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1. Introduction

Human activity recognition (HAR) and human behavior recognition (HBR) have been
playing increasingly important roles in the digital age. High-quality sensory observations
applicable to recognizing users’ activities and behaviors, including electrical, magnetic,
mechanical (kinetic), optical, acoustic, thermal, and chemical biosignals, are inseparable
from sensors’ sophisticated design and appropriate application.

Traditional sensors suitable for HAR and HBR, including external sensors for smart
homes, optical sensors such as cameras for capturing video signals, and bioelectrical, bio-
magnetic, and biomechanical sensors for wearable applications, have been studied and
verified adequately. They continue to be researched in-depth for more effective and efficient
usage, and brand new areas facilitated by sensor-based HAR/HBR are emerging, such
as interactive edutainment [1], single motion duration analysis [2], time series informa-
tion retrieval [3], handcrafted and high-level feature design [4–6], and fall detection [7].
Meanwhile, innovative sensor research for HAR or HBR is also very active in the aca-
demic community, including new sensors appropriate for HAR/HBR, new designs and
applications of the above-mentioned traditional sensors, and the usage of non-traditional
HAR/HBR-related sensor types, among others.

This Special Issue aims to provide researchers in related fields with a platform to
demonstrate their unique insights and late-breaking achievements.

2. Overview of the Contributions

Ten high-quality representative articles, including eight research papers and two
surveys, have undergone a rigorous selection and review process to be published in this
Special Issue. Although it cannot be said that they cover all aspects of the topic “sensors
for human activity recognition,” they reflect the latest developments in the field in a
high-profile manner.

We follow the sequence of tasks indicated by the state-of-the-art HAR research
pipeline [8,9] to organize and introduce these contributions. Therefore, it should be
emphasized that the order in which the articles appear does not correlate with their
academic value.

2.1. Hardware Preparation: Sensing Technologies and Camera Calibration Technologies

As the hardware cornerstone of all relevant research areas, sensing technology is a
topic that cannot be jumped. We are delighted to have such an opening article in this
Special Issue [10], which presented a thorough, in-depth survey on the state-of-the-art
sensing modalities in HAR tasks to supply a solid understanding of the variant sensing
principles for younger researchers of the community. The HAR-related sensing modalities
are reasonably categorized into five classes: mechanical kinematic sensing, field-based
sensing, wave-based sensing, physiological sensing, and hybrid/others, with the strengths

Sensors 2023, 23, 125. https://doi.org/10.3390/s23010125 https://www.mdpi.com/journal/sensors1
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and weaknesses of each modality across the categorization compared and discussed to
provide newcomers with a better overview and references.

Equipped with advanced knowledge of sensing technology, researchers step into the
door of sensor-based HAR to select appropriate high-quality sensors for their research
scenarios. Afterward, preparatory work is required to acquire continuous, high-quality
biosignals. For example, the calibration task is essential for video camera-based HAR,
where high-precision distortion calibration is a prerequisite for perfect activity recognition
with external sensing. Conventional approaches sometimes need hundreds or thousands
of images to optimize the camera model. Jin et al. put forward an innovative point-to-point
distortion calibration procedure that requires only dozens of images to obtain a dense
distortion rectification map, contributing to a 28.5% enhancement to the reprojection error
over the polynomial distortion model [11]. It is worthy of academic focus that although
the authors emphasized the application of the new method in HAR, we find that the
applicability is not limited to HAR and deserves a more extensive scope of attention.

2.2. Signal Processing: Traditional Feature Extraction versus Deep Neural Representations

After the aspects of devices have been adequately studied, sensor signals will be
acquired, archived, and analyzed. Digital signal processing (DSP) techniques are widely
used in the subsequent stage, among which feature extraction serves as the bridge that
connects the raw data with machine learning. Traditional machine learning for HAR
generally employs conventional features in statistical, temporal, and frequency domains to
execute experiments such as combination, selection, stacking, and dimensionality reduction.
In contrast, deep learning requires deep neural representations. It is a very arresting
academic work to compare the two through a new and rational approach [12]. The work
analyzes both approaches in multiple domains utilizing homogenized public datasets,
verifying that even though deep learning initially outperforms handcrafted features, the
situation is reversed as the distance from the training distribution increases, which supports
the hypothesis that handcrafted features may generalize better across specific domains.

2.3. Recognition and Localization on Human Activities or Behaviors: Deep Learning versus
No Training

The vast majority of sensor-based HAR tasks rely on machine learning. Despite
the irreplaceable advantages of traditional feature-based machine learning suggested in
Section 2.2, deep learning is increasingly demonstrating its powerful adaptive capabilities.
Besides [12], this Special Issue contains three more articles on deep learning [13–15], offering
us multiple dimensions of thinking:

• The training of HAR models requires a large amount of annotated data corpus. Most
current models are not robust when facing anonymized data from new users; mean-
while, capturing each new subject’s data is usually not possible. Yang et al. described
semi-supervised adversarial learning using the long-short term memory (LSTM) ap-
proach for HAR [13], which trains labeled and anonymous data by adapting the
semi-supervised learning paradigms on which adversarial learning capitalizes to
enhance the learning capabilities handling errors.

• The device-free, privacy-protected, and light-insensitive characteristics have pushed
WIFI-based HAR technology into the limelight. Evolving machine learning techniques
have significantly improved sensing accuracy with existing methods. To improve
the performance of the challenging multi-location recognition, researchers in [14]
proposed an amplitude- and phase-enhanced deep complex network (AP-DCN) for
multi-location HAR to exploit the amplitude and phase information synchronously
and thus retrieve richer information from limited samples. A perception method
based on a deep complex network-transfer learning (DCN-TL) structure was practiced
to effectively achieve knowledge sharing among multiple locations, aiming to address
the imbalance in sample numbers.
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• Sensor-based indoor localization is also relevant to this Special Issue’s scope by using
acceleration signals to represent human behavior to be useful additional information
on GPS signals for modeling and learning. Sensor-based indoor localization is also
relevant to this Special Issue by using acceleration signals to represent human behav-
ior to be useful additional information on GPS signals for modeling and learning.
Study [15] exhibited a pedestrian dead reckoning-based indoor localization system on
a smartphone, where accelerometer and GPS data were used as input and labels to
estimate moving speed through deep learning. A distance error of approximately 3 to
5 m in the experiments within a 240 m-long horseshoe-shaped building is a welcome
level of accuracy.

Model training for machine learning, or, furthermore, deep learning, is not the sole
path to reaching human activity or behavior recognition. We have a research piece that
seeks to achieve behavioral recognition without training [16]. The convenience store
is a daily business form worldwide; for Japanese society, its transliteration abbreviation
“Kombini” goes beyond shopping, representing a unique cultural and emotional sustenance.
Recognizing customer behaviors in monitoring videos can supply analytical material for
business management in smart retail solutions. Therefore, the scientists from Japan put the
analysis of human behavior in the convenience store scene, which is an appropriate and
attractive setting. Unlike previous approaches based on model training, customer behavior
in this research is combined with primitives to achieve flexibility, where a primitive is a
unit describing an object’s motion or multiple objects’ relationships.

2.4. Evaluating the Experimental Results: Also an Essential Research Topic

Besides the machine learning task for HAR, what research can be further executed
before practical applications? In [17], the authors proposed explainable methods to under-
stand the performance of mobile HAR mobile systems according to the chosen validation
strategies. A novel approach, SHAP (Shapley additive explanations), was used to discover
potential bias problems of accuracy overestimation based on the inappropriate choice of
validation methodology. We believe this study is academically significant and of guiding
value for practice.

2.5. More Referential Topics Linked to Body Sensor Networks and Human Physiological Signals

As an academic expansion, we have also selected two articles about wearable sensors
combined with human physiological signal applications to benefit our readers. They
provide sensor-based human activity/behavior researchers with references and inspirations
for the device and experimental design.

Authors of [18] successfully modeled subjects’ psychological stress in different states
through electrocardiogram (ECG) signals during a virtual reality high-altitude experiment.
Participants wore in-house-designed smart T-shirts with embedded multiple sensors to
complete different tasks. A deep, gated recurrent unit (GRU) neural network was devel-
oped to capture the mapping between subjects’ ECG and stress represented by heart rate
variability (HRV) features.

The ankle joint, one of the body’s most important joints for maintaining the ability to
walk, can be damaged due to stroke or osteoarthritis, which will cause gait disturbances.
Ankle-foot orthoses have been widely applied to help patients regain their natural gait.
Article [19] reviewed the development of ankle-foot orthoses and prospected combining
ankle-foot orthoses with rehabilitation techniques, such as myoelectric stimulation, to
reduce the energy expenditure of patients in walking.

3. Conclusions, Outlook, and Acknowledgments

Having attracted many contributions from outstanding world scientists, this Special
Issue has become thriving and full of academic tensions. Given the enthusiasm of the
submissions, the second volume of this Special Issue has been launched, and we look
forward to more scholars publishing their admiring contributions.
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Abstract: Human activity recognition (HAR) has become an intensive research topic in the past
decade because of the pervasive user scenarios and the overwhelming development of advanced
algorithms and novel sensing approaches. Previous HAR-related sensing surveys were primarily
focused on either a specific branch such as wearable sensing and video-based sensing or a full-stack
presentation of both sensing and data processing techniques, resulting in weak focus on HAR-related
sensing techniques. This work tries to present a thorough, in-depth survey on the state-of-the-art
sensing modalities in HAR tasks to supply a solid understanding of the variant sensing principles for
younger researchers of the community. First, we categorized the HAR-related sensing modalities into
five classes: mechanical kinematic sensing, field-based sensing, wave-based sensing, physiological
sensing, and hybrid/others. Specific sensing modalities are then presented in each category, and a
thorough description of the sensing tricks and the latest related works were given. We also discussed
the strengths and weaknesses of each modality across the categorization so that newcomers could
have a better overview of the characteristics of each sensing modality for HAR tasks and choose
the proper approaches for their specific application. Finally, we summarized the presented sensing
techniques with a comparison concerning selected performance metrics and proposed a few outlooks
on the future sensing techniques used for HAR tasks.

Keywords: human activity recognition; sensing technique

1. Introduction

A better understanding of human behavior benefits individuals on a large scale, in-
cluding healthcare, well-being, social interaction, life assistance, etc. Thus human activity
recognition (HAR) has been tremendously explored in recent years, driven by the enormous
technical advances in sensing, computation, and immense human-centric user scenarios.
The explosive advancement in machine learning and hardware architecture has dramati-
cally improved the accuracy and robustness of HAR tasks and enabled the technique to
be deployed at the far edge near the body. Besides the computational ability, the sensing
technique plays a fundamental and critical role in HAR tasks. Therefore, a broader range
of sensing modalities has been explored in recent years, aiming to boost the development
of reliable body activity digitalized recording. The proposed sensing modalities range from
traditional motion sensing methods such as accelerometers, to novel TOF-based sensing
such as mmWave, from neural network-aided image processing for activity abstraction to
very straightforward proximity detection approaches such as RF-tags.

To acquire a comprehensive overview of the state-of-the-art sensing modalities in
human activity recognition, categorization of the adopted sensors is an efficient approach
for a deeper understanding of the sensing medium. Researchers have already categorized
related sensors into different classes, such as active and passive sensors depending on the
need for external excitation [1], or intrusive and non-intrusive sensors depending on the
interference of the sensors in the process flow [2,3]. With a further step, we elaborately cat-
egorized the HAR-related sensing modalities into five classes depending on the following

Sensors 2022, 22, 4596. https://doi.org/10.3390/s22124596 https://www.mdpi.com/journal/sensors5
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sensing principles: kinematic sensing, field-based sensing, wave-based sensing, physiologi-
cal sensing, and hybrid or other approaches, as Figure 1 presents. We enumerated most of
the sensing modalities within each class with an in-depth description of the sensing tricks
in the HAR tasks.

Figure 1. Sensing techniques in human activity recognition.

1.1. Relevant Surveys

Despite the enormous scope of sensing modalities in HAR tasks, related survey works
are limited. The existing surveys on HAR sensing are primarily focused either on a specific
scenario (such as wearable sensing or video-based sensing) or on full-stack presentation
of both sensing and data processing techniques, which results in a weak focus on HAR-
related sensing techniques. Table 1 lists the latest HAR sensing-related surveys in recent
years from the literature. Those high-related surveys (as well as other references listed in
this paper) are first searched using keywords such as human activity recognition, survey,
overview, and sensing technique, from platforms including Google Scholar, IEEE Xplore,
Microsoft Academic, etc. Second, the survey papers cited in the searched surveys were
also considered. As can be seen, nearly all the exiting surveys only focused on a specific
domain of HAR sensing techniques, such as device-free sensors [4], smartphone sensors [5],
radar sensors [6], etc. Such surveys could supply a detailed research result on the particular
sensing domain but lack focus on the adopted sensors in HAR. In contrast, there are
only a few surveys [7,8] that supply thorough sensor modalities. However, an in-depth
introduction and comparison of the sensing tricks is still lacking.

Table 1. Surveys on HAR sensing techniques.

Focused Subject Ref Year Contribution

Device-free sensors [4] 2020
• Categorized sensors into wearable, object-tagged, device-free, etc.
• Focused on device-free sensing approaches for 10 kinds of activities.
• Extensive analysis based on 10 important metrics of each sensing approach.

Full-stack (sensors
and algorithms) [7] 2020

• Categorized sensors into wearable, object, environmental, and video-based.
• Focused on data processing approaches.

Overall sensors [8] 2020
• Categorized sensors by physical principles (acoustic, optical, etc.).
• Summarized publicly available databases and common evaluation metrics to evaluate

and compare the performance of the developed algorithms and systems.

Smartphone sensors [5] 2019
• Enumeration and description of embedded sensors.
• Data labeling, processing, etc.

Surveillance video [9] 2019

• Summarized the general process of human action recognition in video
processing domain.

• Surveyed different features and models used in video surveillance, and the re-
lated datasets.
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Table 1. Cont.

Focused Subject Ref Year Contribution

Radar sensors [6] 2019
• Overview of various radar systems adopted to recognize human activities.
• Overview of DL techniques applied to radar-based HAR tasks.

Bespoke sensors in
smart home [10] 2017

• Highlighted that smart home intelligence involved sensing technology.
• Highlighted the multi-resident activity recognition including concurrent, interleave,

and cooperative interaction activity.

Vision-based [11] 2017
• Comprehensive survey of different phases of vision-based HAR (image segmentation,

feature extraction, activity classification).

WiFi-based [12] 2016
• Survey of the WiFi-based contactless HAR from four aspects including historical

overview, theories and models, and key techniques for applications.

Non-invasive sensors [13] 2016
• Survey of technologies that are close to entering the commercial market or have only

recently become available.

Vision-based [14] 2015

• Proposed categorization of human activities into unimodal and multimodal according
to the nature of sensor data they employ.

• Reviewed various human activity recognition methods and analyzed the strengths and
weaknesses of each category separately.

Wearable sensors [15] 2014

• Reviewed the latest reported systems on activity monitoring of humans based on
wearable sensors.

• Forecasted the light-weight physiological sensors that lead to comfortable wearable
devices to tackle the challenges.

1.2. Paper Aims and Contribution

This work tries to fill the gap by presenting an extensive and in-depth survey on the
state-of-the-art sensing modalities in HAR tasks, aiming to supply a solid understanding
of most sensing modalities for researchers in the community. Overall, we provide the
following contributions in this survey:

1. For a clear overview of the multifaceted nature of HAR tasks, we firstly sorted the
human activities into three types: body position-related services (“where”), body
action-related services (“what”), and body status-related services (“how”). Such
sorting coarsely but briefly introduces the final objective of the utilized sensing
technique, which supplies the readers with an elementary step for the sensing concept.

2. We then categorized the sensing techniques in HAR tasks into five classes based on
the underlying physical principle: mechanical kinematic sensing, wave-based sensing,
field-based sensing, physiological sensing, and hybrid or others. We enumerated
broadly the adopted sensing modalities within each category and supplied an in-depth
description of the underlying technical tricks. Such a sensor-oriented categorization
supplies the readers a further understanding of the distinct HAR tasks.

3. We gave each sensing modality an in/cross-class comparison with eight metrics to better
understand each modality’s limitation and dominant properties and its typical applica-
tions in HAR. Finally, we provided a few insights regarding its future development.

This survey is constructed as follows: in Section 1, we briefly stated the motivation
of this survey considering the existing works and the development of the state-of-the-art
HAR sensing techniques. We then summarized and categorized all human activities in the
research scope according to the activity attribute in Section 2, followed by a brief description
of the general process of the HAR task. Section 3 showed our categorization of the current
HAR sensing techniques and gave an in-depth and extensive description of each sensing
modality, followed by a summary regarding eight critical sensing performance metrics.
Sections 4 and 5 presented a few outlooks into the future development of the HAR-related
sensing techniques and the conclusion of our work.
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2. Background

2.1. Object of Human Activities Recognition (HAR)

Human activities refer to human behaviors concerning the body or the environment.
The recognition of human activity aims to capture the action/status of the agents from a se-
ries of observations. A successful recognition could provide personalized support in plenty
of human-centric applications [16,17]. Since the HAR tasks cover a wide range of activities,
it is necessary to sort the related topics in an impressive and compact way. Most research
works assort the task into a few levels according to the activity complexity [4,7] (from ges-
tures to actions), followed by human object/human interaction. Group activities [18,19] are
the most complicated ones, requiring multiple people and essentially composed of series
of gestures, actions, and interactions. In this work, we sorted the human activity recogni-
tion into three problems (Figure 2) according to the attributes of the targeted task: body
position-related problem, body action-related problem, and body status-related problem
corresponding to the questions of “where”, “what”, and “how”, respectively. The“where”
problem addresses the position-related recognition, such as indoor positioning [20], track-
ing [21], proximity [22], etc. The “what” problem deals with the action-related recognition,
which belongs to the most widely researched section under the HAR task. Examples are
fall detection [23], gait analysis [24], ADL (activity of daily life) [25], etc. The last one is the
“how” problem, inferring the body status-related research, such as emotion-sensing [26],
respiration/heartrate sensing [27], healthcare [28], etc. This task-oriented categorization
aims to supply a basic concept of the objectives of human activity recognition. As can be
seen, HAR is a multifaceted topic covering almost all human-related activities and needs
interdisciplinary knowledge to understand the behaviors and provide assistance properly.

Figure 2. Categorization of human activities.

2.2. General Process of Human Activity Recognition

Human activity recognition explains comprehensive body behaviors aiming to supply
ethical-respect assistance. A complete recognition task is generally composed of three
steps (Figure 3): sensing, data processing, and decision making. Sensing techniques play a
fundamental role in the procedure, trying to perceive as much contextual knowledge as
possible so that a reliable recognition becomes possible. A successful HAR task depends
firstly on the data quality perceived from the applied sensors and secondly on the process-
ing skills of the acquired data. With the developments in physics, electronics, and other
fundamental subjects, novel sensors and devices are emerging to supply more efficient
signal patterns for human activity recognition [29–31]. The revolution of the ToF cam-
era, as an example, has enabled the camera to move from simply capturing the streamed
images to providing additional depth information to the images, thus provoking a wide
range of recognition tasks such as hand gestures [32] and facial expressions [33]. Recently,
significant advances in detection accuracy and range, and the power consumption of the
ToF sensor, have continued to boost novel applications in both industrial automation [34]
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and consumer electronics [35]. Diverse sensing techniques have been utilized for specific
HAR scenarios and have provided outperforming recognition performance, which moti-
vated us to write this survey focusing on those state-of-the-art sensing techniques with
in-depth exploration and extensive analysis. After getting the knowledge from the sensing
approaches, the second step is to process the data. According to the data quality and the
deployed algorithms, a pre-processing step such as normalization or calibration might
be needed. For small volume data such as single-dimensional ECG data or RSSI-based
positioning data, a rule-based [36] or multi-lateration [37] algorithm will supply good
results. For extensive volume data such as image and speech, the algorithms deployed on
the pre-processed data have been dominated by deep neural network-based models [38]
with a training process due to its cutting-edge recognition performance compared with
traditional approaches [39], such as feature descriptors in object detection. Currently,
a large amount of HAR tasks are conducted based on the image streams captured from
different kinds of cameras. Those works were focused on spatio-temporal relations of the
individuals in the scene. Traditionally, researchers handcraft the features [40] to deduce the
target activity, but such approaches firstly heavily rely on the individual experience for the
selection of high-relative features; secondly, the handcrafted features might be inefficient
and lack generalization in dynamic and environments. The last decade’s exploration of
machine learning has impressively influenced the processing pipeline in HAR applications.
Network models based on convolutional computing [41] or attentional mechanisms [42] for
feature abstraction have dominated the approaches for data processing and presented the
state-of-the-art recognition performance. The corresponding general framework comprises
steps including data acquisition from the applied sensing technique, feature abstraction
with distinct network models, and target decision-making based on the inference result
of the network model [43,44]. After the patterns of the activities are acquired from the
data in the processing step, a decision on the activity recognition could be concluded as a
final step. This survey will, however, not cover the recognition algorithms adopted in the
data processing step and the final inference step based on the network models. The aim
of this survey is to supply a detailed explanation of the physical principles under the
applied sensing techniques in HAR tasks and discuss the differences between them so
that researchers can choose the right one for their applications. As the first component in
the pipeline of the HAR application, the sensing techniques transform human physical
activities into numerical information that could be further processed. The following section
will extensively present the related HAR-targeted sensing approaches and the behind.

Figure 3. The general process of an HAR task.

3. Sensing Techniques

As Figure 1 depicts, we categorized the sensing techniques into five classes according
to the sensing principles: mechanical kinematic sensing, field sensing, wave sensing,
physiological sensing, and the hybrid or others. Compared with other categorization
approaches such as the deployment approach (wearable, object, environmental, etc.),
the principle-based categorization gives a better understanding of the sensing technique’s
physical background. In the following subsections, we will enumerate the leading sensing
modalities in each class with their sensing tricks and related state-of-the-art research works.
After the enumeration, we also provide an evaluation and comparison of the sensing
modalities with the following performance metrics:
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• Cost . Low: less than 10 USD. High: hundreds to thousands of USD.
• Power efficiency. Low: level of mW. High: level of W.
• Signal source. Active or passive according to the source of the measured physical

characteristics (naturally or emitted by the sensing system).
• Robustness. The ability to tolerate perturbations that might affect the performance of

the sensor.
• Privacy concern. If the sensing approach records individual information beyond the

need of interest.
• Computational load. The demand of the hardware resources for successful decision

making.
• Typical application. A list of HAR tasks being addressed by the sensing approach.
• Other criterion. Such as installing/maintaining complexity, environmental depen-

dency (line of sight, etc.), accuracy and sensitivity, etc.

3.1. Mechanical Kinematic Sensing

Mechanical sensing refers to mechanical mobility and deformation when a force is de-
ployed on/from the target. The mobility and deformation are perceived by the mechanical
sensors, which transform the mechanical variation into electric signals. Mechanical sensors
have been widely used to monitor body activity such as the kinematic senors.

In physics and maths, kinematics is a field of study exploring geometrical motion.
Kinematics sensing in HAR is based on the human body-related motion properties such
as velocity, acceleration, rotation, etc. Since the recognition of body motion activities
is the most related object of HAR tasks compared to other objects such as positioning,
status monitoring, etc., kinematic sensors have become the dominant sensing approach in
scientific research and industry application. The most popular deployed sensors are inertial
ones such as accelerometers and gyroscopes. Another reason for the massive usage of
inertial sensors is the power effectiveness and small size, enabling a pervasive embedding
of the sensing unit into personal assistant devices such as smartphones and wearable
devices such as fitness bands.

Nearly all of the current commercial wearable devices are embedded with inertial
sensors that deliver motion signals of a distinct body part without much concern about
power consumption and comfort. Both academic and industrial researchers have devel-
oped plenty of works with inertial-sensor-embedded wearable applications. For example,
Hristijan et al. [45] explored a weighted ensemble learning algorithm with data from
head-mounted inertial sensors to recognize eight everyday activities. Tobias et al. [46]
proposed a respiration rate monitoring using an in-ear headphone inertial sensor. Wrist-,
hand-, finger-worn inertial sensors are primarily used for gesture recognition as a means
of human–machine interface [47–49]. Related wearables are smart gloves, smart watches,
smart rings, wristbands, etc. Another popular motion-recognition-enabled wearable modal-
ity is the smart garment. Kang et al. [50] designed an IMU and conductive-yarn-integrated
clothes to prevent spinal disease by continuous posture monitoring. Zhang [51] evaluated
an innovative full-body wearable garment system based on IMUs for motion analysis
during different exercises. Wang et al. [52] evaluated stroke patients’ acceptance of an
IMU-embedded smart garment for supporting upper extremity rehabilitation and received
positive responses in a clinical setting. Besides the wearable electric devices and smart
garments, inertial sensors could also be integrated into shoes and soles for foot- and leg-
related motion-based research, such as gait analysis [53], indoor pedestrian navigation [54],
workout recognition [55], injury prevention [56], etc.

Besides the advantage in wearability (power consumption, small size, low cost, perva-
siveness), inertial sensors also outperform in data quality regarding sensitivity and accuracy.
A high-resolution accelerometer could sense minor vibrations on bodies. Cesareo et al. [57]
assessed breathing parameters using the IMU-based system. With the proposed algorithm,
they reconstructed respiration-induced movement and precisely perceived the respiratory
rate through an automatic method. Huang et al. [58] demonstrated a novel method for
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3D pose reconstruction with six IMUs, which outperformed the camera-based methods
in situations such as heavy occlusions and fast motion.

Regarding the above-listed advantages, inertial sensors currently play the most critical
role in HAR tasks, even in the unique cases of commercial wearable targeting motion-
related applications [59]. However, inertial sensors need to be mounted on the target part to
sense the part motion pattern, which might be annoying regarding the user habit when long-
term continuous motion monitoring is demanded and might cause burden and discomfort
for users. For highly accurate motion reconstruction, the inertial sensor also faces the
challenge of accumulated errors, which need to addressed by constant recalibration.

3.2. Wave Sensing

Wave sensing is a non-contact sensing technique based on the propagation properties
of waves. Three kinds of wave sensing approaches are mainly used for HAR tasks. The first
is the RF signals such as WiFi, BT, mmWave, etc., referring to a wireless electromagnetic
signal with identified radio frequencies ranging from 3 kHz to 300 GHz. The propagation
of the wireless electromagnetic wave is based on the electric and magnetic fields that are
orthogonal to each other. The second wave signal is the acoustic signal, a mechanical wave
that includes vibration, sound, ultrasound, and infrasound. The third is the optical signal,
an electromagnetic signal with the typical extremely high frequency in THz order. In HAR,
those wave sensing approaches have been explored widely and deeply. For example, image-
based activity recognition analyzes the target actions in the images from the video and can
supply recognition with high accuracy. Since video information is captured by a camera that
takes all light rays and focuses it via the lens onto a grid of tiny light-sensitive photosites,
it is essentially optic-enabled sensing. RF and acoustic signals, as ambient sensors, offer
advantages in both privacy protection and reducing the extra burden of objects.

Two kinds of sensing methods exist in wave-based human-centric sensing: active and
passive sensing. Figure 4 shows the essential difference between the two methods. Active
sensing requires an external source of energy. The source emits waves to the measured
object and receives the wave’s reflection, transmission, and absorption. Features abstracted
from the received information are then utilized for object description. On the other hand,
passive sensing does not need an active wave source and perceives the object variables by
receiving a measured wave signal from the object.

Figure 4. Wave-based human-centric sensing in two methods: active and passive.

(A) RF Signal

RF-based HAR is a non-intrusive approach that can bypass the burden and discomfort
caused by wearable activity monitoring sensors. The basic principle of the RF-based HAR
system is that the propagation path of the RF wave will be affected by the intrusiveness of
the human body. The resulting variations in the received wave can then be used as features
to deduce different activities.
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A series of RF signals were explored for HAR tasks, such as WiFi, UWB, mmWave, etc.
Among them, WiFi is the most popular due to its pervasiveness in the indoor environment.
The critical intuition of WiFi-based HAR is that motions of the human body introduce
different multipath distortions in WiFi signals and generate different patterns in the time
series of channel state information. Li et al. [60] proposed a system named Wi-Motion, being
able to jointly leverage the amplitude and phase information extracted from the channel
state information sequence, and to achieve a mean accuracy of 96.6% in the line-of-sight
environment and 92% in not line-of-sight environment regarding five predefined typical
human activities (bend, half squat, step, stretch leg, and jump). Liu et al. [61] designed
a WiFi-based sleep monitoring system to abstract fine-grained sleep information such
as a person’s respiration, sleeping postures and rollovers by continuously collecting the
fine-grained wireless channel state information. Besides the activity recognition, the WiFi
signal can be leveraged for indoor location tasks. An example work is from Wang et al. [62]
where the authors proposed a dual-task residual convolutional neural network with one-
dimensional convolutional layers for the joint task of activity recognition and indoor
localization. Bluetooth technology is another RF approach to perform HAR tasks. However,
compared with the WiFi signal, the Bluetooth signal is relatively weak [63]. Thus the
accuracy and reaching range is limited. However, it enjoys advantages in cost and ease
of use. Therefore, Bluetooth technology is mainly used for indoor locations by deploying
plenty of small form-factor, power-saving, cost-efficient tags with high density [64].

Besides the WiFi and BT wave signal, the mmWave technology, which operates in the
frequency range of 30 GHz and 300 GHz, recently exhibited high attraction to researchers.
Since a higher frequency means a smaller antenna size, thus the mmWave radar is compact
in form factor. Many antennas could be packaged into a small space to enable highly
directional beams. Moreover, the mmWave signal enjoys a larger bandwidth than WiFi
signals and higher range resolution. Recent advances in small and low-cost single-chip
consumer radar systems operating at mmWave frequencies have opened up many new
applications, such as automotive radar, health monitoring, etc. HAR has also been explored
with mmWave-based approaches and has received outstanding results with fine-grained
classifiers. Zhang et al. [65] predicted the target behavior by using the micro-Doppler
effect (induced by micromotion dynamics of a target or its structure) from mmWave
radar [65]. Using a neural network work-based classifier, they got 95.19% accuracy of
bulk motion of the body and the micromotions from arms and legs. Zhao et al. [66]
proposed a system named mBeats, where a robot mounted with mmWave radar system
is used to provide periodic heart rate measurements under different user poses. A fall-
detection system based on mmWave radar was also presented by Sun et al. [67] with the
support of a recurrent neural network with long short-term memory units. Li et al. [68]
designed another interesting mmWave radar-enabled system called ThuMouse, which
regressively tracks the position of a finger aided by a deep neural network. MmWave-
related exploration is still at an early stage and will have an explosive growth period in the
following years triggered by its unusual behavior compared to WiFi, BT, and the large-scale
chip-level commercialization.

Another greatly promising and widely used RF wave signal is the ultra wide band
(UWB), which is a decades-old wireless technology used for short-range, high-bandwidth
communication with a high data rate. Now it is also as a standard for high-accuracy
location services. According to FiRa, a consortium founded by the dominating companies
for UWB standards, the reborn UWB will mainly be focused on three use cases: hands-free
access control, location-based services, and peer-to-peer communication, which will be
complementary to current dominant wireless solutions. Recently, UWB support has started
to appear in high-end smartphones. There is no question that the UWB will boost another
wave on related applications. Figure 5 shows the wide spectrum of UWB compared with
others, allowing UWB to operate at a shallow power state and build stable connectivity with
other devices in a crowded radio environment. Thanks to the higher base frequency, UWB
devices can provide higher accuracy in position with the level of around 10 cm [69], which
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is highly dominant compared with WiFi or BT-based positioning with accuracy of meter-
level [70]. Another key feature is that UWB is resistive to the multipath effect, a common
issue for most RF-based wave sensing technology. The multipath effect refers to the
received radio signal from more than one path because of the reflection of retraction caused
by objects near the main signal path. The large bandwidth of UWB provides frequency
diversity that can make the time-modulated ultra-wideband (TM-UWB) signal resistant to
the multipath effects [71]. Researchers have explored plentiful HAR-related applications
with UWB, such as activity recognition in smart homes [72], gesture recognition [73], sleep
postural transition recognition [74], healthcare monitoring [75], etc. With the popularization
of low-cost UWB chips in wearable devices, there will be more short distance-based novel
applications based on the UWB technique, such as swarm intelligence, social distancing,
etc. However, despite the above-described advantages of UWB, there will still be some
time for a wide deployment of UWB, considering its higher cost. Moreover, regarding the
data streaming rate, UWB is not a good option for large data interaction between devices
compared with other narrowband radio systems.

Figure 5. The wide UWB power spectrum results in a low power consumption compared to other
technologies. (Source: FiRa Consortium).

(B) Acoustic Signal

An acoustic signal is a mechanical wave resulting from an oscillation of pressure and
travels through the solid, liquid, or gas in the form of a wave. A clear, well-known acoustic
signal is the audible sound from a speaker by the vibration of vocal folds. The vibration
travels through air and reaches the outer ear and the eardrum. There are two kinds of sound
outside the range of audible sound frequency (20–20 Khz): infrasound and ultrasound.
An example of infrasound is the atmospheric infrasound caused by the earthquake when
the earth’s surface near the epicenter and surrounding regions oscillates in a low frequency.
Ultrasound is an acoustic signal with a higher frequency than the upper audible limit of
human hearings. A widely used example of ultrasound is medical imaging, where the
ultrasound waves travel through the body and create a sonogram of organs, tissues, etc.

As an ambient sensor, ultrasound could firstly supply mm level positioning accuracy
indoors based on the time of flight [76,77]. Such a positioning system is based on several
wireless ultrasonic beacons with fixed and known coordination under an indoor environ-
ment, and receives or emits ultrasonic signals which are finally used for position deduction.
The wireless module (WiFi, Bluetooth, or others) is used for data interaction and time
synchronization. Finger motion recognition is another application based on ultrasound
by leveraging the characteristic of detected morphological changes of deep muscles and
tendons. Yang et al. [78] had obtained an accuracy of 95.4% for real-time finger motion
recognition. Mokhtari et al. [79] proposed a resident identification system as an innovative
home platform by using ultrasound arrays to detect the height of the moving resident
and other sensors such as pyroelectric infrared to detect the moving direction. Wang et al.
proposed a novel contactless respiration monitoring approach using ultrasound signals
with off-the-shelf audio devices. Unlike other works based on chest displacement where
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false detection may often occur, they monitor the respiration by directly sensing the exhaled
airflow from breathing. The principle is that the exhaled airflow from breathing can be
regarded as air turbulence, scattering the sound wave and resulting in the doppler effect.
The experiment’s results showed an accuracy of 0.3 breaths/min (2%), and it was concluded
that the ambient noise and the variation of respiration rate, respiration style, sensing dis-
tance, and transmitted signal frequency have little effect on respiration monitoring accuracy
of the system.

Previous works on sound (captured by the microphone on a smartphone) are mainly
focused on the following application cases: environment assessment [80,81], proximity
sensing [82,83], or indoor positioning [84,85]. The sources of sound are either from fine-
tuned tags or from the surroundings. In the work of Benjamin et al. [82], an algorithm
using inaudible sound patterns was explored to accurately detect whether two mobile
phones are within a few meters from each other. The method can be implemented as a
standard smartphone application with real-time inferencing, enabling smartphone-based
collaborative activity detection and other embedded sensors.

Overall, acoustic signals provide an alternative and competitive approach for highly
accurate human or robot positioning and distance-related activity recognition. The method
is non-intrusive, thus reducing users’ extra burden and protecting privacy security. How-
ever, it still suffers from the computational load and is limited by complex environmental
acoustic sources. For example, the accuracy and robustness of ultrasound-based indoor
positioning enormously decrease when a collision-like sound occurs, or when a significant
barrier between tags exists.

(C) Optic Signal

Optical signals for HAR tasks mainly refer to deep learning-enabled image processing
with the images captured by the photosensitive elements in cameras. Most related works
focused on spatio-temporal relations among the objects in the scene. Those works involved
tracking multi-agents spots, evaluating their appearance, aggregating independent and
joint features, segmenting their movements, extracting their actions, and then perceiving
their activities. Image-based systems could cover almost every HAR task and achieve
very high recognition accuracy because of the complete view of data captured in the
scene. The covered tasks include positioning, navigation, body-part monitoring, full-body
monitoring, individual activity recognition, group activity recognition, etc. Sathyamoor-
thy et al. [86] designed a system named COVID-robot for social distancing monitoring
in crowded scenarios. With the help of an RGB-D camera and a 2-D Lidar, the mobile
robot can avoid collision in a crowd and estimate distance between all detected individuals
among the camera view during self-navigating. Lee et al. [87] presented a innovative
wearable navigation system based on an RGBD camera to help the visually impaired.
A glass-mounted RGBD camera collected the environment information, which is as a
input to their navigation algorithm of real-time 6-DOF feature-based visual odometry.
Kim et al. [88] proposed a hand gesture control system based on the tactile feedback to
the user’s hand. Amit et al. [89] proposed an approach to analyze a user’s body posture
during a workout and compare it to a professional’s reference workout, thus getting visual
feedback while performing a workout. The system aims to assist people in completing the
exercises independently and prevent incorrectly performed motions that may eventually
cause severe long-term injuries. Meng et al. [90] addressed the problem of recognizing
person–person interaction by depth cameras providing multi-view data. They divided each
person–person interaction into body part interactions at first. Then the pairwise features
of these body part interactions were used to analyze the person–person interaction. The
method was demonstrated in three public datasets. As can be seen, the image-based HAR
tasks are profoundly dependent on the neural-network-based algorithms. Most of the
researcher’s effort in this field is in the advanced algorithm exploration to reach the state of
the art.

Undoubtedly, camera-based HAR systems have succeeded in different scenarios,
including indoor monitoring and outdoor surveillance. However, the problem is that
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the approach might not be well accepted due to severe privacy concerns. This is one
reason that sensor-based HAR is still prevalent in research communities and has led to
many research contributions recently. Another significant disadvantage of an image-based
solution is located in the computation load. Since the image-based HAR needs strong
hardware support (GPU, CPU, memory, bus) for running the millions of parameters
(weights and activations) from the trained deep neural network, the cost of hardware
resources, power, and maintenance is enormous. Additionally, since this is an optic sensing
solution, the performance is deeply influenced by environmental conditions such as light,
temperature, air quality, etc.

3.3. Physiological Sensing

The term “physiological sensing” refers to both the natural physiological signals and
the kinematic signals activated from the organism. Physiological variables have been widely
used in diagnosis, drug discovery, healthcare monitoring, etc. In human activity recognition,
the human body, a compound of biochemistry, has a rich set of electrophysiological and
kinematic variables that could be measured on the body to indicate the status and action of
the object. Figure 6 summarizes the biological variables used in the task of HAR.

Figure 6. Physiological sensing modalities for HAR.

(A) Electrophysiological Signals

Electrophysiology focuses on the electrical properties of the neurons, molecular and
cellular, of living beings. The behavior of neurons is essentially based on the electrical and
chemical signals inside the physical body. A series of high-level expressions and actions
could be interpreted by monitoring those signals. EMG (electromyography), ECG (electro-
cardiogram), EEG (electroencephalogram), and EOG (electrooculography) are commonly
monitored electrophysiological signals in clinical scenarios. Research works in the last
decade showed a significant contribution of electrophysiological signals in human behavior
interpretation. For example, electromyography is a diagnostic procedure that monitors the
electrical signals of muscles and motor neurons. Pancholi et al. [91] developed a low-cost
EMG sensing system to recognize the arm activities such as hand open/close or wrist
extension/flexion. Srikanth et al. [92] focused on the recognition of complex construction
activities with wearable EMG and IMU sensors in a neural network-based way. Similar
work has been explored for hand gesture recognition [93,94], human–computer interac-
tion [95,96], etc. ECG records the electrical signal during the heartbeat. With up to twelve
electrodes, ECG signals are commonly used to check different heart conditions. The ECG
signal is also a popular explored signal for HAR and commonly combined with other
inertial sensors [97,98]. Since the cells in the brain communicate through fast electrical
impulses, researchers developed EEG equipment to record the brain’s electrical activity
by using small metal electrodes attached to the scalp [99]. The signal was also explored in
HAR such as eyes open/close [100], emotion recognition [101], etc. EOG is a technique for
recording the capitalization on the eyes’ cornea–retina potential difference. Typical basic
applications of EOG signals are ophthalmological diagnosis and eye movement recording.
However, researchers have already explored the potential of EOG signals in HAR [102].
Lu et al. [103] also proposed a dual model to achieve EOG-based human activity recognition
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with an average recognition accuracy of 88.15% according to three types of activities (i.e.,
reading, writing, and resting). Besides the above-listed commonly used electrophysiologi-
cal signals, many other related signals describing various electrical body-related variables
could be explored for HAR tasks. Electrophysiological signals need more effort for activity
interpretation compared with other sensing approaches because of the complexity of body
anatomy and are used mostly as an auxiliary role. However, they have advantages such
as ubiquity and the on-body measurement, indicating the potential of wearables in the
implementation stage.

(B) Other physiological signals

An example is from Paolo Palatini’s study [104] exploring the relation between sports
and blood pressure. One of the conclusions is that both systolic and diastolic blood pressure
increase significantly during weight lifting, which is a solid support to the current belief
that people with hypertension should not take isometric sports. Besides the blood pressure
observation, monitoring kinematic signals such as respiration and heart rate plays a critical
role in sleep studies, sports training, patient monitoring, etc. Lu et al. [105] designed a
wearable sensor system with the fusion of heart rate, respiration, and motion measurement
sensors to enhance the energy expenditure estimation. Their study shows that the fusion
design supplies more stable estimation than existing systems. Brouwer et al. [106] improved
real-life emotion estimates based on heart rate. Li et al. [107] proposed a sleep and wake
classification model with heart rate and respiration signals for long-term sleep studies and
reached 88% classification accuracy. Plenty of research work utilized the two sensing modal-
ities in wearable configuration to monitor medicine and health state [108,109]. Phonation
is when the vocal folds produce certain sounds through vibration, which has also been
explored to help disabled and unhealthy individuals for a better expression or understand-
ing. Lee et al. [110] developed a lip-reading algorithm using optical flow and properties
of articulatory phonation for hearing-impaired people, supplying them with continuous
feedback on their pronunciation and phonation through lip-reading training, aiming for
more effective communication with people without hearing disabilities. Gomez et al. [111]
proposed a monitoring approach of Parkinson’s disease leveraging biomechanical insta-
bility of phonation for the frequent evaluation at a distance. Muscle (either on facial or
other body parts) and joint movement monitoring is a more straightforward way for hu-
man activity recognition. The movement can be perceived by a series of sensors such as
fabric stretch sensors, capacitive sensors, laser doppler vibrometry, etc. Applications based
on muscle/joint movement monitoring include hand gesture recognition [112], physical
stress [113], gait cycle estimation [114], chronic pain level recognition [115], etc. As elec-
trophysiological sensing, kinematic biological sensing is an on-body approach that the
monitoring can be placed near the body, enabling continuous observation and remote
feedback, especially for healthcare, diagnosis, and rehabilitation applications.

3.4. Field Sensing

The field is a concept in physics, inferring a region in which each point will be affected
by force. For example, electric charges will form an electric field. When another charged
particle is placed in the electric field, it will bear an electric force that either repels or attracts
it. A magnet will generate a magnetic field surrounding it, and a paper clip in the range of
the field will be pulled towards the magnet. Two like magnetic poles will also repel each
other when they are close enough to be in the range of either magnetic field. Any object
with a quality on Earth will fall to the ground because of its gravity, as it is affected by the
force of Earth’s gravitational field.

The field strength means the magnitude of a vector-valued field. For example, in the
electric field, the strength is represented by the unit of volts per meter (V/m). In the mag-
netic field, the field is represented by Oersted*Ampere/meter (Oe*A/m). Moreover, when
the flux density defines the strength, the Gaus (G) units or Tesla (T) are used. The gravi-
tational field strength is measured in meters per second squared (m/s2) or Newtons per
kilogram (N/kg). All the units used to represent the field strength are vector-valued.
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Another approach to know the field strength is to look at the field contour lines. The closer
the lines are, the stronger the forces in that part of the field are, and the stronger the field
strength is.

Figures 7–9 show an electric field of a parallel plate capacitor, a magnetic field activated
by a Helmholtz coil, and the gravitational field of the Earth, respectively. Field-based
sensing is based either on the field strength measurement (such as magnetic field strength)
or the strength variation caused by characteristics indirectly (such as the potential change
of the capacitor, the pressure of object caused by the gravity).

Figure 7. Eletric field (parallel plate capacitor).

Figure 8. Magnetic field (Helmholtz coils).

Figure 9. Gravitational field of Earth.

(A) Electric Field

The electric field is ubiquitous in our environment since any potential difference
will construct an electric field. Either powered objects (such as appliances, walled power
cables, etc.) or non-powered conductive items (such as metal frames near the power
cable in a building, the human body, etc.) will activate an electric field to near objects
that have a different potential level (especially the ground). The potential difference is
essentially a difference in charge distribution. A typical example is that people sometimes
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feel mildly shocked when touching an appliance, even when the appliance is powered off.
This is because there is a possibility of residual charge remaining inside the capacitors of
the electronic circuits, which takes a little time to discharge. When the appliance is not
appropriately grounded, touching it will cause a mild shock as the charge is transferred to
the neutral body.

There are mainly two kinds of electric field-based HAR applications—active or
passive—depending on the emitter of the field. An active electric field-based HAR ap-
plication delivers the field variation as a signal source when the field is emitted from the
environment and the human acts as an intruder. A passive one delivers the field variation
when considering the electric field emitted from the body itself to the ground since the
human body is a perfect conductor and can store the charges. The passive electric field
describes a biological signal of the body, the human body capacitance, which will be intro-
duced in the following subsection of the hybrid sensing technique in HAR. Here we firstly
focused on the active electric field-based HAR application.

A very representative work is from Zhang et al. [116], where they introduced room-
scale interactive and context-aware applications with a system named Wall++, which is a
low-cost sensing technique that turns ordinary walls into smart infrastructures. The system
can first track users’ touch and gestures and estimate body pose when close with the
principle of active mutual capacitance sensing, which measures the capacitance between
two electrodes (namely the electric field strength between the electrodes). When a body part
is near a transmitter–receiver pair, it interferes with the projected electric field, reducing
the received current, which can be measured for inferencing. On the other hand, if the
user’s body touches an electrode, it dramatically increases the capacitance and the received
current. Secondly, the system could also work in a passive airborne electromagnetic sensing
mode to detect and track the active appliances and users when wearing an electromagnetic
emitter. Another typical work is from Cheng et al. [117], where the authors used conductive
textile-based electrodes that are easy to be integrated into garments to measure changes
in the electric field strength (in capacitance) inside the human body. Since those changes
are related to motions and shape changes of muscle, skin, and other tissue, the authors
thus abstracted high-level knowledge from the changes and inferenced a broad range of
activities and physiological parameters. For example, they embedded the prototype into
a collar and performed quantitative evaluations of the recognition accuracy of actions
such as chewing, swallowing, speaking, sighing (taking a deep breath), and different head
motions and positions. There are other similar works based on active electric field sensing,
such as touch detection [118], body tracking based on smart floor [119], respiration, heart
rate, stereotyped motor behavior recording [120], hand gesture recognition [121], etc.

Active electric field sensing is non-intrusive, low-cost, has low power consumption,
and has excellent potential for pervasive privacy-respecting environmental sensing. How-
ever, it is still more complex in hardware construction compared with the passive electric
field sensing mode. Furthermore, it can be affected by electromagnetic interference. Thus
its reliable operation has a demand in environmental conditions.

(B) Magnetic Field

Magnetic field sensing is an active approach for distance-based motion sensing. There
are mainly two magnetic field-based motion-sensing systems depending on whether the
magnetic field was generated by the direct current (DC) or alternative (AC) current.

In DC magnetic field motion sensing systems, electromagnets or permanent magnets
are often used to generate the magnetic field. A magnetic sensor (magnetometer) senses the
magnetic field strength. Since the magnetometer is widely embedded into wearable devices,
the DC motion sensing system has been extensively explored for finger/hand tracking
to enable a novel machine input approach. Chen et al. [122] designed a system named
uTrack, which converts the thumb and fingers into a 3D input system using magnetic
field sensing. A permanent magnet was affixed to the back of the thumb, and a pair
of magnetometers were worn on the back of the fingers. A continuous data stream was
obtained by moving the thumb across the fingers and was used for 3D pointing. The system
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shows a tracking accuracy of 4.84 mm in 3D space. Similar works [123,124] were conducted
using a permanent magnet as the field generator for motion tracking.

In contrast, AC magnetic field sensing is mostly composed of oscillation-based mag-
netic field transmitters and receivers. The transmitter mostly uses coils to generate an
alternating magnetic field. The receiver is also integrated with a coil to sense the strength of
the magnetic field at different distances from the transmitter coil. This principle is that the
oscillating magnetic flux through the receiver coils will induce an oscillating voltage with
the same frequency. The voltage is later used for distance or pose estimation. Oscillating
magnetic field has been explored in a variety of HAR tasks, such as indoor location [125],
finger tracking [126], human–computer-interaction [127], wearable social distance monitor-
ing [128–130], etc. It could also be implemented for underwater positioning to enable the
tracking or navigation of underwater-unmanned vehicles or divers [131].

The advantage of the DC magnetic field motion sensing system is that the magnet used
for field generating is easy to access. The sensing unit is at the chip level, thus enjoying the
pervasiveness regarding the wide use of smart wearable devices. Moreover, the tracking
accuracy can reach up to mm level. The disadvantage of such a system is located in the
short sensing range. Since the field attenuates quickly, the detection range is limited to
several centimeters. The AC magnetic field sensing’s performance in range and accuracy
mainly depends on coil design. The detection range could reach up to ten meters with
a larger transmitter coil. Ordinary everyday used furniture made of wood and textile
will not deform the distribution of the activated field. However, the drawback is that the
metallic objects will cause magnetic field distortions. Fortunately, researchers have tried to
address this issue by a secondary calibration (either with a look-up table or with neural
network-based calibration) step and achieved outstanding results [132].

