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Abstract: Net zero emission scenarios are aligned with the criteria for the Paris Agreement to keep
global warming below 1.5 ◦C. By soft-linking an energy model with a macroeconomic model, we
create a similar pathway to the net zero emission scenario from the International Energy Agency
(IEA) to 2050 both of demand for fossil fuels and total CO2 emissions. Soft-linking entails that we
insert endogenous variables from one model into the other model. We implement measures such as
CO2 taxes, improved energy efficiency, more renewables in electricity production and other sectors,
easier substitution between electricity and fossil fuels for final users, and drastically limiting future
production of oil, gas and coal. Our conclusion is that net zero is possible by introducing very strict
measures, e.g., a high rate of energy efficiency improvement, far above what has been achieved in the
past. While our partial equilibrium energy model, similar to the IEA model, overlooks the potential
rebound effects, i.e., more energy used by consumers due to lower prices caused by energy efficiency
improvement, our macroeconomic model does capture the rebound effects and has to implement
stricter supply-side measures to reduce fossil fuel use to achieve the 1.5 ◦C scenario.

Keywords: net zero; climate change; mitigation; energy model; integrated assessment; CGE model;
fossil fuel; energy transition

1. Introduction

To keep global temperature increase below 1.5 or 2 ◦C compared to pre-industrial
levels, the global CO2 emissions will need to become net zero and potentially below zero.
As indicated by the Intergovernmental Panel on Climate Change (IPCC) in its special
report on 1.5 ◦C: “From a physical science perspective, limiting human-induced global
warming to a specific level requires limiting cumulative CO2 emissions, reaching at least
net zero CO2 emissions, along with strong reductions in other greenhouse gas emissions”
[1]. Jones et al. [2] suggest that, essentially, the global warming stops in the case of net
zero CO2 emissions, implying that current choices can avoid the worst impacts of global
warming in the future. Net zero energy systems, where residual CO2 emissions are offset
by removals, are crucial to achieve economy-wide net zero emissions (see e.g., [3]).

The Paris Agreement from 2016 proposes an ambitious target of limiting global warm-
ing to well below 2 ◦C, preferably to 1.5 ◦C, compared to pre-industrial levels. This was
strengthened to below 1.5 ◦C at the Glasgow meeting in 2021. There is a strand of studies
using integrated models that analyze how 1.5 ◦C can be reached, e.g., the IPCC-scenarios
presented in Masson-Delmotte et al. [1]. In 2021, a report released by the IEA [4] described a
roadmap to achieve net zero emissions for the global energy sector by 2050 (NZE hereafter),
which is necessary for a 1.5 ◦C world.

The purpose of this study is to examine how global energy markets might be affected
during the transition period of achieving net zero emissions in 2050 based on two soft-
linked complementary models. Soft-linking entails that we insert endogenous variables
from one model into the other model. The IEA [4] presents the most-cited and well-known
NZE pathway for energy sectors (we refer to this scenario as NZE IEA). Brecha et al. [5]
have assessed various scenarios, including those from the IPCC reports, and find that the
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NZE IEA scenario is aligned best with the requirement specified in the Paris Agreement
when it comes to having the likelihood to limit global warming to 1.5 ◦C. To the best of our
knowledge, we have not seen any studies that use energy models to test whether the NZE
IEA pathway is achievable and which relevant measures to apply to reach such a pathway.
By soft-linking an energy model with a macroeconomic model, this study creates a similar
pathway to 2050 and analyzes how such a pathway impacts the energy markets.

We introduce various mitigation measures simultaneously to achieve NZE in 2050
in our models. Among them, we consider CO2 taxes, improved energy efficiency, more
renewables in electricity production and other sectors, easier substitution between electric-
ity and fossil fuels for final users, and drastically limiting future production of fossil fuels.
The effect of our various measures is to reduce fossil fuel consumption and corresponding
emissions to around 90 per cent from the reference scenario by 2050. Even if it is possible to
reach large reductions by implementing such strict measures, it would in practice be very
challenging, if not impossible. By presenting the NZE scenarios simulated by our models,
the paper aims to discuss the magnitude of the various measures that are necessary to
obtain NZE and whether this is realistic or not.

The remainder of the article is organized as follows. In the next section, we present
a brief literature review to justify our study. In Section 3, we introduce our models and
describe how the models are used to simulate reference and NZE scenarios. In Section 4,
we present the results of the effects on energy markets of the simulated NZE scenarios. In
Section 5, we further discuss the issues related to the simulation results. We conclude in
the last section.

2. Literature Review

A 1.5 ◦C scenario refers to a simulated pathway where there is at least a 50 per cent
probability for the global warming to be no more than 1.5 ◦C in at least 2100 and possibly
above 1.5 ◦C in some years before 2100 [1]. Such scenarios have been developed by various
institutions, including BP [6], Equinor [7], the IEA [4], and Shell [8], besides the integrated
assessment model (IAM) scenarios [1,9]. Among these scenarios, the NZE IEA scenario
is identified to align best with the requirement specified in the Paris Agreement in terms
of the likelihood to limit global warming to 1.5◦C [5]. However, we know of no other
model-based studies that test and verify the achievability of the NZE IEA pathway.

The NZE IEA pathway [4] illustrates a marked transformation of the energy system
from fossil fuels to renewable energy, rapid improvement of energy efficiency, and wide
electrification in the economy. However, the IEA energy model is a partial equilibrium
model and assumes exogenous key determinants of energy demand such as gross domestic
product (GDP). In addition, the NZE IEA pathway introduces considerable energy efficiency
improvement to reduce energy demand, but excludes the potential rebound effects on
energy consumption due to lower energy prices [10–12]. It is necessary to address what
additional measures are needed to offset the rebound effect in a 1.5 ◦C world.

Various measures can contribute to reducing emissions. Considering the limited re-
sources available for society, degrowth is proposed to reduce GHG emissions and contribute
to emissions neutrality [13]. However, degrowth implies welfare losses of certain groups
and is difficult to implement, which makes the other option, “decoupling”, attractive, i.e.,
breaking the link between economic growth and environmental pressures like GHG emis-
sions [14]. Decoupling provides a win–win perspective to control global warming without
sacrificing economic growth. As the NZE IEA scenario assumes GDP growth at an annual
rate of around 3 per cent [4], all the measures adopted in the scenario can be regarded
as decoupling measures. Given the considerable barriers to implement these decoupling
measures, the NZE IEA scenario was described as achievable but challenging [4].

The energy market of particularly fossil fuels in such a 1.5 ◦C scenario may markedly
differ across scenarios simulated by different models, depending on the assumptions in
the models on the adopted mitigation measures [1]. Hence, the energy market in the NZE
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IEA scenario can differ from other models that achieve the same global level of emission
reductions, and this will be tested by this study.

3. Methods and Materials

The two models we have soft-linked are a computable general equilibrium (CGE)
model of the world economy, GRACE [15], and a partial equilibrium model of the global
energy markets, FRISBEE [16]. Descriptions of both models are presented in [17]. Both
models have been used to analyze issues related to climate policies (e.g., [16,18]). We
introduce policy measures by changing central parameter values in each model, so that an
NZE scenario is simulated to roughly follow the pathway of both demand for fossil fuels
and total CO2 emissions from fossil fuels in the NZE IEA.

In studies that rely on CO2 prices as the only climate policy measure, as is often the
case in global climate policy modelling, they can be interpreted as the marginal cost of
abatement [19]. In practice, other measures than CO2 prices are necessary. Hence, we
follow NZE IEA and the IPCC special report [1] to include various energy policies and
accompanying measures designed to reduce emissions such as CO2 prices, renewable
electricity production, and efficiency improvements.

By soft-linking the models, we insert endogenous variables from one model into
the other model. In this study, the endogenous regional GDP and global crude oil price
generated from GRACE are used as exogenous variables for FRISBEE to simulate the
1.5 ◦C scenario, so that FRISBEE captures the effects on GDP and global oil price of various
mitigation measures introduced in GRACE. We do not harmonize any other issues for both
models in order to keep the individual advantages of each model, as explained below.

Energy market models are, in many cases, better suited to identify various energy
goods and the associated costs and investments, but do not address the impacts on the
overall economy due to, e.g., interactions between markets of energy and those of other
goods. On the other hand, CGE models are generally better suited to study overall eco-
nomic impacts indicated by, e.g., GDP growth rates, market price effects, and structural
change. These differences imply that the two modelling approaches can contain different
instruments to achieve emission reductions. In addition, the effects of the same measures in
the models may create diverging results. While we soft-link two top-down models in this
study, it seems more common to soft-link a bottom-up energy system model and a CGE
model [20,21].

3.1. Model Description

FRISBEE is a recursive, dynamic partial equilibrium model simulating the global
energy markets with 2012 as the start year. Prices are in terms of 2012 USD and exchange
rates are assumed constant over time. The model is sequentially solved year by year. The
energy goods in the model cover coal, gas, oil, and bioenergy, and, further, electricity (and
heat) generated from feedstock of either the fossil or non-fossil fuels, assisted by a sector
of transformation and distribution. Global demand equals supply for each energy good.
Demands for secondary energy goods in households and industry are modeled as log-linear
functions of prices and income. In addition, autonomous energy efficiency improvement
(AEEI) is implemented in the model. FRISBEE elaborately models the global oil market and
regional gas markets while, in less detail, modelling the world markets for electricity, coal,
and renewables. The oil price in the world market is exogenous as the residual demand
is satisfied by OPEC as the difference between world demand and Non-OPEC supply
at the prevailing price. FRISBEE also elaborately describes oil and gas investments and
production, explicitly accounting for discoveries, reserves, and field development.

GRACE is a multi-sectoral, multi-regional recursive dynamic CGE model for the global
economy. The model is calibrated to mimic the global economy in 2014. All economic values
are stated in 2014 USD and exchange rates are assumed constant over time. Like FRISBEE,
the GRACE model is sequentially solved year by year. A regional economy consists
of 15 production activities including agriculture, forestry, fishery, three manufacturing
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sectors, services, three transport sectors, and five energy sectors (coal, oil, gas, refined
oil and electricity). Electricity is generated from feedstock of either fossil fuels or non-
fossil energy, assisted by a transformation and distribution sector. Global demand equals
global supply for each good. In GRACE, production of primary energy is described by
nested-CES functions. At the top level, energy output is a CES combination of a value-
added intermediate aggregate and natural resources. At the second level, the value-added
intermediate aggregate is a Leontief combination of intermediates and the value-added
aggregate (a CES combination of capital and labor).

As the functional forms of the demand are different in the two models (CES in GRACE;
Cobb Douglas in FRISBEE), it is difficult to directly compare the modelling output. How-
ever, we do not harmonize the functional forms as this can strengthen the analyses. We
emphasize that, other things being equal, substitution elasticities closer to one in GRACE
reduce the difference between the two models (as the substitution elasticities between the
various energy goods are all equal to one in FRISBEE).

3.2. Reference Scenarios

The IEA’s Stated Policies Scenario (STEPS) stands out as a reference scenario for energy
markets, energy security, and emissions and explores the implications of announced climate
targets as well as existing energy policies [22]. In STEPS, primary energy demand grows by
a quarter to 2040. Hence, there is no peak in global energy-related CO2 emissions until 2040,
as the effects of an expanding economy and population on energy demand outweigh the
need for a more efficient and lower-emissions energy system. By soft-linking GRACE and
FRISBEE, the reference scenario simulated by each model aligns with the regional energy
development of STEPS in [22], but we do not strive for a perfect match. STEPS ends in 2040,
but we simulate our models to 2050 as we will compare policy scenarios with NZE IEA up
to 2050.

Both models assume regional GDP growth rates, population development, and CO2
prices (and, to some extent, other policy-related variables) as in STEPS in [22]. Due to lack
of data, we performed various estimations and calculations regarding regional CO2 prices
and GDP growth rates, where pricing of CO2 emissions is by emissions trading systems or
taxes although GRACE and FRISBEE only cover CO2 (see [17,23]). If the simulated demand
(or supply) of the various energy goods in different regions is far off the levels in STEPS,
we adjust central parameter values.

In the reference scenario simulated by GRACE, population development is set ex-
ogenously as in STEPS. The GDP path of STEPS is obtained through adjustment of factor-
augmented technological changes with respect to capital and labor. Fossil fuel consumption
of STEPS is approximated by adjustment of the endowment of reserves (or natural re-
sources) available for production in these sectors and fossil fuel tax/subsidy rates for final
users besides efficiency improvement of energy for final use. CO2 emissions from fossil
fuels are then calculated by fossil fuel use multiplied with given emission factors (i.e., CO2
emissions per unit of fossil fuel use by sector and region). Hence, the population and GDP
growth in the reference scenario of GRACE are the same as in STEPS. Figures A1 and A2 in
Appendix A show that consumption of fossil fuels and emissions of CO2 in the reference
scenario of GRACE align quite well with STEPS.

In FRISBEE, assumptions on population development, GDP growth rates, and CO2
prices in each region are taken from Cappelen et al. [4], which is also based on STEPS in
IEA [22]. While renewable energy (incl. nuclear) in the power sector is endogenous in
GRACE, it is exogenous in FRISBEE. We include the regional volumes of non-fossils in the
power sector from STEPS in FRISBEE. Then, if the simulated demand (or supply) of the
various energy goods in the different regions are far off targets in STEPS, we mainly adjust
the income elasticities and the parameters for Autonomous Energy Efficiency Improvement
(AEEI). For oil, we, in addition, include the exogenous oil price taken from IEA [22].
Figures A3 and A4 in Appendix A show that consumption of fossil fuels and emissions of
CO2 in the reference scenario of FRISBEE also align quite well with STEPS.
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3.3. NZE Scenario in IEA

The NZE IEA scenario seems stricter than the scenarios in the IPCC special report,
in terms of reaching net zero of total CO2 emissions in 2050. The CO2 emissions include
emissions from burning fossil fuels and non-renewable wastes and emissions from fuel
transformation and industrial processes, with the subtraction of CO2 removals from carbon
capture, utilization, and storage (CCS). Focusing on the burning of fossil fuels, we study
the effects on energy markets in the two models to roughly follow the pathway of total
CO2 emissions in NZE IEA.

This study does not simulate removals of emissions for simplicity. Instead, we assume
an exogenous pathway of CCS to remove CO2 over time, following IEA (2021), allowing for
more emissions from fossil fuels in the two models equivalent to the exogenous amount of
CO2 removals, at the same level as in NZE IEA. Although a given path of greenhouse gas
(GHG hereafter) emissions can imply different temperature changes depending on which
climate model is used, the 1.5 ◦C scenario in this study is defined as roughly following
the pathway of total CO2 emissions from fossil fuels in NZE IEA. A discussion of which
measures to use in GRACE and FRISBEE to make the scenarios align with NZE IEA can be
found in Cappelen et al. [24].

3.4. The NZE Scenario in GRACE

We introduce six types of measures for all regions to reduce CO2 emissions (Table 1).
All measures other than CO2 taxes are introduced from 2020.

Table 1. The measures introduced in GRACE to achieve a net zero scenario.

Measure Description

CO2 taxes Regional CO2 taxes following NZE IEA are introduced [24]

Lower cost of power generation
Non-thermal electricity generation costs are reduced by 3.0, 1.5, and

0.5 per cent over the periods 2020–2030, 2030–2040, and
2040–2050, respectively.

Upper limit of thermal power The generation of thermal power in a year after 2020 is not allowed to
be more than in the previous year.

Increased substitution between fossils and power Substitution elasticities between the use of fossil fuels and electricity
are increased over time.

Improved energy efficiency
Energy-augmented technology for all final energy users increases by
1.5 per cent yearly in 2020–2030 and 1.0 per cent in 2030–2050 over the

level in the reference scenario.

Reducing fossil reservoirs
The natural resources used in fossil fuel production in 2050

dramatically reduce to become only 10 per cent for oil and 5.5 per
cent for coal and gas of the levels in the reference scenario.

Based on information available from [4], CO2 taxes by year and region were derived
from NZE IEA [24]. We introduce the CO2 taxes as differences between the CO2 prices in
NZE and STEPS, since our reference scenario simulated by GRACE does not introduce
explicit CO2 prices.

In NZE IEA, much more renewable energy is used to generate electricity than in STEPS.
The unit cost of renewable electricity is expected to decline over time. The assumed costs in
NZE IEA are generally lower than in STEPS, in both absolute values and changes over time.
A decline rate of 1 per cent of the costs means 1 per cent decline of all inputs to generate a
given amount of electricity. In GRACE, this is interpreted as a 1 per cent improvement in
Hicksian neutral technology, meaning if we keep the inputs of labor and capital constant,
the generated electricity increases by 1 per cent.

Four technologies are modelled in GRACE to generate electricity fueled by coal, gas,
oil and non-fossils. We assume that the cost for non-fossil-fueled electricity generation
declines yearly by 3.0 per cent during 2020–2030, 1.5 per cent during 2030–2040, and
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0.5 per cent after 2040, further than in the reference scenario, corresponding to a yearly rate
of 1.7 per cent over the whole period of 2020–2050.

In NZE IEA, no electricity is assumed to be generated from unabated fossil fuels in 2050
and only 2 per cent of electricity generation is from fossil fuels with CCS. As GRACE has not
included CCS so far, we introduce a modest restriction on electricity generated from fossil
fuels either with or without CCS, i.e., we set upper limits for thermal electricity generation.
Electricity generated from fossil fuels is assumed to be less than the previous-year level
from 2030.

In NZE IEA, the renewable energy (either electricity or other types) is assumed to
account for most of the final use in 2050. To achieve this, one must invest massively in infras-
tructure to facilitate the final energy users in replacing fossil fuels with renewable energy,
which implies that considerable barriers to use renewable energy will gradually be removed.
This makes it easier for the final users to substitute fossil fuels with renewable energy.

It has been argued that a high elasticity of substitution between clean and dirty inputs
in an economy is crucial for sustainable and green growth [25]. In the specifications
of nested CES production functions, [26] find that the substitution elasticity between
clean and dirty energy inputs can significantly exceed one (around 2 in the electricity
generation sector and 3 in the non-energy sectors), contrary to the findings in earlier
interfuel substitution literature.

Hence, in GRACE, we allow for gradually larger substitution possibilities between
fossil fuels and renewables by changing two parameters. Substitution elasticities between
electricity and fossil fuels gradually become higher for final users (including producers and
consumers) from 2020 to 2050, and so does the substitution elasticity between electricity
generated from fossil fuels and renewable energy sources. For final users, the values of
the substitution elasticities are assumed to increase from 0.5 (or 0.4) for producers (or
households) in 2020 by 6.5 per cent yearly until 2040 and then the yearly rate is gradually
lowered to 3.25 per cent in 2050, when the elasticities become 2.8 for producers and 2.2
for households. For the substitution elasticities between thermal and other types of power
generation (1.386 for base load and 0.472 for peak load in 2020), the rates are 5.5 per cent
until 2040 and are gradually lowered later until reaching 2.75 per cent in 2050. In 2050, the
substitution elasticities become 6.0 for base load and 2.0 for peak load.

In GRACE, energy efficiency is implemented directly as a change over time in the
parameter of energy-augmented technology in production functions and household con-
sumption functions. Hence, it differs from the widely used energy intensity (energy use
per unit GDP). If such a change is a 1 per cent increase, then it is interpreted as a 1 per cent
decrease in energy input (or energy use) to produce a given amount of output (or welfare
level), while all other inputs remain constant.

In NZE IEA, the energy intensity is reduced yearly by 4.2 per cent from 2020 to 2030
and 2.7 per cent from 2030 to 2050, compared to a decrease of 2.3 per cent in STEPS.
Following the pattern of the energy intensity over time in the NZE IEA scenario, we assume
that the parameter of energy-augmented technology for all final energy users of all regions
in NZE GRACE increases by 1.5 per cent yearly until 2030 and 1.0 per cent between 2030
and 2050 compared to the level in STEPS. As a result, to produce a given amount of output,
the assumed technology changes mean that the energy needed in 2050 is only 35 per cent
of the energy needed in 2020 in NZE GRACE, other things being equal.

In NZE IEA, it is suggested to stop establishing new coal mines and mine extensions,
and in addition to stop approving new oil and gas fields for development from 2021.
This implies that the fossil reservoirs available for production are gradually reduced over
time. Hence, this is interpreted as the gradual reduction of natural resources for fossil fuel
production. In GRACE, we assume that the natural resources for fossil fuel production are
gradually reduced from 2020 to become only 10 per cent for oil and 5.5 per cent for coal
and gas of the 2050 level in the reference scenario. This measure alone pushes up the cost
and price of fossil fuel production, resulting in less supply and demand.
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3.5. The NZE Scenario in FRISBEE

We apply the following strategy for all three fossil fuels to establish the NZE scenario
in FRISBEE. First, we implement the regional endogenous GDP growth rates from NZE
GRACE discussed in the last section. We introduce the CO2 taxes by year and region
derived from the NZE IEA scenario [24]. Further, we introduce exogenous amounts of
non-fossils (renewables and nuclear) in the power sector. We have the regional volume of
non-fossils per year and region for the Sustainable Development Scenario (SDS) in IEA [27].
We also have total global volume of non-fossils in NZE per year. We adjust the regional
figures in SDS upwards with global non-fossil NZE/global non-fossils SDS. This makes
electricity demand in FRISBEE align relatively close to the large increase in electricity
demand in NZE IEA. In addition, we increase the efficiency improvement in demand for
fossil fuels by 4 per cent to roughly align with IEA [4]. They apply a reduction in energy
intensity (energy use/GDP) of more than 4 per cent per year between 2020 and 2030 and
almost 3 per cent in the 2030-2050 period. Further, we apply the endogenous oil price from
NZE GRACE. We also run model simulations with a halt in new investments in gas reserves
and also reduce coal supply from 2021, which are key milestones in NZE IEA. Lastly, we
consider if a further increase in energy efficiency is necessary to reduce demand even more.
Hence, the measures we take into consideration are CO2 taxes (the same as that introduced
in GRACE), increased renewables in the power sector (following NZE IEA), increased AEEI
by 4 per cent for oil consumption and 8 per cent for coal and gas, the endogenous global oil
price from GRACE, a stop in gas investments, and a lower supply for coal.

4. Results
4.1. The Energy Markets in the NZE Scenario in GRACE

Figure 1 shows that oil demand in GRACE follows closely to the demand in NZE IEA
but is somewhat higher over the simulated period, ranging from around 200 to 400 Mtoe.
For the IEA, we only have data for specific years. In 2050, oil demand is reduced by 88 per
cent from the reference scenario, lower than the reduction of 94 per cent in NZE IEA from
STEPS (see Table 2). Gas demand in GRACE is always lower than in NZE IEA, above all
in 2030 when it is 22 per cent below the NZE IEA target. Gas demand in GRACE ends up
93 per cent lower than the level in the reference scenario in 2050, somewhat lower than the
95 per cent in NZE IEA. Coal demand in GRACE is almost the same as NZE IEA in 2020
but is higher in the subsequent years. In 2050, coal demand is 93 per cent lower than in the
reference scenario. This is lower than the reduction of 98 per cent in NZE IEA from STEPS
(see Table 2).

Table 2. Reduction in predicted final demand and CO2 emissions from reference scenarios in 2050;
per cent.

NZE FRISBEE NZE GRACE NZE IEA *

Oil 89 88 94
Gas 89 93 95
Coal 93 93 98
CO2 91 91 95

* Calculated from extrapolation for 2040-50. We add the amount of fossil fuel use with CCS in NZE IEA to allow
for additional emissions in the two models. With only unabated use of gas and coal, the emission reduction in
NZE IEA would have been closer to 100 per cent, especially when it comes to coal.

The relatively higher demand for coal and oil in GRACE leads to higher CO2 emissions
from fossil fuels than in NZE IEA (Figure 2). In 2030, emissions are almost the same as
in NZE IEA due to lower gas demand offsetting the effect of higher coal and oil demand.
In 2050, emissions are 91 per cent below the reference scenario. This is lower than the
reduction of 95 per cent in NZE IEA (see Table 2).
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Table 3 shows the effect of each measure on oil, gas, and coal demand. Introducing
CO2 taxes reduces oil demand only by 2 per cent in 2050 as oil can hardly be substituted
by other energy goods at this level of substitution possibilities, not even for electricity in
transport. The effect of the two measures directed towards power generation contributes
only marginally to the reduction in oil demand, which is due to limited substitution
possibilities, assumed as oil is only to a small extent used in power generation on a global
scale. With increased substitution possibilities between oil and electricity, oil demand
becomes 14 per cent lower than in the reference scenario. With improved efficiency of
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energy used by final users, oil demand is further reduced to become 21 per cent lower than
in the reference scenario. When we assume reduced natural resources for oil supply, oil
demand declines further to 88 per cent below the reference level in 2050.

Table 3. Reduction in predicted primary energy demand in 2050 due to each additional measure in
NZE GRACE.

Measures Adopted in GRACE
2050

Oil Gas Coal

Consumption in reference scenario 4797 mtoe 5114 mtoe 3699 mtoe
CO2 taxes 2% 25% 10%

+ Cost changes in power generation 2% 25% 11%
+ Upper limits on thermal power 2% 30% 15%

+ Increased substitution between fossil fuels and renewables 14% 56% 62%
+ Energy efficiency 21% 60% 66%

+ Reduced natural resources for fossil fuel production 88% 93% 93%

Surprisingly, introducing CO2 taxes has a much larger effect on gas demand than
oil and reduces gas demand by 25 per cent in 2050, mainly because of relatively higher
carbon taxes per monetary unit (USD) for gas users in most regions. The carbon tax in
NZE GRACE is the same for each ton of CO2 emissions in a region. As the carbon content
of gas is lower, the carbon tax per ton gas is lower than that per ton coal. However, in
the reference scenario simulated by GRACE, the gas price is already lower than the coal
price in 2050 since the stated policies of governments encourage gas consumption rather
than coal consumption. As a result, the carbon tax per USD gas becomes higher than that
per USD coal. The two measures directed towards power generation further reduce gas
demand by 5 percentage points. Easier substitution between electricity and fossil fuels
for final users makes gas demand 56 per cent lower than in the reference scenario in 2050.
Improved energy efficiency reduces gas demand further by only 4 percentage points from
the reference level. Reduced natural resources for gas supply further reduces gas demand
by 33 percentage points from the reference scenario.

Introducing CO2 taxes reduces coal demand by 10 per cent from the reference scenario,
partly because coal is not easy to replace in the main coal-use regions such as, e.g., China,
although coal is more carbonaceous than gas and is hit more by the CO2 tax. The joint effect
of the two measures directed towards power generation reduces coal demand further by
5 percentage points. Increased substitution possibilities between electricity and fossil fuels
leads to considerable reduction in coal demand by a further 43 percentage points from the
level in the reference scenario. Improved energy efficiency contributes to reducing demand
by 4 percentage points. When we, in addition, restrict natural resources availability for coal
production, total demand in 2050 is reduced by 93 per cent from the reference level.

GDP in NZE GRACE is always higher than in NZE IEA from 2020 to 2050, and the
difference slightly increases from 2040 (see Figure 3) due to, e.g., the ignorance in GRACE
of the COVID-19 pandemic. This partially explains why the CO2 emissions in NZE GRACE
are greater than in NZE IEA. However, GDP in NZE GRACE is lower than in the reference
scenario (STEPS) and the difference increases over time. Notice that the model does not
consider the cost of implementing the various measures and the simulated GDP might to a
large extent underestimate the potential GDP losses to achieve the 1.5 ◦C scenario. In the
measures we introduced, only CO2 taxes and reduced fossil fuel resources lead to GDP
losses, while we do not consider the costs of the extensive use of renewable energy and the
high pace of energy efficiency improvement.
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Gas is the least carbonaceous fossil fuel compared to coal and oil. Figure 4 shows the
sectoral shares of global gas demand in 2050 in the reference scenario and NZE GRACE.
The shares of gas demand increase in four sectors, power generation, other transport than
air and water, gas production, and crude oil production, compared to the shares in the
reference scenario. The reason is that it is relatively harder to replace gas with renewables
in these sectors.
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4.2. The Energy Markets in the NZE Scenario in FRISBEE

Figure 5 shows the aggregated effects on energy markets. Oil demand in FRISBEE
is somewhat higher than demand in NZE IEA until 2040 (note that we do not consider
short-term effects such as the decline in oil demand in 2020 that was due to the COVID-19
pandemic). In 2050, oil demand is reduced by 89 per cent from the reference scenario,
almost at the same level as NZE GRACE and somewhat lower than the reduction of 94 per
cent in NZE IEA from STEPS (see Table 2). We emphasize that the differences between our
model results and NZE IEA in 2050 also are shown in Figures 1 and 5.
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Figure 5. Comparison of primary fossil fuel consumption predicted in NZE IEA and NZE FRISBEE.
Markers show the predicted values for the years available from IEA [4].

Gas demand in FRISBEE is lower than NZE IEA in 2030, but at the same level in 2040.
Gas demand in FRISBEE ends up 89 per cent lower than the level in the reference scenario
in 2050, somewhat lower than the reduction of 93 per cent and 95 per cent in NZE GRACE
and NZE IEA, respectively (see Table 2). The gas supply in FRISBEE is affected by, e.g.,
prior investments (which again is a function of the extensive reserve database). Hence, it is
difficult to further adjust demand-side parameters to reduce demand even more (as it must
equal supply).

Coal demand in FRISBEE is also lower than in NZE IEA in 2030, but at the same level
in 2040. Further, in 2050, coal demand is 93 per cent lower than in the reference scenario.
This is at the same level as in NZE GRACE and somewhat lower than the reduction of
98 per cent in NZE IEA from STEPS (see Table 2).

The effects on fossil fuels in FRISBEE lead to a decline in CO2 emissions, as shown
in Figure 6. In 2030, emissions are lower than in NZE IEA due to lower coal and gas
demand (even if oil demand is somewhat higher), but at the same level a decade later. In
2050, emissions are 91 per cent lower than in the reference scenario. This is at the same
level as NZE GRACE and somewhat lower than the reduction of 95 per cent in NZE IEA
(see Table 2).
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predicted values for the years available from IEA [4].

Table 4 shows the effects of each measure on oil, gas, and coal demand in 2050. We
emphasize that demand for all energy goods in either households or industry are log-linear
functions of end-user prices, income, and AEEI, i.e., an increase in AEEI of x per cent leads
to a decline in demand of x per cent for given prices and income.

Table 4. Reduction in predicted primary energy demand in 2050 due to each measure in
NZE FRISBEE.

2050

Oil Gas Coal

Reference scenario 4703 mtoe 5318 mtoe 3475 mtoe
CO2 taxes and increased renewables in power sector 14% 33% 53%

+ AEEI = 4% (Includes increased bioenergy in households and industry.) 67% 80% 77%
+ Endogenous oil price 89%

+ Stopping gas investments (Oil demand is not influenced by investments (as
explained in the text).) 85%

+ Lower supply for coal 84%
+ AEEI = 8% 89% 93%

Let us first take a closer look at oil demand. We see from Table 4 that introducing
CO2 prices and increased renewables in power production reduces oil demand only by
14 per cent in 2050. The reason is primarily that oil is hardly used in power production on
a global scale. With an AEEI of 4 per cent, which is roughly in line with improvements in
energy intensity in NZE IEA and NZE GRACE, demand is further reduced. In addition,
we insert the endogenous oil price from NZE GRACE. This oil price is around four times
higher than the oil price in the reference scenario in FRISBEE, and leads to a reduction in
oil demand by 89 per cent from the reference scenario.

We emphasize that stopping new oil investments from 2021 does not change oil
demand. OPEC satisfies the residual between demand and non-OPEC supply at the
exogenous oil price, that being the reference oil price in STEPS or the endogenous oil price
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in NZE GRACE. A credible defense of the price target requires surplus capacity. In our
model, we therefore assume that OPEC will always invest sufficiently to maintain a capacity
surplus of 10 per cent. As demand and non-OPEC supply are determined independently
of each other, stopping non-OPEC investment in new reserves has no effect on total supply
(=demand) (In NZE FRISBEE, OPEC manages to keep the required surplus capacity from
2021, when they increase production as non-OPEC supply declines).

In the scenario with the endogenous oil price from NZE GRACE, OPEC is thrown out
of the market if non-OPEC is allowed to continue to invest. Hence, we show the effect of
stopping investment in the scenario with AEEI of 4 per cent and with the reference oil price.
Figure 7 shows that the world oil supply declines by almost 70 per cent from 2021 to 2050.
This is mainly due to a relatively steep decline in OPEC production and, to some extent,
a moderate decrease in non-OPEC supply. OPEC satisfies the residual demand between
global supply (=demand) and non-OPEC production over the period. Stopping investment
in non-OPEC countries leads to a large reduction in their supply. However, world supply
does not change as OPEC increases production to keep demand at the prevailing oil price.
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Figure 7. Oil supply; world, OPEC, and non-OPEC in various scenarios.

If we assume that OPEC, instead of increasing supply to keep production constant,
stops investments in non-OPEC when AEEI is 4 per cent, this reduces oil supply and con-
sumption by 90 per cent from the reference scenario in 2050. Thus, a more realistic energy
efficiency improvement of 4 per cent and a reference oil price would then be sufficient to
let oil demand be relatively close to the NZE IEA target. However, we implement the high
endogenous oil price from NZE GRACE and demand is reduced by 89 per cent from the
reference scenario.

Introducing CO2 prices and increased renewables in power production reduces gas
demand by 33 per cent, mainly because gas is used in power production. By introducing a
yearly AEEI of 4 per cent, gas demand is reduced to 80 per cent of the reference level in 2050.
Stopping all new investments as from 2021 clearly also has an impact on gas demand as the
reduction now is 85 per cent. By applying an AEEI of 8 per cent, demand declines further to
89 per cent of the reference scenario in 2050. We might add that stopping investment before
introducing the AEEI of 4 per cent would make this measure stand out as relatively more
important than the impression one gets from Table 4. Figure 8 shows world gas supply in
various scenarios. When we move from a situation with an AEEI of 4 per cent to a situation
where we, in addition, stop new investments, supply is only reduced by around one-third
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in 2050. We see that, if we, in addition, increase energy efficiency improvements, there are
still enough profitable proven reserves today to sustain production until 2050 at around
one-fifth of today’s level. Production is increasingly concentrated in resource-rich countries
due to the large size and slow decline rates of their existing fields. In 2050, a large part of
global gas is produced in the Middle East and Russia.
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Figure 8. World gas supply in various scenarios.

Introducing CO2 taxes and increased renewables in power production has a much
larger effect on coal than on gas, as coal demand declines by 53 per cent from the reference
scenario. Coal is also used in power production, but the main reason is that coal, in addition,
is more carbonaceous than gas and thus is hit more by the CO2 tax. By introducing a yearly
AEEI of 4 per cent, coal demand declines by 77 per cent from the reference level. By
suppressing coal supply further, demand is 84 per cent lower in 2050. By applying an
AEEI of 8 per cent, coal demand declines further to 93 per cent from the reference scenario
in 2050.

5. Discussion

According to [4], technology alone is not enough to reach NZE in 2050. The active
support of people is crucial. The report does not describe this as behavioral changes, but a
mixture of low carbon technologies and people’s engagement, such as “buying an electric
vehicle or insulating a loft”. However, it is emphasized that behavioral changes—meaning
adjustments in everyday life that reduce, e.g., excessive energy consumption—are also
needed. IEA [4] argues that this is especially important in richer parts of the world where
energy-intensive lifestyles are the norm. Behavioral changes include cycling or walking
instead of driving, turning down heating, and going on holiday nearer to home. Total
accumulated CO2 emissions in the NZE between 2021 and 2050 are around 4 per cent less
than they would be without such behavioral changes.

Neither GRACE nor FRISBEE include behavioral changes or changes in preferences.
Behind demand and supply lies traditional maximization of utility and profit. However,
if we include behavioral changes to the extent that the IEA does, reduction in emissions
in 2050 in both models might increase closer to the level of NZE IEA, as Table 2 shows.
Further, we included both energy use with CCS and unabated use in our simulations when
making the comparison in Table 2. Hence, if CCS were included in our models, reduction
in energy use and emissions from the reference scenario could be closer to 100 per cent.
Further, opposed to the IEA, we did not include hydrogen in our scenarios.
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Even with the introduction of CCS and energy alternatives such as hydrogen, strict
measures are necessary to reduce emissions to achieve the demand required by a 1.5 ◦C
scenario. A major worldwide push to increase energy efficiency is an essential part of the
efforts to reduce energy use and emissions. We introduced an efficiency improvement of
8 per cent per year in FRISBEE for gas and coal, but we see from Table 2 and the discussion
related to the table that large reductions in emissions can be obtained by an AEEI of 4 per
cent. For oil, an AEEI of 4 per cent is enough. Both NZE GRACE and NZE IEA operate
with reductions in energy intensity. Both apply a reduction in energy intensity (energy
use/GDP) of around more than 4 per cent per year between 2020 and 2030 and almost
3 per cent in the 2030–2050 period. According to IEA [4], 4 per cent is about three times the
average intensity decline rate achieved over the last two decades. To accomplish such an
increase would, of course, be a very challenging task.

The IEA has been criticized for applying exogenous growth in GDP in their scenarios.
Mohn [28] emphasizes that empirical models of energy economics and climate change
should open for the indigenization of economic activity. For the IEA, this could allow
for variation in energy prices and policies to imply corresponding variation in economic
growth between the different scenarios. IEA [4] uses similar exogenous GDP growth in both
NZE and the reference scenario. GRACE endogenizes the growth in NZE, which is inserted
in NZE FRISBEE and leads to a somewhat lower growth compared to the STEPS scenario.
However, we did not take into consideration all costs connected to the climate policies, e.g.,
efficiency improvement, and how these costs may affect future growth. Empirical estimates
of such costs vary considerably and depend on sectoral and regional environment [11].

We apply the endogenous oil price from NZE GRACE in the NZE FRISBEE scenario.
This oil price is four times higher than the reference oil price in STEPS, reaching over 400
USD (2012 prices) per barrel in 2050. Is this realistic? IMF [29] has shown that the NZE
scenario can be consistent with both increasing and declining oil prices. When they only
consider demand-side policies, oil prices could decline to 20 USD in 2030. When reductions
in oil production are driven by supply-side measures, like the one we implement in NZE
GRACE, this would result in a strong upward pressure, taking prices to roughly 190 USD
a barrel in 2030. The latter oil price is somewhat higher than our price in 2030 in the
NZE scenarios.

In the simulation of GRACE, the lower availability of natural resources in fossil
production is crucial for reducing CO2 by pushing up the cost of fossil fuel production.
On the other hand, we must introduce relatively high levels of efficiency improvement in
FRISBEE for gas and coal while allowing extraction to phase out gradually over time to
approach the emission reduction level of NZE IEA. As a result, the gas and coal prices are
relatively low in FRISBEE and can potentially result in more gas and coal consumption, a
well-known phenomenon of rebound effects [11,12]. As FRISBEE is a partial equilibrium
model, the model does not consider the potential economy-wide rebound effects on energy
consumption of energy efficiency improvement. However, the rebound effects are taken into
account in the macroeconomic model GRACE and thus lead to more energy consumption,
which has to be controlled by supply-side measures, e.g., the lower availability of natural
resources in fossil production in our case.

When we introduce CO2 taxes, increased use of renewables, and an efficiency im-
provement of around 4 per cent, emissions are reduced more in FRISBEE than in GRACE
in 2050. In NZE GRACE, lower availability of oil resources, but also to some extent gas
and coal resources, are paramount to reach the desired emission targets. In NZE FRISBEE,
it is to some extent important that gas investment in new reserves is stopped from 2021
and that coal supply is reduced. Oil investments decline rapidly due to the high oil price
implemented from NZE GRACE. One might question if we can see signs of a halt in devel-
opment of new oil, natural gas, and coal reserves or a reduction in investments. IEA [30]
concludes that, even if the pace of growth in renewable investment has accelerated since
2020, today’s fossil fuel spending is too high for a pathway aligned with limiting global
warming to 1.5 ◦C.
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Another milestone in NZE IEA is in power generation, where overall net-zero-emissions
electricity is achieved by 2040 globally. This requires no additional coal power stations,
with generation from unabated plants phased out by 2040 globally. Unabated natural
gas power generation must fall by 90 per cent globally by 2040 from 2020. Global Energy
Monitor [31] shows that a large amount of new coal-fired power capacity is still being
built. In addition, Wilson et al. [32] conclude that these milestones on the route to NZE
are at odds with the current trajectory of our energy system, with significant expansion
planned in both fossil fuel reserves and fossil fuel power. They are also at odds with the
financial flows supporting this expansion, despite financial institutions with 130 trillion
USD in assets committing at COP26 in Glasgow in 2021 to align their portfolios with net
zero by 2050. For fossil fuel production, the case studies in Wilson et al. [32] show that
oil and gas companies’ financing are continuing to expand fossil fuel reserves, allocating
approximately 10 per cent of capital expenditures (CAPEX) to exploration-related activities.

6. Conclusions

A net zero pathway to 2050 in the energy sector was created in this study by soft-
linking an energy model with a macroeconomic model. Based on a reference scenario
assuming the same population growth, GDP growth rates, and CO2 prices, both models
were modified to roughly follow the same pathway of both demand for fossil fuels and total
CO2 emissions from the combustion of fossil fuels as in the NZE scenario from IEA [4]. We
apply an endogenous GDP effect in our NZE scenarios, contrary to, e.g., NZE IEA where
GDP growth is exogenous. To achieve our NZE scenarios, various mitigation measures
were implemented simultaneously in our models, including CO2 taxes, improved energy
efficiency, more renewables in electricity production and other sectors, easier substitution
between electricity and fossil fuels for final users, and drastically limiting future production
of fossil fuels.

We find that, to achieve the net zero pathway, the energy model needs relatively high
levels of efficiency improvement and the macroeconomic model needs relatively strict
supply-side measures to reduce production of fossil fuels. This is likely related to the
potential role of economy-wide rebound effects on energy consumption of energy efficiency
improvement. Such rebound effects are simulated by the macroeconomic model but cannot
be taken into consideration by the partial equilibrium energy model.

We conclude that net zero is possible by introducing very strict measures in a modelling
world. However, the rate of, e.g., energy efficiency improvement needed is far above what
has been achieved in the past. Further, even if renewables are on the rise, the world does
not seem to be on a trend of sufficiently declining fossil fuel use, as investment in both
new reserves and new fossil power plants continues. This reminds us what is needed for
a 1.5 ◦C world, although it will be very challenging, if not impossible, to make different
governments agree on such measures.
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Appendix A. More Details on Reference Scenarios

How does the reference scenario in GRACE compare with STEPS? Fossil fuel con-
sumption and CO2 emissions are slightly different from STEPS (Figure A1) due to sectoral
and regional differences between STEPS and the reference scenario of GRACE. We see
from Figure A1 that oil demand is generally marginally lower in GRACE than in STEPS
and, in 2040, demand is 2 per cent lower. Demand for coal and gas is almost the same as
in STEPS. Figure A2 shows that CO2 emissions in GRACE are marginally higher than in
STEPS—emissions are 3 per cent higher in 2040.

How does the FRISBEE reference scenario align with STEPS? We see from Figure A3
that oil demand generally is marginally higher in FRISBEE than in STEPS up to 2030, but is
marginally lower in 2040. Demand for gas is generally lower than in STEPS and is almost
9 per cent below the level in STEPS in 2040 (A simple extrapolation of gas demand in STEPS
after 2040 shows that demand in FRISBEE is 12 per cent higher in 2050). The gas price is
endogenous in FRISBEE and supply is affected by, e.g., prior investments (which again is
a function of the extensive reserve database). Hence, it is difficult to adjust demand-side
parameters to change demand (as it equals supply). Coal demand is generally marginally
higher than in STEPS up to 2030, but is slightly lower in 2040 (We also adjust demand for
electricity and bioenergy to the final end-users households and industry). Figure A4 shows
that CO2 emissions in FRISBEE ends up marginally lower than in STEPS in 2040.
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Abstract: Global warming resulting from greenhouse gas emissions has been a worldwide issue
facing humanity. Simultaneously, governments have the challenging task of striking a judicious
balance between increased economic growth and decreased carbon emissions. Based on the energy-
environment-economy triple coupling (3E-CGE) model, we endogenously integrate climate-friendly
technologies into the model’s analysis framework through logic curves and refine and modify the CGE
model’s energy use and carbon emission modules. We conduct a scenario simulation and sensitivity
analysis on carbon tax, carbon-trading, and climate-friendly technological progress, respectively. The
results reveal that carbon tax and carbon trading contribute to reducing carbon emissions in the
short-term but achieving the goals of peak carbon and carbon neutrality will cause the collapse of the
economic system. In the long-term, climate-friendly technologies are key to achieving the dual carbon
goal; the development of such technologies can also stimulate economic development. The best path
for China to achieve its dual carbon goals and economic development in the next 40 years involves
effectively combining the carbon tax, carbon trading, and a climate-friendly technological progress.
Specifically, China can begin trading carbon in high-emissions industries then impose industry-wide
carbon taxes.

Keywords: carbon neutral; endogenous technological progress; computable general equilibrium
analysis; economic development; carbon tax; carbon trading

1. Introduction

Recently, global natural disasters caused by climate change have become more fre-
quent, with serious social and economic effects. Climate change has significantly impacted
China’s natural ecosystem and socio-economic system. Fossil energy shortages, dramatic
price increases, and ecological damage are bottlenecks to future economic growth. In
the 40 years of reform during China’s opening-up period, the nation’s rapid economic
growth has been accompanied by heavy resource and environmental costs for development
due to an over-reliance on resources and factor inputs. On 22 September 2020, China
pledged to the world at the general debate of the 75th UN General Assembly that China
would scale up its nationally determined contributions, adopt more vigorous policies and
measures, and that China aimed to peak carbon dioxide (CO2) emissions before 2030 and
achieve carbon neutrality before 2060. To achieve this “30–60” target, the Chinese gov-
ernment should adopt various approaches to reduce carbon emissions, including various
policy-related mechanisms.

Many realistic development needs suggest that achieving peak carbon and carbon
neutrality involves extensive, profound economic and social systemic change, and that
China’s energy- and consumption-related, industrial, and regional structures will expe-
rience significant adjustments in the next 40 years. Therefore, China urgently requires a
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more realistic carbon-neutral model for scenario simulations to indicate the nation’s path
toward economic transformation. The relevant carbon-emissions models can be divided
into 3 categories: (1) top-down models, such as the computable general equilibrium (CGE),
dynamic integrated climate-economy, and regional integrated climate-economy models.
These analyze the impact of reducing emissions from a macroeconomic perspective, provid-
ing useful information on the effects of climate environmental policy implementation [1–3].
(2) Bottom-up models, such as the Program of Energy and Climate Economics (PECE-
LIU2020) and the low emissions analysis platform energy model, focus on production-level
processes and technologies. These simulate energy consumption and technologies under
different target scenarios from the local equilibrium perspective, providing enhanced in-
sights to examine emissions-reduction sectors and initiatives [4]. (3) Combining the former
2 approaches can result in a comprehensive evaluation model. Such models emerged in the
1990s, predominantly as a result of climate change research, and represented multidisci-
plinary, policy-oriented application approaches developed for integrated evaluations, such
as the China greenhouse gas emissions scenario-analysis model, the regional air pollution
information and simulation model from the International Institute for Applied System
Analysis, the Stockholm Environment Institute’s clay-and-sand model, and the Imperial
College of Science, Technology, and Medicine’s all-scale atmospheric model [5,6]. Such
models combine macro- and micro-economic sectors and can examine the economic losses
that the economy and society must sustain while meeting specific emissions-reduction
targets [7].

Given the imperative concern in implementing a pathway toward carbon neutrality in
China at a minimum cost, this paper will first reveal the macroeconomic effects of imple-
menting a carbon policy and technological progress in a different way, using an endogenous
technology (3E-CGE) model. From a temporal perspective, this research aims to understand
how developing climate-friendly technologies will profoundly impact China’s economic
structure. Second, this research will comprehensively study a combination of carbon-based
policy and climate-friendly technology in the context of China’s unique socio-economic,
energy, and political contexts.

This study also provides the following contributions: first, we establish a 3E-CGE
model, for the first time, with dynamic characteristics of the economy-energy system-
carbon emission linkage. The model can portray the trajectory of carbon emissions, the
required policies and investments in climate-friendly technology development, and the
systemic impacts on the national economy over the next 40 years. Second, a logistic curve
is introduced in the model to describe the cycle of technological improvement. The model
with endogenous technological progress is closely associated with the investment in the
energy sector, which can more clearly reflect the cause of technological development and its
effect on the economy-energy-environment system. Third, we simulate the trade-off effects
of decreased carbon emissions policy and increased technological progress, and provide the
most appropriate development path for China, that is to use a combination of carbon tax and
carbon trading policy instruments, while steadily developing climate-friendly technologies.

The remainder of this paper is organized as follows. Section 2 reviews current literature
and outlines prior contributions. Section 3 integrates the carbon and technology progress
modules with the energy sector to develop a dynamic CGE model. Section 4 discusses
peak carbon emissions and the GDP growth rate, and three scenarios will be established
and simulated. Section 5 considers the simulation results to analyze the strategies for
carbon implementation. Section 6 concludes by proposing several corresponding policy
suggestions for China to better realize the “30–60” target and low-carbon transformation.

2. Literature Review

The current literature has various paths of discourse regarding carbon neutrality and
carbon emission reduction. For example, researchers have focused on the development
of energy technologies to reduce carbon emissions [8–11], as well as carbon taxes and
carbon trading [12,13]. A few scholars have also begun to study the long-term dynamics of
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carbon prices [14]. Further, some CGE models have attempted to simulate development
toward carbon neutrality, but most of the existing CGE models consider technology as an
exogenous factor and do not adequately describe the role of climate-friendly technologies
in the context of carbon neutrality goals. Therefore, this paper considers these previous
studies’ results in an attempt to solve this problem.

First, existing literature primarily adopts a “bottom-up” model that focuses on describ-
ing the development path of energy technologies. Relatively few studies have addressed
carbon neutrality’s impact on China’s macro-economy and micro-economy at the industry
level. The Institute of Climate Change and Sustainable Development at Tsinghua Univer-
sity [15] proposed that China should further increase its overall efforts to reduce emissions
by promoting breakthroughs in zero- or negative-emissions technologies, strengthening
carbon sink-absorption and carbon-removal technologies, and achieving net-zero emissions
of all greenhouse gases as soon as possible. Adair Turner et al. [16] comprehensively as-
sessed China’s zero-carbon society to argue that the realization of China’s carbon neutrality
vision requires the complete decarbonization of the power-generation sector; maximum
electrification of all economic sectors; and the large-scale application of hydrogen and
biomass energies as well as carbon capture, utilization, and storage technologies.

Their study details the development path of an energy system to achieve carbon neu-
trality in China, but only focuses on such economic growth indicators as GDP, consumption,
investments, and import and export trades. Academic discussions on carbon emissions and
economic growth have long focused on testing whether the environmental Kuznets curve
hypothesis is tenable [17–21]. However, this curve cannot accurately predict the future
relationship between the economy and environment, and any study of carbon neutrality in
China should not be limited to an economic growth perspective. How can we better opti-
mize China’s economic structure? Existing literature has yet to comprehensively analyze
industrial restructuring, development modes among non-energy industries, and changes
in consumption patterns under carbon neutrality goals; further, any attempts in prior
literature are inconsistent. For example, Liu and Cai [22] studied the impacts of technolog-
ical progress, changes to the industrial structure, and price changes on the intermediate
consumption level in the national economy through direct consumption-coefficient and
intermediate demand consumption matrices as applied to three major industrial sectors.

Second, the path toward carbon neutrality in China is still unclear, and academic
community is still exploring the most feasible solution. According to the Coase theo-
rem, the government can correct negative externalities by internalizing environmental
costs into the production and consumption costs of relevant emitters through policy mea-
sures or market actions. At present, generally accepted carbon pricing methods primar-
ily include carbon taxes and trading; however, most related studies on these topics are
short-term [23–32]. For example, Galeotti and Larsen [17] found that carbon taxes have not
performed well in Norway, as a lower energy intensity and changes in the nation’s energy
structure led to a 14% decrease in carbon dioxide emissions, while a carbon tax reduced
carbon dioxide emissions by only 2%. Mardones and García [13] found that implementing a
carbon tax (US$5 to US$131 per ton) led to no significant decrease in agricultural emissions.
Yang et al. [33] used the CGE model to study different carbon tax prices’ impacts on China’s
provincial economy. The results reveal that levying a Chinese yuan (CNY) 40 carbon tax
effectively reduced CO2 emissions and negative effects.

The latest related research using the CGE model still focuses on examining economic
impacts and decreases in carbon emissions through implementing appropriate carbon tax
rates [34]. Nong et al. [35] analyzed the impacts of one carbon emissions-trading system
on the environment and economy to demonstrate that such a system was effective in
Vietnam, as it successfully decreased emissions at a low cost. Choi et al. [36] used the CGE
model to analyze the usefulness of South Korea’s carbon-trading policies and observed
that the best carbon price to promote emissions trading is US$9.14 per ton. Some existing
studies on the long-term dynamics of carbon prices have not been conducted in a carbon
neutrality context. Ntombela et al. [14] used a dynamic CGE model to assess carbon tax
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policies’ potential impacts on South Africa’s agriculture and food sectors, among others.
The results indicate that implementing a carbon tax by 2035 will reduce carbon dioxide
emissions by 33% compared to a baseline scenario but would result in welfare losses of
US$5.9 billion. Zhou et al. [37] used the economic-energy-environment CGE model to
analyze the impacts of different carbon tax rates on China’s economy and agriculture from
2020 to 2050. They noted that a carbon tax’s short-term effects in reducing carbon dioxide
emissions are superior to the long-term effects of reducing carbon intensity and improving
energy efficiency.

However, some scholars have illustrated that the carbon tax has no significant impacts,
but it also has dual emissions-reduction effects. Shi et al. [38] evaluated carbon trading’s
impact on China through the CGE model to reveal that a carbon-trading mechanism can
effectively reduce both carbon and energy intensity and promote processes to conserve
energy and reduce emissions in China. This mechanism also has certain simultaneous,
negative impacts on economic output. Vera and Sauma [39] pointed out that while a
carbon tax as a tax system can promote energy conservation and decreased emissions,
it will inevitably redistribute wealth to a certain extent, affecting macroeconomic costs
and social welfare. Lin and Jia [34] analyzed the carbon tax system’s effects on energy,
the environment, and the economy to discover that the carbon tax rate follows the “law
of increasing marginal emissions reduction.” Considering the driving factors to decrease
emissions, the general consensus at this stage is that technological progress, improved
efficiency, and adjustments to the energy structure are the main driving factors to decrease
carbon dioxide emissions [40].

Third, most studies of existing CGE models regard climate-friendly technologies as a
given exogenous factor [41,42], which does not fully illustrate the role of climate-friendly
technology given the goal of carbon neutrality, thus failing to establish an effective link
between the economy, energy, and the environmental system. Climate change research
has mostly incorporated the theory of exogenous technological progress, with improved
energy efficiency used to represent technological progress. The flaw in this theory is that
technological progress is regarded as a black-box operational process unaffected by price-
induced and innovative activities, which cannot truly reflect the process of technological
progress. Another application of exogenous technological progress theory in the energy
technology field is a purported “backstop” technology. This typically refers to a technology
that has been developed but has not yet entered the market or will enter the market at
a certain period in the future, thus changing the energy technology progress. Similarly
to automatic energy efficiency index (AEEI), Löschel [43] argues that this assumption is
unsatisfactory, because it cannot accurately predict a technology’s future details and costs
in the future.

The recent endogenous economic growth theory posits that long-term economic
growth comes from the positive external effects of knowledge accumulation, and the eco-
nomic system can influence this accumulation of knowledge by adjusting R&D investments,
thereby promoting technological progress within the system [44–46]. Generally, models
based on exogenous technological progress theory assume that technological progress is
a definite time trend, while models based on endogenous technological progress theory
regard knowledge accumulation as a form of capital accumulation that represents tech-
nological progress [47]. The application of endogenous technological progress theory in
climate change takes many forms. Existing literature using endogenous technologies to
study low-carbon and economic growth includes dynamic input-output models and CGE
models [48]. Pan [49,50] regards the input-output coefficient as the result of combining
a specific technology in an early stage and an existing specific technology and believes
that technological progress is the process of alternately updating old and new technolo-
gies. The research designed a dynamic input-output model and introduced technological
progress and diffusion as endogenous variables; R&D investments were used to drive
new technological progress along a logical curve until maturity and decay. Further, fixed
assets installation investments were used to diffuse new technologies and eliminate old
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technologies. The result of this alternate adjustment of new and old technologies within the
industry promoted an industrial transformation, which then led to changes in the entire
industrial structure.

This method was subsequently applied to study the replacement of fossil and non-
fossil energy technologies in China’s power industry, as low-carbon energy technologies
will significantly change China’s power industry structure and economic structure in the
future. Wang et al. [51] constructed an endogenous technological progress CGE model
to study China’s climate change issues. The model focuses on technological progress in
energy and environment modules. According to the theory of endogenous technological
progress, the model separates the R&D matrix from the intermediate input sector, adds a
knowledge capital input to the factor sector, and increases R&D investments in the final
demand column. Kristkova et al. [52] introduced public R&D investment as a sector in the
CGE model to study its effect on agricultural productivity and food security.

Current works on endogenous technological progress involving climate change and
economic growth primarily considers R&D investments—or specifically, separates the R&D
department—or conducts research with R&D investments as one element. This method
not only creates spillover effects and inconsistency between social and private benefits, but
also controls the development path of technological progress; thus, it is more suitable for
short-term research [53]. Judging from a 40-year simulation of China’s developing carbon
neutrality, technological progress has significantly impacted both carbon neutrality and
economic growth. Therefore, a more suitable long-term endogenous technological progress
model is needed to explore China’s decreased carbon emissions and path of development.

Generally, research using the CGE model to simulate carbon tax and trading policies
and evaluate their role in decreasing carbon emissions has been relatively mature, and sev-
eral discussions have included the Kuznets curve of carbon emissions and economic growth.
However, these studies lack systematic, long-term characteristics, and rarely involve the
mechanisms of economic structural adjustments and their specific effects on carbon dioxide
emissions. Most of these also ignore endogenous technological progress’ impacts on the
economy-environment system. Additionally, relevant research on China’s carbon neutrality
is still in an early stage, and primarily focuses on practical approaches, technologies, and
standards. Detailed empirical research is required, and especially studies of carbon neutral-
ity targets’ impact on economic transformations using a macroeconomic model. Therefore,
this study is based on realistic economic theories, methods, and data from China, which
has proposed an integrated energy system comprised of regional economic and social
data. This system can be used to develop an integrated energy-environment-economy
CGE (3E-CGE) model for China that evolves an endogenous, climate-friendly technological
innovation process to study climate change policies. This study will focus on the trajec-
tory of carbon emissions and the policies and investments required for climate-friendly
technological developments. It will also examine the systemic impacts on the national
economy, including changes to the industrial structure and energy system, and adjustments
to consumption patterns from 2020 to 2060. Ultimately, this work will explore the optimal
development path for China under “peak carbon” and “carbon neutrality” constraints.

3. Model and Methods
3.1. The Model’s Basic Structure

We construct a computable general equilibrium model of China’s energy and carbon
dynamics that includes the following modules: production, energy, revenue and expen-
ditures, trade, carbon, dynamic, climate-friendly technology, and closure (Figure 1). The
model describes a closed-loop system, with each module interlocking and interacting
through price and output variables. In the model, “PS” and “CC” denote the industry and
product dimensions, respectively. Here, we only briefly describe the model structure.
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Figure 1. The CGE model framework diagram.

3.1.1. Production Module

The production module describes the relationship between the product input and
output in the Chinese production sector. This model assumes that the market is completely
competitive, sectoral output is determined by market equilibrium conditions, and pro-
duction decisions are made in accordance with the principle of cost minimization. To
reflect and address the more complex substitutive relationship between multiple inputs,
the production module uses a multi-layer, nested design form (Figure 2). The first layer
of nesting is solved by the intermediate input and composite elements through the CES
function. The production function of the combination of intermediate input and added
value is as follows:

X(PS) = AP(PS)·
[
β(PS)·U(PS) ρ(PS)+β′(PS)·V(PS) ρ(PS)

] 1
ρ(PS) (1)

where AP (PS) is the scale coefficient of the sector; U (PS) and V (PS) represent the interme-
diate goods input aggregation and collected bundle of factors from sector PS, respectively;
β (PS) and β’ (PS) denote the shared parameter representing intermediate goods and fac-
tors from sector PS, respectively; ρ (PS) is the substitution parameter; and X (PS) is the
production function from combining intermediate input and added value. The second
layer consists of two parts. The first compounds the intermediate input U(PS) through
the LT function, and the second compounds the capital-labor-land element bundle V(PS)
through the CES function. The formula is as follows:

U(PS) = ∑
CC

ut(CC, PS)·XX(CC, PS) (2)

V(PS) = AV(PS)·
[
α(PS)·L(PS) ρ2(PS)+α′(PS)·K(PS)ρ2(PS)

] 1
ρ2(PS) (3)

where XX (CC, PS) represents the intermediate production input; ut (CC, PS) denotes the
shared parameter of commodity CC used by sector PS in the LT function; AV (PS) is the
total factor productivity; α(PS) and α’ (PS) are the input and shared parameters of labor
factor L (PS) and capital factor K (PS) as used by sector PS in the CES function, respectively;
and ρ2 (PS) is the substitution coefficient.
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Figure 2. Production structure diagram.

The third layer describes the energy substitution portion. First, the energy product
bundle is formed by combining both energy and power products through the CES function.

UEE(PS) = APEE(PS)·
[
γ(PS)·UEN(PS)ρ3(PS)+γ′(PS)·UEP(PS)ρ3(PS)

] 1
ρ3(PS) (4)

In the previous formula, UEE (PS) represents the sector’s energy cluster production
input; UEN (PS) and UEP (PS) represent the sector’s fossil energy and power cluster
production inputs, respectively; APEE (PS) denotes the scale coefficient; γ (PS) and γ’(PS)
are the shared parameters of sector PS using both fossil energy and power products in the
CES function; and ρ3(PS) is the substitution coefficient.

The fourth layer is the production structure of fossil energy products and power
products. The energy products on the left side of Figure 2 are composed of coal, oil, and
natural gas through the CES function, while the power products on the right are composed
of thermal and new energy power.

UEN(PS) = APEN(PS)·[∑
EN
ϕ(EN, PS)·QXEN(EN, PS)ρ4(PS)]

1
ρ4(PS) (5)

UEP(PS) = APEP(PS)·[∑
EP
θ(EP, PS)·QXEP(EP, PS)ρ5(PS)]

1
ρ5(PS) (6)

where QXEN(EN,PS) and QXEP(EP,PS) represent the sector’s investment in fossil energy
and power products, respectively; APEN(PS) and APEP(PS) are the scale coefficients;
ϕ(EN,PS) denotes the shared parameter of coal, oil, and natural gas; θ(EP,PS) represents
the shared parameter of thermal and new energy power product inputs; and ρ4(PS) and
ρ5(PS) are substitution coefficients.

3.1.2. Revenue and Expenditure Module

The revenue and expenditure module includes two main bodies—residents and the
government—which use the Cobb-Douglas utility function to maximize utility under the
constraints of the income function. Residents’ income comes from labor income, capi-
tal remuneration, and government transfer payments, and is used for consumption or
savings after paying income taxes. Government revenue comes from production, consump-
tion, value-added, import, and income taxes; the government’s expenditures include the
purchase of goods, transfer payments, and government savings.
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3.1.3. Trade Module

The goods in the commodity supply come from domestic production and imports,
which are used for final demand and intermediate consumption. To achieve the lowest
consumption cost, rational consumers will optimize a combination of domestic and im-
ported goods in their purchases; between the two, the Armington condition [54] is met.
Specifically, an incomplete substitution occurs between imported and domestic products. In
terms of price selection, this model assumes that the imported goods’ price is exogenously
provided, the imported goods’ price is determined by the international market price, and
the importer is the price taker:

QC(CC) = AA(CC)·
[
δ(CC)·QD(CC)sa(CC) + δ′(CC)·IMP(CC)sa(CC)

] 1
sa(CC) (7)

where AA(CC) is the scale coefficient; δ(CC) and δ’(CC) represent the shared parameters;
sa(CC) represents the conversion elasticity; QD(CC) and IMP(CC) represent domestically
produced self-sale and imported goods, respectively; and QC(CC) represents domestic
goods. Similarly, assuming that all countries in an international market sector are a smaller
size, export commodities are also determined exogenously by international market price.
The total domestic output is sold at home and abroad in accordance with the principle of
profit maximization. Manufacturers will optimize the combination between domestic sales
and exports, and this combined relationship is allocated through the fixed conversion-elastic
(CET) function.

Q(CC) = AT(CC)·
[
ε(CC)·QD(CC)st(CC) + ε′(CC)·EXP(CC)st(CC)

] 1
st(CC) (8)

In Formula (8), AT(CC) is the scale coefficient; ε(CC) and ε’(CC) denote the shared
parameters; st(CC) is the conversion elasticity; QD(CC) and EXP(CC) are the domestically
produced self-sale and exported goods, respectively; and Q(CC) represents domestically
produced goods.

3.1.4. Dynamic Module

The variables in dynamic equations can be roughly divided into two categories. The
first category is exogenous growth, which is represented by changes in the labor supply.
This model uses a recursive dynamic mechanism, that is, through the dynamic changes
in labor force growth LST(TH) and capital accumulation KST(TH) to modify the model.
In the long-term, the labor force and population maintain the same proportion of growth
and decline, and the population is hardly affected by economic policies. Therefore, such
variables in the dynamic CGE model are generally exogenous, with the core equation is
as follows:

LST(TH + 1) = [1 + gpop(TH)]·LST(TH) (9)

where LST(TH + 1) and LST(TH) represent the labor supply in period t + 1 and period
t, respectively; and gpop(TH) represents the population growth rate in period t. The
data comes from World Population Prospects 2017 released by the Population of the UN
Department of Economic and Social Affairs. The other category is capital control variables.
The capital stock growth rate is driven by investments, and the size of these investments
is affected by the rate of return. Among them, each department’s labor force in the base
year is given exogenously. The current capital stock is equal to the previous capital stock,
plus new capital, and minus depreciation. The distribution of new capital among different
sectors uses the CET function to maximize capital gains:

KST(TH + 1) = [1 + gk(TH)]·[(1 − dep)·KST(TH) + INVPS(TH)] (10)

where KST(TH) and KST(TH + 1) represent the capital stock in period t and period t + 1,
respectively; INVPS(TH) denotes the total investment in period t; dep is the depreciation
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rate of macroeconomic capital; and gk(TH) represents the growth rate of capital in period
t. This model is calculated based on the GDP forecast data from the Organization for
Economic Co-operation and Development (OECD).

3.2. Carbon Module
3.2.1. Carbon Tax Module

In this model, the carbon tax—which involves collecting carbon emissions in the
production-end sector and energy products in the consumption end—is exogenous. Carbon
tax revenue is calculated by multiplying carbon tax by carbon emissions, namely:

TXCO2(TH) = TRCO2(TH) ∗ [TCO2(TH) + FDCO2(TH)] (11)

where TRCO2(TH) represents the carbon tax price; TXCO2(TH) is the total carbon tax
revenue; and TCO2(TH) and FDCO2(TH) represent the total carbon dioxide emissions at the
production and consumption end, respectively. As a new cost, carbon tax is included in the
pricing formula for energy products at the production and consumption end, respectively:

PQXEN(TH) = PQXEN0(TH) + TRCO2EN(TH) (12)

PCQXN(TH) = PCXEN0(TH) + TRCO2EN(TH) (13)

where TRCO2EN(TH) represents the carbon tax price per unit of energy, PQXEN(TH) and
PCQXN(TH) represent the prices of energy products with carbon prices at the production
and consumption end of period t when carbon tax is imposed, respectively. Further,
PQXEN0(TH) and PCXEN0(TH) represent the production and consumption prices of
energy products without carbon costs, respectively.

3.2.2. Carbon Trading Module

The carbon emissions trading plan is the same as the market plan for other commodi-
ties, as carbon emission credits are regarded as commodities. However, the government
controls the number of carbon emissions rights; in the carbon-trading market, the total sup-
ply of carbon emission rights will be determined according to the government’s emissions
reduction targets. The setting of the carbon cap primarily depends on the corresponding
emissions reduction target, with the specific formula set as follows:

Carbon(TH) = ∑
PS
[1− tcer(PS, TH)]·CO2ref(PS, TH) (14)

where Carbon(TH) represents the carbon allowance, or the total carbon emissions supply
in the carbon-trading market at time t; CO2ref(PS, TH) represents various industries’
benchmark carbon emissions during period t; and tcer(PS, TH) is the sectoral carbon
emission reduction rate set by the government according to its emissions reduction target.
The formula for total carbon emissions is as follows:

TCO2(TH) = ∑
PS

CO2(PS, TH) (15)

where TCO2(TH) represents the total carbon emissions of all industries in period t; and
CO2(PS, TH) represents different industries’ carbon emissions, with prices in the carbon-
trading market determined by supply and demand. From production cost perspective, an
increase in carbon costs in the energy sector will increase energy prices, and using energy
as an intermediate input will increase the cost of using carbon-containing energy products.
As an alternative, the cost of using low- and non-carbon energy products is relatively lower,
with the following carbon cost formula:

PQXEN(TH) = PQXEN0(TH) + PCO2EN(TH) (16)
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where PQXEN(TH) in carbon trading represents the price of energy products with carbon
prices in period t; PQXEN0(TH) represents the production price without carbon costs; and
PCO2EN(TH) represents the carbon price per unit of energy. When allocating carbon trad-
ing, the government will also give enterprises a partial emissions exemption, as businesses
with such an exemption will not need to pay these costs. The formula for this exemption is
calculated as follows:

TFP(TH) = ∑
PS

fp(PS)·CO2ref(PS, TH) = ∑
PS

FP(PS, TH) (17)

ET(PS, TH) = TCO2(PS, TH)− FP(PS, TH) (18)

where TFP(TH) represents the total free allocation quota in period t; FP(PS,TH) represents
various industries’ free emissions in period t, and ET(PS,TH) represents the carbon quota
that can be used for inter-sectoral transactions. According to this formula, when the
free allocation ratio fp(PS) in the total quota decreases, carbon-intensive industries must
purchase more carbon emissions to ensure production and operation. Carbon revenue
equals the carbon price per unit of CO2 multiplied by the carbon emissions excluding the
exemption, or:

TXCO2(TH) = PCO2(TH)·[TCO2(TH)− TFP(TH)] (19)

where PCO2(TH) represents the carbon price per unit of CO2.

3.3. Technological Progress Module

Climate-friendly technologies include not only technical means for the energy sector
to improve energy efficiency, but also technical means for the end consumer and other
industrial sectors to reduce carbon dioxide emissions. By introducing the non-carbon energy
investment share NClindex (TH), this module creates an endogenous logic curve describing
the state of climate-friendly technological progress in the entire system. According to Pan
and Kohler [50], the specific formula is as follows:

SNCT(TH) = LGCd +
LGCa

{1 + LGCc·EXP[−LGCb·
(

NUMYEAR(TH)− LGCm
NCIindex(TH)

)
]}

1
LGCc

(20)

where SNCT(TH) denotes the share of climate-friendly technology, which is calculated
from the following parameters: LGCa, or saturation; LGCb, or the average growth rate;
LGCc, or the acceleration in growth; LGCd, or the initial level; LGCm, or the time to
maximum growth; NUMYEAR(TH), or the year; and NClindex(TH), or the non-carbon
energy investment ratio. where SWSNCT denotes the change in climate-friendly technology,
indicated as either zero or one; when SWSNCT equals one, Formulas (21) is run. Changes
in the share of climate-friendly technologies will change the carbon emissions coefficient,
which will affect the entire society’s carbon dioxide emissions. As noted in Formulas (21),
the changes in VcofCO2CC(CC,PS,TH) is calculated as follows:

VcofCO2CC(CC, PS, TH) =

{
cofCO2CC(CC, PS, TH) TH = 1

VcofCO2CC(CC, PS, TH− 1)·[1− SNCT(TH− 1)·SWSNCT(TH− 1)] TH > 1
(21)

where cofCO2CC(CC,PS,TH) denotes the carbon emissions coefficient.

3.4. Closing Module

To retain the model with a unique solution, the CGE model must set micro- and
macro-closures to ensure that the constraint conditions are consistent with the number of
endogenous variables. The economy’s market equilibrium solves the equilibrium price, and
the equilibrium price is determined by solving the nonlinear equation system. This includes
the intermediate and final demand equations as well as the calculation of residential and
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government income, savings and investments, and the trade balance. This model uses
neoclassical closures, or by setting closures in commodity and factor markets, institutional
revenues and expenditures, foreign markets, and investment savings. It specifically in-
cludes: (1) the commodity and factor market equilibrium; (2) residents’ total consumption,
which equals their disposable income minus savings; and total government savings, which
equals the government’s income minus consumption and transfer payments to residents;
(3) total investments equal total savings; and (4) the difference between imports and exports
equals any foreign investments.

3.5. Model Data

The input-output analysis method created by Leontief [55] provides the possibility for
modern economics to move towards quantitative analyses. In a checkerboard-like table,
the relationships between production, the factor input, consumption, investments, and
trade are clearly expressed as quantities, and the complete, overall picture and structure of
the flow of products in the economic system is revealed. Part of the relationship between
industrial sectors constitutes the core of the input-output table, reflecting the mutual
influence and interdependence among various industrial sectors. Stone [56] extended the
input-output analysis to institutional departments and established income accounts to
record the product and income flows as well as transfers of income between institutions.
The subsequent social accounting matrix system has become the necessary database to
model the current computable general equilibrium model and other large-scale quantitative
economic structural models.

As the input-output table for 2017 depicts, in the latest data released by the National
Bureau of Statistics at the beginning of this research, 2017 is selected as this study’s base
year. The model’s main data includes the following three types: First, the China Social
Accounting Matrix (SAM) provides a foundation for the CGE model (Table 1). According
to the Input-Output Table of China’s 149 Sectors in 2017, we merged then split the energy
input-output tables of 29 sectors, including coal, oil, natural gas, thermal, and new energy
power. The fiscal and taxation data in the social accounting matrix comes from the 2018 Tax
Yearbook and 2018 Fiscal Yearbook. Table 1 also displays the resulting macro-social accounting
matrix. Second, the exogenous elasticity of substitution includes that between inputs
in the production function, the substitution elasticity between imported and domestic
products from the CES function within the foreign trade module, and the substitution
elasticity between exports and domestic products in the CET function. Our data is derived
from the Global Trade Analysis Project database. Third, we calculate the carbon dioxide
emissions coefficient per sector by calculating the sectoral carbon dioxide emission and
energy product consumption. The carbon dioxide emissions data for this calculation comes
from China’s Carbon Emission Accounts and Datasets (CEADs) database.

Table 1. Macro SAM table.

Unit: 100 Million Chinese Yuan (Calculated Based on the Producer Price of the Year)

Income
Expenditure Production

Activities Product Labor Capital Household Government Tax ROW Investment SUM

Production Activities 2,257,733 2,257,734

Product 1,434,518 324,546 125,341 163,847 369,146 2,417,397

Labor 423,268 423,268

Capital 304,969 304,969

Household 423,268 304,969 45,615 773,852

Government 133,372 133,372

Tax 94,978 26,431 11,961 133,372

ROW 133,232 30,615 163,847

Investment 437,345 −37,584 5377 405,138

SUM 2,257,733 2,417,397 423,268 304,969 773,852 133372 133,372 163,847 405,138 7,012,948
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4. Constraints and Scenario Settings
4.1. Discussion on Peak Carbon Emissions

China’s “30–60” commitment—to peak carbon by 2030 and carbon-neutral production
by 2060—adds new constraints to China over the next 40 years, with 2 key factors. One is
the apex of peak carbon in 2030, and the other is the GDP growth path until 2060.

Regarding the former, we must first solve the problem of basic carbon emissions
data, as the existing carbon emissions database primarily includes data from the CEADs
database, British Petroleum (BP), and the Ministry of Ecology and Environment (Figure 3).
As the Ministry’s data is not sufficiently continuous, the two time-continuous CEADs and
BP databases are more suitable for research. Additionally, the carbon emissions in 2005
(not included in the carbon sink) as calculated using the three databases were 5.4, 6.1, and
5.98 billion tons, respectively. In 2014, the 3 databases’ carbon emissions were 9.44, 9.24,
and 10.28 billion tons, respectively. In 2017, the statistical carbon emissions for CEADs
and BP were 9.34 and 9.3 billion tons, respectively. The numerical difference between
these databases has significantly narrowed in recent years. Considering that the CEADs
contains emissions data for 29 industries—which is convenient for a structural analysis
and CGE model simulation—we ultimately chose the CEADs for our analysis. To avoid
the uncertainty caused by the significant differences between the early carbon emissions
data found in different databases, we selected the carbon emissions from the 2017 CEADs
(9.34 billion tons) as our calculation benchmark.

Figure 3. Comparison of China’s carbon emission data in various databases.

Regarding China’s carbon peak target, President Xi Jinping’s critical speech at the
General Debate of the 75th United Nations General Assembly on 22 September 2020
indicated that China will enhance its nationally determined contribution. Moreover, the
nation would strive to reach peak carbon dioxide emissions by 2030 and carbon neutrality
by 2060, or the “30–60 dual carbon target”. Specifically, the carbon emission intensity in
2030 would decrease by more than 65% compared with that in 2005. Combined with the
declining rate of carbon emissions intensity in that year compared with 2005, as recently
announced by the State Council, the 2017 carbon intensity was 46% lower than that in 2005.
It is estimated that carbon emissions in 2030 will reach 11.7 billion tons; after subtracting
910 million tons of carbon sinks, we predict that net emissions will reach 10.8 billion tons in
2030, which is an approximate median of the peak data calculated by Tsinghua University,
the World Resources Institute, and other institutions.

4.2. Discussion of the GDP Growth Rate

Our research also considers the growth trends of various production factors, such as
capital, labor, human capital, and total factor productivity. We refer to relevant research on
China’s economic growth forecast, both domestically and internationally, and the outline
of the 14th 5-Year Plan, to assume that GDP will double from 2020 to 2035, and the GDP
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growth rate will decline from 6% in 2019 at a uniform rate. It can be concluded that the
compound GDP growth rate from 2020 to 2030 is 5%. By 2035, China’s total GDP will reach
240 trillion yuan, realizing the nation’s long-term goal of doubling its total economic output
in 2020. The compound growth rate of the nation’s GDP from 2040 to 2060 is estimated
at 3%.

