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Preface to ”Advances in Image Enhancement”

In the era of the Internet of Things, images have played important roles in human–computer

interactions, and with the arrival of big data technology, people have higher requirements of image

qualities, especially ones collected in dark light. This can be addressed through the development of

camera hardware quality, i.e., the resolution and exposure time of cameras, which may require high

computational costs. As an alternative, image enhancement techniques can exact salient features to

improve the quality of captured images according to the differences in diverse features, although they

suffer from some challenges, i.e., a low contrast, artifacts, and overexposure, thus making it decidedly

necessary to determine how to use advanced image enhancement techniques.

To address these issues, we investigated advances in image enhancement on electronics. This

investigation includes low- and high-level vision. That is, a convolutional capsule network, retinex

theory, and histogram equalization can be used for image enhancement. Improving network

architectures can enhance the effects of image super-resolution. Traditional machine learning, i.e.,

wavelet, non-local moment mean filtering, CNN, and GAN, can be used to remove noise to obtain

clear images. Moreover, using multi-scale technique and cascading architecture can be utilized for

image watermark removal and dehazing. Additionally, few samples, wavelet, and deep networks

can mine more semantic segmentation for image segmentation. Fusing different features from CNNs

and traditional machine learning can improve the accuracy of image recognition.

The topic of advances in image enhancement on electronics is here presented as a reprint,

which brings together the research accomplishments of researchers from academia and industry. The

secondary goal of this reprint is to show the latest research results of advances in image enhancement.

Chunwei Tian, Wenqi Ren, and Yudong Liang

Editors
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Power Line Scene Recognition Based on Convolutional Capsule
Network with Image Enhancement
Kuansheng Zou *, Shuaiqiang Zhao and Zhenbang Jiang

School of Electrical Engineering and Automation, Jiangsu Normal University, Xuzhou 221116, China
* Correspondence: zoukuansheng@jsnu.edu.cn

Abstract: With the popularization of unmanned aerial vehicle (UAV) applications and the continuous
development of the power grid network, identifying power line scenarios in advance is very impor-
tant for the safety of low-altitude flight. The power line scene recognition (PLSR) under complex
background environments is particularly important. The complex background environment of power
lines is usually mixed by forests, rivers, mountains, buildings, and so on. In these environments, the
detection of slender power lines is particularly difficult. In this paper, a PLSR method of complex
backgrounds based on the convolutional capsule network with image enhancement is proposed.
The enhancement edge features of power line scenes based on the guided filter are fused with the
convolutional capsule network framework. First, the guided filter is used to enhance the power line
features in order to improve the recognition of the power line in the complex background. Second, the
convolutional capsule network is used to extract the depth hierarchical features of the scene image
of power lines. Finally, the output layer of the convolutional capsule network identifies the power
line and non-power line scenes, and through the decoding layer, the power lines are reconstructed in
the power line scene. Experimental results show that the accuracy of the proposed method obtains
97.43% on the public dataset. Robustness and generalization test results show that it has a good
application prospect. Furthermore, the power lines can be accurately extracted from the complex
backgrounds based on the reconstructed module.

Keywords: capsule network; image enhancement; power line scene recognition; complex background

1. Introduction

With the continuous development of the modern power grid system, the demand for
electricity is also greatly increased, and transmission lines spread to all parts of the world
in a complex network. It is also of great significance for low-altitude flight to detect the
power lines and implement obstacle avoidance. The Australian transport safety report
shows that between 1994 and 2004, there were 119 helicopter crashes into power lines, of
which 45 caused fatal injuries and 22 caused serious injury [1]. Hitting power lines will
cause serious damage to the helicopter. The U.S. military data report shows that 54 power
line collisions occurred between 1997 and 2006, resulting in 13 deaths and economic losses
of up to USD 224 million [2]. Flight safety accidents threaten people’s lives and cause huge
economic losses.

Flight obstacle avoidance mainly depends on the pilot’s reaction and experience. They
can avoid large obstacles, but small obstacles, especially power lines, they often fail to
dodge, which in turn leads to disasters. The power line scene recognition (PLSR) is mainly
used for the flight obstacle avoidance of power lines, which can identify the presence or
absence of power lines in advance, and use this as a judgment basis for reminding the
driver. Thus, it is a meaningful research work and has a huge market prospect.

Although there were many publications in scene recognition of remote sensing im-
ages [3–8], little research focused on the PLSR. The leading cause for this is that the public
dataset of the power lines is very scarce; only three types of power line data sets could
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be easily downloaded on the internet [9–12]. Among them, only one type can be used
for the classification and recognition of power line scenarios [9,10]. Due to the inherent
characteristics of power lines and the low resolution of datasets, it is difficult to obtain
good recognition results. There were still state-of-the-art PLSR methods presented in recent
years. Yetgin et al. [13] presented a PLSR framework based on the discrete cosine transform
(DCT) of scenes obtained from aircraft-based cameras. This work attacked the problem
of extracting signatures from the DCT coefficients by systematically changing the DCT
matrix sizes and applying known classifiers to the DCT sub-matrices. The details were
given in [14]. First, the image filtering was used to reduce the interference of noise and
normalize the amplitude. Second, different types of image features of power lines were
extracted through the DCT, local binary pattern (LBP), and histogram of oriented gradient
(HOG), respectively. The absolute value of the logarithm of the discrete cosine coefficient
in the DCT domain was taken to emphasize the dynamic range. Finally, the naive bayes
(NB), random forest (RF), and support vector machine (SVM) classifier were used for
the PLSR task. Although these kinds of methods were simple, it needed to manually set
the feature extraction and feature matching methods. The PLSR method, based on deep
learning, does not require manual feature extraction of power lines, and the established
convolutional neural network (CNN) model can automatically extract effective features.
Thus, some researchers tried to apply the CNNs to PLSR [15]. The VGG19 model and the
ResNet50 model were fine-tuned to adapt to the power line dataset in literature [15], and
an end-to-end PLSR method is proposed. The VGG19 model and the ResNet50 model were
divided into five stages, and then the feature maps of these five stages were outputted. The
feature maps were inputted to the NB, RF, and SVM classifiers, respectively, for the PLSR
task. A fast PLSR network for the pixel-wise straight and curved power line detection
method is proposed in [16]. The edge attention fusion module was combined together with
a filter block, which extracts semantic and spatial information to improve the PLSR result
along the boundary.

The power line extraction (PLE) is the pixel-wise PLSR method, which was paid more
attention than the PLSR task. A PLE method based on the weakly supervised learning, which
solved the problem of labeling large-scale datasets, was proposed in [17]. A PLE method based
on pyramid patch classification, which used a CNN-based classifier to help eliminate power
line pseudo-targets, was proposed in [18]. The generative adversarial network was combined
with the conic and hue perturbation to enhance the datasets to reduce the model parameters
and computational complexity through model pruning in [19]. Artificially synthesized power
line images were used as the training data, and a fast single-shot line segment detector (LSD)
was proposed in [20]. A real-time segmentation model for power lines was proposed in [21].
They used a spatial branch to capture rich spatial information and utilized classification
with subnet-level skip connections. It recovered long-distance features and improved the
performance of the power line extraction. Liu et al. improved the Unet model and its variants
to the power line scene recognition and extraction task [22].

Since the capsule network (CapsNet) [23] is widely used in various classification tasks
with its rich feature expression ability and effectiveness on small data sets and achieved good
classification results [24–29]. The CapsNet is also tentatively studied in the scene recognition
of remote sensing images [3–8]. Thus, in this paper, the CapsNet is selected as the backbone
network, and the edge of line features of the power lines are enhanced. Finally, a novel PLSR
method is proposed. The main innovation can be summarized as follows:

(1) A PLSR method based on the convolutional CapsNet fused with image enhance-
ment is proposed. The edge structures of the power lines are enhanced by using the guided
filter. The lone points and lines that are reinforced at the same time are weakened by the
convolutional CapsNet. Various experiments show that it is suitable for the PLSR task with
complex backgrounds.

(2) The power line scene recognition and feature extraction tasks can be performed
simultaneously based on the convolutional CapsNet structure. The PLSR task is performed
based on the output of the digital capsule layer, and the PLE task is performed based on

2
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the output of a reconstructed module. The sections of this paper are arranged as follows:
The CapsNet is introduced in Section 2. The proposed convolutional CapsNet with image
enhancement is explained in Section 3. The scene recognition results and analysis of the
proposed method are given in Section 4. The reconstruction results and analysis of the
proposed method are shown in Section 5. The conclusion is obtained in Section 6.

2. Capsule Network

The CapsNet is used to maintain the location information and the inherent attributes
of objects in the image, which can model the spatial relationship of the image [23]. In
the CapsNet structure, the scalar output of the feature detector in the CNN is replaced
with a vector output, and the maximum pooling is replaced with a protocol routing
simultaneously. Meanwhile, all the capsules, except the last capsule layer, maintain the
convolutional structure. By doing this, the advantages of the CNN in copying the learned
knowledge across space is retained. The higher-level capsules can cover a larger image area
the same as the CNN. Unlike with the maximum pooling, the CapsNet can partially retain
the precise location information of entities in the region through the protocol routing [30].
The CapsNet is composed of the input layer, output layer, convolutional layer, primary caps
layer, and digit caps layer. The convolutional layer is used to extract the low-level features
of the detect target. The primary caps layer is used to express the spatial relationship
between the features, and transfers the extracted features to the digit caps layer. The
dynamic routing algorithm is used to predict the classification results in the digit caps
layer [31]. The coupling coefficient c, according to the similarity between the low-level
capsule layer and the high-level capsule layer, is adjusted. The weight W between networks
is updated. If the similarity between the i-th capsule in the lower layer and the j-th capsule
in the upper layer is greater, the coupling coefficient cij is greater, and the formula is shown
in Equation (1). Where the initial value of a priori coupled probability bij of the capsule i
and the capsule j is set to 0, and updated as Equation (2).

cij =
exp

(
bij
)

∑k exp
(
bij
) (1)

bij ← bij + ûj|ivj (2)

where the calculation method is shown as Equations (3) and (4), respectively.

ûj|i = Wijui (3)

vj =
‖sj‖2

1 + ‖sj‖2

sj

‖sj‖
(4)

where in Equation (4), Sj is the input vector of the j-th capsule in the upper layer, and the
formula is given as follows:

sj = ∑
i

cij
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The object function of the CapsNet is defined as follows:

Lk = Tk·max
(
0,
(
m+ − ‖vk‖

))2
+ λ(1− Tk)·max

(
0,
(
‖vk‖ −m−

))2 (6)

where vk is the output of a capsule in the softmax layer. Tk represents the tag of the k-th
target. If a training sample belongs to class k, Tk = 1. Otherwise, Tk = 0. m−, and m+ are,
respectively, the upper bound for the probability of a training sample not belonging to class
k and the lower bound for the probability of a training patch being an instance of class k.
They are set as m+ = 0.9 and m− = 0.1. λ is a weight regularization factor, which is usually
set as 0.5 [32].
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The CapsNet was used to classify the MNIST images of 28 × 28 at first. The original
network has a convolution layer, including 256 convolution cores with a scale of 9 × 9,
and outputs a local feature map with a scale of 20 × 20 as the input of primary caps. The
primary caps contain 32 different capsules, each with eight 9× 9× 256 convolution kernels.
Both layers use the ReLU activation function. Moreover, the digital capsule layer outputs
16-D vector reconstruction objects contain all the required instantiation parameters [26,33].

3. Convolutional Capsule Network with Image Enhancement
3.1. Motivation

The aerial image of power lines is mainly taken by the inspected unmanned aerial
vehicles (UAVs), which has its inherent characteristics. In terms of color and lustre, the
brightness of power lines is uniform and is higher than the backgrounds. In terms of
shape, the power line usually exists in the form of a straight line, with a pixel width of
about 1~5 [23], but some power lines, in the shape of a solitary vertical curve, still exist. In
terms of spatial relationship, power lines usually run parallel to each other throughout the
image, except for single ones. The background of power lines is complex and changeable.
It is found that the background images of power lines are mostly forest, lake, river, field,
mountain, sky, white cloud, pole, tower scene, and so on. It makes the power line scene
recognition and extraction task challenging.

In general, power lines account for less than 15% of pixels in power line scenes. The
complex backgrounds also have good edge features. Thus, pooling operation in the CNN
may lose the spatial information of power lines, or misdetect part of the edge background
as power lines. Due to the excellent performance of the CapsNet in the image classification
mentioned above, the CapsNet is our first choice for the PLSR task. The CapsNet also has
drawbacks: (1) It is unable to handle large size input well (2) It is unable to fully extract
the input features. (3) The classification accuracy decreases with the complexity of the
dataset. Two additional convolutional layers are used to better extract features and reduce
input size simultaneously. The guided filter can enhance the edge lines well, meanwhile,
the CapsNet can preserve the spatial relationship of power lines. Thus, the convolutional
CapsNet with image hencement by guided filter is proposed.

3.2. Image Enhancement with Guided Filter

Experiments show that the guided filter [34] proposed by He et al. can better enhance
the edge features of power lines and increase the recognition accuracy of power lines in
complex backgrounds. The guided filter [34] is an edge-preserving algorithm based on
the local linear model. It uses a guided image to guide the filtering process, defines any
pixel in the image as a linear relationship with some of its adjacent pixels, and performs
filtering processing, respectively. Finally, all local filtering results are accumulated to derive
the global filtering results, and an output image with a structure similar to the input image
is obtained.

The output image fo of the guided filter can be linearly represented by the guided
image Ii in a square window i, as shown below [35].

f o = ak Ii + bk, ∀i ∈ wk (7)

where wk is a square window with a radius of r centered on the pixel k, ak and bk are con-
stants in fo, and their coefficients are solved by minimizing the following energy function:

E(ak, bk) = ∑
i∈wk

((
f o
i − f in

i

)2
+ ηa2

k

)
(8)

where η is the regularization parameter to prevent it with too large a value, fiin is the input
image of the filter.

Because the guided filter uses a guided image for reference, choosing a different
guided image will obtain different learning tasks. It is suitable for the deep learning
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process. A power line scene image as input is shown in Figure 1a, and its enhanced image
by the guided filter is shown in Figure 1b. Where the input image itself is selected as the
guided image. It is obvious that the power lines are enhanced. Simultaneously, grass and
the outline of a wheat field are also enhanced. If the CNN is used for the deep learning
network, these enhanced backgrounds will represent the surrounding spaces because of
several pooling operations. If the surrounding spaces are considered by the CapsNet,
power lines can be easily distinguished with the enhanced backgrounds.
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Figure 1. Power line scene image enhancement by using a guided filter. The input image itself is
selected as the guided image. (a) Power line image. (b) Enhanced image.

If the ground truth images are selected as the guided image, the training process of the
network will be sped up. A power line image as input is shown in Figure 2a, the ground
truth label is shown in Figure 2b, and the output image of the guided filter by using the
ground truth as the guided image is shown in Figure 2c. Obviously, the output image, by
using the guided filter, is greatly enhanced. If this type of guided filter is combined with
deep learning, not only will the training time be greatly reduced, the network performance
will be also improved.
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Figure 2. Power line scene image enhancement by using a guided filter. The ground truth is selected
as the guided image. (a) Power line image. (b) Ground Truth. (c) Enhanced image.

In practice, there are no responded ground truth labels with the input images. Except
for choosing the input image itself, more clarity for an image with special features can be
selected as the guided image. For example, the line segment detection (LSD) [36] can better
outline the power lines, it can be considered as the guided image. A power line image as
input is shown in Figure 3a, the responded LSD map is shown in Figure 3b, and the output
image of the guided filter by using the LSD as the guided image is shown in Figure 3c.
Obviously, the output image, by using the guided filter, is greatly enhanced.
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In order to further improve scene recognition performance, the reconstructed image
can be used as the guided image again for feedback. For feature extraction and classification,
the ground truth image, feature enhanced image, or reconstructed image can be selected
as the guided image to improve the accuracy. The input image itself is used as the guided
image, and has a wider application. In order to make a more general comparison, the input
image itself is selected as the guided image in the experiment. In brief, the guided filter
with its variations [37–40], has a broad research prospect in the field of deep learning.

3.3. Convolutional CapsNet Framework

The proposed PLSR framework is shown in Figure 4. After image enhancement, the
original image of 128 × 128 × 3 is grayed to an image of 128 × 128 × 1 and enters the
first convolutional layer. The first convolutional layer contains 32 kernel functions with
a scale of 5 × 5, and stride = 2. The output 64 × 64 × 32 feature image enters the second
convolutional layer. The second convolutional layer contains 64 kernel functions with a
scale of 5× 5, stripe = 2. The output 32× 32× 64 feature map enters the third convolutional
layer. The third convolutional layer contains 128 kernel functions with a scale of 9 × 9, and
stripe = 2. The output 16 × 16 × 128 feature map enters the primary capsule layer. The
primary capsule layer contains 32 different capsules, each capsule performs eight times of
9 × 9 kernel convolution, and stripe = 1. The last digital capsule layer outputs 16-D vector,
which is used for binary classification tasks (power line scene or non-power line scene), and
provides necessary information for image reconstruction. The ReLU activation function is
applied to all layers. After the subsequent reconstruction module, the digital capsule can
reconstruct the extracted power line binary image. The dimensions are 128 × 128 × 1.

The specific parameters of the convolutional CapsNet structure are shown in Table 1.
In this paper, before the primary capsule layer, three convolutional layers with a stripe of 2
are selected in order to reduce the image dimension and extract more image information.
The convolutional layer with a stripe of 2 can prevent the loss of spatial information caused
by the pooling layer. The power line itself is very slender, and the spatial information is
particularly important for the identification and extraction of power lines.

Table 1. The convolutional CapsNet structure.

Filter Kernel Size Stride Output

input 128 × 128 × 1
Conv1 32 5 × 5 2 64 × 64 × 32
Conv2 64 5 × 5 2 32 × 32 × 64
Conv3 128 9 × 9 2 16 × 16 × 128

primary capsule 32 × 8 9 × 9 1 16 × 16 × 256
digital capsule - - - 16 × 2

output - - - 2
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4. Scene Recognition Results and Analysis
4.1. Dataset and Experimental Configuration

The public data set of power line scenarios is adopted for experiment in this paper [9].
The dataset contains two subsets, infrared (IR) and visible light (VL). Each subset contains
two parts, including and excluding. Each part has 2000 images of power line scenarios with
128 × 128 pixels. The subset with visible light [9] is used to carry out the experiment in this
paper. The dataset is divided into training set, cross-validation set, and test set according
to 3:1:1.

The configuration used in this paper, in terms of the hardware and the software
platform, is shown in Table 2.

Table 2. Configuration of the experimental environment.

Platform Configuration

Operating system 64 bit version of Windows 10
Central processing unit (CPU) Graphic

processing unit (GPU)
Intel(R) Core(TM) i9-10900k CPU @ 3.70 GHz

NVIDIA GeForce RTX 2070 8 G
Deep learning framework PyTorch1.7

Compilers PyCharm
Scripting language Python 3.7

Solid state disk (SSD) 500 GB

The experimental parameters used to train the proposed network are shown in Table 3.

Table 3. Experimental parameters of the convolutional CapsNet.

Parameters Configuration

Input Size 128 × 128 × 1
Batch size 64
Optimizer Adam

Learning rate 0.001
Training epochs 200
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4.2. Evaluation Metric

In this experiment, the accuracy rate is selected as the evaluation criteria, and the
formula is given as Equation (9).

Accuracy =
Number o f correct predictions
Total number o f predictions

(9)

The PLSR task is a binary classification problem, and the above-mentioned formula
can be written as Equation (10).

Accuracy =
(TP + TN)

(TP + FP + TN + FN)
(10)

where TP indicates that the actual case is positive, and the prediction is positive; TN
indicates that the actual case is negative, and the prediction is negative; FP indicates that
the actual case is negative, and the prediction is positive; FN indicates that the actual case
is positive, and the prediction is negative.

4.3. Experimental Results and Analysis
4.3.1. Scene Recognition Results and Analysis

The visualization results of the proposed convolutional capsule network, with image
enhancement on the visible light data set, are shown in Figure 5, where all the 32 images
are visually displayed. The lower left part with the red font represents the real label, and
the lower right part with the yellow font represents the model prediction results. Where
0 represents the scene without power lines, and 1 represents the scene containing power
lines. All the 32 images are visually displayed, the presence or absence of power lines are
correctly judged by using the proposed method.
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In order to verify the superiority of the method on the visible light data set, the
comparative experiments with the traditional image processing based methods [13,14]
are given in Figure 6. The parameters of these compared methods are given based on
literature [13,14]. The detailed methods are listed as follows: SVM is used to classify local
binary pattern (LBP) features; naïve bayes (NB) is used to classify LBP features; random
forest is used to classify LBP features; SVM is used to classify histogram of oriented gradient
(HOG) features; naïve bayes is used to classify HOG features; random forest (RF) is used to
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classify HOG features; SVM is used to classify classical selection DCT (CS_DCT) features;
naïve bayes is used to classify CS_DCT features; random forest is used to classify CS_DCT
features; SVM is used to classify reversed selection DCT (RS_DCT) features; naïve bayes is
used to classify RS_DCT features; and random forest is used to classify RS_DCT features.
Although a good detection result can be obtained by the DCT+RF, the feature extractor
and matching method should be manually set. If the DCT+RF is tested on a larger dataset
with a more complex background, the calculation will become more complicated, and
the detection accuracy will not be guaranteed. The proposed model achieved the highest
accuracy of 97.43%, which was 7.93% higher than the second place. It can be seen that on
the visible light dataset, the proposed model has significant advantages over traditional
image processing methods.
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Figure 6. Comparison results with the traditional image processing based methods.

The proposed model is also compared with the deep learning methods implemented
by us, and the experimental results are shown in Figure 7. The CapsNet is implemented
as follows: After graying the 128 × 128 × 3 power line scene image, it is resized to
the size of 28 × 28 × 1 and input into the original CapsNet network, without changing
the network architecture. The accuracy is 77% by using the original CapsNet. The at-
tention mechanism based CapsNet achieved accuracy of 78.8% [41]. Resizing the size
from 128 × 128 × 1 to 28 × 28 × 1 simply results in the loss of the spatial information of
power lines. Even with the attention mechanism-based CapsNet, it is hard to improve the
accuracy of classification. Comparing the experimental results of the convolutional Cap-
sNet, it can be seen that the two additional convolutional layers, without pooling operation,
are effective, as the accuracy gets to 92.38% from 77%. The accuracy of the convolutional
attention-based CapsNet (CA-CapsNet) reaches 93.5%. When image enhancement is added,
the proposed model achieves the highest accuracy of 97.43%, and the guided convolutional
attention-based CapsNet (GCA-CapsNet) obtains 97.15%. Since the power lines are very
thin and run throughout the image, it is hard to design which part should be paid more
attention, especially when both the edge lines of power lines and surrounding backgrounds
are enhanced together.

Furthermore, U-net gets a very good classification performance, the accuracy of which
is calculated by us from the result in [22]. It is verified that image enhancement with the
guided filter is effective in improving the accuracy of the convolutional CapsNet and its
variations. It also can be combined with other methods. It also has a further research value
to improve the performance of itself by exploring more information.
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Figure 7. Comparison results with the deep learning based methods.

4.3.2. Performance Robustness Analysis

The robustness of the proposed PLSR method is tested in this section. The test dataset,
containing 800 images, is selected for the experiment. The quantitative results are shown in
Table 3. The accuracy of power line scene recognition in fog, snowfall, strong light, and
motion-blurred scenes are 95.8%, 92.1%, 96.6%, and 88.3%, respectively. Compared with
the normal scenes, the deviation of power line scene recognition accuracy in the above four
scenes is −1.67%, −5.47%, −0.85%, and −9.37%, respectively. The deviation of motion-
blurred scenes is slightly higher, but it is also less than 10%, and its performance is better
than that of many normal scenes in Table 4. Other scenarios have a good performance
robustness. Because the power line has the characteristics of small targets and weak
features in aerial images, motion blur will affect the boundary response of the foreground
and background. Through image feature enhancement and two additional convolution
layers, the proposed method improves the robustness of power line scene recognition in
the complex environments.

Table 4. Performance comparison of PLSR methods.

Scenes Accuracy

Foggy 95.8
Strong light 92.1

Snow fall 96.6
motion blur 88.3

4.3.3. Generalization Test and Analysis

In order to evaluate the generalization performance of the proposed model more
clearly, the test dataset in [12], containing 120 power line scene images with complex
backgrounds, are selected, and another similar 80 images without power lines are also
selected for testing. The total accuracy is 94.8%. Part of the test results of the proposed PLSR
is shown in Figure 8. The lower left part with the red font represents the real label, and
the lower right part with the yellow font represents the model prediction results. Where
0 represents the scene without power lines, and 1 represents the scene containing power
lines. The experiment shows the recognition cases of eighteen images, of which the 13th
image, the 14th image, and the 18th image are the display of false recognition cases.
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5. Reconstruction Results and Analysis

The CapsNet uses an automatic encoder structure to reconstruct data; the automatic
encoder is composed of an encoder and decoder [16]. This section discusses and analyzes
the effect of power line reconstruction based on capsule network. In the proposed CapsNet,
the encoder is composed of a convolution layer, primary capsule layer, and digital capsule
layer. The decoder includes three full connection layers. The decoder uses the image
features of the power line scene generated in the encoder to reconstruct an image with the
same size as the input image. During reconstruction, the encoder uses the difference of
the mean square error between the reconstructed image and the label image. Low error
indicates that the reconstructed image is similar to the label image. The decoder structure
of the proposed model is shown in Figure 9.
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Based on the proposed method, the PLE results, with typical background, are shown
in Figure 10. The six power line scene images with typical backgrounds are given in
Figure 10a. The first and third pictures show the background of the tower. The second
and fifth images show the field backgrounds. The fourth shows the grassland background.
The sixth picture shows the road background. Figure 10b shows the real power line label
corresponding to the original image, and Figure 10c shows the PLE results based on the
proposed method. It can be seen that the power line can be completely extracted from the
background by using the proposed model.
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In order to continue to evaluate the effect of the reconstruction model in the pixel level-
recognition of power lines, Figure 11a shows six power line scene images with complex
backgrounds. Due to the influence of complex backgrounds, the power lines are difficult to
be found with naked eyes. The first and second pictures show the forest backgrounds. The
third and fourth pictures show the mountain backgrounds. The fifth and sixth images show
the backgrounds of the field. Figure 11b shows the real power line label corresponding to
the original image, and Figure 11c shows the PLE results based on the proposed method.
In these six images, although the power line is difficult to distinguish with naked eyes,
the first image is perfectly extracted. The second and fourth images are partially bent and
broken. The third and fifth pictures are partially missed, and the sixth picture has a small
section of trees with multiple inspections. Overall, a good pixel level-recognition effect
is achieved.
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6. Conclusions

In this paper, the background of power line scene recognition is carefully analyzed
at first, and the guided filter is found that can enhance the power line features effectively.
Thus, the feature enhancement module with the guided filter is introduced to weaken
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the influence of complex background images on power line detection and extraction. A
convolutional capsule network is used to design the power line scene recognition and
extraction method. Experiments show that the proposed method has a high recognition
accuracy and good robustness in the PLSR task. The image output from the convolutional
capsule network decoder can also obtain a better power line pixel-level recognition effect.
Based on the proposed method, we can not only judge whether there is a power line scene,
but also extract the power line completely from the scene image of power lines. It lays
a foundation for the future research of UAV tracking along the line and fault diagnosis
attached to components of power lines.

For the issue of not-so-perfect performance robustness in a strong light environment,
the fusion of infrared images and visible light images can be introduced in the future,
since in the strong light environment, although the power lines are indistinguishable
from the background, the high-temperature power lines can be distinguished from the
low-temperature background environment. For the issue of not-so-good performance
robustness in a motion blur environment, in the future, more stable and active disturbance
rejection UAV trajectory-tracking methods can be studied to obtain a better image capture
effect and reduce motion blur in aerial images.

This article makes sense despite its simplicity. The selection of guided images in the
guided filter is variable, which makes the combination with deep learning have unlimited
potential. New features, such as edge detection, texture preservation, and image enhance-
ment could be used as guiding images, which will enhance the performance of the network.
In addition, the design is flexible and simple, and the computational complexity is lower
than that of the attention mechanism, which can be widely combined without various deep
learning tasks. In supervised learning, selecting the ground truth label as the guide image
can greatly improve the training performance of the network. In unsupervised learning and
predictive analysis tasks, first selecting the original image or enhanced image as the guided
image, and then selecting the reconstructed image as the guided image as the relevant
feedback will improve the performance of the image classification task.
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Abstract: Low-illumination image enhancement can provide more information than the original
image in low-light scenarios, e.g., nighttime driving. Traditional deep-learning-based image enhance-
ment algorithms struggle to balance the performance between the overall illumination enhancement
and local edge details, due to limitations of time and computational cost. This paper proposes a
histogram equalization–multiscale Retinex combination approach (HE-MSR-COM) that aims at solv-
ing the blur edge problem of HE and the uncertainty in selecting parameters for image illumination
enhancement in MSR. The enhanced illumination information is extracted from the low-frequency
component in the HE-enhanced image, and the enhanced edge information is obtained from the
high-frequency component in the MSR-enhanced image. By designing adaptive fusion weights of HE
and MSR, the proposed method effectively combines enhanced illumination and edge information.
The experimental results show that HE-MSR-COM improves the image quality by 23.95% and 10.6%
in two datasets, respectively, compared with HE, contrast-limited adaptive histogram equalization
(CLAHE), MSR, and gamma correction (GC).

Keywords: low illumination; image enhancement; Retinex theory; histogram equalization; image fusion

1. Introduction

With the development of automatic driving technology, computer vision methods are
based on simulated human vision, and they are also used to carry out important sensing
tasks in multiple automatic driving scenarios, such as object detection, semantic road
segmentation, etc. Due to changes in ambient light, such as day and night, the visibility
of the images varies significantly. If the computer vision algorithm needs to ensure stable
performance under different lighting conditions, it should cover all lighting scenes as
much as possible during training. This will undoubtedly require more time and human
labor resources in collecting the dataset, as well as training based on this dataset. Image
enhancement is an effective solution to solve the above problems. The night image is
enhanced by the day image, which can greatly enhance the information perception of
computer vision and human vision. Through image enhancement, image characteristics
such as brightness, contrast, signal-to-noise ratio, edge sharpness, and color accuracy are
improved [1,2], and the feature differences between night and day images are further
reduced. This increases the degree of image aggregation in the feature space, which is
beneficial to the training and reasoning processes of visual deep learning networks. Tradi-
tional image enhancement methods are based on mathematical computations that do not
need training in advance. This can save computing power for computationally constrained
automated driving applications. Such methods can be used as the data preprocessing
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module of the deep-learning-based automatic driving computer vision tasks for images
with low illumination at night.

Land and McCann proposed and developed the Retinex theory [3,4]. Retinex theory
regards the image as the superposition of two components: illumination and reflectance.
Illumination is the influence of ambient light in the imaging process. The reflectance
component represents the natural properties of the objects in the image and is not affected
by other factors. The purpose of the Retinex algorithm is to separate the reflectance
component of the object from the image, removing the effects of ambient lighting. In night
image enhancement, the Retinex algorithm can obtain the reflectance component of night
image objects and remove unfavorable illumination conditions.

Many image enhancement algorithms are derived from Retinex theory. These algo-
rithms separate only the reflectance components of the object and ignore the illumination.
This normally leads to poor imaging results. Reflectance components pay more attention to
the high-frequency information, such as the edge texture of the image, but lack informa-
tion on color and brightness. This is not conducive to enhancing contrast and producing
proper brightness. In addition, better image enhancement requires more careful manual
parameter adjustment to guarantee high performance [5]. This limitation makes it difficult
to generalize the algorithm based on the Retinex theory in practice.

HE (histogram equalization) has been widely used for image brightness enhance-
ment [6]. It expands the existing gray levels of the original image to the whole gray level
(0–255). For example, for night images, the overall image style is dark, and the gray level is
concentrated in a small gray level range. HE can significantly improve the image brightness
by expanding the gray level distribution to the entire gray level. The classic HE increases
brightness by evenly distributing the entire gray level. The average brightness of the
enhanced image changes dramatically. However, if there are both over-light and over-dark
areas in one image, HE will map the pixel brightness in the two areas to medium-level
brightness. A bright pixel may be mapped to the same medium brightness as a dark pixel,
resulting in the loss of image edge details [7]. Additionally, HE expands the gray level of the
image from 0–50 to 0–255, meaning that the brightness of pixels with the same gray level
will be different after expansion. This brings high-frequency noise to the enhanced image.

DCT (discrete cosine transform) is similar to DFT (discrete Fourier transform) but only
operates with real numbers. Compared with DFT, DCT has better aggregation for certain
information. In the image field, images are often processed by DCT and IDCT (inverse
discrete cosine transform) in the frequency domain. The low-frequency signal of the image
mainly corresponds to the slowly changing information, such as color and brightness.
High-frequency signals correspond to rapidly changing information in images, such as the
edges. Ordinary high-pass filters or low-pass filters can only achieve image smoothing or
sharpening [8]. The image enhancement algorithm based on Retinex theory retains more
edge information, but the visual effect of the image depends on fine parameter adjustment.
HE enhances the lighting information better, but the edge information is lost. The image
frequency domain transformation is performed via DCT, combing with the advantages
of the Retinex and HE. HE enhances the image brightness, and more edge information is
retained by the Retinex algorithm.

This paper proposes HE-MSR-COM, which combines the low-frequency information
of HE-enhanced images with the high-frequency information of MSR-enhanced images.
The low-frequency information of HE-enhanced images can provide enhanced illumination,
to ensure a better visual experience. While the high-frequency information of MSR can
retain more edge details, it will improve the quality of the image, e.g., contrast, mean
gradient, etc. This method can filter the high-frequency noise brought by HE and achieve
performance balance and optimization with overall illumination and edge details. This
paper mainly focuses on enhancing low-illumination images. Images under rainy and foggy
weather can be categorized as low-illumination images and can use the same processing
method proposed in this paper. The salt and pepper noise introduced by these typical
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weather conditions needs further image processing steps, such as image noise reduction,
which is not within the scope of this paper.

The structure of this paper is as follows: Section 2 introduces the development of
different research directions and related work on night image enhancement. In Section 3, the
relevant theoretical basis is introduced, and the research method of this paper is proposed.
Section 4 describes the selection of the dataset and experimental evaluations, as well as the
analysis of the experimental results. Section 5 summarizes the performance of the proposed
algorithm and indicates future research directions.

2. Related Works
2.1. Retinex Theory

Many low-light image enhancement algorithms have been developed based on Retinex
theory. Jobson et al. improved the Retinex theory and proposed SSR (single-scale Retinex) [9]
and MSR (multiscale Retinex) [10]. These methods simply assume that the illumination
is smooth and the reflectance components are unsmooth. The Gaussian low-pass filter
(LPF) and logarithm operation are used to estimate the illumination of the image. The
gradient and region size in different images are different. SSR needs to strike a balance
between overall illumination estimation and local image detail performance. MSR uses
different weights for several linear LPFs to estimate illuminance. This can ensure the
balance of performance in the overall illumination and local image details. Wang et al. [11]
proposed a low-illumination color image enhancement algorithm based on the Gabor filter
and Retinex theory. The algorithm extracts the illumination component from the HSI
(hue, saturation, intensity) color space of the original image. The authors enhanced the
illumination component using MSRCR (multiscale Retinex with color restore) to obtain the
enhanced illumination component and illuminated images. Additionally, the original image
of the RGB space is enhanced using the SSR algorithm. Then, the illuminated image and the
enhanced image are weighted and fused for better performance. Traditional Retinex-based
algorithms use Gaussian filters (GSFs) to estimate illumination. However, GSFs cannot
adapt themselves to different backgrounds in images, which is the main reason why they
cannot accurately estimate illumination [12]. Tao et al. [13] replaced the GSF with a region
covariance filter (RCF), which depends on the covariance matrix of local image features for
each pixel. As a result, the RCF is adaptive to different pixels in an image and can estimate
illumination more accurately than the GSF. The RCF Retinex algorithm increases contrast,
cancels noise, and enhances detail compared with GSF Retinex algorithms. However, the
calculation of RCF Retinex is time-consuming and impractical.

The performance of these methods often depends on the careful selection of the param-
eters of the filters and their corresponding weights, and most of these parameters require
human-involved decisions, which are time- and human-labor-intensive and are impractical
for real-time applications such as night image enhancement in autonomous driving.

2.2. Histogram Equalization

Histogram equalization (HE) is used to enhance contrast and improve image qual-
ity. Yeong Kim [14] considered that the original HE algorithm would cause the loss of
edge information and, therefore, reduce the image contrast. They proposed bi-histogram
equalization (BBHE) to enhance the image contrast. The average value of illumination
is used as a threshold to distinguish dark and bright areas. The HE algorithm is used
in both a bright area and a dark area to reduce the loss of edge information. However,
this results in unbalanced overall distribution of illumination in the enhanced image.
Chen et al. [15] believe that the median illumination is more appropriate as the threshold
instead of the average illumination. Therefore, they proposed dualistic sub-image his-
togram equalization (DSIHE) to prevent over-light or over-dark areas from affecting the
threshold, and their experiments proved that the median is more statistically significant.
Ooi et al. [16] proposed bi-histogram equalization with a plateau level (BHEPL), which
reduces the processing time compared to BBHE. Ooi et al. [17] proposed quadrant dynamic
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histogram equalization (QDHE), which divides the histogram into four (quadrant) sub-
histograms based on the input image’s median value. It reduces noise amplification and
over-enhancement. Salah et al. [18] proposed a combination of gamma correction and the
retinal filter (gamma-HM-COMP), which preserves the contrast between the gray levels of
the original pixels, thereby preserving more edge information. Tan et al. [19] proposed a
background-brightness-preserving HE (BBPHE) based on nonlinear histogram equalization.
This method divides the image into background regions and non-background regions. It
can enhance the brightness of the whole image and preserve the edge information of the
object as much as possible. Adaptive histogram equalization (AHE) is a commonly used
method that calculates the local gray histogram of images to obtain more local details
and improve contrast. Shome et al. [20] proposed a contrast-limited AHE (CLAHE) to
overcome the problem that AHE will overamplify the noise in the same area of the image.
On the other hand, Lin et al. [21] proposed averaging histogram equalization (AVHEQ)
for color images. This algorithm divides the original image into sub-images and equalizes
them independently. It proposes a new mathematical algorithm to determine the optimal
threshold and achieves better performance compared with conventional methods such as
BBHE, DSIHE, and BHEPL. Chen et al. [22] used a fast guide filter to decompose the image
into a base layer and a detail layer. The plateau equalization (PE) enhances the detail and
the background separately, increasing the contrast of the detail. Kwan et al. [23] used a
second-order histogram matching algorithm that enhances 16-bit infrared video contrast.
This optimizes the possible information loss caused by using processed 8-bit infrared video.
The performance of this method has been improved in the target detection using You Only
Look Once (YOLO) and classification using a residual network (ResNet). Liao et al. [24]
proposed an innovative box filtering method by combining the mean and median filtering
techniques to achieve the balance between noise removal and edge preservation.

HE-based algorithms are popular because they are easy to implement and fast to
process. However, these algorithms also have various limitations, such as adding noise
to the output image and increasing the contrast of the background rather than the object
in the image. The direct stretching on the gray level also causes the loss of edge infor-
mation, resulting in a fuzzy edge. Much research has been carried out to prevent the
loss of edge information. However, this issue is more complicated to solve in complex
illumination scenes.

2.3. Data-Driven Methods

Recently, many image enhancement methods have been combined with deep learning.
These methods use a data-driven approach to enhance the night image adaptively based
on a priori trained model. CNN (convolutional neural network) is a typical approach that
employs supervision training of a large number of labeled datasets and has shown good
adaptability to different scenes. It is a resource-intensive task to collect the required datasets
that contain a large number of paired low-light and normal-light images as sample data
and label data, respectively. LLNet [25] is trained by pseudo-labels generated by random
gamma correction. These unreal labels are given by the traditional image enhancement
algorithm, which limits its enhancement effect. Due to the cost of the dataset and the poor
generalization ability of CNNs, this method often results in artifacts and unnatural images.

Methods based on unsupervised GANs (generative adversarial networks) do not
require a large number of paired images as a training set. These methods can mitigate the
cost of collecting labeled datasets. EnlightenGAN [26], a low-light image enhancement
algorithm based on an unsupervised GAN, uses unpaired low-light and normal-light
data as the dataset. However, the performance of GAN methods is highly affected by the
selection of the dataset. GAN methods can produce unpredictable outputs. Some produces
features that fool the discriminator and are regarded as the correct result, which is actually
an unsatisfactory result.

Qu et al. [27] adopted deep learning to compensate for the defects of traditional image
enhancement methods. However, these methods rely heavily on datasets with perfect
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scenes for training. It is challenging to allocate adequate computing resources to image
enhancement in real-time automatic driving applications.

3. Method

The structure of the proposed HE-MSR-COM Algorithm 1 contains three main parts,
including the MSR enhancement module, HE enhancement module, and frequency-domain
fusion module. The MSR and HE enhancement modules are responsible for obtaining the
edge and illumination enhancement information of the image, respectively, which can be
seen in Figure 1. The frequency-domain fusion module is used to adaptively unify the edge
and illumination information by deriving weights for different scenarios.
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Figure 1. Overview of frequency−domain fusion based on MSR and HE.

3.1. MSR Image Enhancement

Retinex theory is based on the idea that images are a combination of illumination and
reflectance. The theory of Retinex is shown in Figure 2.
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Retinex theory can be defined as follows:

I = L ∗ R (1)
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where I is the original image, L is a matrix of illumination, and the matrix R represents the
reflectance components of the object in I. The operation ∗ is the matrix multiplication of
the corresponding elements. Illumination L is a dynamic result of a series of different light
sources, such as clear daytime lighting, nighttime street lighting, and other common lighting
environments. The reflectance component R represents the key information for humans
or computers to understand the semantics of the images. MSR separates the reflectance
components to reduce the interference of the dynamic lighting environment with the image
semantics. This allows the observers to better understand the image. It is difficult to
calculate the reflectance component R directly. By first estimating the illumination L, R can
be computed indirectly by R = I/L. The MSR can be defined as follows:

I(x, y, c) = L(x, y, c)× R(x, y, c) (2)

R(x, y, c) = I(x, y, c) / L(x, y, c) (3)

log(R(x, y, c)) = log(I(x, y, c))− log(L(x, y, c)) (4)

The image is composed of multiple pixels; x and y are the two-dimensional coordinates
of the image pixels, and c is the channel of the image. If the image is gray, then c is 1,
representing the gray channel. If it is a color image, c is 1, 2, or 3, representing the R, G, and
B color channels, respectively. Equation (4) is the logarithmic form of Equation (3).

It is assumed that the illumination component L changes slowly on different objects,
while the object reflectance R changes significantly at the edges of the objects. Therefore, the
common method is to estimate the slowly changing illumination L by the Gaussian filtering
method in the spatial domain. The Gaussian filter is used to estimate the illumination by
calculating a weighted average of a pixel and its surrounding pixels. L can be estimated
as follows:

L(x, y, c) = I(x, y, c)× G(x, y, c) (5)

G(x, y, c) =
1

2πσ2 exp
(
−x2 + y2

2σ2

)
(6)

The parameter σ is a key parameter of the Gaussian filter, which determines the
filtering scale when estimating the illumination. Selecting a large value is not conducive to
local illumination estimation. A small value of σ would defeat the original purpose of the
hypothesis and would not be conducive to estimating the overall illumination. Therefore,
MSR estimates the illumination by using three different scales: large, medium, and small.
The accurate illumination is determined by the weighted average value.

3.2. HE Image Enhancement

The grayscale distribution histograms of over-light or over-dark images are con-
centrated in the area of high or low brightness, respectively. The grayscale distribution
histograms of images with normal lighting are evenly distributed within the overall gray
value range. HE mainly uses the CDF (cumulative distribution function) to shift the
gray/brightness of the image to ensure that it is distributed uniformly within the overall
gray value range, which is similar to that of a normal lighting image.

For the original gray image I(x, y), there are N pixels whose value range is [Pmin, Pmax].
The brightness is divided into L discrete levels with a range of [0, L− 1]. The original
histogram of the image is obtained by (7). CDF is defined by (8).

H(k) =
nk
N

, f or 0 ≤ k ≤ L− 1 (7)

CDF(k) =
k

∑
i=0

H(k) (8)
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where H (k) is the PDF (probability density function) of the pixel with a brightness of k,
and also the histogram height of the pixel with a brightness of k, while nk is the number of
pixels with a brightness of k.

Pout = CDF(Pin) × (L − 1) (9)

HE pixel brightness mapping is defined in (9). Pin is the input pixel brightness, while
Pout is the output brightness of the corresponding pixel. For the color images, the three
channels (RGB) can be enhanced by the above HE. The grayscale distribution before and
after HE enhancement is shown in Figure 3.
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Figure 3. HE enhancement demo: (a) Original image. (b) HE-enhanced image. (c) RGB histogram of
the original image. (d) RGB histogram of the HE-enhanced image.

The original night image has low brightness, and its pixel brightness is concentrated
in a small range, resulting in poor visibility. After the enhancement, the image brightness is
evenly distributed in the value area, and the overall image brightness increases noticeably.

3.3. Image Fusion

MSR can separate the object reflectance components of the image and, thus, retain
edge information. The visibility of the MSR-enhanced image is limited, as MSR eliminates
the illumination components and only keeps the reflectance components. HE directly
modifies the gray value of pixels to achieve better enhancement in illumination, but it also
introduces high-frequency noise to the enhanced image. Direct conversion on the gray
level will also cause the loss of edge information, which is the key information for semantic
segmentation in autonomous driving. The image illumination and color information are
mainly in the low-frequency range, while the edge information is mainly in the high-
frequency range. The enhancement effect of MSR is more remarkable in the high-frequency
range, but it is not stable in the low-frequency range. Conversely, HE can effectively
enhance the low-frequency information, but it also causes high-frequency noise and loss of
edge information—mainly located in the high-frequency range of the image. The proposed
HE-MSR-COM combines the above two methods by using DCT to generate high-quality
images that include the high-frequency information from MSR and the low-frequency
information from HE.
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The proposed HE-MSR-COM uses the high-frequency information of the MSR-enhanced
image to obtain the clear edge information and uses the low-frequency information of the
HE-enhanced image to obtain the enhanced illumination. HE-MSR-COM overcomes the
disadvantages of MSR-enhanced images, such as halo and poor visibility. It also overcomes
the shortcomings of HE-enhanced images, such as blurred edges and high-frequency noise.
The fusion of MSR and HE processes in the proposed HE-MSR-COM is defined in (10).

Iout = IDCT(α(I) × DCT(IMSR) ∗ maskMSR + β(IHE) × DCT(IHE) ∗ maskHE) (10)

where Iout is the output enhanced image; IMSR and IHE denote the MSR- and HE-enhanced
images, respectively; DCT (·) is the discrete cosine transform, and IDCT (·) is the inverse
discrete cosine transform; maskMSR is the high-pass filter, and maskHE is the low-pass
filter; ∗ represents the multiplication of the corresponding positions of two matrices of the
same size; α(I) is an edge-adaptive coefficient, which is a function of the original input
image I; β(IHE) is an adaptive coefficient as a result of a function of the image illumination.

The frequency-domain diagram after DCT transformation is shown in Figure 4. The
low-frequency information is concentrated near the origin of the coordinates, and the high-
frequency information is distributed in other areas. The frequency-domain filter design is
shown in Figure 5.
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Figure 5. The filter is a logical matrix of the same size as the original image. The matrix element
value of the gray part is 1, and the matrix element value of the black part is 0. (a) High−pass filter.
(b) Low−pass filter.

The mean gradient is an evaluation of edge information, defined as follows:

g(I) =
1

(M− 1) × (N − 1)
×

M−1

∑
i=1

N−1

∑
j=1

√
(I(i, j) − I(i + 1, j))2 + (I(i, j )− I(i, j + 1))2

2
(11)

where M, N define the size of the image, I is the image, and i, j are the coordinates of
the pixels.
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α(I) is determined by the edge information of the original image, and it is defined
as follows:

α(I) = α × g(I)/mean(g) (12)

where mean(g) represents the mean gradient values of the selected images in the dataset,
and g(I) is the mean gradient of the current image; α is an adjustable parameter in a range
of 0.8–1.2. If α is too small, the edge information will be lost. If α is too large, the edge of
the object will be too bright, and the enhanced image will not be natural.

β(IHE) is determined by the HE-enhanced image. It is used to adjust for excessive
enhancement effects that HE may bring. It is defined as follows:

β(IHE) = β × mean
(

mid
(

Iday

))
/mid(IHE) (13)

where mid(·) is the median brightness of an image, which is a statistical function to reason-
ably judge the brightness distribution of an image. Iday is a subset of the normal illuminated
images in the dataset. The subset can be selected manually from daylight images or au-
tomatically selected according to the calculated brightness values of the images. β is an
adjustable parameter in a range of 0.7–1.0. The image is over-dark if β is less than 0.7,
and over-bright if β is larger than 1, which both degrade the image’s visibility. HE tends
to have excessive enhancement, so a value less than 1 is generally selected. γ is a mean
memory parameter that is used to update mean(g) and mean

(
mid

(
Iday

))
with an additive

contribution rate of the current image. If γ is too small, the mean values change slowly and
reduce the adaptability, and if γ is too large, the enhanced performance becomes unstable.

The filter parameters of maskMSR and maskHE are mainly determined by prior knowl-
edge of the dataset that contains both day and night images.

Algorithm 1 HE-MSR-COM

Input: Low-light input image I;
Output: Enhanced image Iout;
Initialization:
mean(g) is the mean gradient obtained from the sampling data of the dataset;
Iday samples from selected normal lighting images;
Mean memory parameter γ;
Calculate MSR weight parameter α, HE weight parameter β;
Dataset sampling to obtain prior filter parameters maskMSR, maskHE.
1: while (Input 6= ∅) do
2: Update mean(g) by mean(g) = γ × g(I) + (1 − γ) × mean(g)
3: if (I is normal illumination image) then
4: Update mean

(
mid

(
Iday

))
by

mean(mid
(

Iday

)
) = γ × mid(I) + (1 − γ) × mean(mid(Iday));

5: else
6: Estimate initial illumination L via (5), (6);
7: Estimate reflectance R(IMSR) via (4)
8: Obtain HE-enhanced image IHE via (7), (8), (9);
9: Calculate weight parameters α(I) via (12);
10: Calculate weight parameters β(IHE) via (13);
11: Fuse enhanced image via (10) to obtain Iout;
12: end if
13: end while

4. Experiments
4.1. Datasets

From GTA5 [28] and Cityscapes [29], driving images with low light and normal
lighting were selected as data sources for the experiment. The GTA5 dataset contains
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24,966 high-resolution composite images and is a commonly used dataset for semantic
segmentation training in the field of autonomous driving. The Cityscapes dataset consists
of 25,000 street images from 50 different cities, collected using different devices under
varying lighting conditions.

4.2. Evaluation Metrics

There are two main ways to evaluate the performance of enhanced images: subjective
evaluation and objective evaluation. Subjective evaluation is based on human vision and
involves human interaction. Objective evaluations are performed by different defined math-
ematical metrics based on image information. In this paper, entropy, mean gradient, PSNR
(peak signal-to-noise ratio), and contrast ratio are used to evaluate the enhanced image.

Entropy is a common objective metric of image quality evaluation. It reflects the
richness of an image. In general, the greater the entropy of the image, the richer the
information, and the better the quality. It is defined as follows:

E(I) = −
L−1

∑
i=0

P(i) × log2(P(i)) (14)

where P(i) is the probability of the pixels with gray level of i in the image, and L is the
pixel’s gray dispersion level—generally 256.

PSNR is used to measure the distortion degree of the enhanced image. The larger
the PSNR, the more semantic information the enhanced image retains and the less noise it
introduces. It is defined as follows:

MSE =
1

M × N

M−1

∑
i=0

N−1

∑
j=0

[I(i, j) − K(i, j)]2 (15)

PSNR = 20× log10

(
MAXI√

MSE

)
(16)

where M, N represent the size of the image. I is the original image, and i, j are the coor-
dinates of the pixels. K is the enhanced image. MAXI is the maximum pixel value—for
general RGB images, it is 255.

Contrast ratio usually shows the sharpness of an image. The higher the contrast, the
higher the resolution of the image. It is defined as follows:

C(I) = ∑
δ

δ(i, j)2Pδ(i, j) (17)

where δ(i, j) is the gray difference between adjacent pixels, and Pδ(i, j) is the probability of
pixels with a gray difference of δ.

CE (comprehensive evaluation): for the above four evaluation metrics, the maximum
value is taken as 100%, and the CE of each algorithm is calculated. It is defined as follows:

CE(I) = (
E(I)

MAXE
+

g(I)
MAXg

+
PSNR(I)

MAXPSNR
+

C(I)
MAXC

)/4 (18)

4.3. Experimental Results and Analysis

Frequency components in different spectral ranges are separated from the dataset, and
their corresponding mean gradients are calculated. The experimental results are shown in
Table 1. Thus, the values of the filter parameters of maskMSR and maskHE are adjusted.
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Table 1. Mean gradients of different frequency components.

Spectrum Mean Gradient

[0, 4) 0.022
[2, 8) 0.062
[4, 16) 0.145
[8, 32) 0.292

[16, 64) 0.550
[32, 128) 0.982
[64, 256) 1.574

[128, 512) 2.151
[256, 1024) 2.322
[1024, 2048) 0.078

Filter parameters’ selection ranges are determined based on the algorithm character-
istics of HE and MSR. HE has advantages in low-frequency information enhancement,
while MSR is better at high-frequency information enhancement. Therefore, the basic
parameter selection ranges can be determined, and the violation of this range will lead to
poor enhancement results.

It can be noted from Table 1 that the edge information is mainly concentrated in the
frequency range (16, 1024), so maskMSR selects these image frequency components in this
range to obtain the edge information of the image, while maskHE selects the low-frequency
component of the image (0, 16) for generating the enhanced illumination information of
the image.

The PSNR of the original HE-enhanced image was compared with that of the filtered
HE-enhanced image. As shown in Figure 6, the ordinate is the filtered PSNR minus the
original PSNR. The PSNR of the filtered image is larger than that of the original image
on both datasets. This proves that a larger PSNR of the image can be obtained by using
frequency filtering of the high-frequency noise introduced by the HE enhancement.
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Figure 6. PSNR comparison between the filtered HE−enhanced image and the original
HE−enhanced image.

The next step of the proposed method is combining the filtered HE-enhanced result
with the MSR-enhanced result using a set of designed weights. Therefore, using a HE-
enhanced image with a higher PSNR contributes to a better final result after fusing with the
MSR result. The original HE-enhanced image is not used in the subsequent fusion process.

More experiments are underway to tackle more accurate selection of the filter pa-
rameters and the weight parameters (α and β) for a better performance by using opti-
mization algorithms, such as genetic algorithms. These results will be presented in a
subsequent paper.

α is an adjustable weight of edge information. The larger α is, the larger the weight
of the edge information will be. β is used to adjust the enhanced brightness. β values are
generally 0.7–1.0, because HE tends to produce over-bright enhanced results. Five criteria
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have been adopted to study the performance of different selections of α and β, as illustrated
in Table 2.

Table 2. Enhancement performance of different parameter combinations.

Entropy Mean
Gradient PSNR Contrast

Ratio CE

α = 0.8, β = 0.7 7.30 3.59 63.71 65.25 77.53%
α = 1.0, β = 0.7 7.35 4.44 63.48 100.06 87.89%
α = 1.2, β = 0.7 7.38 5.24 63.17 139.12 98.69%

α = 0.8, β = 0.85 7.45 3.60 61.82 64.95 77.27%
α = 1.0, β = 0.85 7.50 4.43 61.68 98.92 87.42%
α = 1.2, β = 0.85 7.52 5.21 61.50 136.43 97.86%
α = 0.8, β = 1.0 7.70 3.59 58.83 63.17 76.51%
α = 1.0, β = 1.0 7.72 4.36 58.78 94.31 85.82%
α = 1.2, β = 1.0 7.73 5.07 58.73 127.94 95.24%

The experimental results show that when α = 1.2, β = 0.7, it can obtain the optimal
CE on the Cityscapes dataset. Thus, the two weights α = 1.2, β = 0.7 were selected for
the follow-up experiments. The mean memory parameter γ was selected as 0.02 for all of
the above experiments. The definitions of α and β take into account the content differences
between different images in the dataset. Using adaptive weights makes the enhancement
results more stable across different images. Ordinary HE and MSR algorithms can be
regarded as methods with weights of 0 or 1, so α and β values close to 1 were selected to
prevent over-enhancement. Since HE tends to over-enhance, three discrete values of less
than or equal to 1 were selected for β. The high-frequency information processed by MSR
can allow for a larger range in selecting α values. Therefore, three groups of representative
values of alpha and beta were selected in the experiment. Other parameter values may
result in better performance, which will be further studied in our future work. This paper
mainly shows that HE and MSR can obtain better enhancement results in frequency-domain
combination. CE is a comprehensive consideration of a variety of indicators, so it was
selected as the primary evaluation factor. Entropy sometimes cannot accurately represent
the image quality. For example, HE usually equally distributes the pixel values, which can
theoretically produce the maximum entropy, but there is still room for improvement in
the HE enhancement results. The CE result of the selected combination of α and β was
extremely close to the highest PSNR result, with a difference of only 0.85%.

The enhancement results of different algorithms—HE, CLAHE, MSR, GC, and HE-
MSR-COM (our algorithm)—were compared. The enhanced performance is shown in Figure 7.

All of the methods are implemented via MATLAB programming. MSR and GC were
implemented by code in MATLAB. HE and CLAHE were implemented by calling histeq ()
and adapthisteq (), respectively, using library functions provided by MATLAB.

The HE-enhanced image has blurred edges, and the image brightness is over-enhanced.
CLAHE makes up for HE’s over-enhancement issue, but there is still a loss of edge in-
formation. MSR enhancement produces sharp edges, but their visibility depends on
time-consuming manual adjustment of parameters. The image enhancement results are
not stable when using the same parameters for different images. GC directly maps the
pixel values nonlinearly. It maps over-light or over-dark pixels to medium brightness.
GC achieves good visibility and robust enhancement in brightness, but the image edge
information has a great loss and suffers from a foggy effect. The proposed HE-MSR-COM
retains the advantages of HE in better adaptive illumination enhancement and those of MSR
in adaptive edge information enhancement. The highest visual enhancement performance
was obtained in the above evaluations.
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Figure 7. Results comparison: (a) original image; (b) HE; (c) CLAHE; (d) MSR; (e) GC; (f) HE-MSR-COM.

The performance comparisons of different algorithms on the GTA5 dataset are shown
in Table 3 and Figure 8.

Table 3. Mean performance comparison in GTA5.

Method Original HE CLAHE MSR GC HE-MSR-
COM

Entropy 6.52 7.80 7.24 3.47 6.81 7.48
Mean Gradient 2.25 5.85 5.34 4.12 2.40 9.88

PSNR Inf 1 57.60 61.83 61.70 60.14 61.45
Contrast Ratio 47.14 200.15 140.64 242.51 38.78 424.19

CE 54.40% 74.89% 70.02% 60.79% 54.51% 98.84%
1 The PSNR score of the original image was deemed to be 100%.
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Figure 8. Evaluation distribution in GTA5.

Figure 8 presents the results of five different image enhancement methods under four
evaluation metrics, including entropy, mean gradient, PSNR, and contrast ratio. The “+”
symbols represent the outliers. The upper and lower boundaries of the dashed line are the
maximum and minimum values, respectively. The upper and lower boundaries of the box
are the upper and lower quartiles, respectively, and the inner red line is the median value.
The boxplots can adequately represent the distribution of enhanced image performance. As
shown in Figure 8, HE achieves the maximum entropy by evenly distributing the grayscale
of the pixels. HE-MSR-COM retains the advantages of HE in low-frequency information
with respect to brightness and color, so HE-MSR-COM has the second-highest score in
entropy. HE-MSR-COM magnifies the advantages of MSR by adaptive weight and achieves
the highest mean gradient. HE-MSR-COM overcomes the problem of high-frequency
noise caused by HE and achieves the second-highest PSNR, which is almost equal to the
highest PSNR. HE-MSR-COM has the highest average value in contrast ratio, but it also
brings large variance. However, the subjective evaluation shows that the contrast ratio of
HE-MSR-COM is significantly enhanced, and it receives the highest score in the CE, as
indicated in Table 3. HE-MSR-COM shows optimized performance in many evaluation
metrics on the GTA5 dataset.

The performance comparison of different algorithms on the Cityscapes dataset is
shown in Table 4 and Figure 9.
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Table 4. Mean performance comparison in Cityscapes.

Method Original HE CLAHE MSR GC HE-MSR-
COM

Entropy 6.55 7.85 7.25 3.42 6.66 7.48
Mean Gradient 1.98 5.81 4.71 2.93 2.05 6.88

PSNR Inf 1 58.34 62.50 60.52 59.76 63.74
Contrast Ratio 20.68 135.90 66.42 85.75 16.88 176.62

CE 55.98% 88.23% 74.14% 57.42% 54.47% 98.83%
1 The PSNR score of the original image was deemed to be 100%.
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As shown in Figure 9, HE and HE-MSR-COM have the highest and second-highest
score in entropy, respectively. HE-MSR-COM has the highest mean gradient in all methods.
HE-MSR-COM removes noise as much as possible through frequency-domain filtering and
obtains the highest PSNR. HE-MSR-COM has the highest average value in contrast ratio,
but it also brings large variance. Because the images of Cityscapes come from different
devices, the contrast between images is different, and the high variance is consistent with
the actual images. Our method also receives the highest score in the CE, as indicated in
Table 4. HE-MSR-COM has advanced performance in entropy, mean gradient, PSNR, and
contrast ratio in many real scenes of the Cityscapes dataset.

In the above GTA5 and Cityscapes datasets, HE achieved stable enhancement perfor-
mance in different datasets, but its PSNR was low due to the introduction of high-frequency
noise and over-enhancement. MSR requires manual adjustment of parameters to achieve
optimal performance. Using the same parameters in different datasets brings performance
instability. HE obtained the highest CE score in both datasets—23.95% and 10.6% higher
than those of the second-highest method, respectively.
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4.4. Discussion

The experiment compared subjective evaluation with objective evaluation. The re-
sults reveal that HE is simple and reliable, but this comes at the expense of losing edge
information and excessively enhancing brightness. On the other hand, the stability of MSR
is low. The optimal enhancements usually require manual adjustment of the parameters
independently. It is difficult to adapt fixed parameters for complex realistic conditions.
HE-MSR-COM uses HE-enhanced images to obtain good brightness enhancement with
an adjustable weight and excellent subjective visual evaluation performance, and MSR is
used in the proposed method to obtain the edge information, achieving good performance
under the different metrics such as contrast ratio and mean gradient. Frequency-domain
processing can effectively combine the advantages of HE and MSR, as well as avoiding
the problems of high-frequency noise caused by HE and unstable brightness in the low-
frequency domain of MSR. Based on the experimental performance, HE-MSR-COM showed
stable and superior enhancement performance on different datasets. HE-MSR-COM is sim-
ple, reliable, and efficient, and it can be used as a preprocessing module for low-illumination
images for most visual algorithms.

5. Conclusions

This paper proposes a method combining HE with MSR, called HE-MSR-COM. The im-
age enhancement method proposed in this paper focuses on enhancing the low-illumination
image, which is used as an image preprocessing module. When the image is collected by
the autopilot system, it is first processed by the image enhancement before it is taken as an
input for the subsequent autonomous driving visual tasks, such as semantic segmentation,
target detection, etc. We aim to improve performance in the visual tasks of autonomous
driving by providing a higher quality of the visual image. Our experiments showed that
HE-MSR-COM has the advantages of both HE and MSR, enabling it to achieve higher
performance and balance in the overall illumination and edge details. The HE-MSR-COM
night image enhancement algorithm has two advantages: (1) The enhanced illumination
component is obtained from HE-enhanced image. The low-pass filter in the frequency
domain retains the advantage of enhanced illumination and removes the high-frequency
noise. This successfully ensures good adaptive illumination. (2) The enhanced reflectance
component is obtained from the MSR-enhanced image. The high-pass filter in the frequency
domain retains the advantage of enhanced edge information. This successfully reserves
more semantic information. HE-MSR-COM achieves excellent night image enhancement
performance. It can be embedded into common visual algorithms for autonomous driving
to improve their visual detection performance in night scenes.

In the future, HE-MSR-COM will be deployed in autonomous driving semantic seg-
mentation networks. The night image enhancement can be further evaluated and optimized
by combining it with practical autonomous driving visual algorithms in real night scenes.
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Abstract: Recent research on single image super-resolution (SISR) using convolutional neural net-
works (CNNs) with the utilization of residual structures and attention mechanisms to utilize image
features has demonstrated excellent performance. However, previous SISR techniques mainly inte-
grated extracted image features within a deep or wide network architecture, ignoring the interaction
between multiscale features and the diversity of features. At the same time, SISR is also a typical ill-
posed problem in that it allows for several predictions for a given LR image. These problems limit the
great learning ability of CNNs. To solve these problems, we propose a closed-loop residual attention
network (CLRAN) to extract and interact with all the available diversity of features features efficiently
and limit the space of possible function solutions. Specifically, we design an enhanced residual
attention block (ERA) to extract features, and it dynamically assigns weight to the internal attention
branches. The ERA combines multi-scale block (MSB) and enhanced attention mechanism (EAM)
base on the residual module. The MSB adaptively detects multiscale image features of different scales
by using different 3 × 3 convolution kernels. The EAM combines multi-spectral channel attention
(MSCA) and spatial attention (SA). Therefore, the EAM extracts different frequency component
information and spatial information to utilize the diversity features. Furthermore, we apply the
progressive network architecture and learn an additional map for model monitoring, which forms
a closed-loop with the mapping already learned by the LR to HR function. Extensive experiments
demonstrate that our CLRAN outperforms the state-of-the-art SISR methods on public datasets for
both ×4 and ×8, proving its accuracy and visual perception.

Keywords: image super-resolution; attention mechanism; convolutional neural networks; deep learning

1. Introduction

Single image super-resolution (SISR) refers to the technology of reconstructing an
underlying high-resolution (HR) image from a single low-resolution (LR) image of the scene.
It is known as a typical ill-posed problem, as several HR outputs may correspond to the
input LR image. To tackle this inverse problem, numerous algorithms have been proposed.
According to the three tier classification of [1], SISR algorithms can be divided into two
types: learning methods [2–4] and reconstruction methods [5,6]. The SISR algorithms based
on deep learning try to hallucinate the missing details of the super-resolution (SR) images.
The methods based on the reconstruction requires the degradation model and explicit prior
information to define constraints for the target HR image.

In recent years, numerous studies based on deep learning methods with utilization of
residual structures and attention mechanisms have demonstrated outstanding performance
in SISR challenges. Dong et al. [7] proposed a super-resolution convolutional neural
network (SRCNN) in 2014, which is the first successful effort at introducing CNN with its
three convolution layers into SISR. Subsequently, a number of CNN-based SISR models
have been proposed to learn the mapping between LR and HR images. Ledig et al. [8]
proposed SRResNet, which introducing residual learning to train deep network in SISR.
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Kim et al. [9] proposed VDSR, which inspired by the proposal of the residual network [10]
and extended the depth of CNN to twenty layers. Lim et al. [11] proposed a 69-layer model
named EDSR to improve the high-frequency details, which was inspired by SRResNet and
removed redundant modules and expanded model. The success of EDSR also illustrated the
efficiency of network deepening. On this foundation, Zhang et al. [12] proposed a 400-layer
model named RCAN, which combined the residual structure with the attention mechanism
and achieved state-of-the-art performance. The success of RCAN also illustrated the
efficiency of deep network combined residual structure and attention block.

However, there are still some limitations for CNN-based SISR models. First, very
deep and very wide SISR networks lead to a huge computational cost, which is diffi-
cult to apply in real-world applications. Second, most of the deepened networks with
stacked convolution operations neglect the full utilization of the feature information in the
LR image.

To tackle these problems, Lai et al. [13] designed a pyramid network in a coarse-to-fine
fashion to gradually predict sub-band residuals. Li et al. [14] proposed a multi-scale resid-
ual network (MSRN), which is not designed to be very deep and very wide, but employs
different kernel sizes (3×3 and 5×5) in two-bypass convolution layers to exploit the multi-
scale spatial features. Furthermore, MSRN employed the hierarchical feature fusion (HFF)
technique to combine the outputs of all residual blocks, utilizing the intermediate features.
MSRN obtained equivalent performance with a 7-times smaller model size than EDSR. Sub-
sequently, Muqeet et al. [15] proposed HRAN, which employed dilated convolution layers
with different dilation factors to attain a larger receptive field and exploited the channel
and spatial dependencies. HRAN proposed the binarized feature fusion (BFF) structure,
considering that the HFF is difficult to integrate the features extracted from the CNN
smoothly. Behjati et al. [16] combined channel attention mechanisms with residual blocks
following two independent but parallel computing paths to attend to relevant features and
preserve higher frequency details. Dense connections were employed in prior work [17],
which extended each feature to subsequent features through residual connections. Instead
of the residual block, Wang et al. [18] proposed a residual in a residual dense block (RRDB),
which combines a multi-layer residual network and a dense connection to improve the
perceptual quality of the SR image in deep models. Musunuri et al. [19] employed RRDB
to replace the residual block in EDSR, yielding better reconstruction results and achieving
perceptual quality. The SISR models based on CNN, which combine multiscale feature
extraction and attention mechanisms, have achieved excellent performance. However,
most networks do not limit the function space when designing the network. The channel
attention may discard relevant details contained in other frequency components, which
ignores the diversity of features. Moreover, not all attention mechanisms improve net-
work performance, and attention employed across all levels is inefficient, as also described
in [16,20].

In this paper, we propose a novel closed-loop residual attention network (CLRAN) that
combines residual structures and attention mechanisms to utilize the multiscale features
and the diversity of features. The CLRAN also limits the space of possible functions while
learning the mapping from LR to HR. We introduce a progressive framework for the
reconstruction from LR to HR. The framework is based on the cascade of deep CNNs to
gradually reconstruct the HR image and naturally apply deep supervision simultaneously
at each level of CLRAN, and it is easily extended to other upscaling factors. Guo et al. [21]
proposed that, ideally, the SR image can be downsampled to obtain the same LR image
as the input LR image. With this limitation, it is possible to estimate the underlying
downsample kernel and reduce the space of potential functions to learn a more effective
map. Therefore, we employ an extra map that the SR image uses to reconstruct the input LR
image to limit the potential space. The extra mapping utilizes the features from the process
of gradually reconstructing the HR image, which plays a supervising function in our model.
Specifically, the CLRAN is trained by the Charbornnier penalty loss function [13] to achieve
a better visual SR result.
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The framework employs basic architecture block (Basic-CLRAN) to gradually obtain
the HR image. To achieve multi-scale SR, we only need to modify the number of Basic-
CLRANs. In this way, the parameters are shared between different scales, and the network
parameters are reduced in our model. Considering the structure of our model is simple, in
Basic-CLRAN, we employ HFF technique rather than BFF technique [15] to combine local
multi-scale features and global features.

In Basic-CLRAN, an enhanced residual attention block (ERA) is proposed as the
basic building block to interact features between each other and extract the diversity
features for more powerful feature representations. The ERA contains a multi-scale feature
extraction part and an enhanced attention part. In the multi-scale feature extraction part, we
propose the multi-scale block (MSB) to obtain the multiscale image features. Considering
the stacking multiple dilated convolutions used in [15] to attain a larger receptive field
that caused some pixel information not be utilized in the network, we adopt two 3 ×
3 convolutions instead of 5 × 5 convolutions in multi-scale residual block (MSRB) [14]
of MSRN and introduce two 1 × 1 convolutions, which not only obtain the same effect,
but also reduce parameters and indirectly increase the depth of the network. In the
enhanced attention part, motivated by the attention mechanism [22–24], we propose an
enhanced attention mechanism (EAM) to improve the interactions of the deep multi-scale
features and utilize the diversity features. The EAM mainly contains a multi-spectral
channel attention (MSCA) block and spatial attention (SA) block. The MSCA block has the
ability to capture other frequency component channel-wise information for more powerful
feature representations. The SA block further extracts the spatial information and helps
the network discriminate “where” to concentrate the features. Considering the drawback
described in [16,20], we design a non-attention branch to concentrate on the information
that is ignored by the enhanced attention branch. The weights of the two branches are
automatically calculated by introducing an attention dropout module (ADM) [20].

In order to verify the effectiveness of the proposed methods, we propose a closed-
loop residual attention network (CLRAN), combining the progressive framework with the
Basic-CLRAN. In summary, the main contributions of this paper are threefold:

(1) We propose an extra mapping that limits the potential space with the progressive
framework in our model, thus forming a closed loop to enhance the performance of the
SR model.

(2) We propose an enhanced residual attention block (ERA). This block is based
on the residual structure that fuses features at several scales by introducing the multi-
scale block (MSB) and utilizes diversity of features by introducing the enhanced attention
mechanism (EAM). The MSB and the EAM also can be employed for feature extraction in
other computer vision tasks.

(3) We propose a closed-loop residual attention network (CLRAN). The network ex-
tracts diversity of features from the input LR image and integrates them with the features
throughout the middle process to obtain high accuracy SR images. By employing a progres-
sive framework, the CLRAN gradually obtains the SR result. At the same time, the network
is easily extended to certain upscaling factors by modifying the number of Basic-CLRANs
in the progressive framework.

The rest of this paper is organized as follows. In Section 2, related work on image-super
resolution and attention mechanisms is introduced. In Section 3, the details of the proposed
methods are presented. In Section 4, the experimental process, the results, and analysis
of the proposed method on different benchmark datasets are presented. Additionally, the
ablation study on the proposed network is presented. Model complexity comparisons are
also included. In Section 5, the conclusions of the paper are presented.

2. Related Work

In recent years, with the development of neural networks, the image super-resolution
algorithms have made remarkable progress. In order to address the ill-posed issue in SISR,
researchers continuously widen and deepen the network. However, only broadening and
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deepening the network did not achieve the expected significant improvement. Therefore,
researchers designed some network structures and learning strategies such as residual
networks, recursive networks, dense connections, progressive structure designs, attention
mechanisms, and GAN models. In this section, we first describe the related SISR algorithms
based on CNNs. We then discuss the attention mechanism.