(C) Gravitational Field

A gravitational field explains gravitational phenomena when a massive body produces
a force on another massive body. Earth’s gravity is denoted by g, describing the net
acceleration imparted to the physical objects caused by the combined effect of gravitation
(caused by the mass distribution within Earth) and the centrifugal force (caused by Earth’s
rotation). On Earth, gravity gives weight to physical objects. The weight is calculated by
multiplying the gravitational acceleration by the mass. Gravitational field-based HAR
tasks mainly utilize the pressure sensed by pressure sensors caused by the body’s weight.
Different pressure sensors are presented for HAR tasks, such as the commercially available
force-sensitive resistor (FSR), resistive textile, etc. By analyzing the pressure patterns
caused by the motion of the body, extensive HAR applications are explored, such as gait
analysis [133], workout recognition and user identification [134], indoor location [135],
smart furniture [136], rehabilitation [137], etc. The textile-resistive pressure sensor is
composed of a matrix of resistive units. By sensing the pressure of each unit from the
matrix, the user motion patterns can be delivered. For a small number of resistive units,
such as a few FSR units integrated into the insole, a one-dimensional data stream is used for
action recognition. For a large number resistive units such as would be found on a mat-like
surface, the data stream is usually converted to pressure images as two-dimensional arrays,
which can be processed by a neural network-based algorithm used in computer version
tasks for more accurate activity recognition.

One of the advantages of a pressure-based sensor is that the sensing component can
be customized to any shape and size. Thus it is suitable for a large scale of surface types
that needs to be sensed. The sensing precision could also be adjusted by arranging the
density of the sensing units. Cheap, commercially available layer-wise films commonly
construct the sensing unit. Thus the overall system is affordable to build. However,
the cost comes into the system’s deployment in a large area (such as floors for location
and tracking) since the sensing only occurs during contact, which is a drawback compared
with other sensing modalities such as RF-based sensing with no limitation of contact.
In summary, gravitational field-based HAR is a non-intrusive and straightforward motion
action monitoring and analysis method. It can be extensively deployed for intelligent
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ambient sensing but is limited by the contact constraints and cost of deployment in a
large area.

3.5. Hybrid / Others

(A) Human Body Capacitance

Human body capacitance (HBC) is essentially a biological variable describing the
capacitance between the human body and the environment, mainly the ground. It is also
a passive electric field-based sensing approach since the capacitance model comprises
two conductive plates that store charges (corresponding to body and environment in the
human electric field model) and a dielectric medium (corresponding to the air between
body and ground). Figure 10 depicts the human body capacitance in a living room, where
multiple electric fields exist, for example, the field between the appliance and the ground,
between the metal frames of the window/door to the ground, as well as the human
body capacitance between the body and the environment. person–person is a ubiquitous
biological parameter that could be explored for a wide range of human-centric motion-
related applications based on its sensitivity to both the body’s motion and the variation of
the environment.

Figure 10. Human body capacitance: the static electric field between the body and the environment.

Unlike other biological features, such as ECG, EMG, etc., HBC is a feature that interacts
with surroundings, especially the ground. Being insulated by the wearing, the body and
the surroundings form a natural capacitor. HBC is used to describe the charges stored
in the body. A series of studies [138–141] indicate a value of 100–400 pF of the body
capacitance. The value varies with respect to skin state [142,143], garment [144], body
postures [145], etc. Researchers have explored applications such as communication [146],
cooperation perceiving [147], motion monitoring [117,148,149], etc., based on the concept,
which has continued attracting the attention of researchers recently. Since HBC is a passive
signal, the sensing units were mostly designed in a small form factor with small power
consumption [149,150]. Wilmsdorff et al. [151] explored this passive capacitive sensing
technique with a wide range of applications indoors and outdoors. In [152], the authors
presented an HBC-based capacitive sensor for full-body gym exercise recognition and
counting; by sensing the local potential variation of the body, different kinds of body
actions could be classified. Besides motion sensing, HBC could also be used for proximity
and joint activity recognition [147] by exploring the human body capacitance variation
caused by the proximity and motion of an intruder.

As a passive motion-sensing approach, the systems based on human body capacitance
enjoy the advantage of low cost, low power consumption, portability, and full-body sensing
ability. However, although the sensitivity in motion and environmental variation forms
the potential ability of this variable, at the same time they also limit the development of it,
since any action, either from the body or from the environment, will induce an efficient
signal, and there is difficulty in recognizing the source of the signal.
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(B) Infrared

Infrared is electromagnetic radiation with wavelengths longer than visible light. The
heat energy from the objects with a temperature above absolute zero is emitted as elec-
tromagnetic radiation, which is caused by the constant motion of molecules embodying
heat. The electrons jump to higher energy band when they absorb energy by colliding
with another. They can also release energy in the form of photons when falling to a lower
energy band again. A hot molecule moves fast and generates higher frequencies (shorter
wavelengths) of electromagnetic waves. Usually, the human eye cannot sense this radiation
with infrared wavelengths, which can be measured by specific electronic sensors. Sensing
the human body’s infrared could deliver information such as body temperature, motion
trajectory, etc. Two kinds of sensors are commonly utilized for this purpose: the passive
infrared sensor (PIR) and the thermographic camera.

The electronic sensor PIR is designed to measure infrared (IR) light from objects.
The term passive indicates that this sensor does not emit energy during the detection
process. Instead, it detects the energy of infrared radiation from objects. It is widely
used from motion detection to automatic lighting applications. In the field of HAR, PIR
has been widely explored in the application of indoor positioning [153,154], device-free
activity recognition [155,156], etc. The sensor is widely available in the market with low
cost and low power consumption. The built system is privacy-secure and easy to deploy
and maintain. However, a PIR sensor only detects general movement. It does not give
information on who or what moved. For that purpose, a thermographic camera for imaging
IR is required.

A thermographic camera generates an image by infrared radiation, which is different
from a common camera sensing visible light. The objects with a temperature above absolute
zero can be detected by the thermographic camera, and an object with higher temperature
emits more radiation. Thus from the thermography, the temperature variations are also
visible. For example, humans and other warm-blooded animals stand out very well
against the environment, regardless of whether it is day or night. Thermography has
been widely used in medical diagnosis, in the military, etc. In HAR applications, it has
also been developed with image-processing algorithms for activity detection in residential
spaces [157,158], muscle activity evaluation [159], respiration monitoring [160,161], etc. For
detection in dark lighting conditions, namely in the work performed by Uddin et al. [162],
the authors used the OpenPose framework for thermal images to check the possibility of
body skeleton extraction. Their result shows that the thermal images can monitor humans
in dark environments where the other typical RGB cameras fail. Although thermographic
sensing could supply more detailed information on body action than the PIR approach, it
suffers lightly from the cost and the computing load.

3.6. Summary

Depending on the targeted application, researchers have explored different sensing
modalities to accomplish their tasks in HAR. Table 2 summarized the mainstream of the
sensing modalities and compared them with aspects of cost, power consumption level,
working type (active or passive), privacy concern, computing load, typical applications,
and their critical advantages and shortcomings. We also supplied some of the publicly avail-
able datasets of each sensing modality for HAR tasks in the table, so that readers can check
and have a better understanding of the data properties of each sensing technique, or try their
own mining approach on the dataset. The cost and power consumption express the practi-
cability of a sensing modality, such as the IMU as a low-cost and low-power-consumption
approach, which is the most widely explored aspect of HAR tasks. The compute load and
robustness, ranging from high to low, were ranked with specific references. Computations
that require large memory (over hundreds of megabytes) and complex instruction (such
as multiplication of float point data) are regarded as having a high compute load. A low
compute load needs simply a few instructions for one inference on weak devices such as the
micro-controller. High robustness indicates that the signal could hardly be interfered with
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by surroundings, such as the gravitational field. Bluetooth signal strength, as an example,
could be easily affected by a variation in the nearby environment. The typical application
lists the activities coarsely at a high level, such as the activity of daily living (ADL), which
includes all fundamental actions of a human in everyday life, such as sleeping, eating,
dressing, etc. The positioning includes the location of the whole body and the body part
such as the hand and finger. Gesture Recognition implies gestures performed by hand,
finger, arm, etc. Active/passive sensors indicate the complexity of the sensing modality
because of the existence of the signal sources. A privacy-respect sensor does not abstract
identity-sensitive messages from users, thus being more acceptable. The computing load
and robustness show the sensor’s working performance and are categorized into three
levels: “low”, “medium”, and “high”. Depending on the usage scenarios, each sensing
modality could be deployed targeting different tasks among “where”, “what”, and “how”.
A passive electric field, as an example, can be used for both positioning and action sensing.

IMU sensor and optic approaches (mainly video-based) are the two most popular
sensing modalities in the community, since the IMU sensor is pervasively deployed in
smart devices and outperforms in power consumption, cost, size, and the visual modality
can supply high accuracy for activity recognition benefiting from the advanced deep neural
network models for feature abstraction. They both are utilized to target a much wider
range of human activity recognition tasks than other sensors. However, there are still
certain limitations, such as that they both suffer from computational load. Especially for
the vision-based approach, which deals with 2D or 3D high resolution and high frame data
stream with hundreds of thousands of conventional operations challenging the hardware
resources, the computational load is high compared with other sensing modalities. Since
the images from a video capture massive identity messages, the privacy issues need to be
considered. The IMU sensors face accumulated errors, which results in the configuration
demand for each new start for positioning applications with the demand of high accuracy.

Wave-based sensing modalities (RF waves and acoustic waves) are active approaches
demanding signal sources from the sensing system and are mainly used for ambient
intelligence. The corresponding systems are generally weak in robustness since the wave
signal could be affected by the multipath effect (except for the UWB) and environmental
noises. However, they are particularly efficient in privacy-respect scenarios since no other
information beyond the wave property is collected. The cost and power consumption
of such systems are much higher than the IMU-based solution, but still lower than the
visual approach.

The electrophysiological signals (ExG) are perceived mostly by devices with high-
resolution analog-to-digital chips for healthy monitoring such as mental state, stress level,
sports quality evaluation, etc. The cost of such a system is relatively high compared with
IMU and most field-based approaches. Since the signal sensing units are mainly at the
chip-level design, the power consumption is an obvious advantage of those approaches.
Depending on the channel numbers, the computational load of electrophysiological signals
is distinct. The ECG signal, as an example, a simple rule-based approach that needs only a
few computer instructions, can be used to detect the critical features from it efficiently. The
EEG signal, on the other hand, requires a more complex algorithm to abstract the features
from multiple channels to uncover the messages behind it.

Pressure sensing is versatile since the sensing unit (mainly composed of conductive
layers) is highly customizable. Since the weight signal perceived from such a sensing
system is quite straightforward, the detection accuracy of a certain human actions is high.
However, maintaining such systems is costly because of the deployment complexity and
the limited lifetime caused by the long-term stressful contact.
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A magnetic field is a robust distance-based approach that can deliver reliable distance
information with a lower computational load. The approach is low-cost and wearable (after
minimizing), without limitation of multipath and line-of-sight. More importantly, it can be
used for positioning in the underwater environment, which blocks most of the positioning
techniques because of the quick attenuation of the adopted medium (such as RF-signal) in
water. However, the detection range is limited by a few meters with the active magnetic
field and a few decimeters with the passive magnetic field.

The electric field has recently become a novel sensing approach for HAR tasks, distin-
guished by its ability in full-body motion sensing and environmental electric sensing. It
also enjoys the advantages of low power consumption and wearability. Since electrons exist
anywhere in the environment where people live, including the human body, the body’s
motion will deform the distribution of the electric field. Therefore, human activity could be
deduced by perceiving the electric field variation, either on the environmental side or on
the body side. However, the environmental noise is a big challenge for electric field-based
sensing and is hard to overcome because of the pervasiveness of the surrounding objects
acting as noise sources.

4. Outlooks

HAR relates to a wide range of tasks that deal with daily life with digitalization, aiming
to assist people to have a better quality of life. As the keystone, sensing skills for HAR tasks
are still under intensive development. Based on the surveyed most prominent sensing
techniques in this manuscript, we further conclude some outlooks on the development of
sensing skills for HAR tasks.

• Sensor fusion: The sensor fusion method has great potential to improve sensing
robustness by fusing different sensor data. Each sensor modality has inherent strengths
and weaknesses. By merging data from various sensor modalities, a robust data model
can be generated. For example, the long-term positioning tasks with a high-rate
IMU sensor will be disturbed by the integration errors, which could be addressed
by a lower rate sensor that provides absolute anchor points (such as visual features).
Some classic and efficient algorithms could be designed for sensor fusing, such as
Kalman Filter [180]. As another example, the electric field sensors can perceive the
straightforward proximity information of an individual. Meanwhile, they are sensitive
to environmental variation, resulting in multi-source issues. By deploying motion
sensors such as IMU on both individuals and the environment, the electric field
signal source could be recognized. Such fusion approaches could not only address the
weakness of a particular sensing modality but also provide a more holistic appreciation
of the system being monitored.

• Smart sensors: Driven by the pervasive practical user scenarios and power-efficient
data processing techniques, as well as the chip manufacturing technology, there is an
apparent trend that sensors are becoming smarter with the ability to process the signal
data locally. Compared to conventional sensor systems, smart sensors take advantage
of emerging machine learning algorithms and modern computer hardware to create
sophisticated, intelligent systems tailored to specific sensing applications. In recent
years, many smart sensors have been proposed for HAR tasks such as the pedometer
integrated IMUs (BMI270), gesture recognition integrated sensors (PAJ7620), etc. All
the recognition, classification, and decision processes are executed on the smart sensor
system locally instead of uploading the raw data to the cloud for inferencing. Thus,
the user’s privacy is well protected, and the computing load of the central processing
unit is significantly reduced.

• Novel sensors: With the development of materials and fabrication technology, novel
sensing techniques and devices emerge to provide a broader perceiving ability to-
wards the body and environment where people live. Novel sensors for HAR offer an
alternative or complementary approach to existing solutions. More importantly, they
supply a new method for body or environment knowledge collection that the current
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sensing technique cannot supply. An example is a microelectrode-based biosensor,
which has been proposed for long-term monitoring of sweat glucose levels [181].
The multi-function microelectrode-based biosensor is fabricated on a flexible substrate,
which offers greater wearing comfort than rigid sensors, thus providing long-term
on-skin healthy monitoring.

Besides that, sensors are becoming more compact and power-efficient to provide
always-on monitoring, or the sensors will be only in an active state triggered by a specific
event. The energy harvesting techniques also provide ambient energy for sensors to extend
the power life. With the growing number of wearable devices, the health monitoring
sensors [182] are being deployed more near the body for continuous and real-time analysis
of sweat, blood, etc., such as EEG monitoring by smart watches, or stress sensing by the
Fitbit smart band, which uses an electrodermal activity skin response sensor to obtain
a reading when the palm of user’s hand is pressing the metal outer rim, and then the
corresponding app will analyze the overall stress.

5. Conclusions

This work focused on the mainstream sensing techniques for HAR tasks, aiming to
supply a concrete understanding of the variant sensing principles for younger community
researchers. We categorized the human activities into three classes: where, what, and how,
for body position-related, body action-related, and body status-related services. This task-
oriented categorization aims to supply a basic concept of the objectives of human activity
recognition. We also categorized the HAR-related sensing modalities into five classes:
mechanical kinematic sensing, field-based sensing, wave-based sensing, physiological
sensing, and hybrid/others, based on the properties of the sensing medium, aiming to
give a better understanding of the sensing technique’s physical background. Specific
sensing modalities were presented in each category with state-of-the-art publications and a
discussion of the modality’s advantages and limitations. A summary and an outlook of the
sensing techniques were also discussed. We hope this survey can help newcomers have a
better overview of the characteristics of each sensing modality for HAR tasks and choose
the proper approaches for their specific applications.
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Abstract: The camera is the main sensor of vison-based human activity recognition, and its high-
precision calibration of distortion is an important prerequisite of the task. Current studies have
shown that multi-parameter model methods achieve higher accuracy than traditional methods in
the process of camera calibration. However, these methods need hundreds or even thousands of
images to optimize the camera model, which limits their practical use. Here, we propose a novel
point-to-point camera distortion calibration method that requires only dozens of images to get a
dense distortion rectification map. We have designed an objective function based on deformation
between the original images and the projection of reference images, which can eliminate the effect
of distortion when optimizing camera parameters. Dense features between the original images and
the projection of the reference images are calculated by digital image correlation (DIC). Experiments
indicate that our method obtains a comparable result with the multi-parameter model method using
a large number of pictures, and contributes a 28.5% improvement to the reprojection error over the
polynomial distortion model.

Keywords: camera calibration; point-to-point camera distortion calibration; vision-based human
activity recognition; speckle pattern; digital image correlation

1. Introduction

In recent years, vision-based human activity recognition (HAR) has developed rapidly
with many exciting achievements [1–3]. Camera calibration is the upstream task of vision-
based HAR, which can establish the mapping between real space and image space. Its
accuracy determines the performance of downstream tasks such as feature points recog-
nition and 3D reconstruction, and thereby affects the final performance of vision-based
HAR [4]. For instance, the fisheye camera, which has been widely used in HAR tasks
in the field of monitoring and security, although it has an ultra-wide-angle field of view,
the object at the edge of the fisheye image has great deformation and serious information
distortion. If the distortion of the camera is not accurately calibrated, it will seriously affect
the accuracy of the subsequent algorithm. So, camera calibration is of great significance to
vision-based HAR, containing daily activity recognition, self-training for sports exercises,
gesture recognition and person tracking [5].

Distortion calibration of the camera impacts the accuracy of other parameters’ estima-
tions. With the development of this field, distortion models’ degree of freedom is increasing,
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thus, there is much difference compared polynomial distortion models with point-to-point
distortion models. In 1992, Weng [6] summarized distortion camera models, namely, radial,
decentering, and thin prism distortions, which describe the real distribution of distortion
by polynomials and parameters. Polynomial distortion models are idealized models and
have a gap with the actual camera imaging relationship, resulting in limited accuracy of the
calibration method. For higher accuracy of distortion calibration, some general distortion
models and corresponding calibration methods [7–13] are proposed.

Since radial distortion is the main distortion of the camera, some researchers [7,8]
developed a general radial distortion model that does not adopt a classical two-to-six
parameter radial distortion, but rather a freer form of radial distortion. Inspired by their
success, more general distortion models have been developed [9–13], describing lens
distortion per pixel or by some kind of interpolation. In this kind of model, as distorted
points can be extracted directly, the key problem to be solved is how to determine the
original position (of pixels or spaces) of distorted points. Sagawa et al. employed structured-
light patterns to obtain a dense distortion sample; the camera is aligned opposite to the
target to make the feature points fixed [9]. Aubrey K. et al. set a synthetic image plane
and recorded distortion as bias between real camera images and images projected on the
synthetic image plane [10]. Jin et al. assumed that distortion in the central area of the
image plane is negligible, and calculated distortion of the surrounding area by cross-ratio
invariance [13]. Based on a raxel model, Thomas S. et al.’s pipeline [11] achieved the highest
accuracy, but needs a large number of images. In our method, we designed a novel objective
function that treats the distortion of each pixel as a constant quantity between different
images and reprojects reference images by optimization results to create “virtual photos”
which can determine the original position of distorted points.

Our method is based on the central generic camera model, which assumes all lights
pass through a single optical center in the imaging process. Since the rays diverge from
a point in the central generic camera model, the order and spacing ratio of rays remains
unchanged, and the distortion rectification map remains unchanged with distance. Accord-
ingly, there are sufficient reasons to believe that the distortion of a pixel is consistent across
images taken with the same camera, which is the basis of our objective function.

Before the iteration, using the initial estimation of parameters with Zhang’s calibration
method [14], we reprojected reference images to create “virtual photos” and extract dense
features between “virtual photos” and original images. We designed our objective function
to be a mean square error of the deformation between the “virtual photos” and original
images. This objective function can remove the influence of distortion during parameter
optimization, and obtain a more precise estimation of the camera parameters and target
pose in each image.

To describe deformation adequately in the objective function, dense features are
needed in our method. Although active phase targets can provide dense features [9,10,15,16],
they are inconvenient to use. Chen et al.’s work [17] verified the accuracy and stability of
feature detection methods based on digital image correlation (DIC). In Gao et al.’s work [18],
the result of DIC is used to determine the accuracy of camera distortion calibration. Inspired
by them, we incorporated a speckle pattern target and DIC into our camera calibration
method, but unlike Chen, we did not utilize polynomial distortion models, but rather a
full-pixel distortion description.

Since the polynomial distortion model is only an approximation of real distortion, the
results of the camera calibration method based on the polynomial distortion model will be
affected by incomplete distortion estimation. Our method can establish a point-to-point
correspondence between distorted pixels and rectified pixels, which describes the camera
distortion more comprehensively, and then gets a more accurate estimation of the camera
parameters. Compared with methods based on the raxel model, our method needs only
dozens of images, and strict experimental conditions are not required.

In our results, distortion is calculated for each point as the average value of the
DIC calculation results across multiple images, which eventually formed a distortion
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rectification map that mapped images taken by the camera to undistorted ones. Figure 1
displays a distortion rectification map obtained by our point-to-point distortion calibration
method. Figure 2 illustrates the difference between Figure 1 and the distortion rectification
map obtained by Zhang’s method with a polynomial distortion model using the same set
of calibration images, indicating free distortion, which the polynomial distortion model
cannot describe.

Figure 1. (a) Distortion rectification map of point-to-point calibration method for X directions;
(b) Distortion rectification map of point-to-point calibration method for Y directions.

Figure 2. (a) Distortion rectification map of point-to-point calibration method subtracted from
distortion rectification map of Zhang’s calibration method for X directions; (b) Distortion rectification
map of point-to-point calibration method subtracted from distortion rectification map of Zhang’s
calibration method for Y directions.

The paper is organized as follows. Section 2 illustrates relative work. Section 3
introduces the camera model and lens distortion in our method. Section 4 describes our
point-to-point distortion calibration method. In Section 5, experiments are performed to
verify our method’s effectiveness. In Section 6, we discussed the issues not mentioned
above. Finally, the conclusion is made in Section 7.

2. Related Work

2.1. Camera Model

From special to general, camera models can be classified as perspective cameras,
central generic cameras, and non-central generic cameras [19]. The perspective camera is a
single-view camera described by a pinhole imaging model, in which the imaging process is
subjected to projective transformation, containing the finite projective camera and affine
cameras [20].

The central generic camera contains the wide-angle camera, fisheye camera, and
other cameras with refraction and reflection [19], which is unlikely to undergo a projective
transformation and has a single focal point. In the imaging process of this camera, since the
rays radiate from only one point, the order and spacing ratio of the rays remain unchanged,
and the distortion rectification map remains constant with distance. That is why a distortion
rectification map can describe the central generic camera’s distortion. Following distortion
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rectification, the central generic camera is simplified to be a camera that conforms to the
pinhole imaging model.

The non-central generic camera is also referred to as a general camera. It lacks a
single focal point, the order and spacing ratio of the rays will vary with distance, and the
distortion rectification map cannot be used for distortion correction. Michael D. Grossberg
and Shree K. Nayar from Columbia University first proposed a raxel model for a general
camera [21], which uses a point p and a direction q to describe a ray entering the camera
from the outside and colliding with the sensor. Subsequent works on general camera
calibration have adopted the raxel model [11,19,22–24].

2.2. Pattern Design and Feature Detection

While a chessboard or circle pattern target is usually used in camera calibration,
methods for improving feature detection precision have been proposed [25–29]. Ha, and
Hyowon et al. discussed a triangle pattern target [30]. The intersection of three triangles
can be approximated using a series of third-order polynomials as control points. An active
phase target is also used for calibration [9,10,15,16], which provides more freedom for
feature setting and de-focus situations. Chen et al. utilized speckle patterns and extracted
feature points using the DIC method [17]. Experiments demonstrated that calibrating with
a speckle pattern produces a smaller reprojection error than calibrating with a chessboard
or circle pattern.

2.3. Digital Image Correlation Method

Digital image correlation (DIC), first proposed by researchers from the University of
South Carolina [31], is a method for determining material deformation. In its application
there are two kinds of DIC: (1) 2D-DIC, which is used for flat materials and requires
the materials to remain flat during measurement; and (2) Stereo-DIC, which is used for
three-dimensional materials and deformation, and can handle more variable situations.

The core objective of DIC algorithms is to match points of interest (POI) from the
speckle pattern feature on the surface of materials in images, which usually consists of
two main steps: (1) obtaining an initial guess and (2) iterative optimization. In the first
step, there are methods such as correlation criteria [32,33], fast Fourier transform-based
cross-correlation (FFT-CC) [34], and a scale-invariant feature transform (SIFT) [35] for a
path-independent initial guess. For iterative optimization, Bruck HA et al. [36] proposed
the forward additive Newton–Raphson (FA-NR) algorithm, which was later improved
and widely used. As calculating the gradient and the Hessian matrix in optimization
progress is a noticeable burden, one feasible approach is simplifying the Hessian matrix
by making some assumptions, thereby converting it to a forward additive Gauss–Newton
(FA-GN) algorithm. Pan, B. et al. introduced the (IC-GN) algorithm into the DIC [37],
which maintains a constant Hessian matrix and can be pre-computed.

3. Model of Camera and Lens Distortion

A camera can be regarded as a mapping between a 3D world and a 2D image. Our
method was developed to address the issue of central generic camera calibration. To
describe this 3D–2D mapping, we combined a pinhole camera model and a point-to-point
lens distortion model.

3.1. Pinhole Camera Model

In the pinhole camera model, point Pw in the 3D world was transformed into a point
(u, v) in an image after transformation in Equation (1) [20]. T (Equation (2)) is a rigid body
transformation from point Pw in the world coordinate system to point (X, Y, Z) in the camera
coordinate system, using the rotation matrix R and translation matrix t. A (Equation (3)) is
an inner parameter matrix that transforms the point in the image coordinate system (the
normalized camera coordinate system) to point (u, v) in the pixel coordinate system, where
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fx and fy are focal lengths in pixels, and cx and cy are pixel coordinates of the principle
point. To normalize the image plane, the formula is divided by Z.⎡

⎣ u
v
1

⎤
⎦ =

1
Z

A · d(T · Pw) (1)

T =

[
R t

0 1

]
(2)

A =

⎡
⎣ fx 0 cx

0 fy cy
0 0 1

⎤
⎦ (3)

Distortion d in Equation (1) describes the geometric deformation arising from the
optical imaging system. In Zhang’s method [14], distortion is employed on normalized
image planes using polynomial representation [6]. However, in our method, for generality,
distortion is defined as unknown mapping.

3.2. Point-to-Point Lens Distortion Model

This section will illustrate the generality of the point-to-point lens distortion model
and its representation. Since A is a linear transformation, we can modify Equation (1) to
apply distortion mapping on pixel coordinates.⎡

⎣ u
v
1

⎤
⎦ = D

(
1
Z

A · T · Pw

)
(4)

By substituting D for d, the representation and rectification progress of distortion can
be simplified. The distortion calibration result obtained with this lens distortion model
can be shown as a point-to-point distortion rectification map. It can describe distortion
caused by any central generic camera. If we rectify a central generic camera after obtaining
point-to-point distortion rectification mapping, it is simplified to be a camera that conforms
to the pinhole imaging model.

Figure 3 illustrates the mechanism of rectifying a camera with point-to-point distortion
rectification mapping. Point-to-point mapping contains a mapping of the X direction and
a mapping of the Y direction, which is stored as two matrices. Assuming a feature point
is (ude, vde) in a deformed image, the corresponding point with the same feature in the
reference image is point (u, v). An element (u, v) in the mapping matrix of the X direction
stores the displacement dx

u,v of feature point (ude, vde)’s location in the deformed image
relative to feature point (u, v)’s location in the reference image in the X direction. It is
identical for the mapping matrix of the Y direction. Following that, the location of feature
point (ude, vde) in the deformed image can be calculated using feature point (u, v)’s location
in the reference image and element (u, v) in the mapping matrix of X and Y directions, as
displayed in Equation (5).

ude = u + dx
u,v

vde = v + dy
u,v

(5)

For every point (u, v) in the reference image, we can obtain its pixel value by copying
the value of the corresponding point (ude, vde). If displacements dx

u,v and dy
u,v are decimals,

bilinear interpolation is performed to obtain the value of the point (ude, vde). Going through
every point (u, v) to obtain its value by Equation (5) and bilinear interpolation, a complete
distortion corrected image is generated.
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Figure 3. Mechanism of point-to-point mapping.

4. Method

Our method consists of three stages, which share the same set of calibration images.
The first stage is an initial estimation. DIC method [38] is applied on images of speckle
pattern calibration targets. Then, using Zhang’s approach, a set of control points extracted
from DIC result is used for calibration. In the second stage, all parameters and distortions
are optimized using a novel object function. In the third stage, distortion rectification
mapping is extracted via point-to-point calculation. We will discuss each stage in detail in
the following sections.

4.1. Initial Estimation

Our calibration target is based on a speckle pattern synthesized from Equation (6) [39].
In Equation (6), n and D are the number and radius (unit in pixels) of speckle, respectively.
(xk, yk) is the random location of the kth speckle with a random peak intensity of I0

k.
The synthesized speckle pattern image is shown in Figure 4a, which is denoted as Ir.
We printed it as our calibration target. Additionally, we created a mask Im with logical
value representation, indicating the scope of the speckle pattern in image Ir, as displayed
in Figure 4b.

I(x, y) =
n

∑
k=1

I0
k exp

[
− (x − xk)

2 + (y − yk)
2

D2

]
(6)

Figure 4. (a) Speckle pattern image; (b) Mask of speckle pattern image.
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With the camera to be calibrated, we captured 15–30 images of this camera calibration
target; the ith image is denoted as Id

i . We allowed the speckle pattern area to extend beyond
the photo’s edge. Figure 5 illustrates a calibration target’s pose in our calibration image.
A rectangle outlines the image with thick solid lines. The array of black points represents
control points for initial estimation. It is a noticeable principle that the speckled area can
exceed the scope of the image, as shown on the left and bottom of Figure 6, but the array of
control points must remain inside the scope of the image.

Figure 5. Taking an image of the speckle pattern calibration target.

Figure 6. A group of images for DIC calculation in the second stage of our method, containing:
(a) reprojection of reference image; (b) projection of mask; (c) image taken by the camera.

For initial estimation, we employ Zhang’s camera calibration method. Control points
are extracted from the result of the DIC calculation performed on these images. DIC
calculation can determine a point-to-point correspondence between points in reference and
deformed images. The result of DIC calculation is expressed as displacement of pixels in
the deformed image relative to corresponding pixels in the reference image. Equation (7)
represents DIC calculation, where Ir is a reference image, Im is the mask of Ir, and Id

i is
the deformed image. The displacement of all the pixels can be denoted as two mapping
matrices, Mx

i and My
i , corresponding to X and Y directions, respectively. If we have n

deformed images, there are 2n mapping matrices.

Mx
i , My

i = (Ir, Im, Id
i ) (7)

By using the DIC approach, we can obtain the displacement of pixels in the speckle
pattern area of each Id

i relative to the corresponding point in Ir by the DIC method. We
took displacement of an array of pixels in Ir and calculated their corresponding subpixel
coordinates in a deformed image Id

i using displacement and pixel coordinates in Ir, as in
Equation (5). These corresponding points were saved as control points.

From initial estimation, we obtained camera parameter A and the pose of calibration
targets Ri and ti. Radial and tangential distortion is considered to obtain a more accurate
calibration result.
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4.2. Optimization with a Novel Objective Function

At this stage, we performed optimization with a novel objective function, Equations (11)–(13),
that is also based on DIC. A, Ri, and ti were used as optimization variables, with initial guess
calculated by Zhang’s method. Then, we set radial and tangential distortion parameters
to zero and reprojected reference image Ir with parameters A, Ri, and ti to obtain “virtual
photos” Pr

i , as in Equation (8). The mask Im was also projected with the same method, as
in Equation (9). Therefore, Pm

i is a mask that indicates the scope of the speckle pattern in
image Pr

i .
Pr

i = Proj(A, Ri, ti, Ir) (8)

Pm
i = Proj(A, Ri, ti, Im) (9)

For every pixel in the projection of reference image Pr
i , the DIC method can obtain the

displacement of the corresponding point in distorted image Id
i taken by the camera, as in

Equation (10). A group of these, Pr
i , Pm

i and Id
i , is illustrated in Figure 6. It is worth noting

that Pr
i and Pm

i share the same estimation of pose corresponding to Id
i .

M′x
i , M′y

i = (Pr
i , Pm

i , Id
i ) (10)

Our objective function is set as the square error of these 2n mapping matrices, as in
Equations (11)–(13). Δpx

u,v,i is element (u, v) of M′x
i , meaning X direction displacement of

point (u, v) in image Id
i relative to the corresponding point in image Iproj

i . Δpx
u,v is average

of Δpx
u,v,i for every Δpx

u,v,i that does not equal to 0, nx is the number of Δpx
u,v,i that we took

into account. Δpy
u,v,i and Δpy

u,v are all the same for Y coordinate.

min∑
u,v

n

∑
i

[(
Δpx

u,v,i − Δpx
u,v

)2
+

(
Δpy

u,v,i − Δpy
u,v

)2
]

, ∀Δpx
u,v,i �= 0, Δpy

u,v,i �= 0 (11)

∀Δpx
u,v,i �= 0, Δpy

u,v,i �= 0 (12)

Δpy
u,v =

∑
i

Δpy
u,v,i

ny
, ∀Δpy

u,v,i �= 0 (13)

This objective function means to minimize the difference of displacements between Pr
i

and Id
i . When the optimization process was complete, we obtained new camera parameters

and pose of calibration target, namely Ao, Ro
i , and to

i .

4.3. Distortion Rectification Map Extraction

Distortion rectification maps of X and Y directions were calculated with reference
image Ir, calibration images Id

i , and parameters Ao, Ro
i , and to

i , obtained in optimization
using a novel objective function.

Using parameters Ao, Ro
i , and to

i , we reprojected reference image Ir and its mask Im to
obtain “virtual photos” Tr

i and their mask Tm
i , as in Equations (14) and (15). DIC analysis

was performed on every part of Tr
i , Tm

i , and Id
i , as in Equation (16). Δpo,x

u,v,i is element

(u, v) of Mo,x
i , and Δpo,y

u,v,i is element (u, v) of Mo,y
i . Δpo,x

u,v is the average of every Δpo,x
u,v,i

that does not equal 0, as in Equation (17). no,x is the number of Δpo,x
u,v,i that we took into

account.Δpo,y
u,v,i and Δpo,y

u,v are all the same for Y coordinate, as in Equation (18). The result(
Δpo,y

u,v, Δpo,y
u,v

)
is displacement

(
dx

u,v, dy
u,v

)
used in Equation (5). Therefore, point-to-point

mapping of lens distortion is obtained.

Po,r
i = Proj(Ao, Ro

i , to
i , Ir) (14)

Po,m
i = Proj(Ao, Ro

i , to
i , Im) (15)

Mo,x
i , Mo,y

i =
(

Po,r
i , To,m

i , Id
i

)
(16)
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Δpo,x
u,v =

∑
i

Δpo,x
u,v,i

no,x
, ∀Δpo,x

u,v,i �= 0 (17)

Δpo,y
u,v =

∑
i

Δpo,y
u,v,i

no,y
, ∀Δpo,y

u,v,i �= 0 (18)

5. Experiments

We conducted experiments to ascertain our method’s efficacy and priority. The conver-
gence stability of our point-to-point distortion calibration method was proved by repeating
experiments, which were repeated 10 times on 10 groups of images. Additionally, we
evaluated the accuracy of the distortion rectification map calculated from the result of
7 training processes using a test set that was not used for the previous calibration. Ad-
ditionally, the influence of the number of calibration images on the calibration results
was investigated. We compared the performance of the distortion calibration results
between our method, Zhang’s method [14], and Thomas S. et al.’s method [11], using
1920 × 1080 pixels laparoscopy, demonstrating a reprojection error and RMSE of camera
parameter estimation. The ablation experiment demonstrated that optimization with a
novel objective function and point-to-point calculation of lens distortion contributed to the
final result’s improvement.

5.1. Experimental Procedures

The 2D targets employed in the experiments of Zhang’s method were circular and
checkerboard pattern targets. We also adopted the deltille grid target proposed by Ha et al. [30]
and the speckle pattern target proposed by Chen et al. [17]. As depicted in Figure 7a, the
speckle pattern was synthesized using Equation (1) with n = 1.5 × 104 and D = 60 pixels
in a resolution of 4000 × 4000 pixels2. It was printed on adhesive matte paper by HP
Indigo 7600 and stuck on a piece of glass to serve as a calibration target of 6 × 6 cm2. The
circular pattern calibration target consisted of circulars with a 3 cm diameter and 6 cm
center distance, forming a 7 × 7 array, as depicted in Figure 7b. The deltille grid pattern
calibration target was composed of equilateral triangles with a side length of 6 cm and an
arrangement, as demonstrated in Figure 7c. The checkerboard pattern calibration target
had 6 × 6 cm2 squares, forming an 8 × 8 array, as in Figure 7d. The circular pattern,
deltille grid pattern, and checkerboard pattern calibration targets were all printed on an
alumina sheet with a glass substrate. To make a comparison under the same conditions,
we used 7 × 7 array features extracted from the speckle pattern as the input of the method
in [11]. Calibration images of each calibration target were captured by a 1920 × 1080-pixels
binocular laparoscopy. We adjusted the lighting conditions to obtain the best imaging
performance for each pattern, respectively, during image recording.

Figure 7. Two-dimensional targets used in the experiment, containing: (a) speckle pattern calibration
target; (b) circular pattern calibration target; (c) triangle pattern calibration target; (d) chessboard
pattern calibration target.
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The experimental equipment was arranged as displayed in Figure 8. The calibration
target was mounted on a mechanical arm, which was programmed to change its pose
by inclination from −24◦ to 24◦ with a 6◦ interval. We positioned the calibration target
initially in such a way that its projection covered the entire image area. The calculations
were performed on a server with 256 CPUs and 512 GB of memory.

Figure 8. Experimental setup.

5.2. Validity under Different Initialization

To investigate our method’s performance for each kind of calibration target, we
grouped 20 images of different poses. For this, the poses of selected images had to be
various, and all selected images had to cover the whole field of view. Figure 9 displays the
poses of a group of selected images. We selected 10 groups of images as a training set.

Figure 9. Poses of the target in a group of the training set.

Here, we verified the stability of our optimization’s convergence under different
initialization conditions by 10 training sets. The initial estimation was made by Zhang’s
calibration method. Then, optimization using our novel objective function was performed,
and a convergence curve was recorded. Figure 10 displays the average value and range of
the convergence curve in 10 training processes. The vertical axis represents the value of the
objective function described in Equations (11)–(13).
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Figure 10. Average value and range of convergence curve in 10 training processes.

Additionally, we examined the distortion calibration results when different numbers of
calibration images were utilized. For this purpose, the camera was calibrated 16 times, using
from 10 to 40 calibration images. Then, training set images, undistorted by a distortion
rectification map, were calibrated using Zhang’s calibration method, assuming no distortion
remains. The reprojection error was recorded, indicating the accuracy of the distortion
rectification map. Figure 11 illustrates the reprojection error of calibration using different
numbers of calibration images. The reprojection error calculated from training results was
smaller than the initial estimation, even when only 10 images were utilized, and remained
stable when more than 20 images were used.

Figure 11. Reprojection error when different numbers of calibration images are used.

5.3. Ablation Study

Based on the initial estimation, we systematically added parts of our method and
obtained a calibration result to demonstrate how individual parts influence the final perfor-
mance. In the case of Map Extraction, the parameters obtained from the initial estimation
were directly employed to calculate the point-to-point distortion rectification map, and
calibration images were corrected by the point-to-point distortion rectification map. Then,
assuming no distortion remained, the camera parameters were estimated using Zhang’s
calibration method. Each configuration of the calibration progress was repeated with
5 groups of 20 images.

As listed in Table 1, the mean reprojection error of Map Extraction was reduced by
11.48%, compared to the result of the Initial Estimation. The last configuration contained
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our complete calibration progress, with a mean reprojection error reduction of 30.61%
compared to the initial estimation result. The reprojection errors’ distribution in 5 repeated
ablation experiments is showed in Figure 12. As a result, it can be inferred that in our
method, both the optimizations with novel objective functions and the calculation of a
point-to-point distortion rectification map are critical for improving calibration accuracy.

Table 1. The result of the ablation study.

Method Mean Reprojection Error Improvement (%)

Initial Estimation 0.106767
Map Extraction 0.094512 11.48%

Map Extraction + Optimization 0.074087 30.61%

Figure 12. Reprojection errors’ distribution in ablation experiments.

5.4. Benchmark Performance

This section compares the reprojection error and stability of the parameter estima-
tion of previous methods with our novel method. Zhang’s calibration method with the
circle pattern target, the checkerboard pattern target, the deltille grid target, proposed
by Ha et al. [30], and the speckle pattern target proposed by Chen et al. [17] are included
in the comparison. For Zhang’s method, using each target, we repeated the calibration
progress 7 times using 7 groups of 20 pictures. A test set of 20 images was selected, ex-
cluding images in the training set. For the method of [11] and our method, we showed
the reprojection error on the test set under the result of the calibration using 7 different
groups of pictures. As to our method, for images in the test set, distortion was rectified
using a point-to-point distortion rectification map calculated from the training result. Then,
assuming no distortion remained, the camera parameters were estimated using Zhang’s
calibration method.

The reprojection error is shown in Table 2. The method of the top 4 lines in Table 2 is
Zhang’s calibration method with different calibration patterns. The reprojection errors of the
chessboard, deltille grid, circle, and speckle calibration target methods were 0.34990613255,
0.115054 and 0.107224, respectively. Compared with Zhang’s calibration method using
different targets, the reprojection error of our novel point-to-point distortion calibration
method was the smallest as it was reduced by 28.5% beyond Zhang’s method using the
same pattern.

The reprojection error was 0.075841 in the training result of our method, and was
0.076663 in the test result, exhibiting the performance of the distortion rectification map
obtained from the training result on the new data. Although the reprojection error of the
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test set is slightly greater than that of the training set, it is still less than that of Zhang’s
calibration approach with any type of calibration target. This demonstrates that the dis-
tortion correction map calculated from our point-to-point distortion calibration method
could effectively correct new images captured with the same camera and achieve the
desired impact.

Table 2. Reprojection error and RMSE of internal parameters’ estimation of different calibration
methods, with a training set of 228 images for method of line 6, and 20 images for other methods.

Method Mean Reprojection Error
Root Mean Squared Error

Fx Fy Cx Cy

OpenCV (checkerboard) 0.349906 1.04336 1.070489 0.839562 0.490924
Deltille Grid [30] 0.13255 0.788706 0.841719 0.298072 0.659631
OpenCV (circle) 0.115054 0.339109 0.391043 0.334438 0.484564

Speckle [17] 0.107224 0.221421 0.186815 0.168492 0.167473
Thomas [11] 0.352319 NA NA NA NA

Thomas [11] (228 pic.) 0.072295 NA NA NA NA
Speckle-novel 0.076663 0.14265 0.065153 0.292851 0.164638

To compare our point-to-point distortion calibration method with the method of [11],
the performance on the test set under different amounts of calibration images is shown in
Table 2 and Figure 13. Assuming that 20 images were used in our method, with the same
number of images, the estimation result of [11] was inferior to that of our method because
of overfitting, and when 228 images were used in [11], the estimation result was superior
to that of our method with 20 images.

Figure 13. Reprojection error of Thomas S. et al.’s method and our point-to-point distortion calibration
method on test set when different numbers of calibration images are used.

Table 2 and Figure 14 show the distributions of the internal parameters estimated
using different calibration methods. The RMSE of the internal parameters’ estimation is
listed in Table 2. The small circle in Figure 14 represents the average value of the estimated
internal parameters, and the upper and lower sides of the error bar represent the max and
min value of the estimated internal parameters, respectively. It can be inferred that with
the method of Chen et al. [17] and our novel method, the internal parameters’ estimation in
the repeated calibration is more stable than the other methods.
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Figure 14. Distributions of internal parameters were estimated using different calibration methods.
(a–d) are the distribution of estimated fx, fy, cx, and cy, respectively.

6. Discussion

We considered both the simulation and experimentation with a real camera when
designing the experiment. In the simulation, the method employing the polynomial distor-
tion model to simulate the camera distortion exhibits more advantages. In contrast, if we
set additional distortions not limited to the polynomial distortion model, the point-to-point
distortion calibration method offers more advantages. To make the experimental conditions
neutral between the camera calibration method with the polynomial distortion model and
point-to-point distortion calibration method, we used real cameras for our experiments.

As can be seen from the result of the validity experiment under a different initialization,
the convergence curve of the optimization calculation by our method is stable, and the
reprojection error is satisfactory when the number of calibration images involved in the
optimization is not smaller than 20. The ablation study illustrated that the novel objective
functions and the calculation of a point-to-point distortion rectification map have both
resulted in a significant reduction of the reprojection error. The benchmark performance
shows that the reprojection error of our method is smaller than that of methods using the
polynomial distortion model. The accuracy of methods using the polynomial distortion
model depends on whether the calibration pattern can achieve more accurate feature
extraction and whether the features of image edges can be extracted. Our method not only
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uses the speckle pattern with higher feature extraction accuracy, but also adopts a full pixel
distortion description and a specially designed objective function for optimization, so its
reprojection error is superior to the method of the top 4 lines in Table 2.The method using
the raxel model can achieve a smaller reprojection error than our method. When 228 images
were used in the raxel model, the estimation result was superior to that of our method with
20 images. The following conclusion can be drawn from the findings of our experiment:

(1) For our optimization process, over 20 calibration images can completely realize the
objective function convergence.

(2) Both the optimization with our new objective function and point-to-point distortion
extraction significantly contributed to our method’s results.

(3) The accuracy of our method is superior to methods using the polynomial distortion
model. The method using the raxel model is more accurate, but with significantly
more calibration images.

The setting of hyperparameters is a component in our technique that was not disclosed
previously. To achieve the best performance of our method, hyperparameters were searched
before calibrating different cameras in different environments. One of the hyperparameters
was the subset size of the DIC calculation. The other one was the correlation coefficient
threshold that determined which feature points were used in the parameter optimization.

1. Subset Size

In DIC, a larger size subset usually leads to a higher feature matching accuracy. How-
ever, an oversized subset introduces other problems, such as the complexity of deformation
in the subset region. In this case, the current subset shape function cannot appropriately fit
the subset deformation, resulting in decreased accuracy or failure of DIC. After a test with
various subset sizes in our experiment, we used a subset with a radius of 70 pixels for DIC
in the initial estimate and final verification, and a subset with a radius of 65 pixels in the
parameter optimization.

2. Correlation Coefficient Cutoff

The correlation coefficient cutoff is used to determine whether the DIC results are
reliable. A correlation coefficient cutoff that is set too high can introduce inaccurately
matched features into the parameter optimization and reduce the accuracy of the parameter
estimation. A correlation coefficient cutoff that is set too small results in large invalid regions
of a calibration image that lack any features suitable for parameter optimization, which
can also decrease the parameter estimation’s accuracy. After testing with different cutoff
values, we used 0.065 as the cutoff value of the correlation coefficient in our experiment.
This implies that features matched in the DIC with a correlation coefficient of less than
0.065 will be used for parameter optimization, whereas features matched in the DIC with a
correlation coefficient of more than 0.065 will be filtered out.

Our method is devoted to the accurate calibration of camera parameters and lens dis-
tortion, which paves the way for a better performance of HAR. Developing Gao et al. [18]
and Chen et al.’s work [17], our method can obtain a point-to-point distortion rectifi-
cation map of the camera without establishing distortion models or strictly restricting
experimental conditions.

7. Conclusions

We propose a camera calibration method that requires only dozens of images to obtain
point-by-point distortion calibration results and internal camera parameters. This approach
extracts dense features using a speckle pattern calibration target and DIC, as well as a new
objective function for parameter optimization. The distortion rectification map is calculated
from the result of the parameter optimization. We can warp camera-captured images into
undistorted ones using a distortion rectification map. Compared with commonly used
methods, this method is not limited to the polynomial distortion model, and also allows for
the pixel-level calibration of the camera distortion. We designed experiments to validate
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our approach’s stability under various initialization conditions and compared it to the
method of [11], using the same calibration target, and Zhang’s calibration method, utilizing
a variety of calibration targets. Our method has a lower reprojection error than that of
the compared method with the same number of calibration images, as demonstrated by
experiments on a test set. This proves that our method can get a more accurate estimation of
the camera distortion and camera parameters, so as to better describe the mapping between
real space and image space. Therefore, our method is more advantageous than calibration
methods using the polynomial distortion model in downstream tasks.

Despite the advantages above, our method is limited by its single optical center
assumption, and its accuracy is inferior to that of methods using the raxel model. The
accuracy of the distortion rectification map of our method is also limited by the number of
images. As the DIC calculation at the edge of the speckle region is not accurate enough,
there are some undesirable points that cannot be ruled out in the distortion rectification map.
A possible solution is not to use pixels at the edges of the speckle region during distortion
rectification map extraction. Another problem is computing the resource consumption of
the DIC, which increases with the size of the subset area and the number of calibration
images. This can be solved with GPU-accelerated computing [40]. These topics are on
which we should concentrate our future efforts.
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Abstract: Human Activity Recognition (HAR) has been studied extensively, yet current approaches
are not capable of generalizing across different domains (i.e., subjects, devices, or datasets) with
acceptable performance. This lack of generalization hinders the applicability of these models in
real-world environments. As deep neural networks are becoming increasingly popular in recent
work, there is a need for an explicit comparison between handcrafted and deep representations in
Out-of-Distribution (OOD) settings. This paper compares both approaches in multiple domains
using homogenized public datasets. First, we compare several metrics to validate three different
OOD settings. In our main experiments, we then verify that even though deep learning initially
outperforms models with handcrafted features, the situation is reversed as the distance from the
training distribution increases. These findings support the hypothesis that handcrafted features may
generalize better across specific domains.

Keywords: human activity recognition; deep learning; domain generalization; accelerometer

1. Introduction

Human Activity Recognition (HAR) has the objective of automatically recognizing
patterns in human movement given sensor-based inputs, namely inertial measurement
units (IMUs), currently available in most wearables and smartphones [1]. HAR is an impor-
tant enabling technology for applications such as remote patient monitoring, locomotor
rehabilitation, security, and pedestrian navigation [1].