In summary, China only has 10 years to achieve its peak carbon goal and 30 years
to achieve carbon neutrality, which is a much shorter duration than European countries
and the United States. Moreover, China’s carbon emissions only have 8% room for im-
provement, with an average annual growth of 0.77%, and it is highly difficult to maintain
a relatively high level of GDP growth. How can China meet this challenging goal? We
construct various policy scenarios for a simulation in an attempt to discover the optimal
path toward implementation.

4.3. Scenario Setting

To quantitatively analyze the different effects of the two previously mentioned paths
in the two dimensions of carbon neutrality and economic development, we focus on the
scenarios listed in Table 2.

Table 2. Scenario setting.

Scenario Category Scenario Code Setting

BAU No exogenous intervention
The GDP growth rate drops uniformly from 6% in 2019; the
compound GDP growth rate from 2020 to 2030 will be 5%, and the
compound annual GDP growth rate from 2040 to 2060 will be 3%.

Carbon price policy

S1.a Carbon tax

Combined with the profitability and model tests of various domestic
industries, we set a unified tax rate for the whole society and the tax
rate increases year by year. The maximum carbon tax rate will not
exceed 1800 CNY/ton. 1

S1.b Carbon trading

According to the “the current Guangdong Province’s Implementation
Plan for the Allocation of Carbon Emission Allowances in 2020”, the
model sets the industries for carbon trading as: petrochemicals,
chemicals, building materials, steel, non-ferrous metals,
papermaking, electricity, aviation and their respective free carbon
emission allowances.

S1 Carbon Tax + Carbon Trading Carbon tax and carbon trading implemented simultaneously

Technological progress

S2.a Optimistic prospect of technology development

S2.b Pessimistic prospect of technology development

S2 S1+ neutral prospect of technology development Technology curve
1: Countries that have levied carbon taxes currently have a carbon tax rate of approximately CNY 80–800 per ton
of carbon, but most of them are developed countries.

5. Results and Analysis
5.1. Baseline Scenario Results

In the scenario that only considers the goal of doubling the total economic output
or per capita income by 2035, the development trend of China’s economy and carbon
emissions is that the latter will continue to rise; carbon emissions are expected to reach
41.1 billion tons in 2060 (Figures 4 and 5).
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Figure 4. GDP and its annual growth rate in the baseline scenario (BAU) from 2020 to 2060.

Figure 5. Carbon emissions in the baseline scenario (BAU) from 2020 to 2060.

5.2. Results of the Carbon Price Policy Scenario

Most people intuitively feel that continuously increasing the level of carbon tax can
fulfill China’s “30–60” goal. However, this dual carbon goal requires an incredibly high
carbon price. As Figure 6 indicates, the carbon tax rate and carbon trading price would
increase annually to 2000 CNY per ton, which would collapse China’s economy.

Figure 6. Carbon price and carbon emissions.

In this instance, carbon emissions continue to increase, with no inflection point to
achieve any peak and neutralization; this can only shift the carbon emissions curve under
the BAU scenario downward (Figure 7).
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Figure 7. Carbon emissions under carbon price policy S1 from 2020 to 2060.

In summary, it can be observed that the carbon-pricing policy can only shift the
carbon emissions curve downward, which can reduce emissions in the short-term, but will
cause certain economic losses. The higher the carbon price, the greater the economic loss,
consistent with the conclusions of most carbon tax and trading policy studies [23,28,34].
While the carbon price policy positively impacts a reduction in emissions, the fundamental
transformation of carbon neutralization, this cannot be achieved solely through a carbon
tax and carbon trading.

5.3. Results of Technological Progress Scenario

As previously mentioned, if we only rely on carbon pricing and do not abandon GDP
constraints, it will be difficult to achieve carbon neutrality solely through carbon pricing.
Therefore, it is necessary to consider technological progress. Developing climate-friendly
technologies will transform the production costs of zero-emissions technology and the
structure of energy consumption.

Based on the S1 scenario, we levy an CNY 100 carbon tax, implement carbon trading
in 8 major industries, and introduce a technology curve. The simulation reveals that the
combination of carbon tax, carbon trading, and technological progress should fulfill the
dual goals of maintaining growth and carbon neutrality. As Figure 8 indicates, compared
with the baseline case, the GDP loss under S1 will be substantial, with a GDP loss of CNY
42 trillion in 2030 and CNY 145 trillion in 2060. In the S2 scenario, the loss of GDP is
negligible; even after 2040, the GDP exceeds the baseline, indicating that technological
progress has offset or even exceeded carbon pricing’s negative impact on economic growth.
Carbon emissions peak in 2030 at 10.9 billion tons, then decreases annually to converge to
the net-zero goal.

Figure 8. The GDP loss under S1 and S2 scenario compared with the BAU scenario.
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The simulation results demonstrate that because the power of technological progress
has only had a partial influence in the initial stage, carbon taxes and carbon trading still
pressure the economy to increase costs. However, this pressure among various industries
is alleviated, compared with the situation without technological progress.

The industrial output significantly changed compared to the benchmark situation.
Moreover, the output of non-thermal power generation, such as photovoltaic, hydro-, wind,
and nuclear power will significantly expand in 2030, while coal processing and mining
will significantly shrink. Further, the proportion of output among the agricultural, forestry,
animal husbandry and fishery, public services, and light industries significantly decreased
over time. The proportion of output for equipment manufacturing, real estate and leasing,
and information and financial services increased annually (Figures 9 and 10).

Figure 9. PPI differences in various industries under BAU, S1, and S2 scenarios in 2030.

Figure 10. Changes in output of various industries compared with BAU under S2 scenarios in 2030
and 2060.

Compared with the “J”-shaped growth of carbon price under the S1 scenario, the
carbon price under the S2 scenario shows an inverted “U”-shaped change with the de-

36



Int. J. Environ. Res. Public Health 2022, 19, 6251

velopment of climate-friendly technologies. The carbon price will rise year by year from
the initial 10 CNY/ton to 140 CNY/ton in 2030, after which the carbon price will begin
to decline steadily. As shown in Figure 11, when carbon prices peak, carbon emissions
will also peak at 10.9 billion tons. The climate-friendly technology curve grows in an “S”
shape, with a value of SNCT of 0.32 in 2030 and 0.99 in 2060. Investment, as an endogenous
variable of the S-shaped technology curve, is the key to promoting technological progress.
The model estimates that green technology R&D investment will account for about 2% of
GDP, and it will increase year by year, helping R&D technology to cross the laboratory
stage of the S-curve and use it for commercial applicato0-ions.

Figure 11. Carbon emissions and technological progress under S2 scenarios. Note: SNCT is a value
between 0 and 1.

According to Table 3, the carbon price policy (S1 scenario) has little impact on the
energy consumption structure. Fossil energy consumption will still dominate, and new
energy consumption will slightly increase. However, the energy structure of the S2 scenario
has significantly changed, with fossil energy gradually being withdrawn from the market,
and new energy gradually monopolizing the energy consumption market.

Table 3. The proportion of energy consumption under the S1 scenario & S2 scenario.

S1 S2

2020 2030 2060 2020 2030 2060

Coal 0.1% 10% 11.2% 49.3% 40.6% 2.9%
Oil 49.6% 47.7% 45% 8.4% 8.3% 0.8%

Natural Gas 4.4% 4.3% 4.3% 3.1% 2.9% 0.3%
Thermal Power 0.8% 0.9% 1% 23.3% 20.9% 1.5%

New Energy Power 35.1% 37.1% 38.5% 16% 27.4% 94.5%

5.4. Sensitivity Analysis of Technical Curve

It is assumed that the climate-friendly technology curve in the S2 scenario is the bench-
mark prospect of technological progress, and the pessimistic prospect refers to the situation
in which the technological development is less than expected or difficult to commercialize.
Intuitively, the technology curve in this scenario is flatter than the benchmark curve: it stays
in the laboratory for a longer duration, with high resistance to the large-scale application of
technology, or the technology’s permeability is low (Figure 12). In reality, it corresponds to
advanced and uncertain technologies, such as hydrogen energy and carbon capture, among
others, while the optimistic outlook presents the opposite characteristics.
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Figure 12. Changes in GDP of different technology curves.

As Figure 13 illustrates, the GDP under the pessimistic technology outlook experiences
a relatively large negative impact, and the overall carbon emission curve increases, with a
later, higher peak. Optimistic prospects provide the opposite results, but it is difficult to
achieve such rapid technological development.

Figure 13. Carbon emission curve of different technologies.

In short, regardless of the speed of technological development, the shape of the carbon
emissions curve can change, and inflection points can appear. The only difference is the
time at which peak carbon and carbon neutrality occur. Only technological progress can
meet the dual constraints of carbon emissions and economic development.

6. Conclusions

Based on the energy-environment-economy triple-coupling (3E-CGE) model, we en-
dogenously generate climate-friendly technologies into the model’s analysis framework by
depicting the logic curve in the technology’s full life cycle and modify the energy and car-
bon emissions modules within the CGE model. Based on the general equilibrium analysis
of this CGE model, we can draw the following conclusions and insights.

First, regarding the simulation of peak carbon and carbon neutralization results, the
endogenous CGE model significantly differs from the exogenous CGE model, especially in
the long-term. Compared with other results, we note that the endogenous CGE model is
more reasonable in optimistic, neutral, and pessimistic technological prospects.
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Second, the most appropriate development path for China involves a combination of
carbon tax and carbon trading policies while steadily developing climate-friendly technolo-
gies. This includes implementing a uniform carbon tax for all industries at 100 CNY per
ton, and carbon trading in eight high-emissions industries with increasing carbon prices
before the peak occurs. Moreover, climate-friendly technologies, which have begun to
develop steadily since 2017, should mature in 2047. On the optimal path, the country peaks
in 2030 at 10.9 billion tons, then decreases annually to reach net-zero carbon emissions in
2060; additionally, the dual effects of economic growth and carbon neutrality are achieved,
with a stable economic growth rate of 2.4% in the later years.

Third, climate-friendly technologies play an important role in achieving China’s
goal of peak carbon in 2030 and carbon neutrality by 2060. The progress of climate-
friendly technologies will gradually decrease the total carbon emissions from 2030, and
will converge to a net zero in 2060, or approximately 60 million tons. The development of
climate-friendly technologies will profoundly impact China’s economic structure.

The model’s results demonstrate that developing climate-friendly technologies grad-
ually evolves the economic structure, from industry-dominated to emerging industry-
dominated. Output from the new energy and service industries has rapidly expanded
in the past 40 years. Meanwhile, in creating endogeneity among technologies, we can
fully describe the interactions among technologies, investments, and carbon emissions. Al-
though developing climate-friendly technologies requires substantial investments, this also
stimulates economic growth and creates a mutually beneficial situation between economic
growth and environmental improvements.

Regarding the traditional means of reducing emissions, such as carbon taxes and
trading, carbon-pricing policies can quickly reduce the carbon emissions of energy-intensive
industries in the short-term but will cause economic losses. Any economic recession will
worsen as carbon pricing increases. Therefore, it is only theoretically feasible to use carbon
pricing to achieve carbon neutrality. A carbon price of up to thousands of CNY per ton
is an unbearable pressure for all industries and will inevitably collapse the economy. We
also simulated and compared the benefits of carbon tax and carbon trading. Under the
same emissions reduction target, carbon trading alone is better for the economy than only
levying carbon taxes, as the former will result in less economic damage.

Collectively, carbon neutrality is not only an environmental governance issue, but also
involves all aspects of society. It involves profound changes affecting all of Chinese society,
including large-scale arrangements and advance planning. The government can begin
with the carbon-trading market and gradually expand the scope to include all industries.
Simultaneously, various climate-friendly technologies require more precise calculations in
terms of their development level and potential. The government can provide preferential
policies for investment in climate-friendly technologies, increase the R&D and promotion of
such technologies, guide the upgrading of industrial production technologies, promote the
formation of an economically beneficial zero-emissions production capacity, and intensify
efforts to phase out existing high-carbon emissions assets. Moreover, a company’s improved
financial performance is important in a low-carbon economy, with such positive results as
increasing companies’ return on assets [57].

The endogenous technology advancement CGE model used in this article is a real
economic model established based on an input-output table. It only introduces a curve for
climate-friendly technology that covers all industries and does not describe the technology
in detail. We can combine more knowledge with capital flow statements and data on the
levels of climate-friendly technological development, capital growth rate, and depreciation
rate among various industries. In doing so, we can further optimize the model and
introduce a financial module to integrate both real and virtual economies. We can conduct
more simulations on green credit and examine its effects on technological progress, dual-
carbon goals, and economic growth in order to bring the model’s results closer to reality.
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Abstract: China’s carbon emissions trading scheme (ETS) is an institutional arrangement that China
intends to explore as a means of energy conservation and emission reduction. It is the core of China’s
goal of achieving carbon peaking and carbon neutrality. This paper regards the introduction of pilot
carbon emission trading policies as a quasi-natural experiment. Propensity Score Matching (PSM),
Differences-in-Differences (DID), and spatial Durbin methods were used to evaluate the policy effects
of pilot carbon emission trading policies on the carbon intensity of Chinese cities. We empirically
tested the impact mechanism using the panel data of 281 cities at the prefecture level and above in
China from 2006 to 2019. The results show that (1) the pilot policy of carbon emission trading has
significantly reduced the carbon intensity of Chinese cities and shows characteristics of heterogeneity;
(2) the dynamic effect test shows that the mitigation effect of the pilot carbon emission trading policy
has increased gradually with time; (3) the mediation effect shows that the pilot carbon emission
trading policy alleviates urban pollution in the region by improving the level of environmental
governance and jointly reduces urban carbon intensity by increasing the level of green technology
innovation; (4) the Durbin test suggests that pilot carbon emissions trading policy enforcement can
significantly improve the carbon intensity of the area surrounding the city. In summary, the national
carbon emissions trading market appears to be a successful experiment that also can contribute to
China’s sustainable development. Its promise in achieving the “double carbon” target provides
important policy implications.

Keywords: carbon emission trading pilot; carbon intensity; green technology innovation; environmental
governance level

1. Introduction

In the context of economic globalization, climate change is a major challenge for the
survival and development of mankind in the 21st century, while the economic development
of countries around the world always comes at the cost of energy consumption [1]. The
“Statistical Review of World Energy” released by BP shows that global energy demand
grew 2.9 percent in 2018, while carbon emissions rose 2.0 percent to reach their highest
point in the 21st century. Global primary energy consumption grew 2.9 percent, almost
double the average growth rate of 1.5 percent over the past decade [2]. At the same time,
carbon emissions from energy consumption grew by 2%, also the highest in years. The new
carbon emissions amounted to 600 million tons, which is equivalent to adding a third of
the emissions produced by the planet’s passenger cars. Therefore, it is of great significance
to implement effective means to achieve rapid carbon peaking and net zero emissions [3].

As the world’s largest developing country, China has become the world’s largest car-
bon emitter. China’s carbon dioxide emissions reached 11.3 billion tons in 2021, accounting
for 33 percent of the global total [4]. The Chinese government has announced its intentions
to undertake increasingly forceful measures with the goal of achieving a carbon peak before
2030 and carbon neutrality by 2060 [5]. This demonstrates China’s determination to achieve
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its “dual carbon” goal of carbon emissions and carbon neutrality and to actively undertake
the corresponding obligations of its international treaty obligations.

Carbon taxes and emissions trading systems are internationally recognized as effective
tools to reduce carbon emissions. According to China’s current situation, in order to ensure
people’s livelihoods, China temporarily does not tax carbon dioxide emitted by coal and
natural gas used by individuals. For China, the ETS has become the main tool to reduce
carbon emissions.

In December 1997, the Kyoto Protocol was adopted as the first additional agreement to
the United Nations Framework Convention on Climate Change (UNFCCC). As part of that
agreement, market mechanisms were recognized as a new path to reduce greenhouse gas
emission—that is, the right to emit carbon dioxide became regarded as a commodity, thus
forming the basis of carbon trading systems [6]. The European Emissions Trading System
(EUETS), the world’s largest carbon market, came into operation in 2005. The scheme
imposes emission limits on member countries; the sum of national emission allowances
does not exceed the emissions allowed under the Protocol. The allocation of emission
allowances takes into account factors such as historical emissions, projected emissions, and
emission standards of member countries [7].

The EU emissions trading system uses “Cap-and-Trade” rules. In order to limit the
total amount of greenhouse gas emissions, administrative permits for emissions are bought
and sold. The three major principles are the total trade principle, decentralized governance
mode, and development characteristics. Under the EUETS, EU member state governments
must agree to national emission caps set by the EUETS. Within this cap, companies can
sell or buy additional credits in addition to their allocated emissions, provided that overall
emissions fall within a specific quota. Firms that emit excess emissions beyond their
allocated or purchased allotment are penalized, while those with surplus allowances can
keep the emissions for future use or sell them to other firms. The EUETS has played an
exemplary role in the world’s development of carbon trading markets.

China’s carbon market construction started with local pilots [8,9] based on the EUETS.
In 2011, the Chinese government listed seven provinces and cities, including Beijing, as pilot
areas of the ETS. In 2013, these pilot carbon markets began online transactions. The aim
of the program is to cost-effectively reduce greenhouse gas emissions of enterprises in the
pilot provinces and cities. The goals include training talent and accumulating experience to
lay the foundation for a national carbon market [10]. At present, a national carbon market
has started with the power generation industry (2225 enterprises). Eight industries with
high energy consumption, including power, petrochemical, chemical, building materials,
steel, non-ferrous, paper-making, and civil aviation, will be included in the national carbon
market. It is expected to gradually include another seven industries over the 14th Five-Year
Plan period.

The carbon emission trading scheme (ETS), regarded as a vital market-driven carbon
mitigation instrument, could trigger technology innovation and accelerate a green economic
transition [11]. In 2015, China’s CO2 emission from fossil fuel consumption was about
9 billion tons. During the 14th Five-Year Plan period, overall carbon intensity is expected to
decrease by 18% and energy consumption per unit of GDP will be reduced by 13.5 percent.
Now, the ETS has introduced a system innovation. How to reduce the carbon intensity
of cities? What are the pathways that affect carbon intensity? This study will evaluate
the ETS policy from the perspective of regional carbon emissions. A thorough review
of the pilot policy’s impact on carbon emissions, and its relationship to China’s overall
development, will provide valuable experience for China’s efforts to deepen the reform
and transformation of its pattern of economic development.

The rest of this study will be divided into the following parts. Part 2 is a literature
review. Part 3 is a theoretical hypothesis. Part 4 is the data and empirical framework. Part
5 is the regression analysis. Part 6 further analyzes the mediating effect and spillover effect.
Part 7 concludes and makes policy recommendations.
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2. Literature Review

Because carbon emissions cause negative externalities [12], the arguments of Pigou [13]
suggest government intervention through means such as taxation. Coase [14] held the
opposite opinion, believing that the government should regulate property rights and allow
the market to respond to externalities. In both cases, the instruments of the market are used
to address externalities. Dales [15] proposed commercializing pollution on the basis of
Coase, arguing that the pollution caused by companies is the property of the government,
and that businesses should be able to buy and sell freely in the market. This was the
embryonic form of the modern emissions trading system.

As mentioned above, although China’s ETS has borrowed some practices from the
EUETS, it is different. First, the EUETS consists of a “three-pillar” system of “carbon
trading”, “carbon tax”, and “carbon border tax”. This is slightly different from a carbon
emission quota, which is the basis of carbon emission trading in China. Second, the EU
emissions trading scheme adopted a cap-and-trade principle. That is, on the premise that
the total amount of emissions does not exceed the allowable upper limit, each emission
source can adjust its emissions through exchange of permits. The upper limit will be
reduced year by year. By contrast, carbon trading in China is divided into a primary market
and a secondary market. The primary market is mainly for “quota creation”, which is
managed by national authorities and entrusted to agencies to create and distribute carbon
emission rights quotas. The participants in the secondary market are mainly enterprises and
financial institutions. Third, the trading rules published by the Shanghai Ring Exchange
have price fluctuation limits within a daily limit. The EU carbon price, on the other hand,
has no price limit. Carbon prices in the European Union have risen rapidly in recent
years, more than doubling from pre-pandemic levels. Fourth, the industry coverage of the
EU carbon trading system, which started with the power industry and energy-intensive
industries, gradually expanded to the transportation sector and the production of specific
products such as steel and cement. At present, China’s carbon emission trading market is
focused on the electric power industry [16,17].

Existing research on emissions trading can be broadly divided into two categories.
The first category focuses on assessing the efficiency of the ETS design, including the effec-
tiveness of a carbon price in reducing emissions [18,19], the controllability of transaction
costs [20,21], and the rationality of quota allocation [22,23]. The second category focuses on
how the ETS affects macroeconomic variables. This study is in the second category.

From the perspective of energy conservation and emission reduction, earlier studies
mostly used scenario simulation to evaluate carbon emission trading. In terms of energy
saving, most scholars have used data simulation analysis. It has been found that ETS can
effectively reduce the consumption of non-renewable energy [24,25]. In terms of emission
reduction, Zhang et al. [26] simulated ETS implementation in China and found that inter-
regional commodity exchanges can alleviate carbon emissions, based on China’s provincial
panel data [27]. The simulations were analyzed in the case of both unconstrained and
constrained countries to assess the potential effectiveness of ETS in China. The study found
that ETS had the potential to reduce carbon intensity by 20.06% without having a negative
effect on GDP.

The development of the ETS systems in Europe and China provides the opportunity
to turn the simulation into reality. Most studies have found that ETS has reduced carbon in
pilot areas in China. Computable General Equilibrium (CGE) and Difference in Difference
(DID) models have been the main empirical evaluation methods used in recent years.
Liu et al. [1], using a regional CGE model, found that the Hubei province pilot ETS reduced
carbon emissions by about 1% in 2014. In an empirical study, Yucai et al. [28] used DID
to model the effect of the pilot ETS on energy conservation and emissions reduction; the
results showed that regulated industry energy consumption in the ETS pilot areas decreased
by 22.8% and carbon emissions by 15.5%.

Some scholars also have studied the possible economic losses caused by the imple-
mentation of ETS. Most scholars have found that EUETS has had no adverse effect on
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corporate profits and social welfare [29]. For China’s carbon trading market, however,
Wang and Pan [30] found that the implementation of ETS has led to a 0.28% decline in GDP.
This is because China’s economic development has been dependent on natural resources.
Hubler et al. [31] found that the economic losses of ETS in China may be around 1%.

In conclusion, the existing papers mainly study the impact of ETS on energy saving,
emission reduction, and economic loss. However, there are few studies on comprehensive
macro indicators, such as urban carbon emission intensity. Urban carbon emission intensity
is defined as the ratio of CO2 emissions to GDP in a city within a year. This indicator has
been widely used to evaluate China’s “double carbon” target [32].

In China, most studies on ETS use a CGE model or a DID model. There are a number
of limitations with these studies. CGE modeling is subject to defects such as difficulty in
meeting the assumptions on which it is premised, strong subjectivity of parameter setting,
and difficulty in determining whether its feedback mechanism measures real effects. The
DID model requires homogeneity of the sample, whereas in reality, there is heterogeneity
in relevant characteristics between the treated and control localities. In addition, most of
the relevant studies start from the provincial level, while implementing carbon emission
trading policies depends more on whether urban units can strictly implement the orders
of their superiors. Further, earlier studies have ignored the influence of spatial factors on
carbon intensity, although spatial factors have an important impact on carbon intensity and
neglecting spatial factors may lead to bias in simulation results.

Against this background, this study makes the following contributions. First, the intro-
duction of pilot carbon-emission trading policies is regarded as a quasi-natural experiment.
This allows the use of a PSM-DID model estimation method to assess the impact of ETS
on urban carbon intensity. The quasi-natural experiment not only meets the requirements
of a DID model, but also ensures optimal matching because of the large samples. This
gives more credibility to the research conclusions. Second, this study focuses on carbon
intensity at the city level. Considering that cities are an important part of local government
institutions in China, this makes the policy effect more plausible. Third, this study uses
spatial Durbin to test the spillover effect of ETS on surrounding areas, thus going beyond
the previous focus on the local area, which has ignored the surrounding area. This provides
a more complete picture of the impact of emissions trading policies.

3. Theoretical Background

The carbon emission trading system is mainly an exercise of the “Porter hypothesis,”
which holds that appropriate environmental regulation can encourage enterprises to carry
out more innovative activities [2]. These innovations will increase the productivity of firms,
thereby offsetting the costs of environmental protection and reducing total carbon emissions
at the societal level. Theoretically, the system is dominated by the government, which
uses market mechanisms to promote energy conservation and emission reduction [33].
First, the ETS sets a relatively strict carbon allowance for each company. Within this limit,
companies can carry out free carbon emissions. The excess needs to be purchased from the
carbon emissions retained by other companies. In essence, carbon permits have become
a commodity [34]. Because firms aim at profit maximization, companies make good use
of free credits while trying to avoid exceeding that limit; otherwise, high production costs
will be incurred. Second, ETS can promote corporate emission reduction because firms
will sell unused emissions credits if the carbon price is higher than the firm’s marginal cost
of emission reduction [35]. Therefore, a market-based trading system can be effective in
mitigating carbon emissions.

Establishing a carbon emission trading system can force enterprises to innovate, and
technological progress is one of the three major factors affecting the environment [36].
Green technology innovation depends on increasing investment in such innovation. The
emissions trading system encourages companies to actively develop and apply green
technologies [2]. Companies that invest more resources in reducing carbon emissions can
sell surplus carbon emission credits to high-carbon emission enterprises and obtain high
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profits [37]. Firms will tend to accelerate the process of green technology development in
order to achieve higher profits. This is the incentive effect. Conversely, for high carbon
emission enterprises, it is necessary to buy carbon emission credits from sellers, which will
increase production costs, compress profit margins, and reduce these firms’ competitiveness.
Under this pressure, enterprises have to carry out technological innovation [2]. This is the
punishment effect.

The incentive effect and punishment effect of market-based environmental regulation
such as ETS give the government more tools for environmental governance. Because
carbon dioxide does not harm health or production in the short run, and because it is
costly to enforce non-market forms of governance, it has been difficult for the focus of
environmental governance to shift quickly in the direction of reducing carbon emissions.
By encouraging innovation and providing opportunities for profit, ETS has effectively
improved the environmental governance level while ensuring that normal activities and
production can continue.

Improved environmental governance can promote a change of regional energy struc-
ture. In particular, ETS has the potential to reduce coal consumption [28]. This paper
applies the new economic geography to evaluate such changes. Firms will always look for
the optimal location in order to maximize profits [38]. Theoretically, a carbon emission trad-
ing system should have policy spillover effects [39], including alleviating regional carbon
emissions. It can also encourage high-tech enterprises to continue to innovate through its
incentive mechanism. However, it will also cause a large number of polluting enterprises
to incur high production costs due to its punishment mechanism. This is because polluting
enterprises in the region face increased production costs due to the need to buy carbon
emission rights, which reduces their profits. If there is no ETS policy in the surrounding
areas, polluting enterprises are expected to migrate to the surrounding areas. Conversely,
high-tech firms from surrounding areas are expected to migrate to the ETS area in order to
increase their profits by selling carbon credits. The transfer behavior of the two types of
enterprises can reduce carbon emissions in the ETS region while increasing emissions in
the area around the ETS [40]. The theoretical background of this study is shown in Figure 1.
Accordingly, the following hypothesis is proposed:

Hypothesis 1 (H1). The carbon emissions trading system has reduced the carbon intensity of the
pilot cities in China.

Hypothesis 2 (H2). Green technology innovation is one mechanism through which the carbon
emissions trading system reduces regional carbon intensity.

Hypothesis 3 (H3). Improving urban environmental governance is another mechanism through
which the carbon emission trading system alleviates regional carbon intensity.

Hypothesis 4 (H4). The carbon emission trading system has increased the carbon intensity of the
areas surrounding the pilot cities.
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4. Data and Methodology
4.1. Data Sources

Through screening and matching, this paper selected panel data of 281 cities in China
from 2006 to 2019 as the research object. A total of 37 cities at the prefecture level and
above were designated as pilot carbon emission trading cities. These 37 cities constitute the
experimental group, and the remaining cities were analyzed as the control group. Most of
the data in this study come from data already publicly available in China, including the
National Bureau of Statistics (https://data.stats.gov.cn/, accessed on 15 August 2021), the
China City Statistical Yearbook, the China Energy Statistical Yearbook, and the Statistical
Yearbooks of 281 cities. The data were drawn from reports on social development, including
statistics on the main energy consumption of local industries above city size, total industrial
output value, urbanization rate, etc. Patent data were derived from the State Intellectual
Property Office (https://www.cnipa.gov.cn/, accessed on 20 August 2021).

4.2. Variable Selection

Urban carbon intensity is based on the total amount of carbon emissions to be mea-
sured. In this study, a material balance algorithm was used to calculate the total carbon
emissions. Carbon emissions are estimated using the chemistry of carbon dioxide produced
during energy consumption.

Carbonit = ∑n
v=1 Qvt ×Wv ×Mv × Rv × 44/12 (1)

Qvt is the annual actual consumption of the V type of energy in the city in year t.
According to the 26 fossil fuels listed in the China Energy Statistical Yearbook, they are
combined into nine final energy consumption types: coal, coke, crude oil, gasoline, kerosene,
diesel, fuel oil, natural gas, and electricity. Because electricity is not a direct energy source,
the concept of secondary energy reflects the fact that electricity is produced by consuming
other energy; therefore, this study will not measure electricity separately. Wv, Mv, Rv are
the energy calorific value conversion coefficient, carbon emission coefficient, and carbon
oxidation factor, respectively. The data come from the average low calorific value of the
China Energy Statistical Yearbook and IPCC (2006). As (44/12) is known to be the ratio of
carbon dioxide to carbon molecular weight, the carbon dioxide emissions of 281 cities in
China from 2006 to 2019 can be calculated. Since this study uses historical CO2 emission
data, and is not based on carbon trading schemes, it should be considered post hoc analysis,
and therefore calculation errors caused by different ways of allocating emission reduction
targets can be avoided.

By referring to relevant literature and considering the actual situation [34], the fol-
lowing control variables were selected to conduct propensity matching scores: regional
economic development level (PGDP), industrial structure (IND), urban population (PP),
degree of openness to the outside world (OPEN), efficiency of financial development (FS),
scale of financial development (FD), and government environmental intervention (WODK).
The specific calculation methods are shown in Table 1.

Table 1. Description of variables.

Index Measure

PGDP Real GDP per capita in cities is measured in logarithms (Yuan per person)
IND Ratio of the added value of secondary production to the gross city product (%)
PP The logarithm of the resident population at the end of the year (million)

OPEN Ratio of foreign investment to gross city product (%)
FS The ratio of total social loans to gross urban product (%)
FD The ratio of total social savings to gross urban product (%)

WODK
The proportion of the use of environmental words in the total words of the

government work report. (e.g., environmental protection, green, low-carbon,
energy-saving and emission reduction, etc.) (%)
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4.3. Model Setting

The reference measurement model of this paper is set as follows:

Carbonit = α0 + α1treatedit ∗ timeit + ∑N
i=1 β jcontrolit + µi + γt + εit (2)

where i represents the individual city and t represents the year. Carbonit is the carbon
emission of city i in year t. The year dummy variable timeit takes a value of 0 before
the introduction of the carbon emission trading pilot policy (the policy impact point is
set as 2013) and 1 after the establishment, and treatedit is a group dummy variable. The
ETS pilot cities are assigned a value of 1, non-ETS pilot cities are assigned a value of
0, and treatedit ∗ timeit is the interaction term of the two and takes the value of 0 or 1.
Here, 1 represents the pilot cities after 2013, and 0 represents non-pilot cities and the pilot
cities before 2013. The coefficient α1 before the interaction term of treatedit ∗ timeit is an
important explanatory variable that represents the policy effect of emissions trading on
urban carbon intensity. This paper will introduce various control variables affecting urban
carbon intensity into the multi-stage DID regression. The bidirectional fixed effect of city
and year will be introduced for further analysis.

4.4. Propensity Score Matching Results and Descriptive Statistics
4.4.1. Counterfactual Matches with the Equation Estimates

Rosembaum and Rubin proposed the Propensity Score Method [41]. Simulation ex-
periments show that the ATT can obtain unbiased estimation results under a series of
assumptions. It can be defined as “an algorithm that matches the treatment group and the
control group based on the conditional probability of participants, namely the propensity
score, under the condition of given observable characteristics”. The propensity score is
defined as:

P(Xi) = Pr{expi = 1|Xi} (3)

According to Equation (3), the propensity score similarity between the treatment group
and the control group is matched, and its effectiveness depends on two preconditions. The
first is conditional independence. The second is that the conditions for common support
are met. The independence condition means that ETS pilot cities or non-pilot cities are
independent of carbon intensity after controlling the common influencing factor X, and the
common support condition ensures that cities in each treatment group can match cities in
the control group through propensity score matching. The average treatment effect ATE of
city i can be expressed as

E[4i] = E
[
lny1

i

(
ny1

i , f y1
i
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]
− E

[
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]
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To estimate P(X) is to estimate the probability that the city is or is not an ETS pilot. A
Probit or Logit binary choice model is most commonly used. In this paper, a Probit model
is used to obtain the predicted probability value Pi of city i in the treatment group and Pj of
city j in the control group. The average treatment effect (ATT) of ETS on carbon intensity is
as follows:

β =
1
M ∑i∈(exp=1) [lnyi(nyi, f yi)−∑i∈(exp=0) Y(NY, FY)

(
pi, pj

)
lnyj

(
nyj, f yj

)
] (5)

where M is the number of cities in which ETS was piloted. Y(NY, FY)
(

pi, pj
)

represents
the case when lny0

i (ny0
j , f y0

j ) of city j is replaced by lny0
i (ny0

j , f y0
j ) of city i. This represents

the weight assigned to lny0
i (ny0

j , f y0
j ) of city j. When the corresponding assumptions are

met, especially when the mean values of variables in the treatment group and the control
group are not different, the propensity score matching method can obtain the ATT, and
a “clean” policy treatment effect can be obtained. Of course, being able to eliminate this
noise completely requires being able to control for all variables that may have an impact on
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choice and outcome when matched. According to the matching method (radius matching,
caliper matching, local linear regression matching, etc.), the weight function selection is
also different. This study first selects the nearest neighbor matching with k = 4, and then
selects other matching methods in the robustness test.

4.4.2. Plot of Propensity Score Matching Kernel Density Function

The quality of propensity score matching can be examined by a plot of kernel density
functions. If there is more overlap between the treatment group and the control group
in the figure, this indicates that the test propensity match score is better. Figure 2 shows
the kernel density function of the two groups of cities before and after propensity score
matching. The solid line represents the cities in the processing group, and the dashed line
represents the cities in the control group. As shown in Figure 2, prior to PSM, the two
groups showed large differences in both skewness and kurtosis. After PSM, the change
trend of the two groups is consistent, and there is a high degree of line segment coincidence.
This indicates that the propensity score matching has a significant effect. This provides a
good data basis for the use of the DID method in the empirical part of this paper.
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4.4.3. Balance Test of Propensity Score Matching and Variables of Descriptive Statistics

In order to make the results of PSM more robust, the results should satisfy the two
groups of cities, and there is no obvious difference in each matching variable. The method
to judge whether PSM is effective generally carries out the balance test of propensity score
matching. Note the absolute value of the standard deviation of the matching variable. If
the absolute value of the standard deviation is smaller, it indicates that the matching effect
is better. Table 2 results show that most of the matching variables decrease significantly
in the absolute value of the PSM standard deviation. The t-test value also changed from
significant to insignificant. This indicates that the null hypothesis that the mean of each
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variable is consistent after matching is accepted. Propensity matching scores are valid.
Table 3 shows the descriptive statistics of variables after PSM.

Table 2. Balance test of propensity score matching.

Variable Sample Match
The Mean Standard Deviation (%)

t Test p > |t|
Treat Control Deviation To Reduce

PGDP
Before 10.576 10.432 20

99.3
0.000

After 10.576 10.575 0.1 0.982

IND
Before 3.818 3.844 −11.2

99.3
0.026

After 3.818 3.836 7.8 0.203

PP
Before 6.084 5.962 19

97
0.000

After 6.084 6.088 −0.6 0.926

OPEN
Before 0.003 0.003 23.7

95.6
0.000

After 0.003 0.003 1 0.877

FS
Before 0.725 0.727 −1.2 −550.3

0.824
After 0.725 0.706 7.8 0.182

FD
Before 0.820 0.812 1.8 −236.8

0.694
After 0.820 0.794 5.9 0.323

WODK
Before 0.003 0.003 11.5

78.1
0.017

After 0.003 0.004 -2.5 0.692

Table 3. Descriptive statistics.

Variable Size Means Std. Dev. Min. Max.

CARBON 3432 −2.876 0.650 −5.113 −0.355
PGDP 3432 10.453 0.691 7.926 13.056
IND 3432 3.840 0.242 2.460 4.450
PP 3432 5.980 0.611 3.959 8.136

OPEN 3432 0.003 0.003 0 0.019
FS 3432 0.727 0.263 0.083 2.547
FD 3432 0.814 0.411 0.112 2.683

WODK 3432 0.003 0.001 0 0.012

5. Empirical Analysis
5.1. Results of Dual Difference Regression

In order to more clearly identify the causal impact of ETS on urban carbon intensity,
the above control variables will be introduced in this section. The model combining city
individual fixed effects (Id) and year fixed effects (Year) is used for further analysis, and
the results are shown in Table 4. The results in column (1) show that, without adding
any control variables, the coefficient of Treated*time is significantly negative at the level
of 1%. The results in columns (2)–(4) show that, after the introduction of other control
variables, the coefficient of Treated ∗ time is significantly negative at the 1% level. This
indicates that ETS can effectively reduce urban carbon intensity. In order to make the
results more reliable, Column (5) shows the test results of the generalized method of
moments estimation for dynamic instrumental variables. The coefficient of Treated ∗ time
is still significantly negative at the level of 1%, which further verifies the conclusion of this
paper. This empirical study also preliminarily shows that the introduction of pilot carbon
emission trading policies can effectively reduce urban carbon intensity, and Hypothesis 1
is established.
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Table 4. Dual difference regression.

Variable (1) (2) (3) (4) (5)

Treated ∗ time
−0.625 *** −0.173 *** −0.150 *** −0.142 *** −0.316 ***

(0.264) (0.026) (0.024) (0.024) (0.027)

PGDP
−0.643 *** −0.618 *** −0.636 *** −0.288 ***

(0.009) (0.010) (0.011) (0.024)

IND
0.178 *** 0.155 *** 0.248 *** 0.116 **
(0.034) (0.031) (0.038) (0.051)

PP
−0.616 *** −0.576 *** −0.197 ***

(0.075) (0.083) (0.013)

OPEN
1.394 1.759 −3.730

(1.962) (1.836) (2.606)

FS
0.127 *** 0.501 ***
(0.037) (0.043)

FD
0.010 −0.109 ***

(0.034) (0.027)

WODK
3.211 9.683 *
(1.96) (5.746)

Constant
−4.061 *** 1.952 *** 5.448 *** 4.932 *** −0.911 ***

(0.001) (0.156) (0.427) (0.488) (0.298)

Id YES YES YES YES NO

Year YES YES YES YES YES

R2 0.153 0.894 0.903 0.905 0.451

Sample size 3432 3432 3432 3432 2839

Note: *, **, and *** represent the significance levels of 10%, 5%, and 1% respectively. The clustering standard error
is shown in brackets.

5.2. Heterogeneity Analysis
5.2.1. Regional Heterogeneity Test

On the whole, ETS can effectively reduce the carbon intensity of cities. However,
different cities in China are located in different external environments. This leads to obvious
differences across urban regions. In particular, the pilot policy of carbon emission trading
has great relevance to the energy environment. The economically developed eastern region
and the economically less-developed central and western regions have obvious differences
in infrastructure and other conditions. Table 5 shows the regional heterogeneity results. The
results in columns (1)–(3) show that the eastern region is inferior to the central and western
regions in terms of coefficient and significance level. This indicates that the ETS policy in
the eastern region is less effective in reducing carbon intensity. Relative to the central and
western regions, the eastern region has a large population and more developed economy,
with a concentration of various industries. As a result, the consumption of electric energy
and heat energy caused by industrial electricity and residential electricity is large. Due
to the normal economic and social activities in the eastern region, ETS cannot reduce the
carbon intensity of the city in a short time. However, in China’s central and western areas,
the population is lower and the economic development level is weaker. In those regions, the
establishment of carbon emission trading pilots can effectively reduce the carbon intensity.
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Table 5. Regional heterogeneity test.

Variable The Eastern Region The Central Region In the Western Region

Treated ∗ time
−0.067 * −0.207 *** −0.239 ***
(0.035) (0.020) (0.021)

Constant
6.132 *** 4.524 *** 4.777 **
(1.194) (0.694) (1.954)

Control YES YES YES

Id YES YES YES

Year YES YES YES

R2 0.909 0.916 0.900

Sample size 1324 1405 703

Note: *, **, and *** represent the significance levels of 10%, 5%, and 1% respectively. The clustering standard error
is shown in brackets.

5.2.2. Quantile Regression Test

The regional heterogeneity of ETS on urban carbon intensity has been analyzed above.
This part will analyze the quantile heterogeneity of ETS on carbon intensity—that is, the
policy effect of ETS on high and low carbon intensity. It can be seen from Table 6 that,
regardless of the value of M (M is the quantile), ETS always has a dampening effect on
carbon intensity. Moreover, the impact of ETS on carbon intensity at different quantiles
also changes significantly. Specifically, the emission reduction effect of ETS on cities with
higher carbon intensity is more obvious. Figure 3 shows the trend of ETS regression on
urban carbon intensity quantiles. The horizontal axis in the figure shows the different
quantile decimal points of the ETS on urban carbon intensity. The vertical axis shows
the regression coefficients of each variable. The dashed lines of the line segments repre-
sent the OLS regression estimates of the corresponding explanatory variables. The region
between the two dotted lines represents the confidence interval of the OLS regression
value (confidence 0.95). The solid lines are the quantile regression estimation results of each
explanatory variable. The shaded part is the confidence interval (confidence 0.95) of the
quantile regression estimate. Figure 3 further shows that the emission reduction effect of
ETS on cities with higher carbon intensity is more obvious.

Table 6. Quantile regression.

Variable M = 0.1 M = 0.3 M = 0.5 M = 0.7 M = 0.9

Treated ∗ time
−0.203 *** −0.220 *** −0.328 *** −0.435 *** −0.520 ***

(0.055) (0.033) (0.021) (0.028) (0.045)

Constant
0.049 0.041 0.255 0.459 1.513 ***

(0.355) (0.232) (0.345) (0.283) (0.359)

Control YES YES YES YES YES

Id YES YES YES YES YES

Year YES YES YES YES YES

R2 0.283 0.286 0.289 0.283 0.264

Sample size 3432 3432 3432 3432 3432

Note: *** represent the significance levels of 1%. The clustering standard error is shown in brackets
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5.3. Robustness Test
5.3.1. Parallel Trend Test

This section presents the results of parallel trend tests. The specific test formula is set as:

Carbonit = α0 + ωd ∑d=5
d=−5 treatedit ∗ timeit + ∑N

i=1 β jcontrolit + µi + γt + εit (6)

The main variables in the above formula have the same meaning as in Formula (1),
where d_5 represents 5 years before the introduction of ETS policy, and d5 represents the
5th year after the introduction of ETS policy. The coefficient ωd is the focus of this paper’s
test. If the coefficient estimate is insignificant before ETS, significantly negative after ETS,
and shows a difference in marginal effects, then the parallel trend assumption is satisfied.
As shown in Figure 4, before the ETS, the effect on carbon intensity is not significant. After
the establishment of the ETS, the coefficient is significantly negative. The marginal effect
of ETS on carbon intensity mitigation is strengthened over time, showing a long-term
emission reduction effect. This proves the rationality of using the PSM-DID method in
this paper.
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5.3.2. Change the Sample-Matching Method

The nearest neighbor matching method with K = 4 was selected above for data match-
ing and processing. In order to make the above conclusion more robust, this part re-selects
the matching party for data matching. In this part, the methods of Mahalanobis distance
matching, caliper matching, radius matching, and kernel matching were used to re-match
the data. Table 7 shows the results of difference-in-differences estimation by various match-
ing methods. After changing the propensity matching scoring method, the estimated
results are close to the regression results above. This indicates that the above regression
results are reliable, verifying that that ETS can effectively reduce urban carbon intensity.

Table 7. Results of replacing the matched DID.

Variable Mahalanobis Distance Matches Caliper Match Radius of a Match Nuclear Match

Treated ∗ time
−0.168 *** −0.141 *** −0.168 *** −0.141 ***

(0.026) (0.024) (0.026) (0.024)

Constant
4.530 *** 4.932 *** 4.530 *** 4.861 ***
(0.469) (0.488) (0.469) (0.493)

Control YES YES YES YES

Id YES YES YES YES

Year YES YES YES YES

R2 0.872 0.905 0.872 0.904

Sample size 3934 3432 3934 3434

Note: *** represent the significance levels of 1%. The clustering standard error is shown in brackets.

5.3.3. Placebo Test

The cities in which ETS was piloted may have been chosen as pilots due to their
relatively complete infrastructure and high economic development potential. Therefore, in
order to eliminate the interference of other unobservable factors with the conclusions of this
paper, a placebo test was used to further prove the reliability of the previous conclusions.
In this part, the interaction terms are randomly selected 1000 times to check whether the
coefficients are significantly different from the benchmark estimation results. The results are
shown in Figure 5. The dashed line indicates that the actual estimated coefficient obtained
by PSM-DID is −0.142. The coefficient estimate is lower than 1000 random draws. This
indicates that the placebo test in this part is valid. Thus, the reliability of the conclusions of
this paper is proven.

Int. J. Environ. Res. Public Health 2022, 19, x FOR PEER REVIEW 14 of 20 
 

5.3.3. Placebo Test 
The cities in which ETS was piloted may have been chosen as pilots due to their rel-

atively complete infrastructure and high economic development potential. Therefore, in 
order to eliminate the interference of other unobservable factors with the conclusions of 
this paper, a placebo test was used to further prove the reliability of the previous conclu-
sions. In this part, the interaction terms are randomly selected 1000 times to check whether 
the coefficients are significantly different from the benchmark estimation results. The re-
sults are shown in Figure 5. The dashed line indicates that the actual estimated coefficient 
obtained by PSM-DID is −0.142. The coefficient estimate is lower than 1000 random draws. 
This indicates that the placebo test in this part is valid. Thus, the reliability of the conclu-
sions of this paper is proven. 

 
Figure 5. Placebo test. 

6. Further Analysis 
6.1. The Mediation Effect Test 

The above empirical results show that introducing the carbon emission trading pilot 
policy has alleviated the carbon intensity of cities. Then, how does ETS affect the carbon 
intensity, and what is the specific mechanism? According to the above theoretical analysis, 
this paper argues that the pilot carbon emissions trading policy acts through green tech-
nology innovation and environmental governance. Therefore, this paper will examine the 
intermediary mechanism from the two channels of green technology innovation and en-
vironmental governance. M௜௧ = 𝛽଴ + 𝛿ଶ𝑡𝑟𝑒𝑎𝑡𝑒𝑑௜௧ ∗ 𝑡𝑖𝑚𝑒௜௧ + ∑ 𝑤௝𝑐𝑜𝑛𝑡𝑟𝑜𝑙௜௧ே௜ୀଵ + 𝜇௜ + 𝛾௧ + 𝜀ଵ௜௧  (7)𝐶𝑎𝑟𝑏𝑜𝑛௜௧ = 𝜃ଵ + 𝛿ଷ𝑡𝑟𝑒𝑎𝑡𝑒𝑑௜௧ ∗ 𝑡𝑖𝑚𝑒௜௧ + 𝛿ସ𝑀௜௧ + ∑ 𝑒௝𝑐𝑜𝑛𝑡𝑟𝑜𝑙௜௧ே௜ୀଵ + 𝜇௜ + 𝛾௧ + 𝜀ଶ௜௧   (8)

In the above equation, M represents the mediating variables, which are green tech-
nological innovation (Inno) and environmental governance (Trash), respectively. Among 
them, green technological innovation is represented by the number of green invention 
patents and green utility model patents granted per capita in cities [42]. A larger value 

Figure 5. Placebo test.

55



Int. J. Environ. Res. Public Health 2022, 19, 12483

6. Further Analysis
6.1. The Mediation Effect Test

The above empirical results show that introducing the carbon emission trading pilot
policy has alleviated the carbon intensity of cities. Then, how does ETS affect the carbon
intensity, and what is the specific mechanism? According to the above theoretical analy-
sis, this paper argues that the pilot carbon emissions trading policy acts through green
technology innovation and environmental governance. Therefore, this paper will examine
the intermediary mechanism from the two channels of green technology innovation and
environmental governance.

Mit = β0 + δ2treatedit ∗ timeit + ∑N
i=1 wjcontrolit + µi + γt + ε1it (7)

Carbonit = θ1 + δ3treatedit ∗ timeit + δ4Mit + ∑N
i=1 ejcontrolit + µi + γt + ε2it (8)

In the above equation, M represents the mediating variables, which are green tech-
nological innovation (Inno) and environmental governance (Trash), respectively. Among
them, green technological innovation is represented by the number of green invention
patents and green utility model patents granted per capita in cities [42]. A larger value in-
dicates a higher level of green technology innovation. The calculation of the environmental
governance level index is measured by the sum of waste water, waste gas, and solid waste
generated by the city. A smaller value indicates a higher level of environmental governance.

Traditional parameter estimation methods require the assumption of a normal distri-
bution of data. The use of stepwise regression may have some impact on the assessed policy
effects. Therefore, the Sobel test and Bootstrap method were used to test the mediating
effect in this part. The Bootstrap test uses the mixed effects hypothesis. In this paper, the
original sample was randomly sampled repeatedly with n = 1000. The asymmetry in the
distribution of indicators was corrected. This can significantly improve the accuracy of
model testing under a complex mediation structure.

Table 8 shows the mediation test results. When Inno is used as a mediating variable,
the coefficient before Treated ∗ time is significantly positive at the 1% level. This indicates
that the introduction of the pilot policy of carbon emission trading has promoted the
level of urban green technological innovation. The coefficient of urban carbon intensity is
significantly negative at the 1% level. This shows that the improvement of green technology
innovation alleviates urban carbon intensity, and the path of “carbon emission trading pilot
policy-green technology innovation-urban carbon intensity” is established. This proves
Hypothesis 2.

When the level of environmental governance is used as a mediating variable, the
coefficient before Treated ∗ time is significantly negative at the 1% level. This shows
that the introduction of the pilot policy of carbon emission trading has improved the
level of urban environmental governance. The coefficient of urban carbon intensity is
significantly positive at the 1% level. This indicates that the improvement of environmental
governance will alleviate urban carbon emissions. The path of “Carbon emission trading
pilot policy—environmental governance level—urban carbon intensity” is established. This
proves Hypothesis 3.

Table 8. Results of mediating effect test.

Variable

Green Technology Innovation Environmental Governance

(1) (2) (3) (4)

Inno Carbon Trash Carbon

Treated ∗ time
0.931 *** −0.055 *** −0.119 *** −0.079 ***
(0.140) (0.008) (0.039) (0.008)

Inno
−0.016 ***

(0.001)
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Table 8. Cont.

Variable

Green Technology Innovation Environmental Governance

(1) (2) (3) (4)

Inno Carbon Trash Carbon

Trash
0.013 ***
(0.003)

Constant
−30.76 *** 1.884 *** 3.910 ** 1.169 ***

(5.346) (0.317) (1.515) (0.305)

Control YES YES YES YES

Id YES YES YES YES

Year YES YES YES YES

Sobel test Z = −6.094 *** Z = −2.333 **

The Bootstrap test [−0.023, −0.007] (BC) [−0.004, −0.0003] (BC)

R2 0.765 0.979 0.851 0.985

Sample size 3432 3432 3432 3432

Note: ** and *** represent the significance levels of 5%, and 1% respectively. The clustering standard error is
shown in brackets.

6.2. Spatial Spillover Effect Test
6.2.1. Model Set and Related Analysis

According to the above analysis, the impact of the pilot carbon emission trading
policy on carbon intensity may have a spatial spillover effect, which needs further analysis.
Therefore, this paper establishes a spatial econometric model based on the equation:

Carbonit = β0 + β1W × Carbonit + β2CDit + β3W × CDit + ∑N
i=1 qjcontrolit + µi + γt + εit (9)

where W is the spatial weight matrix. Equation (7) adds the spatial interaction term
(W × CD) of the core explanatory variable (CD) to the equation. The model estimates
the spatial spillover effects of the explained and core explanatory variables. Regarding the
selection of the spatial weight matrix, this paper chooses the geographical inverse distance
matrix to study the possible spatial spillover effect.

Before the spatial econometric analysis, it is necessary to determine whether there is
a spatial correlation of urban carbon intensity. In this paper, the global Moran’s I index
is used to test the spatial correlation of carbon emissions. Table 9 reports the regression
results of each year. For 2006~2019, Moran’s I index shows significance under the 1% level,
which shows a spatial correlation in urban carbon intensity.

Table 9. Results of spatial correlation test.

Year Moran’s I Z Value Year Moran’s I Z Value Year Moran’s I Z Value

2006 0.141 *** 27.849 2011 0.128 *** 25.399 2016 0.172 *** 33.931
2007 0.136 *** 26.840 2012 0.128 *** 25.332 2017 0.173 *** 34.062
2008 0.131 *** 25.889 2013 0.133 *** 26.313 2018 0.168 *** 33.182
2009 0.130 *** 25.670 2014 0.143 *** 28.317 2019 0.183 *** 36.064
2010 0.133 *** 26.251 2015 0.156 *** 30.766

Note: *** represent the significance levels of 1%. The clustering standard error is shown in brackets.

6.2.2. Analysis of Regression Results

Table 10 shows the regression results of the spatial Durbin model with double fixed
effects. Columns (1)–(3) represent the direct effect, indirect effect, and total effect after
coefficient decomposition respectively. From R2 and the Sigma2 and log-likelihood statistics,
the fit of the model is better and the overall regression reliability is higher. As column
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(1) shows, the Treated ∗ time coefficient is −0.141, and is significant at the 1% level. This
means that the establishment of carbon emissions trading pilot cities can alleviate local
urban carbon intensity, which is consistent with the results of the benchmark in front
of the regression. Column (2) shows that the Treated ∗ time coefficient is 0.168 and is
significant at the 1% level. This means that the establishment of pilot emissions trading
can increase the carbon intensity in areas surrounding the region. W ∗ Treated ∗ time
before the time coefficient is 0.399 and is significant at the 1% level. This means that, when
pilot emissions trading was set up in this region, the ETS produced a spatial spillover
effect, increasing the carbon intensity of the surrounding area. Because of the region’s strict
carbon trading controls, polluting companies cannot afford the high prices of carbon credits
and move to surrounding areas. As the above result shows, the establishment of a pilot
emissions trading city not only can reduce the carbon intensity of the city, but also can affect
surrounding cities. The environmental regulation in the region, through the strict design
of the carbon trading system, relies on the power of the government. The expansion of
the implementation of tertiary industries such as service, acceleration of the upgrading of
industrial structure, and finally, the improved efficiency of energy utilization can alleviate
the carbon intensity of the region, but may cause enterprises to transfer, which can increase
the carbon intensity in the surrounding areas. This proves hypothesis 4.

Table 10. Regression results of spatial Durbin model.

Variable (1) (2) (3)

Treated ∗ time
−0.141 *** 0.168 *** −0.141 ***

(0.024) (0.026) (0.024)

W ∗ Treated ∗ time 0.399 ***
(0.063)

Log-likelihood 4258.507

sigma2 0.006 ***
(0.001)

Control YES

Id YES

Year YES

R2 0.316

Sample size 3 934
Note: *** represent the significance levels of 1%. The clustering standard error is shown in brackets.

7. Conclusions and Recommendations
7.1. Conclusions

This paper regards the carbon emission trading system as a quasi-natural experiment.
Using the panel data of 281 cities in China from 2006 to 2019, this paper empirically exam-
ined the policy effect and spatial spillover effect of ETS on urban carbon intensity in China
by using PSM-DID and spatial Durbin models and analyzed it from multiple perspectives.

First, ETS helps mitigate urban carbon intensity. However, this effect has heteroge-
neous characteristics. The mitigation effect of the carbon emission trading system on the
carbon intensity in the eastern region is not significant. By contrast, the mitigation effect
on carbon intensity in the central and western regions is very significant. Compared with
the central and western regions, the eastern region has a large population, developed
economy and various industries. Industrial and residential consumption of electricity
and heat energy is huge. Setting up pilot carbon emission trading in the eastern region,
while also promoting economic activities in that region, cannot significantly reduce the
carbon intensity of cities in a short period of time. In the central and western regions of
China, the population is small, and the level of economic development is weak. Setting up
carbon emission trading pilots in those regions can effectively reduce the carbon intensity
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of the regions. The results of the quantile test show that the emission reduction effect
of ETS is more obvious for cities with higher carbon intensity, and the marginal effect of
emission reduction is larger for cities with higher carbon intensity, so there is more room
for emission reduction.

Second, the parallel trend test shows that the longer the carbon emission trading
system is established, the more obvious is the mitigation effect on urban carbon intensity.
The longer the carbon emission trading system is established, the more time the pilot
enterprises have to carry out technological innovation, and the more obvious the effect of
mitigating urban carbon intensity measurement will be.

Third, this paper further analyzes the influence mechanism of ETS from the two aspects
of green technological innovation and environmental governance. The results show that
the carbon emission trading system can encourage enterprises to carry out technological
innovation to reduce emissions, thus alleviating urban carbon intensity. By improving the
level of environmental governance and reducing the emission of all kinds of pollutants,
this also reduces the corresponding carbon emissions, which then alleviates the carbon
intensity. This is consistent with most of the literature results.

Fourth, spatial spillovers show that the ETS, although able to mitigate the carbon
intensity of the pilot cities, causes the carbon emissions of the surrounding non-pilot cities
to rise. This is because the penalty mechanism of ETS leads to high environmental costs
that cause enterprises to transfer to surrounding non-pilot areas. As a result, the carbon
intensity of surrounding areas increases.

7.2. Recommendations

First, the development of ETS should always adhere to the combination of “market
determination” and “government regulation”. On the one hand, policy makers should
continue to insist on the decisive role of the market in the allocation of carbon emission
rights, and should use supply and demand mechanisms, competition mechanisms, price
mechanisms, and other means to promote the effective operation of carbon trading markets.
This requires constantly adjusting the incentives of enterprises through surplus carbon
emission rights and adjusting the penalties imposed on enterprises with insufficient carbon
emission rights through market means. Thus, the cost of carbon emissions is internalized
into the cost-benefit analysis of the enterprise and becomes an important variable for
maximizing corporate profits, thus promoting carbon emission reduction. On the other
hand, policy makers should give full play to the regulating and supporting role of the
government. The government should formulate laws and regulations suitable for the
healthy and effective operation of the market in order to make up for market failures
such as monopoly, information asymmetry, and externalities caused by market limitations,
thereby constantly improving the market environment.

Second, the carbon reduction effect of ETS is regionally heterogeneous. There are signif-
icant differences between different regions due to their local level of economic development,
industrial structure, energy structure, and other factors. Therefore, each transaction pilot
cannot adopt a “one size fits all” attitude when formulating policies. The construction of
carbon trading markets should be carried out according to local conditions. In this way,
achieving carbon reduction targets also can promote high-quality economic development.

Third, scientific and technological research and innovation of enterprises is the key to
the carbon reduction effect of the ETS. The government, enterprises, and society should pay
special attention to the important role of scientific and technological R&D and innovation
in carbon trading policies. It is recommended to continuously increase the R&D investment
of all enterprises and encourage them to carry out technological innovation in order to
constantly update the production process. This will promote the green development
of enterprises. The government should also effectively improve its own environmental
governance level in order to improve its ability to prevent and control urban pollution.
Through the development of a series of laws and regulations to assist the operation of the
ETS system, strict penalties should be imposed on enterprises that violate the system.
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Fourth, the spatial spillover effect among different cities increases the carbon intensity
of surrounding cities. On the one hand, local governments in non-pilot areas are encouraged
to actively learn from the experiences of pilot areas in order to reduce the carbon intensity
of the region. However, carbon leakage through spatial spillovers undermines the goal
of reducing emissions. New mechanisms should be considered to prevent companies
from avoiding emission rules. A hybrid mechanism that combines the carbon ETS with
other environmental regulation tools is recommended. For example, a carbon tax could be
imposed on emissions in non-pilot areas to discourage firms from leaving pilot areas.

The above is the main content of this paper, but the research of this paper still has
limitations. This study uses an econometric approach based on historical data from a pilot
carbon trading program in China. We also believe that carbon tax is one of the effective
ways to reduce the carbon intensity of cities. If carbon tax projects are implemented in
these cities, a more reasonable conclusion can be obtained by comparing the effects of
carbon trading and carbon tax. Since China has no plan to implement carbon tax at present,
such data cannot be obtained to reconstruct the regression model of carbon tax cases. This
prevents more reasonable conclusions from being drawn. If China has some concrete
practice in carbon tax, the author will study it.
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Abstract: The development of China’s manufacturing industry is constrained by factors such as
energy and resources, and low-carbon development is arduous. Digitalization is an important
method to transform and upgrade traditional industries. Based on the panel data of 13 manufacturing
industries in China from 2007 to 2019, a regression model and a threshold model were used to
empirically test the impact of digitalization and electricity consumption on carbon emissions. The
research results were as follows: (1) The digitalization level of China’s manufacturing industry was
steadily increasing; (2) The proportion of electricity consumption in China’s manufacturing industries
in the total electricity consumption hardly changed from 2007 to 2019, basically maintaining at about
6.8%. The total power consumption increased by about 2.1 times. (3) From 2007 to 2019, the total
carbon emissions of China’s manufacturing industry increased, but the carbon emissions of some
manufacturing industries decreased. (4) There was an inverted U-shaped relationship between
digitalization and carbon emissions, the higher the level of digitalization input, the greater the
carbon emissions of the manufacturing industry. However, when digitalization develops to a certain
extent, it will also suppress carbon emissions to a certain extent. (5) There was a significant positive
correlation between electricity consumption and carbon emissions in the manufacturing industry.
(6) There were double energy thresholds for the impact of labor-intensive and technology-intensive
manufacturing digitalization on carbon emissions, but only a single economic threshold and scale
threshold. There was a single scale threshold for capital-intensive manufacturing, and the value
was −0.5352. This research provides possible countermeasures and policy recommendations for
digitalization to empower the low-carbon development of China’s manufacturing industry.

Keywords: digitalization; electricity consumption; carbon emissions; manufacturing industries

1. Introduction

Under the goal of carbon neutrality, traditional high-carbon emission industries such
as steel and cement have received greater attention, but the digital economy is becoming
a new driving force for the high-quality development of China’s economy and plays a
very important role in carbon emission reduction. In 2020, the total scale of China’s digital
economy reached 39.2 trillion yuan, with a growth rate three times that of China’s GDP
and a contribution of 38.6% to GDP. As a new mode of production, digital technology will
help China achieve the goals of carbon peaking and carbon neutrality and at the same time,
provide fast funding channels for the development of low-carbon cities [1]. Although the
development of China’s digital economy is showing a steady upward trend, there is still a
phenomenon of regional development imbalance [2].

China is experiencing an unprecedented process of digitalization and modernization,
and its manufacturing industry is also speeding up adjustment, optimization, and up-
grading. In 2021, the added value of China’s manufacturing industry was 31.4 trillion
yuan, accounting for nearly 30% of the world’s total. The energy utilization rate industry
continued to rise. The comprehensive energy consumption of steel and other units has
dropped by more than 9% compared with 2012. Digitalization and manufacturing are
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integrated and developed, and the energy efficiency of infrastructure is also continuously
optimized. From 2007 to 2019, the level of digitalization in China’s manufacturing industry
steadily increased (See Figure 1 for more details).
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An important path in achieving carbon emission reduction is transforming the energy
industry. In 2020, carbon emissions from national energy consumption accounted for 85%
of total carbon emissions, and those from the power sector accounted for 40% of the total.
The digital economy mainly empowers the energy sector at three levels to help achieve
carbon emission reduction goals. First, from the perspective of the energy supply side,
the trend and fluctuation of power demand can be monitored and controlled in real-time
through digital technology to achieve the optimal allocation of resources and improve
energy utilization efficiency. Second, from the perspective of the energy demand side,
digital technology can monitor the disclosure of information such as carbon emissions. It is
possible to measure and source carbon emissions, helping companies achieve demand-side
management of carbon emissions at a lower cost. This can further improve the carbon
emissions trading market. Third, from the perspective of energy trading, digital technology
can solve the time and space barriers in the transaction, which can optimize the matching
of the supply and demand sides and then improve the energy transactions efficiency.

The rapid development of China’s manufacturing industry is accompanied by a large
amount of energy consumption and carbon emissions. Electricity is an important source
of energy and is clean, but the process of producing electricity is not. From 2019 to 2021,
China accounted for almost all of the growth in global carbon emissions from the power
and heat sectors. The CO2 emissions from the power and heating sector increased by
6.9% in 2021, due to a sharp increase in global electricity demand. From 2007 to 2019,
the proportion of electricity consumption of China’s manufacturing industries in the total
electricity consumption hardly changed, maintaining at about 6.8%. However, the total
electricity consumption of the manufacturing industry has increased by about 2.1 times,
from 122.3 billion kWh to 260.4 billion kWh (See Figure 2 for details). As the world’s
largest carbon emitter, China is actively taking responsibility for reducing carbon emissions.
“Made in China (2025)” clearly states that by 2025, the added value of carbon emissions per
unit of China’s manufacturing industry should be reduced by 40% based on 2015. In recent
years, although the carbon emissions of some manufacturing industries have decreased,
the total carbon emissions have continued to increase (See Figure 3 for details).
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This paper aimed to analyze the impact of digitalization and electricity consumption
on carbon emissions in China’s manufacturing industry, accurately identify the influencing
factors and threshold effects of carbon emissions in China’s manufacturing industry, and
then choose appropriate emission reduction paths and policies to help China’s manufac-
turing industry successfully realize digitalization and low-carbon transformation goals.
Possible marginal contributions are: First, the article analyzes the industry heterogeneity
of China’s manufacturing industry and takes into account the spatiotemporal factors of
global value chain participation. Second, the article uses the threshold model to analyze
the energy, economic, and scale effects of digitalization on China’s manufacturing carbon
emissions. Third, the article puts forward specific countermeasures for manufacturing
carbon emission reduction from the aspects of demand, supply, and transaction sides.

In the process of digitalization and the rapid growth of energy consumption, China’s
manufacturing industry is facing greater pressure in reducing carbon emissions. This paper
focuses on the relationship between digitalization, electricity consumption, and carbon
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emissions. It examines the impact of the digital economy on China’s manufacturing carbon
emissions and the threshold effect. Then we propose corresponding carbon emission
reduction countermeasures. This paper provides theoretical and practical references for the
government and enterprises. Furthermore, it has important practical significance for the
development of a low-carbon society.

2. Literature Review
2.1. Understanding Digitalization

Digitalization involves digital technology and its integrated use in the production
process [3]. The development of the digital economy includes two aspects. One is digital
industrialization. Information technology has given birth to many new industries. The
industry based on digital elements has promoted the industrial structure to be technology-
intensive and environment-friendly. The second is industrial digitalization, which refers
to the combination of traditional industries and digitalization, and the application of
digitalization in production to promote the transformation and upgrading of traditional
industries. The upgrading of industrial structures can promote the use of clean energy,
replace traditional high-carbon emission energy with clean energy, and ultimately reduce
carbon emissions [4]. The upgrading of industrial structures can stimulate the R&D and
application of low-carbon technologies. Meanwhile, it can improve the energy structure to
play a better substitution role and promote the green transformation of enterprises [5].

Digitalization has a greater impact on carbon emission efficiency. It can improve
carbon productivity, and its impact on the central and western regions of China is sig-
nificantly greater than that on the eastern regions. Furthermore, it mainly affects carbon
productivity through technological innovation and industrial structure optimization and
upgrading [6]. The promotion effect of digitalization on carbon emission reduction shows
a trend of increasing with time and has a positive spatial spillover effect. Digitalization
is becoming one of the new sources of energy to improve green development. With the
technology accumulation, the coefficient of the impact of digitalization on total factor
carbon productivity is getting higher and more significant [7].

However, the carbon-reducing effect of digitalization is controversial. Some scholars [8–10]
believe that digitalization has a carbon emission reduction effect, while others [11,12]
believe digitalization can promote carbon emissions. Therefore, we will discuss these ques-
tions in the next section. The topics are divided into the decoupling of digitalization and
carbon emissions, the uncertainty of digitalization and carbon emissions, the relationship
between digitalization and manufacturing carbon emissions, the specific path to realize
digital carbon emission reduction, and finally puts forward the hypotheses that this paper
wants to test.

2.2. Debate on the Relationship between Digitalization and Carbon Emissions
2.2.1. Digitalization and Carbon Emissions Are Gradually Decoupling

(1) Linear analysis

Based on the linear analysis between digitalization and carbon emissions, it is found
that the two are slowly decoupling. Digitalization mainly promotes the low-carbon trans-
formation of cities through innovation, and its impact on low-carbon development in cities
will become stronger and stronger [13]. Digitalization uses the internet to reduce offline
activities, travel, and carbon emissions. Meanwhile, it promotes the popularization of
green and low-carbon behaviors, making low-carbon a daily behavior standard and also
promoting the effective use of a green economy [4]. From a technical point of view, China’s
information and communications technology (ICT) industry helps reduce carbon emissions,
and the ICT industry in the central region has a greater impact on CO2 emissions than the
eastern region [14]. The innovative development of ICT provides opportunities for the co-
ordinated development of shared prosperity, energy conservation, and emission reduction.
It effectively promotes carbon emission reduction by reducing energy consumption [15].
Meanwhile, improving energy structure and technological progress can effectively reduce
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carbon emission intensity [4]. Digitalization can significantly increase carbon productivity.
Technological innovation, reduction of energy consumption intensity, and improvement of
urban productivity are the main paths [16,17].

Digitalization has a significant driving effect on the coordinated governance of carbon
dioxide and haze pollution, and there is a positive spatial spillover effect [18]. It mainly
improves environmental pollution through technological innovation and optimal allocation
of resources [19]. Furthermore, there is a long-term positive and significant relationship
between internet use and carbon emissions, but no causal relationship exists. The rapid
growth of the internet is not the main reason the environment is threatened. Therefore,
promoting the development of the internet will not lead to environmental degradation [20].

(2) Nonlinear analysis

In order to more scientifically assess the relationship between the digital economy and
carbon emissions, nonlinear analysis is becoming more popular. In the study of digital-
ization and carbon emissions, the development of regional digitalization has significantly
reduced the intensity of carbon emissions. The relationship with carbon emissions presents
an inverted U-shaped relationship that first rises and then declines. The specific transmis-
sion paths are mainly technological innovation, industrial structure, and energy structure.
Digitalization has latecomer advantages in achieving carbon neutrality goals [21]. The
empirical analysis finds that comprehensive infrastructure construction will increase energy
intensity and thus hinder carbon emissions. However, information integration infrastruc-
ture is conducive to developing the tertiary industry, and the carbon emissions generated
will be less than those generated by comprehensive infrastructure construction. This leads
to an inverted U-shaped relationship between integrated infrastructure development and
carbon emissions [22]. However, digitalization contributes to carbon emissions when green
energy is less efficient and vice versa [23].

Besides, digitalization has spatial spillover effects on carbon emission reduction. Using
the spatial Durbin model (SDM), it is found that digitization has a U-shaped spatial
spillover emission reduction effect and presents an inverted U-shaped carbon emission
reduction effect that is first promoted and then suppressed. Technological progress and
economic growth are the main mechanisms [24]. Using the panel data of 277 cities in China
from 2011 to 2019, an inverted U-shaped nonlinear relationship between digitization and
carbon emissions was also found. The industrial structure upgrading makes the effect
of digitalization on carbon emissions also follow the characteristics of the Environmental
Kuznets Curve [25]. Digitalization has a significant negative direct effect on green total
factor energy efficiency (GTFEE) through electrification, hollowing out of industrial scale,
and industrial efficiency. However, with economic development, its impact on GTFEE
gradually turns from negative to positive. Based on the SDM and threshold models, the
inverted U-shaped relationship between digitalization and carbon emissions has been
further verified [26].

As a new form of economy, digitalization is important for reducing carbon emissions
in the transportation and logistics industries. It has a mitigating effect on carbon emissions
in the transportation sector. It also accelerates carbon emissions in the transportation
sector in the low-urbanization stage but reduces carbon emissions in the high-urbanization
stage [27]. With the provincial panel data from 2005 to 2019, the nonlinear regression model
and the quantile regression model were used to empirically test the U-shaped relationship
between digitalization and carbon emissions in the logistics industry. In the first half of
the U-shaped relationship, digitalization had both a restraining effect and a significant
evolutionary effect on carbon emissions in the logistics industry. As the quantile increases,
the marginal impact of digitalization on carbon emission reduction in the logistics industry
gradually decreased [28].

2.2.2. Digitalization Brings Uncertainty about Carbon Emissions

Although the above studies find that digitalization and carbon emissions are decou-
pling, the nexus between the two remains uncertain. In analyzing the carbon deduction
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effect of digitalization, considering the impact of digital demand and supply, digitalization
may bring about 6% of carbon emissions [11]. With the promotion of digital demand and
scale, between 2002 and 2007, the carbon emissions brought by digitalization rose from
210 Mt to 418 Mt. From 2007 to 2017, with the improvement of carbon efficiency and digital
application structure, the carbon emission caused by digitalization has been alleviated.
However, with the intermediary model and the panel threshold model, it was found that
improving energy efficiency can promote carbon emission reduction, although digitaliza-
tion increases carbon emissions. Nevertheless, digital development is not conducive to
the improvement of energy efficiency. Considering energy efficiency, digital development
has a significant double-threshold effect on carbon emissions, showing an N-shaped trend.
Population expansion, coal-based energy consumption structure, and industrial structure
were the main reasons for the increased carbon emissions [29].

Although digitalization can effectively reduce urban carbon emissions and improve
total factor productivity, the improvement of energy efficiency, technological innovation,
and industrial structure upgrading are the main reasons for the existence of digital low-
carbon governance effects. However, digitalization can only promote the low-carbon
transformation of old industrial bases. The urban development of traditional resource
industries is path-dependent, and the effect of low-carbon governance is not obvious [30].
Although artificial intelligence can produce carbon emission reduction effects through
industrial structure, information infrastructure, and green technology innovation, these are
only for big cities and cities with better infrastructure and advanced technology. There are
differences in the development of the digital economy among different countries, especially
in hyper-digitalized and under-connected countries. Although digitalization reduces total
carbon emissions, it increases carbon emissions per capita [31].

2.3. Digitalization, Electricity Consumption and Manufacturing Carbon Emissions
2.3.1. Digitalization and Manufacturing Carbon Emissions

Digitalization is a very important industrialization process. Influenced by Industry 4.0,
it directly affects all production processes and manufacturing sectors. Therefore, it is
imperative to increase the productivity and sustainability of the manufacturing sector [32].
Manufacturing digitalization is an important enabling factor for improving competitive
advantage [33]. Industry 4.0 has become a continuous and predicted outcome of past
industrial ages. From a technological point of view, it can be considered an increase in
digitalization and automation, as well as an increase in communication enabled by the
creation of digital value chains [34]. However, digital traceability should be used to improve
the traceability and added value of products, shorten the production cycle and promote the
manufacturing industry to adapt to the requirements of Industry 4.0 [35].

The reduction of carbon emissions is the main reason driving the growth of TFP and
technical efficiency in the context of the deep integration of the digital service industry and
the manufacturing industry. Industrial integration and carbon emissions show a U-shaped
relationship. The integration of capital-intensive, technology-intensive, and labor-intensive
manufacturing industries and digital services promotes the growth of total factor produc-
tivity but first suppresses and then promotes carbon emissions [36]. Digitalization has a
positive effect on TFP in time and space and can promote the development of manufactur-
ing. Labor-intensive and capital-intensive industries have the same characteristics as the
total sample [37].

The development of digitalization reduces the carbon emission intensity of enterprises
and improves the efficiency of resource allocation. However, the market drive has im-
proved the ability of digital carbon emission reduction, while government regulation has
reduced the ability of digital carbon emission reduction [38]. Through the sample of heavily
polluting enterprises listed on China’s A-shares, it is found that digitalization can signifi-
cantly improve the efficiency of energy conservation and emission reduction of enterprises,
especially for mining and manufacturing industries. Digitalization has promoted cleaner
production through technological innovation, easing financing constraints, and promoting
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market competition. This promotion effect is more significant in areas with more developed
economies and less government financial pressure [12]. From a global perspective, invest-
ment in manufacturing digitization has reduced carbon emission intensity. The industry
spillover effect becomes more significant over time. From the perspective of industry
heterogeneity, the carbon emission reduction effect of digitalization in pollution-intensive
manufacturing is more obvious [39].

Based on this, this paper proposes the following hypothesis:

Hypothesis 1. There is an inverted U-shaped relationship between digitalization and China’s
manufacturing carbon emissions.

2.3.2. Electricity Consumption and Carbon Emissions

Increased electricity use adversely impacts carbon emissions [40–45]. The continuing
increase in electricity consumption is one of the main sources of carbon emissions [40].
Electricity-related carbon emissions release more than 40% of global and Chinese carbon
emissions [44]. Electricity is usually an important energy source for a country, and the
demand for electricity often increases energy consumption and pollution. Through the
econometric analysis of the co-integration panel, it is proved that the adverse effect of elec-
tricity consumption on carbon emissions exists. However, electricity output from renewable
sources can ease the pressure on carbon emissions. Overall, electricity consumption and
generation are the main sources of carbon emissions [41].

