acceleration
of gravity (m/s2); g is the length of the reservoir area; when L/B > 5, take the L/B = 5; b is
the average width of the breach (m); h0 is the water depth in front of the dam (m); h is the
average height of the residual dam body at the breach (m); k is the empirical coefficient,
and k and h are taken as 0. The laser point cloud measurement value L = 600 in Figure 7;
B = 41.9(yellow line); b = 36.9(red line); h0 = 17.1(dark red line), Qmax = 3013 m3/s can
be obtained.

 

Figure 7. Dam failure site and laser point cloud measurement data.

4. Simulation Results and Analysis

4.1. Simulation Results

The model used default parameters for the distributed hydrological simulation of the
hourly flash flood process in the Wangzongdian watershed from 0:00 a.m. on July 20 to
22:00 p.m. on July 2021. The simulated flood process line of the FFMS model is shown
in Figure 8. The calculated runoff coefficient was about 0.79. Considering the large rain
intensity and short duration of the flash flood in Wangzongdian Village, the simulated
runoff coefficient was more reasonable. But the peak flow was 414.25 m3/s, only about
half of the disaster survey results (724 m3/s). Accordingly, it was preliminarily judged
that there was a special case in a flood event which changed the natural process of runoff
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generation and flood routing. Based on the proposed flash flood simulation review strategy,
the need for a second phase of hydrodynamic simulation analysis was assessed.

 

Figure 8. Simulation results of Wangzongdian watershed.

Based on the conclusion of the hydrological simulation, field investigations showed
that there was an arch bridge dam failure in the upper reaches of the watershed. This
dam break process disrupted the natural runoff mechanisms of the watershed, making
the distributed hydrologic model unable to better simulate the development of this flood.
According to the review strategy, the disaster was simulated in the second step by a coupled
hydrological and hydrodynamic simulation.

Based on IFMS software, the flooding process of Wangzongdian Village from 0:00 a.m.
to 20:00 p.m. on 20 July 2021 was simulated in two cases: considering dam failure and
not considering dam failure. The results are shown in Figure 9. Without considering dam
failure, the simulated peak discharge of the hydrodynamic model was about 422 m3/s,
close to the hydrological simulation result of 414.25 m3/s. However, the hydrodynamic
model simulation result was about 782 m3/s under the consideration of dam failure, which
was basically consistent with the disaster investigation results, with a relative simulation
flood error of +8%. The results showed that the hydrodynamic model could review the
process of this flash flood and support the analysis of the causes of the flash flood under
the consideration of dam failure.

 

Figure 9. Hydrodynamic model simulation results.
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According to hydrodynamic calculation, the submerged water depth of the river
at different times is shown in Figure 10. According to the rainfall distribution map of
Wangzongdian Village (Figure 5), it can be seen that its cumulative precipitation was
162 mm from 0:00 a.m. to 10:00 a.m. on July 20, and the submerged water depth of some
areas downstream reached 2–5 m. The rainfall gradually increased after 10:00 a.m., and at
12:00 p.m., some areas downstream of the Village were flooded to a depth of more than
5 m; the rainfall continued to increase from 12:00 p.m. to 14:00 p.m., and the maximum
rainfall (57.6 mm) was at 12:00 p.m.; the submerged water depth of most areas in the
upper reaches of Wangzongdian Village reaches 2–5 m, while that of most areas near
Wangzongdian Village and its downstream exceeded 5 m. Subsequently, with the gradual
decrease in rainfall in the watershed, the submerged water level near Wangzongdian Village
gradually decreased, and the process of water withdrawal started. Based on the simulation
evolution of the flood in the Wangzongdian watershed, it can be concluded that the flood
is characterized by high flow and rapid rise.

   

   

Figure 10. Submerged water depth of rivers at different times.

4.2. Analysis of the “7.20” Flash Flood in Wangzongdian

Based on the simulation results of the hydrological-hydrodynamic Model, the causes
of flash floods in Wangzongdian Village were analyzed in the following three main aspects:
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(1) On 20 July 2020, the total rainfall in the watershed of Wangzongdian Village reached
the highest value of 353 mm, with a rainfall intensity of 58.5 mm/h. The flood peak
discharge caused by short-term heavy rainfall and the rapid increase in water level
were the direct causes of this disaster.

(2) Due to the special geographical location of Wangzongdian Village, surrounded by
mountains on all sides, water flowed down its surrounding mountains and converged
here during heavy rainfall. Flooding encountered in the upper four channels further
increased the flood flow and exacerbated the flood disaster.

(3) There was some bare land in the upper reaches of the Wangzongdian watershed.
Under the influence of high-intensity rainfall, flash floods carried a large amount of
sediment down the river, causing serious damage to villages and infrastructure along
the lower reaches of the river. Figure 11 shows the damage to the road and dams
by the flash flood. It can be seen that many roads and dams in the upper reaches
were damaged, and even continuous dam failures occurred. Due to the silting and
shrinkage of river channels, multiple houses, bridges, roads, and other cross-channel
buildings led to water blocking and water level rising, while the peak discharge
caused by the water blocking and collapse of roads and bridges had devastating
effects on the downstream.

 

Figure 11. Distribution of damage to the upstream road dams in Wangzongdian Village.

4.3. Discussion

In this study, a distributed hydrological model and a two-dimensional hydrodynamic
model were used to simulate the “7.20” flash flood event in Wangzongdian village based
on the two-phase flash flood disaster review strategy. Post-flood estimates of maximum
peak discharge, which is very valuable information available for small watersheds, are
used to evaluate the accuracy of the simulation results. Up to now, a few studies, Sun
et al. [35], used the KW−GIUH model to analyze the disaster mechanism of the “8·16” flash
flood disaster that occurred in the Zhongdu River basin. Before the simulation calculation,
the parameters of the KW−GIUH model need to be calibrated based on the historical
flood data of the basin. In practice, the problems of imperfect monitoring facilities and
insufficient measured data in small watersheds in mountainous areas often make it difficult
to determine model parameters.

In order to simulate the evolution of natural disasters and make an assessment by
setting the flood water sources in line with the flow discharge, a new distributed hydro-
logical model named FFMS was developed. Hao et al. [27] reproduce the flooding process
and the consistency of the flow discharge to explain the underlying reason for the disaster
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formation and evolution of the “8.12” Flash Flood in Liulin River Basin based on the FFMS
model with an error of +13% compared with post-disaster investigation data. However, it
can be seen from the simulation results of two different models in the “7.20” flash flood
event that when a dam break caused by an extreme rainstorm destroys the natural process
of basin flow generation and flood evolution, distributed hydrological simulation often fails
to perform disaster recovery well, while hydrodynamic simulation results can better reflect
the formation mechanism and evolution process of a flood, and the calculation results are
more accurate.

Other scholars also do research on the “7.20” flash flood event. Liu et al. [36] analysis
of the cause of the flash flood based on geological analysis. It is believed that the short-
duration heavy rainfall and dam break are the main causes of the flash flood event, which
is consistent with the result analysis based on model calculation. Therefore, the two-
stage recovery strategy proposed in this paper can provide guidance for flood process
reproduction and disaster mechanism analysis intuitively and can also apply to other
regions in the future.

5. Conclusions

The reenactment simulation for extreme natural disasters such as flash floods is often
plagued by data collection and modeling strategy, and there are few widely applicable
reenactment approaches available for practical implementation. In this paper, the fast
reenactment modeling strategy of flash flood disasters based on hydrological and hydro-
dynamic models was put forward, which can be used to carry out different degrees of
flash flood disaster assessment in different situations. The selected validation case, the
“7.20” flash flood disaster in Wangzongdian, is a representative extreme flood event in 2021.
The hydrodynamic model simulation result is about 782 m3/s under the consideration of
dam failure, which was basically consistent with the disaster investigation results, with a
relative simulation flood error of +8%. The causes of the disaster are complex, both due
to extreme rainfall and local blockage and dam failure. Through the modeling analysis,
it was preliminarily determined that on 20 July 2020, in the Wangzongdian watershed,
due to the pooling of flood water and the collapse of subgrade water damming caused
by extremely heavy rainfall, the high level of flood water surged over a short distance to
Wangzongdian Village, eventually causing this serious flash flood disaster. The analysis
verified the applicability and operability of the reenactment modeling strategy proposed
in this paper. Anyway, the selected model and method were able to represent the actual
situation of flooding in hilly areas of China, with relatively strong parameter stability and
high simulation accuracy. The simulation strategy of flash flood disaster reenactment based
on the hydrological-hydrodynamic model proposed in this paper can provide technical
support for future flash flood disaster analysis and post-disaster reconstruction in China.
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Abstract: A rainfall regionalization method based on variation coefficient was applied with a variant
in the construction of flash flood hyetographs with several return periods using the flash flood shape
of the historical event that occurred in September 2021 in the Tlalnepantla River basin, Mexico, that
caused severe damage to population and its infrastructure in a few hours. The historical flash flood
was simulated with a semi-distributed model in the free software HEC-HMS in order to obtain
the outflow hydrograph, and the flood plains were obtained with Iber and Hec-Ras 2d software
that simulate free surface flow with a two-dimensional analysis. With photographs of the site, it
was possible to locate traces of water that were contrasted with they calculated depths; they were
concordant. Synthetic design storms were then simulated to estimate their potential consequences on
the site.

Keywords: Tlalnepantla River; flash floods; hyetograph shape; Hec Ras 2d; Dorrigo diagram;
regionalization

1. Introduction

According to the National Weather Service [1], a flash flood is defined as runoff
that occurs after the first 3 to 6 h after a heavy rain or some other cause. On the other
hand, catastrophic floods are associated both with the intensity of the event and with the
magnitude of the material damage they cause [2].

Flash floods have been the subject of studies going back nearly 25 years or more. Year
after year they rise again, for example, in the face of different world events that have taken
place over time; additionally, they appear in the recurrence of catastrophic floods.

At the global level, flash floods have been a study object for several decades; for
example, Garzón et al. [3] make a description of morphology that occurs in terrain and
natural channels before torrential floods occur, reporting some case studies highlighting
ravines and river fans of basins in Spain (highlighting the Abanico of Arás where a terrible
catastrophe occurred in 1996). They emphasize that the sense of security some flood
protection works give must be distrusted, since they can be susceptible to failure in a flash
flood event.

Aroca [4] analyzed the importance of characterizing initial abstraction prior to the
runoff process associated with flash floods. Using the Green Amp method [5,6], comparing
it with the curve number, generating the hydrograph with the SCS method [7], and using
a semi-distributed hydrological model to simulate using Hec-Hms 4.0 software, he con-
cluded in his study that the Green Amp method is better than the curve number method
because it uses basin parameters, while the curve number method is reported as a method
that is still empirical and was originally developed for basins of a specific country.

Karbasi et al. [8] developed a regional model for estimating loss of life due to flash
flood in residential areas in the Kan watershed, Iran. They applied a model based on
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hydraulic variables such as depth, velocity, and rise rate of the water, as well as evacuation
parameters, including available time for evacuation and fraction of people evacuated. They
concluded that the most significant factors affecting fatalities, number of, were evacuation
parameters, including evacuation time and fraction of evacuated people. From a local
sensitivity analysis, the lead time between observed flood at the early flood warning station
and the arrival time at the area of interest were distinguished as the most important input
for evaluating the number of fatalities.

Aristizábal et al. [9] present a quantification of torrential floods and the population
affected by torrential floods in various places in Colombia; they carried out torrential flood
classification in terms of flash floods, debris flow, and debris flooding, reporting the last
item as that with the greatest capacity for destruction. Due to the fact that there is no
unanimity on the definition of torrential floods, the authors concluded that it is difficult to
propose a methodology for threat assessment.

Bilasco et al. [10] present a methodology for the strategic management of floods
to mitigate their damage in areas that anthropogenic activity has been invading for food
production purposes; the analysis was carried out in the context of governance in the digital
age. Their approach consists of a system that includes analysis and flooding, modeling,
risk assessment, and diffusion of flood effects to the population.

Shuvo et al. [11] analyzed two flash floods due to monsoon events in Bangladesh
using a coupled atmospheric–hydrological numerical weather prediction (NWP) model,
namely the weather research and forecasting (WRF) model. Evaluating the goodness of
the results with the mean square error and the Nash–Sutcliffe criterion, they found that
the NWP model is applicable for flash flood prediction in the basins analyzed, despite the
short duration of such events.

When making reviews and effect reconstructions caused by flash floods or making
new simulations of events associated with a return period, the hyetograph shaping problem
design has its particularities [12,13], since the traditional method of alternating blocks does
not lead to the typical shape for storms associated with flash floods.

In this paper, a rainfall regionalization method was successfully applied [14] to obtain
a design of flash floods associated with different return periods, but little variation in the
hydrograph shape was obtained based on an ordering that takes into account the case of
a historical event that occurred in the Tlalnepantla River basin in Mexico State (that is, the
traditional alternating block method was not applied). These designed flash floods were
simulated in a semi-distributed model using the HEC-HMS software [15], obtaining depth
and velocity maps with the Iber software and Hec Ras 2d; additionally, the simulation for
the historical flash flood was made to compare the results, in addition to contrasting them
with photographic evidence of the water mark level.

The work is organized in the following parts: the introduction presented here, the
methodology in which the procedures used and data from the study site are described, and
the results and discussion, in addition to the conclusions derived from the research.

2. Methodology

2.1. Rainfall Regionalization Method Based on Variation Coefficient

This regionalization method [14] groups climatological stations that have daily precip-
itation historical data with more than 20 measurement years, based on the stations–year
technique and variation coefficient (Equation (1)) for maximum precipitation series grouped
in intervals after annual data sorting.

CV =
Sx
x

(1)

where
CV is the coefficient of variation of the maximum annual rainfall series;
Sx is the standard deviation of the maximum annual rainfall series;
x is the mean of the maximum annual rainfall series.

68



Water 2023, 15, 303

The first step is to identify the set of stations after the quality and quantity of infor-
mation is checked. Then, the stations–year technique is applied, that is, each station was
modulated or normalized with respect to its historical average and a large record was
built by placing one normalized station after another. Later, an analysis of frequencies to
find the regional distribution function of best fit was performed, with the least standard
error criterion of fit (EEA) being between the measured data x and the calculated x̂ with
a distribution function with p parameters, in an annual series of size n [14] given by the
Equation (2).

EEA =

[
∑n

i (xi − x̂i)

n − p

]0.5

(2)

With the regional distribution function obtained, regional factors associated with
different return periods are obtained.

2.2. Estimation of the Design Storm from Regional Factors

To obtain a design storm associated with a return period, the following steps are
used [14].

1. The historical average maximum annual rainfall of the basin is estimated from
an isohyet map and the approximate location of the basin centroid.

2. The regional factor for the study site corresponding to the analyzed return period
is selected.

3. The historical average maximum annual rainfall is multiplied by the regional factor,
thus obtaining the total annual maximum accumulated rainfall of 24 h.

4. Rainfall previously obtained is affected by a reduction factor per area obtained with
the basin area and the equation that corresponds to the study area.

5. One-hour total rainfall is estimated from twenty-four-hour total rainfall data, calcu-
lated in step 4 with the help of the convective factor corresponding to the analysis site.

6. Chen and Bell tables [16] are used to estimate precipitation values for durations
between 1 and 24 h or for durations less than one hour or greater than 24 h.

7. The design mass curve for the selected Δt is presented. The bars of the design
hyetograph, not yet sorted, are defined for the duration of the selected storm.

8. To shape the design storm, a block ordering process is carried out (alternating blocks
are traditionally used in statistical storms, but in the case of flash floods, a skewness
in the hyetograph must be considered).

2.3. Construction of the Design Hyetograph Using Flash Flood Shape

The variant proposed in this research occurs in the way of placing the design bars of
the hyetograph associated with a flash flood.

For this, the historical storm event of the study site that caused a flash flood was
selected and its position occupied by bars of the hyetograph was identified, from the largest
to the smallest. This order was used to order the statistically generated storm bars; with the
above, it is possible to obtain non-centered hyetographs with a skewness that correspond
to a behavior similar to the hyetographs of a flash flood.

2.4. Study Site and Data Set

Cuautepec, Edomex has a geography conducive to the occurrence of floods, many of
them flash floods that, as they increase, generate flows that descend from the hill upper
zones towards the urban area in the lower zones. Constructions located in particular on the
left bank of the plain area in the central basin part are flooded when the Cuautepec River
overflows, since there is a combined drainage system that carries rainwater and sewage,
due mainly to the invasion of the floodplains and the reduction in the hydraulic area of the
natural channels in such urban zones. Among dozens of school supplies, books, computers,
benches, and children’s games rescued from the mud and garbage that was dragged by
the water current that caused the storm on 30 October 2009 in Cuautepec, teachers from
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the Gertrudis Armendariz and Josefa Ortiz de Domínguez schools exposed to officials, as
well as federal and local authorities, that each year, during the rainy season, these centers
are flooded by the overflow of the rivers that discharge sewage. In the Josefa Ortiz de
Domínguez kindergarten, the teachers lamented the loss of the computer center, where five
days later they could still see the 16 computers covered in mud and with traces of the mark
of the water level reached by the water that flooded the school.

Seven houses for families that suffered irremediable structural damage were incorpo-
rated into the housing improvement program; these houses were located on the left bank
of the Cuautepec River near the Precious Blood of Christ Church.

In this regard, José Pérez Castañeda, director of Clean and Urban Image of the Sec-
retariat Services, said that the unit in his charge had so far disposed of 2751 waste tons,
including solid waste and household items that were dragged by runoff that descended
from the hills to the mild part where the community of Cuautepec is allocated.

Figure 1 shows on furniture the water depth mark reached by the flood inside
a kindergarten and it is approximately 1.0 m (photograph from La Jornada newspaper
of the event on 30 October 2009 [17]); unfortunately, there was no rainfall measurement,
because a pluviograph was not installed in the area surrounding and the kindergarten is
located next to the church aforementioned.

Figure 1. Water depth reached, observed on furniture at the affected site after flood event of
30 October 2009. Source: Google images.

At the end of August 2021 and during the first days of September, storm events
occurred, some associated with Hurricane Grace [18,19], that caused severe flooding in
several municipalities of Mexico State [20]. The contribution basin of the storm recorded
between 3:40 p.m. on 6 September and 5:40 a.m. on 7 September 2021, with a total rainfall
of 44.57 mm, is shown in Figure 2; the analyzed basin area is 15 km2, with a main channel
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length equal to 8.24 km and a main channel slope (dimensionless) of 0.0428, which can lead
to supercritical flow conditions. The OH Hydrological Observatory pluviograph of the
Institute of Engineering (Figure 2) reported this event that caused a flash flood (Figure 3).

Figure 2. Location of the study site and the pluviograph of the OH, UNAM.

Figure 3. Flash flood hyetograph that occurred in September 2021 in Mexico State, Mexico.

Journalistic sources highlighted at least 2 deaths, nearly 100,000 affected inhabitants,
and material damage in 19 different neighborhoods.
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2.5. Hydrological Region for Mexico Valley River Basin

The entire Mexico Valley River Basin (MVRB) hydrology was considered. Since little
variation was noted in the variation coefficients for the different stations analyzed in the
study by Domínguez et al. [21] (Figure 4), in said study it was reported that the regional
function of best data fit, using the procedure described in the methodology, was of the
Double Gumbel type [22]; regional factors corresponding to different return periods are
highlighted in Table 1.

Figure 4. Coefficients map of variation for historical annual maximum daily rainfall in Mexico Valley.
“Adapted from Ref. [21], 2022, SACMEX”.

Table 1. Dimensionless regional factors for estimating annual maximum daily rainfall for different
return periods Tr in years for Mexico Valley River Basin. “Information consulted from Ref. [21], 2022,
SACMEX” Source: [21].

Tr, Years CVM (D-GUMBEL)

2 0.94

5 1.2

10 1.39

20 1.59

50 1.88

100 2.09

200 2.29

500 2.56

1000 2.76

2000 2.97

5000 3.23

10,000 3.44
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2.6. Area Reduction Factor Equation

The equation developed by Domínguez et al. [21] was used for the reduction factor
per area as a function of the area a of the basin (Equation (3)). The reduction factor per area
takes into account the spatial distribution of rainfall.

FRA = −0.058 ln(a) + 1.10155 (3)

Para 0 < a ≤ 25 km2

2.7. Convective Factor

For this paper, a convective factor R equal to 0.61 was considered, based on an updated
map from a study by Domínguez et al. [21] (Figure 5). The convective factor is the ratio of
the rainfall that occurs in 1 h to the rainfall that occurs in 24 h.

Figure 5. Convective factor R Map for Mexico Valley River Basin. “Adapted from Ref. [21],
2022, SACMEX”.

2.8. K-Factors to Move to Durations Other than One Hour

K-factors were considered, corresponding to convective factor R, from the modified
Chen and Bell [16] version for the study by Domínguez et al. [21]. The K factors allow for
obtaining the rainfall that occurs in durations of less than one hour, with respect to the
rainfall of one hour.

2.8.1. Hec-HMS Software

The HEC-HMS (Hydrologic Engineering Center–Hydrologic Modeling System) model
is a rainfall–runoff model developed by the Hydrologic Engineering Center HEC of the U.S.
Army Corps of Engineers USACE that is designed to simulate the runoff hydrograph that
occurs at a given point in the river network as a result of a rain event. The predecessor of
this model, the HEC-1, was born as an event model and has been considered by many as the
most versatile model [23] and probably the most widely used in this type of hydrological
characterization of floods.
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To calculate evapotranspiration losses, HEC-HMS has different methods. In this case,
the method of the SCS Soil Conservation Service, also called the CN curve number, was
chosen because it has quality digitized information on the use and type of soil. This method
was developed by the SCS of the US Department of Agriculture, USDA, to estimate the
losses (or abstractions) in a rain or downpour event [24], and today it is one of the most used
in the professional field. In this method, the effective rain height is a function of the total
precipitation volume and a loss parameter called the CN curve number. The curve number
varies in the range from 0 to 100 and depends on factors that influence the generation of
runoff in the basin: hydrological type of soil (hydrological group–drainage capacity); land
use and management; soil surface condition; and antecedent moisture condition.

The starting hypotheses or conditioning factors from which the model is based are
the following: the simulation is limited to rain events (event model) as a consequence of
the application of the model itself to the simulation of floods; the modeling is based on
simulating only the direct surface runoff, the base flow is estimated prior to the application
of the model; and snow is not taken into account, as we started from events in which there
was no snow.

2.8.2. Iber

Iber is a two-dimensional mathematical model for river and estuary flow simula-
tion developed from the collaboration of the Water and Environment Engineering Group,
GEAMA (University of La Coruña); the Mathematical Engineering Group (University of
Santiago de Compostela); and the Flumen Institute (Polytechnic University of Catalonia
and International Center for Numerical Methods in Engineering) and promoted by the
Center for Hydrographic Studies of CEDEX. Iber is a numerical model developed directly
from the Spanish public administration in collaboration with the aforementioned universi-
ties and designed to be especially useful for the specific technical needs of hydrographic
confederations in the application of current sectoral legislation on water. Iber’s hydrody-
namic module solves the two-dimensional St. Venant equations, incorporating the effects
of turbulence and wind surface friction [25].

The shallow water equations and those of the k-ε model are solved using the finite
volume method for two-dimensional unstructured grids. The numerical schemes used in
Iber are especially suitable for modeling regime changes and dry–wet fronts (flood fronts).
The discretization of the spatial domain is carried out with finite volumes in unstructured
meshes, admitting these mixed ones formed by triangular and quadrangular elements. The
convective flow is discretized using Godunov-type off-center schemes, specifically Roe’s
off-center scheme, as well as its depth to order 2 with a slope limiter to avoid oscillations
in regions with local maxima or minima. The term that includes the bottom slope is
discretized off-center in order to avoid spurious oscillations of the free shell when working
with complex terrain. The rest of the source terms, including those of turbulent diffusion,
are discretized with a centered scheme.

2.8.3. Hec-Ras 2d

Hec-Ras 2d software, developed by the United States Corps of Engineers [26], has
been evolving in its potentialities; Hec-Ras was initially conceptualized for flow in one
direction, and already in its two-dimensional form it solves the equations of 2D flow at the
free surface for shallow water. The latest versions have incorporated a module that includes
the complete two-dimensional moment equations for complete shallow waters, occupies
structured grids with digital elevation models that can have high resolution (Lidar type),
and considers the Manning N coefficient taking into account different values depending on
soil type [27].
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3. Results and Discussion

3.1. Flash Flood Hyetographs Obtained for Different Return Periods

By applying the regionalization procedure before-described and considering an up-
dated map of the historical annual maximum daily mean isohyets of Mexico Valley as well
as the basin centroid (Figure 6), a rainfall of 50 mm was estimated for the study site; this
rainfall times the regional factor for a given return period results in the design rainfall.
Subsequently, said rainfall was reduced to take into account its spatial distribution using
the area reduction factor, and later the total rain of one hour and shorter duration was
estimated to obtain the mass curve of the design storm. With this information, design
hyetographs were determined, considering a duration of 14 h and shaping hyetographs
based on behavior of the historical flash flood that was taken as a base. These hydrographs
can be seen in Figure 7.

Figure 6. Estimation of the historical annual maximum daily average rainfall for the study site.

Figure 7. Cont.
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Figure 7. Hyetographs for flash floods. Cuautepec Basin Tr = 2, 5, 10, 20, 50 and 100 years.

3.2. Simulation of the Historic Flood Using Hec-HMS

Flood simulation using the Hec-Hms semi-distributed model produced the hydro-
graph shown in Figure 8.

Figure 8. Flash flood hydrograph produced by the historic storm of September 2021. Estimated with
Hec-HMS. Cuauhtepec Basin, Edomex.
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3.3. Hydrographs Produced by Hyetographs for Different Tr Calculated with Hec-Hms

Hydrographs were obtained using Hec-Hms, and these were compared with the
historical storm, as shown in Figure 9.

Figure 9. Estimated hydrographs for storms with different Tr and historical flash flood.

3.4. Depth and Velocity Maps of Historic Flash Flood

When using Iber software using the historical hydrograph produced by the flash
flood obtained with Hec Hms and a calculation time of 24 h, depth and velocity maps
created using a calculation time of 13,600 s (3.78 h) are presented in Figure 10; these
result were partially due to the high calculation time required by the Iber software to
perform processing.

Figure 10. Depths and velocity maps, historical flash flood using Iber t = 13,600 s (3.78 h).

In contrast, when using the Hec-Ras 2d software, simulation was carried out for 7.5 h,
and in a calculation time of approximately 23 min, in this case, the depth and velocity maps
indicated in Figure 11 were obtained.
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Figure 11. Depths and maximum velocity, maps for Historic flash flood using Hec-Ras2d.

The water depths reported using Iber in almost the first 4 h for the runoff process
indicate highest values between 1.5 and 3 m and velocity between 3 and almost 9.5 m/s,
which gives indications that possible supercritical flow occurred in the event, which could
be intuited with main channel slope data (S = 0.0428).

The most extensive simulation (of 7.5 h) carried out by Hec-Ras 2d reported maximum
depths of the order of 3.1 m and a maximum velocity that reached 3 m/s; after 6 h, water
drained into the basin outlet. The Manning N coefficient was set with different values,
according to soil type.

3.5. Flash Flood for Tr = 50 Years

The reported maps and velocities from simulation with Hec-Ras 2d for flash flood for
Tr = 50 and Tr=100 years are shown in Figures 12 and 13.

Figure 12. Depths and max velocity, maps for Tr 50 years using Hec-Ras2d.

In the case of floods with Tr = 50 and Tr = 100 years, maximum depths would reach
3.5 m or even greater, and velocities would also exceed 3 m/s, which does give an idea of
a supercritical flow generated in the study site that increases risk in a flash flood event.
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Figure 13. Maps of depths and maximum velocity for Tr 100 years using Hec-Ras2d.

When comparing historical results and floods with Tr = 50 and 100 years with the
Dorrigo diagram [28–30], which is an indicator of the resistance to overturning (Figure 14),
the depths and velocity that occurred in the historical event and for the Tr mentioned
above lead to a high to very high probability of overturning or dragging in the water of the
objects found in the passage of the current. The occurrence of human and material losses is
inevitable in the face of said runoff event attributed to precipitation in the topography of
the site that leads to the occurrence of dangerous supercritical flows.

Figure 14. Hazard according to depth vs. velocity of water relationship and its categorization. Source:
New South Wales, 2005.
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For a finer estimate of the velocities that occurred in the analyzed event, it is advisable
to carry out tests with different values of the calculation time interval, since instabilities
can be generated in the results of the simulation algorithms. Hydrodynamic models that
solve the Saint Venant equations with shock capturing [25,31] can also be used to consider
supercritical flows and transitions to subcritical flows. On the other hand, in the case of
constant high velocity conditions, even going down the water depth, the danger of tipping
objects would still be high, as indicated by the Dorrigo diagram.

Regarding an event associated with a Tr of 100 years, it can be concluded that the
braces reached in the area surrounding the kindergarten as well as the constructions on the
left bank of the river according to the Hec-Ras 2d modeling are around 1 m, as shown in
the evidence of Figure 1 and in the enlargement shown in Figure 15. For the velocity range
from 1 to 3 m/s, if we apply Figure 13 in this specific case, it is concluded that for said tie
rod there is a very high risk both of resistance to overturning and high danger, as defined
in Figure 14.

Figure 15. Floodplain expansion for flash flood with Tr = 100 years.

Additionally, the Tamez criterion [32] establishes that either a combination of depth of
1 m and a velocity of 1 m/s or the factor defined as the product of the depth by the velocity
of 0.5 m2/s are sufficient to have a serious danger of loss of humans and damage to the
household items of the population.

4. Conclusions

The regionalization application method based on variation coefficients with difference
in hyetograph shape construction was useful to obtain direct runoff hydrographs proposed
for different return periods. They were created from a historical flash flood from the study
site, a kind of event that caused a lot of human and material damages. For both historical
and statistical hydrograph simulation purposes, the free-use tool US Army Hec-Ras 2d
was very useful since calculation times were relatively short, about 30 min, while the Iber
software had problems in calculation time because so many hours were required to perform
simulation that we finally decided to not continue to apply it in this investigation. Another
inconvenience observed was that boundary conditions were fed with the hydrograph
produced by a measured storm, that is, the Iber hydrological module could not be used and
Hec-Ras 2d version did not request precipitation data; therefore, it is advisable to delve
into improvements to hydrological modules to model rainfall–runoff scenarios. Depth
maps and maximum depths obtained revealed that in the face of flash floods for return
periods of up to 100 years, the probability of dragging obstacles in the water path is very
high and the floodplain is also reflected as being wide. Due to rugged, steep topography in
the upper basin, it is prone to flash floods, landslides, and debris, as well as supercritical
flow development. Supercritical flows associated with high water velocities are really
dangerous since they can cause great damage to infrastructure as well as people dragging,
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cars overturning, and human losses. Disorganized population growth and the territory,
together with land use change, has encouraged construction in these highly dangerous
areas. Therefore, the recommendation, in case there is already infrastructure that may
be susceptible to being damaged by flash flood events, is the use of structural, such as
velocity reducers that change roughness coefficient, temporary, or permanent measures
to reduce future damage and continue promoting a culture of warning and prevention to
the population.
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Abstract: In recent years, as the frequency of debris flow outbreak in strong earthquake areas
has increased and the scale has been expanding, in order to explore the erosion characteristics of
debris flow, a lateral erosion flume model experimental device has been designed, and 18 groups
of incomplete orthogonal experiments have been carried out, with a unit weight of debris flow of
1.6~2.0 g/cm3, a content of fine particles in the accumulation of 0~28.82%, and a longitudinal slope
gradient of the gully of 8◦~20◦ as variables. The results show that the erosion width, erosion depth,
and erosion volume decrease with the increase in fluid bulk density and increase with the increase
in gully slope. When the longitudinal slope of the gully was 16◦, the sediment with 11.40% fine
particles had the strongest erosion effect, indicating that more or less fine particles are not conducive
to the occurrence of lateral erosion of the gully. Finally, through multi-factor variance analysis, it was
found that the order of the three factors on the gully lateral erosion degree from strong to weak is:
debris flow unit weight, gully slope, and accumulation grading. The analysis results further showed
that the unit weight of debris flow has the greatest impact on the erosion degree of the side slope,
which is consistent with the experimental results. The research results have important reference
significance for revealing the mechanism of lateral erosion and improving the level of debris flow
disaster prevention in strong earthquake areas.

Keywords: debris flow; lateral erosion; strong earthquake area; model experiment; erosion pattern

1. Introduction

After the “5.12 Wenchuan” earthquake in 2008, the mountains in the strong earthquake
area were severely disturbed, adverse geological disasters occurred frequently, and the
reserves of loose rock and soil mass generated by gully collapse and landslide increased
sharply [1,2]. These deposits have poor particle sorting, a large pore ratio, and strong water
permeability, which can easily initiate the formation of debris flows [3], resulting in an
increase in the scale and frequency of debris flows [4]. This type of debris flow is mostly
formed by the continuously increasing concentration of solids inside the fluid as the water
in the channel erodes the channel bank. The experimental study of the lateral erosion of
debris flow and the exploration of its disaster-causing mechanism can provide a better basis
for the prediction and prevention of debris flow, so as to improve the level of debris flow
disaster prevention and reduce the adverse impact of debris flow on gully erosion [5,6].

As hydraulic debris flow has a stronger erosive capacity to gullies, its occurrence ratio
is increasing year by year [7]. The gullies are gradually deepened under the erosion of debris
flow [8], and their boundary conditions change. The gully bank deposits are more likely to
lose stability and fall into the gullies under the lateral erosion of water flow, which widens
the gullies and sharply increases the scale of debris flow [9–11]. Through the analysis of
debris flow data in Kansia Basin, Simoni et al. found that when the longitudinal slope of
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the river channel exceeds 16 degrees, the river channel will produce lateral erosion [12].
G. J. Hanson et al. studied the erosion resistance of different parts of the riverbed through
an on-site spraying experiment [13]. Zhou [14] and others found that riverbed erosion,
bank collapse, and river widening caused by erosion are the main reasons for the triggering
and scaling up of debris flow in the lower reaches of Wenjia Valley. The 2017 Wenchuan
Yangtang ditch debris flow showed a strong lateral erosion widening effect on the ditch
bank during the flow through the circulation area, the widening width generally reached
8~10 m, and the amount of material source squared taken away by lateral erosion along
the course was as high as 3.0 × 105 m3 [15]. During the debris flow movement in the 2019
Xiazhuang Valley ditch, the foot of the terrace slope on both banks of the ditch channel
gradually panned back under the lateral erosion effect of the mudslide, which made the
soil deposited on the shore at an early stage collapse in block form to converge in the debris
flow [16]. It can be seen that material generated by lateral erosion of gully banks plays
an increasingly important role in the formation of post-earthquake debris flows [17–19].
Through the relevant literature, we know that there are many factors affecting gully erosion,
such as geology, landform, elevation, slope, soil characteristics, rainfall, etc. [6,20,21],
which will have a great impact on gully erosion. In addition, Paramita Roy et al. also
assessed the importance of gully erosion according to the influencing factors of gully
erosion and drew the gully erosion sensitivity map of the Hinglo River Basin of eastern
India, which can help the land management department to control the potential erosion
area in advance, and also make full use of land resources to promote the sustainable
development of the basin [22]. Pan Huali et al. [15] analyzed the erosion pattern and
factors influencing the movement of debris flow in the channel and found that lateral
erosion is particularly strong at the concave bank of the channel, and the foot of the channel
bank is continuously retreating under the continuous erosion of debris flow, which makes
the channel bank form a suspended body and collapse under the action of gravity, thus
widening the channel laterally. Zhu Xinghua et al. [23] gave calculation formulas for lateral
erosion occurrence, occurrence type, and transport rate through theoretical analysis and
field in situ experiments, and classified lateral bank erosion types into dumping, falling, and
slip collapse, and performed mechanical equilibrium analysis for each mode by analyzing
the form of lateral bank fractures. Qu YP et al. [24] investigated the channel initiation
mechanism and movement characteristics of hydraulic-type debris flows under different
combinations of flow velocity, flow capacity, and longitudinal slope gradient in a hydraulic-
type debris flow wash-out scale model experiment, but the influence of debris flow density
on the results was not considered during the experiment. Zhao Yanbo et al. [25] explored
the rule of erosion depth of debris flow from the gully bed under the conditions of gully
slope, debris flow unit weight, and gully bed deposit gradation through a flume test.
Chen Jing et al. [9] considered the erosion rate and depth of debris flow with different
unit weights under different accumulation water contents and different slopes in a flume
experiment of influencing factors of debris flow bottom erosion; however, neither Zhao
Yanbo et al. [25] nor Chen Jing et al. [9] conducted in-depth research on the erosion width
and volume of the accumulation body.