The IMU itself may contain several sensors, such as accelerometers and gyroscopes,
which possess microelectromechanical properties, allowing their capacitance to vary with
movement [2]. The accelerometer measures acceleration, while the gyroscope measures
angular velocity [3]. Usually, Machine Learning (ML) is applied to enable an associa-
tion between the signals obtained from these sensors and specific human activities [2].
The typical HAR system comprises the following steps [4]: data acquisition, preprocessing,
segmentation, feature extraction, and classification.

Similar to most ML tasks, HAR models perform well when testing on a randomly
sampled subset of a carefully acquired dataset (i.e., out-of-sample validation) and struggle
in Out-of-Distribution (OOD) settings (i.e., external validation). These settings occur when
the source and target domains are different, such as when the models are tested across
different datasets or sensor positions [5–7].
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Deep learning is becoming increasingly popular in HAR applications [8]. While the
typical pipeline includes a feature extraction step before training a classifier, deep neural
networks automatically learn and extract features through a continuous minimization of a
cost function. In principle, a neural network may have millions of learnable parameters,
which translates into a large capacity to learn more complex and discriminative features [9].
These models have potential for HAR applications since sensor signals may have many
inherent subtleties that may not be recognized by Handcrafted (HC) features. Although a
promising approach, significant limitations have been discussed when deep learning
models are deployed in real-world environments. Current methods for training deep
neural networks may converge to solutions that rely on spurious correlations [10], resulting
in models that lack robustness and fail in test domains that are trivial for humans [11].

On the other hand, HC features in this field are well-studied [1,12], more interpretable,
and can reach high performance. In HAR, results with HC features approximate those of
deep learning [13,14] even in tasks where the latter thrives, namely when the train and test
sets are split by randomly shuffling the data, thus showing similar distributions [15].

Since both methods have advantages and limitations, there is a need for a more detailed
comparison between them in various domains. This translates into a need for benchmarks
where the similarity between train and test distributions has considerable variability.

As HAR naturally includes many kinds of possible domains, it can be considered an
excellent sandbox to study the OOD generalization ability of learning algorithms (Domain
Generalization), being previously used for this purpose [16].

This paper compares the performance of learning algorithms based on HC features
with deep learning approaches for In-Distribution (ID) and OOD settings. For this com-
parison, we use five public datasets, homogenized to have the same label space and input
shape, so that the models can be easily trained and tested across them. To validate whether
the tasks are in fact OOD, several metrics are considered and compared with the purpose
of assessing the disparity between train and test sets. To extract HC features, Time Series
Feature Extraction Library (TSFEL) [12] was used. We use one-dimensional Convolutional
Neural Networks (CNNs) for our deep learning baselines.

In summary, the major contributions of this work are the following:

1. A comparison between different data similarity measures and their relationship to
generalization performance.

2. A validation of the hypothesis that models based on HC features can be more robust
than deep learning models for several HAR tasks in OOD settings.

3. An empirical demonstration that a hybrid approach between HC features and deep
representations can bridge the gap in OOD performance.

2. Related Work

Several studies compared classic ML approaches using HC features with deep learning
methods. The authors from [13,14,17,18] compare CNNs with models based on support
vector machines, multilayer perceptrons, and random forests. In all these studies, deep
learning approaches outperformed classic methods. However, in their experiments, data
splits were created by randomly shuffling the datasets, so samples from possibly different
domains are represented in both the train and test sets with similar data distributions.

In regard to the use of data similarity to quantify the degree of OOD, associated with
generalization, this is both an old and important question in the ML literature, as several ML
methods implicitly rely on properties related to similarity (e.g., the large margin assump-
tion in SVM learning) to guarantee good generalization performance [19]. The potential
relationship between data similarity and the generalization properties of ML models was
first investigated from an empirical point of view in [20], where the authors discovered that
datasets found to be substantially dissimilar likely stemmed from different distributions.
Based on these findings, the authors of [21] demonstrated that information about similar-
ity can be used to understand why a model performs poorly on a validation set, while
the same information can be used to understand when and how to successfully perform
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domain adaptation (see, for example, the recent review [22]). To that end, several metrics
for measuring data similarity have been proposed in the literature. Bousquet et al. [20]
developed a measure (Data Agreement Criterion, DAC) based on the Kullback–Leibler
divergence, which has since become frequently used to assess the similarity of distribu-
tions [23]. More recently, Schat et al. [24] suggested a modification to the DAC measure
(Data Representativeness Criterion, DRC), and investigated the link between data similarity
and generalization performance. Cabitza et al. [25] proposed instead a different approach
based on a multivariate statistical testing procedure to obtain a hypothesis test for OOD
data, the Degree of Correspondence (DC), and also studied the correlation between DC
scores and the generalization of ML models. By contrast, in the Deep Learning literature,
approaches based on the use of statistical divergence measures, such as the Wasserstein
distance [26] or the Maximum Mean Discrepancy (MMD) [27], have become increasingly
popular to design methods for OOD detection. See also, the recent review by Shen et al. [28].

Deep learning approaches have been explored in OOD settings by testing the models
on data from unseen domains [4,29–32]. Gholamiangonabadi et al. [33] verified that the
accuracy went from 85.1% when validating using leave-one-subject-out (LOSO) cross-
validation to 99.85% when using k-fold cross-validation. Bragança et al. [34] had similar
results with HC features, reporting an accuracy of 85.37% for LOSO and 98% for k-fold.
The most important features used by each model differed significantly. They concluded
that LOSO would be a better validation method for generalization. Li et al. [4] and Lo-
gacjov et al. [30] compared several deep learning models with classic ML pipelines using
LOSO validation. As opposed to what was verified in the previous studies involving ID
settings, in the context of OOD, classic methods were mostly on par with deep learning
approaches, outperforming them in some cases. Still, data acquired from different subjects
of the same dataset may not be as diverse as the data encountered by HAR systems in
real-world environments since datasets are usually recorded in controlled conditions with
similar devices worn in the same positions. In Hoelzemann et al. [7], significant drops
in performance were reported when testing on different positions and different datasets,
which were then mitigated by the use of transfer learning techniques.

Transfer learning has previously been applied to HAR in cases where feature represen-
tations can be used in downstream tasks or across domains [6,35]. These methods leverage
information about the target task or domain to approximate the source and target repre-
sentations [5]. For example, Soleimani et al. [5] used a Generative Adversarial Network
(GAN) to adapt the model to each user, outperforming other domain adaptation methods.
However, the performance was poor when no transfer learning method was used (see
Table 2 of [5]). The same phenomenon can be noticed in [35], where the domain adaptation
methods outperformed the baseline model, which did not have access to data from the
target domain. These studies illustrate the difficulty of generalizing to different domains,
even when using deep learning models.

Gagnon et al. [16] included a HAR dataset in a benchmark to compare domain gen-
eralization methods applied to deep neural networks. The results indicate a 9.07% drop
in accuracy from 93.35% ID to 84.28% OOD on a dataset where different devices worn in
different positions characterize the possible domains. The same study showed that domain
generalization techniques [11,36] did not improve results in a significant manner, and that
empirical risk minimization (ERM) is still a strong baseline [37].

Boyer et al. [38] compared HC features and deep representations on an ID supervised
classification task and on an OOD detection task. They concluded that, while a k-nearest
neighbors (KNN) model using deep features as input outperforms the same model using
HC features on the ID task, the situation partially reverts for the OOD detection task, where
models based on HC features achieve the best results in two out of three datasets. However,
the ID and OOD tasks are not directly comparable, since they are of different kinds and
use different evaluation methods.

Trabelsi et al. [39] compared three deep learning approaches and a random forest
classifier with handcrafted features as input. Similar to the experiments in our work,
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the datasets were homogenized by including only common activities and separated the
test sets by the user. They concluded that only one of the deep learning approaches
outperformed the baseline model with handcrafted features. While they formulated two
different domain generalization settings (OOD-U and OOD-MD), the results for each of
these settings are not directly comparable since the test sets were combined when reporting
the results for the OOD-MD setting.

This paper adds to previous work by explicitly comparing the OOD robustness of HC
features and deep representations in four domain generalization settings with different
distances between train and test sets.

3. Methodology

3.1. Datasets

The datasets used in this study include human activity data recorded using smart-
phones and wearable inertial measurement units (IMUs). Table 1 contains a detailed
description of these publicly available datasets.

Table 1. Description of the datasets, including activities, positions, devices, and number of subjects.

Dataset Description Devices Source

PAMAP2—Physical Activity Monitoring
9 subjects;
18 physical activities
including sitting, lying,
standing, walking, ascend-
ing stairs, descending stairs
and running.

Heart rate monitor
(≈9 Hz);
3 inertial measurement
units each containing
a triaxial accelerome-
ter, a gyroscope and a
magnetometer (100 Hz);
Positions: wrist, chest
and ankle.

[40,41]

Sensors Activity Dataset (SAD)
10 subjects;
7 physical activities: sit-
ting, standing, walking, as-
cending stairs, descending
stairs, running and biking.

5 smartphones containing
an accelerometer, a gyro-
scope and a magnetometer
(50 Hz);
Positions: jeans pocket,
arm, wrist and belt.

[42]

DaLiAc—Daily Life Activities
19 subjects;
13 physical activities
including sitting, lying,
standing, walking outside,
ascending stairs, descend-
ing stairs and treadmill
running.

4 sensors, each with a triax-
ial accelerometer and gyro-
scope (200 Hz);
Positions: hip, chest
and ankles.

[43]

MHEALTH
10 subjects;
12 physical activities
including sitting, lying,
standing, walking, climb-
ing/descending stairs,
jogging and running.

3 wearable sensors contain-
ing an accelerometer, a gy-
roscope and a magnetome-
ter. One of the sensors also
provides 2-lead ECG mea-
surements (50 Hz);
Positions: chest, wrist
and ankle.

[44,45]

RealWorld (HAR)
15 subjects;
8 physical activities includ-
ing sitting, lying, standing,
walking, ascending stairs,
descending stairs and run-
ning/jogging.

6 wearable sensors contain-
ing accelerometers, gyro-
scopes and magnetometers
(50 Hz). Also includes
GPS, light and sound
level sensors;
Positions: chest, forearm,
head, shin, thigh, upper
arm, and waist.

[46]

Several criteria were followed to select the datasets for this study. Only datasets with
a sampling rate close to or over 50 Hz were considered, to avoid the need for oversampling.
The search was restricted to datasets that included most of the main activities seen in
the literature (e.g., walk, sit, stand, run, and ascending/descending stairs). For better
compatibility and to avoid large drops in performance caused by having considerably
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different sensor positions [7], we selected datasets that included overlapping positions with
at least one of the other datasets that fulfilled the remaining criteria.

The accelerometer was the selected sensor for this work. The magnitude values
were computed as the Euclidean norm of all three axes (x, y, and z), as this quantity is
invariant to the orientation of the device and can give information that is more stable across
domains. The magnitude signal was used along with the signal from each axis, so that
all the information given by the accelerometer was retained. From those four channels,
five-second windows were extracted without overlap.

All selected datasets were homogenized [47] so that a model trained on a specific
dataset could be directly tested in any other. This procedure included resampling all the
recordings to 50 Hz and mapping the different activity labels to a common nomenclature:
walking, running, sitting, standing, and stairs. Stair-related labels were joined into a
general “stairs” label, as having to distinguish between going up and down the stairs would
add unnecessary complexity to the task, since it is hard to infer the direction of vertical
displacement without access to a barometer [48]. The RealWorld dataset [46] generated
considerably more windows than the other datasets, so one-third of these windows was
randomly sampled and used in the experiments. The final distribution of windows and
activities per dataset is shown in Table 2. This table contains the percentage of samples
(five-second windows) of each activity in a given dataset, as well as the total number of
samples and corresponding percentage of each activity and dataset. In this table, it can be
seen that, while not being very well balanced, the activities have a substantial amount of
samples for all the datasets. On the other hand, even with the effort of reducing samples,
the RealWorld and SAD datasets have a larger influence in the experiments, which should
not be an issue, since the conditions remain the same for both deep and classic approaches.

Table 2. Distribution of samples and activity labels per dataset. The # symbol represents the number
of samples.

Activity
Datasets (%) Total

PAMAP2 SAD DaLiAc MHEALTH RealWorld % #

Run 10.5 16.9 20.0 33.3 19.1 18.3 7975
Sit 19.8 16.9 10.6 16.7 17.0 16.3 7102
Stairs 23.6 32.2 12.3 16.7 30.0 26.3 11,460
Stand 20.4 16.9 10.6 16.7 16.4 16.2 7047
Walk 25.7 16.9 46.5 16.7 17.5 22.8 9927

Total
% 12.7 24.4 15.3 4.96 42.6 - -
# 5541 10,620 6644 2160 18,546 - 43,511

3.2. Handcrafted Features

To extract HC features, TSFEL [12] was used. This library extracted features directly
from the 5-second accelerometer windows generated from each public dataset. To decrease
computation time, we removed the features that included individual coefficients, such
as Fast Fourier Transform (FFT), empirical Cumulative Distribution Function (eCDF),
and histogram values. Nonetheless, the high-level spectral features computed from the
FFT were kept. We did not extract wavelet and audio-related features, such as MFCC and
LPCC. The total number of features per window was 192.

After the features were computed, samples were split according to each task (see
Section 4). Subsequently, features were scaled by subtracting the mean of the train set
and dividing by its standard deviation (Z-score normalization). The classifiers used were
Logistic Regression (LR) and a Multilayer Perceptron (MLP) with a single hidden layer of
128 neurons and Rectified Linear Unit (ReLU) activation. These classifiers were chosen to
enable a fair comparison with deep learning, as they resemble the last layer(s) of a deep
neural network, usually responsible for the final prediction after feature learning.
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3.3. Deep Learning

Convolutional neural networks were the selected deep learning models for this study
since they achieved significantly better performance and converged faster when compared
with recurrent neural networks (RNN) in preliminary experiments, which was consistent
with the literature [49,50]. A scheme of the baseline CNN architectures is presented in
Figure 1. We chose three different architectures, which we named CNN-base, CNN-simple,
and ResNet. The training process was identical for all the architectures and is explained in
Section 4. CNN-simple is a simplified version of the CNN-base with only two convolutional
layers and a logistic regression directly applied to the flattened feature maps. ReLU was
used as the activation function for the hidden layers of both architectures. The ResNet
(Figure 1c) is a residual network inspired by Ferrari et al. [18], with a few modifications. Its
convolutional block is represented in Figure 2.

In an attempt to bridge the performance gap between HC features and deep repre-
sentations, we built a hybrid version of each architecture. There, the HC features are
concatenated with the flattened representations of each model and fed to a fusion layer
before entering the final classification layer. The number of hidden units for the fusion
layer was 128 on both CNN-simple and CNN-base, increasing to 256 for the ResNet.
An illustration of the hybrid version of CNN-base is in Figure 3.

For all these models, the input windows were scaled by Z-score normalization,
with mean and standard deviation computed across all the windows of the train set.
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Figure 1. Cont.
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Figure 1. Convolutional neural network architectures. The values above the representation of each
feature map indicate their shape (Signal length × Number of channels). Convolutional layers (1D):
k = kernel size; nr_f = number of filters; stride = 1; padding = 0. Max pooling layers: k = kernel
size; stride = 1; padding = 0. (a) CNN-simple Architecture. (b) CNN-base Architecture. (c) ResNet
Architecture. The convolutional block is depicted in Figure 2.
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Figure 2. ResNet convolutional block. The letter k stands for “kernel size”.
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Figure 3. Simplified illustration of the hybrid version of CNN-base (excluding the CNN backbone for
ease of visualization).

3.4. Evaluation

To quantify the degree to which a test domain is OOD, different metrics were applied,
namely Euclidean distance, Cosine similarity, Wasserstein distance, MMD, and DC. Each
metric was applied to the representations of each model before the classification stage.
Regarding the Wasserstein distance [51], the Wasserstein-1 version was used and is given by:

W1(X, Y) = inf
π∈Γ(X,Y)

∫
R×R

|x − y|dπ(x, y), (1)

where Γ(X, Y) is the set of distributions whose marginals are X and Y on the first and
second factors, respectively. x and y are samples from each distribution π(x, y) from the
set. Intuitively, the distance is given by the optimal cost of moving a distribution until
it overlaps with the other. In our experiments, x and y are the feature representations of
subsets of the train and test data, thus W1 represents the cost of mapping the distribution
of x into the distribution of y (or vice versa).

Regarding the MMD , this is a kernel-based statistical procedure that aims at determin-
ing whether two given datasets come from the same distribution [52]. Given a fixed kernel
function k : X × X �→ R and two datasets X, Y with sizes |X| = n, |Y| = m, the MMD can
be estimated as:

MMD(X, Y) =
1

n(n − 1) ∑
i �=j

k(xi, xj) +
1

m(m − 1) ∑
i �=j

k(yi, yj)− 2
nm ∑

i,j
k(xi, yj) (2)

Intuitively, the MMD measures the distance between X and Y by computing the av-
erage similarity in X and Y separately, and then subtracting the average cross-similarity
between the two datasets, where the similarity between two instances is quantified by
means of the selected kernel k. In this work, a simple linear kernel was selected. Fur-
thermore, as for the Wasserstein distance, x and y represent the feature representations
of subsets of the train and test data. Thus, MMD quantifies the average kernel similarity
among instances in x and y, discounted by the cross-similarity between the two datasets.

The DC, by contrast, is a multivariate hypothesis testing procedure for the hypothesis
that two samples of data come from the same distribution: having fixed a representative
data sample, the obtained p-value, then, can be considered as a measure of how much any
other data sample is OOD with respect to the representative one. In particular, scores close
to 0 can be interpreted as being most likely OOD (since, assuming the null hypothesis of
the two data samples coming from the same distribution, observing a p-value close to 0 has
low probability). While the DC cannot be defined and computed by means of a closed-form

60



Sensors 2022, 22, 7324

procedure, in [25] a permutation-resampling algorithm (see Algorithm 1) was defined to
compute the corresponding p-value, based on the selection of a base distance metric.

Algorithm 1 The algorithm procedure to compute the similarity between the two dataset T
and V, using the Degree of Correspondence (DC).

procedure DC(T, V: datasets, d: distance, ∂ distance metrics)
dT = {d(t, t′) : t, t′ ∈ T}
For each v ∈ V, find tv ∈ T, nearest neighbor of v in T
T|V = {t ∈ T : �v ∈ Vs.t.t = tv} ∪ V
dT|V = {d(t, t′) : t, t′ ∈ T|V}
δ = ∂(dT , dT|V )

Compute DC = Pr(δ′ ≥ δ) using a permutation procedure
return DC

end procedure

The selection of the distance metrics ∂ in Algorithm 1 is important to obtain sensible
results for the DC. Intuitively, ∂ should represent the appropriate notion of distance in the
instance space of interest. In [53], lacking any appropriate definition of distance in the
instance space, the authors suggest the use of a general baseline, e.g., the Euclidean or
cosine distance, or robust non-parametric deviation metrics, e.g., MMD or Kolmogorov–
Smirnov statistics.

In previous work, model performance has been evaluated using metrics such as
accuracy, sensitivity, specificity, precision, recall, and f1-score [1]. As class imbalance is
common in most publicly available HAR datasets (see Table 2), f1-score is used as the main
performance metric since it is more robust than accuracy in these settings [30]. To be able
to compare deep learning models and classic models with HC features, the f1-scores are
compared in tasks across different OOD scenarios and including five public HAR datasets.

4. Experiments and Results

The main purpose of this paper is to compare the performance of HC features and
deep representations in different OOD settings for HAR. A scheme of the full pipeline used
for the experiments is presented in Figure 4.

HAR is a classification task that usually involves multiple domains, easily turning into
a domain generalization task if the domains are considered when splitting the data. We
devise four domain generalization settings, starting with a baseline ID setting where 30%
of each dataset is randomly sampled for testing, and three OOD settings: (a) splitting by
user within the same dataset, where approximately 30% of the users were assigned to the
test set—OOD by user (OOD-U); (b) leaving a dataset out for testing, while including all
the others for training—OOD with multiple source datasets (OOD-MD); (c) training on a
dataset and leaving another for testing, running all the possible combinations—OOD with
a single source dataset (OOD-SD). To obtain a direct comparison, the test set of OOD-U is
used as a test set for all the OOD settings. Of the three OOD settings, OOD-U is the one that
is expected to be closest to the training distribution since it is drawn from the same dataset,
where devices and acquisition conditions are usually similar. It is followed by OOD-MD,
since joining all the datasets (except one) for training averages their distributions onto a
more general space. Subsequently, as it includes only a single dataset for training, OOD-SD
should capture the largest distances between train and test distributions.
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Figure 4. Scheme of the experimental pipeline.

In order to validate our hypothesis about the ordering of the distances between the
train and test splits on our four settings, different metrics were applied to the feature
representations. This experiment has the following objectives: (1) to validate that our three
OOD settings are in fact OOD; and (2) to obtain the best metric for our main experiments,
which should output values that agree with our ordering hypothesis for both HC features
and deep representations. For models based on HC features, metrics were computed
directly from the features. In contrast, for deep models, metrics were calculated from the
hidden representations of the last layer before classification.

We note that different distance metrics have different scales, therefore, making their
interpretation and comparison more difficult. For this reason, we computed distance
ratios instead of raw distances, so as to make the values of the different metrics more
consistent across tasks. The distance ratios were computed for each task, i.e., setting/dataset
combination, using the following equation:

Distance_ratio =
∂(tr1, ts1)

∂(tr2, tr3)
, (3)

where ∂ is a distance metric and tri and tsi are subsets randomly sampled (with replacement)
from the train and test sets, respectively. The sample size is half the minimum of the train
and test set lengths. By contrast, for the DC, the raw value without any ratio-based
normalization was used, since it is already normalized in the [0, 1] range and is able to deal
with any data representation directly.

A comparison of the considered metrics based on the TSFEL features is presented in
Table 3. It is easy to observe that all the metrics agree with the OOD ordering hypothesis
stated above. Indeed, the value of all metrics was higher for the OOD-U, OOD-MD,
and OOD-SD (respectively, in this order) than for the ID setting. In particular, it can be seen
that DC with Euclidean-based metrics saturates to values close to zero for all three OOD
settings, indicating that, by the comments above on the interpretation of this score, the test
sets are likely to be OOD.

Table 4 shows a comparison of the considered metrics based on the CNN-base represen-
tations. In contrast to the case of TSFEL features, the metrics showed a much lower degree
of agreement with the OOD ordering hypothesis. First, it can be noted that only Wasserstein
and MMD have values that clearly increase with the expected degree of OOD, being in
agreement with the results of the TSFEL representations and, consequently, with our OOD
ordering hypothesis. Nonetheless, it can be verified that both metrics had a large degree
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of variation, with the confidence intervals for the ID, OOD-U, and OOD-MD partially
overlapping. In the case of DC Cosine, the score for the OOD datasets was higher than that
for the ID one. This seemingly paradoxical behavior may have an intuitive geometric expla-
nation, as it may be a consequence of the transformations that take place during training,
which influence the shape of the instance space and possibly make the representations of
instances that would otherwise be OOD closer to the training data manifold. In support of
this hypothesis, it can be easily observed that most metrics reported a significantly different
value for the OOD-SD setting than for the other OOD settings, showing that the training of
the deep learning model had an important influence on the natural representation of the
data manifold. In this sense, both the Wasserstein and MMD metrics seemed to be more
apt at naturally adapting to this change of representation.

Table 3. Comparison of metrics over all four domain generalization settings based on the TSFEL
feature representations. For each setting, values were averaged over every test set. All metrics are
ratios except the ones with (*).

Metric
Setting

Avg. OOD
ID OOD-U OOD-MD OOD-SD

Wasserstein 1.02 ± 0.04 1.42 ± 0.37 2.27 ± 1.25 3.31 ± 2.39 2.33 ± 0.91
MMD 0.95 ± 0.86 30.47 ± 56.25 800.05 ± 1513.29 1072.20 ± 2619.40 634.24 ± 1008.55

Euclidean 1.00 ± 0.01 1.08 ± 0.11 1.33 ± 0.48 1.53 ± 0.73 1.31 ± 0.29
DC Euclidean * 0.55 ± 0.10 0.05 ± 0.08 0.00 ± 0.00 0.00 ± 0.00 0.02 ± 0.03

Cosine 0.95 ± 0.33 0.85 ± 0.31 0.39 ± 0.52 0.10 ± 0.84 0.45 ± 0.35
DC Cosine * 0.60 ± 0.17 0.32 ± 0.34 0.12 ± 0.16 0.12 ± 0.21 0.19 ± 0.14

Table 4. Comparison of metrics over all four domain generalization settings based on the CNN-base
representations. For each setting, values were averaged over all the datasets. All metrics are ratios
except the ones with (*).

Metric
Setting

Avg. OOD
ID OOD-U OOD-MD OOD-SD

Wasserstein 1.06 ± 0.09 1.39 ± 0.27 1.95 ± 0.45 5.71 ± 5.05 3.02 ± 1.69
MMD 1.25 ± 1.00 1.80 ± 0.92 35.23 ± 56.10 245.27 ± 402.93 94.10 ± 135.60

Euclidean 1.00 ± 0.02 1.01 ± 0.05 1.02 ± 0.15 1.12 ± 0.27 1.05 ± 0.11
DC Euclidean * 0.49 ± 0.15 0.51 ± 0.32 0.53 ± 0.45 0.10 ± 0.18 0.38 ± 0.19

Cosine 1.01 ± 0.01 0.98 ± 0.01 0.98 ± 0.03 1.03 ± 0.06 1.00 ± 0.02
DC Cosine * 0.55 ± 0.10 0.92 ± 0.10 0.65 ± 0.43 0.52 ± 0.43 0.70 ± 0.21

Thus, as a consequence of these results, we chose the Wasserstein distance ratio as
our main metric to quantifiy the degree of OOD due to the fact that it agrees with our
hypothesis when using both TSFEL features and deep representations as input. This metric
has also been applied by Soleimani et al. [5] to compute distances between source and
target distributions.

Our experiments were run on an NVIDIA (Santa Clara, CA, USA) A16-8C GPU and an
AMD (Santa Clara, CA, USA) Epyc 7302 processor with python version 3.8.12 and Visual
Studio Code (Microsoft, Redmond, WA, USA) as the development environment. All the
learning models were implemented using the PyTorch library [54]. Adam [55] was adopted
as the optimizer used for the training process. To reduce bias [16], results were averaged
over nine combinations of three different batch sizes (64, 128, and 256) and three learning
rates (0.0008, 0.001, and 0.003). To account for class imbalance, the percentage of instances
per class in the training set was given to the cross-entropy loss function as class weights.

To make the experiments as agnostic to the training method as possible, the same
procedure was used for training the classifiers based on HC features and the deep learning
models. Figure 5 shows the training and validation loss over the course of training for a
single task. The chosen task was the OOD-U setting on the SAD dataset, an example of a
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task in which there was a verified occurrence of instability in training. One of the ways to
handle this instability is by ending the training process earlier—early stopping [56].

Figure 5. Evolution of loss by epoch on SAD dataset in the OOD-U setting. The red dots indicate the
minimum loss of each curve.

Over all the tasks, most models reached plateaus on validation performance after 30 to
50 epochs, so the training process was limited to 140 epochs to leave a margin for models to
converge, but not so much as to fully overfit the data. For validation, we randomly sampled
a 10% subset of the training data without replacement. While training, a checkpoint model
was saved every time the validation loss achieved its best value since the start of training.
Our early stopping method consisted of stopping training if the validation loss did not
improve for 30 epochs in a row, which proved helpful in cases where training was not very
stable. In these cases, the validation error oscillates, increasing for a certain number of
epochs before decreasing again and, on many occasions, achieving a slightly lower error
rate than in any of the previous epochs, which can be seen in the loss curves for the CNN
models in Figure 5. This resembles the effects of double descent [57]. In our case, one
of the causes of such unstable training may be the fact that these datasets are noisy, due
to the diversity in users, devices, and positions, among other factors. It may also be a
consequence of overparameterization, as the phenomenon was much more pronounced
when training CNNs, which have significantly more parameters than our MLP and LR
models. Both these potential causes were documented by Nakkiran et al. [57].

The evolution of the f1-score over the Wasserstein distance ratio for the best performing
model of each family (CNN-base and TSFEL+LR) is documented in Figure 6. For each
combination of model, dataset, and setting, the average and standard deviation of the
f1-score were computed over nine different runs with varying learning rates and batch
sizes. The CNN-base embeddings were chosen to compute distance ratios for this figure
since they contain less outliers when compared to the distance ratios computed from
TSFEL representations (see Figure A2). It can be verified that, initially, the CNN model
outperforms the model using HC features. However, as the distance between train and
test domains increases, the situation is reverted, with the classic approach outperforming
the CNN. This suggests that HC features are more robust to the shifts that occur in OOD
data. The regression curves reinforce the idea of OOD stability. As expected, there is
a negative correlation between f1-score and distance ratio, meaning that performance
decreases as the test data becomes more distant from the distribution seen during training.
In general, the distance ratios given by the Wasserstein distance appear to agree with the
previously stated OOD ordering hypothesis, with OOD-SD being the most OOD of the
three settings, followed by OOD-MD and OOD-U, respectively. Still, a few outliers can be
seen in the figure. The higher values of standard deviation for the CNN indicate that these
models are more susceptible to the choice of hyperparameters, which is reasonable due to
the much larger number of trainable parameters. However, it is not always ideal to have
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such variability, as it indicates that the validation loss has become less correlated with the
test loss. In practice, an apparently good model may perform surprisingly well in some
settings while failing in situations that would otherwise be trivial to a simple model.

Figure 6. F1-score vs. log(distance ratio). Each marker represents a different task. Distance ratios are
based on the CNN-base embeddings. Error bars represent one standard deviation away from the
mean. The natural logarithm was applied to the distance ratios to make the regression curves linear.

More detailed results are presented in Table 5. For each combination of model and
setting, the average and standard deviation of the f1-score were computed over all five
datasets. The last column represents the average of the three OOD settings, which gives
an idea of the overall generalization performance. The significant overturn from the ID
to the OOD settings can be noticed in the table. TSFEL + LR, which had the worst ID
f1-score (90.54%), turned out to be the best overall in the OOD regime, with an f1-score
of 70% for the average of all three OOD settings. Using an MLP instead of LR slightly
decreased the overall OOD performance to 69.55%, while increasing the ID performance to
92.87%, becoming closer to the deep learning results. This phenomenon may be related to
an increase in the number of trainable parameters. Including HC features as an auxiliary
input to deep models improved both ID and OOD results, with the hybrid version of
CNN-base being the deep learning model with the strongest generalization performance
(average OOD f1-score of 66.95%). However, this improvement is still insufficient to reach
the OOD robustness of models solely based on HC features.

Table 5. Average f1-score in percentage over all the tasks in a given setting. Values in bold indicate
the best performance for each setting.

Model
Setting

Avg. OOD
ID OOD-U OOD-MD OOD-SD

CNN-simple 92.09 ± 5.26 79.65 ± 10.75 63.71 ± 3.54 45.21 ± 6.57 62.86 ± 4.36
CNN-base 92.10 ± 5.06 80.79 ± 9.68 66.94 ± 5.19 48.30 ± 5.41 65.34 ± 4.08

ResNet 92.46 ± 4.73 81.16 ± 9.60 67.22 ± 4.89 46.57 ± 4.84 64.98 ± 3.94
CNN-simple hybrid 93.64 ± 4.55 85.13 ± 7.69 66.60 ± 3.31 47.87 ± 2.21 66.53 ± 2.89

CNN-base hybrid 93.48 ± 4.35 85.28 ± 6.64 67.74 ± 3.37 47.84 ± 3.24 66.95 ± 2.71
ResNet hybrid 93.79 ± 4.2193.79 ± 4.2193.79 ± 4.21 84.71 ± 7.72 67.87 ± 3.40 47.73 ± 2.11 66.77 ± 2.90
TSFEL + MLP 92.87 ± 4.70 87.09 ± 5.3587.09 ± 5.3587.09 ± 5.35 70.11 ± 3.57 51.45 ± 5.3151.45 ± 5.3151.45 ± 5.31 69.55 ± 2.78
TSFEL + LR 90.54 ± 5.15 87.08 ± 5.5587.08 ± 5.5587.08 ± 5.55 71.94 ± 3.1971.94 ± 3.1971.94 ± 3.19 50.97 ± 3.29 70.00 ± 2.4070.00 ± 2.4070.00 ± 2.40

Despite being simpler than the ResNet, the CNN-base model achieves a slightly higher
generalization performance. On the other hand, CNN-simple, the simplest deep learning
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model, did not perform well in OOD tasks. There appears to be an optimal number of
parameters, possibly dependent on the architecture, so more studies should be conducted
to understand this trade-off.

5. Discussion

This work aimed to compare the generalization performance of HC features and deep
representations, focusing in particular on generalization in OOD settings.

In the first experiment, several metrics were compared to validate and quantify our
OOD settings. For TSFEL representations, all the considered metrics were in agreement
with our ordering hypothesis. In particular, the DC was able to clearly identify each of the
OOD settings as such. In contrast, for the case of deep representations, there was some
disagreement among the considered metrics. Still, the MMD and Wasserstein distance
ratios remained in agreement with the adopted hypothesis. They were seen as more robust
concerning the change of data representation induced by the deep learning model.

In our experiments involving HAR tasks, despite reaching lower f1-scores in the ID
setting, models based on HC features were more robust in OOD settings. This difference
in OOD performance supporting higher robustness for HC features may be due to their
stability since they are fixed a priori based on domain knowledge, which should be valid
across tasks. Conversely, deep features are automatically learned and could thus fail to
identify generally helpful features, as there are known inefficiencies in the current methods
for training neural networks. These are typically biased toward simple solutions [15] and
rely on spurious correlations [10] rather than previous knowledge or causal relations.

In regard to the generalizability of our results to other settings, we note that even
though we focused on HAR, with minor adaptations, our experiments and analyses could
be replicated in a wide range of fields. For example, similar deep learning models and
handcrafted features could be used and compared in fields that depend on sensor data,
such as fall detection, predictive maintenance, or physiological signal processing (e.g.,
EEG, EMG, and ECG). Different deep learning architectures and feature extraction libraries
would have to be employed for image or video processing.

Concerning practical purposes, HC features, being more robust, appear to be better
suited for real-world HAR systems. However, their reimplementation in mobile or edge
devices may be an arduous task. CNNs do not show this limitation, as the representations
are encoded in weight matrices and can, in principle, be ported to these devices without
significant effort [58]. More studies should, thus, be devoted to exploring this trade-off
between increased robustness and reimplementation efforts, possibly considering the
application of hybrid approaches (such as the ones also considered in this paper), as well
as alternative training techniques for CNNs that attempt to improve robustness.

6. Conclusions

This paper hypothesizes that models using HC features generalize better than deep
learning models across domains in HAR tasks. Three OOD settings were implemented by
testing on unseen users and (single or multi-source) datasets. Five public datasets were
homogenized so that they could be combined in different ways to create diverse tasks.

Several metrics were used to quantify the degree of OOD of four domain generalization
settings. The DC metric was used to validate our OOD settings. In turn, the Wasserstein
distance ratio was chosen as our primary metric for the study since it was able to quantify
our three OOD settings in the expected order.

In our main experiments, it was verified that, although deep models have better ID
performance, they are outperformed in all three OOD settings by shallow models using
features that were computed based on domain knowledge. Furthermore, as the drop in
f1-score in OOD settings is less accentuated for classic models, it can be inferred that
HC are more robust. Hybrid models achieved intermediate results between deep and
classic methods, supporting the idea that HC features can stabilize training, which helps to
validate our hypothesis.
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Acknowledging the limitation of current deep learning techniques in being robust
with respect to OOD settings, as compared to models based on HC features, we believe
our work could pave the way for further research on the development of novel training
methods for making deep learning models more robust and thus bridge the generalization
gap toward new, more trustworthy, gold standards in the field of HAR.
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Appendix A. Supplementary Experiments

Figure A1 shows the behavior of different models over all four domain generalization
settings addressed in the study in comparison to TSFEL+LR, the approach with the highest
generalization performance. Similarly to the main results, an inversion tendency can be
observed from the ID to the OOD regime.

Figure A1a shows a larger gap in performance for the OOD regime. This gap is
mitigated in the hybrid model (Figure A1b) and becomes much smaller in Figure A1c,
where handcrafted features are the only source of information.

(a)

Figure A1. Cont.
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(b)

(c)

Figure A1. F1-score vs. log(distance ratio). Each marker represents a different task. Distance ratios
are based on the CNN-base embeddings. Error bars represent one standard deviation away from
the mean. (a) TSFEL + LR vs. ResNet. (b) TSFEL + LR vs. CNN-base hybrid. (c) TSFEL + LR vs.
TSFEL + MLP.

By using TSFEL features to compute the distance ratios (see Figure A2), we reach the
same conclusions. However, the plots in Figures 6 and A1 were based on the CNN-base
embeddings, as the distance ratios presented less outliers.

Figure A3 shows the confusion matrices for the ID, OOD-U, and OOD-MD settings
of the SAD dataset. It can be verified that, as expected, performance decreased in OOD
settings.
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Figure A2. TSFEL + LR vs. CNN-base. Distance ratios are based on TSFEL features.

(a)

(b)
Figure A3. Cont.
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(c)

Figure A3. Confusion matrices for the SAD dataset. (a) In-distribution (ID). Accuracy: 99.0%, F1-
score: 98.9%; (b) Out-of-Distribution leaving users out (OOD-U). Accuracy: 91.5%, F1-score: 91.6%;
(c) Out-of-Distribution leaving a dataset out (OOD-MD). Accuracy: 76.0%, F1-score: 73.5%.
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Abstract: The training of Human Activity Recognition (HAR) models requires a substantial amount
of labeled data. Unfortunately, despite being trained on enormous datasets, most current models have
poor performance rates when evaluated against anonymous data from new users. Furthermore, due
to the limits and problems of working with human users, capturing adequate data for each new user
is not feasible. This paper presents semi-supervised adversarial learning using the LSTM (Long-short
term memory) approach for human activity recognition. This proposed method trains annotated
and unannotated data (anonymous data) by adapting the semi-supervised learning paradigms on
which adversarial learning capitalizes to improve the learning capabilities in dealing with errors
that appear in the process. Moreover, it adapts to the change in human activity routine and new
activities, i.e., it does not require prior understanding and historical information. Simultaneously, this
method is designed as a temporal interactive model instantiation and shows the capacity to estimate
heteroscedastic uncertainty owing to inherent data ambiguity. Our methodology also benefits from
multiple parallel input sequential data predicting an output exploiting the synchronized LSTM. The
proposed method proved to be the best state-of-the-art method with more than 98% accuracy in
implementation utilizing the publicly available datasets collected from the smart home environment
facilitated with heterogeneous sensors. This technique is a novel approach for high-level human
activity recognition and is likely to be a broad application prospect for HAR.

Keywords: HAR; semi-supervised learning; adversarial learning; syn-LSTM; smart home

1. Introduction

Human activity recognition has been a concern in Artificial intelligence (AI) research
for decades. However, the many proposed approaches face challenges in recognizing
human activity accurately and precisely. The HAR system has gained popularity in re-
cent years because of the progress of ubiquitous sensing devices and their capacity to
solve specified problems like privacy [1]. HAR systems deployments to the real world in
applications such as ambient assisted living (AAL), personal health [2], elderly care [3],
defences [4], astronauts [5], and smart homes [6] are potentially increasing. However, there
are challenges in the existing techniques to recognize activities substantially since they are
now required to account for all unanticipated changes in the real-time scenario.

For example, in this pandemic situation, a COVID-19 patient needs isolation and can
be monitored and treated without hospitalization to reduce the burden on isolation centres
and hospitals. Sometimes users might modify their schedule of activities without prior
knowledge. However, we could anticipate that the system could swiftly understand such
new changes; in real-world situations, all these changes are inevitable [7].

Current efforts at HAR focus primarily on detecting changes—finding new activities [8,9]
and learning actively—acquiring user annotations about new activities [10]. When a new
activity class is added, they must reconstruct and retrain the model from scratch. Some
researchers have investigated how an activity model with different activities might develop
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automatically [11]. This capacity, however, offers the advantage of keeping the knowledge
in the business model that has been built through time while lowering training costs,
manual configuration and manual feature engineering. Various supervised [12] and semi-
supervised [13] methods for activity recognition have been presented. These models
provide good accuracy with sufficient data on training. However, their performance from
new, undiscovered distributions drops drastically. Therefore, detecting a new user’s activity
remains challenging for the model. Most machine learning [14] and deep learning [15] are
not conceptually aware of all activities, but they can efficiently recognize human activity
with the proper learning and models. The deep neural network is the underlying model
for many artificial intelligence models and state-of-art methods. However, deep learning
demands a significant amount of data to be a label for learning. Nonetheless, due to
practical constraints, some fields of inquiry have data collecting and labeling limitations.
As a result, providing enough labeled data in many circumstances is not viable. In the AAL
domain, particularly the sensor-based Human Activity Recognition (HAR) problem, data
acquisition and labeling tasks necessitate the involvement of human annotators and the
use of pervasive and intrusive sensors. Furthermore, the expense of manual annotation,
especially for massive datasets, is prohibitively high.

There are two needs for recognizing human activity: improving accuracy, developing
trustworthy algorithms to tackle new users, and changing regular activity schedule issues.
Therefore, our strategy ensures that the activity identification is addressed mainly through
improved performance over previous approaches. This work emphasizes recognition
activity by accompanying semi-supervised and adversarial learning on a synchronized
LSTM model. To need a system to have the relevant data and ensure that no labels based
on the previously learned data can be fully anticipated. Furthermore, this technique could
improve performance by utilizing fewer labeling classes. Our method’s highlights are
as follows:

• We present semi-supervised and adversarial learning using a synchronized LSTM
model to recognize human activity with competitive accuracy.

• The model understands new changes and learns accordingly with reduced error rates;
in real-world situations, all these changes are inevitable.

• LSTM is the unsupervised model, but we train it in a semi-supervised feature with a
synchronized parallel manner. Therefore, the proposed approach is also an adapted
version of LSTM.

• The proposed joint model can structure and learn Spatio-temporal features directly
and automatically from the raw sensor data without manual feature extraction. As a
result, the model can train unannotated data more easily and conveniently.

• This framework can likely be applied to various recognition domains, platforms,
and applications such as natural language processing (NLP), PQRS-detection, fault
detection, facial recognition, etc.

• This method could be the best-suited state-of-the-art method for human activity
recognition because of its high-level activity recognition ability with reduced errors
and increased accuracy.

The proposed method can be used as the external sensor deployment method for
a mix of several sensor deployment methods like wearable, external, camera, or all For
the user’s convenience. But we evaluated and compared using fully-added real-world
data sets collected from external sensors deployed in various corners of the house and
apartment from Kasteren and Adaptive System Advanced Studies Center (CASAS). The
remaining documents are arranged accordingly. Section 2 describes related work. Section 3
shows our recommended technique. Section 4 provides the experiment set-up, analysis
and assessment. Finally, the paper ends in Section 5.

2. Related Work

The activity was identified via heterogeneous sensors, wearable sensors, and cam-
eras for ambient assistive living and monitoring [16]. An innovative HAR method uses
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body-worn sensors that partition the activity into sequences of shared, meaningful and
distinguishing states known as Motion Units [17], i.e., a generalized sequence modeling
method. However, the external sensor is on researchers’ choice because of body and per-
sonal issues [18]. Many approaches that use techniques like deep learning, transfer learning,
and adversarial learning are proposed in the state-of-art strategies for HAR. In [19], active
learning methodologies for scaling activity recognition apply dynamic k-means clustering.
Active learning reduces the labeling effort in the data collecting and classification pipeline.
On the other hand, feature extraction is considered a classification problem. [20] evaluates
human activities based on unique combinations of interpretable categorical high-level
features with applications to classification, learning, cross comparison, combination and
analysis of dataset and sensor. Despite all of the improvements made in the suggested
model, such as the computational cost reduction, the approaches are still prone to underfit-
ting due to their poor generalization capacity [21].

A machine learning Naive Bayes classifier recognizes the most prolonged sensor
data sequences [22]. A progressive learning technique dubbed the dynamic Bayesian
network has been explored by re-establishing previously learned models to identify activity
variation [23]. To extract task-independent feature representations from early generative
models, deep learning approaches have been employed on Boltzman machines [24]. More
sophisticated models like CNN [25,26] were effectively utilized in complex HAR tasks.
Likewise, some suitable methods are employed to categorize certain sorts of activity, such
as multilayer perceptrons [27], vector support machine [28], Random forest [29], decision-
making tree [30], and an updated HMM [31]. This research aimed to record sensor changes
or changes in discrimination models to recognize human activities. Valuable data means
data, especially for lesser amounts, which may be employed to generate high performance.
These ultimately save on labelling. For this purpose, several techniques are used in the
study. Cameras were also used as external HAR sensors. Indeed, significant research
has identified activities and actions in video sequences [32,33]. The mentioned work is
particularly suited for safety applications and interactive applications. However, video
sequences have particular problems with HAR, privacy and pervasiveness.

Adversarial machine learning has gained increasing interest with the advent of Gen-
erative Adversarial Networks (GANs) [34], and it now achieves excellent performance in
a wide range of fields, including medicine [35,36], text and image processing [37,38], and
architecture [39,40]. GANs work by pitting generator and discriminator algorithms against
one another in order to distinguish between produced and real-world data. Deep learning
is used to create discriminators that continually learn the best set of features, making it
difficult for the generator to pass the discriminator test [41]. The difficulty of providing
synthetic data was addressed in the first attempts to use adversarial machine learning for
HAR. However, improving categorization algorithms remains the most pressing issue in
this sector.

It is challenging to obtain labelled data from users for practical applications. However,
unlabeled data can be collected. Since semi-supervised learning uses both the labelled and
unlabeled data for model training, the respective models can capture the characteristics of
unlabeled data left-out users and further enhance validation performance. Furthermore,
adversarial semi-supervised learning models compete with a state-of-the-art method for
many areas, such as the classification of images [42] and material recognition [43]. Therefore,
the adversarial semi-supervised [44] model is a viable solution. However, unlike other
semi-supervised learning techniques, adversarial semi-supervised learning methods are
generally applied to circumstances in which unlabeled data is available [45,46].

3. Proposed Method

Human activity recognition systems consist of data acquisition, pre-processing, feature
extraction and training/testing phases. Our approach also contains the same process, but
the driving factor is new in HAR. The workflow of our proposed method is shown in
Figure 1. Heterogeneous sensors were deployed in the apartment’s different locations. The
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data from the sensors are pre-processed by doing segmentation and filtrations. As we use
the deep learning model, the feature is extracted automatically. Then, we train and classify
the activity and recognize it. If data is unannotated, we reprocessed it and classified it.
Finally, we add some perpetuation to develop the self-immune system to the network as
an adversarial learning mechanism. We can benefit from training the unlabeled data and
labeled data. Similarly, it minimized the error by adversarial learning techniques that can
boost the accuracy of the HAR. Hence, we present the Semi-supervised adversarial learning
mechanism to detect the human activity facilitated by the synchronized LSTM model that
is novel in HAR to this date.

Figure 1. System workflow of our proposed method for HAR.

3.1. Semi-Supervised Learning

Supervised learning [47] is a strategy employed by learning data and labels in many
domains or environments. Supervised learning knows and uses labelled data and is helpful
for large-scale issues. Various machine learning and deep learning approaches have been
used as the supervised learning mechanism. However, hundreds to millions of learning
data can be provided to train, and labelling each data is vital. Therefore, supervised
learning cannot be used without sufficient learning data because of these issues. Semi-
supervised learning is a mechanism to address these deficiencies [48]. It is a technique used
to recognize unlisted data with essential criteria like thresholds and re-learn models using
available learning data to increase performance based on the projected values of the learned
sequences. The semi-supervised method reduces manual annotation and helps develop a
self-learning model, which gains robust knowledge and eventually increases the recognition
efficiency or accuracy of the recognition model. The feedback properties of LSTM are used
to send the unannotated. Then the unannotated data is trained and annotated.
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3.2. Sync LSTM

Sync LSTM is the adapted LSTM based on artificial recurrent networks (RNN). The
insight of the LSTM and unfolded sync-LSTM network is shown in Figure 2a,b, respectively.
It can handle multiple data streams at a time [49]. A conventional LSTM neuron takes a
lengthy time to process a signal with significant time steps. As a result, we simultaneously
deployed numerous LSTM units to process different data streams. The input streams of
data are vectored as x ∈ R(I × F × S × V × P) in which I and F are the initial and final end
times. Similarly, S denotes the sensor ID, V is the sensor’s data value, and P represents
the sensor location. xm

t =
(
x1

t , x2
t , x3

t . . . .xN
t
)

is Sync-LSTM sample inputs where each
data is a individual set m = 1, 2, 3, . . . N sampled at time t = 1, 2, 3, . . . N−1. The input
data vector bx1

t , x2
t . . . xN

t ∈ R [(S1 × E1 × I1 × V1 × L1), (E2 × I2 × V2 × L2), . . . (SN ×
EN × IN × VN × LN)]. Y1

t , Y2
t , Y3

t . . . YN
t resembles the output through the hidden states

h1
t , h2

t , h3
t . . . . . . hN

t at the time t.

im
t = σ

(
wxi × xm

t + whi × hm
t−1 + wci × cm

t−1 + bi
)

(1)

f m
t = σ

(
wx f × xm

t + wh f × hm
t−1 + wc f × cm

t−1 + b f

)
(2)

om
t = σ

(
wxo × xm

t + who × hm
t−1 + wco × cm

t−1 + bo
)

(3)

cm
t = f m

t × cm
t−1 + im

t × tanh × (
wxcxm

t + whchm
t−1 + bc

)
(4)

hm
t = om

t × tanh × cm
t (5)

hm
t = H

(
wxmhm × xm

t + whmhm × hm
t−1 + bm

h
)

(6)

Ym
t =

(
wymhm × hm

t−1 + bm
y

)
(7)

Figure 2. (a) Internal Architecture of sync-LSTM; (b) Unfold of sync-LSTM.
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H is the composite function, where the im
t ; input gate, f m

t ; the forget gate, om
t ; the

output gate and the cm
t ; cell memory with W(t); weight matrix. Every given gate has its

activation functions σ; sigmoid and
∫

; hyperbolic tangent.
It comprises an input layer, the LSTM parallel layers, and the outputs wholly linked.