China is also committed to research on carbon reduction of electricity consumption.
Regression analysis of 25 years of relevant data from 123 countries found that using
renewable energy had a carbon emission reduction effect [42]; however, there was no causal
relationship between electricity consumption and carbon emissions in China [46]. In 2020,
66% of China’s power generation came from coal, and coal consumption accounted for 61%
of energy consumption. A reduction in coal consumption would result in a 51% reduction in
overall carbon emissions [43]. Based on the carbon release effect of electricity consumption,
how to reduce carbon emissions through technology has attracted the attention of the
power sector. Previous studies have often neglected electricity-related carbon emissions
induced by electricity consumption. Through the comprehensive application of IPCC’s
carbon emission accounting method, taking Shanghai as the research object, it was again
verified that electricity consumption and population size have indeed promoted carbon
emissions. However, the increase in electricity efficiency and the decline in carbon emission
intensity offset the increase in carbon emissions [45]. As the digital transformation deepens,
the promotion effect of energy consumption per capita on carbon emissions is weaker,
while the effect of renewable energy on carbon emission reduction is stronger [47].

Hypothesis 2. Electricity consumption contributes to China’s manufacturing carbon emissions.

2.4. The Specific Path of Digital Empowerment for Carbon Emissions Reduction

Digitalization empowers carbon emissions mainly through the following paths. First,
it mainly relies on industrial progress and energy consumption optimization to curb carbon
emissions and has significant spatial spillover effects on neighboring provinces [48]. In the
short term, increased energy consumption and non-green technological progress are the
main paths to increasing carbon emissions. However, technological progress and industrial
structure upgrading are the main paths for long-term carbon emission reduction [49]. Sec-
ond, it plays a role mainly through resource flow and energy flow. From the perspective
of element resource misallocation (capital misallocation and labor misallocation), digi-
talization can improve carbon emission efficiency in both southern and northern China.
Meanwhile, it has a long-term positive impact on the carbon emission rate by mitigating
factor misallocation [50]. Digital financial inclusion is an important factor for digitaliza-
tion to affect carbon emissions [51]. Third, from the perspective of digital transformation,
digital infrastructure, digital trade competitiveness, digital technology, and energy con-

69



Int. J. Environ. Res. Public Health 2023, 20, 3938

sumption have significant threshold effects on carbon emissions. Although trade brings
economic benefits, it also implies the environmental costs of carbon emissions [44]. Smart
city construction will also significantly reduce corporate carbon emission intensity [52].
Finally, improved energy efficiency helps reduce carbon emissions in manufacturing and
transportation [53].

The above analysis found that there are many related studies. However, the rela-
tionship between digitalization and carbon emissions is still inconclusive. Furthermore,
although electricity consumption boosts carbon emissions, there are not many specific
analyses on the manufacturing industry. Based on this, this paper builds the analysis frame-
work shown in Figure 4 to capture the direct effects of digitalization on carbon emissions
and related threshold effects (See Figure 4 for more details).
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Figure 4. Research framework and theoretical mechanism.

3. Methodology and Data Source
3.1. Variables and Data Sources

According to the results of our literature review, we found that the carbon emissions
of the manufacturing industry are mainly affected by factors such as energy consumption,
scale effects, industrial structure transformation and upgrading, international trade and
division of labor under an open economy. At the same time, factor input plays a very
important role in exerting the competitive advantage of digital transformation in the
manufacturing industry. Factor input can promote product upgrading, reduce undesired
output, and reduce pollution. Based on the theoretical mechanism, this paper takes carbon
emissions as the explained variable and digital input level and electricity consumption as
the core explanatory variables. The latter is used to measure the energy effect. Taking into
account other different effects and data availability, control variables, including industry
factors, industry scale, export dependence, import dependence, the industry added value,
participation in global value chains, the proportion of industrial waste gas treatment cost,
are selected. The variable GVC-pat was used to measure the upgrading of industrial
structure because participation in GVC will promote the change of industrial structure [54].
Besides, China is facing pressure to reduce carbon emissions, but at the same time it is
facing the heavy responsibility of economic development. At the time of carbon emission
reduction, we must consider the cost of pollution control. Table 1 presents all selected
variables and data sources.
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Table 1. Variables and data sources.

Abbreviation Variable Measurement Data Source

Dependent variable Carbon Total carbon emissions Data aggregation CEADs

Core explanatory variable

Dig Digital level

Value added of C14 (electrical and
optical equipment) and C27 (post and
telecommunications)/Gross Value
Added in the Manufacturing Sector

ADB MRIO2021

Dig2 Square of Dig Dig×Dig ADB MRIO2021

Er
Proportion of electricity
consumption in
the industry

Electricity consumption of each
manufacturing industry/total electricity
consumption of
manufacturing industries

IFIND

Control variable

Ind Industry factors
Ratio of capital factor to labor factor
(Manufacturing industry paid-in capital
divided by manufacturing employees)

CISY, CSTSY

Scale Industry scale
The output value of each manufacturing
industry divided by the total
output value

ADB MRIO2021

Exp Export dependence Exports divided by total industry output ADB MRIO2021

Imp Import dependence Imports divided by total industry input ADB MRIO2021

Vab Industry added value Value-added of each
manufacturing industry ADB MRIO2021

GVC-pat Participation in global
value chains

The sum of GVC forward participation
and backward participation UIBE GVC

Ratiowair Proportion of industrial
waste gas treatment cost

Industrial waste gas treatment cost
divided by total industry treatment cost CESY

Note: 1. Digitalization input level (Dig): Based on the practice [55,56], in this paper C14 (electrical and optical
equipment) and C27 (post and telecommunications) industries in the ADB MRIO2021 input-output table are
used as the basic sectors of the digitalization. The ratio of the added value of the two divided by the total
added value of the manufacturing industry is used to measure the level of digital input in the manufacturing
industry. 2. CEADS: Carbon Emission Accounts & Datasets; IFIND: Financial data terminal of Tonghuashun;
CISY: China Industry Statistical Yearbook; CSTSY: China Science and Technology Statistical Yearbook; CESY:
China Environmental Statistical Yearbook. 3. The carbon emission data in this paper is the total carbon emission
of various energy-related manufacturing industries. The data of electricity consumption is directly derived from
the total electricity consumption of various industries in the IFIND database.

3.2. China’s Manufacturing Sector Segmentation

The manufacturing industries selected in this article were the 13 manufacturing sub-
sectors covered by the ADB MRIO2021. The sub-sectors with missing data were deleted. To
connect with the manufacturing industry in China Statistical Yearbook and China Industrial
Statistical Yearbook, this paper processed relevant data, and the processing methods are
shown in Table 2.

The processing method for the industry: 1. Merge the rubber and plastics industries
into rubber and plastics; 2. Consolidate automobile manufacturing and railway, ship,
aerospace, and other transportation equipment into transportation equipment manufac-
turing; 3. Consolidate the food processing industry, food manufacturing, beverage man-
ufacturing, and tobacco processing industries into food, beverage, and tobacco; 4. Merge
the paper and paper products industry and the printing industry, the reproduction of
recording media into pulp, paper, paper products, printing, and publishing; 5. The ferrous
metal smelting and rolling processing industry, non-ferrous metal smelting and rolling
processing industry, and metal products industry were combined into basic metals and
fabricated metal.
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Table 2. Manufacturing Industry Segmentation.

Code in This Paper ADB MRIO Code Industry Industry Category

n1 c3 Food, beverages, and tobacco LI

n2 c4 Textiles and textile products LI

n3 c5 Leather, leather products, and footwear LI

n4 c6 Wood and products of wood and cork LI

n5 c7 Pulp, paper, paper products, printing,
and publishing LI

n6 c8 Coke, refined petroleum, and nuclear fuel CI

n7 c9 Chemicals and chemical products TI

n8 c10 Rubber and plastics LI

n9 c11 Other nonmetallic minerals CI

n10 c12 Basic metals and fabricated metal CI

n11 c13 Machinery, nec CI

n12 c14 Electrical and optical equipment TI

n13 c15 Transport equipment TI

Note: LI = labor intensive, CI = capital intensive, TI = technology intensive.

3.3. Model Construction
3.3.1. Panel Regression Model

In order to verify the impact of digital investment and electricity consumption on car-
bon emissions, this paper selected the panel data of 13 industries in China’s manufacturing
industry from 2007 to 2019, and finally built the following panel data model:

Carbonit = α + βDigit + βDig2
it + ρErit + γContit + µi + δt + εit (1)

where Carbonit represents the total carbon emission of manufacturing industry i in period
t, and α represents the constant item. Dig represents the core explanatory variable digital
input level. To verify the nonlinear impact of digitalization on carbon emissions, the vari-
able Dig2 was included to represent the square of the digital input level; Er represents the
proportion of electricity consumption of each industry in the total manufacturing electricity
consumption; Cont represents the control variable; µi and δt represent the individual and
period effects respectively; and εit represents the stochastic disturbance term.

3.3.2. Threshold Effect Model

The effect of digitalization on carbon emission reduction mainly depends on a sound
digital ecology and industrial layout. Bridging the existing digital division is an important
problem to be solved in the process of digitalization. Digital technology empowers carbon
emission reduction mainly through energy structure, economic base, and industrial scale.
Therefore, this paper used the threshold effect model to further explore the energy, eco-
nomic, and scale effects of digitalization on China’s manufacturing carbon emissions. The
specific threshold model was constructed as follows:

Carbonit = α + βDigit · I(thrit < γ ) + δDigit · I(γ ≤ thrit ) + θContit + µi + εit (2)

where Carbonit represents the explained variable. Dig represents the level of digitalization,
and thr represents the threshold variables, which are the proportion of electricity consump-
tion, the economic added value of the manufacturing industry, and the industry scale; I (·)
represents the indicator function; γ represents the threshold value to be estimated; Cont rep-
resents each control variable, and the control variables are consistent with the benchmark
model; µi represents the industry effect; and εit represents the stochastic disturbance term.
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4. Results
4.1. Descriptive Statistics of Variables

To avoid the influence of different dimensions of variables, all the variables were stan-
dardized, and Table 3 displays their descriptive statistics. In this paper, variance inflation
factor (VIF) and tolerance (1/VIF) were used to test whether there was multicollinearity
among the variables. The higher the VIF value, the more serious the multicollinearity. The
tolerance was generally between 0 and 1. The smaller the tolerance, the more serious the
collinearity. The average value of the selected variable VIF in this paper was 8.99, and the
tolerance was 0.22, indicating that there was no multicollinearity among the variables.

Table 3. Descriptive statistics of variables.

Variable Obs Mean Std. Dev. Min Max Unit

Carbon 169 265.4977 512.6949 0.7527 1942.2960 Mt
Dig 169 0.2275 0.5115 0.0071 2.3739
Er 169 6.8330 9.9424 0.3462 40.2882 %

Ind 169 19.3438 14.1929 2.8405 78.5029 RMB 10,000/person
Scale 169 0.0500 0.0406 0.0024 0.1730
Exp 169 0.1188 0.0978 0.0231 0.4605
Imp 169 0.0632 0.0378 0.0187 0.1985
Vab 169 1,306,574 867,336 132,607 3,704,156 Million-yuan

GVC-pat 169 0.3109 0.1046 0.1031 0.6068
Ratiowair 169 4.2115 7.2584 0.0411 30.1847 %

4.2. Estimations Results

Column (1) of Table 4 shows the model estimation results. There is an inverted U-
shaped relationship between digitalization and carbon emissions, the higher the level of
digitalization, the greater the carbon emissions of the manufacturing industry. Nevertheless,
when digitization develops to a certain extent, it will curb carbon emissions. However,
electricity consumption and carbon emissions in the manufacturing industry show an
increasing trend with a positive correlation.

The higher the electricity consumption, the more carbon is emitted. This is because
electricity consumption is a demand for energy. High power usage leads to high power
consumption and more energy consumption [57]. Although electricity is a secondhand
energy source, it can be regarded as a clean energy source. However, the generation
process of electricity is accompanied by primary energy use such as oil, coal, natural gas,
etc., which will bring pollution; however, the process of generating electricity from water,
nuclear energy, and wind energy is clean. China’s economic development needs energy,
and its electricity demand will grow by 10% in 2021. Coal is required to meet the 56%
increase in electricity demand as this growth exceeds the growth of low-emissions supply.
Although China is vigorously developing new energy sources, new energy sources are
far from meeting today’s market demand, and coal investment is still the main force for
power generation. The demand for electricity consumption directly or indirectly promotes
electricity production, thereby causing carbon emissions in various industries [58]. China’s
non-clean energy power generation accounts for about 65% in 2021. Because of the energy
structure and energy efficiency, the power sector still has a certain distance from zero
emissions [59]. The reasons may be: first, people’s living standards are increasing, and the
demand for electricity is increasing, resulting in more carbon emissions from electricity;
second, the loss in the power transmission process is large, and energy waste is serious,
which also brings about an increase in carbon emissions.

Manufacturing industry factors have a negative correlation with carbon emissions,
which is significant at the 5% level. The higher the ratio of paid-in capital to labor factors in
the manufacturing industry, the lower the total carbon emissions. The production strategy
of a capital-constrained manufacturing producer would be less sensitive to carbon prices
and would re-engineer older products at higher quality levels. However, manufacturers
with high industry factors and abundant funds will be more sensitive to carbon prices and
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carbon emissions when formulating production strategies. Therefore, there will be a more
obvious carbon emission reduction effect [60].

Table 4. Estimation results.

Variable

Core Explanatory Variable

(1) (2)

Dig-1 Dig-2

Dig 0.453 *** 0.652 **
(3.35) (2.87)

Dig2 −0.331 ** −0.596 **
(−2.81) (−2.66)

Er 0.435 ** 0.319 *
(3.19) (2.52)

Ind −0.134 ** −0.196 ***
(−3.23) (−4.54)

Scale −0.278 *** −0.216 ***
(−5.64) (−4.67)

Exp −0.139 *** −0.122 **
(−3.50) (−3.15)

Imp 0.273 *** 0.328 ***
(3.82) (4.25)

Vab 0.0383 0.0840 *
(0.74) (2.19)

GVC−pat −0.354 *** −0.316 ***
(−5.02) (−4.81)

Ratiowair 0.725 *** 0.748 ***
(6.08) (6.40)

Obs 169 169
R2 0.8954 0.8941

Note: * p < 0.05, ** p < 0.01, *** p < 0.001; t statistics in parentheses.

The manufacturing industry scale is negatively correlated with carbon emissions
and is significant at the 1% level. It shows that China’s manufacturing industry has the
potential to reduce carbon emissions. While the scale of the industry is expanding, the
industrial structure is also constantly being adjusted. Additionally, the proportion of
high-emission enterprises will become lower and lower. The scale of the manufacturing
industry and carbon emissions will eventually be decoupled. Large-scale production
under economic agglomeration is conducive to improving the emission reduction effect of
diversification [61].

The increase in export dependence can promote carbon emission reduction and is
significant at the 1% level. The carbon emission factors brought about by import and
export trade are becoming more significant. The reduction in exports is mainly due to
consumption-based carbon emissions [62,63]. As China’s exports have shifted from primary
industrial products to high-tech products, the proportion is increasing. The technical effect
of export products is becoming more and more obvious. Compared with the extensive
production method, exports are conducive to technological innovation and the exertion of
carbon emission reduction effects.

The increase in import dependence promotes carbon emissions and is significant at
the 1% level. The diversification of imported and exported products will affect energy-
related consumption. One of the main goals of manufacturing development in developing
countries is to increase energy efficiency. Imports can introduce new and improved tech-
nologies, update production methods, and further promote green production. However,
the diversification of imported products also makes it easier to obtain cheaper intermediate
products. If these intermediate products include building materials, mechanical appliances,
and transportation equipment, they will increase the total carbon emissions of developing
countries [64]. Besides, to meet domestic demand by importing more energy-intensive
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products will bring carbon emissions into the importing country and increase the carbon
emissions of the importing country. In the process of reducing carbon emissions, spe-
cial attention should be paid to the hidden carbon emissions in trade and the resulting
environmental game between governments [61].

The output value of the manufacturing industry is positively correlated with carbon
emissions, but insignificant. It shows that the decoupling of carbon emissions and economic
development has not been verified. China’s economic development model has changed
from a planned traditional economy to a socialist market economy. Under the tide of
de-industrialization, China has gradually increased its efforts in the reform and opening-up
of the economy. In the context of expanding domestic demand, infrastructure construc-
tion has increased, and large-scale manufacturing clusters have gradually formed in the
coastal areas. China has gradually become the world’s largest exporter. Under the goal of
manufacturing transformation and upgrading, the relationship between industry-added
value and carbon emissions has gradually improved. However, increasing infrastructure
construction gradually increases carbon emissions [65].

The increase in the global value chain (GVC) participation can promote carbon emis-
sion reduction and is significant at the 1% level. With the continuous improvement of
global integration, participation in the GVC has become the new normal of the international
labor division. The low status of China’s manufacturing participation will lead to the high
carbonization of enterprises’ production methods. The rise of GVC participation greatly
impacts the manufacturing industry‘s carbon emissions. The increase in intermediate
product exports can promote the rise of GVC status, which is more conducive to reducing
carbon emissions [66,67].

The cost of industrial waste gas treatment is positively correlated with carbon emis-
sions and is significant at the 1% level. China is faced with the dual tasks of reducing carbon
emissions and developing the economy. On the one hand, to obtain environmental gover-
nance performance, there may be a development path of pollution first and then governance.
On the other hand, pollution control equipment may have high energy consumption. In
addition, considering the spatial spillover effects of environmental governance, pollution
governance does increase local carbon emissions [68].

4.3. Robustness Test and Heterogeneity Analysis
4.3.1. Robustness Test: Core Explanatory Variables Replacement

This paper adopted the method of [69] to measure the digital input level. The digital
input level was measured by the complete consumption coefficient; that is, the direct
consumption coefficient plus the indirect consumption coefficient. This article started with
the industries that the digital economy relies on. This includes the investment in software
services and digital economic hardware facilities. Then, based on the input-output model,
the complete consumption coefficient of each manufacturing industry was calculated; that
is, the total input amount of the industries relying on the digital economy that needs to be
consumed to produce the final products. This paper evaluated the digitalization level of
the industry by calculating the complete consumption coefficient of the digital industry in
various industries in the manufacturing industry.

The calculation method of the direct consumption coefficient was as follows. Variable
aij (i,j = 1,2,3,. . . , n) indicates the value of the goods or services of the department i directly
consumed by the unit total output of department j in the production process. It is usually
expressed as matrix A. The complete consumption coefficient is the sum of direct consump-
tion and indirect consumption, usually expressed by B. The larger the direct coefficient, the
stronger the direct dependence of department j on department i.

aij = xij/Xj (i, j = 1, 2, 3, . . . , n) (3)

bij = aij + ∑n
k=1 aikakj + ∑n

s=1 ∑n
k=1 aisaskakj + . . . (4)
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where in the first item, aij represents the direct consumption of the j product department to
the i product department. The second item ∑n

k=1 aikakj indicates the first round of indirect
consumption of product department j to product department i; ∑n

s=1 ∑n
k=1 aisaskakj is the

second round of indirect consumption, and so on. Round n + 1 is the indirect consumption
of round n (Please see Formulas (3) and (4)). Therefore, the full consumption coefficient
was used to measure the digital input level of each manufacturing industry, which was
brought into the benchmark model. The model estimates are in Column (2) in Table 4,
which proves the model estimation results were robust.

4.3.2. Heterogeneity Analysis

In this paper, the manufacturing industry was further divided into capital-intensive,
labor-intensive, and technology-intensive. Afterward, two digital evaluation indicators
were used for model estimation. Table 5 shows the estimated results. The empirical
results show that although the relationship between capital-intensive digitization and
carbon emissions shows a U-shaped nonlinear relationship, it was not significant. The
higher the level of capital-intensive digitalization, the lower the carbon emissions will
be. There was a U-shaped nonlinear relationship between labor-intensive, technology-
intensive, and carbon emissions. However, for all manufacturing industries, the higher the
electricity consumption, the greater the carbon emissions, and this result was significant at
the 1% level.

Table 5. Heterogeneity analysis results.

Variable

Capital Intensive Labor Intensive Technology Intensive

Core Explanatory Variable: Dig

(1) (2) (3) (4) (5) (6)

Dig-1 Dig-2 Dig-1 Dig-2 Dig-1 Dig-2

Dig −2.251 ** −0.049 −1.136 −0.080 *** −0.081 −0.098
(−3.23) (−0.10) (−1.20) (−4.92) (−1.36) (−0.45)

Dig2 3.261 0.117 3.299 0.077 *** 0.047 0.050
(1.97) (0.24) (1.03) (4.57) (1.13) (0.31)

Er 1.302 *** 1.543 *** 0.217 *** 0.220 *** 0.422 *** 0.412 ***
(5.50) (5.84) (6.85) (8.05) (6.70) (7.29)

Controls Yes Yes Yes Yes Yes Yes
Obs 52 52 78 78 39 39
R2 0.9720 0.9613 0.9182 0.9357 0.9818 0.9823

Note: ** p < 0.01, *** p < 0.001; t statistics in parentheses.

4.4. Endogeneity

In this paper, the method of IV-2SLS was used to alleviate the possible endogeneity
problems in variables. In this paper, the first-order lag item of the core explanatory variable
(Dig) was used as an instrumental variable, and it was brought into the benchmark model
for verification. The results prove that the model was robust. There was a positive linear
relationship between electricity consumption and carbon emissions (See Table 6 for details).

4.5. Threshold Effect

Table 7 shows the estimated results of the threshold test and the threshold value. The
results show that the digitalization of labor−intensive industries had double thresholds
for energy effects on carbon emissions, and the thresholds were −0.5478 and 0.0042, re-
spectively. Moreover, there was a single economic threshold and industry scale effect
threshold for the impact of labor-intensive industry digitization on manufacturing carbon
emissions, and the threshold values were −0.4233 and −0.8088, respectively. Capital-
intensive industries had a single scale threshold, and the threshold value was −0.5352;
Technology-intensive industries had double energy thresholds, and the threshold values
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were −0.2248 and 0.8068 respectively. In addition, there was a single economic threshold
and industry scale threshold simultaneously, and the threshold values were −0.2786 and
0.1690, respectively.

Table 6. Estimation results of IV-2SLS model.

Variable

Dependent Variable: Carbon

Core Explanatory Variable

(1) (2)

Dig-1 Dig-2

Dig 0.526 *** 0.674 **
(3.64) (3.05)

Dig2 −0.388 ** −0.617 **
(−3.13) (−2.84)

Er 0.453 *** 0.319 **
(3.41) (2.61)

Ind −0.131 ** −0.197 ***
(−3.26) (−4.70)

Scale −0.288 *** −0.216 ***
(−5.95) (−4.82)

Exp −0.146 *** −0.123 **
(−3.76) (−3.27)

Imp 0.276 *** 0.329 ***
(3.99) (4.41)

Vab 0.0311 0.0837 *
(0.62) (2.25)

GVC-pat −0.365 *** −0.317 ***
(−5.30) (−4.99)

Ratiowair 0.719 *** 0.748 ***
(6.22) (6.61)

Obs 156 156
R2 0.8952 0.8941

Note: * p < 0.05, ** p < 0.01, *** p < 0.001; t statistics in parentheses.

Table 7. Threshold effect test results.

Industry Threshold
Energy Threshold Economic Threshold Scale Threshold

Threshold Value p Value Threshold Value p Value Threshold Value p Value

Labor
intensive

Single −0.5478 0.0100 −0.4233 0.0533 −0.8088 0.0300

Double 0.0042 0.0300 0.2929 0.2867 −0.9171 0.2000

Capital
intensive

Single 0.3053 0.3833 −0.1759 0.6300 −0.5352 0.0000

Double −0.4059 0.3967 −0.7593 0.9467 2.2503 0.1900

Technology
intensive

Single −0.2248 0.0000 −0.2786 0.0000 0.1690 0.0000

Double 0.8068 0.0000 −0.4057 0.6233 1.3146 0.1167

Note: The dependent variable is Carbon.

Table 8 shows the results of estimating the three groups with thresholds. For labor-
intensive industries, when power consumption reaches the threshold, digitalization can
promote China’s manufacturing industry’s carbon emissions. However, when the power
consumption exceeds the threshold, although the coefficient of digital investment is still
positive, the coefficient becomes smaller. This means that electricity consumption has less
impact on contributing to carbon emissions as technology improves. The same effect exists
for economic value added; when the economic value added exceeds the threshold, the
impact of digital investment on carbon emissions will gradually become smaller. In terms
of the industry scale, before and after reaching the threshold, the expansion of the industry
scale has a restraining effect on the carbon emissions of labor-intensive industries, and the
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restraining effect is gradually improved. For capital-intensive industries, the expansion
of the industry scale has a positive effect on the carbon emissions of capital-intensive
industries, but as the industry scale exceeds a certain threshold, this promotion effect
is gradually alleviated. For technology-intensive industries, before and after electricity
consumption reaches a threshold, digital investment can curb China’s manufacturing
carbon emissions. In contrast, as electricity consumption exceeds a certain threshold,
this inhibitory effect will gradually slow down. Economic value-added can promote the
increase of carbon emissions, but as the economic value-added exceeds the threshold, the
promotion effect of digitalization on carbon emissions is greatly alleviated. The scale of the
industry also promotes the increase of carbon emissions, but as the scale of the industry
exceeds a certain threshold, the impact on carbon emissions gradually weakens.

Table 8. Estimation results of the threshold model.

Dependent Variable: Carbon

Industry
Labor Intensive Capital

Intensive Technology Intensive

Energy
Threshold

Economic
Threshold

Scale
Threshold

Scale
Threshold

Energy
Threshold

Economic
Threshold

Scale
Threshold

Dig 0.5628 0.7665 −0.7336 4.8318 *** −0.0696 0.5713 *** 0.2219 **

[<qx1] (0.8022) (0.7134) (0.8482) (1.6403) (0.1150) (0.1283) (0.0892)

Dig 0.4316 0.5810 −0.6251 2.7802 * −0.1030 0.0543 0.1301 ***

[>qx1] (0.8009) (0.7124) (0.8383) (1.5653) (0.1443) (0.0678) (0.0463)

Controls Yes Yes Yes Yes Yes Yes Yes

Obs 78 78 78 52 39 39 39

R2 0.2206 0.2206 0.5048 0.5974 0.4361 0.9490 0.5852

Note: *** significant at 1% level, ** significant at 5% level, * significant at 10% level. qx1 represents the threshold
value (standard errors in parentheses).

5. Discussion and Conclusions
5.1. Discussion

Existing studies have analyzed the correlation between digitalization and carbon emis-
sions. For example, Yang et al. [21] found that digitalization can reduce carbon emission
intensity, and this effect has obvious regional heterogeneity. Wang et al. [70] found that
digital technology is an important path to achieving carbon neutrality. Moreover, digital-
ization mainly reduces carbon emissions by optimizing resource allocation and reducing
energy consumption costs. Although the existing research is sufficient, the analysis of digi-
tal investment and electricity consumption in the manufacturing industry has been little,
thereby buttressing the innovation of our research. Besides, this research takes into account
the factors that the manufacturing industry participates in international competition, that is,
the degree of participation in the global value chain. Only by participating in international
competition can we force the transformation and upgrading of industrial structure, which
is ultimately conducive to carbon emission reduction [54].

The estimation results of this research are consistent with results in [21,57]. The higher
the level of digitization, the greater the carbon emissions of manufacturing. The demand
for electricity contributes to carbon emissions. The main reasons are as follows. First, in
the short term, the increase in energy use and non-green technologies use have caused an
increase in carbon emissions. In the long run, the upgrading of the industrial structure and
the spillover of technology have made digitization show a strong carbon emission reduction
effect [71]. Second, the increase in demand for electricity consumption has brought about an
increase in electricity supply and coal energy consumption, making electricity consumption
a major contributor to carbon emissions [40,43].
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5.2. Conclusions

This paper mainly used the panel regression model to analyze the impact of digital
input and electricity consumption on China’s manufacturing industry’s carbon emissions
and industry heterogeneity. It used the threshold model to analyze the energy, economic,
and scale effects of the manufacturing industry. The conclusions were as follows:

(1) The level of digital investment in China’s manufacturing industry is rising steadily.
From 2007 to 2019, the proportion of electricity consumption of China’s manufacturing
industries in the total electricity consumption hardly changed, maintaining at about 6.8%.
However, the total electricity consumption of the manufacturing industry increased by
about 2.1 times. From 2007 to 2019, the total carbon emissions of China’s manufacturing
industry increased, but the carbon emissions of some manufacturing industries decreased.

(2) Hypothesis 1 was verified. There was an inverted U-shaped relationship between
digitization and carbon emissions. The higher the level of digitization, the greater the
carbon emissions of manufacturing; however, when digitization develops to a certain
extent, it will curb carbon emissions.

(3) Hypothesis 2 was verified. There was a significant positive correlation between
electricity consumption and carbon emissions in the manufacturing industry. The higher
the electricity consumption, the more energy is consumed and the more carbon emissions
are generated.

(4) The impact of digitalization of labor-intensive and technology-intensive manu-
facturing on carbon emissions da double energy threshold, a single economic threshold,
and an industry scale threshold. There was a single scale threshold for capital-intensive
manufacturing, and the threshold value was −0.5352.

According to these research results, this paper puts forward the following policy implications.
(1) From the perspective of the supply side, energy structure transformation and

industrial optimization and upgrading should be promoted to improve energy utilization
efficiency. Optimizing the energy structure is an important way for the low-carbon develop-
ment of the manufacturing industry [65]. Carbon emissions have a great impact on devel-
oping a green economy. Carbon dioxide emissions do reduce environmental performance
and green economic performance. However, digital development, technological innovation,
and industrial structure upgrades can promote green economic performance [72]. China
is the largest energy consumer and carbon emitter in the world. Optimizing industrial
structure, reducing population size, and adjusting energy structure can indeed promote
carbon emission reduction [73].

(2) From the perspective of the demand side, the total energy consumption should
be reasonably controlled to improve the efficiency of energy-intensive utilization through
digitization. Digital technology is an effective path to achieving carbon neutrality, and it
mainly reduces carbon emissions by optimizing resource allocation and reducing energy
consumption costs [70]. The development of the manufacturing industry has increased
the importance of digital elements and processes in strategy and planning. The concepts
of digitization and automation are distinct yet interrelated. Both can be used directly
in the manufacturing field. Digitization can generate large amounts of data and form
network integration. Automation can improve inefficient production steps and increase the
consistency of the production process. The development of China’s manufacturing industry
should improve the ability of independent innovation and take the road of innovation
and development [74]. In terms of dependence on foreign trade, the self-sufficiency rate
of China’s high-end chemical products is insufficient, and government policy support is
needed to increase production capacity and reduce dependence on foreign trade.

(3) From the transaction point of view, the market mechanism is the most direct path
to achieve the optimal allocation of resources and the most cost-effective way to achieve
carbon emission reduction. Digitalization’s suppression of carbon emissions has a phased
feature. Under the blockchain technology of big data, the establishment of a carbon emis-
sion trading rights platform should be improved [75]. Carbon emission trading and carbon
tax mechanism are the main ways to achieve carbon emission reduction. Excessive carbon
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pricing will reduce the economic advantages of carbon transaction costs for high-emission
manufacturing enterprises [76]. Digital technology has played an important role in reduc-
ing carbon emissions from regional trade and improving the energy efficiency of traded
products. Trade has the potential to affect embodied carbon emission flows and embodied
carbon emission intensity. The share of carbon emissions from trade is declining, and the
manufacture of computers and electro-optical products is the main source of embodied
carbon emissions [77]. In China, the ICT sector can generate a large volume of emissions
through the demand for carbon-intensive intermediate inputs in the non-ICT sector. More-
over, the power and basic materials sectors are significant sources of carbon emissions;
therefore, addressing ICT-related carbon emissions requires a targeted, integrated carbon
management strategy that combines supply chain and economic drivers [78]. Consequently,
the realization of low-carbon development in the manufacturing industry requires the joint
participation of the government, market, enterprises, and technical service departments.

The limitations of this article are: First, due to the availability of data, this article only
analyzes the situation of 13 manufacturing industries in China from 2007 to 2019. Second,
there is no further in-depth analysis of the energy efficiency and energy consumption
structure of the manufacturing industry. This is also our future research direction.
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Abstract: For the Yangtze River Delta (YRD) region of China, exploring the spatio-temporal char-
acteristics of carbon emissions from energy consumption (CEECs) and their influencing factors is
crucial to achieving carbon peaking and carbon neutrality as soon as possible. In this study, an
improved LMDI decomposition model based on the Tapio model and Kaya’s equation was proposed.
Combined with the improved LMDI and k-means cluster analysis methods, the energy structure,
energy intensity, unit industrial output value and population size were selected as the driving factors,
and the contribution of each driving factor to the CEECs of prefecture-level cities was quantitatively
analyzed. Our study found that: (1) By 2020, the total amount of CEECs in the 26 prefecture-level
cities in the YRD will stabilize, while their intensity has shown a downward trend in recent years.
(2) The decoupling relationship between CEECs and economic development generally showed a
trend from negative decoupling to decoupling. The dominant factor in decoupling was generally
the shift of DEL values towards urbanization rate and energy intensity and the open utilization of
energy technologies. (3) From 2000 to 2010, the dominant factors affecting CEECs in 26 cities were
energy intensity and energy structure, followed by industrial output value and urbanization rate.
In general, the promotion effect of economic development on carbon emissions in the YRD region
was greater than the inhibitory effect. After 2010, the restrictive effect of various factors on CEECs
increased significantly, among which the role of gross industrial output was crucial. The research
results can provide a scientific policy basis for the subsequent spatial management and control of
carbon emission reduction and carbon neutrality in the YRD region at a finer scale.

Keywords: carbon emissions from energy consumption; decoupling elasticity; spatio-temporal
characteristics; improved LMDI model; k-means clustering; map visualization

1. Introduction

In recent years, Chinese local governments, relevant departments and critical indus-
tries have worked together to reduce carbon emissions and have set emission reduction
targets in their mid- and long-term economic development plans [1]. China has set a goal
of peaking carbon emissions by 2030 and is striving to achieve carbon neutrality by 2060 [2].
However, China’s current emission reduction plan targets are mostly set at the national and
provincial levels. During the implementation of the actual emission target, due to the huge
differences in regional economic development, industrial structure and energy structure,
the different dynamic factors affecting carbon emissions are also complex and changeable.
Therefore, analyzing the spatio-temporal characteristics, decoupling relationships and
driving factors of carbon emissions in critical regions or cities in China is of great practical
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significance for effectively formulating carbon emission mitigation targets for regions or
cities [3].

As the most active urban agglomeration in China, the YRD region is not only the
region with the fastest economic growth, the largest economic aggregate and the greatest
economic potential in China, but also a critical control area for achieving carbon peaking
and carbon neutrality goals [4]. The YRD urban agglomeration is an essential industrial
intersection between the “Belt and Road Initiative” and the Yangtze River economic belt.
It is also a demonstration area for high-quality integrated development in China. In 2020,
the total GDP will account for about 15% of the country’s total [5], the urban population
will account for about 17% of the country’s total urban population and the total carbon
emissions will account for about 16% of the country’s total carbon emissions [6]. It is a
crucial control area for achieving carbon peaking and carbon neutrality [7], and it is also an
essential leader in China’s achieving the dual-carbon goal.

The decomposition analysis of the CEECs’ driving factors is the basis for achieving
the regional carbon emission target. In recent years, many studies have explored the path
of effective emission reduction and low-carbon green economic development by analyzing
the decoupling relationship between economic growth, energy consumption and CO2
emissions. Currently, decomposition analysis research mainly focuses on the CEECs from
various industries such as the transportation industry, textile industry, manufacturing
industry, non-metallic minerals and residential CEECs. The research on the decomposition
analysis of decoupling relationships mainly focuses on the CEECs in various industries
such as transportation [8], textile [9], manufacturing [10], non-metallic minerals [11] and
real estate [12]. Ma et al. [13] used the LMDI decomposition analysis method to study seven
energy consumption sectors in China and found that eliminating excess capacity and pro-
moting structural transformation has become the only way for China to reduce emissions.
Xu et al. [14] analyzed the decomposition of CEECs based on the two dimensions of China’s
various periods and industries and studied the main factors that promote and suppress
CEECs in China at different stages. Yang et al. [15] emphasized that economic energy
consumption is the biggest driver of carbon emission growth in China and pointed out
that introducing electricity import measures can buffer the impact of the carbon emission
intensity of annual energy consumption. Liu et al. [16] classified the emission reduction of
each city from the perspective of periods and groups based on the decomposition analysis
of CEECs at the provincial level in China. As the world’s second-largest economy and
a developing country with a large population base, high degree of industrialization and
high dependence on coal, China has a long way to go to reduce emissions. Therefore,
understanding the various characteristics of CEECs and the driving factors of CEECs has
always been the direction for China’s cities to follow when exploring low-carbon economic
development and ecological construction.

According to the environmental Kuznets curve (EKC) hypothesis, there is an inverted
U-shaped relationship between environmental pressure and economic growth. That is,
in the early stage of economic development, environmental quality deteriorates with eco-
nomic growth. Environmental quality gradually improves when economic development
reaches a certain level [17]. The “decoupling” theory is a basic theory proposed by the
Organization for Economic Cooperation and Development to describe the connection
between economic growth and resource consumption or environmental pollution (Paris:
OECD, 2002). Decoupling of carbon emissions, which, in essence, is to measure whether
economic growth is at the cost of resource consumption and environmental damage, can be
used to describe the relationship between changes in CO2 emissions and economic growth.
When economic growth is achieved, if the growth rate of CO2 emissions is negative or
lower than the economic growth rate, it can be regarded as decoupling. That is, based on
economic growth, energy consumption is gradually reduced [18]. Zhang [19] introduced
the decoupling index in energy and environment research in 2000, and Freitas et al. [20]
used this method to explore the decoupling between economic activity and CEECs in
Brazil from 2004 to 2009. In addition, in 2005, Tapio [21] proposed a theoretical framework
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for decoupling, which defined the difference between “decoupling”, “connection” and
“negative decoupling” and then divided them into “weak”, “strong”, “extended” and “de-
cline”. Some existing studies used decomposition analysis models and clustering methods
to study the decoupling relationship between carbon emissions and China’s economic
development. Zhang et al. [22] used the LMDI method to decompose the decoupling index
between economic growth and energy consumption in China from 1991 to 2012. The results
showed that economic activity negatively impacted the decoupling. Chang et al. [23] used
a new regional classification framework combining factor analysis and Ward clustering
to divide 30 provinces in China into four regions and investigated the differences in the
impacts of population size, per capita GDP, energy structure and energy intensity on CO2
emissions. In summary, the existing literature has achieved important results regarding
the decoupling relationship between economic development and CEECs. As an essential
demonstration area for economic development and CO2 emission control in China, the YRD
region is committed to promoting China’s deep decarbonization and achieving high-quality
economic development.

2. Literature Review
2.1. Empirical Study on Energy Carbon Emissions in the YRD Region

In recent years, some studies have gradually been carried out on low-carbon emission
reduction in the YRD region. By formulating a green economy model, the World Resources
Institute (WRI) predicted that the YRD region will reach a carbon peak in 2024 under the
background of a green economy, with a peak value of about 1.793 billion tons of carbon
dioxide equivalent and the peak forecast will be reduced by 90 million tons of carbon
dioxide equivalent, which is two years earlier than the current background and policy de-
duction to achieve the carbon peak, and this benefit can lead the national carbon reduction
action (WRI, China, 2021). At the same time, many researchers are also actively committed
to research on emission reduction in the YRD region. Song et al. [24] calculated the annual
variation of energy consumption in the YRD region from 1995 to 2010 and proposed ways to
control carbon emissions in the YRD region against the background of sustained economic
growth. Gong et al. [25] used the STIRPAT model to quantitatively analyze the relationship
between CO2 emissions in the YRD and influencing factors such as population, per capita
GDP, foreign direct investment and technological progress. Pei et al. [26] investigated the
carbon footprint from fossil energy consumption and the decoupling relationship between
carbon footprint pressure and economic growth in the YRD combined with land resource
constraints. They combined gap analysis and social network analysis. Shen et al. [27] found
that the YRD highlights the strong collaborative development ability and driving ability
of developed cities, thus generating the greatest potential to reduce CO2 emissions in the
short and medium terms. In summary, it can be seen that the research on carbon emissions
in the YRD region has become a typical research model relating to low-carbon emissions in
China’s urban agglomeration. However, the influencing factors of the decoupling relation-
ship between all carbon emissions and economic development in the YRD region and their
temporal and spatial distribution still need further research. Therefore, an in-depth study
of energy consumption and carbon emissions in the YRD region to provide policymakers
with information to achieve carbon emission reduction targets is crucial for helping China’s
economically developed regions achieve future emission reduction targets.

2.2. Methods for Identifying Drivers of Carbon Emissions

At present, the application of the LMDI method in the field of energy and environment
can be mainly divided into three directions: (1) The LMDI method is directly used to explore
the influencing factors of carbon emissions. For example, Quan et al. used the LMDI
method to decompose the carbon emission factors of China’s logistics industry from 2000
to 2016 into five dimensions, carbon emission factors, energy intensity, energy structure,
economic development level and population size, and the carbon emission contribution
rates were analyzed separately [28]. (2) As an evaluation model, LMDI is combined with

87



Int. J. Environ. Res. Public Health 2022, 19, 9483

other models to decompose and analyze the data obtained by other models and conduct
in-depth evaluation and analysis. The current application in the field of carbon emission
research is mainly combined with the decoupling model to further study the low-carbon
development of cities in a quantitative manner. For example, Wang et al. [29] combined the
Tapio decoupling index and the LMDI model to decompose the factors affecting energy
consumption and carbon emissions and put forward the focus of promoting green and
low-carbon development and the transformation of Qinghai Province. (3) As a previous
decomposition model, the relationship of influencing factors obtained by decomposition
is mainly used for subsequent analysis, such as peak prediction, situation simulation, etc.
For example, Zhang et al. [30] combined the scenario analysis method with the Monte
Carlo prediction method, using LMDI to decompose the driving factors of China’s total
water consumption to predict the trend of China’s water consumption change before 2030
and then judge the peak time point and occurrence of water consumption. Gu et al. [31]
combined LMDI with a system dynamics model (SD method) to quantify and estimate
emission reduction potential in Shanghai, China. In addition, the application of LMDI is
not limited to the traditional energy field but also includes economic cost estimation and
related patent research. For example, Zhang et al. [32] investigated the relevant biogas user
data in 19 villages in China in 2015, quantified the gap between the theoretical cost and
actual cost of CO2 emission reduction per unit and analyzed the main factors affecting the
cost with the help of the LMDI model.

Our main research purpose is to go deep into 26 prefecture-level cities in the YRD
region to reveal the spatio-temporal changes in the decoupling relationship between carbon
emissions and economic development. At the same time, LMDI is introduced as an evalu-
ation model, the data obtained by the decoupling model are decomposed and analyzed
and the decoupling elasticity of urbanization rate, energy intensity, unit industrial output
value and energy structure is deeply evaluated. Based on previous research, the k-means
clustering analysis method is further used to cluster the results, and the leading factors of
carbon emissions in cities at various levels in the YRD region are summarized. Specifically,
this study aims to reveal the spatio-temporal characteristics and influencing factors of
CEECs in prefecture-level cities in the YRD region, the spatio-temporal characteristics and
decoupling factors of CEECs from 2000 to 2020 and the contribution rate of each driving
factor to CEECs. On the one hand, this will help the YRD region to decompose the national
emission reduction targets into local-level cities and, on the other hand, formulate effective
emission reduction measures according to local conditions to achieve the goal of pilot
testing in the YRD region.

The remainder of this paper is organized as follows. In the next section, we present
an overview of the study area. In Section 4, we offer a flowchart of the method used in
this study and the data sources. Section 5 reports the main results. Section 6 presents the
conclusions and policy implications.

3. Study Area

This paper selected the YRD region as the research object. The research area covers
26 cities, including Shanghai, Nanjing, Wuxi, Changzhou, Suzhou, Nantong, Yancheng,
Yangzhou, Zhenjiang, Taizhou, Hangzhou, Ningbo, Jiaxing, Huzhou, Shaoxing, Jinhua,
Zhoushan, Taizhou, Hefei, Wuhu, Ma’anshan, Tongling, Anqing, Chuzhou, Chizhou and
Xuancheng (Figure 1).
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Figure 1. 26 prefecture-level cities in the YRD.

The YRD region is located in East China, covering 211,700 square kilometers, account-
ing for about 2.2% of China’s land area. In 2019, the GDP of the YRD region was about
CNY 20 trillion, accounting for about 20% of China’s GDP. At the end of the year, the resi-
dent population was about 160 million, representing more than one-tenth of the country’s
resident population. As an important functional area leading China’s regional economic
development, the YRD region has a vast economic hinterland with a modern transportation
network and advantageous industrial clusters centered on electronics, automobiles, modern
finance and other industries, as well as rich scientific and educational resources.

4. Methods
4.1. Data Sources

This paper includes three parts of research data. The first is urban statistical data from
the 2006–2019 “China Urban Statistical Yearbook”, “China Urban Construction Statistical
Yearbook”, “China Energy Statistical Yearbook”, “Jiangsu Statistical Yearbook”, “Zhejiang
Statistical Yearbook” and “Anhui Statistical Yearbook”, as well as statistical yearbooks and
social development statistical reports of 26 cities, including the main energy consumption
statistics of the above-scale industries in the local-level cities from 2000 to 2020, industrial
output value, urbanization rate, comprehensive energy consumption and other indicators.
Except for a few city data from corporate websites, statistical data were provided by CNKI
China Social and Economic Big Data Research Platform, and the link is https://data.cnki.
net/HomeNew/index (accessed on 31 January 2022).

4.2. Methodology

The specific analysis process is shown in Figure 2. It mainly included using IPCC
urban carbon emission calculation, the improved LMDI model based on the Kaya equation
and Tapio to analyze each factor’s decoupling elasticity and the k-means cluster analysis
and map classification to visualize carbon emission characteristics and carbon emission
impact factors for regional management and control analysis.
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4.2.1. CEEC Model

Referring to the method proposed by Ang [33], the CEEC calculation formula is
as follows:

Cmn = ∑i Emn
i × ei × pi × 44/12 (1)

where m represents the city m of the 26 cities in the YRD, n represents the node year n from
2000 to 2020, Cmn represents the CEEC of the mth city in the node year n, i represents the
ith type of fossil energy, Emn

i represents the consumption of the ith fossil energy in the mth
city in the node year n, ei represents the conversion coefficient of standard coal to the ith
energy, which is taken from the General Principles of Comprehensive Energy Consumption
Calculation (GB/T2589- 2020), and pi represents the carbon emission factor, which is taken
from the IPCC reference value. In the equation, 44/12 represents the molecular weight ratio
of carbon dioxide to carbon. The standard coal reduction coefficients and carbon emission
coefficients for 21 fossil energy sources are shown in Table 1.

Table 1. Calculation parameters of carbon emissions.

Energy Types Standard Coal Coefficient/(kgce/kg) Carbon Emission Coefficient/(kg/kgce)

Raw coal (tons) 0.7143 0.7559
Washed coal (tons) 0.9 0.7559
Other washed coal (tons) 0.2857 0.7559
Coal products (tons) 0.2857 0.7559
Coke (tons) 0.9714 0.855
Other coking products (tons) 0.9714 0.855
Coke oven gas (10,000 cubic meters) 0.6 0.3548
Blast furnace gas (10,000 cubic meters) 0.1286 0.3548
Converter gas (10,000 cubic meters) 0.2571 0.3548
Producer gas (10,000 cubic meters) 0.1786 0.3548
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Table 1. Cont.

Energy Types Standard Coal Coefficient/(kgce/kg) Carbon Emission Coefficient/(kg/kgce)

Natural gas (10,000 cubic meters) 1.2 0.4483
LNG (tons) 1.7572 0.4483
Crude oil (tons) 1.429 0.5857
Gasoline (tons) 1.4714 0.5538
Kerosene (tons) 1.4714 0.5714
Diesel (tons) 1.4571 0.5921
Fuel oil (tons) 1.4286 0.6185
LPG (tons) 1.7143 0.5042
Refinery dry gas (10,000 cubic meters) 1.5714 0.4602
Other petroleum products (tons) 1.7 0.5857
Other fuels (tons) 1 0.7561

4.2.2. The Improved LMDI Model Based on Kaya Equation and Tapio

In recent years, many scholars have used the concept of decoupling and its indicators
to reflect the relationship between economic growth and CO2 emissions and have used de-
coupling elasticity as the main tool to measure the low-carbon status of various regions [14].
In our study, the Tapio model was selected to calculate the decoupling elasticity value, and
26 prefecture-level cities in the YRD were classified and analyzed.

The formula for calculating the elasticity coefficient of the Tapio model is as follows:

Dm =
∆Cm

t2−t1/Cm
t1

∆GIOm
t2−t1/GIOm

t1
(2)

where m represents the city m of the 26 cities in YRD, Dm represents the decoupling
elasticity coefficient of the city m between the two node years t1 and t2 and ∆Cm and
∆GIOm represent the changes in carbon emissions and gross industrial output value of the
city m in node year t2 relative to node year t1, respectively. Parameters t1 and t2 represent
the base node year and the end node year in the study from 2000 to 2020, respectively.

According to the magnitude of the decoupling elasticity and the positive and negative
conditions of ∆C and ∆GIO, Tapio divides the decoupling state into eight decoupling states,
as shown in Table 2 [21].

Table 2. Tapio decoupling system.

Condition ∆CO2/CO2 ∆GIO/GIO Elasticity (D) Significance

Decoupling
entry

Enhance <0 >0 D < 0
In the most ideal state, the carbon emission
growth index shows an inverse relationship

with economic growth.

Weaken >0 >0 0 < D < 0.8 The growth rate of carbon emissions is lower
than that of economic growth.

Decline <0 <0 D > 1.2 Carbon emissions decay faster than
economic recession.

Negative
decoupling

Enhance >0 <0 D < 0
In the most unsatisfactory state, economic
growth is negative, and carbon emissions

still tend to rise.

Weaken <0 <0 0 < D < 0.8 Carbon emissions decay faster than
economic recession.

Increase >0 >0 D > 1.2 Carbon emissions are growing faster than
economic growth.
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Table 2. Cont.

Condition ∆CO2/CO2 ∆GIO/GIO Elasticity (D) Significance

Connect

Increase >0 >0 0.8 < D < 1.2
Carbon emissions grow at the same time as

the economy, at the same rate and in a
linear relationship.

Decline <0 <0 0.8 < D < 1.2
Carbon emissions and the economy decline
at the same time, at the same speed and in a

linear relationship.

The Kaya identity proposed by Kaya [34] can be used to investigate the influencing
factors of changes in greenhouse gas emissions at the national or regional level. The
role of this identity is to describe the relationship between social, economic, energy, car-
bon emissions and other factors with simple mathematical relationships from an overall,
macroscopic perspective.

We selected energy structure, energy intensity, the ratio of industrial output value
to urbanization rate and urbanization rate as the analysis objects to construct the energy
consumption carbon emissions of typical cities in the YRD. The Kaya identity can be
expressed as follows:

C = C
TOE × TOE

GIO × GIO
POP × POP

= ES × EI × EL × P
(3)

where C represents the carbon emissions from energy consumption, TOE represents the total
energy consumption, GIO represents the gross industrial production and POP represents
the urbanization rate. ES, EI, EL and P on the right-hand side of the equation represent
energy structure, energy intensity, the industrial output value of “unit urbanization rate”
and urbanization level, respectively.

Referring to the previous study, the formula for the LMDI method is as follows:

∆C = Ct2 − Ct1

= ∆CES + ∆CEI + ∆CEL + ∆CP
(4)

where ∆CES represents the energy structure effect, ∆CEI represents the energy intensity
effect and ∆CEL represents the unit industrial output value effect; ∆CP represents the
population scale effect.

Combined with the above decoupling model, the logarithmic decomposition model of
the LMDI method can be expressed as follows:

D =
GIOm

t1
∆GIOm×Cm

t1
× ∆Cm

t2−t1

=
GIOm

t1
∆GIOm×Cm

t1
×

(
∆Cm

ES + ∆Cm
EI + ∆Cm

EL + ∆Cm
P
) (5)

DESm =
GIOm

t1
∆GIOm × Cm

t1
× ∑im

∆Cm
t2−t1

lnCm
t2 − lnCm

t1
× ln

ESm
t2

ESm
t1

(6)

DEIm =
GIOm

t1
∆GIOm × Cm

t1
× ∑im

∆Cm
t2−t1

lnCm
t2 − lnCm

t1
× ln

EIm
t2

EIm
t1

(7)

DELm =
GIOm

t1
∆GIOm × Cm

t1
× ∑im

∆Cm
t2−t1

lnCm
t2 − lnCm

t1
× ln

ELm
t2

ELm
t1

(8)

DPm =
GIOm

t1
∆GIOm × Cm

t1
× ∑im

∆Cm
t2−t1

lnCm
t2 − lnCm

t1
× ln

Pm
t2

Pm
t1

(9)

where m represents the city m of the 26 cities in the YRD, DESm represents the decoupling
elasticity of energy structure of city m, DEIm represents the decoupling elasticity of energy
intensity of city m, DELm represents the decoupling elasticity of unit industrial output
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value of city m, DPm represents the decoupling elasticity of population size of city m and
parameters t1 and t2 represent the base node year and the end node year in the study from
2000 to 2020, respectively.

4.2.3. K-Means Method

After decoupling the CEECs of each prefecture-level city, the next important task was
to fully reveal the spatial and temporal differences in the driving factors of CEECs in each
prefecture-level city. The main idea of k-means clustering method is to use k centroids
to cluster multiple discrete data points. The essence is to group the points with higher
similarity into a group and separate the points with lower similarity. The method converges
to the optimal solution by continuously updating the position of the group centroid. In
our study, Python 3.7 was combined with the elbow method described above to determine
the optimal number of sets. Then, the k-means method for clustering was used to set the
optimal number of groups found by the elbow method as the number of clusters to obtain
the final specific number of groups.

5. Results and Analysis
5.1. Variation Analysis of Total CEECs and CEEC Intensity in the YRD

As shown in Figure 3, there were differences in the total amount of CEECs and the
intensity of CEECs in the YRD region from 2000 to 2020. The total amount of CEECs
increased from 569.75 million tons to 1221.28 million tons, with an average annual growth
rate of about 3.89%, and CEEC was basically stable with small fluctuations after 2011. Be-
tween 2000 and 2020, the CEEC intensity in the YRD region decreased from 3.44 tons/CNY
10,000 to 1.37 tons/CNY 10,000, an average annual decrease of 4.50%. It shows that the
energy utilization rate in the YRD region is increasing year by year, and the dependence
of economic development on energy consumption is constantly weakening. However,
in 2019–2020, the carbon emission intensity increased significantly from 0.87 tons/CNY
10,000 to 1.37 tons/CNY 10,000, and the increase in carbon emissions in 2019–2020 was
small. It can be speculated that the reason for the sharp rise in carbon emission intensity
is that the YRD region was affected by the epidemic. Overall, CEECs in the YRD region
increased rapidly in the early stage, slowed down and stabilized in the later stage and
the carbon emission intensity gradually decreased. The structural improvement of energy
was an important factor. That is to say, the proportion of clean energy, such as natural gas,
gradually increased, and the proportion of traditional energy, such as gasoline and diesel,
gradually decreased.
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5.2. Spatial and Temporal Distribution Characteristics of Total CEECs

As shown in Figure 4, there were significant spatio-temporal differences in CEECs
among the cities in the YRD. Overall, the spatial distribution of carbon emissions was
characterized by high levels in the northeast and low levels in the southwest. In 2000,
Nanjing and Ningbo had the highest carbon emissions, and the type of CEEC was super
heavy (>40 million tons). The CEECs of some cities in the southwestern and southern parts
of the YRD region (Chizhou, Xuancheng, Jinhua, etc.) were relatively low, which is related
to their low level of economic development and limited industrial technology. In 2005,
the carbon emissions of all cities increased to varying degrees, and the number of cities
whose carbon emissions were classified as heavy or above increased from two to seven.
In particular, the CEECs of some cities in the middle of the YRD region (Nanjing, Wuxi,
Suzhou, Taizhou, etc.) increased by more than 5000 × 104 t. The increase in total CEECs
in the YRD during this period was related to the fact that cities vigorously developed
traditional industries and pursued GDP growth too much, leading to extensive economic
development. In 2010, except for in Huzhou, Ningbo, Tongling and Taizhou, carbon
emissions decreased; the carbon emissions of other cities still increased to varying degrees,
and the number of cities with super-heavy carbon emissions increased from six to seven.
In 2015, the CEECs of Hangzhou, Huzhou, Shaoxing, Jinhua, Taizhou, Wuxi, Yangzhou,
etc., dropped significantly. The CEECs of other cities began to decline as a whole, and
the increase in CEECs narrowed significantly. Nanjing became the only place with an
increase in CEECs of more than 5000 × 104 t at city level. This is because, from 2010 to
2015, measures such as low-carbon city construction, low-carbon policies and industrial
upgrading in the YRD region were gradually implemented. In 2020, the carbon emissions of
Hangzhou, Shaoxing, Jinhua, Ma’anshan, Tongling, Wuxi, Nantong, Taizhou and Shanghai
will decrease. However, the overall CEEC increase in the YRD region was about 2053
× 104 t, and showing a rebounding trend. So, from 2015 to 2020, the YRD region needs
to pay more attention to reducing emissions of super-heavy cities with carbon emissions
(especially in Anqing, Ma’anshan, Changzhou, Wuxi, Zhenjiang, Nanjing and Ningbo).
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As shown in Figure 5, in 2000, the CEEC intensity of local-level cities was greatest in
the low-value area. However, some cities in the southwest (Anqing, Chizhou, Tongling,
Ma’anshan) had an intensity mostly higher than 6.5t, because the industry types of these
cities mostly consisted of traditional industries, and their economic development depended
on high-energy-consuming industries such as petrochemicals, building materials and steel.
With time, the high-value areas of carbon emission intensity in the YRD region gradually
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decreased, and the CEEC intensity of Hefei, Chuzhou, Ningbo and other places dropped
significantly, which indicates that the YRD region has taken measures such as industrial
supply-side reform and production process improvement in recent years. This promotes
the economy of the YRD to move in the direction of low carbonization and high quality.
Although carbon emission intensity declined to a certain extent, the trend of a substantial
increase in carbon increment and total carbon is not optimistic. It is still necessary to
continue to reduce CEEC intensity (especially in Anqing and Ma’anshan) to further reduce
the increment of CEECs and control the total amount of CEECs.
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5.3. The Decoupling between CEECs and Economic Growth

According to the changing characteristics of CEECs in the cities in the YRD region,
the changes in CEECs and the gross industrial output value of the cities in the YRD region
from 2000 to 2020 were calculated. Moreover, through the Tapio model, the decoupling
relationship of the four periods was obtained (Figure 6).

From 2000 to 2005, the economic growth and CEECs of most cities in the YRD region
were in a state of negative decoupling growth, and the overall decoupling elasticity co-
efficient was high (Figures 6 and 7). For example, the decoupling elasticity of Yangzhou
reached 4.425, which means that the decoupling state was poor. This shows that during
this period of economic growth, CEECs were also increasing, but the growth rate of CEECs
was much greater than that of economic growth.

From 2005 to 2010, the number of cities in a state of negative decoupling growth
continued to increase among local-level cities in the YRD region, reaching 16. However,
some cities began to show weakening decoupling and growth in connection, and the
decoupling elasticity coefficient decreased significantly. For example, Huzhou changed
from the negative decoupling growth state to the decoupling enhanced state, and the
decoupling elasticity reached −16.169, which is the most ideal decoupling state. This is
because, after the “Eleventh Five-Year Plan” (2001–2005), the YRD region responded to the
national call to gradually improve the extensive economic growth model and continuously
improve the efficiency of energy utilization. Among the cities, those in the decoupling stage
were mainly located in Shanghai, central Zhejiang and central Jiangsu, and those in the
negative decoupling stage were mainly located in Anhui, Jiangsu and northern Zhejiang.

From 2010 to 2015, which was China’s “Twelfth Five-Year Plan”, China introduced
a large number of emission reduction measures and eliminated outdated production
capacity. The total carbon emissions in the YRD region showed a stagnant trend (Figure 2),
and many cities showed a state of increasing decoupling. For example, Wuxi actively
developed zero-carbon technology, and its decoupling state changed from the negative

95



Int. J. Environ. Res. Public Health 2022, 19, 9483

decoupling growth state in 2000–2005 to the decoupling enhancement state. The decoupling
elasticity reached −36.98, which is the most ideal decoupling state. Therefore, the economic
growth of the YRD region and CEECs continued to show an increase in decoupling in the
long run or a decoupling state alternating between increased decoupling and negative
decoupling growth. Among the cities, those in the decoupling stage were mainly located
in Shanghai, Shaoxing, Hangzhou, Taizhou, etc. (southern Zhejiang Province, central
Zhejiang Province and northern Anhui Province), and those in the negative decoupling
stage were mainly located in Wuhu, Anqing, Hefei, Nanjing, etc. (Anhui Province and
eastern Jiangsu Province).

From 2015 to 2020, the decoupling index showed large fluctuations. The decoupling
relationship between CEECs and economic development in many cities (e.g., Shanghai,
Hangzhou, Wuxi, etc.) was further improved, and the decoupling elasticity index continued
to decline. However, there were still cities with a high proportion of secondary industries
(e.g., Zhenjiang, Anqing, Chizhou) where the decoupling relationship between CEECs and
economic development deteriorated to varying degrees. At the same time, the types of
decoupling state also increased from three to six, indicating that differences in the level of
economic development and economic structure lead to differences in carbon emissions and
their decoupling relationship with economic development in different cities in the province.
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To sum up, the YRD region has a relatively large proportion of the prefecture-level
cities in the state of negative decoupling growth, which shows that an increase in carbon
emissions accompanies the economic growth of the YRD region, and the increase in car-
bon emissions is greater than that of the economy. The rate may be related to the rapid
accumulation of cities and towns and the rapid expansion of industries in the YRD. From
2015 to 2020, the number of prefecture-level cities in a state of negative decoupling growth
will decrease thanks to the proposal of the “dual-carbon” target in the YRD region and
the formulation of related carbon reduction policies. For example, Shanghai proposed to
achieve carbon peaking in 2025, Jiangsu Province stated that it would be the first in the
county to achieve carbon peaking and the YRD urban agglomeration proposed to achieve
carbon peaking in the midterm of the “15th Five-Year Plan”. In the future, the YRD region
should further respond to the national call, actively develop the “national low-carbon
city pilot”, shut down high-consumption and high-polluting enterprises and carry out
industrial upgrading. Through coordinated development, efforts will be made to reverse
the relationship between economic growth and CEECs in more cities in the YRD region to
decouple growth.
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5.4. Decomposition Analysis of Influencing Factors of CEEC Decoupling

Equations (6)–(9) were used to decompose the decoupling elasticity of CEECs in each
city in the YRD region to obtain the carbon emissions of four factors: energy structure
(DES), energy intensity (DEI), unit industrial output (DEL) and urbanization rate (DP). The
results are shown in Figure 8.
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Figure 8. Decomposition of influencing factors of decoupling carbon emissions in prefecture-level
cities in the YRD from 2000 to 2020.

Overall, from 2000 to 2020, the decoupling elasticity of CEECs for the four factors in
the 26 cities was significantly similar (Figure 8). Among them, the decoupling elasticity of
DEL value was the largest, which was positively correlated with energy carbon emissions as
a whole, and its elasticity coefficient was 0.531. The second was the DP and DES; the impact
of DEI was the smallest, and its elasticity coefficient was −0.621, decreasing yearly. It can be
seen that the “dual-carbon strategy” in the YRD region needs to focus on coordinating the
relationship between the quality of industrial production and operation and environmental
benefits. In future energy consumption planning, it is necessary to gradually pay attention
to the impact of DP and DES transformation.

5.4.1. The Impact of DES on Decoupling of CEECs

From 2000 to 2005, the DES of Zhoushan, Ma’anshan, Anqing, Xuancheng, Chizhou,
Chuzhou, Nanjing, Wuxi, Changzhou and Suzhou had an impact on economic develop-
ment. The effect of the carbon emission decoupling relationship was inhibition, and the
DES of other prefecture-level cities promoted carbon emission decoupling. This shows
that from 2000 to 2005, the DES of nearly half of the cities in the YRD region did not
improve, and the traditional DES with high energy consumption was not conducive to
local green development.
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From 2005 to 2010, for Jiaxing, Ningbo, Jinhua, Taizhou, Wuhu, Anqing, Chuzhou,
Nanjing, Changzhou, Suzhou, Nantong and Yancheng, the impact of the DES on the decou-
pling relationship between economic development and carbon emissions was inhibited,
and the rest of the prefecture-level cities were promoted. Compared with 2000–2005, the
number of cities in which the DES inhibited the decoupling of carbon emissions increased
by half during this period. This shows that the urban DES in the YRD region was not
significantly improved at this stage. The traditional DES with high energy consumption
still inhibited the city’s green development.

From 2010 to 2015, the DES of Huzhou, Jiaxing, Hangzhou, Shaoxing, Taizhou, Hefei,
Wuhu, Tongling, Chizhou, Chuzhou, Nanjing, Changzhou, Suzhou and Yangzhou had an
impact on economic development and carbon emissions. The effect of the decoupling rela-
tionship was inhibited, and the remaining prefecture-level cities were promoted. Among
them, the absolute value of DES in Tongling was the largest, reaching 7.2. During this
stage, the number of prefecture-level cities whose DES had an inhibitory effect on carbon
emission decoupling increased significantly.

From 2015 to 2020, for Taizhou, Tongling, Anqing, Chizhou, Chuzhou, Nanjing,
Changzhou, Suzhou, Yancheng, Yangzhou and Zhenjiang, the impact from the DES on
the decoupling relationship was inhibition, and the rest of the prefecture-level cities
were promoted.

In terms of the number of prefecture-level cities, nearly half of the prefecture-level
cities in the YRD region (most of which were located in Anhui and Jiangsu provinces)
had a DES that inhibited their decoupling of carbon emissions. Still, the absolute value
of their DES was small. That is, the degree of influence of inhibition was small. From
2000 to 2020, the absolute value of DES in prefecture-level cities in the YRD was relatively
small, reflecting that the DES had an excellent potential for accelerating low-carbon green
development in the YRD region. The development of new energy and vigorous promotion
of clean energy may become a major starting point for the green development of the region.

5.4.2. The Impact of DEI on Decoupling of CEECs

DEI refers to the ratio of energy consumption to economic output. From 2000 to
2005, except for Anqing, Xuancheng, Chizhou, Changzhou, Nantong and Taizhou, the
impact of DEI on the decoupling relationship between economic development and CEECs
was inhibited, and the remaining prefecture-level cities were all up for promotion. This
shows that from 2000 to 2005, the influencing factor for the low-carbon development of
most prefecture-level cities in the YRD region was not DEI. From 2005 to 2010, except for
Shaoxing, Taizhou, Zhoushan and Wuxi, the impact of DEI on the decoupling relationship
between economic development and CEECs was inhibited, and other prefecture-level cities
were promoted. From 2010 to 2015, only Ma’anshan and Tongling had an inhibitory effect
on the decoupling relationship between economic development and CEECs, while other
prefecture-level cities promoted it. Among them, the absolute value of DEI in Tongling City
was the largest, as high as 27.21. It can be seen that between 2005 and 2015, the industry in
the YRD region was undergoing continuous transformation; energy consumption changed
from low-end extensive to green and intensive and energy efficiency was relatively high.
From 2015 to 2020, the DEI of Shaoxing, Zhoushan, Taizhou, Hefei, Suzhou, Nantong,
Yancheng, Yangzhou and Zhenjiang were decoupled from economic development and
CEECs. The influence of the relationship was inhibited, and the rest of the prefecture-level
cities were promoted. Although the number of prefecture-level cities increased, the degree
of inhibition of the DES decreased, and energy utilization began to develop into intensive
and efficient development.

5.4.3. The Impact of DEL Value on CEEC Decoupling

From 2000 to 2005, only Chuzhou and Yancheng contributed to the decoupling rela-
tionship between economic development and CEEC, and the rest of the prefecture-level
cities were inhibited. Among them, the absolute value of DEL in Chizhou was the largest,
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reaching 1.3. From 2005 to 2010, only Zhoushan, Wuxi and Taizhou’s DEL value contributed
to the decoupling relationship between economic development and carbon emissions. The
prefecture-level cities were all suppressed, and the absolute value of DEL in Shaoxing was
the largest, as high as 1.5. This shows that from 2000 to 2010, the industry in the YRD region
was in an inefficient development period before the transformation; the unit output value
was not high, and the industrial development model was not unbranded and clustered.

From 2015 to 2020, the impact of DEL value on the decoupling relationship was
manifested in the promotion of prefecture-level cities, including Shaoxing, Zhoushan,
Jinhua, Hefei, Changzhou, Suzhou, Nantong, Yancheng, Yangzhou, Zhenjiang and Taizhou.
Among them, Changzhou had the largest absolute value of DEL, reaching 5.1. This shows
that industry in the YRD was developing and transforming in the direction of intensification.
Among the cities, the northeastern and southern cities of the YRD (mainly located in
Jiangsu Province and Zhejiang Province) had a relatively rapid industrial transformation
and development process, which had a relatively significant role in promoting low-carbon
economic development.

5.4.4. The Impact of DP on CEEC Decoupling

The DP of most prefecture-level cities had an inhibitory effect on CEECs. From 2000 to
2020, only the DP of Chizhou, Tongling and Ningbo contributed to the decoupling rela-
tionship between economic development and CEECs, while the rest of the prefecture-level
cities were inhibited. It shows that the rapid urbanization process had a certain inhibitory
effect on the low-carbon sustainable development of the YRD urban agglomeration. Behind
the increasing DP was the extensive urbanization development in the form of extension
and spread. Transforming the surging urban population into the driving force for the low-
carbon development of the city depended on the industrial upgrading and transformation
of the city. As one of the regions with the most active economic development in China, the
YRD urban agglomeration will be one of the main areas of low-carbon and green develop-
ment in the future. The focus of future development will be the elimination, transformation,
extension and transfer of the original development methods of some extensive cities in
order to promote the transformation and upgrading of their own industries.

5.4.5. Drivers of CEECs by Stage

Based on the calculation results of the decoupling elastic coefficients of the four
driving factors, the decomposition results of carbon emissions were used as the basis for
k-means clustering. The 26 prefecture-level cities were divided into six groups to explore
the clustering characteristics of the decoupling elastic coefficients of each city group. The
clustering results are shown in Figure 9 and Table 3.
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Table 3. Analysis of the main driving factors of each group of urban areas.

Period

2000–2005 2005–2010 2010–2015 2015–2020

Groups Main
Factor

Average
Uncoupling

Elasticity

Main
Factor

Average
Uncoupling

Elasticity

Main
Factor

Average
Uncoupling

Elasticity

Main
Factor

Average
Uncoupling

Elasticity

Group A DEL 0.698 DEL 0.614 DEI −0.601 DEL 2.289
Group B DEL 0.576 DEL 0.718 DP 6.532 DEL 0.697
Group C DEL 0.647 DEL 0.741 DEI −0.521 DEI −1.398
Group D DEL 0.667 DEI −0.442 DEL 0.56 DEI −0.719
Group E DP 2.243 DEI 4.115 DEI −1.687 DEI −4.542
Group F DEL 3.933 DEI −3.824 DEI 23.485 DEI −7.164

The dominant driving factors and driving directions of the carbon emissions of the
six groups A–F can be discussed for different periods. The results for the first five years
(2000–2005) are shown in Figure 10. During this period, for each group, DEL had the
largest impact on carbon emissions, followed by DP and DEI. Among them, DEL value
and DP promoted the growth of carbon emissions, while DEI inhibited the growth of
carbon emissions. The effect of DES was not obvious. It is worth noting that in Group
C, the impact of DEI on carbon emissions was not negligible and almost corresponded
to the impact of DEL. In general, because the YRD region paid attention to economic
development during this period, secondary industry accounted for a large proportion of
the industrial structure, and the energy needed was still dominated by coal. However,
the energy utilization efficiency was low, so DEI was increasing. The impact of carbon
emissions was obvious.
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The decomposition results of the second five years (2005–2010) are shown in Figure 11.
The main influencing factors in this period were DEI and DEL. The role of DEL was
still to promote the growth of carbon emissions, and the role of DEI was to suppress
the growth of carbon emissions. The obvious difference between this period and the
previous period is that the impact of DEI greatly increased. In contrast, the impact of DP
gradually decreased in some groups, especially in groups A, C and D. This characteristic
was particularly obvious, which indicates an increased emphasis on energy consumption
and environmental protection in the region, and the DES of some cities was adjusted during
this period. In general, the role of restraining the development of carbon emissions in this
period was significantly stronger than that in the first five years, the industrial structure
advanced rapidly and the economy developed rapidly. However, the impact of DEI on
CEECs still needs attention.

The decomposition results of the third five years are shown in Figure 12. The obvious
difference between this period and the previous period is that the effect of suppressing
carbon emissions became gradually stronger than that of promotion. DEI turned into a
major factor contributing to the growth of carbon emissions, especially in groups A, C and
E. In addition, the influence of DP gradually increased; in groups A and C, DP and DEL
played an essential role in promoting carbon emissions. The biggest feature of Group F
was that DEI and DES had a prominent impact on CEECs, while other influencing factors
were not obvious.

The decomposition results of the fourth five years are shown in Figure 13. The role
of DEI in carbon emissions was more critical during this period. The inhibitory effect of
this period was similar to that of the previous period and was obviously stronger than the
promotion effect. However, compared with the previous groups C, D and E, the intensity
of the impact of DEL value on promoting carbon emissions increased. In contrast, the
impact of DP decreased significantly, indicating that the industrial structure of the region
still needs to be given attention. It is worth noting that the influence of DES increased
during this period, especially in group F, which produced a significant inhibitory effect.
That shows that the current economic consumption level and population structure changes
in some cities had a higher multi-factor impact on carbon emissions than the single impact
of population size changes. In general, the total CEECs in some regions declined during
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this period, but the per capita GDP increased yearly, and the economy developed healthily.
However, it is still necessary to pay attention to the efficiency of energy utilization and to
strengthen the upgrading of industrial structure and industrial layout to reduce CEECs.

Taken together, the carbon emission patterns and their underlying drivers vary by city
group (Table 3). From 2000 to 2015, the correlation between carbon emissions and driving
factors was in descending order of DEL value, DP and DEI, and the impact of DES could
be ignored. The promotion effect of the overall impact factor was greater than the overall
inhibitory effect, leading to an overall upward trend in energy carbon emissions in the
YRD region in the early stage. However, from 2015 to 2020, the ranking of results was DEI,
DEL value, DP and DES. The impact of the DP dropped significantly, while the impact
of the DES gradually emerged. The overall inhibitory effect gradually increased and was
significantly stronger than the promotion effect, attributed to the optimization of the DES
and the positive impact of implementing low-carbon policies in recent years.

5.4.6. A Staged Analysis of the Composite Effects of CEEC Drivers

The composite effect analysis of the driving factors of CEECs in each period was
conducive to revealing the internal mechanism of the temporal and spatial changes of
CEECs in cities in the YRD from 2000 to 2020. We numerically numbered the CEECs’
features across the four epochs and reclassified and visualized representations in Arcmap
(Table 4 and Figure 14).
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Table 4. Classification of carbon emission characteristics.

Number Carbon Emission Characteristics

1 DEL is the main influencing factor, and the DP is outstanding
2 DEL is the main influencing factor, and other factors have little influence
3 DP is the main influencing factor, and the DEL is outstanding
4 DP is the main influencing factors, and other factors have little influence
5 DEL and DP are the main influencing factors, and other factors have little influence
6 DP and DES are the main influencing factors, and the DEL is outstanding
7 DEL and DEI are the main influencing factors, and other factors have little influence
8 DEL and DES are the main influencing factors, and the DP is outstanding
9 DEL, DP and DEI are the main influencing factors
10 DEL, DP and DES are the main influencing factors
11 DEL, DP, DEI and DES are the main influencing factors

In the early stage, cities over-pursued economic development, and the drastic devel-
opment model brought huge energy consumption. The per DEL value became the main
and single driving factor in some economically developed cities (mainly concentrated in
the more economically developed Zhejiang Province and southern Jiangsu Province and
Shanghai: Yangzhou, Nanjing, Wuxi, Suzhou, Shanghai, Ningbo, Huzhou, Hangzhou,
Taizhou, and Jinhua). Economically underdeveloped areas (Yancheng, Chuzhou, Tongling,
Anqing) were mainly affected by the single factor of DP, and other factors were not ob-
vious. At this stage, due to the singleness of the economic development model, about
54% of the cities were affected by the single factor of unit gross industrial output value
or DP, and only Taizhou and Changzhou were affected by the three factors of unit gross
industrial output value, DP and DEI. In the second and third stages, the influence of the
DP gradually emerged, and the number of cities affected by the combined influence of
the DEL value and the DP continued to increase. In particular, in the third stage, 17 cities
(Hefei, Wuhu, Zhoushan, Yancheng, Chuzhou, Nantong, Zhenjiang, Chizhou, Xuancheng,
Taizhou, Changzhou, Yangzhou, Ma’anshan, Nanjing, Suzhou, Shanghai and Huzhou)
were affected by the unit industrial total. The dual factors influenced output value and DP.
At the same time, some cities with prominent tertiary industries (Shaoxing, Hangzhou)
were also gradually affected by the impact of the DES. At this stage, the number of cities
whose carbon emissions were affected by two or three factors increased yearly. In the
fourth stage, 15 cities (Anqing, Wuhu, Jiaxing, Zhoushan, Chuzhou, Chizhou, Xuancheng,
Ma’anshan, Nanjing, Wuxi, Shanghai, Tongling, Ningbo, Huzhou and Hangzhou) were
affected by the unit gross industrial output value, DP and the compound influence of the
three factors of DES, and the four factors of Taizhou were outstanding. At this stage, carbon
emissions needed to be controlled by focusing on DEI and DES.

