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Introduction

Prof. Csaba Asszonyi, D.Sc. (1941–2022): The present Special Issue is dedicated to
the memory of our beloved, respected friend, colleague and teacher, the late Professor
Csaba Asszonyi.

The research field of professor Asszonyi was continuum mechanics and irreversible
thermodynamics. He played a pioneering role in establishing the thermodynamical back-
ground of rock rheology and engineering rock mechanics. He was educated as a mechanical
engineer, started his career as research engineer, and then performed coordinated mining
research in Hungary. Later on, he went into the industry and became a company group
leader. Seventeen years ago, he established the Montavid Thermodynamic Research Group.

His thinking focused on thermodynamic concepts, connecting an application-oriented,
engineering attitude with deep theoretical ideas. He developed several industrial appli-
cations of thermodynamic rheology. His contributions included the extension of linear
viscoelasticity with internal variables and the unification of classical rheological bodies in a
thermodynamic framework. He was the author of more than two hundred articles, dozens
of patents, and ten books. He refused honours and distinctions, and only at the end of his
life became the honorary president of the Society for the Unity of Science and Technology.

The Special Issue “Mathematical Aspects in Non-equilibrium Thermodynamics” con-
sists of five original research papers. Although the current topic has a long history, there
are still numerous open questions regarding the structure of evolution equations, the corre-
sponding thermodynamically compatible initial and boundary conditions, and also their
relation to experimental and practical aspects. These five papers actually cover various
recent and relevant topics such as optimization, finite time thermodynamics, the role of the
second law in continuum physics, multi-component mixtures, and boundary conditions.
We hope that this Special Issue will be able to play a role in further progress to come in
the future.

In the paper “The Role of the Second Law of Thermodynamics in Continuum Physics:
A Muschik and Ehrentraut Theorem Revisited” by V. A. Cimmelli and P. Rogolino [1],
the authors revisited the second law of thermodynamics and how the entropy inequality
plays a crucial role in the derivation of evolution equations, also providing local and
global formulations of the second law. The classical results of Muschik and Ehrentraut are
reformulated in the present modern mathematical context of second law, thus highlighting
a few geometric aspects as an outcome. They also emphasized that the non-equilibrium
concept of temperature and entropy far from equilibrium is not necessarily identical to the
one close to equilibrium, and how these notions need further investigation.

The paper “Integrability of the Multi-Species TASEP with Species-Dependent Rates”,
written by Eunghyun Lee [2], is related to totally asymmetrical simple exclusion processes; it

Symmetry 2023, 15, 929. https://doi.org/10.3390/sym15040929 https://www.mdpi.com/journal/symmetry1
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was shown that the Bethe ansatz method is applicable to processes in the present N-particle
mixtures with species-dependent rates, providing transition probabilities for all possible
compositions of species. Despite the limitations detailed in [2], this study serves as a basis
for future investigation to see if the methods can be used to study the species inhomogeneity
of other multi-species models.

In the paper “Shock Structure and Relaxation in the Multi-Component Mixture of Euler
Fluids” by Madjarevic et al. [3], an important benchmark study related to shock structures
is presented. Here, the authors utilized a multi-component mixture of Euler fluids, whose
evolution equations possess a hyperbolic structure, originating from extended thermody-
namics. The present study is concerned with a three-component mixture of polyatomic
gases inheriting the kinetic theory formulation for the phenomenological coefficients. The
the quantitative characteristics of the shock profiles, such as the temperature overshoot,
the shock thickness, and the resulting relaxation times were investigated, thus providing a
deeper insight into a complex, coupled phenomenon.

The paper “Cyclic Control Optimization Algorithm for Stirling Engines” by Raphael
Paul and Karl Heinz Hoffmann [4] deals with an optimization problem related to non-
equilibrium Stirling engines. The authors focused their attention on the optimization of
both the power and efficiency, using an indirect iterative gradient algorithm. The problem
formulation led to a particular Hamiltonian system, describing attractive and repulsive
limit cycles, with periodic boundary conditions. They provided detailed insight into the
problem formulation and optimization algorithm, and therefore their results are of high
importance in dealing with similar optimization tasks for other thermodynamic cycles.

The last paper of the present Special Issue, titled “Recent Advances on Boundary Con-
ditions for Equations in Nonequilibrium Thermodynamics” [5], is written by Wen-An Yong
and Yizhou Zhou. They focused on linearized systems obeying the hyperbolic structure
originating from extended thermodynamics and reviewed the possible (proper) boundary
conditions in the light of uniform and generalized Kreiss conditions. The structural stability
of the studied PDEs was also satisfied. As these conditions are strongly related to the
suitability of hyperbolic equations, the present results could serve as a future basis for the
comparison of various thermodynamic approaches and provide hints to extend the present
formalism to nonlinear problems.