In the last stage, the result is summed up as n × h, where h is the number of neurons buried
in each LSTM unit. After each step, the LSTM layers update their inner state. Finally, the
weight, bais, and hidden layers are allocated to 128. The number of classes determines the
final number of parameters.

3.3. Adversarial Training

Adversarial learning is a technique to regularize neural networks that improve the
prediction performance of the neural network or approaches to deep learning by adding
tiny disturbances or noises with training data that increases the loss of a more profound
learning model. The schematic diagram of the adversarial learning is shown in Figure 3.
However, it proposed that small perturbations to deep learning input may result in incorrect
decisions with high confidence [50]. If x and θ are the input and different parameters for a
predictive model, adversarial learning adds the following terms to its cost function in the
training phase to classify the correct class.

log p (Ym
t
∣∣Xm

t + rm
t ; θ) = where rm

t = argmin log p (Ym
t
∣∣Xm

t + rm
t ; θ̂) (8)

Figure 3. Adding of Adversarial Function.

From Equation (8), r is adversarial in the input data. θ̂, is a set of the constant parameter
of the recognition model. At each training, the proposed algorithm identifies the worst-case
perturbations rm

t Against the currently trained model to θ. Contrary to other techniques
of regularization, such as dropout, that add random noise, adversarial training creates
disturbances or random noise that may readily be misclassified in the learning model by
changing input instances.

Algorithm 1 represents the detailed steps of the recognition system, adding the adver-
sarial function. The adversarial function is a small perturbation that maximizes the loss
function. As a result, the predictive accuracy or predictive model is eventually improved
by reducing the cumulative loss function of the predictive models.
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Algorithm 1 Sync-LSTM Model with Adversarial Training

Step 1. initialize network
Step 2. reset: inputs = 0, activations = 0
Step 3. initialize the inputs
Step 4. Create forward and backward sync-LSTM

Calculate the gate values:
input gates: im

t
forget gates: f m

t
loop over the cells in the block
output gates: om

t
update the cell: cm

t
final hidden state/ hm

t = H
(
wxmhm xm

t + whmhm hm
t−1 + bm

h
)

final output: Ym
t =

(
wymhm hm

t−1 + bm
y

)
Step 5. Predict and calculate the loss function

Calculate seq2seq loss
Calculate class loss using cross-entropy

Step 6. Add random perturbations,
logp (Ym

t
∣∣Xm

t + rm
t ; θ) = where rm

t = argminlogp (Ym
t
∣∣Xm

t + rm
t ; θ̂)

Step 7. Calculate loss function by adding adversarial loss
Step 8. Optimize the model based on AdamOptimizer

Algorithm 2 presents a semi-supervised learning framework that guides how unanno-
tated from multiple inputs can be incorporated into a sync-LSTM recognition model.

Algorithm 2 Semi-Supervised Sync-LSTM Model

Step 1. Recognize unlabeled data based on Algorithm 1
Step 2. Add recognized dataset to original training dataset
Step 3. Retrain the model using Algorithm 2

4. Experimental Configurations and Parameters

The detailed results in both the training and recognition are presented in this section.
First, several design hypotheses are assigned and processed. Then, the proposed model
is trained with the labelled and unlabeled data, and the results are compared with the
existing model outputs. Finally, Milan, Aruba, and the House-C datasets are considered
for the experimental analysis of the proposed approach from the CASAS dataset and
Kasteren house.

4.1. Datasets

The Kasteren dataset [51] and CASAS dataset [52] from WSU have been used to
evaluate our proposed method. Table 1 shows an overview of the datasets. The data was
collected in an apartment with more than five rooms. In Milan, 33 sensors are installed,
whereas in house-C, 21 sensors are installed, and in Aruba, 34 sensors are installed. For the
Milan dataset, motion, door, and temperature sensors are the primary sources of sensor
events. A woman and a dog were the primary annotated resident in the Milan dataset. The
woman’s children occasionally visited the house as an unlabeled resident. The seventy-two
days were spent collecting the data from the Milan house. A total of fifteen activities are
recorded as the annotated data. One resident in the House-C dataset performed sixteen
different activities for twenty days. The sensors show the change of state according to the
occupant’s action. The data for the Kasteren House-C is recorded using radiofrequency
identification, a wireless sensor network, mercury contacts, a passive infrared-PIR, float
sensors, a pressure sensor, a reed switch, and temperature sensors. CASAS Aruba dataset
is another trademark dataset that collected eleven annotated activities for two hundred
and twenty-two days. The schematic layout of the sensor deployment is shown in Figure 4.

79



Sensors 2022, 22, 4755

Table 1. Outlines of Datasets.

Description Milan House-C Aruba

Setting Apartment House Apartment
Rooms 6 6 5
Senors 33 21 34

Activities 15 16 11
Residents 1 1 1

period 72 days 20 days 220 days

Activities Performed

Bed-to-Toilet, Chores,
Dining_Rm_Activity,

Eve_meds, Guest_Bathroom,
Kitchen_Activity, Leave_Home,

Master_Bathroom, Meditate,
Watch_TV, Sleep, Read,

Morning_Meds,
Master_Bedroom_Activity

Brushing teeth, Drinking,
Dressing, Eating, Leaving

House, Medication, Others,
Preparing Breakfast, Preparing

Lunch, Preparing Dinner,
Relax, Sleeping, Showering,

Snack, Shaving, Toileting

Meal_Preparation, Relax,
Eating, Work, Sleeping,

Wash_Dishes, Bed_to_Toilet,
Enter Home, Leave Home,
Housekeeping, Resperate

Figure 4. Floor Plan and Sensor Deployment.

4.2. Parameter Setting and Training

The proposed method is trained and tested using the TensorFlow_GPU1.13.1 library
and scikit-learn. The obtained data is pre-processed and sampled in overlapping sliding
windows with a fixed width of 200 ms with a window length ranging from 0.25 s to 7 s.
Our algorithm is examined using an i7 CPU topped with 16 GB RAM and GTX Titan GPU
processed on CUDA 9.0 using the cuDDN 7.0 library. The CPU and GPU are employed
to minimize the amount of memory used. The dataset is divided into three sections: a
training set, validation, and testing. 70% of data is used for training, 10% for validation,
and the rest for testing. The data is validated using the k-fold CV (cross-validation). We
used 10-fold cross-validation (K = 10) to confirm our findings. The outcome of the accuracy
test is averaged, and the error is determined as follows.

CV =
1
p

10

∑
p=1

E (error) (9)

The dropout rate is adjusted to 0.5 during training to eliminate unnecessary neurons
from each hidden layer to alleviate overfitting. Random initialization and training parame-
ter optimization can also help to reduce training loss. To avoid overfitting and make the
model stable, cross-entropy and L2 normalization are incorporated.

L = −1
k

n

∑
k=1

ym
t .logym′

t + Γ.||W||, (10)
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In Equation (10), k is the number of samples per batch and w denotes the weighting
parameter. ym

t is the recognized output, and ym′
t ; the label. L2 normalization reduces the

size of weighting parameters, preventing overfitting. Adversarial learning is a technique
for regularizing neural networks. It also improves the neural network’s prediction perfor-
mance. It perhaps approaches deep learning by adding tiny disturbances or noises to the
network with training data that increases the loss of a more profound learning model for
regularization, improving recognition ability as adversarial training. If rm

t is the adversarial
input, then is θ the perturbations, which is written as

= argmin log p (Ym
t
∣∣Xm

t + rm
t ; θ̂)

We strive to tune the optimum hyperparameters, as indicated in Table 2, so that the
learning rate and L2 weight decrease and the difference decreases, resulting in the most
significant possible performance. For the Milan, House-C, and Aruba datasets, we employ
a learning rate of 0.005, 0.004, and 0.006 and a batch value of 100 for each epoch to train the
model. For all sets, learning begins at 0.001. The training lasts roughly 12,000 epochs and
ends when the outputs are steady. The Adam optimizer is an adaptive moment estimator
that generates parameter-independent adaptive learning rates. The input dimension is set
to 128, and the output dimension is set to 256. The gradient crossover threshold is reduced
by adjusting gradient clipping to 5, 4, and 5.

Table 2. Hyperparameter Configurations.

Hyperparameters
Values

Milan House-C Aruba

Time Steps of input 128 128 128
Initial Learning Rate 0.001 0.001 0.001

Learning Rates 0.005 0.004 0.006
Momentum 0.5 0.5 0.5

Optimizer (Bi-LSTM) Adam Adam Adam
Batch Size 100 100 100

Dropout Rate 0.5 0.5 0.5
Batch Size 100 100 100

Epochs 12,000 12,000 12,000

4.3. Evaluation Parameters

Accuracy, F1-score, and training time evaluate the model’s performance. These can
be calculated using the confusion matrix, where the row represents the predicted class,
and the column represents the actual class. Human activity recognition is evaluated
according to their computational recognition accuracy, resulting from the Precision and
Recall parameters. Precision is the proportion of correctly recognized instances from
perceived activity occurrences. A recall is the proportion of correctly identified instances
out of the total events. The f-score is the weighted average of Precision and Recall between
0 and 1. The better performance indicated if closer to 1

Precision =
tp

tp + f p
× 100 (11)

Recall =
tp

tp + f n
× 100 (12)

Accuracy =
tp + tn

tp + tn + f p + f n
× 100 (13)

f − score =
2 × Precision × Recall

Precision + Recall
(14)
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where tp; true-positive, tn; true-negative, f p; false-positive, and f n; false-negative. The
tp is the number of true activities detected in positive instances, while an f p indicates
the false activities detected in negative instances. The f n score indicates the exact number
of false activities detected in positive instances, whereas the tn score reflects the correct
non-detection of activities in negative instances.

5. Results and Evaluations

5.1. Recognition Analysis

The activity is recognized according to the proposed smart home development method.
The method shows a tremendous recognition result. Table 3 shows the confusion matrix of
Milan, showing the correctly recognized instances out of the perceived activity occurrences
and correctly recognized instances out of the total occurrences. Thus, all the activities
have more than 95% of recognition accuracy to the given instances. According to the
confusion matrix, the Bed-to-Toilet activity was correctly detected with 95% accuracy but
still has an activity error of 5%. The Bed-to-Toilet may create confusion with Sleep activ-
ity and Morning_Meds these activities are very closely related. Fortunately, Eve_Meds
has a 100% confusion accuracy. The activities Chores, Desk_Activity, Dining_RM_Activity,
Guest_Bathroom, Kitchen_Activity, Leave_Home, Master_Bathroom, Mediate, Watch_TV, Sleep,
Read, and Master_Bedroom_Activity recognition accuracies of 98%, 98%, 99%, 97%, 97%,
96%, 99%, 98%, 99%, 97%, 96%, 95% and 95%, respectively. Although the obtained result
is good enough, we still struggle to get the 100%, letting some errors. The errors arise
because of confusion between similar activities, activities performed in the same room, and
the different activities performed simultaneously with the same instances. Sometimes we
performed the same activities with different people, which was unannotated.

Table 3. Confusion matrix for Milan dataset.

Activity 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Recall

1 Bed-to-Toilet 95 0 0 0 0 0.3 0 0 0 0 0 0 0 1 0.3 98.344
2 Chores 0 98 0 0 0 0 1 0.2 0.05 0 0 0 0 0 0 98.741
3 Desk_Activity 0 0 98 0 0 0 0 0 0 0 2 0.3 0 0 0 97.707
4 Dining_Rm_Activity 0 0.8 0 99 0 2 0 0.1 0 0 0 0 0 0 0 97.154
5 Eve_Meds 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 100.000
6 Guest_Bathroom 0 0 0 0.3 0.2 97 0 1.2 1 0 0 0 0 0 0 97.292
7 Kitchen_Activity 0 1.2 0 1.2 0 0 97 0 0.3 0 0 0 0.6 0 0 96.710
8 Leave_Home 0 0 0 2 0 0 1.2 96 0.9 0 0 0 1 0 0 94.955
9 Master_Bathroom 0 1.1 0 0 0 0 1 0.4 99 0 0 0 0.2 0 0 97.345
10 Meditate 0 0 0 0 0.3 0 0 0 0 98 0.6 0 0 0 0 99.090
11 Watch_TV 0 0 0 0 0 0 0 0 0 0 99 0 0 0 0 100.000
12 Sleep 2 0 0 0 0 0 0 0 0 0 0 97 0 1 0.5 96.517
13 Read 0 0 0 1 0 1 0 0 0 0 0 0 96 0 0.9 97.068
14 Morning_Meds 1 0 0.5 0 0 0 0.8 0 0 0 0 0 0 95 0.033 97.603
15 Master_Bedroom_Activity 0 0 0 0 0 0 0 0 0 0 0 0 0 0.2 95 99.790

Precision 96.939 96.934 99.492 95.652 99.502 96.710 96.040 98.059 97.778 100.000 97.441 99.692 98.160 97.737 98.208

In this dataset, the house owner’s daughter often visited her house, performed the
same task, and was recognized more accurately. The confusion matrix for House-C is
shown in Table 4. The number of activity instances is relatively few, so errors are relatively
low, and recognizing the activity with true positive value results in 98.01% accuracy.

House-C has achieved 98.11% precision, 98.109% recall, and 0.98 f1-score. Activities
such as brushing teeth (95% accurate), Showering (97%), Shaving (95%) toileting (93%) create
confusion and errors because all the activities happen in one location. However, the errors
that occur are comparatively low, so that they can be neglected. Furthermore, Preparing
Breakfast (97%), Preparing Lunch (96%), Preparing Dinner (98%), Snacks (97%) and Eating
(99%) have good recognition accuracy but still have some errors because of confusion
among these activities as they share some sensor values. House-C’s dataset is insufficient
to establish the experimental concept fully and has 100% recognition accuracy. Although
the accuracy is good, more data and training could be needed to find actual recognition.
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Table 4. Confusion matrix for House-C.

Activity 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Recall

1 Brushing
Teeth

95 0 0 0 0 0.3 0 0 0 0 0 0 0 0.3 0.3 0.5 98.548
2 Drinking 0 98 0 0 0 0 1 0.2 0.05 0 0 0 0 0 0 0.2 98.542
3 Dressing 0 0 98 0 0 0 0 0 0 0 0.5 0.3 0 0 0 0.1 99.090
4 Eating 0 0.3 0 99 0 2 0 0.1 0 0 0 0 0 0 0 0.05 97.585
5 Leaving

House
0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0.1 99.900

6 Medication 0 0 0 0.3 0.2 97 0 0.2 1 0 0 0 0 0 0 0.4 97.881
7 Preparing

Breakfast
0 0.2 0 0.2 0 0 97 0 0.3 0 0 0 0.3 0 0 0.5 98.477

8 Preparing
Lunch

0 0 0 2 0 0 1.2 96 0.9 0 0 0 0.5 0 0 0.1 95.333

9 Preparing
Dinner

0 0.1 0 0 0 0 1 0.4 99 0 0 0 0.2 0 0 0.3 98.020
10 Relax 0 0 0 0 0.3 0 0 0 0 98 0.6 0 0 0 0 0.5 98.592
11 Sleeping 0 0 0 0 0 0 0 0 0 0 99 0 0 0 0 0.43 99.568
12 Showering 1 0 0 0 0 0 0 0 0 0 0 97 0 1 0.5 0.2 97.292
13 Snacks 0 0 0 1 0 1 0 0 0 0 0 0 96 0 0.4 0.1 97.462
14 Shaving 1 0 0.5 0 0 0 0.8 0 0 0 0 0 95 0.033 0.4 97.204
15 Toileting 0 0 0 0 0 0 0 0 0 0 0 0 0 0.2 93 0.11 99.668
16 Others 0.2 0 0.1 0.2 0.3 0.2 0.3 0.11 0.2 0.1 0 0.58 0.3 0.5 0.2 93 96.583

Presicion 97.737 99.391 99.391 96.397 99.206 96.517 95.755 98.959 97.585 99.898 98.901 99.101 98.664 97.938 98.483 95.886

Nevertheless, we confirm that our proposed approach for human activity recognition
is feasible. In Aruba, the number of instances per activity type varies considerably as shown
in the Table 5. The proposed system allows most activities to be recognized with an overall
accuracy of 98.34% and an F1-score of 0.98. However, some activities have 100% accuracy
and some have less recognition accuracy, such as Enter Home of 95%. The Enter_House and
Leave_House activities involve the same main door and sensors, taking their occurrences
into account. Likewise, Wash_Dishes gets mistaken with Meal_Preparation since both are
done in the kitchen, sharing the same occurrences. The Wash_Dishes action may also be
performed during Meal_Preparation and can therefore be regarded as concurrent.

Table 5. Confusion matrix for Aruba.

Activities 1 2 3 4 5 6 7 8 9 10 11 Recall

1 Meal_Preparation 98 1.3 0.7 0 0 1.1 0 0 0 0 0 96.934
2 Relax 0 98 0 1 1 0 0.3 0 0 0 0.1 97.610
3 Eating 0 0 97 0 0 1 0 0 0.5 0.1 0 98.377
4 Work 0.6 1.2 0.2 95 0.1 0.6 0.4 1 0.3 0 0 95.573
5 Sleeping 0 0 0 0 97 0 0 1 0 0 0 98.980
6 Wash_Dishes 0 0 0 0.3 0.2 99 0 0 0 0 0 99.497
7 Bed_to_Toilet 0 0 0 0 0 0 98 1 0 0 0 98.990
8 Enter_Home 0 0.4 0 0 2 0 1.54 98 0 0 0 96.135
9 Leave_Home 0 0 0 0 0 0 0 0 100 0 0 100.000
10 Housekeeping 0.2 0 0 0 0 0 0 0 0 98 0 99.796
11 Resperate 0 0 0 0 0 0 0 0 0 0 97 100.000

Precision 99.190 97.126 99.081 98.650 96.710 97.345 97.765 97.030 99.206 99.898 99.897

5.2. Recognition Comparison

The accuracy and loss curves of Milan, House-C, and Aruba are shown in Figures 5–7.
The gap between the training and testing accuracy in the graphs is comparatively tiny,
indicating the model’s effectiveness. Furthermore, the gap between training and test loss is
very narrow, explaining that dropout techniques, adversarial training, and semi-supervised
learning are beneficial.
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Figure 5. Training/Test Accuracy/Loss for Milan.

Figure 6. Training/Test Accuracy/Loss for House-C.
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Figure 7. Training/Test Accuracy/Loss for Aruba.

The average accuracy was 98.154%, and the average error was 0.1571. The performance
result of the proposed approach with the existing framework, such as HMM, LSTM, and
sync-LSTM methods (algorithms), is based on average precision, recall, and accuracy, as
shown in Figure 8a and f-score in Figure 8b. The accuracy of our work is more than 98%,
and the f1-score is more than 0.98. The sync-LSTM also has competitive accuracy with
our method but cannot deal with new or unannotated data. The analysis reveals that the
presentation method can be more accurate than the current approaches.

Figure 8. (a) the average precision, recall, and accuracy and (b) the f1-score comparison with
different models.

6. Conclusions

The presented work in this paper shows that semi-supervised adversarial sync-LSTM
can produce a feasible solution for detecting human activities in the intelligent home
scenario—a comprehensive comparison with recently introduced activity recognition tech-
niques, such as HMM, LSTM, and sync-LSTM. LSTM can work with single data sequences,
and sync-LSTM can accept multiple inputs and generate synchronized and parallel outputs.
Still, these techniques fail to address the new and unknown data in the sequence. Many
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approaches have been researched on annotated and regular activity detection. However,
few of them have tried to detect complex and unannotated activity. The proposed method
used the improvised LSTM and its semi-supervised learning ability to recognize complex
and unannotated human activity from the data collected from the sensors in the smart home.
The adversarial learning technique increases learning ability by adding tiny disturbances or
noises to the network. Accuracy, processing complexity, complex activity and unannotated
activity recognition are still challenging issues in human activity recognition. However,
the precision and recall are also excellent, resulting in an f1 score of more than 0.98 and
98% accuracy.

Nevertheless, the accuracy is not equal or tends to be one hundred percent due to
shared location, sensor timing, noise interference, and limited data. The existing best-
performing model faces several real-time challenges while dealing with different datasets.
The number of activities performed, sensor types, sensor deployment, number of inhab-
itants, and periods are vital parameters affecting model performance. In addition, the
window size also plays a crucial role in model performance because small windows may
not contain all the information, and large windows may lead to overfitting and overload.
Recognizing the unannotated data and processing it in parallel is beneficial for highly
imbalanced datasets.

The computational complexity is O(W), where W is the weight and relies on the
number of weights. The weight is determined by the number of output units, cell storage
units, memory capacity, and hidden unit count. The amount of units connected with
forwarding neurons, memory cells, gate units, and hidden units also impacts. The length
of the input sequence has no bearing on the computational complexity. Using an LSTM
framework for the labelled and unlabeled data adds time complexity, yet our method has a
reasonable calculation time of 9 s.

Besides detecting unannotated activity, the proposed method can automatically extract
Spatio-temporal information by consuming less pre-processing time and manual feature
extraction. In addition, external sensors were used instead of body-worn and video sensors
to protect the user’s privacy and avoid body hurdles. Furthermore, more complex, multi-
user, and multi- variants activities can be recognized by enhancing and upgrading the
proposed method in the future. Moreover, we can take advantage of cloud computing,
edge computing and IoT services to process a large amount of data for better performance.
Finally, our approach can be used in other domains and environments like sign language
detection, cognitive abilities, etc. Hence, our suggested approach is a better state-of-art
method for HAR.
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Abstract: Wi-Fi-based human activity recognition has attracted broad attention for its advantages,
which include being device-free, privacy-protected, unaffected by light, etc. Owing to the develop-
ment of artificial intelligence techniques, existing methods have made great improvements in sensing
accuracy. However, the performance of multi-location recognition is still a challenging issue. Accord-
ing to the principle of wireless sensing, wireless signals that characterize activity are also seriously
affected by location variations. Existing solutions depend on adequate data samples at different
locations, which are labor-intensive. To solve the above concerns, we present an amplitude- and
phase-enhanced deep complex network (AP-DCN)-based multi-location human activity recognition
method, which can fully utilize the amplitude and phase information simultaneously so as to mine
more abundant information from limited data samples. Furthermore, considering the unbalanced
sample number at different locations, we propose a perception method based on the deep complex
network-transfer learning (DCN-TL) structure, which effectively realizes knowledge sharing among
various locations. To fully evaluate the performance of the proposed method, comprehensive ex-
periments have been carried out with a dataset collected in an office environment with 24 locations
and five activities. The experimental results illustrate that the approaches can achieve 96.85% and
94.02% recognition accuracy, respectively.

Keywords: human activity recognition; Wi-Fi sensing; multi-location; deep complex network

1. Introduction

Human Activity Recognition (HAR) has been considered as an indispensable tech-
nology in many Human-Computer Interaction (HCI) applications, such as smart homes,
health-care services, security surveillance, entertainment, etc [1,2]. Both the device-based
and device-free sensing approaches attract widespread attention [3–6]. Owing to their
superiority involving sensing accuracy and robustness, sensor-based [7,8] and camera-
based [9,10] HAR methods have been widely used in various fields. However, these
techniques experience varied limitations in some applications. Specifically, sensor-based
methods require the users to equip themselves with additional devices, which is inconve-
nient. Although the camera-based technique is successfully applied to various scenarios,
it is restricted to well-lit conditions and fails to work in a non-line-of-sight (NLOS) scene.
More critically, it raises privacy concerns.

Recently, device-free sensing technology based on wireless signals has been widely
studied owing to its capacity to overcome the above defects effectively [11,12]. Since
only radio frequency (RF) signals are utilized, it naturally has the strengths of working
in darkness and NLOS circumstances and protecting users’ privacy in the meantime.
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Compared with the other wireless signals, such as Frequency Modulated Continuous Wave
(FMCW) [13,14], millimeter-wave (MMW) [15,16], and Ultra-Wide Band (UWB) [17,18], Wi-
Fi has an overwhelming advantage due to its ubiquity in daily life. Leveraging commercial
off-the-shelf (COTS) devices, Wi-Fi-based human activity recognition obviates the need for
additional specialized hardware. Consequently, study of the Wi-Fi-based HAR technique
has proliferated rapidly over the past decade [19–22].

Although Wi-Fi-based HAR approaches have made significant achievements at a fixed
location, it is still challenging in multi-location sensing. When it comes to intelligent control
in smart homes, it will be seriously inconvenient for users if they can only control the
smart devices at a specified location in a room. Moreover, a target that can be detected at
one position but fails to be identified at other positions is not desired. Therefore, multi-
location sensing is one of the most essential capabilities for the HAR system. According
to the principle of RF signal propagation, when encountering an obstacle, the signal will
be reflected, refracted, and scattered, leading to the superposition of multipath [23,24].
Therefore, both the activity and its location affect signal transmission to a certain extent.
Consequently, even for the same human activity, different locations would result in signals
having different patterns, which will lead to a serious decline in multi-location sensing
accuracy. Furthermore, owing to the rapid development of the deep learning technique, the
performance of human activity recognition has been effectively improved [25]. However,
these methods usually rely on abundant labeled or unlabeled samples, which have never
been easily accessible for labor-intensive and time-consuming. In addition, it is quite
difficult to obtain large amounts of data for all locations. Therefore, a multi-location human
activity recognition method using small-scale data needs to be explored.

Literature [26] is the state-of-the-art multi-location human activity recognition method.
An activity decomposition network (ActNet) is proposed to decompose the training samples
into activity features and location features. In addition, data from different locations are
assembled for training to mitigate the data limitation issue. The performance is evaluated
at 24 sampling locations in the perceptual range. Using only 10 training samples for each
position can achieve promising recognition accuracy.

Existing Wi-Fi-based sensing approaches for human activity recognition are mostly
dependent on the amplitude of Channel State Information (CSI) because phase information
contains certain errors caused by the hardware and software of the transceiver, including
Sampling Time Offsets (STO) and Carrier Frequency Offsets (CFO) [27,28]. The proposed
phase offsets removal method and phase difference make it possible to utilize phase
information in Wi-Fi-based sensing [29,30]. However, it inevitably loses some useful
information. Despite both amplitude and phase providing a wealth of activity-related
information, only very few studies have used them simultaneously. In multi-location
HAR, although the same activity conducted in different locations will lead to different
signal delays at the receiver, the time delay generated by the same action may change
with a certain rule, which is unrelated to the locations and will be reflected in the phase
information. Therefore, leveraging the amplitude and phase information of CSI effectively
at the same time can extract the feature representation that is more related to the activity.
Furthermore, since more abundant features can be obtained, the sample size can be reduced
to some extent. Although deep learning-based HAR methods emerge due to the key merit
of automatically learning representative features, the amplitude and phase information are
usually applied as the input of the neural network separately.

In this paper, inspired by the Deep Complex Network (DCN) [31,32] which is designed
to extract meaningful information from the real and imaginary parts of complex numbers,
we propose a multi-location human activity recognition system based on the Deep Complex
Network. Firstly, we propose a multi-location human activity identification method based
on Amplitude and Phase enhanced Deep Complex Network (AP-DCN), which can make
efficient use of amplitude and phase information. Specifically, complex Convolutional
Neural Network (CNN), complex Batch Normalization (BN), and the complex ReLU
activation function are used for feature extraction. Softmax is used for activity classification.

90



Sensors 2022, 22, 6178

Under the condition of limited data samples, high accuracy multi-location human activity
recognition is realized. Moreover, considering the imbalanced number of samples in
different positions and the more restricted number of training samples in some positions,
the transfer learning method is used to realize the sharing of human activity characteristics
in distinct locations. A novel human activity sensing method based on Deep Complex
Network-Transfer Learning (DCN-TL) is proposed. The model is trained with sufficient
activity samples from source domain locations to learn the common features of the source
domain and target domain, as well as the specific characteristics of the source domain.
Then, the model is fine-tuned with a small number of samples from target domain locations
to learn the specific characteristics of the target domain. Thereby, in the case of unbalanced
samples at different locations, multi-location human activity recognition can be achieved.

The main contributions of this paper can be summarized as follows:

• First, the effects of amplitude and phase information on Wi-Fi-based human activity
recognition are analyzed. In order to make full use of the information in CSI, the
AP-DCN-based recognition method is designed to improve the recognition accuracy
of multi-location sensing.

• Second, in order to alleviate the problem of unbalanced samples at different loca-
tions, the DCN-TL-based human activity recognition method is proposed to reduce
the dependence of the perception method on the number of activity samples at a
specific location.

• Third, comprehensive experiments are conducted to evaluate the performance of
the proposed AP-DCN-based and DCN-TL-based multi-location sensing methods.
Experimental results demonstrate that the proposed approach can achieve satisfactory
multi-location human activity recognition accuracy with very few samples.

The remainder of this article is organized as follows. In Section 2, the preliminaries
of Wi-Fi sensing are introduced. In Section 3 provides an overview of the proposed
system and a detailed description of the AP-DCN-based and DCN-TL-based multi-location
human activity recognition methods. In Section 4, the experiment setup and performance
evaluation are elaborated. Our conclusions are presented in Section 5.

2. Preliminaries

In this section, the measured signal is analyzed to verify the multi-location issue men-
tioned above. Firstly, the signal metric leveraged in Wi-Fi-based HAR is introduced. Then,
the influence of location variations on Wi-Fi signals is investigated to reveal the encountered
challenges. More importantly, both amplitude and phase information are presented.

2.1. Channel State Information

Wi-Fi-based HAR leverages the impact of human movements on the propagation of the
wireless signal for sensing. In a Multiple Input Multiple Output (MIMO) and Orthogonal
Frequency Division Multiplexing (OFDM) wireless communication system, this process
can be described by the fine-grained CSI, which represents the state of the communication
link between the transmitter (TX) and the receiver (RX).

Letting y and x denote the received signal and transmitted signal, the relation between
them can be modeled as:

y = Hx + n (1)

where n is the noise vector and H is the CSI channel matrix which is made up of complex
numbers, namely H=HR + iHI . For the s-th subcarrier between the i-th transmitting
antenna and the j-th receiving antenna, it is given by

Hs
ij =

∥∥∥Hs
ij

∥∥∥ej∠Hs
ij , s ∈ [1, Ns], i ∈ [1, Nt], j ∈ [1, Nr] (2)
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where
∥∥∥Hs

ij

∥∥∥ and ∠Hs
ij denote amplitude and phase, respectively. Nt and Nr stand for the

number of antennas at the TX and RX. And i and j are the indices of TX and RX antennas.
Ns is the number of subcarriers for each pair of transceiver antenna.

2.2. Problem Analysis

To demonstrate the challenge of multi-location HAR using Wi-Fi signals, the CSI
amplitudes of the activities at the same and distinct locations are analyzed and presented
in Figures 1 and 2. The horizontal axis represents the frame length, and the ordinate
indicates the amplitude of CSI. The dataset will be presented in more detail in Section 4. As
demonstrated in Figure 1, each subgraph depicts a kind of activity. The two curves in each
subgraph represent two samples of the same activity. The measured signals for the same
action at a fixed location seem to have similar waveforms. In the left figures of Figure 1,
the variation trends of the two samples are different to some extent, which is because there
are slight differences in the amplitude, speed, and starting position of each movement
performed by the volunteers, resulting in differences among different samples of the same
activity. Therefore, in the process of activity recognition, it is necessary to extract similar
feature patterns between different samples of the same action that represent the changing
trend of the activity itself as much as possible. Furthermore, it can be observed that diverse
human activities will generate different characteristic patterns in the received signals at
the same location. These are the foundation of wireless sensing. However, the measured
signals for the same activity possess varying CSI amplitudes at different locations. As
illustrated in Figure 2, five curves correspond to the same activity at five different locations.
As can be seen, although it is relatively easy to identify the types of human activities by
interpreting the CSI patterns at a single location, it may not be possible to ensure good
classification accuracy for multi-location sensing.

Figure 1. CSI amplitude of four different activities at the same location.

In addition to the amplitude of CSI, the phase of the activity is also analyzed and
shown in Figure 3. As can be seen, the phase can also reflect the characteristics of the
activity. Therefore, both amplitude and phase should be utilized effectively. According
to the above observation, just in terms of amplitude and phase, apart from the types of
activities, the location variations can also obviously affect signal transmission. Therefore,
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both kinds of information should be strongly integrated, which can provide more accurate
representative features so as to achieve multi-location sensing with limited data.

Figure 2. CSI amplitude of the same activity at five different locations.

Figure 3. CSI phase of the same activity at five different locations.

3. System Model

3.1. Overview

In this part, the framework of the multi-location human activity recognition system
is introduced, as shown in Figure 4. First of all, the Wi-Fi communication system is set
up to collect CSI data in the Wi-Fi environment. The details will be described in Section 4.
Then, feature extraction is carried out on CSI samples that are affected by human activities,
and activity categories are distinguished according to the differences in features to realize
human activity recognition.

To meet the requirement of high accuracy multi-location human activity recognition,
a sensing method based on AP-DCN was proposed. High-accuracy multi-location sens-
ing depends on adequate activity data from various positions. When data samples are
restricted, sufficient activity information should be mined from the limited data. According
to the above analysis, both the amplitude and phase of the Wi-Fi signal carry information
related to human activities. Compared with the real-valued deep learning method based on
the single amplitude or phase, the deep complex network simulates complex space compu-
tation through real-number space computation and can extract richer feature information.
AP-DCN is designed to fully mine human activity information in amplitude and phase of
CSI by using the complex convolution operation.

In some application scenarios, besides the lack of data samples, there is also the
problem of unbalanced sample numbers provided at different positions. Therefore, a multi-
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location human activity perception method based on transfer learning named DCN-TL is
proposed to transfer the common features of human activities learned from some locations
with sufficient activity data to other locations with insufficient data so as to alleviate the
impact of unbalanced data samples and limited sample number.

Figure 4. The framework of multi-location human activity recognition system.

3.2. Ap-Dcn
3.2.1. Network Architecture of AP-DCN

In this section, AP-DCN, which makes full use of the amplitude and phase information
of CSI for multi-location human activity recognition, is designed. The architecture of the
proposed AP-DCN is shown in Figure 5. With CSI as the input, in order to efficiently
guide the network to learn meaning information, the calculated amplitude and phase
are input to the backbone network as the real and imaginary parts of the new complex
matrix, respectively.

The network consists of two complex convolution blocks, each of which contains a
two-dimensional complex convolution layer, a complex batch normalization layer, and
a complex activation function layer. When it comes to the number of network layers,
theoretically, the more layers, the more effectively features can be extracted. However,
in our scenario, the data samples are limited, and too many layers will easily lead to
overfitting of the model. In addition, considering the complexity of the network in general,
we designed the network using two complex convolutional blocks. Specifically, the two
complex convolutional layers use 32 and 16 complex convolutional kernels, respectively.
The kernel size is 3 × 3. Batch normalization layers correspond to 32 and 16 channels,
respectively. Rectified Linear Unit (ReLU) is used as the activation function of the network.
In order to reduce the number of model parameters and alleviate the over-fitting problem
to some extent, the adaptive average pooling is applied to the real part and the imaginary
part, and the size of the output feature map is 1 × 1. Subsequently, a complex linear layer
follows, which is equivalent to the full connection layer of a real-valued neural network.
The input size of the linear layer is 16, and the output size is 5, corresponding to five activity
categories. Finally, since human activity recognition is defined as a classification problem, a
softmax layer is connected to the end of the network to predict the category of the activity.
The details are presented in the following.
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Figure 5. The architecture of the AP-DCN.

3.2.2. Network Layer of AP-DCN

For the CSI channel matrix H = HR + iHI , HR ∈ R, HI ∈ R, where each element is a
complex number. The amplitude and the phase can be expressed as:

A = ‖H‖ =
√

H2
R + H2

I (3)

P = ∠H = arctan(HI/HR) (4)

As described in the literature [31], to perform the two-dimensional convolution
operations in the complex domain, complex filter matrix (complex convolution kernel)
W=WR + iWI , where WR and WI are real matrices, is to be convolved by a complex matrix
C = A + iP. The calculation process of complex convolution can be expressed as:

W ∗ C = (WR + iWI) ∗ (A + iP)
= (WR ∗ A − WI ∗ P) + i(WI ∗ A + WR ∗ P)

(5)

where ∗ represents the convolution operation. The real and imaginary parts of the convolu-
tion operation can be expressed in matrix notation as follows:[ �(W ∗ C)

�(W ∗ C)

]
=

[
WR −WI
WI WR

]
∗
[

A
P

]
(6)

where � and � denote taking the real and imaginary parts of a complex number, respec-
tively. The complex convolution operation is demonstrated in Figure 6.

Figure 6. Complex convolution operation.

To ensure the same distribution of the neural network input of each layer in the training
process, and to effectively avoid the issue of the training gradient disappearing, complex
batch normalization is used for transforming the input value of each layer to standard
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normal distribution with an average of 0 and variance of 1, so as to accelerate convergence
speed of the deep model. Taking the input x = {x1, x2, . . . , xm} as an example, the output
of the complex batch normalization layer can be obtained via the following process:

x̃ = (V)−
1
2 (x −E[x]) (7)

where the expectation E is calculated as follows:

E(x) =
[
E(�(x))
E(�(x))

]
=

⎡
⎢⎢⎣

1
m

m
∑

i=1
�(xi)

1
m

m
∑

i=1
�(xi)

⎤
⎥⎥⎦ (8)

The covariance matrix V is

V =

(
Vrr Vri
Vir Vii

)

=

(
Cov(�{x},�{x}) Cov(�{x},�{x})
Cov(�{x},�{x}) Cov(�{x},�{x})

) (9)

where Cov implies the covariance calculation. Take Cov(�(x),�(x)) as an example

Cov(�(x),�(x)) =

m
∑

i=1
(�(xi)−E(�(xi)))(�(xi)−E(�(xi)))

m
(10)

In order to maintain the original feature distribution, the scale transformation and
translation transformation follow the calculation process in reference [31].

The complex ReLU (CReLU) activation function is applied on both the real and the
imaginary part of a neuron. For a complex input z, it is given by

CReLU(z) = ReLU(�(z)) + iReLU(�(z)) (11)

The complex linear layer is computed similarly to the complex convolution operation
by replacing the convolution operation with the multiplication operation. Then, the module
value of complex output z of the complex linear layer is calculated to obtain:

z′ =
√
(�(z))2 + (�(z))2 (12)

In the training phase, cross-entropy loss is employed. Letting L denote a real-value
loss function, the back-propagation (BP) can be written as:

∇L(H) =
∂L
∂H

=
∂L

∂HR
+ i

∂L
∂HI

=
∂L

∂�(H)
+ i

∂L
∂�(H)

=�(∇L(H)) + i�(∇L(H))

(13)

∇L(W) =
∂L
∂W

=
∂L

∂WR
+ i

∂L
∂WI

=�(∇L(H))

(
∂HR
∂WR

+
∂HR
∂WI

)

+�(∇L(H))

(
∂HI
∂WR

+
∂HI
∂WI

) (14)

The loss function is minimized with Adam [33] to optimize the network parameters.
The exponential decay rate ρ1 and ρ2 are empirically set as 0.9 and 0.999, and the learning
rate is set as 0.001. ReduceLROnPlateau learning rate policy is utilized. The learning rate
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will be reduced by half when there is no improvement in the training loss over eight epochs.
The total epoch is set up as 50.

3.3. Dcn-Tl
3.3.1. Human Activity Recognition Method Based on DCN-TL

The process of the DCN-TL-based sensing method mainly consists of feature repre-
sentation and recognition, and model fine-tuning based on transfer learning. A feature
representation and classification recognition method based on a one-dimensional complex
convolutional network was proposed to extract features and predict categories of human
activities. The network is trained through the human activity samples with sufficient data in
the source domain to obtain the pre-trained model. Then, a small number of target domain
samples are used to update the pre-trained model by the transfer learning method. In
practical application scenarios, the model pre-training and the model update are completed
offline. After the optimal parameters are obtained, the activity prediction can be realized
online without affecting the system response speed during use.

3.3.2. Feature Representation Method Based on One-Dimensional Complex Convolution

Before knowledge transfer, it is necessary to learn as much activity-related experiential
knowledge as possible from the data samples in the source domain. In order to effectively
mine the time-dimension information of CSI data, a human activity feature representation
method based on a one-dimensional complex convolutional network is proposed. The
activity features contained in the amplitude and phase of CSI data are extracted by one-
dimensional convolution which is suitable for sequence information extraction. Table 1
shows the structure of the feature extraction network model. The 750 × 30 complex
CSI matrix is used as the input, and its amplitude and phase are calculated to input the
backbone network. The network consists of two one-dimensional complex convolutional
layers, two complex batch normalization layers, an adaptive averaging pooling layer, and
two complex linear layers. In Table 1, (×4) represents the convolution operation or linear
multiplication operation between the real/imaginary parts and the two corresponding
network weights four times. (×2) represents two corresponding operations on the real
and imaginary parts. Complex convolution operations and complex linear operations are
computed in the same way as AP-DCN. The softmax classifier is still used for classification
and recognition. Specific network parameters are set as follows: the number of convolution
kernels corresponding to the two convolution layers is 128; the kernel size is 3; for one-
dimensional convolution, that is, three times the number of input channels. For example,
the size of the convolution kernel at the first layer is 3 × 30, and the size of the convolution
kernel at the second layer is 3 × 128. The step size and the padding are set to 1.

Table 1. The model structure of feature extraction network.

Layer Output Size

Input layer (−1, 30, 750)

Complex convolution layer 1 (×4) (−1, 128, 750)

Complex batch normalization layer 1 (×2) (−1, 128, 750)

Complex convolution layer 2 (×4) (−1, 128, 750)

Complex batch normalization layer 2 (×2) (−1, 128, 750)

Adaptive average pooling layer (×2) (−1, 128)

Complex linear layer 1 (×4) (−1, 64)

Complex linear layer 2 (×4) (−1, 5)

Figure 7 shows the specific one-dimensional convolution operation process for the
real or imaginary part of the complex input matrix. Taking the amplitude or phase of CSI
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data with an input size of T × s as an example, it is composed of T time slices, and each
time slice corresponds to s subcarrier information, which can be regarded as the feature
vector with the dimension of s.

The convolution kernel is used to conduct a one-dimensional convolution operation
with input data. Different from the two-dimensional convolution operation, the convolution
kernel of the one-dimensional convolution operation moves only along the time axis. The
convolution kernel is a feature detector, which is equivalent to a sliding time window in
the time dimension. We define the number of convolution kernels as N and the size of the
convolution kernels as k. The number of convolution kernels determines the dimension of
the output vector, which is the number of features obtained. The size of the convolution
kernel determines the time length of the activity involved in each convolution operation.
The length of the input data and the size of the convolution kernel determine the number
of output neurons. Taking step size 1 and padding size 0 as an example, after a layer of
convolution operation, the output matrix with size N × (T − k + 1) is obtained. For the
network mentioned above, the same loss function calculation method, model optimization
method, and parameter setting are still used to train the model and obtain the pre-training
model for the next stage of knowledge transfer.

Figure 7. One-dimensional convolution operation.

3.3.3. Recognition Method Based on Transfer Learning

The above feature representation and learning methods can be used to train the
basic model with strong discriminant ability from relatively sufficient source domain data.
At this point, the learned knowledge contains the basic characteristics of CSI data and
the general characteristics of activities at different source domain locations. When data
samples from different locations are unbalanced, to adapt the model to the target domain
location where the data sample is further constrained, the model needs to have the ability
to transfer knowledge learned from the source domain locations to the target domain
locations. Therefore, a multi-location activity recognition scheme based on transfer learning
is proposed. The model fine-tuning of transfer learning can realize knowledge sharing with
very few target domain samples. The low-level parameters of the network are obtained
from sufficient source domain data, and the high-level parameters are learned from the
target domain data with limited samples.

The transfer learning scheme is based on the pre-training model. Figure 8 shows the
architecture of the transfer learning network. The specific process is as follows: Firstly,
the network model is pre-trained using the source domain training data set composed of
several positions to obtain the optimal model parameters. These parameters are then used
to initialize the network and freeze the network layer before the linear layer. Finally, the
two linear layers are trained with very few data samples from the target domain locations.
Based on the pre-training model, the activity feature representation of source domain
learning is transferred to the target domain, which greatly reduces the need for training
samples in the target domain and effectively alleviates the problem of sample imbalance.
The forward and back-propagation of traditional network training involve all layers of the
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whole network, while the transfer learning process only involves the last two layers, which
can effectively reduce training parameters and shorten training time.

Figure 8. Architecture of transfer learning network.

4. Experiment and Evaluation

In order to validate the performance of our proposed AP-DCN-based and DCN-TL-
based multi-location HAR method, a series of experiments have been conducted. The
experiment setup and the experiment results are reported in this section.

4.1. Experiment Setup

To fully evaluate the performance of the proposed method, a dataset has been collected
in a cluttered office. The experimental scene is shown in Figure 9. Halperin et al. develop
Linux 802.11n CSI Tool [34] based on Intel 5300 Network Interface Card (NIC) which is
leveraged to acquire the fine-grained CSI data. The transmitter (TX) and the receiver (RX)
work in 802.11n, and operate on a 5 GHz frequency band, with a bandwidth of 20 MHz.
They are both equipped with three antennas. CSI with 30 groups of subcarriers from each
TX-RX pair can be obtained. It is worth noting that the CSI data from only one of the
antenna pairs, namely 30 subcarriers, can be alternatively used.

Figure 9. Data collection experimental scene.

To explore the multi-location HAR method, data samples at 24 different locations
within a region between the transceivers are collected. The specified location is depicted
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in Figure 10. The distance between adjacent sampling locations is approximately 0.6 m.
The room size is approximately 6 m × 8 m. The distance between TX and RX is 4 m. We
predefined five activities, including drawing a circle (O), drawing across (X), lifting up and
laying down two arms (UP), pushing and opening with two arms (PO), and sitting down
(ST). Five volunteers (one female and four males ranging from 23–30 years old) conducted
50 samples for each activity at each location. There are 24 × 50 = 1200 samples for each
activity of each person. Since the initial sampling rate is 200 frames per second, and the
actual duration of the actions is 3.5∼4 s, namely 700∼800 frames, 750 frames is cut as
a sample.

Figure 10. The layout of data collection locations.

4.2. Experiment Results of Ap-Dcn

The evaluation contains the following three parts. Firstly, the feasibility and effective-
ness of the approach are explored. Then, the reliability is discussed. Finally, the proposed
method is compared with other approaches to prove the superiority of our system.

Overall performance. To verify the feasibility of the multi-location sensing method,
50 samples for each activity at 24 locations of one person are randomly divided into three
parts, the training set, the validation set, and the testing set, which accounts for 20%, 20%,
and 60%, respectively. It is worth noting that, to reduce the computational burden, only
30 subcarriers from one TX-RX antenna and five training samples from each location are
used. The size of the sample is 750 × 30, each is a complex number with its real and
imaginary parts. The average accuracy of the proposed method for the five activities of one
person is 96.53%. The confusion matrix is demonstrated in Figure 11. It can be seen that
all the activities can obtain an acceptable recognition accuracy. In particular, the activity
ST achieved 99.86% recognition accuracy. Since X and O are both movements in front of
the body after raising the right arm, they are easier to be confused than other activities. In
summary, our proposed method performs well in multi-location human activity sensing.

The enhancement effect of amplitude and phase information on multi-location recog-
nition is analyzed. The comparison of recognition accuracy of different methods is demon-
strated in Table 2. CNN represents the real-valued convolutional neural network corre-
sponding to AP-DCN network structure. DCN represents complex convolutional networks
with the same network structure that are not enhanced by amplitude and phase calculation.
Through the comparison between CNN and DCN, it can be seen that complex convolution
calculation plays a certain role in extracting richer activity information. The comparison
between DCN and AP-DCN shows that manual calculation of amplitude and phase can
effectively guide the network to learn more accurate information, so as to achieve higher
accuracy of human activity perception.
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Figure 11. The confusion matrix of AP-DCN recognition accuracy.

Table 2. Comparison of recognition accuracy of different methods.

Sensing Method Accuracy (%)

CNN 92.23
DCN 94.92

AP-DCN 96.53

Performance of multi-location HAR in terms of different location areas. According
to the principle of wireless sensing, when the target is farther away from the transmitter
and the receiver, the delay of the reflected signal generated by the target may be larger.
After multi-path superposition, the influence on the received signal is relatively small.
Therefore, when the target and the perceptual location area are far from the transceiver, the
sensing effect will decrease. To evaluate the reliability of the proposed method in different
location areas, four perceptual regions from near and far relative to the transceiver are
selected. Table 3 shows the recognition accuracy of different perception areas. Loc1-Loc6
indicates the training and testing samples are selected from location 1–6 in Figure 10. As
can be seen, as the location region expands, although the perceptual effect slightly declines,
high recognition accuracy can be obtained in each perception area. Although the perception
effect is slightly decreased, high recognition accuracy can be obtained in each perception
area. For 24 sampling positions covering almost the whole space, the recognition accuracy
is still satisfied.

Table 3. The AP-DCN recognition accuracy of different sensing areas.

Sensing Area Accuracy (%)

Loc 1∼Loc 6 98.44
Loc 1∼Loc 12 98.27
Loc 1∼Loc 18 97.99
Loc 1∼Loc 24 96.53

Performance of multi-location HAR for different number of training samples. In-
tuitively, the more samples involved in training, the richer the activity features can be
provided. The number of training samples involving 4, 6, 8, and 10 for each activity at
each location are investigated. The recognition accuracy with different numbers of training
samples is shown in Table 4. As can be seen, the proposed method can provide satisfied
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recognition accuracy of 95.81% with four training samples. When the number of training
samples increases from four to ten, the recognition accuracy is further improved.

Table 4. The recognition accuracy for different number of training samples.

Number of Training Samples 4 6 8 10

Accuracy (%) 95.81 96.85 97.39 98.11

Performance of multi-location HAR for different number of subcarriers with dif-

ferent sampling rates. This paper, in addition to implementing human activity recognition
for multi-location, also aims to reduce the computational burden, which is more suitable
for real-time applications. Therefore, a small sample size is desired. CSI measurements are
collected at the initial transmission rate of 200 packets per second, and the 750 CSI series are
down-sampled to 375, 250, 150, and 75. Furthermore, the number of subcarriers of 10, 20,
and 30 are investigated. It is worth noting that only five training samples for each activity at
each location are utilized. The recognition accuracy with different numbers of subcarriers
and sampling rates are shown in Figure 12. As can be seen, the proposed method can
provide satisfied recognition accuracy with very few subcarriers and low sampling rates.
As far as the sampling rate is concerned, when the sampling rate decreases to 20 frames/s,
the method can still obtain 88.61% with only 10 subcarriers.