In general, the carbon emissions of the more developed regions in the early stage were
greatly affected by the unit gross industrial output value, and it was necessary to focus
on controlling carbon emissions by monitoring the economic development trend. Some
economically underdeveloped areas were mainly affected by the DP. It should be noted
that the DP and the huge population base determine that the total carbon emissions of such
cities will continue to rise for a long time. In the medium term, affected by the adjustment
of economic structure, the cities gradually changed from the single-factor influence in
the early stage to the influence of dual influence factors. At this stage, optimizing the
industrial structure to control carbon emissions was necessary. In the later stage, the
upgrading and transfer of related industries, the transformation of energy consumption
forms and the upgrading of industrial layout structure brought diversified development to
the city. The amount of carbon emissions tended to be stable, and the impact of a single
factor on carbon emissions gradually turned into a composite impact of multiple factors.
It can be seen that diversified development of the economy can effectively alleviate the
pressure of carbon emissions in many aspects. Therefore, in the process of future economic
development, we should pay more attention to the layout of various energy sources and
industries, promote the utilization of new energy and renewable energy and promote the
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development of stagnant industries and the impact of multiple factors, especially DEI
and DES, on carbon emissions so as to explore a reasonable and environmentally friendly
carbon emission layout.

6. Conclusions and Policy Implications

By 2011, after experiencing a sharp increase in CEECs, the YRD region basically
reached a CEECs carbon peak and entered a plateau. Facing the demand for medium and
high economic growth in the YRD region in the near future, it will be difficult for the energy
consumption and carbon emissions in the YRD region to decrease further. CEECs are
expected to decline. Understanding the drivers of CEEC intensity in the 26 prefecture-level
cities in the YRD is important for policy making, and decomposition analysis is a useful
method for addressing quantitative changes in predetermined benefit factors. This study
applied LMDI technology and used an improved Kaya identity to explore the driving
factors of CEEC intensity in 26 prefecture-level cities in the YRD from 2000 to 2020. The
main conclusions reached are as follows:

MC1: CEECs in the 26 prefecture-level cities in the YRD showed rapid growth in the
early stage in the past 20 years, slowed down and stabilized in the later stage and fluctuated
during 2009–2011 and 2012–2013. The overall CEEC intensity in the YRD region generally
declined. However, there is significant room for reducing CEEC in the YRD. The CEECs in
prefecture-level cities showed a more concentrated trend in the central region of the YRD
and a trend that increased year by year. The CEEC intensity of the 26 prefecture-level cities
was greatest in the low-value area, and the prefecture-level cities with higher intensity were
mainly concentrated in the western part of the YRD. The overall carbon emission intensity
gradually developed towards the low-value area.

MC2: Among the four driving factors selected and analyzed, the unit industrial
output value had the greatest impact on the decoupling relationship between the economic
development of prefecture-level cities in the YRD and CEECs, followed by energy intensity.
The urbanization rate was the most widely influential factor in the decoupling relationship
between economic development and CEECs in the 26 prefecture-level cities. At the same
time, the decoupling relationship between CEECs and economic growth in various cities in
the YRD region has significant spatial and temporal differences in geographic locations and
development stages. In general, the growth rate of CEECs in the YRD region was greater
than that of economic growth, which may be related to the rapid expansion of industries in
the YRD region. The significant positive interaction between advanced energy structure
and economic growth is gradually becoming more prominent.

MC3: The driving factors of the decoupling in the YRD region generally showed a
trend changing from unit of gross industrial output value to urbanization rate and energy
intensity. This shows that the development and utilization of energy technology and the
transformation and upgrading of low-end industries are imminent. The cluster analysis
results of the elastic value of driving factors showed that, from 2000 to 2010, the dominant
factors affecting the CEECs of the 26 prefecture-level cities were mainly industrial output
value and urbanization rate. Overall, the facilitation effect was greater than the inhibitory
effect. After 2010, the role of various factors in restraining carbon emissions in the YRD
region increased significantly, and the role of energy intensity is still crucial. From 2015 to
2020, the role of energy intensity in CEEC became the dominant factor, and the inhibitory
effect gradually became stronger than the promotion effect. In addition, some cities had
a relatively good level of urbanization, and the influence of energy structure increased
during this period. However, there is still a lot of room for improvement in new energy
utilization and low-carbon technology research and development.

MC4: The results of the phase analysis of the composite driving factors of carbon
emissions showed that the urban carbon emissions in the YRD region from 2000 to 2010
were mainly affected by a single factor: the economic development area was affected by
the industrial output value; the economically underdeveloped area was affected by the
urbanization rate impact; carbon emissions showed an upward trend year by year. After
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2010, carbon emissions gradually turned into the compound influence of multiple factors,
and carbon emissions tended to stabilize. Therefore, in the process of future economic
development, encouraging economic diversification, energy structure transformation and
model upgrading can effectively alleviate the pressure of carbon emissions in many ways.

According to the discussion above, the YRD region should determine the path to
achieve CEEC reduction goals based on the conditions and advantages of the 26 prefecture-
level cities and the leading factors driving CEECs. Below are three main policy recommen-
dations based on the above analysis.

PR1: Prefecture-level cities play an important role in China’s administrative system.
From the above analysis and the development of the literature, the regulation of provincial
governance units urgently needs to be on the prefecture-level-city level. When formulating
planning policies, relevant managers should base them on the prefecture-level-city level or
even smaller-scale administrative units, thoroughly consider the differences in governance
objects and formulate policies for differentiated carbon emissions or to achieve carbon
neutrality goals.

PR2: Local-level cities should formulate specific low-carbon development policies
based on the contribution rate of major impact factors to CEECS. In the future, the economy
of the YRD region will continue to maintain a rapid growth rate. It is not realistic to reduce
carbon emissions by reducing the speed of economic development, and prefecture levels
should be able to adopt policies tailored to local conditions to reduce CEECs. For pollution-
intensive industrial cities, it is necessary to take the lead in promoting the upgrade of the
industrial structure. For prefecture-level cities with advanced technology, it is necessary
to increase ecological innovation further. Effective carbon emissions trading markets and
energy trading markets need to be established. Compared with the terminal processing
of carbon emissions trading, energy trading based on source control is more in line with
national requirements. For industries characterized by high energy consumption, high
pollution, and high carbon emissions, enterprises need to formulate strict development
plans and green models suitable for the three main industries. Enterprises should be
encouraged to improve energy utilization efficiency and develop a circular economy with
low extraction, high use and low emissions. At the same time, it is necessary to increase
capital participation in green investment and promote the use of clean energy, such as
hydro, wind, solar and many other new energy, renewable electricity and hybrid energy
systems. Cities should implement differentiated carbon emission reduction measures. For
high-carbon cities, it is necessary to focus on monitoring high-carbon industries and high-
carbon enterprises, guide and encourage enterprises to conduct low-carbon operations
and reduce carbon emission costs by participating in urban carbon trading. A low-carbon
economy is not about no economy but about developing from a bigger economy to a
better economy.

PR3: Local-level cities should use the development of new technologies to establish a
low-carbon integrated interconnection and mutual assistance strategy network and plat-
form. The YRD is an energy-deficient area, and, as a whole, it is necessary to speed up the
research and development of clean energy. At the same time, in the process of industrial
structure optimization and new urbanization, attention should be paid to promoting low-
carbon industries and regenerative agricultural economic development models. To deal
with the dual-carbon goal, we must establish the concept of urban and rural integration,
equally treat and guide citizens to establish a zero-carbon life concept, accelerate the pro-
motion of low-carbon lifestyles through modern media network platforms such as WeChat,
Douyin and Kuaishou and create a low-carbon consumption atmosphere. Through the
participation of the whole population, we will actively build a zero-waste and low-carbon
city. We must vigorously develop the digital economy and platform economy, transfer
high-energy-consuming industries in terms of industrial structure transformation, optimize
the scientific research resources and foreign trade advantages of the YRD, rely on the scien-
tific research resources and foreign trade advantages of the YRD, focus on developing the
digital economy and platform economy and reduce dependence on energy consumption.
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Our research deeply revealed the dominant factors, decoupling relationships and
spatio-temporal variation law of carbon emissions in 26 prefecture-level cities in the YRD
from 2000 to 2020. However, the research in this paper still had some limitations. As men-
tioned above, the influencing factors we chose mainly focused on the industrial develop-
ment and urbanization of prefecture-level cities, which may not have been comprehensive,
and the impact of technological innovation and policies was not quantitatively analyzed.
In addition, due to the limitations of data acquisition, it is currently impossible to analyze
the spatio-temporal differences within each prefecture-level city in more detail from the
perspective of smaller, county-level cities.
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Abstract: The carbon market is recognized as the most effective means for reducing global carbon
dioxide emissions. Effective carbon price forecasting can help the carbon market to solve envi-
ronmental problems at a lower economic cost. However, the existing studies focus on the carbon
premium explanation from the perspective of return and volatility spillover under the framework
of the mean-variance low-order moment. Specifically, the time-varying, high-order moment shock
of market asymmetry and extreme policies on carbon price have been ignored. The innovation
of this paper is constructing a new hybrid model, NAGARCHSK-GRU, that is consistent with the
special characteristics of the carbon market. In the proposed model, the NAGARCHSK model is
designed to extract the time-varying, high-order moment parameter characteristics of carbon price,
and the multilayer GRU model is used to train the obtained time-varying parameter and improve the
forecasting accuracy. The results conclude that the NAGARCHSK-GRU model has better accuracy
and robustness for forecasting carbon price. Moreover, the long-term forecasting performance has
been proved. This conclusion proves the rationality of incorporating the time-varying impact of
asymmetric information and extreme factors into the forecasting model, and contributes to a powerful
reference for investors to formulate investment strategies and assist a reduction in carbon emissions.

Keywords: carbon price forecasting; time-varying; high-order moment; NAGARCHSK; gate recurrent
unit network

1. Introduction

Dramatic increase in greenhouse gas emissions directly leads to the aggravation of
negative environmental externality. The emission of pollutants such as carbon dioxide is a
serious threat to human health, and it is unacceptable that the pollution of this harmful gas
will continue in the foreseeable future. According to the report of the Word Bank, the global
carbon emissions in 2018 were 2.1 times the 1960 level, the per capita emissions increased
by nearly 67%, and the per capita energy consumption increased by nearly 60% (data from
author’s calculation based on the Wind database). Economic growth, CO2 emissions and
energy consumption are complementary [1,2]. Based on the scientific report released by
the National Oceanic and Atmospheric Administration (NOAA) of the United States in
2020, the global CO2 concentration was 280 ppm at the beginning of the first industrial
revolution, that is, the CO2 quality accounted for 2.8% of the global atmospheric quality. In
2017, this data increased to 400 ppm, and in 2019, it increased to 415 ppm. The continuous
growth of carbon dioxide emissions not only leads to the rise of global temperature, triggers
sea-level rise, aggravates glacier melting and other severe environmental problems, but
also threatens human health, and ultimately affects the sustainability of global economy
and human civilization. Therefore, it has become an urgent task for human society to
effectively curb the global climate problems and reduce greenhouse gas emissions.
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The establishment of carbon market is a market-oriented means for the international
community to solve climate problems and reduce pollution emissions. Based on the “Kyoto
Protocol” signed in 2005 and the “Paris Agreement” passed in 2015, the carbon allowance
assets traded in the carbon market have commodity and financial attributes, and there
exists three exclusive characteristics that cannot to be ignored compared with other capital
markets. The first is the asymmetric distribution of market returns, the tail distribution
has the characteristics of left deviation, and the skewness is negative [3–5]. The second
is the high sensitivity to policy events or external events [6]. For example, the policy
implementation of banning interterm storage of carbon quotas led to a serious decline in
European carbon price at the end of 2007; the fall in carbon price caused by the expiration
of the second phase of emission reduction in Europe at the end of 2012; the outbreak of
COVID-19 virus led to global economic downturn and triggered a sharp drop in carbon
price. The third is the time-varying characteristics of carbon price volatility [7–9]. Therefore,
the research into carbon price prediction and pricing models need to reflect the above
three indispensable characteristics. The price mechanism is the core of the carbon market
to promote emission reduction of the whole society. Consequently, studying the pricing
mechanism of the carbon market in this paper can better serve the emission reduction
practice of entity enterprises and create a healthier social environment.

The structure of this paper is as follows: the second part is the literature review; the
third section analyzes the econometric model; the fourth section is the empirical analysis
and discussion; the last part summarizes the conclusion and the prospects.

2. Literature Review

Existing research methods on carbon price forecasting mainly focus on two aspects:
one is the volatility modeling technology and the other is artificial intelligence-integrated
technology.

2.1. Volatility Modeling Technology

As for volatility modeling technology, Byun and Cho [10] pointed out that the GARCH
family model could better fit the carbon future returns than other volatility models. Con-
ducting the asymmetric threshold GARCH model, Chevallier [11] concluded that the stock
and bond market variables could effectively explain the asymmetric volatility of carbon fu-
ture returns. Based on the autoregressive, comprehensive, moving average model, Dhamija
et al. [12] found that the asymmetric ARIMA-GARCH model can fit the conditional return
and variance of European carbon price. Using the multi-GARCH model, Oberndorfer [13]
stated that the EUA (European Union Allowance, EUA) price was positively correlated with
the electricity stock return, and the stock market return did not cause EUA market volatility.
Based on the ARCH regression model, the crude oil, natural gas and coal returns have
a significant effect on carbon price [14,15]. Testing the EGARCH model, Chevallier [16]
maintained that the abnormal events, policy factors, compliance events and uncertainty
after the Kyoto Protocol are evidence of the instability of carbon price. The time-varying
GARCH model with generalized nonlinear parameters can effectively fit the carbon price
for prediction [16]. Designing bilaterally modified variables, Ren et al. [17] point out that
the AR-GARCH model can reveal the impacts of regulatory update events on the Chinese
carbon market. Employing the dynamic nonlinear (DMA) model, Koop et al. [18] found
that the pricing precision of the DMA model is superior to the time-varying parameter
regression model (TVP). The European carbon price is characterized by heterogeneous
volatility, the prediction performance of the GARCH model based on Markov regime
switching is better than other GARCH models [19].

2.2. Artificial Intelligence-Integrated Technology

The volatility modeling technology represented by the GARCH family model usually
requires the carbon price being subject to strict parameter assumptions and tail distri-
bution, which means the application of the model has great limitations [18]. Artificial

112



Int. J. Environ. Res. Public Health 2022, 19, 899

intelligence-integrated technology with the advantages of mapping nonlinear relations and
without considering the tail distribution has been widely used in carbon price forecasting
research. The BP neural network model with high-frequency data has a more accurate
prediction performance on the CER (Certified Emission Reduction, CER) price than the
GARCH family model [20]. Tiwari et al. [21] found that the time-varying Markov switching
copula model can provide evidence of a time-varying tail-dependence structure, and AI
(artificial intelligence) is an effective means to capture carbon price. The finite distributed
lag (FDL) model based on a genetic algorithm (GA) has better performance on predicting
carbon price than other GARCH models [22]. Based on the idea of ensemble learning,
the EMD model (Empirical Mode Decomposition, EMD) is used to extract the intrinsic
mode function (IMF) that represents the different coexisting oscillation modes of carbon
series [23–25], and then a hybrid carbon price forecasting model integrating the variational
mode decomposition (VMD) and optimal combination forecasting model (CFM) is con-
structed, the results suggesting the superiority of the proposed hybrid model for carbon
price forecasting [26,27]. Conducting the EMD method, Wang et al. [28] proposed a new
random forest-based nonlinear ensemble paradigm for carbon price prediction and proved
the model’s superiority in European carbon price forecasting. Furthermore, the hybrid
carbon price forecasting model, for example the multiobjective grasshopper optimization
algorithm model proposed by Hao et al. [29] and the wavelet least-square support vector
machine (WLSSVM) model carried by Sun et al. [30] have been proven to have strong
superiority and accuracy in carbon price prediction. Different from the prediction of EMD-
type models, the LSTM (Long and Short-Term Memory network) model does not need to
decompose the data frequency, and shows advantages in capturing the long-term lag return
characteristics based on the special gate structure of forget gate, input gate and output
gate [31,32]. The application of the LSTM model in predicting stock market index has
stronger accuracy and robustness than other exponential smooth models and the ARIMA
model [33,34]. Employing the models of ARIMA, CNN, GARCH and LSTM to extract the
linear characteristics, hierarchical data structure, long memory characteristics and volatility
characteristics of carbon return, respectively, the conclusion suggests that the hybrid model
of ARIMA–CNN–LSTM and GARCH-LSTM contribute a lower prediction error [35,36].
Based on similar modeling ideas, the integrated models of EMD–LSTM and that composed
of total average EMD with LSTM (MEEMD–LSTM) have also proven to have significant
superiority in carbon price prediction [37,38].

The above literature provides valuable references for this paper. However, the most
obvious defect is that the existing literature ignores the time-varying impact of market
asymmetric information and extreme shock factors on carbon premium from the perspective
of high-order moment (skewness and kurtosis). More importantly, the time-varying high-
order moment characteristics have been ignored. In fact, studies have proven that the
financial assets of low-order moment information cannot fully reflect the actual financial
return distribution [39]. The innovation and contribution of this study is to construct
a new hybrid carbon pricing model, NAGARCHSK-GRU, that reveals the time-varying
high-moment volatility characteristics of carbon price. The proposed NAGARCHSK-GRU
price-forecasting model combines the advantages of the NAGARCHSK model in parameter
estimation of the time-varying, high-order moment characteristics and the superiority
of GRU (Gated Recurrent Unit, GRU) network in nonlinear fitting and forecasting. The
purpose for integrating the models of NAGARCHSK and GRU network is to improve the
robustness and generalization ability of the proposed pricing model, and then to provide
certain technical support for market participants to capture price information and predict
carbon price.

3. Econometric Modeling

Based on the classical GARCH models, this paper first constructs constant and time-
varying, high-order moment carbon price volatility methods to estimate the parameters of
the proposed pricing model. Secondly, the multilayer GRU network model is designed to
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realize the nonlinear prediction based on the time-varying, high-order moment parameters
estimated by the NAGARCHSK model.

3.1. High-Order Moment Volatility Model
3.1.1. Constant High-Order Moment Model

The constant high-order moment model assumes that the third-order moment skew-
ness and the fourth-order moment kurtosis have no impact on the first-order moment return
of carbon price, but assumes that they are constant. The common constant high-moment
model is the GARCHSK (q1,p1;0,0;0,0) model with the constant high-order moment term.
During modeling of the carbon price, we use the AR (R) model to describe the autocorrela-
tion process of carbon price series, assuming the return series follows a first-order lag AR
®process:

Rt = ρRt−1 + h1/2
t ξt (1)

where, h1/2
t is the conditional variance of carbon return; ξt means the conditional return

item; ρ indicates the autocorrelation coefficient, and ξt ∼ N(0, 1).
For modeling the conditional variance ht process that with the characteristics of

volatility clustering and asymmetric distribution, this paper uses the GARCH model and
its derivative models to estimate the parameters of the proposed carbon pricing model. As
the first-order GARCH model can simulate the financial return volatility, we introduce the
following common forms of conditional variance based on the GARCH (1,1) model.

Conditional variance of GARCH (1,1) is:

ht = β0 + β1ε2
t−1 + β2ht−1 (2)

Conditional variance of TGARCH (1,1) is:

h1/2
t = β0 + β1|εt−1|+ β2ht−1 + β3υt−1|εt−1| (3)

Conditional variance of NAGARCH (1,1) is:

ht = β0 + β1(εt−1 + β3h1/2
t−1)

2
+ β2ht−1 (4)

where, β0 represents the constant term of the variance equation, skewness equation and
kurtosis equation; β1 and β2 denote the ARCH and GARCH term coefficients of the high-
order moment equation, respectively; ε represents the residual term; β3 means the leverage
coefficient, reflecting the impact of asymmetric information on the carbon returns; υt−1
is a dummy variable that controls the impact direction of asymmetric information, when
εt−1 < 0, υt−1 = 1;εt−1 > 0, υt−1 = 0.

3.1.2. Time-Varying High-Order Moment Model

The constant high-order moment model regards the third-order moment skewness and
fourth-order moment kurtosis as fixed constants and ignores the financial asset distribution
characterization of leptokurtosis and fat-tail caused by the market asymmetric information
and extreme factors, which make it difficult to meet the real asset volatility-modeling
requirements. Therefore, this paper considers the third-order skewness and fourth-order
moment kurtosis attributes with the exclusive features of time-varying volatility, so as to
describe the shock of market asymmetric information and policy factors on carbon price.
The specific form of the GARCHSK (q1,p1;q2,p2;q3,p3) model, considering the volatility of
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time-varying conditional variance, conditional skewness and conditional kurtosis, is as
follows: 




Rt = ρEt−1(Rt) + εt = µt + h1/2
t ξt; ξt|It−1 ∼ Fn(0, 1, st, kt)

ht = β0 +
q1

∑
i=1

β1,iε
2
t−i +

p1

∑
j=1

β2,jht−j

st = γ0 +
q2

∑
i=1

γ1,iξ
3
t−i +

p2

∑
j=1

γ2,jst−j

kt = δ0 ++
q3

∑
i=1

δ1,iξ
4
t−i +

p3

∑
j=1

δ2,jkt−j

(5)

The specific form of the NAGARCHSK (q1,p1;q2,p2;q3,p3) model with leverage effect
that considers the volatility of the time-varying, high-order moment, is as follows:





Rt = ρEt−1(Rt) + εt = µt + h1/2
t ξt; ξt|It−1 ∼ Fn(0, 1, st, kt)

ht = β0 +
q1

∑
i=1

β1,i(εt−1 + β3,ih
1/2
t−i )

2
+

p1

∑
j=1

β2,jht−j

st = γ0 +
q2

∑
i=1

γ1,iξ
3
t−i +

p2

∑
j=1

γ2,jst−j

kt = δ0 +
q3

∑
i=1

δ1,iξ
4
t−i +

p3

∑
j=1

δ2,jkt−j

(6)

where, It−1 represents the information set when the carbon return volatility reaches the time
of t − 1; Et−1(Rt) is the corresponding conditional expected return that can be obtained
steadily without risk impact under the certain It−1 information set. The form AR(1) is used
to depict the autoregressive carbon return process. Ft(0, 1, st, kt) represents the fourth-order
moment distribution type of the carbon return series based on the classical GARCH(1,1)
model, and we can obtain Et−1(ξt) = 0, Et−1(ξ

2
t )= 1, Et−1(ξ

3
t ) = st, Et−1(ξ

4
t ) = kt; st and kt

represents the skewness and kurtosis corresponding to standardized residual ξt = h−1/2
t εt.

β0, β1, β2, β3 denotes the coefficient of the conditional variance equation; γ0, γ1, γ2 repre-
sents the coefficient of the conditional skewness equation; δ0, δ1, δ2 means the coefficient
of the conditional kurtosis equation. (q1,p1);(q2,p2);(q3,p3) represents the lag order of the
conditional variance, conditional skewness and conditional kurtosis equations for captur-
ing the relationship between carbon return and its time-varying, conditional, high-order
moment term.

For estimating the parameters of the time-varying, high-order moment model (NA-
GARCHSK), the Gram–Charlier expansion of normal density function is used and truncates
it in the fourth moment. Then, the conditional probability density of the standard error can
be obtained under the information set It−1:

f ( ξt|It−1) = g(ξt)λ(ξt)/Γt

1√
2π

e−ξ2
t /2(1 + s∗t

3! (ξ
3
t − 3ξt) +

k∗t−3
4! (ξ4

t − 6ξ2
t + 3))/(1 + s∗t

3! +
k∗t−3

4! )
(7)

where Γt = 1 + s∗t
3! +

k∗t−3
4! .

Furthermore, the conditional distribution of εt is expressed as h−1/2
t f ( ξt|It−1), and

the log likelihood function is expressed as:

LF( εt|It−1,θ)= −
1
2

ln(2π)− 1
2

ln ht −
1
2

ξ2
t + ln(λ2(ξt))− ln(Γt) (8)

By maximizing the likelihood function above, the consistency estimation of the param-
eter vector can be obtained, and the parameter estimation results of the conditional mean
equation, conditional variance, conditional skewness and conditional kurtosis equations can
also be obtained simultaneously. Where θ= [β, γ, δ]′ = [β0, β1, β2, β3; γ0, γ1, γ2; δ0, δ1, δ2]

′
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is the parameter vector, representing the parameter to be estimated in the time-varying,
high-order moment, carbon price volatility model.

3.2. GRU Model

For mapping the nonlinear, time-varying, high-order moment shock of market asym-
metric information and extreme events on carbon price, this paper constructs a multilayer
GRU (Gated Recurrent Unit, GRU) model to predict and fit the carbon price with the
characteristic of the time-varying, high-order moment. Different from the special input
gate, forget gate and output gate structure of the LSTM (Long and Short-Term Memory
network, LSTM), another feedforward network structure similar to the GRU network, the
GRU model is constructed based on the gate structure of the LSTM and composed of update
gate and reset gate [40]. The GRU training structure can be showed in Figure 1.
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Specifically, the update gate of GRU is combined of the input gate and forget gate of
the LSTM network, and this function is used to determine the information to be discarded
and the new information to be added. The reset gate determines the forgotten information
in the past time series, which can help to capture the short-term dependency of the finance
series. Unlike the LSTM model, which relies on the cell units to obtain the long-term
information, the GRU network gets rid of the cell state instead of the hidden state, in order
to transmit the previous information and obtain the long-term dependency. Although the
debate about the model superiority of GRU and LSTM network continues, it is generally
accepted that as an effective variant of LSTM network, the structure of the GRU network
is simpler and requires fewer parameters and training samples. Therefore, some studies
suggest that GRU is more effective than the LSTM model in solving the long dependency
problem of RNN networks [41]. According to the above GRU model diagram, the forward
propagation process of the GRU network is as follows:

Firstly, the state ht−1 transmitted from the previous network is combined with the
input xt of the current node to obtain the gate structure of the GRU network, that is, the
reset gate r and update gate z. Where σ means the activation function, which converts the
input data to a value in the range of 0–1 to act as a gating signal.

rt = σ(Wrxt + Urht−1) (9)

zt = σ(Wzxt + Uzht−1) (10)

Secondly, after obtaining the gating signal, the reset gate is used to obtain the data
after “reset”. If the element value rt in the reset gate is close to 0, it means the hidden state
element related to the reset gate should be set to 0, that is, the hidden state information of
the last time should be discarded. Further, the result of element multiplication is linked
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to the input of current time step, and the candidate hidden state h̃t is calculated by the
activation function tanh, and the element value ranges from −1 to 1. The calculation for
candidate hidden state is:

h̃t = tanh(Wxt + rtUht−1) (11)

Finally, the most critical process of training the GRU model is the update memory
stage. The update gate zt controls the forgotten information of the hidden layer ht−1 at
the previous moment, and the new hidden layer information h̃t needs to be added at the
current moment. The update gate zt is expressed as:

ht = (1− zt)ht−1 + zt h̃t (12)

It is worth noting that the value of updated gating zt is in a range from 0 to 1. The
closer the gating value is to 1, the more data there is to be remembered, while the closer it
is to 0, the more information is forgotten. The GRU model can realize data forgetting and
memory at the same time by using update gating zt, unlike the LSTM model that requires
multiple gating.

3.3. NAGARCHSK-GRU Model

The proposed hybrid carbon price forecasting model combines the advantages of
NAGARCHSK and GRU neural networks. Firstly, the NAGARCHSK model is better
than the constant high-order moment models and other time-varying, high-order moment
models in fitting the carbon price series with time-varying, high-order moment volatility
characteristics. Therefore, we select the NAGARCHSK model to estimate the time-varying
parameters of carbon price.

Secondly, we use these estimated parameters as network inputs, and use the GRU
neural network to train the time-varying, high-order moment volatility characteristics of
carbon price for improving the prediction accuracy. The basic idea of constructing the
proposed NAGARCHSK-GRU carbon-forecasting model shown in Figure 2.
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3.4. Evaluation Criteria and the Benchmark Model

For evaluating the prediction performance of the proposed time-varying, high-order
moment carbon-pricing model, this paper adopts the following criteria to measure the
model performance.

RMSE =

√
∑T

i=1 (yi − ŷi)
2

T
(13)

MAE =
1
T ∑T

i=1|yi − ŷi| (14)

MAPE =
1
T ∑T

i=1

∣∣∣∣
yi − ŷi

yi

∣∣∣∣ (15)
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DA =
1
T ∑T−1

i=1 ai where ai =

{
1, i f (yi+1 − yi)× (ŷi+1 − yi) > 0
0, otherwise

(16)

where Y = {y1, y2, · · · , yT} represents the carbon return series; Ŷ = {ŷ1, ŷ2, · · · , ŷT}
represents the prediction return. T is a time series variable.

The values of root-mean-square error (RMSE), mean absolute error (MAE) and mean
absolute percentage error (MAPE) range from 0 to 1, and a larger value means the devi-
ation between predicted return and real return is greater, and the model performance is
worse. The correct investment direction prediction can help investors make more valuable
decisions. This paper uses DA (direction accuracy) index to measure the consistency proba-
bility of market trend and investors’ prediction direction. The larger DA value means the
predicted value of carbon return is closer to investors’ psychological expectation.

For assessing the performance of the proposed pricing model, this paper also selects
the following aggressors as the comparison benchmarks. The first one is the BP (back
propagation network) model with the advantage of nonlinear mapping. The second is
GBR (gradient boosting regression) model, which is a kind of integrated learning method.
The third is MLP (multilayer perceptron); the parameter optimization of the MLP can
improve the nonlinear mapping and carbon price-prediction accuracy. The fourth is the
RNN (recurrent neural network) model, which is an artificial neural network with a tree
structure, that has significant advantages in forecasting carbon price. The fifth is the LSTM
(long and short-term memory network) model, which is another improved structure of the
RNN model that shows superiority for solving the problems of gradient explosion.

4. Empirical Analysis and Discussion
4.1. The Data

This article selects the continuous futures contract of EUAf (European Union Al-
lowance future, EUAf) from the European Energy Exchange as the representative variable
of carbon assets. The data range from 22 June 2012 to 7 May 2021, with a total of 2274 data
samples. The sample selection rule refers to the experience of Wen et al. [42], that is, contin-
uous futures contracts with different maturity dates are connected according to the time
sequence. Based on this, the sample of this article integrates the daily settlement price of the
four futures contracts, DEC12, DEC16, DEC18 and DEC20. The reason for choosing EUAf
is that the EUAf is the largest emission reduction quota in the world. The carbon futures
trading of the European Energy Exchange accounts for about 70% of the global futures
trading, and the EUAf trading volume is larger than EUAs (European Union Allowance
spot, EUAs), the price discovery function is also relatively mature. It uses Rt to represent
the carbon assets return:

Rt = 100× (lnPt − lnPt−1) (17)

where Pt represents the carbon asset price, that is, the daily settlement price of EUAf
continuous futures contracts.

4.2. Time-Varying High-Order Moment Characteristics Estimate

The study findings shown in Table 1 concluded that the ARCH and GARCH terms of
all constant and time-varying high-order moment models are significant, indicating that
the carbon return has obvious volatility clustering, which is not only caused by the variance
shock, but also conditional skewness and conditional kurtosis, representing the impacts of
asymmetric information and extreme factors on carbon return. All the volatility leverage
coefficients β3 are negative and significant, denoting that variance volatility has obvious
asymmetry shock on carbon return, and the degree of negative impact is greater than the
positive impact. This conclusion is completely consistent with the pioneering research
results of Engle and Manganelli [43] that the negative VAR impact of the stock market is
more significant. This finding indirectly proves that carbon assets have general financial
attributes and common volatility characteristics.
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The variance impact coefficient β2 is smaller than the coefficient of the constant model,
that is, with the addition of the conditional skewness and conditional kurtosis equations,
the volatility clustering effect from the shock of variance term gradually decreases, for
example, the β2 coefficient of the GARCH, TGARCH and AGARCH models are 0.8824,
0.8875, 0.8904, respectively. When the time-varying conditional skewness and conditional
kurtosis are added, the volatility clustering coefficients of AGARCH-K, NAGARCH-K and
NAGARCHSK models are reduced to 0.8358, 0.8685, 0.7873, respectively. This conclusion
is completely consistent with Harvey’s [39] research.

This phenomenon shows that when the time-varying, high-order moment models no
longer assume the skewness and kurtosis are constants, they can effectively identify the
volatility clustering effect caused by asymmetric information and extreme shocks through
the time-varying skewness and kurtosis equation. We can say that the impact of carbon
return from the time-varying skewness and kurtosis is becoming more obvious, resulting in
the variance impact coefficient decreasing as the skewness and kurtosis coefficient increases.
This similar reason can be used to explain why the extreme impact coefficient δ2 of the
NAGARCHSK model is smaller than that of the AGARCH-K and the NAGARCH-K model.

Table 1. Parameter estimation of the high-order moment volatility model for carbon return.

Coefficient
Constant High-Order Moment Volatility Model Time Varying High-Order Moment Volatility Model

GARCH TGARCH NGARCH AGARCH-K NAGARCH-K NAGARCHSK

ρ 0.0794 (3.744) 0.0981 (4.562) 0.0916 (4.317) 0.0007 (0.011) 0.0007 (1.708) 0.0247 (0.005)
β0 0.0012 (2.985) 0.0054 (4.4745) 0.0046 (3.951) 0.0715 (4.245) 0.0000 (2.177) 0.0483 (0.001)
β1 0.1182 (7.794) 0.0899 (9.737) 0.1173 (17.87) 0.1463 (2.456) 0.1313 (6.428) 0.0587 (4.302)
β2 0.8824 (70.919) 0.8875 (191.69) 0.8904 (185.7) 0.8358 (41.65) 0.8685 (50.659) 0.7873 (2.204)
β3 −0.0632 (4.911) −0.0536 (2.442) −0.0029 (3.031) −0.003 (3.848) −0.0600 (2.964)
γ0 0.7990 (0.807)
γ1 0.0214 (2.831)
γ2 0.0198 (5.325)
δ0 0.6978 (0.012) 0.4452 (0.281) 0.0821 (0.064)
δ1 0.3063 (3.086) 0.4265 (2.821) 0.6562 (1.987)
δ2 0.5363 (3.161) 0.5698 (3.101) 0.201 (3.256)

Likelihood 5159.771 5070.972 5067.591 6469 6473 4682

Note: The bold indicates the model with the minimum maximum likelihood value and the best parameter
estimation performance; the data in brackets indicate the t-statistic of parameter estimation of each model.

Compared with the constant model and other time-varying, high-order moment
models, it should be noted that the maximum likelihood value of the NAGARCHSK model
is the lowest, as shown in Table 1, therefore, this paper chooses the NAGARCHSK model to
estimate the model parameters of time-varying conditional variance, conditional skewness
and conditional kurtosis equations of the carbon return. Figure 3 shows that the conditional
high-moment series of carbon assets have obvious volatility persistence effects, the risk
of variance, skewness and kurtosis are large, and the high-moment volatility series also
shows time-varying characteristics.
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4.3. Predicting Results Analysis

We use the NAGARCHSK model to estimate the time-varying, high-order moment
parameter characteristics that represent the shock from the asymmetric information and
extreme external impact. Then, a multilayer GRU model is constructed to map and predict
the carbon returns based on the obtained high-order moment series. The first 70% of
samples of carbon return series are selected for model training, and the last 30% of samples
for testing the prediction performance.

4.3.1. GRU Structure Construction

Input unit, output unit, number of hidden layers and hidden layer neurons are the
basic structure of a deep-learning network. The input of the carbon price forecasting
NAGARCHSK-GRU model is the time-varying conditional lagging mean, conditional
variance, conditional skewness and conditional kurtosis of carbon returns estimated by
the NAGARCHSK model, and the output is the carbon return series we need to predict.
The hidden layer is a network structure for parameter optimization and feature learning.
Fewer hidden layers may limit the learning ability of the forecasting model, which makes
it difficult to reach the optimal solution. Research has found that a neural network with
two hidden layers can already solve most problems [44]. Similarly, the designing of hidden
layer neurons is to capture and map the input data. Although more neurons can improve
the learning and generalization ability of the network, it may also consume more training
time and lead to overfitting.

For determining the appropriate the GRU network structure, based on the experi-
mental method, this paper measures the forecasting performance when the hidden layers
number is 1, 2, 3, 4, 5, 6 and the hidden layers neuron nodes are 4, 8, 16, 32, 64, 128,
respectively (as showed in Table 2). It is found that when there are two hidden layers in the
NAGARCHSK-GRU model, and the neuron nodes in both layers are 16-16, the model’s
error criteria MSE, RMSE, and MAE values are 0.0006284, 0.0250681, and 0.1399925, re-
spectively, which are the lowest of the whole experimental sample. Therefore, the network
structure of the proposed NAGARCHSK-GRU forecasting model is designed as 4-16-16-1
for training the time-varying, high-order moment carbon series.

Table 2. Performance of the proposed NAGARCHSK-GRU: hidden layers and hidden nodes.

Hidden
Layer Node

NAGARCHSK-GRU Hidden
Layer Nodes

NAGARCHSK-GRU

MSE RMSE MAE MSE RMSE MAE

1 4 0.0010592 0.0325455 0.2575152 4 4 0.0007587 0.0275444 0.1993575
1 8 0.0007156 0.0267501 0.1769118 4 8 0.0006820 0.0261152 0.1653054
1 16 0.0007580 0.0275324 0.1745386 4 16 0.0007306 0.0270302 0.1982328
1 32 0.0011345 0.0336824 0.3124025 4 32 0.0005733 0.0239427 0.1742260
1 64 0.0013580 0.0368505 0.4301757 4 64 0.0007967 0.0282252 0.2044582
1 128 0.0026156 0.0511425 0.6136194 4 128 0.0011475 0.0338750 0.2910599

Avg 0.0012735 0.0347506 0.3275272 Avg 0.0007815 0.0277888 0.2054400

2 4 0.0007035 0.0265229 0.1684342 5 4 0.0009507 0.0308342 0.2467976
2 8 0.0007153 0.0267458 0.1627419 5 8 0.0006662 0.0258103 0.1402034
2 16 0.0006284 0.0250681 0.1399925 5 16 0.0006943 0.0263491 0.1738529
2 32 0.0006848 0.0261686 0.1953299 5 32 0.0008011 0.0283045 0.2853657
2 64 0.0009183 0.0303032 0.2546803 5 64 0.0012432 0.0352584 0.2500270
2 128 0.0011984 0.0346173 0.4536587 5 128 0.0011692 0.0341942 0.3119049

Avg 0.0008081 0.0282376 0.2291396 Avg 0.0009208 0.0301251 0.2346919

3 4 0.0008391 0.0289676 0.2116799 6 4 0.0007273 0.0269685 0.1978246
3 8 0.0007236 0.0268994 0.1764938 6 8 0.0007203 0.0268387 0.1932607
3 16 0.0008080 0.0284251 0.1900228 6 16 0.0006415 0.0253283 0.1762878
3 32 0.0008078 0.0284224 0.1932762 6 32 0.0006575 0.0256409 0.2317956
3 64 0.0011074 0.0332772 0.2451673 6 64 0.0009107 0.0301776 0.2643418
3 128 0.0016887 0.0410936 0.2753646 6 128 0.0013865 0.0372361 0.3278892

Avg 0.0009958 0.0311809 0.2153341 Avg 0.0008406 0.0286984 0.2319000

Note: Bold numbers are the minimum MSE, RMSE and MAE, respectively.
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4.3.2. Performance of the NAGARCHSK-GRU Model

For testing the prediction performance of the proposed NAGARCHSK-GRU model,
this paper compares the prediction results of the proposed model and benchmark evalua-
tion models. The results are shown in Table 3.

For high-order moment pricing models that consider time-varying conditional vari-
ance, conditional skewness and conditional kurtosis in Panel A, the NAGARCHSK-GRU
model has significant advantages over other benchmark models in all the error evaluation
criteria and market expected criteria. That is, the NAGARCHSK-GRU model has better
prediction ability than other benchmark models (as shown in Figure 4).

Table 3. Performance of the proposed and benchmark model for forecasting the carbon price.

Proposed Model Benchmark Model

Panel A: Pricing model considering the features of conditional variance, conditional skewness and conditional kurtosis

NAGARCHSK-GRU NAGARCHSK-LSTM NAGARCHSK-RNN NAGARCHSK-MLP NAGARCHSK-GRB NAGARCHSK-BP

RMSE 0.509902 0.546867 3.348075 2.031849 2.033564 3.000422
MAE 0.172333 0.205202 2.413839 1.470269 1.471746 2.183393

MAPE 0.594527 1.219059 7.415169 0.705615 0.881136 3.450703
DA 0.984211 0.978947 0.742475 0.875 0.877551 0.729114

Panel B: Pricing model considering the features of conditional variance and conditional kurtosis

NAGARCHK-GRU NAGARCHK-LSTM NAGARCHK-RNN NAGARCHK-MLP NAGARCHK-GRB NAGARCHK-BP

RMSE 2.034801 4.616283 3.347897 2.867784 2.036477 2.972087
MAE 1.473751 2.380641 2.413814 2.118404 1.475259 2.149908

MAPE 0.835218 3.237167 3.198746 3.293093 0.879472 2.526902
DA 0.731621 0.505615 0.583471 0.843725 0.715412 0.762763

Panel C: Pricing model without considering the feature of time-varying, high-order moment

GRU LSTM RNN MLP GBR BP

RMSE 3.103279 3.623880 3.348127 3.107803 3.187022 3.822661
MAE 2.129058 2.434801 2.413955 2.261274 2.261036 2.194043

MAPE 7.316744 11.140187 7.395187 8.082685 8.035241 2.827125
DA 0.74368 0.536842 0.74 0.872774 0.875318 0.746231

Note: Bold numbers are the minimum MSE, RMSE, MAE, respectively, and the maximum of DA.
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Specifically, as for the error evaluation criteria, the RMSE, MAE, and MAPE values of
the NAGARCHSK-GRU model are 0.509902, 0.172333, and 0.594527, respectively, which are
lower than those of benchmark models such as NAGARCHSK-LSTM, NAGARCHSK-RNN,
NAGARCHSK-MLP, NAGARCHSK-GBR, and NAGARCHSK-BP. This result concludes
that the NAGARCHSK-GRU model has better robustness and stability for fitting carbon
price series with time-varying, high-order moment characteristics. For the market-expected
criteria, the DA of the NAGARCHSK-GRU model was 0.984211, which is higher than that
of the benchmark models NAGARCHSK-LSTM (0.978947), NAGARCHSK-GRB (0.877551),
NAGARCHSK-MLP (0.875), NAGARCHSK-RNN (0.742475) and NAGARCHSK-BP (0.729114).
This indicates that the NAGARCHSK-GRU model is in line with investors’ psychological
expectations for predicting carbon return, and the predicted returns are strongly consistent
with the real return. As a result, the pricing model can provide technical support for
investors to judge market conditions and formulate investment strategies.

In contrast, the error-evaluation criteria and market-expected criteria of the NAGARCHSK-
RNN model shows the worst prediction effect of all models, that is, the RMSE, MAE
and MAPE values are, respectively, 3.348075, 2.413839 and 7.415169, and the DA value
is 0.742475. We can conclude that using the NAGARCHSK-RNN model it is difficult to
map the carbon price series with the time-varying, high-order moment feature, and its
predictive ability cannot meet investors’ expectations.

For the high-order moment forecasting models considering time-varying conditional
variance and conditional kurtosis, as shown in Panel B, the NAGARCHSK-GRU model
still has obvious forecasting advantages in error evaluation criteria and is relatively better
in market-expected criteria compared with other benchmark models. Specifically, the
error indexes RMSE, MAE and MAPE of the NAGARCHSK-GRU model are 2.034801,
1.473751 and 0.835218, respectively, which are lower than other benchmark criteria, the
market-expected criteria DA is 0.731621, which is second only to the 0.843725 of the
NAGARCHSK-MLP model. It is worth noting that the NAGARCHSK-LSTM model, which
has the advantage in fitting financial time series, has the worst performance in carbon
prediction among all models. The error criteria RMSE, MAE and MAPE are 4.616283,
2.380641 and 3.237167, respectively, and the market-expected criteria DA is 0.505615. This
shows that the NAGARCHSK-LSTM model’s prediction ability and generalization ability
are declining. The conclusion that the gap between the fitting curve and the real value is
extremely obvious is also shown in Figure 5, and the correlation is poor.
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For the carbon pricing model without considering the shock of time-varying, high-
order moment, the GRU network model has the smallest error evaluation criteria (as
shown in Panel C), which denotes that the GRU model still has strong prediction accuracy
and robustness even without considering the characteristics of time-varying, high-order
moment. However, the market-expected criteria DA is 0.74368, which is only higher than
the 0.536842 of the LSTM model. We can conclude that the prediction performance of the
model makes it difficult to satisfy the investors’ psychological expectations.

Although the error criteria of other benchmark models are lower than those of the
GRU model, the difference is not significant (as shown in Figure 6), particularly the RMSE
and MAE of all models are basically close, and the deviation is small. More obviously,
the market-expected criteria of the GBR and MLP models are significantly higher than
those of other models, with DA values of 0.875318 and 0.872774, respectively, indicating the
carbon-prediction performance of those two models is relatively stable and has a certain
robustness. The market prediction performance suggests a reliable reference for investors
making investment decisions.
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Comparing the prediction results of all the pricing models of Panel A, Panel B and
Panel C in Table 3, firstly, the carbon price-forecasting performance of the NAGARCHSK-
GRU model is the best among all pricing models in Panel A, Panel B and Panel C. Secondly,
the error criteria RMSE, MAE, and MAPE of the carbon pricing model in Panel A are
significantly smaller than those of the error criteria in Panel B and Panel C, while the
market-expected indicator DA is significantly higher than other models. Furthermore, the
error criteria RMSE, MAE, and MAPE of the pricing model in Panel C are relatively high,
while the market-expected index DA is relatively low.

The empirical results shown in Table 3 conclude that the deep-learning, carbon price
forecasting model that considers the time-varying, high-order moment characteristics can
provide more confident carbon premium evidence. This conclusion further proves that
the carbon return is not only affected by the low-order moment attribute pricing factor,
but also that the time-varying, high-order moment attribute that reflects the market asym-
metric information and extreme shock is also an important explanatory factor for carbon
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return. The research results of this article can provide valuable reference for investors,
commercial banks, and emission-reduction companies to judge market conditions and
predict market trends.

4.3.3. Robustness of the NAGARCHSK-GRU Model

The significant advantage of the GRU model is that the parameter training structure
of the long memory function can fit the finance time series, especially the time series over a
long period time. Therefore, to prove the robustness of the NAGARCHSK-GRU model in
different prediction period, this paper analyzes the performance of the proposed pricing
model in the short-term, medium-term and long-term, respectively. Among them, the last
4 months, 10 months, and 15 months of the carbon returns are used as the prediction set
in the short-term, medium-term, and long-term, respectively, and the rest of the data are
used as the training set. The pricing model structure adopts the optimal network structure
decided in the previous section. This part mainly describes the prediction performance of
the carbon price-forecasting model that considers the time-varying, high-order moment
characteristics, furthermore, the RMSE, MAE, MAPE error criteria are used to evaluate the
model’s pricing accuracy and stability.

For carbon price-forecasting performance in different periods (as shown in Table 4), the
NAGARCHSK-GRU pricing model has significant superiority in the short-term, medium-
term and long-term for all the error criteria, that is, the values of RMAE, MAE and MAPE are
significantly lower than other benchmark models, and the proposed model has satisfactory
robustness over all periods. The error distribution of the proposed and benchmark pricing
models can be seen in Figures 7–9.

Table 4. Prediction performance of the pricing model considering the feature of time-varying, high-
order moment.

Proposed Model Benchmark Model

NAGARCHSK-GRU NAGARCHSK-LSTM NAGARCHSK-RNN NAGARCHSK-MLP NAGARCHSK-GRB NAGARCHSK-BP

Panel A: Long-term prediction performance (15 months)

RMSE 0.752385 1.157871 2.996408 1.981738 1.985327 3.001473
MAE 0.218883 0.412011 2.352625 1.559398 1.560740 2.393809

MAPE 0.354984 0.299397 0.765891 0.692497 0.689473 6.234842

Panel B: Medium-term prediction performance (10 months)

RMSE 0.825573 0.877745 3.699027 2.388462 2.388496 3.686389
MAE 0.246388 0.345985 2.629891 1.698282 1.698174 2.590053

MAPE 0.476214 1.997452 10.473157 0.809171 0.838451 11.833577

Panel C: Short-term prediction performance (4 months)

RMSE 1.109585 0.761311 3.348173 2.160763 2.162539 3.209178
MAE 0.408066 0.258531 2.414090 1.560627 1.562554 2.334026

MAPE 0.264886 0.873019 7.400078 0.794943 0.807474 2.576337

Note: Bold numbers are the minimum MSE, RMSE, MAE, respectively. The network structure of the proposed
and benchmark models adopts the optimal structure decided experimentally in the previous section, that is, the
structure of 4-16-16-1.

Based on the estimation errors of the pricing models over different periods, it is
found that as the forecasting period gradually increases from short-term to long-term, the
forecasting errors of all pricing model gradually decrease, resulting the improvement of
model accuracy and stability.

In particular, the NAGARCHSK-GRU model has the smallest prediction error and the
best prediction performance, that is, the long-term prediction error RMSE, MAE and MAPE
are 0.752385, 0.218883 and 0.354984, respectively, the medium-term prediction error RMSE,
MAE and MAPE are 0.825573, 0.246388 and 0.476214, respectively, and the short-term
prediction error RMSE, MAE and MAPE are 1.109585, 0.408066 and 0.264886, respectively.
This evidence shows that the accuracy and stability of the NAGARCHSK-GRU model are
gradually optimized with the extension of forecasting time, and it is significantly better than
other benchmark models for forecasting the 15 month lagged returns. Since the advantage
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of the GRU model is fitting the longer finance time series, the findings of this article provide
further evidence for this convinced conclusion and also the robust performance of the
proposed model for different prediction periods.
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5. Conclusions and Prospects
5.1. Conclusions

As a market-oriented mechanism for innovation to curb global climate issues, the
carbon market is recognized as the most effective means to reducing the global carbon
dioxide emissions and realize the sustainability of human society and economic growth.
Compared with other financial markets, the carbon market has obvious market asymmetry,
is sensitive to policy shocks and has time-varying volatility. However, the existing carbon
price-forecasting research mainly focuses on the price information transmission and risk
volatility spillover from the perspective of low-order moment of return, and ignores the
time-varying impact of asymmetric information and extreme policies on carbon assets
from the perspective of high-order moment attributes (market skewness and kurtosis). The
explanation for carbon premium lacks sufficient evidential support.

The innovation and contribution of this article are constructing an integrated carbon
price-forecasting model, NAGARCHSK-GRU, based on the special characteristics of car-
bon assets such as market asymmetry, strong policy-shock sensitivity, and time-varying
volatility. The proposed forecasting model considers the time-varying impact of market
asymmetric information and extreme factors on carbon prices from the perspective of high-
order moment attributes, so as to provide new evidence to explain the carbon premiums.
The main work and research conclusions of this paper are as follows:

Firstly, carbon assets have obvious time-varying, high-order moment volatility charac-
teristics. Compared with constant high-order moment volatility models, the time-varying,
high-order moment volatility NAGARCHSK model can reveal the time-varying impact
of systemic risk, asymmetric information and extreme factors on carbon premium by the
function of time-varying variance, time-varying skewness and time-varying kurtosis equa-
tions. Moreover, the time-varying, high-order moment characteristics estimated by the
NAGARCHSK model can explain the volatility clustering and premium mechanism of
carbon price.

Secondly, the proposed machine-learning pricing model has more accuracy and stabil-
ity in predicting carbon price with time-varying, high-order moment volatility characteris-
tics. The time-varying impact of asymmetric information and extreme factors on carbon
price is also important evidence for explaining carbon premium. This conclusion shows
that the carbon pricing model proposed in this paper can fit and forecast carbon return
effectively, specifically, the NAGARCHSK-GRU model is significantly better than other
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deep-network models. Further research shows that the NAGARCHSK-GRU model has
reliable advantages in long-term, medium-term and short-term carbon price fitting and
forecasting. In particular, the long-term carbon price-forecasting ability is outstanding, that
is, it has perfect stability and accuracy for 15 months of prices forecasting. This conclusion
not only confirms the advantages of the NAGARCHSK-GRU model in fitting long-term
financial data, but also proves that the carbon pricing model considering time-varying,
high-order moment volatility can provide a strong explanation for carbon price.

The theoretical and practical implications of this paper are: firstly, as for the theoretical
innovation, the findings show the rationality and effectiveness of incorporating the time-
varying impact characteristics of asymmetric market information and extreme factors into
the carbon price-forecasting model. The accuracy of carbon price forecasting can suggest a
stronger reference for investors to judge market conditions, formulate investment strategies
and may serve the implementation of carbon emission reduction. Secondly, as for the
practical function, the maturity of carbon pricing mechanisms provide a decision-making
basis for the government to speed up the construction of carbon market mechanisms and
enhance the ability of the financial system to manage climate change. The conclusion of
this paper also provides technical support for investors, emission-reduction entities and
other market participants to capture price information and predict price changes.

5.2. Prospects

The focus of this paper is carbon premium explanation from the perspective of high-
order moments. In the proposed high-order-moment pricing framework, each pricing term
is a statistically structured factor, and the actual meaning behind the statistical indicators of
high-order-moment attributes is not clear. Based on this, employing text-mining technology
to obtain unstructured carbon pricing data that represent investor sentiment, policy impacts
and other pricing factors, rather than the statistical moment attributes, is a valuable avenue
for continuing relevant research in the future.
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Abstract: Globalization as well as the ratio of ageing people in the group of 11 (G-11) countries
has seen a rapid increase in recent years. Therefore, this study aims to provide effective policy
recommendations for sustainable development goals 13, 8, and 7, for the G-11 countries. This work
estimates the impact of natural resources and the ageing population on the emission of carbon
dioxide (CO2) in G-11 countries using panel data from 1990–2020. For empirical results, second-
generation methods were applied. The Westerlund co-integration test that assesses co-integration
confirms the firm association among the parameters, and the values of coefficient of the cross-sectional
autoregressive distributed lag (CS-ARDL) approach show that a 1% increase in the ageing population
will lower the emissions of CO2 by 13.41% among G-11 countries. Moreover, the findings show that
there exists an environmental Kuznets curve (EKC) among natural resources, globalization, economic
growth, ageing people, and the emission of CO2. Based on the findings, this work presents some
important policy implications for achieving sustainable growth in the G-11 countries. These countries
need to lower the amount of energy obtained from fossil fuels to improve air quality.

Keywords: G-11 countries; ageing population; natural resources; globalization; CS-ARDL

1. Introduction

Rapid industrialization has created hurdles on the way to achieving sustainable
development. According to United Nations (UN), developed and developing nations are
striving to address climate problems but industrialization is making their efforts fruitless.
To accomplish the economic targets of various countries, different resources are being
shared across borders. These trade activities have been possible through globalization.
Globalization affects the process of production, which ultimately affects environmental
quality [1–4].

Today, different economies are creating economic targets by enhancing cross border
trade. Most countries, however, overlooked the factors that could affect environmental
quality when pursuing their economic goals [4]. The group of 11 (G-11) countries was
formed on 20 September 2006, when most of the countries were in their developing stages.
This group was established to enhance their economic progress by cooperation. Since its
formation, the G-11 countries have shown remarkable economic progress [5]. After joining
the Paris agreement, the (G-11) nations have shown a strong commitment to reduce envi-
ronmental pollution and they are revising their current economic and demographic policies.
This includes environmental actions, usage of clean energy, and improved living standards.
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Due to improving health facilities, the ageing population is increasing and the rise in
the ageing population may have environmental consequences. According to the World
Bank, the ageing population in G-11 countries has seen a rapid increase. This population
is projected to reach 923 million by 2050 [6], and the governments of these countries are
not well prepared for this demographic change. In an economic context, a labour supply
shortage might be created by an upsurge in ageing people [7]. However, in the context
of environmental quality, ecological degradation is caused by moving ageing people,
household pattern variations, and building of separate homes for such people. Ageing
people have environmental awareness but their preferences for a cleaner environment
may vary. Ageing people have less preference for the use of private vehicles to move
from one place to another. At the same time, they may need additional energy in terms of
health-related facilities and if the energy is coming from non-renewable energy resources,
it will degrade the environment. Therefore, it is essential to probe the linkages of ageing
people with emissions of CO2.

The objective of the current study is to evaluate the influence of the ageing population
on CO2 emissions in G-11 nations. Furthermore, considering the importance of other
socio-economic variables, this work includes energy use, globalization, economic growth,
energy innovations, and natural resources on CO2 emissions. To the best of the author’s
knowledge, there is a gap in literature, and very few studies have investigated the factors
of environmental degradation in the context of SDGs for G-11 countries. Also, for the
analytical framework, the environmental Kuznets curve (EKC) has not been addressed.
EKC proposes that after reaching a threshold level, economic activity may reduce environ-
mental pollution. This may be due to environmental awareness or the use of efficient means
of energy. This work probes the EKC among globalization, natural resources, economic
growth, and ageing populations in G-11 nations.

For effective policy instruments, this work utilizes the second-generation methods be-
cause the first-generation methods may not incorporate the cross-sectional heterogeneities,
which the study seeks to address. Therefore, the present study uses the cross-sectional
autoregressive distributed lag (CS-ARDL) technique. This method controls the structural
similarities to provide the effects of independent parameters on the dependent parameters.
Considering these advantages, this work uses the CS-ARDL instead of the traditional
autoregressive distributed lag (ARDL) [8].

To capture the evolutionary impacts on CO2 emissions, a suitable theoretical model is
required. Hence, the EKC by Grossman and Krueger [9] has been employed to determine
the evolutionary associations among the variables. The paper is structured as follows: a
literature background is described in Section 2, the methodology and data are described
in Section 3, the fourth section comprises an analysis of the results, and the last section
outlines the conclusions of the study.

2. Literature Review
2.1. Energy and Air Pollution

The EKC hypothesis has been discussed widely by environmental economists [9,10].
This assumption presented that economic growth influences environmental pollution in
three ways: technique, composition, and scale [11,12]. Currently, several studies have
posited that innovations in energy are the key factors that lower global warming [7,13].
According to Torras et al. [14], technical novelties lower environmental pollution but
recent literature also suggests that the scale effect can be lowered by using low carbon
emissions technologies.

2.2. Natural Resources and Air Pollution

Several studies have shown that more natural resources are important to impact
economic growth. For example, Auty [15] found that rich natural resources slow down
the pace of economic growth. However, Bravo-Ortega and de Gregorio [16], observed that
natural resources increase income but have a negative effect on the national growth rate.
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Shahbaz et al. [17], validated the natural resource curse hypothesis. Brunnschweiler and
Bulte [18], described the difference between natural resource dependence and abundance.
They presented that natural resource abundance increases economic growth whereas
gross domestic product (GDP) is unaffected by natural resource dependence. Balsalobre-
Lorente et al. [7], argued that the abundance of natural resources reduces CO2 emissions
in European countries. They argued that countries with ample natural resources utilize
them instead of fossil fuels and maintain economic growth. However, Danish et al. [19],
presented contradictory evidence for Brazil, Russia, India, China and South Africa (the
BRICS nations).

2.3. Globalization and Air Pollution

Globalization is increasing political, social, and economic integration across the globe.
Dreher [20], reported that globalization put a positive impact on the growth of an economy.
Dollar and Kraay [21] have observed the positive impact of globalization on economic
growth. Similarly, Alam [22] found a positive nexus between environmental degradation
and globalization. Kahuthu [23], investigated the association between CO2 emissions
and economic growth. They observed that globalization is playing a moderating role in
this association by importing efficient technologies. Globalization is increasing GDP but
lowering CO2 emissions. Shahbaz et al. [24], found that globalization has degraded the
environment. Shahbaz et al. [11], investigated the emissions of CO2–globalization nexus in
Indian economic growth. They also found that globalization is degrading the environment.
Shahbaz et al. [25] suggested that globalization is triggering foreign direct investment,
which enhances the reckless use of non-renewable energy, which contaminates the quality
of the environment. However, for the Australian economy Shahbaz et al. [26], found that
globalization is environmentally friendly. They argued that due to effective resource policy
and administrative grip, globalization is a blessing to Australia.

2.4. Ageing and Air Pollution

Some studies have shown the association between ageing and air pollution [27]. York
et al. [28] and Shi et al. [29] found that an ageing population can create more emissions of
CO2. Fan et al. [30] argued that the working class is lowering air quality in developing coun-
tries, but this class is improving air quality in developed nations. However, reference [31]
argued that the elderly people use fewer resources and prefer public transportation and
therefore they are environmentally friendly. Hassan and Salim [32], found that aged people
are reducing emissions of CO2 by 1.55%. O’Neill et al. [33], found that aged people do not
participate in labour activities, and they slow economic growth with little to no emissions
of CO2.

Contrary to this, various studies have shown the adverse impacts of ageing people on
the emission of CO2. Farzin et al. [27] indicated that a society with more aged people will
generate more CO2 emissions. Menz and Welsch [34], presented that aged people use up
more energy and increase CO2 emissions. Menz et al. [35] found that the ageing people–
CO2 emissions linkage depends upon the country’s position relative to development.
Thalmann [36], presented that the wish for a cleaner environment decreases with age. They
further highlighted that although elderly people are affected by environmental changes,
they are not going to obtain the benefits of environmental regulations in the future. This
thought further diminishes environmental awareness. According to Liddle and Lung [37],
middle-age people require less energy requirements, but at an early and elderly age, they
require more energy. Liddle [38], found the U-shaped linkages between ageing people
and domestic energy consumption. It was observed that the youngest and elderly people
positively affect energy demand.

Considering the potential impact of ageing people on the environment, this work
attempts to enhance the current wave of knowledge.
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2.5. Research Gap

The aforementioned literature above shows that different studies have contradictory
results about the factors of environmental degradation. The contradictory results may be
due to the level of development and the sample of variables collected from the countries.
To the best of the authors’ knowledge, there is a gap in literature, and very few studies
have investigated the factors of environmental degradation in the context of SDGs for
G-11 countries. Moreover, for the analytical framework, the EKC hypothesis has not been
addressed. This gap in the literature is addressed by incorporating ageing people.

3. Data and Empirical Estimation

This work attempts to probe the impact of ageing people on CO2 emissions by control-
ling the other socio-economic factors of globalization, natural resources, GDP, and energy
use. In doing so, this work utilizes the annual data of 1990–2020 for G-11 nations of Croatia,
Jordan, Ecuador, El Salvador, Georgia, Honduras, Morocco, Indonesia, Paraguay, Pakistan,
and Sri Lanka. The data for GDP per capita (constant terms), CO2 emissions (kilo tons),
natural resources (% of GDP), energy use (kg of oil equivalent per capita), research, and
development (number of patents), and the ageing population 65 and above were used. All
the data were obtained from the World Bank [39] except the data for globalization, which
was obtained from the KOF Economic Institute [40]. Figure 1a–e illustrates an increasing
trend in globalization, GDP per capita, natural resource abundance, research and develop-
ment, ageing population, and CO2 emissions in G-11 countries. Croatia showed the highest
globalization during 1990 to 2020. Similarly, Indonesia had the highest economic growth
among the G-11 countries during the study period. The highest natural resource was in
Ecuador. Indonesia had the highest number of ageing people during the study period.
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Figure 1. Graphical representation of variables used for the study for the various countries
(a) globalization, (b) GDP per capita, (c) natural resource abundance, (d) ageing population,
(e) CO2 emissions.

Before the econometric analysis, all data were transformed into their natural log-
arithms. This form eliminates the problems of multicollinearity and provides robust
findings [41–43]. This work follows the study of Balsalobre-Lorente et al. [44] in applying
the empirical model, which is as follows:
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lnCO2t = β0 + β1 lnGLt + β2 lnGl2t + β3 lnGDPt + β4 lnGDP2
t + β5 lnNATt + β6 lnNAT2

t + β7 lnAGt

+β8 lnAG2
t + β9 lnEN + β10 lnRDt + iet (1)

where, CO2, GL, GDP, NAT, AG, EN, and RD represent the CO2 emissions (kilo ton), the
overall index of globalization, GDP per capita (constant term), natural resource abundance
(% of GDP), ageing population 65 years and above, energy use (kg of oil equivalent per
capita), and research and development (number of patents).

Table 1 presents the descriptive statistics of the variables, which shows that GDP,
globalization, and number of ageing people in the population have the highest values.

Table 1. Descriptive statistics.

Parameters Mean Minimum Maximum Standard Deviation Skewness Kurtosis

CO2e 57,553 2020 583,110 108,944.2 2.97 8.72

GDP 100,953,498,375.5 4,689,605,208.6 1,049,318,966,508.5 176,187,954,357.7 3.29 11.55

GL 58.47 32.23 80.89 10.28 −0.10 −0.26

NAT 2.44 0.03 18.85 3.44 2.50 6.65

AG 2,220,265.9 113,959 17,129,349 3,495,883.2 2.18 4.0

Table 2 shows the description and sources of data. For econometric analysis, this work
adopts the second-generation methodology. There is a reason to use second-generation
methods because the datasets obtained for South Asian countries may suffer from cross-
section dependence (CD) due to common traditional methods, social norms, and economic
policies. It might not be able to provide robust results. A second-generation unit root test is
applied to find the order of integration among the panel data. The CS-generation technique
is applied to present the values of long- and short-run coefficients.

Table 2. Description of the parameters under study.

Parameters Symbol Unit Source

Carbon Dioxide emissions CO2 kilo ton (kt) World Bank

Globalization GL Overall Index (Economic, political, and social globalization) KOF institute

Gross Domestic Product GDP Constant 2015 US$ World Bank

Natural Resource abundance NAT Natural resource rents (%GDP) World Bank

Research and Development RD Number of patents (residents) World Bank

Ageing population AG Population more than 65 years World Bank

Cross-Sectional Autoregressive Distributed Lag (CS-ARDL)

This work seeks to probe the linkages between economic growth, natural resources,
energy use, globalization, ageing people, and CO2 emissions for a panel of G-11 nations.
Panel estimations can generate unreliable results because of the existence of cross-section
dependence and slope heterogeneity issues. These issues are not considered by the tradi-
tional estimation techniques of FMOL and DOLS [45]. The issue of slope heterogeneity and
CD is efficiently handled by the CS-ARDL approach, which is not catered for by the FMOL
and DOLS techniques. Therefore, the current study used the CS-ARDL method to calculate
the values of long- and short-run coefficients. This method caters for heterogeneity and CD
problems by applying dynamic common correlated impact predictors [46,47]. Equation (1)
represents the mathematical form of the CS-ARDL:

Hi,t =
pw

∑
I=0

γI,iWi,t−1 +
pz

∑
I=0

β I,iZi,t−I + εi,t (2)
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Equation (1) represents the ARDL model; if we use Equation (5), by taking CD, it will
produce uncertain results. Equation (4) is revised using averages of CS one by one repressor
parameters. This will permit us to remove inappropriate interpretations concerning the
existence of the threshold effect generated by CD [8].

Hit =
aw

∑
I=0

γI,i, Hi,t−1 +
az

∑
I=0

β I,iZi.t−I +
ax

∑
I=0

α′ i, IXt−I + εi,t (3)

where the average value of dependent and independent parameters can be calculated by
using the following equation:

Xt−I= Hi,t−I Zi,t−I

Existing lags among all the variables are denoted by aw, ax and az. Hit denotes emission
of carbon per capita depending upon its utilization and Zi.t represents all the independent
variables. Furthermore, X denote the average of CS (disregarding the trends) to overwhelm
the spillover issues [48]. The CS-ARDL method estimates the long-run coefficients by
using short-run coefficients as its input. Equations (4)–(6) represent the mean group (MG)
predictor and the value of long-run and short-run coefficients, respectively:

ϕ̂MG =
1
N

N

∑
i=1

ϕ̂i (4)

ϕ̂CS−ARDL,i =
∑

pz
I=0 β

pw
I,i

1− ΣI=0
ˆγI,i (5)

∆Hi,t = ϑi[Hi,t−1 − ϕiZi,t]−
aw−1

∑
I=1

γI,i∆I Hi,t−1 +
aws−1

∑
I=1

β I,i∆I Zi,t +
ax

∑
I=0

α′ i, IXt−I + εi,t (6)

where ∆I = t− (t− 1),

δ̂i = −(1−
aw

∑
I=1

γ̂I,t) (7)

ϕi =
∑az

I=0 βaw
I,i

δ̂i
(8)

ϕ̂MG =
1
N

N

∑
i=1

ϕ̂ (9)

In the CS-ARDL approach, the economy achieves an equilibrium state as soon as the
value of the error correction mechanism (ECM) approaches −1.

4. Results and Discussion

For panel data analysis, it is important to be sure of the CD. For this purpose, Table 3
shows the results that reject the null hypothesis of CD among the selected variables, i.e.,
CO2, GL, GDP, AG, NAT, and RD, which confirms that the entire data have a CD at a
1% level. Thus, the results imply that a shock in one country will spill over to the other
countries as well. These empirical findings agree with that of Mehmood et al. [49] and
Musah at al. [50].
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Table 3. Results obtained for cross-section dependence (CD) analysis.

Variable Test Statistics (p-Values)

CO2 20.45 *** (0.00)

GL 16.76 *** (0.00)

GDP 19.65 *** (0.00)

NAT 44.23 *** (0.00)

AG 27.67 *** (0.00)

RD 32.34 *** (0.00)
*** is significant at 1%.

Before the application of long-run analysis, it is required to know the integration order
of the data. Therefore, this work applies the CIPS unit root test. Table 4 indicates the results
of the unit root test which reveals that the panel data are integrated at the first difference.
The results shows that in the CIPS unit root test almost all variables are integrated at the first
difference except NAT, which is also integrated at this level. This indicates that except NAT,
all remaining variables of interest acquired stationarity after the first difference indicating
the integration sequence among the data. The findings are supported by the following
studies of Musah et al. [50] and Adamu et al. [51].

Table 4. CIPS unit root test results from the study.

Variable
CIPS Test

At Level 1st Difference

CO2 −2.94 −5.61 ***

GL −2.78 −5.86 ***

GDP −2.65 −6.90 ***

NAT −3.52 *** −6.16 ***

AG −1.01 −3.45 **

RD −3.12 *** −6.10 ***
** and *** are significant at 5% and 1% levels, respectively.

After the CD and unit root test, the Hashem Pesaran and Yamagata [52] test was
incorporated. A slope heterogeneity test was done to examine the slope heterogeneity
between the selected variables. Table 5 depicts the analysis of heterogeneity of slope as
measured by Pesaran and Yamagata [52]. This test was used to assess the coefficients of
heterogeneous and homogenous slopes from the study. This test confirms the heterogeneity
at the 1% significance level.

Table 5. Results obtained to show the slope heterogeneity.

Statistics Test Value (p-Value)

Delta-tilde 23.46 *** (0.00)

Delta-tilde Adjusted 26.57 *** (0.00)
*** is significant at 1% level.

The findings of Westerlund and Edgerton [53] are presented in Table 6, which depicts
the null hypotheses of no co-integration between the parameters in the existence of serial
correlation, CD, and heterogeneity. The findings reject the null hypotheses with no mean
shift and regime shift. This verifies the existence of a co-integrating association among the
CO2, GL, GDP, NAT, AG, EN, and RD at a 1% significance level. The results are consistent
with Menz and Welsch [34].
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Table 6. Westerlund and Edgerton [53] results obtained for panel co-integration test.

Test No Shift Mean Shift Regime Shift

Zϕ(N) −3.56 *** −2.87 *** −4.02 ***

Pvalue 0 0 0

Zτ(N) −4.67 *** −3.67 *** −4.01 ***

Pvalue 0 0 0
*** is significant at 1% level

Table 7 shows the findings of the CS-ARDL, which shows different insights. The find-
ings are presented sequentially considering the influence of globalization on the emissions
of CO2. In both short- and long-run estimations, the coefficient of globalization is positive
and statistically significant. It is evident that globalization is exerting a positive impact on
CO2 emissions, but the square of globalization is negatively correlated with CO2 emissions.
This means that the evolutionary impact of globalization is inverted in the U-shape of
CO2 emissions in G-11 countries. Globalization increases economic opportunities and
also makes room for importing efficient technologies to produce clean energy. This result
is similar to the results of Sinha et al. [54]. The coefficient of GDP is positive having a
value of 9.75% at a 5% significance level, whereas the square of the GDP is negatively
associated with environmental degradation. This implies that the evolutionary impact
of economic growth is also inverted in the U-shape, which means that recent economic
growth is contaminating the environment. In the future, economic growth will improve air
quality. Empirical findings by Balsalobre-Lorente et al. [7], Mehmood and Tariq [55] and
Qayyum et al. [56] align with the findings of the study. The finding from the study also
indicates that G-11 countries are spending on non-renewable resources in the energy sector
but in the future, the ratio of renewable energy to the final energy output will increase
which will lead to an improvement in air quality. The findings align with that of Mehmood
et al. [55] and Abid et al. [57].

Table 7. Cross-sectional autoregressive distributed lag (CS-ARDL) results from the study.

Short Run Coefficient Std. Error Significance Level

∆CO2 −0.95 *** 0.09 0.00

∆GL 0.24 ** 0.25 0.05

∆GL2 −2.32 2.24 0.78

∆GDP 9.75 ** 3.84 0.01

∆GDP2 −1.60 *** 0.70 0.02

∆NAT −0.05 *** 0.02 0.09

∆NAT2 0.02 0.03 0.53

∆AG −23.20 *** 25.40 0.36

∆AG2 1.60 1.84 0.35

∆RD −0.07 ** 0.01 0.53

∆EN 2.32 *** 0.87 0.00

Long Run

CO2 −0.04 ** 0.05 0.09

GL 0.09 0.13 0.09

GL2 −2.32 ** 2.19 0.03
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Table 7. Cont.

Short Run Coefficient Std. Error Significance Level

GDP 5.24 *** 2.11 0.00

GDP2 −0.84 ** 0.38 0.06

NAT −0.07 0.01 0.53

NAT2 0.01 0.02 0.54

AG −13.41** 13.48 0.03

AG2 0.91 0.99 0.02

RD −0.46 *** 0.06 0.03

EN 1.65 ** 0.74 0.01

ECT −0.95 *** 0.09 0.00
** and *** are significant at 5% and 1% levels, respectively.

The evolutionary effect of natural resources on the emissions of CO2 is an inverted
U-shape. This means that dependence on natural resources is lowering air quality, but
less consumption of natural resources is improving air quality in G-11 countries. The
influence of natural resources on the emissions of CO2 can be better explained if the joint
effects of innovations in the energy sector and the use of energy on the emissions of CO2
are examined. It can be observed that the impact of research and development on the
emissions of CO2 are negative. This means that research and development are lowering
CO2 emissions in G-11 countries.

Lastly, the effect of the ageing population on CO2 emissions shows that, currently,
elderly people positively improve the air quality but in the future this association becomes
inverse. This outcome rejects the existence of EKC between ageing population and CO2
emissions. This confirms that the current changing demographic patterns in the G-11 coun-
tries are environmentally friendly. However, in the future, due to the ageing population
growth, they will negatively affect air quality. This outcome is similar to the findings of
Hamza et al. [58].

5. Conclusions

During the last few years, the G-11 countries have made commitments to lower the
concentration of CO2 emissions and to improve air quality. These commitments require a
comprehensive environmental policy. Therefore, considering the importance of SDGs in the
G-11 countries, this work incorporates globalization and the ageing population to present
some important recommendations. This work will be helpful for policymakers to achieve
SDGs 13, 8, and 7. This study has proposed a comprehensive policy recommendation
by analyzing the role of globalization, research and development, and ageing people.
The study shows that the G-11 countries are spending on non-renewable resources in the
energy sector but, in the future, the ratio of renewable energy to the final energy output
will increase which will lead to an improvement in air quality. This work also revealed
the need for policymakers to improve the ratio of renewable energy to the final energy
output utilized in the industrial sectors. In increasing the ratio of renewable energy, the
governments of these countries need to give special attention to employment opportunities
because this aspect can be a hurdle in achieving sustainable development. The impacts
of research and development on the emissions of CO2 are negative. This means that
research and development are lowering CO2 emissions in the G-11 countries. Research and
development will help invent renewable energy technologies. Currently, ageing people
are environmentally friendly but in the future ageing people will start to contaminate air
quality by increasing the CO2 emissions. This result is important for policymakers, and
they should divert their attention towards the environmental awareness of ageing people.
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The role of natural resources is very important for achieving sustainable development.
The evolutionary effect of natural resources on the emissions of CO2 is not an inverted
U-shape. Currently, natural resources are environmentally friendly but in future due to
mismanagement resources will also contaminate the environmental quality by increasing
CO2 emissions. This result has also highlighted the policy instruments to preserve and
use natural resources sustainably. The abundance of natural resources helps to reduce
greenhouse gases and also serves as a catalyst for sustainable growth. Therefore, nations
should be aware of the need to conserve natural resources.

This work validates the existence of EKC between globalization, GDP, and environ-
mental quality. This means that globalization is currently creating environmental problems
but, in the future, will start to improve air quality by reducing CO2 emissions. This finding
sheds light on the importance of globalization for the G-11 nations. It is expected that
the G-11 nations should explore more markets to export their products, especially to the
developed nations. This will provide the nations with the opportunities to import cleaner
technologies to deal with CO2 emissions.

Apart from the contribution of this study, future research can be applied to highly
globalized and developed countries. Moreover, future works can be undertaken by utilizing
the other panel data analysis.
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Abstract: International trade levels can change the relationship between resource endowments and
green economic growth. Therefore, this study tested the resource curse hypothesis from the perspec-
tive of green growth in China using provincial-level panel data for 2005–2017. Energy conservation
and environmental improvement were considered under green growth to further analyze the regional
mechanism of the resource curse. A panel threshold model was used to identify the impact of import
and export threshold effects on the transformation of this mechanism. The resource curse hypoth-
esis was found to be valid nationwide; it hindered green economic growth mainly by impeding
energy conservation and curbing environmental improvement. In terms of regional differences in
green growth, resource endowment had a positive impact on the eastern region, a negative impact
on the central region, and no effect on the western region. When the levels of import and export
trade exceeded the threshold values, the resource curse effect was enhanced by reducing energy
conservation and weakened by promoting environmental improvement, respectively. Therefore, the
Chinese government should establish a more reasonable import and export trade structure, promote
changes to the energy structure and green technological innovation, and reduce the negative impact
of resource endowment on green growth.