Acknowledgments: We would like to express our gratitude to the Editorial Board of Symmetry for
they helpful attitude and also to the Authors who made this Special Issue successful.

Conflicts of Interest: The authors declare no conflict of interest.
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Article

The Role of the Second Law of Thermodynamics in Continuum
Physics: A Muschik and Ehrentraut Theorem Revisited

Vito Antonio Cimmelli 1,*,† and Patrizia Rogolino 2,†

1 Department of Mathematics, Computer Science and Economics, University of Basilicata, Viale dell’Ateneo
Lucano n. 10, 85100 Potenza, Italy

2 Department of Mathematical and Computer Sciences, Physical Sciences and Earth Sciences,
University of Messina, Viale F. Stagno d’Alcontres, 31, 98166 Messina, Italy; progolino@unime.it

* Correspondence: vito.cimmelli@unibas.it
† These authors contributed equally to this work.

Abstract: In continuum physics, constitutive equations model the material properties of physical
systems. In those equations, material symmetry is taken into account by applying suitable representa-
tion theorems for symmetric and/or isotropic functions. Such mathematical representations must be
in accordance with the second law of thermodynamics, which imposes that, in any thermodynamic
process, the entropy production must be nonnegative. This requirement is fulfilled by assigning the
constitutive equations in a form that guaranties that second law of thermodynamics is satisfied along
arbitrary processes. Such an approach, in practice regards the second law of thermodynamics as
a restriction on the constitutive equations, which must guarantee that any solution of the balance
laws also satisfy the entropy inequality. This is a useful operative assumption, but not a consequence
of general physical laws. Indeed, a different point of view, which regards the second law of ther-
modynamics as a restriction on the thermodynamic processes, i.e., on the solutions of the system
of balance laws, is possible. This is tantamount to assuming that there are solutions of the balance
laws that satisfy the entropy inequality, and solutions that do not satisfy it. In order to decide what
is the correct approach, Muschik and Ehrentraut in 1996, postulated an amendment to the second
law, which makes explicit the evident (but rather hidden) assumption that, in any point of the body,
the entropy production is zero if, and only if, this point is a thermodynamic equilibrium. Then they
proved that, given the amendment, the second law of thermodynamics is necessarily a restriction on
the constitutive equations and not on the thermodynamic processes. In the present paper, we revisit
their proof, lighting up some geometric aspects that were hidden in therein. Moreover, we propose
an alternative formulation of the second law of thermodynamics, which incorporates the amendment.
In this way we make this important result more intuitive and easily accessible to a wider audience.

Keywords: second law of thermodynamics; dissipation principle; state space; balance laws;
entropy inequality

1. Introduction

Let B be a continuous body undergoing a thermomechanical transformation, whose
evolution in the spacetime is ruled by the system of balance laws

Uβ,t + Uβ,jvj + Φβ
k,k = rβ, β = 1 . . . ω, (1)

with vj as the components of the velocity field on B entering the total time derivative,

Φβ
k as the components of the flux of Uβ, and rβ as the production of Uβ (for the sake of

simplicity, we assume that the supplies are zero). Moreover, the symbols f,t and f,j mean
the partial derivatives of function f with respect to time and to the spatial coordinate xj,
j = 1, 2, 3, respectively.

Symmetry 2022, 14, 763. https://doi.org/10.3390/sym14040763 https://www.mdpi.com/journal/symmetry3
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For instance, in classical rational thermodynamics, Equation (1) is the balance of mass,
linear momentum, angular momentum, and energy [1,2],

ρ,t + ρ,ivi + ρvj,j = 0, (2)

ρvi,t + ρvi,jvj − Tij,j = ρbi, (3)

Tij = Tji, (4)

ρε ,t + ρε ,jvj − Tijvi,j + qj,j = ρr, (5)

where ρ denotes the mass density, ε the specific internal energy, r the energy supply, vi,
qi, and bi the components of velocity, heat flux, and body force, respectively, and Tij are
the components of the Cauchy stress [1,2], while in the extended non-equilibrium ther-
modynamic theories, taking the fluxes as independent variables, the set of field equations
includes the balance laws for the independent fluxes [3–7].