To date, many researchers have studied the erosion mechanism of debris flow through
experiments, theories, and numerical simulation. However, their research objects are
mainly focused on undercutting erosion. Therefore, the lateral erosion of gullies needs
to be studied further [20,26,27]. Aiming at the problems of insufficient research on the
mechanism of lateral erosion of debris flow and incomplete consideration of relevant
influencing factors, this paper, on the basis of previous experimental research, carries out
18 groups of incomplete orthogonal experiments to explore the influence of the volume
weight of debris flow, the slope of channel, and the gradation of deposits on lateral erosion
and carries out analysis of the data on the shape, width, and square of deposits after erosion.
The influence of different factors on the lateral erosion degree of debris flow is studied.
The results are of great significance for further theoretical research on the side erosion of
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debris flow, prediction of debris flow disasters, and improvement of the recognition and
prevention of debris flow in strong earthquake areas.

2. Experiment Scheme Design

2.1. Experimental Apparatus and Equipment

The independently designed debris flow bed flume model experimental device [28]
that can change the slope from 0 to 45◦ is used for the experiment. The experimental model
is composed of four parts: a lifting device, mixing device, flume device, and stacking
platform, as shown in Figure 1. The left side of the model device is a 6 m long and 0.3 m
wide water tank, to stabilize the flow pattern; the first 4.2 m is set as the fixed bed section
and the last 1.8 m is set as the dynamic bed section.

Figure 1. Experimental device.

2.2. Experimental Parameters

This experiment belongs to the generalized flume model experiment. The unit weight
of debris flow in the strong earthquake area ranges from 1.6 g/cm3 to 2.0 g/cm3, the
longitudinal slope of the gully varies from 7.6◦ to 42.8◦, and the average longitudinal slope
is 21.8◦ [24,29]. In order to reflect the flow characteristics of debris flow in the field, the
volume weight range of debris flow configured in the experiment is consistent with field
data. At the same time, considering the water infiltration under different longitudinal
slopes of the gully in order to minimize the impact of water infiltration on the unit weight

85



Water 2023, 15, 283

of debris flow before erosion of the gully; referring to the relevant literature, the variation
range of the longitudinal slope of the experimental gully is 8◦ to 20◦ [30].

Three kinds of debris flow with different unit weights, namely, rarefaction (1.6 g/cm3),
transition (1.7 g/cm3), and viscosity (1.8 g/cm3), are set up in the experiment. The materials
for preparing the debris flow are natural river sand and clean water, and bentonite is added
to improve the viscosity and workability of the debris flow, to prevent the debris flow
from stratification. The proportions of debris flow with different unit weights are shown in
Table 1. To consider the erosion effect of debris flow on different graded accumulations,
three types of accumulations with 25% water content and different contents of fine particles
are selected in the experiment. The content of fine particles in the accumulations at different
levels is shown in Table 2.

Table 1. Composition of debris flow.

Density Water Soil Sand

1.6 g/cm3 0.35 0.1 0.55
1.7 g/cm3 0.29 0.08 0.63
1.8 g/cm3 0.24 0.06 0.7

Table 2. Fine particle content of accumulation.

Gradation Types Grading I Grading II Grading III

Content of fine particles (<1 mm) 11.40% 0.00% 28.82%

2.3. Experimental Scheme

In the experiment, the unit weight of debris flow, the longitudinal slope of the gully,
and the gradation of accumulation are used as variables to study the influence of each
variable on the lateral erosion of debris flow. Due to a large number of experimental
variables, the experimental scheme is set by the method of incomplete orthogonality.
Given the widespread existence of narrow and steep gully-type debris flow in the strong
earthquake area, this type of gully is severely eroded and has a strong disaster-causing
capacity. Its outbreak frequency increases significantly after an earthquake, and the slope
of the gully is concentrated at about 16◦. Therefore, the experiment takes 16◦ as the main
slope to study the erosion law of different accumulation gradations under this slope. In the
pre-experiment process, it was found that the erosion capacity of the debris flow with a
unit weight of 1.8 g/cm3 was weak, which was mainly represented by siltation. Therefore,
the erosion process was only studied under the condition of the 20◦ longitudinal slope. The
test scheme is shown in Table 3.

Table 3. Experimental scheme.

Number
Longitudinal Slope

Gradient (◦)
Fluid Density (g/cm3)

Gradation of
Accumulation

1 20 Water Grading I
2 16 Water Grading I
3 12 Water Grading I
4 8 Water Grading I
5 20 1.7 Grading I
6 20 1.8 Grading I
7 20 1.6 Grading I
8 16 1.6 Grading I
9 12 1.6 Grading I

10 8 1.6 Grading I

86



Water 2023, 15, 283

Table 3. Cont.

Number
Longitudinal Slope

Gradient (◦)
Fluid Density (g/cm3)

Gradation of
Accumulation

11 16 1.7 Grading I
12 12 1.7 Grading I
13 16 1.7 Grading II
14 16 1.6 Grading II
15 16 Water Grading II
16 16 1.6 Grading III
17 16 1.7 Grading III
18 16 Water Grading III

3. Experimental Study on Lateral Erosion of Erodible Gully Bed

In natural debris flow gullies, due to the erodibility of the gully bed, the lateral erosion
of debris flow will be affected by the undercutting of the gully. Exploring lateral erosion
regularity of erodible gully beds is beneficial to further deepen our understanding of lateral
erosion of debris flow in strong earthquake areas, eliminate potential hazards in advance,
and reduce potential natural disasters in the future, which is of great significance to reduce
the safety risks of gully basins [31,32].

3.1. Erosion Form Analysis

After scouring, the hand-held 3D laser scanner is used to obtain the point cloud data
of the final erosion form, and Geo magic software is used to process the measured 3D point
cloud data, establish a scouring form model, and obtain the section curve information at
the maximum erosion width and depth.

(1) Erosion degree analysis of debris flow unit weight change

The morphology and 3D comparison of the gully channel after erosion of grade I
accumulation by the different unit weight of debris flow under 20◦ longitudinal slope
conditions are shown in Figure 2, and the characteristic cross-section of the gully channel
after erosion is shown in Figure 3.

The results show that the maximum erosion width of 1.6 g/cm3 debris flow is
111.6 mm, the maximum erosion depth is 96.1 mm, and the erosion volume is 22,338.27 cm3.
The maximum erosion width of 1.7 g/cm3 debris flow is 90.70 mm, the maximum erosion
depth is 104.7 mm, and the erosion volume is 9263.56 cm3. The 1.8 g/cm3 debris flow
has no lateral erosion, and the erosion depth of 10.4 mm is generated at the front end of
the gully, and 39.8 mm thick siltation is generated at the rear end of the gully, with the
siltation volume of 2057.83 cm3. The maximum erosion width of clear water is 192.2 mm,
the maximum erosion depth is 91.3 mm, and the erosion volume is 28,556.99 cm3. As
can be seen from the erosion pattern under the action of 1.6 g/cm3 debris flow, the gully
presents a cut and pull trough at the bottom of the whole section, and the bank slope at
the pull trough is steepened by lateral erosion. The 1.7 g/cm3 debris flow forms a punch
hole at the front end of the gully, and the erosion at the rear end is weakened; 1.8 g/cm3

debris flow shows siltation in the process. In this process, water eroded the entire side bank
slope, and a large number of side bank material sources accumulated in the ditch, reducing
the original side bank slope, widening the bottom of the ditch, and forming a maximum
thickness of 88.9 mm at the position after x = 1300 mm. The erosion degree of different
fluids under the condition of an erodible gully bed is in the order of strong to weak: water,
1.6 g/cm3 debris flow, 1.7 g/cm3 debris flow, 1.8 g/cm3 debris flow.
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(a) Water 

Figure 2. Comparison diagram of debris flow erosion with different unit weights.
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(a) (b) 

Figure 3. Characteristic cross-section after erosion of debris flow with different capacity. (a) Cross-
section at maximum erosion depth. (b) Cross-section at maximum erosion width.

(2) Analysis on erosion degree of gully longitudinal slope change

The morphology and 3D comparison of the gully channel after erosion of the graded I
accumulation by different longitudinal slope conditions with a unit weight of 1.6 g/cm3

debris flow are shown in Figure 4, and the characteristic cross-section of the gully channel
after erosion is shown in Figure 5.

The analysis of the erosion of the lateral gully bank accumulation at different slopes
showed that when the slope is 8◦, the debris flow only forms scour holes at x = 300 mm,
the maximum erosion width is 68.2 mm, the maximum erosion depth is 57.6 mm, and the
erosion volume is 2244.01 cm3; the rest of the locations are largely free of erosion. When
the slope rises to 12◦, the erosion degree gradually increases. At this time, the debris
flow forms scour pits at x = 300 mm and x = 1200 mm, the maximum erosion width is
86.6 mm, the maximum erosion depth is 71.4 mm, and the erosion volume is 6347.80 cm3.
When the longitudinal slope of the gully is 16◦, the debris flow forms a scour hole at the
accumulation body x = 400 mm, and then a backward-pulling slot to form erosion on the
entire section, which eventually leads to the steep side slope, with the maximum erosion
width of 108.2 mm, the maximum erosion depth of 110.0 mm, and the erosion volume of
16,283.31 cm3. When the gradient increases to 20◦, under the action of debris flow, the
gully is characterized by a full-section lower cut groove, the maximum erosion width is
111.6 mm, and the amount of erosion is 22,338.27 cm3. Due to the instability of the bank
slope at the position of the lower cut groove, particles flow into the eroded gully, resulting
in the final erosion depth of 96.1 mm. In the actual erosion process, the erosion depth of
debris flow under this unit weight reached 110.0 mm at the gully bed boundary. From
the erosion situation, under the condition of the erodible gully bed, the erosion degree
gradually increases with the increase in slope.
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(a) 8° Longitudinal slope 

 
(b) 12° Longitudinal slope 

Figure 4. Comparison diagram of debris flow erosion with different longitudinal slopes.
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(a) (b) 

Figure 5. Characteristic cross-sections after debris flow erosion under different longitudinal slope
conditions (a) Cross-section at maximum erosion depth. (b) Cross-section at maximum erosion width.

(3) Erosion degree analysis of different graded accumulations

The morphology and 3D comparison of the gully channel after erosion of different
graded accumulation by the 1.6 g/cm3 capacity debris flow under 16◦ longitudinal slope
conditions are shown in Figure 6, and the characteristic cross-section of the gully channel
after erosion is shown in Figure 7.

Under the condition of the erodible gully bed, the 1.6 g/cm3 bulk weight debris
flow produced a large degree of lateral erosion of the different graded accumulations, all
accumulations reaching the boundary limit at the depth of erosion. In terms of erosion
width of accumulations, the erosion extent of debris flow to graded I accumulations is the
largest, with the erosion width reaching 108.2 mm, while the maximum erosion width of
graded II and graded III accumulations are 83.5 mm and 48.3 mm, respectively. There is
little difference in erosion volume among accumulations, with the erosion volume being
16,283.31 cm3, 20,172.77 cm3, and 18,932.91 cm3, in turn. In terms of erosion pattern, the
erosion pattern of debris flow to the three graded deposits is that scouring pits are formed
near the channel longitudinal x = 450 mm, then scouring pits backward-pull grooves to
form erosion across the whole section, which finally leads to the steepening of the entire
side bank slope. The degree of erosion of the different graded accumulations shows that
the fine grain content has a greater effect on the width of erosion and a smaller effect on the
volume of erosion.

 
(a) Grading I 

Figure 6. Cont.
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(b) Grading II 

 
(c) Grading III 

Figure 6. Comparison diagram of erosion of accumulation bodies with different gradations.

 

(a) (b) 

Figure 7. Characteristic cross-sections of different graded mounds after erosion by debris flow
(a) Cross-section at maximum erosion depth.(b) Cross-section at maximum erosion width.

3.2. Analysis of the Width, Depth, and the Volume of Erosion

(1) Erosion width

Under the condition of the erodible gully bed, the erosion width under different slope
gradients is shown in Figure 8a. The erosion width of water and the 1.6 g/cm3 debris flow
are positively correlated with the channel slope. The 1.7 g/cm3 debris flow does not show
lateral erosion from 12◦ to 16◦, but lateral erosion occurs when the slope is increased to
20◦, suggesting a critical lateral erosion slope in the range of 16◦ to 20◦ for this volume of
debris flow. The erosion widths of fluids with different bulk densities are in the following
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order: water, 1.6 g/cm3 debris flow, 1.7 g/cm3 debris flow, indirectly indicating that fluid
viscosity has a greater influence on the erosion width.

 
(a) (b) 

Figure 8. Lateral erosion width. (a) Erosion width under different slope gradients. (b) Erosion width
under different graded accumulations.

The erosion widths of the different graded accumulations under 16◦ longitudinal slope
conditions are shown in Figure 8b. Water and 1.6 g/cm3 debris flow erode each channel
greatly, while 1.7 g/cm3 debris flow has a strong viscosity, low turbulence in the flow
process, and low erosion width to the three graded deposits. The grade III accumulations
have a higher content of fine particles than the other two grades, are more cohesive, and
ultimately suffer the least erosion.

(2) Erosion depth

The depth of erosion on different slopes is shown in Figure 9a. As the maximum
erosion depth of the experimental design is 110 mm, the erosion depth reached the limit
due to the influence of boundary conditions during the experiment; however, from the
overall change degree, the erosion depth of each experimental group still increases with
the increase in slope. However, under the condition of water and a 16◦ longitudinal slope,
the final erosion depth is less than 12◦ longitudinal slope. This is because the channel
accumulation collapses and slides at the end of the experimental process, causing the
accumulation to block the bottom of the channel. The subsequent inflow is not enough to
move the blockage body, making the final measured erosion depth smaller, but the actual
erosion depth reaches the bottom of the channel.

 
(a) (b) 

Figure 9. Lateral erosion depth. (a) Erosion depth under different slope gradients. (b) Erosion depth
under different graded accumulations.
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The depth of erosion of the different graded accumulations is shown in Figure 9b.
Under the condition of the 16◦ longitudinal slope, the maximum erosion depth of water
and the 1.6 g/cm3 debris flow reaches the boundary value. The 1.7 g/cm3 debris flow is
silted under the conditions of grading I and grading III, and only under the conditions of
grading II is incised, forming a 68.2 mm deep scour pit. The gradation II accumulation
has a low content of fine particles, low cohesion, and large soil pores, which makes it
easier for the debris flow to penetrate deeper into the mound, making the soil subject
to undercutting erosion by floating forces. A correlation can be observed between the
production of undercutting erosion and the fine particle content.

(3) Volume of erosion

The total amount of erosion for each experimental group at different slopes is shown
in Figure 10a. The clear water and 1.6 g/cm3 debris flow eroded under the condition of
the 8◦ longitudinal slope, and the amount of erosion was positively correlated with the
longitudinal slope gradient, with a high degree of correlation; for the 1.7 g/cm3 debris flow,
under the conditions of 12◦ and 16◦ longitudinal slopes, only slight siltation occurs; under
the conditions of 20◦ longitudinal slopes, erosion occurs in the gully, and the amount of
erosion and siltation meets the exponential function relationship.

 
(a) (b) 

Figure 10. Lateral erosion volume. (a) Erosion volume under different slope gradients. (b) Erosion
volume under different graded accumulations.

The total amount of erosion for different gradations is shown in Figure 10b. At the
16◦ longitudinal slope, 1.6 g/cm3 debris flow and clear water washed through the graded
accumulations, while 1.7 g/cm3 debris flow silted up, and at this longitudinal slope, there
was little difference in the total erosion of the different graded accumulations, and the
gradation characteristics set in this experiment had little effect on the total erosion.

3.3. Multi-Factor ANOVA on Factors Influencing Side Erosion

When using SPSS software, the significance level is set as p < 0.05 and the larger the F
value, the more significant the effect of the corresponding factor on the dependent variable;
when the significance p > 0.05, the effect is not significant. With lateral erosion width and
erosion volume as dependent variables and fluid density, slope, and accumulation grading
as fixed factors, the Duncan model was selected to compare and analyze the main effects of
each factor, and the results were as follows.

The impact analysis of each factor on the erosion volume and erosion width is shown
in Table 4. Under the condition of the erodible gully bed, the volume of debris flow erosion
and erosion width are affected by the same order of factors. The factor that had the greatest
impact on the degree of erosion was fluid unit weight, followed by the gradient of the gully
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longitudinal slope. It was further proved that under the condition of the erodible gully bed,
the content of fine particles has no significant impact on the degree of gully erosion.

Table 4. Test for effect of each influencing factor.

Factor
Erosion Volume Erosion Width

F Significance p F Significance p

Density 53.2988 0.000 35.450 0.000
Slope 7.994 0.007 9.224 0.004

Graded 1.922 0.202 2.883 0.108

4. Discussion

During the course of lateral erosion of channel-type debris flow in the strong earth-
quake area, the volume weight of debris flow, the longitudinal slope of the channel, and the
gradation of deposits are three important factors affecting its lateral erosion. Taking these
three factors as variables to carry out a tank model experiment is particularly important for
studying the width, depth, and square of debris flow, and subsequent debris flow control
and disaster prediction.

The volume weight of debris flow, the longitudinal slope of the channel, and the
gradation of deposits have significant effects on the lateral erosion of debris flow. According
to the model test and the results of data analysis, the factors influencing the width and
volume of debris flow erosion are unit weight of debris flow, channel slope, and gradation
of deposits, in turn. In addition, the gully slope provides power for debris flow, and
the increase in the slope will also reduce the stability of the side bank slope, which will
eventually lead to an increase in erosion volume and erosion width with the increase in
the slope. In addition, the gully side bank is more prone to erosion damage. At the same
time, it is observed in the test that the flow pattern of 1.6 g/cm3 debris flow is relatively
disordered, and it has a strong scouring ability to the side bank slope, while the 1.7 g/cm3

debris flow is mainly laminar flow in the fixed bed section. After entering the side bank
accumulation experimental area, the flow pattern evolves into a disturbed turbulent flow,
and with the increase in slope, the turbulence degree intensifies, and the erosion to the
gully gradually increases. At the same time, it was observed that the flow pattern of
1.6 g/cm3 debris flow is relatively disordered, which has a strong scouring ability on the
side bank slope, while the 1.7 g/cm3 debris flow is mainly manifested as laminar flow in the
fixed-bed section; the flow pattern evolved into the disturbed turbulent flow after entering
the experimental area of side bank accumulation, the degree of turbulence increased with
the increase in slope, and the erosion of the channel was gradually enhanced.

The results of erosion under erodible gully bed conditions show that when the slope
is gentle, the debris flow will preferentially produce undercutting erosion of the gully bed
during the flow through the gully, making the bank slope steeper, and thus inducing lateral
erosion in the way of bank slope collapse and instability. The further intensification of
erosion as the slope increases is due to the strong undercutting erosion, the expansion of
the scale of the washout pit triggering a larger scale of lateral bank destabilization, and the
more powerful transport capacity of the debris flow itself, which induces a large amount
of channel material transport and eventually leads to the expansion of the erosion degree.
The erodible ditch bed has a low degree of lateral erosion on the foot of the bank slope
and a small erosion width, which makes it easier to produce a plugging effect when the
loss of the lateral bank slope occurs, amplifying the scale of debris flow. Therefore, in
the debris flow control project for the erodible gully bed, the prevention of undercutting
erosion should be the main method, and on this basis, the protection of the bank slope foot
should be strengthened.

This study, similar to other studies, has some limitations that cannot be ignored in the
future [33], such as the constraints of the experimental site. The sink model used in this
experiment is small and it is difficult to satisfy all similarity laws, so geometric similarity
and boundary similarity were mainly considered during the experiment. In the future,
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similar conditions such as debris flow movement and dynamics can be further considered
by carrying out larger-scale model experiments. Due to the limitation of model size, the
thickness of the experimentally set erodible layer is 110 mm, and the undercutting erosion
reached the model boundary during the erosion process, but from the overall degree of
change, the erosion depth of each experimental group still shows an increasing trend as the
slope increases. In the future, we can deepen the thickness of the erodible layer in the gully
bed and study the effect of undercutting erosion on the lateral erosion of the gully channel
to further reveal the mechanism of debris flow erosion.

5. Conclusions

Based on the unit weight of debris flow, the longitudinal slope of the channel, and the
gradation of deposits as variables, 18 groups of lateral erosion model experiments of debris
flow were carried out. The effect of each variable on the lateral erosion of debris flow was
studied by collecting data on the scouring process and the channel morphology of debris
flow during the experiment. The main conclusions are as follows:

(1) Both debris flow erosion volume and width increased with increasing gully slope,
with a good linear fit correlation. This indicates that the gully side bank slopes are
more susceptible to erosion damage under the increasing slope. The size of erosion
volume and erosion width of the gully by different fluids are increased by clear
water, 1.6 g/cm3 mudflow, and 1.7 g/cm3 mudflow, in order. In terms of the erosion
volume and erosion width of the accumulation, the most severe erosion was observed
for grade I. This indicates that a greater or lower number of fine particles are not
conducive to the occurrence of lateral erosion in the gully, and this also provides
direction for lateral erosion prevention and cure in the gully.

(2) Compared with rigid riverbeds, lateral erosion of erodible riverbeds changes from
slope foot scouring to undercutting erosion, which leads to instability of the riverbank.
In addition, the lateral erosion pattern of the debris flow can be summarized as: the
debris flow forms a wash pit through undercutting erosion, and mixes and shears
in the wash pit to enable the side bank slope to form a critical surface, resulting in
the side bank slope instability under the combined effect of debris flow infiltration,
erosion, and gravity into the debris flow, and finally the scale of debris flow increases.

(3) Based on the multi-factor ANOVA analysis of experimental data, the total erosion and
erosion width were influenced by each factor in the following order of magnitude
under erodible trench bed conditions: fluid capacity, trench longitudinal slope, and
fine particle content of the accumulation.

As a natural disaster, debris flow is widely distributed in some areas of the world with
special topography and geomorphological conditions. By studying erosion characteristics
and investigating the influence of different factors on erosion, we can provide a better basis
for prediction and prevention of debris flow. In the future, it is also possible to combine the
degree of significance of each factor on debris flow erosion to map the erosion sensitivity
of the watershed, such that potential risk areas can be treated in advance to reduce the
adverse effects of debris flow erosion and promote the sustainable development of the
watershed. Therefore, it is essential to explore the erosion characteristics of debris flow.
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Abstract: Both vegetation coverage rates and arrangement patterns have important influences on
erosion. Very little previous research focuses on the impacts of spatial vegetation distribution patterns
on erosion. The slope-gully system was taken as the research object, which is composed of a 5.0 m
long hillslope with a slope gradient of 20◦ and a 3.0 m long gully slope with a gradient of 50◦. A
series of scouring experiments with two inflow discharges (3.2 L min−1, 5.2 L min−1) was carried
out. The effects of the flow discharges, spatial grass arrangement patterns (US, MS, and DS represent
the presence of grass covering on up-hillslope, middle-hillslope, and down-hillslope, respectively)
and grass coverage rates (0%, 30%, 50%, 70%, and 90%) on runoff and sediment were studied in
this paper. The results indicated that either runoff or sediment yielding was significantly decreased
with the grass coverage rates increasing and with the variation of grass arrangement patterns on a
hillslope. While grass coverage had more effectiveness in controlling erosion compared with runoff
reduction, and DS can control erosion more effectively than US and MS erosion controlling. For the
gully slope, erosion significantly increased with the grass coverage rates increasing no matter how
the grass arrangement patterns on the hillslope. Therefore, both different grass coverage and different
grass arrangement patterns have an influence on erosion processes; any research that only takes care
of the single factor mentioned above is not enough to reveal the effects of grass on erosion. In the
process of erosion control in the Loess Plateau, taking effective measures both on the hillslope and
gully slope will be effective methods of reducing soil erosion.

Keywords: grass coverage rate; grass spatial arrangement patterns; slope-gully system; erosion

1. Introduction

Soil erosion is a worldwide serious environmental problem for most farming lands
in the world. It not only threatens the future development of agriculture and society but
can also cause soil quality to decrease and land productivity to decline [1,2]. Particularly
in the Loess Plateau of China, erosion amounts have increased with the loss of vegetation
cover, where the area of soil loss reaches 43 × 104 km2, with an average annual soil loss of
3720 t km−2, at higher elevations. The amount of erosion has been reported to exceed even
10,000 t km−2 [3,4]. How to recover vegetation to effectively reduce soil loss has become
an essential environmental issue and has attracted increasing attention over the recent
several decades.

Vegetation coverage has an important role in effectively controlling soil erosion by
runoff and improving the ecological environment, as has been demonstrated by many
researchers [5–10]. The importance of vegetative coverage in reducing soil erosion has
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also been reported in a variety of literature [11,12]. With the Universal Soil Loss Equation
(USLE), soil loss rates are hypothesized to be the highest on bare soil and to decrease linearly
with the increase in soil surface coverage [13]. However, Rogers and Schumm reported that
the relationship between vegetation coverage and erosion varied considerably rather than
with a simple linear relationship, particularly for low-cover conditions [14]. Cerda also
indicated that exponential functions existed between erosion levels and that linear models
are not generally applicable through either field or laboratory experimental studies [15].

Different parts of vegetation (canopy, understory, and plant roots) typically have
differing roles in regulating the surface hydrological processes, a factor that results in the
variation of the erosive forces of rainfall [16]. In order to reveal the mechanism of the
vegetation reducing water erosion, much research works has been conducted to separate
the effects of the aboveground biomass or plant canopy from the belowground biomass
in runoff and sediment flux reduction [17–19]. In addition, the fact that the spatial distri-
bution or patterns of vegetation have the differing erosion reduction roles has come to be
realized in many parts of the world in recent years [15]. A few studies have revealed that
different spatial vegetation arrangements on slope divide the slope into runon and runoff
areas, and then into erosion and deposition areas acting as sediment sources and sinks,
respectively [20]. Neibling and Alberts [21] reported that grassland buffer zone decreased
more than 90% sediment yielding on 5.0 m long slope, and over 91% of the sediment was
deposited at 0.6 m grass buffer area from top of the slope. Dillaha [22] compared the effects
of different slope gradients on sediment reduction while keeping other factors constant,
and found that the slope gradient was inversely proportional to the sediment capture.
Runoff sediment concentration flowing out of vegetation buffer zone is a function of runoff
sediment concentration flowing into vegetation buffer strip and buffer strip width. All
these studies demonstrated that different vegetation coverage and different vegetation
spatial arrangement are effective for sediment decreasing, also provided the basic theory to
reveal the mechanism of vegetation reducing soil erosion.

Although there has been much research on vegetation reducing erosion, impacts of
different vegetation coverage and different vegetation arrangement patterns on the slope-
gully system has rarely been reported. Due to the particularity of the Loess Plateau, from
the up-slope boundary to the gully edges, both erosion forms and intensity have shown
significant vertical zonation. Significant impacts of runoff from upper slope on down-slope
sediment transport process [23–25]. Therefore, some researchers have recognized that
hillslope and gully slope are the basic topography units of Loess Plateau, any research
including alone hillslope or gully slope cannot response the actual erosion process of
the entire erosion system [26–28]. In addition, since the middle of the last century, two
crucial problems have aroused controversy in many scholars. There are two main points of
contention. One is which section in the slope-gully system is the key erosion controlling
area, if only restore hillslope vegetation can achieve the goal of soil erosion controlling
effective? The other one is which of the two parts, the hillsolpe or gully slope is the main
source of sediment yield? Both of the two controversies indicate that the related research is
still lacking. So, the objective of present study are: (i) to assess the impact of grass coverage
degrees and spatial arrangements on runoff and sediment yield both on hillslope and gully
slope; (ii) to analyze the relative contribution of hillslope and gully side account for the
total erosion on entire hillslope-gully system; (iii) to understand the validity of the policy
on soil and water conservations in Loess Plateau.

2. Materials and Methods

2.1. Soil Sample Collection

The soil used in this study was collected from Zhengzhou, Henan province, China.
The content of clay, silt and sand is 10.8%, 28.16%, and 61.04%, respectively. The soil is
classified as Alfisol according to the U.S. Soil Taxonomy. The pH value of soil is 7.2. The
natural consolidated soil has a bulk density about 1.3 g cm−3 and with an organic matter
content of 1.93%. The soil texture information is listed in Table 1. The soil was taken
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from a cultivated land with a depth of 0–0.3 m, and the soil was evenly taken down along
the top of the slope. Sufficient amount of soil was transported back to the laboratory for
experiments. All the soil used in study was air-dried.

Table 1. Soil basic information in this study.

Soil Type Soil
Texture

Soil Particle-Size Distribution (g kg−1) pH
(H2O)

OM
(%)Sand Silt Clay

Loessic soil Sandy loam 61.04 ± 7.14 28.16 ± 4.20 10.80 ± 3.90 7.2 ± 0.26 1.93 ± 1.23

Values represent means ± SD (standard deviation).

2.2. Experimental Setup

According to earlier investigation and statistics results gathered by Jiang et al. [29],
from the top of the hillslope to the edge of the gully and the bottom of the gully, both
the erosion forms and the intensity demonstrate significant vertical zonation. Most of the
hillslope gradients are about 20◦, while the slope gradients of the gully are dominantly
between 40◦ and 60◦ [29]. The Chinese Soil and Water Conservation Law specified 25◦ as
the maximum tillage gradient for prohibiting farming. The slope gradient of 20◦ is almost
the maximum slope gradient for cultivation. Take the above factors into consideration, the
hillslope gradient was set at 20◦, which is also a general gradient for cultivated land on
the study area. The gully slope gradient designed in this study was 50 ◦. According to the
previous research, the length ratio of the hillslope to the gully slope was from 1.4 to 2.0,
and the intermediate value of 1.67 was taken in this study. Therefore, the length of hillslope
was 5.0 m, and the gully slope length was 3.0 m. The horizontal projection length of the
hillslope and gully side are 4.7 m and 1.93 m, respectively (Figure 1).

(A) (B)

Figure 1. Schematic diagram of the hillslope-gully system of the Loess Plateau (A) and the soil box
designing diagram (B).

The runoff scouring experiment was applied in this study. The constant water head is
used to control the inflow discharge. Before each test, the inflow discharges were calibrated
at the outlet of the soil box by using a flow meter. The two inflow discharges of 3.2 and
5.2 L min−1 were used in the present experiments.

2.3. Experiment Preparation and Procedure

The soil box was 2.0 m width and 0.5 m depth. In order to ensure the consistency of
the experimental conditions, the 2.0 m wide soil box is divided into four plots with the
same width of 0.5 m by PVC board. Therefore, a control plot with no grass cover (CK), and
three additional plots were constructed in order to stand for differing grass arrangement
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patterns on slope, which were then considered as the: up-slope (US), middle-slope (MS)
and down-slope (DS), respectively (Figure 2).

HS: hillslope; GS: gully slope; US: up slope coverage; MS: middle slope coverage; DS: down slope coverage

30% grass coverage on hillslope

Figure 2. Schematic diagram of different grass coverage rates and different grass spatial arrangement
patterns on soil box.

Before experiments, all the soil used in the study passed through a 10 mm sieve and
removed gravel, animal, and plant residues in order to ensure homogeneity. A layer of fine
sand 0.1 m thick was laid at the bottom of the plot to simulate drainage conditions. The
soil was put in successive layers of 0.1 m thickness, a total thickness of 0.3 m, and a bulk
density of 1.35 g cm−3 was packed. Wild buffalograss (Buchloe dactyloides), which is a kind
of native grass in the Loess Plateau, was selected as the target species. Sow the grass seeds
into the plot to ensure that each plot's soil surface is covered with uniform grass. Each
experimental plot used a similar planting density. The grass coverage rate is calculated by
determining the amount of grass area, which accounts for the total hillslope surface area.
It has been widely suggested that the critical coverage rate for vegetation affecting soil
erosion is about 50% (Zhang et al., 2012). In order to minimize the number of experiments
while ensuring that there are significant differences in erosion between different treatments,
a 20% grass coverage rate interval was chosen. Consequently, experimental treatments
that designed based on the above rules, while different grass arrangement patterns were
designed in this study. In the present research, a total of 5 kinds of grass coverage rates
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were set, which were 0, 30%, 50%, 70%, and 90%, respectively. Except for 0% and 90% grass
coverage rates, there were three spatial grass arrangement patterns, as mentioned above,
on the hillslope of each plot, while there was no grass cover set up on the gully slope for
each treatment. Two days before the experiment, each plot soil surface was pre-wetted
uniformly by applying 20 mm/h rainfall intensity for 30 min to ensure the same soil water
content. Therefore, we could keep the initial condition of every experiment as consistent
as possible. The plot soil was repacked with new soil for the next experiment, and twice
experiments were conducted for each inflow discharge that was applied for approximately
half an hour.

For each scouring experiment, clear water was imported from the upper end of the plot.
Considering that there have been many studies on light rain and moderate rain conditions
in the past, this study focuses on erosion reduction under the slope grass arrangement
for heavy rain conditions. Inflow discharge of 3.2 and 5.2 L·min−1 was selected. The
inflow discharges correspond to the farmland runoff generated under the typical local
rainstorms with rainfall intensities of 100 mm h−1 and 150 mm h−1. The experiments
continued for about 20 min. During the experiment, runoff and sediment samples were
collected continuously every minute with a 10 litters bucket, and the flow velocities were
measured by using the dye tracing method. The time for the tracer traveling via a fixed
distance (2.0 m) was recorded according to the color-front propagation. The measured time
values mentioned above, multiplied by the theoretical value of 0.67, were used to calculate
the runoff mean velocities. After the experiment, the sediment in sampling buckets was
transferred to iron boxes and oven-dried at 105 ◦C for 24 h until a constant mass was
achieved and weighed. To acquire the gully slope erosion, the rill length, rill width, and rill
depth of each rill in the gully slope were measured by steel rule at intervals of 10 cm along
the latitude of the gully slope.

2.4. Data Calculation and Analysis

The sediment reduction due to grass coverage rate (%) could be calculated using the
following equation [12]:

Es =
Sck − Sg

Sck
× 100% (1)

where Sck is the sediment yield in the bared plot (Kg), and Sg is the sediment yield in
the plot of different grass coverage rates and different grass arrangement patterns on the
hillslope (Kg).

For runoff reduction due to grass coverage rate (%) calculations [12], the equation was

Er =
Rck − Rg

Rck
× 100% (2)

where Rck is the runoff generation in the bared plot (L), and Rg is the runoff generation in
the plot of different grass coverage rates and different grass arrangement patterns with the
hillslope condition (L).

According to the measurement of rill length, width, and depth, and taking the rill
section to be rectangular, the rill volume and rill erosion can be calculated with the
following equation:

Mi =
n

∑
i=1

Wi × Hi × l × ρ (3)

where Mi is the erosion of any selected rill segment on the gully slope (Kg); Wi is the
average width of any selected rill segment on the gully slope (m); Hi is the average depth
of any selected rill segment on the gully slope (m); l is the actual selected rill length (m); ρ
is the soil bulk density of gully slope (Kg·m−3).