Figure 12. The recognition accuracy with different number of subcarriers and sampling rates.

Performance of multi-location HAR for different persons. To verify the reliability of
the system for different users, we collected the data samples involving five subjects marked
as User1–User5. Their heights range from 160–180 cm, while the age is from 23–30 years
old. The recognition results of the five users for five activities at 24 locations are shown
in Table 5. As illustrated, the average recognition accuracy is 96.85%. Consequently, our
method can work well for different users.

Table 5. The AP-DCN recognition accuracy for different users.

Users User1 User2 User3 User4 User5 Average

Accuracy (%) 96.53 98.00 96.28 95.00 98.42 96.85

Comparison with different recognition methods. In this part, to evaluate the su-
periority, four typical approaches are compared with our system. ActNet [26] is the
state-of-the-art multi-location HAR method, which decomposes the input samples into
the location-irrelevant activity features and activity-irrelevant location features. It jointly
learns different activities from multi-locations to mitigate the issue of insufficient data.
SqueezeNet [35] and Alexnet [36] are two classical deep learning methods. WiHand [37]
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utilizes the low rank and sparse decomposition (LRSD) algorithm to separate activity signal
from background information, thus making it adapt to location variation. It is worth noting
that, in order to keep the settings as similar as possible to the original literature, all five
methods use 10 training samples. In addition, the first three use 270 subcarriers, while the
last two use 30 subcarriers. As can be seen in Table 6, our system outperforms these three
methods in multi-location HAR, even using fewer subcarriers.

Table 6. Comparison with different recognition methods.

Methods Accuracy (%)

ActNet [26] 94.60
SqueezeNet [35] 90.07

Alexnet [36] 89.00
WiHand [37] 88.22

AP-DCN 98.11

4.3. Experiment Results of Dcn-Tl

This section still uses the data set composed of five human activities collected at
24 positions in Section 4.1 to evaluate the performance of the multi-location human activity
recognition method based on DCN-TL. 50 samples of each activity collected by volunteers
at each location are divided into three parts: model training, knowledge transfer, and
performance test, accounting for 60%, 20%, and 20%, respectively. For any volunteer, a
maximum of 30 training samples, 10 transfer samples, and 10 test samples are available for
an activity at each location. This section still uses 750 frame length and 30 subcarriers as
input. The parameters of the pre-training network are the same as in the previous section.

Overall performance. In order to verify the perceptual performance of the method
when the number of training samples at different locations is unbalanced and the number
of samples at some locations is further limited, for the 24 sampling locations in the data set,
we take the example of sufficient samples at six locations and insufficient samples at other
locations to evaluate the feasibility of the method. The six training positions are selected
starting from the first position in Figure 10 at equal intervals, taking one for every four
positions from location 1 to 24. Three samples were randomly selected from 10 transfer
samples for model transfer learning. The testing set consists of testing samples involving
five activities at 24 positions, with a total of 24 × 5 × 10 = 1200 samples. Experimental
results show that the average recognition accuracy of DCN-TL is 93.00%. The confusion
matrix is shown in Figure 13. Among them, ST can obtain 100% recognition accuracy.
Other activities can also obtain satisfactory recognition accuracy. Therefore, DCN-TL
performs well in the multi-location human activity sensing when the number of training
samples at different positions is unbalanced and the number of samples at some positions
is further limited.

Performance of multi-location HAR in terms of different location areas. We discuss
the performance of human activity recognition based on the DCN-TL recognition method
when the perception area gradually expands. At the 24 sampling positions shown in
Figure 10, location 1–6 in the first row parallel to the transceiver is defined as perception
area 1, and the experiment number is marked as N1. Training positions 2 and 5 are
symmetrically selected. One row is added at a time to gradually expand the perception
area, forming evaluation experiments numbered N2, N3, and N4. The training position
of the latter perception area is increased based on the training position of the former
perception area. For example, “N1+8/11” represents that the training positions 8 and 11 are
added on the basis of N1, namely, the four positions participating in the model pre-training
are 2/5/8/11. Table 7 shows the recognition accuracy of different perception areas. It can
be seen that, with the expansion of the perception area, the recognition accuracy gradually
improves. This is because the model can learn more knowledge in the pre-training stage
due to the gradual increase of training positions.
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Figure 13. The confusion matrix of DCN-TL recognition accuracy.

Table 7. The DCN-TL recognition accuracy of different sensing areas.

Number Training Locations Testing Locations Accuracy (%)

N1 2/5 Loc 1∼Loc 6 88.33
N2 N1+8/11 Loc 1∼Loc 12 90.83
N3 N2+14/17 Loc 1∼Loc 18 91.78
N4 N3+20/23 Loc 1∼Loc 24 93.42

Performance of multi-location HAR in terms of different number of training lo-

cations. The number of positions involved in pre-training is a critical factor affecting
perceptual performance. The influence of the number of locations involved in pre-training
on recognition accuracy is discussed in this part. A total of 12, 8, 6, and 4 pre-training
positions are sampled at equal intervals from 24 positions. As shown in Table 8, when
only four positions participate in training, and three samples are provided for each transfer
location, the recognition accuracy can still be 90.42%. When there are 12 training positions,
the recognition accuracy is 94.64%. With the increase of the number of training positions,
the recognition accuracy increases gradually.

Table 8. The recognition accuracy of different numbers of pre-trained locations.

Number of Training Locations 24 12 8 6 4

Accuracy (%) 98.58 94.64 93.33 93.00 90.42

Performance of multi-location HAR in terms of different number of transfer sam-

ples. The influence of the number of samples involved in knowledge transfer on recognition
accuracy is discussed. This part takes six pre-training positions as examples and tests the
method at 24 positions. A total of 1–5 transfer samples are randomly selected from the
transfer sample set. The recognition accuracy is shown in Table 9. When only one transfer
sample is provided, the recognition accuracy is 90.55%. Using five transfer samples, the
recognition accuracy can reach 97.44%. With the increase in the number of transfer sam-
ples, the model can learn more activity characteristics of the target domain location based
on the experiential knowledge of source domain location learning, so as to improve the
recognition accuracy.
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Table 9. The recognition accuracy of different numbers of transfer samples.

Number of Transfer Samples 1 2 3 4 5

Accuracy (%) 90.55 93.17 94.75 96.33 97.44

Performance of multi-location HAR for different users. To verify the reliability of
the proposed method for different users, the performance of human activity data involving
five volunteers are evaluated. Five volunteers are marked as User 1–User 5. Six positions
are used for training, 24 positions are tested, and three transfer samples are provided for
each position. Table 10 shows the recognition accuracy of 5 activities at 24 positions by
different volunteers. The average recognition accuracy is 94.02%. Experimental results
show that this method can be well applied to different users.

Table 10. The DCN-TL recognition accuracy for different users.

Users User1 User2 User3 User4 User5 Average

Accuracy (%) 93.50 93.00 94.75 93.67 95.17 94.02

5. Discussion

In the evaluation for this paper, 24 positions with an interval of 0.6m are sampled
in a typical indoor area. When the range of sensing area is fixed, increasing the number
of sampling locations will improve the perception effect. If the sensing area continues to
expand, such as in a larger room, the perception effect will be decreased to some extent.
When the sensing target is far away from the transmitter and receiver, the influence on
signal transmission will be weakened. Theoretically speaking, the sensing performance
decreases with the increase of the distance between the sensing target and the sensing
device. For the number of activities, there may be more activities in practice scenarios. As
for the experimental settings in most literature, five to eight activities are usually recognized
in a typical smart home control scenario. If the number of activities continues to increase,
the recognition accuracy will decrease to a certain extent, because some actions may have
similar features and be easily confused. This is still a challenging issue for Wi-Fi-based
human activity recognition, which will be further explored in future work.

6. Conclusions

In this paper, Wi-Fi-based multi-location human activity recognition technique is
explored. A novel AP-DCN-based method that fully leverages the amplitude and phase
information is presented. The complex convolution layer, complex batch normalization
layer, and complex ReLU activation function are leveraged for feature representation. Fur-
thermore, considering the unbalanced sample number at different locations, a perception
method based on DCN-TL is proposed. To verify the performance of the method, a dataset
involving five activities at 24 positions in an office is built. The experiment results indicate
that the AP-DCN-based method can achieve an average accuracy of 96.85% for five people
with only five training samples at each of the 24 locations. Furthermore, the proposed
method is also applicable to the training samples with a low sampling rate and fewer
subcarriers. In the case of unbalanced number of data samples at different locations, the
recognition accuracy is 94.02%. Therefore, it is concluded that the presented method is
feasible for multi-location human activity recognition with limited data samples, which
promisingly promotes the generalization performance of the device-free sensing system.
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Abstract: Indoor localization is an important technology for providing various location-based services
to smartphones. Among the various indoor localization technologies, pedestrian dead reckoning
using inertial measurement units is a simple and highly practical solution for indoor localization.
In this study, we propose a smartphone-based indoor localization system using pedestrian dead
reckoning. To create a deep learning model for estimating the moving speed, accelerometer data
and GPS values were used as input data and data labels, respectively. This is a practical solution
compared with conventional indoor localization mechanisms using deep learning. We improved
the positioning accuracy via data preprocessing, data augmentation, deep learning modeling, and
correction of heading direction. In a horseshoe-shaped indoor building of 240 m in length, the
experimental results show a distance error of approximately 3 to 5 m.

Keywords: indoor localization; pedestrian dead reckoning; deep learning; GPS

1. Introduction

Recently, with widespread use of smartphones, location-based services (LBS) have
gained increasing public attention [1,2]. Navigation and route guidance applications
that use GPS are the most representative LBS. In addition, LBS for pedestrians, such as
surrounding information search services and evacuation route guidance in the event of
a disaster, are currently being actively provided. An indoor localization system is an
important technology for providing LBS. This enables the estimation of the location of
people in a space in which GPS signals are not provided.

Typical mechanisms for indoor localization use wireless signals or inertial measure-
ment units (IMU). Trilateration, triangulation, and fingerprinting methods using the re-
ceived signal strength indication (RSSI) or channel state information (CSI) have been widely
studied in wireless signal-based indoor localization systems. These methods mainly use
radio technologies, such as Wi-Fi, Bluetooth, ZigBee, and ultra-wideband (UWB). The
wireless signal-based system can operate only in a space with installed infrastructure. In
addition, it is difficult to obtain consistent positioning accuracy because the radio signal
is greatly affected by nearby obstacles (e.g., walls, columns, and objects) or interference
signals. Indoor localization techniques through trilateration and triangulation calculate
the position of the target by measuring the distance or angle between the three coordinates
that serve as reference points and the tag that serves as the target [3]. In the case of using
Wi-Fi as a radio signal, to measure the distance between the access point (AP) and the
tag for transmitting the wireless Wi-Fi signal, the RSSI values are converted into distance
information or the time of arrival (ToA), and the location is calculated using triangula-
tion. Indoor localization technology through triangulation uses the angle at which radio
signals arrive, i.e., angle of arrival (AoA). Mohammed et al. [4] addressed this problem
by identifying the condition of an undetected direct path (UDP), which is a straight path
from the transmitter to the receiver and introducing a deep learning model to mitigate
it. Michael et al. [5] implemented a more accurate time difference of arrival (TDoA) based
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indoor position recognition technology through multiband (UWB-wideband) UWB technol-
ogy and a single-input multiple-output (SIMO) method to address the problem of multipath
attenuation of radio signals. Shuai et al. [6] proposed enhanced trilateration localization,
which improves localization accuracy through quality evaluation and adaptive selection
(IT-QEAS). First, they assess the quality of the distance measurement results among the
anchor nodes and select the anchor nodes that have the highest quality. Then, a localization
calculation was performed with the selected anchor node. However, although indoor
localization systems using triangulation and trilateration have improved through various
studies, the use of RSSI or CSI is affected by the irregular signal attenuation characteristics
of the radio signal depending on the surrounding environment. In addition, because
wireless signals are used, APs for transmitting wireless signals must be preinstalled, and
there is a possibility of blind spots that radio signals cannot reach, or that radio signals are
blocked by obstacles or walls. In particular, localization solutions that need pre-installation
in the infrastructure have reduced practicality.

The fingerprinting method divides the service area into several cells, selects a refer-
ence location, and receives a wireless signal sent by the Wi-Fi AP at each cell through a
smartphone to measure the RSSI values and create a radio map based on it. Subsequently,
the user receives a signal from the AP at a random location, measures the RSSI value,
contrasts it with a radio map, and estimates the corresponding cell as the user’s location.
Yuanchao et al. [7] proposed GradIentFingerprintTing (GIFT) to reduce instability in RSSI
values that change over time in indoor environments. Qianwen et al. [8] implemented
fingerprinting technology using CSI rather than RSSI and introduced a K-nearest neighbor
(KNN) algorithm to increase the accuracy of the final indoor position calculation. Unlike
traditional algorithms, Minh et al. [9] introduced a recurrent neural network (RNN) model
instead of finding the position of the user one at a time, reducing the instability of the RSSI
values that change over time. However, the precise indoor localization of fingerprinting
requires a lot of information about the reference locations, that is, cells, used for positioning
and the process of collecting RSSI from cells requires service providers to collect them,
which is costly. Furthermore, the RSSI value also varies with changes in the surrounding
environment as radio maps are pre-written, making it essential to calibrate radio maps over
time, and it is impossible to accurately measure RSSI owing to the attenuation of signals
caused by interference from adjacent channels. In a relatively static situation, an indoor
localization system using fingerprinting can achieve high performance. However, if there
are many people and the surrounding environment is very dynamic, it is difficult to expect
accuracy because fingerprinting may be hard to implement.

Pedestrian dead reckoning (PDR) is a representative indoor localization method that
uses IMU. This uses collected sensor values, such as accelerometers, magnetometers, barom-
eters, and gyroscopes, to estimate the moving distance and direction of movement of people.
The positioning accuracy of the PDR is mainly determined by a model or formula that con-
verts the sensor value into moving distance and direction. Various PDR techniques [10–14]
have been studied, and they exhibit a position error of several centimeters. However, the
models of formulas derived from conventional studies are difficult to generalize under
various conditions (e.g., moving patterns, sensor placements, and the surrounding en-
vironment). They operate only under specific conditions; therefore, they are difficult to
use in practice. PDR is a technology that calculates the next location of pedestrian using
sensor data, such as accelerometers, gyroscopes, and magnetometers, from the previous
location. The next position of the pedestrian is estimated by estimating the number of
steps and stride of pedestrians through acceleration sensors and estimating the pedestrians’
orientation using a magnetometer and gyroscope. The PDR is largely divided into two
areas according to how the sensor data are used to calculate the next location. First, the
pattern of the data collected by the accelerometer is analyzed to calculate the number of
steps. Second, the stride is estimated using the value of the accelerometer.

For example, the number of steps can be calculated using a peak detection method
based on the accelerometer value of a walking pedestrian. With recent improvements in
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sensor accuracy and computing power of IMU and smartphones, which are data collection
devices, indoor location recognition studies using PDR show an error rate within several
centimeters. Godha et al. [15] proposed a PDR system that combines GPS coordinates
with sensor values obtained using inertial sensors to achieve reasonable accuracy in indoor
and outdoor environments. Ionut et al. [16] introduced a practical system that uses an
accelerometer and magnetometer from smartphones, without relying on the Wi-Fi’s AP
infrastructure, to record pedestrian walking patterns and match them with possible paths on
real maps. Kang et al. [17,18] replaced inertial sensors, which are the measuring equipment
used in conventional PDR methods, with smartphones to implement indoor position
recognition technologies that do not require expensive additional devices or infrastructure.
In addition, the number of steps was determined using the accelerometer of the smartphone,
and the accuracy of the magnetometer sensor was correlated with the gyroscope to estimate
the heading direction. However, it should be considered that the magnetometer sensor
is not used as a major data source for estimating the direction of progress for pedestrians
because it is greatly influenced by the surrounding environment.

PDR has the advantage that it does not require additional infrastructure. However,
there is a significant problem with indoor localization performance, depending on the
model and formula that estimates gait information with sensor data. In addition, the
selection of the initial position by the user is crucial. The user’s next position obtains results
from the prior position, the initial position fades over time because fine errors accumulate
in the collected sensor data. Another problem is that indoor localization performance varies
depending on the user of the PDR system. Different users have different heights, step
lengths, gait patterns, and smartphone placements, which can lead to differences in the
performance of the model in estimating the moving speed and heading direction.

The other way of using sensor data to calculate the next position is by using deep
learning. Deep learning is a technique for predicting the correct answer by learning patterns
or characteristics from training data using models based on neural networks. Because the
accelerometer data obtained from a walking person has a certain pattern, it is very suitable
for applying deep learning. In other words, the accelerometer value of the pedestrian is
composed of a training dataset for learning the deep learning model, and the moving speed
or distance of the pedestrian is estimated using the trained deep learning model.

Gu et al. [19] proposed a deep learning-based stride estimation method that can adapt
to the characteristics of various users, considering that the walking speed and arrangement
state of smartphones are different for each pedestrian. After removing noise from the
accelerometer and gyroscope data collected from smartphones using a low pass filter
(LPF), the sensor data is trained in a supervised learning model that estimates the stride by
dividing the sensor data into segments, each segment representing one step. Kang et al. [20]
implemented a new technology for indoor localization, using a deep learning model
that learns pedestrian walking pattern data collected outdoors. GPS coordinates and
accelerometer data were collected outdoors to determine the moving speed of pedestrians
using divided signal frames with hybrid multiscale convolutional recurrent neural network
models. In addition, traditional PDR methods are proposed to calculate the number of
steps and strides of the IMU signal in a passive way; however, in [20], the moving distance
is estimated by calculating the average travel rate from the signal frame.

Although the related studies above have increased the accuracy of indoor localization
by applying deep learning, the problem of whether they are practical for pedestrians
remains. For example, in [19], when mapping training datasets and labels for learning
deep learning models, applicants who collected training data counted their own steps,
took them as the ground truth, and organized them into labels. This approach has a very
impractical drawback in that the user must calculate the label (ground truth) himself and
configure the training dataset until the system shows sufficient performance. To solve this
problem, [20] proposed a deep learning model that learns sensor data using GPS as a label
for the first time; however, only the steps walked on a straight path were evaluated without
considering the orientation of pedestrians.
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Because users spend most of their time with their smartphones, the location of their
smartphones is highly correlated with their location. In addition, smartphones include
Wi-Fi, Bluetooth, and diverse sensors that are widely used for indoor localization [21–23].
In this study, we propose a smartphone-based indoor localization system using deep
learning. The proposed system operates based on PDR using an accelerometer to estimate
the moving speed and a game rotation vector sensor to estimate the heading direction.
The data collected by the accelerometer outdoors were used as training data for the deep
learning model. The moving speed of the data was labeled using the GPS value. Although
the accuracy of the label information decreases owing to the inherent error of GPS, it is
very practical because training data can be collected without user intervention. We propose
practical solutions and techniques for increasing the positioning accuracy of unspecified
smartphone users. The contributions of this study are as follows.

1. Enhancing practicality: Because the moving speed of GPS is used as a data label,
anyone can generate training data for supervised learning. The collected accelerome-
ter and gyroscope data were classified according to smartphone placement through
unsupervised learning. We derived the required sensor data size for each smart-
phone placement via empirical experiments and limited the data collection. Using
these methods, collecting proper training data for deep learning is possible without
user intervention;

2. Improving moving speed estimation: In the data preprocessing step, we removed
the noise from the accelerometer and improved the accuracy of the GPS data. Data
augmentation using a time-warping scheme expands the collected data size, thereby
increasing the accuracy of the deep learning model. Finally, we implemented and
compared seven deep-learning models to derive the most accurate model.

The remainder of this paper is organized as follows. Section 2 presents problems
that have not been resolved in conventional studies. Section 3 introduces the proposed
indoor localization system, and Section 4 evaluates the performance of the proposed system.
Finally, conclusions are presented in Section 5.

2. Problem Definition

We studied a PDR-based indoor localization using deep learning. In this section, we
describe three major problems of conventional PDR-based indoor localization.

2.1. Low GPS Accuracy

GPS can provide geolocation and time information to a GPS receiver if four or more
line-of-sight GPS satellites exist. Using GPS values as training data labels for deep learning
may improve the practicality of the indoor localization technology. However, GPS has
inherent errors owing to satellite signal blockage and reflection caused by buildings, trees,
etc. If the GPS receiver is located in a city center or forest, the quality of the GPS data
may be poor. In this case, using GPS data as training data labels is not appropriate
because unreliable labels degrade the accuracy of the deep learning models. This affects
the performance of indoor localization systems.

We performed an outdoor experiment to analyze the accuracy of the GPS data using
a smartphone. The subjects repeatedly moved 75 m in various environments. Figure 1
shows the distance error ratio according to the number of receivable GPS satellites used
in the experiment. When the subject moves near high-rise buildings or under a bridge,
the smartphone can receive between four and six GPS satellite signals. However, a high
distance error ratio of 5.34% to 8.47% was seen in this signal. When the subject moved
in the campus playground or field, nine or more GPS satellites could be received. In this
case, the distance error ratio was very low (i.e., 0.67–1.72%) compared to the case where the
number of receivable GPS satellites is small. In the experiment, we verified that unfiltered
GPS data are unsuitable as training data labels for deep learning.
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Figure 1. Distance error ratio according to the number of receivable GPS satellites.

2.2. Bias of Sensor Data

An artificial neural network [24] is a statistical learning algorithm constructed by
imitating the manner in which nerve cells or neurons are inter-connected in the human
brain. Just as human neurons receive and store input values through synapses from several
other neurons and then export output values to the next neuron, the artificial neural
network model neuron receives multiple inputs and transmits output values to the next
neuron in the model. Artificial neural networks are constructed by stacking several neuron
models. Deep learning is a type of machine-learning algorithm based on artificial neural
networks. Deep learning has been widely used in various applications.

Deep learning refers to a learning model that predicts outcomes by extracting features
or patterns from training data. The size and quality of the training data significantly
influence the performance of the deep learning model. Thus, it is very important to secure
a sufficient amount of high-quality data from which a deep learning model can extract
features. A PDR-based indoor localization system mainly uses sensor values, such as
data from accelerometers, magnetometers, barometers, and gyroscopes for training. To
determine the patterns of movements in daily life, we conducted an outdoor experiment
to collect data. In the experiment, a subject collected sensor values every second using a
smartphone, while walking freely for 3 h. The moving speed of the subjects was obtained
using GPS. Figure 2 shows the distribution of the collected data with respect to the moving
speed. As a result, 66.3% of the collected data were distributed between the moving speeds
1.3 m/s and 1.7 m/s. Most of the collected data were within the average human walking
speed. Since the number of samples for the speed range 1.3–1.7 m/s is much larger than
that for other speeds, the data is biased. If these biased data are used for training deep
earning models, it is difficult to expect high accuracy in the case the subject is not walking
at an average speed. We do not need to consider data bias, if we can collect huge amounts
of data. However, because collecting data is expensive, we assume that data collection
is minimized.
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Figure 2. Distribution of the collected data according to moving speed.

2.3. Effect of Magentometer

The heading direction estimation of pedestrians for the indoor localization system is as
important as the estimation of the moving distance. Many conventional studies on heading
direction estimation use a magnetometer to measure the magnetic north. However, the
magnetometer reacts sensitively to the surrounding environment, such as walls, obstacles,
and steel, resulting in errors that cannot correctly measure the magnetic north. Android
smartphones provide the absolute heading direction through the rotation vector sensor by
combining the data obtained from the accelerometer, magnetometer, and gyroscope. Further
research is required to estimate a stable heading direction without using a magnetometer
that is affected by the surrounding environment.

3. Indoor Localization System

In this section, we introduce a new indoor localization system for pedestrians that
uses smartphones. Figure 3 illustrates the structure of the smartphone-based indoor po-
sition recognition system using the deep learning method proposed in this study. The
proposed system consists of three steps: (1) classifying smartphone placements; (2) esti-
mating the moving speed using deep learning, and (3) estimating the heading direction
using game rotation vector sensors. The detailed operation of each step is described in the
following subsection.

 

Figure 3. Indoor localization system overview.
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3.1. System Overview

The first step was to classify the accelerometer and gyroscope data of pedestrians
collected through smartphones as smartphone placements. There are many cases of smart-
phone placement; however, we assume only the four most representative cases. If it is
possible to classify the collected data as smartphone placements, pedestrians can check the
amount of data they collect in real-time. In addition, when sufficient pedestrian speed data,
enough to achieve good performance, has been collected, the system stops collecting data
to minimize battery consumption in smartphones.

The second step involved moving speed estimation using supervised learning. The 3-
axis accelerometer data collected from the pedestrians’ smartphones and the moving speed
labels recorded every 1 s through GPS comprise the training datasets. Before constructing
the training dataset, the accelerometer and GPS data were pre-processed. Since the 3-axis
accelerometer data change as the smartphone’s placement and tilt, regardless of these
changes, acceleration data are collected with 3-axes fixed. In addition, accelerometer data
are filtered through Kalman and low-pass filters. These filters minimize the impact of the
drift of the accelerometer and sudden environmental changes. Because the labels of the
deep learning model require high accuracy and reliability, only those GPS coordinates are
used as labels and used to calculate the moving speed for which there are more than nine
satellite signals that smartphones can receive. As explained in Section 2.2, most of the data
were within the average walking speed. To eliminate this bias, additional data on various
walking speeds were obtained using time-warping data augmentation technology. The
training dataset obtained after these processes is used as an input to a deep learning model
that estimates the moving speeds of pedestrians. To find the optimal deep learning model
for estimating moving speed, we evaluated the accuracy of moving speed estimation by
implementing seven supervised learning models.

In the third step, the heading direction of pedestrians is estimated. Magnetometers are
extremely sensitive to the surrounding environment and may have errors, which will affect
the estimation of the heading direction. Therefore, we estimated the heading direction
using game rotation vector sensors that do not include magnetometers.

3.2. Smartphone Placement Classification

This section describes the technology used for classifying the collected data according
to the placements in which pedestrians hold their smartphones. To classify the collected
data according to each case, t-stochastic neighbor embedding (t-SNE) [25] unsupervised
learning was used. t-SNE is a technique that classifies and visualizes high-dimensional
vectors into 2- or 3-dimensional maps humans can understand, while preserving the dis-
tance between the data. The t-SNE unsupervised learning model uses accelerometer and
gyroscope data as training datasets, and smartphone placements as labels (i.e., cases). Addi-
tional gyroscope values were used to increase the accuracy of the classification. Gyroscopes
are suitable for data classification because the change in the value, which depends on
the placement of the smartphone, is greater than that of the accelerometer. Although the
accuracy should be evaluated according to all possible smartphone placements, this study
assumes only four of the most commonly used. The four cases are as follows: (1) hand-held,
(2) hand swing, (3) in pocket, (4) in a backpack. In this step, pedestrians can check the size
of the collected data for each case in real time. In our empirical experiments, we found
the proper data size to be 3 h per case (i.e., a total of 12 h) to ensure sufficient accuracy to
estimate the moving speed. Thus, the data collection process stopped when the data size
was at least 3 h and a total of 12 h to prevent excessive smartphone battery usage. This
method allows pedestrians to know the minimum size of the training dataset for learning
the deep learning model, thus gaining the practicality that battery consumption can be
reduced in the data collection process.
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3.3. Moving Speed Estimation

The moving speed estimation step consists of data pre-processing and a supervised
learning-based deep learning model. The data needed to estimate the moving speed were
the GPS and accelerometer values collected outdoors. Accelerometer data were used to
extract the features of pedestrian gait patterns and were used as training datasets for the
deep learning models. The moving speed calculated via GPS coordinates was used as a
label for the training datasets as in [20].

The accelerometer data collected from the smartphones were pre-processed for use
as input to the supervised learning model. The accelerometer data provided by the smart-
phone were device oriented. As can be seen in Figure 4, when the data are collected
by device orientation, there is a problem in that the data show different characteristics
depending on the placement and orientation of the smartphone from which they were
collected. This means that even when moving in the same direction, the data values of
the collected accelerometer vary depending on the tilt and placement of the smartphone.
Because pedestrians can place the smartphone anywhere near the body, data should be
collected with respect to three axes that are fixed regardless of the tilt and placement of
the smartphone. To solve this problem, data pre-processing is used to convert the raw
coordinates of the accelerometer (i.e., device-oriented coordinates) into earth-oriented
coordinates. Alwin et al. [26] presented a method for converting device-oriented 3-axis
accelerometer values into earth-oriented coordinates by multiplying them with rotation
vector sensor values. The following Equation (1) represents a formula for transform the
device-oriented coordinate to the earth-oriented coordinate.

 
(a) (b) 

Figure 4. Coordinate system (a) Device oriented coordinate (b) Earth oriented coordinate.

⎡
⎣Ax

Ay
Az

⎤
⎦ = R

[
ax ay az

]T (1)

The R in the right term from Equation (1) represents the transform of the rotation vector
value obtained through the rotation vector sensor into a rotation matrix, and ax, ay and az
represents the raw value of accelerometer. Both values are obtained through smartphones.
Each of Ax, Ay and Az in the left column represent the value of the three axes of acceleration
converted to the earth reference coordinate system. Using this method, accelerometer values
can be converted into earth-oriented coordinates to collect data, regardless of smartphone
placement. The authors used Kalman filters and low-pass filters for the accelerometer data.
Filtering accelerometer data eliminates drift and noise from smartphones.

In this paper, we use the pedestrian moving speed obtained through the GPS as a label
for a deep learning model. Labels are correct answers to training data that are input to
deep learning models, which affect the performance of deep learning models depending
on the accuracy of the labels. In [20], the accuracy of the label is relatively low, because
the moving speed was calculated and used as a label regardless of the reliability of GPS.
Therefore, in this paper, to increase the reliability of labels on training datasets, we compose
the training datasets with only the data collected when the receivable number of satellite
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signals on smartphones is more than nine. This is a new and novelty method that has
not been considered so far. The GPS error rate is inversely proportional to the number
of satellite signals that a smartphone can receive, as shown in Figure 1. If the number of
satellite signals that can be received is more than nine, high reliability of the label can be
expected because the GPS measurement accuracy is approximately 98%. We calculated
the moving speed for one second using the GPS coordinates when more than nine satellite
signals were received, while collecting the sensor data. Equation (2) represents a formula
for obtaining a moving speed of a pedestrian through a distance obtained by collecting
GPS coordinates every second.

Pedestrian Moving speed = distance ÷ 1 (2)

The calculated moving speed and accelerometer values were mapped for a period
of one second and used as training data for the supervised learning model. This process
can solve the reliability problem for labels collected in the GPS coordinates presented in
Section 2.1.

As shown in Figure 2, most of the data collected at the average moving speed are
concentrated at a particular moving speed. If the training data do not have sufficient
data for all moving speed labels, the deep learning model will fail to estimate the exact
moving speed if the pedestrian walks slower or faster than the average moving speed.
Thus, to eliminate bias in the collected data, we introduced time-warping to augment
the amount of data for various moving speeds. Time warping is a transformation that
allows each element value in a sequence to be repeated by an arbitrary number and can
compress or expands fixed-length time series data to a particular length. For example, two
sequences S = {20, 20, 21, 20, 23} and Q = {20, 21, 21, 20, 20, 23, 23, 23} may be converted
into the same sequence A = {20, 20, 21, 21, 20, 20, 23, 23, 23} by time warping. The distance
between the two sequences after time warping is defined as a time warping distance.
Figure 5 shows the results augmented to data of 24 h by time-warping the original data of
3 h. The black bar graph represents the original data, and the red bar graph represents the
data enhanced through time-warping. By augmenting the data through time warping, the
data can be constructed to have an even distribution at various moving speeds rather than
being concentrated at a specific moving speed. This process solves the data-bias problem
presented in Section 2.1.

The data of 12 h are augmented to a size of 96 h through time warping and are used
as a training dataset for supervised learning-based deep learning models. The deep learn-
ing model derives a result by extracting patterns or features from the accelerometer data
of the training dataset and estimating the moving speed for a one-second data segment
when learning is completed. Estimation accuracy is the most important indicator of the
performance of the deep learning model. One representative way to improve the accuracy
of the model is to use an appropriate deep learning model. In this study, performance was
evaluated by implementing seven deep learning models: CNN [27], GRU [28], LSTM [29],
C-GRU, C-LSTM, GRU-C, and LSTM-C, to find the optimal deep learning model with the
highest moving speed estimation accuracy. These models are explained below. A convolu-
tional neural network (CNN) is a useful supervised learning model for identifying patterns
to recognize images. CNNs are mainly used to find and learn patterns from training data
and then classify new images using learned patterns. It is widely used in object recognition
fields, such as self-driving cars and facial recognition. In contrast, the recurrent neural
network (RNN), represented by long short-term memory (LSTM) and gated recurrent units
(GRU), is a supervised learning model that has strengths in processing sequence data, such
as time series and natural language. Because sequence data cannot understand the entire
context simply by knowing and understanding only one data segment, LSTM and GRU
are models that have improved existing RNNs to identify and learn the context of these
sequence data. LSTM and GRU are used in various fields, such as voice recognition and
sentence arrangement from listed words. Convolutional GRU (C-GRU) and convolutional
LSTM (C-LSTM) refer to deep learning models in which CNN and RNN are combined and
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are called convolutional recurrent neural networks (CRNNs). Given location and shape
data, such as images, the correct answer is estimated by first extracting features from the
CNN layer and inputting these features in chronological order into the RNN layer. That is,
it is a model that extracts and utilizes time series data from image data. GRU convolutional
(GRU-C) and LSTM convolutional (LSTM-C) extract features or patterns from data through
convolutional layers and input them into the RNN layer in the same manner as CRNN,
but the final output process is different. In the case of the CRNN, the correct answer is
estimated by entering the output value of the RNN into several dense layers. However, in
the case of LSTM-C and GRU-C, the output value of the RNN is input to one max pooling
layer so that the output value of the layer appears as the final estimate. Figure 6 shows the
model configuration diagram of the LSTM-C.

Figure 5. Original (black) and time-warped (red) moving speed data.

Figure 6. LSTM-C Model.
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3.4. Heading Direction Estimation

In the heading direction estimation step, the exact heading direction of the pedestrians
was measured. Android smartphones use a rotation vector sensor, including an accelerom-
eter, gyroscope, and magnetometer, to measure the orientation of smartphones [30]. How-
ever, obstacles, walls, and steel can affect the magnetometer of the rotation vector sensor, so
it can measure the wrong orientation. The other sensor for measuring the orientation is the
game rotation vector sensor [31] provided by Android. It is identical to the rotation vector
sensor in that it uses an accelerometer and a gyroscope, but it does not use a magnetometer.
Hence, the game rotation vector sensor does not provide an absolute heading direction,
that is, the magnetic north. Its y-axis represents the upward direction of the smartphone,
not the north. Therefore, we used game rotation vector sensors instead of rotation vector
sensors to measure the orientation. The game rotation vector is a combination of angles and
axes in which the smartphone rotates by ψ, θ, and φ around the x-, y-, and z-axes, indicating
the orientation of the device, as follows:

x(ψ) = x· sin
(

ψ

2

)
(3)

y(θ) = y· sin
(

θ

2

)
(4)

z(φ) = z· sin
(

φ

2

)
(5)

The three-axis vector value obtained by the game rotation vector sensor is converted
to a rotation matrix using quaternion through the getRotationMatricFromVector (getRMFV)
function. Subsequently, the getOrientation function allows the rotation matrix acquired
from the getRMFV function to be represented by the placement state of the smartphone.
Three values are derived. The first value is the azimuth, the angle of rotation on the
negative z-axis and represents the angle between the y-axis of the device and the Earth’s
Arctic point. The second value is the pitch, which is the angle of rotation on the x-axis, and
represents the angle between the plane parallel to the screen of the smartphone and the
plane parallel to the ground. The third value is the roll, that is, the angle of rotation on the
y-axis, which represents the angle between the plane perpendicular to the ground and the
plane perpendicular to the smartphone screen.

q1 = rotationVector[0] (6)

q2 = rotationVector[1] (7)

q3 = rotationVector[2] (8)

q0 = 1 − (q1 ∗ q1)− (q2 ∗ q2)− (q3 ∗ q3) (9)

The Rotation Vector [0], [1], and [2] are rotation vector values indicating the tilt of the
smartphone same as Equations (3)–(5), respectively. Equations (6)–(9) represent quaternions
used to transform the rotation vector value as a rotation matrix. The heading direction of
pedestrians can be obtained from the azimuth, and the formula is as Equation (10). The ψ,
θ and φ each represent an angle at which the smartphone is rotated with respect to the x-,
y-, and z-axes, and the angle can be obtained by the rotation vector sensor.

Azimuth = tan−1((cos φ sin ψ + sin φ cos θ cos ψ)− (− sin φ cos ψ − cos φ cos θ sin ψ)) (10)

Figure 7 shows a graph measuring the azimuth through a rotation vector sensor and a
game rotation vector sensor by walking through a straight passage in a building. The black
line represents the actual azimuth measured from the north using Google Maps. Because the
rotation vector sensor includes a magnetometer, it is difficult to measure a stable azimuth
owing to a door or an obstacle made of iron and even an empty space. However, the result
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of measuring the azimuth angle using the game rotation vector sensor was very stable.
Because the azimuth is measured using only accelerometers and gyroscopes, excluding the
magnetometer, the results were very similar to the ground truth, except for the shaking
caused by the walking of pedestrians.

 
Figure 7. Comparison of each azimuth through rotation vector sensor and game rotation
vector sensor.

4. Performance Evaluation

4.1. Evaluation Environments

We evaluated the performance of the proposed system using a computer with the
following specifications: Intel i5-6500 CPU, 40 GB RAM and Geforce RTX 2080 GPU.
Datasets for supervised and unsupervised learning models were collected through the
following processes: As shown in Figure 8, the training data were collected from the play-
ground in Yongam Middle School in Sangdang-ku, Cheongju city, which was approximately
40 m × 90 m area, and had no obstacles or walls. We collected data for four situations.
First, hand-held; second, hand-swing; third, in-pocket; and fourth, in a backpack. We col-
lected training data over 10 h for each orientation, for a total of 40 h, as shown in Figure 9.
The sampling rate of each sensor is 100 Hz, and the sensors used in this system are an
accelerometer, gyroscope, GPS, and a game rotation vector sensor built into the Samsung
Galaxy s10. Next, the conditions for collecting data for the validation data set were the
same as the training data, except that it was collected inside the E10 building of Chungbuk
National University. Table 1 presents the hyperparameters of seven deep learning models
implemented to identify which model(s) are optimal for the indoor localization systems
proposed in this paper.
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Figure 8. Outdoor data collection environment.

    
(a) (b) (c) (d) 

Figure 9. 4 data collect situations (a) hand held (b) hand swing (c) in pocket (d) back pack.

Table 1. Deep learning model hyperparameters.

Parameter CNN GRU LSTM C-GRU C-LSTM GRU-C LSTM-C

Batch Size 128 128 128 128 128 128 128
Activision ReLu ReLu ReLu ReLu ReLu ReLu ReLu
Optimizer Adam Adam Adam Adam Adam Adam Adam

Learning Tate 0.001 0.001 0.001 0.001 0.001 0.001 0.001
Epochs 50 50 50 50 50 50 50

Loss Function Categorical
Cross entropy

Categorical
Cross entropy

Categorical
Cross entropy

Categorical
Cross entropy

Categorical
Cross entropy

Categorical
Cross entropy

Categorical
Cross entropy

4.2. Results of Smartphone Placement Classification

Figure 10 shows the confusion matrix of the results from the t-SNE unsupervised
learning model. The model was trained using a training data set of 40 h consisting of
accelerometer and gyroscope data. The graph resulted from the validation data set of 2 h.
The x-axis of the Figure 10 represents the results predicted by the unsupervised learning
model, and the y-axis represents the case in which the actual data belong, that is, the
label. For example, in the hand-held case, out of 7200 (half-hour data) samples, the model
predicted 6875 data correctly as be hand-held (95.49%). For the remaining 325 data the
model failed to classify them as hand held and classified into one of three other cases.
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Figure 10 indicates that unsupervised learning using t-SNE can sufficiently classify the data
collected in each case.

 

Figure 10. Smartphone placement classification result.

4.3. Results of Moving Speed Estimation

Table 2 shows the results of augmenting data of 12 h to 96 h with time-warping, using
them to train seven models, and evaluating the accuracy of each model in estimating the
moving speed with a validation data set of 2 h. Of the seven supervised learning models,
the best performing model was the LSTM-C model, with approximately 95.6% accurate
moving speed estimation. Therefore, the deep learning model to be used in the indoor
localization systems proposed in this study was determined to be LSTM-C.

Table 2. Accuracy of deep learning model for data of 12 h.

Models
Evaluation Parameters

Distance Error Accuracy Precision Recall F-1 Score

CNN 11.87 0.908 0.895 0.886 0.890
GRU 9.39 0.919 0.915 0.907 0.911
LSTM 9.39 0.920 0.916 0.909 0.912

C-GRU 9.12 0.931 0.926 0.918 0.922
C-LSTM 8.99 0.935 0.924 0.913 0.918
CRU-C 5.56 0.940 0.932 0.928 0.930

LSTM-C 7.39 0.956 0.950 0.944 0.947

Figure 11 shows the confusion matrix graph of the movement speed estimation of the
LSTM-C model. The LSTM-C model was trained using a non-augmented training data set
of 40 h. As shown in the Figure 11, the LSTM-C model estimated the data for 1.4 m/s with
a high accuracy of 97.6%. However, data belonging to labels other than 1.4 m/s showed
relatively low accuracy. These results show that most of the training dataset is densely
distributed around 1.4 m/s, as shown in Figure 2, and that the model has not learned
enough features for other moving speed labels to classify them correctly. Accordingly,
in this study, the training dataset was augmented with time warping to obtain an even
distribution across various moving speed labels.
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Figure 11. Moving speed estimation using LSTM-C.

Table 3 shows the results of the estimation accuracy of the LSTM-C model, trained by
the various training datasets augmented with time warping for moving speed. The TW
class represents the number of classes in which the original data is augmented using time-
warping. For example, if the TW class is one, the training data are not augmented, if the
TW class is three, the training dataset is augmented to three classes, including the original
data. With the original data without augmentation, sufficient moving speed estimation
accuracy was not achieved. When the TW class was 3, sufficient accuracy in estimating the
moving speed for the original data of 16 h and 20 h was observed. However, by checking
the loss graph, we found an overfitting problem and did not see high accuracy for various
moving-speed labels. Using a confusion matrix, as shown in Figure 11, it was found that
the accuracy of the approximately 1.5 m/s label was sufficiently high, but similar accuracy
could not be achieved for the other moving speed labels. When the TW class was 5 or 7,
sufficient accuracy was achieved, and overfitting problems did not occur. However, the
data were not augmented for various moving speed labels; therefore, the model did not
show a high accuracy for all labels, as shown in Figure 11.

Table 3. Moving speed estimation accuracy of LSTM-C model according to data size.

TW Class
Data Size (Hours)

4 8 12 16 20

1 0.125 0.289 0.597 0.692 0.862
3 0.439 0.804 0.889 0.944 0.951
5 0.669 0.923 0.950 0.953 0.957
7 0.832 0.938 0.953 0.954 0.957
9 0.931 0.945 0.956 0.956 0.958
11 0.931 0.949 0.956 0.963 0.969
13 0.935 0.952 0.961 0.968 0.971

However, when the TW class was more than nine, including the original data, the
model showed high accuracy for all labels. If the original data are augmented to more
than nine TW classes, the indoor localization system proposed in this study can obtain a
high moving speed estimation accuracy for all moving speed classes. However, the larger
the total size of the training data set, created by increasing the number of TW classes, the
smaller is the increase in accuracy, and the amount of data increases rapidly. For example,
the data augmented with 5 and 13 TW classes from 12 h of original data were 60- and
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156 hours, respectively, but achieved 95% and 96% accuracy, respectively. In this case, the
amount of data increased significantly; however, the accuracy increased only by less than
1%. Of course, it is better to augment and learn the original data into 13 TW classes from
the perspective of performance, but this is not practical from a system user perspective.
The indoor localization system proposed in this paper categorizes the collected data using
unsupervised learning, augments the training dataset with time warping and then learns
through the LSTM-C model. These processes require a great deal of time, especially the
process of augmenting with time-warping and performing learning of augmented data
with deep learning models; the larger the dataset, the more time it takes. Therefore, in
this study, the minimum size of the original data required for learning the deep learning
model parameters was limited to 3 h for each case, i.e., a total of 12 h, and the number of
TW classes was set to nine, including the original data.

Figure 12 shows a CDF graph of the moving speed estimation error rate of an LSTM-C
model that learns the training data set augmented to 96 h and applies the improvements
proposed in this paper for three different comparators. The red line is a CDF graph
of the error rate for estimating the moving speed of the original data of 12 h without
augmentation. A marked improvement in accuracy, compared to the other lines, can be
seen for the black line, which is the result of applying all the improvements proposed in
this study. Furthermore, as shown in Figure 5, time warping eliminates data bias, which
increases the estimation accuracy performance for various moving speeds. The blue line is
a CDF graph of the moving speed estimation error rate for the test data of 2 h after learning
the LSTM-C model by augmenting the collected data of 12 h into nine TW classes, regardless
of the number of satellites, to evaluate the reliability of the ground truth information. If
data are collected regardless of the number of satellites, the blue line in Figure 12 shows that
the exact moving speed cannot be calculated accurately because of the lack of reliability in
the moving speed labels, that is, the ground-truth information required for the supervised
learning model is not reliable. However, the data collected when the number of satellites is
greater than nine are relatively high in accuracy for the moving speed label and show a
higher performance. This means that the higher the reliability of the previously mentioned
ground-truth information, the better are the deep learning model results. The green line
is a CDF graph of the performance of the training dataset collected using device-oriented
coordinates. If the data are collected by the device-oriented coordinate system, the sensor
value depends on the y-axis of the smartphone. However, when data are collected through
an earth-oriented coordinate system, the sensor value does not change depending on
smartphone placement. For example, when a smartphone is freely placed at a moving
speed of 1.5 m/s for 10 s, the data collected into a device-oriented coordinate system shows
significant variations depending on the placement of the smartphone. That is, the 3-axis
accelerometer sensor varies with each change in the smartphone placement, but for the
earth-oriented coordinate, the values of the 3-axis of the collected accelerometer values
do not change even if the smartphone placement changes. It can be seen from the green
line in Figure 12 that the device-oriented coordinate data show a large error compared to
the data collected through the earth-oriented coordinate. This means that the process of
generalizing training data has a significant impact the deep learning model outcome and
that the indoor localization system proposed in this paper, which transforms the sensor
data collected into earth-oriented coordinates and performs the generalization process and
produces improved results.
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Figure 12. CDF graph of moving speed estimation.

4.4. Results of Indoor Localization System

This section evaluates the performance of path estimation of indoor localization
systems by collecting test datasets for routes, including straight paths and rotations in
indoor environments. Table 4 lists different versions of the training datasets for evaluating
the performance of indoor localization systems. For example, the ‘Without augmentation’
training dataset refers to a dataset that is composed of data transformed the device-oriented
coordinate to the earth-oriented coordinate when the receivable number of satellite signals
is more than nine but is not augmented by time-warping. Another example is the ‘Unfiltered
GPS’ training dataset, which is composed of data that transformed the device-oriented
coordinate to the earth-oriented coordinate and is augmented by time-warping but is
composed in all situations, regardless of the receivable number of satellite signals. Finally,
the ‘Device oriented coordinate’ training dataset that is composed of data collected when
the receivable number of satellite signals is more than nine and augmented by time-warping
but does not transform the device-oriented coordinate to the earth-oriented coordinate. On
the other hand, the ‘Proposed’ training dataset refers to a dataset with all the techniques
proposed in this paper.

Table 4. Parameters for each training dataset.

Parameter Proposed Without Augmentation Unfiltered GPS Device Oriented Coordinate

Filtered GPS O O X O
With Augmentation O X O O

Earth Oriented Coordinate O O O X

Figure 13 shows the results of the path estimation of the test dataset collected inside
a horseshoe-shaped building. The black double line path represents the ground truth
information, and the black path with crosses (proposed) is the result of the path estimation
of the indoor localization system proposed in this paper. We collected the data, while
walking through the black double line, as shown in Figure 13, and the author’s smartphone,
the Samsung Galaxy s10, was used as the data collection device. In the process of collecting
this data, we collected the data, while walking along a path of a total length of 240 m
and conducted a total of five-time experiments. In the process of collecting this data, we
collected the data, while walking along a path of a total length of 240 m and conducted a
total of five time experiments. First, the estimation results of the proposed indoor location
recognition system showed a positioning error rate of approximately 3 to 5 m compared to
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the ground truth. This is a very low error rate compared to other comparators. The blue
path (unfiltered GPS) is the result of estimating the path by learning the supervised model
with the data collected, regardless of the number of GPS satellites. Regardless of the number
of GPS satellites, it is difficult to achieve consistency and high reliability for the collected
GPS coordinates. The GPS coordinates collected even when walking at the same speed and
path depend on the surrounding environment and the number of satellite signals currently
available to the smartphone. The blue path in Figure 13 shows that the errors resulting from
the ground truth information significantly influence the overall performance of the system.
The red path (without augmentation) is the result of estimating the path by learning 40 h of
data without the use of time warping into a supervised learning model. Assuming that the
experiment site was a straight path, the distance between the start and end points would
not be significantly different from the ground truth. However, after the first right rotation,
the red route shows a very large error compared with the ground truth. This is because
the deep learning model, which learned training datasets without data augmentation, did
not achieve sufficient moving-speed estimation accuracy for various moving-speed labels.
Thus, the red route showed unexpected results from accumulated moving speed estimation
errors. The green path (device-oriented coordinates) is the result of estimating the path
by learning a training dataset that has not converted the device-oriented coordinates into
earth-oriented coordinates using a supervised learning model. The data collected with
device-oriented coordinates had different characteristics depending on the placement of
the smartphone during data collection. As mentioned in Section 2, data that have not been
generalized are difficult to use as training datasets for supervised learning models because
the 3-axis of the accelerometer varies depending on the tilt or placement of the smartphone.
Table 5 represents the positioning error with meters for each supervised learning model
that was trained by four different training datasets from a total of five time experiments.