We suppose that the fields Uβ, the fluxes Φβ
k , and the productions rβ depend on ω

unknown fields zα(xj, t) and on their spatial derivatives zα,j(xj, t). Then, suitable consti-
tutive equations must be assigned for them. Such equations must account for material
symmetry, namely, the invariance of certain physical properties with respect to a group of
coordinate transformations (symmetry group). Thus, suitable representation theorems for
symmetric and/or isotropic functions must be applied [8]. Through the constitutive equa-
tions, material symmetry reflects itself in the Equation (1) field, which inherit from them
particular mathematical properties. Meaningful examples of such reciprocal influences are
illustrated in [9], where some important equations of continuum physics are studied by
the Lie symmetry analysis of differential equations. On the other hand, the mathematical
representation of material symmetry cannot neglect the constraint dictated by the second
law of thermodynamics, which imposes the local entropy production

σ(s) = ρs,t + ρs,jvj + Jk,k − ρ(r/ϑ), (6)

where s is the specific entropy, Jk are the components of the entropy flux, and ϑ the absolute
temperature, are nonnegative, namely,

σ(s) ≥ 0, (7)

whatever the thermodynamic process is [1,2]. Indeed, the unilateral differential con-
straint (7) can be interpreted either as a restriction on the solutions of Equation (1), or as a
restriction on the constitutive equations that characterize the fields Uβ, Φβ

k , rβ, s, and Jk. In
the first case, it leads to the following assumption:

Assumption 1. Among the mathematical solutions of Equation (1), we must find those that are
physically realizable by substituting them into the Inequality (7) and checking the sign.

In the second case, instead, it leads to a different assumption, namely:

Assumption 2. The constitutive equations for Uβ, Φβ
k , rβ, s, and Jk must be assigned in such a

way that the constraint (7) is satisfied along arbitrary thermodynamic processes.

Modern constitutive theories of continuum thermodynamics are based on the second
statement, which was formulated for the first time by Coleman and Noll [1] in 1963, and is
universally known as the entropy (or dissipation) principle [10]. On the other hand, since
the determination of solutions of Equation (1) is, in general, very difficult, the Coleman–
Noll approach is the most convenient one used for determining the consequences of the
second law. Two rigorous mathematical procedures for analyzing the restrictions dictated
by the second law on the constitutive equations are based on such an assumption, namely,
the Coleman–Noll and Liu procedures [1,11,12].

4
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In order to investigate if the entropy principle, as formulated by Coleman and Noll,
is just an operative assumption or a consequence of a general physical law, Muschik and
Ehrentraut in 1996 proved their celebrated theorem in [13], which we revisit here within
a geometric perspective. Since the theorem has a complex mathematical formulation,
herein we limit ourselves to provide a sketch of the result, referring the reader to refer-
ence [13] for details. Their starting point is the following concept of equilibrium for a
thermodynamic system.

A thermodynamic system is said to be in equilibrium (stable or metastable), if isolation
of the system from its environment does not affect the observables of the system (or in
other words, if the state of the isolated system is the same as the state of the system prior
to insulation).

Then, they define the process direction vectors as those vectors that are tangent to the
curve representative of a process in the state space. Moreover, they show that in a fixed
point of such a curve, the entropy production is linear in the process direction vectors yα.
The vectors yα are said irreversible, if σ(s)(yα) > 0, reversible, if σ(s)(yα) = 0, non-real,
if σ(s)(yα) < 0. In particular, a vector yα such that σ(s)(yα) = 0, is called the reversible
process direction.

At this point, Muschik and Ehrentraut prove their fundamental.

Proposition 1. If in a point of non-equilibrium of the curve representative of the process in the
state space there exist both irreversible and non-real process directions, then, in that point, it is
possible to obtain a reversible process direction as a linear combination of the latter.

Such a result is unphysical, since in a non-equilibrium point the entropy production
can be zero. In order to overcome such a discrepancy, Muschik and Ehrentraut add to
the classical formulation of the second law, represented by the Inequality (7), the follow-
ing amendment.

Except in equilibria, reversible process directions in state space do not exist.

The consequences of the amendment are severe, because it implies that, in a given
point, the process directions are either all irreversible (or reversible, in the limit of quasi-
static transformation), or all non-real. On the other hand, since non-real process directions
do not exist in nature, we must choose the first option. As a consequence, non-real process
directions that must be excluded by the second law do not exist. Moreover, since the point
on the curve of the process is arbitrary, we are led to conclude that there are no non-real
thermodynamic processes to be forbidden by the second law and, hence, the last necessarily
restricts the constitutive equations and not the thermodynamic processes. In this way, the
classical Coleman–Noll approach follows by a rigorous proof.