Keywords: resource curse; green growth; import; export; panel threshold model

1. Introduction

Abundant natural resources are important sources of national economic growth as
they are indispensable input factors for production. Simultaneously, the comparative
advantages from resource endowments can considerably crowd out other input factors [1]
by weakening the impetus for technological innovation [2] and hindering high-quality eco-
nomic development; this is termed as the resource curse [3]. This phenomenon is reflected
at the regional level in China, where Shanxi, Shaanxi, Inner Mongolia, and Heilongjiang
are rich in mineral resources; however, in recent years, the economic development level of
these provinces has remained lower than that of the southeast coastal regions [4]. There-
fore, the relationship between resource abundance and economic development should be
re-examined. Economic development does not only refer to an increase in the economic
aggregate, but also to the content it encompasses that changes according to different stages
of social development. Since joining the World Trade Organization (WTO), China has been
committed to economic and trade exchanges with other countries, pursuing a high-growth
economic development model and producing numerous low-tech value-added primary
products. Moreover, some regions have rapidly developed large industries, forming sev-
eral industrial clusters with high energy consumption and high pollution characteristics,
and resulting in an increasingly severe short-board effect on resources and the environ-
ment. The Chinese government has gradually recognized the importance of conserving
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resources and protecting the environment, and introduced a series of policies to eliminate
ineffective production capacity and optimize the industrial structure. From proposing
that “clear waters and green mountains are as valuable as golden and silver mountains”
to advocating the five major development concepts of innovation, coordination, green,
openness, and sharing, green growth has become the theme of development at present.
The traditional resource curse theory only considers the relationship between resource
abundance and economic growth. However, the concept of growth defined by this theory
is different from that of green growth in the current social context in China. Under the
theme of green growth, if the relationship between resources and development can be inter-
preted from multiple dimensions, such as resource conservation, environmental protection,
and economic growth, green total factor productivity (TFP) can be used to characterize
the level of green growth and expand the conceptual scope of the resource curse theory.
This would be more conducive to formulating and implementing various ecological and
environmental policies.

Although the resource curse hypothesis remains unconfirmed, irrespective of whether
it is true or false, the importance of resources for economic and social development cannot
be neglected. Resource input is the starting point of production, and natural resources
themselves cannot act as a “curse” on the development of human society, but must be a
“blessing.” The resource curse is attributed to the scenario where economic development
is excessively dependent on resources, and the production entities lack the incentive
for technological innovation, resulting in a crowding-out effect on the other production
factors. Owing to economic globalization, all countries participate in international trade
with their respective advantages. For example, some countries in the Middle East and
North Africa supply energy to the international market, and oil export trade increases
the dependence of the economic development of the region on its resource endowments.
However, an improved trade system can reduce the adverse impact of oil reserves on the
performance of the real economy [5]. Import and export trade affect the input–output
structure of resources; therefore, when the import and export levels are at different stages,
their influence in changing the mechanism by which resource endowments affect green
TFP should be explored. Therefore, we proposed the following hypothesis in this study: by
adjusting the trade structure, the mechanism of the resource curse can be changed, and the
negative impact of resource endowment on green growth can be reduced or even reversed.
Thus, to test this hypothesis, we will investigate how the mechanism of the resource curse
change under different levels of import and export trade, and through what route the
changes occur.

In summary, this study first measures the green TFP of provinces in China through the
super-efficiency data envelopment analysis (DEA) method and the Luenberger productivity
index to characterize green growth, and uses a fixed-effect panel model to verify the
existence and regional heterogeneity of the resource curse from the perspective of green
growth. Then, green TFP is decomposed into energy conservation effect and environmental
improvement effect to analyze the specific path of the impact of resource endowment on
green growth. Finally, the threshold regression model is used to test whether international
trade levels play a threshold role in the resource curse hypothesis, and through which
route import and export trade levels may change the impact of resource endowments on
green growth.

The study is structured as follows: Section 2 reviews the relevant literature on resource
curse. Section 3 explains the adopted methods and data, including measurement and de-
composition of green total factor productivity, fixed-effects model, and threshold regression
model. Section 4 presents the results of models in Section 3, and their interpretation, and
states the limitations of the study. Section 5 provides the main conclusions.

2. Literature Review

As a starting point of social production, natural resources should be a “blessing”
for economic development [6,7]; however, at the national level, the economic growth
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performance of some resource-rich countries or regions is not outstanding, and even
poor for some countries with scarce resources. Prebisch [8] first explored this distorted
relationship between resource endowment and economic growth, and the resource curse
hypothesis was formally proposed by Auty [3]. Many scholars have conducted extensive
research on the existence of the resource curse hypothesis. Sachs et al. [9] conducted
empirical studies using panel data from 95 countries between 1970 and 1990, and the
results showed a negative correlation between resource abundance and economic growth.
The SW model developed by them is known as the paradigm model of resource curse
empirical research. They also found that in resource abundant countries, there is often a
wage premium in the natural resource sector, crowding out entrepreneurial activity and
curbing the country from upgrading its industrial structure, thus, inhibiting economic
growth [10]. Numerous subsequent studies have also reached the same conclusion that
the resource curse hypothesis holds at the national level [11–13]. Some scholars in China
have confirmed the existence of a resource curse at the provincial or prefecture level in
China, such as Xinjiang, Shanxi, and Inner Mongolia, where resource-rich provinces fall
into resource traps [14–20]. Nevertheless, various studies have opposed the resource curse
hypothesis [21]. Fang et al. [22] and Jing [23] conducted empirical tests using prefecture-
level and provincial-level data in China, respectively, and did not observe any significant
negative correlation between resource endowment and economic growth. In addition,
based on Kuznets theory [24], various scholars have proposed that there is a nonlinear
relationship between resource dependence and economic development [25,26].

Economic development is not the only criterion for evaluating social progress, and in
the context of the country’s active advocacy toward sustainable development, the quality
of the ecological environment has also become an important indicator to measure economic
growth. In recent years, numerous studies have expanded the theoretical scope of the
resource curse and further explored the relationship between resources and development
from the perspective of green growth [27–29]. Because green TFP can evaluate the quality
of economic development based on resource input, environmental pollution, and economic
growth, it is widely used in empirical research. Shao et al. [27] proposed the “conditional
resource curse” hypothesis and reported that the dependence of the resource industry
shows an inverted U-shaped curve relationship for both economic growth and green TFP
growth. Li and Xu [28] used the nonradial directional distance function to measure green
TFP in 275 prefecture-level cities in China and found that resource abundance is a “curse” to
green economic growth. Cheng et al. [29] used the Malmquist–Luenberger index to measure
green TFP at the provincial level in China and found that resource industry dependence
negatively affects the green growth of the economy. The phenomenon mainly occurred
through the extrusion of investment in innovation and human capital, hindering industrial
development and reducing the quality of local systems.

The resource curse phenomenon occurs across the entire economic and social system,
and its mechanism is affected by other external factors, and country’s openness to interna-
tional markets was proved to be one of the essential factors [30,31]. In recent years, China’s
economy has entered a new period. China has gradually lost its comparative advantage in
labor due to the increase in labor prices. Owing to the global manufacturing shift to South-
east Asia, the Sino–US trade war has reached an unstable condition, and the traditional
growth model of relying on exports to drive the economy has been severely challenged.
Therefore, to investigate the existence of a resource curse in China, we could not ignore
the moderating effect of the trade environment. Arezki and Ploeg [32] proved that natural
resource endowments are negatively correlated with economic growth, but increasing
trade openness can reduce this negative effect. Dong and Yan [33] used China’s provincial
panel data from 1997 to 2012 as a sample, and found that the level of expansion has a
threshold effect on the resource curse phenomenon; the level of expansion can effectively
improve the relationship between resource endowment and economic growth. When the
level of expansion is higher than the threshold, the abundance of resources does not hinder
economic growth. These studies have identified the moderating effect of trade level on the
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resource curse, but they have not specifically analyzed the route through which trade level
changes the relationship between resource endowment and green growth. Therefore, in this
study, we decomposed green TFP into the effects of energy conservation and environmental
improvement to analyze the specific route through which the import and export threshold
effects change the resource curse mechanism.

3. Materials and Methods
3.1. Measurement and Decomposition of Green Total Factor Productivity
3.1.1. Super-Efficiency Data Envelopment Analysis (DEA) Model

In this study, green growth is characterized by green total factor productivity (TFP). In
order to calculate green TFP of each province in China, we first need to measure the level
of inefficiency relevant to energy and the environment. Data envelopment analysis (DEA)
is a commonly used relative efficiency evaluation model. Charnes et al. [34] proposed the
first DEA model, termed the CCR-DEA model, which is an efficiency measurement method
based on the assumption of constant returns to scale. Banker et al. [35] modified the CCR-
DEA model and proposed a BCC-DEA model based on the assumption of variable returns
to scale. When such traditional DEA models are used to evaluate the efficiency of decision-
making units, multiple decision-making units may be at the forefront of input and output
simultaneously, and the traditional DEA models cannot efficiently rank multiple effective
units. To overcome this shortcoming, Andersen et al. [36] proposed a super-efficiency DEA
model, which is based on the radial directional distance function for planning and solving,
requiring input or output to approach the frontier with the same ratio. The nonradial
directional distance function considers the relaxation of variables, allowing input and
output to shrink and expand at different proportions. Therefore, this study improved upon
the model proposed by Andersen et al. [36] and used the super-efficiency DEA model based
on the nonradial directional distance function to measure the green TFP.

Equation (1) represents a super-efficiency DEA model based on a nonradial directional
distance function, considering the efficiency evaluation of the ith province in year t as
an example.

Dt
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The main difference between the super-efficient and the traditional DEA models is
that in the super-efficient DEA model, the efficiency of the ith province must be excluded
from the set of decision-making units, that is, the ith province does not contribute to the
process of building the frontier. In Equation (1), Dt

i represents the directional distance
function of the ith province in year t, N represents the total number of provinces, and
λt

n ≥ 0 represents that the model satisfies the assumption of constant returns to scale; kt
n,

lt
n, yt

n, et
n, and ut

n,j denote the capital input, labor input, desired output, energy input, and
undesired output of the nth (n = 1, 2 . . . , N; n 6= i) province in year t, respectively, in which
j(j = 1, 2, 3) indicates that there are three types of undesired outputs. The term gt is the
direction vector, indicating the directions of input and output optimization; in this study,
gt =

(
0, 0, 0,−et

i ,−ut
i,1,−ut
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)
. st

i,k and st
i,l denote the slack variables of capital input

and labor input, respectively; βt
i,e and βt

i,u,j denote the ratio of energy input and undesired
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output that need to be reduced to reach the production frontier level in the ith province. A
positive value of βt

i,e or βt
i,u,j indicates the inefficiency level of energy input and undesired

output, while a negative value indicates the super-efficiency level. Here, it is not required
that βt

i,e and βt
i,u,j be equal, or that the energy input and undesired output change in the

same proportion; βt
i denotes the level of inefficiency in the ith province in the tth year,

which equals the weighted average of the above four inefficiency values as well as εkst
i,k and

ε lst
i,l . The optimized objective function was used to maximize the βt

i . The weights of βt
i,e

and βt
i,u,j are ωe and ωu,j (ωe + ∑3

j=1 ωu,j = 1), respectively. Because the efficiency level is
evaluated from the perspectives of energy conservation and environmental improvement,
we assigned the weight ωe of the energy inefficiency level βt

i,e to 1/2, and the weights ωu,j
(j = 1,2,3) of the three undesired output inefficiencies were 1/6. Variables εk and ε l are the
non-Archimedean infinitesimal quantities. In the objective function, the inefficiency level of
capital and labor inputs are denoted by εkst

i,k and ε lst
i,l , respectively, which are the products

of a finite constant and a non-Archimedean infinitesimal. Their values remain infinitesimal,
and these do not have a significant effect on the objective function βt

i .

3.1.2. Luenberger Green Total Factor Productivity Index and Decomposition

Equation (1) measures the inefficiency level using the nonradial directional distance
function. Because of the additive form of the nonradial directional distance function, green
TFP can be constructed by the results of inefficiency through the Luenberger productivity
index [37]. Green TFP refers to the level of change in green efficiency in the current period,
based on the previous period. A green TFP greater than zero indicates an increase in green
efficiency, and a value less than zero indicates a decline in green efficiency. We assumed
that the previous period is recorded as period 0, and the current period is recorded as
period 1. The Luenberger green TFP (L1

0,i) of the ith province follows.

L1
0,i =

1
2
× [D1

i (k
0, l0, y0, e0, u0; g0 )− D1

i (k
1, l1, y1, e1, u1; g1 ) + D0

i (k
0, l0, y0, e0, u0; g0 )− D0

i (k
1, l1, y1, e1, u1; g1 ) ] (2)

Luenberger green TFP comprises four nonradial directional distance functions,
of which the same-phase directional distance functions D0

i
(
k0, l0, y0, e0, u0; g0) and

D1
i
(
k1, l1, y1, e1, u1; g1) are shown in Equations (3) and (4), respectively.

D0
i (k

0, l0, y0, e0, u0; g0 ) = max : β0,0
i = ωeβ0,0

i,e +
3

∑
j=1

ωu,jβ
0,0
i,u,j + εks0,0

i,k + ε ls
0,0
i,l

s.t.





∑N
n=1,n 6=i λ0,0

n × k0
n + s0,0

i,k ≤ k0
i

∑N
n=1,n 6=i λ0,0

n × l0
n + s0,0

i,l ≤ l0
i

∑N
n=1,n 6=i λ0,0

n × y0
n ≥ y0

i
∑N

n=1,n 6=i λ0,0
n × e0

n ≤ (1− β0,0
i,e )e

0
i

∑N
n=1,n 6=i λ0,0

n × u0
n,j ≤ (1− β0,0

i,u,j )u
0
i,j j = 1, 2, 3

β0,0
i,e , β0,0

i,u,j ≤ 1

λ0,0
n ≥ 0

(3)

D1
i (k

1, l1, y1, e1, u1; g1 ) = max : β1,1
i = ωeβ1,1

i,e +
3

∑
j=1

ωu,jβ
1,1
i,u,j + εks1,1

i,k + ε ls
1,1
i,l
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s.t.


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n ≥ 0

(4)

In the interperiod program, because the set of decision-making units and the decision-
making unit being evaluated were not from the same period of data, the interperiod
data of the ith province were not excluded from the set of decision-making units.
The super-efficiency DEA model can not only sort multiple effective decision-making
units, but also solve the problem of unsolvable intertemporal planning. The intertemporal
directional distance functions D0

i
(
k1, l1, y1, e1, u1; g1) and D1

i
(
k0, l0, y0, e0, u0; g0) are shown

in Equations (5) and (6), respectively.
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(5)
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∑N

n=1 λ1,0
n × e1

n ≤ (1− β1,0
i,e )e

0
i

∑N
n=1 λ1,0

n × u1
n,j ≤ (1− β1,0

i,u,j )u
0
i,j j = 1, 2, 3

β1,0
i,e , β1,0

i,u,j ≤ 1

λ1,0
n ≥ 0

(6)

Mahlberg et al. [37] and Chang et al. [38] proposed that the Luenberger productivity
index based on the nonradial directional distance function can be decomposed into the
sum of the productivity of each factor. The Luenberger green TFP in this study can be
decomposed into energy conservation and environmental improvement effects (because
εkst

i,k and ε lst
i,l are infinitesimal, they can be ignored). L1

0,i represents the green TFP; L1
0,i,e

and L1
0,i,u represent the efficiency changes of energy input and undesired output, that is,

the energy conservation and environmental improvement effects, respectively.

L1
0,i,e =

1
2
× [ (β1,0

i,e − β1,1
i,e ) + (β0,0

i,e − β0,1
i,e ) ] (7)

L1
0,i,u =

1
2
× [ (

3

∑
j=1

1
3

β1,0
i,u,j −

3

∑
j=1

1
3

β1,1
i,u ) + (

3

∑
j=1

1
3

β0,0
i,u,j −

3

∑
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1
3

β0,1
i,u ) ] (8)
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L1
0,i =

1
2
× (L1

0,i,e + L1
0,i,u ) (9)

3.1.3. Input–Output Data in the Measurement of Green TFP

This study utilized the input–output data of 30 provinces and regions in China for
2005 to 2017. Because of the unavailability of data, the study did not include Tibet, Hong
Kong, Macao, and Taiwan among the 34 provinces and regions of China. Moreover, Beijing,
Tianjin, Shanghai, and Chongqing were not excluded from the calculation of TFP; however,
because the functional positioning of municipalities is different from that of provinces and
autonomous regions, the data of these four municipalities were excluded when calculating
the threshold variable using the panel model. The data included capital input (k), labor
input (l), energy input (e), expected output (y), and undesired output (u), whose sources
and processing methods are explained as follows.

Capital input (k): We estimated the annual capital stock based on the perpetual
inventory method proposed by Zhang et al. [39]. The earlier the selected base year, the
lower the effect that the error of the initial capital stock estimated during the base year has
in subsequent years. Therefore, 1952 was selected as the base year for estimation. The fixed
asset depreciation rate of all provinces and regions was uniformly set to 9.6%, the total
fixed capital formation was used as the current investment amount, and the regional fixed
asset investment price index was used to convert the fixed asset investment price index
into a constant price with 2005 as the base year.

Labor input (l): If the number of the employed population is used to represent labor
input, the differences due to different levels of education can be ignored. Therefore,
labor input was selected as the product of the total employed population in the primary,
secondary, and tertiary industries and the average years of education in the region.

Energy input (e): Energy input represents the total energy consumption by region
published in the China Energy Statistical Yearbook.

Desirable output (y): Desirable output is the gross domestic product (GDP), with 2005
as the base period, and the GDP index was used to account for deflation.

Undesirable output (u): Undesirable outputs include total SO2 emissions, total wastew-
ater emissions, and solid waste generation in each province.

The data were mainly obtained from the China Statistical Yearbook, China Labor Statistics
Yearbook, China Energy Statistics Yearbook, statistical yearbooks of various provinces, and
Wind Economic Database.

3.2. Methodology and Data
3.2.1. Model Settings

First, the linear relationship between resource endowment (re) and green TFP (tfp)
should be examined. Because this study adopts panel data, and regions’ individual fixed
effects and time fixed effects need to be controlled in the regression process, a fixed-
effect model was used to perform a basic regression analysis to test the existence and
regional heterogeneity of the resource curse. Then, considering the existence of a nonlinear
relationship between resource endowment (re) and green TFP (tfp) with certain variables
as moderators and applying import and export trade levels as threshold variables, the
panel threshold model was used to identify the changes in the mechanism of the impact of
resource endowments on green growth before and after the threshold value.

Because green TFP can be decomposed into the energy conservation effect (tfp_e) and
the environmental improvement effect (tfp_u), we also examined the influence of resource
endowment (re) on the two effects in both models above to identify the route by which the
resource curse phenomenon changes.

The fixed-effects model is shown in Equation (10):

ggi,t = α0 + α1rei,t + α2controli,t + µi + λt + εi,t (10)
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where i denotes the province and t denotes the year. The explanatory variable gg denotes
the green growth effect, and the tfp, tfp_e, and tfp_u can be selected according to different
study objectives. The core explanatory variable re is the resource endowment; control de-
notes the control variable, including imports, exports, environmental governance, research
and development (R&D) investment, economic development level, industrial structure,
urbanization level, and nationalization level; α0 is a constant term; α1 and α2 are the regres-
sion coefficients for the explanatory and control variables, respectively; µi is a fixed effect
in a region that does not change with time; λt denotes a fixed effect in time; and εi,t is a
random perturbation term.

As previously mentioned, import and export trade levels may play a threshold role in
the resource curse hypothesis; however, it is difficult to determine the specific segmentation
point. Therefore, the threshold regression model proposed by Hansen [40] was used for
analysis. This model can accurately estimate the threshold value and perform a significant
test of the threshold effect. The panel threshold model is shown in Equation (11):

ggi,t = α0 + α11rei,t·I(q ≤ γ) + α12rei,t·I(q > γ) + α2controli,t + µi + εi,t (11)

where q is the threshold variable, which represents the level of import and export trade,
respectively, and γ is a threshold value. I(∗) is an indicative function; if the expression
within the parentheses is true, the value is one, and the opposite is zero. When the threshold
variable is lower than the threshold value (q ≤ γ), α11 is the regression coefficient of the
resource endowment, and when the threshold variable is above the threshold value (q > γ),
α12 is the regression coefficient of the resource endowment. The meanings of the interpreted,
explanatory, and control variables in Equation (11) are the same as those in Equation (10).

Equation (11) is the expression of a single threshold model, and if the threshold
effect test proves the occurrence of a double threshold or triple threshold, a corresponding
multithreshold model should also be established. Considering the double threshold model
as an example, the corresponding expression is shown in Equation (12):

ggi,t = α0 + α11rei,t·I(q ≤ γ1) + α12rei,t·I(γ1 < q ≤ γ2) + α13rei,t·I(q > γ2) + α2controli,t + µi + εi,t (12)

where α11, α12, and α13 are the regression coefficients of resource endowments under
different threshold intervals, q is a threshold variable, and γ1 and γ2 are two different
threshold values.

Stata 14.0 statistical analysis software was used to estimate the model.

3.2.2. Data Sources

The definitions and descriptions of the variables involved in the model are presented
in Table 1.

Explained variables, including green total factor productivity (tfp), energy conservation
effect (tfp_e), and environmental improvement effect (tfp_u), are derived from the model
and data in 3.1.

Explanatory variable is resource endowment (re). The number of employees in the
mining industry was chosen to be the proxy variable of resource endowment, because it can
reflect the dependence of a region’s economic development on resources and the abundance
of resources [41]. The data are derived from the China Labor Statistics Yearbook. The impact
of mineral resources on green growth was mainly considered in this study. Owing to the
low-cost utilization of mineral resources, the regions rich in mineral resources lack the
motivation for green production technology innovation, which may not be conducive to
green growth. Although renewable energy is part of natural resource endowment, the
development and utilization of renewable energy requires a high level of technology, which
rarely causes a “curse” to the economy, and it accounts for a small proportion in energy
consumption; thus, this study does not consider such resources.

152



Int. J. Environ. Res. Public Health 2022, 19, 2505

Table 1. Definitions and descriptions of the variables.

Category Symbol Variables Proxy Indicator

Explained variables
tfp Green total factor productivity Calculated by Equation (2)

tfp_e Energy conservation effect Calculated by Equation (7)

tfp_u Environmental improvement effect Calculated by Equation (8)

Explanatory variable re Resource endowment Number of employees in the mining industry

Control variables

import Import Total import/Gross domestic product (GDP)

export Export Total export/GDP

govern Environmental governance Total investment in environmental pollution
control/GDP

rd Research and development (R&D) investment R&D capital stock/Gross domestic product

pergdp Economic development level GDP per capita

indus Industrial structure Secondary industry GDP/Total GDP

urban Urbanization level Nonagricultural population/Total population

own Nationalization level Number of employees in state-owned units/
Total number of employees

The calculation methods of control variables, including imports, exports, environmen-
tal governance, research and development (R&D) investment, economic development level,
industrial structure, urbanization level, and nationalization level, are presented in Table 1.
Except for the stock of R&D capital (rd), the data used to calculate other control variables
are directly derived from the China Statistical Yearbook, China Labor Statistics Yearbook, China
Population and Employment Statistical Yearbook, and statistical yearbooks of various provinces.
Because the government has not released statistics on the stock of R&D capital, we used
the perpetual inventory method to estimate the calculation equation as follows:

Si,t = (1− δ)Si,t−1 + RDi,t (13)

where Si,t and Si,t−1 are the R&D capital stocks of province i in year t and t− 1, respectively;
and RDi,t is the internal R&D expenditure of province i in year t. The term δ is the
depreciation rate, which is consistent with the previous estimate of capital stock, and is also
set to 9.6%. Considering 2000 as the initial year, the calculation method for capital stock in
2000 follows:

Si,2000 = RDi,2000/(δ + g) (14)

where Si,2000 is the R&D capital stock of province i in 2000, RDi,2000 is the internal expen-
diture of R&D expenditure in province i in 2000, δ is the depreciation rate (9.6%), and g
represents the average growth rate of internal R&D expenditure from 2000 to 2017.

4. Results and Discussion
4.1. Green Total Factor Productivity Levels in Each Province and Region

This study used the Linprog function in MATLAB to calculate the green TFP. Equation (9)
shows that green TFP can be decomposed into energy conservation and environmental im-
provement effects. Table 2 shows the average values (2005–2017) of the three indicators—tfp,
tfp_e, and tfp_u—in each province. From the national average result, the green TFP is 0.062%,
of which the negative energy conservation effect leads to an average annual decline of
0.409% in green TFP, but the environmental improvement effect contributes 0.472% of the
increase in green TFP. According to the specific conditions of each province, the green TFP
of Beijing (7.783%) and Shanghai (2.510%) were significantly higher than those of other
provinces, while those of Heilongjiang, Hainan, and Xinjiang were all less than −1.000%.
However, the growth effect was negative. For most provinces, environmental improvement
was the main reason for the increase in green TFP, while the decline in energy use efficiency
hindered green growth. However, the energy conservation effects of Beijing, Shanxi, and
Jilin were positive, indicating that the energy use efficiencies of these three provinces have
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increased, which in turn increased the green TFP. The environmental improvement effects
of Heilongjiang, Qinghai, and Ningxia were negative. For these provinces, the deterioration
of environmental efficiency was the main reason for the decline in TFP.

Table 2. Green total factor productivity and its decomposition results for various provinces.

Regions
Green Total Factor

Productivity
tfp (%)

Energy
Conservation

Effect
tfp_e (%)

Environmental
Improvement

Effect
tfp_u (%)

Regions
Green total Factor

Productivity
tfp (%)

Energy
Conservation

Effect
tfp_e (%)

Environmental
Improvement

Effect
tfp_u (%)

Beijing 7.783 1.411 6.372 Henan −0.176 −0.237 0.061
Tianjin 0.583 −0.228 0.811 Hubei 0.365 −0.162 0.527
Hebei −0.449 −0.518 0.069 Hunan 0.424 −0.289 0.713
Shanxi 0.058 0.084 −0.026 Guangdong −0.032 −0.587 0.555
Inner

Mongolia
Mongolia

−0.381 −0.303 −0.079 Guangxi −0.153 −0.791 0.638

Liaoning −0.808 −0.587 −0.222 Hainan −1.359 −1.285 −0.074
Jilin 0.330 0.215 0.115 Chongqing 0.296 −0.291 0.587

Heilongjiang −1.756 −1.073 −0.683 Sichuan 0.100 −0.204 0.304
Shanghai 2.510 −0.698 3.208 Guizhou 0.743 0.465 0.278
Jiangsu −0.367 −0.965 0.598 Yunnan −0.638 −0.369 −0.269

Zhejiang −0.707 −0.913 0.205 Shaanxi 0.087 −0.165 0.252
Anhui −0.386 −0.517 0.130 Gansu −0.240 −0.291 0.051
Fujian −0.621 −1.159 0.538 Qinghai −0.881 −0.497 −0.384
Jiangxi −0.474 −0.735 0.261 Ningxia 0.276 −0.019 0.295

Shandong −0.979 −0.702 −0.278 Xinjiang −1.274 −0.865 −0.409
Mean 0.062 −0.409 0.472

4.2. Descriptive Statistics of the Variables in Fixed-Effects Model

To understand the variables more intuitively, Table 3 lists the descriptive statistics for
each. Because the functional positioning of municipalities is different from that of provinces
and autonomous regions, the sample data of Beijing, Tianjin, Shanghai, and Chongqing
were excluded from the follow-up empirical research.

Table 3. Variable descriptive statistics.

Variables Observations Mean Standard Deviation Minimum Minimum

Green total factor productivity (tfp) 338 −0.358 2.377 −12.391 7.010

Energy conservation effect (tfp_e) 338 −0.959 2.810 −15.879 7.746

Environmental improvement effect (tfp_u) 338 0.244 2.794 −10.774 10.576

Resource endowment (re) 338 20.485 20.455 0.471 103.014

Import (import) 338 11.079 12.005 0.417 72.594

Export (export) 338 13.338 16.937 0.728 92.927

Environmental governance (govern) 338 1.325 0.671 0.402 4.111

R&D investment (rd) 338 7.684 7.220 0.075 46.362

Economic development level (pergdp) 338 1.083 0.417 0.333 2.357

Industrial structure (indus) 338 47.526 6.942 22.327 61.478

Urbanization level (urban) 338 49.191 9.538 26.870 69.850

Nationalization level (own) 338 9.535 3.805 4.203 23.617

4.3. Analysis of the Existence and Regional Differences of the Resource Curse

First, regardless of the influence of threshold variables on the mechanism of the
resource curse, a fixed-effect model (Equation (10)) was used to examine the linear rela-
tionship between resource endowment and green growth. Model 1, Model 2, and Model 3
describe the impact of resource endowment (re) on tfp, tfp_e, and tfp_u under the full sample,
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respectively, and the existence of the resource curse hypothesis was tested from these three
aspects. Models 4, 5, and 6 are the estimation models of the impact of resource endowments
in the eastern, central, and western regions on tfp, respectively, testing the regional hetero-
geneity of the resource curse. The eastern region includes Hebei and Liaoning, Jiangsu,
Zhejiang, Fujian, Shandong, Guangdong, and Hainan; the central region includes Shanxi,
Jilin, Heilongjiang, Anhui, Jiangxi, Henan, Hubei, and Hunan; and the western region
includes Inner Mongolia, Guangxi, Sichuan, Guizhou, Yunnan, Shaanxi, Gansu, Qinghai,
Ningxia, and Xinjiang. Table 4 presents the regression results of the fixed-effects model.

Table 4. Regression results of the fixed-effects model.

Variables

Model 1
(Full Sample)

Model 2
(Full Sample)

Model 3
(Full Sample)

Model 4
(Eastern)

Model 5
(Central)

Model 6
(Western)

Green Total Factor
Productivity

(tfp)

Energy
Conservation Effect

(tfp_e)

Environmental
Improvement Effect

(tfp_u)

Green Total Factor
Productivity

(tfp)

Green Total Factor
Productivity

(tfp)

Green Total Factor
Productivity

(tfp)

Resource
endowment (re)

−0.095 ***
(−3.16)

−0.098 **
(−2.39)

−0.093 ***
(−3.21)

0.151 **
(2.78)

−0.091 *
(−2.37)

0.009
(0.10)

Import (import) 0.011
(0.17)

−0.031
(−0.54)

0.014
(0.18)

−0.052
(−0.46)

0.053
(0.29)

0.019
(0.37)

Export (export) −0.072
(−1.01)

−0.025
(−0.40)

−0.119
(−1.47)

0.056
(0.43)

0.189
(1.62)

−0.186 **
(−2.32)

Environmental
governance (govern)

−0.665 **
(−2.14)

−0.648 **
(−2.08)

−0.644 *
(−1.93)

−0.498
(−1.21)

−1.161
(−1.36)

−0.564 *
(−1.90)

R&D investment
(rd)

0.121
(0.87)

0.147
(0.94)

0.057
(0.42)

0.711 *
(2.16)

0.664 *
(2.03)

0.058
(0.73)

Economic
development level

(pergdp)

3.018
(1.04)

4.074
(1.46)

1.039
(0.34)

6.705 *
(2.08)

8.041
(1.76)

−2.927
(−1.55)

Industrial structure
(indus)

0.042
(0.83)

−0.011
(−0.19)

0.111 **
(2.01)

0.347 **
(2.68)

−0.154 *
(−2.10)

0.258 **
(3.09)

Urbanization level
(urban)

0.194 *
(1.72)

0.294 **
(2.50)

0.085
(0.71)

0.319
(1.18)

0.117
(0.61)

−0.002
(−0.01)

Nationalization
level
(own)

−0.244
(−1.30)

−0.212
(−1.14)

−0.250
(−1.17)

−0.484
(−1.76)

0.115
(0.41)

−0.001
(−0.00)

constant Y Y Y Y Y Y
year Y Y Y Y Y Y

province Y Y Y Y Y Y
Prob (F) 0.000 0.000 0.000 0.000 0.000 0.000

Observations 338 338 338 104 104 130

Notes: Robust t statistics aNotes: Robust t statistics are shown in parentheses. *** p < 0.01, ** p < 0.05, and * p < 0.1.
The values in parentheses are T values. Y means yes, indicating that the constant term is included in the model,
and the fixed effects for the year and province are controlled.

According to the regression results of the full sample in Table 4, a significant nega-
tive correlation exists between resource endowment and green TFP, energy conservation
effect, and environmental improvement effect. From a national perspective, the resource
curse hypothesis was found to be valid, and abundant natural resources hinder energy
conservation and environmental improvement, while negatively affecting green growth
through the effects of energy and the environment. However, regional heterogeneity was
observed in the phenomenon of the resource curse. The regression results in the eastern
region showed that resource endowment had a significant positive impact on green TFP.
In the eastern region, abundant natural resources are conducive to increasing the level of
green economic growth. The results for the central region are similar to those of the full
sample. The central region also exhibited the resource curse phenomenon, but the negative
correlation between resource endowments and green TFP in the central region was less
than that in the full sample. Moreover, the severity was lower than that at the national
level. The resource endowment in the western region did not significantly affect the green
TFP; thus, the resource curse hypothesis was not true for this region. In summary, resource
endowment is a “blessing” for the eastern region and a “curse” for the central region, but
they do not affect the green growth effect in the western region.
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Regression results from other control variables showed that imports would not
have a significant impact on green growth at the national and regional levels, but
exports would negatively affect green TFP in the western region. Environmental
governance would have a significant negative impact on green TFP, energy conserva-
tion effect, and environmental improvement effect, and the increase in environmental
governance is not conducive to green economic growth. Environmental governance
can reflect the strength of local environmental regulations and environmental access
standards to a certain extent. If the environmental regulations of a region are too strict
or environmental access standards are too high, some polluting enterprises cannot
enter the local market, resulting in damage to the output structure. Therefore, envi-
ronmental regulation in China has not yet demonstrated an innovative compensation
effect according to the Porter hypothesis [42].

The level of urbanization had a significant positive impact on the TFP and energy
conservation effects. Increasing the level of urbanization helps achieve green economic
growth and energy conservation. The industrial structure was positively related to the
effect of environmental improvement; thus, the higher the proportion of the secondary
industry, the greater the degree of improvement in environmental quality. However,
this is contrary to people’s traditional cognition, but it can be explained reasonably
from two perspectives. 1©Even if the country has been emphasizing the adjustment
of industrial structure, it cannot ignore the role of the secondary industry as a pillar
of China’s economic development. Increasing the proportion of secondary industries
can increase the level of green growth by increasing output. 2©Environmental quality
in areas with heavy industries is generally low, leading to greater opportunities for
environmental improvement.

4.4. Transformation of the Resource Curse Mechanism and Analysis of the Mechanism under the
Import Level Threshold

Import trade is not only a supplementary means to improve the structure of domes-
tic consumer goods supply, but it is also an important method to determine technology
spillovers. However, excessive dependence on imported products reduces domestic manu-
facturing. Therefore, import trade has two opposite effects on the economy: the technology
spillover and the product crowding-out effects. Import trade not only affects the domestic
product structure but may also indirectly affect the energy structure and environmental
quality. Therefore, “import” was used as a threshold variable to further analyze the nonlin-
ear relationship between resource endowments and green growth. In the following, Models
7, 8, and 9 used imports as the threshold variable. The explained variables of the three
models are tfp, tfp_e, and tfp_u. Among them, Model 7 was used to identify the mechanism
change of the resource curse under different import levels, and Models 8 and 9 were used
to identify the route through which the import trade promotes the mechanism change of
the resource curse.

Table 5 shows the analysis results for the import threshold effect. Both Models
7 and 8 had significant single threshold effects, but no double threshold effect was
observed. Therefore, for both Models 7 and 8, a single threshold model was adopted
with import as the threshold variable (Equation (11)). However, the single threshold
effect of Model 9 did not pass the 10% significance level test; therefore, there was no
threshold effect, indicating that there was no nonlinear relationship between resource
endowment and environmental improvement effects when “import” was the threshold
variable. Therefore, Model 9 became equivalent to Model 3 (the fixed-effects model),
and it is not discussed further.
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Table 5. Analysis of the import threshold effect.

Models Threshold Type F-Statistic p Critical Value

1% 5% 10%

Model 7 (tfp)
Green total factor productivity

Single threshold 13.67 ** 0.046 23.978 13.345 11.238

Double threshold 8.98 0.132 53.122 19.254 10.539

Model 8 (tfp_e)
Energy conservation effect

Single threshold 23.04 ** 0.012 23.096 14.148 11.909

Double threshold 10.35 0.158 90.519 58.523 20.983

Model 9 (tfp_u)
Environmental improvement effect Single threshold 4.73 0.620 16.913 13.163 10.895

Notes: Robust t statistics are shown in parentheses. ** p < 0.05.

The F-statistic and the critical value of P were simulated by repeated sampling
(500 times) using the bootstrap method.

Table 6 shows the estimated value and confidence interval of the import threshold in
Models 7 and 8. Because Model 9 did not have a threshold effect, there is no corresponding
estimated value or confidence interval. Figure 1a–c shows the images of the likelihood
ratio functions of the import trade threshold variables in the three models. The threshold
values of Models 7 and 8 were the same (50.110), which implies that the impact of resource
endowment on green TFP and energy conservation effects both undergo a mechanism
change at approximately 50.110; that is, when the total imports accounted for more than
50.110% of GDP, the resource curse changed its mechanism. However, the impact of
resource endowments on the mechanism of environmental improvement effects did not
change under different import levels. In summary, the mechanism of resource curse
changes when the import level is at different ranges; however, imports can only change the
impact of resource endowment on green growth through the route of energy conservation,
and the behavior of resource curse on the mechanism of environmental improvement has
not changed.

Table 6. Estimated import threshold and confidence interval.

Model 7 (tfp)
Green Total Factor Productivity

Model 8 (tfp_e)
Energy Conservation Effect

Model 9 (tfp_u)
Environmental Improvement Effect

Estimated Value 95% Confidence Interval Estimated Value 95% Confidence Interval Estimated Value 95% Confidence Interval

Threshold γ 50.110 /47.632, 50.960/ 50.110 /42.446, 50.960/ —— ——

Figure 1. Likelihood ratio (LR) function graph of the import threshold variables: (a) green TFP (tfp),
(b) energy conservation effect (tfp_e), and (c) environmental improvement effect (tfp_u).

Table 7 shows the regression results for Models 7 and 8. The regression results of
Model 7 revealed that when the ratio of total imports to GDP was less than 50.110%, the
regression coefficient of resource endowment to green TFP was −0.084, and it passed the
1% level of significance test; however, when the import level exceeded the threshold value,
the regression coefficient of resource endowment was −0.636, and the negative impact of
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resource endowment on green TFP increased significantly. In the regression results of Model
8, when the import level did not exceed the threshold value, that is, when the ratio of total
imports to GDP was less than 50.110%, no significant correlation was found between resource
endowment and the energy conservation effect; however, when the ratio exceeded 50.110%,
resource endowment had a negative impact on the energy conservation effect. In summary,
an increase in the level of import trade intensifies the adverse impact of resource endowment
on green growth and promotes the deterioration of the resource curse. When the import level
exceeded the threshold value, the resource curse phenomenon occurred along the energy
route. This shows that import trade hinders energy conservation, which in turn leads to the
deterioration of the resource curse, while imports do not change the relationship between
resources and development through the route of environmental improvement. From the
perspective of the import commodity structure in China, the proportion of primary product
imports in 2015, 2016, and 2017 accounted for 28.11%, 27.78%, and 31.44%, respectively. Raw
materials and fossil fuels are the main imported primary products, in which raw oil imports
account for approximately 8% of the total import value (the import ratio of primary products
and raw oil is manually calculated based on data from the China Statistical Yearbook [43]).
The high proportion of imports of primary products leads to weaker technology spillover
effects of import trade, hindering the increase in green TFP in China through import trade.
The higher the import trade level of a province, the higher the dependence of the province’s
economic growth on the resources of other countries. International trade has solved the
scarcity of resources in the region to a certain extent, but the cost of importing raw materials
and energy also has a crowding-out effect on R&D investment in production technology.
Owing to the large uncertainty and positive externalities in green technological innovation,
when the supply of raw materials and energy in the international market is sufficient, most
production entities attempt to solve the problem of scarcity of production materials through
imports rather than through technological innovation to save more energy. Therefore, imports
intensify the adverse effects of the resource curse by hindering technological innovation, and
the high proportion of energy imports leads to imports that can impede energy conservation
to promote the mechanism of the resource curse. Table 7 also shows that the regression
coefficient of imports in Model 8 is 0.095, and it is significant at the 10% level. This shows that
even though import trade had a direct positive effect on TFP, the absolute value of this positive
effect was lower than the absolute value of the negative effect from resource curse (the effect
of resource endowment on TFP) when the import trade level exceeded the threshold value.
To effectively reflect the positive role of import trade on TFP and avoid the occurrence of the
resource curse, the level of import trade should be controlled below the threshold value.

Table 7. Regression results of the threshold model with import as the threshold variable.

Variables
Model 7 Model 8

Green Total Factor Productivity (tfp) Energy Conservation Effect (tfp_e)

Resource endowment (import < 50.110) (re_0) −0.084 *** (−2.72) −0.043 (−1.24)
Resource endowment (import ≥ 50.110) (re_1) −0.636 *** (−4.03) −0.846 *** (−4.78)

Import (import) −0.484 (−1.58) −0.433 (−1.26)
Export (export) 0.073 (1.43) 0.095 * (1.66)

Environmental governance (govern) −0.078 * (−1.64) −0.056 (−1.10)
R&D investment (rd) 0.135 (1.18) 0.188 (1.46)

Economic development level (pergdp) 2.525 (1.53) 5.172 *** (2.80)
Industrial structure (indus) 0.136 *** (2.83) 0.146 *** (2.72)
Urbanization level (urban) 0.048 (0.75) −0.004 (−0.05)
Nationalization level (own) −0.220 * (−1.74) −0.172 (−1.21)

constant −8.250 *** (−2.82) −11.844 *** (−3.61)
Prob (F) 0.000 0.000

observation 338 338

Notes: Robust t statistics are shown in parentheses. *** p < 0.01, and * p < 0.1. The values in parentheses are T values.
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4.5. Transformation of the Resource Curse Mechanism and Analysis of Mechanism under the
Export Level Threshold

Export trade is an important method for a country to participate in international trade
and exert its comparative advantages. Export trade can not only directly affect green growth,
but also indirectly by affecting the relationship between resources and green growth.
We used export trade as the threshold variable to find the different impacts of resource
endowment on green TFP under different export levels, and the specific mechanism for
this difference. Export trade was used as the threshold variable in Models 10, 11, and 12.
The explained variables of the three models are tfp, tfp_e, and tfp_u. The role of Model 10
was to identify the change of the resource curse mechanism under different export levels,
and the roles of Models 11 and 12 were to identify the route through which the export leads
to the mechanism change of the resource curse.

Table 8 presents the analysis results for the export threshold effect. Models 10
and 12 had a significant single threshold effect, and both passed the 10% significance
level test. In contrast, the double threshold effect of the two models did not pass the
significance test; therefore, a single threshold model with export trade as the threshold
variable should be used (Equation (11)). However, Model 11 did not pass the single
threshold test, indicating that there is no nonlinear relationship between resource
endowment and the energy conservation effect with export trade as the threshold
variable. Therefore, Model 11 became equivalent to Model 2 (the fixed-effects model),
and it is not discussed further.

Table 8. Analysis of the export threshold effect.

Models Threshold Type F-Statistic p Critical Value

1% 5% 10%

Model 10(tfp)
Green total factor productivity

Single threshold 11.64 * 0.068 17.065 12.264 10.293

Double threshold 7.36 0.260 14.014 10.725 9.427

Model 11(tfp_e)
Energy conservation effect Single threshold 7.77 0.304 21.419 12.834 10.811

Model 12(tfp_u)
Environmental improvement effect

Single threshold 9.06 * 0.096 13.446 10.381 9.025

Double threshold 4.85 0.488 19.726 11.517 9.718

Notes: Robust t statistics are shown in parentheses. * p < 0.1.

The F-statistic and the critical value of p were simulated by repeated sampling
(500 times) using the bootstrap method.

Table 9 shows the estimated value and confidence interval of the export threshold
in Models 10 and 12. Because Model 11 does not have a threshold effect, there is no
corresponding estimated value or confidence interval. Figure 2a–c shows the likelihood
ratio (LR) functions of the exit threshold variables in the three models. The threshold
values of Models 10 and 12 were 3.232 and 3.076, respectively. When the ratio of
the total export trade to GDP exceeded 3.076%, the effect of resource endowment on
environmental improvement changed, and when the ratio exceeded 3.232%, the effect
of resource endowment on green TFP changed. Because there is no threshold effect
in Model 11, the impact of resource endowments on energy conservation effects did
not change at different export levels. In summary, when the export level is at different
ranges, the mechanism of the resource curse changes. However, exports can only
change the impact of resource endowment on green growth by hindering the mech-
anism of environmental improvement, and the resource curse changes, but exports
can only change the impact of resource endowment on green growth by hindering the
mechanism of environmental improvement.
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Table 9. Estimated export threshold and confidence interval.

Model 10 (tfp)
Green Total Factor Productivity

Model 11 (tfp_e)
Energy

Conservation Effect

Model 12 (tfp_u)
Environmental Improvement Effect

Estimated Value 95% Confidence Interval Estimated Value 95% Confidence Interval Estimated Value 95% Confidence Interval

Threshold γ 3.232 /2.781, 3.263/ —— —— 3.076 /2.683, 3.141/

Figure 2. LR function graph of export threshold variables: (a) tfp, (b) tfp_e, and (c) tfp_u.

Table 10 shows the regression results of Models 10 and 12. From the results of Model 10,
when the export level did not exceed the threshold value, that is, when the ratio of total
exports to GDP was lower than 3.232%, a significant negative correlation existed between
resource endowment and green TFP, with a regression coefficient of −0.184. However,
when the export level exceeds the threshold of 3.232%, the regression coefficient of resource
endowment was −0.094, and passed the 1% significance level test. Moreover, when the
export level increased to the threshold value, the negative impact of resource endowment
on green TFP was weakened. The regression results of Model 12 showed that when the ratio
of total exports to GDP was lower than 3.076%, the correlation coefficient between resource
endowment and environmental improvement effect was −0.233; however, when the export
level exceeded the threshold value, the regression coefficient of resource endowment was
−0.136. Furthermore, with the increase in export level, the negative effect of resource
endowment on the environmental improvement was also be weakened. In summary,
export trade can reduce the adverse impact of resource endowment on green growth
and alleviate the severity of the resource curse phenomenon. However, export trade can
only change the relationship between resources and development through the route of
environmental improvement, but not that of energy conservation. The structure of China’s
export commodities in 2015, 2016, and 2017 revealed that the exports of industrial finished
products accounted for 95.43%, 94.99%, and 94.80%, respectively, among which the export
of machinery and transportation equipment accounted for a large proportion (the export
ratio of industrial finished products is manually calculated based on data from the China
Statistical Yearbook [34]). The continuous increase in the proportion of exports of heavy
industrial products, such as machinery and equipment, indicates that the technological
level of China’s export commodities is constantly improving. Environmental barriers and
international market demand in export trade have caused Chinese companies to undergo
technological innovation. China relies on industrial products to obtain export trade income,
and the commodity structure of resource-dependent provinces is mostly based on raw
materials and fossil fuels; hence, the resource-dependent provinces in China do not have
evident trade advantages. However, owing to the large demand for such commodities in
the domestic market, resource-based provinces and regions can obtain a comfortable living
space even if they only serve the domestic market without export trade. The geographical
distribution of China’s natural resources is uneven; the central and western regions are the
areas with resource advantages, while the eastern regions rely on convenient transportation
and trade conditions to ensure technological advantages. The separation of the resource
and technological advantages has also led to differences in the division of labor between
provinces and regions. The high level of export trade in the eastern region has intensified
the demand for raw materials such as energy, which also increases the exploitation of
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natural resources by the central and western regions, deepens the dependence of the central
and western regions on resources, and reduces the possibility of technological innovation
in resource-dependent provinces. Unlike international trade, domestic trade cannot bring
incentives for green technology innovation. Based on this analysis, the higher the export
trade level of a province, the higher the industrial technology level of the region, and the
less dependent the region is on resource endowments for economic development and green
growth. The provinces with lower export levels mostly exhibited comparative advantages
in terms of resources and lacked motivation for green technological innovation. Therefore,
when the export level was lower than the threshold value, resource endowment had a
severely negative impact on green growth. With the increase in the level of export trade,
restrictions on environmental barriers have also continued to increase. High-exporting
provinces give more attention to reducing the negative environmental externalities of
the production process, while environmental barriers have less impact on provinces with
low export levels; therefore, export trade can improve the resource curse phenomenon
through the environmental improvement route. Table 10 also shows that even though the
regression coefficient of exports is not significant, a negative correlation exists between
exports and green TFP and environmental improvement effects. Therefore, the relationship
between export trade and green growth should be adequately considered, and the Chinese
government should allow export trade to play its role in improving the resource curse and
adopt appropriate measures to eliminate its hindrance to green growth.

Table 10. Regression results of threshold model with export as the threshold variable.

Variables
Model 10 Model 12

Green Total Factor Productivity (tfp) Environmental Improvement Effect (tfp_u)

Resource endowment (export < 3.232) (re_0) −0.184 *** (−4.24) −0.233 *** (−4.40)
Resource endowment (export ≥ 3.232) (re_1) −0.094 *** (−3.04) −0.136 *** (−3.63)

Import (import) −0.519 * (−1.70) −0.506 (−1.37)
Export (export) 0.026 (0.52) −0.012 (−0.20)

Environmental governance (govern) −0.066 (−1.37) −0.087 (−1.52)
R&D investment (rd) 0.124 (1.07) 0.060 (0.43)

Economic development level (pergdp) 4.167 ** (2.44) 0.777 (0.38)
Industrial structure (indus) 0.105 ** (2.14) 0.115 ** (1.94)
Urbanization level (urban) 0.015 (0.24) 0.073 (0.94)
Nationalization level (own) −0.235 * (−1.85) −0.300 * (−1.96)

constant −6.005 ** (−2.01) −2.286 (−0.63)
Prob (F) 0.000 0.000

observation 338 338

Notes: Robust t statistics are shown in parentheses. *** p < 0.01, ** p < 0.05, and * p < 0.1. The values in parentheses
are T values.

4.6. Limitations and Future Research

Although the study provided a useful conclusion concerning resource curse, the study
still has some limitations. (1) Because of the availability of data, we choose the number of
employees in the mining industry as the proxy variable of resource endowment, which may
not fully represent the output scale of the mining industry. (2) In this study, green growth
is characterized by green TFP. Although TFP has been widely used as an explained variable
in the regression model [44], true TFP is unobserved and DEA estimates of productivity
have their own limitations. (3) This study focuses on the threshold effect of trade level on
the resource curse; thus, whether there is a relationship between green growth and the
quadratic term of resources is not discussed.

Based on the results of the above analysis, we recommend the following future
actions for Chinese government: (1) Because the resource curse phenomenon exists in
China, the government should increase its efforts to promote economic green transfor-
mation and reduce the dependence of economic growth on natural resources. Because
of the regional heterogeneity in the resource curse, the “one size fits all” approach
should be avoided when implementing policies and regulations. For the eastern region,
a policy promoting resource development should be implemented, while for the central
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region, a policy restricting resource development should be implemented. Although
the mechanism of resource endowment in western China is not evident, the government
should handle resource development activities cautiously and attempt to optimize
the input factor structure from the supply side of resources. (2) Although increasing
import trade level intensifies the resource curse, import trade also has a positive effect
on environmental improvement. Therefore, the import trade level should be controlled
below the threshold value and it must be ensured that the environmental dividend
generated by import trade is fully utilized. (3) Although export trade could reduce
the negative impact of the resource curse, its hindrance to green growth cannot be
ignored. Hence, a reasonable level of export trade must be conducted in combination
with economic development goals to alleviate resource dependence and mitigate its
crowding-out effect on the output.

5. Conclusions

According to the resource curse hypothesis, abundant natural resources would
become an obstacle to economic growth. Therefore, based on the concept of the re-
source curse phenomenon, this study attempts to interpret the relationship between
resources and development from the perspective of green growth. However, the concept
of development in this study is not limited to economic growth, but it evaluates the
quality of economic development from multiple dimensions, such as energy conserva-
tion, environmental improvement, and economic growth. We re-examined the impact of
resource endowments on green growth under the theoretical framework of the resource
curse, and the level of green growth was indicated by the green TFP. Because there
may be a nonlinear relationship between resource endowments and green growth with
certain variables as moderators, the impact of import and export threshold effects on the
transformation of the resource curse mechanism was further investigated, and the trans-
formation route for the resource curse mechanism was identified from the perspectives
of energy conservation and environmental improvement.

We provided evidence to support the resource curse hypothesis using a unique
dataset of 26 provinces in China for 2005 to 2017 and applying them to a fixed-effects
and a panel threshold model. The following are the analysis results. (1) The resource
curse hypothesis was valid nationwide, and a significant negative correlation existed
between resource endowments and green TFP, energy conservation effects, and envi-
ronmental improvement effects. Resource endowments negatively affect green growth
by hindering both energy conservation and environmental improvement. The phe-
nomenon of resource curse exhibited regional heterogeneity; resource endowment was
found to be a “blessing” for the eastern region, a “curse” for the central region, and
did not affect the western region. (2) Import trade increased the adverse impact of
resource endowment on green growth and promoted the deterioration of the resource
curse situation. When the import level exceeded the threshold value, the resource
curse phenomenon changed along the energy route. Import trade deteriorated the
resource curse by impeding energy conservation, but it did not change the relationship
between resources and development through the route of environmental improve-
ment. (3) Export trade reduced the adverse impact of resource endowment on green
growth and alleviated the severity of the resource curse phenomenon. However, export
trade could only change the relationship between resources and development through
environmental improvement, and not through energy conservation.

In conclusion, improving the import and export trade structure can reduce resource
dependence to a certain degree; however, their roles are limited; the route to fundamentally
alleviating the resource curse is through energy structure adjustment and green technologi-
cal innovation. According to Vuong [45], investing in science, especially for research and
development (R&D), will benefit society in the long run. China has invested a significant
portion of its GDP in R&D, around 2.4 percent of GDP per year [46]; however, R&D in-
vestment in the ecological area still needs to be increased to improve energy structure and
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environmental quality. Additionally, in the context of the COVID-19 pandemic, promoting
international trade in high-ecological technology value-added products is conducive to
economic recovery and healthy economic development [47]. The Chinese government
should take this as an opportunity, by shaping ecological values, promoting ecosurplus
culture [48], and reducing the international trade of primary products, so as to reshape the
innovative ecosystem, lessen the effects of the resource curse, and move toward a more
sustainably green economy.
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Abstract: To tackle the increasingly severe environmental challenges, including climate change, we
should pay more attention to green growth (GG), a path to realize sustainability. Human capital (HC)
has been considered a crucial driving factor for developing countries to move towards GG, but the
impact and mechanisms for emerging economies to achieve GG need to be further discussed. To
bridge this gap, this paper investigates the relation between HC and GG in theory and demonstration
perspective. It constructs a systematic theoretical framework for their relationship. Then, it uses a
data envelopment analysis (DEA) model based on the non-radial direction distance function (NDDF)
to measure the GG performance of China’s 281 prefecture level cities from 2011 to 2019. Ultimately, it
empirically tests the hypothesis by using econometric model and LightGBM machine learning (ML)
algorithm. The empirical results indicate that: (1) There is a U-shaped relationship between China’s
HC and GG. Green innovation and industrial upgrading are transmission channels in the process of
HC affecting GG. (2) Given other factors affecting GG, HC and economic growth contribute equally
to GG (17%), second only to city size (21%). (3) China’s HC’s impact on GG is regionally imbalanced
and has city size heterogeneity.

Keywords: human capital; green economy efficiency; green innovation; LightGBM machine learning;
green growth; industrial upgrading

1. Introduction

The global industrialization and urbanization have disturbed the earth’s natural
balance. The critical imbalance in the carbon cycle between carbon sources and carbon
sinks has forced the world to focus on issues of global warming and frequent natural
disasters. The increasingly severe climate change has significantly impacted ecosystems
and economics, as well as social development [1–3]. As the world’s leading developing
economy, China has become the world’s largest carbon emitter [4] in recent years. Therefore,
it is China’s duty as a major power to transfer its development model to reduce energy
consumption and carbon emissions while maintaining economic growth. To this end,
at the 2015 Paris Climate Conference, the Chinese government made a commitment to
hitting peak carbon emissions by 2030 [5]. Since then, the green growth model based
on harmonious coexistence of humans and nature has become the core value orientation
in China.

The concept of green growth was first proposed in the United Nations Economic and
Social Commission for Asia and the Pacific (UNESCAP) in 2005. Green growth emphasizes
that, when reducing poverty and improving human well-being through economic growth,
countries should focus on transforming economic growth and consumption patterns,
improving the ecological efficiency of economic growth, and coordinating environmental
and economic development [6], so as to achieve sustainable development goals. The
concept of green growth takes green economy, low-carbon economy, and circular economy
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as the main economic forms [7]. Its primary goal is to promote the transformation and
upgrading of industrial civilization to ecological civilization [8]. However, the transition
from brown economy to green economy will involve government policies [9,10], economic
growth target pressure [11,12], technological progress [13], socio-cultural contexts [14],
transition costs [15–17], and many other factors. Among many potential factors affecting
green growth, human capital, known as a kind of living capital, refers to the knowledge
and skill sets that workers have [18–20]. It is characterized by creativity, innovation, and
subjective initiative, so it contributes greatly to green growth patterns [21,22].

Since China’s reform and opening up, the human capital level has continued to
improve [23]. According to the China Human Capital Report 2021 (http://news.cufe.edu.
cn/info/1002/52212.htm, accessed on 14 December 2021) released by China Center for
Human Capital and Labor Market Research of Central University of Finance and Economics,
the average education years for China’s labour force increased from 6.1 years in 1985 to
10.5 years in 2019. The national workforce population with a college degree or above
increased from 10% to 20.6%. This naturally arouses a series of questions worthy of
attention: what is the relationship between China’s human capital and green growth?
What is the internal mechanism driving the formation of such relationship? What is the
transmission path? Among many factors influencing green growth, how much does human
capital contribute? Although academics and policy makers pay more and more attention to
these issues, few of them can provide theoretical and empirical findings that systematically
answer those questions.

Research conclusions in existing literature on the relationship between human cap-
ital and green growth are inconsistent. A lot of literature believes that there is a linear
relationship between human capital and green growth. They propose two kinds of dis-
tinct conclusions: one is “promotion viewpoint”, indicating that human capital promotes
green growth (or reduces carbon emissions) [24–29]; the other is “inhibition viewpoint”,
arguing that human capital inhibits green growth (or increases carbon emissions) [30,31].
Other literature believes that the relationship between human capital and green growth
is uncertain, changing with different time periods, different industries, macroeconomic
variables and human capital regime level in various regions [32–34]. A few studies confirm
the possible non-linear relationship between human capital and green growth [35–37]. In
existing studies on the nonlinear relationship, both the measurement index and nonlinear
shape of green growth and human capital are quite different. Reviewing conclusions about
human capital and green growth, such as the promotion viewpoint, inhibition viewpoint
and non-linear relationship viewpoint, we find it necessary to further clarify the relation-
ship between human capital and green growth. Specifically, for emerging economies such
as China, it will help them promote green growth more efficiently.

To answer the previous questions, by using the panel data of China’s 281 prefecture-
level cities (including municipalities directly under the Central Government) from 2011
to 2019, this paper examines the relationship between China’s human capital and green
growth from theoretical and empirical perspectives. Hence, we can precisely classify and
implement specific policies. First, from a theoretical perspective, we propose the hypotheses
that there is the nonlinear relationship between human capital and green growth, and
that green innovation and industrial upgrading are transmission paths. Meanwhile, in
order to reveal the time series trend and spatial distribution characteristics of China’s
green growth, this paper uses the data envelopment analysis (DEA, Appendix A) model
based on the non-radial direction distance function (NDDF) to measure the sample cities’
green economic efficiency (GEE). Furthermore, this paper empirically tests the previous
hypotheses. Specifically, it uses econometric models to investigate whether human capital
and green growth have the nonlinear relationship and the main transmission path. It
also applies machine learning algorithms to measure the human capital’s contribution
weight among many influencing factors. The research findings are as follows: first, China’s
human capital and green growth have a U-shaped relationship rather than a simple linear
relationship. That is, when human capital development cannot reach a certain threshold,
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it will inhibit green growth; when it exceeds a certain threshold, it will promote green
growth. This conclusion is still reliable after the robustness test. Green innovation and
industrial upgrading are transmission channels in the process of human capital affecting
green growth. Second, the result of the machine learning algorithm reveals that among
many factors influencing green growth, the human capital’s contribution weight is higher,
at about 17%. It is as important as the economic growth level, second only to city size
(21%). In addition, the heterogeneity analysis indicates that human capital has exceeded
the U-shaped threshold in southern regions. In the eastern region, it has been near the
U-shaped threshold and is about to promote green growth. In other regions, human capital
has not yet been able to promote green growth. In large cities, human capital has already
exceeded the U-shaped threshold. While in small and medium-sized cities, it is still on
the left side of the U-shaped threshold, indicating that city size can speed up crossing a
threshold between human capital and green growth so that human capital can positively
promote green growth.

This study provides the following three contributions: first, it illustrates the theoretical
root of the nonlinear relationship between human capital and green growth from the
production and consumption perspective. Meanwhile, the inner mechanism of human
capital influencing green growth is analyzed in detail. It proposes two transmission paths
of green innovation and industrial upgrading. This work directly proves that there is
a U-shaped relationship between human capital and green growth, which enriches and
expands the research results of nonlinear relations between them [35–37]. This means
that the linear relationship assumptions between human capital and green growth, i.e.,
the promotion or inhibition viewpoints, are not suitable for China. Second, this study
uses an econometric model and machine learning (ML) algorithms to test theoretical
hypotheses, which not only clarifies the transmission mechanism of human capital affecting
green growth, but also introduces advanced ML algorithms into economics field to study
human capital’s contribution to green growth. However, existing studies on nonlinear
relationship [35–37] only use econometric models for empirical research, which cannot
accurately reflect human capital’s contribution to green growth. Third, this study conducts
a series of grouping heterogeneity tests based on the city’s location and size, respectively,
and uses the U test econometric model to examine whether the human capital development
level in different groups exceeds the U-shaped threshold. Hence, we can adjust measures
to local conditions and implement the classified policies to ensure that human capital will
positively impact green growth policy.

The remainder of this paper is organized as follows. Section 2 provides theoretical
basis and research hypothesis. Section 3 discusses research design and data selection.
Section 4 reveals empirical results of econometric models and machine learning algorithms.
Section 5 concludes by proposing main conclusions and policy implications.

2. Literature Review and Hypothesis Proposal
2.1. Human Capital and Green Growth

Human capital refers to labour’s ability composed of knowledge, skills, and physical
ability. It is formed through human investment (such as education investment), takes
workers as a carrier, and indicates worker’s skills, intelligence and talents [18,20]. Schultz,
the “father of human capital theory”, believes that human capital is the source of driv-
ing economic growth. He also emphasized the important role played by the “quality”
of human capital [38]. In the green transformation of the economy, human capital also
contributes important value. Recently, some scholars have studied the relationship be-
tween human capital and green economy, but their conclusions are inconsistent. These
conclusions include “promotion viewpoint”, “inhibition viewpoint” and “non-linear re-
lationship”. The “promotion viewpoint” holds that human capital can improve natural
resource conservation [24,28,39], reduce energy consumption intensity [25], and reduce
pollutant emission [26,27,29]. The “inhibition viewpoint”, on the contrary, emphasizes
the positive correlation between human capital and carbon emissions [30,31]. Based on
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“promotion viewpoint” and “inhibition viewpoint”, some scholars argue that the rela-
tionship between human capital and carbon emissions is time-varying. It varies in the
short-term and long-term, in different industries as well as financial development and
human capital at different regime levels [2,32,33]. Li and Ou Yang [33] argue that human
capital increases CO2 emissions in the short term and reduces CO2 emissions in the long
term. Çakar et al. [34] find that financial development and the development level of human
capital affect whether human capital increases or suppresses carbon emissions. Human
capital increases carbon emissions in both low regimes of financial development and human
capital, and decreases in high regimes. In addition, some studies believe that human capital
has a significant threshold effect on the green economy, resulting in nonlinear effect under
different levels of complex variables of economic and social development [35–37]. Liu
and Lv [36] test the non-linear relationship between rural human capital and agricultural
green total factor productivity (AGTFP) in China. Maranzano et al. [37] test the nonlinear
relationship between education and emissions, reflecting the dynamic change in OECD
and European economic and social development. Chen et al. [35] believe that green R&D
activities and sulfur dioxide emissions are in a nonlinear relationship, but are affected by
technology absorption capacity. At present, the view that human capital and green growth
have a nonlinear relationship comes from indirect evidence rather than direct evidence.
There are great differences in the measurement of human capital and green growth. The
existing green growth indicators include AGTFP, CO2 emissions, SO2 emissions and other
measurement indicators. Human capital includes rural human capital, average years of
education (population 15–64 years), green R&D and other measurement indicators; fur-
thermore, the nonlinear shape is also inconsistent, and it is considered as an “N-shaped”
relationship [36] or an inverted U-shaped relationship [37]. However, the human capital
formed through education investment needs to be accumulated for a relatively long time
before population endowment improves [40], which in turn positively affects the green
growth. Therefore, we believe that human capital and green growth are not a simple linear
relationship, but have different impacts on the green economy at different human capital
development stages.

First, from the production sector perspective, human capital is closely related to pro-
ductivity [41,42]. When human capital is at a low development level and employees have
low education level and professional skills, the industry will absorb a large number of
low-skilled labours and have very few high-skilled labourers [43]. Under such circum-
stances, the marginal contribution rate of talents to production is low, and the output
improvement mainly depends on the large-scale investment of physical capital, which
leads to “high energy consumption and high pollution emissions” that hinder the green
economy. As human capital continues to accumulate and enters a higher development
stage, the labour skill structure changes; the proportion of high-skilled labour increases
significantly, and the complementarity between capital and skills begins to strengthen [44].
Hence, the individual production department’s efficiency is significantly improved at first,
and generates a positive spillover effect through the demonstration effect [45], driving the
entire production department to reshape the production process to reduce physical capital
input and improve production through technological iteration. It then further reduces
energy consumption, pollution levels, and promotes green economy development. Second,
from the consumption perspective, the human capital level is closely related to the con-
sumption structure [46,47]. The low-level human capital development stage corresponds to
the relatively low consumers’ income and affordability [48]. Under such circumstances, as
human capital improves, consumers often pay attention to related consumer goods to meet
basic “material needs”, such as purchasing household appliances, automobiles, and other
large commodities. However, if such consumer demand continues to grow, it will increase
carbon dioxide emissions and inhibit green growth [49]. As human capital development
exceeds a certain level, on the one hand, after the basic “material needs” are fully satisfied,
the consumption structure will undergo a “qualitative leap”; that is, “spiritual consumer
goods” related to entertainment and health will take the lead. On the other hand, high-level
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human capital with good environmental awareness [50] will increase the consumption
proportion of environmentally friendly, green, and low-pollution consumer goods that are
conducive to green growth. In addition, consumption structure upgrade will also force
the production sector to improve and iterate products [6,49,51], which is conducive to
producing more environmentally friendly products [52]. Therefore, human capital at this
stage will positively promote green economy development.

To sum up, the relationship between human capital and green growth is not a simple
linear one. If the human capital does not reach a certain threshold, it will inhibit green
growth. On the contrary, it will promote green growth. The human capital will first inhibit
green growth and then promote it. Accordingly, we put forward the following hypothesis.

Hypothesis 1. There is a U-shaped relationship between human capital and green growth.

2.2. Human Capital, Green Innovation and Green Economic Efficiency

Romer’s endogenous growth theory believes that human capital is an important source
of driving total factor productivity improvement and technological progress. Human capi-
tal promotes innovation from both micro and macro perspectives. At the micro level, human
capital represents a high level of human resources and can directly affect R&D activities
within a company [53,54]. High-level human resources can promote a company’s technol-
ogy R&D through integrating both internal knowledge and external knowledge [21,55].
This integration mainly includes knowledge creation, knowledge dissemination, knowl-
edge diffusion, and companies’ internal R&D activities transformation [56]. Therefore,
high-level human capital can directly affect companies’ R&D activities, thereby enhancing
their innovation level. On the other hand, at a macro level, when a city’s human capital is
at a high level, it can bring about knowledge spillover effect through the agglomeration,
flow, and imitation of talents [57,58]. That is, companies with high-level human capital can
share and transfer their tacit knowledge and resources to other companies in the industry
chain to drive the entire industry chain and city to innovate and develop [59,60]. In short,
human capital will promote innovation and development.

However, existing studies have shown that the relationship between green innovation
and GEE is often nonlinear. Chen and Huo [61] and Shi et al. [62] argue that there is an in-
verted U-shaped relationship between innovation and carbon emissions. Hu et al. [63] finds
that there is a U-shaped relationship between green innovation and green development.
First, corporate innovation requires enterprises to expand their investment through years
of operation and accumulation. In the process of realizing its technological innovation,
enterprises will spare no effort to increase R&D investment in the early stage [64]. However,
due to the long cycle and high risk of scientific and technological innovation, early R&D
investment may not be able to be converted into R&D results in time to play the role of
driving the city’s green growth [35]. Moreover, since now company scale expansion and
capital recycling have brought certain negative externality to the environmental system,
the “rebound effect” of such negative externality is greater than the energy-saving effect
brought by technological innovation [65,66], which will increase energy consumption and
carbon emissions to some extent, and is not conducive to improving green economic perfor-
mance [61,62]. Second, when the innovation level exceeds a certain threshold and reaches
a high level, the early R&D investment is transformed into a real force to promote com-
panies’ technological improvement and product iteration. Hence, the innovation results
can be transformed and resource use efficiency is improved, thus reducing carbon emis-
sions [67,68] and achieving high-level green development [63,69]. Therefore, we propose
the second hypothesis.

Hypothesis 2. Green innovation is the intermediate variable between human capital and green growth.
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2.3. Human Capital, Industrial Upgrading, and Green Growth

British economist Crick was the first to interpret the connotation of industrial upgrad-
ing. That is, when the labour force transfers from the primary industry to the secondary
and tertiary industries, a country’s economy gradually evolves from the primary industry
as the leading industry to the secondary and tertiary industries [70]. During industrial
upgrading process, labour, capital, natural endowment, and technological progress have be-
come important driving factors [71–73]. As a “living capital”, human capital, with labour as
its carrier, has greater value-added potential than hard capital such as capital and material,
and is more innovative and creative [21,53]. Therefore, it has a non-negligible contribu-
tion rate to industrial upgrading [72,74,75]. Schultz believes that education is the most
important form of human capital investment [76]. The improvement of labour education
level has accelerated its transfer from the primary industry to the secondary and tertiary
industries [73]. The accumulation of human capital stock also will help to break the original
industrial chain and accelerating the process of forming a new economic and technological
industrial chain, which will lead to changes in the industrial and market environment and
help to create a new industrial chain [77,78]. In addition, the higher the level of human
capital stock, the stronger the efficiency of knowledge dissemination and spillover, that
is, the better the effect of “learning by doing”, which is conducive to transforming and
absorbing advanced technology, thus boosting the industrial structure leap [79].

However, the industrial upgrading process requires a leap from the accumulation
of quantitative changes to qualitative changes, which is not achieved overnight. The
relationship between industrial upgrading and green growth is not a simple linear one.
The “accumulation” stage and “leap” stage of industrial upgrading may have different
impacts on green growth. Existing studies, such as Wei and Zhang [80], Liang et al. [81],
Yang et al. [82], and Zhang et al. [83], demonstrate the nonlinear relationship between the
two. In the initial stage of industrial upgrading, since a large amount of capital and labour
flow into the secondary and tertiary industries, and market-driven industrial changes often
lack scientific policy supporting facilities [84], this type of industrial upgrading is relatively
extensive. The profit-seeking nature of capital makes the industry focus on the return on
investment measured in currency, while ignoring the governance of externalities such as
environmental pollution [85,86]. As the industrial upgrading reaches a certain level, the
industry gradually transforms from a low value-added, extensive, low-tech one to a high
value-added, intensive, and high-tech one [87,88]. Meanwhile, with the implementation
of a series of high-quality development strategies, innovation-driven, green development,
and other initiatives drive the industrial upgrading process and the green development to
run simultaneously, which actively promotes the GEE [89–91]. Based on this, we propose
the third hypothesis:

Hypothesis 3. Industrial upgrading is the intermediate variable between human capital and
green growth.

3. Methodology and Data

First, this section explains the variables selected in this study. Second, we apply the
NDDF-DEA model to measure cities’ green growth level during the statistical period. Then,
we employ the econometric models and LightGBM machine learning model to explore the
impact and mechanism of human capital on green growth in this study. Finally, the data
source used in this study is briefly introduced.

3.1. Variable Measurement and Selection

The variables selected in this study are shown in Table 1.
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Table 1. Variable definition and calculation method.

Variable Type Definition Code Calculation Method

Dependent variable Green economic efficiency GEE Measured by the NDDF-DEA model

Independent variable Human capital HC Logarithm of financial education expenditures in
prefecture-level cities at the end of each year

Intermediary variable Green innovation GIN Logarithm of green invention patent applications in
prefecture-level cities

Industrial upgrading IU The output value of secondary industry plus output
value of tertiary industry, divided by GDP

Control variable

Free trade zone FTA The variable is equal to one if the city is a free trade
zone; otherwise, it is zero

Level of economic development LED Logarithm of per capita GDP
Government intervention GI Public budget expenditure divided by GDP

City scale CS Logarithm of the total population of each city at the
end of the year

Foreign direct investment FDI The total amount of foreign capital divided by GDP

Fiscal decentralization FD The ratio of the fiscal revenue in the municipal budget
to the fiscal expenditure in the municipal budget

Other variables

Years of education HC1

(number of university students in city/number of
university students in province) × ln(6 × the
proportion of labour force in the sample with no
higher than primary school education +9* the
proportion of labour force with no higher than junior
middle school education +12 × the proportion of
labour force with no higher than senior high school
education +16* the proportion of labour force with
college education) (Wang et al. 2021) [22]

Carbon dioxide emissions CO2 Logarithm of carbon dioxide emissions
Year Year a dummy variable

City City a dummy variable
according to China Urban Statistical Yearbook

3.1.1. Dependent Variable: Green Economic Efficiency (GEE)

Green growth is the dependent variable in this study. Referring to Cheng et al. [92], as
well as Wang and Chen [93], this study uses green economic efficiency (GEE) as the proxy
variable of green growth. This study originally uses distance functions [94], including the
Shephard distance function (SDF) and directional distance function (DDF), when measuring
GEE. However, SDF cannot achieve pollutant emission reduction when ensuring an ideal
output [94]. Although DDF overcomes this problem, it leads to an overestimation of
efficiency [95]. On this basis, Zhou et al. [96] proposed NDDF.

This study introduces the DEA model to measure the GEE of sample cities. This model
has the advantage of comprehensively considering the desirable outputs and undesirable
outputs in the economic system from the aspects of input and output. In addition, Zhang
and Li [97] and Li and Ji [98] both use NDDF of the DEA model to measure GEE. The input
variables include energy (E), labour, and capital. In terms of output variables, the desirable
output is GDP, and the undesirable outputs are industrial wastewater (WW), industrial
sulfur dioxide gas (WG), and industrial soot and dust (SD), as well as carbon dioxide (CD).
In this process, the weights of the energy input (E), GDP, WW, WG, and SD are set to 1/3,
1/3, 1/9, 1/9, and 1/9, respectively. The proportion of these five weights, which can be
increased or decreased, is calculated by the super-efficiency DEA model. Finally, the GEE
of the i-th city in the t-th period is constructed as the dependent variable of this article.

DDFit =
1
2

[
(Eit − βE,it ∗ Eit)/(Git − βG,it ∗ Git)

Eit/Git

]
+

1
2

[
1
3 ∑

N=WW,WG,SD

(Nit − βN,it ∗ Nit)/(Git − βG,it ∗ Git)

Nit/Git

]

where βE, βG, βWW, βwG, βSD are the optimal solutions of the DEA model. Capital stock data
are calculated using the perpetual inventory method. The raw data required include the
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fixed asset investments of cities at the prefecture level and above; these data are obtained
from the CEIC China Economy Database. Based on the estimation reported by Xiang [99],
we can obtain the capital stock data of each city in the base year (2000) and the capital stock
depreciation rate of each city [99]. We agree that the capital stock depreciation rates of cities
in the same province are the same.

3.1.2. Independent Variable and Intermediate Variables

(1) Core Independent Variable: Measurement of Human Capital

The core variable considered in this article is the human capital. Human capital
has many measurement dimensions, but mainly focuses on education [22,100]. Existing
studies include the number of college students [22] and the average years of education
of the population [100,101]. In addition, some studies have pointed out that government
education expenditure is highly correlated with human capital formation and develop-
ment [101,102]. Therefore, this paper uses the logarithm of urban government education
expenditure to measure city human capital level. It also uses the average education years
of the population [22] as the proxy variable of human capital for robustness test.

(2) Intermediate Variable: Green Innovation (GIN)

High-level human capital promotes green innovation [59]. Green innovation (GIN)
will largely affect carbon emissions [61], affecting green economic development [63]. In this
paper, green innovation is measured by the number of green invention patent applications
in prefecture level cities.

(3) Intermediate Variable: Industrial Upgrading

Existing literature reveals that human capital will lead industrial upgrading [73].
Industrial structure in turn will certainly impact energy efficiency [103,104]. Industrial
upgrading is now the main form of industrial structure change. Referring to Yao et al.,
(2019) [105], this study uses the ratio of the secondary and tertiary industries’ total output
value to GDP to measure industrial upgrading.

3.1.3. Control Variables

We select a series of control variables that affect urban GEE from the two aspects
of urban development and government factors to better study the impact of the human
capital on urban green economy development. First, the urban factors include level of
economic development (LED), city scale (CS), and foreign direct investment (FDI). Second,
the government factors include Free Trade Zone (FTZ), government intervention (GI) and
fiscal decentralization (FD). The specific meaning of each variable is provided below.

(1) Free Trade Zone (FTZ)

Free trade zone, China’s special functional area enjoying opening to the outside world,
has greatly impacted the GTFP of China’s manufacturing industry (Liu et al., 2019) [106].
This paper uses virtual variables to measure whether a city is a free trade zone (FTZ). The
variable is equal to one if the city is a free trade zone; otherwise, it is zero.