2.1. CNN-Based Networks

Dong et al. [7] first proposed a shallow three-layer convolutional neural network (SR-
CNN) for learning a nonlinear mapping function from LR → HR. Subsequently, He et al. [10]
proposed a residual learning technique. Ledig et al. [8] proposed SRResNet introducing
residual learning to SISR. Kim et al. proposed VDSR [9] with the deep (20 layers) CNN
and global residual connection and DRCN [25] with a recursive block to increase the depth
without introducing new parameters. Based on DRCN, Tai et al. [26] proposed DRRN
combined residual learning and recursive learning. These approaches extract features
from an interpolated LR image, which takes much memory and computation time. To
address this problem, Dong et al. [27] proposed the FSRCNN, which improves the training
speed of SRCNN. Shi et al. [28] proposed ESPCN, designing a sub-pixel convolution layer.
Subsequently, numerous networks were proposed to boost the reconstruction performance
of HR images. Lim et al. [11] proposed EDSR with an extremely deep and broad network
structure that was based on SRResNet and removed unnecessary modules in residual
blocks, resulting in considerable promotion. SRDenseNet [17] introduced dense connec-
tions [29] in SISR. Tai et al. [30] proposed MemNet, adopting memory blocks consisting
of recursive and gate units. RDN [31] employed the dense connections to utilize all the
hierarchical features of the convolutional layers. Wang et al. [18] proposed ESRGAN, in
which a residual in a residual dense block (RRDB) combined residual blocks, and a dense
connection was proposed to improve the perceptual quality of the SR image. Subsequently,
Musunuri et al. [19] employed to RRDB replace the residual block in EDSR, yielding better
reconstruction results. Recently, some networks have focused on balancing the performance
and memory consumption of SISR. Lai et al. [13] proposed LapSRN, which employs the
Laplacian pyramid structure to progressively reconstruct the sub-band residuals of the
HR image. Ahn et al. [32] proposed CARN, which employs group convolution and learns
high-frequency details by locally and globally cascading connections. For multiscale feature
extraction techniques, Li et al. [14] proposed MSRN, which employs different kernel size
convolution to exploit multiscale spatial features. Muqeet et al. [15] proposed HRAN,
which employs different dilation factors dilated convolution layers to exploit the multiscale
features.

2.2. Attention-Based Networks

The attention mechanism in deep learning is comparable to the attention mechanism
in human vision. It is viewed as a means of biasing the allocation of available computa-
tional resources towards the most informative components of a signal [22]. The attention
mechanism has recently been widely applied in computer vision tasks such as image
classification [33] and image captioning [22]. This mechanism aims to bias the alloca-
tion of available resources towards the most informative parts of an input signal [34].
Hu et al. [22] proposed the squeeze-and-excitation (SE) block, which is focused on the
channel-to-channel relationship. Woo et al. [24] proposed convolutional block attention
module (CBAM), in which channel attention mechanism and spatial attention mechanism
are combined. Dai et al. [35] proposed second-order channel attention (SOCA) to adaptively
rescale features by considering second-order statistics of features, so the network could fo-
cus on more informative features and enhance discriminative learning ability. Qin et al. [23]
proposed multi-spectral channel attention by compressing channels in the channel attention
mechanism by applying a discrete cosine transform (DCT).

Some researchers have successfully applied attention mechanisms to CNN-based im-
age enhancement methods, especially to SISR. Liu et al. [36] originally proposed employing
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non-local operations in a recurrent neural network for image restoration. Zhang et al. [12]
considered that if all channels of features were treated equally, the network would lack the
ability to discriminate and learn, thus proposed a channel attention (CA) mechanism that
employed the residual channel attention network (RCAN), in which the features of each
channel were adaptively re-scaled by modeling the interdependence between feature chan-
nels. Subsequently, some models [15,34,37] that combined channel attention and spatial
attention mechanisms were proposed to learn more discriminative features.

Recently, researchers have started to introduce more sophisticated attention mech-
anisms to further improve the performance of SISR. Liu et al. [38] proposed enhanced
spatial attention (ESA), which reduces the number of channels and adopts a larger stride
convolution to shrink spatial dimensions, effectively enlarging the receptive field. Inspired
by ESA, Muqeet et al. [39] proposed a cost-efficient attention mechanism (CEA) with dilated
convolutions to refine the features. Zhao et al. [40] designed PAN, introducing a pixel-wise
channel attention to SISR. Mei et al. [41] designed PANet to capture multi-scale feature.
Behjati et al. [16] combined channel attention mechanisms with residual blocks following
two independent but parallel computational paths, in which features and attention are
processed simultaneously.

3. Proposed Method
3.1. Network Architecture

The complete framework of the proposed network is shown in Figure 1. As we have
discussed in Section 1, the CLRAN employs a progressive framework by Basic-CLRAN
to reconstruct the HR image from the LR image step by step. For 4× SR task, we employ
two Basic-CLRANs, in which we obtain 2× SR for each input image. The Basic-CLRAN
in Figure 1 is composed of two parts: feature extraction and reconstruction. We set the
original LR image (ILR) as the input of the Basic-CLRAN; the shallow feature E0 is obtained
through initial feature extraction with a 3 × 3 convolutional layer

E0 = H3
HF(ILR) (1)

where Hi
HF(·) denotes the convolution operation and i denotes the size of convolution kernel.

The extracted feature E0 is sent to the enhanced residual attention feature extraction
part with several ERA modules. We denote the proposed the ERA module as HERAi (·),
given by

Ei = HERAi (E0) (2)

where Ei(i 6= 0) is the output feature map of the ith ERA module. After enhanced residual
attention feature extraction, we introduce HFF structure expressed as follows:

FDFS = ω ∗ [E0, E1, E2, . . . , En] + b (3)

where [E0, E1, E2, . . . , En] denotes the connection operation and denotes the input features
of reconstruction part.

The extracted features FDFS from the feature extraction are sent to the reconstruction
part; the configuration information for the reconstruction module is shown in Table 1. We
employ a PixelShuffle [28] layer upsampled to the same dimensions as HR. We use IHR′

to denote the final output from the reconstruction module. Therefore, the final output SR
image ISR from Basic-CLRAN is expressed as follows:

ISR = HUP(ILR) + IHR′ (4)

where HUP(·) and ISR denote an upsampled module that contains a pixelshuffle layer.
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Basic-CLRAN × 2
2× image 4× image

Basic-CLRAN × 2

Basic-CLRAN × 2

Figure 1. The complete architecture of the closed-loop residual attention network (CLRAN) for 4×
SR. The CLRAN contains a primal network (marked with black lines) and a dual regression network
(marked with red lines).

Table 1. Detailed configuration information for the reconstruction structure.

Layer Input Channel Output Channel Kernel Size

Input conv 64 64 × 2 × 2 3 × 3
PixelShuffle (×2) 64 × 2 × 2 64 /

Input conv 64 1 3 × 3

In CLRAN, we incorporate progressive architecture into our network. Therefore, for
different upscaling factors, we only need to change the number of Basic-CLRANs. The
details of our network for different SR tasks are shown in Table 2.

Table 2. The design details for different upscaling factors in our network.

Upscaling
Factor

Number of
Basic-CLRANs

Upscaling Factor in
PixelShuffle Number of ERAs

×4 2 ×2 2
×8 3 ×2 2

Loss Function: Different from most networks that have used L1 loss function, we
choose the Charbornnier penalty function [13] to train our model. Our ultimate goal
is to learn an end-to-end mapping function f from LR → HR. However, the space of
the possible mapping functions is extremely large, making the function training difficult.
Guo et al. [21] provided the derivation of the generalization error bound for the dual
regression scheme to prove that introducing dual regression mapping (DRM) to limit the
space of the possible mapping functions is effective. Inspired by Guo et al. [21], we learn
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the primary mapping P for HR reconstruction and the dual regression mapping D for LR
reconstruction simultaneously. Given a training dataset {Ii

LR, Ii
HR}N

i=1 , we address the
following problem in our network:

N

∑
i=1

LP(P(Ii
LR), Ii

HR) + λLD(D(P(Ii
LR), Ii

LR)) (5)

where LP and LD denote the loss function for the primal mapping and DRM tasks, re-
spectively. The weight of the DRM loss is controlled by λ. Guo et al. [21] discussed the
sensitivity of λ; according to the analysis, we set λ = 0.1 during our training.

In CLRAN, we input an LR image, and then the SR image is progressively predicted at
log2 S levels, where S is the scale factor. The expression IHR′ denotes the output SR image
at level s. We denote the desired output SR image at level s by ys. The overall loss function
is defined as:

LtP = ∑
log2 S
S LP(ys, IS

HR) (6)

LtD = ∑
log2 S−1
S LD(D(ys+1), ys) (7)

LT = LtP + LtD (8)

where LtP and LtD denote the total loss for the primal mapping and DRM tasks in our
network, respectively, and LT represents the overall loss of our work.

3.2. Enhanced Residual Attention Block (ERA)

The enhanced residual attention block (ERA) of the proposed network, shown in
Figure 2, is composed of two parts: the multi-scale part and the enhanced attention part.
The multi-scale part contains the MSB, and the enhanced attention part consists of the
enhanced attention branch and the non-attention branch.

+
x

x
x

x

x

+

x

Enhanced attention part Multi-scale feature extraction part

Enhanced Attention 

Mechanism (

Figure 2. The structure of the enhanced residual attention block (ERA). The purple box denotes special
calculations where each added component is multiplied by an automatically generated trainable
scalar parameter by the ADM.

Inspired by [16,20], we design the non-attention branch to learn the information that
is ignored by the enhanced attention branch. The two branches enable CNNs to make the
best use of existing feature information and fully explore the correlation and dependence
between the features.

We also introduce the ADM [20] into ERA to balance the enhanced attention branch
and non-attention branch. Formally, we have:

xn = f1×1(π
na
n × xna

n + πa
n × xa

n) (9)
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where xna
n is the output feature of the non-attention branch, and xa

n is the output feature of
the enhanced attention branch; πna and πa are weights of the non-attention branch and the
enhanced attention branch, respectively. The dynamic weights are computed by the ADM
block; f1×1(·) denotes the convolution function of 1 × 1 kernel convolution, and xn is the
output feature of the ERA.

Local Residual Learning Structure: The residual learning and shortcut connections
alleviate the difficulty of learning between the LR and HR images. We adopt residual
structure in the enhanced attention branch to maximize the utilization of the local residual
features and enable the network to be more efficient. The utilization of local residual
learning in our network significantly reduces the computational complexity, and the per-
formance of the network is enhanced.

As shown in Figure 2, we use xn−1 to describe the input feature maps sent to the
ERA, xns to describe the input feature maps sent to the enhanced attention part, and xne to
describe the output feature maps from the EAB. Formally, we describe the output of the
enhanced attention branch xa

n as

xa
n = xn−1 + xns + xne (10)

where the operation xn−1 + xns + xne is performed by a shortcut connection and element-
wise addition.

3.3. Multi-Scale Block (MSB)

Several studies [14,15] have proposed a block to extract the multiscale spatial features.
Although the dilated convolution used in [15] achieves much larger receptive fields, not
all pixels are used for calculation, resulting in the loss of extracted information details.
Therefore, we still use the conventional convolution layers to extract features. As shown
in Figure 3a, the multi-scale residual block (MSRB) is used in MSRN [14] to extract the
multiscale spatial features. Inspired by the successful application of MSRB, we propose the
multi-scale block (MSB) to detect image features at different scales. As shown in Figure 3b,
we adopt two 3 × 3 convolutions instead of 5 × 5 convolutions and introduce two 1 × 1
convolutions to reduce parameters and accelerate calculation. In addition, we remove the
local shortcut connection (LSC) in MSB and directly follow the attention enhanced attention
part to extract diversity of features. In this way, redundancy is reduced in feature utilization
and the cost of computational complexity is reduced. The whole operation is defined as

S1 = σ1
3 (σ

1
1 (En−1)) (11)

P1 = σ3
3 (σ

2
3 (σ

2
1 (En−1))) (12)

S2 = σ4
3 (σ

3
1 ([S1, P1])) (13)

P2 = σ6
3 (σ

5
3 (σ

4
1 ([P1, S1]))) (14)

En = σ5
1 ([S2, P2]) (15)

where En−1 represents the feature maps sent to the MSB, and En represents the output
feature maps of MSB; σ

j
i denotes a fusion function that combines the convolution function

and the ReLU function, where i denotes the size of the convolution kernel and j denotes
the number of σi; [S1, P1], [S2, P2], and [P1, S1] denote the concatenation operation.
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Figure 3. The structure of multi-scale residual block (MSRB) and multi-scale block (MSB), respectively.

3.4. Enhanced Attention Mechanism

Enhanced Attention Mechanism (EAM): In the enhanced attention part, we intro-
duce multi-spectral channel attention (MSCA) and spatial attention (SA) mechanisms into
our network. Convolution operations extract meaningful features by combining channel
and spatial information together. However, the MSCA block depicted in Figure 4 only
utilizes the inter-channel relationship, which neglects spatial information. SA is critical in
determining “where” to concentrate. In our work, we propose the EAM that focuses on
features in both channel and spatial dimensions. As shown in Figure 5, the EAM infers
attention feature maps sequentially along two distinct dimensions, channel and spatial,
and attention feature maps multiply with the input feature maps for adaptive feature
refinement. Our module contributes significantly to the efficient flow of information within
a network. The EAM is expressed as

F
′
= M f (F)⊗ F (16)

F” = Ms(F
′
)⊗ F

′
(17)

where F ∈ RC×H×W denotes input feature maps, M f denotes the MSCA block, Ms de-
notes the SA block, ⊗ denotes element-wise multiplication, and F” is the final refined
output features.

Split
10 n-1. . . ×

W

C

H
Scale
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. . .Freq1
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Figure 4. The structure of the multi-spectral channel attention (MSCA) block.
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Figure 5. The structure of the enhanced attention mechanism (EAM).

Multi-spectral Channel Attention (MSCA) Module: The channel attention (CA)
mechanism uses a scalar to represent and evaluate the importance of each channel and
automatically distributes weights to different channels so as to extract critical and impor-
tant information so that the model makes accurate judgments and will not incur greater
overhead in the calculation and storage of the model.

Low-level and mid-level features, in addition to high-level features, are important
for reconstructing an SR image. Due to massive information loss, the channel attention
mechanism that uses a scalar to represent a channel is difficult. Qin et al. [23] proposed
that using global average pooling (GAP) in the channel attention mechanism means only
preserving the lowest frequency information and discarding the useful information in
representing the channels from other frequencies. Their proposed MSCA mechanism
generalizes GAP to more frequency components of 2D discrete cosine transform (DCT).

As shown in Figure 4, the input features F ∈ RC×H×W are split along the channel
dimension into several parts. For each part, a corresponding 2D DCT frequency component
Freqi is assigned by employing selection criterion. Finally, the multi-spectral vector Freq ∈
RC is obtained by concatenation:

Freq = cat([Freq0, Freq1, . . . , Freqn−1]) (18)

The feature maps from MSCA module is then expressed as

M f (F) = sigmoid( fc(Freq)) (19)

where sigmoid denotes the sigmoid function, and fc represents fully connected layer.
Spatial Attention (SA) Module: SA tells the network on which informative part it

should be focused. As shown in Figure 5, in the SA block, the input features F
′ ∈ RC×H×W

first apply average-pooling and max-pooling operations along the channel axis and then
concatenate the outputs to generate an efficient feature map. The combined output is
convolved with the convolution function of 7 × 7 kernel convolution, producing our 2D
spatial attention map. In short, the spatial attention weight is expressed as follows:

Ms(F
′
) = sigmoid( f 7×7([AvgPool(F

′
), MaxPool(F

′
)])) (20)

where sigmoid denotes the sigmoid function, and f 7×7 represents the convolutional layer
with the filter size 7 × 7.

4. Experiments

In this section, we evaluate the performance of our model on several benchmark
test datasets. The datasets used for training and testing are introduced first, and next the
implementation details are discussed. Following that, we compare our model to several
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other methods. Finally, we conducted an ablation study to validate and evaluate the
effectiveness of our proposed methods. Specially, we employed the PyTorch framework to
all of the implementations.

4.1. Datasets and Metrics

We trained on the DIV2K dataset [42], which contains 800 training images. Bicubic
downsampling is employed to obtain the LR images. We evaluated our model using
the standard and publicly available benchmark datasets Set5 [43], Set14 [44], B100 [45],
Urban100 [46], and Manga109 [47]. Set5 [43], Set14 [44], and B100 [45] contain animals,
humans, and natural settings, whereas Urban100 [46] focuses only on urban settings.
Urban100 contains rich structure contents. The PSNR and SSIM metrics are employed to
evaluate the SR results on the Y channel of the transformed YCbCr color space.

4.2. Implementation Details

In this section, we specify the implementation details of our proposed model. We
provided two models, namely a small model CLRAN-S and a large model CLRAN-L for
4× and 8× SR. In our model, we employed two enhanced residual attention blocks (ERA,
N = 2) in each Basic-CLRAN, and the output from each ERA was 64 feature maps. We
chose the Charbornnier penalty [37] function to train our model.

In each training batch, we randomly extracted 16 LR patches with a size of 128 × 128
and 1500 epochs. We trained our model with ADAM optimizer [48] with β1 = 0.9,
β2 = 0.999, and ε = 10−8. The learning rate was initialized as 1 × 10−4. We employed the
PyTorch framework to implement our models with GeForce RTX 2080 GPU.

4.3. Results

We compared our model with several state-of-the-art methods in terms of quantitative
results and visual results. For quantitative comparison, we compared the PSNR and SSIM
values of different methods for 4× and 8× SR. The results of all comparison approaches
were derived from their pre-trained models, publicly available code, or original papers.

The results of the PSNR and SSIM values are presented in Table 3. It was found
that CLRAN yielded promising performance. CLRAN achieved comparable or superior
results compared with all the other methods, including the extremely competitive MSRN.
CLRAN-S has the best PSNR on Set5, Set14, B100 and best SSIM on Set5, Set14, B100, and
Manga109 for scale ×4. Our CLRAN-L also has excellent SSIM performance on Set5, B100,
and Manga109 for scale ×8. Compared with other methods, we found that CLRAN-S and
CLRAN-L had achieved almost the best SSIM performance on all benchmark datasets.
This confirms that CLRAN is able to gradually aggregate, select, and save relevant details
throughout the network. That was mainly because we employed the Charbornnier penalty
function [13], thus our model was capable of aggregating rich structured information to
generate more representative features. Our model employed YCbCr color space.

For quality comparison, we provided visual comparisons between our method and
the considered methods (see Figure 6). We observe that the majority of the approaches
were unable to properly recover the tiniest details and so lost the structures, as well as a
hazy effect in the majority of the methods. Our model was capable of reconstructing clear
and natural images and outperformed other approaches evaluated.

In order to fully utilize the features from the input LR image, our network combined
residual structures and attention mechanisms to extract multiscale and diversity of features.
Inspired by [14], we proposed the MSB to extract multiscale features. Muqeet et al. [15]
was also inspired by [14], which used different dilated convolution layers and channel and
spatial attention mechanisms. However, dilated convolution is not friendly to pixel level
prediction, and a network based on dilated convolution to design needs some skills, which
makes it difficult to migrate directly to other tasks. Moreover, not all attention mechanisms
improve network performance, and attention mechanisms may discard relevant details.
Behjati et al. [16] designed the network to integrate channel attention mechanisms with
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residual blocks via two independent but parallel processing routes. However, in [16],
the features of the attention branch and residual branch connect directly and neglect
spatial information. The residual blocks are simple and neglect to extract the multiscale
features. Wang et al. [18] proposed RRDB combined residual network and dense connection.
Musunuri et al. [19] employed RRDB to replace the residual block in EDSR, improving
the perceptual quality of the SR image. However, as EDSR is a deep and wide network,
training this model will cost more memory, space, and datasets. In short, these models do
not limit the space of the possible functions and neglect to extract the diversity of features.
Moreover, our model employing the loss function is different from these models.
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Figure 6. Visual comparison of different methods for 4× image SR.
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Table 3. Quantitative results with the BI degradation model for all upscaling factors ×4 and ×8.
The red number indicates the best result, and the blue number indicates the second best result. “-”
denotes the results that are not reported.

Algorithms Scale Set5
PSNR/SSIM

Set14
PSNR/SSIM

B100
PSNR/SSIM

Urban100
PSNR/SSIM

Manga109
PSNR/SSIM

Bicubic

4

28.42/0.810 26.10/0.702 25.96/0.667 23.15/0.657 24.92/0.789
SRCNN [7] 30.48/0.863 27.50/0.751 26.90/0.710 24.52/0.722 27.58/0.856

FSRCNN [27] 30.72/0.866 27.61/0.775 26.98/0.715 24.62/0.728 27.90/0.861
VDSR [9] 31.35/0.883 28.02/0.768 27.29/0.726 25.18/0.754 28.83/0.887

SRDenseNet [29] 32.02/0.893 28.50/0.778 27.53/0.733 26.05/0.781 29.49/0.899
DRCN [25] 31.56/0.881 28.15/0.763 27.24/0.715 25.15/0.753 28.98/0.882

LapSRN [13] 31.54/0.881 28.19/0.772 27.32/0.728 25.21/0.756 29.09/0.890
DCSR [49] 31.58/0.887 28.21/0.772 27.32/0.726 27.24/0.831 -/-

MemNet [30] 31.74/0.889 28.26/0.772 27.40/0.728 25.50/0.763 29.42/0.894
SRMDNF [50] 31.96/0.893 28.35/0.779 27.49/0.734 25.68/0.773 30.09/0.902

MSRN [14] 32.07/0.890 28.60/0.775 27.52/0.727 26.04/0.790 30.17/0.903
CARN [32] 32.13/0.894 28.60/0.781 27.58//0.735 26.07/0.784 -/-
IMDN [51] 32.21/0.895 28.58/0.781 27.56/0.735 26.04/0.784 30.45/0.908

CLRAN-S(Ours) 32.24/0.898 28.65/0.781 27.59/0.735 26.05/0.785 30.37/0.908
Bicubic

8

24.39/0.657 23.19/0.568 23.67/0.547 20.74/0.515 21.47/0.649
SRCNN [7] 25.34/0.647 23.86/0.544 24.14/0.504 21.29/0.513 22.46/0.661

FSRCNN [27] 20.13/0.552 19.75/0.482 24.21/0.568 21.32/0.538 22.39/0.673
SCN [52] 25.59/0.707 24.02/0.603 24.30/0.570 21.22/0.557 22.68/0.696
VDSR [9] 25.73/0.674 23.20/0.511 24.34/0.517 21.48/0.529 22.73/0.669

SRDenseNet [29] 25.99/0.704 24.23/0.581 24.45/0.530 21.67/0.562 23.09/0.712
DRCN [25] 25.93/0.674 24.25/0.551 24.49/0.517 21.71/0.529 23.20/0.669

LapSRN [13] 26.14/0.737 24.35/0.620 24.54/0.585 21.81/0.580 23.39/0.734
MemNet [30] 26.16/0.741 24.38/0.620 24.58/0.584 21.89/0.583 23.56/0.739

MSLapSRN [53] 26.34/0.756 24.57/0.627 24.65/0.590 22.06/0.596 23.90/0.756
MSRN [14] 26.59/0.725 24.88/0.596 24.70/0.541 22.37/0.598 24.28/0.752

CLRAN-L(Ours) 26.97/0.776 24.85/0.637 24.76/0.593 22.35/0.610 24.35/0.773

4.4. Discussion

To validate the effectiveness of our work, we conduct a set of experiments to compare
the performance of the MSB, DRM, ADM, and attention mechanisms [22–24], and the
number of ERAs in SISR tasks. The results are displayed in Tables 4–6. In Table 4, we
conduct the ablation study to validate the effectiveness of MSB, DRM, and ADM. All
comparative experiments employ attention mechanisms with the MSCA and SA. In Table 5,
we conduct the ablation study to validate the effectiveness of different attention mechanisms
in the enhanced attention branch of ERA, and all comparative experiments employ ADM.

Effects of MSB: We propose MSB, which is an efficient multiscale feature extraction
structure. This module adaptively detects image features at different scales and fully
utilizes the potential features of images. To validate the effectiveness of MSB, we visualize
the output feature maps of MSB. The result is shown in Figure 7. With the deepening of the
number of network layers, the features extracted by the module become more and more
abstract, which is not conducive to our observation. Therefore, we visualize the features
extracted by the first application of MSB in the network. From Figure 7, we can observe
that the output of MSB retains almost all the information of the original image.

When we employed MSB in our network, 32.47 dB PSNR was obtained with 3.33 M
parameters; when we employed without MSB, and the performance of our network with
0.88 parameters decreased by 0.32 dB. Although employing our proposed module increases
memory consumption, the effect on performance is obvious, so employing this MSB block
in our network is necessary.

Effects of ADM and DRM: In order to evaluate the effects of ADM and DRM, we
conducted the comparative experiments. As shown in Table 2, the experiments without
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ADM and DRM have lower PSNR than the experiments that employed the ADM and DRM.
Therefore, our modules are designed reasonably.

Effects of Different Attention Mechanisms: As shown in Figure 8, in the same way
as the visualization of the application of MSB, we visualized the MSCA block heatmaps
and the CA block heatmaps. As can be seen, for the MSCA employed in our model, the
image structure is clear and the high-frequency and low-frequency regions of the feature
map are correctly detected, but the CA employed is incapable of precisely locating them.

From Table 5, we also displayed the comparative experiment results to evaluate the
performance of different attention mechanisms in our model. As can be seen, the combi-
nation of the MSCA and the SA in our model achieved the best performance. Therefore,
we apply the MSCA block and the SA block in the enhanced attention branch of ERA. For
case 1, our model did not have the attention mechanism, and the performance was much
lower than those cases combined with the attention mechanism. Therefore, the attention
mechanism applied to our model is necessary.

Effects of Increasing the Number of ERAs: It is well established that increasing the
depth of the network may effectively increase network performance. In our work, increasing
the number of ERAs is the easiest way to obtain better SR results. In order to verify the
influence of the number of ERAs on the network, we conducted a series of experiments. As
shown in Table 6, our network performance improved quickly with increasing ERAs.

In order to gain a more intuitive sense of the effect of the number of ERAs on our
model, we plotted the changes in the model metrics during the first 50 epochs, with every
5 epochs as a sample. Given the parameter size of the ERA module itself, we increased the
number of ERA from 1 to 5. As shown in Figure 9, the improvement of our model was
obvious with the growing number of ERAs, although increasing the number of ERAs in our
model will lead to a more complex network. Considering balancing network performance
and complexity, we employed two ERAs (N = 2) in our network, which resulted in the
optimal balance of performance and model parameters.

Figure 7. Feature map visualization. On the left: the input feature map of the MSB. On the right: the
output feature map of MSB. The 64-channel summation feature map and each channel feature map
are shown, respectively.

MSCA CA MSCA CA

Figure 8. Attention block heatmaps for the MSCA block and the CA block. The first row: averaged
input feature map of attention layers. The second row: averaged output feature map of attention layers.
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Figure 9. Performance comparison of CLRAN-S with a different number of ERAs.

Table 4. Ablation study: effect of different components of CLRAN-S. Test on Set5 (×4).

Case Index 1 2 3 4

MSB × X X X
DRM X × X X
ADM X X × X

Parameter (M) 0.88 3.32 3.32 3.33
PSNR (dB) 31.92 32.20 32.12 32.24

Table 5. Ablation study: effect of different attention mechanisms of CLRAN-S. Test on Set5 (×4).

Case Index 1 2 3 4 5

SA × X × × ×
CA+SA × × × X ×
MSCA × × X × ×

MSCA+SA × × × × X
Parameter (M) 3.15 3.32 3.32 3.32 3.33

PSNR (dB) 32.04 32.14 32.15 32.17 32.24

Table 6. Effect of the number of ERAs on the performance of CLRAN-S (testing on Set5) for 4× SR.

N 1 2 3 4 5

PSNR 32.04 32.24 32.26 32.30 32.34

4.5. Model Complexity Analysis

As shown in Figure 10, we visualize a cost effectiveness analysis between PSNR and
model size. CLRAN-S comparisons were done with seven state-of-the-art methods: SR-
CNN [7], VDSR [9], LapSRN [13], DRCN [25], SRDenseNet [29], MSRN [14], and CARN [32].
CLRAN-S with approximately 3.33M parameters obtained the best performance, which
verifies the effectiveness of our model. CLRAN-L comparisons were made with four state-
of-the-art methods: SRCNN [7], VDSR [9], LapSRN [13], and MSRN [14]. CLRAN-L with
approximately 4.89M parameters obtains best performance, which verifies the effectiveness
of our model. In comparison to these methods, CLRAN-S and CLRAN-L achieve higher
PSNR with a slightly larger model, demonstrating that the trade-off between performance
and model complexity is reasonable.
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Figure 10. PSNR vs. parameters on Set5.

5. Conclusions

In this paper, we proposed a new closed-loop residual attention network (CLRAN)
for single image super-resolution. Specifically, the basic architecture block of closed-
loop residual attention network (Basic-CLRAN) allowed CLRAN to fully utilize both
local and hierarchical diversity of features and easily migrated to achieve other upscaling
factor SR tasks. Additionally, the enhanced residual attention block (ERA) extracted the
multiscale and diversity image features. The multi-scale block (MSB) was proposed to
fuse features at several scales, and the enhanced attention mechanism (EAM) combined a
multi-spectral channel mechanism and a spatial attention mechanism proposed to utilize
different frequency components channel features and spatial information. Furthermore, we
proposed additional mapping and a progressive framework in our model, restricting the
space of possible functions and obtaining the SR result step-by-step, taking into account
the ill-posed SR problem and limiting the generation of distinct SR images. Comprehensive
experiments and ablation studies on benchmark datasets demonstrate the effectiveness of
each proposed module, which suggests our model is reasonable.
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Abstract: High-quality images have an important effect on high-level tasks. However, due to human
factors and camera hardware, digital devices collect low-resolution images. Deep networks can
effectively restore these damaged images via their strong learning abilities. However, most of these
networks depended on deeper architectures to enhance clarities of predicted images, where single
features cannot deal well with complex screens. In this paper, we propose a dual super-resolution
CNN (DSRCNN) to obtain high-quality images. DSRCNN relies on two sub-networks to extract
complementary low-frequency features to enhance the learning ability of the SR network. To prevent
a long-term dependency problem, a combination of convolutions and residual learning operation is
embedded into dual sub-networks. To prevent information loss of an original image, an enhanced
block is used to gather original information and obtained high-frequency information of a deeper
layer via sub-pixel convolutions. To obtain more high-frequency features, a feature learning block
is used to learn more details of high-frequency information. The proposed method is very suitable
for complex scenes for image resolution. Experimental results show that the proposed DSRCNN is
superior to other popular in SR networks. For instance, our DSRCNN has obtained improvement of
0.08 dB than that of MemNet on Set5 for ×3.

Keywords: dual networks; enhanced CNN; fine learning block; image super-resolution

1. Introduction

Due to effects of human factor and camera hardware, captured images often are
not clear. To overcome these challenges, single super-resolution (SISR) techniques are
presented [1]. For instance, priori knowledge is used to guide the SR model [2] Zha et al. [3]
embedded a sparse idea into dictionary learning to repair high-quality images. To obtain
richer information, Zhang et al. [4] combined non-local and local priors to achieve a
non-local mean SR model with steering kernel regression. Zhang et al. [5] used a Monte
Carlo-based Markov chain to train an SR model for improving visual effects. There are
other popular SR methods, i.e., random forest [6], gradient profile [2], and regression [7].
Although these methods can repair low-resolution images well, they are faced with two
challenges as follows:

(1) They referred to complex optimization methods to mine more detailed information
for promoting super-resolutions of repaired images.

(2) They reply on manually chosen parameters to promote visual effects of predicted
images.
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To handle these problems, convolutional neural networks (CNNs) with strong self-
learning abilities composed of common components are developed [8,9]. For instance,
Dong et al. [10] designed a shallow architecture via pixel mapping operations to automat-
ically obtaining clearer images rather than manual setting parameters. To pursue more
perfect restoration effects, residual learning techniques and concatenation operations are
applied in image restoration [11]. Tai et al. [12] used two different residual operations to
fuse obtained local features to improve the learning ability of CNN in SISR. Kim et al. [13]
used residual learning operations to gather hierarchical features for the final layer in order
to enhance the robustness of obtained features in SISR. Although these methods have
obtained remarkable results in SISR, they upsampled given low-resolution images as inputs
of CNNs, which can increase computational cost [14]. To solve this problem, an upsampling
operation set in the final layer of CNN is developed [15]. For instance, Dong et al. [14]
set a deconvolution operation as the final layer to reduce the complexity of the whole SR
network. To improve the SR performance, Zhang et al. [16] enlarged the depth of SR net-
work and repeatedly used concatenation operations to facilitate obtained features in SISR.
Although these methods perform well in SR, they may depend on deeper architectures
to extract more accurate features in promoting SR performance, which may have higher
requirements on hardware devices. In addition, obtained features from single architecture
may not fully deal with complex screens.

In this paper, we propose a dual super-resolution CNN (DSRCNN) via three blocks
(i.e., two sub-network enhanced block (TSEB), enhanced block (EB), and feature learn-
ing block (FLB) to obtain high-quality images. TSEB used two sub-networks to extract
complementary low-frequency features to enhance the learning ability of SR networks.
To prevent a long-term dependency problem, a combination of convolutions and residual
learning operation is embedded into dual sub-networks. To prevent information loss
of an original image, an enhanced block is used to gather original information and ob-
tain high-frequency information of deeper layers via sub-pixel convolutions. To obtain
more high-frequency features, a feature learning block is used to learn more details of
high-frequency information.

The main contributions of the proposed DSRCNN are as follows:

(1) DSRCNN uses two sub-networks to extract complementary features to enhance the
learning ability of an SR model, which is very suitable to complex screens. The multi-
ple combinations of residual learning operation, convolutional layer, and ReLU are
embedded into two sub-networks to enhance the memory abilities of shallow layers
to deep layers and extract more accurate information as well as a large amount of
information of dual networks in SISR.

(2) Combining low-frequency and high-frequency features to train a robust SR model.

The remainder of this paper is as follows: Section 2 gives the related work; Section 3
describes the proposed method; Section 4 shows experiments; and Section 5 presents
the conclusions.

2. Related Work
2.1. Deep CNNs for Image Super-Resolution

Big data and strong hardware devices, i.e., a graphic processing unit (GPU), contribute
the success of CNNs in image applications, i.e., image super-resolution [17]. These SR
methods can be summarized as two kinds: upsampling low-resolution image-based CNNs
and upsampling obtained low-frequency feature-based CNNs. The first method requires
that input and output images have the same sizes. That is, they used upsampling op-
erations to amplify low-resolution images as inputs of CNN to predict super-resolution
images. Inspired by that, a deep network with a sparse coding algorithm was used to
improve the SR execution speed and performance [18]. Kim et al. [19] combined a deeper
architecture and residual learning operation to extract more accurate structure information
in SR. Alternatively, Mao et al. [20] utilized skip connections to construct a symmetrical
architecture to enhance the learning ability of designed CNN in SR. Although these meth-
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ods were very effective in image super-resolution, they are still faced with big complexity.
To address this issue, the second method is developed. The second method directly puts
the given low-resolution images as inputs of CNNs and uses upsampling operations at
deep layers to amplify obtained low-frequency features to obtain high-frequency features
for constructing high-quality images. Motived by that, scholars conducted a lot of SR meth-
ods [21]. For instance, Tian et al. [22], respectively, enhanced low-frequency features and
high-frequency features to achieve a robust SR model. Ahn et al. [22] combined residual
blocks and smaller kernels to make a trade-off between SR performance and execution
speed. In addition, Tian et al. [15] found local key features to obtain richer features in a
horizontal and vertical way for promoting visual effects. Chen et al. [23] conducted an
efficient network via multi-scale ideas. Geng et al. [24] used the combination of Shearlet
and residual network to extract more accurate information in SISR. Nathan et al. [25] used
the combination of attention ideas and multi-scale to improve the performance of SISR.
According to mentioned illustrations, we can see that upsampling obtained low-frequency
feature-based CNNs are popular in SISR. Thus, we use this idea in this paper.

2.2. Fusion of Multiple CNNs for Image Restoration

Some SR methods used a single network architecture to extract representative infor-
mation to construct high-quality images. However, obtained features may be affected
by different screens, which are not beneficial to complex screens. To address this issue,
fusion multiple CNNs are employed in image restoration [26]. Tian et al. [27] utilized two
different sub-networks to extract different features to enlarge differences of the CNN for
promoting denoising effects. Pan et al. [28] used dual CNN to extract a different structure
and detailed information in image restoration. Tian et al. [29] fused a signal processing
idea, a sparse method into dual CNNs to remove the noise. Xin et al. [30] proposed a dual
recursive network with a wavelet idea to predict high-quality images. Inspired by that, we
also choose the fusion of multiple CNNs in SISR.

2.3. Peak Signal-to-Noise Ratio (PSNR)

Given a clean image I and noise image K with size MXN, MSE is defined as [27]:

MSE =
1

mn

m−1

∑
i=0

n−1

∑
j=0

[I(i, j)− K(i, j)]2 (1)

Then, PSNR(dB) is defined as [27]:

PSNR = 10 · log10

(
MAX2

I
MSE

)
(2)

2.4. Structural SIMilarity (SSIM)

The SSIM formula is based on three comparative measures between samples X and Y:
luminance, contrast, and structure [27].

l(x, y) =
2µxµy + c1

µ2
x + µ2

y + c1
(3)

l(x, y) =
2µxµy + c1

µ2
x + µ2

y + c1
(4)

c(x, y) =
2σxσy + c2

σ2
x + σ2

y + c2
(5)

Usually, take c3 = c2/2. µxis the mean of x. µy is the mean of y. σ2
x is the variance

of x. σ2
y is the variance of y. σ2

x is the covariance of x and y. c1 = (k1L)2, c2 = (k2L)2
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are two constants, avoiding division by zero. L is the range of pixel values, 2B − 1. c1 =

(k1L)2, c2 = (k2L)2 default value [27]:

SSIM(x, y) =
[
l(x, y)α · c(x, y)β · s(x, y)γ

]
(6)

Setting α, β, γto 1, you can obtain [27]:

SSIM(x, y) =

(
2µxµy + c1

)(
2σxy + c2

)
(

µ2
x + µ2

y + c1

)(
σ2

x + σ2
y + c2

) (7)

In each calculation, a window of N×N is taken from the picture, and then the window
is continuously sliding for calculation, and finally the average value is taken as the global
SSIM [27].

3. The Proposed Method

The proposed DSRCNN is given in Figure 1. DSRCNN contains TSEB, EB, and FLB.
TSEB depended on two sub-networks to extract complementary low-frequency features to
improve the SR performance of DSRCNN. Specifically, the simultaneous use of convolutions
and residual learning operation are used to enhance the effects of hierarchical features
to prevent a long-term dependency problem. To prevent information loss of the given
low-resolution image, EB employs a residual operation and sub-pixel convolutions to
gather obtained different high-frequency features. FLB used several stacked convolutions
to refine high-frequency features for obtaining more accurate high-frequency features in
SISR. More information can be shown as follows.

3.1. Network Architecture

The proposed 23-layer DSRCNN consists of TSEB, EB, and FLB. The 17-layer TSEB uti-
lizes dual CNNs to obtain complementary low-frequency information to promote learning
ability of an SR model. In addition, using residual learning technique to fuse local hierar-
chical features in the TSEB can maintain memory ability of shallow layers for SISR. Then,
EB fuses features of two different paths via a residual operation and sub-pixel convolutions
to prevent information loss of given low-resolution image. Finally, FLB is used to refine
high-frequency information to better represent predicted high-quality images. To clearer
express the process above, the following symbols are defined. Let ILR and ISR be defined as
the given LR image and predicted SR image. fTSEB , fEB and fFLB are functions of TSEB, EB,
and FLB, respectively. The execution process of the DSRCNN can be expressed as follows:

ISR = fFLB( fEB( fTSEB(ILR)))

= fDSRCNN(ILR)
(8)

where fDSRCNN stands for the function of DSRCNN. In addition, DSRCNN relies on the
following loss function to find optimal parameters.

3.2. Loss Function

The mean squared error (MSE) [31] is used to test the difference between a real high-
quality image and predicted SR image for finding optimal parameters. The MSE value is
computed via a training pair of {Ik

LR, Ik
HR}N

(k=1), where ILRk and IHRk express the k-th given
low-resolution image and high-resolution image, respectively. In addition, N is the total of
training samples. In addition, we minimize the loss function to train DSRCNN as follows:

l(p) =
1

2N

N

∑
(k=1)

‖ fDSRCNN(Ik
LR − Ik

HR)‖
2

(9)
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where l stands for loss function, and p is used to represent the parameter set of training
a DSRCNN.

Figure 1. Network architecture of the proposed DSRCNN.

3.3. Two Sub-Network Enhanced Block

According to previous illustrations, it is known that obtained features of single archi-
tecture cannot fully deal with complex screens. In this paper, a two sub-network enhanced
block is used to overcome this phenomenon. The two sub-network enhanced block consists
of two phases. The first phase fuses two sub-networks via a concatenation operation to
extract robust low-frequency features in SISR, where a concatenation operation is shown
as Figure 2. The second phase is used to gather local hierarchical information to enhance
the memory ability of shallow layers for improving the SR effect. Each sub-network from
two phases is composed of 17 combinations of convolution and Rectified Linear Unit
(ReLU) [32], and a single convolution layer. In addition, input and output channels of the
first convolutional layer in each sub-network are 3 and 64. Input and output channels from
2nd to 16th convolutional layers are 64. Two sub-networks are fused via a concatenation
operation at the end of the 16th convolutional layer. Thus, the input channel of the 17th
convolutional layer is 128. To flexibility operate the convolution layer, the output channel of
the 17th convolutional layer is 64. The input and output channels of the 18th convolutional
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layer are 128 and 64. In addition, kernel sizes of all convolutions are 3× 3. The mentioned
process can be explained via the following Equation (10).

OTSEB = fTSEB(ILR)

= (Cat(O(TSEB1)
, O(TSEB2))

)
(10)

where OTSEB1 and OTSEB2 express the outputs of two sub-networks. Cat denotes a concate-
nation operation as well as operation in Figures 1 and 2. OTSEB stands for output of TSEB.
More detailed information of two sub-networks can be shown in the second phase of TSEB.
The second phase repeatedly uses a combination of residual operation and convolutions
to enhance the effect of local hierarchical information for improving SR effects. That is,
obtained features of odd convolutional layers from the 1st layer to the 17th layer can
be gathered via residual operations to enhance robustness of obtained features for SISR.
According to Figure 1 and illustrations above, the second phase in two sub-networks can
be shown as follows:

O(TSEBk)
= R(OL1 + OL3 + OL5 + OL7 + OLi . . . + O17) (11)

where O(TSEBk)
denotes the output of the kth each sub-network, and OLi is the output of the

ith convolution layer, where i = 2, . . . , 17. OL1 = R(C(ILR)) and OLi = C(O(Li−1)), where
R denotes the function of ReLU. In addition, Oj = R(C(O(j−1))), where j = 2, 4, 6, 8, . . . , 16.
In addition, the output TSEB acts an enhanced block as follows.

Figure 2. Sketch figure of concatenation operation.

3.4. Enhanced Block

A one-layer enhanced block is used to fuse information of an original image and
obtained information from a deeper layer. This is implemented via the following steps.
The first step obtains the information of the original image and a deeper layer, respectively.
That is, we use sub-pixel operation to respectively amplify obtained features of the TSEB
and the first layer of the below sub-network in Figure 1 as follows:

O(EBs) = Subp(R(OL1)) (12)

O(EBd)
= Subp(OTSEB) (13)

where O(EBs) and O(EBd)
are obtained high-frequency features of shallow and deep layers,

respectively. Subp denotes sub-pixel convolutional techniques, which is expressed as
Subpixel Conv in Figure 1. In addition, the sub-pixel convolution consists of convolution
with a kernel of 3× 3, and the input and output channels in Equation (12) total 64. Input
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and output channels in Equation (13) are 128 and 64. The second step fuses the obtained
features above via a residual operation to obtain more commentary information as follows:

OEB = fEB(OTSEB)

= R(O(EBs) + O(EBd)
)

(14)

where OEB is the output of EB. In addition, + denotes a residual operation, which is
expressed as ⊕ in Figure 1. In addition, OEB acts as a feature learning block.

3.5. Feature Learning Block

To further learn high-frequency features, a 5-layer feature learning block is presented.
It includes four Conv+ReLU and a Conv. Conv+ReLU denotes the combination of convolu-
tion and ReLU, where their input and output channels total 64, and a convolutional kernel
is 3× 3 . In addition, a Conv denotes a convolution, where its input and output channels
are 64 and 3, and a convolutional kernel is 3× 3. This is used to construct predicted
high-quality images. The mentioned descriptions are visualized as Equation (15):

ISR = fFLB(OEB)

= C(R(C(R(C(R(C(R(C(OEB)))))))))
(15)

where C is convolutional operation as well as Conv in Figure 1. Finally, we give a pseudo-
code to show implementations of the proposed method as shown in Algorithm 1:

Algorithm 1 The process of converting an LR image into an SR image.
Input: Put an LR image ILR into the DSRCNN model. Enter the scale factor
1: for Patch is 64 do
2: The residual network is used to retain low-level features and fuse high-level features.
3: The feature outputs of the two models are merged through ConCat.
4: Updated ILR feature (the first model OTSEB1 & the second model OTSEB2 )through a two sub-network

enhanced block by Equation (10);
5: The enhanced block contains two upsampling layers.The first upsampling roughly extracts the spliced

low-frequency features and converts them into high-frequency features. The second upsampling extracts the
features of the first layer and stacks them with the first upsampling.

6: Updated OEBs and OEBd through an enhanced block by Equation (12) and (13);
7: After five layers of convolutional layers (feature learning block ), the high-frequency features are further

learned and extracted by Equation (15).
8: end for
Output: Obtain a super-resolution image ISR with an inpainting scale as the input scale.

4. Experimental Results
4.1. Training Dataset

All DIV2K images are saved in PNG format and DIV2K dataset of RGB images with a
large diversity of contents. To conduct fair experiments, the DIV2K dataset [33] is chosen
to train a DSRCNN model. DIV2K consists of three scales, i.e., ×2, ×3 and ×4. Each scale
includes 800 training images. In addition, test images and validation images are 100 natural
images. To enlarge differences of training images, we gather the given training dataset
of DIV2K and the validation dataset as a new training dataset under the same scale. In
addition, some data augmentation operations, i.e., random horizontal flips and 90° rotation
operations, are used to enhance training data. To improve the speed of training DSRCNN,
given LR images are cropped as an image patch with 64× 64.

4.2. Test Dataset

To fairly and effectively test the SR performance, Set5 [34], Set14 [34], BSD100 (B100) [35]
and Urban 100 (B100) [36] are chosen to conduct comparative experiments for ×2, ×3,
and ×4. The Set5 and Set14 are captured under the same conditions, which have five and
fourteen natural images. B100 and U100 respectively contain 100 natural color images.
These datasets can be further introduced as follows:
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• The Set5 dataset is a dataset consisting of five images, i.e., baby, bird, butterfly, head,
and woman [34].

• The Set14 dataset is a dataset consisting of 14 images, and it is commonly used for
testing performance of Image Super-Resolution models [34].

• BSD is a dataset used frequently for image denoising and super-resolution. BSD100
have 100 images, which was conducted by Martin et al. The dataset is composed of a
large variety of images ranging from natural images to object-specific such as plants,
people, food, etc.

• The Urban100 dataset contains 100 images of urban scenes. It is commonly used as a
test set to evaluate the performance of super-resolution models [36].

Because most of the SR methods use the Y channel to test the SR performance of their
proposed methods, we also choose a Y channel to test the effect of our method on SR.
That is, obtained RGB images of the DSRCNN are converted to the Y channel to verify the
SR performance.

4.3. Implementation Details

This paper has the following initial parameters. We set a batch size as 64. In addition,
the initial learning rate is 1 × 103, Beta_1 is 0.9, and Beta_2 is 0.999. In addition, the training
steps are 6 × 105, for which the learning rate will be divided in half every 4 × 105. That is,
or 1 ∼ 4 × 105, the learning rate is 0.0001 for training a DSRCNN model. For (4 × 105)+1
to 6 × 105, the learning rate is 0.00005. Epsilon size is 1 × 108. Additionally, other initial
parameters can refer to Ref. [8]. In addition, we use an Adam optimizer [37] to update
parameters. Codes of LSRCNN are programmed via Python of 0.41 and Python of 2.7. In
addition, it runs on Ubuntu of 16.04, CPU of Inter Xeon 8163 and two NVIDIA Tesla P100.
The Nvidia CUDA is 9.0 and CuDNN is 7.6.4.

4.4. Ablation Study

The proposed uses of TSEB, EB, and FLB to implement a robust SR model. In addition,
TSEB is composed of two sub-networks and an enhanced technique. The enhanced tech-
nique uses local residual learning operation to enhance effects of local hierarchical layers to
promote SR performance. These are verified in Table 1. DSRCNN is obtained higher PSNR
and SSIM values than that of DSRCNN with residual learning operations, which shows the
effectiveness of local residual learning operations. DSRCNN outperforms DSRCNN with-
out RLO, one sub-network in Table 1, which shows the effectiveness of two sub-networks
and RLO. It is known that enlarging the depth of a network is very useful to extract com-
plementary information [38,39]. It is known that increasing the width of network can
improve the performance of image tasks, according to GoogLeNet [40]. Although wider
networks perform well in image applications, they will increase the complexity. In addition,
two sub-networks can effectively address this question in image restoration. Thus, taking
into account performance and complexity, we also choose two sub-networks to design
network architecture in this paper. According to mentioned illustrations, we design two
sub-networks for SISR [41–43]. In addition, it is proved that DSRCNN without RLO, EB_S
outperforms improvement of 0.511dB compared to that of DSRCNN without RLO, one
sub-network and EB_S in PSNR in Table 1, which shows the effectiveness of dual networks
for SR. DSRCNN without RLO, one sub-network exceeds DSRCNN without RLO, one
sub-network and EB_S in both PSNR and SSIM on U100 in Table 1, which tests the effec-
tiveness of EB. Additionally, DSRCNN without RLO, one sub-network, and EB_S have
obtained improvement of 0.16 dB in PSNR and 0.001 in SSIM than that of DSRCNN without
RLO, one sub-network EB_S and RO in both PSNR and SSIM on U100 in Table 1, which
tests the effectiveness of FLB. Specifically, EB_S and RO denote EB without enhancement
from the shallow layer and FLB without four Conv+ReLU. In addition, several visual
figures from an HR image, Bicubic, single branch model, and a two-branch model are
conducted to test excellent performance of two-branch architecture, which can show the
complementary of two branches as Figure 3 on page 9. In addition, these visual figures are
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obtained via amplifying one area of predicted high super-resolution images as observation
areas. According to mentioned illustrations, we can see the effectiveness of key techniques
for SISR.

Figure 3. Visual figures of different methods.

Table 1. PSNR and SSIM of different methods on U100 for ×2.

Methods
U100

PSNR/SSIM

Scale

DSRCNN 31.833/0.9252

DSRCNN without RLO, one sub-network 31.676/0.9237

DSRCNN without RLO, one sub-network and EB_S 31.220/0.9181

DSRCNN without RLO, one sub-network EB_S and RO 31.060/0.9171

DSRCNN without RLO, EB_S 31.649/0.9238

DSRCNN without RLO 31.701/0.9241

4.5. Experiment Results

To fairly evaluate the SR performance of DSRCNN, quantitative and qualitative anal-
ysis are used to conduct experiments. The quantitative analysis includes PSNR [44] and
SSIM [44] of popular methods, i.e., Bicubic, A+ [7], jointly optimized regressors (JOR) [45],
RFL [6], self-exemplars super-resolution (SelfEx) [36], CSCN [18], RED [19], a denois-
ing convolutional neural network (DnCNN) [46], trainable nonlinear reaction diffusion
(TNRD) [47], fast dilated residual SR convolutional network (FDSR) [48], SRCNN [10],
fast SR CNN (FSRCNN) [14], very deep SR network (VDSR) [19], deeply-recursive con-
volutional network (DRCN) [13], context wise network fusion (CNF) [49], Laplacian SR
network (LapSRN) [50], deep persistent memory network (MemNet) [11], CARN-M [22],
wavelet domain residual network (WaveResNet) [51], convolutional principal component
(CPCA) [52], new architecture of deep recursive convolution networks for SR (NDRCN) [53],
LESRCNN [8], LESRCNN-S [8], and DSRCNN on four public datasets, i.e., Set5, Set14,
B100, and U100. In terms of quantitative analysis, our proposed DSRCNN has obtained the
best SR results in most circumstances as shown in Tables 2–5. For example, our method has
obtained gain PSNR of 0.08 dB than that of LESRCNN on Set 5 for ×2 in Table 2 In addition,
DSRCNN has achieved gain PSNR of 0.16 dB and SSIM of 0.0035 than that of CARN-M on
Set14 for ×3 in Table 3. In addition, our method has obtained an excellent SR performance
on B100 in Table 4 and on U100 in Table 5, respectively. Our method is very competitive in
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complexity in Table 6. In terms of qualitative analysis, we choose Bicubic, SelfEx, SRCNN,
and CARN-M as comparative methods to test the visual effects of DSRCNN. Amplify a
chosen area from predicted high-resolution images from these methods as an observation
area, where observation area is clearer and corresponding SR methods are better in SISR.
As shown in Figures 4–6, we can see that the observation areas of our method are clearer
than other SR methods. This shows that our method is more effective in SISR. According to
quantitative analysis and qualitative analysis, our method is robust in different screens.

According to descriptions, we can see that the proposed method can reply with two
sub-networks, the combination of residual learning, convolutional layer, and ReLU to
obtain excellent SR performance. However, it has slower execution speed in SR than that of
the single network with the same parameters. Thus, how to develop an efficient and robust
SR network is very important for us in our work in the future.

Table 2. PSNR and SSIM of different techniques with scale factors of ×2, ×3 and ×4 on Set5.

Dataset Model
×2 ×3 ×4

PSNR/SSIM PSNR/SSIM PSNR/SSIM

Set5

Bicubic 33.66/0.9299 30.39/0.8682 28.42/0.8104

A+ [7] 36.54/0.9544 32.58/0.9088 30.28/0.8603

JOR [45] 36.58/0.9543 32.55/0.9067 30.19/0.8563

RFL [6] 36.54/0.9537 32.43/0.9057 30.14/0.8548

SelfEx [36] 36.49/0.9537 32.58/0.9093 30.31/0.8619

CSCN [18] 36.93/0.9552 33.10/0.9144 30.86/0.8732

RED [19] 37.56/0.9595 33.70/0.9222 31.33/0.8847

DnCNN [46] 37.58/0.9590 33.75/0.9222 31.40/0.8845

TNRD [47] 36.86/0.9556 33.18/0.9152 30.85/0.8732

FDSR [48] 37.40/0.9513 33.68/0.9096 31.28/0.8658

SRCNN [10] 36.66/0.9542 32.75/0.9090 30.48/0.8628

FSRCNN [14] 37.00/0.9558 33.16/0.9140 30.71/0.8657

RCN [54] 37.17/0.9583 33.45/0.9175 31.11/0.8736

VDSR [19] 37.53/0.9587 33.66/0.9213 31.35/0.8838

DRCN [13] 37.63/0.9588 33.82/0.9226 31.53/0.8854

CNF [49] 37.66/0.9590 33.74/0.9226 31.55/0.8856

LapSRN [50] 37.52/0.9590 - 31.54/0.8850

MemNet [11] 37.78/0.9597 34.09/0.9248 31.74/0.8893

CARN-M [22] 37.53/0.9583 33.99/0.9236 31.92/0.8903

WaveResNet [51] 37.57/0.9586 33.86/0.9228 31.52/0.8864

CPCA [52] 34.99/0.9469 31.09/0.8975 28.67/0.8434

NDRCN [53] 37.73/0.9596 33.90/0.9235 31.50/0.8859

LESRCNN [8] 37.65/0.9586 33.93/0.9231 31.88/0.8903

LESRCNN-S [8] 37.57/0.9582 34.05/0.9238 31.88/0.8907

DSRCNN(Ours) 37.73/0.9588 34.17/0.9247 31.89/0.8909

62



Electronics 2022, 11, 757

Table 3. PSNR and SSIM of different techniques with scale factors of ×2, ×3, and ×4 on Set14.

Dataset Model
×2 ×3 ×4

PSNR/SSIM PSNR/SSIM PSNR/SSIM

Set14

Bicubic 30.24/0.8688 27.55/0.7742 26.00/0.7027

A+ [7] 32.28/0.9056 29.13/0.8188 27.32/0.7491

JOR [45] 32.38/0.9063 29.19/0.8204 27.27/0.7479

RFL [6] 32.26/0.9040 29.05/0.8164 27.24/0.7451

SelfEx [36] 32.22/0.9034 29.16/0.8196 27.40/0.7518

CSCN [18] 32.56/0.9074 29.41/0.8238 27.64/0.7578

RED [19] 32.81/0.9135 29.50/0.8334 27.72/0.7698

DnCNN [46] 33.03/0.9128 29.81/0.8321 28.04/0.7672

TNRD [47] 32.51/0.9069 29.43/0.8232 27.66/0.7563

FDSR [48] 33.00/0.9042 29.61/0.8179 27.86/0.7500

SRCNN [10] 32.42/0.9063 29.28/0.8209 27.49/0.7503

FSRCNN [14] 32.63/0.9088 29.43/0.8242 27.59/0.7535

RCN [54] 32.77/0.9109 29.63/0.8269 27.79/0.7594

VDSR [19] 33.03/0.9124 29.77/0.8314 28.01/0.7674

DRCN [13] 33.04/0.9118 29.76/0.8311 28.02/0.7670

CNF [49] 33.38/0.9136 29.90/0.8322 28.15/0.7680

LapSRN [50] 33.08/0.9130 29.63/0.8269 28.19/0.7720

MemNet [11] 33.28/0.9142 30.00/0.8350 28.26/0.7723

CARN-M [22] 33.26/0.9141 30.08/0.8367 28.42/0.7762

WaveResNet [51] 33.09/0.9129 29.88/0.8331 28.11/0.7699

CPCA [52] 31.04/0.8951 27.89/0.8038 26.10/0.7296

NDRCN [53] 33.20/0.9141 29.88/0.8333 28.10/0.7697

LESRCNN [8] 33.320.9148 30.12/0.8380 28.44/0.7772

LESRCNN-S [8] 33.30/0.9145 30.16/0.8384 28.43/0.7776

DSRCNN(Ours) 33.43/0.9157 30.24/0.8402 28.46/0.7796

Table 4. PSNR and SSIM of different techniques with scale factors of ×2, ×3, and ×4 on B100.

Dataset Model
×2 ×3 ×4

PSNR/SSIM PSNR/SSIM PSNR/SSIM

B100

Bicubic 29.56/0.8431 27.21/0.7385 25.96/0.6675

A+ [7] 31.21/0.8863 28.29/0.7835 26.82/0.7087

JOR [45] 31.22/0.8867 28.27/0.7837 26.79/0.7083

RFL [6] 31.16/0.8840 28.22/0.7806 26.75/0.7054

SelfEx [36] 31.18/0.8855 28.29/0.7840 26.84/0.7106

CSCN [18] 31.40/0.8884 28.50/0.7885 27.03/0.7161

RED [19] 31.96/0.8972 28.88/0.7993 27.35/0.7276

DnCNN [46] 31.90/0.8961 28.85/0.7981 27.29/0.7253

TNRD [47] 31.40/0.8878 28.50/0.7881 27.00/0.7140
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Table 4. Cont.

Dataset Model
×2 ×3 ×4

PSNR/SSIM PSNR/SSIM PSNR/SSIM

FDSR [48] 31.87/0.8847 28.82/0.7797 27.31/0.7031

SRCNN [10] 31.36/0.8879 28.41/0.7863 26.90/0.7101

FSRCNN [14] 31.53/0.8920 28.53/0.7910 26.98/0.7150

VDSR [19] 31.90/0.8960 28.82/0.7976 27.29/0.7251

DRCN [13] 31.85/0.8942 28.80/0.7963 27.23/0.7233

CNF [49] 31.91/0.8962 28.82/0.7980 27.32/0.7253

LapSRN [50] 31.80/0.8950 - 27.32/0.7280

MemNet [11] 32.08/0.8978 28.96/0.8001 27.40/0.7281

CARN-M [22] 31.92/0.8960 28.91/0.8000 27.44/0.7304

WaveResNet [51] 32.15/ 0.8995 28.86/0.7987 27.32/0.7266

NDRCN [53] 32.00/0.8975 28.86/0.7991 27.30/0.7263

LESRCNN [8] 31.95/0.8964 28.91/0.8005 27.45/0.7313

LESRCNN-S [8] 31.95/0.8965 28.94/ 0.8012 27.47/0.7321

DSRCNN(Ours) 32.05/0.8978 29.01/0.802927.50/0.7341

Table 5. PSNR and SSIM of different techniques with scale factors of ×2, ×3, and ×4 on U100

Dataset Model
×2 ×3 ×4

PSNR/SSIM PSNR/SSIM PSNR/SSIM

U100

Bicubic 26.88/0.8403 24.46/0.7349 23.14/0.6577

A+ [7] 29.20/0.8938 26.03/0.7973 24.32/0.7183

JOR [45] 29.25/0.8951 25.97/0.7972 24.29/0.7181

RFL [6] 29.11/0.8904 25.86/0.7900 24.19/0.7096

SelfEx [36] 29.54/0.8967 26.44/0.8088 24.79/0.7374

DnCNN [46] 30.74/0.9139 27.15/0.8276 25.20/0.7521

TNRD [47] 29.70/0.8994 26.42/0.8076 24.61/0.7291

FDSR [48] 30.91/0.9088 27.23/0.8190 25.27/0.7417

SRCNN [10] 29.50/0.8946 26.24/0.7989 24.52/0.7221

FSRCNN [14] 29.88/0.9020 26.43/0.8080 24.62/0.7280

VDSR [19] 30.76/0.9140 27.14/0.8279 25.18/0.7524

DRCN [13] 30.75/0.9133 27.15/0.8276 25.14/0.7510

LapSRN [50] 30.41/0.9100 - 25.21/0.7560

MemNet [11] 31.31/0.9195 27.56/0.8376 25.50/0.7630

CARN-M [22] 31.23/0.9193 27.55/0.8385 25.62/0.7694

WaveResNet [51] 30.96/0.9169 27.28/0.8334 25.36/0.7614

CPCA [52] 28.17/0.8990 25.61/0.8123 23.62/0.7257

NDRCN [53] 31.06/0.9175 27.23/0.8312 25.16/0.7546

LESRCNN [8] 31.45/0.9206 27.70/0.8415 25.77/0.7732

LESRCNN-S [8] 31.45/0.9207 27.76/0.8424 25.78/0.7739

DSRCNN(Ours) 31.83/0.9252 27.99/0.8483 25.94/0.7815
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Figure 4. Visual effects of the different SR method on Set5 for ×2 scale: (a) A HR image (PSNR/SSIM),
(b) Bicubic (29.84/0.9125), (c) SelfEx (36.99/0.9573), (d) SRCNN (36.39/0.9550), (e) CARN-M
(37.22/0.9590), and (f) DSRCNN (37.23/0.9594).

Figure 5. Visual effects of the different SR method on Set14 for ×4 scale: (a) A HR image (PSNR/SSIM),
(b) Bicubic (24.63/0.8613), (c) SelfEx (30.79/0.9367), (d) SRCNN (31.20/0.9365), (e) CARN-M
(33.73/0.9523), and (f) DSRCNN (34.14/0.9540).

Figure 6. Visual effects of different SR method on U100 for ×4 scale: (a) A HR image (PSNR/SSIM), (b)
Bicubic (19.75/0.6566), (c) SelfEx (23.66/.7957), (d) SRCNN (22.97/0.7619), (e) CARN-M(25.74/0.8495),
and (f) DSRCNN (26.49/0.8640).
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Table 6. Complexity of six networks for SISR.

Methods Parameters Flops

VDSR 665K 10.90G

DnCNN 556K 9.11G

DRCN 1,774K 29.07G

MemNet 677K 11.09G

LESRCNN 598K 3.56G

DSRCNN(our) 798 k 4.76G

5. Conclusions

In this paper, we propose a dual super-resolution CNN (DSRCNN) to obtain clear
images. DSRCNN uses a two sub-network enhanced block (TSEB) to extract complementary
low-frequency features to improve learning ability in SR. Combinations of convolutions
and residual learning operation in TSEB are used to facilitate memory abilities of shallow
layers, which can prevent a long-term dependency problem. To prevent information loss
of an original image, an enhanced block is used to gather original information and obtain
high-frequency information from a deeper layer via sub-pixel convolutions. To obtain
more high-frequency features, a feature learning block is used to learn more details of
high-frequency information. The proposed method can be applied to portable devices. We
will use an attention mechanism to obtain more robust SR models in the future.
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Abstract: Denoising is the basis and premise of image processing and an important part of image
preprocessing. Denoising can effectively improve image quality, which contributes to subsequent
image processing such as image segmentation, feature extraction, and so on. In this paper, we propose
a novel image denoising method based on wavelet transform and nonlocal moment mean filtering
approach (NMM). The noisy image is firstly denoised by a wavelet-based soft-thresholding denoising
technique and NMM is then utilized to further eliminate the rest noises. Meanwhile, the fusion of
moment invariants increases the robustness of our denoising algorithm due to the invariance of
image scaling, translation, and rotation of color moments. Experiments show that our algorithm
achieves a better denoising effect compared with some other denoising approaches.

Keywords: image denoising; wavelet transform; color moments; non-local mean filter

1. Introduction

Image is often disturbed by random noise signals in the process of acquisition or
transmission. Common image noises include salt and pepper noise, Gauss noise, Poisson
noise, and so on. These noises reduce the quality of the images, which seriously hinders
the subsequent image processing such as edge extraction, image segmentation, feature
extraction, and so on. For example, Gaussian noise is a kind of noise whose probability
density function obeys Gaussian distribution (i.e., normal distribution). If the amplitude
distribution of noise is Gaussian, and its power spectral density is uniformly distributed,
it is called Gaussian white noise. The effect of Gaussian noise on the image is random,
which is a common noise in the image. The causes of this kind of noise mainly include: the
light not being bright enough or uniform enough when the images are taken; the noise and
interaction of circuit components; the temperature being too high because the sensor works
for a long time. In the image, Gaussian noise is represented by the random change of pixel
value, making the image become blurred or dotted with noise, which will lead to blurred or
distorted details in the image, thus affecting the quality and subsequent image processing.

In order to obtain high-quality digital images, it is necessary to carry on the image
noise reduction processing. Image denoising is a technology that uses context information
of image sequence to remove noise and restore a clear image. It is one of the important
research contents in the field of computer vision, that is, to maintain as much as possible the
integrity of the original information (e.g., the main features) through a certain algorithm,
but also to remove the useless information in the signal, so that the processed image is
clearer. The quality of the image denoising algorithm is directly related to the effect of
subsequent image processing.

Wavelet transform is a local transform of time and frequency domain, so it can extract
information from signal effectively, and carry out a multi-scale detailed analysis of function
or signal through operation functions such as scaling and shifting. It is widely used in
image denoising. Meanwhile, the non-local Means (NLM) algorithm is one of the most
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popular image-denoising algorithms. It uses the redundancy of the natural image itself to
restore the image polluted by noises and takes into account as much similarity-structure
information as possible. At the same time, the denoising method based on the whole block
information can better preserve the image edge and texture features.

In order to make full use of the advantages of the wavelet denoising and NLM method
and improve the denoising effect, a novel hybrid filtering algorithm combining wavelet-
based denoising technique (W) with a nonlocal mean moment filtering approach (NMM)
is proposed (named W-NMM) in this paper. The technique can effectively remove noises
while still retaining enough detailed information.

The remainder of this article is organized as follows: the relevant work is described in
Section 2. Section 3 presents a detailed description of our W-NMM model. The experiments
are displayed in Section 4 and the key issues of this paper are discussed in Section 5. In
Section 6, we make a brief conclusion. A group of abbreviations and the corresponding
nomenclature is shown in Table A1.

2. Related Work

The existence of noise reduces the image quality and hinders the subsequent processing
of the image. In order to remove noise and improve image quality, many scholars have
proposed a variety of image denoising methods including traditional techniques and neural
network-based techniques as shown in Table 1.

The traditional image denoising methods can be divided into two categories: spatial
denoising and frequency denoising. The former includes morphology filtering, mean
filtering, Gauss filtering, morphological filtering, local filtering, non-local filtering, and so
on [1]. The latter includes Wiener filtering, wavelet threshold denoising [2], and so on. For
example, Chen et al. [3] proposed a multi-structural element auto-adapted determination
weight algorithm combining morphology filter of opening and closing operations. Accord-
ing to the different characteristics of images contaminated by different kinds of noises,
a hybrid denoising method was proposed by Guan et al. [4]. Firstly, the local threshold
was used to classify the pixels as those polluted by Gauss noise and salt and pepper noise.
Mean and median filtering approaches were used to denoise them. Hu et al. [5] analyzed
mean filtering, median filtering, and wavelet transform, which are three conventional
methods for image denoising processing. Because median filtering usually results in image
blur, Zhao et al. [6] improved median filtering and put forward a weighted fast median
filtering algorithm and a weighted adaptive median filtering algorithm. Aiming at the
shortcomings of classical soft and hard thresholding methods in denoising, Yin et al. [7]
presented an improved new threshold function, which could satisfy the continuous input-
output curve while the decomposed wavelet coefficients were kept unchanged. Traditional
soft and hard thresholding methods cannot effectively express energy distribution, so it is
necessary to find a balance between denoising and edge information preserving. Zhang
et al. [8] presented an improved threshold function integrating the advantages of the classi-
cal wavelet threshold function and other improved methods. Wang et al. [9] used a wavelet
thresholding method to denoise the COVID-19 CT image, where the threshold function
was obtained by the improved particle swarm optimization. Kazuaki et al. [10] removed
quantum noise from the STEM image with a total variation denoising algorithm, where
they defined an entropy of the STEM image that corresponds to the image contrast and
then determined a hyperparameter to maximize the entropy. Guo et al. [11] presented
a median filtering algorithm based on an adaptive two-stage threshold to improve the
accuracy of CT image noise detection. In the method, an adaptive weighted median filter
image denoising method was put forward based on a hybrid genetic algorithm. Yuan
et al. [12] put forward an edge-preserving median filter and weighted coding with sparse
nonlocal regularization for low-dose CT image denoising. In addition, the classical filtering
algorithm also includes anisotropic diffusion [13], bilateral filtering [14], kernel singular
value decomposition (K-SVD) [15], sparse 3-D transform-domain collaborative filtering [16],
and so on.
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Deep learning, especially convolutional neural network (CNN), has achieved good
results in image recognition and other fields. In recent years, image denoising methods
based on deep learning have also been developed. Wang et al. [17] proposed a multi-scale
feature-extraction-based normalized attention neural network for image denoising. In
the model, they employed a multi-scale feature extraction block to extract and combine
features at distinct scales of the noisy image, and a normalized attention network was
applied to learn the relationships between channels. Ahmed et al. [18] proposed a medical
image denoising system based on the stacked convolutional autoencoder technique. Huang
et al. [19] presented an unsupervised learning approach incorporating a pseudo-siamese
network for image processing, where two independent branches of the network utilize
different filling strategies, namely zero filling and adjacent pixel filling. Wang et al. [20]
used an optimized denoising convolutional neural networks method based on sub-region
processing and transfer learning to denoise the images. Usui et al. [21] compared the
dose-dependent properties of a CNN-based denoising method for low-dose CT with those
of other noise reduction methods on unique CT noise simulation images. They observed
that the CNN model can eliminate noise and maintain image sharpness at these dose levels.
Rajesh et al. [22] developed a differential evolution-based automatic network evolution
model by exploring the fittest parameters. Furthermore, they adopted a transfer learning
technique to accelerate the training process.

Table 1. A list of the literature on denoising methods.

Classification Year Author Methods

Traditional image denoising
methods

2003 Chen et al. [3] Mathematics morphology
2005 Guan et al. [4] Mean and median filtering approaches
2007 Hu et al. [5] Mean filtering, median filtering, and wavelet transform
2011 Zhao et al. [6] Improved median filtering
2018 Yin et al. [7] Improved wavelet threshold
2017 Zhang et al. [8] Threshold with wavelet transform
2022 Wang et al. [9] Wavelet transform combined with improved PSO
2022 Kazuaki et al. [10] Total variation regularization
2022 Guo et al. [11] Adaptive threshold and optimized weighted median filter

2021 Yuan et al. [12] Edge-Preserving Median Filter and Weighted Coding with
Sparse Nonlocal Regularization

1990 Perona et al. [13] Anisotropic diffusion
1998 Tomasi [14] Bilateral filtering
2005 Aharon et al. [15] K-SVD
2007 Kostadin et al. [16] Sparse 3-D transform-domain collaborative filtering

Deep learning approaches

2021 Wang et al. [17] Attention neural network
2021 Ahmed et al. [18] Stacked convolutional autoencoder
2021 Huang et al. [19] Unsupervised pseudo-siamese network
2021 Wang et al. [20] Convolutional neural network
2021 Usui et al. [21] Convolutional neural network
2022 Rajesh et al. [22] An evolutionary block-based network

Although the traditional denoising method is simple, it also has many limitations. For
example, the morphology method, neighborhood average method, and median filtering can
suppress the noise, but also easily cause the image blur phenomenon, which is not suitable
for the image with more details of points, lines, and peaks. The neural network–based
techniques require a large number of training samples, and it is difficult to obtain all kinds
of natural noise samples for training. Based on this, this paper aimed to propose a novel
filtering algorithm based on wavelet and non-local moment mean filtering.

3. Methodology

The algorithm in this paper mainly includes two steps: multi-scale decomposition
denoising and non-local moment mean filtering.
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3.1. Multi-Scale Decomposition Denoising

Wavelet transform (see Figure 1 for a reference) [23] is a time-frequency localization
analysis method in which the size of the window is fixed but its time window and frequency
window can be changed. That is, the low-frequency part has a low time resolution and a
high-frequency resolution, and the high-frequency part has a high time resolution and a
low-frequency resolution, which is suitable for the analysis of non-stationary signals such
as images and the extraction of local features from such signals.
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Wavelet transform is to move a mother wavelet with a displacement τ, and then do
the inner product with the analytic signal x(t) at different scales a.
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√
a

2π

∫ ∞

−∞
X(ω)ϕ∗(aω)e+jωπdω (1)

a is a scale factor and a > 0. τ reflects displacement. In the frequency domain, it is
expressed as

WTx(a, τ) =
1√
a

∫ ∞

−∞
x(t)ψ∗

(
t− τ

a

)
dt (2)

Discrete Wavelet Transform (DWT) discretizes scale parameters according to power
series, which is often used in multi-resolution analysis and signal decomposition and
reconstruction.

DWTx(m, n) ≤ x(t), ψm,n(t) ≥ 2−
m
2

∫

R
x(t)ψ

(
2−mt− n

)
dt (3)

where the wavelet function is

ψjk(t) = 2−
j
2 ψ
(

2−jt− k
)

(4)

In multi-resolution analysis, for example, orthogonal wavelet transform can be equiv-
alent to a set of mirror filtering processes, i.e., signal S is decomposed through a high-pass
filter and a low-pass filter. The high-frequency component, Di, of the corresponding signal
is called the detail component. The output of the low-pass filter corresponds to the relative
signal Ai, which is called the approximate component, see Figure 1 for a reference.