It is worth observing that Proposition 1 and its consequences are not aimed at giving
more deep physical insight on some basic concepts of thermodynamics, such as equilibrium
and reversibility, since in [13] those concepts are the classical ones. Indeed, Proposition 1
aims at answering the following question, which is fundamental from the methodological
point of view: is the Coleman–Noll interpretation of the second law, as a constraint on the
constitutive equations, a mathematical consequence of the basic laws of thermodynamics
or an additional operative assumption that does not follow from those laws? The answer,
given by Proposition 1, is that such an interpretation is a consequence of the second law,
provided the amendment is postulated. In the absence of the amendment, the Coleman–
Noll approach would be an arbitrary assumption and, hence, it could be questioned. The
present paper is motivated by the observation that the important result illustrated above
can be put in a more general and accessible form within a geometric framework. To
achieve that task, we use the results in references [14,15], where a geometric perspective
on non-equilibrium thermodynamics has been given. The chosen state space is different
with respect to that considered reference [13], because we do not include in it the time
derivatives. In this way, the constitutive equations we deal with are suitable to satisfy the

5
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principle of material indifference [2]. After defining the space of the higher derivatives, we
introduce the definitions of the real, ideal, and over-ideal vector of the higher derivatives.
For thermodynamic processes, we give the definitions of irreversible, reversible, and
over-reversible process, by analyzing the properties of its representative curve in the
fiber bundle of the configuration spaces. Once the geometric framework is complete, we
reformulate the second law of thermodynamics, both locally and globally, in space and
time, in order to encompass the amendment. In this way, we are able to prove a new
formulation of the Muschik and Ehrentraut theorem. In the discussion in Section 5, we
highlight some of the main advantages of the geometric approach presented here. We
underline that our generalized formulation of the second law seems to be more adapt for
some recent thermodynamic theories that analyze real transformations, which occur in a
finite time, and not by quasi-static transformations, which require an infinite time to be
realized [16–18]. Moreover, we will see that the use of the fiber bundle allows to provide, in a
very intuitive manner, the mathematical definition of reversible and irreversible processes,
and to generalize, in a natural way, local results to global ones. Finally, our approach
leads to a physically sound interpretation of the principle of local equilibrium [19], which
provides the theoretical justification of the definition of entropy and temperature outside
the equilibrium.

The paper runs as follows.
In Section 2, we construct a new thermodynamic framework for non-equilibrium

processes. In Section 3, we present a new formulation, both locally and globally, of the
second law of thermodynamics. In Section 4, we prove the Muschik and Ehrentraut
theorem. In Section 5, we discuss our results and present some open problems that will be
considered in future research.

2. The Thermodynamic Framework

In this section, we construct a geometric framework where our main results can be
formulated. To this end, we begin by providing some basic definitions.

Definition 1. The space Ct of the configurations at the instant t is represented by a ω-dimensional
vector space spanned by the solutions zα(xj, t) of Equation (1) with a structure of a finite-
dimensional manifold.

We assume that the total configuration space is given by the disjointed union

C =
⋃

t∈[0, ∞]

{t} × Ct, (8)

with a given natural structure of a fiber bundle over the real line R where time flows [14,15].

Definition 2. C is called the configuration bundle.

Under the natural assumption that Ct does not vary in time, namely, Ct = C ∀t, then
C has the topology of the Cartesian product

C = R× C. (9)

Definition 3. A vector valued function π : t ∈ [τ0, τ0 + τ] ⊆ R → zα(xj, t) ∈ C is said to be
a thermodynamic process π of duration τ. Moreover, π = π(t) is the parametric equation of the
curve Γ representative of π in C.

Definition 4. For t0 ∈ [τ0, τ0 + τ], a vector valued function p : t ∈ [t0, τ0 + τ] ⊆ R →
zα(xj, t) ∈ C is said to be a restricted thermodynamic process p of initial point t0 and dura-
tion τ0 + τ − t0, reference [14]. Moreover, p = p(t) is the parametric equation of the curve γ
representative of p in C.

6
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Remark 1. For t0 = τ0 we have p(t) = π(t), for t0 = τ0 + τ, p(t) is the process of duration 0,
i.e., the null process.

As said in Section 2, in order to find the fields zα(xj, t), i.e., to solve the system (1),
for the quantities Uβ, Φα

k and rα constitutive equations must be assigned on a suitable
state space.

Definition 5. The 4ω-dimensional vector space with the structure of a finite-dimensional manifold

Σt =
{

zα(xj, t), zα,j(xj, t)
}

. (10)

for any value of the time variable t, it represents a local in the time state space and it is called state
space at the instant t.

Definition 6. The disjoint union

S =
⋃

t∈[0, ∞]

{t} × Σt, (11)

with a given natural structure of a fiber bundle over the real line R where time flows, it represents
the total configuration space and it is said to be the thermodynamic bundle.

Again, under the natural assumption that Σt does not vary in time, namely, Σt = Σ ∀t,
then S has the topology of the Cartesian product

S = R× Σ. (12)

Of course,
Ct ⊂ Σt, C ⊂ S . (13)

The balance Equation (1) on the local in time state space Σt reads

∂Uβ

∂zα
zα,t +

∂Uβ

∂zα,j
zα,jt +

∂Uβ

∂zα
zα,jvj +

∂Uβ

∂zα,k
zα,kjvj +

∂Φβ
k

∂zα
zα,k +

∂Φβ
k

∂zα,j
zα,jk = rβ. (14)

In Equation (14), we may individuate the 10ω higher derivatives
{

zα,t, zα,jt, zα,jk

}
,

which are the space and time derivatives of the elements of Σt.