Analysis of variance (ANOVA) was used to detect treatment effects on measured
variables. Significant differences between treatments for runoff and soil loss rate were
determined using the PLSD (Protected Least Significant Difference) procedure for a multiple
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range test at the 0.05 significance level. All tests were performed using the statistical
program SPSS 17.0.

3. Results

3.1. Runoff and Sediment Reduction

Both the runoff and sediment yield of the slope-gully system under the different grass
coverage rates and different grass arrangement patterns were summarized in Table 2 and Figure 3.

Table 2. Runoff and sediment yielding on the slope-gully system under the different grass coverage
and flow discharges.

Flow Discharge
(L·min−1)

Grass Coverage
(%)

Runoff
(L)

Erosion
(kg)

3.2

0 68.17 a 26.80 a
30 66.08 b 23.76 b
50 63.62 c 23.10 c
70 58.89 d 22.81 d
90 43.08 e 16.46 e

5.2

0 115.24 a 58.64 a
30 114.39 a 52.01 b
50 109.23 ab 39.77 c
70 111.37 b 35.83 d
90 103.30 c 33.02 d

Mean values of the same letter in the same columns are not significantly different at p = 0.05 level using the least
significant difference method.

(A) (B)

(C) (D)

Figure 3. Runoff and sediment reduction of the slope-gully system under the different grass coverage,
different grass spatial arrangement patterns, and different flow discharges (Mean values of the
same letter in different columns are not significantly different at p = 0.05 level using the least
significant difference method). (A) (Q = 3.2 L·min−1). (B) (Q = 3.2 L·min−1). (C) (Q = 5.2 L·min−1).
(D) (Q = 5.2 L·min−1).

As can be observed in Table 1, either the runoff volume or the erosion mass was
significant decreased with the grass coverage rates increasing and with the variation of
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grass distribution patterns on slope, indicating that both the grass coverage rates and
the grass arrangement patterns have significant effect on runoff and sediment yield on
slope-gully system. Runoff volume ranged from 43.08 to 68.17 L and erosion mass ranged
from 16.46 to 26.80 Kg with the grass coverage rate decreasing from 90% to 0%, and runoff
volume were reduced by approximately 3% to 36.8% and erosion mass were reduced
by approximately 27.8% to 38.6% compared with the bare plot under the flow discharge
3.2 L·min−1 condition, respectively (Table 1, Figure 1).

When the flow rate was 5.2 L min−1, the changing trend of runoff and erosion with
the vegetation coverage rate from 90% to 0% was the same, but the role of reducing runoff
and sediment by grass coverage rate was smaller than that under the flow discharge of
3.2 L·min−1. These indicated that grass was a very important factor in controlling soil
erosion, for it could be observed that the runoff decreasing was lower than the rates of sedi-
ment reduction, indicating that the grass coverage had higher effectiveness in controlling
soil erosion as compared to reducing runoff. As the grass coverage rate increased, sediment
yields and runoff decreased dramatically. These results are consistent with the findings of
other researchers who similarly found that vegetative cover significantly reduced runoff
and sediment losses [11,30,31].

By comparing the rates of runoff and sediment reduction under the differing vegetation
arrangement patterns on the slopes, it can be observed that the down-slope (DS) had the
lowest runoff and greatest runoff reduction in comparison with the up-slope (US) and
middle-slope (MS). However, no significant differences in runoff reduction were detected
between the US and MS, although there exists a significant difference in the sediment
reduction between the US and MS. In essence, these results indicated that the DS is
more effective than either the US or MS in both soil and water conversation under these
established experimental conditions.

3.2. Contributions of Hillslope and Gully Slope to Slope-Gully System

According to the results gathered by means of Equation (3), the erosion of the gully
slope was calculated (Table 3). As the information in Table 3 indicates, there exists quite
a difference between the flow discharge 3.2 L·min−1 and 5.2 L·min−1 for the gully slope
erosion, as well as a large amount of additional erosion occurring on the gully slope with
the flow discharge 3.2 L·min−1, while only a small amount of additional erosion occurs on
the gully slope with the flow discharge 5.2 L·min−1. Under the flow discharge 3.2 L·min−1

conditions, the erosion mass of the gully slope has a range from 1.89 Kg (with no grass
coverage on the hillslope) to 10.53 Kg (90% grass coverage on the hillslope), demonstrating
a significant increase with the grass coverage rate increasing. In opposition, for the flow
discharge 5.2 L·min−1, the erosion mass of the gully slope ranged from 16.26 Kg (with no
grass coverage on the hillslope) to 23.93 Kg (30% grass coverage on the hillslope) and then
fell to 17.95 Kg (90% grass coverage on the hillslope), demonstrating a significant decrease
with the grass coverage rate increasing.

The grass arrangement patterns on hillslopes have a significant influence on gully
slope erosion. By comparing the erosion of the gully slope under the different grass
arrangement patterns on the hillslope, it is easy to see that the erosion from the gully slope
for the DS condition had the lowest value in comparison with US and MS condition under
the flow discharge 3.2 L·min−1, while the erosion from the gully slope for DS, MS and
US condition has no obvious variation. The results above indicated that flow discharges,
grass coverage rates, and grass arrangement patterns all affected the gully slope erosion.
This supported Chen’s results, which showed that the runoff discharge and sediment
concentration from the upper hillslope are the important factors impacting the sediment
yielding on the gully slope [24].
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Table 3. Gully slope erosion under the different flow discharges, different grass coverage rates, and
different grass arrangement patterns.

VCR FD VDP Erosion VCR FD VDP Erosion
(%) (L·min−1) (kg) (%) (L·min−1) (kg)

0 3.2 1.89 0 5.2 16.26

30 3.2
Up-slope 4.99 b

30 5.2
Up-slope 23.93 b

Middle-slope 6.98 a Middle-slope 23.79 b
Down-slope 6.87 a Down-slope 26.7 a

50 3.2
Up-slope 10.23 a

50 5.2
Up-slope 21.25 a

Middle-slope 11.93 a Middle-slope 18.6 b
Down-slope 6.51 b Down-slope 20.4 a

70 3.2
Up-slope 12.02 a

70 5.2
Up-slope 22.99 a

Middle-slope 12.5 a Middle-slope 19.36 b
Down-slope 10.01 b Down-slope 19.08 b

90 3.2 10.53 90 5.2 22.95

Mean values of the same letter in the same columns are not significantly different at p = 0.05. VCR: vegetation
coverage rate; FD: flow discharge; VDP: vegetation distribution pattern.

The percentage of the gully slope erosion accounts for the total erosion of the slope-
gully system ranged from 7% to 64% under the flow discharge 3.2 L·min−1 and from 28% to
60% under the flow discharge 5.2 L·min−1, respectively (Figure 4). This indicated that flow
discharge has an important effect on the relationship between hillslope erosion and gully
slope erosion. Tang et al., Gong and Jiang, and Chen also researched slope-gully system
erosion processes and analyzed the percentage of gully slope erosion accounting for the
total erosion of the slope-gully system by using field plot measuring data, which indicated
that the percentage of the gully slope erosion ranged between 32% and 80% [24,32,33]. Jiang
further pointed out that the gully side area accounts for 53% of the total area condition.
In the case of a rainstorm, the sediment yield from the gully slope evenly accounts for
62% of the total erosion [29]. Especially for high flow years, the ratio of gully side erosion
accounted for the erosion of slope-gully system was 63%. In the present research, the gully
side area accounts for about 40% of the total area of the slope-gully erosion system, and the
average erosion of the gully side account for 40% of the total erosion for the flow discharge
of 3.2 L·min−1 and 50% for the flow discharge of 5.2 L·min−1, respectively. The reason
for the difference between the present study and Jiang’s research is that the present study
was studied by scouring experiments. Under the natural rainfall condition, runoff actually
increases with the increase in the down-hillslope position. The runoff detachment ability
and soil loss on the gully slope will be greater than the above ratio. This indicates that
further research is needed through rainfall experiments to accurately determine the location
of severe erosion and the corresponding gull slope erosion percentage [26].
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1
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Figure 4. Contributions of the hillslope and the gully side to erosion reductions of the slope-gully
erosion system.

4. Discussion

4.1. Effects of Grass Coverage and Arrangements on Runoff and Sediment Reduction on Hillslope

The data of this study showed that the runoff and sediment yield on hillslopes are
affected by slope grass coverage rates, grass arrangement patterns, and flow discharges.
The flow discharges have a significant effect on the runoff and sediment yield, and the
runoff and sediment yield increases with the increase in flow discharges. The effects of grass
coverage rates on runoff were significantly different between 0% grass coverage rates and
70% and 90% grass coverage rates, while sediment yield was a significant difference under
various grass coverage rates. The effects of grass arrangement patterns on runoff were not
significant, but the effects on sediment yield were significant. The total runoff volumes have
no obviously different among the three different grass arrangement patterns on the slope
under the same grass coverage rates and the same flow discharges, but the sediment yield
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has distinct discrepancy among the three different grass arrangement patterns on the slope.
The sediment yield on a hillslope with different grass arrangement patterns showed a trend
of US > MS > DS. This is related to the fact that the greater the flow rate is, the smaller the
change of the hydrodynamic parameters of the grass is, and the hydrodynamic parameters
are an important factor in determining the erosion sediment yield. Therefore, the greater
the flow rate is, the less the sediment reduction benefit is. Different grass coverage rates,
the same grass arrangement patterns on hillslope sediment yield decrease with the increase
in grass coverage rates.

In the last several decades, considerable studies have been conducted to evaluate the
influence of vegetative coverage on soil erosion. The results suggested that soil erosion
decreased with the vegetation coverage rates increasing [34,35]. In contrast, some other
researchers indicated that soil erosion increased with the soil surface coverage rate increas-
ing [36,37]. The above two contradictory results demonstrate that only researching the
effect of vegetation coverage on erosion is not enough. The vegetation distribution patterns
on the slope must be considered to reveal the relationship between the vegetation cover
and erosion. In fact, a few studies have reported that the vegetation-patched patterns on
the slope have a significant effect on erosion [15,20,38–40]. In our research, three factors
(grass coverage, grass distribution patterns on slope, and flow discharges) were considered.
The results showed that both grass coverage rates and grass arrangement patterns have
significant influences on runoff and sediment yield on a hillslope. Compared with the
effect of runoff reduction, grass coverage has better control affection on soil erosion. These
results are consistent with previous researchers’ results that vegetative cover significantly
reduced runoff and sediment losses [11,15,30,31].

4.2. Effects of Grass Coverage and Arrangements on Runoff and Sediment Reduction on Gull Slope

The results indicate that the influence of the hillslope grass coverage rates and ar-
rangement patterns on the gully slope soil loss is greater than on runoff (Table 4). For the
same grass coverage rate and the same grass arrangement patterns, the sediment yield
of the gully slope increases with the flow discharges increasing. Under the same flow
discharges, the sediment yield of the gully slope did not decrease with the increase in the
grass coverage rates but showed an increasing trend. The erosion of the gully slope under
the condition of a 90% grass coverage rate is larger than that of the gully slope without
grass coverage.

Table 4. Runoff and sediment yielding of hillslope under the different grass coverage and flow discharges.

FD
(L·min−1)

VCR (%) VDP
Runoff

(L)
Erosion

(kg)
FD

(L·min−1)
VCR
(%)

VDP
Runoff

(L)
Erosion

(kg)

3.2

0 - 68.79 24.91

5.2

0 - 115.05 42.38

30
US 67.83 a 20.12 a

30
US 114.41 a 35.25 a

MS 67.56 a 15.67 b MS 113.50 a 29.03 b
DS 65.21 a 13.87 c DS 111.13 a 24.30 c

50
US 61.64 a 16.72 a

50
US 106.87 a 31.75 a

MS 59.78 a 12.12 b MS 103.76 a 25.52 b
DS 59.56 a 11.77 b DS 103.71 a 23.79 c

70
US 56.85 a 15.03 a

70
US 111.58 a 29.24 a

MS 58.82 a 11.49 b MS 108.19 a 24.73 b
DS 58.13 a 9.37 c DS 107.94 a 21.08 c

90 - 56.98 5.93 90 - 90.81 a 15.07

Mean values of the same letter in the same columns are not significantly different at p = 0.05. VCR: vegetation
coverage rate; FD: flow discharge; VDP: vegetation distribution pattern.

Our results are contrary to those observed on vegetation plots [15,17]. These reported
that sediment yield was negatively correlated with runoff rate in grassplots, and the runoff
coefficient was negatively related to sediment concentrations on a Mediterranean hillslope
with vegetation. The main reason for these differences is that the present study was
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conducted by using scouring experiments, while simulated rainfall experiments were used
in both Pan’s and Cerda’s research. For the natural situation, when the rainfall experiment is
used to study slope erosion, the runoff on the slope increases gradually along the downhill
slope, and the runoff detachment capacity and erosion amount at the lower part of the slope
also increases gradually. In the scouring experiment, the runoff on the slope decreased
gradually along the slope due to infiltration, and the runoff detachment capacity and
erosion amount in the lower part of the slope was less than those in the simulated rainfall
experiment. Another reason for the difference between this study and Pan’s study is that
the grass distribution patterns used in this study are different from Pan’s study. This study
used different grass coverage rates and grass distribution patterns, while Pan’s study used
uniform grass coverage. This indicates that both vegetation coverage and distribution
patterns have significant effects on erosion. However, further rainfall experiments are
needed to determine the most accurate impact of grass coverage and distribution patterns
on erosion.

While for the gully slope of the whole slope-gully system, erosion significantly in-
creased with the grass coverage rate increasing on the slope no matter how the grass
arrangement patterns on the hillslope. These results are consistent with some previous
research results that showed that soil erosion rates increased with soil surface coverage
increasing [37,38]. This can be explained as follow: due to the particularity of the Loess
Plateau, from up-slope to hillslope boundary, then to gully edges, erosion forms and in-
tensity showed significant vertical zonation. Many researchers reported that runoff from
upper slopes has an important effect on erosion and sediment transport processes on the
down-slope. An increase in runoff sediment concentration from uphill leads to a decrease
in erosion in the down-slope [24], and an increase in runoff from the up-slope leads to an
increase in erosion in the down-slope.

Table 5 shows the relationship between the gully side erosion and various influenc-
ing factors. From Table 5, we can see that three factors (flow discharge, runoff sediment
concentration from upper slopes, and runoff unit stream power from upper slope) signif-
icantly correlate with the gully side erosion (p < 0.05), but the relationship between the
grass coverage rate and gully side erosion appeared has no obvious correlation. Due to
the sediment concentration of runoff on the hillslope being inversely proportional to the
hillslope grass coverage, sediment concentration on the end of the hillslope decreased with
the grass coverage rate increasing. That is to say, the sediment concentration of inlet flow
decreases with the grass coverage rate increasing on the hillslope. Under this situation, the
greater difference between the runoff sediment concentration and the sediment transport
capacity, the more detachment of the runoff and the erosion on the gully side is greater.
The above results showed that the spatial scale of the research object must also be con-
sidered in studying the effect of grass coverage rate and the spatial distribution pattern
on erosion. The above-mentioned previous research was performed on a uniform slope,
and the slope gradient is gentle. Our present experiments were conducted on very steep
slope gradients, and vegetation coverage rate variation widely (from 0% to 90%), and the
most important difference is that present experiments were conducted on a complicated
hillslope-gully system. The gully side erosion has no apparent decrease with the increasing
of the vegetation coverage rate on the hillslope. On the contrary, the gully side erosion
increased with the increasing vegetation coverage rate on the hillslope. So, the different
vegetation coverage, different vegetation distribution pattern, and different spatial scale of
the research object all have an influence on erosion; any research that only takes care of the
single factor mentioned above is not enough to reveal the effect of vegetation on erosion.
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Table 5. The correlations between the gully slope erosion and effect factors.

Gully Erosion
Unit Stream

Power
Flow Discharge

Sediment
Concentration

Grass Coverage
Rate on Slope

Gully erosion 1 0.799 * 0.91 * −0.875 * 0.447
Unit stream power 1 0.841 * −0.825 * −0.647

Flow discharge 1 −0.913 * 0.314
Sediment concentration 1 0.719 *

Grass coverage rate on slope 1

* Significant at 0.05 level.

Further analysis can be concluded that just implementing soil and water conservation
measures on the hillslope of the slope-gully system can reduce the total erosion to some
extent, but, reducing erosion is mainly focused on hillslope sections, for gully side, its
erosion not only does not reduced but also has a greater amount of increasing. Therefore,
in the process of practical soil erosion controlling, taking effective measures both on the
hillslope and gully side will be effective methods of reducing soil erosion.

5. Conclusions

The runoff and sediment yield of the hillslope-gully system with five grass coverage
rates and three arrangement patterns were studied by scouring experiments with two
runoff discharges. Results showed that both grass coverage rates and grass distribution
patterns have significant effects on runoff and sediment yield on slope-gully erosion
systems. Grass coverage had more effectiveness in controlling soil erosion compared with
runoff-reducing effectiveness. However, for the gully side of the slope-gully erosion system,
erosion significantly increased with the grass coverage rate increasing on the slope, no
matter how the grass distribution pattern on the hillslope. Therefore, the different grass
coverage, different grass distribution pattern, and different spatial scale of the research
object all have an influence on erosion; any research that only takes care of the single factor
mentioned above is not enough to reveal the effect of grass on erosion.

Gully side erosion was significantly correlated with the flow discharge, runoff sed-
iment concentration from upper slopes, and runoff unit stream power from the upper
slope (p < 0.01), but the relationship between the grass coverage rate and gully side erosion
appeared to have no obvious correlation. Just implementing soil and water conservation
measures on the hillslope of the slope-gully system can reduce the total erosion to some
extent, but reducing erosion is mainly focused on hillslope sections. Gully side erosion not
only does not reduce but also has a greater amount of increase. Therefore, in the process of
practical soil erosion controlling, taking effective measures both on the hillslope and gully
side will be effective methods of reducing soil erosion.
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Abstract: Flash floods in the Sinai often cause significant damage to infrastructure and even loss
of life. In this study, the susceptibility to flash flooding is determined using hydro-morphometric
characteristics of the catchments. Basins and their hydro-morphometric features are derived from
a digital elevation model from NASA Earthdata. Principal component analysis is used to identify
principal components with a clear physical meaning that explains most of the variation in the data.
The probability of flash flooding is estimated by logistic regression using the principal components
as predictors and by fitting the model to flash flood observations. The model prediction results are
cross validated. The logistic model is used to classify Sinai basins into four classes: low, moderate,
high and very high susceptibility to flash flooding. The map indicating the susceptibility to flash
flooding in Sinai shows that the large basins in the mountain ranges of the southern Sinai have
a very high susceptibility for flash flooding, several basins in the southwest Sinai have a high or
moderate susceptibility to flash flooding, some sub-basins of wadi El-Arish in the center have a high
susceptibility to flash flooding, while smaller to medium-sized basins in flatter areas in the center and
north usually have a moderate or low susceptibility to flash flooding. These results are consistent
with observations of flash floods that occurred in different regions of the Sinai and with the findings
or predictions of other studies.

Keywords: flash flood; flood hazard; morphometry; PCA; logistic regression; Sinai; Egypt

1. Introduction

Flash floods are among the deadliest natural disasters in the world, responsible for
85% of inundations and a high death rate of more than 5000 people lost each year [1].
Egypt has experienced many flash floods with loss of life and serious damage to vital
infrastructure and buildings, especially in the Sinai, the north coast and the Red Sea coast.
Well-known examples are the 1979 flash flood in El-Quseir and Marsa Alam, which killed
19 and destroyed a coastal road along the Red Sea, the flash flood in Marsa Alam in 1991,
the flash flood in Alexandria in 1993, which killed 21, and the flash flooding in Assiut in
November 1994 resulting in loss of life and infrastructure [2]. Recently, in 26–27 October
2016, heavy rainfall in Ras Gharib on the Red Sea coast resulted in flash flooding that killed
dozens and caused damage to infrastructure and property [3]. On 14 November 2019,
heavy rains led to flooding in wadi El-Sukkari and further to the Idfu-Marsa Alam Road,
fortunately without losses [4].

Sinai in particular is a flood-prone area where flash floods cause significant damage
to infrastructure, displacement of populations and sometimes loss of life. An overview
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of major floods in the Sinai in the past is given by Abdel-Fattah et al. [5] and Omran [6].
Most devastating was the severe flooding in Wadi El-Arish on 17–18 January 2010, which
resulted in six deaths and dozens of injuries and vital infrastructure and hundreds of houses
destroyed [7]. Cools et al. [8] reported that out of 20 significant rainfall events over a 30-year
period (1979–2010) in wadi Watir, located in Southeast Sinai, nine resulted in flash flooding,
some of which caused severe damage to the coastal road between Nuweiba and Taba,
which was completely washed away in some parts. More recently, a catastrophic flash flood
in October 2016 caused many deaths and injuries and damage to roads and buildings in
wadi Dahab in South Sinai [9]. El-Fakharany and Mansour [10] discussed dangerous flash
flood locations in southern Sinai, including the wadis Werdan, Sedri, El-Aawag and Feiran.

Reliable and accurate data on flash flooding in arid environments are often lacking
due to the remoteness and sparse habitation of such areas. Therefore, morphometric
analyzes are often used instead to analyze the drainage behavior of such areas. Quantitative
measurements of the geometrical features of drainage basins, such as basin size and shape,
drainage network and relief form the basis of hydro-morphometric analysis as set forth
in the classical works of Horton [11,12], Smith [13], Strahler [14,15] and Schumm [16].
Since the development of remote sensing (RS) and geographic information systems (GIS),
hydro-morphological parameters can be easily obtained.

A comprehensive overview of past developments in the analysis of flood risk assess-
ment has been provided by Diaconu et al. [17]. An overview of flash flood risk assessment
based on morphometric analyses has been provided by Ali et al. [18], discussing flash flood
hazard vulnerability and risk assessment approaches, uncertainties and challenges. Notable
recent studies are as follows. Farhan et al. [19] presented a morphometric analysis and flash
floods assessment for drainage basins of the Ras En Naqb Area, South Jordan. Mahmood
and Rahman [20] studied the flash flood susceptibility modeling using geomorphometric
and hydrological approaches in Panjkora Basin, Eastern Hindu Kush, Pakistan. Mahmood
and Rahman [21] modeled the flash flood susceptibility using a geomorphometric ranking
approach in the Ushairy Basin, in eastern Hindu Kush, Pakistan. Bhat et al. [22] presented
a flood hazard assessment of the upper Jhelum basin using morphometric parameters.
Obeidat et al. [23] performed a morphometric analysis and prioritized watersheds for flood
risk management in the Wadi Easal Basin, Jordan. Pangali Sharma et al. [24] identified
potential flash flood areas using a geomorphic approach in the East Rapti River Basin
of Nepal.

Hydro-morphometric analyzes have been applied in studies for flood assessment in
Egypt. Arnous et al. [25] reported that morphometric analysis strongly supported a high
probability of flash flooding in the western part of the Gulf of Suez. Youssef et al. [26] used
morphometric parameters to estimate the risk of flash flooding along the St. Katherine
Road in southern Sinai. Abdel-Lattif and Sherief [27] used three morphometric parameters
(bifurcation ratio, drainage density and stream frequency) to estimate flood hazard in wadi
Sudr and wadi Wardan, Gulf of Suez. Elewa et al. [28] presented a hydro-morphometric
analysis for the El-Arish Basin in northern and central Sinai to identify suitable sites
for collecting runoff. Abdalla et al. [29] presented a geomorphometric classification of
wadis along the southeastern Red Sea coast in Egypt, showing that most basins are highly
susceptible to flash flooding. Abdel Ghaffar et al. [30] evaluated the flash flood hazard
of wadi El-Arish by combining nine morphometric parameters using priority values and
classification into high, medium and low hazard. Abuzied et al. [31] used morphometric
parameters to evaluate flood sensitive basins and to map the flash flood susceptibility
in the Nuweiba area, Sinai. Abdelkareem [32] derived a flash flood hazard map for the
wadi Asyuti basin in the eastern desert of Egypt by ranking and combining morphometric
parameters that favor higher flood peaks and runoff. Elsadek et al. [33] presented a
morphometric analysis to estimate flood hazard in the wadi Qena basin. Abuzied and
Mansour [34] combined normalized values of morphometric parameters to obtain hazard
indices for sub-basins of wadi Dahab, Sinai. Elsadek et al. [35] investigated flood hazard
in wadi Qena based on a combination of morphometric parameter ranking. Kamel and
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Arfa [4] used a ranking method of 13 morphometric parameters to derive the degree of
flash flood hazard of basins between Marsa Alam and Abu Ghuson along the Red Sea coast.
Prama et al. [9] derived a flood hazard map for the Dahab region in southern Sinai, by
an unweighted combination of normalized morphometric parameters. El-Fakharany and
Mansour [10] evaluated morphometric parameters and the occurrence of flash floods in
wadi El-Aawag in southwestern Sinai.

The main aim of this research is to quantify the risk of flash flooding in the Sinai
Peninsula, Egypt. Various methods are used for this: (1) hydro-morphometric features
are derived that are relevant for estimating the sensitivity to flash flooding using satellite
images and spatial analysis tools; (2) principal component analysis is applied to reveal
relationships between the different catchment properties and to identify the most significant
hydro-morphometric parameters; (3) the probability of flash flooding is estimated by
logistic regression using observed events of flash floods as dependent variable and the
significant principal components of the hydro-morphometric parameters as explanatory
variables; (4) prediction results are cross-validated to assess and prove the robustness of the
modeling approach; (5) the logistic model is used to generate a map of flash flood probability
for the Sinai Peninsula. The novelty of the approach consists primary in generating a
flood susceptibility map for the entire Sinai Peninsula, which has not been presented
before; previous studies [9,10,26–28,30,31,34] only considered only some local sub-basins.
A complete flash flood susceptibility map for the Sinai Peninsula can be useful to authorities
and decision makers for an overall impact assessment and can contribute to flash flood
management and to the planning and implementation of mitigation measures. This study
also aims to demonstrate how hydro-morphometric parameters can be used for flood risk
assessment in Egypt through a combination of principle component analysis and logistic
regression that is robust, reliable and validated. To date, most flood susceptibility studies
conducted in Egypt have used a ranking method proposed by Davis [36] to derive flash
flood hazard from hydro-morphometric data, by standardizing morphometric parameters,
usually in the range of 1 to 5, and then combining and classifying them into groups ranging
from lowest to highest risk level [25–35]. However, the number of parameters can vary, all
parameters are treated with the same weight as if they have an equal impact on flooding,
and the classification into hazard classes is done without rules or standards. In addition,
the results are usually not validated.

2. Materials and Methods

2.1. Study Area

The Sinai Peninsula is located in the northeastern part of Egypt between 32.5–34.8◦ E
and 27.8–31.3◦ N (Figure 1). It is about 61,000 km2 in size and its largest dimensions are
about 385 km from north to south and 210 km from west to east. Geographically, Sinai can
be divided into three parts. The northern part consists of broad coastal plains with fossil
beaches and extensive sand dunes, some of which are more than 100 m high. The main
part is the wadi El-Arish basin which descends from an altitude of more than 900 m to
the Mediterranean Sea and forms the largest valley of the Sinai Peninsula. The center is
highland mainly composed of two limestone plateaus, El-Tih in the south and El-Egma in
the north, where the sources of the wadi Al-Arish arise. The southern part consists of high
and rugged mountain ranges of igneous rock, reaching more than 2400 m, with Mount
Catherine at 2642 m above sea level being the highest point in Egypt.

Sinai is characterized by a Mediterranean climate in the north and an arid to semi-arid
climate in the center and south. In general, summer is very hot and dry, while most rain
falls in winter with occasional heavy rainfall combined with thunderstorms. The amount
of precipitation decreases from north to south. Most rain falls in a narrow strip along the
Mediterranean Sea with values of more than 200 mm/year; further inland the rainfall varies
from 100 to 200 mm per year in the north, while in the center and south this usually less
than 100 mm per year. Since the potential evaporation demand far exceeds rainfall, there
are no real streams or rivers but only ephemeral riverbeds, referred to as wadis, which are
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generally dry but discharge drainage water after heavy rainfall usually in winter. Wadi
El-Arish is the main drainage system to the Mediterranean in the north and center of Sinai.
There are several smaller wadis in the south, some of which are known for flash floods,
such as Watir, Dahab and Kid in the east which flow into the Gulf of Aqaba and Ras Sudr,
Werdan, Feiran, Sedr, Gharandal and Meiar in the west which flow into the Gulf of Suez [6].

 

Figure 1. Location of the study area.

2.2. Hydro-Morphometric Parameters

An ASTER Global Digital Elevation Model (DEM) version 3 was downloaded from the
NASA Earthdata website (Available online: https://search.earthdata.nasa.gov; accessed
on 15 September 2021). The DEM has a latitude and longitude resolution of 1 arc-second
(~30 m), and the elevation data have a resolution of 1 m and an accuracy of approximately
10 m [37]. Topographic elevations in the Sinai range from zero to 2612 m above mean sea
level as shown in Figure 2. ArcGIS spatial analysis tools are utilized to delineate watersheds
and determine their hydro-morphometric parameters. The drainage network is extracted
from the DEM using the stream order method of Strahler [31] with a threshold of 4.5 km2

for the upslope drainage area as the starting point of first order streams, which corresponds
5000 grid cells, a standard recommended by ArcGIS spatial analysis tools (Available online:
https://pro.arcgis.com; accessed on 22 January 2022). Sub-basins are delineated based on
stream orders and hydro-morphometric parameters are derived for each sub-basin using
standard spatial analyses methods and equations as listed in Table 1.
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Figure 2. Topography of the Sinai derived from a digital elevation model from NASA Earthdata.

Table 1. Hydro-morphometric parameters used in this study.

Parameter Description Determination Reference

Basin geometry
A [L2] Area Spatial analysis -
P [L] Perimeter Spatial analysis -
Lb [L] Basin length Spatial analysis [11]
Ff [-] Form factor Ff = A/L2

b [11]
Cc [-] Compactness coefficient Cc = P/2

√
πA [11,12]

Re [-] Elongation ratio Re = 2
√

A/π/Lb [16]

Drainage network
Su [-] Stream order Spatial analysis [12]
Nu [-] Stream number Nu = ∑n

1 Ni [15]
Rb [-] Bifurcation ratio Rb = (

n
∑
1

Ni/Ni+1)/(n − 1) [14]

Lu [L] Stream length Lu =
n
∑
1

Li [14]

Dd [L−1] Drainage density Dd = Lu/A [11]
Fs [L−2] Stream frequency Fs = Nu/A [11,12]

Lo [L] Length of overland flow Lo = 1/2Dd [11]
Rt [L−1] Texture ratio Rt = N1/P [13]

Relief
Rf [L] Basin relief Spatial analysis [16]
Rr [-] Relief ratio Rr = R f /Lb [16]
Rn [-] Ruggedness number Rn = R f Dd [38]
S [◦] Mean slope Spatial analysis -

Where n is the number of stream orders in a basin, Ni is the number of stream segments of order i, and Li is the
length of stream segments of order i.
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Three groups of parameters are considered. The basin geometry group includes
six parameters:

• Area (A): surface of a drainage basin, which is a prime determinant of the total
discharge [31]; large catchments receive more precipitation and have a higher peak
discharge compared to smaller catchments.

• Perimeter (P): circumference of a drainage basin; there are no clear indications of
direct significance for the hydrological regime, but it is used in the determination of
other parameters.

• Basin length (Lb): maximum distance from the catchment boundary to the outlet; a
good indicator of the concentration time of a flood wave [11].

• Form factor (Ff): ratio of the width to the length of a catchment and indicative of
the flood regime [11]; large form factors lead to shorter lag times and a higher peak
discharge.

• Compactness coefficient (Cc): ratio of the perimeter of the drainage basin to that of a
circle of equal area; low values imply a shorter concentration time and a higher peak
discharge [11,12].

• Elongation ratio (Re): ratio of the diameter of a circle with the same area as the
catchment area to the maximum catchment length [16]; low values mean less circular
shape and longer flood concentration time.

The basin drainage network group includes eight parameters:

• Stream order (Su): highest stream order in a basin according to the method designed
by [14]; it is an indicative parameter of the basin dimensions, channel size and stream
discharge.

• Stream number (Nu): total number of stream segments of all orders [15]; a high stream
number is expected to imply faster peak flow.

• Bifurcation ratio (Rb): average ratio between the number of streams of one order and
those of the next higher order [12]; indicative of the complexity of a catchment, but
according to [14] less so for the flow regime, although [12] considers flooding more
likely in catchments with a higher bifurcation ratio.

• Stream length (Lu): total length of all streams in a basin [11]; longer streams indicate a
higher discharge producing capacity of a catchment area [39].

• Drainage density (Dd): length of streams per unit area; an indicator of infiltration and
permeability of a drainage [11].

• Stream frequency (Fs): number of streams per unit area; although similar to drainage
density, it has less hydrologic significance [11,12].

• Length of overland flow (Lo): the average length of overland flow is equal to the
reciprocal of twice the drainage density [16]; low values indicate shorter flow paths,
making the basin more prone to flash flooding.

• Texture ratio (Rt): total number of first order streams per basin circumference; indicates
coarse, medium, or fine textured topography [40].

The basin relief group includes four parameters:

• Basin relief (Rf): height difference of the lowest and highest points of a basin and an
essential indicator of surface runoff [16].

• Relief ratio (Rr): ratio of the basin relief to the basin length and a key element for
understanding erosion and drainage [16].

• Ruggedness number (Rn): product of drainage density and basin relief; regions prone
to flash flooding have higher ruggedness numbers, indicating high drainage density
combined with steep slopes [38].

• Mean basin slope (S): major factor controlling infiltration and surface runoff and the
resulting runoff rate and concentration time.
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2.3. Principal Component Analysis

Before creating a predictive model, principal component analysis (PCA) [41] is used as
an exploratory data analysis to identify the relevant information in the hydro-morphometric
data set. PCA linearly transforms the data into orthogonal uncorrelated variables known
as principal components (PCs), which preserve the total variance in the original data

PCj =
n

∑
1

aijxi j = 1, n (1)

where PCj are the principal components, aij are the scores of the linear transformation, xi
are the standardized hydro-morphometric parameters, and n is the number of parameters.
Note that the hydro-morphometric parameters are standardized to remove any effect
of scale and units of the observations by subtracting the sample mean and dividing by
the sample standard deviation. It can be shown that the principal components are the
eigenvectors of the correlation matrix of the data and that the associated eigenvalues give
the variance explained by each eigenvector [41]. The eigenvectors are ordered in descending
order of the eigenvalues and PCs with eigenvalues smaller than one are ignored because
they contain less information than the original variables, which reduces the dimensionality
of the data. The scores that relate the remaining PCs to the original parameters provide
information about the impact and relevance of the original parameters on the overall
information in the data set. In practice, correlation coefficients between the PCs and the
original parameters are used to explain and interpret the strength of the relationships.
Large (either positive or negative) correlation coefficients indicate that a parameter has
a strong effect on that principal component. The interpretation is enhanced by Varimax
rotation, which aligns the PCs in directions highlighting the relationships between the PCs
and the observed data [41].

2.4. Logistic Regression

A logistic model is used to predict the probability of a flash flood

logit(p) = ln
(

p
1 − p

)
= c0 + ∑m

1 ciyi (2)

where logit is the logistic function (natural logarithm of the odds), p is the probability,
c0 is the model intercept, ci are the model coefficients, yi are the predictors (explanatory
parameters), and m is the number of predictors. The logistic model is used to predict
the occurrence of a flash flood in a basin using observed characteristics of the basin as
predictors. Since there are too many hydro-morphometric parameters to use as predictors,
we will instead consider the significant PCs of the basin hydro-morphometric data as
predictors. The logistic model predicts the flood probability which can be used to assess
the susceptibility of a basin to flash flooding.