(2) Level of Economic Development (LED)

The LED of city is the basis for a city to achieve green growth. According to the
research findings, the scale of production and consumption changes with an increase in
income level, and this affects energy consumption and environmental quality [107,108]. In
this study, a city’s economic development level is expressed by the logarithm of the ratio of
the urban GDP value to the total population at the end of the year, i.e., the logarithm of per
capita GDP.

(3) Government Intervention (GI)

Droste et al. [109] state that GI is key to urban green development. Some studies on
GI and green economy have shown that GI can improve environmental performance [110]
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and affect the efficiency of urban pollutant emission [111]. In this article, GI is measured as
the ratio of a city’s public budget expenditure to GDP.

(4) City Size (CS)

Theoretically, a city with a larger population has more capital for green economy
development. Islam and Ghani [112] believe that population size is a key factor affecting
the environment. In this article, the city scale is measured by the logarithm of the total
population of each city at the end of the year.

(5) Foreign Direct Investment (FDI)

Foreign direct investment is an inseparable and important factor affecting China’s
green economic development efficiency [113]. This factor is measured by the ratio of the
total amount of foreign capital used by each city to the regional GDP.

(6) Fiscal Decentralization (FD)

Fiscal decentralization has a certain impact on carbon emissions, enterprise ecolog-
ical innovation, and GEE [114,115]. This study uses fiscal autonomy to represent fiscal
decentralization, i.e., the ratio of the fiscal revenue in the municipal budget to the fiscal
expenditure in the municipal budget.

3.2. Research Methods and Model Resign
3.2.1. Combines Econometric Model and LightGBM Machine Learning Algorithm

This paper empirically tests the U-shaped relationship between human capital and
green growth, the transmission channel, and the contribution weight of human capital
on green growth by combining econometric model and ML algorithm. The econometric
model includes the benchmark model and the intermediary effect model, which can explain
the direction and transmission mechanism between variables. However, it is impossible
to measure the contribution of the core explanatory variable to the explained variable,
and there may be some potential problems, such as the inverse causality between the
independent variable and the dependent variable, or the multicollinearity between the
independent variable and control variables; the machine learning algorithm can well
overcome the endogenous problems and multicollinearity problems that may exist in
econometric models, predict the dependent variables according to multiple explanatory
variables, and accurately measure the interpretation degree of the core explanatory variables
to the dependent variables, but it is difficult to explain the mechanism of the independent
variables and the dependent variables. Therefore, combining the two methods can give
full play to their advantages and clarify the relationship between human capital and green
growth and its importance to green growth.

3.2.2. Benchmark Model and Intermediary Effect Model

First, the benchmark model of human capital and green growth is as shown in
Formula (1):

GEEit = αit + βHCit + γ1HC2
it
+ σXit + Yeari + Cityt + εit (1)

where GEEit is the green economic efficiency of city i in t year, HCit is the human capital of
city i in t year, and Xit is the control variable, mainly including FTA, LED, GI, CS, FDI and
FD. β and γ1 are used to investigate whether there is a nonlinear relationship between HCit
and GEEit. When β > 0 and γ1 < 0, it means that there is an inverted U-shaped relationship
between GEE and HC; when β < 0 and γ1 > 0, there is a U-shape relationship between GEE
and HC. After the regression coefficient is determined, it needs to be further determined
in combination with the U test results to determine whether it is a U-shaped or inverted
U-shaped relationship. Eit is the residual. Year and city refer to control year and city
effect, respectively.
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Secondly, the intermediary effect model of human capital and green economic effi-
ciency is as follows.

GINit = αit + β1HCit++σXit + εit (2)

GEEit = αit + β2GINit + γ2GIN2
it
+ σXit + εit (3)

where GINit is the green innovation of city i in t year, HCit is the human capital of city i
in t year, GEEit is the green economic efficiency of city i in t year, which is the measure of
green growth, and Xit is the control variable, including FTA, LED, GI, CS, FDI and FD. The
regression coefficient β1 reflects the relationship between HC and GIN; β2 and γ2 are used
to investigate whether there is a nonlinear relationship between GINit and GEEit. When
β2 > 0 and γ2 < 0, it means that there is an inverted U-shaped relationship between GIN
and GEE; when β2 < 0 and γ2 > 0, there is a U-shape relationship between GIN and GEE.
After the regression coefficient is determined, it is also necessary to be in combination with
U test results to determine whether it is a U-shaped or inverted U-shaped relationship. ϕit
is the residual.

Then this paper takes industrial upgrading (IUit) as an intermediary variable, and
uses IUit to replace GINit in the above Equations (2) and (3), that is, to test the intermediary
effect of industrial upgrading.

3.2.3. LightGBM Algorithm

When considering other factors affecting green growth, we further used the LightGBM
algorithm to measure the contribution of human capital to green growth. The processing
of the LightGBM algorithm is according to Fan and Liu [116]. LightGBM is an efficient
implementation of XGBoost. The commonly used GBDT machine learning algorithm has
limitations when processing massive data. The main reason for the birth of LightGBM is to
solve the problems encountered by GBDT in massive data, so that GBDT can be better and
faster used in industrial practice. Its idea is to discretize continuous floating-point features
into k discrete values and construct a histogram with a width of k. Then, traverse the
training data and calculate the cumulative statistics of each discrete value in the histogram.
In the feature selection, we only need to traverse to find the optimal segmentation point
according to the discrete value of histogram. In addition, the use of leaf wire strategy with
a depth limit saves a lot of time and space consumption. Its features are: optimizing speed
and memory usage; sparse optimization; optimizing accuracy; using leaf-wise growth
mode, to process categorical variables; and optimizing network communication. We build
a machine learning model with the help of python software. The ratio of data training set
to test set is 8:2. See Appendix B for the specific hyperparametric settings of the model.

3.3. Data Source

This study takes the panel data of China’s 281 prefecture-level cities from 2011 to
2019 as the sample to empirically measure human capital’s impact on green growth and
its internal mechanism. The data are obtained from the China Economy Database (CEIC),
China City Statistical Yearbook, China Population and Employment Statistics Yearbook,
and China Statistical Yearbook. When measuring the GEE, we obtain the data of the capital,
labour, energy consumption, and GDP from CEIC; data of the SD from the China City
Statistical Yearbook; and data of the two pollutants of WW and WG from CEIC. The data of
human capital are obtained from China Population and Employment Statistics Yearbook
and China Statistical Yearbook. The data of the intermediate variable and control variables
are obtained from China City Statistical Yearbook.

Table 2 shows the sample descriptive statistics of each variable, including sample size,
mean, standard deviation, minimum, maximum, Skewness, Kurtosis. The mean value
of GEE is 0.334, the maximum value is 1, and the minimum value is 0.11. That is, the
overall GEE is low and there is obvious regional imbalance. The difference in the HC of the
different cities is relatively large. The maximum value is 16.2456, the minimum value is
only 9.9059 and the mean is 13.1288. All variables are right biased except the CS and IU. In
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addition to LED, FD and GIN, the kurtosis of other variables is greater than 3, which does
not obey the standard normal distribution and shows obvious characteristics of “fat-tail
distribution”. The variance inflation factor (VIF) of all explanatory variables is less than 10,
which means that there is no serious multicollinearity.

Table 2. The statistics summary of variables.

Variable Obs Mean Std. Dev. Min Max Skewness Kurtosis VIF

GEE 2297 0.3341 0.1623 0.1107 1.0000 2.6018 10.8540
HC 2297 13.1288 0.7805 9.9059 16.2456 2.4250 9.0127 8.6100
FTA 2297 0.2037 0.4029 0 1.0000 1.5530 3.4119 7.8900
LED 2297 10.7171 0.5790 8.8416 13.0557 0.2192 2.8621 5.5300
GI 2297 0.0793 0.0281 0.0234 0.2273 1.1885 5.6820 4.5200
CS 2297 5.9025 0.6963 2.9704 8.1362 −0.5567 4.0910 2.3700
FDI 2297 0.0027 0.0027 0 0.0299 2.2460 13.5210 1.3500
FD 2297 0.4790 0.2255 0.0680 1.5413 0.5302 2.6254 1.2400

GIN 2297 4.3325 1.7641 0 10.1825 0.4849 2.9046 4.2300
IU 2297 4.4730 0.1035 3.6618 4.6049 −2.1419 11.1377 2.0000

4. Empirical Results
4.1. Spatiotemporal Characteristics of GEE

We reveal the spatiotemporal characteristics of Chinese cities’ GEE and describe it us-
ing a geographic distribution map before empirically analysing the relationship between hu-
man capital and GEE. Chinese cities’ geographic distribution map of GEE (Figures 1 and 2)
indicates that the overall level of GEE is not high, and GEE in most cities is between 0 and
0.3341. The development level of GEE in different regions is uneven. The GEE level in
the eastern is higher than that in the central and western regions, and the GEE of cities
in the northeast regions has not been continuously optimized after the phased improve-
ment. Specifically, from 2011 to 2016, some cities in the northeast regions became national
new industrialization comprehensive reform pilot areas, with high overall GEE. However,
Liaoning Province is dominated by heavy industry with high energy consumption and
pollution. This industrial structure is not conducive to the continuous improvement of GEE.
In 2019, the overall GEE in the northeast region decreased. Among them, the areas with the
fastest improvement in GEE are the Yangtze River Delta and the eastern coastal areas of the
Pearl River Delta, which is mainly related to the national green planning for rapid urban
development during the 12th and 13th Five-Year Plans.

The average value change trend of Chinese cities’ GEE and HC from 2011 to 2019
(Figures 2 and 3) indicates that Chinese cities’ GEE generally shows a U-shaped change,
and HC is approximately linear. From the change trend of both, it is likely that HC and GEE
have a U-shaped relationship. Moreover, GEE has been significantly improved since the
13th Five-Year Plan. This indicates that the improvement of GEE is related to government
policy guidance.
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4.2. Test of Nonlinear Relationship between HC and GG

To explore the nonlinear relationship between HC and GG, under the control of other
variables, first, we use the OLS model to regress HC and GEE, and then examine with the U
test. The regression results of HC and GEE are shown in Table 3. The results are as follows:

First, there is a U-shaped relationship between HC and GEE. Specifically, the regression
coefficient of HC is −0.932, while the regression coefficient of HC2 is 0.037, both of which
are significant at the level of 1%, indicating a U-shaped relationship between HC and
GEE. On the left side of the U-shape, with the improvement of HC, the green growth is
suppressed; when the level of HC exceeds a certain threshold, it will promote green growth.
The results of U test show that there is a U-shaped relationship between HC and GEE at the
significance level of 1%.

Second, the current HC level is on the left side of the U-shape, which has not reached
the threshold of HC promoting GEE. The current HC level is 12.469, which has not reached
the threshold value of HC promoting GEE development (12.595). It is on the left side of the
U-shaped fitting diagram of HC and GEE (Figure 4a).
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The result that HC and green growth have a U-shaped relationship in this study
supports the view of Maranzano et al. [37] to a certain extent, but the green growth
measurement index is different. We adopt the NDDF-DEA model to measure GEE more
comprehensively, while Maranzano et al. [37] adopt a carbon emission index. The result is
different from Wang et al. [22] and Xiao and You [88]. They all support that total HC can
improve green growth, and Wang et al. [22] further conclude that different HC levels have
different effects on GTFP.

Table 3. Regression results of U-shaped relationship between HC and GEE.

Variables GEE

HC −0.932 ***
(−7.71)

HC2 0.0370 ***
(8.03)

FTA 0.0010
(0.14)

LED 0.0260
(1.57)

GI −0.8730 ***
(−3.67)

CS 0.1150 ***
(2.85)

FDI 0.1610
(0.14)

FD 0.1280 ***
(2.72)

U test 12.469 ***
(5.95)

U test lower bound interval 9.9060
U test upper bound interval 16.2460

_cons 4.892 ***
(5.57)

Year controlled
City controlled

N 2493
R2 0.7640

Note: (1) t statistics in parentheses; (2) *** represent significance levels of 1.

4.3. The Mechanism Test Results Analysis
4.3.1. Human Capital, Green Innovation, and Green Growth

We use the intermediary effect model to examine whether green innovation acts as an
intermediary variable between HC and GEE. The empirical results are shown in Table 4.

The results in column (1) of Table 4 shows that there is a U-shaped relationship between
HC and GEE; the results in column (2) show that HC significantly and positively promotes
the development of green innovation at the significance level of 1%, and the regression
coefficient is 0.332, that is, every 1% increase in HC increases green innovation by 0.332%.
The results in column (3) shows that the regression coefficient of GIN is significant at the
level of 1%, which is −0.051, while the coefficient of GIN2 is positive at the significance
level of 1%. According to GIN and GIN2 coefficients, there may be a U-shaped relationship
between green innovation and GEE. Before the green innovation level reaches the threshold
value, green innovation suppresses GEE. Once the green innovation level reaches the
threshold value, the high utilization rate of resources promotes the development of GEE.
The U-shaped relationship between green innovation and GEE supports the views of Hu
et al. [63] and Liu et al. [117]. The U test results also show that the U-shaped relationship
between green innovation and GEE is significant at the level of 1%. This means that human
capital is positively promoting green innovation, and there is a U-shaped relationship
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between green innovation and GEE. This verifies hypothesis 2 that green innovation acts as
transmission channel between HC and GEE.

Table 4. Empirical results of the relationship between HC, green innovation and GEE.

Variables
(1) (2) (3)

GEE GIN GEE

HC −0.932 *** 0.332 ***
(−7.71) (3.94)

HC2 0.037 ***
(8.03)

GIN −0.051 ***
(−6.97)

GIN2 0.008 ***
(10.17)

FTA 0.001 −0.021 0.001
(0.14) (−0.63) (0.21)

LED 0.026 0.467 *** 0.034 **
(1.57) (5.67) (2.27)

GI −0.873 *** 2.168 * −0.788 ***
(−3.67) (1.82) (−3.46)

CS 0.115 *** 0.576 *** 0.097 **
(2.85) (2.87) (2.56)

FDI 0.161 −1.049 0.805
(0.14) (−0.18) (0.70)

FD 0.128 *** −0.134 0.123 ***
(2.72) (−0.57) (2.66)

U test 12.469 *** 3.073 ***
(5.95) (6.97)

U test lower bound interval 9.906 0
U test upper bound interval 16.246 10.182

_cons 4.892 *** −6.294 *** −0.726 **
(5.57) (−3.88) (−2.26)

N 2493.000 2493.000 2493.000
R2 0.764 0.950 0.768

Note: (1) t statistics in parentheses; (2) * p < 0.1, ** p < 0.05, *** p < 0.01

4.3.2. Human Capital, Industrial Upgrading and Green Growth

We use the intermediary effect model to test whether industrial upgrading acts as an
intermediary variable between HC and GEE. The empirical results are shown in Table 5.

The results in column (2) of Table 5 show that HC significantly promotes industrial
upgrading. The regression coefficient is 0.039, which means that every 1% increase in HC
will improve industrial upgrading by 0.039%; the results in column (3) of Table 5 show
that the regression coefficient of IU is negative and that of IU2 is positive, indicating that
there is a U-shaped relationship between industrial upgrading and GEE. On the left side
of the U-shaped turning point, that is, the “accumulation” stage of industrial upgrading,
with the development of industrial upgrading, industrial upgrading inhibits GEE; once
the industrial upgrading exceeds the threshold and enters the “leap” stage of industrial
upgrading, the industrial upgrading is dominated by the development of high-tech and
digital industries, which improves the utilization rate of resources and promotes GEE. The
U test results further verify that the U-shaped relationship between industrial upgrading
and GEE is significant. On the whole, HC is positively promoting industrial upgrading.
There is a U-shaped relationship between industrial upgrading and GEE. This verifies
hypothesis 3 that industrial upgrading is the transmission channel between HC and GEE.
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Table 5. Empirical results of the relationship between HC, industrial upgrading and GEE.

(1) (2) (3)

GEE IU GEE

HC −0.932 *** 0.039 ***
(−7.71) (4.65)

HC2 0.037 ***
(8.03)

IU −5.770 ***
(−3.90)

IU2 0.708 ***
(4.01)

FTA 0.001 0.008 ** 0.002
(0.14) (2.42) (0.37)

LED 0.026 0.059 *** 0.033 ***
(1.57) (7.19) (1.98)

GI −0.873 *** −0.228 * −0.478 **
(−3.67) (−1.92) (−2.02)

CS 0.115 *** −0.065 *** 0.216 ***
(2.85) (−3.27) (5.70)

FDI 0.161 0.012 −0.598
(0.14) (0.02) (−0.46)

FD 0.128 *** 0.119 *** 0.042
(2.72) (5.04) (0.87)

U test 12.469 *** 4.074 **
(5.95) (3.07)

U test lower bound
interval 9.906 3.66

U test upper bound
interval 16.246 4.60

_cons 4.892 *** 3.702 *** 10.279 **
(5.57) (22.90) (3.28)

N 2493.000 2417.000 2417.000
R2 0.764 0.862 0.757

Note: (1) t statistics in parentheses; (2) * p < 0.1, ** p < 0.05, *** p < 0.01.

4.4. Robustness Test

To prove that the conclusion is reliable, we examine the robustness of the benchmark
model. The robustness test can be carried out by replacing either dependent variables or
independent variables.

4.4.1. Using Substitute Variables of Human Capital

To further test the U-shaped relationship between human capital and green growth, we
use the human capital measured by education years in each prefecture-level city [118,119] to
replace current human capital measured by education expenditure to verify the relationship
between human capital and green growth. The regression results in Column (1) of Table 6
and Figure 4b show that the relationship between human capital and GEE is U-shaped and
has passed the U test. On the left side of the U-shaped turning point, when human capital
increases, it inhibits green growth; when human capital level exceeds a certain threshold, it
promotes green growth.

4.4.2. Using Substitute Variables of GEE

We use CO2 emissions to replace the dependent variable, i.e., GEE, and verify the
relationship between human capital and green growth through the relationship between
human capital and CO2 emissions. The regression results in column (2) of Table 6 reveal
that the coefficients of HC and HC2 are 1.294 and −0.046, respectively, and are significant at
the level of 1%, indicating that the relationship between human capital and CO2 emissions
is an inverted U-shape and has passed the U test. Since lower CO2 emissions mean higher
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GEE, this demonstrates the U-shaped relationship between human capital and GEE. On
the left side of the U-shape, CO2 emissions are increasing as human capital enhances,
indicating that human capital inhibits green growth. When human capital level exceeds a
certain threshold, an increase in human capital will reduce CO2 emissions, thus promoting
green growth.

Table 6. Robustness test of the U-shaped relationship between human capital and GEE.

Variables
GEE CO2

(1) (2)

HC1 −0.028 1.294 ***
(−1.25) (3.39)

HC1
2 0.007 *** −0.046 ***

(3.29) (−3.31)
FTZ 0.005 0.038 *

(0.76) (1.86)
LED 0.065 *** 0.192 ***

(4.09) (3.66)
GI −0.543 ** −0.035

(−2.24) (−0.05)
CS 0.207 *** 0.162

(5.33) (1.27)
FDI −0.207 −10.045 ***

(−0.16) (−2.74)
FD 0.074 −0.105

(1.52) (−0.71)
U test 2.018 * 14.051 **

(1.25) (1.80)
U test lower bound interval 0 9.906
U test upper bound interval 12.782 16.256

_cons −2.334 *** −2.852
(−5.93) (−1.03)

N 2297.000 2482.000
R2 0.758 0.952

Note: (1) t statistics in parentheses; (2) ***, ** and * represent significance levels of 1%, 5% and 10%, respectively;
(3) column (1) is the regression result of HC1 and GEE; column (2) is the regression result of HC and CO2 emissions.

4.5. Heterogeneity Analysis
4.5.1. Heterogeneity Analysis Based on Different Location of Cities

Since human capital development level differs in different regions, its relationship
with green growth may also be different. According to the location of cities, we divide the
samples into eastern, central, and western regions, and examine the relationship between
human capital and GEE in different regions. The results are shown in Table 7 and Figure 5.
The regression results indicate that the relationship between human capital and GEE in
eastern, central, and western regions is U-shaped. The U test results in the eastern and
western regions are significant, but insignificant in the central region. We draw a conclusion
that eastern cities’ human capital level (13.635) is higher than that of central cities (12.9394);
and that in central cities is higher than that of western cities (12.457). Both the regression
results and U-test demonstrates that there is a significant U-shaped relationship between
HC and GEE in eastern and western cities, but not in central cities. Both eastern and western
cities’ human capital level is on the left side of the threshold (Figure 5). The development
of human capital still inhibits GEE. Compared with the western region, the eastern region
is closer to the U-shaped threshold.
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Table 7. Test of the relationship between HC and GEE in different regions.

Variables

East Centre West South North

(1) (2) (3) (4) (5)

GEE GEE GEE GEE GEE

HC −0.749 *** −0.609 ** −1.026 *** −0.933 *** −1.115 ***
(−4.37) (−2.18) (−4.06) (−6.44) (−4.73)

HC2 0.027 *** 0.030 *** 0.041 *** 0.033 *** 0.046 ***
(4.23) (2.75) (4.13) (6.07) (4.95)

FTZ −0.001 −0.026 ** 0.048 *** −0.011 0.007
(−0.11) (−1.98) (3.24) (−1.47) (0.55)

LED 0.066 *** 0.078 ** −0.161 *** 0.025 −0.087 ***
(3.28) (2.23) (−4.25) (1.16) (−2.75)

GI −0.642 ** −2.309 *** −1.491 *** −0.500 * −0.899 **
(−2.01) (−5.05) (−2.87) (−1.68) (−2.11)

CS 0.460 *** 0.086 −0.234 ** 0.145 *** −0.089
(5.35) (1.54) (−2.55) (3.15) (−0.94)

FDI −0.189 4.157 * 0.162 −4.781 *** 3.683 *
(−0.13) (1.77) (0.04) (−2.90) (1.79)

FD 0.048 0.405 *** 0.188 0.112 ** 0.087
(0.74) (4.68) (1.53) (2.00) (0.94)

U test 13.635 ** 10.238 12.457 *** 14.176 *** 12.066 ***
(2.98) (0.28) (3.44) (3.22) (3.61)

U test lower bound interval 9.906 9.906 9.906 9.906 9.906
U test upper bound interval 16.246 16.246 16.246 16.246 16.246

_cons 1.536 1.622 9.716 *** 5.561 *** 8.399 ***
(1.08) (0.86) (5.20) (5.23) (4.76)

N 956.000 759.000 702.000 1607.000 810.000
R2 0.839 0.759 0.771 0.737 0.804

Note: (1) t statistics in parentheses; (2) * p < 0.1, ** p < 0.05, *** p < 0.01.
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Moreover, we further divide the samples into southern and northern regions, and
examines the relationship between human capital and GEE in different regions. The results
are shown in Table 7 and Figure 5. Both the regression and the U test results indicate that
there is a significant U-shaped relationship between human capital and GEE in the southern
and northern regions.

Specifically, the human capital level in southern cities (14.176) is higher than that in
northern cities (12.066). The southern cities’ human capital level is already on the right side
of the threshold (14.136), indicating that it will promote GEE development as it improves.
Human capital level in northern cities is 12.066, which is still on the left side of the threshold
for northern cities (12.12, Figure 5d). That means human capital in northern cities still
inhibits GEE. Southern cities’ human capital promotes GEE, while northern cities’ human
capital inhibits GEE. This result is also consistent with the fact that human capital and city
development levels in the southern cities are higher than those in the northern cities.

4.5.2. Heterogeneity Analysis of Different Size of Cities

Influenced by resource endowment, cities of different size have different human capital
development level. According to cities’ development size, we divided the samples into
large cities and small and medium-sized cities for heterogeneity analysis. If the urban
population in that year is larger than the sample average level, it is considered as a big
city; otherwise, it is regarded as a small and medium-sized city. The regression and U test
results reveal that (Table 8) the human capital level in large cities (13.665) is higher than
that in small and medium-sized cities (11.556). There is a significant U-shaped relationship
between HC and GEE in both large and small and medium-sized cities. The human capital
level in large cities (13.665) is on the right side of the threshold (13.558) (Figure 6a). The
relationship between HC and GEE exceeds the U-shaped turning point, indicating that
HC will promote GEE. Small and medium-sized cities’ human capital level (11.556) is
still on the left side of the threshold (11.591) (Figure 6b), which has not yet reached the
U-shaped threshold. It is still in the state of HC inhibiting GEE, which means that city scale
development level will speed up crossing the threshold between HC and GEE, helping HC
promote GEE.
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Table 8. Test of the relationship between HC and GEE for different city scale.

Variables
Big Cities Small and Medium−Sized Cities

GEE GEE

HC −1.166 *** −1.020 ***
(−6.54) (−3.55)

HC2 0.043 *** 0.044 ***
(6.45) (3.80)

FTZ −0.015 ** 0.021 *
(−2.15) (1.85)

LED 0.113 *** −0.041
(4.88) (−1.63)

GI −1.354 *** −0.624 *
(−4.43) (−1.75)

CS −0.197 *** 0.111 *
(−2.63) (1.84)

FDI −0.722 2.376
(−0.57) (1.22)

FD 0.213 *** 0.065
(3.70) (0.88)

U test 13.665 *** 11.566 ***
(5.11) (2.37)

U test lower bound interval 9.906 9.906
U test upper bound interval 16.256 16.256

_cons 8.490 *** 5.914 ***
(5.94) (3.10)

N 1323.000 1159.000
R2 0.732 0.789

Note: (1) t statistics in parentheses; (2) * p < 0.1, ** p < 0.05, *** p < 0.01.

4.6. Contribution of HC to GEE

Given other factors affecting the GEE, we further use LightGBM to measure the
contribution of HC to GEE. Based on the six indices (HC, FTZ, LED, GI, CS, FDI and FD),
this study uses the LightGBM machine learning method to predict urban GEE and fit it with
the actual GEE. The fitting result is shown in Figure 7 and Table 9. Figure 7 shows that the
general trend of the predicted value and actual values is the same. Further, the prediction
performance results of LightGBM presented in Table 9 indicate that the R-squared value
(R2) of the training set is 0.886, and the R2 value of the test set is 0.695, which implies that
HC and the selected control variables are the main factors affecting the GEE.

Table 9. The performance measurement of GEE by LightGBM.

MSE RMSE MAE MAPE R2

training set 0.003 0.054 0.034 9.834 0.886
test set 0.007 0.082 0.059 16.618 0.695

An analysis of the relative importance of each variable to the GEE (Figure 8) reveals
that the contribution of CS is the highest, reaching 21%. The contribution of HC and LED
are 17%, respectively, second only to CS. The contributions of GI, FDI and FD are 15%,
14%, and 14%, respectively. The contribution of FTZ is the smallest, only 1%. Based on the
contribution of various independent variable and control variables, we find that CS, LED
and HC are the three main factors affecting GEE. HC is the second largest factor affecting
GEE, second only to CS. CS and HC reflect the quantity and quality of urban population,
and their total contribution is 38%. This is because people are the intrinsic factors that affect
GEE; the other control variables include the extrinsic factors that affect GEE.
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5. Conclusions and Policy Implications
5.1. Conclusions

With the rapid industrialization and urbanization, the increasing imbalance between
economic system and ecosystem causes serious problems such as global warming, extreme
climate, and frequent natural disasters, posing a great threat to human society. Therefore,
the key path for countries around the world toward sustainable development is to transform
to a “green growth” model that takes into account both economic growth and environmental
protection. Meanwhile, China’s human capital level has been continuously improving
since the reform and opening up. Naturally, then, it raises a question for academics and
policy authorities: what is the relationship between human capital and green growth? To
answer this question, this paper selects the sample city data of China’s 281 prefecture-level
cities (including municipalities directly under the Central Government) and analyses the
question in great detail from a theoretical perspective and at an empirical level. First, by
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reviewing classical literature, we put forward the hypothesis of U-shaped relationship
between human capital and green growth. Then, we introduce the NDDF-DEA model to
measure China’s sample cities’ green growth level during the statistical period. On this
basis, we empirically test the previous research hypotheses by using econometric model,
and measure the contribution of human capital to green growth by ML algorithm.

This paper has the following main findings: (1) China’s human capital and green
growth have a U-shaped relationship. Before reaching a certain threshold, human capital
will inhibit green growth. After exceeding a certain threshold, human capital will promote
green growth. Green innovation and industrial upgrading are transmission channels when
human capital impacts green growth. (2) When considering other factors influencing
green growth, human capital is very important. HC and economic growth have the same
contribution weight to GG (17%), ranking two, second only to city size (21%). (3) The
influence of human capital on green growth in China is characterized by regional imbalance
and urban scale imbalance. It is good to hear that in the southern regions, human capital
has surpassed the “U-shaped” threshold, promoting green growth. In contrast, however,
human capital in northern China negatively impacts green growth. There is a significant
U-shaped relationship between human capital and green growth in the eastern and western
regions while the U-shaped relationship between the two in the central region is not
significant. In the eastern regions, the current level of human capital is closer to the U-
shaped inflection point. That is, when human capital level continues to improve, It will
soon have a positive impact on green growth. But the human capital level in the western
region still cannot reach the U-shaped threshold, which currently inhibits green growth.
From the perspective of urban scale, the human capital of large cities has exceeded the
U-shaped inflection point and played a role in promoting green growth; the human capital
of small and medium-sized cities is still far from the U-shaped inflection point, which has a
restraining effect on green growth. The level of urban scale development will accelerate the
threshold crossing between HC and GG, and promote the positive correlation effect of HC
on GG.

5.2. Policy Implications

Based on these findings, we provide the following relevant policy implications:

(1) Developing economies should pay full attention to the important value of education
investment and talent cultivation in green transformation. Decision makers should
regularly and dynamically assess human capital stock, accurately estimate human
capital, and classify different talent development levels in various regions. They then
can formulate matching talent development strategies and industrial policies to help
improve human capital development levels and promote green growth.

(2) Companies (especially environmentally sensitive companies) should work hard to
shape a corporate culture centred on knowledge management, green innovation, and
people-orientation. They should spare no effort to build a talent echelon, greatly
enhance the training of employees’ skills, give full play to talents’ subjective initiative,
motivate employees’ innovative practices, and realize the marginal incremental ef-
fect of human capital on companies’ GTFP, promoting the transformation of green
innovation achievements and industrial upgrading.

(3) Urban governance authorities in northern, central and western regions and small
and medium-sized cities should rationally recognize the current shortcomings of HC
development. On the one hand, they should increase the ratio of education expen-
diture in public expenditure, and gradually improve local population’s education
and skill level, so as to promote human capital development to a high level. On
the other hand, given the location characteristics and resource endowments, they
should actively explore the talent introduction policy for sustainable development and
improve the supporting software and hardware infrastructure to attract top talents
and value conversion. By adopting these measures, they can gradually use top talents
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to promote local green growth so as to narrow the regional gap of green growth with
the eastern, southern regions and large cities.

5.3. Limitations of This Paper

The deficiency of the paper is that it fails to further distinguish human capital into
academic education and skill education. In the future, we can do more detailed research on
the impact of different types of education and different levels of HC on GG.
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Appendix A

Table A1. Full term and the abbreviations.

Number Full Term Abbreviation Number Full Term Abbreviation

1 Green economic efficiency GEE 12 Years of education HC1
2 green growth GG 13 carbon dioxide emissions CO2
3 Human capital HC 14 green total factor productivity GTFP
4 Green innovation GIN 15 sulfur dioxide SO2
5 Industrial upgrading IU 16 total factor productivity TFP
6 Free trade zone FTA 17 data envelopment analysis DEA
7 Level of economic development LED 18 non-radial direction distance function NDDF
8 Government intervention GI 19 machine learning ML
9 City scale CS 20 Shephard distance function SDF

10 Foreign direct investment FDI 21 directional distance function DDF
11 Fiscal decentralization FD

Appendix B

Table A2. The parameter values based on LightGBM machine learning algorithm.

Parameter Parameter Value

Training time 0.219 s
Data segmentation 0.8

Data shuffle Yes
Base learner GBDT

Base learner number 130
Learning rate 0.1

L1 regular term 0
L2 regular term 1

Sample sign sampling rate 1
Tree feature sampling rate 1

Maximum depth of tree 10
Leaf node minimum sample 15
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Abstract: In the era of digital economy and mobile internet, many platforms or brands have built
various online or offline green communities to guide customers or fans to engage in green interactions.
Obviously, community green interaction can enhance brand emotional value and enhance customer
stickiness, but whether community green interaction can further have a spillover effect on related
or other green purchase behaviors has become an important topic for the theoretical and practical
departments. This paper selects the “Little Bear Fuel Consumption Community” as the research
object. Based on the theoretical framework of “Green Interaction—Environmental Emotion—Related
Green Purchasing Behavior”, this paper examines the spillover effect and impact mechanism of
community green interaction on consumers’ related green purchasing behavior. This paper uses
a structural equation model and bootstrapping method to test the causal relationship between
variables. This study lasted for 6 months, and a total of 348 valid questionnaires were collected
in this study. We used SPSS 25 and AMOS 24 for data analysis. The results showed that the
two dimensions of community green interaction (community green information interaction and
community green interpersonal interaction) have a positive spillover effect on consumers’ related
green purchase behavior; community green interaction can positively spill over to consumers’ related
green purchase behavior through the psychological path of environmental emotion; community
green information interaction and community green interpersonal interaction have positive effects
on consumers’ positive and negative environmental emotions; positive and negative environmental
emotions positively affect consumers’ related green purchase behavior; and in the two paths of
community green information interaction—related green purchase behavior and community green
interpersonal interaction—related green purchase behavior, both positive environmental emotion
and negative environmental emotion play a role of partial mediation; product involvement has a
negative moderating effect on the path of “community green interaction—environmental emotion”.
This paper opens the “black box” of the diffusion mechanism of community green interaction and
provides a new explanatory framework for the spillover effect of community green interaction on
related green purchase behavior.

Keywords: community green interaction; environmental emotion; related green purchase behavior;
spillover effect; social diffusion mechanism

1. Introduction

In the era of digital economy and mobile Internet, many platforms or brands have built
diverse communities. In the traditional brand community, consumers or users often interact
on products, services, and industries. Studies have confirmed that community interaction
can improve consumers’ loyalty, satisfaction [1–3], product purchase intention [4], value co-
creation [5], and product innovation behavior [6]. With the development of the industry and
the increasing attention of enterprises to green environmental protection, more and more
enterprises begin to build a brand green community. For example, Patagonia has launched
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Patagonia Action Works, a digital platform de-signed to connect environmental volunteers
with environmental activists. The platform is similar to an “online social networking site”.
After entering the platform, users can enter the name of their area, and then search for
corresponding environmental protection organizations based on different information,
such as land, water, climate, community, biodiversity, and species protection. In the brand
green community, consumers often interact on the topics of resource conservation, green
products, green industry exhibitions, and so on. With the development of mobile Internet
technology, there are more and more cases in which consumers pay attention to and share
green consumption information on brand green community or other social media platforms,
so as to drive more people to participate in the follow-up related green purchase behavior.
However, at present, such community green interaction and its influence have not been
paid enough attention in the academic circles. Obviously, community green interaction
can enhance brand emotional value and enhance customer stickiness, but will this kind
of community green interaction make consumers’ subsequent or other related purchase
behavior “greener”? This is a topic worthy of attention and discussion.

The relationship between community green interaction and associated green purchase
behavior belongs to the research category of spillover effect. Research on behavior spillover
effect focuses on the causal relationship between consumers’ previous and subsequent
behaviors, that is, the impact of initial behavior on subsequent behavior. For example,
residents tend to buy more green products in subsequent consumption after garbage clas-
sification. Studies have proved that water saving, electricity-saving behavior, residents’
recycling, reducing the use of hotel towels, reducing fuel consumption, and recycling
packaging bags have affected consumers’ subsequent environmental behavior [7–10], and
even have affected consumers’ support for some environmental policies [11–14]. However,
most research is limited to the study of some behaviors that consumers can complete
independently, such as water saving, waste classification, etc.; behaviors that need to inter-
act with others, such as community interaction, have not received extensive attention at
present. In addition, most studies related to spillover effects focus on two directly related
behaviors of consumers (such as waste recycling behavior and energy-saving behavior)
and lack of exploration on the spillover effects and their mechanism between green in-
teraction and related green behaviors. Based on the theoretical perspectives of spillover
effect and social diffusion, this study aims to explore the following four issues: (1) the
direction of the spillover effect of community green interaction on related green purchase
behavior. That is, after participating in community green interaction, do consumers prefer
to make subsequent green purchases or are they more reluctant to make subsequent green
purchases? (2) The strength of the spillover effect of community green interaction on
related green purchase behavior. That is, the impact of consumers’ participation in com-
munity green interaction on consumers’ related green purchase behavior in their daily life.
(3) The diffusion mechanism of the spillover effect of community green interaction on
related green purchase behavior. That is, what is the mechanism of community green
interaction affecting related green purchase behavior? (4) The boundary condition of the
spillover effect of community green interaction on related green purchase behavior. That is,
under what conditions does the spillover effect of community green interaction on related
green purchase behavior hold?

The structure of the rest of this paper is as following: Section 2 is theoretical basis and
research model; Section 3 is about research methods and sample analysis, which contains
participants, instrument, data collection and description, reliability and validity test, and
common method deviation test; Section 4 is data analysis and empirical results (including
model fitness and path coefficient test, test of mediating effect of environmental emotion,
and test of moderating effect of product involvement); Section 5 is discussion; and the final
section, Section 6, is conclusions, which includes theoretical contributions, management
implications, research limitations, and future prospects.
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2. Theoretical Basis and Research Model
2.1. Theoretical Basis
2.1.1. Spillover Effect Theory

Scholars have defined the spillover effect in environmental problems as the impact
of participating in a behavior on the probability of subsequent behavior. Existing studies
mainly divide spillover effects into behavior spillover, time spillover, and environment
spillover. Behavior spillover refers to behavior A leading to behavior B, which is the
most common type of spillover in previous studies [15,16]. Time spillover focuses on
how to formulate a behavior conducive to the environment to affect the frequency of the
same behavior in the future, that is, how a behavior changes with the change of time or
environment [17]. Environmental spillovers focus on how specific behaviors spread across
the environment [18,19]. From the perspective of results, spillover effects can be divided
into positive spillover and negative spillover. Positive spillover means that participating in
the first behavior will increase the possibility of participating in the second behavior. For
example, Xu et al. confirmed that recycling has a positive spillover effect on consumers’
green consumption [20]. Negative spillover effect means that participating in the first
behavior will reduce the possibility of participating in the second behavior [16]. For
example, the laboratory experimental results of Chatelain et al. (2018) support negative
spillovers between residents’ private environmental protection behaviors [21]. Ma et al.
found that after consumers are forced to make pro environmental behavior, they will later
make behavior that destroys the environment [22].

2.1.2. The Theory of Cognitive Dissonance

The theory of cognitive dissonance was put forward by Fistinger in 1957. This theory
holds that the individual’s cognitive structure is composed of many cognitive elements,
such as thought, concept, attitude, own behavior, and so on. If there is disharmony or
conflict between cognitive elements, cognitive imbalance will occur, which will make
individuals feel uncomfortable. In order to eliminate such negative psychological state,
individuals have three means: choose to change one of the elements to maintain cognitive
consistency; add new cognition; or emphasize the importance of one of them [23]. The the-
ory of cognitive dissonance can be used to explain the generation of positive spillover effect.
From the perspective of cognitive dissonance, the spillover effect of positive green behavior
occurs because people want to avoid the unpleasant feeling of inconsistent performance
between different pro environmental behaviors.

2.1.3. Self-Perception Theory

Self-perception can mainly be used to explain the impact of behavior on self-cognition.
When people form evaluation cognition (such as attitude, norms, and values), they will take
their own behavior as a clue [24], that is, people will understand their attitude, emotion and
psychological state according to their own behavior and the situation in which the behavior
occurs. A key point of self-perception theory is that behavior comes before attitude, that is,
there is behavior first, then emotion, and then further cognition [25]. This theory can be
used to explain the spillover effect of pro-environmental behavior. After making behaviors
related to environmental protection, consumers will further judge their attitude towards
environmental protection, so they are more likely to engage in pro environmental behaviors
consistent with their self-perception in subsequent behaviors.

2.1.4. Social Diffusion Theory

Social diffusion theory originates from innovation diffusion theory, which originally
refers to the process in which new technologies and products diffuse from innovation
providers to social systems over time and are gradually applied or accepted by potential
adopters [26]. With the passage of time, the innovation diffusion theory is not only limited
to the fields of new technologies and new products, but also gradually applied to the fields
of policy innovation diffusion and consumption behavior innovation diffusion [27]. In the
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era of digital economy and mobile Internet, with the help of mobile Internet technology,
innovative consumption concepts and behavior patterns quickly penetrate through brand
communities or other social media platforms, reflecting the “diffusion effect” and “herding
effect” in the field of consumption, which shows that consumers influence their purchase
decisions by observing others’ consumption behavior and learning online interactive
information [28].

2.1.5. Research Framework

At present, there are few studies on community interaction in the field of green con-
sumption. However, it is found that “interaction-psychological change-response” is a
research framework suitable for community interaction. Based on the research frame-
work of “customer interaction—customer emotion—post purchase satisfaction”, Jing et al.
explored the influence mechanism of customer interaction on consumers’ post purchase
satisfaction [29]. Based on the path of “customer interaction-self-determination-community
satisfaction”, Wang et al. analyzed the role of self-determination in customer interaction and
community satisfaction [30]. Therefore, this study adopts the framework of “interaction-
psychological change- response” for the construction of theoretical model.

2.2. Literature Review and Research Hypothesis
2.2.1. Community Green Interaction

Community interaction mainly refers to the communication among community indi-
viduals [31]. Interaction is essentially the exchange of information between communicating
individuals [32], and the community is the platform for consumers to communicate and in-
teract. Community interaction enables consumers to establish contact with other members
of the community, and makes consumers’ understanding of products more comprehensive
and three-dimensional through continuous communication and exchange [33]. Nowa-
days, with the upgrading of green consumption, more and more communities take green
environmental protection as their interactive content. To sum up, this study proposes
that community green interaction mainly refers to the interaction of community members
around resources saving and environmental protection. Previous studies confirmed that
community interaction can affect consumers’ purchase intention, purchase decision, pur-
chase behavior, and repeated purchase intention [4,33–35]. Compared with the traditional
community interaction, community green interaction pays more attention to environmental
protection, showing the characteristics of pro-environment and pro-society, so it may be
closely related to consumers’ related green purchase behavior. Combined with previous
studies on the impact of community interaction on consumers, this study believes that
community green interaction may spill over to consumers’ related green purchase behavior.

2.2.2. Dimension of Community Green Interaction

Scholars have proposed a variety of ways to divide the dimensions of community
interaction from different perspectives. Based on the starting point of community green
interaction, this study believes that members participate in green interaction mainly for
two purposes: one is to obtain professional information related to green products, the
use of green products, and the recent development of green industry; the second is to
establish emotional contact with other members of the community through interaction.
Therefore, referring to the division method of Jing et al. (2013), this study divides the
community green interaction into two dimensions: green information interaction and green
interpersonal interaction [29]. Green information interaction is an interaction based on
the topic of enterprise green products and industries; green interpersonal interaction is an
interaction based on the topics of resource conservation, environmental protection, and
daily life, and it mainly focuses on interpersonal communication and exchange among
members, rather than professional green information sharing and discussion.
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2.2.3. Spillover Effect of Community Green Interaction on Consumers’ Related Green
Purchase Behavior

First of all, after participating in the community green information interaction, on the
one hand, consumers can obtain professional information about green products, industries,
energy conservation, and environmental protection; on the other hand, they can share their
own green information with other members of the community. In the process of constantly
exchanging information, consumers’ green cognition will be continuously improved and
strengthened. After participating in the green interpersonal interaction of the community,
consumers have established a close relationship with other members, and their attitudes
and concepts on environmental protection will be more vulnerable to the influence of
other members. To sum up, participating in community green interaction (information
interaction and interpersonal interaction) will improve consumers’ cognition and attitude.
Further, according to the theory of cognitive dissonance, perceived inconsistencies between
cognitive or behavioral elements will lead to uncomfortable feelings [36]. This discomfort,
in turn, stimulates dysregulation reduction strategies, such as behavior change, or the
balance of the two behaviors [37]. Therefore, in order to maintain cognitive consistency
and avoid the unhappiness caused by cognitive imbalance, consumers participating in
community green interaction will be more inclined to related green purchase behavior,
that is, community green interaction has a positive spillover on consumers’ related green
purchase behavior.

Secondly, according to self-perception theory, people will know themselves according
to their behavior and the situation in which the behavior occurs. As the theme of com-
munity green interaction is to protect the environment and reduce resource waste, it can
be regarded as a pro environmental behavior to a certain extent. After consumers com-
municate and discuss in the green community, they will have environmental self-identity.
Environmental self-identity refers to the degree to which individuals regard themselves
as environmentalists. Individuals with strong environmental self-identity are more likely
to save resources and reduce waste generation [38]. In other words, after participating
in the community green interaction, consumers will have the self-cognition of “I am an
environmental protection person” and “I am a green consumer”, and think that they have
the responsibility to protect the environment and save resources, so as to match their own
behavior with their own environmental protection identity, and they are more likely to
carry out related green purchase behavior in the future.

Finally, consumers’ participation in community green interaction is often regarded
as spontaneous behavior. According to attribution theory, if individuals attribute the
initial behavior to internal causes, it is more likely to produce positive spillover. That is,
consumers will regard green interactive behavior as something they take the initiative to do,
rather than due to the promotion of the external environment. Therefore, compared with
negative spillover, community green interaction is more likely to have positive spillover
on subsequent related green purchase behavior. To sum up, this study puts forward the
following hypotheses:

H1a. Community green information interaction has a positive spillover effect on consumers’ related
green purchase behavior.

H1b. Community green interpersonal interaction has a positive spillover effect on consumers’
related green purchase behavior.

2.2.4. Community Green Interaction and Environmental Emotion

Environmental emotion refers to people’s sensitivity to the significance of saving
resources and protecting the environment, the waste of resources and the pollution of the
environment, or the emotion expressed by people when participating in environmental
protection actions and the subsequent attitude experience [39]. Wang (2015) explored the
structural dimension of environmental emotion through qualitative research and found that
environmental emotion is divided into positive dimension and negative dimension [40].
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Specifically, positive environmental emotion refers to the feelings of pleasure, pride, ap-
proval, and love for the improvement of environmental problems or the implementation
of better environmental behaviors, while negative environmental emotion refers to the
feelings of guilt, worry, anger, and hatred for the deterioration of environmental problems
or the implementation of worse environmental behaviors.

This study argues that participating in community green interaction can improve
consumers’ environmental emotion. First, community green information interaction can
effectively improve consumers’ green cognition. Community green information interaction
can enable consumers to have more professional environmental knowledge, such as which
products are more beneficial to the environment and which behaviors can lead to better
resource saving. Meanwhile, community green information interaction can also make con-
sumers have strong environmental awareness and have high sensitivity to environmental
issues. According to the “cognition-emotion-behavior” model in psychology, cognition is
the antecedent variable of emotion, and individual cognition of external things and stimuli
produces related emotions [39,41,42]. The level of green cognition can be improved through
community green information interaction, and then the environmental emotion will be
further enhanced. Therefore, consumers will have a stronger sense of pleasure (approval)
for their (others’) good environmental behavior, that is, they have a strong positive envi-
ronmental emotion; conversely, consumers will have a strong sense of guilt (worrying)
about their (others’) bad environmental behavior, that is, they have a strong negative
environmental emotion. Accordingly, this study puts forward the following hypotheses:

H2a. Community green information interaction positively affects the positive environmental
emotion of community members.

H2b. Community green information interaction positively affects the negative environmental
emotion of community members.

Secondly, compared with the cognitive improvement brought by community green
information interaction, participating in community green interpersonal interaction will
affect consumers’ attitudes and concepts to a greater extent, and then improve environmen-
tal emotion. Social identity theory holds that when an individual realizes that he belongs to
a specific social group, he will also realize the emotional and value significance brought to
him as a group member. The awareness of belonging to a certain group strongly affects our
perception, attitude, and behavior, and we endow ourselves with the characteristics in line
with the group [43]. Community green interpersonal interaction can enhance the mutual
trust and intimacy of community members [30,44], and make community members gain a
sense of identity [45] and belonging. After having a sense of identity with the community,
consumers’ attitudes and emotions are more likely to be affected by the green values of
the community, and then have stronger environmental emotions. Therefore, participat-
ing in community green interpersonal interaction makes consumers have higher positive
environmental emotion and negative environmental emotion.

H3a. Community green interpersonal interaction positively affects the positive environmental
emotion of community members.

H3b. Community green interpersonal interaction positively affects the negative environmental
emotion of community members.

2.2.5. The Mediating Role of Consumers’ Environmental Emotion

Different from emotion, environmental emotion is a lasting and stable emotion, so the
same consumer can have positive and negative environmental emotion at the same time,
which can change consumers’ purchase behavior to a certain extent [46,47]. Wang (2015)
verified that the two dimensions of environmental emotion (positive emotion and negative
emotion) have a positive impact on consumers’ low-carbon purchase behavior [40]. Koenig-
Lewis et al. (2014) showed that positive environmental emotion and negative environmental

198



Int. J. Environ. Res. Public Health 2022, 19, 6571

emotion play a complete mediating role in the impact of cognitive benefits on purchase
behavior [48]. He et al. (2013) found that green emotion plays a mediating role in the path
of green cognition affecting consumer behavior [39]. To sum up, this study infers that the
two dimensions of environmental emotion (positive emotion and negative emotion) can pos-
itively affect consumers’ related green purchase behavior. Combined with the impact of
community green interaction on environmental emotion, this study believes that environmen-
tal emotion plays a mediating role between community green interaction and related green
purchase behavior. Therefore, this study puts forward the following hypotheses:

H4a. Positive environmental emotion plays a mediating role between community green information
interaction and consumers’ related green purchase behavior.

H4b. Positive environmental emotion plays a mediating role between community green interper-
sonal interaction and consumers’ related green purchase behavior.

H4c. Negative environmental emotion plays a mediating role between community green information
interaction and consumers’ related green purchase behavior.

H4d. Negative environmental emotion plays a mediating role between community green interper-
sonal interaction and consumers’ related green purchase behavior.

2.2.6. Moderating Effect of Product Involvement

Product involvement mainly explores the subjective psychological state of consumers
according to their understanding of products. Product involvement will have an impact on
consumers’ information collection and processing behavior. According to the possibility
model of fine processing, using different information processing paths (edge path vs.
central path) will affect consumers’ decision-making. Consumers with higher product
involvement tend to choose the central path to process information. At this time, they
will pay more cognitive efforts and pay more attention to the gains and losses brought by
green consumption and its impact on society. Consumers with low product involvement
tend to choose the edge path to process information, and consumers pay more attention
to the feelings related to green consumption, such as pride, appreciation, guilt, contempt,
and so on. Therefore, this study argues that community green interaction can better
cause environmental emotional changes of consumers with low product involvement. In
comparison, since consumers with high product involvement focus on what knowledge
information interaction can bring, community information interaction has a low promotion
effect on environmental emotion. In addition, community interpersonal interaction cannot
bring consumers with high product involvement the information they want to obtain, so
its impact on environmental emotion is also small. Therefore, this study puts forward the
following hypotheses:

H5a. Product involvement plays a negative moderating role between community green information
interaction and positive environmental emotion.

H5b. Product involvement plays a negative moderating role between community green interpersonal
interaction and positive environmental emotion.

H5c. Product involvement plays a negative moderating role between community green information
interaction and negative environmental emotion.

H5d. Product involvement plays a negative moderating role between community green interpersonal
interaction and negative environmental emotion.

2.3. The Research Model

To sum up, based on the theoretical perspectives of spillover effect, self-perception,
behavioral attribution, and social diffusion, this study takes community green interaction
as the starting point and pays attention to whether it will have behavioral spillover effect
on consumers’ related green purchase behavior. According to the characteristics of com-
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munity green interaction, community green interaction is divided into green information
interaction and green interpersonal interaction as antecedent variables. Consumers’ posi-
tive environmental emotion and negative environmental emotion are taken as mediating
variables to explain consumers’ psychological changes. Consumers’ related green purchase
behavior is regarded as the outcome variable reflecting consumers’ response. This study
constructs a theoretical framework of community green interaction (information interaction
and interpersonal interaction)—environmental emotion (positive environmental emotion
and negative environmental emotion)—related green purchase behavior. The hypothetical
model examined in this study is shown in Figure 1.
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Figure 1. Hypothetical model of spillover effect of community green interaction.

3. Research Methods and Sample Analysis
3.1. Sample Selection

Considering the typicality of community green interaction, this study selects all con-
sumers who have joined “little bear fuel consumption community” as the research sample.
Little bear fuel consumption APP is a kind of vehicle fuel consumption calculation tool,
which can accurately assist users in calculating single fuel consumption and average fuel
consumption, and make statistics on single month fuel cost and average fuel cost, so as
to help users save fuel and money and reduce emission. Users can join the little bear fuel
consumption community and participate in interaction, share fuel saving information and
daily environmental protection behaviors in the community. The samples we selected are
all consumers who have joined the bear fuel consumption community for a period of time
and have had community interaction experience.

3.2. Measurement

This study used a questionnaire to measure the construct, and the questionnaire
consisted of three parts. In the first part, we inform the respondents that this survey is
completely anonymous, the information will not be leaked, and the results are only used
for academic research. At the same time, we emphasize that this questionnaire is only for
members who participate in the green interaction of the bear fuel consumption community.
The second part is the scale that measures the construct. The scales used in this study were
all seven-point Likert scales, and the measurement items were adapted from the scales
of previous studies and adjusted according to Chinese semantics. The measurement of
community green information interaction and community green interpersonal interaction
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refers to the relevant scale of Nambisan and Baron [49], and five measurement items
are selected for measuring these constructs respectively; the measurement of positive
environmental emotion and negative environmental emotion refers to the research of
Steenkamp [50], and six items are selected, respectively. The related green purchase
behavior in this study is not limited to the automobile industry, but extended to other
consumption fields based on the spillover effect theory. And combined with the scale of
existing literature, a total of six items are designed. Product involvement was modified
by referring to the scale of Laurent and Kapferer [51]. After the expert group discussion
and the data from pre investigation, a formal research scale was finally formed. The
items were all on Likert seven scale, “1” means totally disagree, “7” means totally agree.
The specific measurement items are shown in Table 1. The third part is the collection of
basic information on participants, including demographic variables such as gender, age,
education, etc.

Table 1. Measurement items of the scale and results of confirmatory factor analysis.

Latent
Variable Item Standardized

Factor

1 Community green
information interaction

I will discuss fuel consumption records in the community 0.722
I will discuss how to save fuel consumption in the community 0.807

I will exchange information about cars with low consumption in the community 0.776
I will exchange information about new energy vehicles in the community 0.878

I will exchange the trend of the automobile industry in the community 0.756

2 Community green
interpersonal interaction

I will discuss environmental behavior in the community 0.669
I will discuss oil price information in the community 0.731

I will discuss daily traffic conditions in the community 0.705
I think members of the community and I trust each other 0.859

I think I have established a friendship with members of the community 0.789

3 Positive
environmental emotion

I feel happy to contribute to environmental protection by getting information
on fuel conservation 0.735

I feel happy to get information about environmental protection and contribute to
environmental protection. 0.656

I feel happy that I can contribute to environmental protection by practicing
environmental behavior every day. 0.693

I commend my members for saving fuel consumption and contributing to
environmental protection 0.797

I commend members for their contribution to environmental protection by using
environmentally friendly car accessories 0.664

I applaud the members for their daily practice of environmental protection 0.762

4 Negative
environmental emotion

I feel guilty for not saving fuel consumption and causing harm to the environment 0.735
I feel guilty for using resource consuming auto parts to destroy the environment 0.854

I feel guilty for the harm caused by my daily environmental damage 0.780
I am worried that non community members do not save fuel consumption

and do harm to the environment 0.805

I’m worried that non community members use consumable
accessories to damage the environment 0.728

I am worried about the harm caused by environmental damage
by non-members of the community 0.714

5 Related green
purchase
behavior

I’m willing to buy a car with less fuel consumption 0.711
I am willing to buy new energy vehicles 0.835

I am willing to buy environmental protection products in my daily life 0.879
I would like to recommend my friends to buy cars with

less fuel consumption consumption 0.687

I would like to recommend my relatives and friends to buy new energy vehicles 0.653
I would like to recommend relatives and friends to buy

environmental protection products in daily life 0.806

6 Product
involvement

I will spend time learning about the cars I buy 0.880
Information about cars in community interaction is what I need 0.823

The information about cars in community interaction is valuable to me 0.736
The information about saving fuel consumption in community interaction is what I need 0.805

3.3. Data Collection and Description

Before the formal experiment, an online pre investigation was conducted on the
members of the little bear fuel consumption community. A total of 100 questionnaires
were distributed, 13 invalid questionnaires were deleted, and 87 valid questionnaires
were obtained. The pre investigation results showed that the scale used to measure each
construct has good reliability and validity. In the formal survey, the questionnaire was
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distributed to the members of the community. We have distributed online questionnaires on
the Questionnaire Star online platform (https://www.wjx.cn/, accessed on 15 April 2022),
which can restrict IP access and prevent respondents from repeating the questionnaire. The
questionnaire was shared to the community through WeChat, QQ and other software or
filled in by individuals. Participants can open the online questionnaire by clicking a link
via mobile devices and terminate or quit at any time when filling in the questionnaire. The
samples we selected are all members of the bear fuel consumption community and have
had experience in participating in community interactions.

The different communities have been established in the little bear fuel consumption
community according to different models, and car owners can interact with others for their
models in the community. The small number of people in the community of some unpop-
ular models leads to a poor interactive atmosphere. Therefore, after market research, we
selected the 20 most popular models on the market and distributed questionnaires in the cor-
responding groups. From June to July 2020, we observed members in 20 communities and
recorded members who had a record of interacting within the group (a total of 1328 people
participated in the interaction). We excluded samples with fewer than two interactions or
low participation (e.g., members with very few words spoken), resulting in a final sample
of 954. We contacted the above-mentioned members and distributed questionnaires, which
they filled out voluntarily. We ensured that a minimum of 20 samples (About 40–50% of
the total community) were collected for each community. Therefore, our sample can better
represent consumers who participate in the interaction of the little bear fuel consumption
community. A total of 400 questionnaires were recovered, we eliminated the questionnaires
with too short or too long answering time, and eliminated the questionnaires with too
many choices of the same option. In the end, 348 valid questionnaires were obtained, with
an effective rate of 87%. Our sample size accounts for 36.4% of the active users of the bear
fuel consumption active community. From a data analysis point of view, the sample size
required to use the structural equation model is 10–15 times the measurement indicators
of the questionnaire. In this study, our measurement index is 31, and the sample size of
348 is sufficient. The descriptive statistics of samples are shown in Table 2. The proportion
of men in the total sample was 63.8%, which was attributed to the fact that more men
used cars than women. The number of community members aged 25–34 is the largest,
mainly because these people are relatively young and willing to interact with others on
the community platform. Our sampling mainly covered the central and eastern regions
of China (this is the region with relatively developed economy and green development
in China), and consumers in these regions are also most likely to engage in community
green interactions. Therefore, our samples can better represent consumers who engage in
community green interaction in China.

3.4. Reliability and Validity Test
3.4.1. Reliability Test

As shown in Table 3, the coefficients Cronbach’s α of each scale ranged from 0.866 to
0.896, all higher than 0.7, indicating that the scale has good reliability.

3.4.2. Content Validity

This study mainly draws on the more mature scales in the literature, which are modified
according to the results of expert and group discussion, combined with the research object,
background, and purpose, so the scale of this study has good content validity.

3.4.3. Convergent Validity

Using AMOS 24.0 for confirmatory factor analysis, the following test results are

obtained: absolute fitness index χ2

d f = 1.178 < 3, RMSEA = 0.023, GFI = 0.915, AGFI = 0.900.
value-added fitness index NFI = 0.921, TLI = 0.986, CFI = 0.987, indicating that the fitness
of the model is good. As shown in Table 2, the standardization factor loadings of each
measurement item on its corresponding latent variable are between 0.65–0.882. As shown
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in Table 3, the average variance extracted (AVE) of each latent variable is greater than 0.5,
and the combined reliability (CR) is greater than 0.8. The above indicators show that the
scale of this study has good convergent validity.

Table 2. Descriptive statistics of samples.

Demographics Category Number Percentage

Gender
Male 222 63.8%

Female 126 36.2%

Age

19–24 years old 89 25.6%
25–34 years old 144 41.4%
35–44 years old 72 20.7%
45–55 years old 24 6.9%

Over 55 years old 19 5.5%

Education

Junior school or below 19 5.5%
Senior school or

technical secondary school 28 8.0%

College or vocational school 105 30.2%
Undergraduate 152 43.7%

Postgraduate and above 44 12.6%

Monthly income

Below 3500 yuan 74 21.3%
3501–5000 yuan 67 19.3%
5001–6500 yuan 81 23.3%
6501–8000 yuan 47 13.5%

Table 3. Analysis results of correlation coefficient, reliability and discriminant validity.

Latent Variable 1 2 3 4 5 6

1 Community green
information interaction 0.789

2 Community green
interpersonal interaction 0.319 0.754

3 Positive
environmental emotion 0.501 0.471 0.74

4 Negative
environmental emotion 0.471 0.442 0.546 0.77

5 Related green
purchase behavior 0.484 0.453 0.593 0.578 0.766

6 Product involvement 0.283 0.147 0.295 0.334 0.353 0.812
Cronbach’salpha 0.89 0.866 0.875 0.896 0.892 0.885
AVE 0.623 0.568 0.547 0.594 0.587 0.660
CR 0.892 0.867 0.878 0.897 0.894 0.886

Note: the diagonal value is the square root of AVE, and the lower left part is the Pearson correlation coefficient
between latent variables.

3.4.4. Discriminant Validity

As shown in Table 3, the square root of AVE value of each latent variable is greater
than the correlation coefficient between this latent variable and other latent variables,
indicating that each construct has both certain correlation and their own independence, so
the discriminant validity of the scale in this study is good.

3.5. Common Method Deviation Test

Since the scale is used to measure the construct in this study, there may be a problem
of common method deviation. We adopted a series of control procedures to reduce the
interference caused by common method deviation, such as emphasizing the anonymity of
this study, improving the items and order of the scale, etc. Referring to previous studies,
this paper uses two methods to test whether there is a common method deviation. Firstly,
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Harman single factor test was carried out by using SPSS 25 0 to make exploratory factor
analysis on each item. The results showed that the variance interpretation rate of the
first non-rotating factor was 33.554%, less than 50%, so there was no significant common
method deviation. Secondly, confirmatory factor analysis with common method factors
was conducted [52]. The confirmatory factor analysis model M1 and the confirmatory factor
analysis model M2 with common factors are constructed respectively, and the main fitness

indexes of the two models are compared: ∆ χ2

d f = 0.039, ∆RMSEA = 0.003, ∆TLI = 0.003,
∆CFI = 0.003, all less than 0.05, indicating that the model fitness degree has not been
significantly improved after adding the common method factor, so there is no significant
common method deviation problem [53].

4. Data Analysis and Empirical Results

SPSS 25.0 and AMOS 24.0 are used to analyze the data in this study. First, the structural
equation model includes both the path test model and the construct measurement model,
which can estimate the parameters in the model as a whole. This method is very suitable for
testing the relationship between multiple variables. In addition, the maximum likelihood
method is a commonly used parameter estimation method. Therefore, the structural
equation model is used in this study to test the relationship between variables, and the
parameter estimation method is the maximum likelihood method. Secondly, bootstrapping
uses the method of self-sampling to fit the probability distribution, which is suitable
for hypothesis testing with unknown probability distribution. Therefore, we use the
bootstrapping method to test the significance of the mediation effect value. Among them,
the mediating effect test is conducted using the percentile Bootstrap method with deviation
correction. The 95% confidence interval of the mediating effect value does not contain 0,
indicating that the mediating effect is significant; otherwise, it is not significant. Finally, for
the moderation effect test, the interaction term needs to be added to the regression model,
so we use SPSS 25.0 to test the moderation effect.

4.1. Model Fitness and Path Coefficient Test

In order to explore the relationship and mechanism among community green inter-
action, consumer environmental emotion and consumer related green purchase behavior,
AMOS 24.0 is used to test the data. The path test results and model fitness indicators
are shown in Table 4. It can be seen from the Table 4 that the absolute fitness index
χ2

d f = 1.248 < 3, RMSEA = 0.027 < 0.05, GFI = 0.921, AGFI = 0.906, which are all greater than
0.9. Value added fitness index NFI = 0.926, RFI = 0.918, TLI = 0.983, CFI = 0.984, which are
all greater than 0.9. Therefore, the fitness degree of the model is good.

It can be seen that green information interaction has a significant positive impact
on related green purchase behavior (β = 0.139, p = 0.009 < 0.05, C.R. = 2.631 > 1.96);
green interpersonal interaction has a significant positive impact on related green purchase
behavior (β =0.119, p = 0.019 < 0.05, C.R. = 2.336 > 1.96), indicating that Hypothesis H1a
and H1b passed the test. Green information interaction has a significant positive impact on
positive environmental emotion (β = 0.332, p = 0.000 < 0.05, C.R. = 6.561 > 1.96), and also has
a significant positive impact on negative environmental emotion (β = 0.349, p = 0.000 < 0.05,
C.R. = 6.253 > 1.96), indicating that H2a and H2b passed the test. Green interpersonal
interaction has a significant positive impact on positive environmental emotion (β = 0.292,
p = 0.000 < 0.05, C.R. = 5.945 > 1.96), and also has a significant positive impact on negative
environmental emotion (β = 0.306, p = 0.000 < 0.05, C.R. = 5.608 > 1.96), showing that H3a
and H3b are confirmed. Positive environmental emotion has a significant positive impact
on related green purchase behavior (β = 0.32, p = 0.000 < 0.05, C.R. = 4.466 > 1.96). Similarly,
negative environmental emotion has a significant positive impact on related green purchase
behavior (β = 0.278, p = 0.000 < 0.05, C.R. = 4.557 > 1.96), indicating that H4a, H4b, H4c,
H4d are partially supported.
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Table 4. Path test results and model fitness indicators.

Path
Non-

Standardized
Coefficient

Standardized
Coefficient S.E. C.R. P

Community green information interaction→
Positive environmental emotion 0.332 0.398 0.051 6.561 ***

Community green information interaction→
Negative environmental emotion 0.349 0.377 0.056 6.253 ***

Community green interpersonal interaction→
Positive environmental emotion 0.292 0.356 0.049 5.945 ***

Community green interpersonal interaction→
Negative environmental emotion 0.306 0.335 0.054 5.608 ***

Community green information interaction→
Related green purchase behavior 0.139 0.157 0.053 2.631 0.009

Community green interpersonal interaction→
Related green purchase behavior 0.119 0.136 0.051 2.336 0.019

Positive environmental emotion→
Related green purchase behavior 0.32 0.302 0.072 4.466 ***

Negative environmental emotion→
Related green purchase behavior 0.278 0.292 0.061 4.557 ***

χ2/d f RMSEA GFI AGFI NFI IFI TLI CFI
1.248 0.027 0.921 0.906 0.926 0.984 0.983 0.984

Note: *** p < 0.001.

4.2. Test of Mediating Effect of Environmental Emotion

In order to further test the mediating effect of positive environmental emotion and
negative environmental emotion, this study adopted the Bootstrap mediating effect test
method proposed by Preacher and Hayes [54] and adopted the Bias-corrected percentile
Bootstrap method according to Fang et al. [55], using AMOS 24.0 for repeated sampling
5000 times to calculate the 95% confidence interval of the mediating effect.

As Table 5 shows, positive environmental emotion and negative environmental emo-
tion play a mediating role in the impact of community green information interaction on
related green purchase behavior. Among them, the mediation effect value of positive
environmental emotion is 0.106, with the confidence interval being [0.057,0.175], excluding
0, indicating that the mediating effect is significant, and H4a is confirmed. The mediating
effect value of negative environmental emotion is 0.097, with the confidence interval being
[0.054,0.159], excluding 0, indicating that the mediating effect is significant, and H4b is
confirmed. It can be seen from Table 4 that the direct effect of community green information
interaction on related green purchase behavior is significant, accounting for 40.64%, while
the mediating effect of positive environmental emotion and negative environmental emo-
tion accounts for 30.99% and 28.36%, respectively. Therefore, both positive environmental
emotion and negative environmental emotion play a partial mediating role in the path of
community green information interaction-related green purchase behavior.

In the impact of community green interpersonal interaction on related green purchase
behavior, positive environmental emotion, and negative environmental emotion also play
a mediating role. Among them, the mediating effect value of positive environmental
emotion is 0.094, with the confidence interval being [0.047,0.16], excluding 0, indicating
that the mediating effect is significant, and H4c is confirmed. The mediating effect value of
negative environmental emotion is 0.085, with the confidence interval being [0.043,0.144],
excluding 0, indicating that the mediating effect is significant, and H4d is confirmed.
Similarly, the direct effect of community green interpersonal interaction on related green
purchase behavior is significant, accounting for 39.93%, while the mediating effect of
positive environmental emotion accounted for 31.54%, and the mediating effect of negative
environmental emotion accounted for 28.52%. Therefore, both positive environmental
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emotion and negative environmental emotion play a partial mediating role in the path of
community green interpersonal interaction-related green purchase behavior.

Table 5. Mediating effect test by Bootstrap method.

Path Mediator Effect
Value

SE
Bias-Corrected 95%CI

Lower Upper p

Community green
information
interaction—
related green

purchase behavior

Positive
environmental

emotion
0.106 0.029 0.057 0.175 ***

Negative
environmental

emotion
0.097 0.026 0.054 0.159 ***

Community green
interpersonal

interaction
—related green

purchase behavior

Positive
environmental

emotion
0.094 0.028 0.047 0.16 ***

Negative
environmental

emotion
0.085 0.025 0.043 0.144 ***

Note: *** p < 0.001.

4.3. Test of Moderating Effect of Product Involvement

This study uses SPSS 25.0 to verify the moderating effect of product involvement by
using multi-layer regression analysis method, and constructs Models 1 to 6. The results are
shown in Table 6.

Firstly, the moderating effect of product involvement on the path of “community
green interaction—positive environmental emotion” was examined. The results of Model 3
showed that community green information interaction and community green interpersonal
interaction have a significant positive impact on positive environmental emotion, and
the explanatory power of the model is improved (R2 is improved) after the interaction
item was added. The interaction coefficient of product involvement and community green
information interaction is −0.130 (p < 0.05), and the interaction coefficient of product
involvement and community green interpersonal interaction is −0.112 (p < 0.05), that is,
product involvement has a significant negative moderating effect between community
green interaction and positive environmental emotion (as shown in Figure 2), indicating
that H5a and H5b are supported.

Table 6. Moderating effect of product involvement.

Variable Positive Environmental Emotion Negative Environmental
Emotion

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

(Constant)
Gender 0.131 ** 0.131 ** 0.115 ** 0.192 *** 0.190 *** 0.171 ***

Age −0.047 −0.044 −0.064 0.056 0.062 0.036
Education 0.182 *** 0.173 *** 0.184 *** 0.183 *** 0.166 *** 0.174 ***

Community green
Information interaction 0.368 *** 0.346 *** 0.337 *** 0.351 *** 0.311 *** 0.295 ***

Community green
interpersonal

interaction
0.327 *** 0.320 *** 0.312 *** 0.327 *** 0.315 *** 0.309 ***

Product involvement 0.096 *** 0.096 * 0.175 *** 0.176 ***
Product involvement × Community green

information interaction −0.130 ** −0.200 ***

Product involvement × Community green
interpersonal interaction −0.112 * −0.097 *

R2 0.363 0.372 0.406 0.348 0.376 0.433
Adjusted R2 0.354 0.361 0.392 0.339 0.365 0.419

F value 39.011 33.624 28.997 36.534 34.307 32.321

Note: * p < 0.05; ** p < 0.01; *** p < 0.001.
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Figure 2. Moderating effect of product involvement. (a) Moderating effect of product involvement on
the path “green information interaction—positive environmental emotion”. (b) Moderating effect of
product involvement on the path “green interpersonal interaction—positive environmental emotion”.

Secondly, the moderating effect of product involvement on the path of “community
green interaction—negative environmental emotion” was examined. As shown in Model 6,
the explanatory power of the model is improved (R2 is improved) after the interaction item
was added. The interaction item coefficient of product involvement and community green
information interaction is −0.200 (p < 0.05), and the interaction item coefficient of product
involvement and community green interpersonal interaction is −0.097 (p < 0.05), which
shows that product involvement has a significant negative moderating effect on the path of
“community green interaction-negative environmental emotion” (as shown in Figure 3).
Thus, H5c and H5d are verified.
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Figure 3. Moderating effect of product involvement. (a) Moderating effect of product involve-
ment on the path “green information interaction—negative environmental emotion”. (b) Mod-
erating effect of product involvement on the path “green interpersonal interaction—negative
environmental emotion”.

This study further used the Johnson-Neyman method to make Floodlight Analysis
on the moderating effect. The results showed that in the path of “community green
information interaction-positive environmental emotion”, community green information
interaction has a significant impact on positive environmental emotion when the level of
product involvement is lower than 6.729. In the path of “community green information
interaction- negative environmental emotion”, community green information interaction
has a significant impact on negative environmental emotion when the level of product
involvement is lower than 6.189. In the path of “community interpersonal information
interaction-positive environmental emotion”, community green information interaction
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has a significant impact on positive environmental emotion when the level of product
involvement is lower than 6.912. In the path of “community green information interaction-
negative environmental emotion”, green information interaction has a significant impact on
negative environmental emotion when the level of product involvement is lower than 6.546.

5. Discussion

Based on cognitive dissonance theory, self-perception theory, and social diffusion the-
ory, combined with the research paradigm of “interaction-psychological change-response”,
this study puts forward the hypothesis model of “interaction-emotion-behavior” spillover
effect and empirically tests the applicability, explanatory power, and boundary conditions
of the spillover effect model of community green interaction on related green purchase
behavior. When consumers interact on the brand community or network platform, this
kind of community green interaction will drive more people to participate in green con-
sumption, that is, the influence of community green interaction in promoting the diffusion
of green consumption in the whole society is becoming increasingly prominent with the
dissemination and diffusion of green consumption information. This study analyzes the
phenomenon that community green interaction spills over to related green purchase behav-
ior and shows that consumers’ “former green” in one field can effectively drive the “latter
green” in other fields and even the “common green” in the whole field. This study also
reveals the generation mechanism and underlying causes of the spillover effect of com-
munity green interaction. The core idea of this study is that community green interaction
(consumers generate “first green “ in a certain field, which is the breakthrough) can bring
about the improvement of green cognition and community belonging, which will further
affect consumers’ environmental emotion. After consumers have higher environmental
emotion, they will be more inclined to carry out related green purchase behavior in their
daily life (that is, generate “latter green” in other fields and even “common green” in the
whole field). Community green interaction helps to improve consumers’ environmental
emotion and finally spills over to the follow-up or other green purchase behaviors in daily
life, which is the social diffusion mechanism of community green interaction. Our results
reveal several interesting phenomena as follows.

(1) Our research proves that community green interaction (including two dimensions
of community green information interaction and community green interpersonal interac-
tion) has a positive spillover effect on consumers’ related green purchase behavior. This
is in line with previous studies which argued that social interaction indeed influences
consumer buying behavior. Adjei et al. (2010) pointed out that online C2C communication
has positive influence on immediate purchase intentions, and the depth and breadth of
future purchase [34]. Jing and Yu (2020) found that online brand community interaction
significantly improves consumers’ purchase intention [35]. However, the purchase behavior
referred to in past research is a broad concept.

Our research further refines consumers’ purchasing behavior, focusing on consumers’
related green purchasing behavior. Further, we divide community green interaction into
two dimensions: community green information interaction and community green inter-
personal interaction. Our study demonstrates that both have positive spillover effects on
consumer-related green buying behavior. We believe that the reason for this spillover effect
is the improvement of cognition and identity based on community interaction. Community
green information interaction can effectively enhance consumers’ green awareness. While
community green interpersonal interaction can effectively enhance consumers’ sense of
identity and belonging.

Li (2011) believes that group identity will be generated after experiencing social
activities with common cultural atmosphere with members, interaction between members
and website, and then further contact activities [56]. To some extent, this also reflects
the idea of Bandura’s Social learning theory, that is, human behavior is the product of
the interaction of internal processes and external influences. Khare et al. (2021) found
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that online communities and celebrities significantly predicted green clothing purchase
behavior [57].

Liu and Liu (2020) showed that information interaction and interpersonal interaction
in virtual brand community have significant positive effects on impulse buying [58]. It
shows that community interaction does have an impact on consumer purchasing behavior.
We believe that if the theme of consumer interaction is related to environmental protection,
then it will help promote their green buying behavior. Therefore, how to effectively guide
consumers to engage in green community interaction is a key issue.

(2) Secondly, this study proves that community green interaction (two dimensions of
green information interaction and green interpersonal interaction) has a positive effect on
consumers’ environmental emotion (including positive environmental emotion and nega-
tive environmental emotion). This is because green information interaction can improve
consumers’ green cognitive level, and the improvement of cognition can enhance their
emotion. Previous research has proved that increased awareness increases consumer’s
environmental emotion [39]. Ye (2019) showed that the improvement of green awareness
can lead to the improvement of consumers’ green emotion [57]. The reason why community
interpersonal interaction can improve environmental emotion is that consumers have iden-
tity [45] and emotional belonging to their community after participating in interpersonal
interaction, which is more vulnerable to the influence of other members’ concept of green
environmental protection. Trust, identification and interaction factors in online communi-
ties can trigger consumers’ cognitive and emotional responses. Frequent communication
and interaction among members can mobilize consumers’ positive emotions and product
cognition [56]. The behavior of others can also become the reference of their own behavior,
and the environmental emotion has been enhanced imperceptibly. This shows that the
antecedent of environmental emotion is not only cognition, but also behavior, which is an
important supplement to the previous studies.

Secondly, both positive and negative environmental emotion positively affect con-
sumers’ related green purchase behavior, and positive environmental emotion has a
stronger impact on related green purchase behavior (βPath coefficient of positive environmental emotion
= 0.32 > βPath coefficient of negative environmental emotion = 0.278), which is consistent with the con-
clusions of previous studies [40,59]. Our study proves once again the applicability and
extensibility of the broaden-and-build theory of positive emotions proposed by Fredrick-
son [60] in the field of green consumption, that is, compared with negative emotions,
positive emotions are more helpful for individuals to make appropriate behavior choices.
This study argues that the reason may be that consumers will avoid negative environmental
emotion in order to maintain a positive self. Therefore, compared with positive environ-
mental emotion, negative environmental emotion has less effect. Some recent studies, such
as Khan and Mohsin (2017) and Joshi et al. (2021), showed that positive emotions act as a
powerful driving factor for green purchase behavior [61,62].