Definition 7. The local in time 10ω-dimensional vector space

Ht =
{

zα,t(xj, t), zα,jt(xj, t), zα,jk(xj, t)
}

, (15)

and the fiber bundle
H =

⋃
t∈[0, ∞]

{t} × Ht. (16)

represent the space of the higher derivatives at time t and its fiber bundle, respectively.

Definition 8. A point P ∈ B is said to be in a state of equilibrium at the instant t, if

zα,t(P, t) + zα,j(P, t)vj = 0 ∀ t,

and
zα,jt(P, t) + zα,jk(P, t)vk = 0 ∀ t.

The Definition 8 leads to

7
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Definition 9. The equilibrium subspace of Ht and its fiber bundle are given by

Êt =
{

zα,jk(xj, t)
}

, (17)

and
Ê =

⋃
t∈[0, ∞]

{t} × Êt. (18)

Analogously, the entropy inequality on the state space reads

ρ
∂s

∂zα
zα,t + ρ

∂s
∂zα,j

zα,jt + ρ
∂s

∂zα
zα,jvj + ρ

∂s
∂zα,k

zα,kjvj +
∂Jk
∂zα

zα,k +
∂Jk

∂zα,j
zα,jk ≥ 0. (19)

Definition 10. The local in time 10ω-dimensional vector space at time t

Wt =
{

zα,t(xj, t), zα,jt(xj, t), zα,jk(xj, t)
}

, (20)

and the fiber bundle
W =

⋃
t∈[0, ∞]

{t} × Wt. (21)

define the vector space and the fiber bundle of the higher derivatives, respectively, whose state vectors
satisfy the entropy inequality. Moreover, the equilibrium subspace of Wt and its fiber bundle are
given by

Et =
{

zα,jk(xj, t)
}

, (22)

and
E =

⋃
t∈[0, ∞]

{t} × Et. (23)

Remark 2. We defined two different spaces of the higher derivatives, one for the balance equations
and another for the entropy inequality, related to the fundamental focus of the present investigation,
namely, to determine the conditions, if any, under which all of the solutions of the balance laws are
also solutions of the entropy inequality. This will be discussed in detail in the next section.

The relations in Equations (14) and (19) can be arranged as follows

∂Uβ

∂zα
zα,t +

∂Uβ

∂zα,j
zα,jt +

⎛
⎝ ∂Uβ

∂zα,k
vj +

∂Φβ
j

∂zα,k

⎞
⎠zα,kj = rβ −

∂Uβ

∂zα
zα,jvj −

∂Φβ
j

∂zα
zα,j. (24)

ρ
∂s

∂zα
zα,t + ρ

∂s
∂zα,j

zα,jt +

(
ρ

∂s
∂zα,k

vi +
∂Ji

∂zα,k

)
zα,ki ≥ −ρ

∂s
∂zα

zα,jvj −
∂Ji
∂zα

zα,i. (25)

Let us now define the 10ω × 1 column vector function

yα ≡
(

zα,t, zα,jt, zα,kj

)T
, (26)

the ω × 1 column vector

Cβ ≡ rβ −
∂Uβ

∂zα
zα,jvj −

∂Φβ
j

∂zα
zα,j, β = 1 . . . ω, (27)

8
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and the ω × 10ω matrix

Aβα ≡

⎡
⎣∂Uβ

∂zα
,

∂Uβ

∂zα,j
,

⎛
⎝ ∂Uβ

∂zα,k
vj +

∂Φβ
j

∂zα,k

⎞
⎠
⎤
⎦, j, k = 1, 2, 3, (28)

with Cβ and Aβα defined on S . In this way, the balance Equation (24) can be rearranged as

Aβα(S)yα = Cβ(S). (29)

Analogously, after defining the 10ω × 1 column vector function

Bα(S) ≡
(

ρ
∂s

∂zα
, ρ

∂s
∂zα,j

,
(

ρ
∂s

∂zα,k
vi +

∂Ji
∂zα,k

))T

, (30)

and the scalar function
D(S) ≡ −ρ

∂s
∂zα

zα,jvj −
∂Ji
∂zα

zα,i, (31)

we can write the Inequality (25) as

Bα(S)yα ≥ D(S). (32)

Remark 3. It is worth observing that the higher derivatives entering the system (29) are elements
of Ht, while those entering the Inequality (32) are elements of Wt.