The model coefficients are estimated by logistic regression. For this, we use observa-
tions of flash floods reported in the literature [5,6,8–10]; basins where flooding has been
observed are shown in Table 2. The observed probability of flooding is set to one for these
basins, while for the other basins the probability is zero. Flash floods in Wadi El-Arish
were excluded in the analysis because Wadi El-Arish consists of many sub-basins, while
the exact location of the floods was usually not clearly observed or reported because Wadi
El-Arish is so vast and sparsely populated.

The model coefficients are estimated by fitting the model to these observations using
maximum likelihood, for which we use the glm generalized maximum likelihood fitting
procedure of the R Stats package for statistical computing [42]. The goodness of fit is
assessed by the deviance, a measure of the likelihood, and the quality of the model by the
Akaike information criterion (AIC) [43], a trade-off between the goodness of fit and the
complexity of the model. The significance of each predictor is verified by removing each
predictor one at the time, re-estimating the model coefficients with the remaining predictors
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and comparing the resulting deviance and AIC with the original model. The reliability of
the model is also verified by cross-validation where observed flood events are removed
one by one, model coefficients are re-estimated by logistic regression with the remaining
data and the flood probability is predicted for the removed event and compared to what
was obtained with the original model.

Table 2. Basins where flash floods have been reported in the literature, used for calibration of the
logistic model.

Wadi Basin No.

Sedri 3
Werdan 9

Ras Sudr 12
Watir 54
Dahab 56
Feiran 58

El-Aawag 84
Gharandal 89

Kid 98

3. Results

3.1. Drainage Catchments and Hydro-Morphometric Data

The drainage network obtained from the DEM is shown in Figure 2 and consists of
112 sub-basins of different sizes and shapes, as shown in Figure 3. Large basins such as
wadis El-Arish, Feiran, Dahab and Watir are subdivided to obtain a more or less uniform
spatial distribution of the sub-basins over the area. Values of the hydro-morphometric
parameters for each basin are given in Table S1 in the Supplementary Materials. An
overview of the range of the hydro-morphometric parameters is given in Table 3, with
minimum and maximum values and the mean and standard deviation necessary for
standardization of the parameters in the PCA.

 

Figure 3. Sub-basins with ID number and drainage channels with stream order, excluding first order,
derived from the digital elevation model.
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Table 3. Range of the hydro-morphometric parameter, showing minimum, maximum, mean and
standard deviation (SD).

Parameter Minimum Maximum Mean SD

A (km2) 19 2254 492 542
P (km) 31 386 139 82
Lb (km) 10.9 94.5 38.0 20.2

Ff 0.07 0.52 0.26 0.10
Cc 1.50 2.88 2.07 0.34
Re 0.30 0.81 0.56 0.11
Su 2 6 3.7 1.2
Nu 3 194 42.1 45.1
Rb 1.75 6 3.4 0.9

Lu (km) 11 1122 229 250
Dd (km−1) 0.31 0.86 0.49 0.10
Fs (km−1) 0.04 0.16 0.09 0.02

Lo (km) 0.58 1.60 1.06 0.19
Rt (km−1) 0.02 0.65 0.18 0.12

Rf (m) 65 2595 806 585
Rr 0.004 0.082 0.025 0.020
Rn 0.03 1.31 0.39 0.29

S (◦) 1.50 21.40 6.20 4.69

3.2. Principal Component Analysis

The results of the PCA are presented in Tables 4 and 5. Table 4 lists the first eight
eigenvalues, and the variance explained by each component, and cumulative variance,
both expressed as a percentage of the total variance contained in the data. Significant
values are indicated in bold. Only the first four PCs have eigenvalues greater than one,
while the fifth eigenvalue is lower but very close to one, and together these account for
90% of the variation in the data. Therefore, the other PCs can be ignored. Table 5 lists the
correlation coefficients between the first five PCs and the hydro-morphometric parameters
after Varimax rotation; the corresponding scores are given in Table S2 in the Supplementary
Materials. Significant values in Table 5 are shown in bold. The first component is highly
correlated with several hydro-morphometric parameters: area (A), perimeter (P) and basin
length (Lb) which are directly related to the size of a watershed, and with stream order
(Su), stream number (Nu), stream length (Lu) and texture ratio (Rt) which are also indirectly
related to size. Thus, the first and most important principal component represents the effect
of basin size and accounts for 37% of the variation in the data. The second component is
strongly correlated with all relief parameters: basin relief (Rf), relief ratio (Rr), ruggedness
number (Rn) and mean basin slope (S); this component accounts for 19% of the variation in
the data. The third component, which accounts for 15% of the total variance, is strongly
correlated with drainage density (Dd) and length of overland flow (Lo). This component
thus represents the drainage capacity of a river basin. The fourth component accounts for
14% of the total variance and is strongly correlated with the form factor (Ff), compactness
coefficient (Cc) and elongation ratio (Re), so this component expresses the influence of
the basin shape. The fifth component accounts for only 5% of the variance but is rather
special in that it is only significantly correlated with the bifurcation ratio (Rb). Thus, this
component represents the effect of stream bifurcation, which is apparently a unique basin
property unrelated to any other hydro-morphometric parameter. Note that the stream
frequency (Fs) is not significantly correlated with any of the PCs and thus contributes little
to the information contained in the data. Principal component values for all basins are
given Table S3 in the Supplementary Materials.
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Table 4. Eigenvalue, variance (%) accounted for and cumulative variance (%) from a principal
component analysis (significant values are indicated in bold).

PC Number 1 2 3 4 5 6 7 8

Eigenvalue 7.13 3.36 3.04 1.76 0.96 0.66 0.39 0.30
Variance (%) 0.40 0.19 0.17 0.10 0.05 0.04 0.02 0.02

Cumulative (%) 0.40 0.58 0.75 0.85 0.90 0.94 0.96 0.98

Table 5. Correlation coefficients between the first five principal components and the hydro-
morphometric parameters after Varimax rotation (significant values are indicated in bold).

Parameter
Principal Component

PC1 PC2 PC3 PC4 PC5

A 0.94 0.04 0.21 −0.05 0.15
P 0.95 −0.01 −0.12 −0.16 0.11
Lb 0.95 0.06 −0.18 −0.11 0.12
Ff 0.29 −0.04 0.87 −0.26 0.00
Cc 0.04 −0.16 −0.88 0.02 0.07
Re 0.29 −0.07 0.86 −0.30 −0.03
Su 0.80 −0.11 0.13 −0.12 −0.31
Nu 0.93 0.05 0.26 −0.01 0.15
Rb 0.22 0.08 −0.04 −0.02 0.93
Lu 0.94 0.01 0.21 0.03 0.15
Dd −0.11 0.03 −0.23 0.94 −0.01
Fs −0.39 −0.03 0.28 0.41 −0.33
Lo 0.03 0.07 0.24 −0.94 −0.01
Rt 0.83 0.08 0.47 0.00 0.17
Rf 0.26 0.94 −0.02 −0.05 0.10
Rr −0.37 0.87 0.13 0.05 −0.03
Rn 0.18 0.91 −0.10 0.27 0.12
S −0.06 0.88 0.11 −0.35 −0.05

3.3. Logistic Regression

Results of the logistic regression with the PCs as predictors are given in Table 6. The
table shows the estimated model coefficients, the standard error, z-value (coefficient divided
by standard error) and the probability that the predictor is statistically significant, for which
it is common practice to prescribe a value less than 0.05 for a normal distribution. Note
that this is only the case for PC1 and PC4 and not for PC3 and PC5, while PC2 is very close
to the threshold. However, the assumption of a normal distribution is not reliable if the
sample size is small, as in this case. The next two columns in the table provide the deviation
and AIC values, which indicate how well the model with the selected predictors fits the
observations. The values corresponding to the intercept are for the null model, which is
a logistic model with only an intercept and no predictors that is used as a reference to
compare with other models. The values corresponding to the predictors are for excluding
that predictor from the full model and the values on the last line are for the total full model.
Both the deviance and AIC should be as small as possible. Comparison of the deviance and
AIC obtained for the total model and for the null model shows a large difference, indicating
that the predictors allow significant improvement in goodness of fit. Comparison of the
deviance and AIC when one of the predictors is removed from the full model shows that
all predictors are relevant and should not be removed from the model. The increase in
deviance when one of the predictors is removed compared to the full model also indicates
the importance of that predictor in the model. It follows that the order of importance of the
predictors is: PC1, PC4, PC2, PC5 and PC3, as given in the last column of Table 6.
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Table 6. Regression results of the logistic model: estimated model coefficients, standard error, z-value
and probability, deviance (Dev.), Akaike information criterion (AIC) and rank.

Predictor Estimate Std. Err. z-Value Pr (>|z|) Dev. AIC Rank

Intercept −4.74 1.09 −4.36 1.33 × 10−5 62.6 64.6
PC1 1.56 0.58 2.68 0.01 43.1 53.1 1
PC2 0.94 0.54 1.75 0.08 34.8 44.8 3
PC3 0.71 0.50 1.43 0.15 33.8 43.8 5
PC4 −1.99 0.90 −2.22 0.03 40.6 50.6 2
PC5 0.90 0.60 1.51 0.13 33.9 43.9 4
Total 31.5 43.5

Results of the cross-validation where observed flood events are removed one by one,
and the recalibrated model is used to predict the flood probability for the removed event
are given in Table 7. This shows that after removing one of the observed flood basins, the
model proves to be robust because the estimates of flood probability remain in the same
range as predicted with the original model.

Table 7. Probability for flooding estimated with the logistic model and after cross-validation of
the model.

Basin Probability
No. Model Cross Val.

3 0.422 0.248
9 0.030 0.014
12 0.019 0.005
54 0.759 0.673
56 0.761 0.695
58 0.835 0.786
84 0.866 0.729
89 0.238 0.196
98 0.872 0.848

The flood probability predicted by the logistic model for all basins is shown in Table S4
in the Supplementary Materials. A comparison between the flood probability predicted by
the logistic model and the observations is shown in Figure 4.

Figure 4. Predicted and observed flash flood probability against logit(p): dots are observed flash
flood probabilities, the solid black line represents the probability predicted by the logistic model, the
red dotted line corresponds to the mean of the model predictions, logit(p) = −4.74, the blue dotted
line to the mean of the observations, logit(p) = −2.44, and the black dotted line with logit (p = 0.5) = 0.
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The nine basins where flash floods were observed are shown in the upper part of the
graph (p = 1) and the 103 basins where no floods were observed in the lower part (p = 0).
The solid line represents the logistic model that fits the observations as closely as possible
but has to compromise in the middle part of the graph where basins with observed flooding
overlap with basins where no flooding has been observed. Since there are many more
basins where no flooding has been observed, the logistic model is strongly conditioned
by the non-flooding events, as can be clearly seen in the graph. This should be taken into
account when evaluating the model results and selecting threshold values to identify the
flood prone basins. The red dotted line in the graph represents the mean outcome predicted
by the model given by the intercept, logit(p) = c0 = −4.74 (Table 6). Note that all basin
where floods have been observed are on the right side of this line, while all basins predicted
by the model on the left of this line have a near zero predicted flooding probability. Basins
predicted to the right of the red line are thus prone to flooding with a probability that
increases the further they are from this line. The blue dotted line in the graph shows the
average outcome of the observations, logit(p) = ln(9/103) = −2.44. All basins plotted to the
right of this line have a higher probability of flooding than is observed on average, and
vice versa. Seven of the basins where flash floods have been observed are to the right of
this line. Additionally, to the right of this line are 15 basins where no flooding has been
observed, so these basins have features that indicate a higher probability of flash flooding
than observed. The black dotted line represents logit(p) equal to zero (p = 0.5). There are
only six basins with a predicted logit(p) greater than zero (p > 0.5) and thus very sensitive
to flash flooding; five of these, wadis Kid, El-Aawag, Feiran upstream, Dahab and Watir,
are basins where flooding has been observed and one, wadi Feiran downstream, where no
flooding has been assumed but has similar characteristics to the other five.

The above considerations are used to classify the flash flood susceptibility of all basins.
Flood sensitivity classes are defined as follows: logit(p) < −4.74 is low sensitivity to flooding,
−4.74 < logit(p) < −2.44 is moderate sensitivity, −2.44 < logit(p) < 0 is high sensitivity and
logit(p) > 0 is very high sensitivity. The resulting map with the sensitivity of all basins is
shown in Figure 5.

 

Figure 5. Susceptibility to flash flooding in the Sinai predicted with the probabilistic model
(Equation (2)) using the principal components of the hydro-morphometric parameters as predictors.
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4. Discussion

Results of the PCA (Table 5) indicate that the hydro-morphometric characteristics of
the Sinai drainage basins can be combined into five groups that account for 90% of the
variation of the data and have clear physical meaning. Ordered in decreasing importance in
explaining the total variance, the first group includes all hydro-morphometric parameters
related to size, the second group consists of parameters related to relief, the third group
of parameters relates to basin shape, the fourth group of parameters relates to drainage
capacity and the fifth group consists only of the bifurcation ratio. However, the importance
of the basin characteristics on flash flood occurrence is not in order of explained variance
in the data, but in a different order based on flash flood prediction, as shown by the
logistic regression (Table 6). Most important in predicting flash flooding is the basin size,
followed by drainage density, relief, bifurcation ratio and basin shape. The latter two are
not statistically significant in the model regression, but nevertheless appear to be relevant in
terms of likelihood combined with model complexity (AIC, Table 5), and therefore should
not be removed from the model. The importance of a predictor is given by the regression
coefficients (Table 5). It follows that basin size and drainage density are about two times
more important than relief, stream bifurcation or basin shape.

Not surprisingly, the size of a basin is the most important factor in predicting flash
flooding. In the case where local thunderstorms are more or less spatially random, the
probability of an extreme thunderstorm in a large basin will be greater than in a small basin,
increasing the risk of flash flooding in large basins. Equally important is the converse that
less or no flash flooding is observed in small basins. The PC representing the drainage
density is the second most important predictor of flash flooding, but surprisingly the
regression coefficient is negative, so that the flood probability decreases with increasing
drainage density, which is contradictory to what is commonly believed. The reason is
that flash flooding and drainage density are examined here on a regional scale. Locally,
higher drainage density may result in faster drainage, but this is not necessarily the
case when comparing drainage densities of basins of different sizes and characteristics.
The drainage density of basins expresses how channels and surrounding floodplains are
spatially arranged, which is strongly determined by the shape, size and relief of the basin.
A low drainage density can indicate large, compact basins with a strong relief, and on
the other hand, a high drainage density can indicate small basins with flat elongated or
dispersed floodplains. In the present case, the values of the drainage densities for all
basins where flash flooding have been observed vary between 0.38 and 0.47, which is below
average (Table 3); these basins are also large with a strong relief and compact shapes.

Relief is only the third most important factor after basin shape and drainage density,
which is somewhat unexpected, as relief is usually considered one of the most important
factors for flooding [18]. The fourth predictor relates to the bifurcation ratio, which appears
to be a unique but minor factor in flash flood prediction that, however, is often ignored in
other studies presented in the literature. The last and least important predictor relates to
the shape of basins, where, as expected, compact basins are more prone to flooding than
elongated bases.

Comparison of these results with results of similar studies in other countries or in
Egypt [19–33] is fruitless, as all these studies were performed on a much smaller scale
than the current study, usually only one basin, and no analysis of variance such as prin-
cipal components was applied to establish relationships between hydro-morphometric
parameters and to identify key parameters related to the total variance, and importantly,
no observations of occurring flash floods were used to reveal the predictive power of the
parameters to flooding. Therefore, this study shows that a large set of hydro-morphometric
parameters can be reduced to a much smaller set without loss of information, indicating
redundancy in the data. So, hydro-morphometric parameters are not independent and
do not add more information by their number. Therefore, in flood sensitivity analyses, it
makes no sense to combine correlated factors that express similar characteristics, as is done
in traditional ranking methods where all parameters are combined with the same weight.
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The flash flood susceptibility map (Figure 5) shows the spatial distribution into four
categories: very high, high, moderate and low susceptibility. The very high sensitivity zone
is located in the mountain ranges of the southern Sinai and consists of six major basins
known for their flash flooding, such as wadis El-Aawag, Feiran and Kid and the upstream
sub-basins of wadis Dahab and Watir, which in total represent an area of approximately
8000 km2, or 15% of the total area of Sinai. The high sensitivity zone is mainly in the center
of the Sinai Peninsula and some scattered areas further north. It encompasses 16 river
basins, covering a total area of approximately 15,000 km2 or 28% of the Sinai area, including
some upstream sub-basins of wadi El-Arish, sub-basins of wadi Dahab and Watir, and the
basins of wadis Sedri, Garf and Werdan which drain into the Gulf of Suez. The basins in
the north are wadi El-Beada in Bir Al-Abd, which drains to the Mediterranean, and two
sub-basins of wadi El-Harish in El-Hasana and Quasisma, respectively, which may be the
source of the flash floods that have been observed in this wadi. The moderate sensitivity
zone is mainly located in the north of the Sinai Peninsula and includes 36 watersheds with a
total area of about 21,000 km2 or 39% of the Sinai area. These are usually smaller to medium
sized basins located in flatter areas. The low-sensitive zone comprises 45 catchments with a
total area of approximately 10,000 km2, or 18% of the Sinai area. These are usually very
small basins on flat terrains with short drainage paths and few branches. Most are located
in the north and center along the periphery of the Sinai Peninsula; some are also found in
the southern part of Sinai. The resulting flash flood sensitivity map is largely consistent
with flash flood observations that occurred in different regions of the Sinai and with the
findings or predictions of other studies [6,9,10,31,34].

In particular, the map indicates the high probability of flash flooding in the moun-
tainous basins of southern Sinai, as observed and reported in several publications, such as
wadi Feiran [26], wadi Watir [8,31], wadi Dahab [9] and wadi El-Aawag [10]. The map also
indicates the high or moderate sensitivity of some basins in southwestern Sinai draining
to the Gulf of Suez as described in the literature, such as wadi Sedri [10], wadi Sudr and
wadi Wardan [27]. By indicating the high sensitivity to flooding of some sub-basins in
El-Hasana and Quasisma of wadi El-Arish, the map also sheds light on the possible origin
of flash floods observed in El-Aris, as discussed by Moawad [7], Elewa et al. [28] and
Abdel Ghaffar et al. [30]. Nevertheless, it is clear that these results can be improved as more
accurate and detailed information on the characteristics of river basins and the occurrence
of flash floods in the Sinai becomes available.

Flood susceptibility mapping presented by other studies conducted in Egypt or other
countries [19–33] mainly used a classification method consisting of standardization of the
morphometric parameters, usually in the range of 1 to 5, and combining the resulting scores
without any ranking or weighting as if all parameters have an equal effect on flooding.
In addition, there is no validation of the results with field data regarding the occurrence
of flash floods, which makes it impossible to verify such simplifying assumptions and
approach. In contrast, the method presented in the present study, combining principal
component analysis and logistic regression, proves to be robust, reliable and validated and
therefore superior to what has been presented before.

The drainage network extracted from satellite data and the sub-division of large
basins introduces some bias regarding the range and magnitude of the derived hydro-
morphometric parameters. Subdivision is, of course, necessary to get a map of the spatial
distribution of flash flood susceptibility in the Sinai. A more detailed subdivision could
improve the resolution and accuracy of such a map, but the uncertainty about the exact
location of flash flood observations needed to optimize the logistic regression model could
potentially cause more bias and uncertainty. In this regard, the current study is only a first
attempt, and more research is needed to assess accuracy and improve results.

5. Conclusions

Thunderstorms in the Sinai Peninsula often lead to flash floods that can cause signifi-
cant damage to infrastructure and sometimes even loss of life. Therefore, this study shows
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how to derive the susceptibility to flash flooding using hydro-morphometric characteristics
of the watersheds. Subbasins of various sizes and shapes and their hydro-morphometric
features are derived from a digital elevation model from NASA Earthdata. Principal com-
ponent analysis reveals the relationships between the most important hydro-morphometric
parameters and allows us to derive five significant principal components that explain
90% of the variation in the data and have clear physical significance: basin size, drainage
density, relief, stream bifurcation and basin shape. This shows that hydro-morphometric
parameters are not independent which makes traditional ranking methods to estimate
flood sensitivity questionable.

The flash flood probability can be estimated by logistic regression using the significant
principal components as predictors and the model coefficients estimated by fitting the
model to flash flood observations using maximum likelihood. Cross-validation proves
that the model is robust because the estimates of flood probability remain similar to
those predicted with the original model. The model shows that the size of a basin is
the most important factor in predicting flash flooding, followed by drainage density,
relief, bifurcation ratio and basin shape. The logistic model can be used to classify all
basins in Sinai into four classes: low, moderate, high and very high susceptibility to flash
flooding. The resulting map indicates that the large basins in the mountain ranges of
the southern Sinai have a very high susceptibility to flash flooding, several basins in the
southwestern Sinai have a high or moderate susceptibility to flash flooding, some sub-basins
of wadi El-Arish in the center have a high susceptibility to flash flooding, while smaller to
medium-sized basins in flatter areas in the center and north usually have a moderate or
low susceptibility to flash flooding. These results are consistent with observations of flash
floods that occurred in different regions of the Sinai and with the findings or predictions of
other studies.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/w14152434/s1, Table S1: Values of the hydro-morphometric
parameters for each basin; Table S2: PCA scores after Varimax rotation; Table S3: Values of the
principal components; Table S4: Predicted probability for flash flooding.
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Abstract: The economic loss caused by frequent flood disasters poses a great threat to China’s
economic prosperity. This study analyzes the driving factors of flood-related economic losses in
China. We used the extended Kaya identity to establish a factor decomposition model and the
logarithmic mean Divisia index decomposition method to identify five flood-related driving effects
for economic loss: demographic effect, economic effect, flash flood disaster control effect, capital
efficiency effect, and loss-rainfall effect. Among these factors, the flash flood disaster control effect
most obviously reduced flood-related economic losses. Considering the weak foundation of flash
flood disaster prevention and control in China, non-engineering measures for flash flood prevention
and control have been implemented since 2010, achieving remarkable results. Influenced by these
measures, the loss-rainfall effect also showed reduction output characteristics. The demographic,
economic, and capital efficiency effects showed incremental effect characteristics. China’s current
economic growth leads to an increase in flood control pressure, thus explaining the incremental effect
of the economic effect. This study discusses the relationship between flood-related economic loss and
flash flood disaster prevention and control in China, adding value for the adjustment and formulation
of future flood disaster prevention policies.

Keywords: economic losses from flood disasters; flash flood disaster control; Kaya identity; LMDI
technique decomposition method

1. Introduction

Flooding has the highest frequency of all natural disasters worldwide. From 2000 to
2019, flooding accounted for 44% of the total number of natural disasters [1]. About two
thirds of China’s land area regularly face the threat of floods of different types and degrees
of danger [2]. Moreover, the economic losses caused by these floods have seriously hindered
the sustainable development of China’s economic society [3]. Therefore, investigating the
main factors affecting the economic losses related to flood disasters has important reference
significance for flood disaster prevention and control policymaking in China.

Considering the economic losses caused by flood disasters, many researchers have per-
formed in-depth analyses and research, obtaining corresponding research results. Among
them, Jiang performed a comprehensive analysis of the characteristics of flood disaster
losses in China from 1950 to 2016 and proposed that flood-related economic losses in China
showed a downward trend [4]. Jiang mainly defines the concept and limitations of the
indirect economic losses related to urban flood disasters, highlighting that the correlation
between industrial loss and resources is a substantial part of the indirect economic loss
caused by urban flood disasters [5]. Some researchers introduced the dynamic computable
general equilibrium model for comprehensive disaster-related economic loss assessment
and constructed an equilibrium model of rainstorm and flood disasters [6–8]. Their results
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show that the occurrence of rainstorms and floods will affect social and economic develop-
ment in the current year, as well as have a significant impact on economic development in
later periods [6–8]. These studies mainly focus on calculating the direct and indirect eco-
nomic losses related to flood disasters. However, in China, 70% of flood-related economic
losses are due to flash flood disasters [9]; nevertheless, research on the relationship between
the economic losses due to flood disasters and flash flood disasters is relatively rare.

Considering the weak foundation of flash flood disaster prevention and control in
China [10], the Ministry of Water Resources officially started implementing the special
construction of flash flood disaster prevention and control infrastructure in 2010 [11].
During the first stage of the construction for flash flood disaster prevention and control,
from 2010 to 2012, a total of 11.7 billion Yuan was invested in the construction of a non-
engineering system for flash flood disaster prevention and control in 2058 counties of
29 provincial-level administrative regions. During the second stage, from 2013 to 2015,
a total of 14.3 billion Yuan was invested nationwide to investigate and evaluate flash
flood disasters, construct non-engineering measures for the prevention and control of flash
floods, and to prevent flash flood gulley erosion. A total of 9.2 billion Yuan was invested
in the third phase of the program, which lasted from 2016 to 2020. The main focus of this
stage was optimizing and improving the non-engineering measures for the prevention and
control of flash flood disasters, utilizing the results of flash flood disaster investigations
and evaluations, and continuing to carry out the construction of disaster mass monitoring
and mass preventing of flash floods [12,13].

Based on the above, this study will fully consider the dual nature and social attributes
of the disaster-causing factors of floods, by employing the Kaya identity and a logarithmic
mean Divisia index (LMDI) approach to quantitatively measure the driving effects of inter-
annual changes in economic loss related to flood disasters in China. The Kaya identity
is used to decompose the driving factors and the LMDI method is used to determine the
size of each influencing factor. We also explore the influence of the flash flood disaster
prevention investment, economy, annual rainfall, and other factors on the changes in
flood-related economic loss.

2. Methods

2.1. Kaya Identity

The Kaya identity was proposed by Japanese scholar Yoichi Kaya in 1989 [14] and was
originally used for carbon emissions research [15,16]. After years of research expansion, it
is currently widely used in the field of energy research. The Kaya identity uses a simple
mathematical formula to explain the relationship between the macro overall social and
economic factors and describes these using simple mathematical relationships that take
into account the national level of carbon emissions associated with human production and
living in four elements. As it employs a simple mathematical formula to change drivers,
the Kaya identity has the advantage of strong explanatory power and is thus widely used
across different fields.

The Kaya identity decomposes carbon emissions into four influencing factors, and the
expression formula is as follows:

C = P ×
(

G
P

)
×

(
E
G

)
×

(
C
E

)
(1)

where G = gross domestic product (GDP); E = energy consumption; G/P = per capita GDP;
E/G = energy intensity; and C/E = carbon intensity in energy consumption.

The advantage of the Kaya identity, compared with other models for studying driving
factors of carbon emissions, lies in the fact that researchers can expand the Kaya identity
according to their own research needs and add other influencing factors to study its
influence on the change in research objects. Recently, many researchers have applied this
method to different research fields [15,16].
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To better describe the effects of different factors on flood-related economic losses, we
use the Kaya identity to expand the decomposition of flood-related economic loss.

We define the variable C as the economic losses from flood disasters in province i.
Specifically, the economic loss due to floods in each province is decomposed into a product
of five factors: the resident population or the demographic effect of province i (P); the per
capita GDP or the economic effect of province i (G/P), representing current operational
economic status; the flash flood disaster prevention and control of investment–GDP ratio
or the flash flood disaster control effect of province i (W/G), representing the investment
intensity in disaster prevention; the rainfall–flash flood disaster prevention and control of
investment ratio or the capital efficiency effect of province i (R/W), representing the intensity
of rainfall faced per unit defense fund; and the economic losses of flood disasters–rainfall
ratio or the loss-rainfall effect of province i (C/R). Then, we denote the five factors pi, gi, wi,
ei, and ai, as shown in the following expression.

C = P ×
(

G
P

)
×

(
W
G

)
×

(
R
W

)
×

(
C
R

)
= p · g · w · e · a (2)

2.2. Logarithmic Mean Divisia Index

The LMDI was first proposed by Professor Ang from Singapore [17–19]. This method
was at first applied in carbon emissions research, mainly to analyze energy intensity change.
The LMDI is a common factor decomposition model in global research and gives perfect
decomposition [20]; this means that the results do not contain an unexplained residual
term, which simplifies the result interpretation.

According to the LMDI decomposition model, the total effect ΔC on the change value
of flood-related economic loss in the base period and the year t is called the total effect,
representing demographic effect (Peffect), economic effect (geffect), flash flood disaster control
effect (weffect), capital efficiency effect (eeffect), and loss-rainfall effect (aeffect). When the
calculated effect value is positive, this index has an incremental effect on the direct flood-
related economic loss and will lead to an increase in disaster loss. Conversely, when the
effect value is negative, the index has a reduction effect on the direct flood-related economic
loss, which can reduce the economic loss. The five driving factor relationships can be
expressed as:

ΔC = Ct − C0 = pe f f ect + ge f f ect + we f f ect + ee f f ect + ae f f ect (3)
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ln
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)

where C0 = flood-related economic loss in the base period; Ct = flood-related economic loss
in the year t.

2.3. Study Object and Data Sources

In this study, various sources were used to collect the data of 29 provincial areas in
China, from 2010 to 2020. These areas included 21 provinces, 3 province-level megac-
ities (Beijing, Tianjin, and Chongqing), and 5 autonomous regions. Due to the lack of
relevant statistical data, Taiwan and two special administrative regions—Hong Kong and
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Macao—were excluded from the study. Furthermore, as Shanghai and Jiangsu Province
are not included in the flash flood disaster prevention and control project area, to ensure
the consistency of data integrity of all provinces and cities, Shanghai and Jiangsu were
excluded from this study.

The key data sources were the China Statistical Yearbook 2010–2020, obtained from
the website of the National Bureau of Statistics of the People’s Republic of China, and the
China Water Resources Bulletin and the Bulletin on Flood and Drought Disasters in China
2010–2020, obtained from the website of the Ministry of Water Resources of the People’s
Republic of China.

The list of counties involved in flash flood disaster prevention and control was obtained
from the National Flash Flood Prevention and Control Planning. The funding data of the
prevention and control project were derived from the implementation plans of national
flash flood disaster prevention and control projects in China. Flash flood disaster prevention
and control projects are implemented by the county as a unit, the main task of which is
to establish flash flood disaster monitoring and an early warning platform for flash flood
disasters at the county level. This is accomplished through real-time dynamic monitoring
of the water and rain situation to achieve flash flood disaster prevention and control work.
In addition, as the funds for flash flood disaster prevention and control projects were
distributed in stages, the public data on the projects’ construction funds in each county
were not available. Therefore, this study adopts the method of average allocation relating
to the data of flash flood disaster prevention and control funds.

3. Results and Discussion

3.1. Temporal and Spatial Distribution of Flood-Related Economic Losses in China

According to the statistical data from the China Flood and Drought Disaster Pre-
vention Bulletin, the average annual flood disaster loss in China from 2010 to 2020 was
237.326 billion Yuan (Figure 1). The flood-related economic loss in 2010 was the highest
in the study period, at 374.543 billion Yuan, while the loss in 2011 was the lowest, at
130.127 billion Yuan. In terms of the spatial distribution of flood-related economic losses,
flood disasters in China show a trend of being high in the south and low in the north
(Figure 2). From 2010 to 2020, Sichuan, Guangdong, Hunan, Zhejiang, and Jiangxi were
the top five provinces, highest to lowest, in terms of annual average economic losses
from floods [21]. These five provinces are in the southern part of China, where rainfall is
abundant and rivers are widespread, making these areas prone to flash floods. Sichuan
Province had the highest average annual economic loss, at 22.130 billion Yuan. According
to the statistical data and existing research [22,23], flood-related economic losses and the
frequency of floods have both shown an increasing trend in Sichuan Province since 2014.
Moreover, the frequency of flash flood disasters in Sichuan Province accounted for about
30% of the total number of floods in China [24]. Ningxia, Tianjin, Qinghai, Xizang, and
Xinjiang had lower flood-related economic losses. These provinces are in the northern part
of China, which has low rainfall and an arid climate, and are not prone to flash floods.
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Figure 1. China’s flood-related economic losses from 2010 to 2020. Data from the China Flood and
Drought Disaster Prevention Bulletin, 2010–2020.

Figure 2. China’s flood-related economic losses from 2010 to 2020.

3.2. Analysis of the Driving Factors of Flood-Related Economic Loss

Based on the LMDI decomposition model, this study analyzed the main driving factors
affecting the direct economic losses related to flood disasters in China from 2010 to 2020. The
demographic effect, economic effect, flash flood disaster control effect, disaster prevention
pressure effect, and loss-rainfall effect on flood-related economic loss in 29 provinces of
China were quantitatively analyzed (Tables 1 and 2). The results clearly show the reduction
effect of the implemented flash flood disaster control measures. As the construction of flash
flood disaster prevention and control continue, the amount of money invested in the flash
flood disaster prevention and control work to reduce the economic loss plays an important
role. The economic effect was characterized by obvious incremental effect. China is in
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the later stage of industrialization and the middle stage of urbanization [25]. Therefore,
investment in urban infrastructure construction is increasing greatly [26], and the growth
of regional economic density will also bring greater challenges in flood control work. It is
particularly necessary to focus on the frequent occurrence of urban waterlogging disasters
in recent years, which has become a common problem in major cities [27]. The demographic
effect was characterized by an incremental effect; however, the effect value is relatively low,
compared with the economic effect, which is caused by the low population growth rate in
China. The loss-rainfall effect was characterized by a reduction effect; this effect reflects
the relationship between the flood-related economic loss and the annual rainfall intensity,
indicating that disaster prevention ability is strengthened under the same rainfall intensity.
On the whole, the capital efficiency effect showed an incremental effect, indicating that
there is still at present great pressure on capital investment to cope with the prevention
and control work of heavy rainfall.

Table 1. Effect decomposition of China’s flood-related economic losses (in Yuan).

Year
Loss-Rainfall

Effect
Capital

Efficiency Effect
Flash Flood Disaster

Control Effect
Economic

Effect
Demographic

Effect
Total

2010–2011 −2033.789 −410.3707 −378.5802 364.3994 14.1807 −2444.16
2011–2012 1056.044 318.0058 −200.9019 186.739 14.1629 1374.05
2012–2013 659.6843 −761.9825 320.2077 245.3544 17.1559 480.4199
2013–2014 −1494.108 −88.0821 −190.0587 174.8112 15.2475 −1582.19
2014–2015 −9.8524 95.3566 −117.6909 111.419 7.9674 87.1997
2015–2016 1731.183 2655.194 −2611.375 191.0343 16.4746 1982.51
2016–2017 −1236.258 −264.4714 −302.4272 286.6552 15.7719 −1500.73
2017–2018 −576.1079 49.0477 −156.3971 149.3445 7.0526 −527.0602
2018–2019 389.8009 −82.5708 −171.6208 165.767 5.8539 307.23
2019–2020 561.9533 185.1468 −46.1579 42.8678 3.2902 747.1002

Effect average −95.145 169.5273 −385.5002 191.8392 11.7158
Effect standard

deviation 1208.93 927.548 803.9399 90.1191 5.1031

Effect coefficient
of variation −12.7062 5.4714 −2.0854 0.4698 0.4356

Table 2. Effect decomposition of flood-related economic losses in China (in Yuan).