In summary, Community green interaction can positively spillover to consumers’
related green purchase behavior through the psychological path of environmental emotion.
In the two paths of community, green information interaction-related green purchase
behavior and community green interpersonal interaction-related green purchase behavior,
both positive environmental emotion and negative environmental emotion are partial
mediating variables, and there is no significant difference in the mediating effect value.
Positive environmental affect and negative environmental affect can play a mediating
role at the same time, which is consistent with previous research conclusions [46–48].
It is very important that environmental emotion is different from emotion, which is a
stable psychological variable. Therefore, our conclusions help shape consumers’ green
buying behavior and green buying habits. Combined with the above discussion, the
theoretical model of this study can be summarized as “interaction-emotion-behavior”, that
is, interaction can improve environmental emotion and further spillover to subsequent
behavior. On the one hand, it reflects the dynamic relationship and influence mechanism
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between behavior and behavior; on the other hand, it is also the development of previous
theoretical models.

(3) Product involvement has a significant negative moderating effect on the path of
“community green interaction—environmental emotion”. That is to say, both community
green information interaction and community green interpersonal interaction have a great
effect on the environmental emotion of consumers with low product involvement, while the
effect on the environmental emotion of consumers with high product involvement is weak.
This shows that “community green interaction—environmental emotion” is not applicable
to all consumers. Consumers with high product involvement tend to use the central path
to process information [63], so they pay more attention to the professional information
and knowledge they can get in the community interaction. Therefore, community green
interaction has a weak effect on their environmental emotion. However, consumers with
low product involvement use edge path to process information [64,65], they are more likely
to have emotional changes after participating in community interaction. This is consistent
with Areni (2003) and Liu et al. (2015), that consumers with low product involvement pay
more attention to emotional and transformational information, while consumers with high
product involvement pay more attention to rational and functional information [53,66].

6. Conclusions

This study focuses on the direction, mechanism and boundary conditions of the
spillover effect of community green interaction on consumer’s related green purchase
behavior. The main conclusions of this paper are as follows:

(1) Community green information interaction and community green interpersonal inter-
action have a significant impact on consumers’ related green purchase behavior;

(2) Community green interaction (two dimensions of green information interaction and
green interpersonal interaction) has a positive effect on consumers’ environmental
emotion (two dimensions of positive environmental emotion and negative environ-
mental emotion);

(3) Both positive and negative environmental emotion positively affect consumers’ related
green purchase behavior;

(4) Community green interaction can positively spillover to consumers’ related green
purchase behavior through the psychological path of environmental emotion;

(5) Product involvement has a significant negative moderating effect on the path of
“community green interaction—environmental emotion”.

6.1. Theoretical Contributions

The main theoretical contributions of this study are as follows:
First, it fills the lack of research on the application of community interaction in the

field of green consumption, enriches the research on spillover effect, and finds the social
diffusion mechanism of community green interaction. Existing studies generally examined
the role of community interaction in products, industries, after-sales services, and other
fields, and few studies pay attention to community green interaction and its impact on
follow-up and other related behaviors. For the first time, this study selects “little bear fuel
consumption community” as the research object, and empirically tests the spillover effect
and social diffusion mechanism of community green interaction on related green purchase
behavior in the Chinese context.

Second, this study proposes that community green interaction is divided into two
dimensions: community green information interaction and community green interpersonal
interaction, which provides more space and possibilities for follow-up research. From
the perspective of outcome variables, past studies often regarded psychological variables
such as consumer loyalty, satisfaction and purchase intention as the outcome variables
of community interaction. This study explored the dynamic relationship between the
two coherent behaviors of community green interaction and green purchase, which is a
supplement to the research paradigm of community interaction.
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Third, this study constructs and tests the theoretical model of “community green
interaction—environmental emotion—related green purchase behavior”, and further con-
firms that community green interaction can spillover to related green purchase behavior
through the path of environmental emotion from the perspective of environmental emotion,
which opens the “black box” of the diffusion mechanism of community green interaction
and provides a new perspective for the explanation of spillover effect. In addition, this
study reveals the negative moderating effect of consumer product involvement on the
path of “community green interaction environmental emotion”, and clarifies the boundary
conditions of the theoretical model of this study. This study enriches the research on the
antecedents of product involvement and consumer environmental emotion and expands
the application of relevant theories.

6.2. Management Implications

First, it is proposed that community members should be guided to actively participate
in community green information interaction. This study shows that professional green in-
formation interaction in the community can have a positive spillover effect on related green
purchase behavior. Therefore, the government should encourage various enterprises and
network platforms to actively build various forms of online or offline green communities,
such as online WeChat groups, discussion groups, green communities, and offline green
teams, to provide consumers with a platform for information interaction. In the community,
professional green information can be published regularly, such as knowledge related to
enterprise green products, popular science videos, usage tips, etc. On the one hand, it can
stimulate members’ intentions to participate in green information interaction; on the other
hand, this is also a way for enterprises to export environmental protection values, which
can not only enhance the image of enterprises, but also publicize their green products,
make the content of green information interaction more closely related to the purchase
behavior of green products, and give full play to its positive spillover effect on the related
green purchase behavior. In addition, various answer competitions on green, green product
experience exchange and green knowledge sharing meetings can be regularly organized
within the community, and certain rewards can be given to enhance the enthusiasm of
community members to participate in green information interaction.

Second, guide community members should be guided to actively participate in commu-
nity green interpersonal interaction. This study shows that green interpersonal interaction
in the community can have a positive spillover effect on related green purchase behaviors,
such as discussing oil prices, exchanging daily environmental behaviors, etc. Therefore,
enterprises should strengthen the guidance of community green interpersonal interaction.
Governments and enterprises can regularly push some current hot environmental top-
ics, such as “is plastic a great invention or a bad invention?” “Do you choose to order
takeout without tableware?” and guide members to discuss within the community, so
as to strengthen the interpersonal interaction among community members. In addition,
enterprises should also maintain a good community interaction atmosphere, and can select
members with strong environmental awareness as the main managers of the community.
On the one hand, they have the ability to call on other members of the group to join the
interaction and can play a “catalyst” role in the process of green interpersonal interaction
in the community. On the other hand, group management by community members can
create a more relaxed and pleasant interactive atmosphere, help to improve members’ sense
of participation and emotional belonging, and give better play to the spillover effect of
community green interpersonal interaction on related green purchase behavior.

Third, the connection of environmental emotion should be established through com-
munity interaction. Environmental emotion is the intermediate mechanism of the spillover
effect of community green interaction on related green purchase behavior, which should be
paid attention to by enterprises. On the one hand, enterprises can convey the benefits of
green environmental protection to individuals and society through video, pictures, text,
and other forms; trigger discussions among community members; and then improve the
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positive environmental emotion of community members. On the other hand, enterprises
can appropriately show community members the bad environmental behaviors existing
in the current society and the harm caused by these behaviors to the environment and
individuals, and trigger members’ discussion, so as to improve the negative environmental
emotion of community members. Through the above methods, consumers’ emotional
experience in the process of community green interaction should be strengthened, and
consumers’ subsequent green purchase behavior should be further stimulated. In addi-
tion, in view of the stronger impact of positive environmental emotion, enterprises can
appropriately increase the transmission of positive emotion.

Fourth, consumers with different product involvement should be distinguished and
the spillover effect of community green interaction should also be given better play to.
Community green interaction has different effects on consumers with high product involve-
ment and low product involvement. Therefore, enterprises should distinguish consumers
with different product involvement and guide them accordingly. Specifically, enterprises
can divide consumers with different product involvement into several groups. For con-
sumers with low product involvement, enterprises can regularly push emotion oriented
green information and environmental protection videos, so as to better play the role of
community interaction in improving environmental emotion, and impose the spillover
effect on related green purchase behavior. For consumers with high product involvement,
community green interaction has little impact on environmental emotion, so professional
green information related to green products, industries and energy conservation, and
emission reduction can be pushed to stimulate their interest in participating in community
interaction and strengthen the direct spillover of community green interaction on related
green purchase behavior.

6.3. Research Limitations and Future Prospects

There are still some limitations in this paper, which is worthy of further research in the
future. This study concludes that consumers’ positive environmental emotion and negative
environmental emotion have partial mediating effects, and some mechanisms have not
been explored, which is worthy of further exploration. Is the community green interaction
environmental emotion related green purchase behavior model proposed in this paper
applicable to a wider range of samples? Are there other boundary conditions? Can the
“interaction-emotion-behavior” model proposed in this paper be applied to explain a wider
range of phenomena? Can it be integrated with the traditional “knowledge-emotion-action”
model? The above problems need to be further solved and improved in the future.
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Abstract: In the context of the “double cycle,” promoting the development of a green economy is an
important goal for China’s high-quality economic development in the digital age. This paper uses data
from 30 provinces (municipalities and autonomous regions) in China during the 2006–2019 period
using the Compiled Green Finance Index (GF) and Digital Economy Index (DE). The interrelationship
between green finance, digital economy and green total factor productivity (GTFP) is empirically
tested by conducting multiple regressions on panel data from 2006–2019 to perform an empirical
analysis. Based on this, further analysis was performed with the threshold model. This study found
that green finance and digital economy can contribute well to green total factor productivity, but the
combination of the two does not have a good effect on green total factor productivity. Further study
found that the green finance and digital economy’s contribution to green total factor productivity
is mainly derived from technological progress. The regression results based on the panel threshold
model show that the more underdeveloped the digital economy is in certain regions, the stronger
the role of green finance in promoting efficiency improvement. Therefore, policymakers should
formulate differentiated green financial policies according to the level of development of the digital
economy and give play to the role of green finance and the digital economy in promoting green total
factor productivity.

Keywords: green finance; digital economy; green total factor productivity

1. Introduction

Since the reform and opening up, China’s economy has been maintaining high growth,
but the high economic growth stage has been accompanied by a dependence on resources
and the pollution of the environment [1,2]. The report of the 19th National Congress
of the Communist Party of China points out that “China’s economy has shifted from a
stage of high-speed growth to a stage of high-quality development, and it is necessary
to promote quality change, efficiency change, power change in economic development
and improve total factor productivity.” In today’s recurring epidemic, the need to energize
productivity growth is even more pronounced. As the concept of green development
continues to penetrate the concept of national governance, how to improve the quality
of the ecological environment and the development of the green economy has gradually
become a greater concern for people [3–5]. Promoting GTFP and improving the efficiency
of the green economy play important parts in promoting the development of China’s green
economy [6,7]. The improvement of total factor productivity is mainly reflected in
two aspects of technological progress and efficiency progress, and each general techno-
logical innovation in human history has been able to significantly promote the leapfrog
development of these two aspects [8–10]. Green finance incorporates environment and
pollution into endogenous factors, and through the development of related green credit and
green investment business, it guides the flow of funds into green environmental protection
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projects, optimizes resource allocation, and achieves win-win interaction between green
finance and green economy [11,12]. Therefore, green finance plays an important role in
promoting high-quality economic development [13–15].

In recent years, thanks to the continuous breakthrough of information technology in
China, the rapid development and wide application of digital technology have given rise
to the digital economy. The digital economy is different from the traditional agricultural
and industrial economies. As a new economy, it is deeply integrated with all industries
in China, triggering great social and economic changes while providing a new path for
China to achieve environmentally friendly and sustainable development because of its
improved efficiency and reduced dependence on resources and the environment. The
14th Five-Year Plan of the National Economic and Social Development of the People’s
Republic of China and the Outline of the Vision 2035 clearly proposed to “give full play to
the advantages of massive data and rich application scenarios, promote the deep integration
of digital technology and the real economy, empower the transformation and upgrading of
traditional industries, give birth to new industries, new business models and grow new
engines of economic development.” It is easy to see that the digital economy has become
an important driving force for China’s economic development [16–18].

In the new era, China has the will and motivation to promote the two-pronged ap-
proach of green finance and digital economy to drive high-quality economic development.
Green finance refers to all financial innovation and management activities that help achieve
environmental improvement, enhance eco-efficiency and promote sustainable development
functions. It includes not only environmental finance, low-carbon finance, and sustainable
finance activities but also financial policies, financial services, risk management, and other
related financial resource allocation activities adopted by governments, enterprises, and
other economic agents that are conducive to promoting green investment and financing.
Green finance is a financial innovation based on ecological and environmental protection,
strengthening the link between the green industry and the financial industry, focusing on
issues such as environmental pollution and ecological and environmental protection [19,20].
A digital economy is a new form of economic and social development after the agricultural
and industrial economies. The G20 Initiative on Digital Economy Development and Coop-
eration, released at the 2016 Group of Twenty (G20) Summit, defines the digital economy
as a series of economic activities in which the use of digitized knowledge and information
is a key factor in production. Additionally, modern information networks are an important
carrier of information, and the effective use of information and communication technolo-
gies is an important driving force for efficiency improvement and economic structure
optimization. Thus, the digital economy has become an important engine for China’s
high-quality economic development due to its efficient use of resources. GTFP is defined
as the integration of input variables such as capital, energy and labor, economic benefits
representing desired outputs and environmental pollution representing undesired outputs
into the productivity measurement framework taking into account both increases in desired
outputs and decreases in undesired outputs. We usually use GTFP as an indicator to
measure and evaluate the quality of growth of an economy.

Based on the above background, in order to better propose countermeasures to pro-
mote high-quality economic development, this article estimates the level of green finance
and digital economy by constructing a multidimensional indicator system and verifies the
effects of green finance and digital economy on GTFP and its decomposition term using
multiple regressions in a unified framework. We also use a threshold model to analyze
the intensity of the impact of green finance and the digital economy on GTFP. This article
first compares the existing relevant studies and then introduces the selection of variables
and the setting of the model. Second, this article discusses the main sources driving GTFP
by analyzing its decomposition term. On this basis, this article conducts an empirical
analysis of green finance and digital economy acting on GTFP, its decomposition term
separately, and green finance and digital economy acting on GTFP, and its decomposition
term together. We discuss in depth the influence mechanism in the process of green finance
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and the digital economy affecting GTFP. After that, the threshold effects on the roles of
green finance and digital economy in the decomposition term efficiency progress of GTFP
are further investigated and discussed. Finally, the conclusions of this study are drawn,
thus providing a theoretical basis for relevant policy formulation. The main conclusions
provide not only new ideas for developing green finance, promoting the construction of
the digital economy and enhancing GTFP, but also provide important references in the
implementation of green development concepts for local governments.

2. Literature Review

Green finance, as a link between the financial and green industries, completes the
measures to upgrade the industrial structure by means of financial support for the green
industry to continuously improve technological innovation, in line with the law of energy
development, transforming energy use from fossil to clean energy, optimizing fossil energy,
strengthening the global energy transition, and promoting green development [21]. Green
finance is a new financial innovation that combines the concept of finance with the green
industry, which introduces financial market volatility and geopolitical uncertainty, but is
generally beneficial to the development of green finance and the green industry [22]. At the
same time, the dual strategic transformation underscores the undisputed complementary
relationship between green finance and digital transformation [23]. Additionally, the digital
economy has promoted the development of the green economy well due to its resource
allocation optimization and technological innovation-driven industrial structure upgrading.
Therefore, it is necessary to study the impact of green finance and the digital economy on
the green economy in depth. A review of the available research results shows the following
main aspects:

(1) Research related to green finance and green economy.

Green finance is mainly through the guidance of financial institutions to make them
invest in green projects that can bring energy saving and environmental protection to
improve GTFP, as well as through social supervision to restrict the financial channels
of high-polluting enterprises to either promote their transformation or green technology
research and development, thus promoting GTFP. On the one hand, as the original
energy-intensive production method is transformed into a green and environment-friendly
production method, which has a very high cost, this requires green finance to provide
financial support for green industries to optimize capital allocation [24–26]. In order to
obtain more support from green loans, enterprises are more willing to take the initiative
of carrying out the research and development of green technology and improve their
own productivity. The incentivizing effect of green finance on enterprise technological
innovation has well-promoted the development of GTFP [27–29]. By supporting green
projects, green finance has greatly promoted environmental protection and played an
important role in promoting China’s high-quality economic development [30]. On the
other hand, green finance is a special fund used to promote green development projects.
After assessing green finance projects and approving them for financial support from green
financial services, enterprises that want to develop green projects have the obligation and
responsibility to fulfill corresponding social and environmental protections. At this time,
their production and operation behaviors need to be supervised by relevant supervision
departments, and the funds they obtain through green finance channels need to be used in
green-related industries, thus improving GTFP [31]. The impact of green finance on GTFP
tends to show different effects in stages [32]. In the short term, the transformation of highly
polluting industries and the establishment of new green industries often require large
amounts of financial support. The long transformation cycle of highly polluting industries
and the establishment of new green industries leads to high input and low output of green
financial inputs, which will reduce GTFP, while in the later stage, the transformation of
highly polluting industries and the establishment of new green industries bring output
returns, which will increase GTFP. Therefore, green finance and GTFP often show a
U-shaped fitting curve [33]. Secondly, due to its unique loan conditions, green finance
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will have a corresponding loan threshold when providing services to enterprises. After
receiving the loan, enterprises will also be supervised by regulatory authorities to monitor
whether the enterprise loan is used for green projects, so there is often a threshold effect in
the process of promoting GTFP in green finance [34–36]. In order to obtain capital loans,
enterprises need to purchase equipment and upgrade corresponding green technologies
to meet the requirements of green development, which will increase the cost burden on
enterprises in the short term [37]. As enterprises continue to expand their business, improve
their production efficiency level, and meet the requirements of green development, they
are able to obtain more financial support, be regulated by the corresponding regulatory
authorities, pay more and more attention to green development, actively carry out green
production, improve production efficiency, and thus increase the total green factor [38].

(2) Research related to digital and green economies.

As an emerging economy, the digital economy has a significant impact on the new
information industry revolution, so the development of the digital economy puts forward
new requirements for the policy system in the industrial economy era. On the one hand, the
digital economy improves the efficiency of resource allocation through digital technologies,
and this more efficient way of production contributes to GTFP [39,40]. It has been shown
in the literature that the digital economy contributes to GTFP mainly through green
technological change [41]. At the same time, the digital economy itself relies on network
infrastructure and information tools, such as smart machines, which break the limitations
of time and space through information technology and internet mode, giving human beings
the ability to process big data and continuously disseminate a large amount of information.
The development of this ability relies on continuous technological innovation and research
and development, so there are financial thresholds as well as technical thresholds in the
digital economy for GTFP development [42–44]. On the other hand, the digital economy
can be deeply integrated into all walks of life by upgrading and positively impacting
the transformation of the industrial structure [45,46]. In addition, the upgrading of the
industrial structure has a significant impact on the improvement of GTFP [47,48]. As the
development of China’s digital economy continues to promote China’s economy in a more
equitable and efficient direction, the combination of traditional production industries and
the digital economy tends to promote the flow of production factors from the primary
industry to the secondary and tertiary industries, and the continuous optimization of
resource allocation to more efficient sectors, effectively improving the degree of dependence
of economic development on energy resources and promoting the transformation and
upgrading of industrial structure to digitalization, rationalization, and greening [49,50].
Other literature has empirically tested the impact of the digital economy on GTFP at the
provincial or city level, affirming a positive and significant impact of the digital economy
on GTFP, but often with regional heterogeneity [51–54].

In summary, it can be seen that, although there have been rich discussions in the
academic community about the impact of the digital economy and green finance on total
factor productivity, the discussion on how to promote GTFP and the impact of the digital
economy and green finance on GTFP in the context of new development concepts and
digital economy is still insufficient, mainly in the following aspects. First, very little of
the literature analyzes the impact of the digital economy and green finance on GTFP
within the same framework and also ignores the specific sources of total factor productivity
gains. Second, few studies have examined the mechanisms at play in the process of green
finance and the digital economy affecting GTFP. Finally, the established literature is more
concerned with analyzing the direct effects of green finance and the digital economy on the
impact of GTFP, and is less concerned with the impacts of both technological progress and
efficiency improvement.
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3. Methods
3.1. Data Sources

The starting point of the study chosen for this paper is 2006, and the endpoint is 2019.
The initial data of each indicator are mainly obtained from the statistical yearbooks of all
Chinese provinces, China Statistical Yearbook, China Science and Technology Statistical
Yearbook, China Energy Statistical Yearbook, CSMAR and CCER databases, China Foreign
Direct Investment Statistical Bulletin, China Insurance Yearbook and China Industrial
Statistical Yearbook, etc. Some of the missing data are filled in by linear interpolation. In
addition, in the selection of inter-provincial samples, due to the problem of more missing
data and inconsistent data caliber, this paper selected 30 provinces and cities, except for
Tibet, Hong Kong, Macao and Taiwan, as the research subjects.

3.2. Indicator Setting

1. The explanatory variable, Green Total Factor Productivity (GTFP). Since Data
Envelopment Analysis (DEA) has the advantage of not requiring functional assumptions,
and the non-angle and non-radial distance of the Malmquist index (ML) can treat pollution
emissions as a non-desired output and solve the problem of radial distance function, it can
achieve a decrease in non-desired output and an increase in desired output at the same time.
This paper draws on the measure of Chung [55] to measure the GTFP index using the DEA–
SBM non-angle, non-radial distance Malmquist index. The input indicators in this paper
include labor, capital, and energy, using the total number of employees at the end of the year
to measure labor and capital input: Ki,t = Ki,t−1(1− δi,t) + Ii,t, where, K denotes physical
capital stock, δ denotes depreciation rate (the value of δ was taken as δ = 9.6% by referring
to Zhang [56]) and I denotes real fixed-asset investment in each province. Energy inputs
are measured using society-wide electricity consumption, and desired output indicators
are measured using the gross product. The entropy value method is applied to collate
industrial wastewater emissions, industrial SO2 emissions, and industrial smoke (dust)
emissions into a comprehensive index of environmental pollution to measure non-desired
output indicators. The ML index can be further decomposed into technical efficiency
change (EC) and technical progress change (TC). The specific expressions are as follows,

MLt+1
t = EC× TC (1)
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where EC means that a change in pure technical efficiency and a change in the efficiency
of the scale of production causes a change in the internal efficiency of the producer, and
the increase in industrial output resulting from this change is called a change in technical
efficiency. TC means a change in industrial output caused by pure technological progress.
The ML index is multiplied cumulatively to obtain the final GTFP.

2. Green Finance Index (GF). Some scholars have used green corporate bank loans,
green credit share, green investment level, and green credit policy dummy variables as
proxy variables for green finance. For the sake of comprehensiveness, this paper calculates
provincial green finance development indicators using the composite index method based
on data from 30 Chinese provinces and cities from 2006–2019. According to the definition
of green finance, it mainly integrates four aspects: green credit, green investment, green
insurance, and government support, among which green credit is the most important
part of green finance, while other green financial products have gradually diversified in
recent years, so green credit cannot be taken as the only indicator to measure the level of
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green finance. Referring to LY He’s [57] research ideas, while considering the validity and
availability of data, the entropy value method is used to calculate the level of green finance
in each province. The index system was constructed as shown in Table 1.

Table 1. Green Finance Index.

Tier 1 Indicators Characterization Indicators Indicator Description

Green credit Percentage of interest expenses in
high-energy-consuming industries

Six high-energy-consuming
industrial industries’ interest

expenses/total industrial
interest expenses

Green investment
Investment in environmental

pollution control as a percentage
of GDP

Environmental pollution
control investment/GDP

Green insurance Agricultural insurance depth
Agricultural insurance

income/total
agricultural output

Government support Percentage of financial expenditure
on environmental protection

Financial expenditure
on environmental

protection/financial general
budget expenditure

3. The Digital Economy (DE). The concept of the digital economy in economics refers
to the use of big data, the rapid integration, optimization and regeneration of resources to
achieve the optimal allocation of resources to achieve high-quality economic development
from all digital integration of resources can be considered the digital economy, generally
speaking. The digital economy is a major economic form after the development of agricul-
tural and industrial economies. With modern information networks as the main carrier and
data resources as the key element, it promotes the integration and application of modern
information technology, facilitates modern digital transformation, changes people’s current
life, production and governance, and is a new economic form that is more equitable and
efficient. At present, the academic community continues to dig deeper into the digital
economy as well as supplement and improve the evaluation system of digital economy
indicators, mainly combined with infrastructure construction, internet level, and a series of
elements to measure, compared with the previous single way of measurement methods, its
measurement methods and levels continue to expand and deepen on the original basis but
has not yet reached a unified standard. Nowadays, it can be determined that the core of
the digital economy is digital resources, through modern information technology applica-
tions to provide consumers with convenient and fast services and products so that digital
transactions become an emerging economic form of producers and consumers trading
ties. Based on the existing literature and considering the availability and completeness of
data, this paper constructs a measurement system containing four primary indicators and
27 secondary indicators, covering various elements such as digital infrastructure, digital
penetration rate, digital technology talent benefits, and digital research. The data were
mainly obtained from the China Statistical Yearbook, the Electronic Information Industry
Statistical Bulletin and the provincial statistical yearbooks. Based on the construction of
the index system, the KMO and the Bartlett test were conducted, and it was found that
the KMO = 0.863 and the Bartlett test results proved that there were significant differ-
ences among the indicators. Principal component analysis can be used for dimensionality
reduction. The construction of the index system is shown in Table 2.
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Table 2. Digital Economy Development Index.

Tier 1 Indicators Secondary Indicators

Digital infrastructure
Long-distance cable density; Mobile phone switch

capacity per capita;
Number of internet ports per capita

Digital penetration rate
Internet penetration; Cell phone penetration; Number of

websites per capita
Number of websites owned by unit companies; Express

business volume per capita

Digital technology talent benefits

Information transmission; Software and electronic
technology service industry employees

The proportion of employees in information
transmission, software, and electronic

technology services
The number of legal entities in the information

transmission, software, and electronic technology
services industry

Software business revenue; The number of resident
populations at the end of the year

Software business revenue per capita; Software business
revenue as a percentage of GDP

Total telecommunication services; Total telecom services
per capita;

Total telecom business as a proportion of GDP
Electronic information manufacturing industry’s main

business income actual value
Actual value of main business income of electronic

information manufacturing industry per capita
Electronic information manufacturing industry’s main

business income as a proportion of GDP

Digital research
Human capital; Education level; Education Funding;

Education level
Number of patent applications; Number of patent

applications per capita

4. Other variables. With reference to existing studies, the following control variables
are selected in this paper: The level of openness to foreign investment (OPEN) is expressed
as the share of total foreign direct investment in real terms in local GDP; The level of
industrial structure (OIS) is expressed as the share of secondary industry output in local
GDP; The level of urbanization (URB) is expressed as the share of the urban resident
population within the resident population; Research, development, and investment (RD) is
expressed as the number of local patents; Finally, the level of government spending (GOV)
is expressed as a share of government fiscal spending in regional GDP. The above data are
from the “China Statistical Yearbook,” “China Environmental Statistical Yearbook,” and
the provincial statistical yearbooks.

3.3. Model Construction

In order to test the relationship between green finance, digital economy and GTFP,
as well as the relationship between green finance, digital economy and the decomposition
term of GTFP, and to deeply investigate the path of action on GTFP, Equations (4)–(6) are
constructed in this paper.

GTFPit = α0 + α1GFit + α2DEit + αi Controlsit + λi + µit + εit (4)

TCit = β0 + β1GFit + β2DEit + βi Controlsit + λi + µit + εit (5)

ECit = γ0 + γ1GFit + γ2DEit + γi Controlsit + λi + µit + εit (6)
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where GTFPit denotes GTFP in province, i, in year, t, GFit is a measure of green finance,
DEit is the digital economy, and Controlsit represent control variables. TCit represents
technological progress, ECit represents efficiency progress, λi denotes time-fixed effects, µit
denotes individual-fixed effects, and εit is a random error term.

In order to clarify the mechanism of the interaction term between green finance
and digital economy on GTFP and the effect of the interaction term between green fi-
nance and digital economy on the decomposition term of GTFP, the cross-product term
GFit × DEit is introduced in the model to test the role played by the interaction term be-
tween green finance and digital economy in GTFP. The models constructed in this paper are
Equations (7)–(9).

GTFPit = α0 + α1GFit + α2DEit + α3GFit × DEit + αi Controlsit + λi + µit + εit (7)

TCit = β0 + β1GFit + β2DEit + β3GFit × DEit + βi Controlsit + λi + µit + εit (8)

ECit = γ0 + γ1GFit + γ2DEit ++γ3GFit × DEit + γi Controlsit + λi + µit + εit (9)

where GFit × DEit represents the cross-product term of green finance and digital economy.
Finally, we verified whether the coefficient α3 in Equation (7), the coefficient β3 in Equation (8),
and the coefficient γ3 in Equation (9) are significant.

4. Results
4.1. Descriptive Statistics and Correlation Analyses

The descriptive statistics of all analyses are listed in Table 3. The mean value of GTFP is
1.514, the maximum value is 4.979, and the minimum value is 0.608, which indicates a large
difference in GTFP between regions. The minimum value of green finance development
level is 0.050 and the maximum value is 0.0793. The minimum value of digital economy
development level is 0.11 and the maximum value is 0.77. This indicates that the level of
green finance development and the level of digital economy development in that there are
also large differences between regions.

Table 3. Descriptive statistics.

VarName Obs Mean SD Min Max

GTFP 420 1.514 0.573 0.6080 4.9789
GF 420 0.160 0.099 0.0500 0.7930
DE 420 0.260 0.108 0.1104 0.7695
OIS 420 45.494 8.537 16.2000 61.5000

OPEN 420 0.022 0.020 0.0001 0.1210
URB 420 0.546 0.136 0.2746 0.8960
RD 420 0.010 0.006 0.0000 0.0324

GOV 420 3721.738 2686.780 174.54 17,297.85

The development of GTFP with EC and TC in China from 2006–2019 is shown in
Figure 1. As we can see in Figure 1a, the GTFP level increased significantly from 0.98 in
2006 to 2.45 in 2019. Comparing Figure 1b,c, it can be found that both technological progress
and efficiency improvement have a significant increase from 2006–2019, but the increase in
technological progress is closer to the GTFP improvement curve, which indicates that the
green total factor improvement mainly comes from technological progress.
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Figure 1. Technical efficiency change, Technical progress change and GTFP trend graphs. (a) indicates
the trend of GTFP; (b) indicates the trend of technical efficiency change; (c) indicates the trend of
technical progress change.

Green finance enables financial institutions to invest in green projects that can bring
energy savings and environmental protection through the guidance of financial institutions.
China’s economic transformation also promotes the concept of low carbon, energy saving,
and environmental protection. For this reason, high-pollution enterprises face policy con-
straints as well as loan restrictions; Thus, they are more willing to comply with the concept
of energy conservation and environmental protection through technological innovation
and industrial structure innovation, which is conducive to raising the level of GTFP. The
fitted graph of green finance and GTFP is shown in Figure 2a, which shows that there is a
positive correlation between green finance and GTFP.

On the one hand, the development of the digital economy has freed the traditional
economy from its heavy dependence on energy and the environment, as well as significantly
reduced the excessive consumption of energy in the industrial economy model, improved
the efficiency of factor utilization, and promoted green and high-quality development
through energy conservation and emission reduction. On the other hand, the development
of the digital economy has broken the geographical barriers and realized the cross-regional
flow of talents, information, and technology, which is conducive to stimulating green
technological innovation and improving GTFP. The fitted graph of the digital economy
and GTFP is shown in Figure 2b, which shows that there is a positive correlation between
the digital economy and GTFP.

The relationship between green finance and the digital economy is complementary. By
combining with the high-energy digital economy industry, green finance can promote the
related industries to continuously develop technology to reduce the energy consumption
of the digital economy and help achieves low-carbon sustainable development. The digital
economy, with its unique data and information technology, provides numerous benefits,
such as a linked upstream and downstream platform for the green finance system, estab-
lished information sharing and security mechanisms, greatly improved matching efficiency
of investment and financing, the increased scale of green finance, and allows green finance
to be well-integrated into the industry [10]. The fitted graph of green finance and the digital
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economy is shown in Figure 2c, which shows that there is a positive correlation between
green finance and the digital economy.
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Overall, green finance, the digital economy, and GTFP are generally on an upward
trend. In terms of relationships, green finance–GTFP, digital economy–GTFP, and green
finance–digital economy all have linear relationships.

This paper performs correlation test indicators, as shown in Table 4. The significant
results between the independent and the dependent variables are extremely significant,
which indicates that the independent variables selected in this paper are strongly correlated
with the dependent variable. Secondly, the significance levels of the remaining variables
have been tested, except for the level of foreign openness and the level of government
expenditure, which are not significant.

Table 4. Correlation analyses.

GTFP GF DE OIS OPEN URB RD GOV

GTFP 1
GF 0.430 *** 1
DE 0.554 *** 0.877 *** 1
OIS 0.224 *** 0.444 *** 0.415 *** 1

OPEN 0.002 0.159 *** 0.012 0.080 1
URB 0.375 *** 0.591 *** 0.574 *** 0.336 *** 0.320 *** 1
RD 0.312 *** 0.432 *** 0.452 *** 0.150 *** 0.371 *** 0.649 *** 1

GOV −0.078 0.243 *** 0.244 *** −0.037 0.304 *** 0.390 *** 0.320 *** 1

Note: *** means p < 0.01.

In this paper, LLC tests were conducted on the independent and dependent variables,
the significance levels were passed, and the test results are shown in Table 5.
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Table 5. LLC test results.

VarName Statistic p-Value

GTFP −11.2467 0.0000
GF −9.3897 0.0000
DE −12.2336 0.0000

4.2. Regression Analysis Results of Green Finance, Digital Economy, and GTFP

Column (1) of Table 6 shows the test results of Equation (1). It can be seen that the
coefficient 2.115 of GF is significantly positive at the 1% level, which indicates that the
development of GF contributes to the growth of GTFP, as it increases by 2.115% for every
1% increase in the level of GF. The coefficient of 1.991 for DE is significantly positive at
the 1% level, which indicates that the development of the digital economy also contributes
to the growth of GTFP, as it increases by 1.991% for every 1% increase in the level of
development of the digital economy. The rest of the variables are economic variables
essential to the operation of the economy. The coefficient of OIS −0.008 is significant at
the 5% level, which indicates that the higher the share of secondary industry structure,
the higher the inhibitory effect on GTFP. The coefficient of OPEN −4.426 is significant at
the 1% level, which indicates that foreign investment has a suppressive effect on GTFP to
some extent. The coefficient of URB 3.125 is significantly positive at the 1% level, which
indicates that as urbanization continues, it can also contribute to the growth of GTFP. The
coefficient of RD −40.160 is significant at the 1% level, which indicates that R&D and input
inhibit the development of GTFP to some extent, which is due to the fact that enterprises
are more inclined to deepen R&D on existing technologies in the process as they expect to
achieve higher energy use efficiency in order to achieve the purpose of energy saving and
environmental protection, rather than to develop new projects. This kind of R&D and input
to improve energy efficiency rather than update to the green energy-saving industry as the
purpose of R&D and investment, to a certain extent, caused the phenomenon of energy
rebound, thus, it has a certain inhibitory effect on the growth of GTFP. Finally, GOV and
GTFP are not significant at the level of significance.

Table 6. Multiple regression results.

(1) (2) (3) (4) (5) (6)

GTFP TC EC GTFP TC EC

GF 2.115 *** 1.011 ** 0.434 * 1.885 −2.719 *** 2.687 ***
(3.25) (2.29) (1.87) (1.32) (−2.88) (5.48)

DE 1.991 *** 3.000 *** −0.416 * 1.930 *** 2.005 *** 0.184
(3.14) (6.97) (−1.85) (2.68) (4.21) (0.75)

OIS −0.008 ** −0.008 *** 0.001 −0.008 ** −0.011 *** 0.003 *
(−2.07) (−3.20) (0.93) (−2.07) (−4.07) (1.92)

OPEN −4.462 *** −1.911 * −0.256 −4.536 *** −3.099 *** 0.461
(−3.05) (−1.93) (−0.49) (−2.98) (−3.08) (0.88)

URB 3.125 *** 1.398 *** 1.156 *** 3.214 *** 2.841 *** 0.284
(5.63) (3.72) (5.86) (4.33) (5.80) (1.12)

RD −40.160 *** −36.677 *** −0.966 −39.665 *** −28.658 *** −5.808 **
(−4.96) (−6.68) (−0.34) (−4.64) (−5.07) (−1.98)

GOV 0.000 −0.000 0.000 0.000 −0.000 0.000
(0.11) (−0.24) (0.42) (0.11) (−0.21) (0.40)

GF × DE 0.305 4.940 *** −2.982 ***
(0.18) (4.45) (−5.16)

_cons −0.192 0.596 *** 0.351 *** −0.200 0.460 ** 0.433 ***
(−0.62) (2.86) (3.21) (−0.64) (2.24) (4.05)

N 420 420 420 420 420 420
r2 0.672 0.762 0.186 0.672 0.774 0.239

Note 1: The t statistics are in parentheses; * means p < 0.1, ** means p < 0.05, and *** means p < 0.01. Note 2: Due
to the length of this article, only the double regression results are shown here.
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Columns (2) and (3) are the Equations (2) and (3) constructed from the decomposition
terms TC and EC of GTFP. It can be found that GF is significantly positive in both
Equations (2) and (3). While DE is significantly positive in Equation (2), the coefficient is
−0.416 and also significant in Equation (3). This suggests that GF increased both TC and
EC, and contributed to the growth of GTFP by the coupling of the two. Finally, DE only
increased TC and did not contribute well to EC, but in general, it also contributed to the
growth of GTFP.

When combining Columns (1), (2) and (3), GF can increase the level of GTFP, and DE
is able to improve GTFP. This is consistent with the findings of existing studies. However,
the boost to GTFP comes mainly from TC.

Columns (4), (5), and (6) are the results after adding GF× DE.
The results of GF × DE in column (4) are not significant, and the results of GF are

not significant. Only the coefficient of DE 1.930 is significantly positive at the 1% level.
This suggests that the combined effect of GF and DE does not contribute well to the
improvement of GTFP.

Columns (5) and (6) are the Equations (5) and (6) constructed for the decomposition
terms TC and EC of GTFP. The coefficients of GF are −2.719, which is significant in
Equation (5), and 2.867, which is significantly positive in Equation (6). The coefficient of
DE is 2.005, which is significantly positive in Equation (5), but insignificant in Equation
(6). The interaction of GF × DE have coefficients of 4.94, which is significantly positive
in Equation (5), and −2.982, which is significant in Equation (6). This indicates that GF
is able to produce significant positive effects when acting on GTFP as well as when EC
acts on GTFP, but when GF is combined with DE, it has an inhibitory effect on EC during
production. Since GTFP = EC × TC, the joint effects of GF and DE shows a significant
increase in TC but also a significant inhibition in EC; Thus, the joint effects of GF and DE
do not significantly increase GTFP.

The combined Columns (4), (5) and (6) show that GF and DE together have not been
very good at significantly enhancing GTFP. Both of them were significantly positive when
acting together on TC, but significantly negative when acting on EC. It is possible that
GF and DE together did not achieve the expected results when acting on EC due to some
limitation, which requires further analysis.

4.3. Threshold Effect

There is a complex relationship between GF, DE, and GTFP. On the one hand, GF
helps GTFP by supporting green industries. On the other hand, DE is also able to improve
GTFP by optimizing the allocation of resources. Although both of them can contribute
to the improvement of GTFP in our country, they do not improve GTFP very well when
there is a combined effect of the two. This “threshold effect” may exist in GTFP or in
the decomposition of GTFP, TC, or EC, and it is because of this threshold effect that GF
and DE together do not contribute well to the growth of GTFP. Based on this, this paper
conducted threshold effect tests on GTFP and its decomposition terms TC and EC with
GF and DE as threshold variables, respectively, and repeated the samples 300 times using
the Bootstrap method. The results obtained are shown in Table 7.

Table 7. Threshold effect test.

Core Explanatory
Variables

Threshold
Variables

Explained
Variables Models Fstat Prob Crit1 Crit5 Crit10

DE GF
GTFP Single threshold 7.83 0.6533 31.1242 22.7221 19.7758

TC Single threshold 11.03 0.6533 43.2799 27.9036 24.6994
EC Single threshold 15.22 0.3033 41.3621 30.4086 24.0252

GF DE

GTFP Single threshold 6.80 0.6467 37.3207 23.3565 19.7139
TC Single threshold 16.23 0.4300 40.7447 30.5658 25.9309

EC
Single threshold 27.46 0.0367 ** 31.8307 22.9264 19.6111

Double threshold 16.21 0.1033 33.2990 21.249 18.7108

Note: ** means p < 0.05.
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As seen in row (1) of Table 7, the p-value of 0.6533 for the single threshold of GF to
GTFP did not pass the significance test, thus concluding that there is no single threshold of
GF to GTFP.

As seen in row (2) of Table 7, the p-value of 0.6533 for the single threshold of GF to TC
did not pass the significance test, thus concluding that there is no single threshold of GF
to TC.

From row (3) of Table 6, it can be seen that the p-value of 0.3033 for the single threshold
of GF to EC does not pass the significance test, thus concluding that there is no single
threshold of GF to EC.

As can be seen from row (4) of Table 7, the p-value of 0.6467 for the single threshold of
DE to green GTFP did not pass the significance test, thus concluding that there is no single
threshold for DE to GTFP.

From row (5) of Table 7, it can be seen that the p-value of 0.43 for the single threshold
of DE to TC does not pass the significance test, thus concluding that there is no single
threshold of DE to TC.

From row (6) of Table 7, it can be seen that the p-value of the single threshold of the
decomposition term EC for DE on GTFP is 0.0367, which indicates that there is a threshold
effect of DE on EC at the 5% significance level, while the p-value of the double threshold is
0.1033, which fails the test of a double threshold. Thus, there is a single threshold effect
of DE on EC with a threshold value of 0.2020, and a single threshold effect is chosen. To
verify the accuracy of the threshold estimates, Figure 3 gives the relationship between the
threshold estimates and the likelihood ratio statistic, from which it can be seen that the
threshold estimate of DE and EC is 0.2020 with a confidence interval of [0.1981, 0.2025],
where the value of the likelihood ratio statistic is less than the critical value at the 5% level.
Thus, the threshold effect estimate is considered to be true.
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Based on the threshold test, we need to estimate the threshold model of DE on EC
further, as shown in Table 8.
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Table 8. Results of DE regression estimation on EC panel threshold model.

Variable Name Coefficient t p > |t| [95% Conf. Interval]

GF EC < 0.2020 0.6178002 1.65 0.100 * −0.11998 1.35558
GF EC > 0.2020 −0.6190305 −3.17 0.002 *** −1.00325 −0.23481

OIS 0. 0034252 2.73 0.007 *** 0.00010 0.00590
OPEN 0.0611079 0.12 0.902 −0.91623 1.03845
URB 0.813084 4.52 0.000 *** 0.45942 1.16675
RD −3.97947 −1.44 0.150 −9.40768 1.44874

GOV 1.46 × 10−7 0.06 0.953 −4.68 × 10−6 4.97 × 10−6

Note: The t statistics are in parentheses; * means p < 0.1 and *** means p < 0.01.

As can be seen from Table 8, the coefficient of GF on EC is 0.6178 and significantly
positive at the 10% level when the DE does not exceed 0.2020, which indicates that GF has
a significant contribution to EC when the DE level does not exceed the threshold value of
0.2020. The coefficient of GF on EC is −0.6190 and significant at the 1% level when the DE
level exceeds 0.2020, which indicates that GF has a significant inhibitory effect on EC when
the DE level exceeds the threshold value of 0.2020. To sum up these results, DE has a thresh-
old effect on EC. For less developed regions of digital economy, such as Guizhou, Yunnan,
and Shanxi, we should improve the construction of digital economy infrastructure and
promote the development of DE, while also promoting the development of GF, promoting
the upgrading of TC and EC, and promoting the development of GTFP. For regions such
as Beijing, Guangdong, Anhui, etc., the infrastructure construction of DE is nearly perfect,
and there are already good results for enterprise efficiency improvement. The inflow of GF
funds to enterprises does not achieve good results for enterprise efficiency improvement, at
which time we should restrict the inflow of GF funds to the efficiency improvement aspect
of enterprises and encourage the flow of GF funds to aspects of technological progress,
such as the research and development of independent intellectual property rights and the
introduction of advanced equipment, so as to promote the continuous progress of GTFP
in China.

We show no significant change in the number of thresholds and threshold coefficients
by replacing the control variables section, which indicates that the threshold regression
results are robust.

5. Conclusions

This paper empirically examined the impact and mechanism of green finance and the
digital economy on GTFP, based on relevant data from 30 provinces, municipalities, and
autonomous regions in China from 2006–2019. It was found that green finance and the
digital economy have a significantly positive effect on GTFP, but they did not have a good
effect when they acted together with GTFP. Based on this, a panel threshold model was
introduced to investigate why the joint effects of green finance and the digital economy did
not have a good effect on GTFP in depth. This paper hopes to provide a research basis for
studies in related fields and provide a reference for government policy formulation.

Our study finds that:

(1) GF has a significant impact on green GTFP, with a coefficient of 3.25. Combined with
existing studies, the mechanism is that green finance provides financial support to
green industries, promotes the upgrading of industrial structure, fosters technological
innovation, optimizes mineral resources for clean energy [58], and thus promotes
GTFP. DE has a significant impact on GTFP, with a coefficient of 3.14. Combined
with existing research, the mechanism is to optimize resource allocation by means
of digital technology and promote the transformation and upgrading of industrial
structure to digitalization, rationalization and greening, thus promoting GTFP.

(2) The coefficient of the effect of GF acting on the GTFP decomposition term, TC, was
2.29, which was significant at the 5% level. The coefficient of the effect of GF acting on
the GTFP decomposition term, EC, was 1.87, which was significant at the 10% level.
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The coefficient of the effect of DE acting on the GTFP decomposition term, TC, was
6.07, which was significant at the 1% level. The coefficient of the effect of DE acting
on the GTFP decomposition term, EC, was −1.85, which was significant at the 10%
level. Combining the available studies with this trend chart, GF mainly drives GTFP
for the advancement of TC, and DE mainly drives GTFP for the advancement of TC.

(3) When GF and DE acted together on GTFP, the effect was not significant. The “thresh-
old effect” test reveals that there is a single threshold effect when GF and DE act
together on EC. The threshold estimate is 0.2020, and the confidence interval is [0.1981,
0.2025], in which the likelihood ratio statistic is less than the critical value at the 5%
level, and the threshold effect estimate is true. For regions with developed DE, the
digital infrastructure is better built, and the productivity level of enterprises is rela-
tively high when the GF funds acting on the EC side cannot produce good results.
For the less developed areas of DE, the digital infrastructure construction has not yet
reached a comprehensive level of perfection, and GF funds are able to flow into the
enterprises to help improve the digital infrastructure construction, thus improving
the level of enterprise productivity. At this time, GF funds can have a better impact
on EC.

6. Policy Recommendations

Based on the above findings and analysis, this paper explores the following aspects of
GF and DE to promote GTFP and makes the following recommendations:

(1) Enhance the ability of green finance to drive green total factor productivity development.

In terms of green finance, financial institutions with green credit businesses should
strengthen the support of green credit and establish a special green department to promote
the development of green finance. Actively promote green investment business, accelerate
the innovation of green financial products, expand green financial channels, encourage the
participation of financial institutions and related enterprises, and disclose the development
of green business. There should be the issuance of green credit guidelines and credit policies
to provide credit support to green industries, such as photovoltaics, energy conservation,
environmental protection, and new energy vehicles. The government should play an active
role in forming an organic unity with green credit as the starting point and green investment
and green insurance developing together to promote the progress of GTFP effectively.

(2) Improve the construction of digital infrastructure.

In terms of the digital economy, first of all, the green value of the digital economy
should be fully explored, cross-regional allocation of digital resources should be promoted,
the rapid development of 5G projects should be accelerated, and the business environment
in each region should be optimized. Secondly, digital economy empowerment relies
on institutional innovation related to the development of the digital economy and the
introduction and improvement of laws and regulations, such as the Personal Information
Protection Law and the Data Security Law, should be completed as soon as possible to
explore the protection of intellectual property rights and personal privacy data security in
the digital economy, as well as broaden the space for the development and the promotion
of the quality of the digital economy. Finally, it is necessary to strengthen the construction
of digital talents, and relevant universities and research institutes should open digital
economy majors as soon as possible to enhance the effectiveness of training-related talents,
which will promote the high-quality development of the digital economy.

(3) Pay attention to the driving effect of technological progress on green total
factor productivity.

Technological progress is the main driving force for green total factor productivity
improvement. Therefore, policymakers need to improve laws and regulations on the
protection of independent intellectual property rights research and development to ensure
that new technologies developed to promote green development are protected by law and
to encourage enterprises to actively apply technologies related to green development in
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their business operations. In addition, the funds financed by enterprises through green
finance channels should be supervised accordingly to ensure that these funds are applied
to green production and operation projects of enterprises, which effectively promote the
technological progress of enterprises and thus promote the development of GTFP.

(4) Implement differentiated green financial policies.

Focus on the “threshold effect” in the development of green finance and digital econ-
omy, and implement differentiated green finance policies according to local conditions
and scientific guidance. For the less developed areas of China’s digital economy, poli-
cymakers should promote the development of green finance and the digital economy to
promote GTFP development levels by driving technological progress and enterprise effi-
ciency improvements. For the developed regions of China’s digital economy, policymakers
should restrict the flow of green financial funds to the improvement of enterprise efficiency,
avoid the blind flow of funds and disorderly development, and actively guide the flow of
green financial funds to the research and development of independent intellectual property
rights, the introduction of advanced equipment, industrial structure upgrading and other
technological progress, so as to promote the green development of China’s economy.
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Abstract: Carrying out environmental protection and governance in the process of using foreign
capital to develop the economy is a realistic problem that China needs to solve urgently. In order to
reduce environmental pollution, all enterprises are called upon by the local government to fulfil CSR
and improve the quality of FDI use. However, previous studies have rarely explored the threshold
effect of FDI and CSR on haze pollution. This paper employs the threshold effect model to explore the
above problem based on panel data of 30 provinces in China from 2009 to 2018. The empirical study
found the following: (1) FDI has a significantly positive double-threshold effect on haze pollution.
Meanwhile, the promotion effect of FDI on haze pollution is the strongest in the two threshold
ranges. (2) CSR has a significantly negative single-threshold effect on haze pollution; that is, the
increase in CSR intensity inhibits haze pollution. Such a negative effect shows the characteristics of
increasing marginal efficiency. (3) In addition, the provinces in different thresholds display obvious
geographical distribution characteristics. Through the above analysis, it can be observed that FDI
and CSR have distinct impacts on haze pollution. Thus, the country and the government can reduce
haze pollution by improving the investment structure, using environmentally friendly technology,
guiding enterprises to abide by business ethics and promoting social responsibilities fulfilment.

Keywords: foreign direct investment; corporate social responsibility; haze pollution; threshold effect;
heterogeneity analysis; fixed-effect model

1. Introduction

Since the reform and opening up, foreign direct investment (FDI) has played a vital
role in promoting the economic development and optimizing the foreign trade structure
of China. However, whilst boosting the economic strength of the country, FDI has also
brought significant ecological damage and environmental pollution [1]. Using the Beijing–
Tianjin–Hebei region as an example, according to China Statistical Yearbook data, the
amount of FDI increased from USD 18.15 billion to USD 48.43 billion, with an increase of
166.8% during the period of 2009–2018. Meanwhile, the GDP in the same period increased
from USD 484.43 billion to USD 11285.7 billion, an increase in more than 20 times. It can be
seen that the GDP of the Beijing–Tianjin–Hebei region has also achieved continuous growth
with the increase in the number of FDI. However, according to the Announcement of
China’s Environmental Status in 2018 issued by the Ministry of Environmental Protection,
the number of days of light pollution, moderate pollution, heavy pollution and serious
pollution in Beijing–Tianjin–Hebei region accounted for 27.1%, 10.50%, 6.0% and 3.20%,
respectively, in a year. The announcement showed that the average concentration of PM 2.5
is 77 µg/m3, 1.20 times higher than the national secondary standard [2].

Driven by industrialization, western countries have produced massive amounts of air
pollution for over a century that have affected the economic development of China over
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the past 40 years. The frequent occurrence of haze pollution events, including PM2.5, PM10
and other significant sources of pollution, has gradually expanded the scope and degree
of pollution. Therefore, many scholars have proposed the ‘pollution paradise’ effect of
FDI. To circumvent environmental regulations in their own countries and transfer crude
industries, some multinational enterprises take advantage of their capital to export highly
polluting and energy-intensive industries to less developed countries that are in urgent
need of economic development and have low environmental awareness, thereby becoming
essential drivers of environmental degradation [3–5]. Liu and Gao highlighted a strong
positive correlation between FDI and environmental pollution, arguing that the degree of
regional pollution is aggravated along with an increasing FDI agglomeration [6]. Dong
et al. confirmed the positive effect of FDI on haze pollution based on quantile regression
and Shapley value decomposition [7].

However, some scholars also put forward the ‘pollution halo’ effect of FDI. Less-
developed countries that introduced advanced clean production technologies and environ-
mental governance from developed countries through FDI channels could improve their
utilization rate of natural resources and the quality of their ecological environment [8,9].
He and Liu concluded that in China, FDI had a positive effect on pollution emissions
(especially industrial sulfur dioxide emissions), and the impact of FDI on environmental
pollution varied significantly across the eastern, central and western regions of China [10].
Nathaniel et al. pointed out that the hypothesis of FDI effect was not valid in Mediter-
ranean coastal countries, but FDI could effectively promote the improvement of local
environmental quality [11]. In response to these contrasting findings, some scholars
have explored the green technology spillover effects of induced labor- and capital-based
FDI [12]. Some scholars have taken another approach and analysed the problem from
the perspective of the ‘coordinated development of two-way FDI’, concluding that the
coordinated development of two-way FDI in China could significantly suppress haze
pollution [13]. However, a unified conclusion on this topic is yet to be reached. This paper
approves the ‘pollution paradise’ effect of FDI because the high incidence of haze pollu-
tion not only affects the health and well-being of the people, but also poses a huge threat
to the ecological civilization construction and low-carbon green growth in China [14].
Therefore, how to encourage countries to commit themselves to increasing their levels of
environmental protection whilst simultaneously boosting trade and investment via FDI
has become a hot topic amongst scholars.

Very few scholars have explored the impact of CSR on haze pollution. As micro-
entities of the regional economy, enterprises serve as creators of economic value and
producers of environmental pollution. Their functional performance in their economic,
social and environmental responsibilities contributes to improving regional environmental
quality and overall social welfare [15,16]. In this sense, encouraging more companies to
commit themselves to social and environmental issues can help societies increase their
trust in business communities, enhance the social capital of companies and thereby lead
to a synergistic win-win situation [17]. In terms of CSR transmissibility, if core firms in a
region are active in haze reduction and management, then their activities will significantly
affect the ecosystem of the industrial chain [18]. The core enterprises set an example of
continuously making significant contributions to the overall environment, especially haze
pollution, by promoting social responsibility awareness on the upper and lower levels of
the industrial chain. Therefore, if more firms voluntarily commit to limiting their pollution
emissions, even beyond the provisions of international protocols and treaties, then such
environmentally responsible behavior can become a benchmark for competitors to follow,
thus forming a virtuous catch-up cycle [19]. Some scholars have also pointed out that
the CSR activities vigorously carried out by enterprises can stimulate active cognitive
responsibility feedback from the society. Enterprises can attract those who care about social
and environmental issues to act together by engaging in green and low-carbon production
and designing environment friendly and energy efficient products to inform consumers
that the production process of their final products minimizes harm to the environment [20].
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Such behavior can also help consumers be generally aware that companies, even sometimes
seen as purely economic actors, have made environmentally responsible commitments in
this area [21].

Furthermore, in the context of the influx of FDI into China’s economic construction,
FDI may indirectly influence the level of haze pollution in China through corporate social
responsibility (CSR). Foreign companies with high CSR compliance standards may gradu-
ally lower their compliance standards whilst adapting to the already tricky and ineffective
CSR compliance situation in China [22], thereby forming a vicious circle of ‘competition
to the bottom’ with domestic companies [23]. Low-quality CSR activities vastly reduce
discriminatory barriers and the transparency of international production activities. These
activities also result in the indifference of foreign companies towards the welfare of Chinese
consumers, the greening of production processes and their fulfilment of environmental re-
sponsibility. The resulting ‘pollution paradise’ effect will also further aggravate the degree
of haze pollution [24] and ultimately reduce the overall level of CSR and further aggravate
the environmental pollution in China. During the investment process, enterprises need
to be jointly driven to fulfil their social responsibilities, strengthen their environmental
awareness and promote a balanced development of bilateral economy, ecology and society
through moral guidance and environmental regulations.

To cope with the further deterioration of the ecological environment, China actively
advocates optimizing the structure and quality of its FDI, enhancing CSR fulfilment and
promoting green technology innovation [25]. Nevertheless, the balance in the relationship
amongst FDI, CSR and haze pollution remains a practical problem that hinders the low-
carbon green development of the country. On the basis of the general equilibrium model of
Copeland and Taylor, most domestic and foreign scholars have investigated the internal
relationship amongst FDI, CSR and environmental pollution under the constraints of FDI
and environmental regulation conditions [15,26]. In terms of research methods, scholars
have transitioned from the econometric model with ordinary least square method and
simultaneous equations at the core to the endogenous growth model and data envelopment
analysis [26,27]. On the basis of the regional differences in practice and development, much
achievement has been reported on spatio-temporal evolution analysis and sub-regional
testing via micro-scopization [28,29]. In the context of technological innovation leading to
low-carbon and green development, individual scholars have introduced environmental
technology innovation behavior based on the ‘factor–behavior–performance’ research idea
to understand the role of FDI, environmental regulation and technology innovation in
environmental performance paths [30]. To address this problem, this study attempts
to integrate FDI, CSR and haze pollution into a unified theoretical framework, explore
the nonlinear effects of FDI and CSR on haze pollution, further explore the problem
based on regional economic level and resource endowment heterogeneity, and provide a
scientific and sound theoretical basis for the haze pollution management and ecological
environmental protection decisions in each province.

The theoretical significance of this paper is as follows: Firstly, in the issue of the CSR
measurement, this paper innovatively proposes an optimized method that considers the
social responsibility carrying capacity of enterprises of different scales and regions and
the matching degree of local economic development. Through theoretical deduction and
empirical results, it is preliminarily confirmed that CSR has an inhibition function on haze
pollution in terms of time and depth, and the research findings provide a reference for
relevant theory. Secondly, the action path and boundary conditions of FDI and CSR on
haze pollution are proposed based on panel threshold model. This can objectively evaluate
the environmental effects of FDI and provide a new perspective for identifying the drivers
and governance mechanisms of haze pollution. Thirdly, this paper takes FDI and CSR as
threshold variables, preliminary fits the findings through panel regression and analyses the
spatial–geographical distribution characteristics of provinces based on different interval
thresholds, thereby further verifying the completeness of its findings.
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The remainder of the paper is presented as follows: Section 2 provides an overview of
methodology and data. Section 3 represents research results and analysis. Section 4 reports
the discussion, and Section 5 reports the conclusion.

2. Methodology and Data
2.1. Theoretical Mechanisms and Research Hypotheses

FDI exerts a driving effect on haze pollution mainly through the technology-locking
and extrusion effects. The technology-locking effect is manifested in the transfer of high-
value industries and the export of clean technologies. The transfer of high-value industries
from developed countries brings a large amount of capital to less-developed countries
and regions, boosts economic growth and, to some extent, provides financial support for
local ecological and environmental pollution management [12,19]. However, the inflow of
large amounts of foreign capital can lead to R&D inertia in less-developed countries and
regions, thereby curbing the enthusiasm of domestic enterprises in scientific research and
innovation and stagnating the number of green capital investments and patent applications,
thus leading to the ‘technology-locking’ phenomenon [31,32]. Meanwhile, developed
countries will not directly send their most cutting-edge clean technologies to less-developed
countries and regions because they need to maintain their monopoly over clean technology.
In addition, the technological gap between less-developed countries and regions and the
limitations of many factors, such as digestion and absorption capacity [27,33], eventually
triggers a ‘technology-locking’ effect in these areas. Given the crowding-out effect, the use
of FDI from ‘quantity-to-quality’ momentum conversion is driven by national policy and
institutional guidance. To give full play to the economic, technological and environmental
effects of FDI, the government formulates various policies and regulations to regulate the
market, which reduce its expenditure in other fields [1,32]. Meanwhile, under the thinking
of local government officials who are eager for quick success and immediate benefits, and
the thinking of only GDP-oriented growth and the current performance appraisal system,
local government still takes FDI with solid liquidity and fast returns as their first choice
to attract investment [30,31] and excludes those FDI with high environmental protection,
clean requirements and a low conversion rate of technological achievements, thereby falling
into a vicious circle of pursuing FDI quantity [34], which will eventually aggravate the level
of regional haze pollution. Hypothesis 1 is then proposed, that is, that there is a nonlinear
double-threshold positive effect between FDI and haze pollution.

CSR takes the spillover and leverage effects as carriers to inhibit haze pollution.
Previous studies show that with the improvement of CSR performance, low carbon green
development can promote regional ecological environment quality by improving the CSR
performance intensity in the region [35]. Although CSR fulfilment increases capital costs in
the short term and is not conducive to improving economic performance, CSR fulfilment
can promote the customer-oriented strategy of enterprises and improve their business
performance in the long run [36]. Therefore, enterprises must be committed to CSR activities
through various channels and approaches in a specific country or region and strive to build a
‘community of social responsibility with a shared future’. In the form of point-to-line, line-to-
surface and surface-to-field connections, and through social responsibility scale effect at the
industry level, enterprises balance and address environmental, social and economic benefits
to meet the broader social needs for sustainability, including the protection of natural assets,
services and functions of ecosystem on which human society ultimately depends [37], thus
effectively promoting low-carbon and green development and reducing pollution. The
leverage effect is reflected in how, through the formulation and implementation of social
strategies, enterprises establish social cooperation and win-win relationship networks with
various stakeholders, pool their knowledge to scientifically design and develop low-carbon
green products, improve their production process reengineering, promote the use of clean
production technologies, reduce their emission of haze pollutants and provide more health
products and services for the public [38]. CSR performance also brings economic, social
and environmental advantages [33]. Therefore, one can reasonably assume that those
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enterprises effectively carrying out their social responsibility can maximize their ecological
innovation to improve atmospheric conditions and enhance the contributions of their
commercial activities to the society and environment [39]. Hypothesis 2 is then proposed,
that is, that CSR has a nonlinear double-threshold negative influence on haze pollution.

2.2. Variable Definitions

(1) Haze pollution

Given that haze concentration in China was only monitored in 2012, following the
bounds of data selection years in this paper and the views of Yan and Qi and Beatriz
et al. [8,15], the satellite observation and chemical migration model from the Center for
International Earth Science Information Network (CIESIN) at Columbia University in New
York City, USA, which was used to export and convert the data into global PM2.5 average
annual concentration monitoring raster data. The monitoring results from this data are
roughly the same as those from the domestic environmental protection department, thereby
verifying their credibility and applicability.

(2) Corporate social responsibility (CSR)

CSR data were collected from the ‘Social Responsibility Report of Listed Companies’
published between 2009 and 2018 by Rankins CSR Ratings, RKS [39]. This report measured
the degree of CSR fulfilment from four aspects, namely overall, content, technical and
industry. Considering the differences in the CSR fulfilment capacities of different regions
and industries, the CSR scores of each enterprise were revised using the enterprise scale
from the CSMAR database, that database is developed by Xishma Data Technology Co.,
Ltd., Shenzhen city, China. Afterwards, the average social responsibility scores of each
province and region across different years were calculated and used as evaluation indices
of regional social responsibility.

(3) Foreign direct investment (FDI)

The FDI data used in this study included the inflow of capital and technology, the
transfer of industries and the absorption and utilization of actual capital. In this paper, the
actual amount of foreign capital utilization in each province and city was used to measure
the FDI for each year. Given the variability of statistical units, the data were converted
based on the USD:RMB exchange rate for the current year to obtain the value of FDI in each
province and city, and then the logarithm was taken as the measurement variable [5,10].

(4) Control variables

1© Environmental regulation (ER). A greater number of environmental regulations and
a stricter degree of regulation correspond to a higher motivation for enterprises to invest
in environmental pollution control. In this paper, the ratio of the amount of investment
in industrial pollution control to the industry-added value in a specific year was used
as a proxy for ER [1]. 2© Economic growth (EG). In general, a faster economic growth
corresponds to a greater demand for FDI and a greater value of GDP per capita. The
GDP per capita of each province and city was then used to measure the level of economic
growth [4]. 3© Energy structure (ES). China is currently at the stage of high-quality economic
development, and its energy consumption is undergoing structural adjustment from coal
to clean energy consumption. Therefore, the proportion of natural gas consumption to
total energy consumption was used in this paper as a proxy for ES [40]. 4© Industrial
structure (IS). Given that the development of primary and secondary industries has a
significant impact on the generation of haze pollution, the ratio of the added value of
primary and secondary industries to the GDP of each province and city was used in this
paper to measure IS [1]. 5© Regional innovation ability (IA). Regional innovation focuses
on environmental protection, sustainable development of the society and the degree of
regional innovation cannot be precisely measured by the number of patent applications
or authorizations alone. Therefore, the strength of provincial and municipal innovation
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ability was measured in this paper using the comprehensive index of IA following the
recommendations from the China Regional Innovation Ability Evaluation Report [41].

2.3. The Model

Based on the interaction mechanism amongst the variables, the following panel regres-
sion model was constructed to verify the effect of FDI and CSR on haze pollution:

PMit = β0 + β1FDIit + β2FDI2
it + β3CSRit + β4EGit + β5ESit + β6 ISit + β7ERit + β8 IAit + εit (1)

PMit = β0 + β1CSRit + β2CSR2
it
+ β3FDIit + β4EGit + β5ESit + β6 ISit + β7ERit + β8 IAit + εit (2)

The threshold effect model proposed by Hansen was then used to further examine the
difference in the fluence degree of FDI and CSR on haze pollution across different threshold
domains due to the existence of threshold values. FDI and CSR were taken as threshold
variables in turn to establish the following single-threshold effect models for accurately
capturing the critical values of explanatory variables and for understanding the nonlinear
relationships when the structure changes as follows:

PMit = βi + β1CSRit + β2EGit + β3ESit + β4 ISit + β5ERit + β6 IAit + β7FDIit·I(FDI ≤ γ) + β8FDIit·I(FDI > γ) + εit (3)

PMit = βi + β1FDIit + β2EGit + β3ESit + β4 ISit + β5ERit + β6 IAit + β7CSRit·I(CSR ≤ δ) + β8CSRit·I(CSR > δ) + εit (4)

Given that action may have a double-threshold or even a multi-threshold effect due to the existence
of multi-stage characteristics, the above single-threshold model was further extended as follows:

PMit = βi + β1CSRit + β2EGit + β3ESit + β4 ISit + β5ERit + β6 IAit + β7FDIit·I(FDI ≤ γ1) + β8FDIit·I(γ1 < FDI ≤ γ2)
+β9FDIit·I(FDIit > γ2) + εit

(5)

PMit = βi + β1FDIit + β2EGit + β3ESit + β4 ISit + β5ERit + β6 IAit + β7CSRit·I(CSR ≤ δ1) + β8CSRit·I(δ1 < CSR ≤ δ2)
+β9CSRit·I(CSRit > δ2) + εit

(6)

where i represents different provinces; t represents different years; β0 reflects the individual effect of
provincial differences; I(•) is the indicator function; εit is the random disturbance term; r and δ are
the threshold values of FDI and CSR, respectively; βi is the regression coefficient of each variable;
PM, FDI and CSR are the explanatory variables (haze pollution) and threshold variables (FDI and
CSR) of the study design; and EG, ES, IS, ER and IA are a set of control variables. After estimating
the regression coefficients and the corresponding thresholds for each variable, the significance and
authenticity of the thresholds were tested. The regression coefficients and corresponding threshold
values were obtained based on the minimum sum of squared residuals of the variables under the
given threshold number, and the existence of the threshold effect was tested according to the p-value.
The consistency of the obtained threshold values with the actual values was evaluated using the
likelihood ratio (LR) statistic.

2.4. Data Sources
The panel data of 30 provinces and cities in China (excluding Hong Kong, Macao, Taiwan

and Tibet) from 2009 to 2018 were taken as the sample. EG, FDI and IS data were collected from
China Statistical Yearbook and China Urban Statistical Yearbook; ES and ER data were obtained
from the China Energy Statistical Yearbook, China Regional Economic Statistical Yearbook and China
Environmental Statistical Yearbook; and IA data were derived from the China Regional Innovation
Ability Evaluation Report compiled by the China Science and Technology Development Strategy
Research Group and the China Innovation and Entrepreneurship Management Research Center of
the University of Chinese Academy of Sciences University. Moreover, CSR data were collected from
the ratings released by Rankins CSR Ratings, RKS, which were sorted by the authors into provincial
and municipal data, and the PM data were collected from the raster data published by the Center
for Socioeconomic Data and Applications of Columbia University based on the annual mean global
PM2.5 concentrations monitored by satellites.

3. Results
3.1. Collinearity Analysis and Model Selection

Firstly, correlation analysis and variance inflation factor (VIF) were used to verify the multi-
collinearity amongst the variables. As shown in Table 1, none of the correlation coefficients amongst
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the variables exceed 0.7, thereby indicating that the correlation coefficients are within a reasonable
value range. However, the maximum VIF of 2.41 is much smaller than the reference value of 10,
thereby confirming the absence of any severe collinearity amongst the variables. Secondly, F-test
and Hausman test were performed to determine the most appropriate estimation method for the
model. The panel data estimation methods of OLS regression and random effects were rejected by
comparative analysis, thereby confirming that the fixed-effects model was suitable for this study.

Table 1. Correlation and variance inflation factors of variables.

Variable PM FDI CSR EG ES IS ER VIF 1/VIF

PM
FDI 0.456 * 2.32 0.432
CSR 0.183 * 0.151 * 1.32 0.756
EG 0.403 * 0.470 * 0.469 * 2.19 0.457
ES −0.213 * −0.246 * 0.083 0.108 1.19 0.838
IS −0.085 −0.207 * −0.245 * −0.476 * −0.215 * 1.41 0.712
ER −0.173 * −0.484 * 0.042 −0.190 * 0.078 0.045 1.73 0.729
IA 0.401 * 0.676 * 0.186 * 0.592 * −0.056 −0.388 * −0.402 * 2.41 0.415

Note: * Indicates significance at the 10% level.

3.2. Panel Regression Analysis
The effects of FDI and CSR on haze pollution were initially estimated using Stata 15.1 to fit the

panel data with the fixed effects. To further reveal the differential effects produced by the strength of
the explanatory variables on the explained variables, the effects of the first and second powers of FDI
and CSR on haze pollution were examined in the model after introducing control variables. Table 2
presents the test results. When the explanatory variable is FDI, its first power regression coefficient is
negative and significantly correlated at the 1% level (β = −25.560, p < 0.1), whereas its second power
coefficient is positive and passes the 5% significance level test (β = 0.645, p < 0.05). Therefore, FDI
and haze pollution have a U-shaped relationship. With the continuous increase in the total amount of
FDI, the haze pollution degree initially decreases and then increases. This trend shows prominent
stage characteristics and is constrained by the effect strength of FDI. When CSR is the explanatory
variable, the first power coefficient is significantly positive (β = 31.601, p > 0.1), whereas the second
power coefficient is significantly negative (β = −15.202, p < 0.1), thereby suggesting that CSR and
haze pollution have an inverted U-shaped structure. As the degree of CSR fulfilment increases, the
degree of haze pollution decreases.

Table 2. Regression results of FDI, CSR and Haze Pollution.

Variable
Haze Pollution

Coefficient Standard Error t p Coefficient Standard Error t p

FDI −25.560 13.908 −1.84 0.067 3.614 0.774 4.67 0
FDI2 0.645 0.305 2.11 0.035
CSR −13.569 4.745 −2.86 0.005 31.601 29.245 1.08 0.281
CSR2 −15.202 9.166 −1.66 0.098
EG −0.628 3.005 −0.21 0.835 −0.412 3.010 −0.14 0.891
IS 5.441 11.165 0.49 0.626 5.194 11.212 0.46 0.644
ES −38.968 12.402 −3.14 0.002 −42.179 12.490 −3.38 0.001
ER 4.910 3.311 1.48 0.139 5.093 3.318 1.53 0.126
IA 0.247 0.130 1.90 0.058 0.366 0.121 3.04 0.003

R2(F) 0.328 (17.20) 0.324 (16.89)

Note: p < 0.1 indicates significance at the 10% level, p < 0.05 indicates significance at the 5% level, p < 0.01 indicates
significance at the 1% level.

3.3. Threshold Test
The above panel regression analysis reveals that both FDI and CSR have significant nonlinear

effects on haze pollution, which reflects that the different influences of FDI and CSR obviously restrict
the degree of haze pollution. Therefore, Bootstrap repeated sampling was performed 300 times to
obtain the F statistic and p value as well as the corresponding critical value distribution. Table 3
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presents the results. Firstly, the results reveal that both the single and double thresholds of FDI are
significant at the 1% level. However, the presence of the triple threshold is not significant, thereby
implying that this threshold is invalid. In other words, FDI has a significant double-threshold effect
on haze pollution. Similarly, only the single threshold of CSR is significant at the 1% level, and the
double and triple thresholds are not significant. In other words, CSR only has a single-threshold
effect on haze pollution. Secondly, the threshold value was tested to confirm if it is equivalent to
the actual value. Table 3 shows that the two thresholds for FDI are 24.877 and 25.558, and the single
threshold for CSR is 1.879. To further verify whether the corresponding estimated threshold value
was equal to the actual value, the LR statistic was used to draw the likelihood ratio function graph
of each threshold value of FDI (Figure 1) and CSR (Figure 2) under the 95% confidence interval.
According to the relationship between the actual LR statistic (lowest point) and the critical value
(7.35) at the significance level of 5%, the lowest point of LR statistic is significantly lower than 7.35,
thereby confirming the consistency between the threshold value of FDI and CSR and the actual value.

Table 3. Test of FDI and CSR threshold effect results.

Independent
Variable

Threshold
Variable Thresholds F p Threshold

Value
95% Confidence

Interval

Critical Value

1% 5% 10%

FDI FDI Single 22.02 0.000 24.877 (24.844, 24.900) 28.868 26.807 25.941
Double 24.74 0.000 25.558 (25.511, 25.561) 14.928 12.926 11.618
Triple 23.88 1.000 22.302 (21.971, 22.318) 33.099 29.304 27.418

CSR CSR Single 17.67 0.080 1.879 (1.826, 1.879) 10.486 9.971 9.026
Double 16.05 0.3200 1.976 (1.966, 1.988) 9.867 8.646 7.692

Note: p < 0.1 indicates significance at the 10% level, p < 0.05 indicates significance at the 5% level, p < 0.01 indicates
significance at the 1% level.

3.4. Analysis of Threshold Effect
Table 4 presents the results of the threshold regression of FDI and CSR on haze pollution. The

threshold effect of FDI was initially evaluated. In general, the positive effect of FDI on haze pollution
demonstrates the ‘pollution paradise’ effect because the current use of FDI in China emphasizes
quantity over quality. In the context of intensified local competition, local governments blindly
expand their use of FDI to promote economic growth. However, those specific industries into
which FDI flows are loosely regulated, thereby leading to many FDI flows into industries with high
pollution and energy consumption. This behavior also results in the ‘market theft’ effect of FDI, which
further deepens the degree of local haze pollution. When the FDI intensity is lower than 24.877, the
impact coefficient is 1.6889, which is significant at the 5% level. Under the early extensive economic
development mode, FDI influx plays a special role in promoting environmental pollution. In other
words, FDI has a significant positive impact on haze pollution within the first threshold. When the
FDI intensity ranges between 24.877 and 25.558, the influence is 2.273 at the significance level of 1%,
thereby suggesting that during a process of economic growth that relies on FDI for a long time, the
transfer of heavily polluting industries and obsolete technology from developed countries further
deepens the environmental deterioration of developing countries. In other words, within the two
threshold intervals of FDI, the promoting effect of FDI on haze pollution is significantly enhanced.
When the FDI intensity is more significant than 25.558, the impact coefficient decreases to 1.637, which
also passes the test at the 5% significance level. Compared with the influence strength of the above
two threshold intervals, the positive influence of FDI on haze pollution is the weakest after crossing
the second threshold value, thereby suggesting that with the increasing demand for high-quality
economic development, both the government and enterprises will adjust their use of FDI, upgrade
their industrial structure and use part of their funds for environmental governance. Given that the
optimization and adjustment of FDI use are part of a long-term process, the transformation from
‘quantity to quality’ has not yet achieved the effect of restraining environmental pollution. After FDI
crosses the second threshold value, the influence of FDI on haze pollution becomes positive, but its
degree is the weakest. Therefore, hypothesis 1 is verified.
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Table 4. Threshold effect model regression results.