From now on, we pursue our analysis under the hypothesis that B occupies the whole
space. Then, for arbitrary t0 ∈ [τ0, τ0 + τ], we consider the restricted process p of the initial
instant t0 and duration τ0 + τ − t0, and suppose that it corresponds to the solution of the
Cauchy problem for the system (29) with initial conditions

zα(xj, t0) = zα 0(xj), ∀P ∈ C. (33)

If Aβα and Cβ are regular, and Aβα is invertible, the theorem of Cauchy–Kovalevskaya
ensures that the Cauchy problem (29) and (33) has a unique solution continuously depend-
ing on the initial data (33), reference [20]. However, such a solution does not necessarily
correspond to a thermodynamic process that is physically realizable, since the physically
admissible solutions of (29) and (33) are only those solutions, which additionally satisfy
the unilateral differential constraint (32). On the other hand, the problems (29) and (33) are
very difficult to solve, in general, so that finding a solution, and verifying ex post if it also
satisfies (32), does not seem to be a convenient procedure. For that reason, Coleman and
Noll [1] in 1963 postulated the constitutive principle referred in Section 2, reference [10]. It
is important to investigate if the Coleman and Noll postulate is a consequence of a general
physical law or an arbitrary, although very useful, assumption, as observed by Muschik
and Ehrentraut [13]. Such a study will be carried out in the following sections.

3. Local and Global Formulations of the Second Law of Thermodynamics

Let us consider now a fixed point P0 ∈ B whose vector position will be indicated by
x0, a fixed instant of time t0 ∈ [τ0, τ0 + τ]. We note that, whatever is t0, it can can ever
be considered as the initial time of a restricted process of duration τ0 + τ − t0. Moreover,
let Σ0, H0, and E0 the vector spaces Σt(P0, t0), Ht(P0, t0), and Et(P0, t0). When evaluated
in (P0, t0), the balance Equation (29) and the entropy Inequality (32) transform in the
algebraic relations:

Aβα(Σ0)yα = Cβ(Σ0), (34)

Bα(Σ0)yα ≥ D(Σ0). (35)

9
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In this way, we can regard the ω × 10ω matrix Aβα(Σ0) as a linear morphism from
H0 to the ω-dimensional Euclidean vector space defined on Σ0. Analogously, the vector
Bα(Σ0) can be regarded as a linear application from H0 in R, so that Bα(Σ0) belongs to the
dual space H∗

0 of H0. It is worth observing that, since Aβα is supposed to be invertible
(otherwise the Cauchy problem (29) and (33) would not admit a unique solution), the
algebraic relations (34) allow to determine ω of the 10ω components of yα. Moreover, by
spatial derivation of the initial conditions (33), we have

zα,jk(xj, t0) = zα 0,jk(xj), (36)

which, once evaluated in P0, allow to determine 6ω components of yα. It is worth observing
that, since the initial conditions can be assigned arbitrarily, such 6ω quantities can assume
arbitrary values. Moreover, there are further 3ω components of the vector yα that remain
completely arbitrary, since the system (34) and the initial relations (36) allow to determine
only 7ω of the 10ω components of yα. It is not guaranteed that the Inequality (35) is satisfied
whatever is yα ∈ H0. Thus, we define the space W0 ⊆ H0 constituted by the vectors of H0,
which satisfy both Equation (34) and the Inequality (35).

Remark 4. It is worth observing that, although it is not guaranteed that the Inequality (35) is
satisfied, whatever is yα ∈ H0, at this stage, we do not have elements to exclude such a possibility.
In other words, we do not have elements to decide if, actually, W0 is a proper subspace of H0 or if it
coincides with H0.

In order to decide if W0 ⊂ H0, or W0 = H0, we follow the way paved by Muschik
and Ehrentraut [13], who observed that such a decision cannot be ensued solely by the
second law of thermodynamics, because such a law does not contain information regarding
Equation (34) or the initial conditions (36). In order to fill this gap, Muschik and Ehrentraut
completed the information contained in the Inequality (35) by an amendment that clarifies
how the reversible transformations can be realized from the operative point of view. Here,
we followed their strategy, but we propose a more general approach that includes the
amendment into a new formulation of the second law. To achieve that task, we needed
some preliminary definitions. To this end, we observed that, in the real world, reversible
thermodynamic transformations do not exist, but they are approximated by very slow
(quasi-static) transformations in which, in any point P0 ∈ B, the system is close to the
thermodynamic equilibrium. From an ideal point of view, a quasi-static transformation
requires an infinite time to occur, and in any point of the system, the value of the state
variable is constant in time.

Remark 5. Alternative formulations of the thermodynamic laws that consider realistic transforma-
tions occurring in a finite time are proposed within the framework of finite time
thermodynamics [16–18].