Region
Loss-Rainfall

Effect
Capital

Efficiency Effect
Flash Flood Disaster

Control Effect
Economic

Effect
Demographic

Effect
Total

Beijing 0.3007 −0.4130 −1.3098 1.1466 0.2754 0.0000
Tianjin 0.6224 −0.7810 −0.0749 0.1827 0.0449 −0.0059
Hebei 0.0623 6.3323 −10.7380 3.4588 0.2147 −0.6699
Shanxi −1.4803 3.3480 −3.7116 1.3850 −0.0441 −0.5030

Inner Mongolia −3.2358 2.0408 −1.3984 2.0413 −0.0950 −0.6471
Liaoning −20.0179 −8.3127 −2.5122 4.9932 −0.1004 −25.9500

Jilin −43.0281 −5.9829 −3.0722 2.9943 −0.7361 −49.8250
Heilongjiang −0.3310 −0.3150 1.2548 0.9660 −1.0277 0.5471

Zhejiang 3.1282 3.1035 −20.9594 9.7150 2.6387 −2.3740
Anhui 44.4181 25.9407 −26.8928 8.0031 0.2319 51.7010
Fujian −17.0980 25.9043 −38.1183 9.5228 1.1102 −18.6790
Jiangxi −10.6887 1.7504 −19.2507 12.2608 0.1662 −15.7620

Shandong −3.7440 −5.1765 −0.8274 1.9150 0.3940 −7.4389
Henan −13.1402 4.1320 −5.9747 1.7968 0.1081 −13.0780
Hubei 1.1752 29.3494 −35.1599 10.3178 0.0956 5.7781
Hunan −6.0440 9.1161 −25.6694 12.7677 0.1605 −9.6691

Guangdong −5.1864 6.0111 −27.7194 12.9568 3.4269 −10.5110
Guangxi 3.2246 4.4470 −8.9474 4.9755 0.6034 4.3031
Hainan −9.3221 0.9359 −7.9598 4.0317 0.6672 −11.6471
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Table 2. Cont.

Region
Loss-Rainfall

Effect
Capital

Efficiency Effect
Flash Flood Disaster

Control Effect
Economic

Effect
Demographic

Effect
Total

Chongqing 8.8715 6.8277 −13.4133 7.2321 0.7579 10.2759
Sichuan −2.3962 −0.9183 −19.4274 19.5975 0.5814 −2.5630
Guizhou 2.8052 8.5286 −13.3576 5.7722 0.4985 4.2469
Yunnan 2.2289 5.0178 −9.4595 4.7431 0.1117 2.6420

Tibet −0.5672 0.7986 −1.6222 0.7790 0.1528 −0.4590
Shaanxi −18.7190 1.4214 −7.2012 6.6924 0.3425 −17.4639
Gansu 3.8549 −0.8067 −3.1115 5.4300 −0.1697 5.1970

Qinghai −0.3791 0.3224 −0.6531 0.3436 0.0222 −0.3440
Ningxia −0.1595 0.5062 −0.7422 0.2460 0.0485 −0.1010
Xinjiang −3.3441 2.9019 −4.3370 1.1898 0.2564 −3.3330

National total −95.1450 169.5273 −385.5002 191.8392 11.7158 −107.5629

To simplify and analyze the influence of the driving effects on the time series changes
of flood-related economic losses more directly, we created a spatial clustering to illustrate
the spatial variation in the driving effects, based on an ISODATA clustering model [28]. In
this model, the clustering is specific to each type of drive effect analysis.

3.2.1. Demographic Effect

The demographic effect was the weakest in terms of change in flood-related economic
loss, with an effect value of 1.17158 billion Yuan. As China enters a stage of low fertility [29],
the population growth rate is relatively slow, with the population in some provinces
showing a downward trend. This is the main reason for the low demographic effect value.

One region in which demographic effect was high is Guangdong (Figure 3). During
the study period, the demographic effect value in the province was 342.69 million Yuan,
showing the most obvious incremental effect among all provinces. According to statistical
data, Guangdong is the most populous province in China, and during the study period,
its population growth showed a steady upward trend, with an increase of 21.83 million
people from 2010 to 2020. The increase in population also puts higher demands on the
flood prevention work.

The regions with medium levels of demographic effect are Zhejiang, Fujian, and
Chongqing (Figure 3). Zhejiang and Fujian are in the southeast coastal area of China,
while Chongqing is in the southwest. These three regions have high population density,
and all of them are flood prone provinces. Statistics show that the population of these
three provinces are increasing and therefore the demographic effect was also incremental.
However, compared with the high demographic effect area, these areas’ effect values
are lower.

The regions with low levels of demographic effect include the following 25 provinces:
Beijing, Tianjin, Hebei, Shanxi, Inner Mongolia, Liaoning, Jilin, Heilongjiang, Anhui, Jiangxi,
Shandong, Henan, Hubei, Hunan, Guangxi, Hainan, Sichuan, Guizhou, Yunnan, Tibet,
Shaanxi, Gansu, Qinghai, Ningxia, and Xinjiang (Figure 3). Among them, the demographic
effect values of Shanxi, Inner Mongolia, Liaoning, Jilin, Heilongjiang, and Gansu showed a
decreasing effect, as the population number of these six provinces showed a decreasing
trend during the study period; therefore, the population pressure in terms of flood disaster
prevention also showed a decreasing trend. The other 19 provinces had average demo-
graphic effects of around 25.61 million Yuan. Although the characteristics of positive effect
would lead to increased flood-related economic losses, overall, they account for a relatively
small effect.
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Figure 3. Demographic effect driving distribution.

3.2.2. Economic Effect

During the study period, the economic effect value of flood-related economic loss was
19.18392 billion Yuan, making it the most obvious incremental driving effect. From 2010 to
2020, China’s national economy has maintained an average annual growth rate of more
than 7% (Figure 4). The country’s rapid economic growth also poses a growing challenge
in terms of flood disaster prevention. The economic effects of flood-related economic loss
in all provinces are also incremental.

Figure 4. China’s GDP from 2010 to 2020. Data from the China Statistical Yearbook 2010–2020.
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Jiangxi and Sichuan showed the highest driving effect of flood-related economic
losses, with the average effect of these two provinces during the study period as high as
1.45506 billion Yuan (Figure 5). The two provinces had similar GDPs per capita and are
both prone to flash floods and flood disasters. During the study period, the average annual
economic losses caused by flood disasters in Jiangxi and Sichuan ranked second and fifth,
respectively, among the 29 provinces. With the continuous economic development, the per
capita GDP in both Jiangxi and Sichuan has also increased significantly, which brings new
challenges in terms of flood disaster prevention work; therefore, the economic effect was at
a high driving level.

 
Figure 5. Economic effect driving distribution.

The provinces with medium driving levels of economic effect were Zhejiang, Anhui,
Fujian, Hubei, Hunan, Guangdong, and Chongqing (Figure 5). According to statistical data,
the economy of these seven provinces showed a general upward trend during the study
period; moreover, the per capita GDPs of Zhejiang and Fujian ranked first and second in the
country, with both provinces’ per capita GDP exceeding 100,000 Yuan. In terms of spatial
distribution, most of these provinces are in Southeast and South Central China, where
annual rainfall is abundant. Therefore, these provinces are also prone to flood and flash
flood disasters. Zhejiang, Fujian, and Guangdong are also typhoon-prone areas, and the
flood prevention undertaking is particularly heavy in these provinces. The average annual
economic losses caused by floods in these seven provinces were all among the top nine.
Even though the continuous economic growth in these provinces will cause an increase in
the difficulty of flood disaster prevention and control, the effect value was slightly lower
than that of the high driving effect provinces.

There were 20 provinces that had low economic driving effects: Beijing, Tianjin, Hebei,
Shanxi, Inner Mongolia, Liaoning, Jilin, Heilongjiang, Shandong, Henan, Guangxi, Hainan,
Guizhou, Yunnan, Tibet, Shaanxi, Gansu, Qinghai, Ningxia, and Xinjiang (Figure 5). Among
them, the per capita GDPs of Beijing and Tianjin in 2020 exceeded 100,000 Yuan, and the
per capita GDPs of Inner Mongolia and Shandong exceeded 70,000 Yuan. These four
provinces are in the northern region and their flood-related economic loss in recent years is
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significantly lower than that of provinces and cities in the south. As their effect value is
relatively small, they have a low economic driving effect. Most of the other 16 provinces
are in Northern China, where economic losses from floods are relatively low; however, the
per capita GDPs of these regions are significantly lower than those of regions with high
and medium economic driving effects.

3.2.3. Flash Flood Disaster Control Effect

The flash flood disaster control effect showed an obvious reduction effect and had the
highest absolute value among all five effects. This shows that the implementation of flash
flood disaster prevention and control projects has greatly reduced flood-related economic
losses in China. The continuous development of flash flood disaster prevention and control
plays a positive role in reducing flood-related economic losses in China.

The provinces with high levels of flash flood disaster control effects were Shanxi,
Anhui, Fujian, and Hubei (Figure 6). During the study period, the average effect of flash
flood disaster prevention and control in these four provinces was −3.37905 billion Yuan,
and the development of flash flood disaster work greatly reduced disaster-related loss in
these regions. Shanxi, located in Northern China, is a loess-covered mountain plateau, with
mountains and hills accounting for more than 80% of the province’s total area [30]. Flash
flood disaster prevention has always been a focus point and a difficulty in terms of Shanxi
flood control. Anhui and Hubei are in the central and southern parts of China, while Fujian
is in the southeast coastal area, an area that experiences more serious floods [21].

 
Figure 6. Flash flood disaster control effect driving distribution.

Provinces with a medium level of flash flood disaster control effect include Hebei,
Zhejiang, Jiangxi, Hunan, Guangdong, Chongqing, Sichuan, and Guizhou (Figure 6); these
provinces are mainly located in Southeast and Central China. The flash flood disaster
prevention and control effect in these provinces has a reduction effect. Hebei is located
at the eastern foot of Taihang Mountain, and mountainous areas account for 52.7% of the
total area of the province [31]. Flash floods caused by local heavy rains occur frequently.
Zhejiang, Jiangxi, Hunan, Guangdong, Chongqing, Sichuan, and Guizhou are in the south
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of China, an area prone to flash flood disasters [21]. Through the flash flood disaster
prevention and control projects, these provinces have established a sound flash flood
disaster prevention system, which has played a significant role in disaster prevention and
mitigation, reducing casualties, and improving the information level of grassroots water
conservancy; it also had a positive impact on reducing flood-related economic losses [9–13].

The regions with low levels of flash flood disaster control effect include Beijing, Tianjin,
Inner Mongolia, Liaoning, Jilin, Heilongjiang, Shandong, Henan, Guangxi, Hainan, Yunnan,
Tibet, Shaanxi, Gansu, Ningxia, and Xinjiang (Figure 6). Heilongjiang was the only province
with an incremental effect value of flash flood prevention; however, the effect value was
small. Although Guangxi, Hainan, and Yunnan are in Southern China—an area prone
to flash flood disasters—the average annual economic losses related to floods from 2010
to 2020 were relatively low; therefore, they are at a low driving level. Most of the other
12 provinces are in the northern part of China, and the flood-related economic loss was
lower than that of the provinces with high or medium driving force.

3.2.4. Capital Efficiency Effect

The capital efficiency effect of flood-related economic loss reflects the relationship
between regional flash flood disaster input and annual rainfall. The effect values of most
provinces were incremental. Due to large variations in annual precipitation in each region
and the relatively stable investment of flash flood disaster prevention funds, the inter-
annual variation in the effect value of each province is also apparent.

The provinces with a high driving level of capital efficiency effect were Shanxi, Anhui,
Fujian, and Hubei, and the capital efficiency effect was incremental (Figure 7). From 2010
to 2020, the average annual rainfall in Shanxi, Anhui, Hubei, and Fujian was 540 mm,
1272 mm, 1182 mm, and 1778 mm, respectively. Flash floods are the most critical type of
flood disaster in these provinces, and heavy rainfall is the most important factor of flash
flood disasters. The inter-annual variation in rainfall in these four provinces has a strong
impact on the flood-related economic losses in the region, when the investment in flash
flood disaster prevention and control projects has little inter-annual variation.

 

Figure 7. Capital efficiency effect driving distribution.
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The regions with medium driving levels of capital efficiency effect were Hebei, Zhe-
jiang, Jiangxi, Hunan, Guangdong, and Chongqing (Figure 7). From 2010 to 2020, the
average annual rainfall in Hebei, Zhejiang, Jiangxi, Hunan, Guangdong, and Chongqing
was 513 mm, 1795 mm, 1861 mm, 1782 mm, 1874 mm, and 1164 mm, respectively. These
provinces are also regions where flash flood disasters occur more frequently, and the
inter-annual variations in precipitation had a strong impact on the regional flood-related
economic loss; however, the effect value was lower than in the high driving level regions.

The regions with a low driving level of capital efficiency effect were Beijing, Tianjin, In-
ner Mongolia, Liaoning, Jilin, Heilongjiang, Shandong, Henan, Guangxi, Hainan, Sichuan,
Guizhou, Yunnan, Tibet, Shaanxi, Gansu, Qinghai, Ningxia, and Xinjiang (Figure 7).
Hainan, Guizhou, Yunnan, Sichuan, and Guangxi are in the south of China with abun-
dant precipitation; however, the capital efficiency effect value of these five provinces
was obviously smaller than that of strong and medium driving regions, indicating that
the inter-annual variation in rainfall had a weak impact on flood-related economic loss.
Other provinces are mainly located in the northern part of China, with lower rainfall
than the southern region; therefore, the flood-related economic loss in these provinces is
relatively low.

3.2.5. Loss-Rainfall Effect

The loss-rainfall effect reflects the relationship between flood-related economic losses
and annual rainfall in a region. If this effect is characterized by an incremental effect,
it indicates that the economic loss of flood disaster in the region presents an increasing
trend under the same rainfall intensity. On the contrary, if this effect is characterized by
a reduction effect, it indicates that under the same rainfall intensity in the region, the
economic loss of flood disaster shows a decreasing trend.

The loss-rainfall effect showed a clear reduction, with an average value of −9.5145 billion
Yuan in China, from 2010 to 2020. During the study period, the loss-rainfall effects of most
provinces were reduced, indicating that the flood-related economic loss in most provinces
and cities is gradually decreasing in terms of unit rainfall intensity.

The provinces with a high driving level of loss-rainfall effect were Shanxi, Anhui,
Fujian, and Hubei, and the loss-rainfall effect was incremental (Figure 8). Among these
regions, Hebei and Hubei are special. Hebei suffered severe flash floods in 2016, with
a single event economic loss of 50.217 billion Yuan. In the same year, the Yangtze River
flood disaster occurred in Hubei Province, causing massive economic losses [24]. Although
the average loss-rainfall effect of the two provinces was low during the study period, the
flood-related economic loss in a single year was extremely serious, leading to the high
driving level of the loss-rainfall effect. The province with the highest incremental effect
value of loss-rainfall effect was Anhui Province. According to the flood-related economic
loss data over the years, the economic loss caused by flood disasters in Anhui Province in
2016 and 2020 reached 500.65 billion Yuan and 600.7 billion Yuan, respectively. The flooding
of the Yangtze River in 2016 and the Huai River in July 2020 caused severe economic
losses in Anhui Province, leading to a high driving level of loss-rainfall effect in Anhui.
The loss-rainfall effect in the other seven provinces showed an obvious reduction. The
flood-related economic losses in these provinces under the same rain intensity showed a
gradual decreasing trend, indicating that the defense level against flood disasters in these
provinces has been greatly improved.

The regions with a medium driving level of loss-rainfall effect included Zhejiang,
Guangxi, and Sichuan, and the loss-rainfall effect was incremental (Figure 8). In Zhe-
jiang and Guangxi particularly, typhoons and flash floods are the main types of flood
disasters [21,32,33]. Typhoons and flash floods are two disasters that happen very sud-
denly and without warning. The economic loss caused by typhoons is often especially
unpredictable, which is the main reason for the effect value of these two provinces being
incremental. Sichuan is in the southwest of China, and the frequent occurrence of regional
floods in the province causes great economic losses, which is the main reason for the
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incremental effect of the loss-rainfall effect. The absolute value of the effect in these two
provinces and Sichuan was lower than that in the high driving effect area.

Figure 8. Loss-rainfall effect driving distribution.

The regions with a low driving level of loss-rainfall effect include Beijing, Tianjin,
Shanxi, Inner Mongolia, Shandong, Henan, Hainan, Chongqing, Guizhou, Yunnan, Ti-
bet, Gansu, Qinghai, Ningxia, and Xinjiang (Figure 8). Among them, in Beijing, Tianjin,
Chongqing, Guizhou, Yunnan, and Gansu provinces, the loss-rainfall effect was incre-
mental; moreover, the incremental effect value of Chongqing was higher. However, the
flood-related economic losses in these provinces were relatively low in most years; there-
fore, they are classified as a low driving level. In Shanxi, Inner Mongolia, Shandong, Henan,
Hainan, Tibet, Qinghai, Ningxia, and Xinjiang, the loss-rainfall effect showed a reduction.
Furthermore, even though the absolute value of the effect was higher in Henan and Hainan
provinces, the flood-related economic loss in these two provinces was relatively low during
the study period.

4. Conclusions

This study analyzed the driving factors of flood-related economic losses in China
from 2010 to 2020, using statistics obtained from the National Bureau of Statistics and the
Ministry of Water Resources of China. The Kaya identity and LMDI method were used to
establish a factor decomposition model to determine what affects economic losses caused
by flood disasters. Five effects were isolated, measured, and analyzed: demographic
effect, economic effect, flash flood disaster control effect, capital efficiency effect, and
loss-rainfall effect.

Using the LMDI method, we deconstructed the driving factors affecting flood-related
economic loss; the results show that changes in flood-related economic loss are the result
of these five factors. The flash flood disaster control effect showed the most obvious
reduction effect. This indicates that the implementation of flash flood disaster prevention
and control projects has greatly reduced economic losses caused by flood disasters in
China. The continuous development of flash flood disaster prevention and control plays
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a positive role in reducing the flood-related economic losses in China. The reduction
in the loss-rainfall effect is the inevitable result of the control measures for flash flood
disasters. Updating monitoring and warning equipment and the construction of water
conservancy informatization have significantly improved the country’s flood disaster
prevention abilities, effectively reducing flood-related economic losses under the same
rainfall intensity.

The demographic effect, economic effect, and capital efficiency effect were shown
to be incremental. China is in the later stage of industrialization and the middle stage
of urbanization, and the growth of regional economies will also bring greater challenges
to flood control work. Regions with higher capital efficiency effects are concentrated in
the south of China, where the annual rainfall is generally higher. When the inter-annual
variation in flash flood disaster prevention funds is small, the inter-annual variation in
precipitation will have a great influence on the change in the effect value. Although China
is a low fertility country, the population of most provinces shows an increasing trend,
which will inevitably pose more challenges to flood control. Therefore, the demographic
effect also shows the characteristics of incremental effect.

Economic development is the foundation of social, scientific, and technological progress,
and scientific and technological progress is necessary for the improvement of water con-
servancy informatization. Considering the GDP statistics of the study period, it is clear
that the Chinese economy will maintain a steady growth trend in the future. It also shows
that the economic effect in the future will still present the characteristics of the incremental
effect. Considering these statistics along with the results of this study, we see that the flash
flood disaster control effect shows obvious reduction effect characteristics. Under the con-
dition of future economic growth, the continuous development of the special construction
of mountain flood disaster prevention and control will play a positive role in reducing
economic loss related to flood disasters.
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Abstract: Hubei province is located in the center of China with 56% total area characterized with
mountainous area. Thus, flash flood caused by extreme rainfall has become one of the significant
obstacles that highly affect the social and economic development of the province. In order to
scientifically understand the mechanism of flash flood disasters and provide technological support to
the local flood prevention and control work, the IWHR designed and developed a new distributed
hydrological model named China-FFMS that can simulate the evolution of natural disasters and
make an assessment by setting the flood water sources in line with the flow discharge. The FFMS
was further applied to simulate the 8.12 flash flood disaster that occurred in the Liulin county of
Hubei province on 12 August (“8.12”) and fed by the data collected from the national flash flood
disaster investigation and assessment. The calculated peak flow was 666.22 m3/s with an error of
+13% compared with postdisaster investigation data (589 m3/s). The results showed that using a
multisourced modelling approach, e.g., mixing spatiotemporal variables and sources, to simulate
the flash flood process was able to accurately reproduce the flood process and the consistence of the
flow discharge, thereby explaining the underlying reason of the disaster formation and evolution.
Regarding the case of the Liulin county, the main factor leading to the disaster was the overlapped
peak flow where the Dunne flood peak of three different tributaries from the upper reach met together
at the same time. Moreover, the peak flow of the Lianhua river at the downstream of Liulin County
also arrived at the same time as the upstream peak, which obstructed the flood progress and increased
the damage of the disaster. According to the analysis, several suggestions and recommendations are
proposed such as the improvement of the forecast and early warning system of the upstream areas,
the optimization of the current flood defense plan, and the enhancement of the residents’ awareness
of flash flood disasters.

Keywords: flash-flood modelling system; disaster mechanism; runoff generation component; disaster
amplification effect

1. Introduction

Since the 21st century, climate change has led to an increase of the frequency and
intensity of heavy rainfall in mountainous areas where the demography is expanding due
to counter urbanization and the amount of population under risk rises. Motivated by this,
the research on flash floods has attracted an increasing interest in both China and western
countries [1–4]. For example, on 12 August 2021, a severe flash flood occurred in Liulin
Town, Suixian County, Suizhou City, Hubei Province, affecting more than 12,000 people
and destroying 474 hectares of crops and over 160 houses. It seriously undermined local
socioeconomic development with a direct economic loss of about 226 million yuan [5,6].
Studying the process and mechanism of the “8.12” flash flood in the Liulin river basin can
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provide a positive reference for flood control and disaster reduction in the local and other
similar areas prone to flash floods.

A flash flood is highlighted by its special characteristics of highly unexpected occur-
rence, destructive impact, and short duration. Additionally, it is usually accompanied by
secondary disasters such as landslides and debris flows; therefore, it is likely to change the
landform of the affected areas. However, disaster formation monitoring and postdisaster in-
vestigation and analysis are difficult [7–9]. There have been a lot of studies on the simulation
of flash floods and the analysis of disaster mechanism [10–14]. For example, Yang et al. [15]
investigated the disaster mechanism of the 5·16 flash floods in the Houshan Mountains of
Sanming City, Fujian Province by using the flood calculation method, and analyzed the
effect of flash flood magnified by culvert blockage and slope excavation. Carle et al. [16]
compared different early warning systems based on aggregated rainfall and a distributed
hydrological model for regional flash flood control and found that a distributed simula-
tion has certain advantages in the analysis of flash floods associated with a rapid water
level rise. Based on the measured rainfall data, Sun et al. [17] used the kinematic-wave
geomorphological instantaneous unit hydrograph model to analyze the 8.16 flash flood in
the Zhongdu river basin, Sichuan Province, and concluded that the disaster was caused
by regional heavy rainfall combined with human activities. Braud et al. [18] investigated
the 2002 flash flood in southern France by using distributed hydrological models and
identified rainfall, soil saturation, and surface soil thickness as major factors of the runoff
of flash floods. They suggested that a detailed runoff description is essential to increase
the accuracy of the model simulations. Based on an examination of high temporal and
spatial resolution data of 25 typical flash floods across Europe, Marchi et al. [19] revealed
that flash floods in Europe are seasonal and significantly affected by initial soil moisture.

To summarize, a distributed hydrological model has become the main technical tool to
study the mechanism of flash floods. However, most types of this model fail to describe the
details of the physical mechanism of runoff generation in river basins, let alone the analysis
of the changes in runoff generation and the disaster mechanism of flash floods. This paper
adopts the China Flash Flood Modelling System (FFMS) independently developed by the
China Institute of Water Resources and Hydropower Research (IWHR) to analyze the
“8.12” flash flood in Liulin Town, based on national flash flood investigation results and
postdisaster field survey data. A distributed flash flood model with small watersheds
of 0.16–1.6 km2 (0.10–0.99 mi2) as the minimum calculation unit was constructed for the
detailed analysis and simulation, including disaster formation and runoff changes in the
process, so as to analyze the amplification effect and reveal the disaster mechanism, thereby
providing technical support for future flash flood prevention and control in the region.

2. Research Materials

2.1. Study Area

Liulin Town with an administrative area of 197.49 km2 (76.25 mi2) is located in the
south of Suixian County, Suizhou City, Hubei Province. The topography of the Liulin
basin is dominated by mountains and hills and mainly covered by forests and cultivated
land. The average annual rainfall is recorded as 1100 mm (43.3 in) and centralized in
the flood season [20]. The section of watershed controlled by Liulin Town covers about
24.29 km2 (9.38 mi2) that belongs to the Langhe River basin. The main river channel is
about 8.47 km (5.26 mi) with a steep gradient of 8‰, where 19 tributaries including Jinyin,
Taiping and Baishuwan coalesce. In the fan-shaped upper river basin of Liulin Town, the
main settlements are surrounded by mountains on three sides and located at the bottom of
a river valley in a good hydrological condition that is relatively closed, wide, and gentle.
However, the flood discharge conditions in the lower reach are poor due to the narrow
channel. As a result, there is a high probability for an intensive rainfall during the flood
season to lead to flash floods in Liulin Town (Figure 1).

148



Water 2022, 14, 2017

Figure 1. Distribution map of water systems and reservoirs in Liulin Town.

2.2. Data Collection

The rainfall data were measured at several reservoir sites around Liulin Town, and
the total precipitation in Liulin Town from 21:00 on 11 August to 9:00 on 12 August was
503 mm, where the accumulated precipitation from 4:00 to 7:00 was 373.7 mm (1.23 ft) and
the precipitation intensity at 5:00 and 6:00 was 105 mm/hour (14.7 in/h) and 104 mm/hour,
respectively, both exceeding the historical record of local measurements [6]. Figure 2 shows
the spatial distribution of the accumulated rainfall and hourly rainfall in the drainage area
of Liulin Town from 21:00, 11 August to 12:00, 12 August.

 

Figure 2. Spatial distribution map of accumulated rainfall and hourly rainfall in Liulin Town,
Hubei Province.

There are four rainfall monitoring stations in the drainage area of Liulin Town, which
are all small-sized reservoirs, (Grade II) namely Jinyin, Caomiao, Taiping, and Shikeng.
Before the occurrence of the “8.12” flash flood, the reservoirs were kept 0.06–1.60 m
(0.20–5.25 ft) below the flood limit water level. Then, when the heavy rainfall started,
the water levels at Jinyin, Caomiao, and Shikeng all began to rise rapidly, with the flood
peak exceeding the historical record high. However, the four reservoirs remained opera-
tional and followed the flood-season reservoir schedule and operation plan during the flash
flood in Liulin Town. Figure 3 shows the changes of rainfall and water level monitored in
each reservoir during the flash flood.
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Figure 3. Changes of rainfall and water level in Shijinyin, Caomiao, Taiping, and Shikeng reservoirs.

3. Simulation Analysis

3.1. Hydrological Model

The FFMS system developed by IWHR was employed to simulate the “8.12” flash flood
disaster. It is a new-generation flood simulation piece of software for small watersheds
that integrates the advantages of C++, Fortran, Java, and other computer languages. The
design aims at modularization, parameterization, intelligent, visualization and automation
based on the national flash flood investigation results [21,22]. FFMS has the characteristic
functions of an automatic division of small watersheds, automatic extraction of parameters,
modular modeling, and automatic determination of the runoff model based on the attributes
of underlying surface of small watersheds. The software architecture and functional
modules are as shown in Figure 4. At present, FFMS has already integrated different
hydrological models available for use, such as HEC-HMS, PRMS, spatiotemporal variable–
source mixed runoff model (SVSMR), and the Xin’anjiang model.

3.2. Simulation Method

In view of the characteristics of flash floods in China, IWHR proposed the SVSMR
model for simulating the process of flash floods [23,24]. Through the refined division of
catchments with different underlying surface conditions within watersheds, a vertically,
horizontally, and temporally mixed runoff model was constructed for simulations and calcu-
lations at multiple levels such as data sources, method sources, and runoff sources [25–27].
The method for computing infiltration in soil mechanics, which discretized soil moisture
in the downward movement of wetting front [28–30], was introduced into distributed
hydrological simulations. This enabled a detailed description of instantaneous changes
of the infiltration capacity of surface soil in the vadose zone during flash floods, thereby
realizing the accurate simulation of the runoff mechanism of flash floods. The detailed
model simulation method can be found in reference [15].
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Figure 4. FFMS software architecture and functional modules.

3.3. Modeling Process

Based on basic geographic information data in the National Flash Flood Data Set, such
as DEM and DLG data (1:50,000) and DOM data with a resolution of 2.5 m (8.2 ft), the
drainage area upstream of the Liulin Town section were divided into 28 small watersheds
each with a size of 0.16–1.6 km2 (0.10–0.99 mi2) as the minimum calculation unit for the
model simulation (Figure 5). Meanwhile, information about 75 basic attributes of the small
watersheds was extracted, including spatial attributes, land uses, and soil types.

The monitored data series of the rainfall of four reservoirs around Liulin Town were the
input of the model. The areal precipitation of each calculation unit was then automatically
calculated through an inverse distance-weighted interpolation by the FFMS rainfall module.
The SVSMR method was used for the runoff simulation while the simplified triangular
unit hydrograph method was used for the slope confluence simulation, the linear reservoir
method for the baseflow simulation, and the kinematic-wave method for the flood evolution
simulation. The modeling interface is presented in Figure 6, where the table displays the
basic attributes of each calculation unit extracted by the model automatically.
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Figure 5. Calculation unit division in Liulin Town and land use attribute data extraction.

 

Figure 6. FFMS modeling process.

3.4. Parameter Determination

The main model parameters involved in the simulation of Liulin flash flood was
divided into two categories according to their physical characteristics. One consisted of
the basic attribute parameters that characterize the actual topography of calculation units,
such as area, longest confluence path, and gradient. The other consisted of the runoff and
confluence parameters that characterize the underlying surface of calculation units, such as
maximum infiltration coefficient of surface soil, (linear/nonlinear) coefficient of preferential
flow, and (linear/nonlinear) coefficient of subsurface flow. For the first category, values
were obtained by automatically extracting the input data without calibration while for
the second category of parameters, the model automatically determined and assigned the
values based on the basic attributes of calculation units extracted from the expert database
derived from the national flash flood investigation results. In the actual simulation process,
the calibration and correction can be carried out for some parameters according to the
simulation effect. However, this case used parameter values recommended by the expert
database (Table 1) because a simulation analysis had already been conducted ahead of the
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post disaster survey data collection. The simulation results are compared with measured
data in later verification.

Table 1. Parameter value.

Symbol Parameter Unit Recommended Value

ks Saturated hydraulic conductivity m/s 2.78 × 10−6

perp Surface ratio of preferential flow - 0.82
ki1 Linear coefficient of subsurface flow - 0.88
kp1 Linear coefficient of preferential flow - 0.58
ki2 Nonlinear coefficient of subsurface flow - 2.00
kp2 Nonlinear coefficient of preferential flow - 0.00
kg Baseflow coefficient - 0.29

Wfd Average depression storage mm 0.37
perip Impervious surface ratio - 0.00

4. Analysis on the Disaster Mechanism

4.1. Analysis of Flash Flood

The model used default parameters to perform distributed hydrological simulations
for hourly flash-flood changes from 21:00 to 12:00 on 12 August 2021 in the Liulin basin.
The peak flow was calculated to be 666.22 m3/s (23,527.3 ft3/s). Flood peak traveled for one
to two hours, and flow confluence took about two hours. The runoff coefficient was around
0.78, and the modulus of flood peak was 27.11. The simulated time of flood peak was
basically consistent with the actual time by comparing with post disaster investigation data
(Figure 7), with an error of +13%. Since the simulation results were obtained earlier than the
investigation results, the simulation method proved to be reliable and the recommended
parameter values were reasonable. Therefore, the simulation results could explain the flash
flood process and support the mechanism analysis.

 

Figure 7. Simulation results.

By using the SVSMR model, the changes in runoff components can be examined to
pinpoint the causes of the flash flood in Liulin Town. As shown in Figure 8a, in the initial
stage of the “8.12” flash flood in Liulin Town, the hourly areal rainfall in the watershed
was small and surface runoff was limited as a large proportion of rainfall infiltrated into
the unsaturated surface soil. The subsurface flow from the upstream calculation units
contributed most to the total runoff, but due to the slow confluence, it had less impact on
the downstream Liulin Town. At 1:00 on 12 August, the accumulated areal rainfall of the
basin exceeded 10.1 mm (0.40 in) and a runoff was generated in some calculation units
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where soil became saturated. The total runoff was still generally small, so the flow of the
main rivers in the basin did not increase remarkably (Figure 8b). After 3:00 on 12 August,
with the rapid increase of areal rainfall in the basin, a Hortonian runoff became the main
mechanism of each runoff calculation unit in the watershed and was produced from almost
85% of the total rainfall before the flood peak came. Due to a relatively large channel
gradient in the upper reaches, the speed of the apparent surface runoff was rapid after
confluence (Figure 8c,d). As a result, the flow at the Liulin Town section surged by 500%
from 3:00 to 4:00 and reached its peak of around 600 m3/s (21,188.8 ft3/s) at 6:00.

(a) (b) 

 
(c) (d) 

Figure 8. Distributed simulation of runoff composition and runoff process. (a) Runoff components in
Liulin Town. (b) Simulated flow at 1:00. (c) Simulated flow at 5:00. (d) Simulated flow at 6:00.

The flash flood caused heavy casualties [6] due to several factors: an emergency
evacuation that was not well organized at night; the elderly and female population that
accounted for a large proportion and had relatively weak self-rescue capability; a blocked
evacuation route, e.g., people could not move to a safe place in time as houses with external
stairs were kept closed subject to the high water pressure of rapidly rising floods.
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4.2. Analysis of the Amplification Effect

Based on the FFMS simulation results, the flow of the Langhe River and its three
tributaries, i.e., the Shikeng Reservoir, the Jinyin Reservoir, and the Taiping River, was
analyzed, and further, flood hydrographs were generated for each (Figure 9). The results
showed that the peak flow of the tributaries all arrived at the section near Liulin Town
at 6:00 on 12 August. An exception was the Caomiao Reservoir on the trunk of Langhe
River, which is far away from Liulin Town; its peak flow appeared at 5:00 on 12 August.
Such simultaneous arrival and overlapping of peak flows of the mainstream and tributaries
magnified the effect of the flash flood near Liulin Town. Among them, the Taiping River
contributed the largest peak flow of 205.33 m3/s (7251.2 ft3/s) while the Shikeng Reservoir
contributed the smallest of 104.09 m3/s. However, the confluence of the Shikeng Reservoir
at the downstream of Liulin Town generated a backwater effect that obstructed flood water
discharge, which magnified the impact of the flash flood to a certain extent.

(a)

(b)

Figure 9. Distribution map (a); and simulation results of four tributaries of Lang River (b).

According to the FFMS simulation results, the 24 h cumulative rainfall during the
“8.12” flash flood in Liulin Town was 1.6 times that of the local designed 100-year flood. The
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water depth corresponding to the peak flow at the extracted cross-sections was calculated
using the Manning formula. As shown in Figure 10, the calculated water depth at each
node of the “8.12” flash flood was higher than that of the 100-year flood, which means that
the frequency of the flash flood in this case was at least once in more than 100 years.

 

Figure 10. Simulated water levels of various reservoirs.

Regarding the charts for flood runoff calculation of Hubei Province and statistical
parameter atlas for floods in Hubei Province in Figure 10, it was deduced that the design
peak flow corresponding to the design flood with a return period of 200 years at the Liulin
Town section was 634 m3/s (7251.2 ft3/s), compared with 620 m3/s (21,895.1 ft3/s) using
the hydrological comparison method based on the design data of the nearby Baiguohe
Reservoir. Taking into account the field investigations and simulation results, the 8.12 flash
flood in Liulin Town was considered to correspond to a return period of 200 years or
longer [6].

5. Conclusions

This study adopted the self-developed distributed flash flood simulation model (FFMS)
to analyze the “8.12” flash flood in Liulin Town in terms of runoff generation and runoff
components of each tributary in the basin, which revealed the formation mechanism and
underlying reasons leading to this disaster. The main conclusions are as follows:

(1) The “8.12” flash flood in Liulin Town was mainly caused by the surge of a Hortonian
runoff generated by a record extreme rainstorm in this area. The peak flow of four
upstream tributaries arrived at the Liulin Town section at almost the same time
and coupled with the backwater effect from the downstream Lianhua River, which
magnified the effect of the flash flood and resulted in heavy casualties in Liulin Town.