Variable
Haze Pollution

Coefficient Standard Error t p Coefficient Standard Error t p

FDI 3.536 0.768 4.61 0.000
CSR −11.947 4.236 −2.82 0.005
EG −1.325 2.741 −0.48 0.629 −1.254 3.016 −0.42 0.678
IS 15.005 10.3501 1.45 0.148 4.863 11.122 0.44 0.662
ES −36.896 11.370 −3.25 0.001 −43.796 12.414 −3.53 0.000
ER 4.107 3.054 1.34 0.180 5.153 3.290 1.57 0.118
IA 0.491 0.130 3.79 0.000 0.422 0.122 3.45 0.001

FDI-1 1.689 0.760 2.22 0.027
FDI-2 2.273 0.730 3.11 0.002
FDI-3 1.637 0.749 2.18 0.030
CSR-1 −9.652 5.199 −1.86 0.064
CSR-2 −14.040 4.629 −3.03 0.003

F 24.74 17.67
R2 0.442 0.334

Note: FDI-1, FDI-2, and FDI-3 refer to low-, medium-, and high-intensity intervals of FDI; CSR-1 and CSR-2
refer to the low- and high-intensity intervals of corporate social responsibility, respectively; p value is the result
obtained by repeated sampling 300 times with Bootstrap.
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The threshold effect of CSR was then analysed. Overall, CSR shows a negative nonlinear effect
on haze pollution, and this negative effect is characterized by increasing marginal efficiency. When
pursuing economic value, enterprises actively practice social responsibility by paying attention to
social harmony and ecological environmental protection, all-around development of environment
friendly products and multi-channel innovation of low-carbon green production technology. As a
starting point for the sustainable development of enterprises and a support point for the healthy
development of the social economy, CSR plays a crucial role in scientific and technological innovation,
industrial adjustment and environmental protection, providing a kinetic conversion for haze pollution.
When CSR intensity is lower than 1.879, its impact coefficient on haze pollution is −9.652, which
is significant at the 10% level. In other words, at the early stage of economic development, the
collaborative economic, social and environmental nature of CSR effectively suppress the level of
environmental pollution, thereby verifying that CSR is an excellent path to reduce environmental
pollution. Meanwhile, when the CSR intensity is higher than 1.879, its impact on haze pollution is
significantly more substantial with an impact coefficient of −14.040, which is significant at the 1% level.
This finding can be mainly ascribed to the fact that with the increasing seriousness of environmental
pollution, the government gradually increases the strength of its environmental regulations, thereby
highlighting the necessity and comprehensiveness of CSR performance. Many enterprises incorporate
CSR into their development strategies in response to the calls of the government and the public,
regard the International Social Responsibility Guide (ISO26000) as a benchmark and fulfil their
CSR by reducing their degree of environmental pollution. Therefore, on both sides of the single-
threshold value of CSR, the influence of CSR on haze pollution is negative and gradually enhanced.
Hypothesis 2 is then verified.

3.5. Further Analysis
There are also changes in the number of provinces across different threshold intervals. According

to the different threshold values of FDI and CSR, the 30 provincial samples were divided into
5 intervals to analyse their threshold variability. According to the statistical results in Table 5, FDI
and CSR evolve in the direction of adjustment and optimization. From 2009 to 2018, the number of
provinces with two variables that are less than the first threshold value showed a downward trend,
whilst the number of provinces with two variables that are greater than the first threshold value
showed an upward trend. A total of eighteen provinces did not pass the first threshold for FDI in 2018,
and these provinces were mainly located in the less-developed regions of central and western China.
In the same year, only three provinces passed the second threshold, namely Tianjin, Guangdong and
Jiangsu Province. In terms of CSR, due to the influence of China’s economic development model
and the degree of CSR fulfilment, none of the provinces passed the first threshold from 2009 to 2011.
With the transformation of economic development and the popularization of the social responsibility
concept, the number of provinces crossing the first threshold gradually increased since 2012, but their
number remains relatively small. These results suggest that the development of China’s economy
and its process of environmental governance are accompanied by the gradual optimization of the
FDI structure and the development and implementation of CSR.

Table 5. Statistical results of the number of provinces within different threshold intervals, 2009–2018
(unit: one).

Threshold Interval 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

FDI ≤ 24.877 15 24 22 22 21 21 20 18 18 18
24.877 < FDI ≤ 25.558 9 3 5 5 6 6 7 10 9 9

FDI > 25.558 6 3 3 3 3 3 3 2 3 3
CSR ≤ 1.879 30 30 30 29 29 26 25 25 23 26
CSR > 1.879 0 0 0 1 1 4 5 5 7 4

An analysis of the geographical characteristics of the number of threshold provinces is also
included. The number of provinces where FDI and CSR crossed the threshold shows prominent
eastern and western geographical characteristics. From the perspective of FDI, those provinces
that exceeded the second threshold in 2009 included Shanghai, Shandong, Guangdong, Jiangsu,
Zhejiang and Liaoning. Most of these provinces are located in the eastern coastal region, which is
favorable to FDI. Some central provinces such as Sichuan, Anhui, Jiangxi, Henan, Hubei and Hunan
are located between the two thresholds due to the constraints in resource endowment and industrial
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transfer. By contrast, fifteen provinces, including Yunnan, Inner Mongolia, Ningxia, Shanxi, Guangxi,
Xinjiang and Guizhou, were less than the first threshold due to geographical location and ecological
environment constraints. From the CSR perspective, China still has a long way to go to fulfil its social
responsibility. Therefore, none of its provinces passed the first threshold before 2011. According to the
measurement standard, it was only after 2012 that the CSR value of Yunnan, Shanghai, Sichuan and
Guangdong gradually crossed the first threshold, which, to some extent, indicates that the current
social responsibility governance work in China remains challenging and requires further planning
and promotion.

4. Discussions
Healthy investment in China is the guarantee of stable economic growth. Different from the

developed countries who adopt industrial development model, developing countries have a larger
effective utilization gap of capital, more environmental barriers to hurdle and a more imperfect social
responsibility environment. As a result, protecting the environment in China and hindrance factors
affecting haze pollution are worth studying. This article highlights the economic–social environmental
impact, embodied in FDI and CSR.

For FDI, whether it is linear regression or threshold effect regression, the promotion effect of FDI
on haze pollution exists. These results not only support most of these previous studies suggesting the
linear influence of FDI on haze pollution from the perspective of the pollution paradise and pollution
halo effects [4–6], but also expand its nonlinear relationship with stage characteristics. This may be
because China attaches importance to the quantity rather than the quality of FDI due to its eagerness
to develop the economy, as well as that the relevant environmental protection mechanism and
regulatory mechanism are not sound enough, resulting in the consequences of increasing economic
aggregate and environmental pollution.

For CSR, we consider the social-responsibility-bearing capacity of enterprises with different
scales and from regions and the matching degree of local economic development. Then, our study
shows that CSR has a significant inhibitory effect on haze pollution [13,15], whether linear or threshold
effect. This is consistent with theoretical deduction, indicating that CSR effect plays a larger part in
the threshold affection. It is possible that China’s policies towards CSR have gradually increased,
and thus, enterprises vigorously implement social responsibility and nurture the concept of low-
carbon green development. When foreign capital can adapt to China’s institutional environment, a
harmonious road between economic development and a beautiful environment may take shape.

When taking FDI and CSR as threshold variables, examining the spatial–geographical distribu-
tion characteristics of provinces based on different interval thresholds, the study has found that the
number of provinces with FDI and CSR greater than the first threshold has gradually increased, indi-
cating that the Chinese government has gradually attached importance to optimizing and adjusting
the structure of FDI use and promoting CSR implementation over time.

5. Conclusions
By analysing the influence mechanism of FDI and CSR on haze pollution, this paper reveals a

nonlinear relationship between FDI and haze pollution based on the panel data of 30 provinces and
cities across China from 2009 to 2018 and by using the fixed-effects model and threshold regression
analysis. This study also comprehensively examines the change in the number of provinces based on
the threshold interval and geographical characteristics and draws the following research conclusions.
Firstly, there is a significantly positive double-threshold effect between FDI and haze pollution; that is,
whether FDI is at the first or second threshold, its influence on haze pollution is significantly positive,
and its influence reaches the most substantial level within the two threshold values. Meanwhile, there
is a significantly negative single-threshold effect between CSR and haze pollution, that is, the effect
of CSR on haze pollution on both sides of the single threshold has the positive effect of increasing
marginal efficiency. The management of haze pollution in China is accompanied by optimizing the
FDI structure and improving CSR. However, those provinces where each variable crosses different
threshold intervals have prominent geographical characteristics. Secondly, from the threshold value
and interval distribution perspective, the number of provinces that are below the first threshold
value of FDI and CSR decreases yearly. Improving the quality of FDI use and actively carrying out
CSR activities have become new approaches to haze pollution control. In terms of the geographical
distribution of provinces, the eastern region, with its superior geographical features and developed
economy, acts as the main force that crosses the second threshold of FDI and the first threshold of CSR.
Meanwhile, the central provinces in the critical period of industrial optimization and investment
attraction primarily lie between the two thresholds of FDI.
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The above empirical evidence suggests that high-quality FDI and CSR can be used as tools to
achieve haze pollution control targets and to construct a green, low-carbon and circular economic
system. Policy recommendations are then proposed as followed: Firstly, the quality and structural
optimization of FDI should be given priority. Given the need for high-quality economic development,
people should adhere to the environmental access threshold of FDI, reduce the entry of enterprises
with high energy consumption and pollution, and introduce more clean production and technological
innovation enterprises. A group of foreign enterprises that are equipped with technological advan-
tages and are in line with China’s economic development should also be introduced to reduce the
probability of haze pollution and its negative effects by accumulating and diffusing their capital,
technology and knowledge. Secondly, the fulfilment of social responsibilities should be vigorously
promoted. Considering their current situation in fulfilling their social responsibilities, foreign and
domestic enterprises should be guided to form a development concept that combines high-quality
economic development with ecological and environmental protection. These enterprises should also
jointly design social responsibility projects with the government and the public to solve social and
environmental problems. They should extend their social responsibility to the whole industrial chain
to form standard social and environmental value norms, drive chain enterprises to participate in
social and environmental governance practices, and coordinate and cooperate with one another to ad-
dress haze pollution. Thirdly, an environmental governance system shared amongst the government,
enterprises and society should be established. The government should not only share its respon-
sibility through environmental regulations and strengthen the restraint mechanism of enterprises’
pollution emissions, but also promote a long-term cooperation mechanism with enterprises, social
organizations and other actors in environmental governance by taking advantage of the situation.
Enterprises should also take an active part in this process by appropriately increasing their R&D
investment to innovate green and clean production technologies and by exploring and developing
closed-loop value creation systems that reduce emissions and costs, save production materials and
recycle energy in circulation. They can significantly contribute to improving the environment by
working with third parties, such as universities and research centers, in developing joint business
plans, such as eco-patent sharing, to expand the space for collaboration.
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Abstract: Although a firm’s exposure to air pollution-related risk has become an important factor
that creditors cannot ignore in the procedure of lending decision making with the aggravation of
air pollution, empirical evidence on whether and how air pollution affects the cost of debt has been
relatively scarce. Employing a series of Chinese listed firms from the main board of the Shanghai
and Shenzhen Stock Exchanges covering 2014 to 2018, our research responds to this research gap
by exploring how air pollution-induced environmental violation risk affects the cost of debt by
constructing an assessment system of firms’ environmental violation risk. The results shed light on an
issue that firms exposed to higher concentrations of air pollution may suffer a higher environmental
violation risk, resulting in a higher debt cost. In addition, a further analysis shows that environmental
regulatory pressure and heavily polluting firms enhance the influence of air pollution on the cost
of debt, while state-owned firms and firms’ economic contributions weaken the influence of air
pollution on the cost of debt. Our research is conducive to highlighting not only the importance of
environmental governance for mitigating the cost of debt to the firms exposed to air pollution, but
also its importance to creditors exposed to their clients’ environmental violation risk and default risk.

Keywords: atmospheric pollution; debt financing cost; environmental penalties; environmental
regulatory pressure; heavily polluting firms; state-owned firms; economic contribution

1. Introduction

For a long time, some areas in China have sacrificed the environment in exchange
for the rapid development of the regional economy [1], causing irreversible damage to
the ecological environment. In the last few years, air pollution incidents have occurred
frequently in China. In particular, in December 2013, a large-scale air pollution incident
occurred in northern China that resulted in large-scale flight delays, the cancellation
of outdoor work, and a surge in respiratory diseases [2]. Subsequently, air quality has
received increasing public attention as it poses a serious threat to human health, welfare,
and psychology [3–5]. How to coordinate the relationship between economic growth and
environmental protection has become a crucial issue for China’s social development.

With the expansion of the impact of air pollution on the social economy, researchers
have gradually become interested in the impact of air pollution on the behavior of capital
market participants, which provided us with a crucial and unique idea to explore the
relationship between air pollution and the cost of debt. Some frontier literature has noticed
that air pollution may increase people’s pessimistic emotions, which leads to a series of
aberrant behaviors in capital markets, including risk aversion behaviors and attention-
driven buying behaviors among investors [6,7], pessimistic earnings forecasts among
securities analysts [8], and more audit efforts for auditors [9]. These unique and innovative
studies link air pollution to subsequent abnormal behaviors and outcomes in capital
markets, but they have not explored the potential influence of air pollution on the decisions
of creditors and the cost of corporate debt. Whether and how air pollution affects the
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cost of debt is a crucial issue, which is related to the economic benefits and sustainable
development of firms. Our study explores the effect of air pollution on the cost of debt in
depth based on large-sample data to provide empirical evidence for whether and how air
pollution affects creditors’ decisions.

Public concern regarding the ecological environment has increased along with air
pollution, stimulating government regulators to formulate stricter environmental regu-
lations [10]. Firms are not only powerful drivers of economic growth, but also major
producers of air pollution. The Chinese government has passed a great deal of powerful
environmental regulations aimed at reducing the pollutant gas emissions of firms, includ-
ing environmental protection interview systems and the Blue Sky Defense Campaign.
Undoubtedly, these measures severely punish the polluting behaviors of firms, which
leads many heavily polluting firms to face a huge environmental violation risk [11]. Firms’
exposure to environmental violation risk may increase the uncertainty risk in its current
and future cash flows and, ultimately, increase the likelihood of the default [10,12]. With the
increasing pressure of environmental supervision, firms’ exposure to environment-related
risk has become an important factor that creditors cannot ignore in the procedure of lending
decision making [10,13,14], which means that more and more firms are facing the severe
challenge of financing constraints caused by air pollution [15,16]. Therefore, whether air
pollution affects the cost of debt through its effect on environmental violation risk is worthy
of exploration.

Empirical evidence from China can provide an ideal natural setting for this study.
First, China’s vast geographical area includes different climatic conditions, which can be
more conducive for us to identify the potential impact of different levels of air pollution
on corporate debt cost. Second, Chinese empirical evidence provides us with data on
firms under discrepant conditions of environmental regulation, industry characteristics,
ownership, and economic contribution that facilitate the analysis of the moderating roles of
these heterogeneous factors in the impact of air pollution on the cost of debt.

Employing the listed firms from the main board of the Shanghai stock exchange
(SSE) and Shenzhen stock exchange (SZSE) from 2014 to 2018 as the research sample, we
thoroughly explore whether and how air pollution surrounding the cities where the firms
are located becomes an important factor affecting the cost of debt. The results show that air
pollution in the cities of the firms are significantly positively associated with the cost of debt,
and environmental violation risk is the mechanism of air pollution affecting the cost of debt.
This reveals that firms exposed to higher concentrations of air pollution may suffer a higher
risk of environmental violations, which promotes the creditors’ pessimistic assessment of
firms’ default prospects and results in a higher cost of debt. Our main regression result
remains robust after a range of sensitivity tests and endogenous tests. A further analysis
shows that the environmental regulatory pressure and heavily polluted firms enhance the
influence of air pollution on the cost of debt, while state-owned firms and firms’ economic
contributions weaken the influence of air pollution on the cost of debt.

The research contributions we consider may include the following parts: First, we
fill in the gaps in the existing literature on the relation between air pollution and the cost
of debt. This research focuses on the effect of air pollution on the cost of debt, which not
only extends the related literature on the economic outcomes of air pollution, but also
enriches the research paradigm of “environmental conditions–decision making”. Second,
our research provides deeper insights into how air pollution affects creditors’ decisions and
corporate debt cost from the perspective of environmental violation risk. Although some
scholars have attempted to analyze the restrictive effect of air pollution on corporate debt
financing from the mechanism of credit risk and financial uncertainty [15,16], they ignored
the mechanism of environmental violation risk, which is the fundamental mechanism by
which air pollution affects the cost of debt. Additionally, few studies have comprehensively
measured the environmental violation risk of listed firms. Our research responds to these
research gaps by clarifying the internal mechanism of air pollution affecting the cost of
debt by constructing an evaluation system of firms’ environmental violation risk based on
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the scoring standard for firms’ environmental violations formulated by the Chinese local
government. Third, our study provides firms with useful insights for forecasting creditors’
responses and decision making in the face of air pollution based on diverse conditions
that include regional environmental supervision, industry characteristics, ownership, and
firms’ economic contribution. Specifically, our research reminds the firms subject to strict
environmental supervision, heavily polluting firms, non-state-owned firms, and firms with
low economic contributions to be more vigilant against the environmental risk hidden in
air pollution, which complements the existing literature on the environmental violation
risk of firms to a certain extent [17–19].

2. Literature Review and Hypothesis Development

With the frequent occurrence of global haze events, the severity of air pollution has
gradually attracted extensive attention. As a typical indicator of environmental condi-
tions, air pollution observably affects the judgment and decision making of capital market
participants, which is gradually being recognized by scholars. Levy and Yagil [6] and
Lepori [20] propose that air pollution may deteriorate investors’ emotions and intensify
their risk aversion, which leads to a negative impact on the subsequent stock returns.
Coincidentally, Huang et al. [7] confirmed that air pollution makes investors more prone to
the disposition effect, attention-driven buying behavior, and excessive trading, which may
contribute to poor trading performance. Wu et al. [1] also verified that the fluctuation of
investor sentiment related to air pollution is an important reason for the abnormal stock
price. Subsequently, some scholars even further extended the relationship between air
pollution and the decision making of capital market participants to analysts’ earnings
forecast and auditors’ pessimistic bias [8,9]. However, few studies discuss whether and
how atmospheric pollution influences the judgment and decision making of the lenders
compared to stock investors, which is closely related to the debt financing and sustainable
development of firms.

In the following analysis, we deeply explored (1) the impact of air pollution on the
cost of debt and the mediating effect of environmental violation risk on this impact and
(2) the heterogeneous factors affecting the relationship between air pollution and debt cost.

2.1. Influence of Air Pollution on Cost of Debt and Mechanism of Environmental Violation Risk

Recently, the frequent occurrence of serious air pollution, such as high concentrations
of haze, has aroused widespread concern and pessimistic expectations among the public
regarding a plummeting air quality and environmental livability, since air pollution has
gradually become the main culprit of many diseases [21–23]. Meanwhile, these public
concerns and pessimistic expectations concerning air pollution are also potential forces to
promote government regulators to implement sterner environmental regulatory measures
to severely punish environmental violations [24,25]. Firms are not only the main driving
force of economic development, but also resource consumers and manufacturers of environ-
mental pollution. In particular, heavily polluting firms may face a greater environmental
violation risk due to the penalty of pollution discharge by environmental supervisions in
areas with serious air pollution [11], which is a crucial risk signal to creditors and other
stakeholders in circumstances of asymmetric environmental information. The financial
losses of environmental violation risk for firms are quite serious, which may increase the
uncertainty of their future cash flows [10,12,26,27], threaten viability [28], and even increase
the default risk or bankruptcy risk of firms [12,18]. Generally, firms with higher exposure
to environmental violation risk face higher credit risk [14]. In response, creditors, includ-
ing banks and other lending institutions, cannot ignore the environmental risk related
to air pollution in the process of lending decision making [13,28,29] and prevent the air
pollution-related default loss by revising debt contracts, such as raising the bond yields and
interest rate as a response [10,12,30]. Tan et al. [16] and Tan et al. [15] also confirmed that
firms in areas with serious air pollution face more significant debt financing constraints in
the process of negotiation with banks due to a higher credit risk and financial uncertainty
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related to the environment. Consequently, we expect that firms located in areas with serious
air pollution face a higher risk of environmental violations, and, thus, they need to afford
higher debt costs in the process of debt financing. The above theoretical analysis led to the
following hypothesis:

Hypothesis 1a (H1a). Higher concentrations of air pollution cause firms to bear a higher cost
of debt.

Hypothesis 1b (H1b). Environmental violation risk is the mechanism for the effect of air pollution
on the cost of debt, that is, air pollution increases the cost of debt through its effect on environmental
violation risk.

2.2. Moderating Role of Environmental Regulatory Pressure

The original pressure for firms to carry out environmental management comes from
strict governmental regulations, and its purpose is to maintain legitimacy [31–33]. Strict
environmental policies threaten the legitimacy of polluting firms and bring administrative
penalties or legal proceedings against polluting firms [34,35], which bring losses to the
reputation and market valuation of firms [36]. During the 11th five-year plan period,
Chinese local governments continued to strengthen the implementation of environmental
policies, which was represented by the inclusion of regional air pollution control in the
assessment system of local governments [17,37]. Since 2014, the Ministry of Environmental
Protection of China has implemented a new policy of interviewing local government
managers. In 2018, the State Council issued the three-year action plan for winning the Blue
Sky Defense Campaign, focusing on strengthening the supervision of regional air quality.
As a result of a stricter environmental regulation enforcement, the environmental violations
of firms due to poor environmental performance have gradually attracted serious attention
from investors and have begun to affect investors’ assessments of corporate risk [38].
We speculate that the environmental violation risk related to air pollution is higher for
firms located in these regions with strict environmental supervision. Creditors are more
sensitive to environmental regulatory compliance, environmental violation risk, and the
legitimacy status of firms subject to strict environmental supervision. In particular, OECD
countries have had a strong risk awareness of climate change for a long time, which has
prompted them to adopt strict environmental regulations in response to the threat of
climate change [39]. Firms in OECD countries may face a higher environmental violation
risk related to air pollution, which results in higher costs of debt.

Hypothesis 2 (H2). The effect of air pollution on the cost of debt is strengthened by environmental
regulatory pressure.

2.3. Moderating Role of Firms’ Industry Characteristics

Prior studies have demonstrated that industry characteristics are a critical factor af-
fecting the investors’ attention to firms’ environmental issues. Firms in environmentally
sensitive industries have a higher tendency to engage in polluting activities and noncom-
pliance with environmental regulations, and investors are more likely to perceive the
environmental risk characteristics of these firms [38]. In particular, the announcement of
new environmental regulations reduces investors’ aspiration to invest in heavily polluting
stocks, which eventually leads to a relatively poor stock return performance of heavily
polluting firms in a short period [11]. Konar and Cohen [40] demonstrated that, driven by
environmental responsibility, some investors have consciously penalized heavily polluting
firms by raising the cost of capital. Thus, we expect that when cities are covered in heavy
air pollution, creditors would pay more attention to the environmental problems of heavily
polluting firms in these areas and worry about the risk of environmental violations of these
heavily polluting firms.
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Hypothesis 3 (H3). The effect of air pollution on the cost of debt is strengthened by heavily
polluting firms.

2.4. Moderating Role of Firms’ Ownership

Under the special circumstances of China, the ownership of firms is often regarded as
an important factor affecting environmental governance issues. In China, state-owned firms
often belong to important industries related to the national economy and the people’s liveli-
hood and bear the important functions of maintaining national security, economic stability,
industrial leadership, and public services. In order to ensure the state-owned economy’s
control over these key industries, the government must hold a certain proportion of shares
in these key firms and appoint specific officials as senior managers of state-owned firms [41].
Thus, ownership is regarded as a strong political link between firms and government [42].
Political connection not only brings more advantages to state-owned firms, such as more
investment funds, tax incentives, lower financing constraints, and capital cost [43–46], but
also brings some obstacles to the implementation of environmental supervisions by local
governments [17,38]. When local governments implement environmental supervision, the
political connection can always protect state-owned firms from punishments due to envi-
ronmental violations to a great extent. Therefore, the regional political protection of heavy
polluters has often been accused of being a barrier for the enforcement of environmental
regulations [47]. Zhou et al. [18] also demonstrated that creditors more carefully assess
the carbon risk of private firms and adopt stricter approval standards in the process of
reviewing loans. We expect that when air pollution occurs, political connection can play
a role as an umbrella to minimize the penalties for environmental violations doled out
to state-owned firms, reducing the sensitivity of creditors to the environmental risk of
state-owned firms.

Hypothesis 4 (H4). The effect of air pollution on the cost of debt is weakened by state-owned firms.

2.5. Moderating Role of Firms’ Economic Contribution

For a long time, it has generally been acknowledged that the importance of economic
development is higher than environmental protection in Chinese society, which has led to
weak economic punishments for environmental violations among Chinese firms [48]. Under
the current administrative system in China, environmental policies are mainly formulated
by the central government, while the implementation functions of environmental policies
are mostly carried out by local governments, which are the main body of environmental
governance and supervision. However, in the process of implementing environmental
policies, local governments often fail to supervise the environmental violations of local
firms. As Wang and Wheeler [49] noted, the bargaining power of firms is an important
factor affecting the effectiveness of governments’ environmental supervision. The tax
contributions from firms’ business activities are conducive to promoting local economic
growth and realizing the promotion goals of local officials. If a firm is a major contributor to
local economic development, it may have stronger bargaining power when it comes to en-
vironmental supervision. Therefore, under the condition of serious information asymmetry
in environmental problems, for the consideration of economic development and political
performance objectives, local managers are likely to tolerate the environmental violations
of heavily polluting firms that provide significant contributions to local economies and
taxation at the expense of environmental protection [17]. We expect that an economically
important firm has stronger negotiating abilities when it comes to environmental supervi-
sion, effectively reducing the administrative penalty they may suffer in air pollution events
and reducing the sensitivity of creditors to the environmental violation risk.

Hypothesis 5 (H5). The effect of air pollution on the cost of debt is weakened by firms’ eco-
nomic contribution.
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3. Research Design
3.1. Sample Selection

We selected a sample of Chinese listed firms from the main board of the SSE and
SZSE from 2014 to 2018. The SSE and SZSE are the distinguished stock exchanges in China.
Listed firms from the main board of the SSE and SZSE are generally characterized by a high
market share, large scale, and strong comprehensive strength, and their environmental per-
formance and environmental violations are more susceptible to the attention of government
regulators, creditors, and other stakeholders. Consequently, these firms served as the focus
for our research to analyze the possible relationship between air pollution and the cost
of debt. The reason for selecting this time period was that China’s air quality evaluation
system has changed to a great extent since 2014. Therefore, this paper selected the air
quality data of 2014 and later to ensure the consistency of the calculation caliber of air
pollution degree. Air pollution data of cities in China and financial data of the listed firms
were collected from the China Stock Market and Accounting Research (CSMAR) database.
We obtained related macroeconomic data, including the regional GDP growth rate and pro-
portion of secondary industry, from the China Statistical Yearbooks. Furthermore, regional
climate data, including wind speed and annual rainfall, were manually collected from
the meteorological database on the website of greenhouse data sharing platform and the
Statistical Yearbooks of China’s provinces. Data related to firms’ environmental violations
were manually collected from the firms’ environmental supervision records on the website
of the Institute of Public and Environmental Affairs (IPE). Next, we eliminated the sample
firms that met the following conditions according to the conventional practice to ensure the
reliability of the research results: (i) financial firms (since the accounting standards of the
financial industry are quite different from those of other industries, we excluded financial
listed firms from the full sample); (ii) firms with missing key financial data; (iii) firms
with serious financial abnormalities or delisting risk (ST or *ST). We ultimately retained
3993 firm-year observations after a prudent screening process. Finally, all continuous
variables were winsorized at the 1% level to eliminate the effects of extreme values.

3.2. Main Variable Descriptions
3.2.1. Dependent Variable: Cost of Debt (Cost)

In terms of the measurement of the core dependent variable, we used the firm’s interest
expenditure rate as the proxy of the cost of debt similar to prior studies on the listed firms,
which was measured as the total interest expense divided by the average interest-bearing
debt [18,50–52].

3.2.2. Independent Variable: Air Pollution (Air)

Before 2013, the Ministry of Environmental Protection of China (MEPC) issued the air
pollution index (API), which is an index for calculating and comprehensively evaluating air
quality conditions according to the concentration of five main pollutants, such as PM10 [1].
Subsequently, after 2013, a severe haze occurred in many cities in China, but the API did
not contain the index of PM2.5, which is the main pollutant component of haze. Therefore,
the MEPC used the air quality index (AQI) to replace the original air pollution index (API).
According to the technical regulations of ambient AQI issued by the MEPC, the AQI is
evaluated based on six atmospheric pollutants, including SO2, NO2, PM10, PM2.5, CO, and
O3, which can more comprehensively evaluate the air quality of cities in China. Therefore,
similar to prior studies on the Chinese atmospheric pollution [1,8,53], we used the mean
value of the daily AQI of the cities where the firms were located in the current year to
comprehensively measure the degree of air pollution. Larger values of average daily AQI
indicated that firms were exposed to more severe air pollution.

3.2.3. Mediating Variable: Environmental Violation Risk (Violation)

The variable violation refers to the environmental violation risk of firms. Although
Dobler et al. [54] and Zhou et al. [18] used ordered variables to measure the environmental
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violation risk of firms, we still insist that this measurement is too simple to accurately and
comprehensively evaluate firms’ environmental violation risk, which may lead to biased
research conclusions. Some local governments in China have issued the measures for
the environmental credit evaluation of firms, which recorded detailed scoring standards
for environmental violations of firms, including information on environmental violations
and their corresponding scoring. Therefore, combined with the scoring standard of firms’
environmental violations attached to the firms’ environmental credit evaluation criteria
issued by China’s local governments, we constructed an assessment system of corporate
environmental violation risk as represented in detail in Table 1. The specific process of
calculating the environmental violation risk of firms in this research was as follows: First,
we summed up the punishment scores corresponding to each environmental violation of
a firm in the current year to obtain the severity of environmental violations (Severity). In
order to more accurately identify the impact of local air pollution concentration on the
environmental violation risk of firms, we excluded the records of environmental violations
of affiliated firms whose regions were inconsistent with where the listed firms’ offices were
located. Secondly, Ln (Severity + 1) was calculated to measure the firms’ environmental
violation risk (Violation).

Table 1. Assessment system of firms’ environmental violation risk.

Items Category of Punishment for Environmental Violations Score Value

1 Warning 1
2 Order to make corrections or make corrections within a time limit 1

3 Penalty

The penalty is less than 10,000 yuan 1
The penalty is more than 10,000 yuan and less than 50,000 yuan 2

The penalty is more than 50,000 yuan and less than 100,000 yuan 3
The penalty is more than 100,000 yuan and less than 200,000 yuan 4

The penalty is more than 200,000 yuan 6

4 Order to stop
construction

Construction projects of registration form 3
Construction projects of report form 6

Construction projects of report 12

5 Order to restrict production 6
6 Order to stop production for rectification 12
7 Seal up and detain 6
8 Confiscation of illegal income and illegal property 6
9 Temporary seizure of permits or other documents 6
10 Revocation of licenses or other certificates 12
11 Environmental violation cases of administrative detention 12
12 Cases suspected of environmental crimes 12

3.2.4. Control Variables

Referring to Zhou et al. [18] and Shailer and Wang [51], we considered a series of
control variables that were used in the literature and were related to the cost of debt.
First, we controlled for size (Size), which was calculated as the natural logarithm of the
firm’s total assets. Larger firms may have more mortgage assets, which means they have a
stronger risk resistance and lower debt cost. The second control variable was ownership
of firms (State). State-owned firms usually have debt guaranteed and financial support
provided by the government, and their default risk and debt cost are correspondingly lower.
The third control variable was leverage (Lev), which was calculated as the ratio of total
debt to total assets. A higher asset liability ratio means a higher possibility of corporate
debt default, and creditors need more risk premiums as compensation. The fourth control
variable was the interest coverage ratio (Ic), which was calculated as the ratio of earnings
before interest and tax (EBIT) to interest expense. The interest coverage ratio represents
the firm’s ability to pay interest, and the interest coverage ratio is negatively associated
with the cost of debt. The fifth control variable was the fixed assets ratio (Fix), which was
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calculated as the ratio of total fixed assets to total assets. Firms with more fixed assets
usually have a lower asset liquidity, lower capital turnover rates, and weaker operating
capacities, which result in a higher cost of debt financing. The sixth control variable is the
rate of return on total assets (Roa), which represents the profitability of firms. Firms with a
higher Roa have a stronger profitability and solvency. Thus, Roa is negatively associated
with corporate debt cost. The seventh control variable was growth opportunity (Growth),
which was measured as the revenue growth rate. Firms with higher growth opportunities
are generally expected to have a higher default risk. The eighth control variable was the
operating cash flow of firms (Cfo), which was calculated as the ratio of operating cash flow
to total assets. Firms with an adequate cash flow from operations usually have a lower debt
cost. We also controlled some regional macroeconomic variables expected to impact the
cost of debt: the provincial GDP growth rate (Gdp) and proportion of provincial secondary
industry (Second). Specifically, the pursuit of GDP growth is an important reason for
the government to reduce environmental supervisions for firms. At the same time, the
proportion of secondary industry is a reflection of industrialization, which is typically
accompanied by the environmental deregulation of local governments [55]. From this, GDP
growth and the proportion of secondary industry may be associated with the environmental
violation risk of firms and could ultimately affect the cost of debt. Furthermore, we also
considered the possible impact of annual, industrial, and provincial fixed effects on the
empirical results. Detailed variable definitions are listed in Table 2.

Table 2. Definitions of variables.

Variables Definition

Dependent variable
Cost Cost of debt, measured as the ratio of total interest expense to average interest-bearing debt

Independent variable
Air Air pollution, measured as the mean value of the daily AQI of the cities where the firms were located

Mediating variable
Violation Environmental violation risk of firms, measured as Ln (Severity + 1)

Control variables
Size Natural logarithm of total assets at the end of year
State 0 if the affiliation of the actual controller of a firm is the state, and 1 otherwise
Lev Ratio of total liabilities to total assets at the end of the year
Ic Interest coverage ratio, measured as the ratio of EBIT to interest expense

Fix Ratio of total fixed assets to total assets at the end of year
Roa Return on assets, measured as the ratio of EBIT to average total assets

Growth Growth rate of a firm’s total revenue from year t − 1 to year t
Cfo Ratio of net cash flow from operating activities to total assets at the end of year
Gdp Growth rate of a province’s total GDP from year t − 1 to year t

Second Proportion of secondary industry in the province where the firms were located

Notes: AQI was the air quality index; Severity was the severity of environmental violations; EBIT was the earnings
before interest and tax; GDP was the gross domestic product.

3.3. Research Model

In order to verify the main theoretical hypothesis that air pollution surrounding cities
where the firms were located increased their cost of debt, we used the OLS method to
construct the multiple linear regression model seen in Equation (1). The principal coefficient
of interest was α1, which was expected to be positive. In the robust test, endogeneity-
corrected regression methods (two-stage least squares regressions and the propensity score
matching method) were used.

Costi,t = α0 + α1 Airi,t + α2Sizei,t + α3Statei,t + α4Levi,t + α5 Ici,t + α6Fixi,t + α7Roai,t
+ α8Growthi,t + α9C f oi,t + α10Gdpi,t + α11Secondi,t + ∑ Year + ∑ Industry + ∑ Province + ε

(1)

According to the previous theoretical analysis, we conjectured that air pollution
increases the negative expectations of the public for atmospheric quality, which then
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encourages the government regulatory authorities to formulate stricter environmental
regulatory policies and punish the environmental violations of firms. Firms exposed
to heavy air pollution are confronted with more severe environmental violation risks,
which increases the debt cost of firms. Referring to the mediating effect test of Baron and
Kenny [56], we constructed Equations (2) and (3) by the OLS method to test whether air
pollution increased the cost of debt through its effect on environmental violation risk.

Violationi,t = α0 + α1 Airi,t + α2Sizei,t + α3Statei,t + α4Levi,t + α5 Ici,t + α6Fixi,t + α7Roai,t
+ α8Growthi,t + α9C f oi,t + α10Gdpi,t + α11Secondi,t + ∑ Year + ∑ Industry + ∑ Province + ε

(2)

Costi,t = α0 + α1 Airi,t + α2Violationi,t + α3Sizei,t + α4Statei,t + α5Levi,t + α6 Ici,t
+ α7Fixi,t + α8Roai,t + α9Growthi,t + α10C f oi,t + α11Gdpi,t + α12Secondi,t + ∑ Year
+ ∑ Industry + ∑ Province + ε

(3)

In order to further test the moderating role of environmental regulatory pressure on
the relationship between air pollution and the cost of debt, we introduced the intersection
term of environmental regulatory pressure and air pollution as shown in Equation (4).
Since 2008, the IPE and NRDC (Natural Resources Defense Council) have continuously
published the Pollution Information Transparency Index in China (PITI), which is an
index system for evaluating the information disclosure of pollution source supervision
in key environmental protection cities in China. Specifically, the PITI takes more than
100 critical cities in China as the evaluation object every year and comprehensively scores
and evaluates the environmental supervision pressure of these cities according to eight
items, such as the publicity of the daily exceeding standard of pollution sources and
illegal record information, the publicity of centralized remediation information of pollution
sources, and the publicity of cleaner production audit information. As such, we used
the PITI to measure the environmental regulatory pressure suffered by the sample firms.
The coefficient α3 in Equation (4) was expected to be significantly positive if Hypothesis 2
was confirmed.

Costi,t = α0 + α1 Airi,t + α2PITIi,t + α3 AQI × PITIi,t + α4Sizei,t + α5Statei,t + α6Levi,t + α7 Ici,t

+ α8Fixi,t + α9Roai,t + α10Growthi,t + α11C f oi,t + α12Gdpi,t + α13Secondi,t + ∑ Year
+ ∑ Industry + ∑ Province + ε

(4)

In order to further test the moderating role of firms’ industry characteristics on the
relationship between air pollution and the cost of debt, we introduced the intersection term
of firms’ industry characteristics and air pollution as shown in Equation (5). Specifically, we
extracted the list of heavily polluting firms according to the classified management directory
of environmental protection verification industry of listed firms issued by the MEPC.
Next, we created a classified variable, Polluted, which represented the firms’ industry
characteristics and assigned it to 1 if the firm belonged to a heavily polluting industry,
while the others were 0. The coefficient α3 in Equation (5) was expected to be significantly
positive if Hypothesis 3 was confirmed.

Costi,t = α0 + α1 Airi,t + α2Pollutedi,t + α3 Air × Pollutedi,t + α4Sizei,t + α5Statei,t + α6Levi,t
+ α7 Ici,t + α8Fixi,t + α9Roai,t + α10Growthi,t + α11C f oi,t + α12Gdpi,t + α13Secondi,t + ∑ Year
+ ∑ Industry + ∑ Province + ε

(5)

In order to further test the moderating role of firms’ ownership on the relationship
between air pollution and the cost of debt, we introduced the intersection term of firms’
ownership and air pollution as shown in Equation (6). As mentioned above, we assigned
the variable State to 0 if the affiliation of the actual controller of a firm was the state, and
1 otherwise. The coefficient α3 in Equation (6) was expected to be significantly positive if
Hypothesis 4 was confirmed.
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Costi,t = α0 + α1 Airi,t + α2Statei,t + α3 Air × Statei,t + α4Sizei,t + α5Levi,t + α6 Ici,t
+ α7Fixi,t + α8Roai,t + α9Growthi,t + α10C f oi,t + α11Gdpi,t + α12Secondi,t + ∑ Year
+ ∑ Industry + ∑ Province + ε

(6)

In order to further test the moderating role of firms’ economic contribution on the
relationship between air pollution and the cost of debt, we introduced the intersection term
of firms’ economic contribution and air pollution as shown in Equation (7). Following
Liu et al. [17], we measured the economic contribution of a firm by its tax expenditure as
a percentage of the total tax revenue in that province. The variable Tax refers to a firm’s
economic contribution. The coefficient α3 in Equation (7) was expected to be significantly
negative if Hypothesis 5 was confirmed.

Costi,t = α0 + α1 Airi,t + α2Taxi,t + α3 Air × Taxi,t + α4Sizei,t + α5Statei,t + α6Levi,t
+ α7 Ici,t + α8Fixi,t + α9Roai,t + α10Growthi,t + α11C f oi,t + α12Gdpi,t + α13Secondi,t
+ ∑ Year + ∑ Industry + ∑ Province + ε

(7)

4. Empirical Results
4.1. Descriptive Statistics

Table 3 presents a sample distribution by the provinces where the firms were located
and mean values of the AQI during our sample period. In our research sample, the province
with the largest number of sample firms was Beijing, followed by Zhejiang and Guangdong.
The province with the worst air quality was Hebei, with a mean AQI of 124.1973 during the
sample period, and the province with the best air quality was Hainan, with a mean AQI of
46.4630 during the sample period. Combined with the technical regulation on ambient AQI
issued by the MEPC in 2012, an AQI exceeding 100 was considered polluted, indicating
that some central and eastern provinces in China had an unhealthy air quality.

Table 3. Air pollution conditions of the provinces where the sample firms were located.

Province Mean AQI N Province Mean AQI N

Hebei 124.1973 99 Hunan 85.2114 111
Henan 115.0412 146 Jilin 84.2591 77
Beijing 111.4179 354 Inner Mongolia 83.9621 59
Shaanxi 109.8092 69 Heilongjiang 82.3223 70
Tianjin 107.3100 60 Chongqing 82.2441 80

Xinjiang 105.8833 84 Shanghai 82.0048 307
Shandong 104.0479 267 Zhejiang 78.8685 351

Shanxi 101.2360 108 Jiangxi 71.6547 72
Gansu 97.1313 49 Guangxi 66.4132 60
Hubei 96.4351 150 Guizhou 63.4468 44

Ningxia 96.0047 29 Tibet 63.0077 16
Jiangsu 90.9829 304 Guangdong 62.9685 343
Sichuan 90.9101 176 Fujian 57.5179 101
Qinghai 86.8484 32 Yunnan 56.5209 61
Anhui 86.8321 146 Hainan 46.4630 34

Liaoning 86.2856 134 Total 88.7361 3993
Notes: Mean AQI was the mean values of the daily air quality index during the sample period.

Table 4 shows the descriptive statistical results of the main research variables. The cost
of debt financing varied from 0.0004 to 0.0773, which showed that there were prominent
differences in debt financing cost between different firms from the sample. Moreover, the
mean and median values of debt financing cost from our sample were 0.0320 and 0.0314,
respectively, which were much lower than 0.065 and 0.061 [18], indicating that the debt cost
of high-carbon firms was higher to a certain extent. The mean value of our sample cities’
daily AQI was 88.7361, indicating that the air quality of the cities where most of the sample
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firms were located was good according to the MEPC. However, the maximum value of
AQI was 142, indicating that some firms were still exposed to a polluted atmosphere. In
addition, the mean value of the leverage (Lev) was 0.5173, confirming that most of the firms
from the sample preferred debt financing.

Table 4. Variable descriptive statistics.

Variables Obs. Mean Std. Dev. Min Median Max

Cost 3993 0.0320 0.0157 0.0004 0.0314 0.0773
Air 3993 88.7361 20.9627 46.4630 86.7135 142.000
Size 3993 22.9095 1.3719 20.1914 22.7688 26.8076
State 3993 0.3869 0.4871 0 0 1
Lev 3993 0.5173 0.1824 0.1207 0.5179 0.9450
Ic 3993 16.2714 49.4600 −16.7000 4.0300 388.0000

Fix 3993 0.2967 0.1916 0.0103 0.2673 0.7888
Roa 3993 0.0520 0.0562 −0.1487 0.0468 0.2313

Growth 3993 0.1625 0.4536 −0.4920 0.0849 3.0500
Cfo 3993 0.0474 0.0626 −0.1325 0.0459 0.2331
Gdp 3993 0.0769 0.0432 −0.2240 0.0823 0.1459

Second 3993 0.4104 0.0874 0.1863 0.4399 0.5313
Notes: Cost was the cost of debt; Air was the air pollution; Size was the size of firms; State was the ownership
of firms; Lev was the leverage of firms; Ic was the interest coverage ratio of firms; Fix was the fixed assets
ratio of firms; Roa was the return on total assets; Growth was the revenue growth rate of firms; Cfo was the
operating cash flow of firms; Gdp was the provincial GDP growth rate; Second was the proportion of provincial
secondary industry.

The results in Table 5 show that the highest correlation coefficient was 0.4049 between
Roa and Cfo. In addition, given that the coefficients were all less than 0.8, it could be
considered that there was no serious multicollinearity among regression model variables.

Table 5. Pearson correlations.

Variables Cost Air Size State Lev Ic Fix Roa Growth Cfo Gdp Second

Cost 1.0000
Air 0.0084 1.0000

Size 0.0734
***

0.1175
*** 1.0000

State −0.0101 0.1862
***

0.2975
*** 1.0000

Lev 0.1345
***

0.1202
***

0.3795
***

0.2388
*** 1.0000

Ic 0.3158
*** −0.0232 0.0753

***
0.0651

***
0.2649

*** 1.0000

Fix 0.2994
*** 0.0391 ** 0.1378

***
0.2073

***
0.0701

***
0.1231

*** 1.0000

Roa −0.0401
**

0.0476
***

0.0584
***

0.1450
***

0.3310
***

0.3035
***

−0.0321
** 1.0000

Growth 0.0214 −0.0240 0.0036 0.0954
***

0.0462
***

0.0508
***

0.0870
***

0.2420
*** 1.0000

Cfo 0.0793
*** −0.0224 0.1299

*** −0.0197 0.1379
***

0.1313
***

0.3237
***

0.4049
*** −0.0109 1.0000

Gdp 0.0827
***

0.0571
*** −0.0135 0.0577

***
0.0624

*** 0.0045 0.0800
***

0.0610
*** 0.0308 * 0.0162 1.0000

Second 0.0784
***

0.0871
***

0.2299
***

0.0801
*** −0.0208 −0.0312

**
0.1013

*** 0.0188 −0.0089 0.0128 −0.0265
* 1.0000

Notes: The explanation for abbreviations of all variables used inside Table 5 were mentioned in the footer of
Table 4. *, **, and *** reflect p-values of the correlation coefficients between variables were less than 0.1, 0.05, and
0.01, respectively.

4.2. Regression Results of the Influence of Air Pollution on the Cost of Debt

Columns (1) and (2) of Table 6 present the regression results of the influence of air
pollution on the cost of debt. Column (1) shows the regression results without control
variables of firms’ characteristics and regional economic characteristics. As predicted in
the prior hypothesis, the coefficient of air pollution (Air) in column (1) was positive and
statistically significant at the 5% level, supporting our hypothesis that firms exposed to
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more serious air pollution in their cities have to bear higher debt costs. Column (2) added
control variables representing firms’ characteristics and regional economic characteristics.
The coefficient of Air in column (2) still remained statistically significant at the 1% level,
demonstrating that air pollution was significantly positively associated with the cost of debt
(Cost) after firms’ characteristics and regional economic characteristics were considered.
The positive effect of air pollution surrounding the cities where the firms were located on
the cost of debt demonstrated that firms exposed to more serious air pollution were more
likely to face a higher risk of environmental violations, which correspondingly increased
the default risk of firms. Under such circumstances, creditors can only raise the debt cost of
firms to reduce air pollution-related default losses. Thus, the empirical results supported
Hypothesis 1a. It is worth noting that the cost of debt includes multiple influencing factors
that cannot be captured completely. Based on the existing literature, the control variables
in our research models largely included the factors that may affect the cost of debt. The
adjusted-R2 value in model (2) equaled 0.3318, which was similar to the 0.334 of Tan
et al. [16] and the 0.373 of Zhou et al. [18], and was slightly higher than the 0.283 of Jung
et al. [10] and the 0.105 of Chen et al. [9]. It indicated that the fitting degree of the model
was acceptable. In addition, we also employed an analysis of variance to evaluate the
overall goodness-of-fit of models (1) and (2). The results of the analysis of variance in
Table 7 revealed that the F-statistics of models (1) and (2) were all significant at the 1% level,
which indicated that the regression models had statistical significance as a whole.

Table 6. Influence of air pollution on cost of debt and mechanism of environmental violation risk.

Variables (1)
Cost

(2)
Cost

(3)
Violation

(4)
Cost

Air 0.0000 **
(2.42)

0.0001 ***
(3.02)

0.0044 ***
(3.38)

0.0001 ***
(2.73)

Violation 0.0006 **
(2.06)

Size 0.0003
(1.60)

0.0834 ***
(6.01)

0.0002
(0.69)

State 0.0036 ***
(7.06)

−0.0867 **
(−2.43)

0.0044 ***
(7.91)

Lev 0.0085 ***
(5.90)

0.0425
(0.44)

0.0084 ***
(5.50)

Ic −0.0001 ***
(−17.28)

−0.0001
(−0.19)

−0.0001 ***
(−14.71)

Fix 0.0119 ***
(7.63)

0.4438 ***
(4.10)

0.0104 ***
(6.11)

Roa 0.0078
(1.64)

−0.1507
(−0.46)

0.0093 *
(1.82)

Growth 0.0025 ***
(5.32)

−0.0087
(−0.27)

0.0027 ***
(5.41)

Cfo 0.0033
(0.83)

0.0770
(0.28)

0.0058
(1.35)

Gdp −0.0015
(−0.23)

0.2689
(0.61)

−0.0015
(−0.21)

Second 0.0021
(0.13)

−0.1988
(−0.18)

0.0076
(0.44)

_Cons 0.0205 ***
(4.00)

0.0030
(0.29)

−1.0131
(−1.43)

0.0011
(0.10)

Year Yes Yes Yes Yes
Industry Yes Yes Yes Yes
Province Yes Yes Yes Yes

F-statistics 15.57 *** 22.08 *** 9.22 *** 18.76 ***
Adjusted-R2 0.2346 0.3318 0.1832 0.3288

N 3993 3993 3372 3372
Sobel-test 1.7600 *

Notes: Columns (1) and (2) represent the regression results on the influence of air pollution on the cost of debt.
Columns (3) and (4) represent the regression results on the mechanism of environmental violation risk. Violation
was the environmental violation risk of firms. The explanation for abbreviations of other variables used inside
Table 6 were mentioned in the footer of Table 4. The numbers in brackets are t-values. *, **, and *** reflect p-values
of the coefficients were less than 0.1, 0.05, and 0.01, respectively.
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Table 7. Analysis of variance (ANOVA).

Model (1)

Source SS df MS F-Statistics Sig.

Model 0.2452 84 0.0029 15.57 0.0000
Residual 0.7329 3908 0.0002

Total 0.9781 3992 0.0002

Model (2)

Source SS df MS F-Statistics Sig.
Model 0.3399 94 0.0036 22.08 0.0000

Residual 0.6383 3898 0.0002
Total 0.9781 3992 0.0002

Consistent with Shailer and Wang [51], the coefficient of firms’ ownership (State) was
statistically significant, confirming that the ownership of firms is a critical factor affecting
the cost of debt in the Chinese context. In other words, the cost of debt financing of firms
under government control was significantly lower than that of firms under private control.
The coefficients for Lev, Ic, Fix, and Growth were all significant at the 1% level, confirming
that firms with higher leverage, a lower interest coverage, higher fixed assets ratio, and
higher growth opportunities were more likely to be able to afford higher costs of debt.

4.3. Mechanism of Environmental Violation Risk

Columns (3) and (4) of Table 6 reflect the regression results on the mechanism of
environmental violation risk. The coefficient of Air in column (3) of Table 6 was positive
and statistically significant at the 1% level, confirming that air pollution surrounding the
cities where the firms were located significantly increased the firm’s environmental violation
risk (Violation). The coefficient of Violation in column (4) of Table 6 was also significantly
positive, which meant that air pollution increased the firm’s cost of debt through its effect on
the environmental violation risk. Therefore, the mediating effect test confirmed Hypothesis
1b (environmental violation risk was the mechanism of air pollution affecting the cost of
debt). In addition, the coefficient of Air in column (4) remained significant, indicating that
the environmental violation risk was the partial mediating variable between air pollution
and the cost of debt. To guarantee the reliability of the conclusion, our research also carried
out a Sobel test. The Z statistic was 1.7600 and was significant at the level of 10%, which
proved the inference of the mediating effect of environmental violation risk again.

4.4. Robustness Test
4.4.1. Sensitivity Test for Measurement of Air Pollution and the Cost of Debt

In the previous regression analysis, we used the AQI to measure the air pollution
concentrations of the cities where the firms were located; here, we needed to use other
indicators to replace the AQI so as to ensure the robustness of the regression results.
Firstly, considering that PM2.5 was the most important component of atmospheric pol-
lutants, we used the method developed by Chen et al. [9] to measure the air pollution
by average PM2.5 concentration (PM_2.5) in cities where the firms were located. Next,
MEPC divided the AQI once into six levels according to the severity of pollution: excellent
(0 < AQI ≤ 50), good (50 < AQI ≤ 100), slightly polluted (100 < AQI ≤ 150), moderately
polluted (150 < AQI ≤ 200), heavily polluted (200 < AQI ≤ 300), and severely polluted
(AQI > 300). Therefore, referring to Dong et al. [8], we changed the AQI into a classified
variable (AQI_grade) according to the classification standard of MEPC for the air quality
grade. We employed PM_2.5 and AQI_grade to remeasure air pollution. The results of
the sensitivity test of air pollution are presented in columns (1) and (2) of Table 8. The
coefficients of PM_2.5 and AQI_grade were 0.0001 and 0.0016, which were significantly
positively associated with the Cost, and they were coincident with the results shown in
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Table 6. This showed that our inference remained robust after replacing the measurement
of air pollution.

Table 8. Sensitivity test for measurement of air pollution and the cost of debt.

Variables (1)
Cost

(2)
Cost

(3)
Expense

(4)
Expense

(5)
Expense

Air 0.0000 ***
(2.83)

PM_2.5 0.0001 ***
(3.57)

0.0001 ***
(3.25)

AQI_grade 0.0016 **
(2.39)

0.0015 ***
(2.72)

Size 0.0003 *
(1.79)

0.0003
(1.61)

0.0003 **
(2.15)

0.0004 **
(2.19)

0.0003 **
(2.16)

State 0.0039 ***
(7.44)

0.0036 ***
(6.94)

0.0034 ***
(8.12)

0.0037 ***
(8.53)

0.0034 ***
(8.03)

Lev 0.0074 ***
(5.00)

0.0085 ***
(5.90)

0.0101 ***
(8.59)

0.0096 ***
(7.84)

0.0101 ***
(8.58)

Ic −0.0001 ***
(−17.05)

−0.0001 ***
(−17.34)

−0.0001 ***
(−18.09)

−0.0001 ***
(−17.84)

−0.0001 ***
(−18.16)

Fix 0.0115 ***
(7.28)

0.0119 ***
(7.59)

0.0136 ***
(10.62)

0.0130 ***
(10.01)

0.0136 ***
(10.59)

Roa 0.0068
(1.40)

0.0079 *
(1.67)

0.0051
(1.30)

0.0042
(1.05)

0.0052
(1.33)

Growth 0.0026 ***
(5.28)

0.0026 ***
(5.36)

0.0017 ***
(4.38)

0.0017 ***
(4.26)

0.0017 ***
(4.42)

Cfo 0.0032
(0.78)

0.0033
(0.83)

0.0008
(0.26)

0.0012
(0.35)

0.0009
(0.26)

Gdp −0.0020
(−0.31)

−0.0009
(−0.14)

−0.0018
(−0.33)

−0.0019
(−0.35)

−0.0015
(−0.28)

Second 0.0066
(0.40)

−0.0001
(−0.01)

−0.0003
(−0.03)

0.0013
(0.10)

−0.0024
(−0.18)

_Cons −0.0008
(−0.07)

0.0061
(0.58)

−0.0021
(−0.24)

−0.0034
(−0.39)

−0.0002
(−0.02)

Year Yes Yes Yes Yes Yes
Industry Yes Yes Yes Yes Yes
Province Yes Yes Yes Yes Yes

F-statistics 21.54 *** 22.03 *** 25.80 *** 24.88 *** 25.79 ***
Adjusted-R2 0.3357 0.3312 0.3687 0.3701 0.3686

N 3822 3993 3993 3822 3993

Notes: Columns (1) and (2) represent the regression results on the sensitivity test of air pollution. Columns (3), (4),
and (5) represent the regression results on the sensitivity test of the cost of debt. Cost was the ratio of total interest
expense to average interest-bearing debt; Expense was the ratio of total interest expense to average total debt;
Air was the average air quality index; PM_2.5 was the average PM2.5 concentration; AQI_grade was the grade of
average air quality index. The explanation for abbreviations of other variables used inside Table 8 were mentioned
in the footer of Table 4. The numbers in brackets are t-values. *, **, and *** reflect p-values of the coefficients were
less than 0.1, 0.05, and 0.01, respectively.

Following previous studies on the Chinese firms [57,58], we applied the total interest
expense divided by the average total debt (Expense) as an alternative measurement for the
cost of debt and re-estimated Equation (1). The results of the sensitivity test of the cost of
debt are presented in columns (3), (4), and (5) of Table 8. The coefficients of Air, PM_2.5,
and AQI_grade were all significantly positively associated with the Expense, and they were
consistent with those shown in Table 6.

4.4.2. Two-Stage Least Squares (2SLS) Analysis

From a more rigorous perspective, this study may have had some endogenous prob-
lems that needed to be solved. The first problem was that there may have been a two-way
causal relationship between air pollution and the cost of debt. Previous studies have
shown that debt financing can have an impact on corporate performance or corporate
value [59–61], and a higher cost of debt capital inevitably increases the operating pressure
and earnings pressure of firms. Firms with earnings pressure are more motivated to emit
polluting gases [17], which, inevitably, aggravates air pollution. In addition, there may be
the problem of missing variables in the research, since there were other potential factors
affecting the cost of debt, including the regional legal environment [62–64], monetary
policy [65], internal control quality [66], and other factors. Consequently, we employed a
2SLS regression with instrumental variables to mitigate potential endogenous problems.
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Past studies have found that air pollution is closely related to meteorological factors,
including rainfall, wind speed, wind direction, air temperature, etc. [67,68]. At the same
time, these meteorological factors were unlikely to have an influence on the cost of debt.
Therefore, rainfall (Rain) and wind speed (Wind) in the cities where the firms were located
were selected as instrumental variables of air pollution in this paper. As reflected in
column (1) of Table 9, Rain and Wind were both significantly related to Air. Under the 2SLS
method, the coefficient of Air in column (2) was still significantly positive, which reflected
that the regression results of 2SLS also supported the main assumptions of this paper.
Furthermore, in order to examine the effectiveness of instrumental variables, this paper
implemented a weak instrumental variable test and over-identification test. The LM statistic
was significant at the 1% level, demonstrating that the problem of the underestimation
of instrumental variables could be eliminated. The p-value of the Sargan statistic was
0.2462, which indicated that there was no overestimation problem either. In addition, the
Shea’s partial R2 was 0.0290, and its F statistic and the p-value of its F statistic were 36.6104
(more than 10) and 0.0000, respectively. We could, thus, insist that there was no weak
instrumental variable. Overall, this result re-confirmed that air pollution enhanced the cost
of corporate debt.

Table 9. Endogenous test of 2SLS analysis.

Variables
(1)

Step 1
Air

(2)
Step 2
Cost

Air 0.0003 ***
(2.75)

Rain −0.0018 **
(−2.26)

Wind −5.2605 ***
(−8.38)

Size −0.0174
(−0.11)

0.0003
(1.53)

State −1.9900 ***
(−4.79)

0.0042 ***
(7.21)

Lev 0.2585
(0.21)

0.0084 ***
(5.10)

Ic 0.0001
(0.03)

−0.0001 ***
(−14.65)

Fix −0.6003
(−0.48)

0.0122 ***
(6.79)

Roa 0.9495
(0.22)

0.0077
(1.33)

Growth 0.0934
(0.24)

0.0025 ***
(3.58)

Cfo 0.1855
(0.06)

0.0033
(0.72)

Gdp 31.2401 ***
(5.36)

−0.0095
(−1.28)

Second −9.8322
(−0.58)

0.0026
(0.15)

_Cons 113.4483 ***
(11.68)

−0.0215
(−1.36)

Year Yes Yes
Industry Yes Yes
Province Yes Yes

F-statistics 200.27 ***
Wald 10187.56 ***

R2 0.7562 0.3176
N 3993 3993

Notes: Table 9 reflects the results on the endogenous test of 2SLS analysis. Rain was the rainfall of the cities; Wind
was the wind speed of the cities. The explanation for abbreviations of other variables used inside Table 9 were
mentioned in the footer of Table 4. In particular, Rain and Wind were tool variables used in 2SLS analysis. ** and
*** reflect p-values of the coefficients were less than 0.05 and 0.01, respectively.
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4.4.3. Propensity Score Matching Estimation (PSM)

Finally, for the purpose of alleviating the endogenous problems caused by selection
bias, we also used the propensity score matching (PSM) method to construct new samples
to re-test our major assumptions. Specifically, we first selected the experimental group and
the control group. We classified the samples with an Air value higher than the median
Air of the full sample as the experimental group and other samples were classified as the
control group. Next, we used the indicators of the firm size, ownership, leverage, interest
coverage ratio, fixed assets ratio, return on total assets, growth opportunity, cash flow,
provincial GDP growth rate, and proportion of provincial secondary industry to carry out a
one-to-one matching of the nearest neighbors within the caliper radius (0.01), screening out
the corresponding counterfactual samples, and carried out a regression. After the balanced
test, the deviation of the most control variables was greatly reduced after matching, and the
t-test results did not reject the original hypothesis that there was no systematic difference
between the two groups. The coefficients for Air presented in Table 10 were all positive
and significant at the 5% level, which proved once again that the results of the previous
regression analysis were robust.

Table 10. Endogenous test of PSM estimation.

Variables (1)
Cost

(2)
Cost

Air 0.0001 **
(2.30)

0.0001 **
(2.53)

Size 0.0001
(0.50)

State 0.0043 ***
(6.12)

Lev 0.0100 ***
(4.98)

Ic −0.0001 ***
(−11.17)

Fix 0.0102 ***
(4.62)

Roa 0.0038
(0.57)

Growth 0.0025 ***
(3.93)

Cfo 0.0110 **
(2.01)

Gdp 0.0022
(0.24)

Second 0.0069
(0.30)

_Cons 0.0254 ***
(3.30)

0.0078
(0.52)

Year Yes Yes
Industry Yes Yes
Province Yes Yes

F-statistics 9.72 *** 12.89 ***
Adjusted-R2 0.2568 0.3456

N 2095 2095
Notes: Table 10 reflects the results on the endogenous test of PSM estimation. The explanation for abbreviations
of all variables used inside Table 10 were mentioned in the footer of Table 4. ** and *** reflect p-values of the
coefficients were less than 0.05 and 0.01, respectively.

5. Further Analysis
5.1. The Moderating Role of Environmental Regulatory Pressure

Next, we explored the moderating role of environmental regulatory pressure on the
relationship between air pollution and the cost of debt. As reflected in column (1) of
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Table 11, the coefficient on Air × PITI was positive and statistically significant at the 1%
level. From this result, we concluded that environmental regulatory pressure on firms
enhanced the influence of air pollution on the cost of debt. Moreover, we designated the
samples into the “high PITI” partition if environmental regulatory pressure on firms was
higher than the median PITI in the full sample and re-regressed Equation (1) into “high PITI”
and “low PITI”. The results showed that the coefficient Air presented a significant positive
correlation at the level of 1% in the “high PITI” partition in column (2), while the coefficient
Air presented an insignificant correlation in the “low PITI” partition in column (3). The
regression results of sub samples also showed that the impact of air pollution on the cost of
debt was more significant when firms faced stronger environmental regulatory pressure.

Table 11. Moderating effect of firm’s environmental regulatory pressure and industry characteristic.

Variables

(1)
Cost

(2)
Cost

(3)
Cost

(4)
Cost

(5)
Cost

(6)
Cost

Full
Sample

High
PITI

Low
PITI

Full
Sample

High
Polluted

Low
Polluted

Air 0.0001 ***
(3.43)

0.0001 ***
(3.26)

0.0000
(0.89)

0.0001 ***
(2.76)

0.0001 ***
(3.31)

0.0000
(1.32)

Air * PITI 0.0003 ***
(2.93)

Air * Polluted 0.0000 **
(2.25)

PITI −0.0029
(−0.96)

Polluted 0.0184 ***
(4.04)

State 0.0037 ***
(7.14)

0.0021 ***
(2.91)

0.0051 ***
(6.62)

0.0036 ***
(7.05)

0.0036 ***
(4.92)

0.0036 ***
(4.95)

Size 0.0003
(1.51)

0.0003
(1.28)

0.0002
(0.66)

0.0003
(1.51)

0.0004
(1.27)

0.0001
(0.52)

Lev 0.0084 ***
(5.85)

0.0100 ***
(4.81)

0.0074 ***
(3.62)

0.0086 ***
(5.95)

0.0109 ***
(5.59)

0.0068 ***
(3.18)

Ic −0.0001 ***
(−17.31)

−0.0001 ***
(−12.05)

−0.0001 ***
(−11.91)

−0.0001 ***
(−17.19)

−0.0001 ***
(−12.28)

−0.0001 ***
(−11.68)

Fix 0.0119 ***
(7.59)

0.0093 ***
(4.14)

0.0150 ***
(6.68)

0.0117 ***
(7.44)

0.0132 ***
(6.19)

0.0088 ***
(3.66)

Roa 0.0078
(1.64)

0.0069
(1.03)

0.0120 *
(1.77)

0.0077
(1.62)

0.0096
(1.53)

0.0016
(0.22)

Growth 0.0025 ***
(5.34)

0.0039 ***
(5.92)

0.0014 **
(2.04)

0.0026 ***
(5.38)

0.0041 ***
(5.89)

0.0011
(1.63)

Cfo 0.0030
(0.76)

−0.0045
(−0.81)

0.0094 *
(1.67)

0.0035
(0.88)

0.0108 *
(1.95)

−0.0016
(−0.28)

Gdp −0.0004
(−0.07)

−0.0072
(−0.58)

−0.0037
(−0.41)

−0.0013
(−0.20)

−0.0035
(−0.43)

−0.0007
(−0.07)

Second 0.0077
(0.46)

0.0962
(1.94)

−0.0030
(−0.15)

0.0012
(0.08)

0.0182
(0.86)

−0.0151
(−0.58)

_Cons 0.0057
(0.54)

−0.0273
(−1.02)

0.0105
(0.79)

0.0179 *
(1.84)

0.0049
(0.37)

0.0240
(1.57)

Year Yes Yes Yes Yes Yes Yes
Industry Yes Yes Yes Yes Yes Yes
Province Yes Yes Yes Yes Yes Yes

F-statistics 21.78 *** 13.74 *** 11.97 *** 21.93 *** 14.01 *** 14.57 ***
Adjusted-R2 0.3332 0.3330 0.3329 0.3324 0.2983 0.3317

N 3993 1991 2002 3993 2051 1942

Notes: Columns (1) to (3) of this table represent the results on the moderating role of environmental regulatory
pressure. Columns (4) to (6) of this table represent the results on the moderating role of industry characteristic.
PITI was the Pollution Information Transparency Index; Polluted was the firms’ industry characteristics. The
explanation for abbreviations of other variables used inside Table 11 were mentioned in the footer of Table 4. The
numbers in brackets are t-values. *, **, and *** reflect p-values of the coefficients were less than 0.1, 0.05, and
0.01, respectively.

5.2. The Moderating Role of Firms’ Industry Characteristics

Next, we tested the moderating role of firms’ industry characteristics. As presented in
column (4) of Table 11, the coefficient of Air × Polluted was positive and statistically signif-
icant at the 5% level, which confirmed Hypothesis 3, which states that heavily polluting
firms enhance the influence of air pollution on the cost of debt. Furthermore, we divided
the full sample into a high polluted group and a low polluted group and re-regressed
Equation (1) in both the high polluted group and the low polluted group. The coefficient
on Air in column (5) presented a significant positive correlation at the level of 1% for the
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high polluted subsample. Conversely, the coefficient on Air in column (6) was statistically
insignificant at conventional levels for the low polluted subsample. The regression results
of sub samples also suggested that the influence of air pollution on the cost of debt was
more pronounced for heavily polluting firms.

5.3. The Moderating Role of Firms’ Ownership

Our next test was the moderating role of firms’ ownership. As shown in column (1) of
Table 12, the coefficient on Air × State was also positive and statistically significant at the
10% level, confirming Hypothesis 4, which states that being a state-owned firm lessens
the influence of air pollution on the cost of debt. Furthermore, we divided the baseline
sample into state-owned firms versus non-state-owned firms and re-regressed Equation
(1) in these subsamples. The coefficient of Air in column (2) was nonsignificant in the
state-owned subsample. Comparatively, the coefficient of Air in column (3) was statistically
significant at the 1% level in the non-state-owned subsample. These results also confirmed
that the influence of air pollution on the cost of debt was more pronounced for non-state-
owned firms.

Table 12. Moderating effect of firm’s ownership and economic contribution.

Variables

(1)
Cost

(2)
Cost

(3)
Cost

(4)
Cost

(5)
Cost

(6)
Cost

Full
Sample State-Owned Non-State-

Owned
Full

Sample
High Tax

Contribution
Low Tax

Contribution

Air 0.0001 ***
(3.06)

0.0000
(1.61)

0.0001 ***
(2.79)

0.0001 ***
(2.91)

−0.0000
(−0.38)

0.0001 ***
(2.60)

Air * State 0.0000 *
(1.75)

Air * Tax −0.0031 **
(−2.48)

Tax −0.0887 ***
(−2.35)

State 0.0037 ***
(7.16)

0.0037 ***
(7.20)

0.0030 ***
(4.14)

0.0046 ***
(6.17)

Size 0.0003
(1.58)

0.000 *
(1.91)

0.0001
(0.14)

0.0006 ***
(2.90)

−0.0004
(−1.30)

0.0015 ***
(3.64)

Lev 0.0085 ***
(5.93)

0.0079 ***
(4.59)

0.0118 ***
(4.52)

0.0080 ***
(5.55)

0.0133 ***
(6.44)

0.0084 ***
(4.11)

Ic −0.0001 ***
(−17.30)

−0.0001 ***
(−12.08)

−0.0001 ***
(−10.18)

−0.0001 ***
(−17.21)

−0.0001 ***
(−11.86)

−0.0001 ***
(−11.92)

Fix 0.0119 ***
(7.62)

0.0086 ***
(4.67)

0.0208 ***
(6.75)

0.0121 ***
(7.78)

0.0139 ***
(6.49)

0.0126 ***
(5.31)

Roa 0.0077
(1.63)

0.0146 **
(2.44)

0.0001
(0.01)

0.0080 *
(1.69)

0.0173 **
(2.47)

0.0068
(1.03)

Growth 0.002 ***
(5.25)

0.0026 ***
(4.47)

0.0023 ***
(3.00)

0.0025 ***
(5.18)

0.0050 ***
(7.99)

0.0004
(0.50)

Cfo 0.0034
(0.86)

0.0133 ***
(2.77)

−0.0084
(−1.26)

0.0044
(1.10)

0.0070
(1.25)

0.0003
(0.05)

Gdp −0.0013
(−0.20)

0.0035
(0.50)

−0.0073
(−0.54)

−0.0012
(−0.18)

−0.0021
(−0.29)

−0.0004
(−0.03)

Second 0.0021
(0.13)

0.0032
(0.17)

−0.0068
(−0.24)

0.0003
(0.02)

0.0238
(1.26)

−0.0231
(−0.83)

_Cons 0.0100
(0.97)

0.0192
(1.51)

−0.0108
(−0.57)

0.0021
(0.19)

−0.0138
(−1.00)

0.0029
(0.16)

Year Yes Yes Yes Yes Yes Yes
Industry Yes Yes Yes Yes Yes Yes
Province Yes Yes Yes Yes Yes Yes

F-statistics 21.89 *** 18.63 *** 9.29 *** 21.86 *** 17.56 *** 10.38 ***
Adjusted-R2 0.3321 0.3881 0.3235 0.3341 0.4276 0.3018

N 3993 2448 1545 3993 1996 1997

Notes: Columns (1) to (3) represent the regression results on the moderating role of ownership. Columns (4) to
(6) represent the regression results on the moderating role of economic contribution. Tax was the economic
contribution of firms. The explanation for abbreviations of other variables used inside Table 12 were mentioned in
the footer of Table 4. The numbers in brackets are t-values. *, **, and *** reflect p-values of the coefficients were
less than 0.1, 0.05, and 0.01, respectively.

5.4. The Moderating Role of Firms’ Economic Contribution

Next, we tested the moderating role of firms’ economic contribution. As shown in
column (4) of Table 12, the coefficient on Air × Tax was negative and statistically significant
at the 5% level, confirming Hypothesis 5, which states that a firm’s economic contribution
lessens the influence of air pollution on the cost of debt. Then, we divide the full sample
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into high tax contribution versus low tax contribution according to the median value of
their tax contribution in the full sample and re-regressed Equation (1) in these subsamples.
As shown in columns (5) and (6) of Table 12, the coefficient of Air was nonsignificant in the
high tax contribution subsample, while the coefficient of Air was statistically significant at
the 1% level in the low tax contribution subsample. These results revealed that the influence
of air pollution on the cost of debt was more prominent for firms with low tax contributions.

6. Conclusions, Implications, Limitations, and Future Prospects
6.1. Conclusions

Employing a large sample of Chinese listed firms from the main board of the SSE and
SZSE under different air quality conditions covering 2014 to 2018, we explored whether and
how air pollution affects the cost of debt through environmental violation risk. In addition,
we deeply explored the moderating role of environmental regulatory pressure, firms’ indus-
try characteristics, firms’ ownership, and firms’ economic contribution on the relationship
between air pollution and the cost of debt. Our study drew the following conclusions.

First, the air pollution of the cities where the firms were located had a positive impact
on the cost of debt, and the environmental violation risk of firms was the mechanism of air
pollution affecting the cost of debt. Our empirical results confirmed a positive relationship
between air pollution and the cost of debt after controlling for various firm-level and
provincial-level characteristics that affected the cost of debt and implementing a series of
sensitivity and endogenous tests. In addition, we attempted to use the mediating effect test
to confirm that environmental violation risk was the mechanism by which air pollution
affected the cost of debt, which was distinct from the insights into the mechanism of
credit risk and financial uncertainty [16]. Specifically, air pollution-induced environmental
violation risk caused pessimistic assessments by creditors on the default risk of firms, which
prompted them to raise the interest rates in terms of the loan contract to reduce the air
pollution-related default loss. Overall, higher levels of air pollution led to a higher cost of
debt tolerated by firms through their effects on environmental violation risk.

Second, the empirical results confirmed that environmental regulatory pressure and
heavily polluting firms could strengthen the relationship between air pollution and the cost
of debt. Specifically, the influence of air pollution on the cost of debt was more prominent
for firms subjected to strict environmental supervision and heavily polluting firms. Strict
environmental supervision and heavily polluting industry characteristics aggravated the
environmental violation risk of firms caused by air pollution, eventually leading to a
higher probability of debt default. Creditors chose to increase the cost of debt for firms
subjected to strict environmental supervision and heavily polluting firms to mitigate the
default loss associated with air pollution. This conclusion puts forward some conditions
regarding increases in the adverse impact of air pollution on debt cost from the perspective
of environmental supervision and corporate environmental performance that have not
been tested in prior research.

Third, the empirical results confirmed that state-owned firms and firms’ economic
contribution could weaken the relationship between air pollution and the cost of debt. In
other words, the influence of air pollution on the cost of debt was more prominent for
non-state-owned firms and firms with lower economic contributions. Since state-owned
firms and regional major economic contributors have stronger bargaining power in envi-
ronmental supervision, they can reduce the environmental violation risk, administrative
penalty, and legal proceedings caused by air pollution to a certain extent; thus, mitigating
the creditors’ concern about the debt default of these firms. This study was the first to
examine the mechanism of mitigating the adverse impact of air pollution on debt cost
from the perspective of ownership and firms’ economic contributions, which differs from
insights on the mitigating mechanism of monitoring and the economic environment [16].

267



Int. J. Environ. Res. Public Health 2022, 19, 3584

6.2. Implications

The results reported in our research may have critical implications for different groups.
First, our research was conducive to highlight not only the importance of environmental
governance for mitigating the cost of debt to firms that are exposed to air pollution, but also
its importance to creditors exposed to their clients’ environmental violation risk and default
risk. Specifically, firms should attach importance to environmental violation risk related to
air pollution and strengthen the ability of environmental governance to reduce the cost of
debt; creditors should incorporate the environmental risk signal transmitted by air pollution
into their decision making to mitigate their default losses. Second, the moderating effect
analysis in our study suggested that firms should judge the possible constraints of severe
air pollution on debt financing based on their circumstances and heterogeneity in a timely
manner. In particular, this implies that with the enhancement of environmental regulations,
firms subjected to strict environmental supervision, heavily polluting firms, non-state-
owned firms, and firms with low economic contributions need to be more cautious about
environmental risks related to air pollution. These firms should take the initiative to
strengthen their environmental governance and reduce the risk of environmental violations
and pessimistic expectations of creditors for default risk through low-carbon innovation
and green development, which, ultimately, reduce the cost of debt and financing constraints.
Additionally, increasingly severe air pollution should suggest to government regulators
that state-owned firms and regional major economic contributors may bring resistance
to environmental supervision to some extent. Government regulators should strengthen
supervision for environmental violations of state-owned firms and economic contributors
so as to promote the long-term development of the regional economy.

6.3. Limitations and Future Prospects

Similar to other academic research, our empirical research also had certain limitations,
which are worthy of further research. First, Zhou et al. [18] and Xu et al. [69] mentioned
that media coverage is an important external mechanism affecting the response of investors
or creditors to the risk of firms’ environmental violations. Media coverage intensity and
media information sources regarding air pollution are likely to affect the sensitivity of
creditors to the environmental violation risk of firms, which was not discussed in this
research. Future research could further explore the moderating effect of media coverage
on the relationship between air pollution and the cost of debt. Second, our research
only evaluated the environmental violation risk of firms according to the severity of
environmental violations. Creditors may attach greater importance to changes in corporate
cash flow caused by environmental violations [10]. Future research could further measure
the environmental violation risk based on the amounts of environmental penalties. Third,
Wu et al. [1] tried to explore the effect of the six specific pollutants that constitute AQI on
stock returns and trading activities. Each air pollutant may also have a different impact
on the cost of debt, which was not discussed in our research. Considering that there
may exist correlations between these pollutants, future research could further employ
statistical methods, such as a factor analysis, principal component analysis, and cluster
analysis, to merge these pollutant factors. Fourth, although our research used the OLS
model that has been widely applied in many empirical analyses, parametric tests still
have inherent limitations. Parameter tests need to estimate the population parameters
using the population distribution and sample information, which is only applicable when
the function that describes the relationship between the dependent and independent
variables is known [70]. Some scholars have found that the application of parametric
tests may cause model misspecification [71], which cannot correctly reveal the substantive
relationship between the variables. In contrast, nonparametric tests can be applied to assess
the effects of independent variables on the dependent variables in a nonlinear fashion
without imposing a specific functional form, which allows the data themselves to reveal the
functional relationship between the variables [70]. Future studies should further consider
using nonparametric approaches to test the impact of air pollution on debt cost.
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