In the wavelet domain, coefficients corresponding to the effective signal are usually
very large, while those corresponding to noises are very small. At present, the commonly
used threshold-based methods include hard threshold, soft threshold, and so on. The
wavelet coefficients obtained by the soft threshold method have good continuity and no
discontinuity. Here, we adopted the soft-threshold-based method to remove Gaussian
noises.

When the absolute value of the wavelet coefficients is less than a given threshold value,
it is zero; when the wavelet coefficients are larger than the threshold value, the threshold
value is subtracted from the wavelet coefficients.

wλ =

{
[sgn(w)](|w|−λ) |w|≥ λ

0 |w|< λ
(5)
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where sgn(x) returns “+1” if x is a positive value and “−1” otherwise cases. λ is calculated
with [24].

λ = σ
√

2 ln N (6)

here, σ = M/0.6745, and M is the median absolute deviation of detail coefficients at high-
frequency sub-images. N is the length of the signal.

Figure 2 shows several denoising results with the soft threshold-based wavelet denois-
ing method. From Figure 2, we can find that the noisy image was denoised well.
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3.2. Non-Local Moment Mean Filtering

Non-local mean filtering uses all the pixels in the image, and these pixels are weighted
according to some kind of similarity. After filtering, the image clarity is high, and the
details are not lost, so the structural information of the image is better protected [25]. If we
take the noise image v(i) as the sum of the image u(i) and the noise n(i) whose mean value
is 0 without noise contamination, v(i) can be expressed as

v(i) = u(i) + n(i) (7)

For a given pixel i in an image v, the image block N(i) sized n× n is an image block
with i as the block center and N(j) is an image block in the neighborhood of N(i). The
similarity between i and j is measured by Gaussian weighted Euclidean distance between
the image blocks N(i) and N(j). The smaller the distance between N(j) and N(i) is, the
more similar the pixel j is to the pixel i, and the greater the weight given by the pixel j in
cumulative restoration.

Assuming that the denoised image is I(i), for a pixel i, the NLM calculation is as
follows

I(i) =
∑
j∈v

W(i, j)v(j)

∑
j∈v

w(i, j)
(8)

We define v(Ni) as a rectangular neighborhood centered on i, and the similarity
coefficient w(i, j) of the pixels i and j in the image v is as follows:

w(i, j) = exp


−
‖v(Ni)− v

(
Nj
)
‖2

2,α

h2


 (9)

where α is the standard deviation of the Gaussian kernel function, ‖v(Ni)− v
(

Nj
)
‖2

2,α
represents the weighted Euclidean distance between two image blocks; h is a filtering
parameter to control the smoothness

‖V(Ni)−V(Nj)‖2 =
1
d2 ∑

i+z∈Ni ,j+z∈Nj

‖v(i + z)− v(j + z)‖2 (10)
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The non-local mean filtering algorithm makes full use of the block information of the
image and can keep the texture and edge of the image well. The filtering effect is better [26].
However, similarity measurement lacks robustness. In this paper, we replace the gray
difference with the moment the difference in the weighted Euclidean distance between two
image blocks and produce a novel denoising method, called the non-local moment mean
denoising method, abbreviated as NMM.

Moments and the related invariants have been extensively analyzed to characterize
the patterns of images in a variety of applications [27].

mpq =
∫ ∞

−∞

∫ ∞

−∞
xp f (x, y)dxdy, p, q = 0, 1, 2, · · · (11)

Hu [24] introduced seven-moment invariants M = {φ1, φ2, φ3, φ4, φ5, φ6, φ7}

φ1 = η20 + η02 (12)

φ2 = (η20 − η02)
2 + 4η2

11 (13)

φ3 = (η30 − 3η12)
2 + (3η21 − η03)

2 (14)

φ4 = (η30 + η12)
2 + (η21 + η03)

2 (15)

φ5 = (η30 − 3η12)(η30 + η12)
[
(η30 + η12)

2 − 3(η21 + η03)
2
]

+(3η21 − η03)(η21 + η03)
[
3(η30 + η12)

2 − (η21 + η03)
2
] (16)

φ6 = (η20 − η02)
[
(η30 + η12)

2 − (η21 + η03)
2
]
+ 4η11(η30 + η12) + (η21 + η03) (17)

φ7 = (3η21 − η03)(η30 + η12)
[
(η30 + η12)

2 − 3(η21 + η03)
2
]

−(η30 − 3η12)(η21 + η03)
[
3(η30 + η12)

2 − (η21 + η03)
2
] (18)

Moment invariants are useful properties of being unchanged under image scaling,
translation, and rotation. In the end, the weighted Euclidean distance between two image
blocks is

‖V(Ni)−V(Nj)‖2 =
1
d2 ∑ ‖v(Ni,M)− v(Nj,M)‖2 (19)

where Ni,M is the moment value of the image block Ni and Nj,M is the moment value of the
image block Nj.

Combined with wavelet-based denoising (W) and non-local moment mean filtering
(NMM), the algorithm W-NMM is described as Algorithm 1.

Algorithm 1: W-NMM filtering

Input: image I to be filtered
t: radio of search window
f: radio of similarity window
h: degree of filtering
1. Take sym8 as the wavelet basis function to decompose the image in two layers.
2. Calculate the soft threshold according to Equation (6) on the high-frequency domains.
3. Denoise image I according to Equation (5) and obtained I’.
4. Symmetric padding I’;
5. For each pixel in I’(i,j) (i = f:M − f, j = f:N − f):
i1⇐ i + f; j1⇐ j + f;
Create objective window: W1= I’(i1 − f:i1 + f, j1 − f:j1 + f);
6. Set the borders of the neighboring window:
rmin⇐max(i1 − t, f + 1); rmax⇐min(i1 + t, m + f);
smin⇐max(j1 − t, f + 1); smax⇐min(j1 + t, n + f);
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Algorithm 1: Cont.

7. For each pixel in W2(r,s):
Set neighboring window: W2 = input2(r − f:r + f, s − f:s + f);

8. Calculate the moments of W1 and W2:
n1 = hu_moments(W1);

n2 = hu_moments(W2);
9. Calculate the similarity of W1 and W2 according to n1 and n2.
10. Calculate the Gaussian weight: w⇐exp − d/h);
11. Find the maximum of w: wmax.

sweight⇐sweight + w;
average⇐average + w × I’(r,s);

end
12. Calculate the accumulation of

average = average + wmax × I’(i,j);
sweight = sweight + wmax;

13. Calculate denoised image Iout:
if sweight > 0

Iout’(i,j) = average/sweight;
else

Iout’(i,j) = I’(i,j);
end

14. end
15. Extract the image Iout with the size same to I from Iout’.

4. Experiment

In order to evaluate the performance of our algorithm, we test it on a set of noisy
images and several examples. The following metrics are utilized for evaluating the per-
formance of image processing approaches Peak Signal to Noise Ratio (PSNR) [28] and
Structural Similarity Index (SSIM) [29].

PSNR is widely used to evaluate image quality and is defined as

PSNR = 10 · log10

(
MAX2

I
MSE

)
= 20 · log10

(
MAXI√

MSE

)
(20)

where MAXI is the maximum value of an image I, MSE is Mean Square Error, and ex-
pressed as

MSE =
1

mn

m−1

∑
i=0

n−1

∑
j=0
‖I(i, j)− K(i, j)‖2 (21)

Where I and K can be taken as the denoised image and original image, respectively.
The smaller the MSE and the bigger the PSNR, the better the image quality.
SSIM is one of the indicators to measure image quality. Given two images I and K,

their SSIM can be defined as:

SSIM =
(2µIµK + c1)(2σIK + c2)

(µ2
I + µ2

K + c1)(σ
2
I + σ2

K + c2)
(22)

where, µI and µK are the means of I and K, respectively. σ2
I and σ2

K are variances of I and K,
respectively. σIK is the covariance of I and K. c1 = (k1L)2 and c2 = (k2L)2 are constants
keeping things stable. L is the dynamic range of the image pixel value, k1 = 0.01, k2 = 0.03.

The range of SSIM is [0, 1]. The larger the SSIM is, the better the image quality is.
Figure 3 shows the denoising result with our W-NMM algorithm. In Figure 3a–d there are
images with Gaussian white noise with variances 0.01, 0.02, 0.04, and 0.06, respectively.
The first two lines are the corresponding noisy images with their partial histograms, and
the last two lines are the denoised images with their partial histograms. It can be seen
the algorithm removed the noises well. Figures 4 and 5 show the denoising results on the
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original noisy image and the corresponding ones after rotation, scaling, and translation. It
can be seen that the results were similar, which shows the robustness of the method.
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Figure 5. The evaluation of the denoising results of Figure 4 in terms of PSNR and SSIM. a~d refter
to the images a–d in Figure 4.

We compare our W-NMM algorithm with the anisotropic diffusion filter (AD) [13],
bilateral filter (BF) [14], Kernel Singular Value Decomposition (KSVD) [15], and block
Matching and 3D collaborative filtering (BM3D) [16] on a group of CT images [30]. The
visual results are shown in Figure 6, where the noisy CT images are added Gaussian white
noise of variance = 0.02 as shown in Figure 6a–f) are the corresponding denoised results
with AD, BF, KSVD, BM3D, and W-NMM. From Figure 6, we can find that the W-NMM
algorithm has a better effect on Gaussian noise denoising. Compared with the other
denoising methods, our algorithm can produce better results on noisy image denoising.
The three-dimensional (3D) visualizations of the denoising effectiveness are exhibited in
Figure 6 where two images are randomly selected from Figure 7 and their 3D visualizations
are depicted before and after denoising with the proposed method. (a) are the noisy images
and (b) are the corresponding denoised images with W-NMM. It can be observed that the
proposed method removed the sharp noises, and the image regions become smooth while
keeping the edges.
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Figure 7. The 3D visualization of the denoising results of two images in Figure 6 with the WM-
NLM method. (a) show the noisy images with Gaussian white noise, and (b) are the corresponding
denoised results.

We evaluated the denoising methods (AD, BF, NLM, BM3D, and W-NMM) on the
images in Figure 6 in terms of PSNR and SSIM. The results are shown in Table 2. We can
find that our method achieved higher PSNR and SSIM than other methods. We test the
methods on a group of medical images and compare their denoising effect, and the average
results in terms of PSNR and SSIM are displayed in Figure 8. It can be observed that the
W-NMM method is superior to the compared methods.

Table 2. Comparison of different denoising methods evaluated with PSNR and SSIM (The best results
are shown in bold).

Image I1 I2 I3 I4

Metrics PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

AD 18.48 0.2964 18.38 0.2407 18.42 0.2352 18.27 0.3298
BF 20.37 0.3593 19.95 0.3004 20.21 0.2965 19.71 0.3731

KSVD 22.61 0.5578 22.49 0.3787 23.34 0.5512 22.67 0.5660
BM3D 20.66 0.5479 23.63 0.5736 22.80 0.4603 21.15 0.4830

W-NMM 22.67 0.6219 24.20 0.6798 23.62 0.6557 22.43 0.6714
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Figure 8. Comparison of the denoising performance with different denoising methods in terms of
PSNR, and SSIM.

In order to test the validity of the two stages of filtering, we made an ablation experi-
ment and the result is shown in Figure 9. S1 represents the result in the first stage, that is
the corresponding image is denoised with wavelet filtering. S2 is the result in the second
stage, that is the corresponding image was denoised with the NMM filter. It can be found
that the SSIM was improved after the NMM filtering in the S2 stage.
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5. Discussion

In the process of digital image digitization and transmission, it is often affected by
the noise of imaging equipment and the external environment, so that the image quality
will be degraded. Image denoising is the process of reducing the noise in the digital image.
The commonly used image denoising methods are suitable for processing images with low
requirements on image details, that is to say, the loss of tiny details has little impact on the
subsequent processing of image denoising. However, when dealing with medical images,
such small mistakes are not allowed, because every small mistake in medical diagnosis or
treatment can affect the doctor’s treatment and even threaten the patient’s life. So, we need
good denoising techniques that can effectively remove noise while still preserving enough
detail. It can be seen from the experiment that the algorithm proposed in this paper can
effectively smooth the noise information in the image and keep the details of the image.
Effective image denoising can not only help doctors diagnose the condition, but also be
very conducive to the subsequent image segmentation, e.g., lung segmentation, providing
help for computer-aided diagnosis.

Our algorithm achieved good performance on image denoising. However, the cost
time is sometimes high, and the time efficiency is low due to the fusion of moments and
the NLM approach. Our algorithm can generate the highest denoising effect with low
time efficiency while the anisotropic diffusion filter has the highest time efficiency with the
lowest PNSR. Accordingly, we can select suitable methods for different applications.

6. Conclusions

In this paper, we denoised the images with a wavelet-based non-local moment mean
denoising algorithm. The proposed W-NMM algorithm combined frequency domain
denoising with spatial domain denoising, and the introduction of moments increased the
robustness of the denoising algorithm. The average of PSNR and SSIM achieved 23.3 and
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0.66, respectively. In addition, it showed a better-denoised effect compared with several
classical image denoising methods. It contributes to the subsequent image processing, such
as image segmentation, 3D reconstruction, and so on. Nevertheless, the time cost was high
because of the NLM operation. In the future, we will improve the time efficiency of our
algorithm.
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Appendix A

Table A1. List of abbreviations and the corresponding nomenclature.

Abbreviations Nomenclature

W Wavelet
NLM Non-local mean filter
NMM Non-local moment mean filter

AD Anisotropic diffusion filter
BF Bilateral filter

BM3D Block matching and 3D collaborative filtering
KSVD Kernel singular value decomposition
PSNR Peak signal to noise ratio
SSIM Structural similarity index
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Abstract: Image denoising has been a knotty issue in the computer vision field, although the develop-
ing deep learning technology has brought remarkable improvements in image denoising. Denoising
networks based on deep learning technology still face some problems, such as in their accuracy
and robustness. This paper constructs a robust denoising network based on a generative adversarial
network (GAN). Since the neural network has the phenomena of gradient dispersion and feature
disappearance, the global residual is added to the autoencoder in the generator network, to extract
and learn the features of the input image, so as to ensure the stability of the network. On this basis,
we proposed an optimization algorithm (OA), to train and optimize the mean and variance of noise
on each node of the generator. Then the robustness of the denoising network was improved through
back propagation. Experimental results showed that the model’s denoising effect is remarkable.
The accuracy of the proposed model was over 99% in the MNIST data set and over 90% in the
CIFAR10 data set. The peak signal to noise ratio (PSNR) and structural similarity (SSIM) values of
the proposed model were better than the state-of-the-art models in the BDS500 data set. Moreover, an
anti-interference test of the model showed that the defense capacities of both the fast gradient sign
method (FGSM) and project gradient descent (PGD) attacks were significantly improved, with PSNR
and SSIM values decreased by less than 2%.

Keywords: image denoising; GAN; optimization algorithm; autoencoder; ResNet

1. Introduction

Image denoising is one of the hottest research topics in the field of image process-
ing [1]. There are various traditional image denoising methods. Tang used an improved
curvature filtering algorithm, where a projection operator was used to replace the minimum
triangular tangent plane projection operator of the traditional curvature filtering [2]. Li
proposed an adaptive matching and tracking algorithm. First, the sparse coefficients were
calculated. Then the dictionary was trained to be an adaptive dictionary, which could reflect
the image structure effectively by using the K singular value decomposition algorithm.
Finally, the image was reconstructed by combining the sparse coefficients with the adaptive
dictionary [3]. Dabov proposed block-matching and 3D filtering (BM3D), which made
use of the self-similarity existing in natural images to match with adjacent image blocks,
and then the similar blocks were integrated to form the denoised image through domain
transformation [4]. Xu proposed a trilateral weighted sparse coding (TWSC) scheme for
robust real image denoising [5]. Xie proposed a non-convex regular low rank sparse matrix
decomposition method for image denoising [6]. Although the above traditional denoising
methods achieved a good effect to a certain degree, there are highly time consuming and
low robustness. Li proposed a new image denoising approach based on undecimated
discrete wavelet transform (UDWT), which combines the technique of cone of influence
(COI) analyzing and UDWT [7].
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In recent years, with the rapid development of deep learning and remarkable achieve-
ments in the field of image processing, more and more people are applying deep learning to
image denoising. For example, the convolutional neural network has two major character-
istics, of local perception and parameter sharing, which have a good effect in image feature
extraction and recognition. Wang proposed a gradient vector convolution (GVC) model
for image denoising [8]. Wu proposed an interleaved cascade of shrinkage fields (CSF) to
reduce noise and jointly restore the transmission diagram and scene radiance from a single
noise image [9]. Zhang proposed a feedforward denoising convolutional neural network
(DnCNN) model, which combined batch normalization and residual learning [10]. Yan
proposed a self-consistent GAN network (SCGAN) to extract noise images directly from
noisy images, to achieve unsupervised noise modeling [11]. Yu proposed a deep iterative
down-up convolutional neural network (DIDN) for image denoising, which can process
various noise levels using a single model, without input noise information as a solution [12].
Zhang proposed a fast and flexible denoising convolutional neural network (FFDNet),
which used a noise estimation graph as input, balancing the suppression of uniform noise
and the preservation of details [13]. Chen’s proposed denoising method used GAN to
model the noise distribution, to generate noise samples through the established model and
form a training data set with clean image sets, and to train the denoising network model to
perform blind denoising [14]. Dong proposed a convolutional neural network denoising
method based on multi-scale redundancy of natural images [15]. Wang proposed a novel
channel and spatial attention neural network for image denoising [16]. Cai proposed a new
efficient image denoising scheme, where global structure and local similarity preservations
combined method of optimal directions (MOD) with approximate K-SVD (AK-SVD) for
dictionary learning [17]. Cai proposed a new development of non-local image denoising
using fixed-point iteration for non-convex `p sparse optimization [18]. Although neural
networks are widely applied in the field of image processing, they are vulnerable to adver-
sarial attacks that lead to incorrect network outputs. In 2014, Szegedy Christian introduced
the L-BFGS method, which induced the model to obtain a result completely deviating from
the real value by adding slight disturbance to the input sample image of the model [19].
In 2015, Goodfellow Ian J proposed an adversarial sample generation algorithm based
on the fast gradient sign method (FGSM), which sought the direction with the largest
gradient change in the deep learning model and generated disturbances, to increase the
loss of image classifiers in this direction [20]. Later, the FGSM derived project gradient
descent (PGD) and other gradient-based attack algorithms. However, some current defense
methods require a lot of manpower and material resources and have poor robustness [21].

In view of low robustness of traditional denoising methods and vulnerability of deep
learning network under attacks, this paper introduces a simple and efficient method to
improve the robustness of the denoising network. The whole backbone of the denoising-
network is based on the GAN. Moreover, the denoised image is from the GAN. Random
noise is added into the neural network and it is optimized through back propagation. The
most important feature is that this method does not require additional resource consump-
tion and can simultaneously improve the model’s ability for denoising and defense against
attack. Furthermore, an integrated image denoising network is designed. Finally, FGSM
and PGD attack experiments were used to verify the anti-interference capability of the
adversarial network.

2. Related Work

In this section, we briefly overview some of the basic network modules and loss
functions that are involved in our design. First, we refer to the following three networks:
The first is the autoencoder, which is a form of neural network and is composed of an
encoder and decoder [22]. The encoder compresses the original data to obtain the features
of the original data, and learns the features through other neural networks to reduce the
burden of network generation. The decoder decompresses the learned features into original
data. This is an unsupervised algorithm, and then the back propagation algorithm is used
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to train the network to make the output close to the standard image. The second is the
residual module [23]. Although more features can be extracted, the training is also more
difficult due to the increasing depth of the neural network. With the increase of depth, the
original data information will be gradually lost in the process of convolution and pooling,
and the error signal is prone to gradient dispersion during the back propagation. Therefore,
the residual network is introduced to solve the training difficulties caused by increasing the
network depth. The residual network uses jump connections to connect the features after
convolution and pooling with the previous features, and the information representation
is enhanced by the addition of both gradual and deep features. This method avoids the
problem of image feature loss due to the increase of network depth, and solves the problem
of gradient dispersion and ensures the stability of the network. The third aspect is the
generative and adversarial network based on the two-person game idea, which is widely
used in various aspects of the imaging field. A generative adversarial network is a method
of unsupervised learning. It consists of a generator network and a discriminator network,
and learns by playing two neural networks against each other. The generator network
takes random samples from the latent space as input, and its output should imitate the real
samples in the training set as much as possible. The input of the discriminator network is
the real sample or the output of the generator network, and the purpose of the discriminator
network is to distinguish the output of the generator network from the real sample as far
as possible. The generator network tries to deceive the discriminator network as much
as possible. The final purpose of the two networks is to make the discriminator network
unable to judge whether the output result of the generator network is true or not [24].

Furthermore, we refer to three loss functions. The first is MSE loss [25]. The values
of each pixel of the generated image and the original image are compared, and the mean
square error of the generator network is represented by the loss of pixels. The second is
GAN loss, which is mainly formed by the discrimination network to determine between
the generated denoised image or the original real image [26]. The GAN loss ensures that
the generator network generates an image as close to the real image as possible. Then the
discriminator network is deceived, to achieve the optimal result of the generated image. The
third is classification loss [27]. As the generated image may cause the loss of some features,
it is necessary to analyze the generated image category. Then the generator network can
generate the same image as the real image, as far as possible.

3. Network Structure Design and Optimization Algorithm

The whole network structure is based on GAN. The generator network uses an autoen-
coder for image generation. A discriminator network is used to discriminate between the
generated images. When the discriminator network cannot discriminate the authenticity
of the generated images, the generated images can be used as the input of a classification
network, to further verify the denoising ability of the network for noisy images. On the
other hand, Gaussian noise is added to the stochastic gradient estimates of the standard
deviation path of each neural network neuron. In this way, the gradient estimates and the
noise level are byproducts of back propagation.

3.1. Whole Network Structure Design

The network framework we proposed is shown in Figure 1. It consists of three sub-
networks: a generator network (G), discriminator network (D), and classification net-
work (C). The G inputs an image with noise and outputs an image with the same size as
the original image, through feature extraction of the network; the D inputs the generated
image and standard image, and outputs “0” or “1”, which represent the similarity between
the generated image and standard image; the C inputs generated images, to complete the
classification of image content. In G and D, we apply the network optimization algorithm
(OA) proposed in the following section, which improves the robustness of GAN networks.
The MSE loss and GAN loss are used to update the iterative training parameters of the
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GAN neural network; classification loss is used to update the iterative training parameters
of the classification network. The training finally makes the network tend to be stable.
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Figure 1. Whole network structure.

3.2. Optimization Algorithm

Here we deduce the OA in Figure 1. Let τ represent the layers of the neural network;
mt represents the number of neurons at layer t, t ∈ 1, 2, . . . , τ. The output of layer t is
x(t)= [x(t)1 , x(t)2 , . . . , x(t)mt ] ∈ Rmt , and x(0) is the input of the network.

Suppose the network has N inputs, denoted as x(0)(N), N = 1, 2, . . . , n. For the n
input, the i output of the t layer is Formulas (1) and (2).

x(t+1)
i (n) = ϕ

(
v(t)i

)
(1)

v(t)i =
mt

∑
j=0

θ
(t)
i,j x(t)j (n) + z(t)i (n) (2)

x(t).
J
(n) is the j input of the n data in the t layer; θ

(t)
i,j is the weight of the i input in

the t layer; v(t)
i . is the i output of the t layer; ϕ is the activation function; z(t)i (n) is the n

data and independent random noise added to the i neuron in the t layer. Figure 2 shows a
visualization of noise addition.
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L represents the loss function. For the n data x(0)(n) marked as Y(n), L(x(τ)(n),Y(n))
represents the loss value. In our work, we tried to optimize the size of the noise level of the
central normal random noise σ

(t)
i of each neuron. z(t)i (n) = σ

(t)
i ε

(t)
i (n), where ε

(t)
i (n) is a
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standard normal random variable. The residual of the i neuron at the t layer of the n data
propagates backward through the neural network and is defined as as Formula (3).

δ
(t)
i (n) =





e(τ)i (n)ϕ′
(

v(τ−1)
i (n)

)
t = τ

ϕ′
(

v(t−1)
i (n)

)( mk
∑

j=0
θ
(t)
i,j δ

(t+1)
j (n)

)
t < τ

(3)

e(τ)i (n) is defined as formula (4):

e(τ)i (n) =
∂L(x, Y(n))

∂xi

∣∣∣∣
x=x(τ)(n)

(4)

Back propagation essentially provides information about all parameters θ
(t)
i,j (t=1,2, . . . τ− 1),

path random derivative estimation of loss function L. As shown in Formula (5), j ∈ {0, 1, . . . , mt},
i ∈ {0, 1, . . . , mt+1}.

∂L
(

x(τ)(n), Y(n)
)

∂θ
(t)
i,j

= δ
(t+1)
j (n)x(t)j (n) (5)

The algorithm flow is as follows:

(a) First input training data P =
{(

x(0)(n), Y(n)
)}N

n=1
, loss function L.

(b) Construct neural network.
(c) Use Formulas (1) and (2) to calculate the output x(τ)(n).

(d) Calculate the loss function L
(

x(τ)(n), Y(n)
)

.

(e) Use Formulas (3) and (5), respectively, to estimate the gradient of loss to weight and
noise level.

(f) Update weights and noise levels.
(g) Repeat steps c to f until the parameters meet the requirements of the model.

3.3. Sub-Network Structure Design

The three sub-network structures proposed in this paper are shown in Figure 3.
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Figure 3a shows the network structure of the generator network, which includes four
convolution blocks, thirteen residual blocks, and four deconvolution blocks. Each one of
four convolution blocks includes a convolution layer, optimization layer, relu layer, and
pooling layer. In addition, each of thirteen residual blocks includes a convolutional layer,
batch normalization layer, relu layer, and algorithm optimization layer. While, each one of
the four deconvolution blocks includes a deconvolution layer and relu layer. The network
outputs an image the same size as the standard image. The generator network is the core
part of the whole network, and the image denoising effect largely depends on the ability
of the generator network. Therefore, the neural network adopts encoding and decoding
structures such as the autoencoder. A residual module jump connection is added in the
middle, to enhance image feature representation, to avoid gradient dispersion, and to
ensure the stability of the network.

Figure 3b shows the network structure of the discriminator network, which includes
three convolution blocks, three linking blocks, and a sigmoid function layer. Each of three
convolution blocks includes two convolution layers, an optimization layer, maximum
pooling layer, batch normalization layer, and relu layer. Each of the three linking blocks
includes a full link layer and leakyrelu layer. The sigmoid function layer outputs “0” or
“1”, which is used for the binary classification problem, to judge the difference between the
positive and negative labels of the image. The discriminator network is designed based on
the full convolution neural network, to discriminate the similarity between the standard
image and the generated image.

Figure 3c shows the network structure of the classification network, which includes
two convolution blocks, eleven residual blocks, and three full connection layers. Every two
convolution blocks include a maximum pooling layer, batch normalization layer, and relu
layer. Each of the eleven residual blocks includes a convolution layer, batch normalization
layer, and relu layer. The final full connection layer outputs n categories to complete the
classification of images. The classification network is used to classify the generated-images
after the optimization of the generated network.

4. Experiments and Analyses

First, the proposed method was used to test the classification accuracy in the MNIST
and CIFAR10 data sets. Then the method was compared with the DnCNN, BM3D, FFDNet,
and IRCNN denoising methods, and the PSNR and SSIM values were calculated, which
under the standard deviation of Gaussian noise were 25, 50, 75, and 100. Moreover, we
performed a visual perception experiment. Finally, the network robustness was verified
under FGSM and PGD attacks. The experiments illustrated that the method is effective.

4.1. Data Set and Parameter Setting

The MNIST data set is very well known. It consists of 60,000 training samples and
10,000 test samples, where each sample is a 28 × 28 pixel grayscale handwritten digital
image. The Cifar-10 data set contains 50,000 training images and 10,000 test images, all of
which are 3-channel color RGB images with a size of 32 × 32, including 10 categories in
total. The two data sets were used to test the accuracy of model recognition under different
noise conditions. Then we used the BDS500 data set to train and test the model. The peak
signal to noise ratio (PSNR) and structural similarity (SSIM) were compared with other
methods under different noise conditions.

The hardware platform of this experiment was a Tesla P100 with 16GB memory;
software was Ubuntu18.04, CUDA10.02, python3.6; and the deep learning framework was
Pytorch1.8; the batch processing was 128; the Adam algorithm was used to update the
gradient; the initial learning rate was 0.001, and the learning rate decreased as the number
of trainings increased; the momentum was 0.9.
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4.2. Evaluation Index

The fidelity of image denoising is represented by the evaluation index, which is the
error between the standard image and the denoised image, and the PSNR and SSIM are
used for evaluation and analysis.

PSNR measures denoising performance, using the error between corresponding pixels
of the denoising image and the standard image. PSNR is expressed as Formulas (6) and (7).

MSE =
1

mn

m−1

∑
i=0

n−1

∑
j=0

[I(i, j)− K(i, j)]2 (6)

PSNR = 10lg
MAX2

I
MSE

(7)

where m and n represent the number of rows and columns of the image pixels, MAXI is
the maximum possible pixel value of the image. According to Formulas (6) and (7), the
larger MSE is, the smaller PSNR is, which indicates that the denoising effect is good and
the denoised image is closer to the standard image.

SSIM is measured based on the luminance, contrast, and structure between the de-
noised image and standard image. The value ranges from “0” to “1”, a larger value indicates
a better denoising effect. SSIM is expressed as Formulas (8) and (9).





l(x, y) =
2µxµy + c1

µ2
x + µ2

y + c1

c(x, y) =
2σxσy + c2

σ2
x + σ2

y + c2

s(x, y) =
σxy + c3

σxσy + c3

(8)

SSIM(x, y) =

(
2µxµy + c1

)(
2σxy + c2

)
(

µ2
x + µ2

y + c1

)(
σ2

x + σ2
y + c2

) (9)

µx is the mean value of x; µy is the mean value of y; σ2
x is the variance of x; σ2

y is the

variance of y; σxy is the covariance of x and y; c1 = (K1L)2, c2 = (K2L)2 which are constants
that avoid zero; L is the range of pixel value; K1=0.01 and K2 = 0.03 are the default values.

4.3. Experimental Result and Analysis
4.3.1. Comparison of Classification Accuracy on Different Data Sets

In this paper, Gaussian noises with standard deviations of 25, 50, and 75 were added
to the test set. The experimental results are shown in Figure 4.

From Figure 4a, we can see that under the influence of different noise environments
the classification accuracy could reach more than 99%, and the experimental error remained
within 0.005. This proves that the method is feasible for image denoising. It can resolve the
classification problem of different noise levels and the images can be correctly classified
under different noise levels.

Figure 4b shows the classification accuracy on CIFAR10, which could reach more
than 90%. CIFAR10 is a rebuilt data set including RGB images with noise, so that the
classification of CIFAR10 was harder. The experimental results showed the experimental
error was stable within ±0.1. This shows that the algorithm not only had a significant
denoising effect for grayscale images, but also had a strong denoising ability for RGB color
images, and it could realize the classification of color images and ensure the recognition
accuracy of images. This paper mainly compared the accuracy gap between denoised
images and standard images, without excessively pursuing the recognition accuracy of the
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data set. Therefore, the recognition of the data set did not achieved an optimal effect, which
will be the next project.
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the maximum possible pixel value of the image. According to Formulas (6) and (7), the 

larger ��� is, the smaller ���� is, which indicates that the denoising effect is good and 

the denoised image is closer to the standard image. 

SSIM is measured based on the luminance, contrast, and structure between the de-

noised image and standard image. The value ranges from “0” to “1”, a larger value indi-

cates a better denoising effect. SSIM is expressed as Formulas (8) and (9). 
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�� is the mean value of �; �� is the mean value of �; ��
� is the variance of �; ��

� is 

the variance of �; ��� is the covariance of � and �; �� = (���)�, �� = (���)� which are 

constants that avoid zero; � is the range of pixel value; ��=0.01 and �� = 0.03 are the 

default values. 
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4.3.2. Comparison of PSNR and SSIM on the BDS500 Data Set among Different Methods

To compare the PSNR and SSIM values after denoising, Gaussian noises with standard
deviations of 25, 50, 75, and 100 were added to the images from the BDS500 data set. Then
the DnCNN, BM3D, FFDNet, IRCNN, LSLA-2, UDWT, and our method were tested. The
results are shown in Tables 1 and 2.

Table 1. PSNR values of the different methods.

Noise (σ) BM3D UDWT DnCNN FFDNet IRCNN LSLA-2 This Paper

25 29.97 25.51 30.43 30.44 30.38 28.99 27.53
50 26.72 23.42 27.18 27.32 26.32 25.63 26.85
75 22.32 19.98 22.21 22.43 22.87 22.31 24.49

100 19.56 17.53 20.12 20.62 19.78 20.54 24.71

Table 2. SSIM values of the different methods.

Noise (σ) BM3D UDWT DnCNN FFDNet IRCNN LSLA-2 This Paper

25 0.8447 0.8053 0.8597 0.8582 0.8576 0.8286 0.8413
50 0.7659 0.7495 0.7865 0.7841 0.7853 0.7664 0.8176
75 0.7132 0.7054 0.7178 0.7232 0.7152 0.7143 0.7868

100 0.6856 0.6394 0.6871 0.6882 0.6725 0.6532 0.7640

It can be seen from Table 1 that the PSNR values of BM3D, DnCNN, FFDNet, IRCNN,
UDWT, and LSLA-2 are slightly higher than this paper’s method, when the standard
deviation of Gaussian noise σ = 25, and the difference was almost the same when the
standard deviation of Gaussian noise σ = 50, even being slightly higher than that of some
methods. When the standard deviation of Gaussian noise was σ > 50, the proposed
method was significantly higher than the other methods. When the standard deviation of
Gaussian noise σ > 50, the PSNR of the proposed method was about 4 dB higher than the
other methods.

Table 2 shows that the SSIM value of the proposed method was lower than that of
other methods when σ = 25; and the SSIM value of the proposed method was significantly
higher than that of the other methods when standard deviation of Gaussian noise was
greater than 25.
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4.3.3. Comparison of Visual Perception

In view of the evaluation index of visual perception difference, this paper selected a
picture in the test set for visualization under different methods. The experimental results
are shown in Figure 5. Where (a) is the standard image; (b) is the image with Gaussian
noise; (d) is the image denoised by BM3D; © is the image denoised by DnCNN; (f) is the
image denoised by FFDNet; and (g) is the image denoised by IRCNN. Although these
methods also removed the noise of the image, the image looks partly fuzzy and some edge
features have a fuzzy phenomenon. The image (c), denoised by the method proposed in
this paper, has a more intuitive visual experience. The clarity of the denoised image is
almost the same as that of the standard image, and the features of the image are relatively
intact. The image in this paper is clearer.
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To sum up, when the noise level was low, the denoising effect of the method in this
paper was equal to that of the other methods. However, when the noise standard deviation
was greater than 25, the denoising ability and effect of the proposed method were better
than the other methods, and both the values of PSNR and SSIM were higher than other
methods. The test showed that when the noise environment was more complex, our method
was more advantageous and had a stronger robustness and could effectively improve the
image. This paper’s method had little influence on the noise environment but its denoising
ability was relatively stable in different environments.

4.3.4. FGSM Attack Result

FGSM is an algorithm based on gradient generation of adversarial samples and is a
single-step, non-directional attack algorithm. Figures 6 and 7 show the comparison effect
of SSIM and PSNR values between the generated images and the standard images under
different attack degrees. The range of difference between the SSIM and PSNR values of
the generated image and the standard image become smaller with a larger disturbance
after FGSM attacks. Therefore, the method of adding random noise to the neurons of a
neural network can improve the anti-interference ability of the network, which proved the
superiority of our method in stability and robustness.
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4.3.5. Ablation Experiments and PGD Attack

In order to further verify the restoration ability of this paper’s method with noisy
images, an ablation experiment was carried out. First, the optimization algorithm (OA) was
removed, to test the performance of the model. Gaussian noise with a standard deviation
of 25, 50, 75, and 100 was added to the BDS500 dataset for the experiment. Comparing the
PSNR and SSIM, the results are shown in Table 3. When OA was used in the generator
network and discriminator network, it could optimize the network and achieve better
results in the processing of noise images. This shows that our optimization method could
improve the robustness of the network.

Table 3. Results of ablation experiments with no PGD (PSNR/SSIM).

σ=25 σ=50 σ=75 σ=100

With OA (PSNR/SSIM) 27.53/0.8413 26.86/0.8176 24.49/0.7868 24.71/0.7640

Without OA (PSNR/SSIM) 21.13/0.6396 20.45/0.6034 19.12/0.5958 18.63/0.5756

Second, in order to further verify the robustness of this paper’s method for the network,
experiments with OA and without OA were performed, to test the defense performance of
the model under different disturbance levels of PGD adversarial attack. The PGD attack is
an iterative attack, which can be regarded as a copy of FGSM–K-FGSM (K represents the
number of iterations). We performed a 10-step PGD adversarial training with a step size of
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0.01, to verify the stability of the model under different disturbance levels. The results are
shown in Table 4. The defense performance of the network against PGD attack decreased
significantly without OA. With the increase of attack amplitude, the SSIM and PSNR values
without OA decreased more than those of the network with OA. When ε = 0.05, adding
OA could even improve the SSIM and PSNR values by more than 100%. This proved
that adding OA could improve the anti-interference ability and enhance the robustness of
the network.

Table 4. Results of ablation experiments under PGD (PSNR/SSIM).

σ=25 σ=50 σ=75 σ=100

With OA
(PSNR/SSIM)

ε = 0.01 26.93/0.8325 25.86/0.8123 23.91/0.7783 24.02/0.7601
ε = 0.02 26.52/0.8297 25.21/0.8043 23.42/0.7642 23.02/0.7554
ε = 0.05 26.36/0.8223 25.15/0.7931 22.97/0.7662 22.25/0.7510

Without OA
(PSNR/SSIM)

ε = 0.01 16.57/0.5217 15.50/0.5020 14.35/0.4715 13.36/0.4563
ε = 0.02 13.45/0.4570 12.62/0.4234 11.98/0.4044 10.52/0.3851
ε = 0.05 11.39/0.4178 10.84/0.3899 10.02/0.3620 9.15/0.3572

5. Conclusions

This paper proposed an image denoising method based on GAN network. In our
method, a global residual is added into the autoencoder to extract and learn the features of
the input image, preventing the loss of features in the process of denoising and preserving
the details of the image features. Gaussian noise is added to the standard deviation path
random estimation of each neuron in the neural network, to make it become a by-product
of back propagation, which can effectively increase the robustness of the neural network
and make it relatively stable in the case of noise environment fluctuations. MSE loss and
adversarial loss are used to adjust the network, so that the network can achieve the best
performance and have a better denoising effect. We compared our method with other
methods. Although it was not as good as the other methods in the case of a low noise level,
it was generally better than the other methods in the case of a high noise level. Both from
the perspective of vision and quantitative objective evaluation, the denoising effect of the
proposed method was remarkable in most scenes. The algorithm model provides help for
target detection, recognition, and other applications, and it also has a good practicability.
The future work after this paper is to further optimize the denoising effect in low noise
environments, so as to achieve an optimal denoising effect in all noise environments
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Abstract: Convolutional neural networks (CNNs) with different layers have performed with excellent
results in watermark removal. However, how to extract robust and effective features via CNNs of black
box in watermark removal is very important. In this paper, we propose an improved watermark removal
U-net (IWRU-net). Taking the robustness of obtained information into account, a serial architecture is
designed to facilitate useful information for guaranteeing performance in watermark removal. Taking
the problem of long-term dependency into account, U-nets based simple components are integrated into
the serial architecture to extract more salient hierarchical information for addressing watermark removal
problems. To increase the adaptability of IWRU-net to the real world, we use randomly distributed blind
watermarks to implement a blind watermark removal model. The experiment results illustrate that the
proposed method is superior to other popular watermark removal methods in terms of quantitative and
qualitative evaluations.

Keywords: serial architecture; U-net; blind watermark removal

1. Introduction

To protect the copyright of files, added watermarks became a popular way to increase
security of protected files [1]. To test the quality of added watermarks, watermark removal
is an effective tool [2]. Integrating prior occurrences and the likelihood of cross-channel
correlation can repair image information of the damaged channel in watermark removal [3].
Just-noticeable-distortion is used to estimate the energy to remove the watermark [4]. Tak-
ing into questions of scanned and back-lit pages in archaic documents account, a known
lexicon of fragments is exploited to find watermarks and remove them for overcoming the
effects of damaged files [5]. To improve the effect of removing watermarks, the discrete
cosine transform domain and a key-based matrix are fused to remove visible watermark-
ing [6]. Alternatively, authors use entropy and edge entropy as human visual system (HVS)
characteristics to quickly extract watermark features and remove them [7]. To improve the
generalization ability of the watermark removal algorithm, using wavelet transform can
extract watermark features, the obtained features are used to revise singular values in order
to test the robustness of the obtained watermark [8]. Ansari et al. adjusted block differ-
ences between HL and LH to automatically select the wavelet coefficient for improving
watermark quality [9]. In addition, Fourier transform is effective for watermark removal.
For instance, using the Fourier transform domain to remove watermarks of R, G and B in
the watermark images is a good tool for blind color image watermark removal [10]. Taking
robustness and imperceptibility into account, scholars ensure a signal-to-noise ratio that
enables the host image to maximize the embedding strength for making a tradeoff between
robustness and imperceptibility in the image watermarking removal [11]. Although these
methods have performed well in watermark removal, they still suffer from the following
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drawbacks: (1) They use complex optimization methods to improve visual effect of water-
mark removal. (2) Manually choosing parameters is a good tool to improve the performance
of watermark removal. To overcome these disadvantages, we use deep learning techniques,
especially convolutional neural networks to deal with watermark removal.

Chen et al. proposed deep neural networks for watermark removal [12]. To improve
the quality of watermark removal, Sai et al. used lower dimensional projections in the
intermediate layers of a deep CNN to express the image content in watermark removal [13].
Haribabu et al. utilized an auto-encoder to deal with watermark images with two indepen-
dent images for watermark removal [14]. To improve the robustness of watermarks, Chen
et al. used an adaption of elastic weight consolidation and unlabeled data augmentation
to better represent watermarks for watermark removal [15]. Using roughly localized and
separate watermarks is a good tool for an image watermark [16]. Using a CNN, wavelet
transform and residual regularization loss function, rather than down- and up-sampling
operations, can improve the visual quality of watermark images [17].

Although these CNNs have obtained comparative results in watermark removal, the
key question is how to extract effective features of CNNs with black box to better represent
watermarks for more complex watermark removal. In this paper, we propose an improved
watermark removal U-net (IWRU-net). To obtain more robust information, a serial architec-
ture is presented to extract useful information to pursue better performance for watermark
removal. To address a long-term dependency problem, U-net’s base simple components are
fused into the designed serial architecture to extract more salient hierarchical information
for dealing with the watermark removal problem. Taking into the adaptability of IWRU-net
in the real world account, we use randomly distributed blind watermarks to conduct a
blind watermark removal model. The experiment’s results show that the proposed method
is effective in quantitative and qualitative evaluations.

This paper makes the following contributions.

1. A serial architecture is used to facilitate more useful information for improving the
performance of watermark removal.

2. U-nets are gathered into a serial architecture to extract more salient hierarchical
information to address the long-term dependency on deep CNNs for watermark
removal.

3. To improve the adaptability of IWRU-net on mobile devices in the real world, ran-
domly distributed watermarks with different types are used to train a blind watermark
removal model.

The remaining parts of this paper have the following organizations. Section 2 repre-
sents related work on the proposed method. Section 3 lists the proposed method. Section 4
presents experiments. Section 5 offers conclusions.

2. Related Work
2.1. Deep CNNs for Watermark Removal

Due to their strong learning ability, CNNs are often exploited for image applications [18,19].
For example, CNNs are used to extract robust features for better representing watermarks
for watermark removal [20]. To address different watermarks, a detector based on the CNN
is used to detect the locations of watermarks and to remove watermarks [20]. To deal with
blind watermark removal, Lee et al. used a pre-processing network, a watermark embedding
network and a watermark extraction network to enhance the host image with super-resolution
and the watermark invisibility for blind watermark removal [21]. To address artifacts and blur-
riness caused by opaque watermarks, dual convolutions are used for watermark removal [22].
That is, the first network is exploited to remove the watermark. The second network is utilized
to optimize the second network for further filter watermarks. Due to problem of conventional
perceptual hashing, perceptual hash is embedded into a CNN to obtain a weight way for
verifying watermarking [23]. To address watermarks in remote operations, a novel zero-bit
watermarking algorithm with adversarial model examples was used to extract the water-
mark and remove it [24]. In a tradeoff between robustness and transparency, a combination
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of water wave optimization, chaotic fruit fly optimization algorithm and CNN was de-
veloped for verifying watermarks [25]. To discriminate between attack watermarks and
corrected watermarks, a generative adversarial network (GAN) was used for watermark
removal [26]; that is, a generative network based on U-net architecture was used to extract
high- and low-level features for generating images. Also, a discriminative network was
used to distinguish between the truth of generated and original images, which can also be
used to remove the watermark. To reduce the time of watermark removal, a lightweight
CNN was deigned [27]. To improve watermark removal, a discrete cosine transformation
and Harris hawks method were fused into a CNN to filter watermarks [28]. To improve the
ability of watermark removal, a progressive pre-processing operation was gathered into
a residual dense network to extract more low-frequency features and enhance the attack
ability of the designed network for image watermark removal [29]. Motivated by that, we
designed a novel CNN for image watermark removal.

2.2. Cascaded Architectures for Image Applications

To extract richer features, a cascaded architecture was designed to improve the perfor-
mance in image applications [30,31]. For instance, Qin et al. trained a cascaded network
composed simultaneously of a region proposal network and a fast R-CNN to improve the
accuracy rate of facial detection [30]. To address undersampled data, a cascaded CNN was
presented with MR images for overcoming undersampled data [32]. To overcome the effect
of noise and artifacts, two identical networks were cascaded to enhance the classification
results of medical images [33]. That is, the first network was used to remove noise; the
second network was exploited to classify medical images. Taking into effect of different
factors for image dehazing account, Li et al. used two sub-networks to address medium
transmission and global atmospheric light to obtain more realistic effects, closer to the real
world, to improve the practicality of the proposed method [34]. Alternatively, Yan et al.
combined multi-frame geometry and jointed training to gather low- and high-frequency
information to enhance the image quality of consumer depth cameras [35]. To improve the
performance of image registration, each cascaded network can further deal with warped
images to change the image quality [36]. To fully deal with the specific attributes of HSIs, a
cascaded architecture based on two recurrent neural networks was used for hyper-spectral
image classification [37]. Specifically, the first RNN was applied to remove redundant
information from spectral bands. The second RNN can extract more extra information
obtained from nonadjacent spectral bands. Two networks can improve the discrimina-
tive ability of the obtained classifier. Besides, a cascaded network can use a hierarchical
architecture to extract more useful features to enhance the image quality [38]. Tian et al.
designed a heterogeneous architecture and a stacked convolutional layer to mine richer
low- and high-frequency features for addressing the unstable problem of a SR model [39].
To overcome the challenge of the low spatial resolution of hyper-spectral images, a network
was implemented by cascading two sub-networks [40]. That is, the first network was used
to obtain high resolution multispectral panchromatic images; the second network was
exploited to predict abundance maps. Two networks can better deal with hyperspectral
image resolution. The cascade network architecture was extended for facial expression
recognition [41]. Combining group convolutional networks and stacked CNNs can be
used to enhance the relationships of different channels for image super-resolution [42,43].
Following the above studies, we can see that cascading networks are useful for image
applications. Inspired by that, we designed a cascading network architecture for image
watermark removal.

3. The Proposed Method
3.1. Network Architecture

To extract robust and effective features for watermark removal, we propose an im-
proved watermark removal U-net with 42 layers as well as an IWRU-net, as reported
in Figure 1. To improve the robustness of obtained features, a serial architecture is im-

97



Electronics 2022, 11, 3760

plemented by cascading two sub-networks in order to obtain effective information for
improving the performance of watermark removal. To address long-term dependency
problem, U-nets base simple components are fused into the designed serial architecture to
extract more salient hierarchical information for dealing watermark removal problem. To
increase the adaptability of the IWRU-net to the real world, we use randomly distributed
blind watermarks to implement a blind watermark removal model. To roughly express the
above, we conduct the following equation.

Ic = IWRUnet(Iw)
= UnetBlock(UnetBlock(Iw))

(1)

where Iw denotes a watermark image and IWRUnet is a function of IWRU-net. Ic represents
a clean image. UnetBlock expresses the function of the Unet Block. Also, IWRUnet is
trained by the loss function illustrated in Section 3.2. Finally, each Unet Block is shown in
Section 3.3.
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3.2. Loss Function

To improve the training efficiency, least absolute deviation (LAD) [44,45] is used to
train the IWRU-net model for image watermark removal. That is, we use a watermark
image and a clean image to act in an IWRU-net according to Equation (2) to train a
watermark removal model.

D(θ) =

t
∑

j=1

∣∣∣I j
w − IWRUnet(I j

w)
∣∣∣

t
(2)

where I j
w is the jth watermark image, t expresses the total number of watermark images, D

denotes a loss function for training a IWRU-net watermark removal model and θ is used to
represent the parameters. Note that the parameters are optimized by Adam [46] when the
IWRU-net is trained.

3.3. Each Unet Block

A serial architecture composed of two sub-networks is key to improving the robust-
ness of the obtained features in the IWRU-net. Also, each 21-layer U-net filling in each
sub-network is used to obtain more salient hierarchical information for watermark removal.
That is, the 1st, 9th, 11th, 13th, 15th, 17th, 19th and 20th layers are composed of Conv+ReLU;
the 2nd–7th layers include Conv+ReLU+MaxPool; the 8th, 10th, 12th, 14th, 16th and 18th
layers contain Conv+ReLU+ConvT. Also, the last layer includes Conv+LeakyReLU. The
mentioned Conv+ReLU is a combination of a convolutional layer and an activation func-
tion of ReLU [47]. The mentioned Conv+ReLU+MaxPool is a combination of a convolu-
tional layer, an activation function of ReLU and a pooling function of max pooling [48].
Conv+ReLU+ConvT is a combination of a convolutional layer, ReLU and deconvolution
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(ConvTranspose2d). In addition, a convolutional layer is used to obtain linear features.
ReLU is exploited to map linear features into non-linear features. MaxPool is utilized to
reduce the dimension of data to improve the efficiency of training a IWRU-net model. Con-
vTranspose2d is exploited to obtain our predicted results. LeakyReLU is exploited to map
linear features onto non-linear features [49]. To enhance the memory ability of IWRU-net,
we use concatenation operations to integrate shallow features to transmit deep layers. That
is, features of the input and the 18th layer are fused by a concatenation operation as an input
of the 19th layer. Features of the 2nd layer and 16th layer are merged by a concatenation
operation as an input of the 16th layer. Features of the 3rd layer and 14th layer are gathered
by a concatenation operation as an input of the 15th layer. Features of the 4th layer and
12th layer are fused by a concatenation operation as an input of the 13th layer. Features of
the 5th layer and 10th layer are gathered by a concatenation operation as an input of the
11th layer. Features of the 6th layer and 8th layer are gathered by a concatenation operation
as an input of the 9th layer. Also, each convolutional kernel size is 3 × 3. Input and output
channel number of each layer are shown as follows. The 1st layer has 3 input channels and
48 output channels. The 2nd–8th layers have 48 input and output channels, respectively.
The 9th, 10th, 12th, 14th, 16th and 18th layers have 96 input and output channels. The 13th,
15th and 17th have 144 input channels and 96 output channels, respectively.

The 19th layer has 99 input channel and 64 output channels. The 20th layer has
64 input channels and 32 output channels. The 21st layer has 32 input channels and
3 output channels.

To allow readers to understand illustrations the above visually, we conducted the
following equations.

Oi
F_UnetBlock = UnetBlock(Iw)

= CLR(CR(CR(Co(CRC(CR(C0(CRC(CR(C0(CRC(CR(Co(CRC(Ot), O4))), O3))), O2))), Iw)))) (3)

Ot = CR(Co(CRC(CR(Co(CRC(6MCR(CR(Iw))), O6))), O5)) (4)

O6 = 5MCR(CR(Iw)) (5)

O5 = 4MCR(CR(Iw)) (6)

O4 = 3MCR(CR(Iw)) (7)

O3 = 2MCR(CR(Iw)) (8)

O2 = MCR(CR(Iw)) (9)

where CR denotes a combination of a convolution and ReLU; nMCR is n stacked MCR,
where n varies from 1 to 6; CRC expresses a combination of a convolution, ReLU and Max
pooling; CLR represents a combination of a convolution and LeakyReLU; Oj stands for
output of the jth layer and j = 2, 3, 4, 5, 6; Ot is a temporary output; Oi

F_UnetBlock is the ith
output of the Unet Block (i = 1, 2).

4. Experiments
4.1. Datasets

Training dataset. Following [50–52], we chose public large-scale visible watermarks
(LVW) [20] for our training dataset to train our IWRU-net. The training dataset is composed
of 60,000 watermarked images with 80 watermarks. Each watermark is embedded into
750 images. Also, we chose 3000 images without watermarks from the LVW. To enlarge
the categories of training samples, we rotated seven conducted watermarks from −30◦

to 30◦, scaled them from 70% to 100% and adjusted them to a transparency of 50% to
80% then randomly added them to the mentioned 3000 images to achieve a watermark
coverage of 10% for constructing watermark images, where watermark coverage is the
ratio of watermarking pixels to all the pixels in an entire image.
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Test datasets. In order to fairly test the performance of our IWRU-net for watermark
removal, we randomly selected 200 images from the LVW and colored large-scale water-
mark dataset (CLWD) [16] as test datasets. Specifically, 100 images were chosen from the
LVW and the rest were chosen from the CLWD. Watermark images were rotated from −30◦

to 30◦, underwent random scaling of 70% to 100% and random transparency adjustments
of 50% to 80%. Additionally, a watermark was added into an image as a test image.

4.2. Experimental Settings

Our experiments were conducted on a PC. The PC has two CPUs of Intel(R) Xeon(R)
Silver 4210 CPU@2.20GHz with RAM of 128 G and a Nvidia GeForce GTX 3090 GPU, where
CUDN of 11.1 and CUDNN of 7.4.1 are used to accelerate the GPU. Our codes are run by
PyTorch of 1.10.2 and Python of 3.8.12 on Ubuntu of 20.04.2. The initial learning rate is
set to 1 × 10−4. The number of epochs is 100. The learning rate has 0.5 times reduction
each 200,000 iterations. All the training images and test images were scaled to 512 × 512
as inputs of the IWRU-net. Outputs of the IWRU-net need to be scaled the same as the
original images. Other parameters are the same as in [53].

4.3. Experimental Analysis

Due to their hierarchical architecture, deep CNNs have obtained stronger learning
abilities for image application, where hierarchical features have obtained features from
different layers [54]. However, how to ensure obtained robust features is very important.
Following Section 2.2, we can see that cascaded architectures are suitable to mine for
more accurate features for image applications. Inspired by that, we designed an improved
watermark removal U-net (IWRU-net) based on a cascaded architecture. That is, a serial
architecture is used to facilitate useful information for guaranteeing performance in wa-
termark removal. In this paper, we used two blocks (Unet_Blocks) in a serial way to form
the serial architecture for image watermark removal in Figure 1. To address long-term
dependency problems, we chose U-net as a simple component of each block (Unet_Block)
to extract more salient hierarchical information to address watermark removal problems.
To verify the effectiveness of the serial architecture, we used an IWRU-net and a single
U-net on 100 images with seven watermarks from the LVW dataset to conduct experiments,
where the settings of the chosen watermark images are the same as in Section 4.2. That is,
the IWRU-net obtained higher peak signal-to-noise ratio (PSNR) [55] than that of a single
U-net for image watermark removal as shown in Table 1, which shows the effectiveness of
serial architecture in image watermark removal.

To increase the diversity of the obtained features, we used six up-sampling and down-
sampling operations in each U-net to extract richer features. We used IWRU-net and
IWRU-net without up- and down-sampling operations to test the superiority of up- and
down-sampling operations in the IWRU-net for image watermark removal as reported in
Table 1. To test the effectiveness of six up- and down-sampling operations in each U-net
for image watermark, we chose the IWRU-net and the IWRU-net with four up- and down-
sampling operations in each U-net to conduct comparative experiments in Table 1. That
shows that the proposed IWRU-net exceeds IWRU-net with four up- and down-sampling
operations in each U-net in terms of PSNR, which verifies the good performance of the
six up- and down-sampling operations. Also, six up- and down-sampling operations
can enhance the expressive ability of the designed IWRU-net. To discuss the effect of
residual operations on serial architecture for image watermark removal, we used two
residual operations to act the input and output of each Unet Block (block) for watermark
removal. Due to the use of multiple concatenation operations in each U-net, two residual
operations will result in the over-enhancement phenomenon of obtained features for image
watermark removal. That is verified by both IWRU-net and IWRU-net with two extra
residual operations in Table 1. To allow readers more easily to observe the effect of the
IWRU-net, we chose one image from the LVW with one watermark randomly added onto
the given clean image, rotated from −30◦ to 30◦, scaled from 70% to 100% and adjusted to
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a transparency of 50% to 80% to conduct the visual watermark removal on the image. As
presented in Figure 2, we can see that our IWRU-net has obtained more clearly detailed
information than that obtained by the IWRU-net with two extra residual operations in the
observation area. This shows that two extra residual operations have a native effect on the
IWRU-net for image removal. In other words, the designed serial architecture is capable to
deal with watermark removal from images.

Table 1. PSNR (dB) results of different methods on 100 watermark images from the LVW for image
watermark removal.

Methods PSNR

IWRU-net (ours) 44.85
IWRU-net with four up- and down-sampling operations in each U-net 34.75

IWRU-net without up- and down-sampling operations 43.18
A single U-net 43.71

IWRU-net with two extra residual operations 36.77
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4.4. Experimental Results

Because image watermark removal is a low-level vision task, we chose a denoising
convolutional neural network (DnCNN) [53], a fast and flexible denoising convolutional
neural network (FFDNet) [56], a U-net [57], an attention-guided denoising convolutional
neural network (ADNet) [58] and a robust deformed denoising CNN (RDDCNN) [31] as
comparative methods to test the performance of image watermark removal in terms of
qualitative and quantitative evaluations on the LVW and CLWD. For qualitative evaluation,
we first used transparency rates of 1 and 0.5 to test the effects on the IWRU-net for image
watermark removal. As shown in Table 2, our IWRU-net obtained a higher PSNR at a
transparency of 1 than at 0.5 for image watermark removal, where one image is chosen
from the LVW and its other setting is the same as in Section 4.2. This also shows that, when
the transparency is lower, the IWRU-net has better results of watermark removal.
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Table 2. PSNR (dB) results at different transparency rates of 100% and 50% with the IWRU-net for
image watermark removal.

Transparency Rate PSNR

100% 45.67
50% 41.32

Then, 100 randomly selected images from the LVW and CLWD datasets in Section 4.2
were used to test the effects of the transparency rate by varying it from 0.5, 0.6, 0.7 to
0.8 on the IWRU-net for image watermark removal. As illustrated in Tables 3 and 4, we
can see that our IWRU-net is more effective than other methods, i.e., DnCNN, FFDNet
and Unet for LVW and CLWD in terms of the PSNR and structural similarity (SSIM) [59]
for blind watermark removal. This implies the robustness of our IWRU-net for image
watermark removal.

Next, we also measured the complexity (parameters and flops [60]) of different meth-
ods, i.e., DnCNN, FFDNet, Unet, ADNet, RDDCNN and IWRU-net on an image with
512 × 512 from the LVW. Also, we used one image with 256 × 256, 512 × 512, and
1024 × 1024 from the LVW to test the running time of different methods, i.e., DnCNN,
FFDNet, Unet, ADNet, RDDCNN and IWRU-net. As presented in Tables 5 and 6, we can
see that our IWRU-net also his acceptably effective in terms of complexity and running
time for image watermark removal. Compared with the cited methods, it is clear that our
proposed IWRU-net is competitive for image watermark removal.

Table 3. Average PSNR (dB) and SSIM of different networks on LVW datasets for varying trans-
parency rates of 0.5, 0.6, 0.7 and 0.8.

Methods PSNR SSIM

DnCNN [53] 42.95 0.9961
FFDNet [56] 38.48 0.9847

Unet [57] 43.71 0.9963
IWRU-net (ours) 44.85 0.9970

Table 4. Average PSNR (dB) and SSIM of different networks on CLWD datasets for varying trans-
parency rates of 0.5, 0.6, 0.7 and 0.8.

Methods PSNR SSIM

DnCNN [53] 44.67 0.9753
FFDNet [56] 37.54 0.9912

Unet [57] 45.35 0.9972
RDDCNN [31] 46.25 0.9971

ADNet [58] 46.47 0.9972
IWRU-net (ours) 46.52 0.9975

Table 5. The complexity of different watermark removal methods.

Methods Parameters Flops

DnCNN [53] 0.5594 M 36.6582 G
FFDNet [56] 0.4945 M 8.1023 G

Unet [57] 1.0120 M 18.6813 G
RDDCNN [31] 0.5591 M 36.7060 G

ADNet [58] 0.5215 M 34.2393 G
IWRU-net (ours) 2.0240 M 37.3625 G
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Table 6. Running time for different watermark removal methods on three image sizes.

Methods 256 × 256 512 × 512 1024 × 1024

DnCNN [53] 0.038228 0.154801 0.638453
FFDNet [56] 0.010732 0.037471 0.124227

Unet [57] 0.027889 0.097742 0.316260
RDDCNN [31] 0.057355 0.222245 1.559665

ADNet [58] 0.036286 0.147691 0.563838
IWRU-net (ours) 0.058375 0.199374 0.654419

To further test the performance of our IWRU-net, we used quantitative evaluation to
conduct visual effects as follows. We chose four images from the LVW, adding different
transparency rates of 0.5, 0.6, 0.7 and 0.8, respectively, to test the visual effects of the IWRU-
net. Also, DnCNN, FFDNet and Unet were used as comparative methods. One chosen
area of each predicted visual image was enlarged as an observation area. The observation
area is clearer, so its corresponding method has better performance in image watermark
removal. As shown in Figures 3–6, we can see that our IWRU-net has clearer areas for
different transparency rates. It shows that our IWRU-net is more advantageous in terms of
quantitative evaluation for image watermark removal. According to these findings, it is
known that the IWRU-net is very suitable to image watermark removal for qualitative and
quantitative evaluations.
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Figure 3. Visual effects of different methods with a transparency rate of 0.5 for image watermark removal.
(a) Original image, (b) watermark image, (c) DnCNN, (d) FFDNet, (e) U-net and (f) IWRU-net (ours).
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5. Conclusions

We propose an improved watermark removal U-net as IWRU-net. To improve the
robustness of the obtained information, a serial architecture was used to facilitate more
accurate information to guarantee the performance for watermark removal. To address
long-term dependency problems, U-nets as simple components were integrated into the
serial architecture to extract more salient hierarchical information for addressing watermark
removal problems. To increase the adaptability of IWRU-net on mobile devices in the real
world, randomly distributed watermarks of different types were used to train a blind
watermark removal model. Our method is competitive with other popular watermark
removal methods in terms of quantitative and qualitative evaluations. In the future, we
will design lightweight CNNs for image watermark removal.

Author Contributions: Validation and part idea, L.F.; Data curation, writing and validation, B.S.;
Investigation, L.S.; Part analysis, J.Z.; Part idea, visualization, writing (review), D.C.; Editing, H.Z.;
Writing and Funding acquisition, C.T. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was supported in part by the Guangdong Basic and Applied Basic Research
Foundation under Grant 2021A1515110079, in part by the Fundamental Research Funds for the
Central Universities under Grant D5000210966.

Conflicts of Interest: The authors declare no conflict of interest.

104



Electronics 2022, 11, 3760

References
1. Swanson, M.D.; Zhu, B.; Tewfik, A.H. Transparent robust image watermarking. In Proceedings of the 3rd IEEE International

Conference on Image Processing, Lausanne, Switzerland, 19 September 1996; IEEE: Piscataway, NJ, USA, 1996; Volume 3, pp. 211–214.
2. Wong, P.W. A public key watermark for image verification and authentication. In Proceedings of the 1998 International Conference

on Image Processing, ICIP98 (Cat. No. 98CB36269), Chicago, IL, USA, 7 October 1998; IEEE: Piscataway, NJ, USA, 1998; Volume 1,
pp. 455–459.

3. Park, J.; Tai, Y.W.; Kweon, I.S. Identigram/watermark removal using cross-channel correlation. In Proceedings of the 2012 IEEE
Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 16–21 June 2012; IEEE: Piscataway, NJ, USA, 2012;
pp. 446–453.

4. Hsu, T.C.; Hsieh, W.S.; Chiang, J.Y.; Su, T. New watermark-removal method based on Eigen-image energy. IET Inf. Secur. 2011,
5, 43–50. [CrossRef]

5. Boyle, R.D.; Hiary, H. Watermark location via back-lighting and recto removal. Int. J. Doc. Anal. Recognit. (IJDAR) 2009, 12, 33–46.
[CrossRef]

6. Yang, Y.; Sun, X.; Yang, H.; Li, C. Removable visible image watermarking algorithm in the discrete cosine transform domain. J.
Electron. Imaging 2008, 17, 033008. [CrossRef]

7. Makbol, N.M.; Khoo, B.E.; Rassem, T.H. Block-based discrete wavelet transform-singular value decomposition image watermark-
ing scheme using human visual system characteristics. IET Image Process. 2016, 10, 34–52. [CrossRef]

8. Ansari, I.A.; Pant, M. Multipurpose image watermarking in the domain of DWT based on SVD and ABC. Pattern Recognit. Lett.
2017, 94, 228–236. [CrossRef]

9. Huynh-The, T.; Banos, O.; Lee, S.; Yoon, Y.; Le-Tien, T. Improving digital image watermarking by means of optimal channel
selection. Expert Syst. Appl. 2016, 62, 177–189. [CrossRef]

10. Fares, K.; Amine, K.; Salah, E. A robust blind color image watermarking based on Fourier transform domain. Optik 2020,
208, 164562. [CrossRef]

11. Huang, Y.; Niu, B.; Guan, H.; Zhang, S. Enhancing image watermarking with adaptive embedding parameter and PSNR guarantee.
IEEE Trans. Multimed. 2019, 21, 2447–2460. [CrossRef]

12. Chen, X.; Wang, W.; Ding, Y.; Bender, C.; Jia, R.; Li, B.; Song, D.X. Leveraging unlabeled data for watermark removal of deep
neural networks. In Proceedings of the 36th International Conference on Machine Learning, Long Beach, CA, USA, 10–15 June
2019; pp. 1–6.

13. Sharma, S.S.; Chandrasekaran, V. A robust hybrid digital watermarking technique against a powerful CNN-based adversarial
attack. Multimed. Tools Appl. 2020, 79, 32769–32790. [CrossRef]

14. Haribabu, K.; Subrahmanyam, G.; Mishra, D. A robust digital image watermarking technique using auto encoder based
convolutional neural networks. In Proceedings of the 2015 IEEE Workshop on Computational Intelligence: Theories, Applications
and Future Directions (WCI), Kanpur, India, 14–17 December 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 1–6.

15. Chen, X.; Wang, W.; Bender, C.; Ding, Y.; Jia, R.; Li, B.; Song, D.X. Refit: A unified watermark removal framework for deep
learning systems with limited data. In Proceedings of the 2021 ACM Asia Conference on Computer and Communications Security,
Hong Kong, China, 7–11 June 2021; pp. 321–335.

16. Liu, Y.; Zhu, Z.; Bai, X. Wdnet: Watermark-decomposition network for visible watermark removal. In Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, HI, USA, 4–8 January 2022; pp. 3685–3693.

17. Lu, J.; Ni, J.; Su, W.; Xie, H. Wavelet-Based CNN for Robust and High-Capacity Image Watermarking. In Proceedings of the 2022
IEEE International Conference on Multimedia and Expo (ICME), Taipei, Taiwan, 18–22 July 2022; IEEE: Piscataway, NJ, USA,
2022; pp. 1–6.

18. Cao, L.; Liang, Y.; Lv, W.; Park, K.; Miura, Y.; Shinomiya, Y.; Yoshida, S. Relating brain structure images to personality
characteristics using 3D convolution neural network. CAAI Trans. Intell. Technol. 2021, 6, 338–346. [CrossRef]

19. Jafarbigloo, S.K.; Danyali, H. Nuclear atypia grading in breast cancer histopathological images based on CNN feature extraction
and LSTM classification. CAAI Trans. Intell. Technol. 2021, 6, 426–439. [CrossRef]

20. Cheng, D.; Li, X.; Li, W.; Lu, C.; Li, F.; Zhao, H.; Zheng, W. Large-scale visible watermark detection and removal with deep
convolutional networks. In Proceedings of the Chinese Conference on Pattern Recognition and Computer Vision (PRCV),
Guangzhou, China, 23–26 November 2018; Springer: Cham, Switzerland, 2018; pp. 27–40.

21. Lee, J.E.; Seo, Y.H.; Kim, D.W. Convolutional neural network-based digital image watermarking adaptive to the resolution of
image and watermark. Appl. Sci. 2020, 10, 6854. [CrossRef]

22. Li, T.; Feng, B.; Li, G.; Li, X.; He, M.; Li, P. Visible Watermark Removal Based on Dual-input Network. In Proceedings of the 2021 ACM
International Conference on Intelligent Computing and its Emerging Applications, Jinan, China, 28–29 December 2021; pp. 46–52.

23. Meng, Z.; Morizumi, T.; Miyata, S.; Kinoshita, H. An Improved Design Scheme for Perceptual Hashing based on CNN for Digital
Watermarking. In Proceedings of the 2020 IEEE 44th Annual Computers, Software, and Applications Conference (COMPSAC),
Madrid, Spain, 13–17 July 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1789–1794.

24. Le Merrer, E.; Perez, P.; Trédan, G. Adversarial frontier stitching for remote neural network watermarking. Neural Comput. Appl.
2020, 32, 9233–9244. [CrossRef]

25. Ingaleshwar, S.; Dharwadkar, N.V. Water chaotic fruit fly optimization-based deep convolutional neural network for image watermarking
using wavelet transform. In Multimedia Tools and Applications; Springer: Berlin/Heidelberg, Germany, 2021; pp. 1–25.

105



Electronics 2022, 11, 3760

26. Li, Q.; Wang, X.; Ma, B.; Wang, X.; Wang, C.; Gao, S.; Shi, Y. Concealed attack for robust watermarking based on generative model
and perceptual loss. In IEEE Transactions on Circuits and Systems for Video Technology; IEEE: Piscataway, NJ, USA, 2021.

27. Dhaya, R. Light weight CNN based robust image watermarking scheme for security. J. Inf. Technol. Digit. World 2021, 3, 118–132.
28. Chacko, A.; Chacko, S. Deep learning-based robust medical image watermarking exploiting DCT and Harris hawks optimization.

Int. J. Intell. Syst. 2022, 37, 4810–4844. [CrossRef]
29. Wang, C.; Hao, Q.; Xu, S.; Ma, B.; Xia, Z.; Li, Q.; Li, J.; Shi, Y.Q. RD-IWAN: Residual Dense based Imperceptible Watermark Attack

Network. In IEEE Transactions on Circuits and Systems for Video Technology; IEEE: Piscataway, NJ, USA, 2022.
30. Qin, H.; Yan, J.; Li, X.; Hu, X. Joint training of cascaded CNN for face detection. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 1–26 July 2016; pp. 3456–3465.
31. Zhang, K.; Zuo, W.; Chen, Y.; Meng, D.; Zhang, L. Beyond a gaussian denoiser: Residual learning of deep cnn for image denoising.

IEEE Trans. Image Process. 2017, 26, 3142–3155. [CrossRef] [PubMed]
32. Schlemper, J.; Caballero, J.; Hajnal, J.V.; Price, A.N.; Rueckert, D. A deep cascade of convolutional neural networks for MR image

reconstruction. In Proceedings of the International Conference on Information Processing in Medical Imaging, Boone, CA, USA,
25–30 June 2017; Springer: Cham, Switzerland, 2017; pp. 647–658.

33. Wu, D.; Kim, K.; Fakhri, G.E.; Li, Q. A cascaded convolutional neural network for X-ray low-dose CT image denoising. arXiv
2017, arXiv:1705.04267.

34. Li, C.; Guo, J.; Porikli, F.; Fu, H.; Pang, Y. A cascaded convolutional neural network for single image dehazing. IEEE Access 2018,
6, 24877–24887. [CrossRef]

35. Yan, S.; Wu, C.; Wang, L.; Xu, F.; An, L.; Guo, K.; Liu, Y. Ddrnet: Depth map denoising and refinement for consumer depth
cameras using cascaded cnns. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14
September 2018; pp. 151–167.

36. Zhao, S.; Dong, Y.; Chang, E.I.; Xu, Y. Recursive cascaded networks for unsupervised medical imageregistration. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 10600–10610.

37. Hang, R.; Liu, Q.; Hong, D.; Ghamisi, P. Cascaded recurrent neural networks for hyperspectral image classification. IEEE Trans.
Geosci. Remote Sens. 2019, 57, 5384–5394. [CrossRef]

38. Wu, J.; Ma, J.; Liang, F.; Dong, W.; Shi, G.; Lin, W. End-to-end blind image quality prediction with cascaded deep neural network.
IEEE Trans. Image Process. 2020, 29, 7414–7426. [CrossRef]

39. Tian, C.; Xu, Y.; Zuo, W.; Zhang, B.; Fei, L.; Lin, C. Coarse-to-fine CNN for image super-resolution. IEEE Trans. Multimed. 2020,
23, 1489–1502. [CrossRef]

40. Lu, X.; Zhang, J.; Yang, D.; Xu, L.; Jia, F. Cascaded convolutional neural network-based hyperspectral image resolution
enhancement via an auxiliary panchromatic image. IEEE Trans. Image Process. 2021, 30, 6815–6828. [CrossRef] [PubMed]

41. Xue, F.; Tan, Z.; Zhu, Y.; Ma, Z.; Guo, G. Coarse-to-fine cascaded networks with smooth predicting for video facial expression
recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada,
4 November 2022; pp. 2412–2418.

42. Tian, C.; Yuan, Y.; Zhang, S.; Lin, C.; Zuo, W.; Zhang, D. Image Super-resolution with An Enhanced Group Convolutional Neural
Network. arXiv 2022, arXiv:2205.14548. [CrossRef] [PubMed]

43. Tian, C.; Zhang, Y.; Zuo, W.; Lin, C.; Zhang, D.; Yuan, Y. A heterogeneous group CNN for image super-resolution. arXiv 2022,
arXiv:2209.12406. [CrossRef] [PubMed]

44. Bloomfield, P.; Steiger, W.L. Least Absolute Deviations: Theory, Applications, and Algorithms; Birkhäuser: Boston, MA, USA, 1983.
45. Pollard, D. Asymptotics for least absolute deviation regression estimators. Econom. Theory 1991, 7, 186–199. [CrossRef]
46. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
47. Agarap, A.F. Deep learning using rectified linear units (relu). arXiv 2018, arXiv:1803.08375.
48. Murray, N.; Perronnin, F. Generalized max pooling. In Proceedings of the IEEE conference on computer vision and pattern

Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 2473–2480.
49. Xu, J.; Li, Z.; Du, B.; Zhang, M.; Liu, J. Reluplex made more practical: Leaky ReLU. In Proceedings of the 2020 IEEE Symposium

on Computers and communications (ISCC), Rennes, France, 7–10 July 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–7.
50. Li, X.; Lu, C.; Cheng, D.; Li, W.; Cao, M.; Liu, B.; Ma, J.; Zheng, W. Towards photo-realistic visible watermark removal with

conditional generative adversarial networks. In Proceedings of the International Conference on Image and Graphics, Beijing,
China, 23–25 August 2019; Springer: Cham, Switzerland, 2019; pp. 345–356.