(2) The capability of evacuation in response to the Liulin flash flood was restricted by
factors such as the difficulty for arranging emergency evacuation at night, a large
proportion of elderly and female population, and the external layout of stairs for most
resident houses.
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(3) Referring to the topographical features and historical flash flood events in the basin
of Liulin Town, several recommendations are proposed accordingly: (1) improve
the rainfall forecasting system for drainage areas of upstream tributaries; (2) build
a flash flood forecasting and early warning system based on distributed models;
(3) further refine the existing flash flood defense plan, and (4) increase the evacuation
exercises to respond to flash floods and enhance the public awareness of extreme
disaster prevention.
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Abstract: On 20 August 2019, a flash flood occurred in Sanjiang Town, Sichuan, China, and caused
great damage to people living there. The town lies at the junction of five streams, with streams A,
B, and C combining at the town and further dividing into streams D and E. The slope of streams
A, B, and C is about 3~5%, while the slope of streams D and E is around 0.3%. The Sanjiang Town
actually lies in the transition from supercritical slope to subcritical slope. During the flood, huge
sediments were released to streams A, B, and C, and further transported to stream E. Due to the rapid
change of velocity, only few sediments deposited at the supercritical slope parts of the stream, while
plenty of them sedimented at the streams with subcritical slope. In order to simulate the flood with a
hydrodynamic model, a field investigation was carried out to collect high DEM (digital elevation
model) data, flood marks, sediment grading, etc., after the flood. The discharge curve of the flood was
also obtained by the hydrometric station near Sanjiang Town. For the inlet sediment concentrations
of streams A, B, and C, we made a series of assumptions and utilized the case which best fits the flood
marks to set the inlet sediment concentration. Based on these data, we adopted a depth-averaged
two-dimensional hydrodynamic model coupled with a sediment transport model to simulate the
flash flood accident. The results revealed that the flash flood enlargement in confluence streams
is mainly induced by the inflows, and the flash flood enlargement in bifurcation streams is largely
affected by the sediment deposition. The bifurcation of flows can decrease the peak discharge of each
branch, but may increase the flooded area near the streams. Flow in the supercritical slope runs at a
very fast velocity, and seldom deposits sediment in the steep channel. Meanwhile, most sediment
is transported to the streams with flat hydraulic slopes. Due to the functioning of the reservoir, the
transition region from supercritical slope to subcritical slope has a much larger probability of being
submerged during the flood.

Keywords: flash flood; bifurcation; confluence; shallow-water models

1. Introduction

Flash floods are usually induced by rapidly gathered rain. The flash flood runs down
the hill and moves quickly, affects a large region, and has little time for early warning. In
mountainous areas, people usually reside in flat areas along the river bank, and facilities
such as villages, roads, railway, etc., are all in these areas. The flash flood often leads to
great damage to people living nearby.

In order to reduce the threat of flash floods, pre-warning systems are set by many
countries. The key point of a warning system is creating a standard for the identification
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of disasters, and using the standard to classify the possible impact area of flash flood
inundation. These warning systems should respond in a rather short time. In the past, the
computation resources were limited, and the modeling tools for flash flood propagation
were simplified to save in calculation time. These systems usually adopted some simple
models, such as statistical models [1] and simplified hydrodynamic models [2,3] focusing
on water levels, discharge, rainfall, etc., but the propagation process of flow was seldom
mentioned [4–6]. The warning standard obtained by these models was rough and inaccurate
for residential areas with complex channels and buildings. With the development of
computers and in order to study the warning standard of flash floods in detail, many
researchers have studied flash floods with depth-averaged two-dimensional hydrodynamic
models, which are powerful tools to capture flow dynamic behavior and save computational
time for a spatially large-scale flow domain [7,8]. These models solve the full governing
equations, including the rainfall and infiltration sections. The discretization equations using
the Godunov method [9] can accurately capture the shock wave and deal with the sharp
change of the bed form. The calculation time is acceptable, and this is a very promising
too [7,10–15].

Furthermore, flash flood enlargement, where the peak water level or peak discharge is
increased or decreased in areas with rapid bed form obstruction [16] will largely impact
the flash flood warning standard. Many studies are mainly focused on the natural issues
of the flash floods, such as sediment transport, landslide dams [17], confluence of rivers,
etc. Yang et al. [18] studied the impact of sediment transport on the peak level and peak
discharge of flash floods with numerical models, and Chen et al [4] investigated the
effect of landslide dams on the flash flood peak level with a large-scale physical model.
Wang et al. [19] made progress in the flash flood propagation in the river confluence zone
with both numerical and experimental techniques. Chen et al [20] analyzed the flash flood
wave propagation in the confluence of open channels. Hackney et al. [21] made a dent in
discharge variation of the flash flood in the river confluence region with field investigations.

Generally speaking, flash floods in mountainous areas occur in channels with very
steep slopes, and huge sediments can be transported far away due to the high-speed flow.
However, if there is a reservoir setting on the stream, the slope will be slowed by the
highly raised water level. A transition region from the supercritical slope to the subcritical
slope will be produced by the sedimentation. Flash floods in streams with confluence
and bifurcation, especially in the transition region from supercritical slope to subcritical
slope, are seldom studied in detail. In this study, we use a depth-average two-dimensional
hydrodynamic model to conduct a numerical inversion of a flash flood that occurred on 20
August 2019 in Sanjiang Town, Sichuan, China.

2. Study Area

The study area covers Sanjiang Town, which lies in Sichuan Province of China. Figure 1
shows the satellite image of Sanjiang Town. The town lies at the confluence of three streams,
A, B, and C. Firstly, stream B meets stream C at the upper part of the town, then they
both join stream A. The distance between the two junctions is about 100 m. Right after
the confluence, stream A is further divided into streams D and E. For stream D, there is a
milldam near the bifurcation, and the milldam can discharge part of the flash flood through
stream D. Stream E has twice the width of stream D, and releases most of the flood. Streams
D and E meet again at the Sanjiang reservoir. The central bar surrounded by streams D
and E is the major developing part of the town in recent years. At the end of stream E, a
hydrometric station collects hydraulic data during the floods. An overflow dam lies at the
end of the Sanjiang reservoir, and gates of the dam are all opened to discharge floods.
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Figure 1. Satellite image of Sanjing Town, Sichuan, China.

3. Methodology

In this study, we adopted the depth-averaged, two-dimensional, shallow-water equa-
tions, coupled with sediment transport and bed variation equations [22], to simulate the
flash flood and sediment transport during the disaster.
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Equation of bed load transport:

∂

∂t
(hqb) +

∂

∂x
(huqb) +

∂

∂y
(hvqb) = −αbωb(qb − qb∗) = −ρ′ ΔZb
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(4)

Equation of bed deformation:

ΔZb
Δt

=
αbωb(qb − qb∗)

ρ′ (5)

in which t denotes time, h means water depth, u and v present velocity components in
the x and y directions, respectively, g is gravitational acceleration, vt is the turbulent
viscosity coefficient, and Δρ = ρs − ρw, in which ρs is the sediment density, and ρw is the
water density.

ρm = (1 − Sv)ρw + Svρs =

(
1 − S

ρs

)
ρw + ST (6)

where Sv is the volumetric sediment concentration, and ST is the total concentration of
graded sediments (kg/m3). In this study, only the bed load transport is calculated, so ST
equals qb.

ρ0 =

(
1 − ρ′

ρs

)
ρw + ρ′ (7)
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in which ρ0 and ρ′ denote the density of saturated and dry bed material, respectively. The
bed slope terms (Sbx, Sby) and friction slope terms (S f x, S f y) are written as Sbx = −∂Zb/∂x,
Sby = −∂Zb/∂y, and S f x = n2u

√
u2 + v2/h4/3, S f y = n2v

√
u2 + v2/h4/3 in the x and y

directions, respectively, where Zb is bed elevation and n is Manning’s roughness coefficient.

qb0 =
Kb

C2
0

ρsρm

ρs − ρm
(U − Uc)

U3

gωb
(8)

qb∗ = qb0/(hU)=
Kb

C2
0

ρsρm

ρs − ρm
(U − Uc)

U2

hgωb
(9)

where qb
(
in kg/m3) is the amount of bed load in a unit volume of water, ωb is the

settling velocity of bed load, qb0 is the transport capacity of bed load in a unit volume
of water, in kg/m3, and αb is the non-equilibrium adaptation coefficient of bed load.
Kb is an empirical coefficient, Uc is the incipient velocity of bed load, calculated by

Uc = 0.265 log(11h/d)
√

(ρs−ρw)
ρw

gd, C0 is the dimensionless Chézy coefficient, and qb∗
is the value of bed load in a unit volume, and is obtained according to qb∗ = qb0/(hU).

The governing Equations (1)–(4) can be rewritten in the form:
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S is the source section, and is equal to the rest of the sections of each governing equation.

Un+1
i = Un

i + ∑
(
Enx + Gny

)
+ S (11)

The governing equations are solved by the method of finite volume with hybrid
triangular and quadrangular meshes. The variables (h, u, v, qb, Zb) in each mesh are updated
in a time-marching manner (Equation (11)). Un

i is the variables’ value at time n, Un+1
i is

the variables’ value at time n + 1, and Enx + Gny denotes the flux crossing the edges of
the mesh. In order save the calculation time, a NVIDIA GeForce RTX 3050 GPU (graphics
processing unit) was adopted to speed up the calculation. The flow chart of the calculation
is shown in Figure 2.

The calculation codes used in this study have been successfully used in the former
studies [18,23]. The simulation region covers most parts of Sanjiang Town, and the number
of simulation meshes is about 110,000. In order to capture the flash flood propagation
accurately with a moderate quantity of mesh, a non-uniform (triangular and quadrangular
hybrid) mesh is adopted. The size is about 2.0 m in regions near the stream channel and
bank, and about 5.0 m in regions far from the streams (Figure 3).

We collected high-resolution (5.0 m) DEM (digital elevation model) data (Figure 1)
after the flash flood in 2019, and the flow rates of stream E (Qt(CS14)) at the hydrometric
station of Sanjiang Town. The flow rates at the hydrometric station were gauged at an
interval of 20 min. The flash flood lasted about 120 h (from 20 to 24 August in 2019). The
120 h-long flash flood can be divided into four stages, and each of them has one discharge
peak (Figure 4a, stage 1, 2, 3, and 4, respectively). We deduced the discharge of streams
A (QA), B (QB), and C (QC) based on their upstream catchment area (Figure 4b). For
example, since the milldam in stream D was closed during the flood, the total discharge of
streams A, B, and C should be equal to the discharge at CS14. Supposing the catchment
areas of streams A, B, and C are AA, AB, and AC, respectively, and the total area of
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them AT = AA + AB + AC, then QA = QtAA/AT , QB = QtAB/AT , and QC = QtAC/AT ,
respectively. All these data contribute to the numerical inversion of the flash flood.

Figure 2. Flow chart of the calculation.

Figure 3. Recorded cross-sections (top) and part of the calculation meshes (bottom).
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Figure 4. Monitored (a) and deduced (b) discharges of the flash flood.

In this study, the roughness of the bed was set with the Manning’s roughness, n, of
0.025, which is suggested by hydraulics manuals [24] and verified by our former studies [18].
The bed elevations at each mesh were initiated by interpolating from the high-resolution
terrain data, and updated by the simulation codes at each timestep based on Equation (5).
In order to study the unsteady process of the flash flood, hydraulic data of 18 cross-sections
(Figure 3) were saved at every timestep, and data of the full simulation region were saved
at every 100 timesteps during the calculation.

The inlet discharges for streams A, B, and C were consistent with the deduced rate
curves in Figure 4b, and flow rate of the outlet boundary was automatically calculated
according to the empirical formula for weir flow. The formula is Q = mnb

√
2gH1.5, in

which Q = discharge, m = discharge coefficient, about 0.502, n = number of gates opened,
b = width of each gate, and H = the difference between water level and elevation of the weir
top. Once the discharge is calculated, the velocity at the outlet is set based on the discharge.

The milldam was closed during the flash flood in 2019 (Figure 5), and released little
water to stream D. The water in streams A, B, C, and E performs as the confluence flow, but
the flow will move as bifurcation flow when the milldam is open. Therefore, in order to
investigate the impact of the milldam on the flash flood, scenarios with both a closed and
an opened milldam were simulated in this study.
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Figure 5. Image of the milldam after the flash flood in 2019.

As the sediment characteristics were not monitored by the hydrometric station dur-
ing the flash flood disaster, it is difficult to figure out the amount of bed load at inlet
boundaries of streams A, B, and C. We assumed the inlet sediment concentrations with
different percentages of transport capacity of bed load at the inlets. Transport capacity
will change with velocity and depth. For example, if the transport capacity of bed load at
the inlets at time A is 100 kg/m3, Qs-0.05 means the inlet sediment concentration is set as
100 × 0.05 = 5 kg/m3 at time A, and Qs-0 means the inlet sediment concentration is zero
all the time. For the diameters of sediment, we collected some sediment of the river bed
after the flash flood in 2019, and obtained a median size of 0.02 m. The flow conditions for
the simulation scenarios are listed in Table 1.

Table 1. Flow conditions for the simulation scenarios.

Scenarios Inlet Discharge Inlet Sediment Concentration Milldam of Stream D

Case Qs-0

Same as Figure 4b

0 Closed

Case Qs-0.05 0.05 × qb0 Closed

Case Qs-0.075 0.075 × qb0 Closed

Case Qs-0.1 0.1 × qb0 Closed

Case Qs-0.125 0.125 × qb0 Closed

Case Qs-0.1-bifurcation 0.1 × qb0 Open

4. Results

4.1. Model Calibration

The purpose of this section is to figure out the scenario which best fits the monitored
data. We analyzed the simulation results of the first five scenarios in Table 1. In these
scenarios, the milldam in stream D was closed during the flood.

Figure 6a shows the simulated and monitored discharge profiles at CS14, and Figure 6b
presents a detailed view of stage 3. It can be seen that the simulated discharge profile agrees
well with the monitored data at CS14, except for that of case Qs-0.125 in stage 3. Figure 7
shows the distribution of unit width flux of cases Qs-0.125 and Qs-0.1. The flooded area of
case Qs-0.125 was a bit larger than that of case Qs-0.1, and some flow travelled downstream
through CS17 instead of CS14, which contributed to the bigger difference in Figure 6b.
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Figure 6. Simulated and monitored discharge profiles at CS14: (a) whole flood and (b) stage 3 of
the flood.

Figure 7. Flooded region of cases Qs-0.1 (a) and Qs-0.125 (b).
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Figure 8a shows the simulated water level of each scenario. For cases Qs-0 and Qs-0.05,
the maximum level occurred in stage 2 of the flood, while for cases Qs-0.075, Qs-0.1, and
Qs-0.125, the maximum level occurred in stage 3. Figure 8b shows the simulated bed
elevation of each scenario. The bed elevation increased rapidly in flood stages 2 and 3,
and the larger the inlet sediment concentration, the more the bed elevation increased. The
lifted bed elevation further contributed to the occurrence time of the maximum level being
delayed from flood stage 2 to 3. The sediment deposition can change the amplitude and
occurrence time of the peak level.

Figure 8. Simulated water level (a) and bed elevation (b) at CS14.

According to the analysis above, the discharge curves were nearly coincident with each
other among the first four simulation scenarios. However, water level and bed elevation
were much different from each other for cases with different inlet sediment concentrations.
The different water level and bed elevation further impacted the flooded area during the
flood. Based on the field investigation carried out right after the flash flood in 2019, the
simulation results of case Qs-0.1 fit better concerning the flood marks, final bed elevation,
flood area, etc. Therefore, we used the 10% of transport capacity (Qs-0.1) as the inlet
sediment concentration.

4.2. Flash Flood in Confluence Streams (Case Qs-0.1)

As the gates of the milldam were closed in this case, all of the flow coming from
streams A, B, and C went to the reservoir through stream E. Figure 9 presents the peak
discharge along the streams. In the four stages of the flash flood, the peak discharges
increased rapidly at CS11, and showed little change at other parts of the streams.
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Figure 9. Peak discharge along the streams (Case Qs-0.1, (a) stage 1 and 2, (b) stage 3 and 4).

Figure 10a shows the peak level at each cross-section. The water level dropped sharply
along the channel of streams A, B, and C, with a minimum slope of 2.5%. On the contrary,
in stream E, the peak water level slowly decreased along the channel, and the slope was
about 0.3%. Once again, this proves that the town lies in the transition region from a steep
channel to a gentle slope.

Peak water levels were generally coincident with the flood marks obtained by field
investigations, and it was difficult to compare them as the slope was steep (Figure 10a).
Figure 10b presents the relative peak water level at all the cross-sections. The relative peak
water level was obtained by subtracting the peak water level of each flood stage from that
of stage 1, so the relative peak water levels of stage 1 were all zero. For cross-sections in
streams A, B, and C, the maximum level occurred in stage 2, in which the maximum peak
discharge existed. However, for cross-sections in stream E, the maximum level occurred
in stage 3 of the flood. The bed elevation in stage 3 was much higher than that of stage 2,
and the deposition lifted the water to a higher level with a relatively smaller discharge
(Figure 8).

For a better understanding of the flow properties along the streams, we adopted the
unit width flux to analyze the main flow variation. As the unit width flux, q, is equal to the
product of depth and velocity magnitude, regions with larger q denote more flow passing
through. Figure 11 shows the distribution of unit width flux (q) at the four stages of the
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flood. Since the milldam was closed, the main flow came from streams A and B, and went
to the reservoir only through stream E.

Figure 10. Peak water level (a) and relative peak water level (b) (Case Qs-0.1).

Siltation thickness denotes the differences between bed elevation at any time and that
of the initial time. The larger the thickness, the more sediments deposited there. Figure 12
presents the distribution of siltation thickness at the four stages of the flood. Sediments
deposited mainly at the confluence region of streams A and B in stages 1 and 2, while
the main siltation region shifted to stream E in stages 3 and 4. Meanwhile, the siltation
thickness in streams A and B became thinner in stages 3 and 4, which explains the finding
in the field investigation whereby the flood marks were much higher but the elevation of
sediments was much lower in stream A. In stages 1 and 2, the water level in streams A and
B was higher due to the larger discharge and higher bed elevation, while in stages 3 and
4, the water level in streams A and B was lower due to the smaller discharge and lower
bed elevation, due to erosion. After the flood, only the final bed elevation and flood marks
could be measured.
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Figure 11. Distribution of unit width flux (q) at the four stages of the flood ((a) stage 1, (b) stage 2,
(c) stage 3, (d) stage 4).
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Figure 12. Distribution of siltation thickness at the four stages of the flood ((a) stage 1, (b) stage 2,
(c) stage 3, (d) stage 4).

Figure 13 shows the distribution of the Froude number (Fr) at the four stages of the
flood. The Froude number is defined as the velocity magnitude divided by water depth
(sqrt(u ˆ 2 + u ˆ 2)/h). If Fr > 1, the flow is subcritical, if Fr > 1, the flow is supercritical, and
if Fr = 1, the flow is critical. For streams A, B, and C, the Froude number of most regions
was larger than 3 in the four flood stages, while for stream E, the flow was subcritical in
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stages 1 and 2, and supercritical in stages 3 and 4. There is little siltation at places with
a larger Froude number. On the contrary, for stream E, the regions with a larger Froude
number were nearly coincident with those of higher sediment thickness (Figure 12). The
highly raised bed decreased the water depth and increased the Froude number.

 

 

 

 

Figure 13. Distribution of the Froude number at the four stages of the flood ((a) stage 1, (b) stage 2,
(c) stage 3, (d) stage 4).

172



Water 2022, 14, 1646

4.3. Flash Flood in Streams with Bifurcation (Case Qs-0.1-Bifurcation)

As the gates of the milldam were open in this case (Qs-0.1-bifurcation), all of the flow
coming from streams A, B, and C travelled to the reservoir through both stream D and
stream E. Figure 14 presents the peak discharge along the streams. The peak discharge
increased rapidly at CS11 and CS18 due to the combination of flows, decreased sharply
after CS11, and showed little change at other parts of the stream.

Figure 14. Peak discharge along the streams (Qs-0.1-bifurcation, flood (a) stage 1, stage 2. (b) stage 3,
stage 4).

Figure 15 shows the peak level at each cross-section. The water level varied in a similar
way to that in Figure 10. The maximum water level of streams D and E occurred in flood
stage 3 (the second largest discharge stage), while the maximum water level of streams A,
B, and C occurred in flood stage 2 (the largest discharge stage).
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Figure 15. Peak water level (a) and relative peak water level (b) (Qs-0.1-bifurcation).

Figure 16 shows the distribution of unit width flux (q) at the four stages of the flood.
The main flow came from streams A and B, and travelled to the reservoir through stream
E in stages 1 and 2, while more and more flow travelled to the reservoir via stream D in
stages 3 and 4. Figure 17 presents the flow rates and flow rate ratios of streams D and
E. In stages 1 and 2 (before 30 h), the flow rate ratio of stream D was about 0.1, while in
stages 3 and 4, the flow rate ratio of stream D increased to around 0.3. Figure 18 presents
the distribution of siltation thickness at the four stages of the flood as the milldam was open.
Sediments deposited mainly at the confluence region of streams A, B, and C in stages 1 and
2. The siltation region shifted to streams D and E in stages 3 and 4, and siltation in stream
E increased much quicker than that in stream D. The uplifted bed of stream E pushed
more water to stream D. For the distribution of Froude numbers in Figure 19, supercritical
regions were still coincident with places of thick sediment deposition in streams D and E,
and with little sediment deposits at places with a higher Froude number in streams A, B,
and C.
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Figure 16. Distribution of unit width flux (q) at the four stages of the flood ((a) stage 1, (b) stage 2,
(c) stage 3, (d) stage 4).
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Figure 17. Discharge (a) and discharge ratios (b) between streams D and E.

Figure 18. Cont.
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Figure 18. Distribution of siltation thickness at the four stages of the flood ((a)stage 1, (b) stage 2,
(c) stage 3, (d) stage 4).

 

 

Figure 19. Cont.
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Figure 19. Distribution of the Froude number at the four stages of the flood ((a)stage 1, (b) stage 2,
(c) stage 3, (d) stage 4).

Figure 20 shows the flooded area of cases Qs-0.1 and Qs-0.1-bifurcation. Among all
the four stages of the flood, the flooded area of case Qs-0.1-bifurcation was larger than
that of case Qs-0.1. The flooded area ratio between case Qs-0.1-bifurcation and case Qs-0.1
is shown in Figure 20b, and the ratio had a maximum of 1.1. From the point of view of
reducing the flooded area, it is better to keep the milldam closed during the flood.

Figure 20. Flooded area of cases Qs-0.1 (a) and Qs-0.1-bifurcation (b).
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5. Discussion

5.1. Boundary Conditions for the Numerical Inversion of Flash Flood

In this study, we adopted the two-dimensional shallow-water models coupled with
sediment transport models to analyze the flash flood that occurred in Sanjiang Town in 2019.
On most occasions, flash floods occur in a region with limited monitoring facilities. It is
difficult to accurately set the boundaries for flash flood simulations. Usually, the elevation
of the bed form, the grade curve of sediment, and flood marks can be measured after the
flood disaster. However, the time-discharge curve, the inlet sediment concentration, and the
outlet level are rather difficult to estimate. Luckily, we obtained the monitored discharge
curves from the hydrometric station near Sanjiang Town, and deduced the discharge for
streams A, B, and C by their upstream catchment areas. For the inlet boundary, we made
assumptions with a series of sediment concentrations, and used the sediment concentration
that best fit the field investigation data. Theoretically, the method is more accurate than
those using a constant inlet sediment concentration, although it is still not certain that
the sediment concentration is accurate due to the complexity of sediment transport. The
method of evaluating the boundaries in this paper is helpful for the numerical analysis of
other flash flood disasters, and hydrological models coupled with hydrodynamic models
may be taken into account if the discharge curve cannot be directly obtained [2].

Furthermore, the quantitative simulation results are still helpful for taking measures
against the flood. For example, keeping the milldam closed can minimize the flooding area.

5.2. Impact of Sediment on Flash Flood in Stream Confluence and Bifurcation

Flash flood wave enlargement is common in flash flood propagation, and it is usually
caused by the sediment intrusion and bed form obstruction [18]. For sediment intrusion,
the enlargement comes from the bulk effect, and the volume and density of fluid are both
enlarged. For the bed form obstruction, the enlargement is rooted in the sharp change of
the water level and velocity of the bed form. For example, the landslide dams, the change
in the bed slope, etc., can increase or decrease the peak level and discharge.

The confluence and bifurcation are prototypes of streams. The flash flood enlargement
in confluence streams is impacted not only by the bed form, such as the junction angle,
elevation differences, etc., but also by the flow rate ratio of the streams [19]. In this study,
as the flow rate ratio among streams A, B, and C was constant, the flash flood enlargement
in confluence streams was mainly induced by the merging of inflows. Meanwhile, the flash
flood enlargement in bifurcation streams is largely affected by the sediment deposition.
The flow rate ratio between the two branches was changed by the uneven sedimentation
of streams D and E. The adjustment in the flow rate ratio is similar to that in plain rivers,
except that the variation in mountainous streams is much quicker [8].

The distinctive part of this study is that the study region lies in the transition region
from a supercritical slope to a subcritical slope. The hydraulic slopes of streams D and E
were flattened by the Sangjiang reservoir. Huge sediments deposited in streams D and E as
the velocity was slowed down. From the point of view of reducing the flooded area, the
position of Sangjiang reservoir was not well-planned considering the sediment transport
mode, and it should be moved downstream, far away from Sanjiang Town.

6. Conclusions

(1) In this study, the flash flood that occurred on 20 August 2019 in Sanjiang Town was
analyzed by a depth-averaged two-dimensional model. The simulation showed the flash
flood process in detail, and introduced a method of evaluating the boundary conditions for
the numerical inversion of flash floods.

(2) Mountainous streams with many people living nearby are usually reformed by
manmade facilities, which will affect the flash flood propagation properties. In this study,
the milldam in stream D could largely reduce the flooded area. The manmade facilities
should be taken into account in the study of flash floods, and be properly utilized during the
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flood events. Furthermore, planning of reservoirs should consider the sediment transport
properties, as the hydraulic slope will be flattened by the reservoir.

(3) For streams in the transition region from supercritical slope to subcritical slope,
the flash flood enlargement in confluence streams is mainly induced by the combination
of inflows, and the flash flood enlargement in streams with bifurcation is largely affected
by the sediment deposition. Flow in the supercritical slope runs at a very fast velocity,
and seldom deposits sediment in the steep channel. In the meantime, the sediment is
transported to the streams with a flat hydraulic slope and deposited there. The transition
region has a much larger probability of being submerged during the flood.
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Glossary of Terms

t time
h water depth
Zb bed elevation
C0 dimensionless Chézy coefficient
n Manning’s roughness coefficient
u, v velocity components in the x and y directions
g gravitational acceleration
vt turbulent viscosity coefficient
ρw clear water density
ρS sediment density
ρm density of water-sediment mixture
Δρ ρs − ρw
ρ0 density of saturated bed material
ρ′ density of dry bed material
qb amount of bed load in a unit volume of water
qb∗ value of bed load in a unit volume
qb0 transport capacity of bed load in a unit volume of water
αb non-equilibrium adaptation coefficient of bed load
ωb setting velocity of bed load
Sv volumetric sediment concentration
ST total concentration of graded sediments (kg/m3)
Sbx, Sby bed slope terms in the x and y directions
S f x, S f y friction slope terms in the x and y directions
Kb empirical coefficient
Uc incipient velocity of bed load
S source section
U vector of the conserved variables
E, G convective flux vectors of the flow in the x and y directions
nx, ny components of unit normal vector in the x and y directions
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Abstract: Precipitation has been recognized as the most critical meteorological parameter in hy-
drological studies. Recent developments in space technology provide cost-effective alternative
ground-based observations to simulate the hydrological process. Here, this paper aims to evaluate
the performance of satellite-based datasets in the hydrological modeling of a sensitive area in terms of
water quality and safety watershed. Three precipitation products, i.e., rain gauge observations (RO),
the China Meteorological Assimilation Driving Datasets for the SWAT model (CMADS), and Tropical
Rainfall Measuring Mission Multi-satellite (TRMM) products, were used to develop the Soil and
Water Assessment Tool (SWAT) model to simulate the streamflow in the Danjiang River Basin (DRB).
The results show that: (1) these three precipitation products have a similar performance with regard
to monthly time scale compared with the daily scale; (2) CMADS and TRMM performed better than
RO in the runoff simulations. CMADS is a more accurate dataset when combined with satellite-based
and ground-based data; (3) the results indicate that the CMADS dataset provides reliable results on
both monthly and daily scales, and CMADS is a possible alternative climate product for developing a
SWAT model for the DRB. This study is expected to serve as a reference for choosing the precipitation
products for watersheds similar to DRB where the rain gauge data are limited.

Keywords: SWAT; CMADS; TRMM; the Danjiang river basin

1. Introduction

Precipitation has been recognized as the most critical meteorological parameter in
relation to developing hydrological models, because its spatiotemporal variability has a
significant impact on hydrological behavior and water distribution [1–3]. Previous research
studies have illustrated that having less precipitation information uncertainty has a sizable
effect on stabilizing model parameterization and calibration [4–6]. However, there are
severe limitations to describing rainfall inputs’ true spatiotemporal variability of a river
basin accurately, such as the rainfall pattern influenced by the complex topography and
impacted by a hierarchy of regionally dominated atmospheric cycles [7,8].

Precipitation observed from a rain gauge, in general, is considered to be actual rain-
fall [9,10]. In most cases, point rainfall measurements are spatially interpolated to illustrate
the rainfall field at a basin scale, and hence they are used as inputs in spatial-distributed
hydrological models [11,12]. Field rainfall obtained from such interpolation, however,
can represent the true distribution of precipitation well only if the rain gauges are de-
ployed with reasonable density and uniform distribution [13]. Unfortunately, in most
areas, especially in remote and developing areas, rain gauges are distributed irregularly
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and sparsely [14–17]. Consequently, the true rainfall field is poorly represented through
interpolation, challenging the application of hydrological models. The accidental missing
of the ground observations also exacerbate this challenge [18,19].

Recently, the feasibility of satellite-based data as alternatives for describing the tempo-
ral and spatial variability of the true rainfall field has been frequently tested. For example,
Hur et al. [20] compared two high-resolution satellite rainfall datasets (TRMM 3B42 v7.0
and GSMaP v5.222) with rain gauge observations in Singapore. It was found that TRMM
3B42 v7.0 and GSMaP v5.222 both tended to overestimate the light rain and frequency
but underestimate high-intensity precipitation when extreme precipitation was analyzed.
Jiang et al. [21] researched a middle-latitude basin in South China, pointing out that rainfall
was overall largely underestimated when using TMPA 3B42RT, Precipitation Estimation
from Remote Sensing Information using Artificial Neural Network (PERSIAN), and the
NOAA/Climate Precipitation Center Morphing Technique (CMORPH). Duncan et al. [22]
assessed the accuracy of satellite-derived precipitation estimation (TRMM) over Nepal and
found that though the precipitation of TRMM was significantly correlated with ground-
based observations in all seasons, satellite precipitation estimates consistently overesti-
mated the amount of precipitation and inaccurately detected extreme precipitation events.

The distributed hydrological model is beneficial for understanding the hydrological
process [23–25]. The most habitually utilized distributed hydrological models have been
appeared to effectively consolidate information from rain gauges, whereas satellite-based
precipitation has been persistently moved forward and integrated into distinctive modules
that assess its execution in simulating watershed streamflow [26,27]. The Soil and Water
Assessment Tool (SWAT) is the most widely used distributed hydrological model among
all the various hydrological models [28–31]. Huang et al.’s [32] study in the German
state of Baden-Württemberg used three precipitation datasets with different time scales
(daily, sub-daily, and diurnal) as inputs to drive a SWAT model to simulate the runoff,
and found that there is a positive correlation between model performance and higher
precipitation resolution. Yeganantham et al. [33] found that Climate Hazards Group
InfraRed Rainfall with Station (CHIRPS) performed better than Climate Forecast System
Reanalysis (CFSR) in simulating streamflow when using the SWAT model in ten watersheds
located in the USA, Brazil, Spain, Ethiopia, and India. Hamoud et al.’s research [34] showed
that the applicability of CHIRPS and TRMM 3B42 in runoff simulations were better than
that of CFSR, Artificial Neural Networks–Climate Data Record (PERSIANN-CDR), and
European Atmospheric Reanalysis (ERA-5) in the Highland Region of Yemen. Moreover,
the performances of the satellite-based data are various in different areas. For example,
Mararakanye et al.’s research in the lower Vaal River Catchment area (South Africa) [35]
found that the CFSR performed well in simulating runoff by using a hydrological model,
while according to Dao et al.’s study in the Cau River Basin (North Vietnam) [36], the
performance of CFSR in runoff simulation was unsatisfactory. Gao et al. [37] proved that
the performance of PERSIANN-CDR as an input to drive the SWAT model to simulate
runoff was not suitable for the Xiang River Basin (China); however, its performance when
simulating runoff was good in the Lancang River Basin (China). Like the studies above, the
results simulated using the data-based SWAT model are heterogeneous and the performance
of satellite-based datasets to simulate runoff should be evaluated for the specific basin.

Originating from the Q-DM, the Danjiang River Basin (DRB) is the main water source
of the central route projects of the South-to-North Water Diversion Project [38]. This project
is one of the most important hydraulic engineering projects in China and aims to improve
the water shortage problem in northern China and improve the ecological environment
along the related region. The quantity and quality of the water delivered are influenced
by the erosion of the DRB [39,40]. Therefore, the DRB is considered to be a sensitive area
in terms of water quality and safety with regard to the watershed. However, the uneven
distribution of the meteorological stations in Q-DM makes it difficult to understand the real
hydrological process. A previous study [41] used CFSR-driven SWAT models to simulate
the runoff in the Bahe River Basin (Q-DM area) and found that the runoff simulated by
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uncorrected CFSR data were only satisfactory in this basin, while corrected data performed
better. This indicates that it is necessary to verify the applicability of meteorological data in
the DRB (Q-DM area).

Here, this study explores the results of the CMADS, TRMM, and rain gauge data
when simulating rainfall estimation and surface runoff at monthly and daily scales in
the DRB. The study aims to verify the applicability of the CMADS data and TRMM
data in the DRB, and it can, therefore, serve as a reference for choosing the precipitation
datasets in watersheds similar to the DRB where the ground-based rain gauge data are
unavailable. With the objectives above, this study involves (1) a comparison of rainfall
estimations from CMADS, TRMM 3B42 data, and rain gauge observations (Gauge) at
monthly, daily, and spatial scales, (2) setting up a SWAT model with CMADS, TRMM 3B42
data, and rain gauge observations to simulate monthly and daily runoff, (3) calibrating
and validating the simulated streamflow at three hydrological stations using the SWAT
Calibration Uncertainties Program (SWAT-CUP) which uses the Sequential Uncertainty
Fitting ver.2 (SUFI-2) algorithm, and (4) evaluating the multi-statistical performance of the
simulation against the observed streamflow data. The main goal of this study is to evaluate
the use of satellite-based and reanalysis precipitation products as model operation driving
data, and assess whether they can drive the model in a watershed similar to the DRB where
the gauge observations are limited.