As far as the thermodynamic framework is concerned, if B undergoes a quasi-static
transformation, along with Muschik and Ehrentraut [13], we say that, in any point (P0, t0),
the vectors of the higher derivatives are elements of E0. Such an observation suggests the
following definitions.

Definition 11. A vector yα ∈ H0 is said:

• Real, if it satisfies the relation Bα(Σ0)yα > D(Σ0);

• Ideal, if it satisfies the relation Bα(Σ0)yα = D(Σ0);

• Over-ideal, if it satisfies the relation Bα(Σ0)yα < D(Σ0).

We can establish the following, owing to the definitions above:

10
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Postulate 1 (A local formulation of the second law of thermodynamics). Let B be a body,
and let the couple (P0, t0) represent an arbitrary point of B at an arbitrary instant t0 ∈ [τ0, τ0 + τ].
Suppose B undergoes an arbitrary thermodynamic process of initial instant t0 and duration
τ0 + τ − t0. Then, the local space of the higher derivatives W0 does not contain over-ideal vectors.
Moreover, a vector yα ∈ W0 is ideal if, and only if, (P0, t0) is in thermodynamic equilibrium.

The postulate, the above traduces the experimental evidence, in that, in a thermo-
dynamic process, the entropy production cannot be negative at any point P0 of B at any
instant t0. Moreover, it also expresses the further experimental fact, which is often tacit in
the formulations of the second law of thermodynamics—that the entropy production can
be zero only in the points of B that are in equilibrium. In particular, if the point P0 ∈ B at
the instant t0 is in a thermodynamic equilibrium, then W0 = E0. Hence, yα ∈ E0 is ideal if,
and only if, (P0, t0) is in a thermodynamic equilibrium. Finally, a vector yα ∈ W0 is either
real or over-ideal if, and only if, (P0, t0) is not in a thermodynamic equilibrium.

Remark 6. We should note that the local formulation of the second law of thermodynamics prohibits
that over-ideal vectors be in W0, but it does not prevent that they be in H0. Whether H0 contains
over-ideal vectors (or not) is the focus of the present investigation.

Definition 12. Let B be a body undergoing an arbitrary thermodynamic process p of the initial
instant t0 and duration τ0 + τ − t0, and let γ be the curve representative of the process in C. The
process p is said to be:

• Irreversible, if there exists at least a point zα(P, t) of γ in which the vector of the higher
derivatives yα(P, t) is real;

• Reversible, if in any point zα(P, t) of γ the vector of the higher derivatives yα(P, t) is ideal;

• Over-reversible, if there exists at least a point zα(P, t) of γ in which the vector of the higher
derivatives yα(P, t) is over-ideal.

The definitions above allow us to enunciate the following:

Postulate 2 (The global formulation of the second law of thermodynamics). Over-reversible
processes do not occur in nature. Moreover, a thermodynamic process is reversible if, and only if,
any point P ∈ B, at any instant t, is in a thermodynamic equilibrium.

The previous formulations (local and global) of the second law of thermodynamics
include information not present in the classical ones—that the reversible transformations
are necessarily quasi-static and, hence, they need an infinite time to occur. Thus, they
represent ideal processes, which, in nature, are approximated by very slow transformations.
Here, we take into account such a situation by admitting that this is possible if, and only if,
at any point of the body, at any instant t, there is a state of thermodynamic equilibrium.
On the other hand, this implies that at any point of γ, the vector of the higher derivatives
yα(P, t) lie in the equilibrium bundle E , and is ideal.

4. The Muschik and Ehrentraut Theorem Revisited

In this section, we present a novel formulation of the Muschik and Ehrentraut theorem
proved in reference [13]. To this end, we use the thermodynamic framework and the
generalized formulations of the second law established above.

Theorem 1. Let B be a body, and let the couple (P0, t0) represent an arbitrary point of B at an
arbitrary instant t0 ∈ [τ0, τ0 + τ]. Then, H0 = W0.

Proof. To prove the theorem, it is enough to demonstrate that the vectors of H0 are all (and
only) the vectors of W0. To this end, we observe that, in the generic point (P0, t0), fixed
values of Aβα(Σ0), Cβ(Σ0), Bα(Σ0), and D(Σ0) correspond to infinite vectors yα(P0, t0),

11



Symmetry 2022, 14, 763

because only ω components of yα(P0, t0) are determined by the balance equations while
the remaining 9ω are completely arbitrary (see discussion in Section 3). Moreover, if all
the yα in H0 are over-ideal, the vector space W0 would be empty, because the second law
of thermodynamics prohibits that it contains over-ideal vectors. As a consequence, in
(P0, t0), no process would be possible. On the other hand, since (P0, t0) is arbitrary, no
thermodynamic transformation could occur in B in the interval of time [τ0, τ0 + τ]. So, in
(P0, t0), the space H0 contains, in principle, both real/ideal vectors and over-ideal ones.