51. Liang, J.; Niu, L.; Guo, F.; Long, T.; Zhang, L. Visible Watermark Removal via Self-calibrated Localization and Background Refinement.
In Proceedings of the 29th ACM International Conference on Multimedia, Chengdu, China, 20 October 2021; pp. 4426–4434.

52. Cun, X.; Pun, C.M. Split then refine: Stacked attention-guided ResUNets for blind single image visible watermark removal. In
Proceedings of the AAAI Conference on Artificial Intelligence, Virtually, 2–9 February 2021; Volume 35, pp. 1184–1192.

53. Zhang, Q.; Xiao, J.; Tian, C.; Chun Wei Lin, J.; Zhang, S. A robust deformed convolutional neural network (CNN) for image
denoising. CAAI Trans. Intell. Technol. 2022. [CrossRef]

54. Khan, A.; Sohail, A.; Zahoora, U.; Qureshi, A.S. A survey of the recent architectures of deep convolutional neural networks. Artif.
Intell. Rev. 2020, 53, 5455–5516. [CrossRef]

55. Hore, A.; Ziou, D. Image quality metrics: PSNR vs. SSIM. In Proceedings of the 2010 20th International Conference on Pattern
Recognition, Istanbul, Turkey, 23–26 August 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 2366–2369.

106



Electronics 2022, 11, 3760

56. Zhang, K.; Zuo, W.; Zhang, L. FFDNet: Toward a fast and flexible solution for CNN-based image denoising. IEEE Trans. Image
Process. 2018, 27, 4608–4622. [CrossRef]

57. Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the
International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October
2015; Springer: Cham, Switzerland, 2015; pp. 234–241.

58. Tian, C.; Xu, Y.; Li, Z.; Zuo, W.; Fei, L.; Liu, H. Attention-guided CNN for image denoising. Neural Netw. 2020, 124, 117–129.
[CrossRef] [PubMed]

59. Setiadi, D.R.I.M. PSNR vs SSIM: Imperceptibility quality assessment for image steganography. Multimed. Tools Appl. 2021,
80, 8423–8444. [CrossRef]

60. Dolbeau, R. Theoretical peak FLOPS per instruction set: A tutorial. J. Supercomput. 2018, 74, 1341–1377. [CrossRef]

107





Citation: Zhao, B.; Wu, H.; Ma, Z.;

Fu, H.; Ren, W.; Liu, G. Nighttime

Image Dehazing Based on

Multi-Scale Gated Fusion Network.

Electronics 2022, 11, 3723. https://

doi.org/10.3390/electronics11223723

Academic Editor: Gwanggil Jeon

Received: 22 October 2022

Accepted: 7 November 2022

Published: 14 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Nighttime Image Dehazing Based on Multi-Scale Gated
Fusion Network
Bo Zhao 1,2,*, Han Wu 1, Zhiyang Ma 2, Huini Fu 2, Wenqi Ren 3 and Guizhong Liu 1

1 School of Information and Communication Engineering, Xi’an Jiaotong University, Xi’an 710049, China
2 China North Vehicle Research Institute, Beijing 100072, China
3 School of Cyber Science and Technology, Sun Yat-sen University, Shenzhen Campus, Shenzhen 528406, China
* Correspondence: whu_c2003@163.com

Abstract: In this paper, we propose an efficient algorithm to directly restore a clear image from a
hazy input, which can be adapted for nighttime image dehazing. The proposed algorithm hinges on
a trainable neural network realized in an encoder–decoder architecture. The encoder is exploited
to capture the context of the derived input images, while the decoder is employed to estimate the
contribution of each input to the final dehazed result using the learned representations attributed
to the encoder. The constructed network adopts a novel fusion-based strategy which derives three
inputs from an original input by applying white balance (WB), contrast enhancing (CE), and gamma
correction (GC). We compute pixel-wise confidence maps based on the appearance differences
between these different inputs to blend the information of the derived inputs and preserve the
regions with pleasant visibility. The final clear image is generated by gating the important features
of the derived inputs. To train the network, we introduce a multi-scale approach to avoid the halo
artifacts. Extensive experimental results on both synthetic and real-world images demonstrate that the
proposed algorithm performs favorably against the state-of-the-art dehazing for nighttime images.

Keywords: night image dehazing; encoder–decoder architecture; image fusion; multi-scale network

1. Introduction

The single-image dehazing [1,2] aims to estimate the unknown clean scene given a
hazy or foggy image. This is a classical image processing problem, which has received
active research efforts in the computer vision communities [3]. Early dehazing methods
focus on exploiting hand-crafted features based on the statistics of clean images, such as
dark channel prior [1] and local max contrast [4]. To avoid hand-crafted priors, recent
work [5–7] automatically learns haze-relevant features using convolutional neural networks
(CNNs). In the dehazing literature, under the assumption of spatially invariant atmospheric
light, the hazing process is usually modeled as [1],

I(x) = J(x)t(x) + A
(
1− t(x)

)
, (1)

where J(x) and I(x) denote the haze-free scene radiance and the observed hazy image, A
is the global atmospheric light, and t(x) is the scene transmission describing the portion
of light that is not scattered and reaches the camera sensors. To recover the clear scene
from a hazy input, most dehazing methods try to estimate the transmission t(x) and the
atmospheric light A, given a hazy image.

Estimating transmission from hazy images is a severely ill-posed problem. Some
approaches try to use visual cues to capture statistical properties of hazy images [8,9].
However, these transmission approximations are inaccurate, especially for the scenes
where the colors of objects are inherently similar to those of atmospheric lights. Note that
such an erroneous transmission estimation directly affects the quality of the dehazed image,
resulting in undesired haze artifacts. Instead of using hand-crafted features, CNN-based
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approaches [5,7] are proposed to estimate the transmissions. However, these methods still
follow the conventional dehazing methods in estimating atmospheric lights to recover
clean images. Thus, if the transmission maps are not estimated well, they will interfere
with the following airlight estimation and thereby lead to low-quality dehazed results.

In addition, even the state-of-the-art deep learning based methods need to compute
the atmospheric light [5,7,10] or reformulated variables which are dependent on the at-
mospheric light [6,11]. These approaches suffer from important limitations on nighttime
hazy scenes. This is mainly due to the multiple light sources that cause a strongly non-
uniform illumination of the scene. However, we note that there are a few works to address
nighttime dehazing.

To address the above issues, we propose a novel trainable neural network that does not
explicitly estimate the transmission and atmospheric light. Thus, the artifacts arising from
transmission and airlight estimation errors can be alleviated in the final restored results.
The proposed neural network is built on a fusion strategy which aims to seamlessly blend
several input images by preserving only the specific features of the composite output image.

We derive several inputs based on two major factors in nighttime hazy images that
need to be dealt with. The first one is the color cast introduced by the environmental
light. The second one is the lack of visibility due to attenuation. Therefore, we tackle these
two problems by deriving three inputs from the original degraded image with the aim
of recovering the visibility of the scene in at least one of them. The first input ensures
a natural rendition (second column of Figure 1) of the output by eliminating chromatic
casts caused by the atmospheric or environmental light. The second contrast-enhanced
input generates a better holistic appearance but mainly in the thick hazy regions. However,
the contrast-enhanced images are too dark in the light hazy regions. Hence, to recover
the light hazy regions, we find that the gamma-corrected images restore information of
the light hazy regions well. Consequently, the three derived inputs are gated by three
confidence maps (fifth, sixth, and seventh columns of Figure 1), which aim to preserve
the regions with good visibility. In addition, we propose to use the normalization (NM)
of nighttime hazy images to provide detailed scene information by substituting gamma
correction.

Nighttime input WB CE NM Weight of WB Weight of CE Weight of NM Our result

Figure 1. We exploit a multi-scale gated fusion network for nighttime haze removal. The first column
gives degraded inputs. The second, third, and fourth columns show derived inputs for original
images. The learned confidence maps for the derived inputs are shown in the fifth, sixth, and seventh
columns, respectively. The last column shows our results by the proposed algorithm.

This paper is an extension of our preliminary version [12], which concentrates on
daytime dehazing. In this paper, we first improve the network architecture (Section 3.2)
and then adapt our network to work effectively on nighttime hazy scenes (Section 4). The
contributions of this paper are summarized as follows:

• We propose a deep trainable neural network that restores clear images without assum-
ing restrictions on scene transmission and atmospheric light.

• We demonstrate the effectiveness of a gated fusion network for single nighttime image
dehazing by leveraging the derived inputs from an original input.

• We train the proposed model with a multi-scale approach to eliminate the halo artifacts
that hurt image recovering.

• We show that the proposed algorithm can effectively process nighttime hazy images
which are not well handled by most dehazing methods. We show that the proposed
method performs favorably against the state-of-the-arts.
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2. Related Work
2.1. Day-Time Image Dehazing

Tang et al. [13] combined four types of haze-relevant features with Random Forest
to estimate the transmission. Zhu et al. [14] introduced a linear model and learned the
parameters of the model in a supervised manner under a color attenuation prior. However,
these methods are still developed based on hand-crafted features.

Recently, CNNs have also been used for haze removal and related problems [15–18].
Cai et al. [5] proposed a DehazeNet and a BReLU layer to estimate the transmissions from
hazy inputs. In [7], a coarse-scale network was first used to learn the mapping between hazy
inputs and their transmissions, and then, a fine-scale network was exploited to refine the
transmission. Zhang and Patel [10] proposed a densely connected encoder–decoder struc-
ture for joint estimating the transmission map and atmospheric light. Yang and Sun [11]
build a deep architecture incorporating the prior learning for single image dehazing. In the
recent level-aware progressive network (LAP-Net) model, an image is restored by fusing
the results at various haze levels at different stages. However, one problem of these CNN-
based methods [5,7] is that all these models require accurate transmission and atmospheric
light estimation steps to restore clear images. Although the AOD-Net [6] method bypasses
the estimation step, this approach still needs to compute an additional variable K(x) which
integrates both transmission t(x) and atmospheric light A. Thus, the AOD-Net falls as one
of the physics models as described in (1) that encounters issues with ill-posed problems. To
alleviate these problems, several end-to-end networks [19–22] have recently been proposed
to directly filter the input image.

Different from these CNN-based approaches, our proposed network is built on the
principle of image fusion, and it is trained to produce the sharp image directly without
estimating transmission and atmospheric light. The main idea of image fusion is to combine
several images into a single one, retaining only the most significant features. This idea
has been used in a number of applications such as image editing [23] and video super-
resolution [24].

2.2. Nighttime Dehazing

Different from common image dehazing, nighttime hazy images often include visible
man-made light sources with varying colors and non-uniform illumination [25]. These light
sources may introduce noticeable amounts of glow that are not present in haze images taken
in the daytime, which makes the estimation of atmospheric light inaccurate and causes
some sharp images prior to becoming invalid. However, in recent years, the community
has paid relatively less research attention to the nighttime haze removal problem.

Pei and Lee [26] estimate the ambient illumination and the haze thickness by trans-
ferring the hazy input into a grayish one; then, they recover the dehazed result using
the refined DCP by a bilateral filter in local contrast correction. Zhang et al. [27] build a
new imaging model for nighttime conditions; then, they remove the haze by using the
DCP along with estimating the point-wise environmental light. Based on the proposed
physics model, they estimate the ambient illumination and transmission by combining a
maximum reflectance prior (MRP) [28]. However, MRP shares the common limitations of
most statistical prior-based methods. When the scene objects are inherent with a solely
distinct color, the maximum reflectance prior becomes invalid in nighttime scenes. In [29],
Li et al. also introduce a nighttime haze model that is a linear combination of the direct
transmission, airlight and glow. Using the physics model, the authors first reduce the
effect of the glow and then recover the final dehazed result. Nevertheless, this approach
tends to generate some halo artifacts in the dehazed results. Ancuti et al. [30] assume
that the brightest pixels of local patches filtered by a minimal operator can capture the
properties of atmospheric light, and they use the multi-scale fusion approach to obtain a
visibility-enhanced image.
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Similar to [25,30], we also propose a multi-scale fusion network for nighttime dehazing.
Differently, without any tedious estimation of contrast, saturation, saliency, and airlight,
we directly predict the weight maps for each derived input by the trainable network.

3. Multi-Scale Gated Fusion Network Architecture

This section presents the details of our multi-scale gated fusion network that employs
an original degraded image and three derived images as inputs. We refer to this network
as multi-scale GFN, or MSGFN, as shown in Figure 2. The central idea is to learn the
confidence maps to combine several input images into a single one by keeping only the
most significant features of them.
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Figure 2. The architecture of the proposed multi-scale GFN, which takes a hazy image pyramid and
the corresponding three enhanced versions as the input and outputs a latent image pyramid. These
three derived inputs are weighted by the three confidence maps in each scale learned by our network,
and the full-resolution output is the final dehazed result. The network contains layers of symmetric
encoders and decoders. Skip shortcuts are connected from the convolutional feature maps to the
deconvolutional feature maps.

3.1. Derived Inputs

We derive several inputs based on the following observations. The first one is that the
colors in hazy images often change due to the influence of the atmospheric light. The second
is the lack of visibility in distant regions due to scattering and attenuation phenomena.
Based on these observations, we generate three inputs that recover the color and visibility
of the entire image from the original hazy image. We first estimate the white balanced
(WB) image Iwb of the hazy input I to recover the latent color of the scene. Then, we extract
visible information including the contrast enhanced (CE) Ice and the gamma corrected (GC)
Igc to generate better holistic quality.
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White balanced input. Our first input is a white balanced image which aims to elim-
inate chromatic casts caused by the atmospheric color. In the past decades, a number of
white balancing approaches [31,32] have been proposed. In this paper, we use the gray
world assumption [33] based technique. Despite its simplicity, this low-level approach
has shown to generate comparable results to those of more complex white balance meth-
ods [3]. The gray world assumption is that given an image with a sufficient quantity of
color variations, the average value of the Red, Green and Blue components of the image
should average out to a common gray value. This assumption is in general valid in any
given real-world scene since the variations in colors are random and independent. It would
be safe to say that given a large number of samples, the average should tend to converge to
the mean value, which is gray. White balancing algorithms can make use of this gray world
assumption by forcing images to have a uniform average gray value for the R, G, and B
channels. For example, if an image is shot under a hazy weather condition, the captured
image will have an atmospheric light A cast over the entire image. The effect of this atmo-
spheric light cast disturbs the gray world assumption of the original image. By imposing
the assumption on the captured image, we would be able to remove the atmospheric light
cast and re-acquire the colors of our original scene. Figure 3b demonstrates such an effect.

Although white balancing could discard the color shifting caused by the atmospheric
light, the results still present low contrast. To enhance the contrast, we introduce the
following two derived inputs.

Contrast-enhanced input. Similar to prior dehazing methods [34,35], our second
input is a contrast-enhanced image of the original hazy input. Ancuti [34] derived a
contrast-enhanced image by subtracting the average luminance value Ĩ of the entire image
I from the hazy input and then using a factor µ to linearly increase the luminance in the
recovered hazy regions as follows:

Ice = µ
(
I− Ĩ

)
, (2)

where µ = 2(0.5+ Ĩ). Although Ĩ is a good indicator of image brightness, there is a problem
in this input, especially in denser haze regions. The main reason is that the negative values
of (I− Ĩ) may dominate the contrast-enhanced input as Ĩ increases. As shown in Figure 3c,
the dark image regions tend to be black after contrast enhancing.

(a) (b) (c) (d)

Figure 3. We derive three enhanced versions from nighttime hazy images. These derived inputs
contain different important visual cues of the input hazy images. (a) Inputs; (b) WB; (c) CE; (d) NM.

3.2. Network Architecture

Only using one scale is subject to halo artifacts in the dehazed results, particularly
for strong transitions within the confidence maps [34,35]. Hence, we perform estimation
by varying the image resolution in a coarse-to-fine manner to prevent halo artifacts. The
multi-scale approach is motivated by the fact that the human visual system is sensitive to
local changes (e.g., edges) over a wide range of scales. As a merit, the multi-scale approach
provides a convenient way to incorporate local image details over varying resolutions.
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The proposed multi-scale GFN is shown in Figure 2. Finer level networks basically
have the same structure as the coarsest network. However, the first convolutional layer
takes the dehazed output from a previous stage as well as its own hazy image and derived
inputs in a concatenated form. Each input size is twice the size of its coarser-scale network.
As shown in Figure 2, there is an up-sampling layer to resize the coarser output before the
next stage. At the finest scale, the original full-resolution image is recovered.

We use an encoder–decoder network in each scale, which has been shown to produce
good results for a number of generative tasks. In particular, we choose a variation of the
residual encoder–decoder block for image dehazing. We use skip connections between
encoder and decoder halves of the network, where features from the encoder side are
concatenated to be fed to the decoder. This significantly accelerates the convergence and
helps generate a much clear dehazed image. In addition, we improve encoder–decoder
modules by using residual blocks [36] after each convolution layer. We use shared weights
in each scale, which operates in a way similar to using data multiple times [37] (i.e., data
augmentation regarding scales) and reduces the number of parameters need to be learned.

We perform an early fusion by concatenating the original hazy image and three
derived inputs in the input layer. Rectification layers are added after each convolutional or
deconvolutional layer. The convolutional layers act as a feature extractor, which preserves
the primary information of scene colors in the input layer, meanwhile eliminating the
unimportant colors from the inputs. The deconvolutional layers are then combined to
recover the weight maps of three derived inputs. In other words, the outputs of the
deconvolutional layers are the confidence maps of the derived input images Iwb, Ice and Igc.

We use three down-convolutional blocks and three deconvolutional blocks in each
scale. The stride for down-convolution layer is two, which down-samples feature maps to
half size and doubles the channel of the previous layer. Each of the following ResBlocks
contains two convolution layers. Each convolutional layer is of the same kernel size of
3× 3 except the first layer. The first layer operates on the input image with kernel size of
5× 5. In this work, we demonstrate that explicitly modeling confidence maps has several
advantages. These are discussed later in Section 7.1. Once the confidence maps for the
derived inputs are predicted, we fuse different inputs using the proposed gating method as
illustrated in Figure 2,

Jk = Gating(Ik
wb, Ik

ce, Ik
gc), (3)

where Jk is the gated result at scale k. The gating function is defined by

Gating(x, y, z) = Cx ◦ x + Cy ◦ y + Cz ◦ z, (4)

where ◦ denotes element-wise multiplication, and C(·) is the confidence map for the input.
The multi-scale approach desires that each scale output is a clear image of the cor-

responding scale. Thus, we train our network so that all intermediate dehazed images
should form a pyramid of the sharp image. The MSE criterion is applied to every level of
the pyramid. In particular, given a collection of N training pairs Ii and Ji, where Ii is a hazy
image and Ji is the clean version as the ground truth, the loss function at the k-th scale is
defined as follows:

L(Θ, k) =
1
N

N

∑
i=1

∥∥F (Ii,k, Θ, k)− Ji,k
∥∥2, k ∈ {1, 2, 3}, (5)

where Θ keeps the weights of the convolutional and deconvolutional kernels.

4. Nighttime Image Dehazing

Since nighttime scenes usually have artificial light sources that generate a glow effect
in hazy images, most state-of-the-art dehazing methods based on (1) suffer from significant
limitations on nighttime hazy scenes. Although several physics-based models [28,29] are
developed to relax those strict constraints in (1) (e.g., homogeneous atmosphere illumina-
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tion, unique extinction coefficient), a straightforward extension of common hazy image
modeling to nighttime scenes cannot always hold in real cases. This is why our approach
does not resort to an explicit inversion of the nighttime light propagation model in [28,29].

Fusion Process of Nighttime Dehazing

In this paper, we demonstrate that the proposed MSGFN can also effectively enhance
nighttime hazy images. We employ the strategy described in Figure 2 to remove haze
in nighttime images. For the derived inputs, we also use WB and CE to process a color
correction step and visibility enhancement, respectively. However, there is another problem
in nighttime hazy images that needs to be dealt with, i.e., non-uniform illumination caused
by multiple light sources in the low-light environment. Therefore, we derive a third input,
normalization (NM) of the nighttime hazy image, to obtain an illumination-balanced result
and enhance the finest details in the nighttime scene.

The NM operation is obtained by linearly stretching all the pixel values in order to fit
them into the interval [0, 1]. In this case, we achieve a better illumination result by contrast
stretching the range of intensities of the hazy input. The main advantage of this operation
is that we do not require any parameter to be tuned, and therefore, without information
loss in the derived input. As shown in Figure 3d, the NM operation shifts and scales all
the color pixel intensities of the input so that the pixel values cover the entire available
dynamic range and obtain a balanced illumination.

Similar to the dehazing approach described in Section 3, we use the proposed MSGFN
to predict three confidence maps for the derived inputs to ensure that regions of high
contrast or high saliency will receive greater weights in the gated fusion process:

Jk = Gating(Ik
wb, Ik

ce, Ik
nm), (6)

where Ik
nm is the normalized version of the nighttime hazy input at scale k.

5. Nighttime Dehazing Results

We evaluate the proposed algorithm with nighttime configuration on real-world night
hazy scenes, with comparisons to the state-of-the-art methods in terms of visual effect.

5.1. Training Data

Owing to the difficulty in obtaining realistic nighttime training data, we adopt the
similar strategy as the daytime methods [38] to synthesize nighttime hazy scenes. Specifi-
cally, we select 4500 clear nighttime scenes in the KAIST dataset [39] and use the method
proposed in [40] to estimate depth maps, which has been demonstrated to be effective for
nighttime scene depth estimation. Then, we synthesize 4500 nighttime hazy images accord-
ing to (1). Note that although some nighttime hazy imaging models are proposed [28,29]
to account for artificial light sources, we found our synthesized nighttime hazy images
based on (1) look natural as shown in Figure 4, since the proposed model in [28,29] is a
generalization of (1) when the illumination is assumed to be a constant.

5.2. Quantitative Evaluation

For quantitative performance evaluation, we construct a new dataset of synthesized
nighttime hazy images. We select 100 clear nighttime scenes (different from those that were
used for training) from the KAIST dataset [39] to synthesize 500 hazy images (using different
scattering coefficients to synthesize different haze concentrations). Figure 5 shows some
dehazed images by the evaluated methods. The nighttime dehazing methods of MRP [28]
and GMLC [29] generate the results with significant color distortions. The dehazed images
by the deep learning approaches of MSCNN [7], GCAN [19], and GDN [41] still contain
significant haze residuals. In contrast, our algorithm restores these images well. Overall,
the dehazed results by the proposed algorithm are of higher visual quality and with fewer
color distortions. The visual results in Figure 5 match the quantitative results shown in
Table 1.
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Figure 4. The proposed method for synthesizing nighttime hazy images. The first row shows original
clear night scenes from [39],and the second row shows the synthesizing hazy images.

(a) (b) (c) (d) (e) (f) (g) (h) (i)

Figure 5. Dehazed results on synthetic nighttime images. The results by learning-based meth-
ods of MSCNN [7], GCAN [19], and GDN [41] have some remaining haze, while the nighttime
dehazing methods of MRP [28] and GMLC [29] tend to generate some color distortions. In con-
trast, the dehazed results by our algorithm are close to the ground-truth images. (a) Hazy inputs;
(b) DCP [42]; (c) MRP [28]; (d) GMLC [29]; (e) MSCNN [7]; (f) GCAN [19]; (g) GDN [41]; (h) Our
results; (i) Ground truth.

Table 1. Average PSNR/SSIM of dehazed results by state-of-the-art dehazing methods on nighttime
hazy images.

Input DCP [42] MSCNN [7] MRP [28] GMLC [29] GCAN [19] GDN [41] MSGFN

13.70/0.6063 24.94/0.902 17.45/0.7113 16.49/0.6936 14.49/0.552 19.18/0.8133 21.03/0.8916 30.92/0.9492

5.3. Qualitative Evaluation

To demonstrate that the proposed method generalizes well in real-world nighttime
hazy scenes, we use real-world hazy images for experiments against the state-of-the-
art dehazing algorithms designed for nighttime scenes, i.e., Maximum Reflectance Prior
(MRP) [28] as well as Glow and Multiple Light Colors (GMLC) [29], and daytime scenarios,
i.e., DCP [42], MSCNN [7], GCAN [19], and GDN [41].

Figure 6b,c show the results by the recent nighttime dehazing methods, i.e., MRP [28]
and GMLC [29]. The MRP method [28] tends to darken the hazy inputs in some regions.
For example, the road regions of the first image are much darker than those obtained by
other methods. In addition, the GMLC model [29] generates some artifacts in sky regions,
e.g., the first and third images in Figure 6e. Figure 6d–g demonstrate the limitations of
the daytime dehazing approaches, i.e., DCP [1], MSCNN [7], GCAN [19], and GDN [41]
when applied to nighttime hazy inputs. Both the prior-based [1] and CNN-based [7,19,41]
methods cannot recover colors well, and they only slightly remove the haze in these night
scenes. In contrast, our algorithm generates dehazed results with clearer and sharper
details and without artifacts in the sky regions as shown in Figure 6h.
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(a) (b) (c) (d) (e) (f) (g) (h)

Figure 6. Qualitative comparison of different methods on real-world images. (a) Hazy inputs;
(b) MRP [28]; (c) GMLC [29]; (d) DCP [42]; (e) MSCNN [7]; (f) GCAN [19]; (g) GDN [41]; (h) Our
results.

6. Further Experiments
6.1. Comparison on O-Haze

In the main paper, we evaluate the proposed algorithm on all the 45 hazy images
from the O-HAZE dataset [43] against the state-of-the-art methods. In this supplementary
material, we retrain the proposed MSGFN using the same 40 training data as in the NTIRE
2018 challenge [2] and compare it with the winning methods in [2] on the five test images.
As shown in Table 2, our proposed method performs favorably against the winning methods
in the NTIRE 2018 challenge [2] and achieves the highest SSIM score.

Table 2. Average PSNR/SSIM of dehazed results on the 5 test images in the O-Haze [43] dataset.
Although our algorithm ranks third in terms of PSNR, our method achieves the highest SSIM score.

Ranking in [2] Methods PSNR SSIM

1 BJTU 24.598 0.777
2 KAIST-VICLAB [22] 24.232 0.687

− Ours (MSGFN) 24.054 0.787

3 Scarlet Knights [21] 24.029 0.775
4 FKS 23.877 0.775
5 Dq-hisfriends 23.207 0.770
6 Ranjanisi [44] 23.180 0.705
7 Mt.Phoenix 23.124 0.755
8 Ranjanisi [44] 22.997 0.701
9 KAIST-VICLAB [45] 22.705 0.707
10 Mt.Phoenix 22.080 0.731
11 IVLab 21.750 0.717
12 CLEAR 20.291 0.683
13 CLFStudio 20.230 0.722
14 SiMiT-Lab [46] 19.628 0.674
15 AHappyFaceI 18.494 0.669
16 ASELSAN 18.123 0.675
17 Dehazing-by-retinex [47] 17.547 0.652
18 IMCL 16.527 0.616

baseline (hazy images) 15.784 0.634
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6.2. Mixed Training Strategy

To demonstrate the robustness of the proposed MSGFN on different training strategies,
we train an additional network with all three datasets (daytime, nighttime, and underwater
datasets) together. We refer to this network as “all-in-one” and refer to the original network
in the main paper as “separate”.

As shown in Table 3, the proposed model performs better on the daytime (SOTS
and O-Haze) and nighttime datasets with the “separate” training strategy. Meanwhile,
the performance on the underwater dataset becomes better with the “all-in-one” training
strategy. Since the underwater inputs in the UIEB dataset are real-world images, the main
reason may be that more types of training data benefit real-world image reconstruction.

Table 3. Comparison of MSGFN using different training strategies (“separate” vs. “all-in-one”).

Dataset Separate All-in-One

Daytime (SOTS) 25.37/0.93 23.19/0.94
Daytime (O-Haze) 21.21/0.76 19.05/0.74

Nighttime 30.92/0.95 22.69/0.86
Underwater (UIEB) 17.61/0.86 21.99/0.91

7. Analysis and Discussions
7.1. Effectiveness of Fusion Strategy

Image fusion is a method to blend several images into a single one by retaining only
the most useful features. To effectively blend the information of the derived inputs, we filter
their important information by computing corresponding confidence maps. Consequently,
in our gated fusion network, the derived inputs are gated by three pixel-wise confidence
maps that aim to preserve the regions with good visibility. Our fusion network has two
advantages: the first one is that it can reduce patch-based artifacts (e.g., dark channel
prior [1]) by single pixel operations, and the other one is that it can eliminate the influence
caused by transmission and atmospheric light estimation.

To show the effectiveness of fusion network, we also train an end-to-end network
without a fusion process for the dehazing task. This network has the same architecture as
MSGFN except the input is hazy image and output is dehazed result without confidence
maps learning at each scale. In addition, we also conduct an experiment based on an
equivalent fusion strategy, i.e., all the three derived inputs are weighted equally using
1/3. Figure 7 shows visual comparisons of on two real-world examples with different
settings. In these examples, the approach without gating generates dark images in Figure 7b,
and the method with an equivalent fusion strategy generates results with color distortion
and dark regions as shown in Figure 7c. In contrast, our results contain most scene
details and maintain the original colors which demonstrate the effectiveness of the learned
confidence maps.

7.2. Effectiveness of Derived Inputs

We can design different inputs for different enhancement tasks. In practice, it is
difficult to entirely remove the haze effects of hazy images by an enhancing approach.
Therefore, the input generation process seeks to recover sharp regions in at least one of
the derived inputs as analyzed in Section 3. They complement each other nicely to help
dehazing by the gated fusion network as shown in Table 4.

Although we do not claim that these are the optimal inputs, our experiments show
that the three derived inputs are the minimum inputs. Using two or fewer of them will not
generate better results in the proposed network (Table 4) for nighttime image dehazing. In
the future work, we will explore more effective derived inputs or directly learn the derived
inputs in the fusion network. The network parameters comparison can be found in Table 5.
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(a) (b) (c) (d)

Figure 7. Effectiveness of the gated fusion network. (a) Hazy inputs; (b) w/o fusion; (c) Equivalent
fusion; (d) MSGFN.

Table 4. Average PSNR/SSIM using different derived inputs. The method only using the original
image means that we directly learn the mapping from degraded images to the clear ones.

Inputs Dehazing

Original WB CE GC/NM PSNR/SSIM
√ × × × 22.38/0.90
√ √ √ × 24.83/0.92
√ √ × √

23.54/0.92
√ × √ √

23.96/0.89
√ √ √ √

25.37/0.93

Table 5. Comparison of MSGFN and state-of-the-art dehazing approaches with respect to parameters.

Model Parameters

AOD-Net [6] 1.83 × 103

MSCNN [7] 8.01 × 103

DehazeNet [5] 8.24 × 103

Domain adaption [48] 2.27 × 105

PMS-Net [17] 2.44 × 105

GCAN [19] 7.03 × 105

EPDN [18] 1.74 × 107

DCPDN [10] 6.69 × 107

CGAN [16] 1.23 × 108

Ours 5.15 ×105

8. Conclusions

In this paper, we addressed the nighttime image dehazing via a multi-scale gated
fusion network (MSGFN), a fusion based encoder–decoder architecture, by learning confi-
dence maps for derived inputs. Compared with previous methods which impose restric-
tions on transmission and atmospheric light, our proposed MSGFN is easy to implement
and reproduce since the proposed approach does not rely on the estimations of transmission
and atmospheric/environmental light. In the approach, we first applied white balance
to recover the scene color and then generated two contrast enhanced images for better
visibility. Third, we carried out the MSGFN to estimate the confidence map for each derived
input. Finally, we used the confidence maps and derived inputs to render the final result.
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The experimental results on synthetic and real-world nighttime images demonstrate the
effectiveness of the proposed approach.
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Abstract: Underwater sensing and detection still rely heavily on acoustic equipment, known as sonar.
As an imaging sonar, side-scan sonar can present a specific underwater situation in images, so the
application scenario is comprehensive. However, the definition of side scan sonar is low; many objects
are in the picture, and the scale is enormous. Therefore, the traditional image segmentation method is
not practical. In addition, data acquisition is challenging, and the sample size is insufficient. To solve
these problems, we design a semantic segmentation model of side-scan sonar images based on a
convolutional neural network, which is used to realize the semantic segmentation of side-scan sonar
images with few training samples. The model uses a large convolution kernel to extract large-scale
features, adds a parallel channel using a small convolution kernel to obtain multi-scale features, and
uses SE-block to focus on the weight of different channels. Finally, we verify the effect of the model
on the self-collected side-scan sonar dataset. Experimental results show that, compared with the
traditional lightweight semantic segmentation network, the model’s performance is improved, and
the number of parameters is relatively small, which is easy to transplant to AUV.

Keywords: side-scan sonar; segmentation; CNN; SE-block; multi-channel

1. Introduction

With the continuous improvement of the technical level, robot perception and recogni-
tion have begun to develop toward intelligence and automation in the underwater research
field. Recognition and perception rely on front-end equipment capturing environmental
features, which is sonar for the underwater environment. Therefore, correlation analy-
sis and processing methods of sonar images have received extensive attention in recent
years [1–3]. Side-scan sonar transmits sound waves and receives echoes from underwater
objects to image underwater objects and calculate approximate distances [4]. The original
sonar image has low resolution, serious noise interference, and a fuzzy target shape, which
greatly complicates the recognition work of researchers [5].

However, achieving a lasting effect through a manually designed filtering algorithm in
a complex and changeable underwater environment is not easy. If the judgment depends on
experienced personnel, it will significantly increase the cost and reduce efficiency. Therefore,
it is of great significance to design a feature extraction model for sonar images that can
replace, or at least assist, human judgment.

Image processing models based on deep learning algorithms have made great progress re-
cently. Among them, classical image classification models, such as VGG-net [6], GoogLeNet [7],
and Resnet [8], have achieved good results on many camera image datasets. Image seg-
mentation models represented by FCN [9], U-net [10], PSPNet [11] have also attracted the
attention of many researchers. GAN networks are also widely used in machine learning
data generation to solve the problem of insufficient data [12–14]. Given the good results
of these algorithms, the researchers hope to apply them to underwater acoustic images,
thereby advancing the field of underwater sensing and detection.
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Song et al. [15] proposed a preliminary segmentation model of side-scan sonar image
based on the FCN network model. Their model divides the image into the target area,
shadow area, and seabed reverberation area. Finally, MRF is used to process the classi-
fication results to improve accuracy. Chen et al. [16] proposed a semi-supervised CNN
network model, which uses many unlabeled or weakly labeled samples and a few densely
labeled samples to segment the SAR images. Wu et al. [17] proposed a convolutional neural
network model for side-scan sonar named ECNet. The network structure consists of an
encoder and a decoder. The encoder obtains contextual features, and the decoder is used
for image restoration. In addition, a single-stream deep neural network with multiple side
outputs is added to optimize edge segmentation. Huo et al. [18] proposed a semi-synthetic
sonar data generation method. For the input optical image, the CNN model combines
image segmentation with intensity distribution simulation in different regions to generate
synthetic sonar images of the plane and the drowning person to enrich the sonar image data
set. Zhou et al. [19] added the Laplacian energy filter based on the CNN model, and the
two-channel pulse-coupled neural network was used to fusion the side-scan sonar images
and achieved good results. In the work of Połap et al. [20], a method based on a neural
network model is proposed to search for target signals in ocean areas and restore areas
with low image quality. Zhu et al. [21] used the convolutional neural network model to
extract the target features of side-scan sonar images and input them into the trained SVM
for classification.

Side-scan sonar is a kind of active imaging sonar. Its imaging principle is to send a
short acoustic pulse with a slight horizontal opening angle (about 1 degree) and a large
vertical opening angle to one or both sides of the vertical direction of the survey ship.
After the pulse reaches the seabed, it is continuously reflected according to the distance
from the seabed to the transducer. The sonar image with uneven gray level changes is
drawn according to the strength of the reflected signal. Sonar images can be used to observe
changes in the seafloor topography, whether there are obstacles to the navigation, and the
type of seabed substrate. When the side-scanning sonar emission pulse propagates in
water and meets the target, the target scatters the acoustic energy in all directions, and the
transducer receives the backscattered echo. In contrast, the acoustic energy is difficult to
reach the side and rear of the target (called the blind area).The sonar array moves forward
with the carrier, and in the process of moving forward, sonar continues to transmit, receive
and form sonar images [22]. As a result, the target (strong echo signal of the target) and its
shadow (blind area behind the side of the target) appear at the corresponding position on
the sonar image. It can be seen that the side-scan sonar reflects the echo intensity of the
detected target so that the side-scan sonar image can be understood as a single-channel gray
map, and the target with stronger reflection has greater brightness. However, the difference
in brightness of most underwater targets is not apparent, so there must be a particular
dimension of the color channel that contains most of the target information in the image.

On this basis, in this paper, a side-scan sonar image segmentation model is proposed
based on the CNN network. Compared with camera images, side-scan sonar images are
more challenging to acquire and have less data, so the network model needs to control the
depth to avoid overfitting. In addition, due to the low color richness of side-scan sonar
images, each channel contains a relatively large amount of information, so it is necessary to
focus on the information in essential channels.

The main contributions of this paper are as follows:

(1) We introduced the SE module to increase channel attention in the feature extraction
process and increase independent weight for each channel so that the more critical
channels obtain a higher weight to improve the overall segmentation accuracy.

(2) We increased the convolution kernel size used from 3 × 3 to 7 × 7, which proved
effective in sonar images with a larger size. Meanwhile, DW convolution was adopted
to reduce the number of parameters given the increase in the number of parameters
caused by the expansion of the convolution kernel size.
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(3) Simply increasing the convolution kernel size cannot effectively improve the quality
of feature extraction. Therefore, we constructed a parallel feature extraction channel
using a small-size convolution kernel and concatenated its output with the leading
network to achieve multi-scale feature extraction.

(4) We used a full convolution layer to restore the output of the decoder to the original
image size and output the segmentation results. Then we conducted a contrast
experiment with other lightweight CNN.

The rest of this paper is divided into five sections: Section 2 introduces the work of
other researchers related to the model design; Section 3 presents the structure and details of
the model; Section 4 uses the self-collected side-scan sonar data to verify the performance
of the model; and Section 5 gives the conclusion.

2. Related Work

In this section, some essential concepts for model design are introduced, including
the basic principle of the CNN network, the U-NET network’s design idea, and the SE
module’s influence.

2.1. Principles of CNNs

Neural network models with CNN were completed by Lecun Y [23] and carried for-
ward by AlexNet [24]. In the classical CNN model, data have two directions: forward
propagation and backward propagation. Forward propagation realizes data feature ex-
traction through the convolutional layer, pooling layer, activation function layer, and fully
connected layer. The convolution layer is processed by multiple convolution checks to
extract high-dimensional feature maps. The pooling layer compresses the parameters while
preserving the main features. Finally, the activation function ensures the nonlinearity of the
multi-layer network structure, and the last fully connected layer implements the mapping
from image features to classification categories. According to the comparison between the
output results of the forwarding propagation and label data, backpropagation performs
gradient descent on network parameters layer by layer in reverse to improve the network
performance. Finally, the network achieves due performance after multiple forward and
backward propagation.

2.2. U-Net and FCN

There are many excellent models for semantic segmentation tasks, such as DeepLabV3 [25],
hrnet [26], Transformer [27], etc. However, the original design concept of the segmentation
model comes from FCN. The initial neural network model can only be applied to the
classification task, and the emergence of FCN brought it into the field of image segmentation.
Pioneering the model using the convolution layer instead of full connection as the last
layer of the network’s output solved the problem that the whole connection layer limits
the input size. In addition, the model outputs from a one-dimensional probability vector
into a two-dimensional probability matrix. That is, every pixel can be classified. FCN uses
deconvolution and linear interpolation for image restoration and uses the feature fusion
method of skip layer. It concatenates image features of high and low dimensions, which
greatly impacts the design idea of the subsequent segmentation model. The structure of
the FCN network model is shown in Figure 1.
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Figure 1. (a) FCN model with VGG as a backbone [9]. (b) Skip layer of FCN: There are three versions
of the FCN network, namely FCN-8S, FCN-16S, and FCN-32S. The 32S version directly performs
image restoration after a feature fusion, so the output quality is the lowest, but the number of
parameters is the lowest. The 8S version can obtain the highest precision output after three times of
feature fusion. 16S is relatively balanced.

U-net is an image segmentation network model that draws on the FCN model.
The model still adopts the design idea of deconvolution restoration and full convolu-
tion instead of complete connection. However, it gives up using the VGG network as a
backbone and designs a symmetric four-layer codec structure instead. At the same time,
feature fusion is carried out between encoding and decoding structures at the same level,
similar to skip layer. The u-net model is still the mainstream algorithm in all minor sam-
ple segmentation problems, such as medical image segmentation, due to its low depth,
fewer parameters, and good segmentation effect. The U-NET model structure is shown in
Figure 2.
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Figure 2. U-Net model [10]: classical symmetric codec structure with feature concatenate.

2.3. The Effect of SE-Block

SENet [28] is the ImageNet 2017 champion model. The SE-block structure is shown
in Figure 3. Its full name is squeeze-and-excitation congestion networks. The main contri-
bution is a channel attention extraction module called Se-block that can be added to any
network structure.

Figure 3. The structure of SE-block [28].

The module consists of two parts: the squeezing part, which compresses the original
3D data input into a one-dimensional vector, implemented mainly by global average
pooling (this operation can extract the global features of each channel); and the crimping
section, which uses a full connection layer to map the output of the compression module
to a predicted weighting sequence, which is multiplied by all the channels for weighting.
This module can effectively extract important channel features and ignore minor channels.

3. Method

The design ideas of our model are derived from U-NET, and we adopt a coding–
decoding structure similar to U-NET and SENet, as well as the large convolution kernel and
re-parameterizing mentioned in RepLKNet [29], but improve it for our downstream tasks.
First, we added Se-block to the encoder, namely the feature extraction module, to obtain
the weight of different feature channels. The network model will find the channel that
significantly impacts the segmentation output result (the channel added after multiple
convolutions, rather than the original RGB), increases the weight proportion of its corre-
sponding parameters, and focuses on adjustment. Then, the large and small convolution
kernels are used to capture features of different scales in parallel. Finally, after fusion and
restoration, the image segmentation results are output.

3.1. Multi-Scale Feature Fusion

Due to the increasing complexity of images, multi-scale feature fusion has become a
necessary capability for a qualified segmentation network. The skip layer of FCN, the codec
information interaction of U-NET, and the ASPP module of the Deeplab model all belong
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to this kind of structure. The RepLKNet model proposes a structure-reparameterization
method. The model uses a large convolution kernel (31 × 31) for feature extraction, and a
parallel feature extraction channel using a conventional 3 × 3 small convolution kernel
is added. After the parameter training of the convolution kernel is completed, the small
convolution kernel is directly inserted into the large convolution kernel to realize the feature
fusion of different levels of size and scale.

Due to the difficulty of obtaining side-scan sonar images, we cannot provide the mas-
sive amount of data required for training large convolutional kernels and deep networks,
such as RepLKNet. Therefore, after slightly expanding the size of the convolution kernel,
we did not insert the small convolution kernel directly into the large convolution kernel
because this would destroy the feature extraction ability of the large convolution kernel
itself. Instead, we use the concatenate method to incorporate features of different scales
before restoring images using deconvolution.

3.2. Depthwise Separable Convolution

The concept of depthwise separable convolution was first proposed by MobileNet [30].
The standard convolution operation is decomposed into two steps: the first step is deep
convolution, and the second step is point convolution. A specific example is used to
compare the difference between this method and standard convolution: assuming that the
size of the input image is 12 × 12 × 3 (3 represents three channels), and the desired output
result is 8 × 8 × 128, so 128 5 × 5 × 3 convolution kernels are needed for convolution,
and the number of operations in the whole process is 9600.

If deep convolution is used first, three 5 × 5 × 1 convolutions are used to convolve
the three channels of the image, and the output result of 8 × 8 × 3 is obtained. Then point
convolution is used, 128 1 × 1 × 3 convolution kernels (equivalent to one pixel contain-
ing three channels) are used to convolve the previous output results again, and finally,
the output results of the same size are obtained. Still, the number of operations is reduced
to 5 × 5 × 3 + 1 × 1 × 3 × 128 = 469.

The deep separable volume reduces the amount of network computation at the cost of
increasing the depth of the network, which may affect the output results of the network
while speeding up the calculation speed. Therefore, this practice may not play a positive
role for networks mainly using small convolution kernels, but it is indispensable for
our model.

3.3. Model Structure

The structure of our model is borrowed from the design of U-NET, and the central
part is the four-layer codec, shown in Figure 4.

The encoder consists of four layers in total, and each layer contains an encode block.
Each encode block uses a convolution kernel size of 7 × 7 (DW convolution is used to
improve the operation rate while adding padding). The number of output channels in
each layer is 32, 64, 128, and 256. Meanwhile, SE-blocks are added parallel to each layer to
predict the channel weights.

Another parallel feature extraction channel uses a small-size convolution kernel; the
main structure is similar to the central part.

The decoder input is the high-dimensional feature map extracted by the encoder,
and the channel is 256. The decoder uses deconvolution to up-sample layer by layer. First,
concatenate with the same dimensional features output by the feature channel using a small
convolution kernel, then convolve twice and input to the next layer. After four repetitions,
the image segmentation results are obtained through the full convolutional layer.
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Figure 4. The structure of our model.

4. Experiment and Analysis

All experiments were conducted with Intel Core i9-10900F CPU@2.8 Ghz × 20, 64 GB
RAM, Nvidia Geforce 3090 GPU, 24 GB of video memory, by CUDA Toolkit 11.3, CUDNN
V8.2.1, Python 3.6, PyTorch-GPU 1.10.1, Ubuntu18.04.operating system.

4.1. Dataset Collection

We used Hydro 3060 dual-frequency side-scan sonar to collect sonar data needed
for the experiment in the Lake District of Jiande, Hangzhou, China. The original image
captured frame by frame was 960 × 960 pixels in size, and its effect is shown in Figure 5.

The side-scan sonar is mounted on an AUV and emits sound waves to both sides as
the subject moves, collecting echoes from underwater objects to build an image. The bright
parts of the image represent the targets with strong echoes, such as rocks and metals, while
the parts without echoes will appear black, such as water bodies and blocked parts.

Our model is based on supervised learning, which requires manually annotated ac-
curate data labels as training data. We annotated the data using LabelMe, open-source
software on the Ubuntu platform. For the whole dataset, we divided the data into five cate-
gories (not every image contains labels from all five categories): (1) water; (2) the mountain
part; (3) the land; (4) shaded part; and (5) unmarked area (background). The unlabeled area
mainly refers to the debris area left after the first four types of image labeling. The labeled
image is shown in Figure 6.
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Figure 5. The original sonar image (each sonar image is cropped down the middle into two images).

Figure 6. (a) Original image, (b) label.

4.2. Data Augmentation

As mentioned before, collecting side-scan sonar data is challenging, so the amount of
data is not very rich. Therefore, we adopted the method of data amplification to increase
the number of samples to ensure the training effect, and the method used is shown in
Figure 7.

(1) The most common method is to flip the image at different angles, amplifying the data
but also breaking the location correlation and making the network more generalized.

(2) Image translation is also a standard method, which controls the image translation in
four directions by some random numbers, but not too much. Otherwise, it will destroy
the feature structure of the image.

(3) By randomly clipping the original image, the size of the image can be reduced while
the data are expanded, and the training can be accelerated.

The sonar image is less dependent on shape features but more on color features, so
no color data amplification was carried out. The size of the original sonar data collected is
960 × 960, and the number is about 300. After data amplification, the data size is 860 × 860,
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and the number is increased by about four times. We randomly selected 60 percent as the
training set, and the validation and test sets were 20 percent.

Figure 7. Data augmentation (a) image inversion, (b) image panning, (c) random crop.

4.3. Verification Indicators

We measure the model from two perspectives: the consumption of computing re-
sources, and the model’s accuracy. Computing resources are measured by the total number
of network parameters and the FLOPs indicator, which refers to floating point operations.
More FLOPs mean more computing resources consumed by the model. The calculation
formula of the convolution layer FLOPs of the convolutional network is as follows:

FLOPs = (2cink2 − 1)HWcout (1)

cin and cout represents the number of input and output channels in the convolution layer,
and k represents the size of the convolution kernel. The size of the output feature graph is
H ×W.

OA (overall accuracy) and MIoU (mean intersection over union) will measure the
model accuracy. The calculation formula of OA is as follows:

OA =
TP + TN

TP + TN + FP + FN
(2)

TP, TN, FP, FN mean true positive (positive sample is judged as a positive sample), true
negative (negative sample is judged as a negative sample), false positive (negative sample
is misjudged as a positive sample), and false negative (positive sample is misjudged as a
negative sample).
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The calculation formula of MIoU is as follows:

MIoU =
1
k

k

∑
i=1

p ∩ g
p ∪ g

(3)

P means prediction, and G means ground truth.

4.4. Network Model Training

We use the processed sonar data for network training, and the hyperparameters used
in the training process are listed in Table 1. The loss function used in the training process is
the cross-entropy loss function, and the training process is shown in Figure 8.

Figure 8. We use TensorBoard to draw the convergence curve of the training process, and the network
has basically converged at 200 epochs. (a) train loss, (b) train MIoU, (c) val MIoU.
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Table 1. Hyper-parameter.

Type Value

num of workers 8
batch size 6
optimizer SGD

learning rate 0.01
learning policy poly

step size 10,000

H(p, q) = −
n

∑
i=1

p(xi)log(q(xi)) (4)

The cross-entropy function is used to measure the difference between two probability
distributions. For example, machine learning tasks represent the difference between the
network output and the label.

4.5. Performance and Comparison

In the experiment, the quantitative analysis of the segmentation results of U-Net,
FCN, and PSPNet, which are typical lightweight networks, and our method is conducted.
The comparison results are shown in the tables, and the recovered images are shown in
Figure 9.

Figure 9. The segmentation results of the model output are shown in the figure. The original
image, label, and output result are left to right. The colors in the picture are blue for water, gray
for rocks, yellow for flat land, black for shadows, and white for fruitless areas (areas that are hard
to distinguish).

Due to the small sample size, we used K-fold cross-validation on the dataset to
calculate the model performance indicators. We set the value of K as 5, randomly divided
all the data into five parts, and selected one of them as the validation set and the rest as the
training set each time. Finally, the results obtained five times were averaged. The model
indicators of five-fold cross-validation are shown in Table 2. The results shown in Table 3
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show that the average OA and MIoU of our model in the dataset are 0.87159 and 0.67893,
the highest of the four models. The total number of parameters is 21,340,813, which was
above the average of the four models. The FLOPs are slightly higher because the currently
used code and computing devices do not support DW convolution perfectly, and there is
still room for further improvement.

Table 2. K-fold cross validation (K = 5).

K OA MIoU

1 0.869394 0.685063
2 0.856123 0.678424
3 0.854726 0.656946
4 0.884486 0.699488
5 0.856770 0.668848

avg 0.872299 0.677754

Table 3. Different model performance.

Model OA MIoU Num of Para FLOPs

FCN 0.864415 0.663187 18,643,845 212.4 G
U-Net 0.871427 0.674909 34,525,391 487.71 G

PSPNet 0.849124 0.651908 65,576,517 673.94 G
Ours 0.872299 0.677754 21,340,813 647.94 G

In order to test the effect of increasing the size of the convolution kernel, we carried
out relevant comparative tests and adjusted the size of the convolution kernel from 3 × 3
to 11 × 11. The performance changes are shown in Table 4, and it can be found that the
parameters currently used are the best ones.

Table 4. Model performance with different kernel size.

Size OA MIoU

3 × 3 0.864976 0.663328
5 × 5 0.862365 0.667896
7 × 7 0.872299 0.677754
9 × 9 0.866372 0.673241

11 × 11 0.862757 0.658241

5. Conclusions

This paper proposes a semantic segmentation model for side-scan sonar images based
on the CNN network. The model uses a symmetric codec structure as the main body, adds
a convolution kernel of different scales to extract multi-scale features, adds SE modules to
focus on the weight of essential channels, and finally fuses at the output end. We verify
the accuracy and reliability of the model on the self-collected sonar data and find that the
model has a low computational cost and high portability. Our method achieves multiple
classifications of side-scan sonar images at the semantic level. At the same time, most other
researchers focus more on the recognition of objects with specific shapes or the simple
binary classification of images. In addition, our model also has high portability. The large
neural network model proposed by many researchers is inferior in real-time performance
on AUV. After loading our model into the AUV control terminal, it can still complete the
task and has low dependence on high-performance computers, which is also a significant
advantage. In the future, we will consider further increasing the network depth and
convolution kernel and find ways to make them effective in a small sample environment.
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Abstract: Convolutional network models have been widely used in image segmentation. However,
there are many types of boundary contour features in medical images which seriously affect the
stability and accuracy of image segmentation models, such as the ambiguity of tumors, the variability
of lesions, and the weak boundaries of fine blood vessels. In this paper, in order to solve these
problems we first introduce the dual-tree complex wavelet scattering transform module, and then
innovatively propose a learning scattering wavelet network model. In addition, a new improved
active contour loss function is further constructed to deal with complex segmentation. Finally, the
equilibrium coefficient of our model is discussed. Experiments on the BraTS2020 dataset show that
the LSW-Net model has improved the Dice coefficient, accuracy, and sensitivity of the classic FCN,
SegNet, and At-Unet models by at least 3.51%, 2.11%, and 0.46%, respectively. In addition, the
LSW-Net model still has an advantage in the average measure of Dice coefficients compared with
some advanced segmentation models. Experiments on the DRIVE dataset prove that our model
outperforms the other 14 algorithms in both Dice coefficient and specificity measures. In particular,
the sensitivity of our model provides a 3.39% improvement when compared with the Unet model,
and the model’s effect is obvious.

Keywords: image segmentation; wavelet scattering; loss function; active contour; medical image

1. Introduction

Image segmentation is a class of image processing problems, and its task is to divide
an image into two or more meaningful regions. The accuracy of image segmentation is
particularly important in practical applications. In particular, biomedical image segmenta-
tion is prominent in clinical analysis, diagnosis, treatment planning, and the measurement
of disease progression. Traditional image segmentation methods, such as the threshold
method [1], region growing method [2], level set method [3–5], etc., have struggled to meet
the need for accurate image segmentation in the context of big data.

In recent years, deep neural networks have made great progress in various artificial
intelligence tasks including image recognition and image segmentation. A convolutional
neural network (CNN) [6] introduces semantic information when segmenting objects;
thereby, injecting new vitality into semantic segmentation research. Fully convolutional
network models [7–9] based on CNN architecture have achieved excellent performance in
automatic medical image segmentation, which further promotes the application of deep
learning in image segmentation for applications such as brain tumor segmentation [10].
SegNet [11] adopts the encoder–decoder structure and transfers the pixel index value of
the maximum pooling operation in the encoding process into the decoder, which not only
retains the detailed information of the pixels but also improves the accuracy of semantic
segmentation. The Attention Unet network (At-Unet) [12] adds an attention gating unit to
the Unet model to provide pixel level attention for the feature map. The network tends to
focus on feature points with more information and improves the feature extraction ability
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of the model. The Deeplab network [13,14] obtains multiscale context information by
cascading atrous convolutions with different atrous rates, and then introduces a conditional
random field to enhance the relevance of contextual semantic information, which in turn
improves the segmentation accuracy. Although the above-mentioned network models
have improved the image segmentation accuracy of some datasets, they are still unable
to accurately extract the boundary features of brain tumors in images. This is due to the
invasiveness of the imaging process and the ambiguity between biological forms, as is the
case between tumors and adjacent organs or changes in lesions over different periods. This
invasiveness and ambiguity can lead to the discontinuity of some segmentation boundaries,
as shown in Figure 1a. When comparing Figure 1a,b, there are many discontinuous
segmentations in Figure 1a.
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At the same time, many researchers are devoted to establishing the minimal loss energy
function model. A level set function is proposed, that is, the region term of the CV energy
function is used as the loss function, from which the CNN model can learn the spatial
information of the image, which can improve the accuracy of image segmentation [14]. In
order to solve the boundary error segmentation problem, an active contour loss function
(AC-Loss) is constructed [15]. The AC-Loss function fully considers the internal and
external areas of the segmented object, and the perimeter of the boundary. Unfortunately,
some experiments have shown that when dealing with biomedical images with complex
boundaries, such as retinal vessel images, because the AC-Loss function constrains the
perimeter of the segmentation object boundary, it also limits the model’s ability to segment
small boundaries. The under-segmentation phenomenon of fine blood vessels is avoided
in Figure 1c. By comparing Figure 1c,d, there are many small blood vessels that can be seen
in Figure 1d that are not segmented in Figure 1c.

The problem of complex boundary contour features in medical images, also increases
the difficulty of image boundary feature extraction and characterization in deep neural
network learning. Inspired by the dual-tree wavelet scattering transform, we propose a
boundary feature extraction module which can improve the network’s ability to extract
image boundary features. Specifically, the process can be described as follows: First, the
dual-tree complex wavelet scattering transform is used to separate the high-frequency and
low-frequency features of the feature map. Second, a convolution operator is adopted to
extract low-frequency body features and high-frequency boundary features. Finally, the
dual-tree complex wavelet scattering transform is then built into a fully convolutional
network model, and a new learning scattering wavelet network (LSW-Net) semantic seg-
mentation model is designed through end-to-end data-driven scattering learning transform
features. In order to enhance its ability to extract image boundary contour information,
the network utilizes the Unet network [8] as the backbone network and introduces the
dual-tree complex wavelet scattering transform (DTCWT-Scat) during downsampling for
boundary feature extraction. In order to further improve the network model’s ability to
extract complex boundary contours, an improved active contour loss function (IAC-Loss)
is further constructed on the basis of the LSW-Net network. This loss function not only
improves the network’s sensitivity to small boundaries, it also better solves the problem of
the under-segmentation of boundary contours.
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Our main contributions are summarized as follows:

• In order to separate the high-frequency and low-frequency features of the feature
map during downsampling, we introduce the DTCWT-Scat module into the Unet and
innovatively propose the LSW-Net model.

• We design an improved active contour loss function, which can improve sensitivity to
small boundaries and can better solve the problem of boundary under-segmentation.

• Through BraTS brain tumor segmentation experiments, our LSW-Net network has
advantages when compared with traditional FCN, SegNet, At-Unet, and some ad-
vanced segmentation algorithms in terms of Dice coefficient, accuracy, sensitivity, and
other indicators.

• Through the DRIVE retinal vessel segmentation experiments, the effectiveness and
robustness of the LSW-Net + IAC-Loss model are illustrated.

2. Related Work
2.1. Dual-Tree Complex Scattering Wavelet Transform

Wavelet transform is a local waveform transform that can provide local representation
of multiscale signals in both time and frequency domains. S. Mallat first proposed a wavelet
scattering network with a non-feedback structure [16]. This network can not only present
the image energy distribution in the frequency domain, but also maintain stability against
small deformations. This partially makes up for the shortcomings of the CNN model,
including small object segmentation and image boundary extraction capabilities. Some
scholars have also actively tried to combine the wavelet algorithm with the CNN model.
Oyallon [17] used a wavelet scattering network to replace the first layer of a residual
network. The modified residual network produces roughly the same performance as the
original residual network, but the training parameters are greatly reduced. Rodriguez [18]
proposed a deep adaptive wavelet network to capture basic information from the input
data for image classification. Through experiments on three image classification datasets, it
was found that the model achieved high accuracy and also reduced training parameters.
Recently, Cotter [19] proposed a dual-tree complex wavelet scattering network. After being
combined with a CNN model, it achieves high accuracy in image classification tasks as
well as fast inference ability. Figure 2 shows the output results of the first-order dual-tree
complex wavelet scattering of brain tumor MRI images, including one low-frequency signal
and high-frequency signals in six directions. The low-frequency signal is the main feature
of the image, and the six high-frequency signals are the boundary feature of the image.
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2.2. Related Loss Functions

While the widely used cross-entropy loss function (CE-Loss) is not sensitive to the
segmentation of small object boundaries, when the existing model is trained, the network
model will optimize its parameters using a gradient descent method according to the loss
function error. Figure 3 shows that the CE-Loss function does not perform very well for
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cases with small boundaries or a small number of misclassified boundaries. To solve this
problem, Williams [15] et al. proposed the AC-Loss loss energy function, which can be
described as; where the Region item is the area of the segmentation region, the AC item is
the boundary length of the segmentation object, the item is the area of the segmentation
region, and the item is the boundary length of the segmentation object. In order to reduce
false boundary segmentation, this energy function is expected to minimize the area energy
of the segmentation region and the energy of the segmentation target boundary length
during model training.
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Unfortunately, it can be observed that the AC-Loss function is more sensitive than
the CE-Loss term when there is a small boundary in complex medical images, such as the
retinal vessel shown in Figure 3. However, when the target segmentation is completely
correct, the AC-Loss term still maintains a high error value. As the model is further
trained, this will further reduce the length of the segmentation target boundary resulting in
under-segmentation for some boundaries.

3. Proposed Method

In this section, we first construct the DTCWT-Scat module and then propose a novel
LSW-Net network model after introducing the DTCWT-Scat module into the Unet network.
Furthermore, in order to solve the small target segmentation task, a new IAC-Loss function
is designed. Finally, we document the LSW-Net algorithm and the IAC-Loss function
calculation algorithm.

3.1. Learning Scattering Wavelet Network

Wavelet scattering can extract image texture features and boundary information but
cannot make full use of contextual semantic information for image segmentation. FCN
integrates multiscale contextual information through multilayer pooling and subsampling;
however, it is still unable to distinguish boundary information from overall information.
The natural solution of combining the two functional modules can not only enhance the
complementarity between the boundary information and the global information but also
improve the classification accuracy of image boundaries. Therefore, we designed a novel
LSW-Net model that combines a wavelet scattering network and a fully convolutional
network, which is based on the encoder–decoder structure of the fully convolutional
network [20]. The LSW-Net framework can be described in detail as follows: First, the
dual-tree complex wavelet scattering transform [19] is added during downsampling in
order to effectively separate the high-frequency features and low-frequency features of the
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feature map. Second, the convolution operator is used to select the low-frequency main
features and high-frequency boundary features of the feature map, respectively. Finally,
we concentrate these features. The decoder is a process that uses a multilayer upsampling
method to gradually restore its original resolution. The algorithm is shown in Algorithm 1.

Algorithm 1: Learning Scattering Wavelet Network

Input: Preprocess image, x;
Num of encoder–decoder layers, m = 4;
Kernel size, k = 3;
Num of encoder kernels, ni = 64× 2i;

Num of decoder kernels, nj = 64× 2j−1;
Output: Predictive segmentation map, u;
initialization;

x1 = F
(

x, k, ni
)

, (i = 0)

Encoder:
for i = 1 to m do

zi+1 = DTCWT_Scat(xi)
xi+1 = F(zi+1, k, n× 2i)

end
Decoder:
dm+1 = xm+1

for j = m + 1 to 2 do
pj−1 = concate(xj−1, upsample(dj))
dj−1 = F(pj−1, k, n× 2j)

end
u = softmax(conv(d1, 1))

return u

The LSW-Net framework contains a convolutional feature extraction module that is
followed by batch normalization [21] after each convolution. The purpose is to accelerate the
convergence speed of the LSW-Net framework and reduce the correlation between layers,
see Figure 4 for details. The details can be described as follows: First, we use a 3× 3 size
kernel for convolution and batch normalization. Then, we use the ReLU function to activate
and to achieve the purpose of nonlinear transformation. Finally, the above process is
repeated once. The mathematical expression is F(

Electronics 2022, 11, x FOR PEER REVIEW 5 of 15 
 

 

but also improve the classification accuracy of image boundaries. Therefore, we designed 
a novel LSW-Net model that combines a wavelet scattering network and a fully convolu-
tional network, which is based on the encoder–decoder structure of the fully convolu-
tional network [20]. The LSW-Net framework can be described in detail as follows: First, 
the dual-tree complex wavelet scattering transform [19] is added during downsampling 
in order to effectively separate the high-frequency features and low-frequency features of 
the feature map. Second, the convolution operator is used to select the low-frequency 
main features and high-frequency boundary features of the feature map, respectively. Fi-
nally, we concentrate these features. The decoder is a process that uses a multilayer up-
sampling method to gradually restore its original resolution. The algorithm is shown in 
Algorithm 1. 

Algorithm 1: Learning Scattering Wavelet Network 
Input: Preprocess image, x ; 
Num of encoder–decoder layers, 4m = ; 
Kernel size, 3k = ; 
Num of encoder kernels, 64 2i in = × ; 

Num of decoder kernels, 164 2j jn −= × ; 
Output: Predictive segmentation map, u ; 
initialization; 

( ) ( )1 , , , 0ix F x k n i= =  
Encoder: 
for 1i =  to m  do 
  1 DTCWT _ ( )i iz Scat x+ =  
  1 1( , , 2 )i i ix F z k n+ += ×  
end 
Decoder: 

1 1m md x+ +=  
for 1j m= +  to 2 do 
  1 1concate( ,upsample( ))j j jp x d− −=  
  1 1( , , 2 )j j jd F p k n− −= ×  
end 

1softmax( ( ,1))u conv d=  
return u  

The LSW-Net framework contains a convolutional feature extraction module that is 
followed by batch normalization [21] after each convolution. The purpose is to accelerate 
the convergence speed of the LSW-Net framework and reduce the correlation between 
layers, see Figure 4 for details. The details can be described as follows: First, we use a 3 3×
size kernel for convolution and batch normalization. Then, we use the ReLU function to 
activate and to achieve the purpose of nonlinear transformation. Finally, the above pro-
cess is repeated once. The mathematical expression is 

[ ]2
( , , ) ReLU( ( ( , , )))F k n norm conv k n= , where 2, , ,[ ]k n  indicates, respectively, the in-

put map, the size of the convolution kernel, the number of convolution kernels, and the 
convolution feature extraction module which is executed twice. 

  

, k, n) = [ReLU(norm(conv(

Electronics 2022, 11, x FOR PEER REVIEW 5 of 15 
 

 

but also improve the classification accuracy of image boundaries. Therefore, we designed 
a novel LSW-Net model that combines a wavelet scattering network and a fully convolu-
tional network, which is based on the encoder–decoder structure of the fully convolu-
tional network [20]. The LSW-Net framework can be described in detail as follows: First, 
the dual-tree complex wavelet scattering transform [19] is added during downsampling 
in order to effectively separate the high-frequency features and low-frequency features of 
the feature map. Second, the convolution operator is used to select the low-frequency 
main features and high-frequency boundary features of the feature map, respectively. Fi-
nally, we concentrate these features. The decoder is a process that uses a multilayer up-
sampling method to gradually restore its original resolution. The algorithm is shown in 
Algorithm 1. 

Algorithm 1: Learning Scattering Wavelet Network 
Input: Preprocess image, x ; 
Num of encoder–decoder layers, 4m = ; 
Kernel size, 3k = ; 
Num of encoder kernels, 64 2i in = × ; 

Num of decoder kernels, 164 2j jn −= × ; 
Output: Predictive segmentation map, u ; 
initialization; 

( ) ( )1 , , , 0ix F x k n i= =  
Encoder: 
for 1i =  to m  do 
  1 DTCWT _ ( )i iz Scat x+ =  
  1 1( , , 2 )i i ix F z k n+ += ×  
end 
Decoder: 

1 1m md x+ +=  
for 1j m= +  to 2 do 
  1 1concate( ,upsample( ))j j jp x d− −=  
  1 1( , , 2 )j j jd F p k n− −= ×  
end 

1softmax( ( ,1))u conv d=  
return u  

The LSW-Net framework contains a convolutional feature extraction module that is 
followed by batch normalization [21] after each convolution. The purpose is to accelerate 
the convergence speed of the LSW-Net framework and reduce the correlation between 
layers, see Figure 4 for details. The details can be described as follows: First, we use a 3 3×
size kernel for convolution and batch normalization. Then, we use the ReLU function to 
activate and to achieve the purpose of nonlinear transformation. Finally, the above pro-
cess is repeated once. The mathematical expression is 

[ ]2
( , , ) ReLU( ( ( , , )))F k n norm conv k n= , where 2, , ,[ ]k n  indicates, respectively, the in-

put map, the size of the convolution kernel, the number of convolution kernels, and the 
convolution feature extraction module which is executed twice. 

  

, k, n)))]2,
where

Electronics 2022, 11, x FOR PEER REVIEW 5 of 15 
 

 

but also improve the classification accuracy of image boundaries. Therefore, we designed 
a novel LSW-Net model that combines a wavelet scattering network and a fully convolu-
tional network, which is based on the encoder–decoder structure of the fully convolu-
tional network [20]. The LSW-Net framework can be described in detail as follows: First, 
the dual-tree complex wavelet scattering transform [19] is added during downsampling 
in order to effectively separate the high-frequency features and low-frequency features of 
the feature map. Second, the convolution operator is used to select the low-frequency 
main features and high-frequency boundary features of the feature map, respectively. Fi-
nally, we concentrate these features. The decoder is a process that uses a multilayer up-
sampling method to gradually restore its original resolution. The algorithm is shown in 
Algorithm 1. 

Algorithm 1: Learning Scattering Wavelet Network 
Input: Preprocess image, x ; 
Num of encoder–decoder layers, 4m = ; 
Kernel size, 3k = ; 
Num of encoder kernels, 64 2i in = × ; 

Num of decoder kernels, 164 2j jn −= × ; 
Output: Predictive segmentation map, u ; 
initialization; 

( ) ( )1 , , , 0ix F x k n i= =  
Encoder: 
for 1i =  to m  do 
  1 DTCWT _ ( )i iz Scat x+ =  
  1 1( , , 2 )i i ix F z k n+ += ×  
end 
Decoder: 

1 1m md x+ +=  
for 1j m= +  to 2 do 
  1 1concate( ,upsample( ))j j jp x d− −=  
  1 1( , , 2 )j j jd F p k n− −= ×  
end 

1softmax( ( ,1))u conv d=  
return u  

The LSW-Net framework contains a convolutional feature extraction module that is 
followed by batch normalization [21] after each convolution. The purpose is to accelerate 
the convergence speed of the LSW-Net framework and reduce the correlation between 
layers, see Figure 4 for details. The details can be described as follows: First, we use a 3 3×
size kernel for convolution and batch normalization. Then, we use the ReLU function to 
activate and to achieve the purpose of nonlinear transformation. Finally, the above pro-
cess is repeated once. The mathematical expression is 

[ ]2
( , , ) ReLU( ( ( , , )))F k n norm conv k n= , where 2, , ,[ ]k n  indicates, respectively, the in-

put map, the size of the convolution kernel, the number of convolution kernels, and the 
convolution feature extraction module which is executed twice. 

  

, k, n, [

Electronics 2022, 11, x FOR PEER REVIEW 5 of 15 
 

 

but also improve the classification accuracy of image boundaries. Therefore, we designed 
a novel LSW-Net model that combines a wavelet scattering network and a fully convolu-
tional network, which is based on the encoder–decoder structure of the fully convolu-
tional network [20]. The LSW-Net framework can be described in detail as follows: First, 
the dual-tree complex wavelet scattering transform [19] is added during downsampling 
in order to effectively separate the high-frequency features and low-frequency features of 
the feature map. Second, the convolution operator is used to select the low-frequency 
main features and high-frequency boundary features of the feature map, respectively. Fi-
nally, we concentrate these features. The decoder is a process that uses a multilayer up-
sampling method to gradually restore its original resolution. The algorithm is shown in 
Algorithm 1. 

Algorithm 1: Learning Scattering Wavelet Network 
Input: Preprocess image, x ; 
Num of encoder–decoder layers, 4m = ; 
Kernel size, 3k = ; 
Num of encoder kernels, 64 2i in = × ; 

Num of decoder kernels, 164 2j jn −= × ; 
Output: Predictive segmentation map, u ; 
initialization; 

( ) ( )1 , , , 0ix F x k n i= =  
Encoder: 
for 1i =  to m  do 
  1 DTCWT _ ( )i iz Scat x+ =  
  1 1( , , 2 )i i ix F z k n+ += ×  
end 
Decoder: 

1 1m md x+ +=  
for 1j m= +  to 2 do 
  1 1concate( ,upsample( ))j j jp x d− −=  
  1 1( , , 2 )j j jd F p k n− −= ×  
end 

1softmax( ( ,1))u conv d=  
return u  

The LSW-Net framework contains a convolutional feature extraction module that is 
followed by batch normalization [21] after each convolution. The purpose is to accelerate 
the convergence speed of the LSW-Net framework and reduce the correlation between 
layers, see Figure 4 for details. The details can be described as follows: First, we use a 3 3×
size kernel for convolution and batch normalization. Then, we use the ReLU function to 
activate and to achieve the purpose of nonlinear transformation. Finally, the above pro-
cess is repeated once. The mathematical expression is 

[ ]2
( , , ) ReLU( ( ( , , )))F k n norm conv k n= , where 2, , ,[ ]k n  indicates, respectively, the in-

put map, the size of the convolution kernel, the number of convolution kernels, and the 
convolution feature extraction module which is executed twice. 

  

]2 indicates, respectively, the input map, the size of the convolution kernel,
the number of convolution kernels, and the convolution feature extraction module which
is executed twice.

Electronics 2022, 11, x FOR PEER REVIEW 6 of 15 
 

 

input predicted segmentation

convolution

batch 
normalize & 

ReLU

DTWCT-Scat
output
/input

upsample

concat

D
T
C
W
T

yl

AVGPOOL

U

S

input

Re(yh)

Im(yh)
magnitude

concat output

DTCWT-Scat

 

(a) (b) 

Figure 4. LSW-Net model. (a) LSW-Net; (b) DTCWT-Scat module. 

3.2. DTCWT-Scat Module 
The DTCWT-Scat module can be described in detail as follows. First, the dual-tree 

complex wavelet transform is performed on the feature map. Then the low-frequency in-
formation is processed using average pooling low-pass filtering, that is, 

( , 2),S Avgpool yl= and the magnitude ( )mag  of the high-frequency real and imaginary 

are also calculated, i.e., 2 2(Re( ), Im( )) (Re( )) (Im( )) .U mag yh yh yh yh= = + Then, we merge 
S  and ,U as shown in Figure 4(b), where , , Re( ), Im( )yl yh    represents low-frequency 
information, high-frequency information, and real and imaginary operators, respectively. 