2. Materials and Methods

2.1. Study Area

The largest tributary of the Hanjiang River, the Danjiang River, is a mountain river
that covers a drainage area of 8887 km2. The total length of its main stream is 280 km.
Originating from the South Qinling Mountains and flowing into the Hanjiang River [42],
the Danjiang River flows through the Shaanxi, Henan, and Hubei Provinces. It stretches
between 33◦04′10′′ N and 34◦11′09′′ N and across 109◦30′08′′ E and 111◦15′51′′ E. The
Danjiang River Basin (DRB) features a high-rising west and a low-lying east, with a relative
elevation difference of 1915 m. The continental monsoon climate contributes to the distinct
seasons of the DRB. According to the records from 1950 to 2015, the long-term annual
precipitation of the DRB is 732.29 mm and the spatial distribution difference shows an
increasing trend from the west to the east. Rainfall is concentrated in the period from May
to October, accounting for about 80% of the annual precipitation. Moreover, the annual
average temperature ranges from 7.8 ◦C to 13.9 ◦C and the annual runoff is 14.36 × 108 m3.

Forestland occupies the largest area in the DRB, followed by the cropland. The
yellow-brown soil and sandy loam are the dominant soil types in the DRB [38]. There
are 3 hydrological stations (Majie Station upstream, Danfeng Station midstream, and
Jingziguan Station downstream) and 58 ground-based rain gauges in the study area. The
digital elevation model (DEM), stream network, weather stations, and hydrological stations
are shown in Figure 1.

2.2. Hydrological Model and Data Sources

In this study, the SWAT model was used for hydrological modeling, which was
developed by USDA-ARS. Because the SWAT model is designed for long-term simulations
on a daily scale, it is suitable for evaluating the performance of three precipitation products.
To ensure the accuracy of relative changes induced by different precipitation inputs, all
input parameters, such as temperature, wind, solar radiation, and humidity, were kept
the same, except precipitation. Additionally, the temperature, wind, solar radiation, and
humidity inputs were simulated by the internal weather generator of SWAT.

Moreover, the target watershed is required by the SWAT model to be divided into
sub-watersheds. Each sub-watershed may include one or more Hydrologic Response Units
(HRUs). On the basis of the 30 m DEM and by choosing the Jingziguan Station as the outlet,
the controlled watershed was delineated. The threshold to discretize the sub-watershed
was based on the 2% area. Other input parameters, such as soil type and land use, were
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downloaded from websites (Table 1). The data of measured runoff were obtained from the
Department of Hydrology of the Ministry of Water Resources of China. Additionally, the
SPWA (Soil–Plant–Air–Water) software was used to analyze the soil–water characteristics
of each soil type.

 

Figure 1. Location of the Danjiang River Basin and the distribution of hydrological stations, CMADS
stations, TRMM points, and rain gauges.

Table 1. Summary of the input parameters.

Parameters Dataset
Developed

Organization
Resolution

Data Source
(Accessed on 1 August 2021)

DEM
Shuttle Radar

Topography Mission
(SRTM)

National Aeronautics
and Space

Administration
(NASA)

30 m https://earthexplorer.usgs.gov/

Land cover
30 m-resolution

Global Land Cover
(GLC30)

The National
Geomatics Center of

China (NGCC)
30 m http://www.globallandcover.com/

Soil type World Soil Database
(HWSD)

The Food and
Agriculture

Organization of the
United Nations

(FAO)

1000 m
http://www.fao.org/soils-portal/soil-

survey/soil-maps-and-databases/
harmonized-world-soil-database-v12/en/

Daily rainfall data were collected from weather gauge stations and the two satellite-
based and reanalysis precipitation products used were CMADS and TRMM 3B42 version 7.

Daily precipitation data obtained from the fifty-eight rain gauges in the DRB were
available from the website of the Department of Hydrology of the Ministry of Water
Resources of China. The rain gauge data covered from 1964 to 2015.
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The dataset CMADS introduces the technology of The Space and Time Mesoscale
Analysis System (STMAS) assimilation algorithm. Multiple technologies and scientific
methods were used to develop CMADS [43,44]. The dataset, containing information relating
to precipitation, temperature, and other variables, can be used to run hydrological models
such as SWAT. The precipitation data of CMADS are merged with the hourly precipitation
data collected by the China National Meteorological Information Center using the CPC
MORPHing technique (CMORPH). CMADS stations provide information throughout the
day from 2008 to 2016 in the areas between 0–65◦ N and 60–160◦ E. There are a total of
19 CMADS stations in the study area.

In late 1997, the TRMM satellite was launched by the National Aeronautics and
Space Administration (NASA) and the Japanese Aerospace Exploration Agency (JAXA)
to monitor precipitation [45]. TRMM 3B42 is one of the RMM Multi-satellite Precipitation
Analysis (TMPA) products [46]. It provides daily precipitation data from 50◦ S to 50◦ N at a
resolution of 0.25◦ spatially and temporally from 1998 to 2015 [47,48]. There is a total of
19 TRMM 3B42 pixels in the study area. Further information about TRMM and CMADS
can be found in Table 2.

Table 2. Summary of remote-sensing/reanalysis precipitation datasets.

Full Name Abbreviation Coverage
Spatiotemporal

Resolution Used
Data Source

(Accessed on 1 August 2021)

The China
Meteorological

Assimilation Driving
Datasets for the SWAT

model Version 1.1

CMADS V1.1 0–65◦ N 60–160◦ E Daily, 0.25◦ http://www.cmads.org/

Tropical Rainfall
Measuring Mission

Multi-satellite
Precipitation Analysis

3B42 Version 7

TRMM 3B42 V7 50◦ S–50◦ N Daily, 0.25◦ https://disc.gsfc.nasa.gov/

The SWAT model uses data from the station nearest to the centroid of each sub-basin
to categorize precipitation data into sub-basins [47].

2.3. Model Calibration and Evaluation

When all parameters were entered into the SWAT model, the SWAT model ran
with three precipitation products (rain gauge data, CMADS dataset, and TRMM dataset)
separately at the monthly and daily scale. The watershed was divided into a total of
237 sub-catchments by the SWAT model, and these sub-watersheds were further divided
into 980 HRUs on the basis of the land use, soil type, and slope classes. The simulated
period was selected to be the period from 2008 to 2015 to ensure its consistency, because
the available gauge data, CMADS data, and TRMM data were, respectively, collected from
1964 to 2015, 2008 to 2018, and 1998 to 2015. Here, 2008 was taken as the warm-up period.

The SUFI-2 algorithm in SWAT-CUP was used in the calibration procedure. On the
basis of Duan et al.’s research [48] and the official guide, 17 parameters were selected.
Considering the influence of elevation on precipitation, the precipitation lapse rate (PLAPS)
was introduced [49]. Moreover, the simulated results of the Majie Station, Danfeng Station,
and Jingziguan Station were calibrated together. The model was calibrated by first using the
initial value ranges of each parameter and then using the suggested ranges of the previous
simulation. The simulations were calibrated five times with 500 iterations each.

In this study, the coefficient of determination, Nash–Sutcliffe efficiency (NSE), and
percent bias (PBIAS) were used to evaluate the accuracy of runoff modeling results. The
formulas are as follows [35]:
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R2 =

⎛
⎜⎜⎜⎜⎜⎝

n
∑

i=1
(Qi − Qi)(Si − Si)√

n
∑

i=1
(Qi − Qi)

2

√
n
∑

i=1
(Si − Si)

2
)

⎞
⎟⎟⎟⎟⎟⎠ (1)

NSE =

n
∑

i=1
(Si − Qi)

2

n
∑

i=1
(Qi − Qi)

2
(2)

PBIAS =

n
∑

i=1
(Si − Qi)

n
∑

i=1
Qi

× 100% (3)

where Qi is the observed value, Si is the simulated value, and Qi and Si are the mean values
of the observed and simulated values. The statistical threshold values that were used to
evaluate the performance of the model are shown in Table 3.

Table 3. The statistical threshold values used for interpreting model performance.

Performance Ratings R2 NSE PBIAS

Very Good 0.7~1 0.75~1 <±10
Good 0.6~0.7 0.65~0.75 ±10~±15

Satisfactory 0.5~0.6 0.50~0.65 ±15~±25
Unsatisfactory ≤0.5 ≤0.5 ≥±25

3. Results

3.1. Evaluation of the Three Precipitation Products
3.1.1. Monthly Scale

The comparison of the SWAT model results using the three precipitation products
from 2009 to 2015 in the study area is shown in Figure 2. The dry (drought), wet (rainy),
and normal years were defined on the basis of the commonly used precipitation year
classification standard [50]. In this study, 2010, 2013, and 2015 were denoted as drought
years and 2009, 2011, and 2012 were denoted as rainy years. It is noted from Figure 2
that the annual rainfall mainly concentrates in the period from June to August (the flood
season), and the precipitation calculated by the rain gauge, CMADS, and TRMM from June
to August, respectively, account for 51.53%, 54.61%, and 54.60% of the annual precipitation.
Figure 2 also shows that, before 2013, the CMADS and TRMM both underestimated the
rainfall severely in the flood season of the rainy years compared with actual precipitation,
by 32.51% and 11.66%, respectively, and that the CMADS and TRMM overestimated the
rainfall by 18.12% and 40.48%, respectively, in the flood season of the drought years.
The rainfall estimated by CMADS and TRMM was similar to the estimation of Gauge
in non-flood seasons. The situation has improved since 2013. The precipitation trend of
CMADS and Gauge became similar after 2013 because the underestimation of CMADS’s
precipitation was narrowed. However, TRMM still underestimated the rainfall in the flood
season of rainy years and overestimated the rainfall in the flood season of normal years after
2013, though the precipitation deviation was reduced. In addition, the Pearson correlation
coefficient of Gauge and CMADS (Gauge-CMADS) and Gauge and TRMM (Gauge-TRMM)
were 0.74 and 0.75, respectively, indicating that the precipitation of CMADS and TRMM
were highly similar to the precipitation of the rain gauges. In other words, the rainfall in
this area can be effectively represented by CMADS and TRMM.
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Figure 2. Three different precipitation records at monthly scale in the DRB (the CC value of Gauge-
CMADS and Gauge–TRMM were 0.74 and 0.75, respectively; 2009, 2011, and 2012 were denoted as
rainy years, 2014 was denoted as the normal year, and 2010, 2013, and 2015 were denoted as drought
years. Additionally, the data in this figure were given as year and month.

It can be seen from the box plot of Figure 3 that the precipitation featured three peaks,
with the peak values appearing in May, July, and September. The monthly precipitation of
CMADS had the largest average and median line, while the average and median line of
TRMM was the smallest. Moreover, CMADS reported the largest maximum rainfall except
in October and December, and TRMM had the smallest minimum precipitation throughout
the year. In addition, the PBIAS values of Gauge-CMADS and Gauge-TRMM were −18.86
and 3.20, respectively, indicating that the CMADS precipitation was underestimated com-
pared to the Gauge precipitation, with the TRMM estimation the exact opposite. However,
the total precipitation was not much different. In summary, compared with the Gauge
records, CMADS tends to overestimate the rainfall, while TRMM tends to underestimate
the rainfall.

3.1.2. Daily Scale

The intensity and frequency of precipitation are the critical parameters used to describe
the characteristic of daily rainfall [51]. It is noted from Figure 4 that the angle between
the CMADS model’s 95%-line estimates and the horizontal axis was <45◦ and that the
angle between the TRMM model’s 95%-line estimates and the horizontal axis was <45◦ as
well. This suggested that although the precipitation trends of CMADS and TRMM were
similar to that of the Gauge records at a daily scale, the CMADS and the TRMM rainfall
data tended to be underestimated when extreme rainstorms occurred. The CMADS and
the TRMM, respectively, underestimated the storm rainfall (>50 mm/day) by 13.11% and
10.65%, showing that the CMADS and TRMM were less capable of accurately simulating
the storm rainfall than Gauge.
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Figure 3. The box diagrams of three precipitation records at a monthly scale in the DRB.

 

Figure 4. Scatterplot of the CMADS and TRMM records compared with Gauge records at a daily
scale: (a) comparison of CMADS and Gauge and (b) comparisons of TRMM and Gauge. Note that the
straight lines that pass through the origin are dividing lines with an angle of 45◦ to the x-axis, which
means that the precipitation products overestimated the rainfall if the point is higher than this line.

Moreover, the Pearson correlation coefficients of Gauge-CMADS and Gauge-TRMM
were 0.39 and 0.32, respectively, and the Pearson correlation coefficient of CMADS-TRMM
was 0.80, indicating that there were big differences between Gauge and CMADS data and
between Gauge and TRMM data, while the CMADS and TRMM data were similar.

The cumulative daily precipitation intensity frequencies of the three precipitation
products are shown in Figure 5. Taking 50 mm/day as the panel line, Figure 5a was
divided into Figure 5b,c to describe the frequency trend of the three precipitation products
clearly. It can be noticed that the three products have the smallest difference in the events
of less-than-heavy rain (30 mm/d), but the largest difference in the events of torrential rain
(>50 mm/d). Additionally, the number of torrential rain events identified by TRMM was
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lower than that in Gauge records, and the frequency of torrential rain identified by CMADS
was the lowest among the three precipitation products.

Figure 5. Cumulative frequencies of daily precipitation intensity for Gauge (red points), CMADS
(blue points), and TRMM (green points) in the DRB: (a) distribution of all precipitation values,
(b) distribution of precipitation values that are <50 mm, and (c) distribution of precipitation values
that are ≥50 mm.

3.1.3. Spatial Scale

The spatial distributions suggested by the three precipitation products were almost
completely different, as shown in Figure 6. CMADS suggested that the rainfall increased
from the center to the surroundings, with the highest rainfall in the central north. The clear
trend of precipitation suggested by TRMM was that rainfall increased from upstream to
downstream, with the highest rainfall in the east. However, the rainfall of Gauge in each
sub-basin varied greatly, and there was no obvious spatial distribution pattern mainly due
to the distribution of the rain gauge stations. Though there are a large number of rain gauge
stations (58 stations) in the study area, most of them are located in the north and the east,
leaving a vast area in the central west and southeast of the basin with no rainfall stations.
Meanwhile, the CMADS (15 stations) and TRMM (15 stations) grid data were collected
from uniformly distributed stations, causing the different spatial distribution of rainfall.
Moreover, regardless of the daily or the monthly scale, the similarity of rainfall between
CMADS and Gauge was higher than that of TRMM.
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Figure 6. Spatial variation of precipitation at a yearly scale for all sub-basins calculated with precipi-
tation inputs from (a) CMADS, (b) TRMM, and (c) Gauge.

Though the rainfall gauges are able to reflect more information than CMADS and
TRMM when describing the variation of precipitation, the areal rainfall interpolated from
the gauges may be distorted because the gauges’ observations are point data. However,
the CMADS and TRMM data are evenly distributed grid data with a resolution of 0.25◦
and reflect the areal rainfall. Thus, despite the better performance of the rain gauge data in
describing watershed areal rainfall among three products, which products perform the best
in driving SWAT model to simulate runoff is uncertain.

3.2. The Performance of Different Precipitation Products in Simulating Runoff
3.2.1. Pre-Calibration Model Results

Before the model was calibrated, we conducted a statistical analysis of the simulation
results of runoff during the simulation period (2008–2015) of the model. As is shown
in Table 4, the runoff simulation results of the three precipitation products downstream,
midstream, and upstream showed different trends. The best simulation effect was upstream
(Majie Station), while the worst performance was midstream (Danfeng Station). Moreover,
the best simulation performance was achieved by CMADS, whose NSE was 0.74 upstream
and 0.63 downstream (Jingziguan Station), while the worst simulation effect occurred in
Gauge with its NSE almost all below zero (it was only above zero in the Majie Station).
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Furthermore, the PBIAS values of the Gauge model were all below zero, showing that
the simulation value of the Gauge model was smaller than the measured runoff. The
PBIAS values of the CMADS model and TRMM model were both above zero upstream
and below zero midstream and downstream, indicating that the simulation values of these
two products were larger than the measured runoff in the upper stream and smaller than
the actual runoff in the middle and downstream.

Table 4. The pre-calibration performance error amounts of the SWAT model simulated with CMADS,
TRMM, and Gauge data on a monthly scale.

Station
R2 NSE PBIAS

CMADS Gauge TRMM CMADS Gauge TRMM CMADS Gauge TRMM

Majie Station 0.79 0.5 0.68 0.74 0.43 0.66 23.4 −22.38 10.44
Danfeng Station 0.04 0.05 0.05 −0.7 −1.52 −7.24 −7.67 −56.43 −32.1

Jingziguan Station 0.7 0.06 0.63 0.63 −0.82 0.51 −63.35 −164.97 −164.7

The pre-calibration results of the monthly scale indicated that the CMADS and TRMM
data were reliable in estimating runoffs; the R2 values of CMADS-SWAT and TRMM-SWAT
were 0.79 and 0.68, respectively. Though the performance of Gauge-SWAT was not as
good as CMADS-SWAT, it was still a valuable data source for use in the model, for its R2

was 0.50.
It is noted from Table 5 that the simulation results of the three precipitation products

on a daily scale showed the same trend as that on a monthly scale in the upper, middle,
and lower reaches of the basin. The simulation performance in the upstream was the best
and the performance downstream was the worst. Moreover, the NSE values of the CMADS
model and the TRMM model were all below 0.6 in the entire basin, meaning that their
performances were unsatisfactory. Additionally, the PBIAS values of the CMADS model
were all above zero, the PBIAS values of the Gauge model were all below zero, and the
PBIAS values of the TRMM model were above zero in the upstream and below zero in the
midstream and downstream, indicating that the simulation values of the CMADS model
and Gauge model were, respectively, higher and lower than the measured runoff in the
whole basin and that the simulation value of TRMM model was higher in the upper reach
but lower in the middle and lower reaches.

Table 5. The pre-calibration performance error amounts of the SWAT model simulated with CMADS,
TRMM, and Gauge data on the daily scale.

Station
R2 NSE PBIAS

CMADS Gauge TRMM CMADS Gauge TRMM CMADS Gauge TRMM

Majie Station 0.39 0.18 0.22 0.38 0.11 0.18 22.98 −23.02 9.83
Danfeng Station 0.32 0.05 0.2 0.16 −1.24 −0.23 1.65 −47.57 −24.83

Jingziguan Station 0.26 0.02 0.16 0.25 −0.57 0.03 60.82 −160.86 −143

All these three datasets seriously overestimate the runoff in the middle stream and
downstream, according to Figure 7B,C. Moreover, the average observed streamflow was
smaller than the average simulated runoff throughout the year in the upstream, except in
September. The mean standard deviation of the three precipitation products computed at
the monthly time scale and averaged over the 8 years considered are 0.28, 1.71, and 4.30 for
the Majie Station, Danfeng Station, and Jingziguan Station, respectively. Additionally, the
mean standard deviation of three products computed at the daily time scale are 0.21, 0.87,
and 1.62, respectively.
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Figure 7. Box plot of the monthly runoff from 2006 to 2015, observed data and simulated stream-
flow using CMADS, TRMM, and Gauge data at (A) Majie Station, (B) Danfeng Station, and
(C) Jingziguan Station.

3.2.2. Post-Calibration Model Results

Seventeen parameters related to the hydrological process were selected to calibrate
the SWAT model and the range of the parameters, as well as the result of the calibration,
which are shown in Table 6. Be aware that the streamflow of Majie Station, Danfeng Station,
and Jingziguan Station were calibrated together.

It is noted from Figure 8 that there is a positive correlation between the simulated
runoff and rainfall. Moreover, the runoff of the CMADS model had a positive correlation
with the measured runoff, but the smaller flood peaks were not simulated in the year when
extreme flood events occurred or flood events were relatively continuous. The runoff trend
of the TRMM model was similar to the measured runoff in the upper and lower reaches,
but several consecutive flood events were simulated as a larger one in the middle stream.
Though the runoff of the Gauge model was positively correlated with measured runoff in
the upper stream, large floods in certain months were simulated as several smaller flood
events in the midstream and downstream.

It is also noted form Table 7 that the R2 values of the CMADS-SWAT (SWAT model
derived from CMADS) and TRMM-SWAT were above 0.8 in the whole basin, except for
the R2 of the TRMM-SWAT in the middle reaches, which was 0.77. The NSE values of the
CMADS-SWAT and TRMM-SWAT were all close to 0.8. However, the R2 and NSE values
of Gauge-SWAT were all below 0.6 in the whole basin and its R2 and NSE values were only
greater than 0.5 in the upstream. This suggested that the performances of CMADS-SWAT
and TRMM-SWAT were better, while the performance of Gauge-SWAT was unsatisfactory.
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Moreover, the PBIAS values of CMADS-SWAT and TRMM-SWAT were both greater than
25% in the upper and lower reaches and the PBIAS values in the middle stream were
9.9% and 0.0%, respectively, indicating that the CMADS-SWAT and TRMM-SWAT severely
overestimated the runoff in the upper reach, severely underestimated the runoff in the
downstream, and slightly overestimated the runoff in the middle reach. The PBIAS values
of the Gauge-SWAT were both smaller than 15% in the middle and upper reaches and the
PBIAS in the downstream was −89.3, showing that the simulation values in the upper and
middle reaches were higher and the simulation value was severely low in the downstream.

Table 6. Hydrological parameters chosen to calibrate the model (r_ and v_ mean a relative change
and a replacement to the initial parameter values, respectively).

Paraments Description
Monthly Scale Daily Scale

CMADS Gauge TRMM CMADS Gauge TRMM

r__SOL_AWC().sol
Available water capacity of

the soil layer
(mm HzO/mm soil)

−0.06 −0.26 −0.06 0.52 −0.76 −0.22

r__CN2.mgt scS runoff curve number 0.14 −0.04 0.17 −0.21 −0.03 0.32
v__ALPHA_BF.gw Baseflow alpha factor (days) 0.6 0.98 0.51 1.01 1.04 0.62
v__GW_DELAY.gw Groundwater delay (days) −139.76 234.5 −198.89 −216.84 209.46 481.86

r__GWQMN.gw
Threshold depth of water in
the shallow aquifer required

for return
−0.07 0.46 −0.64 −0.11 2.01 0.21

v__CH_K2.rte Effective hydraulic
conductivity (mm/h) −367.12 175.49 −12.96 232.1 249.42 131.99

v__CH_N2.rte Manning’s n value for
main channel 0 0.04 0.13 0.03 0.15 0.13

v__REVAPMN.gw
Threshold depth of water in

the shallow aquifer for
“revamp” to occur

81.71 326.5 421.85 387.87 481.2 571.41

r__GW_REVAP.gw Groundwater “revap”
coefficient −0.39 −0.38 −0.23 0.44 −0.34 0.21

r__OV_N.hru Manning’s “n” value for
overland flow 0.32 0.05 0.39 0.21 0.06 −1.11

r__SLSUBBSN.hru Average slope length (m) 0.9 0.45 1.12 0.84 0.7 −0.52

r__HRU_SLP.hru Average slope
steepness (m/m) −0.1 −0.38 −0.18 0.02 0.08 −0.47

v__EPCO.hru Plant uptake
compensation factor 0.34 0.59 −0.47 0.07 0.26 0.43

v__ESCO.hru Soil evaporation
compensation factor 0.15 0.05 0.02 0.89 0.15 0.37

r__SOL_BD().sol Moist bulk density (g/cm3) 2.19 1.5 1.22 1.31 1.79 1.64

r__SOL_K().sol Saturated hydraulic
conductivity (mm/h) −0.55 −0.35 −0.56 −0.68 −0.75 −0.98

v__PLAPS.sub Precipitation lapse rate (mm) −716.86 690 −368.75 −867.07 615.05 −660.12

In summary, the performances of the CMADS model and TRMM model in the DRB
were satisfactory across the sub-basins, but the performance of the Gauge-SWAT was only
satisfactory in the upstream, deviating significantly from the observed data in the middle
stream and downstream.

As was shown in Figure 9, though the CMADS and TRMM inputs replicated the runoff
successfully at a daily scale, some small flood peaks were not simulated and the discharge
of extreme floods during the flood season was significantly underestimated. The runoff of
the Gauge model was notably different from the measured records and most of the floods
were not simulated by the Gauge model.
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Table 7. The post-calibration performance error amounts of the SWAT model simulated with CMADS,
TRMM, and Gauge data on a monthly scale.

Station
R2 NSE PBIAS

CMADS Gauge TRMM CMADS Gauge TRMM CMADS Gauge TRMM

Majie Station 0.86 0.54 0.85 0.77 0.53 0.74 40.09 11.3 37
Danfeng Station 0.82 0.21 0.77 0.71 0.1 0.66 9.9 13.1 0

Jingziguan Station 0.89 0.08 0.87 0.84 0.12 0.82 −32.1 −89.3 −67.9

Specifically, according to Table 8, the CMADS-SWAT was the most successful in esti-
mating runoffs because its R2 and NSE values in the upstream and middle stream were all
above 0.5, while its R2 and NSE values were 0.42 and 0.34 in the downstream. The R2 and
NSE values of the TRMM-SWAT in the upper and lower reaches were all below 0.5, with the
exception of that in the midstream, which was above 0.5, showing that the TRMM-SWAT
underperformed in the upstream and downstream. Different from the CMADS-SWAT
and the TRMM-SWAT, the performance of the Gauge-SWAT was unsatisfactory in the
whole basin, for its R2 and NSE values were all below 0.5. In addition, the PBIAS values
of the CMADS-SWAT and the Gauge-SWAT were above zero in the upstream, below zero
in the middle stream, and below 0.5 in the downstream, indicating that the discharge
values of the CMADS-SWAT and the Gauge-SWAT were overestimated in the upstream
and underestimated in the middle and lower reaches, especially in the downstream. Fur-
thermore, the PBIAS values of the TRMM-SWAT in the upper, middle, and lower reaches
were 42.8%, 20.4%, and −59.7%, respectively, showing that the discharge values derived
from TRMM-SWAT were too high in the upstream and too low in the downstream.

Table 8. The post-calibration performance error amounts of the SWAT model simulated with CMADS,
TRMM, and Gauge data on a daily monthly scale.

Station
R2 NSE PBIAS

CMADS Gauge TRMM CMADS Gauge TRMM CMADS Gauge TRMM

Majie Station 0.59 0.35 0.49 0.51 0.33 0.45 20.3 10.6 42.8
Danfeng Station 0.52 0.1 0.54 0.52 0.07 0.52 −4.5 −12.9 −20.4

Jingziguan Station 0.42 0.03 0.53 0.34 0.05 0.49 −65.5 −86.9 −59.7

The results after calibration indicated that CMADS-SWAT was superior to the other
two precipitation products in both monthly and daily runoff simulation with the highest
R2 and NSE and a similar hydrological process line to the observed runoff. However, it
was unexpected that the performance of the Gauge-SWAT was the worst, although the
simulated runoff and rainfall had the same trend as the other two products. Moreover, all
the three products tended to overestimate the runoff in the upper and middle reaches and
underestimate that in downstream at the monthly scale. When it comes to the daily scale,
all these three products overestimated the streamflow in upstream and underestimated the
runoff in the lower and middle streams.
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4. Discussion

Precipitation inputs play an important role in runoff simulation, and the errors can
influence the accuracy of the hydrographical outputs [52]. Generally, precipitation inputs
are evaluated on the basis of their predictable performances with hydrological parameters
at the watershed scale, which avoids the scale difference found when using ground-based
observations for validation [53]. This study evaluated the performance of RO and satellite-
based precipitation datasets (CMADS and TRMM) in driving the SWAT model to simulate
streamflow in the DRB on both monthly and daily scales. All modeling scenarios were
calibrated and validated against runoff data measured at Majie Station, Danfeng Station,
and Jingziguan Station. The SWAT-Cup’s SUFI-2 algorithm was used for calibration and
validation. Indices, including NSE, R2, and PBIAS, were selected to evaluate the efficiency
of simulation runoff outcomes.

We found that compared with rainfall gauge observations, TRMM tended to under-
estimate the precipitation on both monthly and daily scales, while CMADS tended to
overestimate the rainfall on the monthly scale but understate the rainfall on the daily scale.
These findings are similar with previous studies. For example, Jiang et al. [21] found that
TRMM underestimated precipitation on a daily scale in the Mishui Basin, Jiang et al. [47]
found an average bias of −20.5% for CMADS over Xixian Basin, and Guo et al. [38] cal-
culated an average bias of −28.7% for CMADS over Jinhua River Basin. The reason why
CMADS underestimated the precipitation was the underestimation of the background
field CMORPH data [54]. Additionally, the ability of TRMM and CMADS to identify the
torrential rain events was worse than that of Gauge. In summary, the performance of
CMADS in precipitation simulation was better than that of TRMM, maybe because the cor-
rect process of TRMM was simpler than that of CMADS [55]. The spatial distribution of the
precipitation varied from dataset to dataset, namely, the rainfall of CMADS increased from
the center to the surroundings and its rainfall in the central north was the highest. TRMM
increased from upstream to downstream and the highest rainfall occurred in the east, but
there is no obvious spatial distribution pattern with the rainfall of Gauge. This result can
be explained by the different distributions of the rain gauge. In addition, all meteorological
data were categorized into each sub-basin by the “nearest-distance” principle in the SWAT
model [49], which contributed to the difference in the precipitation data from CMADS,
TRMM, and Gauge as well. Moreover, the similarity between the rainfall of CMADS and
Gauge was higher than that of the TRMM on both the monthly and daily scales, which
is consistent with Wang’s [56] research in the Ganjiang River Basin, where the area and
elevation are similar to the DRB. Wang et al. [56] found that CMADS performed better than
TRMM in precipitation estimation because of the different development processes of these
two products. Only 500 stations were used to correct the TRMM data, while 2421 stations
were used to correct the CMADS data [57,58]. Song et al. [59] conducted research on the
Qujiang River Basin, (38,900 km2) finding that the spatial distribution of CMADS and
TRMM was different from that of Gauge, which is consistent with our study.

Pre-calibration results showed that CMADS and TRMM were reliable enough to
estimate runoffs on the monthly scale at Majie Station and Jingziguan Station, while they
performed unsatisfactorily in simulating streamflow at Danfeng Station. The performances
of Gauge in estimating runoff on the monthly scale in the middle stream and downstream
were both unreliable, and only its performances in runoff simulation at the Majie Station was
satisfactory. The performances of that on the daily scale, however, were all unsatisfactory.
Moreover, all three datasets seriously overestimated the runoff in the middle stream and
downstream on the monthly scale. Moreover, underestimation is probably better attributed
to poor representation of the spatial variability of precipitation patterns in the middle
and downstream, thereby causing the low ratio of streamflow to precipitation. According
to Vu et al.’s [60] research, the underestimation can be attributed to the spatiotemporal
uncertainty of the precipitation inputs. Previous studies indicated that the spatiotemporal
uncertainty of the catchment rainfall was one of the main sources of uncertainty in runoff
simulation using rainfall–runoff models [61–63]. Additionally, satellite-based precipitation
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estimations have their own uncertainties [13]. This means that the satellite-based rainfall
estimation affects the runoff simulation significantly [64]. Moreover, Rivera’s research [65]
found that previous conditions were more important before extreme floods, while previous
conditions had little effect on conditions after extreme floods. It explains the result that the
average observed streamflow was lower than the average simulated runoff and the average
measured runoff was higher than the average observed runoff throughout the year in the
upstream, except for September, because the underestimation in September in the Majie
Station is the continuous precipitation before an extreme flood occurred in September.

When it comes to the post-calibration results, all three products tended to overestimate
the runoff in the upper and middle reaches and underestimate the downstream at the
monthly scale, while all three products overestimate the streamflow upstream and underes-
timate the runoff in the lower and middle streams at the daily scale. The overestimation
at the monthly scale and the underestimation at the daily scale may be due to the overall
inaccurate estimation of precipitation with the CMADS and TRMM data. In most cases,
RO performed better than satellite precipitation in runoff simulation, even in sparsely
gauged areas, when SWAT was used for modeling both monthly and daily scales, such
as Vu et al.’s [60] research. Namely, they tested the accuracy of four satellite precipita-
tion products, including TRMM 3B42 V7, PERSIANN, PERSIANN-Climate Data Record
(PERSIANN-CDR), and CMADS, by using these four products to drive the SWAT model
and comparing the runoff simulation results with the runoff simulated by gauged rainfall
data in the Han River Basin in South Korea. Their results illustrated that the application
of TRMM and CMADS in runoff simulation was worse than that of the gauges. However,
our results vary from theirs. It is found in this paper that CMADS-SWAT was superior to
the other two precipitation products in both monthly and daily runoff simulations, but
Gauge-SWAT performed the worst in both monthly and daily streamflow simulations. This
finding is not uncommon; for example, Song et al.’s [59] research on the Qujiang River
Basin (38,900 km2) proved that the CMADS-SWAT performed best in the whole basin,
followed by TRMM-SWAT and Gauge-SWAT, which performed the worst. That was mainly
because of the non-uniform distribution of the gauges. According to Wang et al.’s [66]
research, when the number of the stations is similar, the more uniform distribution of
rainfall stations, the greater the NSE. In this study, the distribution of the Gauge was the
most nonuniform, causing the performance of Gauge-SWAT to be the least satisfactory
among the three products. Moreover, the gauge data only represent the observed rainfall at
a specific station, whereas the CMADS and TRMM data represent precipitation averages
over a large area [67]. For the variation of the topography that causes the precipitation
variations over a short distance, the heterogeneity of the landscape of the weather forecasts
by CMADS and TRMM is better. In addition, CMADS is a combination of the gauge and
satellite data; therefore, its accuracy is higher than that of Gauge and TRMM.

At present, few studies have compared the performance of CMADS and TRMM data
by using the SWAT model, because CMADS only covers East Asia and is a newly released
dataset. Additionally, most studies are focused on evaluating the performance of CMADS,
CHIPRS, and CPC data or only studying the applicability of CFSR data by using the SWAT
model [35,68]. Using different models or inputting different parameters will cause different
results [69]. Therefore, the satellite or satellite-based products (including CMADS and
TRMM) can be applied to the SWAT model or other models in the future to ensure that their
replications of runoff are accurate and their predictions of rainfall are credible. Nonetheless,
the datasets evaluated in this study can serve as viable alternatives in watersheds similar
to the DRB where the observed precipitation data are unavailable.

5. Conclusions

In this study, CMADS and TRMM were evaluated on the basis of the measured records
of the DRB using the SWAT model, and the main conclusions are as follows:

(1) On the monthly scale, the precipitation measurements of CMADS and TRMM are
similar to the rain gauge data. However, the rainfall data derived from TRMM and
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CMADS have a different pattern from the precipitation of Gauge at the daily scale.
Both TRMM and CMADS underestimate the precipitation, especially TRMM data.
Moreover, the ability of CMADS and TRMM to simulate extreme precipitation (e.g.,
torrential rain) is worse than that of Gauge. The CMADS and TRMM data are also
different from the Gauge data on the spatial scale. The rainfall data derived from
CMADS tend to increase from the middle to the surroundings and the rainfall data
derived from TRMM tend to decrease from upstream to downstream, while the
precipitation of Gauge has no clear pattern.

(2) The performance of CMADS-SWAT and TRMM-SWAT is consistent with the observed
data from upstream to downstream at a monthly scale, while they both underestimate
the runoff. However, Gauge-SWAT only performs satisfactorily in the upstream and
its performance in the midstream and downstream is unsatisfactory. The ability of
Gauge-SWAT to simulate extreme floods is poor, and the runoff is underestimated by
Guage-SWAT as well. However, only CMADS-SWAT performs satisfactorily in the
whole basin at a daily scale, while both TRMM-SWAT and Gauge-SWAT performed
unsatisfactorily in the middle and lower reaches. CMADS-SWAT, TRMM-SWAT, and
Gauge-SWAT have all underestimated the runoff at a daily scale.