 

Figure 13. Indoor localization result.
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Table 5. Positioning error for each method at every epoch.

Training Dataset
Epoch (Number of Experiments)

1 2 3 4 5

Proposed 3.45 m 3.39 m 3.25 m 3.42 m 4.95 m
Without Augmentation 8.72 m 8.12 m 10.05 m 9.42 m 10.15 m

Unfiltered GPS 13.55 m 15.89 m 12.42 m 14.23 m 15.21 m
Device Oriented Coordinate 9.55 m 8.91 m 8.67 m 10.23 m 10.82 m

4.5. Scenario

The smartphone-based indoor localization system using deep learning proposed in
this study aims for more practical use by pedestrians by providing on-demand services.
Pedestrians can construct a personal indoor localization system exclusively for themselves
simply by walking outdoors, while using a smartphone. The virtual scenarios for construct-
ing pedestrian-individual systems are as follows.

Accelerometers, gyroscopes, and GPS data were collected because GPS signals can be
received when pedestrians go outdoors. Afterward, when pedestrians enter the indoor
environment from the outside and cannot receive GPS signals, data collection is temporarily
stopped, but the data collected till then are stored in their smartphones. At this time, we
assume that the collected data are valid only when there are nine or more satellite signals
that can be received by smartphones, and we exclude the data when there are fewer than
nine. Then, the accelerometer and gyroscope data are input into the t-SNE unsupervised
learning model to classify the collected data into four cases. The size of the classified data
is measured to determine whether the data size reached 3 h for each case. When training
data of 3 h or a total of 12 h are accumulated for each case, smartphones stop collecting
data outdoors permanently, reducing excessive battery consumption. After the training
dataset of 12 h is augmented to a total size of 96 h through time warping, this training
dataset is used to learn the LSTM-C model that estimates the pedestrian moving speed.
When the learning is completed, pedestrians can check their path in real time by estimating
the moving speed and heading direction using only accelerometer data and indoor game
rotation vector sensors.

5. Conclusions

In this study, we propose a new smartphone-based indoor localization system using
deep learning. The system used the following ideas to increase the practicality for pedes-
trians: 1. The movement speed calculated using outdoor GPS coordinates was set as the
label of the training dataset. 2. A consistent training dataset regardless of the smartphone
placement was constructed by converting accelerometer data to earth-oriented coordinates
the 3-axis is fixed. 3. An unsupervised learning model was implemented to identify the
minimum size of the training dataset in real time to minimize the battery consumption. In
addition, the following concepts were proposed to increase the accuracy of estimating the
moving speed: 1. Noise was removed to increase the accuracy of GPS and accelerometer
data. 2. Data augmentation methods were applied to obtain a uniform distribution of
moving speeds of pedestrians. 3. By implementing seven different deep learning models,
the optimal deep learning model with the best moving-speed estimation performance
was selected. After learning the parameters for the indoor localization system with the
data collected outdoors, the proposed system showed a localization estimation error of
approximately 3 to 5 m as a result of direct experimentation inside a horseshoe-shaped
building compared to the test data of approximately 240 m in length. Compared to existing
indoor location recognition studies, the proposed system shows a high location estimation
accuracy, and the practicality for pedestrians is also very high. In the future, we plan to
develop an in-building floor-recognition technology to provide 3D location information for
indoor pedestrians. The three-dimensional location information also allows pedestrians to

127



Sensors 2022, 22, 6764

know which floor of the building they are on, so that they can receive much more diverse
location-based services and identify safer evacuation routes in the event of a disaster.
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Abstract: To provide analytic materials for business management for smart retail solutions, it is
essential to recognize various customer behaviors (CB) from video footage acquired by in-store
cameras. Along with frequent changes in needs and environments, such as promotion plans, product
categories, in-store layouts, etc., the targets of customer behavior recognition (CBR) also change
frequently. Therefore, one of the requirements of the CBR method is the flexibility to adapt to changes
in recognition targets. However, existing approaches, mostly based on machine learning, usually take
a great deal of time to re-collect training data and train new models when faced with changing target
CBs, reflecting their lack of flexibility. In this paper, we propose a CBR method to achieve flexibility by
considering CB in combination with primitives. A primitive is a unit that describes an object’s motion
or multiple objects’ relationships. The combination of different primitives can characterize a particular
CB. Since primitives can be reused to define a wide range of different CBs, our proposed method
is capable of flexibly adapting to target CB changes in retail stores. In experiments undertaken,
we utilized both our collected laboratory dataset and the public MERL dataset. We changed the
combination of primitives to cope with the changes in target CBs between different datasets. As a
result, our proposed method achieved good flexibility with acceptable recognition accuracy.

Keywords: smart retail; in-store camera; customer behavior recognition; behavior reconstruction

1. Introduction

Smart retail is regarded as an arrangement of the Internet of Things and big data
analytics for retail purposes [1]. Usually, it collects data from videos captured by ubiquitous
cameras in retail stores. Consequently, we need to extract valuable information collected
by videos. Customer behavior (CB) is commonly considered to be a kind of valuable
analytic material for business management [2]. As there are an almost infinite number of
classes of CBs in retail environments, generally, specific CBs are selected as recognition
targets, called target CBs, based on needs. Typically, customer-centric retailing demands
different target CBs to analyze the customer decision-making process. Usually, the target
CB changes frequently with different products or in-store layouts because of the different
customer-product interactions. For instance, trying on clothes in a clothes shop, sitting on a
bed in a furniture shop, picking up a bottle from the shelf, picking up an ice cream from a
freezer, etc. Accordingly, CB recognition (CBR) methods should be modified to recognize
the changed target CBs. In some cases, a current target CB is required to be discriminated,
e.g., in the case of “pick a product”, discriminating whether a customer is picking a product
with one hand or both hands provides information regarding the customer’s effort to pick
a product. Therefore, a CBR method is expected to be flexible enough to address the issue
of frequent changes in the target CB.

As CBR is a branch of human activity recognition (HAR), current CBR methods use
machine learning (ML)-based models [3] due to their remarkable accuracy in HAR tasks.
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Nevertheless, in contrast to human activity recognition, CBR methods also require flexibility.
For frequent target CB changes, to recognize different target CBs, namely, changing the
model’s output, ML-based models require time-consuming re-collection of training data
and training the model. Though transfer learning can be applied in some cases for faster
training, the inevitable step of data collection is still time-consuming. This causes current
methods to be inflexible when coping with changes in target CBs. Additionally, in existing
methods, target CBs are mostly selected arbitrarily according to the training data, instead
of business needs, which indicates that change adaptation is not considered in their design.
Thus, current CBR methods are not suitable for target CBR tasks in retail environments.

To cope with target changes, we propose a rule-based method to recognize CB by the
combination of primitives, each of which is a kind of partitioned unit of CB. Since primitives
are allowed to be combined for the customization of various CBs, our proposed method can
reuse the primitives to customize the changed target CBs. The number of combinations of
primitives increases exponentially as the number of primitives increases linearly. Thus, our
method can cover a wide range of CBs with a small number of primitives. As CB analysis
focuses on customer-product interaction, we designed the primitive as a unit that describes
an object’s motion or the relationship between multiple objects.

To conclude, rather than accuracy improvement, we focus on the method’s flexibility,
which is also important in CBR requirements. Consequently, the main contribution of the
paper is the proposal of a flexible CBR method to cope with frequent changes in target CBs.

We evaluated our method on our self-collected laboratory dataset and the public
MERL dataset. Compared to the time-consuming collection of data and training of models,
our method was able to deal with target changes in a short time, which implies its enhanced
flexibility. Moreover, assessment of acceptable recognition accuracy indicated that we did
not lose too much accuracy as the cost of achieving a high degree of flexibility.

The remainder of this paper is organized as follows: Section 2 explains the problems
of existing methods in terms of their methodology and rationale for selecting target CBs.
Section 3 describes our proposal of CB decomposition and the matching of CB patterns
in detail. In Section 4, the evaluation of the performance of the proposed method on two
different datasets is described. Finally, Section 5 concludes the paper with some final
remarks and suggestions for future research.

2. Related Work

In retail environments, we analyze CBs to meet the demands of customer-centric
retailing. As a result, CBR tasks should not only address the issues of methodology but
also consider the difficulty of application and the customer’s experience. Currently, various
types of sensors are used in HAR research to acquire data on human movements. In contrast,
almost all research on CBR uses visual data. The major reason is that visual data-based
approaches can be directly applied to video acquired by surveillance cameras in the store,
which makes the application of these approaches hardware-free and avoids active customer
participation [2]. In addition, visual data contains much more information than most other
types of sensor data.

With the input of videos, existing CBR methods mainly use the pipeline of extracting
features from consecutive frames within a certain period and recognizing behavior from the
sequenced features using machine-learning-based models, especially the hidden Markov
model (HMM). Popa et al. [4] proposed an HMM-based model to recognize customer’s
buying behavior with optical flow features. Within the next two years, they improved
the HMM-based model by partitioning the CB into basic actions [5], which are similar
to our proposed primitives. However, they determined the basic actions by optical flow
features. Thus, the model is not explainable, which results in it having poor flexibility when
dealing with target CB changes. Djamal Merad et al. [6] applied an HMM model for hand
movement analysis and an SVM model as eye-tracking descriptors for the classification of
a customer’s purchasing type. The specific CB classes were not given because the authors
conducted CBR indirectly. Moreover, their wearable device was difficult to apply to every
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customer, and required customers’ active participation. However, people are generally
reluctant to cooperate without tangible rewards [2].

Apart from HMM models, convolutional neural networks (CNNs) are also widely
used due to their excellent performance on spatial feature extraction. Singh et al. [7] used a
CNN connected with a long short-term memory (LSTM) [8] model to recognize CBs, such
as hand in the shelf, inspecting the products, etc. Using this method, Singh et al. avoided
most object occlusions using top-view cameras. Some improved CNN-based models [3,9]
have recently been proposed to detect customers and recognize basic customer-product
interactions, such as picking up products, returning products back to the shelf, etc. Jingwen
Liu et al. [10] employed a dynamic Bayesian network to conduct CBR of six CBs, including
turning to shelf, touching, picking, returning, etc., based on hand movements and the
orientation of the head and body. Jumpei Yamamoto et al. [11] estimated CB class in a
book store based on depth features from a top-view camera and pixel state analysis (PSA)
features using a support vector machine (SVM).

In addition, several studies, not using an ML-based model [12,13], implemented a
complete CBR system with an RGB-D camera. Basic CBs, such as pick, return, etc., were
recognized, based mainly on processing depth information by background subtraction.
Unfortunately, since the systems were designed for specific purposes using simple and
efficient methods, their flexibility was compromised.

In sum, although the aforementioned ML-based methods achieved improvements in
CBR accuracy, they share common limitations with respect to flexibility, as follows:

• Difficulty in adapting to changes in target CBs: The ML models cannot be reused as
long as the changed CBs are substantially different from the training data. In this
event, time-consuming new training data collection and model re-training are required,
which implies inflexibility.

• The model is not explainable: Unexplainable models can only be tuned based on their
outputs. This implies poor flexibility during any modifications caused by changes in
business needs.

Furthermore, since there are few approaches similar to our method in the field of CBR,
we discuss the similarities and differences of several HAR methods with our approach with
respect to their application to CBR. Liu et al. [14] proposed an HMM-based method which
divides human activity into several phases, called “motion units”, analogous to phonemes
in speech recognition. Yale et al. [15] proposed interpretable high-level features based on
motion units. Different activities sharing the same motion units allow the model to derive
more explanatory power from human activities. Although motion units are similar to our
proposed primitives, the methods encounter two issues when applied to CBR tasks, which
highlight how they differ. Firstly, these methods use data from a smartphone’s acceleration
sensor. Alhough providing tangible rewards is less of a problem, the methods require the
active participation of customers, e.g., downloading an app and agreeing to its terms of
service, which increases saliency to customers. Consequently, the rewards increase the
cost and the active participation creates privacy issues [2]. Secondly, despite the fairly
complete categorization of human activities based on motion units, the methods do not
focus on human-item interactions. Since purchase behavior can be easily detected from
cashier records, recognizing non-purchase CB becomes one of the objectives of CBR. As the
main component of non-purchase CBs, human-item interactions are required in CBR tasks.
As an illustration, “picking up a product” and “returning a product” would be practically
identical due to their similar hand motions. Nishant Rai et al. [16] divided human activities
in indoor living spaces into atomic actions, analogous to the primitives in this paper. The use
of both visual and audio data avoided users’ active participation, and the training data
included human-item interactions. The authors improved recognition accuracy by training
the model with annotations of both atomic actions and human activities. In contrast, we
concentrated on improving the method’s flexibility without sacrificing too much accuracy,
as flexibility is one of the important factors for CBR tasks. Romany F.Mansour et al. [17]
combined a faster RCNN and a deep Q network for the detection of anomalous entities
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or human activities in videos. Since this is a typical ML-based HAR method, it requires
re-collecting training data and re-training models to adapt to the changed recognition
targets, which is inflexible for CBR tasks. In conclusion, the HAR methods described
require major modifications before they could be applied to CBR tasks.

3. Proposal

In this paper, we designed a unit, called a primitive, which is a kind of partitioned CB.
Our CBR process consists of object tracking, primitive recognition, and CBR by matching
recognized primitives with a predefined pattern of primitives. Since the innovative part
of our approach is CBR with the combination of primitives, we applied existing methods
to object tracking. The workflow of our approach is shown in Figure 1. At the beginning,
the existing method tracks objects from the input video captured by in-store cameras. Then,
each frame’s primitives are recognized based on the object trajectories. We predefine CB
as a pattern consisting of primitives. Finally, we match the recognized primitives with
the predefined primitive pattern. The matched pattern is regarded as the corresponding
CB. This section explains our proposed method in detail, including how we design the
primitives, the method for primitive recognition, customizing CB using primitives, and CBR
by pattern matching.

Figure 1. Proposal flow.

3.1. Primitive

The dictionary definition of a behavior is the accomplishment of a thing, usually over
a period of time or in stages. We believe that this definition reveals the process by which the
human brain recognizes a behavior from visual information. Behavior consists of several
stages, and our brains recognize this behavior by checking whether these stages occur in
the correct order. In this paper, we refer to these stages as primitives. Thus, CB can be
decomposed into primitive(s). Table 1 lists the target CBs in existing methods and the
primitives from our subjective decomposition of the target CBs. We did not list a type
of CB [18] in Table 1 because they recognize customer’s emotion from facial expressions
and speech text, which might breach customers’ privacy. During the decomposition, we
controlled the decomposition granularity to avoid redundancy from over-decomposition.
We found that the objects in the target CBs were body parts or products. There are two
types of primitives: one describes an object’s motion state and the other describes the
relationship between two objects. Based on what we have found so far, we can decide what
kind of information is in the primitive and how detailed it is.

It is necessary to design an expression format for primitives. Generally, using natural
language is considered an efficient method when we need to let others know that we
understand a behavior. Therefore, we define the primitive by a sentence with reference to
the natural language grammar. The syntax is:

subject verb object from wherestart to whereend, (1)

where italic words are syntax elements which can be replaced by words in the vocabulary
below. If wherestart = whereend, the syntax can be simplified as subject verb object where.
As the syntax shows, the primitive consists of subject, verb, object and where, each of which
has a corresponding vocabulary, as follows:

• subject: person, hand, product
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• verb: move, stay, follow, face to
• object: hand, shelf, cart, product
• where: in the shelf/cart, out of shelf/cart

Subject and object refer to the name of an entity. verb describes the movement of
subject or the relation between subect and object. where means the place where the primitive
happens. As our proposed method should cover a wide range of CBs, the vocabulary should
be a selection of commonly used words in retail environments. Therefore, these words
are selected based on our aforementioned findings from the existing methods in Table 1
Nevertheless, more and more words will be available as our research progresses. There
are some constraints and options for the syntax to avoid confusing definition sentences,
as below:

• subject, verb are required: subject, verb should be filled in. object is required in relation
primitives. where is optional.

• Any ignored optional element can be omitted: e.g., if where is ignored, we do not care
about the value of where, the syntax can be simplified as subject verb object.

• subject �= object: Same subject and object is not allowed in logic.
• The logical operator NOT(!) is allowed: It indicates all words except this one.

In sum, the syntax describes what an object does or what happens to it. With some
verbs, it could represent two objects’ relationship. This design could define motion prim-
itives, the motion of an object, relation primitives, or the relation between two objects.
In the case of more than two objects, combining several relation primitives could describe a
CB composed of multiple objects.

Table 1. Primitives in target CBs of current approaches.

Target CB Related Approaches Primitives ({} = primitive)

Passing by the Shelf [3,10,12] {a person is moving in front of the shelf}

Turning to the Shelf [10] {a person is turning to face the shelf}

Viewing the Shelf [5,10,11] {a person is standing and watching the shelf}

Touch the Shelf [3–5,10,13] {one’s hand moves to the shelf},
{one’s hand moves back from the shelf}

Pick up a Product
from the Shelf

[3–5,9,10,12,13] {one’s hand moves to the shelf},
{one’s hand moves back from the shelf},

{a product is moving together with one’s hand}

Return a Product
back to the Shelf

[3,5,10,12,13] {one’s hand moves to the shelf},
{a product is moving together with one’s hand},

{one’s hand moves back from the shelf}

Put a Product into a
Basket/Cart

[10] {one’s hand moves to the cart},
{a product is moving together with one’s hand},

{one’s hand moves back from the cart}

Holding a Product [11] {a product is moving together with one’s hand}

Browsing a Product
in a Hand

[5,11,13] {a person is watching his hand},
{a product is moving together with one’s hand}

However, though the proposed syntax is enough for our current research, its applica-
tion range is limited due to the design of subject, verb, object, and where. Despite the ability
to define multi-object interactions theoretically, each sentence only defines two objects’
one-to-one relationship. Therefore, the resources for multi-object relationships definition
grow exponentially with the number of related objects. Nevertheless, it is currently suf-
ficient for us because there are at most two objects in interaction. Since where limits the
number of positions only to start and end, it cannot describe complex motion, such as
spiral movement.
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3.2. Primitive Recognition

In this section, we consider the elements in the syntax from the objects’ trajectories.
Since most CBs last for a few seconds which implies many frames for a video with 30 fps,
this leads to redundancy in the trajectories with the object-tracking method. Consequently,
we first perform trajectory segmentation to reduce redundancy in the trajectories. Then, we
recognize primitive elements using the results of segmentation.

Trajectory segmentation refers to compressing a trajectory into several segments,
which preserve most features of the trajectory. Current approaches [19,20] separate a
trajectory based on the moving distance and direction of each vector in the trajectory.
Thus, we design an approximate trajectory partitioning (ATP)-based algorithm [19] for
trajectory segmentation. However, ATP is sensitive to direction changes. In our case,
an object’s frequent direction changes over short distances probably refers to idling. We
anticipate that the algorithm will only react to change in the moving distance in this case.
Hence, we designed a thresholding algorithm based on ATP as shown in Algorithm 1.
The algorithm receives two inputs: a list of points KptsATP ← [p1, p2, p3, ..., pi, ..., pN ] from
ATP outputs, where pi refers to the i-th element in KptsATP, N is the number of key-points
from ATP, and a threshold thresholdidle is set to preserve the key-points with a distance
longer than thresholdidle. Since the time complexity of ATP and Algorithm 1 are O(n),
the time complexity of the tracjectory segmentation is O(n2), where n is the length of
the trajectory.

Algorithm 1: Thresholding Algorithm for Trajectory Segmentation
Input: List Of Points KptsATP ← [p1, p2, p3, ..., pi, ..., pN ], Integer thresholdidle
Output: List Of Points Kpts

1 index ← 2;
2 pt1 ← p1;
3 idling ← True;
4 Kpts ← [pt1];
5 while index < N do

6 ptstart ← pindex;
7 ptend ← pindex+1;
8 vec ← pend − pstart;
9 distance ← √

vec.x2 + vec.y2;
10 if distance ≤ thresholdidle then

11 if !idling then

12 Kpts.Add(ptindex−1);
13 ptstart ← ptend;
14 end

15 idling ← True;
16 else

17 Kpts.Add(ptindex−1);
18 idling ← False;
19 ptstart ← ptend;
20 end

21 index ← index + 1;
22 end

23 if !(pN in Kpts) then

24 Kpts.Add(pN);
25 end

26 return Kpts;
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In the primitive’s syntax, subject and object are the entity names that can be ob-
tained directly from the trajectory information. The words “in the shelf/cart” and “out
of shelf/cart” for where can be directly acquired from the coordinates of the trajectory.
Therefore, only verb needs to be recognized from the trajectories. Algorithm 2 explains the
recognition for “move” and “stay”. The two words are a pair of antonyms that mean an
object is moving faster than a certain speed or staying still. The input segmented trajectory
ST ← [p1, p2, p3, ..., pi, ..., pM] contains the trajectory processed by segmentation algorithm,
where pi refers to the i-th point in ST, and M is the number of points of ST. thresholdidle
is reused in this algorithm to detect whether an object is moving or not. To improve the
robustness to noise, we applied a window with length of lenwindow1 to filter the noise.
The algorithm output verb1 is one of the words “move” and “stay”, which means the
recognition result for the current frame. The time complexity is O(n), where n is the smaller
of the length of the segmented trajectory and lenwindow1.

Algorithm 2: Verb Recognition(move, stay)
Input: List Of Points ST ← [p1, p2, p3, ..., pi, ..., pM], Integer thresholdidle, Integer

lenwindow1
Output: String verb1

1 index ← M;
2 results ← [];
3 while results.length ≤ lenwindow1 do

4 ptstart ← pindex;
5 ptend ← pindex+1;
6 vec ← pend − pstart;
7 distance ← √

vec.x2 + vec.y2;
8 if distance ≤ thresholdidle then

9 results.Add(1);
10 else

11 results.Add(0);
12 end

13 index← index − 1;
14 if index = 0 then

15 Break;
16 end

17 end

18 sum ← 0;
19 foreach element result of results do sum ← sum + result;
20 ;
21 if sum ≤ results.length/2 then

22 verb1 ← “stay”;
23 else

24 verb1 ← “move”;
25 end

26 return verb1;

Algorithm 3 shows the recognition for the verb, “follow”. The word means the subject
is moving/staying together with the object. The inputs are two objects’ segmented trajectory
ST1 ← [p11, p12, p13, ..., p1i, ..., p1M] and ST2 ← [p21, p22, p23, ..., p2i, ..., p2M], where pji
refers to the i-th point in the trajectory STj, M is the number of points of the segmented
trajectory. threshold f ollow is used to detect whether an object is close to another one or not.
Similar to Algorithm 2, a parameter lenwindow2 is passed to the algorithm for denoising.
The algorithm output verb2 is “follow” or null, which means the recognition result for
the current frame. The time complexity is O(n). Furthermore, the verb “face to” refers
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to subject is facing object. Since it requires detecting the orientation of the body or head,
which is not currently supported in our method, we intend to omit it in this paper and
consider it in future work. The time complexity is O(n), where n is the smaller of the length
of the segmented trajectory and lenwindow1.

Algorithm 3: Verb Recognition(follow)
Input: List Of Points ST1 ← [p11, p12, p13, ..., p1i, ..., p1M], List Of Points

ST2 ← [p21, p22, p23, ..., p2i, ..., p2M], Integer threshold f ollow, Integer
lenwindow2

Output: String verb2

1 index ← M;
2 results ← [];
3 while results.length ≤ lenwindow2 do

4 pt1 ← p1index;
5 pt2 ← p2index;
6 vec ← pt2 − pt1;
7 distance ← √

vec.x2 + vec.y2;
8 if distance ≤ threshold f ollow then

9 results.Add(1);
10 else

11 results.Add(0);
12 end

13 index ← index − 1;
14 if index = 0 then

15 Break;
16 end

17 end

18 sum ← 0;
19 foreach element result of results do sum ← sum+result;
20 ;
21 if sum ≤ results.length/2 then

22 verb2 ← null;
23 else

24 verb2 ← “follow”;
25 end

26 return verb2;

3.3. Define CB by Primitives

With our designed primitives, we are able to customize a wide range of CBs with a
combination of primitives. Since our primitives are designed with reference to target CBs in
existing methods, we applied primitives to define those target CBs. The clothes-related CBs
are excepted because they are not common in normal retail stores, and because they are too
complex for our proposal. We defined CBs in Table 1 by primitives, as shown in Table 2.
The symbol “→” defines the primitives’ chronological order. Primitives that precede this
symbol are assumed to occur first. Since the product is occluded when it is on the shelf
in our implementation, a precise definition of “touch the shelf” is difficult to formulate.
Therefore, we defined it broadly as the primitive pattern in Table 2.
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Table 2. Define target CBs by primitives.

Target CB Primitive Pattern ({} = Primitive, != Not)

Passing by the Shelf {person move out of shelf}

Turning to the Shelf {person !face to shelf} → {person face to shelf}

Viewing the Shelf {person stay out of shelf}

Touch product in the Shelf {hand move to in the shelf} →
{hand move to out of shelf}

Pick up a Product from the Shelf {hand move to in the shelf} →
{hand move to out of shelf}, {product follow hand}

Return a Product back to Shelf {hand move to in the shelf}, {product follow hand}
→ {hand move to out of shelf}

Put a Product into a Basket/Cart {hand move to in the cart}, {product follow hand}
→ {hand move to !in the cart}

Holding a Product {product follow hand}

Browsing a Product in a Hand {product follow hand}, {person stay}

3.4. Primitive Pattern Matching

The recognized primitives are stored in a sequence to retain their chronological order.
Once any primitive has been recognized in the current frame, our method matches the
primitive sequence with the predefined primitive patterns. Any matched result is consid-
ered as a recognized CB. Algorithm 4 explains the details of the pattern matching. Since
forward matching in chronological order consumes a great deal of computational resources
to save different matching states for each primitive pattern, it leads to the running speed
becoming slow as the running time grows. Therefore, we match recognized primitives
in reverse chronological order. In other words, we start matching from the most recently
recognized primitives, which saves a great deal of computational resources because there is
no need to save the matching states. The algorithm takes the inputs of a sequence, including
recognized primitives, a predefined primitive pattern, and a number timeout, to stop the
algorithm when there are not any matched primitives within the recent timeout frames.
The output is a Boolean value of whether the corresponding CB is matched or not. The time
complexity is O(n), where n is the smaller of the length of Pseq and the length of Pde f .

Algorithm 4: Primitive Pattern Matching
Input: List Of Primitive Pseq, List Of Primitive Pde f , Integer timeout
Output: Boolean matched

1 seqIndex ← Pseq.length;
2 de f Index ← Pde f .length;
3 timeoutCounter ← 0;
4 while (seqIndex > 0) AND (timeoutCounter ≤ timeout) do

5 if Pseq[seqIndex] = Pde f [de f Index] then

6 de f Index ← defIndex − 1;
7 if de f Index = 0 then

8 return True;
9 end

10 else

11 timeoutCounter ← timeoutCounter + 1;
12 end

13 seqIndex ← seqIndex − 1;
14 end

15 return False;
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4. Evaluation

4.1. Experiment Settings

Our proposed method can be flexibly modified to recognize different target CBs to cope
with frequently changing target CBs in smart retail solutions. To evaluate our proposed
method, we used our collected laboratory dataset [21] and the public MERL dataset [7].
Our proposed method recognizes target CBs in input videos and calculates their f1-score as
the accuracy metric. Since videos in two datasets were taken in different environments, it
can be considered a change in retail environments to some extent. To recognize different
target CBs in the two different datasets, we only changed a few parameters of our designed
algorithms and predefined primitive patterns. By observing the accuracy of our method on
different datasets, and considering only a few modifications when changing datasets, we
could infer our method’s flexibility to some degree.

The inputs of our method are the trajectory coordinates, which need to be obtained
using object detection and a tracking model. However, wrong tracking results obtained by
other models mean wrong inputs to our method, which probably leads to wrong outputs.
To eliminate the influence of different object detection models on our evaluation results,
we track the annotated bounding boxes with a Kalman-filter and Hungarian algorithm
[22] to obtain the input trajectories for our method. In addition, although some tracking
models can predict the trajectories of occluded objects, the occluded trajectories are not
annotated in the evaluation. Regarding the output CB annotations, we annotated the
target CB in each frame for our laboratory dataset. As the MERL dataset is public, we
used its original CB annotations. For the experiments on both datasets, we implemented
our method in the same Windows 11 device with RAM of 16 GB. The CPU was an Intel
i7-12700K (3.6 GHz). The GPU was an NVIDIA GeForce RTX 3060 Ti (8 GB). The program
was written in Python 3.9. The ML framework was PyTorch 1.12. The third-party libraries
used included numpy 1.22 and scipy 1.8.

4.2. Our Laboratory Dataset

This is a dataset we collected at a public activity, where the randomly selected 19 par-
ticipants were requested to simulate shopping in front of the shelf one-by-one. The dataset
includes 19 top-view videos of 19 subjects with a resolution of 640 × 480. Each video was
about 30–60 s with 10 FPS and only one subject. Figure 2 shows some examples of the
annotated target CBs in the dataset. We built a laboratory retail environment and installed
an RGB top-view camera to obtain an occlusion-free view. Each participant in the videos
was asked to interact with the products on the shelf. The participant were required to
take at least one product from the shelf. There were four products of different shapes and
sizes, including a boxed juice, a deodorant spray, a stainless steel bottle, and a wet-tissue.
The products were not visible when they were on the shelf. Our data was collected when
our proposed method was demonstrated in a public activity. The videos were collected
without requiring the participants to sign any confidentiality agreement, and the partici-
pants’ faces were exposed to the cameras. Unfortunately, as a result, we cannot publish our
collected dataset until all the private information has been removed, such as by masking
the faces.

Since the innovative part of our proposed method involves the receipt of trajectory
coordinates as inputs, we annotated the bounding box of person, hand, and four products
in each frame. Then, we used a tracker with a Kalman-filter and Hungarian algorithm [22]
to obtain the object’s trajectory as input. Regarding the output CBs, we selected eight
CBs as listed in Table 3. Among them, the first six CBs included most target CBs used
in existing methods. However, with the annotation of the first six CBs, we found that
many frames still remained without annotation. Thus, we added two CBs to fill the
frames without annotations. We used some approximate definitions for some CBs, such as
“browse”, because the approximate definition enabled reuse of primitives with nearly no
loss of accuracy.
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Figure 2. Example of annotated CB in our laboratory dataset.

Figure 3 shows the confusion matrix of our laboratory dataset. Each CB’s column
includes two columns of frame count and each row’s frame count percentage. Figure 4
shows the f1-score and some statistics for our laboratory dataset. The total average is the
average value of the column calculated using the sum of the product of the frame percent
and each row’s value. The total average f1-score of our method was 89.35%, which is an
acceptable result. The f1-score for most CBs was also acceptable, except for “viewing,”
“walking,” and “touch”. In terms of “viewing”, the confusion matrix revealed the reason
with 68.18% precision. Some “viewing” frames were recognized as “select” and “browse.”
The ambiguous boundary caused the wrong prediction of “select”. The different definition
of “viewing” between annotation and CB definition led to the wrong prediction of “browse”.
As our proposed method cannot recognize the target’s orientation or track the target’s eyes
currently, our CB definition approximately defines “viewing” as stay static out of the shelf,
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while the annotation of “viewing” means the target is standing still and looking at the shelf.
The low recall of “viewing” indicates that most frames of “browse” were recognized as
“viewing”. The difference in CB definition is whether the target is holding a product or not.
Products are usually occluded in the “browse” frames, which caused the wrong recognition
output for “viewing”.

Table 3. Primitive patterns in our laboratory dataset.

Name Description Primitive Pattern ({}= Primitive, != Not)

Walking one is walking along the shelf {person move out of shelf}

Viewing one is standing in front of the shelf {person stay out of shelf}

Browse one is holding and watching a product without moving {product follow hand}, {person stay}

Pick one picks up a product from the shelf {hand move to in the shelf} →
{hand move to out of shelf}, {product follow hand}

Return one returns a product back to the shelf {hand move to in the shelf}, {product follow hand}
→ {hand move to out of shelf}

Touch one hand into the shelf without taking any product out {hand move to in the shelf} →
{hand move to out of shelf}

Select (1 hand) one hand is selecting products in the shelf {hand in the shelf}, {hand out of shelf}

Select (2 hands) both hands are used to select products in the shelf {hand out of shelf}

Figure 3. Confusion matrix of our laboratory dataset.

Figure 4. Results of F1-score of our laboratory dataset.

With respect to “walking”, some of its frames were recognized as “browse”. When
the target is walking while holding a product, it is difficult to determine the ambiguous
boundary between “browse” and “walking”. The CB definition in Table 3 recognizes them
by distinguishing whether the target is moving while holding a product. “Browse” refers
to holding a product while staying static. We used a single threshold to divide the object’s
moving speed to detect move or stay, which was not sufficiently accurate for totally correct
detection. Some frames were detected as staying static, which led to the wrong recognition.
This also applied to the low recall of “walking”.
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In the case of “touch”, there was only one case in the dataset. It was defined as a
customer putting their hand inside the shelf but taking nothing out of it. Some wrong
recognition of “pick” results in the low recall occurred because the picked object was
occluded. In addition, Figure 3 shows that most video frames were “browse” and occurred
more frequently than any other CBs. Thus, we considered discriminating within “browse”
to make the distribution of CBs more uniform.

According to the above results, our method showed acceptable accuracy for the lab-
oratory dataset. Some individual CBs with low f1-score are anticipated to be improved
by changing the CB definitions into more accurate definitions. To evaluate our proposed
method’s ability to discriminate CB, we predefined different primitive patterns to dis-
criminate the CB “select” according to whether one hand or both hands were used. This
indicates that our proposed method is able to deal with CB discrimination to some extent.
Concerning the evaluation of flexibility, we measured the time required by our method
when applied to different datasets. For the collected laboratory dataset, we spent about an
hour tuning the five parameters in the three designed algorithms and two to three hours
defining the primitive patterns in Table 3. Then, we annotated the CBs in each frame for
about five hours per day. The annotations took about one week in total. Since annotation is
not required during the application of our method, the time for annotation is considered as
a reference for the ML-based methods’ modification time.

4.3. MERL Dataset

The MERL shopping dataset [7] is a public dataset consisting of 106 top-view videos
with a resolution of 920 × 680, each of which is about two minutes long with 30FPS.
All 41 subjects were asked to do shopping in a retail store setting. Figure 5 presents
some examples of the annotated CBs in the dataset. With regard to the input trajectory
coordinates, we annotated the bounding box of person and hand in each frame based on
the results from the pose estimation model Higher HRNet [23] pretrained on the COCO
dataset [24]. We manually annotated the product’s bounding box in each frame. Due to
the limited time, we only finished the object’s bounding box annotations in 46 videos for
evaluation. Similar to the process for the laboratory dataset, we used the same tracker with
a Kalman-filter and Hungarian algorithm [22] to obtain the input trajectories.

For the output CBs, we used the CB annotations included in the dataset. This provided
five CBs’ annotation, and we defined them using our proposed method, presented in Table 4.
Among the five CBs, we excluded the CB “hand in shelf” from the evaluation because
many ground truths were not annotated during our random check of the annotations.

Table 4. Primitive Patterns in MERL dataset.

Name Description
Primitive Pattern ({}=

Primitive)

Reach To Shelf reach one’s hand to shelf {hand move out of shelf} →
{hand move in the shelf}

Retract From Shelf retract hand from shelf {hand move in the shelf} →
{hand move out of shelf}

Hand In Shelf extended period with hand in
the shelf {hand in the shelf}

Inspect Product inspect product while holding
it in hand {product follow hand}

Inspect Shelf
look at shelf while not

touching and reaching for the
shelf

{person stay out of shelf}
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Figure 5. Example of annotated CB in MERL dataset.

Figure 6 shows the confusion matrix of the MERL dataset. Each CB’s column includes
two columns of frame count and each row’s frame count percentage. Figure 7 shows the
f1-score and statistics for the MERL dataset. The calculation of the total average was the
same as in Figure 4. The average f1-score of our method was 79.66%, which is acceptable for
our proposed method with only a change in CB definitions. Among the four target CBs, our
method achieved only about 60% precision for “reach to shelf” and “retract from shelf”. We
found that this was caused by the different boundary in the definition. Specifically, there
was a difference between our definition of “reach to shelf” and the definition in the MERL
dataset. We defined the CB’s boundary using a threshold of moving speed. Therefore, our
method started to recognize “reach to shelf” from the frame in which the hand was already
moving. The MERL dataset defines the start of “reach to shelf” as when one intends to
“reach to shelf”, when one’s hand has not yet moved. Thus, our recognition results always
differed from the annotations by a few frames. For “retract from shelf”, this accounted for
the low precision. The errors for “reach to shelf” and “retract from shelf” were caused by
different definitions. We consider our method to have been successful in recognizing every
“reach to shelf” and “retract from shelf” CB with a few frames’ difference. This implies that
we could improve our method by recognizing intention in our future research.
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Figure 6. Confusion matrix of MERL dataset.

Figure 7. Results of F1-score of MERL dataset.

Except for recognition accuracy, Table 5 compares the required modifications and
the estimated required time when applying our approach and the machine learning-
based approach to different datasets. Our proposed method changed the five parameters
(thresholdidle, lenwindow1, threshold f ollow, lenwindow2, timeout) in the three algorithms we de-
signed in Section 3. They were mainly used to cope with change in the person’s scale in the
video frames. We also re-defined the primitive patterns for the new target CBs. As shown
in Table 5, in our experiments, all the modifications took about 3–4 h.

Table 5. Flexibility: Modifications for dataset change adaptation.

Method Modifications Estimated Required Time

Our proposed method
5 parameters for our designed

3 algorithms 1 h

Re-define primitive patterns 2–3 h

Re-collecting video data no reference data

ML-based methods Re-annotating collected data a week (our dataset)
3 months (MERL)

Training and tuning model(s) no reference data

For the ML-based methods, the main modification was re-annotation. Since the
required time for data re-collection and model tuning varied greatly when dealing with
changes of datasets, we currently lack sufficient reference data to estimate its required time.
However, regarding the time spent on re-annotation, as we annotated both datasets for the
purpose of accuracy calculation, the required time for modification was estimated to be
about 2–3 months.

In conclusion, since our method cannot be fine-tuned as ML-based methods are, our
proposed method sacrifices accuracy to obtain flexibility. Nonetheless, the huge difference
in modification time indicates that the trade-off is justified. The considerably enhanced
flexibility could have application value in the context of CBR.

5. Conclusions

Smart retail solutions usually require the recognition of a wide range of CBs from
captured video in stores. The CBs that are selected as recognition targets are called target
CBs. Target CBs frequently change with changes in needs, environments, etc. To achieve
flexible target CB change adaptation, we proposed a flexible CBR approach. Our main
idea is recognizing CB using a combination of primitives, which are a kind of partitioned
CB. Since different CBs share the same primitives; the primitives can be reused when
adapting to target CB changes, which avoids time-consuming steps, such as re-collecting
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training data and re-training the recognition models. Consequently, our method can
flexibly adapt to changes in target CB by changing the combinations of primitives only. In
addition, we designed a syntax based on natural language grammar to define primitives.
The readable syntax improves the explanatory power of our method. Therefore, the usage
of primitives and our proposed syntax can enable a high degree of flexibility in target CB
change adaptation. Evaluation experiments undertaken demonstrated that our method
achieved an acceptable level of accuracy for different datasets, and great flexibility across
different datasets.

Nevertheless, the experiments also revealed some limitations of our proposed method.
Since our method is difficult to fine-tune to fit some individual situations, the recognition
accuracy is decreased compared to ML-based methods. A possible solution would be to
replace the current pattern matching algorithm with a probabilistic model. In addition,
because the element where in the primitive syntax limits the number of positions, the syntax
cannot represent complex movement, such as spiral movement. This leads to a limited
cover range of CB. Increasing the vocabulary of where could improve the model’s expressive
power to represent complex movement. Furthermore, though the syntax element f ace to
includes orientation information, the orientation detection is currently not applied. These
limitations may be addressed in future work.
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Abstract: In this article, we introduce explainable methods to understand how Human Activity
Recognition (HAR) mobile systems perform based on the chosen validation strategies. Our results
introduce a new way to discover potential bias problems that overestimate the prediction accuracy
of an algorithm because of the inappropriate choice of validation methodology. We show how the
SHAP (Shapley additive explanations) framework, used in literature to explain the predictions of
any machine learning model, presents itself as a tool that can provide graphical insights into how
human activity recognition models achieve their results. Now it is possible to analyze which features
are important to a HAR system in each validation methodology in a simplified way. We not only
demonstrate that the validation procedure k-folds cross-validation (k-CV), used in most works to
evaluate the expected error in a HAR system, can overestimate by about 13% the prediction accuracy
in three public datasets but also choose a different feature set when compared with the universal
model. Combining explainable methods with machine learning algorithms has the potential to help
new researchers look inside the decisions of the machine learning algorithms, avoiding most times
the overestimation of prediction accuracy, understanding relations between features, and finding bias
before deploying the system in real-world scenarios.

Keywords: human activity recognition; validation methodology; leave-one-subject-out cross-validation;
explainable methods; Shapley additive explanations; machine learning

1. Introduction

Human Activity Recognition (HAR) is an emergent research area for autonomous
and real-time monitoring of human activities and has been widely explored because of its
good practical applications, such as behavior detection, ambient assisted living, elderly
care, and rehabilitation [1–8]. Individuals express their routines through activities that are
performed in particular situations and understanding these situations enables people to
improve their daily lives. Physical activities performed by an individual (e.g., walking
and running) can create recommendations and avoid the negative impacts of illness. For
instance, the time spent sitting is associated with an increased risk of becoming obese and
developing diabetes and cardiovascular diseases [3]. A HAR system can observe elderly
people by analyzing data from a smart wearable and improve their lifestyle by warning
them about forthcoming unprecedented events such as falls or other health risks [9].

Smartphones have been used to monitor everyday activities automatically through a
variety of embedded sensors such as accelerometers, gyroscopes, microphones, cameras and
GPS units [1,10]. Understanding how individuals behave by analyzing smartphone data
through machine learning is the fundamental challenge in the human activity recognition
research area [11].

Sensors 2022, 22, 2360. https://doi.org/10.3390/s22062360 https://www.mdpi.com/journal/sensors149



Sensors 2022, 22, 2360

To recognize physical activity from reading data from sensors, most proposed so-
lutions rely on the Activity Recognition Process (ARP) protocol: Data acquisition, pre-
processing/segmentation, feature extraction, classification and evaluation [10,12–14]. Sev-
eral parameters in each one of these stages (sample size, experimental methodology, cross-
validation settings and type of application) can affect the overall recognition [15]. Even
when these parameters are well adjusted, the final evaluation of the system may not reflect
the true accuracy when recognizing data from new individuals. The main reason for this is
that, in most cases, the methodology used to validate the results does not consider the label
that identifies the individuals.

The most commonly adopted validation strategy in Machine Learning (ML) literature
is the k-fold cross-validation (k-CV) [16]. The k-CV splits a dataset into two subsets: One
for training the ML algorithm and one for testing the performance, repeating this process
k times. The k-CV procedure does not consider whether all samples belong to the same
subject (i.e., individual). This is usually because of the windowing step used to segment the
time series during the pre-processing stage. Therefore, in a HAR application that aims for
generalization, randomly partitioning the dataset becomes a problem when samples of one
subject are in both training and test sets at the same time. As a result, an information leak
appears, artificially increasing the classifier’s accuracy. We can confirm this observation in
several studies in the literature [7,17–22].

In practice, the introduction of illegitimate information in the evaluation stage is
unintentional and facilitated by most data partitioning processes, making it hard to detect
and eliminate. Even then, identifying this situation as the reason for the overestimated
results might be non-trivial [18,23].

In this article, we use the explainable artificial intelligence (XAI) tools’ capacity to de-
tect and address bias and fairness issues when choosing different validation methodologies.
This is a critical topic that has grown rapidly in the community because the decisions of
machine learning models can reproduce biases in historical data used to train them [24].
A variety of reasons, like lack of data, imbalanced datasets and biased datasets, can affect
the decision rendered by the learning models. We found it is possible to explain model
behavior and its capability in a simple way. Machine learning engineers can use this
information to suggest modifications needed in the system to reduce critical issues linked
to bias or fairness.

Our work aims to discover bias problems that overestimate the predictive accuracy
of a machine learning algorithm because of an inappropriate choice of validation method-
ology. We examine how different HAR system approaches make generalizations based
on a new subject(s) by using k-fold cross-validation, holdout and leave-one-subject-out
cross validation. In particular, we show how the SHAP (Shapley additive explanations)
framework presents itself as a tool that provides graphical insights into how human activity
recognition models achieve their results. This is important because it allows us to see which
features are relevant to a HAR system in each validation method.

We can summarize the main contributions of this work as follows:
(1) We evaluate three different approaches for building a HAR system: Personalized,

universal and hybrid. Our experiments reveal pitfalls caused by incorrectly dividing
the dataset, which can lead to unnoticed over-fitting. We show that k-CV achieves an
average accuracy of 98% on six human activities, whereas with leave-one-subject-out cross-
validation the accuracy drops to 85.37%. We achieved the results by merging three widely
used datasets, SHOAIB [2], WISDM [25] and UCI-HAR [26], which have human activities
performed by 59 different subjects.

(2) We propose a new approach by using XAI methods to show how machine learning
models choose different features to make its prediction based on the selected validation
strategy. We performed several experiments that allowed us to measure the impacts of each
of these methodologies on the final results. With this, we could quantify the importance of
choosing the correct evaluation methodology of a HAR system.
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The remainder of this paper is organized as follows. Section 4 presents the most
common procedures for building a HAR system. Section 5 presents a discussion of a fair
evaluation for HAR systems. Section 6 introduces explainable algorithms used to interpret
the predictions of machine learning models. Section 7 presents the experimental protocol
and Section 8 the results of our evaluation scenarios. Section 3 presents the work related to
this research. Finally, Section 9 presents the conclusions of this work.

2. Human Activity Recognition

Smartphones are devices capable of monitoring everyday activities automatically
through a variety of built-in sensors such as accelerometers, gyroscopes, microphones,
cameras and GPS units [10]. Human activity recognition involves complicated tasks
which often require dedicated hardware, sophisticated engineering and computational and
statistical techniques for data pre-processing and analysis [7].

To find patterns in sensors data and associate them to human activities, the stan-
dard pipeline used in most works follows the Activity Recognition Process (ARP) proto-
cols [7,11,13,27–30]. As depicted in Figure 1, ARP consists of five steps, acquisition, pre-
processing, segmentation, feature extraction and classification [7]. Our work also includes
the evaluation phase in the ARP pipeline to present in detail how validation methodology
impacts the general performance of a HAR system. We can find in literature extensions of
the standard pipeline with specific stages such as annotation and application stage [31], or
even privacy and interpretability [32,33].
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Dev.
• Energy

Data
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Creation
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Acquisition Segmentation Features Extraction / Model Creation Activity

Recognition

ModelTraining 
Model

Training data Test data

Dataset

Test 
evaluation
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Figure 1. The common methodology used in HAR: Data acquisition, segmentation, feature extraction,
classification and evaluation.

2.1. Data Acquisition

In the data acquisition phase, motion sensors are used to gather data, such as angle,
vibration, rotation and oscillation from the smartphone. The individual actions are reflected
in the sensor data or linked to the physical environment in which the device is located.
For this reason, choosing suitable sensors is crucial. Currently, the accelerometer sensor
is mostly used in HAR systems because it is built-in in most smartphones and wearable
devices and also has shown superior results concerning representing activities if compared
with other inertial sensors. The combination of accelerometer and gyroscope allows HAR
systems to find patterns in the sensor signals and associate them with the activities per-
formed, such as activity of daily living (ADL) and sports. However, finding such patterns
is not trivial, since smartphones are often held near different parts of the user’s body and
each subject may have a personal signature of activity [11,13,28].

2.2. Pre-processing and Segmentation

After data acquisition, the raw data collected by motion sensors may contain noises
and must be processed, adapted into a readable format and segmented to be used by future
stages of the HAR applications. The segmentation phase comprises dividing the signals
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that are recorded continuously into smaller segments. Choosing smaller segments allows
the detection of activities faster, since the wait to mount the segment is smaller and the
resource requirements in the process are also reduced. Using larger segments allows more
complex activities to be recognized, but an additional amount of time will be required
to assemble and process the segment. The HAR community have used different sizes of
segments in the literature with the use of segment sizes ranging from 1 s to 10 s, with a
recognition rate above 90% [7,25,34,35].

2.3. Feature Extraction Process

The feature extraction phase aims to find a high-level representation from each activity
segment. For sensor-based activity recognition, feature extraction is more difficult because
there is inter-activity similarity. Different activities may have similar characteristics (e.g.,
walking and running). Therefore, it is difficult to produce distinguishable features to
represent activities uniquely [32].

Many HAR systems are based on shallow approaches. Features are handcrafted by
a domain specialist that transform data gathered from sensors into a high-level represen-
tation. The handcraft features can be divided into three domains: Time, frequency and
symbolic [11,13,14,26,27,35].

The time-domain features are obtained by simple statistical calculations, such as
average, median and standard deviation. These features are simple to calculate and
understand and have low computational complexity when compared to other feature
extraction processes, such as those based on deep neural networks [12,36]. The frequency-
domain features are used to capture natural repetitions by decomposing the time series
into a set of real and imaginary values representing wave components, through the use of
Fourier or Wavelet transforms, for example. The symbolic domain features represent the
sensor signals in a sequence of symbols obtained through a discretization process, allowing
data to be compressed into a smaller space than the original data [11,27].

The low computational complexity and its simple calculation process make hand-
crafted features still practicable. The major disadvantage is that resources created or
selected manually are time consuming, domain specific and require specialized knowledge.

2.4. Human Activity Classification

A machine learning algorithm can automatically detect patterns in a dataset and can be
used to make decisions in situations of uncertainty. There are several supervised learning
algorithms such as decision tree, naive Bayes, support vector machine (SVM), artificial
neural networks (ANN), logistic regression and KNN (K-Nearest Neighbors) [37]. For these
methods, it is essential that the sensors data be converted into a high-level representation,
since machine learning models do not work very well if they are applied directly to the
raw data [25].