The DTCWT-Scat module has two significant advantages. The first advantage is that 
it is able to perform a dual-tree complex wavelet transform on the input image. This trans-
form supports the backpropagation of errors and can update the parameters so that the 
parameters of the previous convolution layer can be learned. Afterwards, the frequency 
domain features can be extracted. The second advantage is that the wavelet function has 
local waveform characteristics and is stable to local deformation. As a result, the LSW-Net 
model will be more stable and sensitive to small deformations in medical images such as 
tumors and will be more accurate for small feature extraction. 

3.3. IAC-Loss Function 
The flaws of CE-Loss and AC-Loss are acknowledged in Section 2.2. After absorbing 

the advantages of the AC-Loss function, we designed a contour segmentation minimum 
energy function, which can be written as follows, 

,1 2
min   

c c
Region  (1)

.  .. 
C C

ds t u vs ds=∇ ∇   (2)

Where 2 2
1 2(( ) ( ) )Region c v c v udx

Ω
= − − − ⋅ , , , , ,u v s C Ω  represents the predicted image, 

segmentation image, curve arc length, segmentation contour curve, and image area, re-
spectively. The variables 1 2,c c  are constant variables. Since ( ) ,u v u v∇ − ∇ ≤ ∇ −  there 
is, 

| | | | | ( ) .|
C C

u v ds u v ds≤∇ − ∇ ∇ −   (3)

Using the Lagrangian multiplier method, we construct a new contour segmentation 
energy function.  

Figure 4. LSW-Net model. (a) LSW-Net; (b) DTCWT-Scat module.

141



Electronics 2022, 11, 2616

3.2. DTCWT-Scat Module

The DTCWT-Scat module can be described in detail as follows. First, the dual-tree
complex wavelet transform is performed on the feature map. Then the low-frequency infor-
mation is processed using average pooling low-pass filtering, that is, S = Avgpool(yl, 2),
and the magnitude (mag) of the high-frequency real and imaginary are also calculated,

i.e., U = mag(Re(yh), Im(yh)) =
√
(Re(yh))2 + (Im(yh))2. Then, we merge S and U,

as shown in Figure 4b, where yl, yh, Re(•), Im(•) represents low-frequency information,
high-frequency information, and real and imaginary operators, respectively.

The DTCWT-Scat module has two significant advantages. The first advantage is that
it is able to perform a dual-tree complex wavelet transform on the input image. This
transform supports the backpropagation of errors and can update the parameters so that
the parameters of the previous convolution layer can be learned. Afterwards, the frequency
domain features can be extracted. The second advantage is that the wavelet function has
local waveform characteristics and is stable to local deformation. As a result, the LSW-Net
model will be more stable and sensitive to small deformations in medical images such as
tumors and will be more accurate for small feature extraction.

3.3. IAC-Loss Function

The flaws of CE-Loss and AC-Loss are acknowledged in Section 2.2. After absorbing
the advantages of the AC-Loss function, we designed a contour segmentation minimum
energy function, which can be written as follows,

min
c1,c2

Region (1)

s.t.
∫

C
|∇u|ds =

∫

C
|∇v|ds. (2)

where Region =
∫

Ω ((c1 − v)2 − (c2 − v)2) · udx, u, v, s, C, Ω represents the predicted im-
age, segmentation image, curve arc length, segmentation contour curve, and image area,
respectively. The variables c1, c2 are constant variables. Since ||∇u| − |∇v|| ≤ |∇(u− v)|,
there is, ∫

C
||∇u|−|∇v||ds ≤

∫

C
|∇(u− v)|ds . (3)

Using the Lagrangian multiplier method, we construct a new contour segmentation
energy function.

min
c1,c2,C

LossIAC = Region + α · IAC(Length), (4)

IAC(Length) =
∫

C
|∇(u− v)|ds, (5)

where α is the equilibrium coefficient. The first item is the area of the segmentation target
area, and the second item is the difference between the target boundary length of the
predicted image and the ground truth.

Figure 3 verifies the image segmentation advantages of the IAC-Loss energy function
in complex backgrounds. It can be observed that when the segmentation target has no
small target, IAC(Length) = CE(Loss) = 0, but AC(Length) = 314, which indicates
that IAC-Loss and CE-Loss will stop during minimization, but AC-Loss will continue to
decrease. When the segmentation has small targets, IAC(Length) = 12,CE(Loss) = 1.109,
AC(Length) = 320, which shows that IAC-Loss not only improves the sensitivity to small
boundaries but also better solves the problem of under-segmentation, see Figure 3.

In order to facilitate numerical calculation, the specific calculation discrete are also written,

Region =
i=1,j=1

∑
Ω

ui,j
(
c1 − vi,j

)2
+

i=1,j=1

∑
Ω

(
1− ui,j

)(
c2 − vi,j

)2, (6)
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IAC(Length) =
i=1,j=1

∑
Ω

(∣∣∣∇uxi,j −∇vxi,j

∣∣∣+
∣∣∣∇uyi,j −∇vyi,j

∣∣∣
)

, (7)

where α is the balance coefficient, uij ∈ [0, 1] is the predicted probability map, vij ∈ {0, 1}
is the binary code of the ground truth, and c1, c2 can be defined as a constant of 1 or 0.
∇uxi,j ,∇uyi,j ,∇vxi,j ,∇vyi,j are the differences of ui,j and vi,j in the horizontal and vertical
directions, respectively. The algorithm flow is shown in Algorithm 2.

Algorithm 2: Improved AC-Loss function

Input: Predictive segmentation map, u;
Binary ground truth map, v;
Equilibrium coefficient, α;
Batch size, B; Channels, C;
Image width, W; Image height, H;

Output: IAC-Loss Error, LossIAC;
initialization;
cin = [1]B×C×W×H , cout = [0]B×C×W×H
Regionin = u× (v− cin)

2

Regionout = (1− u)× (v− cout)
2

Region = Regionin + Regionout
∇hx = h[:, :, 1 :, :]− h[:, :, : −1, :], h = u, v
∇hy = h[:, :, :, 1 :]− h[:, :, :, : −1], h = u, v
IAC(Length) =

∣∣∇ux −∇vx
∣∣+
∣∣∇uy −∇vy

∣∣
LossIAC = Region + α · IAC(Length)
return LossIAC

4. Experiments

In the following experiments, we use the DRIVE [22] and MICCAI-BraTS2020 [23]
datasets. In the experimental results, the BraTS brain tumor segmentation evaluation
metrics were recorded when epoch = 200, and the DRIVE retinal blood vessel segmentation
evaluation metrics were recorded when epoch = 10.

All models are trained on an i7-10750H, NVIDIA RTX 2070 GPU with 8G RAM.
The Python language is used for programming and the deep learning framework used
is Pytorch.

4.1. Data Preprocessing and Evaluation Metrics

The BraTS2020 brain tumor dataset has 369 patient samples, and each patient contains
4 modalities of MRI image data. After splicing and slicing the four-modal data, slices are
obtained. In this experiment, 297 samples are randomly selected as the training set and
validation set, and the remaining 72 samples are reserved as the test set. After removing the
slices without lesions there are still 19,874 slices, of which 80% of the slices are randomly
selected as the training set and 20% of the slices are selected as the validation set. In the
DRIVE retinal dataset, the first 20 images are selected as the training set and validation set
and the last 20 images are used as the test set.

In the DRIVE retinal dataset, the first 20 images are selected as the training set and
validation set, and the last 20 images are used as the test set. In this experiment, since
there are only a small number of sample sets in the DRIVE retinal dataset, we preprocess
the images of the training set according to image rotation, horizontal flip, vertical flip,
translated, and random cropping, in order to expand the sample size of the training set.

In this paper, our model quality is evaluated in terms of the standard evaluation
metrics such as precision, Dice coefficient, sensitivity, specificity, and accuracy, which are
shown in Table 1. TP, FP, FN, TN represent true positives, false positives, false negatives,
and true negatives, respectively.
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Table 1. Evaluation metrics.

Metric Description

Pre (Precision) TP
FP+TP

Dice (Dice coefficient) 2·TP
2·TP+FP+FN

Sen (Sensitivity) TP
TP+FN

Spe (Specificity) TN
FP+TN

Acc (Accuracy) TP+TN
FP+FN+TP+TN

4.2. Experiment 1: BraTS Brain Tumor Segmentation

In this subsection, we will compare the evaluation metrics of the LSW-Net model with
FCN, SegNet, and At-Unet models, as well as the 3D visualization. We use a combination
of binary cross entropy (BCE) and Dice loss to train the LSW-Net. The loss is formulated as:

lossBraTs = lossDice + 0.5 · lossBCE, (8)

where lossDice = 1− 2∑ yi ·ŷi
∑ yi+∑ ŷi

, lossBCE = − 1
N ∑[yi· log(ŷi) + (1− yi) · log(ŷi)], yi ∈ {0, 1}

is the binary-coded value of the ground truth, and ŷi ∈ [0, 1] is the predicted value.
In Table 2, the evaluation metrics of the LSW-Net model are recorded, where ET, TC,

WT, and AVG represent the enhanced tumor area, tumor core, the entire tumor area, and
the average metric, respectively. After comparison to the classic FCN, SegNet, and At-Unet
models, it can be observed that the Dice coefficient, accuracy, and sensitivity of the LSW-Net
model are all excellent. The LSW-Net model improved the Dice coefficient, accuracy, and
sensitivity by at least 3.51%, 2.11%, and 0.46%, respectively.

Table 2. Comparison of LSW-Net model with classical segmentation algorithms on BraTS2020.

Method
Pre Dice Sen

ET TC WT AVG ET TC WT AVG ET TC WT AVG

FCN [7] 0.7650 0.6554 0.7831 0.7345 0.7656 0.6802 0.8125 0.7528 0.8197 0.7904 0.8722 0.8274
SegNet [11] 0.7748 0.7076 0.8669 0.7831 0.7316 0.6984 0.8448 0.7583 0.7615 0.7754 0.8464 0.7944
At-Unet [12] 0.7764 0.7235 0.8791 0.7930 0.7646 0.7312 0.8600 0.7853 0.8080 0.8240 0.8665 0.8328

LSW-Net (Ours) 0.8319 0.7447 0.9077 0.8281 0.7947 0.7448 0.8797 0.8064 0.8125 0.8308 0.8690 0.8374

Figure 5 shows the 2D visualization comparison of the segmentation results of four
brain tumor samples between the LSW-Net model and the classic FCN, SegNet, At-Unet
models. After comparison with the ground truth, it can be observed that the LSW-Net
model performs better than the three classical models in terms of segmentation and is more
suitable for BraTS brain tumor dataset image segmentation. In the segmentation results in
line one of Figure 5, it can be observed that the other three classic models have misclassified
in the enhanced tumor area and the edema area. Conversely, the LSW-Net model has a
clear and complete outline, which also shows the validity of the LSW-Net model.

The LSW-Net model segmentation results have fewer outliers and mis-segmented
blocks, so they are closer to ground truth when compared to the 3D visualization of the
classical FCN, SegNet, and At-Unet segmentation results. The 3D visualization in Figure 6
shows that the LSW-Net model has achieved a good overall segmentation effect. This
contributes to a clearer understanding and judgment of tumor size, boundary, and location.
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In addition to the experimental comparison of the LSW-Net with the classical segmen-
tation algorithms, the performance of the LSW-Net model, using the BraTS brain tumor
dataset, is assessed here against several advanced segmentation algorithms developed in
recent years by researchers such as Zhang et al. [24], Li et al. [25], Feng et al. [26], Latif
et al. [27] and Hao et al. [28], see Table 3. The comparison assesses performance in terms
of the Dice coefficients for ET, TC, WT, and average (AVG). The evaluation metrics in
Table 3 show that the LSW-Net model and these advanced segmentation algorithms have
advantages and disadvantages in ET, TC, and WT indicators. However, the most impor-
tant evaluation indicator is the average indicator of the Dice coefficient, that is, the AVG
indicator. The AVG index of the LSW-Net model is the highest, which also shows that our
model has better segmentation performance on the BraTS2020 dataset.
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Table 3. Comparison of LSW-Net model with some advanced algorithms on BraTS2020.

Method Year
Dice

ET TC WT AVG

Zhang et al. [24] 2019 0.7070 0.7380 0.8850 0.7767
Li et al. [25] 2019 0.7450 0.8080 0.8650 0.8060

Feng et al. [26] 2020 0.7100 0.7300 0.9000 0.7800
Latif et al. [27] 2021 0.7180 0.7460 0.8960 0.7860
Hao et al. [28] 2021 0.7926 0.7465 0.8764 0.8051

LSW-Net (Ours) 0.7947 0.7448 0.8797 0.8064

4.3. Experiment 2: DRIVE Retinal Segmentation

In this subsection, we will verify the effectiveness of the IAC-Loss function for seg-
mentation on the DRIVE retina dataset. In the experiment, the LSW-Net model will be used
as the backbone network and the loss function will be the IAC-Loss function, denoted as
the LSW-Net + IAC-Loss model. Finally, the LSW-Net + IAC-Loss model segmentation
results are compared with other 14 models, including Cheng et al. [29], Azzopardi et al. [30],
Roychowdhury et al. [31], DRIU [32], HED [33], Unet [34], Recurrent Unet [34], R2Unet [34],
Guo et al. [35], Du et al. [36], Arias et al. [37], Zou et al. [38], and MD-Net [39] models. In ad-
dition, two examples of segmentation effects are shown in terms of overall and local details.
Compared with the other 14 models in Table 4, it can be seen that the LSW-Net + IAC-Loss
model is higher than the other 14 algorithms in terms of Dice coefficient and specificity;
it is second only to the MD-Net [39] model in the accuracy index. Compared with the
segmentation results of the classic Unet model, the sensitivity of the LSW-Net model offers
an improvement of 3.39%, which is an obvious improvement and has a significant effect.
These advantages indicate that our model performs well.

Table 4. Comparison of LSW-Net + IAC-Loss model with some advanced models on DRIVE.

Method Year Dice Sen Spe Acc

Cheng et al. [29] 2014 - 0.7252 0.9798 0.9474
Azzopardi et al. [30] 2015 - 0.7655 0.9704 0.9442

Roychowdhury et al. [31] 2016 - 0.7250 0.9830 0.9520
DRIU [32] 2016 0.6701 0.9696 0.9115 0.9165
HED [33] 2017 0.6400 0.9563 0.9007 0.9054
Unet [34] 2019 0.8142 0.7537 0.9820 0.9553

Recurrent Unet [34] 2019 0.8155 0.7751 0.9816 0.9556
R2Unet [34] 2019 0.8171 0.7792 0.9813 0.9556

Guo et al. [35] 2020 0.8215 0.8283 0.9726 0.9542
Du et al. [36] 2021 - 0.7814 0.9810 0.9556

Arias et al. [37] 2021 - 0.8597 0.9690 0.9563
Zou et al. [38] 2021 0.8129 0.7761 0.9792 0.9519
MD-Net [39] 2021 0.8099 0.8065 0.9826 0.9676
MFE-Net [40] 2022 0.8204 0.7853 0.9812 0.9563

LSW-Net + IAC-Loss (Ours) 0.8216 0.7876 0.9837 0.9565

The comparison experiment, using the segmentation results from the DRIVE retinal
blood vessel dataset, is shown in Figure 7. In the first and third rows of Figure 7 it can
be observed that the segmentation results of DRIU [32] and HED [33] have obvious over-
segmentation. In lines two and four of Figure 7, it can be seen that the segmentation results
of the LSW-Net + IAC-Loss model have less noise and clearer contours. Through this
experimental comparison, it can be shown that the LSW-Net + IAC-Loss model has better
segmentation effectiveness.
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4.4. Experiment 3: Discussion on Equilibrium Coefficient α

To evaluate the effect of the balance coefficient α in the LSW-Net + IAC-Loss model,
ablation experiments are performed on the DRIVE dataset in this subsection.

In the experiment, the evaluation metrics of the LSW-Net + IAC-Loss model are
recorded in Table 5, where α ∈ [0.1, 0.5]. Table 5 shows that the differences in each metric
are not obvious; however, they all reach a high level, which also shows that the LSW-
Net + IAC-Loss model has better robustness to the balance coefficient α. When α = 0.3,
the specificity is the highest while the Dice coefficient and sensitivity are relatively low.
Alternatively, when α = 0.1 or α = 0.5, the Dice coefficient and sensitivity index values
increase. Therefore, we suggest that the metrics can be fine-tuned by controlling the balance
coefficient α according to actual needs.

Table 5. Influence of α balance coefficient on LSW-Net + IAC-Loss model segmentation result
indicators.

α Pre Dice Sen Spe Acc

0.1 0.8525 0.8231 0.9565 0.7957 0.9799
0.2 0.8542 0.8222 0.9564 0.7925 0.9802
0.3 0.8588 0.8216 0.9565 0.7876 0.9837
0.4 0.8602 0.8221 0.9566 0.7873 0.9813
0.5 0.8571 0.8227 0.9566 0.7909 0.9807

4.5. Experiment 4: IAC-Loss Effectiveness Evaluation

In this subsection, we further evaluate the advantages of the IAC-Loss function. For
the segmentation of the DRIVE retina dataset, the LSW-Net is used as the backbone network
and the loss functions are the CE-Loss, AC-Loss, and IAC-Loss functions, denoted as +CE-
Loss, +AC-Loss, and +IAC-Loss models, respectively. The segmentation results are shown
in Table 6.
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Table 6. Comparison of IAC-Loss with related loss function metrics.

Dice Sen Spe Acc

+AC-Loss 0.7875 0.7147 0.9853 0.9509
+CE-Loss 0.8182 0.7920 0.9789 0.9551

+IAC-Loss (α = 0.1) 0.8231 0.7957 0.9799 0.9565

Compared with the +AC-Loss model, the +IAC-Loss model improves on the Dice
coefficient and sensitivity by 3.56% and 8.1%, respectively. The accuracy is also increased
by 0.56%. This illustrates the effectiveness of the IAC-Loss function for image segmentation,
see Table 6.

After comparing the enlarged details of lines two and four in Figure 8, it can be seen
that the boundary contour segmentation of the +IAC-Loss model is the best. Through
the comparative experiments above, it can be determined that the IAC-Loss function has
greater advantages for complex image boundary contours.
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5. Conclusions

In this research, we have proposed the LSW-Net model for the BraTS2020 dataset,
which achieved good experimental simulation results on the segmentation discontinuity
problem. We have constructed an LSW-Net + IAC-Loss model in order to solve the weak
boundary problem of small blood vessels in the DRIVE retinal vessel dataset. After intro-
ducing the dual-tree complex wavelet transform, the experimental results show that the
LSW-Net has the ability to extract features and achieve better segmentation results. In the
future we will further integrate the attention mechanism and the transformer method to
design a better image segmentation network model.
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Abstract: Existing research shows that there are many mature methods for image conversion in
different fields. However, when the existing methods deal with images in multiple image domains,
the robustness and scalability of images are often limited. We propose a novel and scalable approach,
using a generative adversarial networks (GANs) model that can transform images across multiple
domains, to address the above limitations. Our model can be trained on image datasets with
different domains in a single network, with the ability to translate images and the ability to flexibly
translate input images to any desired target domain. Our model is mainly composed of a generator,
discriminator, style encoder, and a mapping network. The datasets use the celebrity face dataset
CelebA-HQ and the animal face dataset AFHQ, and the evaluation criteria use FID and LPIPS to
evaluate the images generated by the model. Experiments show that our model can generate a rich
variety of high-quality images, and there is still some room for improvement.

Keywords: generative adversarial networks; multiple domains; translate images

1. Introduction

Diversifying the style of an image essentially edits the attributes of the image, so that
the image has the attributes that people require to meet their different needs. Diversifying
image attributes can also increase the diversity of data, resulting in more datasets. Compil-
ing the properties of images is a challenging problem for vision applications. Generative
adversarial networks (GANs) [1] can be an important tool for generating images of people’s
desired attributes. After the use of GANs, the task of compiling and generating images
has been greatly improved. There are applications from text to images [2–5]; unsuper-
vised image-to-image compilation of two different domains [6,7]; and multi-domain image
compilation [8], etc.

We design a model where the generator takes the input image as conditional input, and
the style encoding of the target domain as the label input, and transforms the input image
to the target domain indicated by the input label, where the style encoding is provided by
the mapping network or the style encoder. The mapping network outputs the style code
corresponding to the target image domain by randomly sampling the latent vector z and
domain y. The style encoder can output the input image x and the corresponding domain
into the style code s corresponding to the target domain. The mapping network consists of
multi-layer perceptions (MLPs) and has multiple branches outputting, each of which can
generate a style code for a specific image domain. In addition, the style encoding network
consists of residual modules, MLPs and convolutional layers, and it also has multiple
outputting branches, consisting of multi-layer perceptions. Style encoders and mapping
networks benefit from a multi-task learning setting that can generate diverse style codes.

Our generator encodes the input picture and style, and then goes through a down-
sampling module, an intermediate layer module, and an upsampling module, all of which
consist of residual units and convolutional attention units. The residual unit of the upsam-
pling module contains adaptive instance normalization (AdaIN) [9]. The style encoding is
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combined with the input image through AdaIN, and the scale and shift vectors are provided
by learning affine transformation. The residual module is followed by a convolutional
attention module to enhance the effective features in the output feature map, while some
irrelevant noises are suppressed. Repeatedly superimposing the attention module can
gradually improve the expressive ability of the network.

2. Related Work
2.1. Generative Adversarial Networks

The generative adversarial network (GAN) model was originally proposed to generate
images from random noise. Its structure generally consists of a generator and a discrim-
inator, and is trained in an adversarial manner. GAN has many advantages, it can train
any kind of generator network, and its design also does not need to follow any kind of
factorization model, nor does it need to use Markov chains to repeatedly sample, and it
does not need to infer during the learning process, but the GAN has the problem that the
network is difficult to converge. Therefore, in [10,11], it is suggested that Wasserstein-1
distance and gradient penalty is used to improve the stability of the optimization process.
Conditional GANs (cGANs) [2,12] take conditional variables as inputs to the generator and
discriminator, to generate images with desired properties.

2.2. Image-to-Image Translation

Good results have been achieved in image-to-image style transfer research [12–15].
Pix2pix [12] uses cGAN [2] to train the model in a supervised manner, combining ad-
versarial loss and L1 loss, so paired samples are required. In order to solve the problem
that the data need to be paired, the unpaired image transformation framework has been
proposed [13–15]. UNIT [14] proposes to add VAE [16] to CoGAN [17] for unsupervised
image-to-image translation, which builds two encoders sharing the same latent space, and
sharing weights, to learn the joint distribution of images across domains. CycleGAN [14],
NICE-GAN [15], and DiscoGAN [13] preserve key properties between input and translated
images by exploiting cycle consistency loss, but they can only learn the relationship be-
tween two different domains at a time. To address this problem, StarGAN [8] proposes the
use of a generator that can generate images of all domains. Instead of just taking images
as conditional input, StarGAN also takes the label of the target domain as input, and the
generator is used to transform the input image to the target domain indicated by the input
label. Moreover, DualStyleGAN [18] adds an external style control module on the basis of
StyleGAN [19], and learns external styles on small-scale data through a progressive transfer
learning method, which can effectively imitate the style of artistic portraits and achieve
sample-based high-definition stylized faces. RAMT-GAN [20] realizes cross-domain image
conversion based on a dual input/output network constructed by the BeautyGAN [21]
architecture, and introduces identity preservation loss and background invariance loss to
ensure that the generated facial makeup images are accurate and realistic. Different from
the above methods, our framework not only uses a single model to learn the relationship
between multiple domains, but also introduces an attention module to make the features of
the generated images more obvious and improve the quality of the generated images.

3. The Proposed Method

In this section, we describe our proposed framework and its training objective function.

3.1. The Proposed Framework

X and Y represent the image set and the domain of the image, respectively. Given an
image x ∈ X and an arbitrary domain y ∈ Y, where y is the encoding of the field Y, our
goal is to train a generator G, that can generate different images of different domains y
corresponding to images x. The generator G adopts an encoder–decoder structure. Spatial
pooling is necessary to extract high-level abstract representations of image features, but
spatial pooling reduces the spatial resolution and fine details of the image feature map, and
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the features map will easily lose details when it is restored later. In order to improve the
quality of the coded image, some skip connections are applied between the encoder and the
decoder to prevent the important features of the image from being lost. Skip connections
are added between every two corresponding encoder layers and decoder layers. When the
network is very deep, the decoder layer cannot complete the restoration of image details.
The skip connections pass the information of the feature map through the convolutional
layer to the corresponding part in the decoder layer. In addition, spatial attention and
channel attention modules are applied in the encoder and decoder, so that the important
features of the image are enhanced and the unimportant features are suppressed. Our
framework mainly consists of three modules:

• Mapping network (F) and style encoder (E). The schematic diagram of their structure
is shown in Figures 1 and 2 respectively. For a given latent code z and a domain
y, or a given image x and the corresponding image domain y, the style code s =
Fy(z) generated by the mapping network, where Fy(z) represents the F output of
the corresponding domain y. The output of the style encoder is s = Ey(x), where
Ey(x) represents the E output for the corresponding domain y. E consists of MLPs,
convolutional neural net- works (CNNs) and residual blocks with multiple output
branches, which can provide a variety of style encodings, and the number of output
branches is determined by the number of image domains. F consists of multiple MLPs
with output branches, and the number of output branches is also determined by the
number of domains.

• Generator (G). As shown in Figure 3, this is a schematic diagram of our residual
downsampling module, and Figure 4 is the schematic diagram of our AdaIN-residual
upsampling module. Figure 5 is the generator structure diagram. The generator
transforms an input image x into an output image G(x, s), where s is a domain-specific
style code provided by a mapping network F or a style encoder E. Our generator
consists of four downsampling blocks, two intermediate blocks and four upsampling
blocks, all of which have pre-activated residual units. We apply adaptive normalization
(AdaIN) [9,19] to the upsampling module in the generator, which can inject s into G.
AdaIN receives two sources of information: the content input x and the style input s,
and matches the channel-wise mean and standard deviation of x to the channel-wise
mean and standard deviation of s. As shown in the following Equation (1). Simply
speaking, AdaIN realizes style transfer by changing the data distribution of features
at the feature map level, with small computational and storage costs, and is easy to
implement, additionally, there are skip connections between the encoder and decoder,
which can effectively avoid some important features of loss. In addition, the generator
also adds the attention mechanism module (CBAM) [22] of the convolution module,
to make the important features of the feature map more obvious and suppress the
unimportant features.

AdaIN(x, s) = σ(s)(
x−µ(x)

σ(x)
) + µ(s) (1)

• Discriminator (D). Our discriminator D is a multi-task discriminator [23,24]. As shown
in Figure 6. It contains multiple output branches, as well as multiple preactivated
residual blocks. Each branch Dy learns a binary classification to determine whether an
image x is a real image of its domain y or a fake image G(x, s) generated by Generator.
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Figure 1. Mapping network.

Figure 2. Style encoder.

Figure 3. Residual block (the part within the dashed line indicates whether the judgment is executed
or not).
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Figure 4. AdainResBlk block (the part within the dashed line indicates whether the judgment is
executed or not).

Figure 5. Generator.
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Figure 6. Discriminator.

3.2. The Function of Training

Our goal is to train a generator G that can learn mappings between multiple domains.
For a given image x and y, we train as follows:

Adversarial loss: To make the generated image indistinguishable from the real image,
an adversarial loss is used:

Ladv = Ex,y
[
log Dy(x)

]
+Ex,ỹ,z

[
log
(

1−Dỹ(G(x, s))
)]

(2)

x is the input image, y is the image source domain, s is generated by the randomly
sampled code z ∈ Z and the image target domain ỹ ∈ Y through the mapping network
s = Fỹ(z) or style encoder s = Eỹ(x). The generator G takes the image x and the style code s
as input to generate a picture G(x, s). Dy (·) represents the D output corresponding to the
domain y. Generator scholars use s to generate images G(x, s) that are indistinguishable
from real images of the domain ỹ.

Style reconstruction: In order for the generator G to use the style code when generating
images and train a style encoder E to learn the output of different domains, the learned style
encoder E allows G to transform the input image to reflect the style code of the reference
image. Our style reconstruction loss is:

Lsty = Ex,ỹ,z

[∣∣∣
∣∣∣s− Eỹ(G(x, s))

∣∣∣
∣∣∣
1

]
(3)

z is the latent code generated by random noise, ỹ is the given image domain, x is the
real picture, s is generated by z and ỹ through the mapping network F or x and ỹ through
the style encoder E. Similar approaches have also been used by previous methods [25–27]
with this loss. Most of them use multiple encoders to train different pictures to their latent
codes; we only train one encoder to learn to map pictures of different domains to their
latent codes.

Diverse styles: This loss is derived from MSGAN [28], regularizing the generator with
a diversity-sensitive loss [28,29]:

Lds = Ex,ỹ,z1,z2 [||G(x, s1)−G(x, s2)||1] (4)

where the style code s1, s2 is generated by two random latent codes z1, z2 through the
mapping network F

(
si = Fỹ(zi), i = 1, 2

)
. Compared with MSGAN, the denominator

image is removed, making the training more stable. Maximizing regularization also enables
the generator to discover more style features and generate diverse images.

Cycle consistency loss: This loss is derived from CycleGAN [6]. The purpose is to
make the generated images properly maintain the characteristics of the original image:

Lcyc = Ex,y,ỹ,z[||x−G(G(x, s), ŝ)||1] (5)

Among them, where s̃ is generated by the style encoder E from the source domain
y corresponding to the input images x and x (̃s = Ey (x)). By letting the generator G use

156



Electronics 2022, 11, 2235

the style code s to reconstruct the input image x, the generator G can retain the original
features of x when changing the style of x.

Total loss function: Our overall objective function is as follows:

min
G,F,E

max
D
Ladv + λstyLsty − λdsLds + λcycLcyc (6)

where λsty, λds, λcyc are the hyperparameters of each loss function. We train our model
with the above objective function. We use in all experiments λcyc = 1, λsty = 1 and λds = 1.

4. Experiments

In this section, we first compare recent image attribute transfer methods with our
framework, through research. Next, we conduct classification experiments on image
attribute transfer and synthesis. Finally, we show empirical results on image-to-image
attribute transfer learned by our framework from several datasets. For different datasets,
these models need to be trained separately for each dataset.

4.1. Baseline Model

We use MUNIT [25], DRIT [30] and MSGAN [28], as our baselines, all of which learn
multimodal implicatures between two or more domains. For multi-domain comparisons,
we train these models multiple times for the image domain.

MUNIT [25] reduces the image dimension of the dataset into two types of low-
dimensional codes: content code and style code. It combines the content code with the style
code of another image domain to generate style transfer and uses the decoder to increase
the dimension of the newly combined code to generate the resulting image, before the
generated image is decomposed into two codes again. For the original code to calculate
the error back propagation, the c encoder and the s encoder should be well integrated
in the decoder. Adaptive instance normalization (AdaIN) is used, along with an MLP
network, which is used to generate parameters to assist residential blocks to generate
high-quality images.

DRIT [30] proposes a decoupled representation-based method that can produce var-
ious outputs without paired training images. Embedding images into two spaces: an
invariant domain content space that captures information shared across domains, and a
domain-specific attribute space, using decoupled features as input, can greatly reduce mode
collapse and achieve diversity. Introduce cross-cycle consistency loss to handle unpaired
training data.

MSGAN [28] proposes an effective and simple pattern search regularization method
that solves the pattern collapse problem of cGAN. The method is easy to add to existing
models and has been proven to generalize well and effectively.

4.2. Dataset

We use CelebA-HQ [31] and the AFHQ dataset for experiments. We divide CelebA-
HQ into two domains, male and female, and the AFHQ dataset is a dataset divided into
three domains, cat, dog, and wildlife, each providing 5000 high-quality images at 512 ×
512 resolution. We do not use additional information (other than domain labels), and
learn information (such as styles) without supervision. For a fair comparison, we resize all
images to a resolution of 256 × 256 for experiments.

4.3. Training

All models are trained using Adamw [32], β = 0, β = 0.99. For data addition, we simply
crop the image and do some normalization. For all models, we set the learning rate to 1e-4
and the weight decay to le-4. Trained on 4 pieces of 2080Ti for about 3 days.
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4.4. Evaluation Metrics

We use Frechet inception distance (FID) [33] to evaluate the quality of generated
images, with lower scores indicating high correlation with higher-quality images; using
learned perceptual image patch similarity (LPIPS) [34] to evaluate the diversity of generated
images, with higher scores indicating better diversity of generated images.

4.5. Comparison of Image Synthesis

In this section, we evaluate the performance of the silent framework on image synthesis
from two aspects: latent-guided synthesis and reference-guided synthesis.

Latent-guided synthesis. Figure 7 shows a qualitative comparison with related meth-
ods on the CelebA-HQ dataset. Each method uses random noise in the latent space to
produce a diverse picture output. Figures 8 and 9 are qualitative comparisons on the
AFHQ dataset.

Qualitative comparison of latent guided image synthesis results on CelebA-HQ and
AFHQ datasets is undertaken. Each method uses a randomly sampled latent code to
transform the source image (top row) into the target domain. To learn meaningful styles,
we transform latent codes, z, into domain-specific style codes, s, through a mapping
network, M. After injecting style codes into a generator, E, we use a style reconstruction
loss that allows the generator to generate different images in field style.

Figure 7. Using random noise to guide generation of images in CelebA-HQ.
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Figure 8. Using random noise to guide generation of images in AFHQ.

Figure 9. Using random noise to guide generation of images in AFHQ.
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Table 1 shows that our method outperforms some methods. We outperform compar-
ative methods in FID vs. LPIPS in CelebA-HQ dataset, but perform worse than the best
comparison method MSGAN in dataset. We speculate that it may be that when the decoder
adds attention mechanism to suppress the unimportant features of the image, it may also
limit the development of image diversity, so that image diversity cannot generate pictures
well, according to the provided style codes s.

Table 1. Quantitative comparison of latent-guided synthesis. (The bold number indicates the
best result.)

Method
CelebA-HQ AFHQ

FID LPIPS FID LPIPS

MUNIT 31.6 0.365 43.6 0.501
DRIT 52.3 0.176 95.4 0.328

MSGAN 33.5 0.375 61.6 0.517
Ours 18.6 0.423 28.6 0.412

Reference-guided synthesis. Figure 10 is the reference guide image synthesis result
on CelebA-HQ. The source and reference images in the first row and column are real
images, and the rest are images generated by our proposed model. Our model learns
to transform source images that reflect the style of a given reference image, following
high-level semantics, such as hairstyle, makeup, beard, and age, from the reference image,
while preserving the pose and identity of the source image. Note that the images in each
column share a logo with a different style, and the images in each row share a style with a
different identity.

Figure 10. Reference guided image synthesis in CelebA-HQ (The first column is the original image;
the first row is the reference image).
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Figure 11 is a qualitative comparison of the synthetic results of reference guided
images on the CelebA-HQ and AFHQ datasets. Each method transforms the source image
into the target domain, reflecting the style of the reference image. The first column is the
source image and the second column is the reference image.

Figure 11. Comparison of reference guided syntheses.

Table 2 is a qualitative comparison with related methods, FID and LPIPS. When
compared to these methods, ours performs the best; the images we generate are the best
visually and have the most diversity of pictures.

Table 2. Quantitative comparison of reference-guided synthesis. (The bold number indicates the
best result.)

Method
CelebA-HQ AFHQ

FID LPIPS FID LPIPS

MUNIT 106.8 0.178 183.6 0.197
DRIT 53.4 0.311 114.4 0.192

MSGAN 38.9 0.324 68.7 0.159
Ours 28.1 0.382 26.6 0.399

We present some of our experimental results in the Appendix A. Figure A1 is the
image generated using cycle consistency, Figure A2 shows the result of using random
noise to guide generated images, and Figure A3 is the guided synthesis of images with
reference images.

5. Conclusions

The framework we propose mainly solves the problem of converting images from one
domain to different images in the target domain and supports multiple target domains in
image conversion. The results show that our model can generate pictures of diverse styles
in multiple domains, including some shown previously [25,28,30]. However, the quality
of the generated images can be further improved and the diversity can be richer. In our
design, the number of different domains does not affect the quality of the output and model
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performance is not much different when using only a single-domain dataset compared to
using a multi-domain dataset. In addition, the use of skip connections and CBAM attention
modules can also make the generated images have higher visual quality, but we speculate
that adding CBAM in the generator decoding part may affect the diversification of the
generated images, so there is still much room for improvement. We hope that our work can
be applied to the development of image translation programs in multiple domains.
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Appendix A

Figure A1. Images generated by cycle consistency (The first and second rows are real pictures).
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Figure A2. Using random noise to guide generated images s (The first row is the real picture).
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Figure A3. Reference guided synthesis images (The first column is the original image, the first row is
the reference image).
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Abstract: A high-definition map of the autonomous driving system was built with the target points
of interest, which were extracted from a large amount of unordered raw point cloud data obtained
by Lidar. In order to better obtain the target points of interest, this paper proposes an improved
RandLa-Net algorithm incorporated with NDT registration, which can be used to automatically
classify and extract large-scale raw point clouds. First, based on the NDT registration algorithm,
the frame-by-frame raw point cloud data were converted into a point cloud global map; then, the
RandLa-Net network combined random sampling with a local feature sampler is used to classify
discrete points in the point cloud map point by point. Finally, the corresponding point cloud data
were extracted for the labels of interest through numpy indexing. Experiments on public datasets
senmatic3D and senmatickitti show that the method has excellent accuracy and processing speed for
the classification and extraction of large-scale point cloud data acquired by Lidar.

Keywords: NDT registration; map building; RandLa-Net; random sampling; semantic segmentation

1. Introduction

Lidar is an application system that integrates laser technology, global positioning
system technology, and inertial measurement unit (IMU) technology, and it is also an
important sensor for environmental perception in autonomous driving systems. The
proper processing of the collected raw point cloud data can provide important data for
a high-definition map, and furthermore, as a scarce resource and just-needed product
in the field of autonomous driving, high-definition road maps also play a central role
in its entire field, which helps cars perceive complex road information (such as slope,
curvature, heading, etc.) in advance, and to make the right decisions combine intelligent
path planning [1].

Using the point cloud data obtained by the vehicle laser to build high-definition
road maps mainly includes three steps: data acquisition, point cloud data processing
and drawing. Among them, point cloud data processing is the key step to ensure the
accuracy and quality of the point cloud. The traditional method firstly maps the road
surface according to discriminative point cloud mapping features, and then manually
labeled as point clouds for classification. Some scene elements and blind areas that cannot
be recognized and scanned by point cloud classification algorithm still need to be accounted
for by additional manual mining. In short, traditional methods have shortcomings, such as
needing a long production cycle due to a large amount of control and measurement tasks,
and thus they cannot meet the needs of making high-definition maps very well. Traditional
methods also have difficulty in identifying path elements when dealing with some road
sections [2].

An important purpose of raw point cloud data classification and extraction research is
to quickly and accurately distinguish points in roads, cars, people, traffic signs and classes
of interest; however, most of the defects of traditional methods come from manual point
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cloud classification. In response to this problem, many scholars have begun to pay attention
to the research on the automatic classification and extraction of point clouds, which can
greatly improve the timeliness of processing point cloud data when making high-definition
maps. Deep learning has shown excellent performance in object classification, extraction
and recognition in computer vision, but it cannot directly deal with such discrete and
irregular point cloud data and it can only process the point cloud data frame by frame.
Based on the above description, there will be some problems as follows:

(1) The quantity of point cloud data is very large. Current point cloud semantic segmen-
tation algorithms take a long time to train on large-scale data sets.

(2) In order to quickly obtain complete road sections, trees and other components to make
high-definition maps, most point cloud semantic segmentation algorithms segment
data frame by frame to reduce the amount of computation. Therefore, it is necessary
to construct the original data into a complete point cloud map, and then perform
semantic segmentation. In this way, the complete information of the road section can
be obtained.

(3) The point cloud semantic segmentation is designed to assign labels to each point and
classify points, though it is impossible to obtain point cloud sets from unclassified
point data. In other words, the region of interest cannot be directly extracted, it is
necessary to make labels for the point clouds, and then extract the corresponding
point cloud data in turn according to the corresponding index.

To solve the above problems, the aim of this paper was to find an automatic classifica-
tion and extraction method for large-scale point cloud data, and our method can achieve the
fast and efficient classification and extraction of a large number of original point cloud data
for the construction of high-definition maps of autonomous driving systems. Furthermore,
our method can also provide accurate data. The contributions of our method are as follows:

(1) Based on analyzing and comparing the existing registration and semantic segmen-
tation methods, we chose to integrate NDT registration into the RandLa semantic
segmentation algorithm to process original point cloud data.

(2) We tested the two algorithms on the public datasets KITTI [3], Semantic3D [4], and
SemanticKITTI [5], respectively, and we chose to fuse the two algorithms according to
the experimental results.

(3) We give the description of the basic process of the improved RandLa-Net (network
structure based on random sampling and local feature aggregation) algorithm incor-
porated with NDT, and use the improved method to perform many experiments on
public datasets. The experimental results show that the data processed by our method
can be directly used for the construction of a high-definition map.

2. Related Work
2.1. Methods for Point Cloud Data Registration and Semantic Segmentation

The traditional algorithms of point cloud registration are roughly divided into two
categories: coarse registration and fine registration [6]. Coarse registration refers to the
registration by calculating an approximate rotation and translation matrix between two
point clouds. This method is generally used when the relative positional relationship
between two point clouds is unknown. The fine registration refers to making the rotation
and translation matrix more accurate by calculation when the rotation and translation
matrix is known. Most of the point cloud information collected by vehicle radar is coarse
registration, which mainly includes:

(1) A registration method based on local feature description. The point feature histograms
(PFH) methods proposed by Rusu et al. [7] use point feature histograms to characterize
the local geometry of 3D points for registration;

(2) Method based on probability distribution. The normal distributions transform (NDT)
algorithm proposed by Biber [8] et al. is a rough registration method that uses range
scanning first, that is, the normal distribution transformation is performed after point
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cloud matching. In recent years, point cloud registration methods based on deep
learning have also been widely proposed and applied. Aoki [9] et al. used PointNet
to map the found feature points to a high-dimensional space, and then regarded the
vector formed by each feature point as an image in the high-dimensional space, and
finally used the traditional image registration algorithm (Lucas-Kanada, LK) [10] for
point cloud registration. Wang [11] et al. extracted the features of the point cloud to
be registered; they used the improved transformer network to merge the information
between the point clouds, calculated the soft matching between the point clouds,
and then used the differentiable singular value decomposition module to extract the
rigid body changes for point clouds. Here, cloud registration [12] was combined
with keypoint detection to solve the non-convexity and local registration problems of
registration.

One type of method is to improve the traditional point cloud semantic segmentation al-
gorithms, such as random sample consensus (RANSAC), density-based spatial clustering of
applications with noise (DBSCAN), and region growth algorithm (region growing) [13–15].
These algorithms have high requirements for the quality of point cloud data and have low
accuracy and slow speed when processing large-scale point cloud data. The other type of
method is based on deep learning network, which mainly includes:

(1) Projection-based network [16]: due to the inhomogeneity of point cloud data, it is
impossible to directly use the convolutional neural network on point cloud. To make
use of two-dimensional convolutional neural network, the projection-based network
chooses to project a three-dimensional point cloud onto a two-dimensional image and
then input it into the network [17], but the projection process may lead to the loss
of geometric information, and the method lacks the ability of non-local geometric
features [18];

(2) Voxelization-based network [19]: for the disorder and irregularity of the point cloud,
the disordered point cloud is voxelized into an ordered voxel block, and then a three-
dimensional convolutional neural network is used to process the ordered voxel block.
The main limitation of the method is that the computational cost is too high, especially
when dealing with large-scale point clouds. It cannot meet practical applications [20],
and the volume setting of the voxel block will affect the final segmentation effect.
Furthermore, due to the sparsity of the point cloud, there will be empty voxel blocks
generated, wasting the computational cost [21];

(3) Network based on the neural architecture: Hu Q [22] et al. designed an efficient
neural architecture network structure based on random sampling and local feature
aggregation (RandLa-Net). It can directly process large-scale point cloud data without
any preprocessing.

2.2. Data Format Requirements in Unmanned High-Definition Map Construction

In order to make the high-definition electric urban map, a designed unmanned vehicle
(shown in Figure 1) equipped with two 32-line lidars was used to collect the point cloud
data of some road sections, and the sampling frequency of this lidar is 10 Hz. In order to
restore the real road, we need to extract the feature information of the road from the large
amount of point cloud data collected by this lidar, such as roads, vehicles, trees, buildings
and pedestrians.
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The construction of high-definition maps requires the classification of road point
features by class and the three-dimensional coordinates of each point. The coordinates are
listed in (x, y, z) format, and the coordinate system is based on the starting position of the
driverless car as the origin.

Because there are a lot of complex targets in the point clouds and the number of data
collected is large, not all the collected road section information have a unified initial position,
so the registration method based on the deep learning registration method is difficult and
time-consuming to train. At the same time, although the RandLa-Net algorithm can
effectively segment the point cloud map, the format of the single frame data output is
‘.label’, which cannot be directly used to build the high-definition electric urban map.

Based on the above analysis, we integrated the traditional mature NDT registration
algorithm into the RandLa-Net algorithm, so that the results of the semantic segmentation
are more suitable for the construction of high-definition maps.

3. Creation of Global Map of Point Cloud Based on NDT
3.1. Registration Algorithm Based on NDT

NDT is normal distribution transformation. After gridding the reference point, the
normal distribution transformation is performed one by one to complete the modeling of
all reconstructed points. The specific operations are as follows.

First, the point cloud space is divided into cells with the same size according to
certain rules.

Then, the following actions are performed on each cell:
Step1. Collect all points contained in this box: Xi = 1 . . . n;
Step2. Calculate the average:

q =
1
n ∑

i
Xi (1)

Step3. Calculate the covariance matrix:

Σ =
1
n ∑

i
(Xi − q)(Xi − q)t (2)

Step4. The probability of measuring a sample at point x contained in this cell is now
modeled by the normal distribution N (q, Σ):

P(x) ∼ exp

(
− (x− q)tΣ−1(x− q)

2

)
(3)

Figure 2 shows the effect after meshing the 3D point cloud, the original frame and the
visualization after NDT. The visualization is created by evaluating the probability density
of each point, with bright areas indicating high probability density. Then, the normal
distribution transformation is used for the registration between the two frames of point
clouds, and the spatial mapping T between the radar coordinate systems of the two frames
of point clouds is given by:

T :x
′

y′=

(
cos(ϕ) −sin(ϕ)
sin(ϕ) cos(ϕ)

)(
x
y

)
+

(
tx
ty

)
(4)

where (tx, ty) refers to the original position of the reference frame, (x′, y′) is the position of
the frame to be registered, T describes the translation and rotation relationship between the
two, ϕ is the rotation angle, and x and y are the translation distances.
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3. 
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The specific operations of registration are as follows:
Step1. Build the NDT based on the first frame scan;
Step2. Estimate initialization parameters;
Step3. For each sample to be registered, map the reconstructed point into the coordi-

nate system of the reference frame according to the parameters;
Step4. Determine the corresponding normal distribution for each mapped point;
Step5. Determine the score of the parameter by evaluating the distribution of each

mapped point and sum up the results;
Step6. Return to step 3 until the convergence criteria are met and the registration is

completed.
The score is calculated as follows:

score(p) = Σiexp

(
−(x′ − qi)

t ∑−1
i (xi

′ − qi)

2

)
(5)

where p is a vector of parameters to be estimated, xi is the point in the second frame of point
cloud data, xi

′ is the point xi mapped to the coordinate system of the first frame point cloud
data according to the parameter p, that is, xi

′ = T (xi, p). Σi and qi are the covariance matrix
of the point cloud data in the first frame and the mean value of the normal distribution
corresponding to the point xi

′. A mapping according to p can be considered optimal if the
sum of the normal distributions of all points xi

′ evaluated using the parameters Σi and qi
are at maximum, that is, the sum of the scores of p is optimal.

The overall process of point cloud data registration based on NDT is shown in Figure 3.
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3.2. Point Cloud Map Creation Based on NDT

The point cloud map is created to avoid frame-by-frame processing for subsequent
point cloud classification, and to improve the efficiency of the automatic classification of
point cloud data. The main task of point cloud mapping is to use the collected point cloud
data frame by frame to build a complete point cloud map. The algorithm flow is shown in
Figure 4.
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In Figure 4, the coordinate system transformation adopts the TF coordinate system
transformation. If the coordinates of a point in the radar coordinate system are PL (XL, YL),
then the coordinates of a certain point in the map after conversion are PM (xm, ym), and
the map coordinate system is a fixed coordinate system. The coordinate system is the same
as the world coordinate system, then:

R× PL + t = PM (6)

where R is the transformation matrix, so that the poses of the two coordinate systems are
consistent.

R =

[
cos(θ) −sin(θ)
sin(θ) cos(θ)

]
(7)

In Formula (6), t is the position where the origin of the sensor coordinate system is
mapped to the map coordinate system. In general, the initial position of the sensor is the
origin of the map, and t = (xo, yo) can be set directly.

In Formula (7), θ is the heading angle during the driving process. According to the
right-hand rule, the counterclockwise rotation around the z axis of the map coordinate
system is positive, then θ can be directly brought into the transformation matrix, and the
distance from the sensor coordinates to the map coordinates is transformed to:

PM =

(
cos(θ) −sin(θ)
sin(θ) cos(θ)

)
× PL +

(
xo
yo

)
(8)

The relationship between the sensor coordinate system and the map coordinate system
is shown in Figure 5.
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3.3. Test of NDT Global Mapping
3.3.1. Dataset Selection

The KITTI dataset consists of point cloud data collected by 64-line 3D Lidar combined
with two gray-scale cameras, two color cameras and four optical lenses, and the sampling
frequency of Lidar is 10 Hz. The entire dataset consists of 389 pairs of stereo images and
optical flow images, and more than 200 k 3D annotated objects. The KITTI dataset is often
used in 3D object detection and point cloud segmentation, the part samples of dataset are
shown in Figure 6.
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3.3.2. Test Results

The CPU model of the computer is i7-10700k, the GPU model is NVIDIA RTX3090,
and the memory size is 30 GB; the operating system is Ubuntu18.04, and the operating
platform is Pycharm and PCL 1.10.0. The pseudocode for NDT registration is shown in
Figure 7.
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The point cloud global mapping is performed on the test sets 11–21 of KITTI and the
results are shown in Figure 8, where we can see that the point cloud global mapping is very
densely reconstructed by NDT algorithm, and we can clearly see the vehicles on the road
and the trees and buildings on both sides, even in the unsegmented state. In addition, due
to the NDT registration using a one-time initialization, the process of algorithm execution
does not need to consume much computing power to calculate the nearest search matching
point, and the registration only takes 0.18 s per meter distance.
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4. Point Cloud Semantic Segmentation Based on RandLa-Net
4.1. Point Cloud Semantic Segmentation Algorithm Based on RandLa-Net

Point cloud semantic segmentation is to add semantic labels for each point, and to
classify point clouds into different point subsets, and to make sure the same point cloud set
has similar features, such as vehicles, roads, or pedestrians.

The semantic segmentation of a point cloud based on RandLa-Net: first, reduce the
density and computational cost of the point cloud by random sampling, and then use
the local feature aggregator to collect the features of the point cloud so as to avoid losing
some important feature information of the point cloud due to random sampling. Finally,
these features are aggregated and the point cloud is classified so that each point has
corresponding label information. The specific segmentation process is shown in Figure 9.
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In Figure 9, (N, D) represent the point cloud number and feature dimension, respec-
tively. FC represents the fully connected layer, LFA represents local feature aggregation,
RS represents the random sampling, MLP represents shared multilayer perceptron and US
represents upsampling.

4.1.1. Random Sampling

RS is to take n points from N points as samples, where each point has the same
probability of being selected, and there is no special correlation between any two points.
Its computational complexity is O (1). Compared with farthest point sampling and inverse
density importance sampling, random sampling is the most computationally efficient,
which only takes 0.004 s to process 106 points [22].

To evaluate the sampling efficiency of common types of samplings including farthest
point sampling (FPS), inverse density importance sampling (IDIS), random sampling (RS),
generator-based sampling (GS), continuous relaxation-based sampling (CRS) and policy
gradient-based sampling (PGS), each of the above sampling methods is tested with point
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cloud data with the numbers of 103, 104, 105 and 106 in turn. Point cloud data generally
need to be downsampled five times, and each downsampling on a single GPU only retains
1/4 of the original points. The time and memory consumption of each sampling method
are compared, and the results are shown in Figure 10 [23], the dashed lines represent the
estimated value of the memory consumption.
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4.1.2. Local Feature Aggregator

In order to retain the important feature information of the next point, the algorithm
performs local feature aggregation after random sampling. This local feature aggregator is
applied once at each point, which consists of three parts: (1) local spatial encoder (LocSE);
(2) attention pooling layer; and (3) dilated residual block. The specific network structure is
shown in Figure 11.
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(1) Local Spatial Encoder

Given a point cloud P and the features of all points, this local space encoder stores
the xyz coordinates of all adjacent points so that the features of the corresponding points
also have corresponding coordinate positions. The local spatial encoder can also observe
geometric patterns in blocks or regions, and the entire network can efficiently learn the
complex local structure of point cloud data. Specific steps are as follows:

Step1. Find neighbors.
Step2. Position encoding of relative points. For each nearest point {p1

i . . . pk
i . . . pK

i } of
center point pi, the corresponding positions are encoded as follows:

rk
i = MLP

(
pi ⊕ pk

i ⊕
(

pi − pk
i

)
⊕ ‖pi − pk

i ‖
)

(9)

where ⊕ is the connection operation and ‖ · ‖ represents the calculation of the Euclidean
distance between adjacent points and a given point p .
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Step3. Point feature enhancement. For each adjacent point pk
i , concatenate the encoded

relative point position rk
i with its corresponding point feature f k

i to obtain an enhanced
feature vector f̂ k

i .
Step4. The output is a new set of adjacent features:

F̂i =
{

f̂ 1
i . . . f̂ k

i . . . f̂ K
i

}
(10)

(2) Attention Pooling Layer

This module is used to aggregate adjacent point features F̂i and uses the attention
mechanism to learn important local features spontaneously. The attention mechanism
consists of the following parts:

Part1. Calculate the attention score. The formula is as follows:

sk
i = g

(
f̂ k
i , W

)
(11)

where g() represents a shared function to learn a unique attention score for each feature
and W is the learnable weight of the shared MLP.

Part2. The formula for the weighted summation is as follows:

f̂i =
K

∑
K=1

(
f̂ k
i · sk

i

)
(12)

(3) Dilated Residual Block

Finally, in order to preserve an important feature information of all points before sam-
pling as much as possible, this algorithm uses multiple local spatial encoders and expands
the residual block formed in the stack of attention-eating layers and skip connections.

4.2. Point Cloud Semantic Segmentation Test Based on RandLa-Net
4.2.1. Dataset Selection

The experiment was conducted on the SemanticKITTI dataset. We selected the point
cloud data from the first sequence to tenth sequence as the training set, and the point
cloud data from the eleventh sequence to twenty-first sequence as the test set. Annotation
categories are divided into: cars, bicycles, motorcycles, trucks, other vehicles, people,
cyclists, motorcyclists, roads, parking lots, sidewalks, other surfaces, buildings, fences,
vegetation, tree trunks, terrain, utility poles and traffic signs—19 categories in total, which
are all important components in the autonomous driving traffic environment [5].

The Semantic3D dataset is a global point cloud image of different urban scenes ob-
tained by static scanning with advanced equipment, and the dataset has more than 4
billion points in total. The annotation categories are artificial terrain; natural terrain; high
vegetation; low vegetation; buildings; landscapes; objects; and cars—all of which are the
main components of the urban environment [4].

4.2.2. Algorithm Testing

The CPU model of the test computer is i7-10700k, the GPU model is NVIDIA RTX3090
and the memory size is 30 GB; the operating system is Ubuntu18.04, the platform for deep
learning uses the TensorFlow, the initial learning rate is set to 0.01 and it is reduced by
5% after each epoch. The number of closest points K is set to 16, the batch processed per
iteration is set to 8 and a fixed number of points (approximately 105) are sampled as input.
The SemanticKITTI and Semantic3D datasets are used as the training and testing sets,
respectively.

Table 1 shows the results of the training with different approaches on the semantickitti
dataset. The average intersection ratio (mIoU) of all categories is used as a quasi-index, and
the parameter column refers to the number of network parameters in the algorithm. It can
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be seen that the mIoU of all categories obtained by RandLa-Net is significantly better than
that of other algorithms, and RangeNet53++ has the best segmentation accuracy for small
targets such as traffic signs and bicycles [24], which is because the network parameters of
RangeNet53++ [24] are more than 40 times higher than those of RandLa-Net.

Table 1. Quantitative results of different approaches on semantickitti.

Methods PointNet PointNet++ SqueezeSeg DarkNet21Seg RangeNet53++ RandLa-Net

mIoU(%) 14.1 19.8 28.8 45.6 52.1 53.7
parameter (M) 3 6 1 25 50 1.24

road 61.6 71 85.3 91.4 91.8 91.7
side-walk 35.5 41.3 54.1 73 74.2 77.1
parking 15.6 18.3 26.9 56 63.9 41.2

other-ground 1.2 5.2 4.4 26.4 27.8 38.9
building 41.2 61.5 56.3 81.9 87.4 88.2

car 46.1 53.7 68.5 85.1 90.4 93.3
truck 0.1 0.9 3.3 18.1 24.7 40.1

bicycle 1.3 1.9 15 26.2 25.7 15.5
motorcycle 0.3 0.2 4.1 26.5 34.4 28.8

other-vehicle 0.7 0.2 3.5 15.6 22.9 38.5
vegetation 30 46.5 60 77.6 80.5 84.5

trunk 4.6 13.8 24.3 47.4 55.1 40.1
terrain 17.6 30 53.7 63.6 64.5 72.1
person 0.2 0.9 12.9 31.8 38.3 53.4

bicyclist 0.2 1 13.1 33.6 38.8 53.36
motorcyclist 0 0 0.9 4 4.8 7.2

fence 12.9 16.9 29.9 52.3 58.6 44.5
pole 2.4 6 17.8 36 47.9 51.3

traffic sign 3.7 8.9 24.5 50 55.9 38.6

Table 2 shows the train results of different approaches on Semantic3D, and the mean
cross-over-union ratio (mIoU) and overall accuracy (OA) for all classes were used as
standard metrics.

Table 2. Quantitative results of different approaches on Semantic3D.

Methods SnapNet ShellNet GACNet KPConv RandLa-Net

mIoU(%) 59 69.1 70.7 74.6 77.4
OA(%) 88.6 91.8 94 92.9 94.8

man-made terrain 81 86.4 96.4 90.9 94.2
natural terrain 77.2 77.7 92.6 82.8 91.4
high vegetation 79.7 88.5 87.9 84.1 82.9
low vegetation 22.9 60.6 44 47.8 52

buildings 91.1 94.2 83.2 94.5 94.7
hard scape 18.4 37.3 31 40 54.9

scanning artefacts 37.3 43.5 63.5 77.3 70.9
Cars 64.4 77.8 76.2 79.7 76.9

RandLa-Net significantly outperforms other algorithms in mIoU and OA. The test
accuracy of different methods for eight kinds of targets can be seen in Table 2, and the test
accuracy of RandLa-Net algorithm is also better than most algorithms. The point cloud
segmentation effect on different datasets is shown in Figure 12.
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Table 3 shows the total time and memory consumption of different methods. It can 
be seen in Table 3. RandLa-Net has the shortest processing time and the most maximum 
inference points. Although the number of network parameters of the SPG algorithm is the 
least, the processing time of point clouds is very long and the overall effect is not as good 
as RandLa-Net, due to the complex geometric division and hypergraph construction steps. 
Therefore, RandLa-Net is the most efficient network. 

Figure 12. The segmentation effect on different datasets: (a) frame-by-frame segmentation effect of
SemanticKITTI-11; (b) frame-by-frame segmentation effect of SemanticKITTI-12; (c) panoramic split
effect of Semantic3D-1; and (d) panoramic split effect of Semantic3D-2.

Table 3 shows the total time and memory consumption of different methods. It can
be seen in Table 3. RandLa-Net has the shortest processing time and the most maximum
inference points. Although the number of network parameters of the SPG algorithm is the
least, the processing time of point clouds is very long and the overall effect is not as good
as RandLa-Net, due to the complex geometric division and hypergraph construction steps.
Therefore, RandLa-Net is the most efficient network.

Table 3. Efficiency of the semantic segmentation of different methods on sequence 08.

Total Time (s) Parameters (Millions) Maximum Inference Points
(Millions)

PointNet 192 0.8 0.49
PointNet++ 9831 0.97 0.98
PointCNN 8142 11 0.05

SPG 43584 0.25 -
KPConv 717 14.9 0.54

RandLa-Net 185 1.24 1.03

5. Comprehensive Test of Automatic Classification and Extraction of Raw Point
Cloud Data
5.1. The Flow of the Algorithm

The improved RandLa-Net algorithm incorporated with NDT registration can directly
process the complete point cloud map, and further obtain the data required by the high-
definition map. The specific algorithm flow is shown in Figure 13.
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5.2. Test Data

Take the SemanticKITTI Dataset 03 as an example for testing. Figure 14 shows the
original frame-by-frame data of the 03 point cloud.
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5.3. Point Cloud Mapping

Firstly, load the rosbag of the original dataset, then use the NDT algorithm to perform
the coordinate transformation and registration on the frame-by-frame point cloud data,
and build a map globally. The output effect is shown in Figure 15.
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5.4. Random Sampling

In order to reduce the amount of computation, the random sampling of data is required
before semantic segmentation, and the sampling effect is shown in Figure 16. We can see
that the number of point clouds is significantly reduced and the features become blurred.
However, the local feature aggregator of the subsequent RandLa-Net algorithm will solve
this problem.
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5.5. Point Cloud Semantic Segmentation

Load the bin format file of the global point cloud image, and use the RandLa-Net
algorithm to semantically segment the point cloud image. Figure 17a is the visualization
of semantic segmentation on the dataset using our improved RandLa-Net algorithm,
and Figure 17b is the visualization of semantic segmentation on the same dataset using
the original RandLa-Net algorithm. Table 4 shows the specific effect of the test, which is
reflected from the indicator mIoU. We can see that the segmentation effect does not decrease
the accuracy due to the change from frame-by-frame segmentation to global segmentation.

Figure 17a is the visualization effect of the global point cloud map classification using
RandLa-Net fused with NDT. Figure 17b is the visualization effect of the frame-by-frame
point cloud classification using the original RandLa-Net network. Figure 17c is the label
information corresponding to each color in the visualization. It can be seen that the
algorithm in this paper can be used to classify the point cloud map at one time, and then the
required area can be directly extracted. However, since the point cloud data processed by
the original RandLa-Net algorithm was not registered and then there are a large number of
redundancy points so that the point cloud of each road element cannot be directly extracted
for making high-definition maps.
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Figure 17. The comparison of point cloud semantic segmentation results: (a) segmentation visual-
ization based on the improved RandLa-Net; (b) segmentation visualization based on the original
RandLa-Net; and (c) the label information corresponding to the color.

Table 4. Test accuracy on semantickitti 03.

Methods RandLa-Net Ours

mIoU(%) 60.6 61.5
parameter(M) 1.24 1.24

road 92.1 92.3
side-walk 77.3 78.1
parking 42.6 43.9

other-ground 40.8 41.2
building 89.4 90.2

car 92.1 92.3
truck 50.8 51.3

bicycle 15.6 16.5
motorcycle 30.9 31.2

other-vehicle 41.7 41.5
vegetation 85.9 85.6

trunk 42.3 43.1
terrain 72.5 73.1
person 65.9 65.4

bicyclist 55.8 55.4
motorcyclist 8.9 9.7

fence 47.2 48.3
pole 53.1 53.3

traffic sign 40.4 41.7

From Table 4, it can be seen that the mIoU of all categories are improved after using
the new method. This is because the shape features of each element on the global point
cloud map are more complete, which is more conducive to be identified and extracted.
However, in the classification of some small targets, the accuracy of the original algorithm
is not as high as the frame-by-frame segmentation. This is because the registration of
small targets in the registration time is not complete, which leads to some deviation in the
subsequent classification.
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5.6. Point Cloud Extraction

Since the file is in bin format, in order to find the point cloud data corresponding to the
desired label from the classified point cloud map, the point cloud can be extracted according
to the label. Figure 18a is the point extracted on label 15 cloud data, and Figure 18b is the
point cloud data extracted on label 9.
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Figure 18 is the visual effect of extracting all the points marked vegetation and road 
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Figure 18. Point cloud extraction: (a) vegetation; and (b) road.

Figure 18 is the visual effect of extracting all the points marked vegetation and road in
the SemanticKITTI dataset 03. It can also be converted into txt type and data in (x, y, z, label)
format can be obtained for further operation. In addition to the two extraction examples of
Figure 18, specific extractions can be performed based on 19 labels. The extracted data can
be directly used to create high-definition maps after simple sorting. The sorted part of the
data is shown in Table 5, where the category corresponding to the number is represented
by a label.

Table 5. The form after data output.

Numb Object Type Position Coordinates (x, y, z)

1 car
20.354 40.375 −2.404
20.356 40.374 −2.404
20.359 40.374 −2.399

. . . . . . . . . . . . . . .

6 person
−0.847 −34.686 3.215
−0.852 −34.683 3.212
−0.852 −34.683 3.215

. . . . . . . . . . . . . . .

9 road
−0.003 −31.752 0.002
−0.001 −31.756 0.002
−0.002 −31.759 0.002

. . . . . . . . . . . . . . .

15 vegetation
−8.033 −0.995 −1.201
−8.053 −0.982 −1.200
−8.062 −0.975 −1.201

The data are labeled in the following order: 1. car; 2. bicycle; 3. motorcycle; 4. truck; 5. other-vehicle; 6. person;
7. bicyclist; 8. motorcyclist; 9. road; 10. parking; 11. sidewalk; 12. other-ground; 13. building; 14. fence; 15.
vegetation; 16. trunk; 17. terrain; 18. pole; and 19. traffic sign.

6. Conclusions

This paper proposes a fast automatic classification and extraction method for large-
scale point cloud data. The original point cloud data are globally mapped by NDT regis-
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tration. In order to reduce the amount of computation, the point cloud map is randomly
sampled. The cloud global map is semantically segmented, with each point assigned to
a corresponding label, and then the numpy index is used to extract the point cloud data
corresponding to the label of interest. The training results show that the point cloud data
classification reaches 53.7% on the public dataset SemanticKITTI and 77.4% on Semantic3D.
The test on the SemanticKITTI-03 dataset reflects that our method is more efficient than
traditional manual annotation on large-scale point cloud datasets. However, in order to
save computing power, the algorithm network parameters in the point cloud classification
part are too few, resulting in an unsatisfactory classification effect on small target objects.
In the follow-up research, the classification of small target objects will be further optimized
and tested.
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Abstract: To improve the accuracy of the You Only Look Once v5s (YOLOv5s) algorithm for object
detection, this paper proposes an improved YOLOv5s algorithm, CBAM-YOLOv5s, which introduces
an attention mechanism. A convolutional block attention module (CBAM) is incorporated into the
YOLOv5s backbone network to improve its feature extraction ability. Furthermore, the complete
intersection-over-union (CIoU) loss is used as the object bounding-box regression loss function to
accelerate the speed of the regression process. Experiments are carried out on the Pascal Visual Object
Classes 2007 (VOC2007) dataset and the Microsoft Common Objects in Context (COCO2014) dataset,
which are widely used for object detection evaluations. On the VOC2007 dataset, the experimental
results show that compared with those of the original YOLOv5s algorithm, the precision, recall and
mean average precision (mAP) of the CBAM-YOLOv5s algorithm are improved by 4.52%, 1.18% and
3.09%, respectively. On the COCO2014 dataset, compared with the original YOLOv5s algorithm,
the precision, recall and mAP of the CBAM-YOLOv5s algorithm are increased by 2.21%, 0.88% and
1.39%, respectively.

Keywords: object detection; YOLOv5s; attention mechanism; deep learning

1. Introduction

In recent years, due to the advent of the era of big data and the rapid development of
computer graphics cards, the computing power of computers has also improved, which has
accelerated the development of artificial intelligence in the computer field. There are more
and more studies related to artificial intelligence, for example, the research in [1–4] has
good application value, and the research of object detection has also developed accordingly.

Object detection has a wide range of applications in many areas of artificial intelligence,
including robot navigation [5], autonomous driving [6], medical imaging [7] and human–
object interaction [8]. Current object detection algorithms are mainly divided into single-
stage detection algorithms and two-stage detection algorithms. Single-stage detection
algorithms are represented by the You Only Look Once (YOLO) series [9–13], single-shot
multibox detector (SSD) series [14–17], etc. Two-stage detection algorithms are represented
by the region-based convolutional neural network (R-CNN) series [18–20]. A single-stage
detection algorithm simultaneously classifies and locates the object of interest during object
detection, while a two-stage detection algorithm performs these tasks separately. The
characteristics of single-stage detection algorithms include that their detection speeds are
very fast, but their accuracies are low. A two-stage detection algorithm is the opposite of a
single-stage detection algorithm, with high accuracy but a slow detection speed. At present,
most object detection tasks are real-time detection problems based on video, which require
high detection speed, so a single-stage object detection algorithm is more suitable.

The latest single-stage object detection algorithm is the YOLOv5 algorithm. Compared
with other single-stage object detection algorithms, the YOLOv5 algorithm has a faster
detection speed and a smaller model. YOLOv5 is divided into four different algorithms:
YOLOv5s, YOLOv5m, YOLOv5l and YOLOv5x. The network structures of these four
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different algorithms are roughly the same, but their differences lie in the depths and widths
of the networks. Among them, YOLOv5s has a faster detection speed and a smaller model
than the other three algorithms, but the disadvantage is that its accuracy is low. In response
to this problem, this paper proposes an improved YOLOv5s algorithm, CBAM-YOLOv5s,
which introduces an attention mechanism.

In recent years, the attention mechanism has been widely used in various fields of deep
learning [21–24], including image processing, speech recognition and natural language
processing. There are many attention mechanism modules in the field of computer vision,
among which the most classic ones are the squeeze-and-excitation network (SENet) [23]
and the convolutional block attention module (CBAM) [24]. SENet is the champion of
the ImageNet2017 image recognition competition, and CBAM is the champion of the
2018 classification competition. In this paper, these two classical modules are introduced
respectively for comparative experiments.

At present, there are many improved object detection models based on the attention
mechanism, which have good results, but most of the model parameters are large, and
the detection speed is not fast enough. The improved method in this paper has good
performance in both detection effect and detection speed.

2. CBAM-YOLOv5s

In this section, the YOLOv5s algorithm is first introduced, followed by detailed
descriptions of the improvements made to the YOLOv5s network structure and the object
bounding-box regression loss function used by the algorithm proposed in this paper.

2.1. YOLOv5s Algorithm

The YOLOv5s algorithm includes three parts: a feature extraction backbone network,
a feature fusion neck network and a detection head. The network structure is shown in
Figure 1. The detection process of the YOLOv5s algorithm is roughly divided into three
steps. The first step is to extract features, adjust the scale of the input image to 640× 640,
and input the adjusted image into the backbone network. The BottleneckCSP-2 module,
the BottleneckCSP-3 module, and the BottleneckCSP-4 module output three different scales
of feature maps with sizes of 80× 80, 40× 40 and 20× 20, respectively; these three feature
maps contain different feature information. The second step is feature fusion. The three
different scales of feature maps obtained through the backbone network are transmitted
to the neck network, and the neck network performs a series of upsampling, convolution,
channel concatenation and other operations to fully integrate the information provided by
the feature maps. The third step is to output the detection heads. After the neck network
fully integrates the features, three detection heads with sizes of 80× 80, 40× 40 and 20× 20
are output. These three detection heads with different scales are used to detect small objects,
medium objects and large objects.

Compared with YOLOv4, YOLOv5s adds a focus module to the backbone network.
The main function of this module is to periodically extract pixels from high-resolution
images and reconstruct them into low-resolution images to improve the receptive field
of each pixel while retaining relatively complete original information. The design of the
module is mainly used to reduce the number of calculations and speed up the algorithm.
YOLOv4 only uses a cross-stage partial network (CSP) [25] structure in the backbone
network, while YOLOv5s uses CSP structures in both the backbone network and the neck
network. A CSP structure is used for local cross-layer network fusion, which reduces the
number of calculations while simultaneously ensuring accuracy.
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Figure 1. Structure of the YOLOv5s network.

2.2. Improved YOLOv5s with an Attention Mechanism

An attention mechanism is a data processing method in that is widely used in various
types of machine learning tasks, such as natural language processing, image recognition
and speech recognition. An attention mechanism is essentially similar to the mechanism
by which humans observe external objects; when humans observe external objects, they
are first inclined to observe some important local information about these objects and then
combine the information derived from different regions to form an overall impression of
the observed objects.

2.2.1. CBAM

The CBAM is a lightweight module that includes a channel attention submodule and a
spatial attention submodule. The channel attention submodule focuses on important feature
information, and the spatial attention submodule focuses on object location information.
The structure of the CBAM is shown in Figure 2.
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The operation process of the channel attention submodule: The input feature map
uses a global average pooling operation and a global maximum pooling operation to
aggregate the spatial information of the input feature map to obtain a one-dimensional
channel attention vector, sends it to a shared network, passes the added elements through
a sigmoid activation function to obtain the resulting channel attention vector and finally
multiplies the channel attention vector with the initial input to obtain the output of the
channel attention submodule.

The operation process of the spatial attention submodule: The output of the channel
attention submodule is subjected to an average pooling operation and a maximum pooling
operation to obtain a spatial attention tensor; this is followed by channel concatenation.
Then, the spatial attention tensor is obtained through a convolution operation and the
sigmoid activation function; finally, the spatial attention tensor is multiplied with the
output of the channel attention submodule to obtain the output of the spatial attention
submodule.

2.2.2. YOLOv5s Introduces the CBAM

The CBAM is incorporated into the backbone network of YOLOv5s, and the network
structure is shown in Figure 3. The function of the module is to let the network know
which part to focus on and to accordingly achieve prominent representations of important
features while suppressing the less important features; this module can adjust the attention
weight of the feature map and improve the feature extraction ability of the network.
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The specific operation of the CBAM is mainly divided into two steps, as shown
in Figure 4.
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In the first step, the channel attention operation is performed on the input feature map.
The input 1024× 20× 20 feature map is processed through a maximum pooling operation
and an average pooling operation to obtain two 1024× 1× 1 feature maps, and then these
two feature maps are each compressed by the first fully connected layer to compress the
number of channels to 64, thereby reducing the computational cost. This is followed by an
expansion operation performed through the second fully connected layer to output two
1024× 1× 1 feature maps. Then, the feature information of the two feature maps is added
and passed through the sigmoid activation function to obtain a 1024× 1× 1 feature map,
and finally, the feature map is multiplied by the initial input to obtain an output of size
1024× 20× 20 with constant dimensions.
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In the second step, the spatial attention operation is performed. The 1024× 20× 20
feature map obtained through the channel attention operation is subjected to a maximum
pooling operation and an average pooling operation to output two 1× 20× 20 feature
maps, and then 2× 20× 20 feature maps are output through the channel concatenation
operation. Next, the dimensions of the feature map are restored to 1× 20× 20 through
a convolution operation, and this is followed by the sigmoid activation function, which
outputs a 1× 20× 20 feature map. Then, the feature map is multiplied by the initial input
to obtain a 1024× 20× 20 feature map, and this feature map is added to the input of the
BottleneckCSP-4 module to obtain the final output: a 1024× 20× 20 feature map. Finally,
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the extracted 1024× 20× 20 feature map is input back into the Conv-5 module in the
neck network.