(3) Among the three precipitation products, the performance of CMADS-SWAT is the
best, followed by TRMM-SWAT. Gauge-SWAT had the worst performance, whether
on the monthly scale or the daily scale.
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Abstract: Early warnings decision support systems are recognized as effective soft adaptation tools
to prepare for the impacts of imminent flooding and minimize potential injuries and/or loss of life
in flood-prone regions. This paper presents a case study of a pilot project that aimed to establish
an impacts-based flood monitoring, early warnings, and decision support system for the Vaisigano
River which flows through Apia, the capital of Samoa. This river is located in a characteristic short
and steep catchment with rapid critical flood peak durations following periods of intense rainfall.
The developed system integrates numerical weather prediction rainfall forecasts, real-time rainfall,
river level and flow monitoring data, precomputed rainfall-runoff simulations, and flood inundation
estimates of exposure levels and threat to human safety at buildings and on roads for different
return period events. Information is ingested into a centralized real-time, web-based, flood decision
support system portal that enables hydrometeorological officers to monitor, forecast and alert relevant
emergency or humanitarian responders of imminent flooding with adequate lead time. This includes
nowcasts and forecasts of estimated flood peak time, magnitude and likely impacts of inundation.
The occurrence of three distinct extreme rainfall and flood events over the 2020/2021 tropical cyclone
season provided a means to operationally test the system. In each case, the system proved adequate
in alerting duty officers of imminent flooding in the Vaisigano catchment with up to 24 h warnings
and response lead time. Gaps for improvement of system capabilities and performance are discussed,
with recommendations for future work suggested.

Keywords: flood monitoring; forecasting; hazard exposure; emergency response; Vaisigano
River; Samoa

1. Introduction

Flood-related events have been the most frequent natural hazard disaster type between
2000–2019, incurring the largest average annualized losses at a global scale compared with
any other natural hazard [1–4]. Soft adaptation approaches such as early warnings systems
are considered effective tools that enhance the safety and resilience of people to the impacts
of flood events (e.g., [5–8]). Indeed, it has become widely accepted that real-time monitoring
and early warnings systems provide necessary information tools that enable people living
in exposed areas to respond accordingly in order to minimize potential injuries, loss of life
and/or livelihoods (e.g., [9–11]).

Flash flooding in particular poses significant early warning challenges due to short
catchment response times of <2–3 h compared with the time required for making informed
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decisions on emergency response and resourcing e.g., [12,13]. These challenges are exac-
erbated in ungauged catchments where people, lifelines and infrastructure are exposed
e.g., [13]. While much progress has been made in weather forecasting over the last few
decades [12], challenges remain in forecasting flash floods which are influenced by a
combination of geomorphic, hydrological, soil moisture capacity and antecedent trigger
conditions [14–16].

In the Pacific Small Islands Developing States (SIDS) region, weather forecasting and
early warning systems (EWS) have typically taken a hazard-centric approach in terms of
tracking, estimating and alerting affected people of what a specific event ‘might be’ in
terms of magnitude and extent (with several hours to days lead time). Over the last decade,
however, Pacific SIDS are increasingly integrating impacts-based approaches into EWSs
(i.e., what a specific weather event ‘might do’ in terms of exposure and losses) [16]. These
shifts reflect responses by Pacific SIDS in delivering on global and regional framework
targets such as the 2015–2030 Sendai Framework targets [17], and the Framework for
Resilient Development in the Pacific [18].

Extreme rainfall-induced fluvial and pluvial flooding are an annual risk faced by
many populated centres in high volcanic islands across the tropical Pacific SIDS region
(e.g., [19]). Many catchments in these settings are typically characterized as short and
steep, with rapid critical rainfall to flood peak durations. This results in extremely limited
observations-based (or nowcast) early warnings and response lead times, and motivates the
shortening of alerting lead times through the incorporation of forecast-based techniques.
For example, the Vaisigano River catchment in Samoa, has an extreme critical peak duration
of approximately 1-h resulting in very short warnings and response lead times.

In this paper, we present a case study of a pilot impacts-based flood early warning de-
cision support system developed for the Vaisigano River which flows through the Samoan
capital of Apia. The aim of the pilot was to implement a context-specific, real-time, auto-
mated river monitoring and forecast-based flood early warnings decision support system
capable of alerting hazard monitoring and emergency responders of imminent flooding
with up to 24–48 h lead time. We describe the methods and analysis used in the develop-
ment of different system components, including a web-based information portal which
enables interaction with the decision support information tools. We discuss the practical
implications of the developed system based on operational testing during the 2020/2021
tropical cyclone season in Samoa, with recommendations offered for future research.

2. The Vaisigano Catchment

The Vaisigano catchment is located in the central north of Upolu Island and is char-
acterized by a short, steep, funnel-shaped drainage morphology covering an area of
approximately 33 km2 [20] (Figure 1). The catchment extends approximately 12 km from
sea level to an elevation of 1158 m along Upolu’s volcanic spine [20,21]. The catchment
comprises three main tributaries that converge into a single channel at the Alaoa confluence
approximately 4.5 km from the coastline, exiting at the Vaisigano bridge in Apia (Figure 1).
It is worth noting that Apia itself is generally less than 1 m above mean sea level and was
developed in a deltaic/wetland environment which multiple rivers east and west of the
catchment drain through.
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Figure 1. Monitored sub-catchments in the Vaisigano River catchment boundary showing perennial and ephemeral
tributaries in relation to the downstream urban areas of Apia. The distribution of rainfall and river level/flow monitoring
stations used in this study are shown.

The average annual rainfall in the catchment is between 3000–6000 mm, with about
70% occurring during the wet or tropical cyclone season from November to April. There is
an approximate 1500 mm difference between annual rainfall in the upper reaches of the
catchment (e.g., Afiamalu), compared with the lower plains (e.g., Nafanua).

Morphological drainage characteristics of the catchment favour rapid-rising floods
during periods of intense rainfall, with rapid critical storm peak durations of approximately
1 h which can activate ephemeral stream channels in the wider floodplain [22,23]. This
will be particularly exacerbated by ongoing climate change where rainfall intensities are
estimated to be more severe in the Samoa region by the year 2100 [24].

Urban growth accompanied by residential and commercial development in the flood-
plains over the last century have rendered a significant proportion of infrastructure and
up to several thousand people exposed to the potential impacts of flooding. Indeed, this
was demonstrated by several flood events which occurred this millennium: the 2001 [21],
2012 [25], and 2018 [26] flood events. Up to 14 people lost their lives in the 2012 event,
with up to US$204 million in damage and losses [27]. The 2012 disaster triggered signif-
icant national investment in hard and soft adaptation measures aimed at enhancing the
safety and resilience of assets within the catchment, and minimize the impacts of future

207



Water 2021, 13, 3371

events in the light of changing climate (e.g., [27,28]). A key soft adaptation investment
was to enhance real-time river monitoring and early warnings systems which can support
emergency decisions in response to imminent flooding with sufficient lead time.

3. System Development: Methodologies and Analysis

The combined physical and exposure characteristics of the Vaisigano catchment results
in short flood early warnings response lead times using observation-based monitoring
(or nowcasting) systems only. Hence, the incorporation of a real-time forecast-based
solution was required to enable longer lead times. In addition, the inclusion of accurate
precomputed hazard exposure representations depicting the likely magnitude and extent
of forecast flooding as well as areas/assets that could be affected, would provide necessary
response planning tools that enable prioritization of emergency resources (including the
identification of potential recovery needs).

The necessity for a precomputed impacts forecast approach recognizes the current tech-
nological and financial limitations in rapidly simulating accurate two-dimensional (2D) flood
inundation models with only a few hours of warning lead time. Here, we describe the data,
methodologies and analysis undertaken to develop the Vaisigano flood decision support system
(FDSS) framework which encompasses these various capabilities (Figure 2).

Figure 2. Simplified flood decision support system (FDSS) schema showing key data components and information workflow.
Real-time observations (or nowcast) and forecast data are integrated with a library of precomputed flood hazard and
impacts data, which are accessible to local operators as decision-ready tools on a web-based portal. This relatively low-cost
FDSS was developed between February 2020 and April 2021.

3.1. Observations and Forecast Data

Near real-time rainfall and river stage/flow monitoring data from gauges located
within and around the Vaisigano catchment (Figure 1) provided a basis for developing the
observations-based elements of the system. Five (5) minute rainfall data are telemetered
from each rain gauge every 10 min via dual mobile (primary) and satellite (backup) com-
munications networks, which are accessible through a web-based telemetry management
system (MNRE-NEON) administered by the Samoa Ministry of Natural Resources and
Environment (MNRE) (Figure 2) [29]. Similarly, 5-min stage and flow data from each river
gauge are telemetered via dual communications, although data packets are sent every
5 min. These data were used along with historical hindcast analysis, described in the
sections below, to formulate empirical-based flood thresholds and predictive nowcasting
tools capable of alerting flood monitoring and emergency responders of imminent flooding
with up to 3-h lead time.
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The Weather Research and Forecasting (WRF) numerical weather prediction (NWP)
3 km rainfall model, available for Samoa through the Pacific Islands Ocean Observing
System (PACIOOS), provided a means to enable the forecast-based elements of the system.
Forecasts of hourly rainfall intensities up to 48 h in advance are updated every 24 h,
with site-specific raw data (csv files) obtained via a THREDDS Data Server (TDS) [30].
Integration of these data with the real-time observation baselines using similar empirical
relationships as those developed for the nowcasting tools enabled the development of
automated and manual tools capable of providing forecast-based alerts with up to 48-h
lead time.

Real-time sea level data (1-min) from the Apia tide gauge accessible via the Climate
and Oceans Support Program for the Pacific (COSPPac) enabled the tidal state and residual
coinciding with a nowcast/forecast flood event to be monitored. This provides a proxy for
understanding the effect this might have in exacerbating surface flooding in the coastal,
lowest reaches of the catchment.

3.2. Flood Frequency Analysis

Rainfall and river flow thresholds for different return period events were required to
produce representative real-time forecasts of flood magnitude (up to 48 h lead time), and
corresponding precomputed hazard exposure.

3.2.1. Rainfall Analysis

Five (5) and ten (10) minute historical rainfall data held within the Samoa Tideda hy-
drological and Climate Database for the Environment (CliDE) archives were used to assess
and/or validate previously established rainfall return period thresholds (Table 1) [22].

Table 1. Historic rainfall and flow timeseries for the Vaisigano catchment used in this study.

Parameter
Monitoring

Station
2009 2010 2011 2012 1 2013 2014 2015 2016 2017 2018 2 2019 2020

Rainfall

Lake
Lanotoo � � � � � � � � � �

Mt. Le Pue � � � � � � �
Tiavi � � � � �

Alaoa West � � � � � � � �
Afiamalu

AWS � � � � � � � � � � �
Nafanua

AWS � � � � � � � � � �

River
Level

Lelata
Bridge � � �

Alaoa West � �
Alaoa East � � � � � � � � � � � �

1 Tropical cyclone Evans impacted Samoa between 11–15 December 2012. 2 Tropical cyclone Gita impacted Samoa on 8–9 February 2018.

Both daily and sub-daily records for Afiamalu, Nafanua, Alaoa, Le Pue and Tiavi sites
were particularly crucial as they represented the spatial variability of available data within
the catchment (Figure 1), with maximum daily rainfall extremes of over 400 mm recorded
at Afiamalu, Nafanua, and Alaoa. The most significant large rainfall event since 2010 was
associated with tropical cyclone Evans in 2012. Overall rainfall records suggest that the
event was between a 20- to >100-year return period event (5% to <1% annual exceedance
probability), and was compounded by antecedent rainfall of 174 mm at Afiamalu and
120.5 mm at Alaoa during the preceding 24-h period. This caused multiple landslips within
the catchment [25]. On average it was estimated that up to 206 mm of rainfall fell within
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a 2-h period [31]. The 24-h rainfall recorded at Afiamalu was 413.8 and 467 mm at the
Alaoa gauge. Other gauges within the catchment recorded less (e.g., 144 mm at Apia
and 207 mm at Nafanua), illustrating the high spatial variability of rainfall even for large
events. Maximum hourly rainfall for the on 13 December 2012 event varied from 56 mm/h
between 12 and 1pm to 85 mm/h from 2 to 3pm at Afiamalu, and from 12.2 to 156.8 mm/h
at the Alaoa gauge [31]. Again, this illustrates the local spatial variability of rainfall in
the catchment.

Data from seven operational rain gauges located within or near the catchment (i.e., Afiamalu,
Nafanua, Alaoa, Mt Le Pue, Tiavi, Maagiagi and Togitogiga) were used to produce area-weighted
catchment averaged rainfall and rainfall-surface runoff relationships (detailed in Section 3.2.2), to
enable reliable estimation of real-time nowcast and forecast peak flow and level for river gauges
at Alaoa West, Alaoa East and Lelata Bridge (Figure 1). Thiessen polygons were drawn around
each of the above rainfall gauges with only the gauges at Nafanua, Afiamalu, Maagiagi and Le
Pue intersecting with the polygons (Figure 3). This enabled calculation of the area associated with
each rainfall polygon (Equation (1)) to underpin the estimation of area-weighted average rainfall
for each sub-catchment (Equations (2)–(4)):

[(Area‘0′ × Rain@Na f anua) + (Area‘2′ × Rain@A f iamalu) + (Area‘3′ × Rain@LePue) + (Area‘4′ × Rain@Tiavi)
+(Area‘5′ × Rain@Togitogiga)] + (Area‘6′ × Rain@Maagiagi)/Totalareao f catchment

(1)
Lelatacatchmentaveragerain f all = [(6.53 × Rain@Na f anua) + (8.39 × Rain@A f iamalu) + (5.31 × Rain@LePue)

+(0.67 × Rain@Tiavi) + (0.17 × Rain@Togitogiga) + (11.03 × Rain@Maagiagi)]/32.11
(2)

AlaoaEastcatchmentaveragerain f all = [(0.93 × Rain@Na f anua) + (0.17 × Rain@A f iamalu)
+(5.27 × Rain@LePue) + (0.02 × Rain@Tiavi) + (0.17 × Rain@Togitogiga) + (10.48 × Rain@Maagiagi)]/17.04

(3)

AlaoaWestcatchmentaveragerain f all = [(1.39 × Rain@Na f anua) + (7.94 × Rain@A f iamalu)
+(0.05 × Rain@LePue) + (0.65 × Rain@Tiavi)] + (0.55 × Rain@Maagiagi)/10.57

(4)

If one or more rain gauges breaks down or becomes faulty, then the following assump-
tions are applied:

• If Tiavi data are missing then use data from the next closest gauge (which in order of
priority) Le Pue, Afiamalu, Togitogiga, Maagiagi, Alafua, or Nafanua;

• If Le Pue data are missing then use data from the next closest gauge (which in order
of priority) Tiavi, Togitogiga, Afiamalu, Maagiagi, Nafanua, or Alafua;

• If Togitogiga data are missing then use data from the next closest gauge (which in
order of priority) Le Pue, Tiavi, Maagiagi, Afiamalu, Nafanua, or Alafua;

• If Afiamalu data are missing then use data from the next closest gauge (which in order
of priority) Maagiagi, Le Pue, Tiavi, Alafua, Nafanua or Togitogiga; and

• If Nafanua data are missing then use data from the next closest gauge (which in order
of priority) Alafua, Afiamalu, Maagiagi, Le Pue, Tiavi or Togitogiga.
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Figure 3. Thiessen polygons for automatic rain gauges (ARG) and automatic weather stations (AWS)
in or near the Vaisigano catchment.

Rainfall thresholds for design event durations were identified using rainfall intensity-
duration-frequency (IDF) curves previously established at Afiamalu (Table 2) [22,23,32].
These were used to identify thresholds required to trigger early warnings for a given real-
time nowcast or forecast event. For example, 1-h rainfall intensity of 156.8 mm observed at
Afiamalu during the 2012 flood represents an event greater than a 100-year return period
event (Table 2).

Table 2. Intensity-Duration-Frequency (IDF) threshold values used in this study.

Duration
Rainfall Intensity (mm/h) for Different Return Period Events 1

1 in 5 Year 1 in 10 Year 1 in 25 Year 1 in 50 Year 1 in 100 Year

5-min 313 365 412 450 493
10-min 242 283 320 350 382
15-min 204 240 270 295 323
30-min 142 166 187 204 223

1-h 90 105 119 129 142
2-h 57 66 72 80 87
3-h 40 47 50 57 62

1 Thresholds for additional design event durations (up to 60-day duration and 1000-year return period) were
adapted from American Samoa based on similar catchment characteristics identified in [33].

3.2.2. Flood Stage and Flow Thresholds

Stage and flow data from the operational gauges at Alaoa West, Alaoa East and Lelata
were used to identify/monitor flow thresholds that are expected to be exceeded based on
real-time observations/forecasts of rainfall. Long-term records at these sites along with a
rating curve developed in [22] for flows up to 15 m3/s at the Alaoa East gauging station
were used. The associated rating equations for different stage-flow ranges at Alaoa East up
to a stage of 3.2 m and discharge of 75 m3/s are shown in and are summarized in Table 3.
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Table 3. Rating curve equations for different stage-flow ranges at Alaoa East river gauge.

Stage (m) Discharge Equation (m3/s)

0 to 0.125 Discharge = 0.470 × Stage1.232

>0.125 to ≤0.375 Discharge = 0.470 × Stage1.233

>0.375 to ≤0.6 Discharge = 0.470 × Stage1.234

>0.6 to ≤0.825 Discharge = 2.799 × Stage3.807

>0.825 to ≤1.0625 Discharge = 2.374 × Stage3.345

>1.0625 to ≤1.3125 Discharge = 2.364 × Stage3.261

>1.3125 to ≤1.5625 Discharge = 2.421 × Stage3.114

>1.5625 to ≤1.825 Discharge = 2.455 × Stage3.076

>1.855 to ≤2.1125 Discharge = 2.424 × Stage3.101

>2.1125 to ≤2.375 Discharge = 2.409 × Stage3.110

>2.375 to ≤2.85 Discharge = 2.710 × Stage2.965

>2.85 Discharge = 4.360 × Stage2.446

These stage-discharge data, along with preliminary analysis by [23], provided a basis
to derive flood frequency distributions from Alaoa East (Table 4). For design events up to
the 10-year return period (10% annual exceedance probability), the flow magnitudes were
within 10% of previous flow estimates as detailed in [33]. For higher magnitude design
events, flows have increased from those previously available (e.g., the 100-year return
period event increased from 331 to 542 m3/s) (Table 5) [23].

Table 4. Design event flows for Alaoa East station adapted from [23].

Return Period
(Years)

Design Event Flows at Alaoa East Gauge
(Eastern Catchment)

Design Flows at Electric
Power Corporation Weir

(Eastern, Central and
Western Catchments)

(m3/s)

Flow (m3/s)
Level (m Gauge

Datum)

1 17 1.7 29
2 41 2.6 69
5 82 3.2 139

10 131 3.6 222
20 204 4.0 346
50 358 4.8 608

100 542 5.4 921
200 814 6.4 1384
500 1382 7.8 2350

1000 2052 9.3 3489

Modelled flow levels at Lelata for the 5-, 20-, 100- and 1000-year return period events
were derived using the area weighted sub-catchment areas and rescaling of peak flows
to Alaoa East and Alaoa West (Table 5). Compared to the values shown in Table 5, the
rescaled flows for Alaoa East are higher for the 5- and 20-year return period conditions
but are lower for the 100- and 1000-year return periods. Similar trends are reflected at the
Lelata gauge site [23].
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Table 5. Predicted critical rainfall characteristics for 5-, 20-, 100- and 1000-year return period and
associated predicted flows at Lelata Bridge and re-scaled critical flows for Alaoa East and Alaoa West
using catchment areas.

Return Period Event
Source

5-Year 20-Year 100-Year 1000-Year

Rainfall Total (mm) 93.5 127.0 133.7 337.3 [33]
Duration

(mins) 45.0 60.0 45.0 45.0 [22]

Intensity
(mm/h) 133.2 127.0 190.5 240.4

[32], estimated
from 30 and 60
min for the 45

min critical
duration
events

Flow
(m3/s)

Lelata
Bridge 550.0 690.0 862.0 1137.0 [22]

Alaoa East 292.0 366.0 458.0 604.0

Scaled by area
from the

Lelata Bridge
model in [22]

Alaoa West 181.0 227.0 284.0 374.0

Scaled by area
from the

Lelata Bridge
model in [22]

3.3. Peak Flow Estimation

Forecasts of peak flows estimated using the relationships described in Sections 3.1 and 3.2
for the Alaoa East gauged site were used to provide short-term warnings of potential high
flows at this location; based on observed/nowcast rainfall and stage-flow as well as forecast
rainfall sourced from the WRF model (see Figure 2). This site is particularly important due
to the absence of reliable gauged data at the Lelata and Alaoa West sites. A unit hydrograph
approach was used to predict the flood hydrograph at this site using the procedure adapted
from [34]. This approach was used because of the lack of detailed soil or vegetations maps at
the site that could be used to inform a more physically based model. Also, as the model was to
be hosted by a web-based service, it was more convenient to use an empirical-based model that
could be hard-coded into the system. The key steps involved in developing the model included:

• Identifying observed flow data for the given catchment. These data should be available
in the required temporal resolution (duration) of the unit hydrograph (e.g., 10-min,
1 h or 3 h);

• Identifying an appropriate flow event (i.e., where river flow starts and ends at a
common baseflow value and exhibits a standard hydrograph shape);

• Plotting the direct runoff hydrograph (i.e., observed flow/baseflow) and then calculate
the area under the hydrograph curve to determine the volume of runoff for the event
(trapezoidal method);

• Calculating the rainfall excess (mm) by dividing the volume of runoff by the catchment
area (m2); and

• Calculating each temporal ordinate of the unit hydrograph by dividing each observed
discharge ordinates (t1, t2, t3, . . . , tx) by the excess rainfall figure described above.

To use the unit hydrograph to predict the direct runoff resulting from each 1 mm of
rainfall, the following steps were used:

• Subtract the estimated ‘rainfall loss’ from the rainfall timeseries to get ‘effective rainfall’;
• Multiply each rainfall value by the unit hydrograph to obtain multiple direct runoff

hydrographs (one for each rainfall increment, and each lagged by a successive time
increment); and
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• Calculate the sum of all the direct runoff hydrographs and add the baseflow compo-
nent of observed data to obtain the flow timeseries.

Implementation of the unit hydrograph method in the FDSS allowed the starting
condition (baseflow) to be determined from observed conditions. In addition, the rainfall
loss factor was made dependent on antecedent rainfall conditions, thus acting as a surrogate
for the extent of soil saturation at the start of each storm event.

Flow event data, which captured the extreme flood in 2012, were used to calculate the
10-min unit hydrograph at Alaoa East, as both the rainfall and flow data were available
in 10-min increments during this period. For each identified event, a baseflow value
was calculated from the flow before rainfall commenced. The 10-min data were re-scaled
to create a 1-h unit hydrograph which we use to predict flow from real-time forecast
rainfall data.

3.4. Alert Thresholds

Flood thresholds used to trigger an alert were primarily based on the rainfall and
water-level thresholds described in Sections 3.2 and 3.3. In addition, rainfall thresholds
identified from IDF curves derived for American Samoa [22,33] were used to compensate
for data gaps or short available records within the Vaisigano catchment. A simplified
schema showing the analytical data flow from real-time observations and forecasts to alert
triggers are shown in Figure 4.

Observed water level alerts are determined directly from in-catchment water level
gauges at Lelata, Alaoa East and Alaoa West. The thresholds (5-, 20-, 100-, 1000-year
return periods) at which an alert is signalled are based on those identified within the most
recent flood modelling of the catchment presented in [23]. Thresholds for the Alaoa East
and Alaoa West site were derived by rescaling the estimates for the Lelata using flow per
unit area.

Figure 4. Schematic of alerting criteria used to indicate increased flood risk. This is pre-configured and displayed on the
predicted ‘Flood Status’ and ‘Peak Expected Time’ tools on the flood decision support system (FDSS) web-portal.

Observed rainfall alerts are based on information taken from [22], i.e., from data that
have been derived for American Samoa [33]. Rainfall thresholds can be either a rainfall
intensity or a total amount of rain over a specified period. Observed rainfall is also used to
predict water level at each river gauging station, enabling advanced warning of up to 1 h
or more depending on rainfall intensity, of the likelihood of water level thresholds being
exceeded at those locations.
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Two NWP sources provide medium-term rainfall forecasts:

• Weather Research and Forecasting Model (WRF) (3 km resolution) 1-h rainfall, avail-
able at 00 UTC, for a 7-day window; and

• NOAA Global forecast systems (GFS) forecast (~20 km resolution) 3-h rainfall, avail-
able at 00, 06, 12, 18 UTC, for a 10 day window.

Alert signal thresholds for forecast rainfall in addition to observed rain and water
levels, include:

• A threshold of 5 mm/10-min to indicate risk of flooding;
• A threshold of 25 mm/12-h for two consecutive timeframes is also used to indicate

increased flood risk;
• A threshold of 75 mm/24-h used to indicate increased flood risk.

Flood warnings issued by MNRE are conveyed via available communications outlets
(e.g., website, national media stations, social media), and guided by the MNRE Forecast
Operations Plan [35].

3.5. Flood Hazard and Impacts Analysis

To facilitate the rapid representation of inundation hazard and exposure for a given
forecast flood magnitude, it was necessary to compile a library of precomputed scenarios
corresponding to the given forecast flood event. This was particularly crucial due to
the flashy nature of the Vaisigano catchment and current computational limitations in
simulating real-time, on-the-fly, hydrodynamic simulations of flood hazard intensity. To
this end, the multi-hazard model framework supported by RiskScape software [36] was
configured to analyse building and road exposure to flooding hazards. The RiskScape
software engine combines spatial layers representing hazards and exposures (i.e., elements
at risk) with vulnerability functions in a model workflow to quantify the impacts from
hazard events. Here, we used flood hazard layers represented by available TuFlow 2D
flood inundation modelled depth and velocity hazard intensities (2 m grid resolution) for
the 2-, 5-, 20-, 100- and 1000-year return period flood scenarios [22]. These were intersected
with exposure layers representing building polygon and road polyline features to calculate
metrics on the exposure and threat to safety at building and road locations (Figure 5).

The hydraulic model was configured by Filer et al. (2019) [22] using a rectangular
grid domain (5.3 × 7.5 km), with base topography and nearshore bathymetry derived
using the 5 m LiDAR digital elevation model (DEM) produced in [37]. DEM modifications
enabled hydraulic features such as river channels and infrastructure (e.g., road crests,
bridges, culverts) to be represented in the model outputs. Variable roughness was applied
to represent different land uses and ranged from Manning’s coefficients of 0.02 (roads,
car parks) to 0.3 (buildings). The model was calibrated against the 2012 and 2018 flood
events, with the results showing good modelled-to-observed water levels within a desirable
tolerance of 0.25 m [22].
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Figure 5. Conceptual representation of the impact model workflow in RiskScape. Here, flood inundation depth (D) and
depth-velocity (DV) represent hazard layers, building and road objects represent exposure layers, with impacts calculated
from vulnerability functions relating D and DV hazard with building and roads exposure and threat to safety levels.

The flood hazard layers are representative of existing mitigation works in the Vaisigano
catchment (e.g., levee segments) as well as the rainfall and river stage-flow relationships
described in Section 3.2 and 3.3. In addition, each hazard layer represents the estimated
flood hazard intensities coinciding with storm/high tide to provide conservative indica-
tions of expected impacts to a forecast flood event. Digital building outlines used in this
analysis were obtained from the 2009 Pacific Catastrophe Risk Assessment and Financing
Initiative (PACRAFI) database available for Apia [38]. This polygon dataset was manually
updated in QGIS software using 2020 Google satellite base imagery to include outlines of
new buildings constructed since 2009, and exposed to the 1000-year maximum available
scenario. Road polylines were obtained from the Open Street Map (OSM) database [39],
and split into 10 m segments. These provided the input exposure layers for RiskScape to
calculate flood exposure metrics (building count and road length) and human threat to
safety at building and road locations (Figure 5).

Threat to safety functions represent the human stability response to maximum flood
depth-velocity (DV) at building locations [40]. Here, ordinal categories (e.g., none, low,
medium high, extreme), describe the relative threat to a person’s safety at ground-level for
each building location and 10-m road segment. Similar categories determine the safety of
persons located in a vehicle (e.g., sedan, truck, fire-engine) at the time of maximum flood
DV on roads [41]. Human threat to safety for each flood event was reported at feature- and
village-scale web-supported GIS files for ingestion and display as decision-ready maps and
tables on the FDSS portal.
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4. Flood Decision Support System (FDSS): Operations Portal

The FDSS Portal provides a centralized web-based information interface/dashboard
that incorporates multiple information tools, enabling MNRE and other authorized opera-
tors to monitor and predict/forecast imminent flood events in real-time. This includes rapid
access to decision-ready tools for determining the potential impacts in advance. The portal
is built within the Climate Data for the Environment Services application Client (CliDEsc)
framework [42] and provides a flexible platform for future MNRE data visualization needs.

The portal is cloud-based and is password-protected. It can be configured to enable
additional or new data/information sources required to support hydrometeorological or
climate operational decision-making as these needs arise in future. Information ingested
and displayed within the Vaisigano FDSS includes (Figure 6), but is not limited to:

• Real time rainfall and river stage data from monitoring stations within and surround-
ing the Vaisigano catchment;

• Real time sea-level data from the Apia tide gauge;
• Nowcast (observations-based) flood prediction tool;
• Real time NWP (WRF 3 km) rainfall forecasts and flood forecast tools; and
• Pre-computed flood hazard and exposure/impacts maps and data tables for available

flood scenarios.

Figure 6. Vaisigano flood decision support system (FDSS) web-portal interface tools (example forecast event only). In this
example, time series of forecast flood peak and magnitude at river gauge sites along with corresponding maps/tables of
flood hazard and human safety at building/road locations are displayed.

5. System Performance

Significant rainfall events which occurred during the 2020–2021 tropical cyclone season
provided a basis to operationally test the system and identify ongoing gaps for future
development. In particular, the rainfall events on 18 December 2020, 7 January and 22
February 2021 proved useful in assessing the efficiency of the prediction model. Figure 7
illustrates the river levels recorded at Alaoa East and Lelata flow gauging stations from the
15 to 19 December 2020 [43], associated with the 18 December 2020 flooding. Higher rainfall
was observed at Afiamalu rainfall station than Le Pue during this period highlighting
the high local spatial variability in the catchment (as previously described in Section 3.2).
Whilst the 5-, 10-, and 60-min rainfall intensities at Afiamalu were all less than 1-year return
period flood, the 24-h rainfall accumulation of 392 mm from 2 pm on the 17 to 18 December
was greater than a 25-year event (Table 5). For the same period, 316 mm of rainfall was
recorded at the Le Pue site, equivalent to between a 5- to 10-year event [33].
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Figure 7. (a) Forecast rainfall for 9am on 18th December 2020 local Samoan time (WRF model issued at 0000 UTC on 17th
December 2020). (b) Observed 5-min and (c) 10-min river stage at Lelata and Alaoa East river gauging sites, and weighted
rainfall for Alaoa East associated with the 18th December 2020 flooding.

The data at this and subsequent events on 7 January 2021 and 22 January 2021 have
been used to validate and improve the prediction accuracy of the FDSS system by increasing
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the amount of data that the 10-min and 1-h unit hydrographs are based upon. That is,
these recent extreme events have extended the pool of data from which the hydrographs
are derived.

Modelled stage at Alaoa East are also shown in Figure 7. It should be noted that the
river stage is based on area-weighted rainfall for the Alaoa East catchment and correlation
of modelled and observed flows yielded an R2 value of 0.87 for this event.

Uncertainty

The current system was developed under conditions of data scarcity and discontinuity.
Uncertainty surrounding the validity of rating curves for each streamflow dataset presented
a particular challenge. The uncertainty is produced because of limited opportunity to mea-
sure river flows during high flow conditions, and ongoing changes in channel morphology
during such conditions without associated changes to the rating curve information. For
example, it can be seen in Figure 7 that the flood peak at the Lelata site on 18th December
2020 was not recorded because the river over-topped the monitored channel at just below
2 m and resulted in a flat hydrograph. Limited data for the development of river rating
curves mean that assumptions made during construction of the unit hydrographs will
impact the performance of the model in predicting the magnitude of peak flows.

A second source of uncertainty lies within the area-weighted rainfall estimates used
by the model for each catchment, which despite being informed by new rain-gauges within
the catchment will be susceptible to errors for spatially heterogeneous storm events. The
impact of rainfall estimation uncertainty on model performance at this site will be reported
in a subsequent publication.

To improve model performance, the model was calibrated using the rainfall loss factor
which was dynamically set to reflect different antecedent soil moisture at the start of each
rainfall event. It should be noted, however, that the model was less accurate at predicting
lower peak flows.

6. Practical Implications

This pilot has demonstrated the suitability of integrating real-time forecast with obser-
vations of rainfall, river level/flow and precomputed representations of flood magnitude
and exposure to warn responders of imminent flooding with adequate alert lead times in a
short, steep, flashy tropical Pacific catchment. Indeed, this was exemplified by the extreme
rainfall and subsequent flooding on 18 December 2020. In this case, responders were
alerted up to 24 h lead time, enabling an evidence-based evacuation of affected residents
several hours before the Vaisigano River overtopped its channel.

While the developed FDSS tools have proven effective in helping to inform evacuation
response decisions which minimize the threat of injuries and loss of life, key challenges to
guide future work include, but are not limited to:

• Implementing a regular programme of flow gaugings, in particular during and after
high flow events to improve existing rating curves and unit hydrograph calibrations
used in the FDSS predictive models;

• Statistical downscaling of NWP models for Samoa to finer grid resolutions, as well as
more frequent real-time updates consistent with the GFS/ECMWF forecast frequencies
(e.g., [44,45]). This includes the refinement of rainfall IDF’s at key sites and ingestion
of additional forecast models where available for Samoa;

• Application of new impacts/exposure forecasting techniques using statistical, precom-
puted, metamodeling approaches (e.g., [46–48]); and

• Assessing community perspectives in relation to warnings communications and re-
sponse behaviour to progress towards the integration of a more people-centred ap-
proach to early warnings systems (e.g., [49–51]).

Nevertheless, the FDSS provides a first order solution towards impacts-based fore-
casting for the Samoa region which is consistent with Pacific [16,18] and international [17]
efforts. Future extension of the framework to build on the capabilities developed in this
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pilot would help to safeguard the effectiveness of the FDSS in minimizing flood threats to
injury, lives and livelihoods in Samoa, with potential applications to similar SIDS contexts.

7. Conclusions

This paper aimed to describe a pilot flood decision support system (FDSS) for the
Vaisigano River, Samoa, which is comprised of a suite of integrated rainfall/river observa-
tions and forecast tools that are linked with precomputed hazard exposure scenarios to
enable real-time flood-impacts warnings forecasting for the Vaisigano catchment.

A number of challenges face the development of such systems in data sparse areas.
In particular, the availability of sufficient and consistent historic rainfall and flow data is
required to design, calibrate and validate even parsimonious runoff models such as those
used in the developed system. Despite such challenges, this study illustrates that it is
possible to develop an early warning system by identifying specific thresholds of hazard
(flood) occurrence and then targeting prediction capability on those thresholds. Although,
the absence of soil and vegetation data as well as the need for model parsimony were
pivotal in the decision to use the unit hydrograph approach for peak flow prediction.

The effectiveness of the developed FDSS was demonstrated in the lead up to the 18th
December 2020 extreme rainfall and flooding, whereby residents in affected floodplains
were successfully warned and evacuated several hours prior to river channel overtopping.
This was achieved through the use of a multi-layered warning system that provided
1-h resolution rainfall and river level forecasts (30-h into the future); 10-min resolution
prediction of rainfall and river level (24-h into the future); and real-time rainfall and river
level monitoring.

While this pilot provides a benchmark for future work and extension to other catch-
ments in the Samoa region, the findings offer a conceptual framework for developing
similar impacts-based flood decision support systems in comparable Pacific Islands and
SIDS contexts.
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