More recently, deep learning models reach human-level performance in various do-
mains, including HAR. This approach can automatically learn abstract features from sen-
sors’ data and thus eliminating the need for a dedicated feature extraction phase because
the entire process is performed within the network hidden layers. Moreover, it outper-
forms in performance when applied to large masses of data if compared with traditional
ML algorithms.

For HAR, the most common solutions found in the literature are based on Convolutional
Neural Networks (CNN) and Long-Short-Term Memory Recurrent (LSTMs) [28,36,38,39].
Unfortunately, one of the main drawbacks of deep learning algorithms is related to their
high computational cost which could make its implementation unsuitable for creating real-
time HAR applications implemented on devices with low computational power [36,39].

A crucial stage of the classification process is to assess the performance of the trained
machine learning algorithm. The next section presents the most common evaluation metrics
used to estimate the future performance of a classifier.
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2.5. Evaluation Metrics for HAR Systems

The performance of the classification model is evaluated by a set of metrics that
shows how reliable is the model under evaluation, in mathematical terms [16,40]. The
evaluation metrics commonly used in the smartphone-based HAR literature are accuracy,
recall (sensitivity), specificity, precision and F-measure [15,41]. In HAR, accuracy is the
most popular and can be calculated by dividing the number of correctly classified activities
and the total number of activities. Accuracy gives a general idea of classification models’
performance. However, this metric treats all classes as equally important in a dataset. This
leads to an unreliable metric in unbalanced databases, strongly biased by dominant classes,
usually the less relevant background class [15,42]. To avoid unreliable results in unbalanced
datasets, there are other metrics that evaluate classes separately, such as precision and
recall, as shown in Table 1.

The precision metric is the ratio of true positives and the total positives. If the precision
value is equal to “1”, it means that the classifier correctly predicts all true positives and is
able to correctly classify between correct and incorrect labeling classes. The recall metric
analyzes the true positive (TP) rate to all the positives. A low recall value means that
the classifier has a high number of false negatives. Finally, F-measure deals with a score
resulting from the combination of precision and recall values to provide a generic value
that represents these two metrics. High F-measure values imply both high precision and
high recall. It gives a balance between precision and recall, which is suitable to imbalanced
classification problems, including HAR.

Table 1. Summarization of accuracy, recall, precision and F-measure. TP means true positives, TN
true negatives, FP false positives and FN means false negatives.

Metric Equation Description

Accuracy TP+TN
TP+TN+FP+FN Accuracy is the ratio of correct predictions divided by

the total predictions.
Precision TP

TP+FP Precision is the ratio of true positives and total positives
predicted.

Recall TP
TP+FN Recall is the ratio of true positives to all the positives in

ground truth.
F Measure 2 × Precision×Recall

Precision+Recall The F-measure is the harmonic mean of Precision and
Recall.

Different from most works that comprise all ARP stages, our focus in this article
relies on the evaluation process and validation methodologies. By looking deep into the
evaluation stage, we aim to understand how human activity recognition models achieve
their results according to validation methodology.

3. Related Works

Many works in the literature alert researchers to the correct assessment of activity
recognition models and, although this problem is widely known, it is often overlooked.
Hammerla and Plötz [43] found inappropriate use of k-CV by almost half of the retrieved
studies in a systematic literature review that used accelerometers, wearable sensors or
smartphones to predict clinical outcomes, showing that record-wise (segmentation over
the same user data) cross-validation often overestimates the prediction accuracy. Nev-
ertheless, HAR system designers often either ignore these factors or even neglect their
importance. Widhalm et al. [22] also has pointed unnoticed over-fitting because of autocor-
relation (i.e., dependencies between temporally close samples). Hammerla and Plötz [43]
showed that the adjacent overlapping frames probably record the same activity in the same
context and, therefore, they share the same information. These adjacent segments are not
statistically independent.
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Dehghani et al. [29] extend the work of Banos et al. [44] by investigating the im-
pact of Subject Cross-Validation (Subject CV) on HAR, both with overlapping and with
non-overlapping sliding windows. The results show that k-CV increases the classifier
performance by about 10%, and even by 16% when overlapping windows are used.
Bulling et al. [15] provide an educational example, demonstrating how different design
decisions in the HAR applications impact the overall recognition performance.

Gholamiangonabadi et al. [45] examine how well different machine learning archi-
tectures make generalizations based on a new subject(s) by using Leave-One-Subject-Out
(LOSO) in six deep neural networks architectures. Results show that accuracy improves
from 85.1% when evaluated with LOSO to 99.85% when evaluated with the traditional
10-fold cross-validation.

In contrast to the reviewed works related that deal with validation methodologies,
our study examines bias problems that overestimate the predictive accuracy of a machine
learning algorithm using graphical insights obtained from SHAP framework to under-
stand how human activity recognition models achieve their results according to validation
methodology. While there are works that make use of explainable methods in HAR con-
text [9,33,46,47], most of the methods for explainability focus on interpreting and making
the entire process of building an AI system transparent. The finds focused on validation
methodology are important because it allows us to see which features are relevant to a HAR
system in each validation method. We examine how different HAR systems approaches
make generalizations based on a new subject(s) by using k-fold cross-validation, holdout
and leave-one-subject-out cross-validation.

4. Evaluation Procedures

A common practice for computing a performance metric (e.g., accuracy), when per-
forming a supervised machine learning experiment, is to hold aside part of the data to be
used as a test set [16]. Splitting data into training and test sets can be done using various
methods, such as hold-out, k-fold cross-validation (k-CV), leave-one-out cross-validation
(LOOCV) and leave-one-subject-out (LOSO). Then, the classifier is trained on the training
set, while its accuracy is measured on the test set. Thus, the test set is seen as new data never
seen by the model before [16]. We briefly explained these methods in the following sections.

4.1. Hold-Out

The hold-out is the simplest form of splitting data and relies on a single split of
the dataset into two mutually exclusive subsets called training set and a test set [16,42].
A common dataset split uses 70% or 80% for training and 30% or 20% for testing. The
advantage of this method is the lower computational load. The hold-out is a pessimistic
estimator because the classifier is trained only with part of the samples. If more data is left
for the test, the bias of the classifier will be higher, but if only a few samples are used for the
test, then the confidence interval for accuracy will be wider [42]. It has lower computational
costs because it needs to run once but if the data are split again, the results of the model
probably will change. This means that the accuracy depends on the subject(s) selected for
the evaluation [45].

4.2. K-fold Cross-Validation (k-CV)

The k-CV consists of averaging several hold-out estimators corresponding to different
data splits [16,37,40]. This procedure randomly divides the dataset (from one subject or all
subjects) into k disjoint folds with approximately equal size, and each fold is in turn used
to test the classification model induced from the remaining k − 1 folds. Then, the overall
performance is computed as the average of the k accuracies resulting from k-CV [40,42].
The disadvantage of using this strategy is its computational cost when the values of k
are relatively high for large samples. In addition, no single cross validation procedure is
universally better but it should focus on the particular settings [16].
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4.3. Leave-One-Subject-Out Cross-Validation (LOSO)

The LOSO (Leave-One-Subject-Out Cross-Validation) strategy aims at finding out
whether a model trained on a group of subjects generalizes well to new, unseen subjects. It
is a variant of the k-fold cross-validation approach but with folds consisting of a subject [45].
To measure this, we have to ensure that all of the samples in the test fold come from subjects
that are not represented at all in the paired training fold.

The LOSO strategy uses a subset of size p for testing and n − p for training, where p
keeps all of the samples from a single subject together. This procedure ensures that the
same subject is not represented in both testing and training sets at the same time. This
configuration allows evaluating the generalization of the model based on data from new
subjects; otherwise, if the model learns person-specific features, it may fail to generalize to
new subjects.

When the number of subjects in a dataset is small, it is common to adopt LOSO to
evaluate the performance of a classification algorithm. The LOSO is an extreme case of
k-CV, where the number of folds is equal to the number of subjects on the dataset. It has a
high variability as only one subject is used as the validation set to test the model prediction.
This exhaustive procedure should be used when the random partition in k-CV has a large
impact on performance evaluation [40,42].

4.4. Types for HAR Systems

The main goal of machine learning algorithms is to develop models that work not
only on the specific dataset for which they were trained but also on new and unseen data.
However, what does new data mean in human activity recognition problems? To answer
this question, we need to know the purpose for which the algorithm is being developed. If
we developed specifically for one subject, new data means new samples, or records, from
the same subject. This falls into the category of personal systems. However, if the goal is to
develop universal systems that can classify activities from a new subject, new data means
new subjects.

Each type of HAR system addresses a slightly different learning problem and makes
different assumptions about how the learning algorithm is applied [45,48]. There are three
types of HAR systems [45,49,50], as shown in Figure 2: Universal or generalized, personal
or personalized and hybrid.

Train Test

Universal (LOSO) Personal (k-CV)

Train TestTest Train Test

Hybrid (k-CV)

Train Test

(a) (b) (c)

Figure 2. Visualization of each procedure used to build the model types for HAR systems. To build
universal models, the LOSO procedure (a) separates train and test by subjects. For personalized
models (b), the k-CV is used with samples of only one subject. Finally, for hybrid models (c), the k-CV
is also used, but in this case, for a group of subjects, data are split by samples into the training and
test set.

Universal systems must be capable of generalizing patterns of any subject. The
most common validation procedure used in this context is the leave-one-subject-out cross-
validation (LOSO) [45,51]. The LOSO considers the subject information when splitting the
training and test set. This information is useful for preventing data from the same subject
being present in both sets, as shown in Figure 2a.

Personalized systems aim at creating models that are experts in recognizing patterns
from the same subject. This is called personalized validation [8,34,49,50,52]. In personalized
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systems, the selected machine learning algorithm is trained and tested with data from only
one subject. Thus, the samples from this subject are divided between training and testing,
as shown in Figure 2b.

Most studies in HAR use hybrid systems to validate the model performance with
k-CV as validation methodology. It is hybrid because all sample data from over one subject
are mixed and data from the same subject can be in the training and test sets, as shown in
Figure 2c [25].

Each system has a specialization and this determines how training and test data
are partitioned for evaluation. The next section presents a discussion about the correct
evaluation that systems designers should consider in each model type.

5. A Fair Evaluation for Human Activity Recognition Systems

Most machine learning algorithms need Independent and Identically Distributed
(i.i.d.) data [40]. If the recruitment process used is i.i.d., the subjects will be a representative
sample of the overall population. Otherwise, if the i.i.d. is not assured, such as recording
activities in which several samples are collected from each subject, the sampling process
might generate groups of dependent samples. Therefore, k-CV is not a good procedure for
validating universal models because of the temporal dependency among samples from the
same subject. This means that the model trained using k-CV procedure knows the activity
patterns of a specific subject, shared in both training and test sets. This situation may lead a
model to learn a biased solution, where the machine learning algorithm can find a strong
association between unique features of a subject (e.g., walking speed), artificially increasing
its accuracy on the test set [20,45]. It explains why some systems report high accuracies.

To minimize the problem of weak generalization, the data should be adequate for a fair
validation procedure according to the application purpose. This means that the application
of the k-CV to new samples or new subjects does not measure the same thing and it should
be determined by the application scenario, not by the statistics of the data. For instance, if
the generative process has some kind of group structure, such as samples collected from
different subjects, experiments or measurement devices, it is more appropriate to use cross-
validation by subject or by a group. In this procedure, the preservation of independence
means that full subjects’ information must be left out for CV. For applications that aim at a
personalized classification model, the traditional k-CV is an acceptable procedure.

6. Explainable Algorithms for Creating Fairer Systems

Explaining the decisions made by a machine learning model is extremely important
in many applications. Explainable models can provide valuable information on how to
improve them and also help to better understand the problem and the information provided
by the input variables [53].

Identifying issues like biased data could allow systems design to select sensitive at-
tributes that they want to focus their evaluations on. This is a key feature for explainability
that has a clear purpose for evaluating fairness, as well as in non-fairness-related expla-
nations where certain features should be weighed more or less heavily in class selection
than others. Mitigating the bias and unfairness within the training data is a necessity, both
out of ethical duty and because of the impact that perceived inaccuracies have on user
trust [54–56].

More recently, XAI methods have been proposed to help interpret the predictions
of machine learning models, as example, LIME [57], Deep Lift [58] and SHAP [59]. XAI
methods have been used in HAR context to understand the rationale behind the predictions
of the classifier [9,33,46,47]. In this work, we choose a unified framework for interpreting
model predictions, called SHAP (Shapley additive explanations), to explain graphically
and intuitively the results of different validation methodologies used in HAR systems.

The SHAP (Shapley additive explanations) [59] is based on a game-theoretic approach
extensively used in literature to explain the predictions of any machine learning model.
The Shapley values acted as a unified measure of feature importance. It aims to explain the
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prediction of an instance x by computing the contribution of each feature to the prediction.
In summary, the Shapley values give each feature a score that is distributed across the
features of that instance.

The Algorithm 1 shows the pseudo-code to approximate Shapley estimation for single
feature value [60]. First, select an instance of interest x, a feature j and the number of
iterations M. For each iteration, a random instance z is selected from the data and a random
order of the features is generated. Two new instances are created by combining values
from the instance of interest x and the sample z. The instance x+j is the instance of interest,
but all values in the order after feature j are replaced by feature values from the sample z.
The instance x−j is the same as x+j, but in addition has feature j replaced by the value for
feature j from the sample z. The difference in the prediction from the black box is computed
by φm

j = f̂ (xm
+j)− f̂ (xm

−j) and all differences are averaged, resulting in φj(x) = 1
M ∑M

m=1 φm
j .

Averaging implicitly weighs samples by the probability distribution of X. The procedure
has to be repeated for each of the features to get all Shapley values.

Algorithm 1 SHAP basic algorithm

1: Required: M: Number of interactions; x: Instance of interest; j: Features index; X: Data
matrix; f: Machine learning model.

2: procedure SHAP(M, x, j, X, f )
3: for m=1 in M do
4: Draw random instance z from the data matrix X
5: Choose a random permutation o of the feature values
6: Order instance x: x0 = (x(1), ..., x(j), ..., x(p))

7: Order instance z: z0 = (z(1), ..., z(j), ..., z(p))
8: Construct two new instances
9: Compute marginal contribution φm

j = f̂ (x+j)− f̂ (x−j)

10: end for
11: Compute Shapley value as the average φj(x) = 1

M ∑M
m=1 φm

j
12: end procedure

The Shapley values can be combined into global explanations [59,60] by running SHAP
algorithm for every instance to obtain a matrix of Shapley values, one row per data instance
and one column per feature. We can interpret the entire model by analyzing the Shapley
values in this matrix. The idea behind SHAP feature importance is simple: Features with
large absolute Shapley values are important. Since we want the global importance, we
average the absolute Shapley values per feature across the data.

In this sense, SHAP framework can understand the decision-making of a classification
model globally by summarizing how a model generates its outputs. Global explanations
are beneficial as they might reveal biases and help diagnose model problems [61]. They can
also explain model predictions at the instance level once each observation gets its own set
of SHAP values. This greatly increases its transparency.

We have used a specific method for local explanations of tree-based models, called
TreeExplainer [59,62], which provides fast and accurate results by calculating the SHAP
values for each leaf of a tree.

7. Experimental Protocol

This section describes the experimental protocol, considering four evaluation scenarios.
We detail the datasets used in this study, the baselines that are built with time and frequency
domain features and the performance metrics.

7.1. Datasets

The physical activity data used in this work were obtained from three publicly avail-
able datasets: SHOAIB (SH) [2], WISDM [25] and UCI [26]. Table 2 presets a summarization
of the datasets used in our study [11].
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Table 2. Summarization of SHOAIB (SH) [2], WISDM [25] and UCI [26] datasets. Items marked with
(*) were not used in the experiment.

Dataset SHOAIB SH WISDM UCI

Individuals 10 19 (36) 30

Hz 50 20 50

Segment length 2.5 sec 2.5 sec 2.5 sec

Sensors
Accelerometer,
Gyroscope *,

Magnetometer *
Accelerometer Accelerometer,

Gyroscope *

Location Belt, Left Pocket, Right Pocket,
Upper Arm, Wrist Belt Belt

Activities used

Walking,
Running,
Sitting,

Standing,
Walking Upstairs,

Walking Downstairs,
Jogging *,
Biking *

Walking,
Jogging,
Sitting

Standing,
Walking Upstairs,

Walking Downstairs

Walking,
Lying Down,

Sitting,
Standing,

Walking Upstairs,
Walking Downstairs

In our experiments, we use only accelerometer data. For the WISDM dataset, we chose
users who performed all activities, totaling 19 individuals. For the SHOAIB dataset, we
selected the six most similar activities with WISDM and UCI datasets, so that all datasets
had the same number of classes to compare results. We removed the Jogging and biking
activities from our experiments because of this. The SHOAIB dataset contains data collected
from five different body positions merged to run our experiments. Moreover, SHOAIB is
balanced and should represent a fairer evaluation. This means a reduction in bias caused
both by individuals with more activity or unbalanced class labels.

7.2. Baselines

The baselines are shallow approaches based on traditional machine learning algo-
rithms such as Random Forest (RF), Naive Bayes (NB), K-Neighbors (KNN) with k = 1 and
Simple Logistic (SL). We trained each algorithm with a set of handcraft features extracted
from the time and frequency domain. Table 3 presents a list of mathematical functions used
for creating the features used by the baselines [7,11,27]. The experiments were executed in
the WEKA library (Waikato Environment for Knowledge Analysis) [63].

While we know the benefits of using complex models, especially in dealing with large
masses of data, in our HAR context, we are adopting simple models, such as random
forest, mainly because of speed, good performance and easy interpretation. Our focus is
not on evaluating the best model for recognizing human activities but discovering bias
problems that overestimate the predictive accuracy because of an inappropriate choice of
validation methodology.

Table 3. List of all features used in the experiments with the baseline classifiers.

Domain Features

Time

min, max, amplitude, amplitude peak, sum, absolute sum,
Euclidian norm, mean, absolute mean, mean square,
mean absolute deviation, sum square error, variance,
standard deviation, Pearson coefficient, zero crossing rate,
correlation, cross-correlation, auto-correlation, skewness,
kurtosis, area, absolute area, signal magnitude mean,
absolute signal magnitude mean, magnitude difference function.

Frequency Energy, energy normalized, power, centroid, entropy,
DC component, peak, coefficient sum.
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7.3. Evaluation Scenarios

The experiments are based on the three model types commonly found in literature:
Personalized, universal and hybrid.

1. Universal model: This scenario evaluates the model’s generalization capacity using
LOSO. We separated the data set in training and testing and there is a guarantee that
these two sets are not mixed.

2. Personalized model: This scenario evaluates the model personalization capacity
using k-CV. We partition the data from a single subject into two sets of samples. The
validation process is based on 10-CV.

3. Hybrid model: This scenario evaluates a hybrid model that combines all subject data
from the universal model using the validation process of the personal model.

In addition, we use SHAP explanation method to understand how machine learning
models tend to select different features based on the validation methodology. For this
experiment, we have used UCI dataset with a 561-feature vector with time and frequency
domain variables [26] using holdout and cross-validation to analyze how model select
different features to make its predictions. We select the Random forest algorithm to conduct
this experiment. In Section 8.1 we also provide explanations of individual predictions using
shap values based on subject number 9 of UCI dataset.

7.4. Performance Metrics

To measure the performance metrics of universal, hybrid and personal models, we
use standard metrics such as accuracy, precision, recall and F-measure (or F-Score) [1,45]
obtained from confusion matrix analysis. We used other metrics, besides accuracy, since it
alone may not be the most reliable way to measure the actual performance of a classification
algorithm, mainly because class imbalance can influence the results. Our research employs
the metrics summarized in Table 1 (Section 2).

8. Results

This section presents a comparative analysis of different validation procedures based
on the machine learning results and the interpretable methods. We divide results into four
different setups. First, we deal with the validation of personalized models. Second, we deal
with the valuation of universal models. The third scenario deals with the validation of a
hybrid model. The performance results of five classifiers are presented using accuracy as
the main metric for universal models (Figure 3), personalized models (Figure 4) and hybrid
models (Figure 5). Finally, we present the insights based on Shapley values that give us an
alternative manner to analyze and understand results.

The results presented in Figures 3–5 show that, for all classification algorithms, the
personal models perform very well, the hybrid models perform similarly and the universal
models have the worst performance. The main reason for this result is that different people
may move differently and universal models cannot effectively distinguish between some
activities which are highly related to the respective user and, consequently, it will have
low performance on classification and a high confidence interval because of the variance in
the population.

The hybrid models have performed much closer to personal models. Most HAR
studies use cross-validation (k-CV) to evaluate and compare algorithms’ performance. The
mixture between the train and test sets results in a classification model that already knows
part of its test set. In other words, the model trained using the k-CV can associate activity
patterns of a specific subject on both train and test sets. The result of this process is the
creation of models with higher classification accuracy. However, they do not reflect reality.
If we insert new subjects into the domain, the model will have difficulties recognizing them.
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Figure 3. Accuracy results based on universal model for the classifiers 1-NN, Naive Bayes, Random
Forest and Simple Logistic.

Figure 4. Accuracy results based on personalized model for the classifiers 1-NN, Naive Bayes,
Random Forest and Simple Logistic.

Figure 5. Accuracy results based on hybrid model for the classifiers 1-NN, Naive Bayes, Random
Forest and Simple Logistic.

Tables 4 and 5 analyze the performance of the best model (random forest) on individual
subjects for universal and personalized scenarios using SHOAIB dataset. In Table 4 the
rows for subjects 1 to 10 represent the folds of the subject cross-validation. For subject 1
row, the model is trained using subjects 2–10 and evaluated on subject 1 and so on. In
Table 5 the rows represent subjects 1 to 10. For subject 1 row, the model is trained using
only data of subject 1, subject 2 using data of subject 2 and so on.
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As can be observed in Table 4 the accuracy of the same model varies greatly among
subjects as opposed to k-CV used in the personalized model (Table 5) in order to capture
variability among subjects. Moreover, the standard deviation is higher for the universal
model than for the personalized model. This shows that if a single generic model will be
used for all users, the standard deviation should be considered when selecting the model.

The Figure 6 allows us to compare the universal model (LOSO) and personal model
(k-CV) using the Random Forest algorithm. As it can be noticed from the confusion matrix,
most of classes are correctly classified with very high accuracy. However, the universal
model has difficulty in differentiating the walking class from upstairs and downstairs
classes. This is expected as these three are very similar activities so the underlying data
may not be sufficient to accurately different them. For stationary classes, such as standing
and sitting, the misclassification is very low, demonstrating that distinction between those
classes generalizes well for new subjects.

Table 4. Random Forest results for universal model in SHOAIB dataset.

Universal

User Accuracy TP Rate FP Rate Precision Recall F-Measure
1 84.954 0.850 0.030 0.861 0.850 0.846
2 90.000 0.900 0.020 0.921 0.900 0.900
3 81.759 0.818 0.036 0.837 0.818 0.808
4 84.815 0.848 0.030 0.864 0.848 0.844
5 84.583 0.846 0.031 0.862 0.846 0.847
6 81.019 0.810 0.038 0.812 0.810 0.809
7 85.694 0.857 0.029 0.859 0.857 0.856
8 89.676 0.897 0.021 0.913 0.897 0.894
9 75.417 0.754 0.049 0.800 0.754 0.736

10 83.241 0.832 0.034 0.869 0.832 0.834

Mean 84.116 0.841 0.032 0.860 0.841 0.837
Std. Dev. 4.013 0.040 0.008 0.036 0.040 0.044

Table 5. Random Forest results for personalized model in SHOAIB dataset.

Personalized

User Accuracy TP Rate FP Rate Precision Recall F-Measure
1 97.546 0.975 0.005 0.976 0.975 0.976
2 99.537 0.995 0.001 0.995 0.995 0.995
3 98.056 0.981 0.004 0.981 0.981 0.981
4 99.259 0.993 0.001 0.993 0.993 0.993
5 97.315 0.973 0.005 0.973 0.973 0.973
6 96.759 0.968 0.006 0.968 0.968 0.968
7 97.269 0.973 0.005 0.973 0.973 0.973
8 98.380 0.984 0.003 0.984 0.984 0.984
9 97.500 0.975 0.005 0.975 0.975 0.975

10 98.380 0.984 0.003 0.984 0.984 0.984

Mean 98.000 0.980 0.004 0.980 0.980 0.980
Std. Dev. 0.851 0.008 0.002 0.008 0.008 0.008
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Figure 6. Confusion matrix of Random Forest algorithm results for universal model and personal
model using the SHOAIB dataset. (a) Universal model. (b) Personalized model.

For methods whose goal is to generate a custom classification model, such as a per-
sonalized or hybrid model, k-CV will work very well. However, it may not be a good
validation procedure for universal models. These results have shown the importance of a
careful analysis of these different scenarios.

8.1. Global Explanations Using Shap Values

In this section, we showed through a summary plot [59,60] how validation method-
ologies affect feature importance and also discuss strategies to avoid potential issues in
pre-processing data.

The summary plot combines feature importance with feature effects, considering the
absolute average Shapley values along with all the classes. With a multi-classification
problem, it shows the impact of each feature considering the different classes. The position
on the y-axis is determined by the feature and on the x-axis by the Shapley value.

Figures 7 and 8 show that there are changes in the features that each model chose based
on the validation methodology. This slightly different importance that the classification
model gives for features when using different validations methodology causes a great boost
in performance for cross-validation. Moreover, the CV has 17 features in common with
holdout, a difference of 15%.

Given a feature, we also extract the importance proportion for each class. The results
also show that the importance that each feature assigns to the classes is different according
to the adopted methodology. By analyzing the contribution of each class for each feature, for
example, Feature 53 (related with accelerometer gravity in x-axis) has a greater contribution
to the class "walking upstairs" in the holdout methodology while it contributes more to the
class “laying” when using the CV. Similar results can be observed in features 97, 57, 41 and
many others.

When using cross-validation, the classifier already knows the individual attributes
because its data can be shared in training and testing. Knowing the individual’s pattern,
the classifier can choose features that best suit the individual’s behavior. Models trained
using different training and test sets are more realistic because they reflect the approximate
performance of what would happen in the real world, and thus it is possible to choose
classifiers that select more generic features that better represent the population or group
of individuals.
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Figure 7. Summary plot for SHAP analysis using holdout methodology on UCI dataset. It shows the
mean absolute SHAP value of 20 most important features for six activities.
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Figure 8. Summary plot for SHAP analysis using cross-validation on UCI dataset. It shows the mean
absolute SHAP value of 20 most important features for six activities.

While the results presented are promising, in many situations, it is not trivial to find
meanings in statistical features extracted from inertial sensors in HAR. However, our results
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show that the adopted methodology can significantly influence the selection of features to
overestimate the results, not being appropriate for real-world applications.

8.2. Explaining Individual Predictions

In this section, we give a closer look at individual predictions to understand how
validation influences at instance level. For this purpose, we present results based on shap
force plot [60,64]. The force plot shows shap values contributions in generating the final
prediction using an additive force layout. We can visualize feature attributions as “forces”.
The prediction starts from the baseline. The baseline for Shapley values is the average of
all predictions. In the plot, each Shapley value is an arrow that pushes to increase with
positive value (red) or decrease with negative value (blue) the prediction. These forces
balance each other out at the actual prediction of the data instance.

We used data from subject 9 from the UCI database to conduct this experiment. For
the walking activity, the model obtains high accuracy for cross-validation methodology.
These results are expected and also confirm the results presented earlier in this section. For
both methodologies, the top five features that contribute negatively to model prediction
are the same. In addition, the model tends to give more importance to a set of different
features according to the chosen methodology.

As shown in Figure 9b, half of the features (50%), if we look at the top 10 most
important, are different for holdout and cross-validation. Feature number 70, based on the
accelerometer, is ranked as one of the most important for the walking class. Features such
as 393 and 508 are ranked as important when using holdout but do not appear in cross-
validation. The cross-validation has features such as number 57, based on the accelerometer
energy, which is top-rated by the model.

For non-stationary activities, such as walking and walking upstairs (Figure 10), the
model shows a greater difference in prediction performance when compared to non-
stationary activities. The model accuracy can achieve up to 10% higher when the cross-
validation methodology is used. Moreover, the model can pick up to 50% different features
to predict user activity when using each methodology.

Figure 10 show that the difference in the model accuracy can achieve up to 10%,
showing that the classifier can overestimate the results when he knows patterns of an
individual, choosing the features that best represent him. These results for the upstairs
activity are similar to the walking activity. For the top 10 features, up to 50% can be
different for holdout and cross-validation. Features like 71 are marked as relevant when
using holdout for walking upstairs class, but they don’t even appear in cross-validation.

Figures 11 and 12 showed that for stationary activities (e.g., stand activity) the model
presents a similar performance in terms of accuracy in both methodologies, CV and holdout.
However, there are differences between the selected features for decision making. For
standing class, features such as 439 are marked as important when using cross-validation,
but they do not appear in holdout (top 10).
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(a) Cross-validation

(b) Holdout

Figure 9. Walk activity for cross-validation (a) and holdout (b) validation methodology.

(a) Cross-validation

(b) Holdout

Figure 10. Walking upstairs activity for cross-validation (a) and holdout (b) validation methodology.
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(a) Cross-validation

(b) Holdout

Figure 11. Standing activity for cross-validation (a) and holdout (b) validation methodology.

(a) Cross-validation

(b) Holdout

Figure 12. Sitting activity for cross-validation (a) and holdout (b) validation methodology.

We can observe in these studies that, when analyzing the predictions individually for
a given class, the classifier can change the order of importance between the features, but we
perceive these changes more drastically when holdout and cross-validation are compared.
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9. Conclusions

In this paper, we present and discuss in detail the importance of a proper evaluation
during the design and assessment of a HAR system with inertial sensors. We have con-
ducted several experiments intending to exemplify the overall impact of the evaluation
procedures on accuracy and fairness. We also illustrate how these procedures can be set
up, showing how to reduce the accuracy overestimation. For this task, the tests were per-
formed in three datasets (UCI-HAR, SHOAIB and WISDM) using k-fold cross-validation
and leave-one-subject-out validation procedures. The main conclusions drawn from these
results are summarized below.

The models that use k-CV in the data achieved 98% of accuracy. However, when
considering individual information (i.e., the label associated to the subject), the accuracy
achieves 85.37% in the best scenario. There is a 12% loss of accuracy when choosing a better
evaluation method, that is, the initial result was overestimated by 12%.

The universal model performs poorly in the test phase and also has greater margins of
error when compared with personalized models. This shows that the model will struggle to
recognize new subjects. In general, the model may perform well in the training phase, but
it has a degraded performance in the test set that leads to overfitting. To build a universal
model, traditional k-CV is not the best solution. For this scenario, the recommended
validation procedure would be LOSO or even Holdout when in scenarios were implement
LOSO has a significant impact on training.

In personalized models, there is no problem if k-CV is used as a validation procedure
since, for this type of application, the algorithm should aim at a model that fits the user.
In this scenario, the classification algorithms have higher accuracy since the classification
model was trained with instances that are very similar to those found in the test set. The
very high accuracy values inductee that this is a suitable model for evaluating a customized
application for a specific user. Besides, personal models can be trained with dramatically
less data.

The hybrid model is used in many related works but they are not very suitable for
real-world situations. Most of the commercial HAR applications have preferences for
universal or personalized models. The results obtained from this model also present higher
accuracy in the classification because some segments that belong to the same subject may
be present in both the test set and training set, leading to an overoptimistic result. Again,
this does not reflect the true accuracy.

We have shown how the SHAP framework presents itself as a tool that can provide
graphical insights into how human activity recognition models manage to achieve their
results. Our work has presented manners that can be explored by using explainable
algorithms to improve the transparency of creating machine learning models. The SHAP
results reinforce that the incorrect choice of validation methodology leads to changes in
how attributes are used by models to improve their performance. This situation may cause
poor prediction performance and can lead to unreliable results.

Our evaluations also reveal that while current XAI tools provide important functions
for data and model analysis, they are still lacking when it comes to analyzing results
in scenarios where it is not trivial to find meanings in statistical features extracted from
sensors data.
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ADL Activity Daily Living
ARP Activity Recognition Process
CNN Convolutional Neural Networks
DL Deep Learning
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k-CV k-fold Cross-Validation
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Abstract: In recent years, research on human psychological stress using wearable devices has gradu-
ally attracted attention. However, the physical and psychological differences among individuals and
the high cost of data collection are the main challenges for further research on this problem. In this
work, our aim is to build a model to detect subjects’ psychological stress in different states through
electrocardiogram (ECG) signals. Therefore, we design a VR high-altitude experiment to induce
psychological stress for the subject to obtain the ECG signal dataset. In the experiment, participants
wear smart ECG T-shirts with embedded sensors to complete different tasks so as to record their
ECG signals synchronously. Considering the temporal continuity of individual psychological stress,
a deep, gated recurrent unit (GRU) neural network is developed to capture the mapping relationship
between subjects’ ECG signals and stress in different states through heart rate variability features at
different moments, so as to build a neural network model from the ECG signal to psychological stress
detection. The experimental results show that compared with all comparison methods, our method
has the best classification performance on the four stress states of resting, VR scene adaptation, VR
task and recovery, and it can be a remote stress monitoring solution for some special industries.

Keywords: psychological stress; electrocardiogram; heart rate variability; gated recurrent unit; VR
high-altitude experiment; wearable devices

1. Introduction

When one’s ability cannot match the requirements of the external environment, psy-
chological stress will appear, such as too difficult a work task or too heavy a financial
burden [1]. In fact, we all live under stress, and moderate stress can keep us competitive.
However, chronically living under high stress will increase the risk of physical and psy-
chological disease [2], including severe cardiac arrhythmias, high blood pressure, stroke,
gastric ulcers, cancer and depression [3,4]. If people could get their stress situation in
a low-cost and convenient way and manage it appropriately, it would not only reduce
people’s risk of disease but also improve people’s efficiency, creativity and security at work,
especially for special industry practitioners, such as military personnel, pilots, firefighters
and high-speed rail drivers. Therefore, it is of great value and of social significance to
develop a non-invasive stress estimation system to monitor people’s stress changes in their
daily work.

At present, the main basis for psychological stress assessment includes social media
information and physiological signals. For the former, it is easy to understand that peo-
ple’s psychological stress can be roughly estimated by multimodal fusion and analysis of
information such as texts, images, and videos posted on social media, and many methods
have been proposed in this research direction [5,6]. Further, it is easier for people to obtain
social media data than physiological signals. However, the accuracy of its stress assessment
depends on how active users are on social media, and it seems difficult to make accurate
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stress assessments for users who are less active on social media. In addition, because of
psychological defense mechanisms, people are likely to deliberately disguise their real
stress situations in their behavioral performance. Compared with social media data, phys-
iological signals can provide more objective and reliable information for psychological
stress assessment [7]. Physiological signals used for stress assessment mainly include
electroencephalogram (EEG), electrodermal activity (EDA), photoplethysmographic (PPG)
and electrocardiogram (ECG). Although EEG can provide useful information for psycholog-
ical stress analysis with high temporal resolution [8], the wearing process of its collection
equipment is cumbersome and requires the help of professionals. Moreover, the EEG signal
is easily disturbed by movements during the collection process. Therefore, EEG is not
suitable for daily monitoring of human psychological stress. Compared with EEG, the
acquisition equipment for PPG and EDA is portable, and the acquisition process is simple.
However, after being interfered with by body movements, the signal is prone to a large
degree of distortion, which will increase the difficulty of subsequent feature extraction and
analysis. ECG offers advantages over PPG in terms of stability and reliability and is by
far the most widely used cardiac monitoring method in healthcare. In recent years, with
the development of wearable devices, many wearable ECG devices with both comfort and
anti-interference have been developed, including vests, bracelets and chest belts [9–11].
The development of these non-invasive ECG devices is the basis for research on the daily
monitoring of people’s psychological stress. Wearable physiological parameter monitoring
equipment has also been widely used in the field of human action recognition, which has
some implications for our research [12–15].

Compared with psychological stress detection methods based on scales or social media
data, the use of wearable devices to collect ECG signals and detect psychological stress
obviously has more advantages in real-time and flexibility of usage scenarios. In practical
applications, we can use this solution to monitor the psychological stress state of police,
firefighters, pilots and other special industry workers during the execution of tasks in
real-time and even give real-time psychological intervention at the right time to relieve
their anxiety. This not only can improve their work efficiency but also probably play an
important role in keeping them safe. In addition, this solution can also be used in the
recruitment and selection of workers in special industries.

When changes in the external environment make people feel tense or anxious, it
will also cause a physiological response in the body. At this time, the parasympathetic
branch of the human autonomic nervous system (ANS) is temporarily suppressed, and
the sympathetic branch is activated, which causes a rapid increase in heart rate, cardiac
contractility, blood pressure and respiration, and promotes hormone release [16]. It puts
the body in a state of hyperactivity to cope with the upcoming challenge. The changes
in the ANS associated with psychological stress can be obtained by recording the ECG
signal of the subject. Specifically, these ANS changes can be obtained by HRV (Heart Rate
Variability) analysis [17].

In this field, previous studies have mostly used classical machine learning methods to
detect psychological stress through HRV features, namely, binary classification of stressed
and unstressed [18–24]. First of all, such a binary classification is not completely consistent
with people’s stress experience in real life, and it is more and more necessary to study the
evaluation methods of human stress in different states. Secondly, deep learning methods
have achieved good results in many fields, such as image recognition, natural language
processing and signal processing, so the powerful representation ability of deep learning
methods can achieve good results in the multi-classification of psychological stress is
a problem worth studying. Furthermore, the generation of psychological stress is not
instantaneous, and whether its temporal features can be used to improve the accuracy of
psychological stress classification is also an interesting problem.

To this end, in this paper, we introduce an ECG dataset collected under four stress
states and propose to introduce the concept of time series into psychological stress as-
sessment in order to improve the classification accuracy. Specifically, by constructing a
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continuous HRV time series, we use a multi-layer GRU network to extract multi-level
features related to psychological stress and finally obtain the results through a classification
network composed of multi-layer perceptrons. The contributions of this paper are mainly
in two aspects. The first is that we propose the concept of time series in the classification of
psychological stress states and introduce a recurrent neural network into the classification
of psychological stress to obtain the representation of psychological stress in continuous
HRV sequences to improve the classification accuracy. The second is that we conducted a
psychological stress data collection experiment with 80 participants, designed and devel-
oped a stress-induced VR high-altitude scene and collected ECG signals from the subjects
during four stress states, including resting, VR scene adaptation, VR high-altitude task
and recovery. The purpose is to construct a dataset that can be used to study the mapping
relationship between ECG signals and psychological stress in various states. After data
cleaning and elimination, this dataset finally contains the ECG data and corresponding
status labels of 63 subjects.

2. Related Works

Compared with the subjective scales used in the past, psychological stress assessment
based on physiological signals has advantages in objectivity and reliability. In the field of
psychological stress or emotion estimation based on physiological signals, many methods
have been proposed, and some scholars have put forward their insights and analysis on
the relationship between physiological signals and psychological stress.

Classical machine learning methods are widely used to classify psychological stress
or emotions. Ref. [18] uses Principal Component Analysis (PCA) to verify the HRV time
domain, frequency domain and statistical features and then classify two emotions and
five emotions by Support Vector Machines. Ref. [21] selects robust HRV features through
the mRMR method, reduces the differences in physiological parameters between individ-
uals through baseline data to improve the classification accuracy, and finally, classifies
psychological stress in relaxation and task states through a variety of machine learning
methods. In the study of driver stress detection, ref. [25] proposes the use of an enhanced
random forest classifier to monitor driver stress by combining ECG waveform features and
HRV features. Ref. [23] tries to use various machine learning algorithms, including KNN
and multi-layer perceptron (MLP), to classify the psychology stress level using the HRV
obtained from the ECG signal, and achieved good classification results through the MLP
method. Ref. [26] uses the multi-scale analysis method to evaluate the stress of pilots flying
at night by fusing the area of the heart rate curve and constructing the functional relation-
ship between the stress intensity and the training frequency, which effectively improved
the effect of high-altitude training. Some researchers use genetic algorithm, artificial bee
colony algorithm and improved particle optimization algorithm to optimize multi-kernel
support vector machine, which improves the accuracy of stress detection [22].

At the same time, there are also studies that use biochemical indicators as a reference in
the experiment and apply a variety of physiological signals to the detection of psychological
stress. Ref. [27] proves that some indicators of HRV (e.g., HF, LF) have a strong correlation
with some features of the EEG signal (e.g., LAPFpl) for stress estimation by analyzing
the linear correlation between the HRV features of the ECG signal and the EEG signal
features. Based on the above study, the authors propose that combining EEG with HRV
can improve the accuracy of psychological stress detection. Ref. [19] develops a wearable
multiphysiological parameter system to measure human stress and collect salivary cortisol
as a reference. Specifically, the MAST (Maastricht Acute Stress Test) experiment is used
to induce the generation of psychological stress, PCA and statistical methods are used
to select and reduce the dimensionality of the features extracted from the recorded ECG,
EDA and EEG signals, and finally, the SVM is used to classify psychological stress during
the experimental period and the relaxation period. In addition, the experimental results
in the paper show that salivary cortisol levels are highly correlated with HRV features.
Some researchers also propose the detection of rest and task states of the human body
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by combining HRV features and PPG waveform features. A wrapping method based on
ensemble learning is designed for feature selection, and a decision tree-based bagging
model is developed for final state classification [20]. In [28], the salivary amylase and
salivary cortisol concentrations are used to label the stress of subjects in TSST experiments
into three levels, and the fuzzy ARTMAP method and voting integration method optimized
by genetic algorithms have been used to establish a predictive model from subject HRV to
psychological stress level, and good accuracy rates have been obtained.

In recent years, the use of deep learning methods to classify psychological stress has
gradually emerged. Ref. [24] uses a one-dimensional convolutional neural network to
extract the complex features of the RR intervals, thereby building an end-to-end neural
network model to detect stress states through ECG signals. The RR interval is the time
interval between two adjacent R waves in the ECG signal; that is, the time interval between
two heartbeats. Ref. [29] proposes the use of a Gabor wavelet transform and discrete
Fourier transform to convert the ECG signal into pictures in the time-frequency domain
and frequency domain, respectively, and fuse the original signal, time-frequency domain
and frequency domain information through a convolutional neural network to classify five
levels of stress. Ref. [30] designs a deep convolutional neural network with a transformer
mechanism to detect psychological stress using the location information of R-waves in ECG
signals and achieves good performance through the fine-tuned network. Ref. [31] proposes
the concept of real-time monitoring of psychological stress, and a convolutional neural
network is used for the real-time recognition of acute cognitive stress from ECG signals with
a 10-s window, which reduces the detection error rate compared to traditional methods.
In previous studies, we used a multi-layer GRU network for the heartbeat classification
of ballistocardiogram (BCG) signals and a bidirectional LSTM method for end-to-end
heart rate estimation of BCG signals in a regression way, which achieved the best results
compared to previous algorithms [32,33]. The successful application of a recurrent neural
network in heartbeat detection also inspires and helps us in this work.

3. Materials

In this section, the wearable ECG signal collection device, VR scene, the process of the
experiment and the dataset will be introduced in detail.

3.1. Smart ECG T-Shirt

Figure 1 is the smart ECG T-shirt designed and developed in our laboratory, which
can simultaneously record various human physiological signals such as ECG, respiration
and electrodermal activity [34]. The left and right of Figure 1a show the front lining and the
front of the smart ECG T-shirt, respectively. In the experiment, it is used to record the ECG
signals of subjects under different stress states. The sensor system of the smart ECG T-shirt
is shown in the left half of Figure 1a, which consists of five flexible electrodes. The right
half of Figure 1a shows the signal processing module of the smart ECG T-shirt, which can
collect and store three lead ECG signals at a sampling rate of 250 Hz and provide power for
the entire system through the built-in lithium battery. Figure 1b shows a subject wearing
the smart ECG T-shirt. Figure 2 shows the three-lead ECG signal collected by this device.
Each prominently raised peak in Figure 2 represents a heartbeat, and the heartbeat location
is consistent across each lead. The recording of three-lead ECG signals can guarantee the
signal quality of ECG to a large extent and improve the tolerance of our ECG acquisition
equipment to motion or noise interference.
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(a)

(b)

Figure 1. The smart ECG T-shirt. (a) The main modules of the smart ECG T-shirt. (b) A subject
wearing the smart ECG T-shirt.

Figure 2. Three-lead ECG signal collected by smart ECG T-shirt.

3.2. VR Scenarios and Tasks

Figure 3 visualizes the VR experiment. The left of Figure 3a shows the experimental
scene, and the right shows the VR scene seen by the subjects (in which the curves of
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various physiological parameters will not be seen). The positions and sizes of key objects
in the experimental scene are consistent with the VR scene. During the experiment, the
subjects need to wear a VR helmet to enter the virtual high-altitude scene and complete the
following three tasks on the board in this scene, as shown in Figure 3b. These three tasks
are described in detail as follows:

Task 1 : Go to the end of the board to pick up the tennis ball from basket B and put it
in basket A. Basket A and basket B are shown in the left of Figure 3a.

Task 2 : Go back to the end of the board to pick up the prop snake from basket C and
put it in basket A. Basket A and basket C are shown in the left of Figure 3a.

Task 3 : Go to the end of the board and jump to the square board shown in the right of
Figure 3a.

(a)

(b)

Figure 3. VR experiment. (a) Experimental scene and VR scene. (b) A subject performing the VR task.

3.3. Experimental Procedure and Dataset

The experiment consisted of four phases: resting, VR scene adaptation, VR task and
recovery. The ECG signals were recorded synchronously in each phase of the experiment.
Each of these phases is described in detail as follows:

Phase 1—Resting (5 min) : Sit calmly in a chair. This phase lasts 5 min.
Phase 2—VR scene adaptation (2 min) : Wear VR equipment to enter the VR high-

altitude scene, and adapt to the scene. This phase lasts 2 min.
Phase 3—VR task : Complete the tennis ball and prop snake transport and jump to

the board in the VR high-altitude scene. The duration of this phase depends on how fast
the subject is performing the task.
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Phase 4—Recovery (5 min) : After the VR task, stay calm and sit back in the chair.
This phase lasts 5 min.

The above four experimental phases correspond to the four stress states of the subjects.
This experiment collects the ECG signals of 63 healthy male subjects with an average age of
17.89 ± 0.45. Considering the adaptability of the subjects and the possible duration of each
stress state, we select the subjects’ ECG data in the first 70 s in the VR scene adaptation and
recovery states and the subjects’ data in the last 70 s in the resting and VR task states as the
stress state classification dataset. Different stress states are the stress classification labels of
the corresponding ECG signals so that we can obtain a stress state classification dataset
consisting of the ECG data of 63 subjects and four labels. By summarizing the intuitive
feelings of each subject in the experiment, we found that the stress level during resting is
the lowest, the stress during the VR task is the highest, and the stress during recovery is
greater than that in the VR scene adaptation.

4. Proposed Method

The purpose of our proposed deep GRU network is to perform the classification of
four stress states through ECG signals collected by smart ECG T-shirts. In the HRV fea-
ture extraction stage, first, the R waves are detected, and the RR intervals are extracted
from the ECG signal, and then the RR interval data under each stress state is divided into
fixed-length data segments and arranged in time series. Finally, multiple HRV features,
including time domain, frequency domain and entropy information, are extracted from the
RR interval data of each segment. In the data preprocessing stage, considering the different
physical meanings and numerical dimensions of each HRV feature, the time series relation-
ship between the same HRV feature and the requirements of the input and optimization of
the recurrent neural network, we standardize each feature of a single sample at each time
by calculating the maximum and minimum values of each HRV feature of all samples at
each moment. In the stage of deep feature extraction and stress classification, we design
a deep feature extraction model composed of a multi-layer GRU network and a classifier
composed of a multi-layer, fully connected network for time series feature extraction and
classification of four stress states. The overall process of the proposed deep classifica-
tion method is shown in Figure 4, and each of these processes is elaborated as follows.
Figure 5 is a flow chart of the proposed method, which can make the process of each stage
in Figure 4 easier to understand.

Figure 4. The overall process of the deep classification method based on the GRU network proposed
in this paper.
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Figure 5. The flow chart of the proposed method.

4.1. HRV Feature Extraction

In this section, we first use a fourth-order Butterworth bandpass filter with a cutoff
frequency of 10–35 Hz to filter out high-frequency noise and low-frequency perturbations
generated by limb movements in each subject’s ECG signal. Then, the locations of the R
waves in the ECG signal are detected, and the RR intervals are calculated for each subject
in each stress state. Finally, after the analysis and comparison of previous studies on the
classification of psychological stress [18–21], we select seven HRV features to represent
the information of ECG signals, namely, mRR and SDNN containing their time domain
information, HFn, LFn and LF/HF containing RR intervals frequency domain information,
ApEn containing their entropy information and their nonlinear feature SD1/SD2. The
description of each feature is shown in Table 1.

Table 1. HRV features and their descriptions in the paper.

Feature Description

mRR The mean value of the RR interval (time between adjacent heartbeats) sequence.
SDNN The standard deviation of RR intervals (time series of adjacent heartbeat intervals).
HFn Normalized spectral energy of heart rate variability from 0.15 to 0.4 Hz.
LFn Normalized spectral energy of heart rate variability from 0.04 to 0.15 Hz.

LF/HF The ratio of low-frequency to high-frequency power for heart rate variability.

ApEn The approximate entropy of the RR interval sequence, which is used to measure the complexity of
the sequence.

SD1/SD2
In the point cloud data of the poincare plots drawn with the RR intervals, the variance of the

distribution along the longer axis is SD2, and the variance of the distribution along the shorter
axis is SD1. SD1/SD2 is the ratio of SD1 and SD2.
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4.2. Data Preprocessing

In this section, sample construction and feature standardization processing of ECG
signals are elaborated. The complete process is shown in Figure 6. The left of Figure 6
shows the sample construction process, and the right shows the sample standardization
method. In the process of sample construction, we first intercept N RR interval segments
of length L from the RR interval sequence with sliding step d according to the time series
and calculate the HRV features corresponding to each segment. Finally, the HRV features
of the RR interval segments are arranged in the sample matrix shown in Figure 6, where
tn represents the moment corresponding to the n-th segment of the RR interval sequence.
In this paper, we take L as 30 s, sliding step d as 2 s and N as 20. It should be noted that
the physical meanings of the HRV features in the constructed samples are different, and
there is a temporal relationship between the HRV feature sequences. Therefore, we use
the min-max standardization method to standardize each feature at each moment in each
sample based on the time series characteristics. The specific process is shown on the right
of Figure 6. f1 and f2 represent different HRV features, and M represents the total number
of samples. The final standardized samples can be obtained by processing the feature
sequence composed of each feature at each moment in all samples. The calculation formula
of the minimum and maximum standardization is shown in Equation (1):

f̂i,j =
fi,j − min(Fi,j)

max(Fi,j)− min(Fi,j)
, (1)

where fi,j is the HRV feature of the i-th row and the j-th column in the sample (its physical
meaning is the j-th feature in the HRV feature sequence at the i-th moment), i = 1, 2, . . . , N,
and j = 1, 2, . . . , 7; max(Fi,j) and min(Fi,j) are the maximum and minimum values of HRV
features in row i and column j in training samples; f̂i,j is the standardized HRV feature.