2.3. The Object Bounding-Box Regression Loss Function

The object bounding-box regression loss functions of most object detection algorithms
use generalized intersection-over-union (GIoU) loss [26] to calculate the deviation between
each prediction box and the corresponding ground truth; this loss is defined as

LGIoU = 1− IoU +
|Ac−U|
|Ac| (1)

where Ac represents the area of the smallest box that contains both the ground truth and
the prediction box, IoU represents the intersection over union of two bounding boxes, U
represents the union of the two bounding boxes and LGIoU represents the GIoU loss.

The advantage of the GIoU loss is that it not only focuses on the overlapping area
between the prediction box and the ground truth but also focuses on other nonoverlapping
areas, so it can better reflect the degree of overlap between the prediction box and the
ground truth. However, the disadvantage of the GIoU loss is that when the ground truth
or the prediction box surrounds the other, the GIoU loss function deteriorates, causing
slow convergence and a large localization bias during the training process. The complete
IoU (CIoU) loss [27] was developed in view of this problem; in addition to considering
the overlapping area between the prediction box and the corresponding ground truth, the
distance between the center points and the aspect ratio of the two bounding boxes are also
considered. The CIoU loss is given as

LCIoU = 1− IoU +
ρ2(b, bgt)

c2 + αv, (2)

α =
v

(1− IoU) + v
, (3)

v =
4

π2

(
arctan

wgt

hgt − arctan
w
h

)2

, (4)

where ρ2(b, bgt) denotes the Euclidean distance between the prediction box and the ground
truth, c denotes the shortest diagonal length of the smallest box containing both the ground
truth and the prediction box, α is the weight parameter, v denotes the similarity between
the aspect ratios of the two bounding boxes, wgt and hgt denote the width and height of the
ground truth, w and h denote the width and height of the prediction box, respectively, and
LCIoU denotes the CIoU loss.

Compared with the GIoU loss, the CIoU loss adds loss terms for the center distance and
the aspect ratio between the prediction box and the ground truth to the loss function, which
makes the prediction box converge faster and the regression localization more accurate,
so the algorithm in this paper uses the CIoU loss as the object bounding-box regression
loss function.

3. Experiments

To evaluate the improvement achieved by the CBAM introduced to YOLOv5s, the
CBAM incorporated into the backbone network of YOLOv5s is replaced by another atten-
tion mechanism module called the SENet for an ablation experiment. In this section, the
experimental equipment, dataset, evaluation metrics, experimental results and comparative
analysis are introduced. We have put the core code of the algorithm on GitHub. Interested
readers can download it, and the access link is https://github.com/2530525322/object-
model (accessed on 9 August 2022).

The SENet mainly includes squeeze and excitation operations. The module structure
is shown in Figure 5.
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The SENet mainly focuses the network’s attention on specific channels by learning
the connections between channels, thereby achieving improved accuracy. The general
processing flow of the SENet is roughly divided into three steps.

Squeeze operation: The input W×H×C feature map is subjected to the global average
pooling operation to obtain a 1× 1×C feature map.

Excitation operation: The result of the squeeze operation is transformed nonlinearly
by using a fully connected layer.

Scale operation: The output obtained by the excitation operation is used as the weight
and multiplied by the initial W×H×C input for the channel weights to obtain the final
output.

3.1. Experimental Equipment and Training Parameters

The equipment used in the experiment is a Dell desktop computer, and its specific
configuration is shown in Table 1.

Table 1. Computation system.

Name Configuration

Processor Intel(R) Core(TM) i9-10900X CPU @ 3.70GHz

Running Memory 64 GB

Operating System Linux

GPU NVIDIA GeForce RTX 3080

GPU Memory 10 GB

Programming Tool PyCharm

Programming Language Python

Deep Learning Framework PyTorch

Some of the training parameters in the experiment are shown in Table 2.

Table 2. Training parameters.

Parameter Value

Learning Rate 0.01

Batch Size 32

Weight Decay 0.0005

Momentum 0.937

Epochs 300

3.2. Dataset

The datasets used in this experiment are the Pascal Visual Object Classes 2007 (VOC2007)
dataset [28] and the Microsoft Common Objects in Context (COCO2014) dataset. The
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COCO2014 dataset has a total of 123,287 images with 80 categories. The VOC2007 dataset
contains a total of 9963 images. Twenty classes are included in the dataset, as shown in
Figure 6; these classes include the airplane, bicycle, bird, boat, bottle, bus, car, cat, chair,
cow, dining table, dog, horse, motorbike, person, potted plant, sheep, sofa, train and TV
monitor categories, and the associated XML file provides the object class of the input image
and the coordinates of the corresponding ground truth.
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3.3. Evaluation Metrics

To evaluate the performance of the proposed algorithm, the evaluation metrics in this
paper are precision (P), recall (R), mean average precision (mAP), F-score and frames per
second (FPS).

Precision calculates the proportion of the number of correctly predicted positive
samples to the total number of samples predicted as positive samples, that is, the accuracy
of the prediction for the evaluation object. Precision is defined as follows:

P =
TP

TP + FP
, (5)

where TP represents true positives, that is, the number of positive samples predicted as
positive samples; FP represents false positives, that is, the number of negative samples
predicted as positive samples.

Recall calculates the proportion of the number of correctly predicted positive samples
to the total number of actual positive samples, that is, whether the evaluation object is
completely found or not. Recall is defined as follows:

R =
TP

TP + FN
, (6)

where FN represents false negatives, that is, the number of positive samples predicted as
negative samples.
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The mAP calculates the mean of the average precision (AP) values of all classes and is
used to evaluate the overall performance of the algorithm. The mAP is given as

AP =
∫ 1

0
P dR, (7)

mAP =
∑c

j=1 APj

c
. (8)

F-score calculates the harmonic value of precision and recall, which can comprehen-
sively measure these two indicators. The F-score is defined as follows:

F-score =
(

1 + β2
) P·R

β2·P + R
, (9)

where β is used to balance the weight of precision and recall in the F-score, and there are
three values. When β is equal to 1, precision is as important as recall; when β is less than 1,
precision is more important than recall; when β is greater than 1, recall is more important
than precision.

3.4. Experimental Results and Comparative Analysis

During the experimental training process, the stochastic gradient descent (SGD) [29]
optimization algorithm is used to update the model parameters. Table 3 shows the experi-
mental results obtained on the VOC2007 dataset.

Table 3. Ablation experiment.

Dataset
Attention Mechanism

Precision Recall mAP@0.5 mAP@0.95 F1-Score FPS
SENet CBAM

VOC2007
× × 75.68% 60.87% 66.35% 41.14% 67.47% 76
X × 76.27% 62.09% 67.33% 42.03% 68.45% 57
× X 80.20% 62.05% 69.44% 45.99% 69.97% 60

As seen in Table 3, compared with those of the original YOLOv5s algorithm that
does not introduce an attention mechanism, the precision, recall and mAP of the proposed
algorithm that introduces an attention mechanism are improved. Compared with the
original YOLOv5s, the YOLOv5s version with the SENet module achieves a 0.59% im-
provement in precision, a 1.22% improvement in recall and a 0.98% improvement in mAP,
while the YOLOv5s version with the CBAM yields larger improvements, with a 4.52%
improvement in precision, a 1.18% improvement in recall and a 3.09% improvement in mAP.
By conducting a comparative analysis on the experimental results, it can be concluded
that the algorithm in this paper has better performance than the original algorithm and
the algorithm with the SENet module. SENet only includes channel attention and can
only obtain important feature information on the channel, while CBAM includes not only
channel attention but also spatial attention. It can obtain important feature information
in both channel and space, so that the network can better learn important features in the
image. The more picture features the network learns, the better it can recognize the object,
which will make the network’s recognition accuracy higher.

The experimental comparison results of the object bounding-box regression loss func-
tion are shown in Figure 7, where the horizontal axis is the number of epochs and the
vertical axis is the value of the bounding-box loss. The experimental results show that
the use of the CIoU loss as the bounding-box regression loss function results in faster
convergence than the GIoU loss.
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Figure 7. Variation in the two loss functions.

In order to further verify the effectiveness of the improved algorithm, this study
includes comparative experiments on the COCO2014 dataset. The experimental results are
shown in Table 4.

Table 4. Comparative experiment.

Dataset Algorithm Precision Recall mAP@0.5 mAP@0.95 F1-Score FPS

COCO2014
YOLOv5s 64.48% 48.22% 52.72% 33.22% 55.18% 60

CBAM-YOLOv5s 66.69% 49.10% 54.11% 33.98% 56.56% 58

As can be seen from Table 4, compared with the original YOLOv5s algorithm, the
precision, recall and mAP of the CBAM-YOLOv5s algorithm are increased by 2.21%,
0.88% and 1.39%, respectively. Based on the experimental results in Tables 3 and 4, it can
be concluded that the improved CBAM-YOLOv5s algorithm is better than the original
YOLOv5s algorithm on the VOC2007 dataset and the COCO2014 dataset.

Figure 8 shows the detection effect of the CBAM-YOLOv5s algorithm on the VOC2007
dataset. It can detect different targets in the picture and frame them.
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To verify the effect of the algorithm proposed in this paper, this paper also compares it
with other object detection algorithms, as shown in Table 5. The precision and the FPS are
used as measurement indicators.

Table 5. Comparison with other algorithms.

Dataset Algorithm Backbone Precision FPS

VOC2007

SSD VGG-16 77.5% 46
ESSD VGG-16 79.4% 25

MDSSD VGG-16 78.6% 28
YOLOv3 Darknet-53 74.5% 36
YOLOv4 CSPDarknet53 78.1% 35
YOLOv5s CSPDarknet53 75.6% 76

CBAM-
YOLOv5s CSPDarknet53 80.2% 60

It can be seen from the results in Table 5 that the improved YOLOv5s performs
better than the other detection algorithms in terms of precision and FPS. For example, it
outperforms the YOLOv4 by 2.1% on the VOC2007 dataset with faster detection.

4. Conclusions

In this paper, a CBAM is incorporated into the backbone network of YOLOv5s to opti-
mize its network structure, and the CIoU loss is used as the object bounding-box regression
loss function to accelerate the speed of the regression process. To verify the performance
of the proposed algorithm, extensive experiments are conducted on the VOC2007 dataset.
The experimental results show that compared with those of the original YOLOv5s, the
precision, recall and mAP of the proposed algorithm are significantly improved; further-
more, the CIoU loss is used because the bounding-box regression loss function is faster
than the GIoU loss in terms of convergence. The algorithm in this paper solves the problem
regarding the low detection accuracy of the original YOLOv5s algorithm to a certain extent,
but the algorithm still exhibits certain detection errors and missed detection problems for
complex images with dense objects. Future research will involve continuously optimizing
the network structure of the proposed algorithm to further improve its detection accuracy.
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Abstract: As artificial intelligence develops, deep learning algorithms are increasingly being used
in the field of dorsal hand vein (DHV) recognition. However, deep learning has high requirements
regarding the number of samples, and current DHV datasets have few images. To solve the above
problems, we propose a method based on the fusion of ResNet and Histograms of Oriented Gradients
(HOG) features, in which the shallow semantic information extracted by primary convolution and
HOG features are fed into the residual structure of ResNet for full fusion and, finally, classification. By
adding Gaussian noise, the North China University of Technology dataset, the Shandong University
of Science and Technology dataset, and the Eastern Mediterranean University dataset are extended
and fused to from a fused dataset. Our proposed method is applied to the above datasets, and the
experimental results show that our proposed method achieves good recognition rates on each of the
datasets. Importantly, we achieved a 93.47% recognition rate on the fused dataset, which was 2.31%
and 26.08% higher than using ResNet and HOG alone.

Keywords: ResNet; HOG; feature fusion; DHV recognition

1. Introduction

Biometric identification refers to a technology that uses the physiological or behav-
ioral features of the human body (such as fingerprint features [1], face features [2], gait
features [3], signature handwriting [4], etc.) to achieve identity authentication. Compared
with the traditional authentication systems based on passwords, tokens, and certificates,
biometric authentication systems have many advantages [5–7], so more and more people
begin to focus on the research of biometric identification. As a kind of biometric identifica-
tion method, dorsal hand vein recognition is different from other biometric identification
methods. It mainly uses infrared light to collect images of the back of the hand and uses
this method to show the outline structure of veins [8] in order to realize the identification
of an individuals’ identity. An anatomy article [9] has demonstrated that the DHV has a
unique structure during growth and development, which can characterize the individual
to a certain extent. Therefore, the research on DHV recognition is of great significance in
individual recognition.

Currently, DHV recognition research is primarily focused on a single database, which
makes it easier to achieve better recognition results due to the use of similar acquisi-
tion equipment, subjects, and collection environment. DHV identification on a single
database includes two methods, namely traditional features and deep learning methods.
In 2019, Vairavel et al. [10] studied the recognition performance of three classical dense
descriptors for DHV recognition, including Local Binary Pattern(LBP), HOG, and Weber
local descriptor (WLD), and achieved good results on the Northern University of Technol-
ogy(NCUT) [11] database. Liu et al. [12] proposed an improved biometric map matching
method in 2020, which achieved a 98.09% recognition rate on the Xi’an Jiaotong University
(XJTU) database. With the rise of artificial intelligence, some researchers have begun to
use deep learning methods for DHV identification. In 2019, Wang et al. [13] used the
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selective convolution feature (SCF) model and spatial pyramid pooling (SPP) to obtain
a more robust feature representation of images and they achieved excellent recognition
rates on the China University of Mining and Technology (CUMT) databases. In 2019,
Zhong et al. [14] designed a Deep Hashing Network (DHN) for DHV identification and
achieved good results.

We can see from the above research that the DHV recognition of a single database has
achieved good results, whether using traditional methods or deep learning methods. In
recent years, researchers have begun to focus on cross-device DHV identification. In 2019,
Wang et al. [15] proposed an improved scale-invariant feature transform (SIFT) algorithm,
which achieved a recognition rate of 88.5% on datasets acquired by different devices by
improving the scale factor α, extremum search neighborhood structure, and matching
threshold R. In 2021, Wang et al. [16] proposed a two-stage coarse-to-fine matching method.
First, the vein images to be matched are roughly matched in each category of the database,
and then the SIFT method is used to extract the feature points of the vein images for fine
matching. Such a method achieves good results on the cross-device DHV database.

Through the investigation and research on the cross-device DHV, most of the research
on the cross-device DHV is based on the database of the same group of subjects and does not
consider that the different subjects may have a certain impact on the experimental results.
For different databases, there is not only the problem of different sampling equipment
but also the diversity of subjects. Therefore, taking into account the differences between
equipment and subjects is a major challenge in this field. In addition, in the cross-device
DHV research, most researchers use traditional methods, but traditional methods are not
robust to noise; if deep learning methods are used, they will face the problem of data
volume. Given the above problems, this paper makes the following contributions:

(1) We designed a network framework that fused ResNet and HOG features, tested them
on three different small-sample datasets and achieved good results.

(2) Aiming at the less researched cross-database DHV recognition, a fusion database
containing three different datasets was established, and the proposed feature fu-
sion method was applied to this database, achieving a high recognition rate and
strong robustness.

2. Materials and Methods
2.1. Data Processing
2.1.1. Dataset

The databases used in this paper are the dataset of the Shandong University of Science
and Technology (SDUST) [17], the dataset of the Eastern Mediterranean University of
Turkey (FYO) [18], the dataset of NCUT, and the fusion dataset (Fusion Dataset).

(1) SDUST Dataset

The dataset is a database of DHVs collected from the left and right hands of 63 males
and 47 females using a commercial infrared device DF-300. The dataset contains 40 images
of each subject, 20 for the left and right hands, for a total of 220 categories. The pictures in
each category achieve image enhancement and data enhancement by changing brightness
and random rotation, the size is 640 × 480 pixels, the horizontal and vertical resolutions
are 96 dpi, and the format is jpg, as shown in Figure 1a.

(2) FYO Dataset

The FYO dataset was collected by a team from the Eastern Mediterranean University,
which uses homemade equipment to collect data. The dataset collected images of the
DHVs, palm veins, and wrist veins of the left and right hands of 160 volunteers (111 males
and 49 females) twice, with a 10-min interval between the two acquisitions. The original
data of the dataset contains data collected twice, each time there were 320 images of
DHVs, 320 images of palm veins, and 320 images of wrist veins, and the images were all
800 × 600 color images, as shown in Figure 1b.
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(3) NCUT Dataset

This dataset builds a database of images of the backs of the hands of 102 people,
including 50 males and 52 females. During the collection, the left and right hands are
alternately collected, that is, after collecting a vein picture with the left hand, the right
hand is placed at the collection site to collect one image and then an image of the left
hand is collected. This alternating method ensures the difference between the same type of
samples. Due to the differences in the distribution of veins in the left and right hands of
each individual, the database can be considered a back-of-hand image library composed of
204 types of samples. When collecting, 10 pictures are taken from the back of each hand,
the size is 640 × 480 pixels, the horizontal and vertical resolutions are 96 dpi, the grayscale
is 256 levels, and the format is bmp, as shown in Figure 1c.
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(4) Fusion Dataset

The fusion dataset includes the Shandong University of Science and Technology
dataset, Northern University of Technology dataset, and Turkey Eastern Mediterranean
University dataset, with a total of 372 volunteers and 744 sample data. Since the size and
format of the images in different datasets are different, the images must be preprocessed
first. First the images in the FYO dataset were transformed to grayscale and then their size
was normalized, and the normalized size is 640 × 480 pixels. In this way, the images of the
fusion dataset are all grayscale images with a size of 640 × 480 pixels, as shown in Figure 2.
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2.1.2. Extract Image ROI

As can be seen from Figures 1 and 2, there are large differences in the images of
different DHV databases, including changes in rotation angle, size, brightness, and noise.
This is mainly due to the differences in parameters, such as contrast, brightness, focal
length, and optical performance of the lens between different acquisition devices, as well as
the state of the collector’s hand. These factors have a significant impact on the recognition
results, and simple scale normalization is not conducive to extracting the texture features
of the samples. Therefore, we need to extract the ROI of the image, and the method of
extracting ROI is studied in [19,20]. In this paper, the centroid (x0, y0) adaptive method
is used to determine the ROI area of the DHV image. The centroid of the vein image
expressed by G(x, y) can be calculated as:

x0 =

∑
i,j

i× g(i, j)

∑
i,j

g(i, j)
; y0 =

∑
i,j

j× g(i, j)

∑
i,j

g(i, j)
(1)

where g(i, j) is the grayscale value of pixel (i, j).
A square area with the size of R × R pixels is extracted and centered as the vein

image to be processed. The experiment [21] verifies that when the ROI of the vein image is
380 × 380, the recognition rate can achieve the best effect, as shown in Figure 3.
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2.1.3. Add Gaussian Noise

Gaussian noise is a kind of noise whose probability density function obeys normal
distribution. The main function of Gaussian noise injection, as a data enhancement tech-
nique, is to add random Gaussian noise to samples to reduce overfitting during model
training. Since there is only one image for each person in each dataset, it is not enough to
prove the performance of the proposed method. Therefore, this method is adopted in this
paper to expand the dorsal vein dataset. The dataset after adding Gaussian noise is shown
in Figure 4.
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2.2. Related Algorithms
2.2.1. HOG

HOG [22] feature is a feature descriptor used in computer vision and image processing
for object detection, which constitutes a feature by computing and counting the gradient
direction histograms of local regions of an image.

The acquisition of HOG features is divided into four steps:
The first step is to normalize the color space of the DHV image, which consists of two

aspects, image grayscale, and Gamma correction. Because our image is already a grayscale
map, only Gamma correction is performed, and the Gamma correction formula is as shown
in Formula (2).

I(x, y) = I(x, y)γ, (γ = 0.5) (2)

The gradient is calculated in the horizontal and vertical directions in the second step,
and the gradient calculation formula are shown in Formulas (3) and (4).

Gx(x, y) = H(x + 1, y)− H(x− 1, y) (3)

Gy(x, y) = H(x, y + 1)− H(x, y− 1) (4)

where Gx(x, y),Gy(x, y), and H(x, y) denote the horizontal gradient, vertical gradient, and
pixel value at pixel point (x, y) in the input image, respectively. The amplitude and direction
of the gradient at pixel (x, y) are shown in Formulas (5) and (6).

G(x, y) =
√

Gx(x, y)2 + Gy(x, y)2 (5)

α(x, y) = tan−1
(

Gy(x, y)
Gx(x, y)

)
(6)

The third step is to divide the image into 8 × 8 pixel cells. As shown in the red grid
in Figure 5, a total of 784 cells are included, and the feature descriptors of each cell are
counted. There are 9 descriptors for each cell, representing from 0◦ to 160◦. Every 4 cells is
a block, which is represented by the yellow grid in Figure 5. It contains a total of 729 blocks.
The descriptors of all cells in each block are the HOG features of the block.
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The fourth step is to concatenate the HOG feature descriptors of all blocks in the image
to represent the HOG feature of the image, which is a 1 × 26,244 vector.

2.2.2. ResNet Network

Before the idea of residual learning was proposed, traditional convolutional networks
or fully connected networks had more or fewer problems, such as information loss and loss
when information was transmitted. In addition, deep networks cannot be trained when
gradients are small or exploding. ResNet [23] is a deep learning network that solves the
problem of network degradation by introducing a deep residual learning framework. The
network uses a residual unit structure, as shown in Figure 6. Assuming that the input
feature is x, the learned feature is H(x) and the residual unit of the learned feature can be
represented as F(x) = H(x)− x. The equation of F(x)+ x can be implemented by a feedfor-
ward neural network with shortcut connections, and the residual unit structure can avoid
the feature loss of the convolutional layer during the information transmission process.
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Figure 7 shows the residual structure of ResNet34, Table 1 shows the network parame-
ters for the ResNet34. The main branch of the residual structure is composed of two layers
of 3 × 3 convolutional layers, and the connecting line on the right side of the residual
structure is the shortcut branch, that is, the identity branch. Such branches are designed to
reduce the amount of computation and parameters.
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Table 1. The ResNet34 network parameters in this paper. (* represents the number of categories classified.).

Layer Name Network Parameters Input Size Output Size

conv1 7 × 7, 64, stride2 224 × 224 × 3 56 × 56 × 3

Conv_block1
[

3× 3, 64
3× 3 64

]
× 3, stride2 56 × 56 × 64 56 × 56 × 64

Conv_block2
[

3× 3, 128
3× 3 128

]
× 4, stride2 56 × 56 × 64 28 × 28 × 128

Conv_block3
[

3× 3, 256
3× 3 256

]
× 6, stride2 28 × 28 × 128 14 × 14 × 256

Conv_block4
[

3× 3, 512
3× 3 512

]
× 3, stride2 14 × 14 × 256 7 × 7 × 512

AdaptiveAvgPool2d
(H, W) H = 1, W = 1 7 × 7 × 512 1 × 1 × 512

FC \ 512 *

2.3. Proposed Methods
2.3.1. Fusion of ResNet and HOG Feature

The framework based on the fusion of ResNet and HOG features proposed in this
paper is shown in Figure 8.

First, we do two-way processing on the image input to the neural network, in which
we perform a convolution operation on it to extract the low-level semantic information of
the image as a Feature Map. The other way is to input into the HOG function to extract the
gradient information of the image. When performing HOG feature extraction on images,
we make some changes to the features. First, we obtain the HOG feature of the entire image
according to the general process, and the extracted feature vector is a one-dimensional
vector of 1 × 26,244, as shown in Equation (7).

V = [l1, l2, · · · , l26244] (7)

Since the acquired image HOG feature dimension is large, the feature vector needs to
be normalized. Otherwise, the image features are jerkier in gradient descent and the model
has difficulty converging when the neural network is learning. Therefore, the obtained
one-dimensional vector is first normalized, and the normalization formula is shown in
Formula (8).

fout =
xi −min(x)

max(x)−min(x)
(8)

After the normalization is completed, the normalized feature vector is reshaped into a
feature map of 162 × 162, as shown in Formula (9), to obtain the HOG feature.

Feature_HOG =




l1 · · · l162
...

. . .
...

l26082 · · · l26244


 (9)

Since the size of HOG_Map is different from that of Feature_Map, a convolution
operation is required. The convolved HOG feature is HOG_Feature, and then spatial feature
fusion is performed with Feature_Map. The fusion method is shown in Equation (10), and
the fusion method is shown in Formula (11). Then input the fused features into the ResNet
residual block, and finally reduce the dimension of the feature map output by the ResNet
residual block and input it into the fully connected layer for classification.

ysum
c,h,w = αxa

c,h,w + (1− α)xb
c,h,w (10)
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Feature_Fusion_Map = α× HOG_Feature + (1− α)× Feature_Map (11)
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Figure 8. ResNet and HOG feature fusion methods. (1.) Feature Fusion. This part obtains the HOG
feature and shallow semantic information of the image, respectively, and then performs spatial feature
fusion. (2.) Training and classification. The features after feature fusion are input into the residual
architecture of ResNet for training, then input into the average pooling layer for dimensionality
reduction, and finally input into the fully connected layer for classification.

2.3.2. Feature Fusion Parameter Selection

When dividing the image into cells, we performed three sets of experiments on the
Twenty dataset of NCUT to verify the effect of the number of cells on feature fusion. The
experimental results are shown in Table 2.

Table 2. Different Cell identification results.

Number of Cells
Evaluation Methods

Recognition Rate (%) Train Time (s)

196 85.94 250

256 86.12 267

784 86.53 330

3136 86.46 694
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As can be seen from Table 2, as the number of cells increases from 196 to 784, the feature
fusion recognition rate gradually increases. However, as the number of cells increases, when
reaching 3136 cells, the recognition rate not only does not increase but instead decreases.
We deduce that the reason is that when the number of cells increases to a certain level, if the
number of cells is increased, the gradient information of each cell will be lost to a certain
extent, resulting in a decrease in the recognition effect. It can also be seen from Table 2 that
as the number of cells increases, the model training time also increases. Considering the
above two factors, we chose the number of cells to be 784.

3. Experiments and Analysis
3.1. Feature Fusion Validity Experiments

In this paper, the dataset is divided into a training set, validation set, and test set
according to 8:1:1 by random division. In addition, to ensure the persuasiveness of the
experimental results, we conducted each experiment three times on the test set and took
the average value. We used the Pytorch deep learning framework. The graphics card was
NVIDIA GeForce RTX 2080 Ti 16 GB, the batch size was 16, the learning rate was 0.001, the
loss function is the cross entropy loss function, and the epochs were 50.

Before feature fusion, we performed nine experiments on NCUT’s Twenty dataset to
find the best fusion factor α, and the experimental results are shown in Figure 9. When
the fusion factor is α = 0.3, the recognition rate can achieve the best effect. Therefore, the
fusion factors of ResNet and HOG in the following experiments are both set to 0.3.
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Figure 9. ResNet and HOG fusion factor take values.

Table 3 shows the recognition rates on a single dataset using ResNet, HOG, and
ResNet_HOG methods. First of all, it can be seen from Table 3 that using the ResNet
network can achieve a recognition rate of more than 90% on the Fifty dataset of a single
database, but it does not achieve such a high effect on the Twenty dataset. This is because
the larger the number of samples, the better the trained model will be, and the stronger the
generalization ability of the model. Secondly, we can see from Table 3 that as the number of
data increases, using the HOG algorithm cannot effectively improve the recognition rate,
because the traditional method has no dependence on the amount of data in the dataset.
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Table 3. ResNet and HOG feature fusion recognition rate.

Methods

Recognition Rate (%)

SDUST FYO NCUT

Twenty Thirty Forty Fifty Twenty Thirty Forty Fifty Twenty Thirty Forty Fifty

HOG 83.06 83.13 83.15 83.16 82.01 82.04 82.08 82.10 81.30 81.32 81.34 81.35

ResNet 84.97 90.47 90.86 92.30 86.60 89.59 91.93 93.43 83.93 87.70 89.13 90.06

ResNet_HOG
(ours) 86.57 91.03 92.70 93.27 90.46 92.40 94.60 95.36 86.53 90.10 91.67 93.40

In addition, it can be seen from the table that the recognition rate of our proposed
feature fusion method is better than that of using ResNet and HOG alone, which proves
the feasibility of our proposed feature fusion method.

The fusion dataset is consistent with the experiments performed on the single dataset,
and the experimental results are shown in Table 4. Table 4 shows the comparison between
the proposed feature fusion method and the ResNet method, and it can be seen that the
recognition rate of the proposed method is better than that of using ResNet and HOG alone.

Table 4. Recognition rate on the fused dataset after feature fusion.

Methods
Recognition Rate (%)

Twenty Thirty Forty Fifty

HOG 67.34 67.36 67.37 67.39

ResNet 83.70 86.83 90.46 91.16

ResNet_HOG (ours) 85.70 89.46 92.27 93.47

3.2. Feature Fusion Robustness Experiments

The robustness of the model has always been the focus of cross-database dorsal vein
recognition research, and traditional methods are not robust to cross-database dorsal vein
images and datasets with Gaussian noise added. Here we conduct experiments on three
different datasets using the HOG algorithm. In addition, we use the Partition Local Binary
Patterns (PLBP) [24] algorithm for comparison. PLBP is an improvement based on the LBP
algorithm. It divides an image into non-overlapping blocks, uses the LBP algorithm for
each block, and finally splices the LBP feature statistical histograms of the entire image.
The experimental results are shown in Table 5.

Table 5. Comparison of different methods.

Methods
Recognition Rate (%)

SDUST FYO NCUT Fusion Dataset

PLBP 60.09 55.50 70.19 61.07

HOG 83.16 82.10 81.35 67.39

ResNet 92.30 93.43 90.06 91.16

ResNet_HOG (ours) 93.27 95.36 93.40 93.47

It can be seen from Table 5 that the recognition rate of using the PLBP and HOG
algorithms alone not only does not achieve good results but also is much lower than
the experimental results of other researchers [10] on the NCUT dataset. The reason for
the analysis is that when other researchers conducted experiments on the NCUT dataset,
they used the original dataset and did not use Gaussian noise to expand the dataset.
Additionally, our experiments are performed on the dataset augmented with Gaussian
noise, which also shows that traditional features are not robust to our dataset with Gaussian
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noise added. Furthermore, it can be seen from Table 5 that in the FYO dataset, the effect of
using the PLBP algorithm is particularly low, and we find some categories with the worst
recognition results in the FYO dataset, as shown in Figure 10. Most of the categories with
poor recognition results are recognized in the category 52. Figure 11 shows a statistical
histogram of the texture information extracted from the DHV images using LBP with
rotationally invariant consistency pattern. As can be seen from the figure, the texture
information for categories 131 and 170 differs significantly from the registered features but
differs very little from the registered features for category 52, which leads to DHV images
like 131 and 170 being easily identified as the category 52. Analysis of the reasons for this
occurrence, by adding Gaussian noise leads to a variation in the intra-class images, where
the intra-class distances become larger and are thus misidentified as other classes.
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Figure 10. The most misclassified tags in the FYO dataset.

The HOG algorithm can achieve a recognition rate of more than 80% on a single
database, but only 67.39% on a fusion dataset. We find some of the worst-recognized classes
in the fused dataset, which are mostly data from NCUT and SDUST, as shown in Figure 12.
Most of these partially identified worst classes are identified as 316 and 8, which are images
in the FYO dataset, as shown in Figure 13.

We found that in the worst-recognized category, the blood vessel information of these
images is not obvious, and the Gaussian noise on the images accounts for more. The images
of the most misclassified categories have almost no blood vessel information, and most of
the information is the hair on the back of the hand. The gap between these two categories
cannot be seen visually. We visualize the HOG feature maps of these categories, as shown
in Figure 14.
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Figure 11. The misclassification of most categories of texture information. (a) Registration char-
acteristics of category 52. (b) Registration characteristics of category 131. (c) Testing characteris-
tics of category 131. (d) Registration characteristics of category 170. (e) Testing characteristics of
category 170.
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Figure 14. HOG feature visualization for misclassification.

As can be seen from Figure 14, the images with insignificant vein information in the
NCUT and SDUST datasets and the images of these two categories in the FYO dataset have
less obvious HOG features. Therefore, errors are prone to occuring when calculating the
Euclidean distance between two categories, resulting in a low recognition rate using the
HOG algorithm on the fusion dataset.

The recognition rate of the ResNet_HOG method proposed in this paper is significantly
higher than that of using ResNet and HOG alone on a single dataset. Moreover, we also
achieved good recognition rates on the fusion dataset and have strong robustness.

3.3. Comparison with Other Researchers

Recently, some researchers [25] achieved the current optimal results on the NCUT
dataset using CNN and PLBP feature fusion. We adopted this idea and fused PLBP with
ResNet for feature fusion, and the experimental results are shown in Table 6. As can be
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seen from Table 6, our proposed method achieves the current optimal results on the SDUST
dataset, but not on the FYO and NCUT. In [18], the authors used a decision-level fusion
of palm, dorsal, and wrist biometric features on vein images, which can make full use of
hand biometric features, so this method is superior to our proposed method. In [26], the
authors used the principal component analysis (PCA) method to expand the DHV dataset
to 250 per category, which far exceeded our data volume, so their experimental results
were superior to ours. However, when we expand our dataset to 250 per category, the
recognition rate is 99.93%, and the recognition results are superior to [26].

Table 6. Recognition rates of different feature fusion methods on a single database.

Methods
Recognition Rate (%)

SDUST FYO NCUT

Twenty Thirty Forty Fifty Twenty Thirty Forty Fifty Twenty Thirty Forty Fifty

ResNet_PLBP 85.40 90.87 91.77 92.76 90.27 91.77 94.17 95.20 85.96 89.73 90.17 92.50

VeinNet [17] 92.28 \ \
Skeleton [27] \ \ 92.75

CNN Model
[18] \ 98.90 \

CNN [26] \ \ 99.61

ResNet_HOG
(ours) 86.57 91.03 92.70 93.27 90.46 92.40 94.60 95.36 86.53 90.10 91.67 93.40

Table 7 shows the comparison between our proposed feature fusion method and the
current methods of cross-database, from which it can be seen that our method can achieve
better results, except for [16]. The reason is that [15,16,28] use datasets collected through
different devices and the same subjects, whereas we use datasets with different devices,
different subjects, and different ethnicities, and these different factors have a significant
impact on DHV identification [29], so our method is slightly below [16].

Table 7. Recognition rates of different feature fusion methods on fusion dataset.

Methods
Recognition Rate (%)

Twenty Thirty Forty Fifty

ResNet_PLBP 84.47 89.26 92.13 92.63

Improved SIFT [15] 88.50

SIFT [28] 90.17

Two-stage Coarse-to-fine
Matching [16] 96.80

ResNet_HOG (ours) 85.70 89.46 92.27 93.47

3.4. Comparison between Feature Fusion and Data Volume

Through the experiments in the previous sections, we can see that increasing the
number of samples in the dataset can improve the recognition rate of the dorsal vein of
hand, but of the two methods, feature fusion achieved better results in the recognition of
dorsal vein in small samples. Figure 15 shows the relationship between feature fusion and
the number of samples.
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Figure 15. Data volume vs. feature fusion. (a) Results of ResNet, HOG, and ResNet_HOG on FYO
dataset. (b) Results of ResNet, HOG, and ResNet_HOG on SDUST dataset. (c) Results of ResNet,
HOG, and ResNet_HOG on NCUT dataset. (d) Results of ResNet, HOG, and ResNet_HOG on
Fusion dataset.

From Figure 15, we can first see that our proposed feature fusion method achieved
good results on the small sample DHV dataset. Secondly, we can see that when the amount
of data reaches 40 pieces per category, the proposed feature fusion method exceeds the
ResNet recognition rate of 50 pieces without feature fusion. This is because the shallow
semantic information of the image is extracted using ResNet and then fused with HOG
features; after a series of convolution operations, the final features for classification include
both the deep semantic information and the gradient information of the image. Through
such a feature fusion method, the features of the image can be fully obtained and thus be
accurately classified.

4. Discusion
4.1. Gamma Value Influence

When a picture appears too bright or too dark, it leads to poor image contrast, and
that is when Gamma correction needs to be performed. Our dataset was grayed out for the
experiments, so the color information did not affect the experiments much. The Gamma
correction of the images is required to make the black areas of the images appear brighter.
When Gamma < 1, in the high gray value area, the dynamic range becomes smaller, the
image contrast decreases, the overall gray value of the image becomes larger, and the image
becomes brighter. When Gamma > 1, gamma >1 in the low gray value area, the dynamic
range becomes smaller, the image contrast decreases, and the overall gray value of the
image becomes smaller and darker. To find the appropriate value for Gamma < 1, we
conducted four sets of experiments on three different datasets, and the experimental results
are shown in the Table 8. From the table, we can see that the value of Gamma does affect
different datasets, but overall, the effect of Gamma on the experimental results is minimal,
and in most of the literature, Gamma is generally taken as 0.5, so in this paper, we also
take 0.5.
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Table 8. The influence of different gamma values on the experiment.

Dataset
Gamma Value

0.2 0.4 0.5 (ours) 0.6 0.8

NCUT 86.52 86.61 86.53 86.58 86.60

FYO 90.26 90.35 90.46 90.38 90.42

SDUST 86.59 86.51 86.57 86.44 86.49

4.2. Influence of Gaussian Noise Intensity Model

How the SNR affects the recognition rate of ResNet, we have carried out three sets
of experiments on the Twenty dataset of NCUT, as shown in Table 9. In the table, we can
see that the recognition rate of ResNet gets lower and lower as the noise increases. This
is mainly because, when adding too much Gaussian noise, the vein information on the
image is completely covered by the noise, which makes the model difficult to train and the
recognition rate decreases.

Table 9. Influence of Gaussian noise intensity model.

Noise Range 0.1–0.3 0.3–0.5 0.5–0.7

Recognition Rate (%) 77.45 72.94 66.81

4.3. Influence of Convolution Blocks

We performed a separate convolution operation before inputting the image and HOG
features into the ResNet residual structure, and this operation had an effect on the exper-
imental results, which we performed on three different datasets, and the experimental
results are shown in Table 10. From the Table 10, we can see that adding the convolutional
block performs significantly on the NCUT and SDUST datasets but not on the FYO dataset,
although the recognition rate with the convolutional block is better than that without the
convolutional block. This is because without adding the convolutional block, reshaping the
HOG feature size will lead to the loss of most of the HOG features, which will affect the
recognition results.

Table 10. Experimental comparison with and without convolution blocks.

Methods
Recognition Rate (%)

NCUT FYO SDUST

With convolution blocks 86.53 90.46 86.57

No convolution blocks 83.60 90.23 85.74

4.4. The Influence of Increasing the Amount of Data HOG on the Model

Through the experiments in Section 3, we can see that ResNet_HOG outperforms
ResNet alone for small sample dorsal hand vein recognition, but the gain obtained using
ResNet_HOG always seems to be around 1–3% regardless of the dataset size, and we
analyze the reasons for this as follows.

In this paper, traditional features play an auxiliary role. Traditional features can extract
information that cannot be obtained by depth features (such as gradient information, etc.),
but this information has a limited impact on depth features, so the recognition results of
the model are not significantly improved after performing feature fusion. We also found
this problem in [17], where the authors used a fusion of ResNet and LBP features and
only achieved a 1.97% higher recognition rate than using ResNet alone. In addition, we
conducted four sets of experiments on the NCUT dataset to determine how much HOG
affects ResNet. As can be seen from the experiments in the Table 11, the effect of feature
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fusion seems to become less and less pronounced as the amount of data increases. This is
because as the amount of data increases, ResNet has enough samples for training and the
trained model becomes more and more robust, so it is possible to obtain a high recognition
rate using only ResNet.

Table 11. Experimental comparison of different data volumes.

Methods

Recognition Rate (%)

One Hundred
Samples

One Hundred and
Fifty Samples

Two Hundred
Samples

Two Hundred and
Fifty Samples

ResNet 96.93 98.07 98.92 99.54

ResNet_HOG 97.89 98.84 99.27 99.93

For the above analysis, we can see that either ResNet and HOG feature fusion or
ResNet with LBP for feature fusion can outperform the recognition rate obtained using
ResNet alone. However, because the recognition rate obtained using ResNet alone is more
than 90%, the model’s recognition rate is only improved by 1–3% after feature fusion, which
is also effective for a dataset with few samples.

4.5. Other Deep Learning vs. Traditional Methods Discussion

In [17], the authors conducted experiments using the ResNet network. The authors
performed two types of data enhancement (increasing the amount of data and changing the
image brightness), and the recognition rate obtained by both enhancement methods was
better than that obtained by using ResNet alone. In addition, the authors also performed
the method of ResNet and LBP feature fusion, and the recognition rate after performing
data enhancement using ResNet was 90.31%, while the recognition rate after performing
ResNet and LBP feature fusion was 92.28%, which is an improvement but not significant.
Our analysis shows that the black background information of the rotated image has an
impact on the extraction of LBP features, which leads to the insignificant improvement of
recognition results after feature fusion.

We searched many references and found no literature combining DL and HOG, but
there are experiments with CNN and PLBP feature fusion. In [25], the authors designed
three methods of CNN and PLBP feature fusion, namely serial fusion, decision fusion, and
feature fusion. The decision fusion and feature fusion are the best, which are 0.34% higher
than the CNN network without fusion.

According to the preceding literature, traditional features and deep learning for feature
fusion not only excel in a few sample dorsal hand vein recognition but also improve the
recognition rate of large sample data, demonstrating the feasibility of traditional features
and deep learning for feature fusion.

5. Conclusions

In this paper, we design a method for the fusion of ResNet and HOG features, which
achieves better results on small sample datasets. We adopt the methods of other researchers
and conduct experiments on our dataset, and the experimental results show that the
recognition rate of the feature fusion method is better than that of using ResNet alone. This
proves that the combination of deep learning and traditional features can not only solve
the problem that deep learning has a low recognition rate for small samples but also solve
the problem that traditional features are not robust to Gaussian noise. It further illustrates
the superiority and feasibility of using deep learning and traditional feature fusion in the
field of DHV recognition.

At present, our work has achieved good results on the dataset with Gaussian noise. In
the future, we will utilize more ways to expand the dataset for verification, such as physical
expansion (random rotation, image translation, image exposure, etc.) and deep learning
automatically expansion [30,31]. Our fusion dataset now includes three different datasets,
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and we hope to obtain more datasets in the future to expand the database of DHVs. In
addition, to explore the possibility of feature fusion between deep features and traditional
features, we will use a variety of traditional features and deep feature fusion methods to
verify the DHV dataset.
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Abstract: A fusion pathfinding algorithm based on the optimized A-star algorithm, the artificial po-
tential field method and the least squares method is proposed to meet the performance requirements
of path smoothing, response speed and computation time for the path planning of home cleaning
robots. The fusion algorithm improves the operation rules of the traditional A-star algorithm, en-
abling global path planning to be completed quickly. At the same time, the operating rules of the
artificial potential field method are changed according to the path points found by the optimal A-star
algorithm, thus greatly avoiding the dilemma of being trapped in local optima. Finally, the least
squares method is applied to fit the complete path to obtain a smooth path trajectory. Experiments
show that the fusion algorithm significantly improves pathfinding efficiency and produces smoother
and more continuous paths. Through simulation comparison experiments, the optimized A-star
algorithm reduced path-planning time by 60% compared to the traditional A-star algorithm and 65.2%
compared to the bidirectional A-star algorithm path-planning time. The fusion algorithm reduced
the path-planning time by 65.2% compared to the ant colony algorithm and 83.64% compared to the
RRT algorithm path-planning time.

Keywords: A-star algorithm; artificial potential field method; least squares method; path planning

1. Introduction

Thanks to the rapid development of artificial intelligence technology, cleaning robots
are now being introduced into ordinary households. One of the key parts of a cleaning robot
is the path planning of the cleaning area [1,2]. Path-planning technology involves following
certain pathfinding rules in an environment with obstacles to obtain a collision-free path
from the starting point to the target point that satisfies the evaluation metrics [3,4]. As the
complexity of the working environment of mobile robots continues to increase, it also places
higher demands on path-planning techniques. Depending on the environment in which
the robot works and the work requirements, it can be divided into global path planning
and local path planning [5,6]. Global path planning can be divided into graph-based search
algorithms, sampling-based planning algorithms, biomimetic-based algorithms, neural
network algorithms, etc. Local path planning is divided into the dynamic window method,
time-elastic band method, artificial potential field method, etc.

In 1959, Dijkstra, a Dutch scientist, was the first to propose an algorithm to solve the
single-source shortest path problem, which was one of the earliest global path-planning
algorithms [7]. The algorithm is centered on the starting point using a breadth-first search
strategy to continuously expand outwards and then continuously search for the shortest
path between the starting point and each expanded node in the map until it finds the
target node, completing the path planning. In 1968, P. Hart, N. Nilsson and B. Raphael
first proposed the heuristic A-star algorithm to solve the global path optimal problem [8].
The traditional A-star algorithm starts from the starting point and calculates the cost of
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moving the current node to the starting point and the ending point under the constraint
of the evaluation function and extends radially to the target point. When an obstacle is
encountered, it returns to the vicinity of the starting point to resume pathfinding and
repeats until the target point is reached. Therefore, the algorithm generates a large number
of useless nodes to be computed in the process of application, which leads to problems
such as too much computation, too much memory occupation and too long pathfinding
time. X. Zhang [9] optimized the algorithm by introducing a time factor to the A-star
algorithm and combining it with a time window and priority strategy. Although this
method reduces the number of turns and improves the efficiency of the system, it greatly
increases the computational effort, and the chosen obstacle avoidance strategy tends to
cause the algorithm to fall into a dead loop.

The artificial potential field method was proposed by Khatib in 1986. The idea is
to simulate the environment in which the mobile robot is located as the “gravitational
force” in physics, called a virtual potential field [10]. A virtual artificial potential field is
formed by the repulsive field of an obstacle and the gravitational field of the target location,
in which the mobile robot is influenced by the potential field to automatically search for
a suitable collision-free path. As the robot moves, the potential field it is subjected to
varies continuously, along a gradient from the repulsive field of a particular obstacle or the
gravitational field of a target point alone. Due to its real-time nature, the artificial potential
field method has been applied to the field of dynamic obstacles by many scholars. However,
for scenarios where multiple obstacles exist at the same time, the problem of becoming
caught in local minima that cannot be dislodged and the phenomenon of oscillation near the
target point easily occur. Y. Wang et al. [11] addressed the problem that the potential field
method tends to fall into local optima by improving the gravitational formulation of the
traditional potential field method by adding new variables and also expanding the obstacle
to a circular obstacle. The optimized algorithm solves the problem of the manual potential
field method not being able to avoid large obstacles, greatly reduces the scanning time and
reduces the working cost of the mobile robot. However, in an environment with irregular
obstacles, it easily divides the passable paths between obstacles into obstacle regions, thus
failing to obtain the optimal path. When the map is updated quickly, its real-time obstacle
avoidance capability will be greatly reduced. H. Liu et al. [12] introduced the idea of fuzzy
control into the path planning of mobile robots, dividing the environment in which the
robot moves into two parts: a global safety region and a local danger, according to the
location of obstacles and their influence range. In safe areas, the artificial potential field
method acts on the robot to guide it towards the target; in dangerous areas, the artificial
potential field method is combined with fuzzy control to guide the robot to avoid obstacles
and move towards the target. The precise control of the deflection angle of the mobile robot
effectively reduces the problem of unreachable targets and local minima. However, the
fusion algorithm is limited in its application, and in dynamic environments, it relies mainly
on the artificial potential field method, which does not practically solve the shortcomings
of the artificial potential field method in dynamic environments.

This paper first optimizes the structure of the traditional A-star algorithm, then op-
timizes the potential field method by adding an intermittent point search strategy and
constructing an intermittent point judgment function, and then combines the artificial
potential field method and the least squares method to propose a fused path-planning
algorithm. On the one hand, the structure of the traditional A-star algorithm is optimized
to improve its speed in global path planning, and on the other hand, the artificial potential
field method is optimized to solve the problem of the potential field method tending to
fall into local optimality. The fusion algorithm overcomes the drawbacks of the original
algorithm well and improves the efficiency and success rate of path planning. The paper
concludes with a comparative simulation analysis of the optimized A-star algorithm and
the traditional and bidirectional A-star algorithms for different starting points and different
map environments. The fusion algorithm is analyzed and compared with the ant colony
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algorithm and the RRT algorithm. The simulation comparison and data analysis confirm
the fast, robust and advanced nature of the optimized fusion algorithm.

2. Global Path Planning
2.1. Traditional A-Star Algorithm

The A-star algorithm is a heuristic search algorithm for finding optimal paths in static
obstacle environments [13]. It combines the advantages of Dijkstra’s algorithm to find the
shortest path well and the heuristic search algorithm breadth-first search (BFS) to search
upwards at the most probable places first [14], to which a cost evaluation function is added
to find the optimal path point. The principle is shown in Figure 1.
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Figure 1. Schematic diagram of the traditional A-star algorithm. (a) Conventional A-star algorithm
pathfinding in the absence of obstacles; (b) conventional A-star algorithm pathfinding in the presence
of obstacles.

As shown in Figure 1a, S is the starting point and E is the end point. If the path
encounters an obstacle, the algorithm returns to the starting point and searches again until
the search width exceeds the width of the obstacle, then continues to search and so on until
it reaches the target point. In practice, only a small number of nodes are relevant to the
path, but many nodes need to be computed. For this reason, a large number of useless
nodes are searched, creating problems such as too many calculations, more useless memory
usage and longer pathfinding times. In addition, there are too many turning points in the
planned path. The traditional A-star algorithm does not smooth the path, so the planned
path turns rigidly, and the robot needs to accelerate and decelerate frequently to perform
the turning action when walking, which is not conducive to the robot’s path tracking.

The set of optimal path points then forms the optimal path, where the cost evaluation
function is as follows:

f (n) = h(n) + g(n) (1)
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where f (n) is the cost function of the current position, g(n) is the actual cost of the mobile
robot from the starting point to the current position and h(n) is the estimated cost of the
mobile robot from the current position to the position of the target point [15].

For the cost function, the more commonly used metric is the Euclidean or Manhattan
distance. The absolute value of the difference between the x-coordinates of two points and
the sum of the absolute values of the differences between the y-coordinates of two points is
called the Manhattan distance [16]. In this paper, the Euclidean distance is used, i.e.,

g(n) =
√
(Xn − Xs)

2 + (Yn −Ys)
2 (2)

h(n) =
√
(Xt − Xn)

2 + (Yt −Yn)
2 (3)

where (Xn, Yn) is the position of the current point, (Xs, Ys) is the position of the starting
point and (Xt, Yt) is the position of the target point. The closer the value of the function
h(n) is to the actual value, the more efficient and accurate the search will be.

2.2. Optimization of the A-Star Algorithm

Based on the shortcomings of the traditional A-star algorithm, the algorithm structure
of the A-star algorithm is improved so that when an obstacle is encountered during the
pathfinding process, instead of returning to the vicinity of the starting point for a new
pathfinding instance, the algorithm defines the node that the mobile robot is currently
on as the parent node. The open list is used to store the data of the parent node and the
neighboring points with the parent node as the core and to filter the next walkable path
point of the mobile robot based on the open list. The close list is defined to store the entire
set of walkable path points for the mobile robot. As this paper uses Euclidean distances,
the F-value is the distance from the current position of the mobile robot to the target point.
The G-value is the distance from the current position of the mobile robot to the starting
point. These are the values of f (n) and g(n) at the current point as stated above.

The optimized A-star algorithm sets the evaluation function of the obstacle node in
situ to infinity, indicating unreachability, and then finds the best node among the nodes
around the parent node as the parent node for the next cycle. This continues until the path
found leaves the obstacle node, and then the path search continues forward. The principle
is shown in Figure 2.
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around the parent node as the parent node for the next cycle. This continues until the path 150
found leaves the obstacle node, and then the path search continues forward. The principle 151
is shown in Figure 2. 152

153
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The algorithm steps are as shown in Figure 3:
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Figure 3. Optimization of the A-star calculation hair path-planning process.

The optimized A-star algorithm modifies the path-planning rules of the traditional A-
star algorithm. When an obstacle is encountered, the optimized A-star algorithm no longer
returns to the vicinity of the starting point to re-run the path planning. When an obstacle is
encountered, the optimized A-star algorithm stays put and sets the value of the cost function
of the obstacle node from the open list to infinity. The best of the child nodes is then selected as
the parent node for the next cycle. Compared to traditional A-star algorithms, the optimized
A-star algorithm will reduce the amount of computation and data redundancy, thus reducing
path-planning time. As the complexity of the environment increases, the benefits of the
optimized A-star algorithm will become more apparent. Detailed simulation comparisons
and data analysis will be shown in Section 4.1 of this paper.
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3. Local Route Planning
3.1. Artificial Potential Field Method

The artificial potential field method relies on the repulsive force Frep(x) (shown in
Equation (7)), which is directed from the obstacle to the mobile robot, and the gravitational
force Faat(x) (shown in Equation (5)), which is directed from the mobile robot to the target
point, to construct the gravitational field [17–19]. The gravitational field varies with the
distance between the vehicle and the target point. The gravitational field is proportional to
the linear distance between the moving vehicle and the target point, as shown below.

Uatt(x) =
1
2

Kρ2(PS, PE) (4)

where Uatt(x) is the gravitational potential field generated by the target on the mobile
robot, K is the coefficient of action of the gravitational field and ρ(PS, PE) is the Euclidean
distance from the starting point to the endpoint.

The gravitational force is the negative gradient of the gravitational potential field, as
follows:

Faat(x) = −∇Uatt(x) = −Kρ(PS, PE) (5)

The magnitude of the repulsive field is inversely proportional to the distance between
the mobile robot and the target point, as follows:

Urep(x) =

{
1
2 Krep

[
1

ρ(P,Pobs)
− 1

P0

]2
, ρ(P, Pobs) ≤ P0

0 , ρ(P, Pobs) ≥ P0

(6)

where Urep(x) is the repulsive field of the obstacle, Krep is the coefficient of action of
the repulsive field, ρ(P, Pobs) is the Euclidean distance between the mobile robot and the
obstacle and P0 is the critical distance of the repulsive force on the obstacle. When the
distance P0 between the trolley and the obstacle is greater, the repulsive force on the trolley
is zero [20]. Meanwhile, the repulsive force is the negative gradient of the repulsive field,
as follows:

Frep(x) = −∇Urep(x) =

{
Krep

[
1

ρ(P,Pobs)
− 1

P0

]
1

ρ2(P,Pobs)
, ρ(P, Pobs) ≤ P0

0 , ρ(P, Pobs) ≥ P0
(7)

When there are N obstacles on the map, the combined force on them is as follows:

Fsum(x) = Faat(x) +
N

∑
i=1

Frep(x) (8)

where Fsum(x) is the repulsive force,
N
∑

i=1
Frep(x) is the combined gravitational force and

Fsum(x) is the set of repulsive forces.
As shown in Figure 4, the artificial potential field approach to path planning involves

the mobile robot following the direction of the combined force Fsum. The combined force is
generated by the combination of multiple repulsive forces Frep exerted by the obstacle on
the mobile robot and gravitational forces Faat exerted by the target point on the mobile robot.
The repulsive, gravitational and combined forces all follow the rule of vector addition and
subtraction. As shown by Equations (5) and (7), the repulsive and gravitational forces
change as the position of the mobile robot in the map environment changes. This, therefore,
causes the combined forces to change as well. It is the real-time nature of the artificial
potential field method that allows the artificial potential field method to be used for local
path planning.
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Figure 4. Force analysis of robot in artificial potential field.

Due to the pathfinding rules of the potential field method, there is an inherent problem
with the traditional artificial potential field approach to path planning; when the robot is
moving near the target point, if there are no obstacles near the target point, the gravitational
force will be close to zero and the repulsive force should also be close to zero at this point.
If there is an obstacle near the target, the robot will be subjected to a large repulsive force,
when the gravitational force on the robot at the target is less, which will cause the robot
to move away from the target, preventing it from ever reaching it. Secondly, when the
robot moves to certain locations on the map, it may be that the combined gravitational and
repulsive forces at that location are zero and the robot will fall into a local optimum.

3.2. Optimization of the Artificial Potential Field Method
3.2.1. Interruption Point Selection

In this paper, an interruption search strategy is proposed to improve the speed of
path planning by the artificial potential field method. The optimized artificial potential
field method optimizes the A-star algorithm on the basis of the global path-planning data
obtained. The optimized potential field method uses the turning points of the global paths
as intermittent points. The turning point of the global path is the place where the path
obtained from the global path planning takes a turn. The judgment function is shown in
Equations (6) and (7).

K1 =
Xc − Xc−1

Yc −Yc−1
(9)

K2 =
Xc+1 − Xc

Yc+1 −Yc
(10)

where (Xc, Yc) are the coordinates of the current point. As the global path-planning data
are stored on a stack, (Xc−1, Yc−1) are specified as the coordinates of the point after the
current point. (Xc+1, Yc+1) are the coordinates of the point before the current point. K1, K2
are the slope of the line connecting the current point to the two adjacent points before and
after it. When K1, K2 are not equal, the current point is the turning point.

As shown in Figure 5. Starting from point 1, point 3 is the temporary endpoint of
point 1, and point 4 is the temporary endpoint of point 2. In the artificial potential field
method of smoothing, point 2 is the starting point when the distance from the robot’s posi-
tion to 1 is greater than the spacing from 1 to 2. When it reaches the endpoint, the endpoint
is used as the temporary endpoint and the penultimate path point is used as the temporary
start point. For this reason, in the manual potential field method for local pathfinding, this
paper uses the Manhattan distance for determining whether an intermediate point has been
passed. To improve the efficiency of the optimal potential field method and reduce data
redundancy, this paper proposes an adaptive number of iterations, which is formulated as
follows:

I = L ∗
√
(RX − TEX)

2 + (RY − TEY)
2 (11)

where L = 10, and each reference value corresponds to a Euclidean distance of 1. I is
the iteration parameter. (RX , RY) are the coordinates of the robot’s position. (TEX , TEY)
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are the coordinates of the current temporary target point. Iteration parameters are used
in the optimized potential field method when performing path planning. The iteration
parameters determine whether the optimized potential field method path planning will
reach the target point or not. The Euclidean distance between the current position of the
robot and the temporary target point is rounded upwards. When the mobile robot changes
its temporary start points and temporary endpoints, the number of iterations is adjusted.
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Figure 5. Potential Field Method Wayfinding.

3.2.2. Least Squares Method

The path obtained by the potential field method will look like a discontinuous path
because the interval between the temporary start point and the temporary endpoint is
a turning point in the path-planning process of the optimal potential field method. The
principle is shown in Figure 6, points 1, 2, 3 and 4 are turning points. Where points 2 and 3
are also turning points. The path discontinuity appears when 2 is the temporary starting
point. Therefore, whenever there are turning points in the global path, the most dominant
field method will produce path discontinuities after smoothing.
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Figure 6. Potential field method misalignment principle.

Path fitting is currently more commonly used in the interpolation and least squares
methods. The interpolation method is used in environments where the accuracy and
reliability of the observed data are high. The interpolation method seeks high accuracy,
which results in large data redundancy and can lead to longer path-planning times, resulting
in failure to avoid dynamic obstacles in a timely manner. The least squares method is
suitable for situations where the observed data already contain unavoidable errors and it
is only necessary to reach as close to them as possible. The least squares method is fast
and can also fulfill path-planning requirements, so this paper uses least squares for path
fitting [21,22].

To solve the path discontinuity problem of the optimal field method, this paper
proposes the combination of the least squares method for path fitting, so that the mobile
robot can obtain a smooth and continuous path trajectory. The variance between the
hypothetical regression results and the actual values is expressed as follows:

φ(x) = a0 + a1x + a2x2 + · · ·+ akxk (12)
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where a is the polynomial’s indeterminate coefficient and x is the path point’s abscissa. The
total distance between each point and this curve is as follows:

R2 =
n

∑
i=1

[
yi − (a0 + a1xi + a2xi

2 + · · ·+ akxi
k)
]2

(13)

where n is the polynomial’s highest order and k is the highest order of the system. We can
obtain the following results by deriving the indeterminate coefficients in the regression
equation: 



1 x1 · · · xk
1

1 x2 · · · xk
2

...
...

. . .
...

1 xn · · · xk
n







a0
a1
...

ak


 =




y1
y2
...

yn


 (14)

The coefficient matrix A and the fitting curve can be generated simultaneously using
matrix operation, as shown below.

X∗A = Y ⇒ A = (X∗X)−1X∗Y (15)

Therefore, the algorithmic flow for optimizing the artificial potential field method is
as shown in Figure 7:

Electronics 2022, 11, x FOR PEER REVIEW 10 of 22 
 

 

 282 
Figure 7. Optimization of the potential field method path-planning process. 283 

The optimized potential field method changes the start and end points in pathfinding 284 

and solves the problem of falling into local optima and unreachable target points by set- 285 

ting parameters such as step size reasonably. At the same time, the optimized potential 286 

field method takes the path obtained from global planning as the general direction, so it 287 

also limits the pathfinding range of local paths and avoids crossing between multiple ob- 288 

stacles. At the same time, since the potential field method gives the mobile robot a repul- 289 

sive force during path planning, pushing the robot away from the obstacle appropriately, 290 

the fusion algorithm page solves the problem of narrower paths for the mobile robot to 291 

pass through. In addition, as the optimized A-star algorithm can only perform global path 292 

planning, moving obstacles may appear on the map when the robot moves, so given the 293 

nature of the potential field method updating the map in real time, the potential field 294 

method can perform path smoothing while also performing dynamic obstacle avoidance. 295 

4. Simulation and Analysis 296 
4.1. Comparative Analysis of Optimization Algorithms and Traditional Algorithms 297 

To verify the effectiveness and generalization of the fusion algorithm based on the 298 
optimized A-star algorithm and the artificial potential field method proposed in this pa- 299 
per, MATLAB simulations of the traditional A-star algorithm and the optimized A-star 300 

Figure 7. Optimization of the potential field method path-planning process.

225



Electronics 2022, 11, 3660

The optimized potential field method changes the start and end points in pathfinding
and solves the problem of falling into local optima and unreachable target points by setting
parameters such as step size reasonably. At the same time, the optimized potential field
method takes the path obtained from global planning as the general direction, so it also
limits the pathfinding range of local paths and avoids crossing between multiple obstacles.
At the same time, since the potential field method gives the mobile robot a repulsive force
during path planning, pushing the robot away from the obstacle appropriately, the fusion
algorithm page solves the problem of narrower paths for the mobile robot to pass through.
In addition, as the optimized A-star algorithm can only perform global path planning,
moving obstacles may appear on the map when the robot moves, so given the nature of
the potential field method updating the map in real time, the potential field method can
perform path smoothing while also performing dynamic obstacle avoidance.

4. Simulation and Analysis
4.1. Comparative Analysis of Optimization Algorithms and Traditional Algorithms

To verify the effectiveness and generalization of the fusion algorithm based on the
optimized A-star algorithm and the artificial potential field method proposed in this
paper, MATLAB simulations of the traditional A-star algorithm and the optimized A-star
algorithm, the traditional potential field method and the optimized potential field method
were carried out in simple and complex environments to verify the performance of the
optimization algorithm as proposed in this paper.

A simple environment mapping is shown in Figure 8. A raster map of three different
environments was constructed in MATLAB, with a map size of 20 × 20 and black x’s
indicating obstacles. The red boxed points are the calculated path points, the green boxed
points are the points to be included in the open list to be checked and the connecting
lines are the optimal paths found. From Figure 8, it can be seen that the optimized A-star
algorithm can obtain the same path as the traditional A-star algorithm under the same
map environment. A comparison of the path-planning times for the 10 groups based on
Figure 8a,b is shown in Table 1, where the optimized algorithm reduces the path-planning
time by 60% compared to the traditional algorithm. In addition, based on Figure 8b,d,e,f,
the optimized A-star algorithm can obtain a feasible path quickly and accurately in the
same map environment with different start and end point settings.

Table 1. Comparison of path-planning times based on Figure 8a,b (unit: s).

Time 1 2 3 4 5 6 7 8 9 10

Traditional A-star
algorithm 0.623 0.583 0.635 0.592 0.606 0.581 0.604 0.600 0.596 0.603

Optimization of the
A-star algorithm 0.368 0.225 0.208 0.190 0.218 0.175 0.179 0.172 0.170 0.174

As shown in Figure 9, after the map environment is changed, the optimized algorithm
can still meet the path-planning requirements. Compared with the traditional A-star
algorithm, the optimized A-star algorithm searches a much smaller range of path points
than the traditional algorithm while obtaining the same path in the same map environment.
As shown in Figure 9b,d, the optimized A-star algorithm can complete the path-planning
requirements in the new map environment with different start and end points replaced. As
shown in Figure 9a,b and the path-planning time comparison in Table 2, the path-planning
time of the optimized A-star algorithm is reduced by more than 50% compared to the
traditional A-star algorithm.
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Figure 8. Global path comparison. (a,c,e) Traditional A-star algorithm; (b,d,f) optimization of the
A-star algorithm.

Table 2. Comparison of path-planning times before and after algorithm optimization (unit: s).

Time 1 2 3 4 5 6 7 8 9 10

Traditional A-star
algorithm 0.309 0.307 0.308 0.305 0.303 0.299 0.304 0.300 0.296 0.299

Optimization of the
A-star algorithm 0.140 0.139 0.139 0.139 0.140 0.138 0.136 0.134 0.133 0.133
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Figure 9. Global path comparison for map replacement. (a,c) Traditional A-star algorithm; (b,d)
optimization of the A-star algorithm.

The complex map is shown in Figure 10, and a 40 × 40 grid map was created in
MATLAB. The optimization algorithm is still able to obtain a feasible path when performing
path planning in a complex map environment.

Compared with the traditional A-star algorithm, the advantage of less computation
of the optimized A-star algorithm is more obvious. A comparison of path-planning times
based on Figure 10a,b, as shown in Table 3, shows that the optimized A-star algorithm
reduces the pathfinding time by nearly 70% compared to the traditional algorithm.

Table 3. Comparison of path-planning times for complex maps (unit: s).

Time 1 2 3 4 5 6 7 8 9 10

Traditional A-star
algorithm 2.427 2.436 2.419 2.371 2.402 2.552 2.349 2.359 2.371 2.368

Optimization of the
A-star algorithm 0.683 0.732 0.703 0.689 0.691 0.782 0.704 0.699 0.685 0.692

Based on the analysis of the path-planning time and the path accessibility, the opti-
mized A-star algorithm achieves a significant improvement in path accessibility and speed
over the traditional algorithm, while ensuring that a complete global path can be obtained.
As the complexity of the pathfinding environment increases, the efficiency of the optimized
algorithm becomes more pronounced than that of the traditional algorithm. Nevertheless,
the optimized A-star algorithm does not solve the problem of insufficient smoothness at
path transitions.

228



Electronics 2022, 11, 3660

Electronics 2022, 11, x FOR PEER REVIEW 13 of 22 
 

 

  
(c) (d) 

Figure 9. Global path comparison for map replacement. (a,c) Traditional A-star algorithm; (b,d) op- 330 
timization of the A-star algorithm. 331 

The complex map is shown in Figure 10, and a 40 × 40 grid map was created in 332 
MATLAB. The optimization algorithm is still able to obtain a feasible path when perform- 333 
ing path planning in a complex map environment. 334 

 
(a) 

 
(b) 

Figure 10. Comparison of global path planning for complex map environments. (a) Traditional A- 335 
star algorithm; (b) optimization of the A-star algorithm. 336 

Compared with the traditional A-star algorithm, the advantage of less computation 337 
of the optimized A-star algorithm is more obvious. A comparison of path-planning times 338 
based on Figure 10a,b, as shown in Table 3, shows that the optimized A-star algorithm 339 
reduces the pathfinding time by nearly 70% compared to the traditional algorithm. 340 

  341 

Figure 10. Comparison of global path planning for complex map environments. (a) Traditional A-star
algorithm; (b) optimization of the A-star algorithm.

To address the problem of the global path-planning transitions not being smooth
enough to facilitate smooth robot tracking, an optimized potential field method is proposed
for smoothing, as described in the previous section. The simulation diagram is shown in
Figure 11.

Figure 11 also shows that the optimization algorithm is still able to meet the pathfind-
ing requirements when different starting points and different endpoints are set in the same
environment. Moreover, from Figure 11b,d, it can be seen that the optimization algorithm
can effectively complete the library path planning when the same start and end points are
set in different map environments. It can also be seen from Figure 11 that the algorithm has
good robustness and generalizability. The comparison between Figures 11 and 12 shows
that the smoothing process reduces a large number of inflection points compared to global
path planning, thus improving the path-tracking capability of the robot and increasing the
movement speed of the mobile robot. In addition, as the repulsive force of the obstacle
in the artificial potential field method acts on the cart, it will cause the cart to move away
from the obstacle appropriately, making the path of the cart more reasonable and solving
the global path-planning problem of walking along the edge of the obstacle.
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start and end points of the path planning. (a,b) are route plans for different starting points and
different end points in the same environment; (c,d) are route plans for different starting points and
different end points after changing maps.
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Figure 12. Path fitting results. (a) Figure 11a path fit; (b) Figure 11b path fit.

As shown in Figure 11, the path obtained by the artificial potential field method is
discontinuous in the global path steering (see Section 3.2.2 above for the rationale). We,
therefore, used the least squares method of path fitting to obtain Figure 12. Figure 12 gives
the fitted paths planned by the algorithm based on different starting and ending points in
the same environment.

In the case of local path planning, the repulsive force from the obstacles is only applied
to the moving car within a certain range with the moving car as the center of the circle, and
the repulsive force from the obstacles outside the range is 0. In addition, considering that
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dynamic obstacles are inevitable in the real environment, 20 random dynamic obstacles
were included, indicated by the circles in Figure 13.
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Figure 13. Addition of dynamic obstacles.

From the simulation results in Figure 13a, it can be seen that during the pathfinding
process, when dynamic obstacles appear within the force range of the vehicle, the mobile
robot will react quickly to avoid the obstacles. It is guaranteed to move towards the target
point while moving towards the safe area as far as possible, as shown in Figure 13a at
points (8, 9) and (12, 8). The vehicle based on global path planning can achieve real-time
dynamic obstacle avoidance and reach the target point smoothly and safely. Meanwhile,
as shown in Figure 13c,d, after the map environment is changed, the mobile robot path-
planning process can still maintain the ability to quickly avoid dynamic obstacles while
traveling towards the target point. As shown in Figure 13b, the vehicle can achieve real-
time dynamic obstacle avoidance based on global path planning and reach the target point
smoothly and safely.

4.2. Comparative Analysis of Optimized A-Star Algorithm and Bidirectional A-Star Algorithm

Currently, many scholars have proposed improving the bidirectional A-star algorithm
for path planning [23–25]. The principle of the bidirectional A-star algorithm is to select a
virtual endpoint in the middle of the straight line distance between the starting point and
the ending point [26]. If the virtual endpoint lies in an obstacle area, the nearest obstacle
edge is chosen as the virtual endpoint, while the endpoint at the other end is used as the
starting point, and then path planning is performed towards the virtual endpoint.

As shown in Figure 14a,c, (10.9) is defined as the midpoint of the bidirectional A-star,

indicated by the red “
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” in the diagram. A comparison of the path planning of the
optimized A-star algorithm and the bidirectional A-star algorithm proposed in this paper
shows that the optimized A-star algorithm has better throughput, that the path-planning
efficiency of the optimized A-star algorithm is higher (as shown in Table 4), and that the
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path-planning time of the optimized A-star algorithm is 65.2% less than the path-planning
time of the bidirectional A-star algorithm. The number of computing nodes is 103 in
Figure 14a and 70 in Figure 14b. The optimized A-star algorithm reduces the number of
computing nodes by approximately 32% compared to the bidirectional A-star algorithm.
Meanwhile, as shown in Figure 14a,c, the bidirectional A-star algorithm is affected by
various factors such as obstacle size and map environment complexity when selecting
virtual endpoints, which indirectly affects the pathfinding efficiency of the bidirectional
A-star algorithm. The pathfinding efficiency of the optimized A-star algorithm is only
affected by the complexity of the map environment, and therefore the performance of the
optimized A-star algorithm is more stable than that of the bidirectional A-star algorithm.
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Figure 14. Optimized A-star algorithm vs. the bidirectional A-star algorithm. (a,c) The bidirectional
A-star algorithm; (b,d) optimization of the A-star algorithm.

Table 4. Comparison of path-planning times based on Figure 14a,b (unit: s).

Time 1 2 3 4 5 6 7 8 9 10

Two-way exploration
A-star algorithm 0.486 0.493 0.497 0.452 0.462 0.489 0.473 0.472 0.458 0.454

Optimization of the
A-star algorithm 0.163 0.157 0.161 0.158 0.154 0.162 0.169 0.181 0.183 0.158

4.3. Simulation Analysis of the Effect of Different L Values on the Potential Field Method

In this paper, the algorithm rules for path planning in the optimized potential field
method are changed, replacing the fixed starting point and fixed endpoint of the traditional
potential field method with temporary starting points and temporary endpoints that change
as the position of the mobile robot changes. As a result, the number of iterations of the
traditional potential field method is no longer suitable for the optimized potential field
method. For this reason, an adaptive iteration number setting is proposed in this paper,
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which has been theoretically derived in Section 3.2.1. The experimental part was set up
with L values of 1, 10 and 100 for comparison, and the results of the comparison are shown
below.

From Figure 15a,b, it can be seen that when the value of L is too small, it leads to
too few iterations, and therefore it is difficult for the optimized potential field method to
reach the interim endpoint. In addition, as shown in Figure 16, the path-planning time
of the optimized potential field method is only reduced by 30% when the value of L is
1 compared to when the value of L is 10. From Figure 15b,c, the path-planning results
are almost the same for L values of 10 and 100. However, as can be seen in Figure 16, the
optimized potential field method time increases by 288% for the L value of 100 compared
to the L value of 10. Therefore, it can be concluded that when the L value is too large, it
increases the path-planning time of the optimized potential field method significantly, but
there is no significant improvement in the final path-planning result.
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4.4. Comparative Analysis of Fusion and Ant Colony Algorithms

The principle of the ant colony algorithm represents the feasible solution to the problem
to be optimized in terms of the paths taken by ants, with all the paths of the entire ant
colony forming the solution space of the problem to be optimized. The ants with shorter
paths release more pheromones, and as time passes, the concentration of pheromones
accumulated on the shorter paths gradually increases, and the number of ants choosing
that path increases. Eventually, the entire ant population will concentrate on the best path
under the effect of positive feedback, which then corresponds to the optimal solution of the
problem to be optimized [27,28].