Figure 6. Sample construction and standardization.

4.3. GRU Model

GRU is a kind of recurrent neural network (RNN). GRU and Long Short-Term Memory
(LSTM) are both proposed to solve the problem of gradient disappearance in the long-term
dependence of learning time series in traditional RNN [35,36]. The performance of GRU
and LSTM on many deep learning tasks is similar [37], but GRU has fewer parameters
and less computation, so it has advantages in reducing the consumption of computing
resources and the risk of overfitting. The structure of the GRU model is shown in Figure 7.
Where the circles and ellipses with a blue background represent operators, the boxes with
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a green background represent functions and the boxes with a gray background represent
inputs. There are two important gate functions in the GRU model: the update gate and
reset gate. The function of the reset gate is to determine how much of the hidden state
information of the previous moment will be added to the candidate state according to
the current input and the hidden state of the previous moment, thereby generating the
candidate state of the current moment. The function of the update gate is to determine
which historical information in the hidden state at the previous moment can be forgotten
and which information in the candidate state at the current moment can be added to the
new hidden state, thereby generating the hidden state at the current moment. Equations
(2) and (3) are the calculation formulas for the weights of the reset gate and the update
gate, and the update formulas of the candidate state and the hidden state are shown in
Equations (4) and (5) [37].

Figure 7. The GRU model structure.

rn = σ(Wirxn + Whrhn−1), (2)

zn = σ(Wizxn + Whzhn−1), (3)

cn = tanh(Wicxn + Whc(rn � hn−1)), (4)

hn = on = (1 − zn)�cn + zn�hn−1, (5)

where xn is the input at the n-th moment, and hn−1 is the hidden state at the n − 1-th
moment, Wir and Whr are the weight matrices of the reset gate input layer and the hidden
state layer, Wiz and Whz are the weight matrices of the update gate input layer and the
hidden state layer, Wic and Whc are the input layer weight matrices and the hidden state
layer weight matrices in the candidate state calculation, the bias matrices are all included
by the weight matrices. cn is the candidate state at the n-th moment, and hn and on are the
hidden state and output at the n-th moment. Operator � is an element-wise multiplication.
σ and tanh are activation functions, and their calculation formulas are σ(x) = 1

1+e−x and

tanh(x) = ex−e−x

ex+e−x , respectively. They can improve the nonlinear capabilities of the model.
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4.4. Psychological Stress Classification Model

The proposed psychological stress classification model consists of two sub-models,
deep feature extraction and psychological stress classification, and its overall structure is
shown in Figure 8. The deep feature extraction model is composed of two cascaded GRU
blocks, and the output of each moment of the first block is input to the second block in the
same order. The content in the green dotted box in Figure 8 shows the structure diagram
of each GRU block expanded by time steps. Each GRU block is composed of K layers of
the GRU network, and each layer of the GRU network contains N time step inputs, where
xn and on represent the input and output of the n-th moment, and the structure of each
GRU model is shown in Figure 7. Considering that the output of the GRU network at the
last moment contains the information of the entire sequence, the multi-level deep features
composed of the outputs of the last moment of the two GRU blocks are used as the input of
the psychological stress classification model. The psychological stress classification model
consists of a multi-layer, fully connected network and a SoftMax classifier. As shown in the
blue dotted box in Figure 8, there is a batch normalization layer between each layer of fully
connected networks to standardize the distribution of neural network output, and ReLU is
used as the activation function. The numbers in the FC block in Figure 8 are the number of
neurons in each layer of the neural network.

Figure 8. Psychological stress classification model.

The loss function used in the proposed method is shown in Equation (6), which
consists of cross entropy loss and L2 regular loss. Cross entropy loss is used to measure
the classification error of the model, and L2 loss is used to measure the complexity of the
model to reduce the risk of overfitting. In training, the deep network model is optimized
by minimizing the loss function.

loss(y, ŷ) = − 1
M

(
M

∑
i=1

K

∑
k=1

y(k)i logŷk
i ) + γ‖W‖2, (6)

where M is the number of each batch sample in the training process, K is the total num-
ber of categories and y and ŷ are the real labels and prediction probabilities of samples,
respectively. γ is the hyperparameter of L2 loss, which controls the participation of L2 loss.

4.5. Evaluation Indicators

Since the number of samples under the four classes (psychological stress states) in
this dataset is equal, the accuracy rate is used as an evaluation index to measure the
performance of the methods. The accuracy of classification is the ratio of the number of
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correctly classified samples to the total number of samples, and its calculation formula
is shown in Equation (7). When the number of samples in each category is balanced,
the accuracy rate can objectively and intuitively show the classification accuracy of the
algorithms. The higher the accuracy rate, the higher the classification performance of
the algorithm.

Accuracy =
T1 + T2 + T3 + T4

M
, (7)

where M is the total number of samples, and T1∼T4 are the number of correctly predicted
samples of category 1∼4, respectively.

5. Experiments and Results

5.1. Experimental Setting and Parameters

The proposed method is built and evaluated on the dataset mentioned in Section 3.3.
In order to be more consistent with the actual applications, the cross-subject test method
is used to verify the estimated performance of the method. In this paper, the training
set consists of ECG data on 47 subjects, in which 8 subjects’ ECG data are randomly
selected as the validation set, and the remaining 16 subjects’ ECG data are the test set.
In data processing, each subject’s ECG signal under each stress state is broken into 20
ECG signal segments with a length of 30 s, and the interception interval is 2 s. These
20 signal segments correspond to the time steps of the GRU network inputs.

In the deep feature extraction model, each GRU block is formed by stacking 5 layers
of the GRU network, each layer of the GRU network has 256 neurons, and the length of
the input sequence is 20 time steps. The classification model is composed of three layers of
fully connected networks stacked, and the number of neurons from the bottom layer to the
top layer is 64, 32 and 4. During the training process, the L2 regularization coefficient γ
is 0.002, the learning rate is 0.0002, the batch size is 52, the model is optimized by Adam
and the number of epochs is about 80. The training ends when the accuracy of the training
set and the validation set is high, and the accuracy of the validation set is stable. During
validation and testing, the validation and test sets are standardized using the parameters in
the training set. In order to evaluate the performance of the model more objectively, we
conduct five independent repeated experiments and take the average of its accuracy as the
final evaluation index.

5.2. Experimental Platform

The hardware configuration of the workstation for this experiment is Intel i7-11700F
CPU with 16GB RAM, and NVIDIA 1060Ti GPU. The software platform is Python 3.7.11,
Pytorch 1.10.0 and CUDA 11.3.

5.3. Results and Analysis

In this section, the psychological stress state estimation performance of the proposed
method is presented and discussed from different perspectives. First, different numbers
of HRV features are tried to train deep models to observe the contribution of different
features to the estimation performance of the proposed method, and the results are shown
in Table 2. When only mRR and ApEn features are used, the classification accuracy of
the model is only 0.51. As more HRV features are added to the training of the model, its
classification accuracy keeps rising and eventually reaching 0.73 when all HRV features
are used. In addition, it can be seen that compared with the HRV features, for except
mRR and ApEn, SDNN has a higher contribution to stress state classification performance.
Then, Figure 9 shows the training set accuracy and validation set accuracy curves of the
proposed algorithm during training. It can be seen that as the number of epochs increases,
the estimated accuracy of the model in both the training set and the validation set keeps
rising steadily. It should be noted that the gap between the accuracy of the training set
and the accuracy of the validation set continues to increase as the training progresses,
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and the risk of overfitting the model will increase if the training continues. Therefore, the
model with the iteration number of 80 epochs is selected for performance evaluation on the
test set.

Table 2. Classification accuracy of the proposed method in stress state with different HRV features.
In this sub-experiment, 28 subjects are randomly selected from the training set described in Section
5.1 to train the model, and 15 subjects are randomly selected from the remaining data for validation.
The accuracy in the table is the average accuracy of three independent repeated experiments on the
validation set. The number in bold represents the best result.

Features Accuracy

mRR, ApEn 0.51

mRR, ApEn, SD1/SD2 0.56

mRR, ApEn, SD1/SD2, SDNN 0.68

mRR, ApEn, SD1/SD2, SDNN, HFn 0.67

mRR, ApEn, SD1/SD2, SDNN, HFn, LFn 0.71

mRR, ApEn, SD1/SD2, SDNN, HFn, LFn,
LF/HF 0.73

Figure 9. Accuracy curves of training set and validation set during training.

The classification performance of the proposed method and the comparison algorithms
are presented in Table 3; the number in bold is the best result. Among them, comparison
algorithms include the traditional machine learning algorithm KNN, ensemble learning
method XGBoost [38], deep learning method MLP [23] and one-dimensional CNN (CNN-
1D) network. KNN has been widely used in the study of psychological stress classification.
XGBoost, as a state of art ensemble learning method, has been applied in many machine
learning fields. In [23], a good psychological stress classification result is obtained by
using the MLP method. At present, a one-dimensional CNN network is also widely
used in the field of physiological signal processing and has achieved good results [39,40].
GRU-b1, GRU-b2 and GRU-b3 in Table 3 are the methods proposed in this paper, which
represent the deep time series feature extraction model composed of one GRU block, two
GRU blocks and three GRU blocks, respectively. It can be seen that the classification
accuracy of psychological stress obtained by our methods is better than all comparison
algorithms. When using two GRU blocks to extract deep features, the classification accuracy
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of psychological stress is the highest among all methods, reaching 0.78. We believe that
this is because the long-short-term memory network may be able to capture longer-term
dependencies between time series than other machine learning methods, thereby obtaining
more global and robust characteristics of psychological stress. In addition, with the increase
in GRU blocks, the classification performance of the model tends to increase first and then
maintain or slightly decrease. This is because when there are fewer model parameters, the
risk of model underfitting is high. When there are too many model parameters, it is easy
for the model to fall into overfitting, which will reduce the classification performance of
the model on the test set.

Table 3. Psychological stress state classification accuracy of the proposed algorithm and comparison
algorithms on the test set. The number in bold represents the best result.

Algorithms KNN XGBoost MLP [23] CNN-1D GRU-b1 GRU-b2 GRU-b3

Accuracy 0.65 0.69 0.71 0.7 0.73 0.78 0.77

We also perform some exploration on the impact of other model hyperparameters
on model performance; Tables 4 and 5 show the estimated performance of the proposed
algorithm under different model parameters. Table 4 shows the impact of GRU networks
with different numbers of neurons on the model estimation performance, and Table 5
shows the impact of different numbers of GRU network layers on the model estimation
performance. It can be seen that with the increasing number of neurons and network layers
in the network, the classification accuracy of the model shows a trend of rising first and
then declining under the influence of the risk of underfitting and overfitting. When the
number of neurons is 256 and the number of network layers is 5, the classification accuracy
of the model is the highest. Furthermore, it can be seen that the depth of the GRU network
significantly affects the classification accuracy of the model. This is because, compared
with the shallow network, the deep network can extract more essential features from HRV
data. These features represent the common characteristics of physiological data of different
subjects under the same stress state, and they can affect the generalization performance of
the model.

Table 4. The classification accuracy of the psychological stress of the GRU network of the proposed
method under different numbers of neural units. The number in bold represents the best result.

The number of
GRU units

64 128 256 512

Accuracy 0.75 0.75 0.78 0.73

Table 5. The classification accuracy of the psychological stress of the GRU block of the proposed method
under different numbers of neural network layers. The number in bold represents the best result.

The number of
layers of GRU

block
1 3 5 7

Accuracy 0.67 0.7 0.78 0.76

In addition, we also explore the classification performance of the model in each class.
Labels and classes 1, 2, 3 and 4 in Table 6 and Figure 10 represent four stress states, namely,
resting, VR task, recovery and VR scene adaptation. Table 6 is the confusion matrix for
the classification of the proposed method on the test set, and the data in the table is the
proportion of the number of samples predicted to be in this class among all the samples
in this class. It can be seen that the model has the lowest classification accuracy for class 1
(resting state), 38% of the samples are wrongly classified into class 4 (the state of adapting
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to the VR scene), and 13% of the samples in class 4 are also wrongly classified into class 1.
This is because, in the process of adapting to the VR scene, the subjects only need to keep
standing to observe and become familiar with the VR high-altitude scene, which induces
less psychological stress so that the physiological parameters of the subjects at this time are
very close to those at rest. This results in a lower classification accuracy of the model in class
1 compared to other classes. As shown in Figure 10, we also use the t-distributed Stochastic
Neighbor-Embedding (T-SNE) [41] method to reduce the dimensionality and visualize
the deep feature output by the CNN-1D and proposed method, respectively, where the
dots with different colors represent the class to which the feature belongs. The position
of each dot represents the distribution characteristics of the deep features extracted from
a sample in the two-dimensional feature space. It can be seen from Figure 10a that the
classification boundaries between the features of each class extracted by the CNN-1D model
are relatively blurred, and the feature distribution of each category of samples is loose. The
extracted features using the proposed deep model are shown in Figure 10b. It can be seen
that compared with the CNN-1D model, the classification boundaries between the various
categories of features extracted by our method are more obvious, and the distribution
of sample features of each category is also more concentrated. Furthermore, we can see
that the method proposed by us can also improve the separability between class 1 and
class 4 samples to a certain extent, which indicates that our method extracts more essential
psychological stress features from HRV data. Although our method has some improvement
in feature extraction compared to the CNN-1D method, the classification boundaries of
deep features of class 1 and class 4 are still blurred, which is consistent with the results in
the confusion matrix. The identification of this weak-intensity stress is a difficult problem
in the current research field of psychological stress estimation, and it will be also the focus
of our future research.

(a)

Figure 10. Cont.
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(a)

Figure 10. Feature extraction results of CNN-1D and the proposed method on subject HRV data.
(a) The distribution of the features output by the CNN-1D model after T-SNE dimensionality re-
duction. (b) The distribution of the features output by the proposed method after dimensionality
reduction by T-SNE.

Table 6. The classification confusion matrix of the proposed method for psychological stress states.
The data in the table is the proportion of the number of samples predicted to be this label in all
samples of this label.

True Labels

Proportion Predict Labels

1 2 3 4

1 0.56 0.06 0 0.38

2 0 0.88 0.06 0.06

3 0.06 0 0.94 0

4 0.13 0.06 0 0.81

6. Conclusions

This paper proposes a deep psychological stress classification method based on ECG
signals. First, HRV feature samples containing the timing information of ECG signals are
constructed. Deep GRU networks are then used to extract deep features from HRV feature
samples that have more essential and general connections to psychological stress states.
Finally, a multi-layer, fully connected network is used to fuse the deep and shallow features
of the GRU network to predict the psychological stress state. The experimental results
show that the proposed method is a robust psychological stress estimation scheme, and its
estimation accuracy in this dataset is 0.78 better than other mainstream methods.

However, we noticed that the classification accuracy is not very high. In future work,
we will try to further improve the accuracy of psychological stress classification from the
following aspects. The first is that the amount of information input to the classification
model can be increased by introducing other physiological signals besides ECG, such as
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EEG and EDA, or extracting more valuable features from ECG signals, thereby improving
the performance of stress classification. Secondly, we can also consider reducing the differ-
ences in physiological signals between individuals to improve the classification accuracy
of psychological stress. Specifically, domain adaptation methods in transfer learning have
achieved good results in many image datasets with large distribution differences, and
in recent years, this method has achieved high performance in EEG-based cross-subject
emotion recognition accuracy [42,43]. Therefore, we will consider introducing a transfer
learning method to further improve the classification accuracy of psychological stress
states. Furthermore, high-level feature design and feature space applicable reduction to
multidimensional wearable sensors, such as referable approaches for wearable-based HAR,
are also worthy of further experimentation [14,44].
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Abstract: The ankle joint is one of the important joints of the human body to maintain the ability
to walk. Diseases such as stroke and ankle osteoarthritis could weaken the body’s ability to con-
trol joints, causing people’s gait to be out of balance. Ankle–foot orthoses can assist users with
neuro/muscular or ankle injuries to restore their natural gait. Currently, passive ankle–foot orthoses
are mostly designed to fix the ankle joint and provide support for walking. With the development
of materials, sensing, and control science, semi-active orthoses that release mechanical energy to
assist walking when needed and can store the energy generated by body movement in elastic units,
as well as active ankle–foot orthoses that use external energy to transmit enhanced torque to the
ankle, have received increasing attention. This article reviews the development process of ankle–foot
orthoses and proposes that the integration of new ankle–foot orthoses with rehabilitation technolo-
gies such as monitoring or myoelectric stimulation will play an important role in reducing the
walking energy consumption of patients in the study of human-in-the-loop models and promoting
neuro/muscular rehabilitation.

Keywords: ankle–foot orthoses; energy consumption; functional electrical stimulation; human in
the loop

1. Introduction

Ankle joint injury is mainly caused by external forces or nervous system diseases
such as hemiplegia. Particularly, stroke has the highest morbidity and fatality rate, there
are 16 million people worldwide who suffer from strokes yearly and 6 million patients
die from the disease [1]. Stroke patients with foot drop often exhibit a pattern of motion
compensation that causes the slowing down of swing rhythm. At the same time, due to the
shortened standing phase on the affected side, the energy consumption (EC) of walking is
increased [2]. Ankle osteoarthritis (AO) affects more than 1% of the global population, and
70–80% of AO cases are caused by traumatic injury [3], which leads to long-term joint pain
and decreased quality of life [4]. Severe ankle motor dysfunction could affect the patient’s
lower limb motor ability, and increase the burden on family and society [5].

An ankle–foot orthosis (AFO) is applied to the ankle joint to improve walking ability,
prevent or correct ankle–foot deformities, maintain the stability of lower limb joints, and
enhance the load-bearing capacity of lower limbs [6]. It can also compensate for ankle–foot
functions and promote the functional recovery of lower limbs through elastic materials
or external forces [7]. In the case of muscle weakness, AFO provides auxiliary torques for
dorsiflexion and plantarflexion. While in the case of muscle spasms, AFO provides limiting
torques [8]. Appropriate orthotic design directly promotes the patient’s rehabilitation pro-
cess, especially in restoring natural gait patterns [9]. AFO has attracted extensive attention
from researchers since the 1970s. With more than 40 years of development, researchers
have carried out a large number of targeted and innovative designs on the AFOs aiming at
promoting lower limb rehabilitation. This review analyzes the design and development of
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AFOs from the perspective of improving walking ability and reducing walking EC, and it
is concluded that the fusion of new AFO design and other rehabilitation technologies such
as functional electrical stimulation (FES) may be expected to play a more important role in
reducing EC in human in the loop and promoting neuromuscular rehabilitation.

2. The Design and Development of AFOs

2.1. Literature Review Strategy

The systematic review protocol was developed in accordance with the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement.

2.1.1. Search Strategy

Electronic database searches were performed from March 2022 to June 2022, conducted
in Web of Science, IEEE Xplore, and PubMed Central according to search terms related
to AFOs categories (Ankle Foot Orthosis*, Static ankle-foot orthoses*, fixed ankle-foot
orthoses*, dynamic ankle-foot orthoses*, articulating ankle-foot orthoses*, non-articulating
ankle-foot orthoses*, semi-active ankle-foot orthoses*) combined with lower extremity
rehabilitation-related vocabulary (stroke*, foot drop*, foot inversion*, foot valgus*, gait
cycle*, walking energy*, muscle activation*).

2.1.2. Eligibility Criteria, Research Options, and Data Extraction

Studies of human participants of any sample size were eligible, and there were no
age, gender, cultural, or ethnic restrictions. Studies must have investigated the use of any
type of ankle–foot orthosis (static ankle–foot orthosis, fixed ankle–foot orthosis, dynamic
ankle–foot orthosis, articulating ankle–foot orthosis, non-articulating ankle-foot orthosis,
semiactive ankle–foot orthosis) on outcomes related to walking ability or biomechanical
function, mechanical properties, patient comfort, pain, and disability. Any other type of
orthoses (orthoses for ankle joints, hip and knee joints) or orthoses not used for walking
(such as massage therapy) were excluded. Unpublished data and data from studies that
were not fully published were excluded.

After duplicates were removed, two authors (C.Z.) and (Z.Y.) screened titles and
abstracts from the search results using predetermined eligibility criteria. Full-text articles
were searched and independently reviewed for inclusion by two authors (X.Y. and K.L.).
Data extraction and evaluation of the remaining articles were then independently completed
by two authors (C.Z. and Z.Y.). Data extraction included study design, design features, and
experimental effects.

2.1.3. Description of Included Studies

The initial electronic database search retrieved a total of 2126 articles, leaving
689 articles after deduplication. After completing the title and abstract screening, 83 articles
were selected for possible inclusion in this review. After full-text screening, 52 studies met
the inclusion criteria and were included in this review [10–61]. A flowchart of the search
history and selection process is shown in Figure 1.

AFOs are usually designed from the shank to the sole of the foot and can maintain
proper movement of the ankle joint. AFOs act on the shank and foot through the action of
force to prevent foot drop, eversion, and inversion. The benefits of using AFOs are to help
patients relieve physical pain and improve their self-care ability and quality of life. Scholars
have also paid attention to utilizing AFOs to improve walking ability and reduce walking
EC. Currently, new AFOs design mainly focus on the manufacture and combination with
elastic materials or external dynamics.
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Figure 1. Flow diagram of the literature review process.

2.2. Classification and Development

There are many types of orthoses at present. In 1992, the International Standardization
Organization (ISO) defined AFOs with the nomenclature of orthosis assembly parts into
ankle–foot orthoses (AFOs), knee-ankle–foot orthoses (KAFOs), and hip-knee-ankle–foot
orthoses (HKAFOs) [62]. According to the different functional structures, AFOs can be
divided into static AFOs, dynamic AFOs, and custom AFOs [63]. Recently, AFOs are
divided into passive ankle–foot orthoses (PAFOs), semi-active ankle–foot orthoses (SAFOs),
and active ankle–foot orthoses (AAFOs) according to whether the devices can directly
provide power for walking [10,11].

This review will describe the detailed research and development process based on
how the AFOs provide power. As shown in Figure 2, this includes: (1) PAFOs, which
include static ankle–foot orthosis, partial hinged ankle–foot orthosis, and dynamic ankle–
foot orthosis. The PAFOs proposed in this review are not comprised of electrical/electronic
elements or power sources. They are usually comprised of mechanical elements such
as dampers or springs; (2) SAFOs, which use brakes as control elements, such as active
clutches and adaptive dampers. SAFOs can adaptively adjust joint impedance or recycle
walking energy, but do not provide additional power for walking directly; (3) AAFOs,
which are usually composed of a power supply, control system, sensors, and actuators.
AAFOs can provide extra power directly for walking. Generally, PAFOs usually have
a relatively simple structure and production process. They are mainly applied to limit
the movement of the ankle joint, while PAFOs can store part of the energy generated by
body movement in linear or spring elements, then release energy when needed to assist
walking. The structure, utilizations, and control strategies of AFOs are shown in Figure 3.
SAFOs and AAFOs can provide assistance for patients to walk by controlling actuators,
and improve the ankle joint movement of patients with dysfunction caused by various
injuries and neurological diseases. In recent years, researchers focus on how to improve
walking ability and reduce walking EC by proper system design.

2.3. General Research and Development Processes of AFOs

The design and manufactural processes of different AFOs categories are mainly con-
sistent. In this section, this review summarizes and analyzes the general design and
production processes of AFOs. As shown in Figure 4, the processes flow includes functional
design, structural design, model design, motion simulation, production inspection [64,65],
and clinical research [66]. Within these processes, structural design, model design, and
motion simulation play significant and important roles in achieving reliable function and
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reaching the standards of clinical research. The detail design contents are concluded
as follows.

Figure 2. Classification and development trends of AFOs.

Figure 3. Structure, utilizations, and control strategies of AFOs.

(1) Functional design: Functional design process includes requirements analysis.
The requirements analysis mainly focuses on understanding, analyzing, and sorting out
the basic demands of the user. It can be divided into physical needs and psychological
needs. The functional design of AFOs arecarried out on the basis of requirements analysis.

(2) Structural design: Structural design mainly refers to the determination of the
overall structure of the AFOs. The overall structure may be divided into fixed type and
active type. The fixed type generally plays the role of support, protection, fixation, and
load relief. The active type could increase the range of motion of the ankle joint and assist
the movement.

(3) Model design: The model design includes model establishment and material
selection. The model establishment is mainly to obtain human body data through direct
measurement or three-dimensional scanning, and then generate ankle models on the
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computer. Material selection is based on the function of each structure. The main materials
are carbon fiber and synthetic plastics, occasionally alloys, foams, ceramics, and so forth.

(4) Motion simulation: It is important for the orthosis to work according to the func-
tional design. Finite element analysis of the assembly, which provides the analysis of
static structural strength and stiffness, should be performed. If the analysis results meet
the strength and stiffness requirements, the product could be processed and produced.
Otherwise, if the analysis results are not satisfactory, the structural design of the AFOs need
to be re-carried out.

(5) Production inspection: Production inspection includes device fabrication and
experimental inspection. The traditional fabrication method of AFOs adopts the method of
injection molding, which uses a plate with a constant thickness that normally has a long
production cycle. This method is difficult to iteratively optimize in the future [67,68]. On
the other hand, 3D printing technology is based on intelligent digital models, it uses metal,
plastic, and other adhesive materials to construct objects with layer-by-layer printing. It
can be directly formed or customized and has great potential in the production of AFOs.
After the production process, the orthosis is tested through material experiments which
focus on evaluating the mechanical properties of the orthosis. The structural design needs
to be re-carried out if it does not meet the standards.

(6) Clinical research: Clinical research usually recruits healthy volunteers or patients
as experimental subjects to analyze the impact of AFOs on human walking ability, biome-
chanics, and walking EC through 3D motion capture equipment, EMG sensors, EC testers,
and other instruments [69,70]. In addition, some studies have shown that AFOs combined
with rehabilitation methods such as botulinum toxin and FES may have better effects on re-
habilitation [71,72]. Some authors utilized botulinum toxin type A injection combined with
an ankle–foot orthosis to improve the rehabilitation process of patients with post-stroke
lower limb spasticity.

Figure 4. Design and manufactural processes of AFOs.

2.3.1. Passive Ankle–Foot Orthoses (PAFOs)

As analyzed previously, PAFOs do not have any electronic control elements to control
ankle motion during gait other than mechanical elements such as springs or shock absorbers.
PAFOs can be subdivided into articulated devices and nonarticulated devices [10]. Passive
non-articulating ankle–foot orthoses (PNAAFOs) are usually one piece that holds the ankle
completely in one position. Passive articulating ankle–foot orthoses (PAAFOs) are designed
to combine a lightweight thermoplastic or carbon composite shell with an articulating
joint that allows a range of motion in the ankle joint. Articulated joints come in different
designs with various hinges, flexion stops, and stiffness control elements such as springs,
oil dampers, one-way friction clutches, and so forth.
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Primevally, a large number of PNAAFOs were studied [12]. They were mainly de-
signed to hold the ankle in one position and limit the mobility of plantarflexion thoroughly.
However, the materials of the orthoses were stiff, which might result in excessive knee
flexion moments during load response which resulted in unsteady walking. With the
advancement of material science, the design of PNAAFOs gradually evolved from rigid
to elastic. The characteristics of these orthoses mainly depended on the material and ge-
ometry [11,13,14]. Rear leaf spring orthoses were semi-rigid plastic orthoses that assisted
toe flexion and prevented falls during the pre-swing period. Carbon fiber orthoses are
another typical semi-rigid orthoses that can significantly improve pathological gait by
storing energy during deformation and increasing thrust during the pre-swing period. Re-
searchers have shown that carbon fiber orthoses can reduce energy expenditure in impaired
patients [15].

PAAFOs appeared in large numbers in the 1980s and 1990s. The Okawa Ankle-Foot
Orthosis was developed by Okawa Hara in 1981 [12] and provided some lateral stability
through its lateral joints. Since then, articulated orthoses of different joint styles have
sprung up one after another. At the beginning of the 21st century, articulated orthoses
were continuously improved. In 1997, Yamamoto et al. [16] improved articulated orthosis
with dorsiflexion assistance. A traditional AFO along with the Klenzak ankle joint was
modified to prevent falls during walking. Their modified design added a spring to the rear
of the orthotic tibia, which might create plantarflexion resistance when the heel touches
the ground and prevent the foot from slipping. In 2002, Kawamura et al. [17] developed a
passive mechanical element with variable elasticity and viscosity. The material was soft and
light, and the element itself was small in size. The mechanical impedance of the element
could be changed by adjusting the vacuum pressure applied to it. These characteristics
made passive pneumatic components more convenient than active components of the
wearable robot, such as electromagnetic, magnetorheological, or electrorheological brakes.
Before the advent of oil dampers, orthoses were more likely to use spring dampers. In 2005,
Yamamoto et al. [18] developed a small, lightweight hydraulic oil damper to provide
torque resistance to plantarflexion. The oil damper absorbed the shock of heel impact and
provided damping during load response.

Researchers have also studied the interaction between AFOs and the human body.
Geboers et al. [19] studied ankle fixation and its effect on dorsiflexor strength, and their
results showed that the use of AFO after nerve injury may lead to reduced dorsiflexor
strength in a short period of time. Studies have shown that AFOs should provide horizontal
resistance to flexion of the digits to simulate eccentric contraction of the dorsiflexors, thereby
allowing a limited amount of loading response to act on plantarflexion [20]. A study by
Hesse et al. [21] found that reduced dorsiflexor activity may lead to disuse atrophy and
long-term dependence on orthoses. These studies suggested that insufficient orthotic
stiffness may result in insufficient biomechanical control of ankle motion and excessive
knee extension during gait, which in turn might lead to a stiff walking gait cycle, lower
muscle activity, and muscle atrophy. Therefore, ankle-fixed AFOs, including PNNAFOs,
might delay recovery in patients with neurological impairment.

In view of this, researchers have developed innovative AFOs with the motive of
designing AFOs with predetermined stiffness or variable stiffness that meet the individual
needs of patients. In 2015, Mataee et al. [22] proposed two technical solutions for the design
of variable stiffness orthosis based on the mechanical and structural stiffness control of
shape memory alloys. These designs could improve gait abnormalities in patients with
foot drop for different walking conditions (e.g., different walking speeds). The first design
modulated the torsional stiffness by controlling the axial load with the superelastic rod,
and the other modulated the bending stiffness of the element by adjusting the effective
length of the superelastic hinge. Although Mataee’s study effectively solved the problem
of variable stiffness, it was difficult to control the shape-memory alloy components during
cooling. Amirhesam et al. [23] found that the hyperelastic NiTi spring had nonlinear
characteristics in elongation and compression. They hypothesized that the hinge could
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make the stiffness of the ankle more similar to that of a healthy person, which could
help patients walk more naturally. On this basis, they focused on the performance of the
hyperelastic NiTi spring and the transmission stainless steel spring and found that the
NiTi spring could provide a wider range of motion and increased torque level. In addition
to exploring the effect on gait, some studies also showed that the reduction in walking
energy was related to the stiffness of the orthosis. Niels et al. [24] produced an AFO with
adjustable stiffness using carbon fiber plate springs. For each patient, they assessed the
walking energy costs, gait biomechanics, and walking speed of five AFOs with different
stiffness. The results were used to determine the optimal stiffness for each patient.

In conclusion, PNAAFOs and PAAFOs are mainly distinguished by the degree of
wrapping of the ankle and the structural design, as shown in Table 1. There are various
types of PNAAFOs, and their main functions are to limit the movement of the ankle joint
and provide support for the patient to walk. Although PNAAFOs can improve pathological
gait to a certain extent and reduce walking EC, they limit the normal motion of the ankle
joint. On the basis of the PNAAFOs, the PAAFOs provide a certain range of motion for
the ankle joint through structural design. Both of PNAAFOs and PAAFOs can improve
foot biomechanics and walking ability, reduce walking EC by adjusting joint stiffness, and
enable patients to have a near-normal gait.

Table 1. Comparison of features and functions between PNAAFOs and PAAFOs.

Category Device Name/Author Design Features Effects Ref.

PNAAFOs

Ortholen drop foot brace Half wrap ankle 1. Fix ankle [12]2. Provide lateral stability

Ortop AFO LH No wrap ankle 1. Limit plantarflexion [12]2. Provide lateral stability

Finer AFO Full wrap ankle 1. Fix ankle [12]2. Provide lateral stability

PAAFOs

Okawa, H Simple hinge
1. Promote dorsiflexion

[12]2. Limit plantarflexion
3. Provide lateral stability

Yamamoto, S Spring
1. Reduce knee hyperextension

[16]2. Increase walking speed
3. Adjust the dorsiflexion auxiliary moment

Yamamoto, S Oil Damper
1. Promote dorsiflexion

[18]2. Correct varus/valgus
3. Adjust orthosis stiffness

Mataee, M Shape Memory Alloys 1. Improve biomechanics [22]2. Promote normal plantarflexion

Amerinatanzi, A Superelastic NiTi Spring 1. Greater range of motion [23]2. Promote normal plantarflexion

Waterval, N Customed spring
1. Reduce walking EC

[24]2. Improve biomechanics
3. Increase walking speed

2.3.2. Semi-Active Ankle–Foot Orthoses (SAFOs)

The motor control of PAFOs is limited by passive components as discussed while
SAFOs and AAFOs have the ability to interact with the walking environment. SAFOs
consist of electronic control systems, actuators, tethered or untethered powertrains, and
stiffness control elements such as magnetorheological (MR) fluid brakes. Normal control
systems typically include components such as force sensors, accelerometers, and micro-
processors. Blaaya et al. [25–27] developed a SAFO with variable impedance based on
elastic brakes. The elastic brake consists of a direct current motor, a mechanical connecting
rod, and a torsion spring which could actively adjust the joint impedance of the ankle.
The developed actuator weighed 2.6 Kg and required a bulky battery as a power supply.
Furusho et al. [28,29] proposed installing an MR fluid brake at the ankle joint. The de-
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vice could control the brake force by changing the intensity of the applied magnetic field,
and it could provide a maximum resisting torque of 11.8 N·m. In addition, the authors
applied the connecting rod mechanism to amplify the torque which was up to 24 N·m.
Kikuchi et al. [29] further developed a more compact MR fluid brake. Compared with the
previous prototypes, the proposed orthosis had a lighter weight, a more sensitive control
system, and could assist ankle plantarflexion. SAFOs were further applied to recover gait
energy during walking, provided assistance, and reduced walking EC. Chang et al. [30]
developed an energy recovery system composed of a torsion spring and two actively con-
trolled clutches to control the accurate time point of energy recovery and energy release.
Wang et al. [31] developed a novel, lightweight heel strike energy storage mechanism
including a clutch. They applied a series of springs that helped users reduce walking EC.

Table 2 demonstrates the comparison of SAFOs in mass and effects. The power assist
control units within SAFOs are evolving in the direction of lightness and precise control.
The weights of SAFOs are gradually reduced from 2.6 Kg to nearly 1 Kg, or even less
than 800 g. This is a clear advantage of SAFOs over AAFOs. In terms of the assisting
effects provided by SAFOs, the range of resistance torque that the device could provide
should be studied first. Then, the benefits of SAFOs on human walking might be studied
in the form of muscle activation during walking by myoelectric sensors and EC testing
instruments directly.

Table 2. Comparison of SAFOs in mass and effect.

Author Motion Control Elements Mass Effect Ref.

Blaya, J Series Elastic Actuator 2.6 Kg —— [25]

Furusho, J Magnetorheological Fluid 1.6 Kg Provide 24 N·m resistance torque [28]

Kikuchi, T Magnetorheological Fluid 0.99 Kg Provide 10 N·m resistance torque [29]

Chang, Y Spring Clutch 0.9 Kg 10–20% decrease in gastrocnemius muscle
activation [30]

Wang, C Spring Clutch 0.754 Kg 6% reduction in metabolic cost [31]

2.3.3. Active Ankle–Foot Orthoses (AAFOs)

Torque can be transmitted to the ankle by AAFOs using external energy and power
units, while the orthosis may be adjusted by computer control to give the users a more natu-
ral gait [32]. Pneumatic muscles are characterized by light weight and high power, and are
gradually being applied in the development of AAFOs [33]. As a typical representative,
Ferris et al. [34–37] proposed an AAFO that could provide the torque required for toe flex-
ion and dorsiflexion through two artificial pneumatic muscles. The device was relatively
lightweight (1.6 Kg), and the user’s peak plantarflexion torque was reduced by 64% and the
peak dorsiflexion torque was increased by 23% after wearing it. The experiment required
an onboard power supply and computer assistance, which was suitable for laboratory
research and rehabilitation. In view of the above-mentioned limits, Alex et al. [38] proposed
a kind of pneumatic driven orthosis that might be used daily in the household. The device
had a bidirectional rotating air motor at the ankle and a CO2 bottle with a regulator at the
waist. The power supply was separated from the actuator to minimize the weight of the
ankle. The experimental results showed that the system had an obvious auxiliary effect on
functional plantarflexion. However, since the system could only provide 9 N·m of torque at
rated power, it was mainly suitable for auxiliary plantarflexion.

With the deepening of research, hydraulic technology has also emerged in this re-
search area. Compared with electromechanical systems, hydraulic technology has the
advantages of high power and is only limited by the pressure of the working fluid [39,40].
Studies have shown that compared with the equivalent electromechanical system above
500 pounds per square inch (psi), the overall weight of the 100-watt hydraulic system
is lighter [41]. Compared to electric motors, hydraulic systems have higher responsive-
ness and greater stiffness, enabling faster start-up and stops along with small position
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errors [39,42]. Brett et al. [32] designed a hydraulic AAFO which consisted of a hydraulic
power source at the waist and a hydraulic brake at the ankle, connected by a pair of hoses.
The weight of the ankle actuator and the power supply met the design requirements of
1.0 Kg for the ankle and 3.5 Kg for the waist. Although the total weight of the system
was similar to the weight of the electromechanical system, lightweight hydraulic actuators
could significantly decrease the ankle weight compared with the electromechanical sys-
tem. Martin et al. [43] combined the characteristics of the electric and hydraulic systems,
and designed an electro-hydraulic AAFO that could provide forward rotation of the ankle
joint. Kim et al. [44] proposed a completely unconstrained pneumatic AAFO powered by a
custom compressor, which miniaturized the compressor by optimizing the air compression
rate to help foot-fall patients.

Studies have shown that the range of motion (ROM) of the ankle valgus is highly
correlated with walking stability [45]. The ankle valgus maintains the center of pressure
(COP) of the supporting foot and prevents the body from tilting to one side. Specifically,
when the body is tilted, the misalignment between the projection of the center of gravity
and the COP causes the tilting moment, and the subtalar joint could be rotated around
the front surface to maintain the balance of the body. This move, known as the foot tilting
strategy (FTS), produces stabilizing moments and returns the unstable body to a balanced
position. Most studies of AAFOs have focused on sagittal motion, and they are useful
in assisting with dorsiflexion, but not in valgus ROM. Choi et al. [46] designed a 2-DOF
(degree of freedom) AFO by simulating the ankle joint and subtalar joint, and verified the
performance of artificial pneumatic muscles used for balance training.

As demonstrated in Table 3, AAFOs and SAFOs have obvious differences in the way
of providing walking assistance. SAFOs commonly use spring clutches, elastic actuators,
and MR fluid as brakes. They provide assistance for walking by changing the stiffness of
the ankle joint or recovering energy instead of providing assistance for plantarflexion and
dorsiflexion directly. AAFOs usually use pneumatic artificial muscles, mechanical electric
drives, and hydraulic methods to provide the torque of plantarflexion and dorsiflexion
for human walking directly. The weight gradually decreases as a split design is usually
applied to reduce the load-bearing of the ankle joint.

Table 3. Comparison of AAFOs in mass and effect.

Author Motion Control Elements Mass Effect Ref.

Neubauer, B Hydraulic boost 1 Kg at the ankle, 4.5 Kg at the
Waist Maximum 60 N·m auxiliary torque [32]

Ferris, D Artificial Pneumatic Muscle Total weight 1.7 Kg 64% reduction in peak plantarflexion torque
and 23% increase in peak dorsiflexion torque [35]

Cain, S Artificial Pneumatic Muscle —— 53% reduction in peak plantarflexion torque [36]

Shorter, K Bidirectional pneumatic rotary
actuator

1.9 Kg at the ankle, total weight
3.1 Kg Provides 9 N·m plantarflexion torque [38]

Noel, M Electro-hydraulic system Total weight 1.7 Kg Provide 20 N·m auxiliary torque [43]

Kim, S Pneumatic components 0.5 Kg at the ankle, total weight
2.6 Kg Provide 9.8 N·m plantarflexion torque [44]

Choi, H Artificial Pneumatic Muscle 1.44 Kg at the ankle, total weight
2.14 Kg —— [46]

3. Discussion

The motion control units and potential effects of the discussed three types of AFOs are
shown in Tables 1–3. PAFOs are widely applied in the field of ankle and foot rehabilitation
because of their simple structural design and production process. However, PNAAFOs
limit the movement of the ankle joint and are more effective in fixing the ankle and
providing support for patients to walk, which have limitations when applied. Compared
with non-articulating orthoses, articulated ankle–foot orthoses can adjust ankle stiffness by
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controlling springs, oil dampers, and magnetorheological fluid brakes, further improving
biomechanics and promoting patient recovery. SAFOs and AAFOs can directly or indirectly
assist patients in walking through electronic control systems, and they have advantages in
improving walking ability and reducing walking energy consumption.

The development of orthoses, on the basis of the above-summarized structures and
efforts, draws more attention to the integration with other rehabilitation technologies
such as FES technology. Another development trend is as a part of walking assistance
devices which are used for the study of walking ability and walking EC in human-in-the-
loop models, and to explore new motion control strategies to further promote the motion
recovery of single and multi-joint lower limbs.

3.1. Combined Study of AFOs and FES

For individuals with stroke or hemiplegia, walking ability is one of the most important
indicators to evaluate the recovery of motor function. During the rehabilitation process,
the joint movement pattern of the extensor muscles may cause abnormal gait such as foot
drop, which affects walking efficiency and increases the risk of falling [47]. Studies have
shown that the combination of AFOs and FES has a better effect on foot drop caused by
upper motor neuron palsy, by installing electrodes locally on the AFOs and applying FES
during walking. During this process, AFOs can control the joint mobility of the ankle
joint to a certain extent, which helps to improve walking stability, while it may limit the
plantarflexion of the ankle joint when the foot is off the ground and affect the walking
speed [48,49]. FES can enhance the input stimulation of nerves and accelerate the estab-
lishment of cerebral collateral circulation without affecting the ankle plantarflexion when
off the ground, which promotes the establishment of normal movement patterns [50,51].
The establishment of cerebral collateral circulation could reflect the rehabilitation status
of patients with cerebral palsy. Early ankle dorsiflexion training and toe stimulation of
peripheral sensory muscles can regulate the excitability of neurons in the neural reflex
circuit, as well as promote the establishment of ankle dorsiflexion muscle responses. These
rehabilitation strategies can improve the contractile load and muscle tension of related
muscle groups and inhibit pathological gait such as foot drop [52].

Pagnussat et al. [53] assessed the effect of FES on the peroneal nerve on walking
speed, ankle dorsiflexion range of motion, balance, and functional range of motion. Re-
sults showed that FES could improve ankle dorsiflexion, balance, and functional mobility.
Nevisipour’s team [54] investigated: (1) the underlying biomechanical mechanisms of falls
in chronic stroke patients using AFOs and FES for a long time; (2) the effects of AFOs
and FES devices on the occurrence of falls in chronic stroke patients. The results showed
that the AFOs/FES devices had a positive effect on static balance (balance ability during
static motion) and could reduce the occurrence of falling events. It is necessary to explore
methods and devices to enhance the establishment of dynamic balance (balance ability
during dynamic motion) in the future. Khaghani’s team [55] compared the improvement of
balance and walking ability in patients with multiple sclerosis (MS), a chronic progressive
nervous disorder, by using FES alone and FES combined with AFOs. The results showed
that under the condition of the AFOs equipped with the FES system, the patient’s postural
response when walking back and forth was better than that of the FES system alone. In their
study, only PNAAFO is used, while PAAFO, SAFO, and AAFO are expected to show better
results in comparative studies in terms of rehabilitation.

Some other researchers focused on comparing the effects of AFOs and FES as separate
rehabilitation methods on the establishment of static and dynamic balance, and comparing
the advantages and disadvantages of the two methods in reducing walking EC and improv-
ing walking ability [56,57]. There was also research comparing the improvement of walking
ability between FES alone and FES with PNAAFO, and the preliminary results verified
that the fusion of the above two technologies could help improve the rehabilitation effect.
However, there is still a lack of assessment and discussion on how FES and AFOs can be
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integrated, and the exploration of the sequence and method of FES application still needs
to be further developed to reduce the occurrence of falls caused by long-term use [54].

3.2. Research on AFOs in Human in the Loop

In recent years, AFOs have played an important role in the study of human-in-the-loop
control strategies. Prof. Collins’ team [58] designed an underactuated ankle exoskeleton.
The device used a spring to simulate the Achilles tendon of the human body, which
realized the energy storage and release at each stage of the human walking process and
reduced the walking EC by 7.2%. Based on the idea of human in the loop, the assist
torque was corrected through EC detection, and the target ankle joint assist curve was
parameterized. By detecting the metabolic consumption of the human body, their team
used the covariance matrix adaptive evolution strategy to adjust the parameters of the assist
curve and iteratively generate the optimal assist curve, so that the metabolic consumption
of the human body under the assistance of the exoskeleton was the lowest. The metabolic
consumption was 24.2 ± 7.4% lower than that of the zero assist torque. Zhang’s team [59]
presented 10 kinds of ankle walking-assist exoskeleton assist curves, and used the particle
swarm algorithm to solve a set of optimal weight coefficient combinations of the activation
degrees of different muscles as an evaluation function of the human in the loop.

The related research results showed that the use of the new evaluation function to
optimize the power assist curve in the loop control of the human body could further
reduce the degree of muscle activation during walking. Zachary’s team designed a real-
time adaptive ankle exoskeleton controller capable of accurately assisting in a variety
of walking conditions without the need for walking condition classification or real-time
assessment of muscle activity, which provided the foundation for the application of AAFO
in free-living situation [60]. However, the muscle coordination mode of the human body
during walking can be changed to a certain extent affected by AFO, and then result in the
compensatory phenomenon of some muscle groups. It is necessary for researchers to further
study the theory of physical–physiological integration of human–computer interaction [61].
The problem of how to reasonably select the activation degree and weight of the lower limb
muscles is still unsolved. A strategy that ensures the optimal labor saving achieved under
the condition of AFOs assistance and maintains the original muscle coordination mode as
much as possible should be studied in future work. To conclude, firstly, there are a series of
studies focusing on how to map kinematics or kinetics parameters such as joint angles and
torques from ‘superior’ bio-parameters such as located EEG signals and muscle synergies.
These ‘superior’ bio-parameters can be obtained by a series of processing methods, such
as blind source separation methods and over complete dictionary methods on collected
EEG signals and sEMG signals to obtain sparsity features or features in other domains for
data dimension reduction or a more accurate and robust mapping result. These features
contain physiological factors so that, on one hand, they have a better real-time ability and a
more compliant man-machine control strategy. On the other hand, they are closer to the
physiological background of motion control strategies so they are normally appropriate for
research on neural rehabilitation. Secondly, energy consumption during human activities
such as walking has been fully researched in recent years. However, energy consumption
relies on real-time dynamics gas component analysis techniques and devices which are
commonly difficult to be used in real environments. More convenient energy consumption
evaluation methods need to be further researched in the future.

4. Conclusions

In conclusion, this paper reviews the recent literature on the innovative design of
AFOs, and discusses the development of PAFOs, SAFOs, and AAFOs. PAFOs have attracted
attention since the 1980s and scholars have studied continuous designs for the shape and
ankle joint styles of AFOs. With the advancement of clinical rehabilitation technology and
the in-depth study of human walking gait, the further development of AFOs has been
promoted from shape and style to material properties and muscle group responses. SAFOs
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and AAFOs have been studied since the early 21st century. Scholars focused on how to
reduce the weight of the overall device and increase the portability and wearing experience
of the device through different technical methods firstly, and then mainly focus on the
role in the field of rehabilitation recently. In addition, it is also important to pay attention
to the impact of joint movements other than the ankle so as to provide a new way for
clinical rehabilitation training. However, the fundamental research on AFOs is still facing
problems such as most experiments on AFOs focusing on the motion angle of the ankle
joint, the moment of plantarflexion, and dorsiflexion while the muscle state and in-depth
physiological indicators are rarely assessed accurately. Some studies have carried out
experiments on the combination of AFOs, botulinum toxin, and FES while most of them
are mechanical combinations, and the discussions on the mechanism are rare. In order to
achieve smooth and labor-saving walking assistance, it is urgent to focus on breakthroughs
in the AFOs elastic drive design and human-in-the-loop assist control technology to carry
out theoretical research on the integration of human–computer interaction and physics–
physiology integration theory. In addition to studying detailed materials and mechanical
properties, innovative AFOs also need to be combined with other clinical rehabilitation
methods to provide new ideas and methods for patient rehabilitation.
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The following abbreviations are used in this manuscript:

AO Ankle osteoarthritis
AFO Ankle–foot orthosis
FES Functional electrical stimulation
EC Energy consumption
PAFO Passive ankle–foot orthosis
SAFO Semi-active ankle–foot orthosis
AAFO Active ankle–foot orthosis
PNAAFO Passive non-articulating ankle–foot orthosis
PAAFO Passive articulating ankle–foot orthosis
ROM Range of motion
COP Center of pressure
FTS Foot tilting strategy
DOF Degree of freedom
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