A comparison of the path-planning times from Figures 11b and 17b is shown in
Table 5. The average planning time of the fusion algorithm is 0.722 s, and the average path-
planning time of the ant colony algorithm is 2.073 s. The path-planning time of the fusion
algorithm is reduced by 65.2% relative to the ant colony algorithm, which indicates that the
fusion algorithm and the ant colony algorithm have the same path-planning requirements
while completing the same path. This indicates that the fusion algorithm and the ant
colony algorithm have the same path-planning time advantage while meeting the same
path-planning requirements.
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Table 5. Comparison of path-planning time based on Figures 11b and 17b (unit: s).

Time 1 2 3 4 5 6 7 8 9 10

Ant colony algorithm 2.185 2.092 2.029 2.047 2.053 2.064 2.066 2.049 2.055 2.092
Fusion algorithm 0.693 0.712 0.706 0.718 0.700 0.750 0.740 0.736 0.738 0.726

4.5. Comparative Analysis of Fusion Algorithms and the RRT Algorithm

The RRT algorithm takes the starting point as the root node and adds leaf nodes by
random sampling to generate a randomly expanded tree that is able to find a path from
the starting point to the target point when the target point lies on the randomly expanded
tree [29,30].

A comparison of the path-planning times for Figures 11a and 18a is shown in Table 6,
with the same guaranteed obstacle environment and the same start and end points. The
red circled area indicates the target point area. When the path is planned to this area, the
path planning is completed. The average planning time of the fusion algorithm is 0.655 s.
The average path-planning time of the RRT algorithm is 4.003 s. The path-planning time of
the fusion algorithm is reduced by 83.64% relative to the path-planning time of the RRT
algorithm. This indicates that the fusion algorithm and the RRT algorithm have a greater
path-planning time advantage while meeting the same path-planning requirements.
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Figure 18. The RRT algorithm path planning.

Table 6. Comparison of path-planning time based on Figures 11a and 18a (unit: s).

Time 1 2 3 4 5 6 7 8 9 10

The RRT algorithm 3.779 3.871 3.996 4.063 3.921 4.012 4.039 4.182 4.094 4.074
Fusion algorithm 0.593 0.633 0.677 0.715 0.640 0.647 0.658 0.648 0.680 0.660

5. Results and Discussion

Due to the increasingly complex obstacle environments faced by mobile robots, it has
been difficult for traditional path-planning algorithms to meet the path-planning needs
of mobile robots, so this paper proposes a path-planning algorithm that incorporates the
optimized A-star algorithm and the artificial potential field method. For the traditional
A-star algorithm, as of now, many scholars are choosing to incorporate function constraints
or implement algorithmic parallel pathfinding methods such as the bidirectional A-star
algorithm. Such optimization provides very limited performance improvement to the
traditional A-star algorithm, and a comparative analysis is also presented in the simulation
section of this paper. Therefore, future optimization directions for the A-star algorithm
should be able to significantly reduce the amount of algorithmic computation and increase
path optimality.

The artificial potential field method has the problem of not being able to perform
optimization and easily falling into local optimality, so the artificial potential field method
can complete path planning but not necessarily find the optimal path. This leads to the fact
that the artificial potential field method is capable of path planning, but may not necessarily
find the optimal path, or may fall into a local optimum at some location in the map. This
is an important issue in the current study of artificial potential field methods for path
planning. This paper, therefore, uses the data obtained from the global path planning of the
optimized A-star algorithm to optimize the artificial potential field method, thus limiting
the path-planning space of the artificial potential field method. The problem of the artificial
potential field method tending to fall into local optimality and path non-optimality is thus
solved.

Each algorithm has its own strengths and weaknesses and limitations in the use
of scenarios. In order to achieve complementary advantages, researchers at home and
abroad in recent years have preferred to fuse multiple algorithms, which will also be the
development direction for path planning for a long time.

6. Conclusions

In this paper, the traditional A-star algorithm is optimized, and new pathfinding rules
and algorithm structures are designed to obtain global path-planning information. The
data obtained by the optimized A-star algorithm are applied to local path planning, a
new pathfinding rule for the potential field method is proposed, an intermittent point
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pathfinding strategy is added and an intermittent point judgment function is constructed.
The results show that the fusion algorithm can reduce the pathfinding time by about 40%
while guaranteeing the same path as the traditional algorithm. The fusion algorithm also
reduces the probability of the potential field method falling into local optima, improves the
smoothness of the planned path at the turn, and enables the robot to find a safe path quickly
even in complex environments. In this paper, the fusion-optimized A-star algorithm is
compared with the more advanced bidirectional A-star algorithm, the ant colony algorithm
and the RRT algorithm for path-planning time to demonstrate the advanced nature of
the optimization algorithm. Through a series of experiments and data analyses, it can be
concluded that the fusion algorithm in this paper can effectively improve the path-planning
capability of mobile robots in complex scenarios, but its operation speed still needs to be
improved, which is the focus of the next step.
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Abstract: Image stitching is the process of stitching several images that overlap each other into
a single, larger image. The traditional image stitching algorithm searches the feature points of
the image, performs alignments, and constructs the projection transformation relationship. The
traditional algorithm has a strong dependence on feature points; as such, if feature points are sparse
or unevenly distributed in the scene, the stitching will be misaligned or even fail completely. In
scenes with obvious parallaxes, the global homography projection transformation relationship cannot
be used for image alignment. To address these problems, this paper proposes a method of image
stitching based on fixed camera positions and a hierarchical projection method based on depth
information. The method does not depend on the number and distribution of feature points, so it
avoids the complexity of feature point detection. Additionally, the effect of parallax on stitching is
eliminated to a certain extent. Our experiments showed that the proposed method based on the
camera calibration model can achieve more robust stitching results when a scene has few feature
points, uneven feature point distribution, or significant parallax.

Keywords: image stitching; camera calibration; layered projection; binocular ranging; stereo correction

1. Introduction

Image stitching technology is widely used in medical, aerial photography [1], assisted
driving, surveillance, virtual reality (VR), and other fields [2], but there are still some
problems to be solved. Traditional image stitching algorithms have the following short-
comings: firstly, the dependence on the scene feature points is strong, which can easily
lead to stitching misalignments or even complete failure, and the robustness is relatively
low. Secondly, the stitching effect is different in different scenes, and lighting and parallax
have obvious effects. Additionally, it is impossible to use the global homography projection
change relationship for image alignment [3–6].

To address the shortcomings of traditional methods, the following methods are pro-
posed in this paper: (1) An image stitching method based on a special plane. This method
takes advantage of the fact that the relative positions of the cameras are invariant and
places a checker pattern on the special plane for camera calibration. The obtained internal
parameters and the external parameters relative to the pattern can then construct an ac-
curate projection relationship between the two cameras about this plane. (2) We further
introduce a hierarchical projection method based on depth information. This method uses
the internal and external parameters obtained from camera calibration for stereo correction
and to project images taken by the binocular cameras into a form with parallel optical
axes, a co-planar imaging plane, and identical internal parameters. It is then possible to
obtain the horizontal parallax of the corresponding pixel point in the overlapping area of
the image by stereo matching and to calculate the depth information of the point according
to the focal length and baseline length of the binocular lens. The depth information is
used to layer the original image, and each layer is mapped using different relationships.
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Finally, the image stitching results can be obtained by superimposing all projections. The
experimental results showed that our method is more robust than other algorithms based
on feature points when a scene has few feature points, uneven distribution of feature points,
or significant parallax.

2. Related Work
2.1. Image Stitching

Image stitching refers to the process of seamlessly stitching several overlapping pic-
tures into a new picture with higher resolution and a wider viewing angle through pixel
alignment. In 1996, Richard Szeliski [7] proposed the Levenberg Marquardt (LM) algo-
rithm to improve the quality of stitched panoramic images. In recent years, to solve the
most critical parallax problem in image stitching, scholars in the industry have proposed
algorithms such as Global Similarity Priority (GSP) [8] and Seam-guided Local Align-
ment (SEAGULL) [9]. Most of these algorithms are based on the meshing concept of
As-Projective-As-Possible Image Stitching (APAP) [10]; on this basis, mechanisms such
as line alignment constraint and contour detection were added to improve the stitching
performance. However, such algorithms usually have higher requirements for stitching
images. In addition, some scholars have combined image stitching with deep learning,
giving rise to Learned Invariant Feature Transform (LIFT) [11]. This algorithm is based on
a convolutional neural network (CNN) [12] and uses backward propagation for end-to-end
training. Its training data adopts the feature points detected by Structure-from-Motion
(SFM) [11]. The feature point detection performance of this model comprehensively exceeds
that of Scale Invariant Feature Transform (SIFT) [13,14]. However, due to the cumbersome
training process, it is still unable to be put into practical application.

2.2. Camera Calibration

To determine the relationship between the coordinates of objects in the real world
and their pixel coordinates on a camera imaging plane, a geometric camera imaging
model must be established, and in real-world cases, the parameters of the camera must be
obtained through experiments and calculations [3], i.e., camera calibration. In 1971, Abdel-
Aziz [15] first proposed a camera calibration method based on Direct Linear Transform
(DLT) [16] transformation and developed a linear equation as a mathematical model
of camera imaging through the corresponding relationship between three-dimensional
space points and two-dimensional pixels. However, because the linear equation can
only calculate linear relationships and cannot consider the distortion effect of the camera,
the parameters obtained by this method are only applicable to some scenes. In 1992,
Faugeras and Luong [17] proposed a camera self-calibration method which does not need
a fixed reference object; instead, it is only necessary to change the camera viewpoint to
shoot multiple images and establish a connection according to the same points within the
images. Although this method is not limited by a reference object, the calibration process
is complex and its use has not been extensive. In 1999, Zhang Zhengyou [18] proposed a
camera calibration method based on a planar pattern which uses a nonlinear model for the
calculation to solve the optimal results regarding the camera parameters. This method not
only has high precision and low manufacturing cost of the selected reference, but also is
suitable for various calibration scenes in daily life.

3. Method
3.1. Establishment of Camera Calibration Model

In this section, we first introduce the image stitching method based on the camera
parameters, as image stitching methods based on the camera calibration model depend
on the internal and external parameters of the camera, which may be obtained by offline
calibration. Using the checker pattern for monocular calibration, we fixed the camera
position, took twenty pictures of the pattern at different positions and angles, and then
measured and recorded the horizontal distance between adjacent corner points on the
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pattern. To construct the world coordinate system, we took the plane of the pattern as the
Z = 0 plane, the corner point at the top left of the pattern as the origin, and the vertical
outward direction of the pattern as the Z-axis. At the same time, the world coordinates of
all corner points in the figure were constructed according to the measured real distance;
there were then stored in a list. Then, using the SIFI algorithm, we detected all of the corner
points of the figure and recorded their pixel coordinates in a separate list. The calibration
process is shown in Figure 1.

Figure 1. World coordinate system construction and corner detection.

We took 20 pictures of the pattern shown in Figure 1 at different positions and angles,
recorded the world coordinates and pixel coordinates of their corner points, and solved the
internal and external parameters using the perspective projection model using Equation (1):
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where Zc is the scale factor, which represents the distance from the corner in the figure to
the camera imaging plane, (u, v) is the pixel coordinate of the corner point, (Xw, Yw, Zw) is
the world coordinate of the corner point, and the right side of (1) is the internal parameter
matrix of the camera and the external parameter matrix of the relative pattern, respectively.
Since we specified Z = 0 as the plane of the pattern, the Zw value of all corner points was 0;
as such, Equation (1) could be simplified follows:
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where r1, r2 are the first and second column components of the rotation matrix R. Letting
homography matrix H be the product of internal parameter matrix and external parame-
ter matrix:

H =
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 =
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[r1 r2 t

]
(3)

Since the degree of freedom of homogeneous matrix H was 8, we set h33 = 1 and then
substituted it into Equation (2):

{
h31uXw + h32uYw + u− h11Xw − h12Yw − h13 = 0
h31vXw + h32vYw + v− h21Xw − h22Yw − h23 = 0

(4)

There are eight unknown parameters in (4); at the very least, the pixel coordinates and
world coordinates of the four diagonal points are needed to construct the linear equations
and solve them. Using the constraints of the orthogonality of r1 and r2 units, the internal
and external parameter matrices in each picture were obtained. After obtaining the above
parameter matrix, the transformation relationship between world coordinates and pixel
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coordinates could be constructed. However, the essence of image stitching is to project a
floating image onto a plane where the target image is located. Therefore, the transformation
relationship of the pixel coordinates between two images is required. Taking a binocular
camera as an example, we let the internal parameter matrices of the left and right cameras
be Kl and Kr, the external parameter matrices be El and Er, the world coordinates of point
Pw on the pattern be (Xw, Yw, Zw, 1), and its projection points on the imaging surfaces of
the left and right cameras be pl(ul , vl , 1) and pr (ur, vr, 1), which can be listed as (5):

{
pl = KlEl Pw
pr = KrErPw

(5)

where El =
[
rl1 rl2 tl

]
, Er =

[
rr1 rr2 tr

]
. After transforming Equation (5), the result

was as shown in Equation (6):
pl = KlElE−1

r K−1
r pr (6)

In Equation (6), El and Er are the external parameters of the camera imaging surface
relative to the pattern, and there was a constraint condition of Zw = 0. Therefore, the coor-
dinate transformation relationship could only produce a good splicing effect on the plane
where the pattern was located. When the model was used for image registration directly,
obvious ghosting, dislocation, and even deformation occurred, as shown in Figures 2 and 3.

Figure 2. Image stitching results.
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Figure 3. Image stitching results.

3.2. Design of Camera Calibration Method for Special Plane

In the camera calibration scene mentioned in the previous section, because the back-
ground object and the pattern were in different planes, the same coordinate transformation
relationship could not be applied for alignment, so a more stable projection transformation
model was required. The design was as follows: we fixed the binocular camera, made the
line of the left and right camera optical center parallel to the wall, and fixed the pattern
on the wall or vertical plane. We then took a set of pictures of the pattern in which the left
and right camera imaging surface were approximately parallel to each other, as shown
in Figure 4.

Figure 4. Camera calibration method for the special plane.

As can be seen in Figure 4, the checker pattern was fixed on the vertical plane of
the cabinet and TV cabinet respectively. The binocular camera was placed at a position
whereby the baseline was parallel to the wall. Therefore, it was considered that a stable
projection model had been established. The external parameters were calibrated when the
reference object was in this attitude and were used to construct the coordinate transfor-
mation relationship for image registration; the effect of this is shown in Figures 5 and 6.
Although there were still a number of ghost dislocation phenomena in the stitching re-
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sults, the plane behind the pattern achieved a relatively good stitching effect. This was
because although the pattern and the object behind it were not on the same planes, the
two planes were approximately parallel. It could be determined that the TV plane and
the pattern plane had the same rotation matrices relative to the camera imaging plane,
and that the translation vector was only slightly different in the tz component. Therefore,
using the external parameters calibrated by the checker pattern to construct the projection
transformation relationship can also result in a better image stitching effect for the plane
behind it.

Figure 5. Image stitching results.

Figure 6. Image stitching results.

3.3. Design of Hierarchical Projection Method for Depth Information

A camera calibration method based on a special plane and a spatially layered image
registration model was constructed with the external parameters obtained from the pattern.
Although the model achieved a good stitching effect at each distance from the scene,
the split image registration model could not be directly put into practical application.
Therefore, it was necessary to segment the image according to the distance; to this end,
an image layering method based on depth information was proposed. To obtain the
depth information in the scene, we first had to calibrate the camera and obtain the relative
external parameters between the left and right cameras, including the rotation matrix and
translation vector. We then used this parameter to stereo correct the image and obtain the
horizontal parallax of pixels in the overlapping area through stereo matching. Finally, we
calculated the depth information of pixels in the scene using the corrected focal length
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and baseline length. The process of binocular calibration was similar to that of monocular
calibration. Based on monocular calibration, it was only necessary to take additional
pictures of multiple groups of the pattern in the overlapping area for use as input data,
and then to substitute the data into the perspective projection model in order to obtain the
external parameters of left and right cameras relative to the pattern. The first component tx
of translation vector t is the distance between the optical centers of the two cameras and the
length of the baseline of the binocular camera. After obtaining the rotation matrix between
the two cameras, according to the stereo correction principle, it was decomposed into the
rotation matrix of half the rotation of the left and right views, and the overall rotation
matrix was constructed through the translation matrix. The image could be corrected to the
attitude whereby the imaging surfaces of the two cameras were coplanar and the optical
axis was parallel by using the matrix for coordinate transformation. The result is shown
in Figure 7.

Figure 7. Stereo correction effect.

After stereo correction, each pixel in the left and right viewing angles was almost on
the same horizontal line. The stereo matching algorithm then searched for the matching
pixel on the corresponding horizontal line in the right-hand side image in Figure 7. The
search method involved setting an odd-size sliding window, using the minimum and
maximum parallax in the two images to determine the starting point and endpoint of the
search, and calculating the sum of the absolute value of the gray value difference of the
corresponding pixel points in the two image windows as the matching basis and selecting
the point with the minimum value in the process from the start to the endpoint as the best
matching point. Subsequently, the pixel coordinates of the pixel points corresponding to
the left and right views in the overlapping area could be obtained. Parallax d of the point
could be obtained by subtracting the abscissa of the two points. The calculated disparity
map is shown in Figure 8 with the parameters and the stereo-corrected image as input.

Figure 8. Overlapping area disparity map.
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After obtaining the parallax map of the overlapping area, the depth information
was calculated by remapping the stereo-corrected pose to the original pose of the right
perspective using Equation (7).

Z =
fx × Baseline

d
(7)

where fx is the number of pixels in the horizontal direction occupied by the focal length of
the two cameras after stereo correction, Baseline is the distance between the optical centers
of the two cameras, and d is the parallax of the pixel points. After converting the disparity
map into a depth map, the image was layered; the effect is shown in Figure 9. The pixels
in the scene were divided into several layers according to the depth information, and the
average value of the depth information in each layer was recorded. At the same time,
the original image of the camera angle on the right was also layered in this way, and the
parts outside the overlapping area were incorporated into the layer of adjacent pixels in
behavioral units. The effect is shown in Figure 10.

Figure 9. Image layering method based on depth information.

Figure 10. The original image layering effect.

After layering the original image, each layer used the pre-built projection transfor-
mation model based on the special plane and substituted the depth information of the
layer into tz in the model for calculation. Each layer used the coordinate transformation
relationship calculated independently for projection, and finally, superimposed all the
projection results onto the plane where the target image was located. The effect is shown
in Figure 11.
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Figure 11. Stitching results based on image layering.

3.4. Process of Image Stitching Method Based on Camera Calibration

To begin, the internal parameters and the external parameters were solved by calibrat-
ing the camera. Then, using the camera calibration method based on the special plane, an
additional group of pictures parallel to the camera imaging plane were taken and used
as input data to solve the external parameter matrix representing the pose relationship
between the pattern and the camera imaging plane. Using the external parameter matrix
and the internal parameters, the coordinate transformation relationship of the binocular
camera about the point on the distance plane could be constructed. In addition, the stitched
image had to be layered through the layered projection method based on depth information.
We then used the external parameters of the calibrated binocular camera to stereo correct
the left and right viewing angles so that the corresponding pixels in the image would fall on
the same horizontal line. Next, we searched the corresponding pixels in one-dimensional
space using the stereo matching algorithm and obtained their horizontal parallax. After
obtaining the disparity map in the above way, we calculated the depth map according to
the focal length of the camera and the length of the baseline and divided the depth map
according to the specific situation. Finally, the original floating map was layered according
to the layered model of the depth map, and the corresponding depth information was
substituted into the coordinate transformation relationship so that each layer of the image
was projected according to its registration model. All projection results could then be
superimposed to obtain the final image stitching result. Since the parallax of objects at the
same distance imaged on the camera plane was the same, the layered projection method
based on depth information could maximally eliminate the impact of parallax. The process
is shown in Figure 12.

Figure 12. Image stitching process based on camera calibration model.
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4. Experiment
4.1. Realization of Camera Calibration Based on Special Plane

The camera calibration algorithm flow is shown in Figure 13.
A pattern was composed of 10 × 10 black-and-white squares. The center of area 4 × 4

in the top left corner was the first corner point. There were 81 corner points on the surface
of the reference object, and the horizontal distance between the points was found to be
40 mm. Before the experiment, the camera had to be monocularly calibrated many times to
obtain accurate internal parameters. The internal parameter matrix of the binocular camera
calibrated in the above way is shown in Table 1.

Figure 13. Camera calibration algorithm flow based on a special plane.

Table 1. Internal parameters of binocular camera.

Equipment Name Internal Parameter Matrix Distortion Parameter Matrix

Left camera




903.0102 0 750.2198
0 901.3962 451.7124
0 0 1


 [−0.0159 0.0353 −0.00127 −0.0008 −0.045

]

Right camera




898.9699 0 688.2513
0 900.6719 432.5414
0 0 1


 [

0.0022 −0.027 −0.0017 0.0011 0.0090
]

After monocular calibration, the relative external parameters of the binocular camera
could be obtained by taking the obtained camera internal parameters and the picture group
with complete reference objects in the overlapping area of the left and right viewing angles
as input, as shown in Table 2.

After binocular calibration, camera calibration based on the special plane was carried
out. The binocular camera was placed in a position whereby the imaging surface was
parallel to the wall, and the pattern was fixed on the vertical plane in the overlapping area
for photographing. The method is shown in Figure 14.

Figure 14. Camera calibration based on a special plane.
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Table 2. Relative external reference of binocular camera.

Transformation Mode Rotation Matrix Translation Vector

From left to right




0.9999 −0.0019 −0.0026
0.0019 0.9999 −0.0024
0.0026 0.0024 0.9999


 [−16.7401 −0.0788 −0.0569

]

From right to left




0.9999 −0.0016 0.0079
−0.0017 0.9999 0.0042
−0.0079 −0.0042 0.9999


 [

16.7664 0.0526 0.0939
]

The plane of the pattern was approximately parallel to the imaging plane of the camera.
The external parameters of the camera, relative to the plane of the pattern obtained using
the image and known internal parameters, are shown in Table 3.

Table 3. External parameters of the binocular camera relative to the special plane.

Equipment Name Rotation Matrix Translation Vector

Left camera




0.0109 0.9998 0.0093
0.9993 −0.0113 0.0369
0.0370 0.0089 −0.9993


 [

9.8148 −40.2235 198.7077
]

Right camera




0.0098 0.9997 0.0227
0.9999 −0.0099 0.0072
0.0074 0.0026 −0.9997


 [−7.5794 −40.2643 198.7469

]

4.2. Implementation of Hierarchical Projection of Depth Information

The implementation flow of hierarchical projection of depth information is shown
in Figure 15.

Figure 15. Hierarchical projection algorithm flow based on depth information.
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To verify the hierarchical projection based on depth information, an experiment was
carried out in which the variables were controlled. Firstly, the left and right camera internal
parameters and special out-of-plane parameters obtained in Tables 1 and 2 were substituted
into the model in Equation (6) to calculate the coordinate transformation relationship. In
the experiment, different values were input for image registration. Based on the internal
and external parameters of the camera, the correction matrix and projection matrix of the
left and right views could be deduced, as shown in Table 4.

Table 4. Stereo correction and projection matrix.

Pespective Name Correction Matrix Projection Matrix

Left camera view




0.9999 0.0028 0.0008
−0.0028 0.9999 −0.0012
−0.0008 0.0012 0.9999







901.0340 0 721.6889 0
0 901.0340 438.3938 0
0 0 1 0




Right camera view




0.9999 0.0047 0.0034
−0.0047 0.9999 −0.0012
−0.0034 0.0012 0.9999







901.0340 0 721.6889 −15083.6593
0 901.0340 438.3938 0
0 0 1 0




The left and right viewing angles of the image to be stitched could then be transformed
into a horizontally aligned attitude through the correction matrix, and the stereo correction
results could be obtained by mapping the projection matrix to the new coordinate system.
Next, we searched the corresponding points of the left and right viewing angles in the
one-dimensional space, calculated the parallax and depth information, and obtained a
depth map which we used to layer the image. The effect is shown in Figure 16.

Figure 16. Image layering effect based on depth information.

The image was layered in such a way that the outermost layer was greater than 2 m
and each layer was separated by 100 mm. We took the average depth information of the
current layer as the input to solve the respective image registration models. All layers were
aligned with the corresponding models and superimposed upon one another to obtain the
final stitching results.
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4.3. Effect Analysis Experiment after Image Stitching

The experiments were conducted with binocular cameras. We captured close scenes
several times; these were then stitched together using the method proposed in this paper,
with the following results.

As shown in Figure 17, good stitching results were achieved for various planes at
different distances, such as TVs, monitors, and chairs; however, objects such as table legs,
which are long and thin and have different overall depth information still showed a certain
degree of overlap and misalignment, and there was still blurring due to the layering in the
stitched image.
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Figure 18 illustrates a depth span of a scene. Except for the door seam of the closet, a
good stitching effect was achieved for all objects despite some blurring phenomena.
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Figure 18. Image stitching results.

Similarly, Figure 19 presents to a scene with a large depth span. Once again, except
for the door seam of the closet, a good stitching effect was achieved for all objects despite
some blurring phenomena.

Comparative experiments were conducted to stitch the images using the method
proposed in this paper and the feature point-based stitching method, respectively. The
latter applies the SURF [19] and ORB (Oriented FAST and Rotated BRIEF) algorithms [20] to
detect and match the feature points, purifies the matching results via the random sampling
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consistency method, obtains the best matching results, constructs a global homography
model to align the images, and then uses the fading-in and fading-out method to obtain
the final image. The experimental results are shown in Figures 20–22.
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Figure 20. Image stitching experiment. (a) Image stitching effect based on depth information layering;
(b) Image stitching effect based on SURF feature points.
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Since Figure 20 is an oblique scene, the depth information of the object surface varies
linearly; as such, the objects with different depths achieved better stitching results using
the method proposed in this paper (Figure 20a). In the stitching results obtained using the
SURF feature points (Figure 20b), the TV, the refrigerator and the shelf all showed different
degrees of misalignment.

As shown in Figure 21, when the proposed method was used for stitching (Figure 21a),
good results were obtained except for the closet gap. However, in the stitching results
based on ORB feature points (Figure 21b), there were mismatches, because the feature
points detected for the edges of the three closet doors were too similar. As such, the result
was not satisfactory.

As shown in Figure 22, using the method based on depth information layering
(Figure 22a), most of the objects in the scene achieved good results, with only the seat
closest to the camera showing a small amount of ghosting. Meanwhile, in the results
obtained using the two image stitching method based on feature points (Figure 22b,c),
most objects showed ghosting, and the upper right corner of the TV set had significant
deformation.

Although the results of the method proposed in this paper demonstrated less ghosting
and fewer errors, some fuzzy edge noise appeared. This may have been because the
coordinate transformation relationship between the layers was not accurate enough when
the image was layered. Assuming that the present registration model is not accurate
enough, eliminating such edge noise will be a focus in subsequent research.

5. Conclusions

To maintain high robustness in cases of sparse feature points, uneven distribution,
or obvious parallax, an image stitching method based on the camera calibration model
is proposed in this paper. Based on the general camera calibration, an additional set of
pictures with a vertical pattern were taken. Using the external parameters obtained from
the camera calibration and the internal parameters of the camera, a spatially layered image
registration model could be constructed. By adjusting the depth information in the model,
the coordinate transformation relationship between the viewing angles of the two cameras
concerning the vertical plane at any distance could be obtained. To apply the spatially
layered image registration model, this paper also proposed an image layered projection
method based on depth information. The depth information of the overlapping area in the
scene was obtained through stereo correction and matching. According to this information,
the original image was layered, and each layer was registered according to the coordinate
transformation relationship based on the current depth information. By superimposing all
the projection results, image stitching results that were resistant to parallax disturbances
could be obtained.
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Abstract: Aiming at the problems of low path success rate, easy precocious maturity, and easily
falling into local extremums in the complex environment of path planning of mobile robots, this paper
proposes a new particle swarm algorithm (RDS-PSO) based on restart strategy and adaptive dynamic
adjustment mechanism. When the population falls into local optimal or premature convergence, the
restart strategy is activated to expand the search range by re-randomly initializing the group particles.
An inverted S-type decreasing inertia weight and adaptive dynamic adjustment learning factor are
proposed to balance the ability of local search and global search. Finally, the new RDS-PSO algorithm
is combined with cubic spline interpolation to apply to the path planning and smoothing processing
of mobile robots, and the coding mode based on the path node as a particle individual is constructed,
and the penalty function is selected as the fitness function to solve the shortest collision-free path.
The comparative results of simulation experiments show that the RDS-PSO algorithm proposed in
this paper solves the problem of falling into local extremums and precocious puberty, significantly
improves the optimization, speed, and effectiveness of the path, and the simulation experiments in
different environments also show that the algorithm has good robustness and generalization.

Keywords: restart strategy; adaptive adjustment; particle swarm optimization; spline interpolation

1. Introduction

With the development of robot technology, the environment is becoming more and
more complex, and people’s performance requirements for robots are also getting higher
and higher. In a complex environment to complete the task autonomously, navigation
technology is more important, and path planning is an important part of navigation
technology; a good planning algorithm not only can plan the shortest path, but the cost
of time, robot mechanical loss costs, maintenance costs, etc. also need to be reduced to
a minimum [1]. The formatter will need to create these components, incorporating the
applicable criteria that follow.

Researchers have been studying the path planning problem for many years, and have
been constantly exploring and improving, with some good results. For example, the A*
algorithm [2], Dijkstra [3] algorithm, RRT [4], etc. can achieve some good results in simple
environments, but with the increase in environmental complexity and requirements, there
will be problems such as larger computation and more memory occupation. With the
emergence of intelligent optimization algorithms, more and more researchers apply intelli-
gent optimization algorithms and their improved algorithms to path planning problems.
Liu Jingsen et al. [5] proposed a bat algorithm with reverse learning and tangent random
exploration mechanism, combined with cubic spline interpolation to define a smooth path
based on node coding. Sun Huihui et al. [6] started from the three types of reinforcement
learning motion planning methods based on value, strategy, and actor-critic, and deeply
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analyzed the characteristics and practical application scenarios of deep reinforcement learn-
ing planning methods, and experimentally proved that although intelligent optimization
algorithms such as gray wolf algorithm [7], ant colony algorithm [8], particle swarm al-
gorithm, and genetic algorithm [9] can initially solve the path planning problem, these
algorithms have their own shortcomings. The accuracy of the search cannot be guaranteed,
and it is easy to fall into the problem of local optimization.

The particle swarm algorithm, proposed by Kennedy and Eberhart in 1995 [10], is
widely used to solve various engineering problems because of its fast convergence speed,
ease of implementation, and few parameters for simple modeling [11–14]. However, it
also has defects such as precocious puberty, low precision, and easily falling into local
optimization. Thus, many improved algorithms have been proposed in recent years. In
Kang Yuxiang et al. [15], in view of the problems of precocious particle swarm algorithm and
low optimization accuracy, the speed update model was improved, the adaptive particle
position update coefficient was increased, and a greedy strategy was added to the algorithm
process. In Panda et al. [16], in view of the rapid loss of particle swarm diversity and the
problem of premature convergence, they proposed that the hybrid crossover algorithm
be combined with the particle swarm algorithm to enhance the ability to explore particles
and surrounding space. Ouyang Haibin et al. [17] proposed a hierarchical path planning
method based on the mixed genetic particle swarm optimization algorithm, which first used
the genetic algorithm improved by the artificial potential field method for primary path
planning, and then used the particle swarm algorithm to optimize the path for secondary
optimization. However, the method does not do a good job of fusing the two algorithms.
Song et al. [18] proposed a new path smoothing method. An adaptive fractional-order
velocity is introduced to enforce some disturbances on the particle. A new strategy is
developed to plan the smooth path for mobile robots through an improved PSO algorithm
in combination with the continuous high-degree Bezier curve. Miao et al. [19] proposed a
new particle swarm optimization method. The algorithm merges two strategies, the static
exploitation (SE, a velocity updating strategy considering inertia-free velocity) and the
direction search (DS) of Rosenbrock method, into the original PSO.

In this paper, a particle swarm optimization algorithm (PSO) based on parameter and
restart strategy improvement is proposed, and it is applied to the path planning problem.
We named the proposed algorithm RDS-PSO, where R represents restart strategy, D rep-
resents dynamic adjustment, and S is for spline interpolation. The uniform distribution,
inverted S-type inertia weight coefficient, cubic spline interpolation function, and enhanced
control learning factor are introduced in the PSO algorithm, and a restart strategy is added
to enhance the global optimization performance of the algorithm. Finally, its effectiveness
was verified in an experimental environment with obstacles. Experimental results show
that, compared with other path planning algorithms, the proposed RDS-PSO can achieve
better results in both complex and simple environments.

2. RDS-PSO Algorithm
2.1. Standard Particle Swarm Algorithm

The PSO algorithm is a population-based optimization problem heuristic strategy
proposed by Kennedy and Eberhard in 1995. The core of the PSO algorithm is to share
information through individuals in the group, so that the motion of the entire group is
transformed from disorder to order in the solution space problem, so as to obtain the
optimal solution of the problem. The result of each optimization problem is performed by
Equations (1) and (2). The first term of the velocity update Formula (1) is the inertia part,
which indicates that the next move of the particle is influenced by the size and direction of
the velocity of the last flight, and the inertia weight w determines how much information
is inherited from the previous generation, thus balancing the global and local search; the
second term indicates that the subsequent move of the particle is influenced by the particle’s
own historical experience, and the closer the particle is to its own historical best position,
the smaller the difference between the second term and the smaller the velocity. From
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Formula (2), it can be seen that the next step position distance is also smaller, which at this
time is conducive to local search; the third term indicates that the next action of the particle
is influenced by the best particle in the group, the same as the second part, the farther the
particle is from the best position in the group, the larger the difference; at this time the
speed is larger, the step length in Formula (2) is also larger, which is conducive to global
search. Therefore, the next step of the particle is determined by three parts: the inertial part,
its own historical experience, and the group historical experience.

Particle velocity update formula:

Vt+1
id = wVt

id + c1r1(Pbestt
id − xt

id) + c2r2(Gbestt
id − xt

id) (1)

Position update formula:
xt+1

id = xt
id + Vt+1

id (2)

where Vt
id is the speed at which the ith particle flies; t is the number of iterations; d denotes

dimensionality; c1 and c2 are the learning factor; r1 and r2 are random numbers within [0, 1]
to enhance randomness; Pbestt

id indicates the best position of particle i in the t iteration;
Gbestt

id represents the best position of the particle population in the t iteration; and w is the
inertia weight coefficient that adjusts the search space searchability.

2.2. Improved Particle Swarm Algorithm
Inertia Weights

Adaptive tuning parameters have always been the focus of research on PSO algorithms.
The change of inertia weight w affects the position of particles, the larger the value of w,
the stronger the global search ability, the weaker the local search ability. Several studies
show that the dynamic adjustment of w can improve the convergence and search accuracy
of PSO. The value of w can vary linearly during a PSO search [20] or dynamically as an
adaptability function based on PSO performance [21]. Since the fixed and simple linear
decrement strategy is not conducive to the global search of particles, this paper proposes
an adaptive and dynamic weight adjustment method, that is, the inertial weight based
on the sin function is introduced in the linear decrement strategy, which makes w take a
larger value in the early iteration period, which strengthens the algorithm’s global search
capability; at the same time, it takes a smaller value in the later stage, and strengthens the
algorithm’s local search capability.

The improved inertia weight formula is:

w = wmax − (wmax − wmin) sin(
π ∗ t

2Itmax
)

2
(3)

where wmax is the maximum inertia weight, wmin is the minimum inertia weight, Itmax is
the maximum number of iterations, and t is the current number of iterations.

As can be seen from the above Figure 1, this improved strategy makes the inertia
weights show an inverted S-shaped decreasing trend throughout the iterative process,
keeping larger values in the early part of the process for a longer time, decreasing faster in
the middle, and keeping smaller values in the later part of the process for a longer time.
This can balance the global search and local search well.

2.3. Learning Factors

As important parameters in PSO, learning factors c1 and c2 have the effect of regulating
the performance of the algorithm, which determines the influence of the particle’s own
historical experience and group experience on the particle motion trajectory, reflecting the
information exchange between particles. c1 and c2 are too large or too small to facilitate
particle search [22]. This paper adopts the power function to perform symmetric treatment
of c1 and c2. The specific formula is as follows:

c1 = αew (4)
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c1 = βe−w (5)

In order to achieve the symmetry effect, after several experiments, the two coeffi-
cients in the equation are taken as α = 0.83 and β = 2. In the improved learning factor
Formulas (4) and (5), it can be found that c1 is decreasing while c2 is increasing. The early
focus on individual information exploration is a feasible solution. The later stage focuses
on the rapid convergence of global information, which not only makes PSO have good
learning ability in the optimization process, but also turns the inertia weight and learning
factor into a variable, which is convenient for practical application and also strengthens the
uniformity in the process of algorithm optimization.

Figure 1. Inertia weight curve graph.

2.4. Cubic Spline Interpolation

In the simulation experiment, it was found that the path of the classical PSO program
has many turning points, the path is not smooth enough, and the dynamic characteristics
are poor during sharp turns. Thus, it is necessary to further improve the algorithm to make
the algorithm more in line with the dynamic adaptability requirements of the robot.

Cubic spline interpolation is a piecewise interpolation method that can be fitted by
multiple interpolation intervals based on cubic polynomials to form a smooth curve, and
the robot movement path fitted with the cubic spline interpolation method is smoother.

The definition and algorithm of cubic spline interpolation are as follows:
In the interval [a, b], there are n + 1 data nodes (x1, y1), (x2, y2), . . . (xn, yn) that are

called cubic spline functions if the following conditions are met.
Each interval (xi, xi+1), where i = 0, 1, . . . , n, satisfies the second cubic polynomial:

fi(x) = ai + bi(x− xi) + ci (x− xi)
2 + di(x− xi)

3 (6)

The function and its first and second derivatives are continuous at the interpolation
point.

f (x) commonly uses endpoint conditions that can satisfy the following three requirements:

• Free boundary: the second derivative at the endpoint is zero.
• Fixed limitation: the range value of the differential function from the beginning to the

end is specified.
• Non-node boundary: the third derivative at the 2nd to the last node is continuous.

The Algorithm 1 process is:
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Algorithm 1 Triple spline interpolation

1: For each of these intervals it is necessary to satisfy:
2: Si(x) = ai + bi(x− xi) + ci (x− xi)

2 + di(x− xi)
3

3: S′i(x) = bi + 2ci (x− xi) + 3di(x− xi)
2

4: S′′i (x) = 2ci + 6di(x− xi)
5: Input parameters x, y Interpolation point n.
6: Calculate step size: hi = xi+1 − xi
7: for i = 1: n − 1
8: Substituting the parameters into the above matrix equation
9: A system of linear equations with m as the unknown is obtained
10: Solve the matrix equation to find the quadratic differential value mi
11: Find a, b, c, d.
12: In the interval (xi, xi+1), the Equation (6) is obtained.
13: end

2.5. Particle Coding

The junction of each segment is termed a path node, and the spline curve of each
segment is distinct. Cubic spline interpolation is a segmental interpolation method. The
cubic spline curve is first-order continuous in nature and second-order continuous at the
node; the number of path nodes denotes the maximum number of turns in the entire path;
in the most challenging instance, obstacles can be avoided after 3 to 4 turns. As a result, the
particle encoding in this paper is based on path nodes.

Assuming that there are path nodes (xm1, xm1), (xm2, xm2), . . . , (xmm, xmm), the co-
ordinates of the start point and end point are (xs, xs), (xt, xt), and n interpolation points
are obtained on the interval (xs, xm1, xm2, . . . , xt) and (ys, ym1, ym2, . . . , yt) by cubic spline
interpolation, and the coordinates of the interpolation points are (x1, x1), (x2, x2), . . . ,
(xm, xm). Finally, the line consisting of the path nodes, interpolation points, and the start
and end points are the robot motion path we require.

2.6. Evaluation Function

In the path planning problem, two conditions are generally satisfied to determine
whether a path is optimal or not: (i) it cannot collide with an obstacle; (ii) the path is
required as short as possible.

The fitness function F constructed in this article is shown in Equation (7), where L
represents the planned path length, and its mathematical expression is Equation (8), where
(xi, xi) is the coordinate of the i interpolation point, and a is a weight coefficient set to 100,
which is used to exclude illegal paths. P is a barrier avoidance constraint function that is
used to determine the safety distance; the calculation formula is shown in (9), where Rm is
the radius of the m-th obstacle, m is the number of obstacles, and c, d is the obstacle’s center
coordinate; the smaller the value of P, the higher the final path’s safety factor.

F = L× (1 + a× P) (7)

L =
n

∑
i+1

√
(x(i+1) − xi)

2 + (y(i+1) − yi)
2 (8)

P =
m

∑
m=1

(MAX(1−

√
((xi − c)2 − (yi − d)2)

Rm
, 0)) (9)

2.7. Restart Strategy

A restart strategy is introduced under the above improvement circumstances in order
to increase the algorithm’s optimization abilities and overcome the problems of local
optimization and precocious puberty. Huberman et al. were the first to use the restart
technique to a stochastic optimization algorithm in 1997 [23]. It has become a standard
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strategy in stochastic optimization algorithms, and it is frequently used to boost algorithm
performance [24]. By reinitializing the generation of fresh potential particles, you can avoid
getting into a local ideal scenario.

In this paper, an iteration threshold is set in the process of the algorithm. If the
optimal solution is not improved in the process of successive H-generation iterations, the
optimal solution will be retained at this time and reinitialized into the next iteration. The
improvement strategy enables the algorithm to effectively jump out of the local optimum,
enhance the global search capability of the algorithm, and avoid premature maturity of
the algorithm.

2.8. RDS-PSO Algorithm

Through the above comprehensive improvements, the inverted S-type inertia weights
better balance the global and local search ability of the algorithm, and the dynamic learning
factor not only strengthens the learning ability of the algorithm in the optimization process,
but also combines the inertia weights and the learning factor into one variable, which is
convenient for practical applications. On this basis, the cubic spline interpolation method
is introduced to smooth the path, which improves the defect of the unsmooth path and
enables the robot to better adapt to the real environment. For the problem that PSO is
prone to falling into local optimum and premature maturity, a restart strategy is introduced
by combining the above improved parameters, and the improved strategy enhances the
algorithm’s optimization-seeking ability and improves the problems of premature maturity
and falling into local optimum. We call the proposed algorithm RDS-PSO.

The basic steps of the RDS-PSO algorithm are as follows.
Step 1: The number of path nodes and the number of interpolation points are de-

termined according to the specific environment, and the starting and ending points
are determined.

Step 2: Set the parameters, initialize the population and particle velocity, and initialize
the population distribution.

Step 3: The coordinates of the interpolation points in the x and y directions are
calculated for each particle using the cubic spline interpolation method.

Step 4: Calculate the adaptation value using Equation (7)
Step 5: The parameters are updated according to Equations (1)–(5), respectively, and

update the local optimal value Pbestt
id and the global optimal value Gbestt

id and save it.
Step 6: According to Equation (9), we confirm whether the updated particle inter-

sects with the obstacle, and apply algorithm 1 to obtain a path consisting of path nodes,
interpolation points, and start-end connections after the update.

Step 7: In the iteration process, determine whether the restart condition is met. If the
restart condition is met, the optimal path is kept at this time, reinitialized, and steps 1 to 6
are executed again; if not, the number of iterations is increased by 1 until the maximum
number of restarts is reached, the algorithm ends, and the path is output.

The specific flowchart is shown in Figure 2.
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Figure 2. Flowchart of the RDS-PSO algorithm.

3. Experiments and Analysis of Results
3.1. Experimental Environment and Parameter Settings

The RDS-PSO algorithm and the standard particle swarm algorithm (PSO), the Im-
proved PSO (RandWPSO-SP) based on random inertia weights and cubic spline interpola-
tion [25], and the improved particle swarm optimization algorithm (IPSO) proposed in the
literature [26] were experimentally compared and analyzed to verify the effectiveness and
advancedness of the proposed algorithm in solving the robot path programming problem.
This evaluates the algorithm’s performance in terms of path planning for robots.

In order to ensure the objectivity and fairness of the experiment, all algorithms use the
same software and hardware platform for experimentation, the simulation environment
is Windows 10, Core i5, CPU (2.4 GHz), memory 12 GB, programming environment
MATLAB R2019b. In order to ensure the authenticity of experimental data, 30 independent
experiments on each algorithm, the experimental data were averaged.

In the simulation experiment, the parameters of the four algorithms, such as pop-
ulation size and maximum number of iterations, were consistent with Itmax = 100,
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Npop = 150, In the standard PSO, the inertia weights and learning factors, w = 0.9,
c1 = 1.5, c2 = 1.5, RandPSO-SP and the same parameter settings in this algorithm are
consistent, wmax = 0.9, wmin = 0.4, the number of cubic spline interpolation points is set to
100, and the boundary is non-node boundary. Among them, the learning factor regulation
parameters in the algorithm of this paper are α = 2, β = 0.83.

In order to verify the universality of the algorithm in the path planning problem, the
simulation experiment is carried out on MATLAB.

3.2. Experiments in Map 1

There are many obstacles in map 1, where obstacles are represented by blue circles. As
can be seen from Figure 3, compared with the other three algorithms, the RDS-PSO of this
algorithm has a shorter path, the least inflection point, and because the obstacles are more
scattered, the best path is almost straight, and the other paths are smoother, which is due to
the use of cubic spline interpolation, so the path is smoother.

Figure 3. Comparison of path planning.

The iterative process of RDS-PSO is shown in Figure 4, and it can be seen that the
algorithm has performed two restarts and finally found the optimal path because the
algorithm has added a restart strategy. When the algorithm stagnates, it can be considered
that the algorithm falls into local optimization; at this time, a new randomly distributed
particle is added, combined with the inverted S-type inertia weight and the learning
factor improvement method to improve the algorithm search ability, and also uses the
characteristics of PSO convergence speed to shorten the iteration time; and restart multiple
times to find the optimal path to achieve the purpose of jumping out of the local optimal.

The fastest convergence of IPSO in iterative Figure 5 is due to the addition of enhanced
learning factors, but it can be seen in Table 1 that the algorithm is less robust and difficult
to jump out when it falls into local optimality. RandWPSO-SP and PSO converge at
the same rate, converging around 10 generations, but the optimal path was not found.
RandWPSO-SP is too random; although the perturbation is obvious, it is easy to miss
the optimal solution, and when the particles converge, it is not easy to jump out of the
local optimal.
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Figure 4. RDS-PSO iteration.

Figure 5. Iteration of three algorithms.

The data in Table 1 are the path results obtained by running the algorithm indepen-
dently for 30 times in map 1, and an accuracy rate is introduced in the table as an evaluation
index to judge the stability of the algorithm, that is, to find the optimal solution or the
suboptimal solution is to find the correct path. It can be seen from the table that the average
path length, the worst path, and the average simulation run time of the RDS-PSO are better
than the other three algorithms, and the four algorithms have found the optimal path, but
the RDS-PSO has the highest accuracy rate, only once did not reach the optimal value,
which is due to the introduction of the restart strategy. When it falls into the local optimal,
you can find a new solution in time, combined with the improved inverted S-type inertia
weight and symmetric learning factor to enhance the search ability while improving the
convergence speed. In this way, many optimizations are sought in a short period of time,
which greatly enhances the optimization ability of the algorithm, and the optimization
results are more stable.
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Table 1. Comparison of algorithm performance.

Algorithm Longest Path Shortest
Path

Average
Path

Average
Time (s) Accuracy

PSO 12.89 15.34 13.6 29.86 47%
IPSO 12.9 15.85 13.96 30.7 57%

RandWPSO-SP 12.89 15.45 13.47 29.46 60%
RDS-PSO 12.89 13.16 12.94 29.10 94%

3.3. Experiments in Map 2

In the experimental map 2, the environment is more complex. With continuous
obstacles, there is less room at the beginning, fewer paths to choose from, and it is easier to
fall into local extremums; therefore, the ideal path must span a tighter area.

As can be seen in Figures 6 and 7, the path prepared after two RDS-PSO restarts is the
shortest and smoothest. As can be seen in Figure 8, RandWPSO-SP has multiple jumps
out of the native extremum, which is due to the addition of random inertia weights, which
strengthens particle randomness. While the ultimate designing path is also shorter, the
shortest path is not found, indicating that the algorithmic rule is ineffective in improving
performance. Around the twentieth generation, IPSO and PSO merged. IPSO discovered
a more robust path, owing to the employment of linear decreasing inertia weights and
unified learning factors to improve algorithmic rule search performance. However, the
convergence speed is swift, and the algorithmic rule search performance is improved.

Table 2 shows the path results of the four algorithms running independently 30 times
in map 2. It can be seen from the table that the optimal solutions of the four algorithms
are the same, but the worst solutions are very different, reflecting the difference in the
optimization ability of the algorithms. Compared with experimental map 1, experimental
map 2 is more complex, so the accuracy of the four algorithms is reduced. The average
time of RDS-PSO is slightly longer, which is caused by the restart mechanism, but the
average path length and accuracy rate are the best of the four algorithms, indicating that
the optimization performance and robustness of the algorithm have been greatly improved.

Figure 6. Comparison of path planning.
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Figure 7. RDS-PSO iteration.

Figure 8. Iteration of three algorithms.

Table 2. Comparison of algorithm performance.

Algorithm Longest Path Shortest
Path

Average
Path

Average
Time (s) Accuracy

PSO 13.25 16.45 14.2 26.9 20%
IPSO 13.28 14.58 14.00 26.2 40%

RandWPSO-SP 13.29 15.24 14.03 25.76 50%
RDS-PSO 13.25 14.13 13.58 29 80%

3.4. Experiments in Map 3

Considering the diversity of actual obstacles, if all types of obstacles are expanded
into circles, the feasible route may disappear, so this paper designed a third map for
experimentation, as shown in Figures 9 and 10 below.
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Figure 9. Path planning of RDS-PSO in map 3.

Figure 10. Path planning of RDS-PSO in map 3.

In experimental map 3, slender strips of various sizes are set up to evaluate the
algorithm’s universality and stability. Where-type barriers are used to see if the algorithm
will fall into a state of local optimality. The final path fully avoids obstructions, is not
“misled” by the center section of the gate, and chooses the best path, as can be seen from
the planned route. The algorithm successfully avoided the obstacle, found the best path,
and the path is also very smooth, as shown in Figure 10. Figure 10 enlarges the map range
and sets up a continuous overlapping long bar obstacle. The starting point to the end point
requires multiple turns, increasing the difficulty of planning. This report also confirms the
search performance, ubiquity, and trustworthiness.

4. Conclusions

In this paper, an improved particle swarm algorithm combined with cubic spline inter-
polation is proposed to solve the robot path planning problem. For the “precociousness” in
the basic PSO and some improved algorithms, the search ability is poor, it is easy to fall
into local extremums, and it is difficult to jump out, resulting in problems such as search
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stagnation. First of all, the key parameters of PSO are improved, a new inverted S-type
inertia weight and symmetric learning factor are introduced, and these three parameters are
unified into one variable, which is convenient for practical application, improves the global
optimization ability of the algorithm, and also improves the uniformity in the process of
algorithm optimization, and enhances the search performance of the algorithm. At the
same time, combined with the characteristics of the fast convergence speed of the particle
swarm algorithm, a restart strategy is introduced, and when the algorithm search is stalled,
it is reinitialized with random particles, which makes it easier for the algorithm to jump out
of the local extremum, and also solves the problem of not being able to find a solution due
to “precocious puberty”. On this basis, the path nodes in the cubic spline interpolation are
encoded as individual particles, so that the PSO and cubic spline interpolation method are
combined with the robot path planning to plan a smooth path. An experimental compari-
son of four algorithms was carried out in two environments, and RDS-PSO was tested in
complex environments, and the experimental results showed that the RDS-PSO improved
algorithm in this paper had better solution performance under the same time, the shortest
path of planning, the highest success rate, and the more stable algorithm, which proved the
effectiveness and superiority of the improved algorithm in path planning problems.
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Abstract: The electronic tendering and bidding system has realized the digitalization, networking,
and high integration of the whole process of tendering, bidding, bid evaluation, and contract, which
has a wide range of applications. However, the trust degree, cooperation, and transaction efficiency
of the parties involved in electronic bidding are low, and bidding fraud and collusion are forbidden
repeatedly. Blockchain technology has the characteristics of decentralization, transparent transactions,
traceability, non-tampering and forgery detection, and data security. This paper proposes a design
path of an electronic bidding system based on blockchain technology, which aims to solve the
efficiency, trust, and security of the electronic trading process. By building the underlying architecture
platform of blockchain and embedding the business process of electronic bidding, this realizes the
transparency, openness, and traceability during the whole process of electronic bidding. This paper
uses qualitative and quantitative methods to prove the effectiveness of the system.

Keywords: blockchain technology; electronic bidding; system design

1. Introduction

The construction industry plays an important role in the development of the social
economy. However, the traditional bidding method has problems such as low information
transparency, information asymmetry, and an opaque transaction process, which inhibit the
development of the construction industry. Compared with the traditional bidding method,
the electronic bidding (E-bidding) system is an essential transaction method in the current
information era [1], which consolidates the process of bidding, tendering, bid evaluation,
and contract-signing as an open network, and breaks through the limitation of time and
space. Additionally, since the emergence of COVID-19 through the spread of Omicron, in
the context of the global scale, it is of great practical significance to study how to realize the
whole process of E-bidding online and how to ensure continuous economic activities and
reduce personal contact.

Although the E-bidding system is widely used at present, the following problems still
exist [2]. Firstly, there is no unified standard for E-bidding systems, which leads to poor
real-time collaboration within different systems. Secondly, in the E-bidding system, it is
difficult to ensure the identity authentication of users and data security, which is affected by
network security. Finally, the E-bidding system has difficulties in the traceability of bidding
participant behaviors. Namely, unfair situations often occur in transactions, but it is difficult
for regulators to collect bidding fraud evidence and achieve supervision in real-time.

To solve the above problems, blockchain technology is brought into the E-bidding
system. As a decentralized distributed ledger, blockchain co-records public data in chrono-
logical sequence, generates and updates data through distributed node consensus algo-
rithm, and employs cryptography technology to ensure that data cannot be tampered with.
Naturally, the blockchain enables collaboration without the authorization of a third-party,
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facilitates the construction of a highly credible transaction and supervision system with
high security and reliability, and can trace all information in the transaction process to
ensure transparency and fairness [3,4]. To this end, blockchain will become one of the
most prevalent underlying protocols of the “Internet of Everything” and be applied in all
fields of society, i.e., social governance, arbitration, auditing, smart city construction, etc.
However, compared with other industries, it is the diverse and complicated transaction
process that hinders the development of E-bidding in construction sectors. In addition, the
application of E-bidding in the construction industry has lagged behind the manufacturing
and retailing sectors [5], not to mention the adaptation of blockchain-based E-bidding. In
addition, the research on blockchain-based E-bidding systems is limited to the preservation
of information in each stage of bidding and does not consider how to avoid bidding fraud to
maintain fair transactions. Thus, to promote further prosperity, decrease the large resource
consumption, and improve the overall transaction process’s efficiency and security, it is
necessary to study blockchain-based E-bidding in the construction industry.

In this paper, we combine blockchain technology and an E-bidding system and pro-
pose a blockchain-based E-bidding system applied in the construction industry, which
consists of a blockchain electronic transaction bidding system, a big data system, and a
framework for mining evidence of bidding fraud. By virtue of a large amount of complex
and frequently changing transaction information to handle, it is time-consuming and a
great challenge for the E-bidding system to collect, process, and analyze the large-scale
data. Hence, the introduction of “big data” technology into the blockchain-based E-bidding
system will promote the interconnection and real-time sharing of information, as well
as further optimize the market-based allocation of resources. In addition, bidding fraud
detection is also an essential issue of concern in E-bidding. The “big data” analysis can
quickly determine whether there is bidding fraud or collusion in the bidding process
and provide fair digital “evidence” to assist the bidding administrative department to
strengthen regulation of the entire bidding process and impose administrative penalties for
violations, which is advantageous in improving the standardization, digitalization, and
scientific level of bidding activities.

The main contributions of this work can be summarized as follows:

(1) This paper combines blockchain technology and an E-bidding system in the construc-
tion industry and designs a blockchain-based E-bidding framework to raise bidding
efficiency and guarantee the fairness, impartiality, and transparency of transactions.

(2) On the basis of big data technology, a big data system (BDS) is designed to collect, han-
dle, and analyze the data in the bidding process, which is convenient for maintaining
transaction fairness and improving bidding efficiency.

(3) A bidding fraud evidence mining method is embedded in the big data system to mine
fraud evidence and strengthen transaction supervision, which combines maximal fre-
quent itemset mining, association rule mining, and binary support number calculation
algorithms to boost operational efficiency.

The remainder of this paper is organized as follows. Section 2 offers the related work
of E-bidding systems in the construction industry, application of blockchain, blockchain-
based E-bidding systems in the construction industry, and big data system. Section 3
provides the proposed blockchain-based E-bidding systems. Section 4 shows the extensive
experiments and results of the proposed method for electronic bidding. Section 5 presents
the conclusion.

2. Related Work
2.1. Electronic Bidding System in the Construction Industry

The traditional project bidding field has gone through a long road of development
under the norms of laws and regulations such as the “Tendering and Bidding Law” and
the “Government Procurement Law”, which have played an important role in unifying
the rules of the bidding market and encouraging orderly competition in the market. The
emergence and wide application of the internet is a revolution in industrial society; for the
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construction industry in the field of engineering bidding, the emergence and development
of electronic bidding has also redefined the ways and methods of bidding by construction
market entities and has played a positive role in further promoting a free, fair, just, and
honest market environment. In recent years, the government and relevant industry organi-
zations have supported and encouraged construction units and relevant market entities
to carry out electronic bidding and bidding work, which has effectively promoted the
application of electronic bidding. The electronic bidding system realizes business functions
such as online bidding, bidding, bid evaluation, and contract management, reduces offline
transaction costs, improves work efficiency, enhances the information management capabil-
ities of governments and participating entities, and effectively promotes the digitalization,
networking, and high integration of the whole bidding process. However, there are still
some problems with the current electronic tendering, resulting in the application of elec-
tronic tendering still being quite limited. First, relevant laws and regulations lag behind,
there are a lack of unified norms and standards, and it is difficult to promote. Second, there
are many electronic bidding platforms, which are poorly compatible with each other, and
the phenomena of administrative intervention and secret operations cannot be effectively
prevented. Third, the security and stability of the electronic bidding platform need to be
strengthened; if the data security and stability performance is not effectively guaranteed,
it is very easy to enable the leakage of commercial secrets and malicious tampering of
data information. The research on these problems is of great practical significance for the
application of electronic bidding in the construction industry.

2.2. Application of Blockchain

Blockchain, sometimes known as a distributed shared ledger, is essentially a multi-
participant, cooperatively maintained, continually growing distributed database system.
Blockchain technology is very well liked by businesses and has been widely used because
of its anonymous, decentralized, open and transparent, and tamper-evident characteristics.
In the field of finance, when blockchain peer-to-peer (P2P) technology was applied to
cross-border payments [6], the remittance becomes transparent, and transaction history
data was traceable, providing security assurance for both the recipient and the remitter
while also considerably enhancing efficiency and speed. In addition, with the application
of blockchain in medical data privacy protection [7], medical data storage and access can
be recorded and remain tamper-proof, which avoids unscrupulous individuals from using
this information for fraud and blackmail. Also, the untamperable nature of blockchain
renders the digital proof on the chain extremely believable, which may be utilized to create
a new authentication mechanism in the areas of property rights [2], notarial services [8],
and social welfare [9] and to raise the management standard of public service. Motivated by
the compatibility of blockchain characteristics with trade process requirements, we attempt
to integrate blockchain into the E-bidding system with its advantages of distribution,
anonymity, transparency, and traceability to promote the reform and progress of the E-
bidding system in the construction industry.

2.3. Blockchain-Based E-Bidding in the Construction Industry

Since the structure and technology of blockchain effectively ensure the authenticity
and traceability of information, the research on the application of E-bidding systems in
the construction industry has become popular in recent years. In 2017, motivated by the
dynamic grouping of several companies in the projects, Turk et al. [10] introduced the P2P
nature of the relationships in blockchain technology to establish a reliable infrastructure for
information management throughout all stages of the building life-cycle. To improve the
data reliability and verifiability and privacy of data transmission, Tso et al. [11] applied
blockchain and smart contract technology and proposed the first decentralized electronic
voting and bidding systems. In 2021, Sigalov et al. [12] combined Building Information
Modeling (BIM) approaches with smart contracts to achieve automated billing, which
enhances timely payment and guaranteed cash flow. Compared with these approaches,
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our method has higher operation efficiency and can mine bidding fraud evidence through
big data technology, which will be later described in detail.

2.4. Big Data Technology

Big data technology has the following four characteristics: Volume, Variety, Value,
and Velocity [13] when compared with traditional databases. With these advantages, af-
ter collecting and organizing the large-scale data, it is much easier and more practical
to determine its potential laws and predict the development trend through intelligent
analysis and data mining. This can assist people in decision-making [14], boost operational
efficiency, and realize greater benefits. Therefore, there are many applications of big data
technology in our daily life [15,16], such as finance [17,18], E-commerce [19], medical [20],
and communication [21]. Moreover, it is data analysis that is the key point of big data
technology, which usually uses data mining to acquire the diagnosis of anomalous data. In
2000, Pei et al. [22] proposed an efficient and scalable algorithm for frequent closed itemset
mining with the use of a frequent pattern (FP) tree, which could provide a minimum
description of abnormality. To reduce the computational complexity and memory usage,
Halim et al. [23] presented a graph-based approach with storage of all relevant information
to mine maximal frequent itemsets and prove its superiority. With only one access to
the record of all frequent itemsets, it can significantly improve the execution efficiency of
positive as well as negative association rule mining [24,25] and further increase the run-time
efficiency of the whole process. Hence, we employ big data technology to assist in evalu-
ating bidding activities, ensuring project quality, and boosting operational effectiveness
while also providing reliable decision-making support for all types of transaction issues.
Moreover, there is little research to study how to assist the blockchain-based E-bidding
system through big data technology. Inspired by this, we integrate a big data system (BDS)
into the E-bidding system in this work.

3. Method
3.1. Preliminaries of Blockchain

In this section, we introduce some preliminaries about the blockchain to which the
traditional E-bidding system is adjusted.

3.1.1. Definition of Blockchain

Blockchain is generally considered as a decentralized, de-trusted, distributed, shared
ledger system that combines blocked data, which includes transaction information, times-
tamps, and hash value in a chain chronologically and cryptographically [26]. From the
view of data, blockchain can be interpreted as a distributed database that cannot be pas-
sively modified or forged. From the view of technic, blockchain is a distributed ledger
technology integrated with various technologies, such as asymmetric cryptography [27],
P2P network [28], and smart contracts [29].

3.1.2. Characteristics of Blockchain

A key characteristic of blockchain is that it is a distributed and decentralized system.
While only one controller manages the completeness of data information in a centralized
database [30], the term “distributed system” means that the content of transaction informa-
tion can be stored and examined simultaneously by all participants, which makes it possible
to maintain information integrity and trustworthiness without the need for authorization.
The use of various distributed applications [31] is to achieve state change management, data
storage, query validation, and control management. Therefore, blockchain has more obvious
technical and management advantages compared with traditional centralized systems.

Additionally, using hash algorithms as encryption technology, the most prominent
advantage of blockchain is its high level of security [32]. Since the information is all jointly
owned in the blockchain, when viruses or hackers attack P2P-specific data, they cannot
change or delete data at will. Secondly, a decentralized blockchain can minimize transac-
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tion costs to a maximum extent while having good technical scalability and improving
transaction efficiency. Finally, blockchain, due to its openness nature, can improve the
transparency and fairness of transactions, ensure security, and reduce regulatory costs.
Although the access rights in the blockchain vary, almost all participants can access all the
transaction records and information stored by the chain blocks anytime and anywhere [33].
All the above characteristics are summarized in Table 1.

Table 1. The characteristics of blockchain [3,4,6–9].

Characteristics Description

Decentralization Each node realizes information self-verification, self-transmission, and self-management.

Immutability No one can modify the data without authorization once it has been written to the blockchain.

Security All data on the chain are encrypted by hash operation, asymmetric encryption, private key, and other
cryptographic methods.

Openness All nodes in the chain can participate in the record maintenance of data.

3.1.3. Categories of Blockchain

The classification of blockchain is based on the degree of network openness and can
be mainly classified as public, private, and industry blockchains [34,35], which is shown in
Table 2. Concretely speaking, a public blockchain is a blockchain shared by any organization
or individual that can operate and be confirmed on that blockchain, and other organizations
or individuals can join it; a private blockchain is one in which the blockchain is used only
internally for bookkeeping activities; a consortium blockchain is one in which some nodes
are controlled by pre-selected nodes.

Table 2. The categories of blockchain.

Categories Description Scenarios Trust Authority Speed of Consensus

Public
Blockchain

Anyone can operate and
be confirmed. Virtual Cryptocurrency 0 Slow

Private Blockchain An organization controls
the write access.

Only internally for
bookkeeping activities. 1 Fast

Consortium Blockchain Some nodes are controlled
by pre-selected nodes.

Inter-institutional trade,
settlement, or liquidation ≥ 1 Slightly Fast

3.1.4. Drawbacks of Blockchain

As mentioned before, the essential characteristic of blockchain, distribution, can not
only verify all transaction information of participating subjects, effectively guarantee-
ing information authenticity and traceability [36], but also permit each node or user in
the blockchain to enjoy the same equal and independent rights to supervise each other.
Moreover, due to the Byzantine fault tolerance mechanism, the blockchain can function
in an orderly fashion even when the system receives attacks. Thus, there are many well-
known domestic and international projects based on blockchain, such as Bitcoin [37] and
Ethereum [38], which rely on hardware arithmetic to reach consensus and have the advan-
tage of high security. Although the application of blockchain is booming, it is undeniable
that blockchain technology suffers from consensus mechanism security issues, block capac-
ity, efficiency problems, and high hardware cost expenditure. To address the drawbacks
of blockchain, this paper focuses on the block efficiency issue, as subsequently shown
in Section 3.2.
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3.2. Proposed E-Bidding System
3.2.1. System Structure of the Blockchain-Based Electronic Bidding System

The structure of our blockchain-based E-bidding system is composed mainly of three
layers: the blockchain foundation layer, interface layer, and application layer, as shown
in Figure 1 and Table 3. In addition, the big data system (BDS) is applied to assist the
blockchain-based E-bidding system in providing reliable decision-making support for all
types of transaction issues and mining the bidding fraud evidence.

(1) Blockchain foundation layer: To ensure the reliable operation of upper-layer bidding
services, the blockchain foundation layer provides credible infrastructure for upper-
layer architecture. Specifically, blockchain automatically executes the pre-defined
smart contracts and triggers corresponding algorithms. Meanwhile, it implements the
basic functions of data security sharing, such as on-chain data encryption, integrity
assurance, and being untamperable.

(2) Interface layer: The interface layer plays a connecting role and provides an interface
between the application layer and the blockchain layer, supporting JAVA-Software
Development Kit (SDK), GO-SDK, etc. The SDK provides the blockchain address,
private key generation, data signature, data uploading, data encryption, smart con-
tract invocation, etc., and the data signature can support both the international and
domestic cryptography standards.

(3) Application layer: The application layer is the gate to receive data and handles the
business logic of bidding.

(4) Big data systems: BDS is employed to optimize the bidding process for vulnerabilities
and avoid bidding fraud. Further, BDS collects data from all stages and can assist the
decision-making for all types of transaction issues, while also boosting operational
effectiveness and ensuring project quality.
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The main difference between the proposed system and the previous approach is
whether blockchain technology and BDS are used. Therefore, we introduce only the
blockchain foundation layer and BDS in detail in the following sections.
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Table 3. The components of blockchain.

Components Description

Blockchain foundation layer Ensure the reliable operation of upper-layer bidding services.

Interface layer Create a connection between the blockchain foundation layer and the application layer.

Application layer The gate to receive data and handle the business logic of bidding.

Big data systems Assist blockchain electronic bidding system to optimize the bidding process.

3.2.2. Structure of the Blockchain Foundation Layer

Blockchain records every key information in each segment, i.e., tenderer information,
bid documents, evaluator information, the opening, evaluation, bidding determination, and
contract signing. Various data need to be stored, including text, images, and documents,
among which text information can be directly stored on the blockchain, while images and
documents are usually stored with a hash value that easily suffers from being tampered
from attackers. To address this issue, a distributed blockchain node system is the key
component to ensure data security. The corresponding hash value will be changed if the
original data on the chain is tampered with, which will lead to a data mismatch. This
approach can not only solve the cost and efficiency problems of big data storage but also
keep the data unchanged.

The blockchain node system consists of consensus nodes, supervisory nodes, and
verification nodes, as shown in Figure 2 and Table 4. Specifically, the consensus node is
involved in the consensus of the blocks in the business process, which is responsible for the
security of the data; the supervisory nodes can conduct statistics on transaction behaviors,
identify the true identity of users on the chain, review transactions, and when needed, the
supervisory nodes can restrict transactions and freeze accounts by utilizing smart contracts
of account management. Verification nodes, which are captured or released at any time,
provide network resources as well as verify the validity of blocks, but they cannot become
authentication nodes or super nodes.
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Table 4. The description of nodes.

Types of Node Description

Consensus nodes Responsible for the security of the data.

Supervisory nodes Supervise the process of transactions.

Verification nodes Provide network resources as well as verify the validity of blocks.
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The blockchain-based E-bidding system is designed as a consortium chain, which
ensures that the traceable data on the chain cannot be tampered with. Moreover, the
consensus mechanism of the consortium chain can tolerate node error rates up to one-third,
which includes arbitrary node offline and malicious behaviors. Under this mechanism,
each node executes the message that it has received most frequently to assure that the node
reaches a consistent result; this algorithm is usually called the Byzantine fault tolerance
mechanism [39] and is given in Algorithm 1. On the basis of this consortium chain,
the consensus mechanism is divided into following parts: proposal phase, pre-selection
phase, pre-submission phase, pre-submission waiting phase, submission phase, and block
generation phase as shown in Figure 3.

Algorithm 1 Commit

Input: commitMsg
Output: ReplyMsg
1: if verifiedMsg(commitMsg) ! = true
2: return error;
3: end procedure
4: save commitMsg
5: if state prepared:
6: return ReplyMsg;
7: end procedure
8: return none
9: end procedure

(1) Proposal phase. The proposal node takes the transaction information out from the
Mempool, packs it, and sends the proposal to other validation nodes. Then, the
process enters in pre-selection phase.

(2) Pre-selection phase. Each validation node verifies whether the proposal is legitimate,
such as whether the signature is authentic, whether the height is correct, etc. If the
proposal passes the verification, it will be transmitted to a pre-selected state.

(3) Pre-submission phase. If each validation node receives pre-selected messages from more
than 2/3 of the other nodes, the process moves on the pre-submission waiting phase.

(4) Pre-submission waiting phase. If each validation node receives pre-submission messages
from more than 2/3 of the other nodes, the process goes to the submission phase.

(5) Submission phase. The consensus module sends the block to the smart contracts
module, which is always regarded as an executor, for a specific execution. Then, when
the execution succeeds, the block is stored in the blockchain and ingresses the next
phase. After the contract signatory, transaction information is sent to the node’s trans-
action Mempool module through the Remote Procedure Call (RPC) module while it is
broadcasted to other nodes through the P2P module to ensure that the transactions of
all nodes in the Mempool are consistent at the same time. In summary, the consensus
module regularly pulls a list of transaction information from the Mempool, constructs
blocks, performs a consensus mechanism, and sends blocks to the executor module to
conduct the transactions, which is shown in Figure 4.

(6) Block generation phase. After the execution, the consensus module sends and writes
the block to the Blockchain module. Then, the ledger broadcasts the block to other
nodes through the P2P module. After receiving the block, nodes will verify and
implement the transactions in the block again and store the block. This phase is
shown in Figure 5.
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3.2.3. Process of the Big Data System

Big data technology analyzes the intrinsic linkage of information to quickly locate
vulnerabilities in the E-bidding system. Therefore, BDS was designed to further improve
the E-bidding system. More prosaically, BDS is organized into two parts: data collection
and data analysis, and they will be described in detail in the following section.

Data collection: The main purpose of data collection is to extract valuable data from
the entire bidding process, which provides the basis for subsequent analysis. There are
three main types of data objects to be collected: data of the tender subject, data generated
by the tender process, and evaluation information. Specifically, the data of the tender
subject mainly include all types of information including enterprise information and tender
information. These data allow a critical quality assessment of companies to limit the number
of bidding participants and save running costs. Then, the data generated by the tender
process become the main body of data analysis, including information about bid prices,
anticipated prices, and expert evaluations, all of which are the most diverse, valuable,
and largest part of the data collection phase. Moreover, evaluation information contains
mainly contract evaluation and settlement audit information, which is used to supervise
the legitimacy of bidding information.

Data analysis: Due to the complexity of large-scale data, it is a significant challenge to
process and analyze these data. Thus, an association rule mining algorithm is applied to
achieve efficient data analysis. In this stage, we use the frequent itemset mining method
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to detect the frequent closed itemsets and provide a minimum description of data fraud
evidence, the number of which is between the maximum frequent itemsets and frequent
itemsets. To reduce time complexity, we utilize an improved algorithm that mines the
maximal frequent itemsets based on the FP tree and solves the problem of frequent itemset
updating in bidding fraud data mining. Within the process of frequent itemset mining,
the negative and positive association rule mining algorithm is executed, which is practical
in solving the conflict between fraud evidence. In addition, the binary support number
calculation method is applied to the simple logical operation of “yes” or “no” on the
judgment operation of bidding fraud evidence so as to improve the execution efficiency of
the algorithm. The progress of bidding fraud evidence mining is shown in Figure 6.
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3.2.4. Overall Processes of the Proposed System

This section describes the process of the blockchain-based E-bidding system in detail,
which is divided into six stages: the registration of the tender and tenderer, signing up for
the bidding, tender obtaining, tender submitting, tender opening, and the tender deciding
and contract management stage, as shown in Figure 7. BDS is embedded into all phases of
the E-bidding system and detects bidding fraud data in real-time.

(1) Registration of the Tender and Tenderer. On the blockchain, the corresponding account
is assigned to the tenderer. Meanwhile, once uploaded to the chain, tenderers’ basic
information, such as credentials, credit, and performance, can be permanently stored
and cannot be tampered with, and identity information is protected thanks to the
blockchain’s consensus mechanism. In addition, registration is an optional phase for
the designed system, and the basic information of tenderers can be entered at the
stage of potential tenderers if registration is not required.

(2) Signing up for the bidding. In this phase, the tenders post the information of specific
bidding activity in the designed E-bidding system and this bid document will be
stored in the blockchain. If necessary, the key material is encrypted for security. More-
over, the tender will verify the identity of the potential tenderers through blockchain
and confirm the results. Each participant in the chain can get specified and reliable
bid documents as credentials by using timestamps and produced hash values.

(3) Tender Obtaining Stage. Though the bid document is confidential, the potential
tenderer can download and browse these documents to get more bidding details
if they pay the bid document fee. Moreover, various previous successful cases are
provided to these paid subscribers by the tender authority in the blockchain. Provided
tenderers wish to join this bidding activity, they could download the specified bid
documents and fill them in online or offline.

(4) Tender Submitting Stage. According to bid requirements and project characteristics,
after tenderers complete the bid document, these bid documents will be uploaded to
the E-bidding system before the deadline, and the system will automatically anchor
the time-point and store the certificate. Due to the high volume of bid documents, a
small amount of key information can be encrypted on the chain with specific digital
signatures, and the large documents are hashed on the chain, while documents
themselves are stored on the file server; this effectively avoids tampering and leakage
of important information at the later stage, eliminates irregularities such as tenderer
collusion, and ensures a fair and transparent bidding environment.

(5) Tender Opening Stage. Bid evaluators on the blockchain E-bidding system are given
corresponding accounts and rights, and their personal data are made available to the
public. The P2P and anonymity functions of blockchain can be used to implement
P2P transactions, which ensure that remote evaluation of bids can do so impartially
and without collusion or favoritism. Within a predetermined amount of time, after
authenticating experts’ identities on the chain using face or fingerprint recognition,
their evaluation results according to the bid document will be stored on the chain.

(6) Tender Deciding and Contract Management Stage. Following the evaluation, the
system authorizes the public key of the winning information based on the evaluation
results and notifies the winner and the tender to sign the contract online. At the
same time, the contract serial number, contract conditions, third-party certification of
contract terms, contract subject, and contract filing are all written into the blockchain
as witnesses. During the contract public period, any party or supervisory department
with concerns about the bidding process can trace the original deposited data of the
whole bidding process.
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4. Experiments

Our work has developed a decentralized electronic bidding framework based on
blockchain technology and big data system and maintained the balance of algorithm
complexity and performance to achieve transaction security and privacy protection. By
handling bidding data in the big data system, an evidence mining framework for bidding
fraud detection is designed, which is applied in the bidding system and has long-term
significance for maintaining the fairness of the bidding environment. In this section, we first
introduce the experimental settings and platform. We then conduct ablation experiments
on the blockchain part to quantitatively evaluate the performance, subsequently compare
two encryption algorithms in the proposed framework by designing quantitative and
qualitative experiments to analyze the efficiency, test the computation cost of the proposed
system, and finally, compare it with other blockchain-based E-bidding systems which are
applied in different sectors.

4.1. Experimental Settings

We utilize four services as well as a CPU of Intel(R) Xeon(R) Platinum 8378 A and
a RAM of 8 G to build the E-bidding system. The system is running on a 64-bit CentOS
of version 7.9. As an open-source distributed ledger technology platform, Fabric not only
has better performance in transaction processing and transaction confirmation delay but
also realizes functions such as smart contracts and confidential transactions. Fabric is an
open-source distributed ledger technology platform, and compared with the traditional
public chain, it has better performance. Its most important feature is pluggability, and it
can be configured to meet as diverse needs as possible. The underlying layer of Fabric
consists of peers and orderer nodes that form a P2P network that interacts through Google’s
open-source RPC framework, gRPC. The middle is isolated using channel technology and
each channel is an independent network with its own ledger. Fabric provides gRPC, API,
and SDK for upper-layer applications, through which applications can access a variety of
resources such as ledger, processing transactions, managing chain-code, registering events,
and managing permissions [40]. Therefore, we conduct the experiments with Go language
on Fabric, and the run-time calculations are obtained by using the computer system clock.

4.2. Ablation Experiment

Generally speaking, the metric of transactions per second is usually used to evaluate
the performance of the blockchain. Thus, to validate the performance of the proposed
method, we conduct an ablation experiment in terms of transactions per second. In five
distinct sets of testing, the average throughput for the proposed system and the system
without blockchain are compared in Figure 8. In addition, specific data are displayed in
Table 5. Thanks to the parallel mechanism of blockchain, which allows the E-bidding system
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to implement several bidding activities at the same time, the transaction throughput of the
proposed blockchain-based E-bidding system rises linearly with the number of transactions
until it meets the peak at roughly 45 tps, at which point it starts to fall. Moreover, Figure 8
also demonstrates that the proposed methodology is much more effective than the system
without blockchain. Specifically, the proposed system can process nearly 24 transactions
per second while the system without blockchain can process only up to 11 transactions per
second. That is, a system with blockchain technology can double the throughput of the
original version method. From this point, it is clear how crucial blockchain technology is to
transaction speed.
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Table 5. Average throughput comparison of proposed system with/without blockchain.

No. of Transactions
Transactions Per Second (tps)

Proposed System System without Blockchain

15 6.7 4.5
30 13.5 8.5
45 23.7 11.3
60 14.9 8.6
75 12.1 3.9

4.3. Performance Comparison of Encryption Algorithms

To a great extent, the efficiency of blockchain depends on the encryption algorithm [41].
Thus, in the proposed framework, we compared the two well-known encryption algorithms,
elliptic curve cryptography (ECC) [42] and RSA [43], for time complexity and implemen-
tation of transaction validation. The relative pseudocode of ECC and RSA is given in
Algorithms 2, 3, 4, and 5, respectively.

Algorithm 2 ECC encryption algorithm

Input: elliptic curve Ep(a, b), base point G, order n, random integer r, private key k, public key K,
plaintext m
Output: ciphertexts c1 and c2
1: Select k (k < n)
2: Compute K = k * G
3: Select r (r < n)
4: Compute c1 = m + r * K
5: Compute c2 = r * G
6: return c1, c2
7: end procedure
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Algorithm 3 ECC decryption algorithm

Input: elliptic curve Ep(a, b), base point G, order n, random integer r, private key k, public key K,
ciphertexts c1 and c2
Output: plaintext m
1: Compute M = c1 − k * c2
2: Encode M
3: return M
4: end procedure

Algorithm 4 RSA encryption algorithm

Input: public key (x, y), plaintext m
Output: ciphertext c
1: Compute c = my mod x
2: return c
3: end procedure

Algorithm 5 RSA decryption algorithm

Input: public key (x, y), private key k, ciphertext c
Output: plaintext m
1: Compute m = ck mod x
2: return m
3: end procedure

4.3.1. Time Complexity

Table 6 and Figure 9 certainly illustrate that ECC surpasses RSA in terms of time
complexity. Even though both the corresponding time complexity of ECC and RSA tend to
rise with the number of bits, the time complexity of ECC is consistently lower than that of
RSA. The fundamental reason for this is that ECC, as opposed to RSA, better satisfies all
the characteristics necessary to meet blockchain security requirements.

Table 6. Time complexity comparison of ECC and RSA.

Number
Time Complexity (ms)

ECC RSA

1 3.5 13.8
2 3.8 15.2
3 4.6 17.3
4 5.2 18.9
5 5.8 19.7

4.3.2. Key Size, Encryption Time, and Decryption Time

On the basis of the comparison of ECC and RSA key size, encryption time, and
decryption time shown in Table 7, we can observe that while ECC requires fewer bits, RSA
has a similar level of protection. Concretely speaking, when RSA needs a 16,358-bit key to
provide the resembled security level, ECC employs just a 622-bit key. Furthermore, though
the encryption time of ECC is slower than the encryption time of RSA, ECC outperforms
RSA in terms of efficiency when considering the decryption time as well. These outcomes
are mainly because a shorter key leads to much less CPU and memory consumption as
well as faster encryption and decryption time.
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Table 7. Performance comparison of ECC and RSA.

Key Size (Byte) Encryption Time (s) Decryption Time (s)

ECC RSA ECC RSA ECC RSA

178 1223 9.59 0.69 25.01 27.62
251 2362 61.23 0.82 25.98 121.38
297 3521 73.36 0.95 26.65 230.36
399 8353 100.26 1.24 35.01 313.67
622 16,358 121.35 1.62 47.91 455.61

To show the above trend more vividly, we illustrate the data of Table 7 in Figure 10,
which also shows that the differences between ECC and RSA are more apparent as the key
size grows and under the same degree of protection, RSA needs much more key size than
ECC. As can be seen from Table 7, a robust ECC cryptosystem needs keys with a minimum
key size of 178 bits. Therefore, we chose key sizes of 178 bits for ECC and 1223 bits for RSA
as starting points in Figure 10. Afterward, Figure 10 presents the predominance of ECC.
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4.4. Computation Cost

Additionally, six cases for various tenders with numerous amounts of bids are tested.
Table 8 and Figure 11 reveal that even with 41 tenders and 70 bids, the computation cost is
only 72.353 ms, which indicates that the adoption of big data technology can substantially
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decrease the large resource consumption and enhance the effectiveness of the proposed
system. As a result, high performance can be attained by implementing our framework.

Table 8. Computation cost of the blockchain.

No. of Case Tenders Bids Computation Cost (ms)

Case 1 9 10.5 12.12
Case 2 13.65 20.7 25.27
Case 3 19.36 34.98 39.79
Case 4 25.78 49.71 56.25
Case 5 36.352 65.57 62.291
Case 6 41.695 70.39 72.353
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4.5. Comparisons of Security with The-State-of-the-Art Methods

To evaluate the performance of the proposed bidding system, four popular systems
are utilized, namely, those of Chen [44], Nair [45], Johnson [46], and Wang [47]. Ad-
ditionally, six metrics that are necessary for an E-voting system are adopted to exhibit
comprehensive comparisons, i.e., completeness, anonymity, fairness, eligibility, rationality,
and non-repeatability. Specifically, the meanings of these metrics are provided as follows.

Completeness: Completeness is when each person can check whether the bidding
information is correct.

Anonymity: Anonymity ensures that no internal or external attackers can know the
identity and transactions of other people.

Fairness: A technology or protocol that does not discriminate against the honest and
correctly participating members is said to be fair.

Eligibility: Eligibility means that only those with legal qualifications have access to
the system to protect the fairness of the voting or bidding process.

Rationality: Rationality denotes that no internal or external attackers have the oppor-
tunity to maliciously tamper with other people’s bidding, thereby ensuring the legitimacy
of the voting process.

Non-repeatability: Non-repeatability denotes that each operation is done only once.
As can be seen in Table 9, our system has more comprehensive security than several

systems, which is based on the following merits. (1) In our system, every node verifies
whether the new data is correct through the existing data on the blockchain. Due to the
great difficulty in tampering with existing information and the closeness of the blockchain
system, completeness is ensured. (2) Our system ensures the traceability and anonymity of
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data through an encryption algorithm. (3) We use a decentralized consensus mechanism
that makes each member’s encrypted identity and bidding information public to other
members for verification, which can also reflect fairness, to a great extent. (4) Our big data
system could filter out malicious bidding attacks. Furthermore, in the registration stage
and bidding information transferring procedures, our system verifies and encrypts the
identity information of tender and tenderers to guarantee eligibility. (5) In our scheme, if
individuals want to tamper with the information of a block on the blockchain, they must
lead a new branch from the block and create a new chain that exceeds the length of the
original chain, which is computationally impossible. (6) In our system, the blockchain
prevents double-bidding by timestamping groups of transactions and then broadcasting
them to all of the nodes in the system. As operations are time-stamped on the blockchain
and mathematically related to the previous ones, they are irreversible and impossible to
tamper with.

Table 9. Comparison of security properties.

Method Completeness Anonymity Fairness Eligibility Rationality Non-Repeatability

Chen’s [44] 3 3 8 3 3 3

Nair’s [45] 8 8 3 8 3 8

Johnson’s [46] 8 3 3 3 3 3

Wang’s [47] 3 3 3 3 3 8

Ours 3 3 3 3 3 3

In summary, our proposed bidding system is very beneficial for improving security,
data traceability, and cooperation.

5. Conclusions

This paper proposes an implementation path and method of blockchain technology to
solve the existing problems of electronic bidding system, which provides a realistic solution
for solving the design standardization of electronic bidding platforms, system security
and stability, and traceability and storage of bidding process. In addition, through this
paper, practitioners related to electronic bidding can understand the latest research trends
and technological innovation methods of blockchain technology in this field and become
familiar with the main problems and technical paths solved by blockchain technology in
electronic bidding. At present, there is still a gap in research in this field at home and
abroad, and this paper is of great significance for blockchain technology to empower the
industrialization, industrialization, and digitalization of construction, and promote the
transformation and upgrading of the construction industry.
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Abstract: The purpose of Low Illumination Image Enhancement (LLIE) is to improve the perception
or interpretability of images taken in low illumination environments. This work inherits the work of
Zero-Reference Deep Curve Estimation (Zero-DCE) and proposes a more effective image enhancement
model, Zero-DCE Tiny. First, the new model introduces the Cross Stage Partial Network (CSPNet)
into the original U-net structure, divides basic feature maps into two parts, and then recombines it
through the structure of cross-phase connection to achieve a richer gradient combination with less
computation. Second, we replace all the deep separable convolutions except the last layer with Ghost
modules, which makes the network lighter. Finally, we introduce the channel consistency loss into the
non-reference loss, which further strengthens the constraint on the pixel distribution of the enhanced
image and the original image. Experiments show that compared with Zero-DCE++, the network
proposed in this work is more lightweight and surpasses the Zero-DCE++ method in some important
image enhancement evaluation indexes.

Keywords: image enhancement; cross stage partial network; zero-reference; Ghost module

1. Introduction

Due to the interference of equipment and environmental factors such as insufficient
lighting and limited exposure time, the final image is often taken in a suboptimal envi-
ronment, which is affected by the backlight, uneven lighting, and low light interference,
resulting in the aesthetic quality of these images being impacted, which is unsatisfactory for
higher-level tasks such as cell classification [1] and semantic segmentation in the process of
robot arm grasping [2]. Therefore, the enhancement of low-light-level images is a research
field worth exploring.

Traditional low light level enhancement methods include the histogram equalization
method [3] and the Retinex model method [4]. Based on the histogram equalization method,
the gray value of pixels in the image is changed by gray operation, so that the transformed
image histogram is more uniform and the gray is clearer than the original image, to achieve
the purpose of image enhancement. The method based on the Retinex model considers
that the image data acquired by the human eyes depends on the incident light and the
reflection of the object’s surface. Usually, the incident light component can be obtained
after filtering the original image signal, and then the reflection component can be solved
through the mathematical relationship between the three variables to obtain the purpose of
image enhancement. Although these traditional algorithms can achieve the effect of image
enhancement, it is difficult to suppress the noise information generated in the process of
image enhancement, resulting in the poor usability of the enhanced image.

With the development of deep learning, learning-based methods have been applied
to image enhancement, including supervised learning (SL), reinforcement learning (RL),
un-supervised learning (UL), zero sample learning (ZSL), and semi-supervised learning
(SSL). Unsupervised learning and zero sample learning can directly learn from unlabeled
samples, and the model can learn more generalized feature expressions from data. The
model training in this work inherits the series work of Zero-DCE [5,6], which is different
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from the methods based on image reconstruction [7–13]. Through the constraint of non-
reference loss (the non-reference loss here refers to the loss function used by the algorithm
that does not use labeled data for training), the model can be well generalized to the test
set data after training through the unlabeled data set.

This work mainly inherits the work of Zero-DCE++ [6] and proposes a more lightweight
model for low-light-level image enhancement. The model can deal with pictures under
various lighting conditions, including uneven lighting and weak lighting. Compared with
the original method, the new model can become further lightweight while improving its
performance. Our contributions are summarized below.

• The CSPNet structure is introduced into the original U-net structure, which can reduce
the amount of computation and achieve a richer gradient combination. At the same
time, except for the last layer, the Ghost module is used to replace the depth separable
convolution, which further reduces the size of the image enhancement model.

• The channel consistency loss is introduced into the non-reference loss: using KL
divergence to enhance the consistency between the original image and the enhanced
image on the difference between channels.

Section 2 introduces the overall architecture of Zero-DCE Tiny and the non-reference
loss function used. Section 3 introduces the parameter setting of the Ablation Experiment
and the comparison of relevant experimental results. Finally, this work compares the new
method with Zero-DCE and Zero-DCE++ methods in sensory and quantitative aspects and
tests the effect of each method in the downstream application.

2. Related Works

In this section, we mainly focus on the relevant work of zero sample learning in the
field of image enhancement and summarize some commonly used model
lightweight methods.

2.1. Zero Sample Learning for Image Enhancement

Zhang et al. [14] proposed a zero-order learning method that uses Exposure Correction
Network (ExCNet) for backlight image restoration. It first uses a depth network to estimate
the S-curve. Zhu et al. [15] proposed a three-branch CNN, called RRDNet, to repair
the underexposed image by decomposing the input image into illuminance, reflectivity,
and noise. Several kinds of loss functions are specially designed to drive zero-order
learning. Zhao et al. [16] performed Retinex decomposition through a neural network and
then used the RetinexDIP model based on Retinex to enhance low illumination images.
Inspired by deep image priority (DIP) [17], RetinexDIP takes randomly sampled white
noise as input, generates reflection components and illumination components through
Retinex decomposition, and then uses the obtained illumination components for image
enhancement. The training process uses some losses as constraints, such as reflection
loss. Liu et al. [18] proposed a new principled framework to search for a lightweight
priority architecture for low-light-level images in real scenes by injecting knowledge of
low-light-level images. Zero-DCE [5] regards light enhancement as a curve estimation
task for images. It takes low-light images as input and generates high-order curves as its
output. These curves are used to adjust the input dynamic range at the pixel level to obtain
an enhanced image. In addition, a fast and lightweight version called Zero-DCE++ [6] is
proposed. Because the mapping from image to curve only needs a lightweight network, it
realizes fast estimation.

2.2. Model Lightweight Method

Howard et al. [19] proposed the MobileNet network. In this network, the depth sepa-
rable convolution is used to replace the ordinary convolution for the first time. The depth
separable convolution is mainly composed of the depthwise convolution and the pointwise
convolution. The depthwise convolution uses convolution to check the input features and
convolute them respectively according to the channel to obtain the spatial information of
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the features, and the pointwise convolution uses 1 × 1 to obtain the information between
different channels in the feature and achieve the lightweight effect through this combina-
tion method. In the ShuffleNet [20], the feature map obtained by group convolution was
randomly and uniformly scrambled in deep separable convolution on the channel, and
then a group convolution operation was carried out to replace the pointwise convolution
operation, which also solved the problem of the lack of information exchange between
different groups in the training process, as well as maintained the feature extraction ability
of the neural network while reducing the weight. Han K et al. [21] proposed the GhostNet
to solve the problem of traditional convolution containing a large amount of redundant
information when extracting features. First, conventional convolution is performed with
fewer convolution check inputs to obtain output features with fewer channels. After linear
transformation of these features, the ghost feature map is obtained, and then the final
feature map is obtained by splicing with the output features. Chien Yao Wang et al. [22]
proposed the CSPNet to solve the incompatibility between deep separable convolution
technology and some industrial IC designs. This network not only realizes richer gradient
combinations but also reduces the calculation of the model.

3. Materials and Methods
3.1. Overall Architecture

This work inherits the method of image enhancement in the Zero-DCE++ paper [6],
learns the mapping curve from a weak light image to a strong light image through a
convolution neural network, and then uses the learned mapping curve to iteratively adjust
the pixels of the original image for many times to achieve the purpose of adjusting the
image in a large dynamic range. It is assumed that the enhancement curve parameter
map An(x) obtained through network learning is related to the coordinates of pixels. A
corresponding enhancement curve will be applied to each pixel on the original image. The
expression of the designed image enhancement is shown in Equation (1):

LEn(x) = LEn−1(x) + An(x)LEn−1(x)(1− LEn−1(x)) (1)

where I represents the input image and n is the number of iterations. In this work, n is
set to 8, which can achieve the relatively best image enhancement results. LEn(x) is an
enhanced version of the last enhanced image LEn−1(x), and An(x) is a curve parameter
mapping that has the same size as the given image. The process of image enhancement
using Zero-DCE Tiny is shown in Figure 1.
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3.2. DCE-Net Tiny

The original DCE-Net [5] used a simple CNN composed of seven convolution layers.
It has a U-net structure. In the first six convolution layers, each convolution layer consists
of 32 convolution layers, the kernel size is 3 × 3 of which stride is 1, followed by the ReLU
activation function. The last convolution layer consists of 32 convolution layers with a size
of 3 × 3 of which stride is 1, followed by the Tanh activation function, which generates
24 curve parameter mappings for eight iterations, in which each iteration generates three
curve parameter mappings for three channels (i.e., RGB channels). The downsampling
and batch normalization layers that destroy the relationship between adjacent pixels are
discarded. Later, in Zero-DCE++ [6], the ordinary convolution processing was replaced
by the deep separable convolution to reduce the amount of computation. Wherein the
size of the depthwise convolution kernel is 3 × 3, the stride is 1, and when the pointwise
convolution kernel size is 1 × 1, the stride is 1. At the same time, the output layer only
generates 3 curve parameter maps and then reuses them in different iteration stages. This
will reduce the risk of oversaturation.

The reason for choosing this U-net structure is that the U-net structure can effectively
integrate multi-scale features, which are very important to achieve satisfactory low illumi-
nation enhancement. However, layer hopping connections used in U-net networks may
introduce redundant feature information into the final results. Therefore, we need to design
a network that effectively combines shallow features and deep features to achieve the
purpose of being lightweight but effective. Inspired by CSPNet [22] and GhostNet [21], we
designed the model shown in Figure 2 to replace the previous model structure.
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In the new structure, the basic feature maps are split into two parts through the channel.
The former is directly connected to the output layer, and the latter will act as the DCE-
net [5]. With the exception of the last layer, which still uses deep separable convolution,
other layers are replaced by Ghost modules. As shown in Figure 3, the Ghost module first
uses 1 × 1 convolution to condense the input feature map to achieve cross-channel feature
extraction. After obtaining the condensed feature, it uses a 3 × 3 convolution kernel to
convolute layer-by-layer to obtain an additional feature map. Finally, it stacks the 1 × 1
convolution result and the layer-by-layer convolution result to obtain the final feature map.
The feature map obtained in the two steps is processed by the ReLU activation function. In
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Zero-DCE Tiny, the last convolutional layer is still followed by the Tanh activation function,
and the input is iterated 8 times through the curve parameter map to generate the final
enhanced image.
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The new network structure uses the Ghost modules to replace the depthwise separable
convolution operation, which greatly improves the utilization efficiency of the feature map
and reduces the amount of calculation. At the same time, introducing the CSPNet structure
realizes richer feature fusion and strengthens the learning ability of the network. Moreover,
the final amount of calculation is further reduced due to the segmentation of the base
feature map.

3.3. Non-Reference Loss Functions

This work inherits the non-reference loss function used in the Zero-DCE++ paper [6].
Spatial consistency loss is mainly used to maintain the difference between the adjacent areas
between the input image and its enhanced version and to encourage the spatial consistency
of the enhanced image.

Lspa =
1
K

K

∑
i=1

∑
j∈Ω(i)

(∣∣(Yi −Yj
)∣∣−

∣∣Ii − Ij
∣∣)2 (2)

where K is the number of the local region and Ω(i) represents a collection of adjacent areas
centered at the region i. As shown in Figure 4, Y and I are the average pixel value of the
local region in the enhanced image and the original image. Our local region is set to 4 × 4.
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Exposure Control Loss is used to control the exposure level. Lexp can be expressed as:

Lexp =
1
M ∑M

k=1 |Yk − E| (3)

where M is the number of nonoverlapping local regions of size 16 × 16, the average pixel
value of a local region in the enhanced version is denoted as Y, and E indicates a good
exposure level.

The loss of color constancy is mainly used to reduce color deviation in enhanced
images, which can be expressed as:

Lcol = ∑∀(p,q)∈ε
(Jp − Jq)2, ε = {(R, G), (R, B), (G, B)} (4)

where Jp denotes the pixel average value of the p channel in the enhanced image, and (p, q)
represents a pair of channels.

The loss of illumination smoothness keeps the adjacent pixel values monotonous, thus
avoiding overexposure and underexposure, which can be expressed as:

LtvA =
1
N

N

∑
n=1

∑
c∈ξ

(∣∣∇x Ac
n
∣∣+
∣∣∇y Ac

n
∣∣)2, ξ = {R, G, B} (5)

where N is the number of iterations, and ∇x and ∇y represent the horizontal and vertical
gradient operations, respectively.

Inspired by the spatial consistency loss, this work proposes a new non-reference
loss: channel consistency loss. As a new loss, channel consistency loss mainly enhances
the consistency between the original image and the enhanced image in the channel pixel
difference through KL divergence, and suppresses the generation of noise information and
invalid features to improve the image enhancement effect. The channel consistency loss
can be expressed as:

Lkl = KL
[
R− B

∣∣∣∣R′ − B′
]
+ KL

[
R− G

∣∣∣∣R′ − G′
]
+ KL

[
G− B

∣∣∣∣G′ − B′
]

(6)

In this work, R, G, and B represent the color channels of the original image, R′, G′ and
B′ represent the three-color channels of the enhanced image, and KL divergence is used
to represent the difference between the two distributions. If the difference between the
two is small, the KL divergence is small. When the two distributions are consistent, the KL
divergence value is 0.

The total loss can be expressed as:

Ltotal = WspaLspa + WexpLexp + Wcol Lcol + WtvA LtvA + Wkl Lkl (7)

where Wspa, Wexp, Wcol , and Wkl are the weights of the losses.

4. Results

To be consistent with the previous work [5,6], we also used 360 multiple exposure
sequences from Part 1 of the SICE dataset [23] as our training dataset. We randomly
divided 3022 images with different exposure levels in the Part 1 [23] subset into two parts
(2422 images for training and 600 images for validation). The images were resized to
512 × 512 × 3. We implemented our framework on RTX3060 GPU using PyTorch. The
batch size is 8. We used a Gaussian function with a mean of 0 and a standard deviation
of 0.02 to initialize the convolutional neural network and used the Adam optimizer to
optimize the network. The Adam optimizer uses default parameters and a constant learning
rate. The weights Wspa, Wexp, Wcol , and Wkl were set to 1, 10, 5, 1600, and 5 to balance the
loss ratio. Network training 100 rounds in total.

We used some public datasets for testing, including LIME [24] (10 images), and
DICM [25] (64 images). In addition, we also collected a total of 2300 low light/normal
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light images on the part2 subset of the SICE dataset as the test dataset, and all images were
adjusted to 1200 × 900 × 3.

4.1. Ablation Study
4.1.1. Ablation Study of Each Loss

We performed ablation experiments on each loss function; the results are shown in
Figure 5. As shown in Figure 5c, lack of spatial consistency loss Lspa reduces the image
contrast, for example, the part of the cloud in the image. As shown in Figure 5d, lack
of exposure control loss Lexp causes image enhancement invalid. As shown in Figure 5e,
When the loss of color constancy Lcol is discarded, serious color projection occurs. Finally,
as shown in Figure 5f, removing the light smoothness loss LtvA leads to obvious artifacts.
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Figure 5. Ablation study of each loss. Subfigure (a) shows the original input, subfigure (b) shows the
enhanced image result through Zero-DCE Tiny method, subfigure (c–f) respectively show the image
enhancement results after removing spatial consistency loss, exposure control loss, color consistency
loss and illumination smoothness loss.

We added the channel consistency loss to the original version of the non-reference loss
function and performed ablation experiments. Figure 6 compares the sensory results of the
test image: After adding the loss of spatial consistency, the enhanced image is more natural
and the overall contrast distribution of the image is more balanced. As shown in Figure 6,
the house is less affected by the halo, and the details are clearer.

4.1.2. Ablation Study of Backbone Network

For the new backbone network, we introduce the CSPNet network structure and set
the number of feature maps in the base layer to 32. We divide the basic feature maps into
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two parts. The former is directly connected to the output layer, and the latter will act as the
DCE-net [5]. At the same time, we replace all depth separable convolutions outside the last
layer with the Ghost module.
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Figure 6. Sensory comparison of kl loss ablation experiment. Subfigure (a) shows the original input,
subfigure (b) shows the enhanced image result through Zero-DCE Tiny method, subfigure (c) shows
the image enhancement result after removing channel consistency loss.

Table 1 shows the original network and three network parameters. We divide the
network structure into three types: “Only CSPNet structure”, “Only Ghost module”, and
“Zero-DCE Tiny”. We mainly compare five parameters, namely the number of network
parameters (Total params), the amount of memory required for node reasoning (Total mem-
ory), the number of floating-point operations (Total Flops), the amount of multiplication
and addition required for network reasoning (Total Madd), and the sum of memory read
and write (Total MemR + W). It can be seen from Table 1 that Zero-DCE Tiny has achieved a
lighter effect on multiple indicators. However, since the Ghost module uses a large number
of group convolutions, resulting in more memory occupancy, the “Total Madd” and “Total
MemR + W” metrics are slightly higher than “Only CSPNet structure”. However, the
experiments show that “Only CSPNet structure” will lead to a poor image enhancement
effect, so we finally choose to obtain better image enhancement performance at the cost of
certain memory occupation.

Table 1. Parameter comparison of the backbone network; the parameter is computed for an image of
size 256 × 256 × 3.

Method Total Params Total Memory Total Flops Total MAdd Total MemR + W

Zero-DCE 79,416 62.00 MB 10.38 GFlops 5.21 GMAdd 143.05 MB
Zero-DCE++ 10,561 129.50 MB 1.32 GFlops 694.22 MMAdd 283.04 MB

Only CSPNet structure 5153 93.50 MB 632.68 MFlops 339.8 MMAdd 199.02 MB
only Ghost module 5331 112.75 MB 689.96 MFlops 361.96 MMAdd 273.52 MB

Zero-DCE Tiny 2731 104.75 MB 353.37 MFlops 190.51 MMAdd 215.51 MB

4.1.3. Ablation Study of Input Size

We provide input of different sizes for Zero-DCE Tiny. Table 2 summarizes the
statistical relationship between enhanced performance and input size. We also show some
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results by modifying the size of the network input image, as shown in Figure 7. As shown
in Figure 7 and Table 2, the downsampling input size has no significant impact on the
enhanced performance, but significantly saves computing costs. As shown in Table 2, 6 × ↓
obtained the highest average PSNR value, but because 12 × ↓ is better in model efficiency,
we use it as the default configuration for the new network.

Table 2. Effect of different input image resolutions on image enhancement. The FLOPs (in G) are
computed for an image of size 1200 × 900 × 3. “number × ↓” indicates the times of downsampling
the input image. The test image is from the part2 dataset of SCIE.

Metrics Original
Resolution 2 × ↓ 4 × ↓ 6 × ↓ 12 × ↓ 20 × ↓ 50 × ↓

PSNR 16.14 16.22 16.38 16.45 16.42 15.95 15.02
FLOPs 5.82 1.46 0.355 0.158 0.039 0.014 0.002
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Figure 7. Ablation study of input image size. Subfigure (a) shows the original input, subfigure
(b) shows the enhanced image result when the image resolution is not changed, subfigure (c–e) show
the image enhancement results after downsampling the input image.

4.2. Benchmark Evaluations

In this section, we compare the new method with the classical benchmark models in
qualitative and quantitative experiments. Finally, the new image enhancement method’s
gain effect on object detection in the dark is tested.

4.2.1. Visual and Perceptual Comparisons

We selected some classical benchmark methods to compare them with our methods
for visual and perceptual comparisons. The new method chooses Zero-DCE Tiny as the
backbone network, and adds the spatial consistency loss to the non-reference loss for
training and testing. Figure 8 shows the enhanced image effects of some test images
obtained by different methods under the same conditions. We tested three CNN-based
methods (RetinexNet [9], LightenNet [26], MBLLEN [8]) and one GAN-based method
(EnlightenGAN [27]) to replicate the results using open-source code.

Figure 8 shows the results of our tests on the SICE dataset. For outdoor scenes,
the LightenNet, the MBLLEN, and the EnlightenGAN find it difficult to achieve clear
enhancement results for difficult backlight areas, such as the face part. For RetinexNet, there
are many overexposure cases in the image, including the face part, with poor overall sensory
effects. For indoor scenes, MBLLEN performs well visually, but it is too smooth, which may
filter out the detailed features of the original image. For RetinexNet, the noise information
in the image is amplified, resulting in a poor enhancement effect. For EnlightenGAN,
the enhanced image shows a certain color deviation. For the Zero-DCE series methods,
the effects of Zero-DCE and Zero-DCE tiny methods are very close. Compared with
Zero-DCE++, the enhancement effect of the face region is better.
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Figure 8. A visual comparison among the results generated by different methods. Subfigure (a) shows
the original input, subfigure (b–h) respectively show the enhanced image results through Lighten-
Net [26], MBLLEN [8], RetinexNet [9], EnlightenGAN [27], Zero-DCE [5], Zero-DCE++ [6] and
Zero-DCE Tiny methods.

In the experiment, we found that in the Zero-DCE series of methods, the image
enhancement effect of Zero-DCE Tiny is softer, as shown in Figure 9. For areas with strong
sunlight, the roof part and the cross part in the enhanced image of Zero-DCE Tiny are
clearer. At the sensory level, it shows that the new method is conducive to suppressing the
problem of excessive local exposure.

Electronics 2022, 11, x FOR PEER REVIEW 10 of 14 
 

 

 
Figure 8. A visual comparison among the results generated by different methods. Subfigure (a) 
shows the original input, subfigure (b–h) respectively show the enhanced image results through 
LightenNet [26], MBLLEN [8], RetinexNet [9], EnlightenGAN [27], Zero-DCE [5], Zero-DCE++ [6] 
and Zero-DCE Tiny methods. 

In the experiment, we found that in the Zero-DCE series of methods, the image en-
hancement effect of Zero-DCE Tiny is softer, as shown in Figure 9. For areas with strong 
sunlight, the roof part and the cross part in the enhanced image of Zero-DCE Tiny are 
clearer. At the sensory level, it shows that the new method is conducive to suppressing 
the problem of excessive local exposure. 

 
Figure 9. Visual comparisons among the results generated by the Zero-DCE series of methods. 
Subfigure (a) shows the original input, subfigure (b–d) respectively shows the enhanced image 
results through Zero-DCE [5], Zero-DCE++ [6] and Zero-DCE Tiny methods. 

Figure 9. Visual comparisons among the results generated by the Zero-DCE series of methods.
Subfigure (a) shows the original input, subfigure (b–d) respectively shows the enhanced image
results through Zero-DCE [5], Zero-DCE++ [6] and Zero-DCE Tiny methods.

298



Electronics 2022, 11, 2750

The part2 subset of SCIE dataset is also used to compare different methods. The
comparison results are shown in Figure 10. The LightenNet has obvious light spots in the
wall area, and RetinexNet, EnlightenGAN, and Zero-DCE++ all have different degrees of
color deviation. The image enhancement results of MBLLEN are dark, whereas the results
of Zero-DCE and Zero-DCE Tiny are very close. The image enhancement result obtained
by Zero-DCE Tiny is closer to the natural situation in color and contrast, and the sensory
effect is better.
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Figure 10. Visual comparison of Part 2 subset of SCIE dataset. Subfigure (a) shows the original input,
subfigure (b–h) respectively show the enhanced image results through LightenNet [26], MBLLEN [8],
RetinexNet [9], EnlightenGAN [27], Zero-DCE [5], Zero-DCE++ [6] and Zero-DCE Tiny methods.

4.2.2. Quantitative Comparisons

Table 3 shows the quantitative comparison of several image enhancement methods.
We compared three image enhancement indicators on the part2 test dataset [23]: peak
signal to noise ratio (PSNR), structural similarity (SSIM), and mean absolute error (MAE),
where the SSIM value represents the similarity between the results and the real results
in terms of structural characteristics. The PSNR value (in the case of a low MAE value)
indicates that the results obtained are closer to the actual situation.

Table 3. Comparison of image enhancement indexes.

Metrics PSNR SSIM MAE

MBLLEN 15.02 0.52 119.14
RetinexNet 15.99 0.53 104.81
LightenNet 13.17 0.55 140.92

EnlighenGAN 16.21 0.59 102.78
Zero-DCE 16.57 0.59 98.78

Zero-DCE++ 16.42 0.58 102.87
Zero-DCE Tiny 16.50 0.61 102.52

It can be seen from Table 3 that by introducing a new backbone network and channel
consistency loss, the PSNR index and SSIM index are improved compared with Zero-
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DCE++ (when the MAE value is low), wherein the SSIM index even exceeds Zero-DCE.
It shows that the loss of channel consistency helps improve the structural consistency of
the original image and the enhanced image. At the same time, from Tables 1 and 4, we
know that compared with Zero-DCE++, our network is more lightweight and the reasoning
speed is more friendly to practical applications. At the same time, due to the reduction
of the number of parameters, during our training, it only takes 35 min to train the model
with a single RTX3060 graphics card. So, it is also very friendly to the second training of
developers. In general, the new model is a more efficient image enhancement model that
achieves lightweight while maintaining a good image enhancement effect.

Table 4. Model running speed comparison.

Metrics Runtime (s) Total Params Platform

MBLLEN 13.9949 450,171 TensorFlow (GPU)
RetinexNet 0.1200 555,205 TensorFlow (GPU)
LightenNet 25.7716 29,532 MATLAB (CPU)

EnlighenGAN 0.0078 8,636,675 PyTorch (GPU)
Zero-DCE 0.0025 79,416 PyTorch (GPU)

Zero-DCE++ 0.0012 10,561 PyTorch (GPU)
Zero-DCE Tiny 0.0008 2731 PyTorch (GPU)

4.2.3. Object Detection in the Dark

To test the gain effect of the improved image enhancement algorithm in the down-
stream application, we selected the object detection task in the low light environment to
test the new algorithm. We mainly tested on the ExDark dataset [28], which was built
specifically for low-light-level image recognition tasks. The ExDark dataset consists of
7363 low-light images which are marked as 12 object classes. We only use its test dataset,
take Zero-DCE Tiny as the preprocessing step, and then use the pretrain ResNet50 classifier
through the ImageNet. In the weak light test set, Zero-DCE Tiny was used as pretreatment
to improve the classification accuracy from 22.02% (top-1) and 39.46% (top-5) to 27.86%
(top-1) and 44.86% (top-5) after enhancement. This provides side evidence that image
enhancement using Zero-DCE Tiny not only produces pleasant visual effects but also pro-
vides richer image details for downstream applications, which is conducive to improving
the application effect of downstream applications.

5. Discussion

The new model Zero-DCE Tiny proposed in this paper is a further lightweight prod-
uct of the Zero-DCE series models. The comprehensive results of multiple test datasets
show that the new model can deal with low-light images in various scenarios well. In
Furthermore, compared with the Zero-DCE++ version, the efficiency of the model is further
improved. Shorter reasoning time and lower training cost make the new model more
friendly to practical applications; this will promote the application of the deep learning
image enhancement model in real life, such as the night vision instrument. More impor-
tantly, the upstream benefits of image enhancement will benefit downstream applications,
so that image processing algorithms such as image detection and semantic segmentation
can better cope with images in complex environments.

6. Conclusions

We propose a new backbone network Zero-DCE Tiny to replace Zero-DCE++ for low
illumination image enhancement. It can use zero reference images for end-to-end training.
At the same time, compared with the original method, the backbone network used in this
paper not only enhances the feature fusion but also reduces the amount of computation
and memory consumption. This paper also tests the new non-reference loss to verify the
effectiveness of channel consistency loss in improving image contrast balance. The results
show that the new image enhancement method can better balance the image enhancement
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effect and the lightweight level of the model. This will further promote the application
of the deep learning model in the field of image enhancement. However, the method
proposed in this work also has some problems to be solved. For example, although this
image enhancement model enhances the fusion of features, it inevitably introduces noise
and redundant information. Therefore, there is still much room for improvement in the
effect of image enhancement. In the future, we will try more noise suppression methods to
retain the semantic information in the original image and enhance the promotion of image
enhancement to downstream applications.
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Abstract: Visual simultaneous localization and mapping (SLAM) algorithms in dynamic scenes can
incorrectly add moving feature points to the camera pose calculation, which leads to low accuracy
and poor robustness of pose estimation. In this paper, we propose a visual SLAM algorithm based on
object detection and static probability update strategy for dynamic scenes, named YKP-SLAM. Firstly,
we use the YOLOv5 target detection algorithm and the improved K-means clustering algorithm to
segment the image into static regions, suspicious static regions, and dynamic regions. Secondly, the
static probability of feature points in each region is initialized and used as weights to solve for the
initial camera pose. Then, we use the motion constraints and epipolar constraints to update the
static probability of the feature points to solve the final pose of the camera. Finally, it is tested on the
TUM RGB-D dataset. The results show that the YKP-SLAM algorithm proposed in this paper can
effectively improve the pose estimation accuracy. Compared with the ORBSLAM2 algorithm, the
absolute pose estimation accuracy is improved by 56.07% and 96.45% in low dynamic scenes and
high dynamic scenes, respectively, and the best results are almost obtained compared with other
advanced dynamic SLAM algorithms.

Keywords: Visual SLAM; dynamic scene; YOLOv5; K-means clustering; probability update

1. Introduction

Simultaneous localization and mapping (SLAM) is to estimate camera pose and build
a map of the environment simultaneously during motion from sensor data collected by the
robot. After decades of development, some very mature SLAM algorithms have emerged,
such as PTAM [1], LSD-SLAM [2], DSO [3], ORB-SLAM2 [4], and VINS Mono [5], which are
basically based on the assumption of static environments. However, in practical applica-
tions of robotics, motion scenes are more common than static scenes, and most application
scenes encounter dynamic objects, e.g., pedestrians, vehicles, animals, etc. Dynamic objects
can introduce anomalous “outliers” that disrupt the normal correspondence between image
features, resulting in significant drift in camera pose. Some optimization algorithms, such
as random sample consensus [6] (RANSAC) and graph optimization, can filter out a small
number of weak dynamic features in the environment as outliers. These methods can
achieve certain results for low-speed motion with a small number of outliers. Though, they
are not able to process dynamic features very well for high-speed complex motion scenes,
and the visual SLAM system might fail to track and localize. Therefore, it is particularly
important to study SLAM algorithms in dynamic environments.

In order to solve the visual SLAM problem in a dynamic environment, the traditional
method is to eliminate dynamic objects through geometric constraints and set a threshold
according to the size of the reprojection error to distinguish static objects from dynamic
objects. However, this method has two problems. (1) The method cannot distinguish
the residuals caused by moving objects from those caused by mis-matching. (2) The
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segmentation threshold is difficult to set; if the threshold set is too large, the static features
will be mis-rejected, and if the segmentation threshold set is too small, it is difficult to
completely reject the dynamic features in the environment. Therefore, the method is more
suitable for a low dynamic environment. Additionally, in a high dynamic environment, the
accuracy of dynamic feature detection is low, and the accuracy of pose estimation is poor.

In recent years, with the development of computer vision and deep learning, semantic
constraints have been widely applied to visual SLAM problems in dynamic environments.
The semantic constraint approach mainly applies semantic segmentation and target de-
tection to obtain semantic information in the environment. By identifying and removing
potential dynamic objects, the performance of visual SLAM in dynamic scenes can be
greatly improved. The semantic segmentation algorithm can provide fine pixel-level object
masks, but its real-time performance is poor. The improvement of segmentation accuracy
and robustness often comes at the cost of huge computational cost. Even then, the seg-
mentation boundary of an object cannot be very accurate. The target detection algorithm
can quickly obtain the object frame of an object with low computational cost, but it cannot
obtain accurate object boundaries, and if the features in the dynamic object frame are
directly removed, it will lead to the false removal of some static features. Moreover, there
are three problems with semantic constraints. (1) The actual motion is stationary, however,
the algorithm cannot judge a semantic prior is a dynamic object or not, which may lead
to the false removal of some static features. (2) It can only handle known objects labeled
in the training set of the network but may still fail in the face of unknown moving objects,
which leads to the missed detection of some dynamic features. (3) It deletes all dynamic
features of semantic information discrimination and does not calculate the pose. This will
lead to a reduction in constraints in pose calculation, knowing that dynamic features can
still provide weak constraints for pose calculation. If it is deleted directly, it will lead to a
decrease in the accuracy of pose estimation.

To address the above problems, in order to improve the pose estimation accuracy
and robustness of the SLAM system in a dynamic environment, this paper proposes a
YKP-SLAM algorithm in a dynamic environment. On the basis of ORBSLAM2, YKP-SLAM
adds three major processes: YOLOv5 target detection, improved K-means clustering, and
probability updating strategy. Our experiments prove that the YKP-SLAM algorithm
can effectively reduce the tracking error and improve the accuracy and robustness of
the SLAM system, both in a slow-moving dynamic environment and in a fast-moving
dynamic environment.

The main contributions of this paper are as follows:
(1) We incorporate the lightweight YOLOv5 object detection algorithm into the SLAM

system, which can quickly and accurately provide accurate semantic priors for
subsequent operations.

(2) A K-means clustering algorithm specifically for depth images is proposed, which
can select the number of clusters adaptively and can segment dynamic object contours
from dynamic object frames quickly and accurately.

(3) A method for initializing static probability is proposed. The image is divided
into three regions by combining YOLOv5 and improved K-means clustering. Then, the
initial poses are solved by probability initialization of feature points in each region sepa-
rately. More accurate initial poses are provided for the subsequent motion constraints and
polar constraints.

(4) A probability update strategy based on motion constraints and epipolar constraints
is proposed. Probability updates are performed for all feature points in the image. Then,
all feature points are added to the pose calculation to solve the final pose.

2. Related Work
2.1. Dynamic SLAM Based on Traditional Method

Traditional dynamic SLAM algorithms are mainly based on geometric constraints to
filter out dynamic feature points in the environment. For example, Zou [7] et al. project

304



Electronics 2022, 11, 2872

feature points from the previous frame onto the current frame and calculate the 2D repro-
jection error of matching points with the current frame and classify feature points into
static and dynamic feature points according to the magnitude of the reprojection error.
Wang [8] et al. detected the matched outlier points in two adjacent frames by epipolar
constraint and then fused the clustering information of the depth map provided by RGB-D
cameras to identify the moving targets in the scene. Dai [9] et al. proposed a static object
geometry prior method in a feature-based SLAM framework. The algorithm utilizes the
connectivity of map points to separate moving objects from the static background, thus
reducing the impact of moving objects on the pose estimation.

In addition to geometric constraints, optical flow methods are also used to distinguish
dynamic and static features. For example, Klappstein [10] et al. defined the likelihood
of “moving objects in the scene” based on the motion metric calculated by optical flow.
Fang [11] et al. improved the optical flow method to detect dynamic targets based on point
matching techniques and uniform sampling strategies and introduced a Kalman filter to
enhance detection and tracking. FlowFusion [12] estimated the optical flow of two adjacent
frames through a PWC-Net [13] network, and at the same time, estimated the camera pose
based on the intensity and depth of the two adjacent frames and then used the estimated
optical flow and camera motion to compute the 2D scene flow and finally used the 2D
scene flow for dynamic feature segmentation.

2.2. Dynamic SLAM Based on Semantic Constraints

In recent years, deep-learning-based image semantic segmentation and target recogni-
tion have been widely used, and the detection methods have evolved greatly in terms of
efficiency and accuracy. Many researchers have tried to solve the dynamic SLAM problem
by removing potential dynamic objects through semantic tagging or target detection prepro-
cessing. For example, Yang [14] et al. used the target detection network Faster R-CNN [15]
to detect dynamic objects and then performed geometric matching with the current frame
and keyframes to determine whether they are dynamic objects. Yu [16] et al. proposed
the DS-SLAM algorithm, combining a semantic segmentation network and optical flow
method to provide a semantic representation of octree maps, thus reducing the dynamic
objects. The DynaSLAM proposed by Bescos [17] et al. uses a combination of multi-view
geometry and Mask RCNN [18] to detect and filter dynamic targets. ZHANG Jinfeng [19]
et al. used the target detection network YOLOv3 [20] to filter dynamic feature points in the
scene, which effectively reduced the trajectory error of the SLAM system. Zhong [21] et al.
proposed Detect-SLAM combined with the target detection network SSD [22] to identify
dynamic targets, such as pedestrians and vehicles, in the environment as a priori dynamic
targets and then filter the feature points on the a priori dynamic target to improve its
localization accuracy. Blitz-SLAM [23] obtains the mask of the object by BlitzNet [24], then
completes the mask by depth information, and finally classifies the static feature points
and dynamic feature points by epipolar constraints.

3. Materials and Methods
3.1. System Architecture

The algorithm framework of YKP-SLAM is shown in Figure 1. Based on ORBSALM2,
we added the YOLOv5 target detection algorithm and the improved K-means clustering
algorithm to the fore-end and added a complete probability update strategy to the back-
end pose calculation. The algorithmic flow of YKP-SLAM can be described as follows.
Firstly, the RGB image is detected by YOLOv5 target detection algorithm to obtain the
dynamic object frame, and at the same time, the ORB [25] feature points are extracted from
the RGB image. Secondly, the depth values of the pixel points are clustered within the
dynamic object frame by the improved K-means clustering algorithm combined with the
depth image. The results of YOLOv5 target detection and K-means clustering are used
to segment the image into static regions, suspicious static regions, and dynamic regions,
initialize the static probability of feature points within each region, and add them as weights
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to the camera pose estimation to calculate the initial camera pose Tcw1. Finally, the static
probability of feature points is updated by the motion constraint and the epipolar constraint,
and the second stage pose Tcw2 and the final pose Tcw of the camera are solved, respectively.
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Figure 1. The algorithmic framework of YKP-SLAM. In the image, green points represent static
points, blue points represent suspicious static points, red points represent dynamic points, and yellow
points represent points where the probability changes.

Of course, we also considered the failure of the YOLOv5 algorithm. When YOLOv5
fails, the dynamic object frame cannot be obtained. Then, at this time, we perform feature
matching between the feature points in the current frame and the dynamic feature points
in the previous frame. Mark the successfully matched feature points of the current frame as
dynamic feature points, and mark the remaining feature points as static feature points. The
only difference from a normal operation is that the characteristic points are divided into
three categories in a normal operation, and the characteristic points in a fault operation
are divided into two categories. The subsequent static probability initialization method
and probability update strategy are the same. The feature point classification process of
YOLOv5 fault runtime is shown in the purple dashed box in Figure 1.

3.2. YOLOv5 Target Detection

You Only Look Once (YOLO) is a regression-based target detection algorithm. It is the
pioneering work of the one-stage method. It was released by Ultralytics on 10 June 2020.
It is one of the most widely used target detection algorithms. It solves target detection
as a regression problem and directly obtains the bounding box position and classification
of the predicted object from an input image. It ensures the accuracy while taking into
account the real-time performance and achieves very good speed and accuracy. YOLOv5
proposes a total of 4 network models: YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x. The
network structure of the four models is the same; the difference is that the depth_multiple
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and width_multiple parameters can be used to control the depth of the model and the
number of convolution kernels, respectively. Among them, YOLOv5s is the network with
the smallest network depth and the smallest feature map width. It occupies only 7.5 M
of memory. Its detection speed on TeslaP100 reaches 140FPS, which fully meets real-time
performance. The other three are continuously deepened and widened on this basis, with
improved accuracy and slower speed.

In order to meet the real-time nature of the SLAM system, the fastest YOLOv5s
algorithm is adopted, which is embedded in the fore-end of the SLAM system, to perform
target detection on each RGB image passed by the camera and obtain the bounding box
position of the object and its category. In the bounding box, the people and animals are
located as dynamic object boxes DB. The target detection results of YOLOv5s are shown
Figure 2. The yellow frame in Figure 2 is the dynamic object box. It can be seen from the
figure that whether the person is on the front, side, back, or only half of the body is exposed,
YOLOv5 can be accurately framed.
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3.3. Improved Adaptive K-means Clustering Algorithm

Although the YOLOv5 target detection algorithm can quickly and accurately locate
the bounding boxes of dynamic objects, it cannot obtain an accurate dynamic object mask.
Therefore, this paper proposes an adaptive K-means clustering segmentation algorithm
based on depth images, which can segment dynamic objects from the dynamic object box
DB quickly and accurately.

The K-means algorithm is an unsupervised clustering algorithm, which is easy to
implement and runs fast. However, the traditional K-means clustering algorithm pre-
specifies the number of clusters and randomly initializes the cluster centers according to
experience, which is likely to cause too many iterations of the algorithm or misclassification.
Since the number of clusters is artificially set in advance, the direct application of the
traditional K-means clustering algorithm to depth image clustering will have the following
two problems:

(1) If the number of clusters set is too large, a complete dynamic objects would be di-
vided into multiple categories, which might cause incomplete segmentation of
dynamic objects.

(2) If the number of clusters set is too small, the dynamic objects cannot be separated
from the static background.

In order to solve the above problems, an improved adaptive K-means algorithm is
proposed in this paper. The algorithm can automatically generate the optimal number
of clusters and the initial cluster centers, so that dynamic objects can be segmented from
the static background more quickly and accurately. The steps of the improved K-means
algorithm are as follows:

(1) Take out the depth image IDBi in the dynamic object frame DB and count the total
number of pixels M and the maximum pixel depth Dmax in IDBi.
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(2) Solve the histogram of the depth image IDBi and divide the data of the histogram
into k segments:

k =
Dmax

T
(1)

where T is the segmentation threshold, whose size can determine the number of clusters.
Since the depths of dynamic objects do not change much in the two adjacent frames,
we first use the depth mean Dp of dynamic feature points in the previous frame as the
prior of the depth value of dynamic objects in the current frame. Then, the ratio λ of the
number of pixels in the dynamic object in the previous frame to the number of pixels
in the dynamic object frame is calculated. Finally, find the neighborhood U(Dp, δ) ={

x | Dp − δ < x < Dp + δ
}

of point Dp in the histogram of the depth image IDBi, so that
the number of pixels in the neighborhood is equal to λM; then, the size of the segmentation
threshold T is the range of the neighborhood.

T = 2δ (2)

(3) We take k as the number of clusters for subsequent K-means clustering and take the
maximum depth value of each piece of data as the initial cluster center for each category.

(4) The K-means clustering algorithm obtains a depth image segmentation graph
based on the number of clusters calculated in step (3) and the initial cluster centers.

Since the depth values of dynamic objects do not change too much within the two
adjacent frames, the depth mean value Dp of dynamic features in the previous frame is
used as a criterion, and then, the pixel depth mean value of each cluster in the dynamic
object box is solved, and the cluster with a pixel depth mean value closest to the depth
mean value of dynamic points in the previous frame is marked as a dynamic region; the
other clusters in the dynamic object box are marked as suspicious static regions, and the
regions outside the dynamic object box are marked as static regions. The whole dynamic
region classification process is shown in Figure 3.
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Figure 3. Schematic diagram of dynamic region division.

The results of K-means clustering are shown in Figure 4. From the figure, we can
see that the improved K-means clustering algorithm proposed in this paper can segment
people from the background completely and does not lead to mis-segmentation.
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Figure 4. Improved K-means clustering, where each color represents one class. The red region is
the dynamic region, and the other colored regions are suspicious static regions. (a–d) represents the
clustering results of the improved K-means clustering algorithm in several different scenes.

3.4. Initialize the Static Probability and Calculate the Initial Camera Pose

In this paper, the YOLOv5 target detection algorithm and the improved adaptive
K-means clustering algorithm are used to segment the image into dynamic regions, suspi-
cious static regions, and static regions. In order to obtain a more accurate initial pose, the
feature points in different regions are assigned static probability initial values of

Static probability





ωa = 0 Dynamic region
ωb = 0.5 Suspicious static region
ωc = 1 Static region

(3)

These initial static probabilities are then used as weights for the pose calculation,
and the initial pose Tcw1 for the current frame is calculated according to the weighted
minimization reprojection error.

The structure of the camera pose Tcw1 is

SE(3) =
{

Tcw1 =

[
Rcw1 tcw1
0T 1

]
∈ R4×4 | Rcw1 ∈ SO(3), tcw1 ∈ R3

}
(4)

where Rcw1 is the rotation matrix, and tcw1 is the translation vector.
Tcw1 can be solved by Equation (5).

Tcw1 = argmin(
Na
∑

a=1
‖KTcw1xa−pa‖2

∑1
+

Nb
∑

b=1
‖KTcw1xb−pb‖2

∑2
+

Nc
∑

c=1
‖KTcw1xc−pc‖2

∑3
)

(5)

Among them
∑1 = ωa × n× E
∑2 = ωb × n× E
∑3 = ωc × n× E

(6)

Where, pa, pb, pc are the 2D pixel point coordinates of dynamic feature points, suspi-
cious static points, and static points in the current frame, respectively, while xa, xb, xc are the
coordinates of their corresponding matching 3D map points. ∑1, ∑2, ∑3 is the information
matrix of feature points in each region, n is the number of layers of the image pyramid
where the current feature point is located, and E is the unit matrix of 3× 3. Na, Nb, Nc are
the numbers of dynamic feature points, suspicious static points, and static points in the
current frame, respectively.

309



Electronics 2022, 11, 2872

3.5. Probability Update Based on Motion Constraints

The traditional geometric method distinguishes dynamic points and static points by
the size of the reprojection error and sets the threshold value and judges the points with
a reprojection error larger than the threshold value as dynamic points and those smaller
than the threshold value as static points. The threshold size of this method is difficult to set,
which can easily lead to mis-segmentation of dynamic and static points. Therefore, this
paper proposes a new segmentation method that uses the motion distance of the a priori
dynamic point pa judged by the front-end of the SLAM system (YOLOv5 and K-means) as
a scale to update the static probability of the suspicious static point pb and static point pc.
The schematic diagram of the motion constraint is shown in Figure 5.
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Figure 5. Schematic diagram of motion constraints, where the ellipse represents the local map, the
rectangle represents the current frame, the red point inside the ellipse represents the local map point,
the blue point represents the 3D point of the current frame feature point back-projected to the world
coordinate system, and the line between the red point and the blue point represents the motion
distance of the feature point.

We now know the initial pose Tcw1 and the camera internal reference K of the current
frame, and we can also directly obtain the depth information Z of the feature points
through the depth camera. Then, we first back-project the dynamic point pa in the current
frame to the world coordinate system to obtain the 3D point coordinate Pa in the world
coordinate system.

Pa =




Xa
Ya
Za


 = Twc1Kpa (7)

Calculate the square value La of the movement distance between the back-projection
point Pa and the corresponding map point xa:

La = (Xa − Xa
′)2

+ (Ya −Ya
′)2

+ (Za − Za
′)2 (8)

where
[
Xa
′ Ya

′ Za
′]T are the 3D point coordinates of the map point xa.

Similarly, the squares of the motion distances of the suspicious static point pb and the
static point pc can be solved as Lb and Lc, respectively.

Then, solve the mean µL and variance SL of the square of the motion distance of the
dynamic point pa in the current frame:

µL =

Na
∑

a=1
La

Na
(9)
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SL =

√√√√√
Na
∑

a=1
(La − µL)

2

Na
(10)

By comparing the motion distance of the suspicious static point pb, static point pc, and
dynamic point pa to update their static probability, this paper designs a sigmoid function
to calculate the static probability of each suspicious static point pb and static point pc
as follows:

ωb1 =
1

1 + exp(α( Lb−µL
SL

))
(11)

ωc1 =
1

1 + exp(α( Lc−µL
SL

))
(12)

where α is a coefficient greater than 0.
Update the static probability of each feature point in each region in combination with

the initial static probability:
ωa = ωa
ωb = ωb ×ωb1
ωc = ωc ×ωc1

(13)

Based on the updated static probability of the feature points, the static probabilities
are brought into Equation (5) to calculate the camera pose Tcw2 in the second stage.

3.6. Probability Update Based on Epipolar Constraint

As shown in Figure 6, O1, O2 is the camera optical center at the moment of the current
frame and reference frame, respectively, and p1, p2 is a pair of matching points between
the current frame and reference frame. x is the map point corresponding to the p1 point on
the reference frame, and the projection point of this point on the current frame should be
located on the polar line l2 if the point is stationary, or not on the polar line if it is moving.
In this paper, the static probability of the feature points is updated based on the distance
from point p2 to the polar line l2.
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Through the current frame camera pose Tcw2 and the reference frame camera pose
Tcwr solved in the second stage, the rotation matrix and translation matrix t2r between the
two frames can be solved:

R2r = Rcw2 × Rcwr
−1 (14)

t2r = −Rcw2 × Rcwr
−1 × tcwr + tcw2 (15)

Among them, Rcw2 and tcw2 are the rotation matrix and translation matrix of the
current frame, respectively, and Rcwr and tcwr are the rotation matrix and translation matrix
of the reference frame.

Fundamental matrix F
F = K−T(t2r)

∧R2rK−1 (16)
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Solve the polar equation corresponding to the feature point on the reference frame to
the current frame according to the fundamental matrix. The polar equation is expressed as

[
A B C

]T
= F

[
u1 v1 1

]
(17)

[
u1 v1 1

]
is the homogeneous coordinate of the reference frame feature point p1.

Calculate the square of the polar distance from the feature point of the current frame
to the corresponding polar line:

H =
(Au2 + Bv2 + C)2

A2 + B2 (18)

[
u2 v2 1

]
is the homogeneous coordinate of the current frame feature point p2.

According to the above Equations (16)–(18), the polar distance Ha, Hb, Hc of the dy-
namic point, suspicious static point, and static point of the current frame can be calculated,
respectively.

Calculate the mean µH and variance SH of the polar distance of the dynamic points,
as with the motion constraints:

µH =

Na
∑

a=1
Ha

Na
(19)

SH =

√√√√√
Na
∑

a=1
(Ha − µH)

2

Na
(20)

By comparing the polar distance of the suspicious static point pb, static point pc, and
dynamic point pa to update their static probability

ωb2 =
1

1 + exp(β(Hb−µH
SH

))
(21)

ωc2 =
1

1 + exp(β(Hc−µH
SH

))
(22)

where β is a coefficient greater than 0.
Update the final static probability of the feature points in each region using the static

probability of epipolar constraints:

ωa = ωa
ωb = ωb ×ωb2
ωc = ωc ×ωc2

(23)

The final camera pose Tcw can be calculated from the final static probability of the
feature points and Equation (5).

4. Experiments and Analysis

In order to evaluate the performance of the YKP-SLAM algorithm, this paper uses the
public TUM RGB-D dataset [26] to conduct the experiments. The TUM dataset is produced
by the University of Munich, Germany, and uses a Kinect sensor to capture information
at a rate of 30 HZ with an image resolution of 640 ∗ 480 and uses a high-precision motion
capture system VICON with an inertial measurement system while acquiring image data.
The camera position and pose data are acquired in real time, which can be approximated as
the real positional data of the RGB-D camera. In this paper, we mainly use eight dynamic
scene sequences from the TUM RGB-D dataset for experiments, which are divided into
two categories: walking and sitting. The sitting dataset series are low dynamic scenes, in
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which two people are sitting in front of a table and chatting, with low motion. The walking
dataset series are high dynamic scenes, in which two people are walking in front of or
around a table, with high motion. For each type of dataset series, the camera motion is also
divided into four states, where static means the camera is at rest, xyz means the camera is
moving along the spatial X-Y-Z axis in translation, rpy means the camera is rotating in a
flip angle, pitch angle, and yaw angle, and halfsphere means the camera is moving along
the trajectory of a hemisphere with a diameter of 1 m.

The experiments were run on a server with Ubuntu 18.04, a GeForce RTX 3060 graphics
card with 12 GB of video memory, a 7-core Intel(R) Xeon(R) CPU, and 20 GB of RAM.

4.1. Comparison with ORBSLAM2

Since the YKP-SLAM algorithm proposed in this paper is improved on the basis of
ORBSLAM2, a comparison experiment with ORBSLAM2 is conducted first. In this pa-
per, the absolute trajectory error (ATE) and relative pose error (RPE) [26] are adopted to
evaluate algorithm accuracy. The absolute trajectory error is the direct difference between
the estimated and real poses, which can reflect the algorithm accuracy and global consis-
tency of the trajectory very intuitively. The relative trajectory error contains the relative
translation error and relative rotation error, which are directly measured by the odometer.
The experimental results are shown in Tables 1 and 2, where RMSE denotes the root mean
square error, Mean denotes the mean error, and Std denotes the standard deviation.

Table 1. Comparison of absolute trajectory error (ATE) between ORB-SLAM2 and YKP-SLAM.

Sequences
ORB-SLAM2/m YKP-SLAM/m Improvement/%

RMSE Mean Std RMSE Mean Std RMSE Mean Std

sitting_xyz 0.0111 0.0093 0.0059 0.0072 0.0065 0.0033 35.14 30.11 44.07
sitting_half 0.0437 0.0360 0.0247 0.0153 0.0132 0.0076 64.99 63.33 69.23

sitting_static 0.0128 0.0120 0.0046 0.0052 0.0043 0.0028 59.38 64.17 39.13
sitting_rpy 0.0358 0.0293 0.0205 0.0268 0.0237 0.0126 25.13 19.11 38.53

walking_xyz 0.5185 0.4420 0.2711 0.0147 0.0130 0.0068 97.16 97.06 97.49
walking_half 0.5820 0.4571 0.3603 0.0245 0.0220 0.0107 95.79 95.19 97.03
walking_static 0.2742 0.2286 0.1514 0.0063 0.0056 0.0026 97.70 97.55 98.28
walking_rpy 1.5320 1.4262 0.5594 0.0702 0.0489 0.0514 95.41 96.57 90.81

Table 2. Comparison of relative pose error (RPE) between ORB-SLAM2 and YKP-SLAM.

Sequences
ORB-SLAM2/m YKP-SLAM/m Improvement/%

RMSE Mean Std RMSE Mean Std RMSE Mean Std

sitting_xyz 0.0148 0.0126 0.0077 0.0079 0.0070 0.0038 46.62 44.44 50.65
sitting_half 0.0227 0.0121 0.0192 0.0137 0.0108 0.0084 39.64 10.74 56.25

sitting_static 0.0180 0.0169 0.0063 0.0058 0.0055 0.0031 67.78 67.46 50.79
sitting_rpy 0.0256 0.0208 0.0148 0.0232 0.0171 0.0151 9.38 17.79 −2.27

walking_xyz 0.0382 0.0303 0.0233 0.0139 0.0116 0.0076 63.61 61.72 67.38
walking_half 0.0452 0.0317 0.0322 0.0196 0.0148 0.0128 56.64 53.31 60.25
walking_static 0.0473 0.0291 0.0373 0.0072 0.0062 0.0031 84.78 78.69 91.69
walking_rpy 0.0429 0.0316 0.0291 0.0317 0.0218 0.0239 26.11 31.01 17.97

The improvement rates in the table are calculated as follows:

η =

(
1− β

α

)
× 100% (24)

where η represents the algorithm improvement rate, β represents the experimental results of the
YKP-SLAM algorithm, and α represents the experimental results of the ORBSLAM2 algorithm.
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Tables 1 and 2 show the quantitative evaluation of the errors, from which it can be
seen that in the low dynamic scene sitting dataset series, the average improvement of the
RMSE of absolute and relative trajectory errors of the YKP-SLAM algorithm compared with
the ORBSLAM2 algorithm is 46.16% and 40.86%, respectively. The average improvement
of the RMSE of absolute and relative trajectory errors of this algorithm over ORBSLAM2
is 96.52% and 57.79%, respectively, in the walking data set series of high dynamic scenes,
which shows that the YKP-SLAM algorithm has a great improvement over the traditional
ORBSLAM2 algorithm in both low and high dynamic scenes. The trajectory accuracy is
greatly improved in both low and high dynamic scenes.

Figures 7 and 8 show the absolute trajectory error distributions of the ORBSLAM2
algorithm and the YKP-SLAM algorithm under the low dynamic sequences s_xyz, s_half
and the high dynamic sequences w_xyz, w_half, respectively. Figures 9 and 10 show the
comparison of the estimated trajectory and the real trajectory of the ORBSLAM2 algorithm
and the YKP-SLAM algorithm under the low dynamic sequences s_xyz, s_half and the high
dynamic sequences w_xyz, w_half, respectively. It can be seen that under the low dynamic
sequences s_xyz and s_half, the absolute trajectory error of the YKP-SLAM algorithm is
slightly smaller than that of the ORBSLAM2 algorithm, and the estimated trajectory is closer
to the real trajectory than the ORBSLAM2 algorithm. Under the high dynamic sequences
w_xyz and w_half, the absolute pose error of the YKP-SLAM algorithm is smaller than
that of the ORBSLAM2 algorithm, and the estimated trajectory is still very close to the real
trajectory, while the estimated trajectory of the ORBSLAM2 algorithm is far away from the
real trajectory. This proves that the YKP-SLAM algorithm can effectively improve the pose
estimation accuracy of the SLAM system in low dynamic and high dynamic scenes.
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4.2. Comparison with Advanced Dynamic SLAM Algorithms

In order to verify the superiority of the YKP-SLAM algorithm, DS-SLAM [16], Dy-
naSLAM [17], and Blitz-SLAM [23] are selected for comparison experiments with YKP-
SLAM in this paper. The root mean square error RMSE and variance Std in the absolute
trajectory error are selected as the evaluation metrics for verification. The experimental
results are shown in Table 3, where the bold font indicates the best results. Among them,
the DS-SLAM and DynaSLAM codes were open sourced as well as the experimental data,
while the Blitz-SLAM algorithm code was not open sourced. As can be seen from the
table, the YKP-SLAM algorithm achieves almost the best results compared to the other
dynamic SLAM algorithms, both in high dynamic scenes and in low dynamic scenes. The
performance is slightly worse under the s_rpy and w_rpy data sets, which is caused by the
fact that the camera motion is too large at this time, making the YOLOv5 target detection
results less accurate.

Table 3. Comparison of absolute trajectory error (ATE) between YKP-SLAM algorithm and other
dynamic SLAM algorithms.

Sequences
DS-SLAM/m DynaSLAM/m Blitz-SLAM/m YKP-SLAM/m

RMSE Std RMSE Std RMSE Std RMSE Std

sitting_xyz 0.0187 0.0119 0.0135 0.0063 0.0148 0.0069 0.0072 0.0033
sitting_half 0.0162 0.0061 0.0193 0.0084 0.0160 0.0076 0.0153 0.0076
sitting_static 0.0065 0.0033 0.0085 0.0051 / / 0.0052 0.0028
sitting_rpy 0.0266 0.0153 0.0865 0.0516 / / 0.0268 0.0126
walking_xyz 0.0247 0.0186 0.0176 0.0086 0.0153 0.0078 0.0147 0.0068
walking_half 0.0303 0.0159 0.0273 0.0130 0.0256 0.0126 0.0245 0.0107
walking_static 0.0081 0.0036 0.0067 0.0031 0.0102 0.0052 0.0063 0.0026
walking_rpy 0.4442 0.2350 0.0389 0.0237 0.0356 0.0220 0.0702 0.0514
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4.3. Ablation Experiment

In order to verify the effectiveness of the improved K-means clustering algorithm and
probability update strategy proposed in this paper, we conduct ablation experiments, and
the experimental results are shown in Table 4 The bold font indicates the best results, and
the underlined ones represent the second best results.

Table 4. Comparison of absolute trajectory error of ablation experiment.

Sequences
Y-SLAM/m YK-SLAM/m YKP-SLAM/m

RMSE Std RMSE Std RMSE Std

sitting_xyz 0.0168 0.0079 0.0129 0.0068 0.0072 0.0033
sitting_half 0.0858 0.0178 0.0189 0.0084 0.0153 0.0076
sitting_static 0.0072 0.0035 0.0079 0.0032 0.0052 0.0028
sitting_rpy 0.0481 0.0376 0.0384 0.0221 0.0268 0.0126
walking_xyz 0.0181 0.0105 0.0212 0.0111 0.0147 0.0068
walking_half 0.0292 0.0144 0.0301 0.0135 0.0245 0.0107
walking_static 0.0079 0.0034 0.0080 0.0035 0.0063 0.0026
walking_rpy 0.0962 0.0625 0.1457 0.0701 0.0702 0.0514

In Table 4, Y-SLAM refers to the direct elimination of feature points within the dynamic
object frame by YOLOv5 target detection; YK-SLAM is the combination of YOLOv5 and
improved K-means clustering to eliminate feature points within the dynamic object; YKP-
SLAM is the proposed algorithm.

The comparison between Y-SLAM and YK-SLAM shows that the performance of
YK-SLAM is better than Y-SLAM in the low dynamic environment, which is due to the
fact that the number of dynamic points is smaller in the low dynamic environment. In
contrast, Y-SLAM eliminates all the points in the dynamic object frame and deletes some
static points by mistake, resulting in a reduction in constraints in the pose calculation, thus
causing a decrease in pose accuracy. The performance of Y-SLAM is better than that of
YK-SLAM in the high dynamic environment, which is due to the higher number of dynamic
points and larger dynamic amplitude in the high dynamic environment. The area of the
dynamic object frame is larger than that of the dynamic object, which allows Y-SLAM to
reject more dynamic points and thus make its pose accuracy more accurate. YKP-SLAM
with the addition of the probability update strategy achieves the best results in both low
and high dynamic scenes. This is due to the fact that the probability update strategy assigns
appropriate static probabilities to static and dynamic points and then adds all points to
the pose calculation, which does not lead to either false deletion of static points or missed
detection of dynamic points.

4.4. Real-Time Analysis

Real-time performance is one of the important evaluation indicators of SLAM systems.
As shown in Table 5, in order to measure the real-time performance of the YKP-SLAM
algorithm proposed in this paper, we test each module of the YKP-SLAM algorithm and the
ORBSALM2 algorithm, respectively, under the highly dynamic “walking_xyz” sequence. In
the table, A represents the YOLOv5 target detection module, B represents the ORB feature
extraction module, C represents the improved K-means clustering module, D represents the
probability update module, and E represents the normal tracking calculation pose module.
Among them, the YOLOv5 target detection module and the ORB feature extraction module
in the YKP-SLAM algorithm are run in parallel. The results show that the YOLOv5 target
detection module cost less time than the ORB feature extraction module; that is to say, there
is no need to wait for the detection results of YOLOv5 after the ORB feature extraction
is completed. Therefore, in the case of sufficient computing power, adding the YOLOv5
module will not increase the system time. The average total time per frame of ORBSLAM2
and YKP-SLAM is 48.20ms and 62.05ms, respectively; that is, the running speed reaches 20
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Fps and 16 Fps, respectively. Overall, YKP-SLAM basically meets the real-time performance
of SLAM while ensuring accuracy in dynamic environments.

Table 5. The average running time of each module.

Algorithm A/ms B/ms C/ms D/ms E/ms Total Time/ms

ORBSLAM2 / 19.28 / / 28.92 48.20
YKP-SLAM 15.46 19.28 7.33 6.52 28.92 62.05

5. Conclusions

In this paper, a YKP-SLAM algorithm in dynamic environment is proposed. The algo-
rithm first segments the whole current frame image by YOLOv5 target detection algorithm
and improved K-means clustering algorithm and assigns a priori static probability to each
feature point according to the segmentation result. The a priori static probability is used
as the weight to calculate the initial camera pose, and then, the static probability of the
feature points is updated according to the motion constraint and the epipolar constraint
to solve the final camera pose. The algorithm in this paper is verified under the TUM
dataset. Compared with the ORBSLAM2 algorithm, the accuracy and robustness of this
algorithm are greatly improved in both low and high dynamic scenes. Compared with
the other SLAM algorithms in dynamic scenes, the YKP-SLAM algorithm also achieves
almost the best localization accuracy. In future work, we will propose a dense semantic map
construction method in dynamic scenes based on the existing one and make full use of the
advantages of localization accuracy in high dynamic scenes and the semantic information
provided by YOLOv5 to realize path planning and obstacle avoidance in dynamic scenes.
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