Let us suppose that in (P0, t0), the space H0 contains an ideal vector y1
α and an over-

ideal vector y2
α. Since the existence of y1

α is possible if, and only if, (P0, t0) is in the thermo-
dynamic equilibrium, while y2

α exists if, and only if (P0, t0) is not in the thermodynamic
equilibrium, such a situation is impossible to be realized.

Analogously, let us suppose that y1
α is ideal and y2

α is real. Again, such a situation is
impossible, because it would require (P0, t0) to be in equilibrium and not in equilibrium.

Finally, let y1
α be a real vector, and y2

α be an over-ideal one. Such a situation is possible,
in principle, provided (P0, t0) is not in equilibrium.

In such a case, due to the local formulation of the second law, neither y1
α nor y2

α are
elements of E0.

Let us consider the linear combination y3
α = λy1

α + (1 − λ)y2
α, with λ ∈]0, 1[. Since y1

α

and y2
α are in H0, they satisfy the following equations

Aβα(Σ0)y1
α = Cβ(Σ0), (37)

Aβα(Σ0)y2
α = Cβ(Σ0). (38)

The combination of Equation (37) multiplied by λ and Equation (38) multiplied by
(1 − λ) leads to

Aβα(Σ0)y3
α = Cβ(Σ0), (39)

namely, y3
α is also a solution of Equation (34), i.e., it is in H0. On the other hand, the local

entropy production corresponding to y3
α can be written as

σ3 = λ
[

Bα(Σ0)y1
α − D(Σ0)

]
+ (1 − λ)

[
Bα(Σ0)y2

α − D(Σ0)
]
= (40)

= Bα(Σ0)
[
λy1

α + (1 − λ)y2
α

]
− D(Σ0).

Since λ is arbitrary in ]0, 1[, nothing prevents choosing it as

λ =
D(Σ0)− Bα(Σ0)y2

α

Bα(Σ0)[y1
α − y2

α]
, (41)

because, as it is easily seen, the right-hand side of Equation (41) is in the interval ]0, 1[.
In fact, being y2

α over-ideal we have D(Σ0)− Bα(Σ0)y2
α > 0. Moreover, being y1

α real, we
have Bα(Σ0)

[
y1

α − y2
α

]
> D(Σ0) − D(Σ0), namely, Bα(Σ0)

[
y1

α − y2
α

]
> 0. Hence, λ > 0.

Moreover, being y1
α real, we also have Bα(Σ0)

[
y1

α − y2
α

]
> D(Σ0)− Bα(Σ0)y2

α and, hence,
λ < 1.

Consequently, the right-hand side of Equation (40) vanishes, so that y3
α is in E0. How-

ever, this is impossible, otherwise (P0, t0) would be in a thermodynamic equilibrium. Thus,
it is forbidden that in (P0, t0) there are both real and over-ideal vectors that are solutions of
the local balance laws (34).

Furthermore, suppose that both y1
α and y2

α are real. Then, it is easy to verify by direct
calculations that λ can be taken, such that σ3 > 0.

Finally, if (P0, t0) is a point of equilibrium, then the entropy production related to y1
α

and y2
α vanishes, so that by Equation (40), it follows that σ3 is zero.

The considerations above show the impossibility that, in a point P0 of B, at a given
instant t0, the solutions of Equation (34) can be of different types. Moreover, they cannot be
over-ideal only, because this contradicts the local form of the second law of thermodynamics.
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Thus, H0 may contain either only real vectors, and in such a case, (P0, t0) is a point of
non-equilibrium, or only ideal vectors, and in such a case, (P0, t0) is a point of equilibrium.
This conclusion proves the theorem.

Corollary 2. H = W .

Proof. This corollary is an immediate consequence of the arbitrariness of the initial instant
t0, and of the point P0. In particular, whatever t0 is, we can ever consider it as the initial
instant of the restricted process of duration τ0 + τ − t0, so that H0 ≡ Ht(P0, t0) has dimen-
sion 10ω. Moreover, only 7ω of components of the vectors of H0 can be determined by the
algebraic relations (34) and (36) while the further 3ω components are completely arbitrary.
Thus, to H0 can be applied to the conclusions established in Theorem 1. This is enough to
prove that, for any t ∈ [τ0, τ0 + τ], the space of the higher derivatives Ht contains only real
or ideal vectors.

Remark 7. The Corollary 2 also implies Ê = E .

Corollary 3. The unilateral differential constraint (32) is a restriction on the constitutive quantities
Uβ, rβ, s, and Jk, and not on the thermodynamic processes p.

Proof. In fact, any process p : t ∈ [τ0, τ0 + τ] ⊆ R → zα(xj, t) ∈ C, where zα(xj, t) is
a solution of the balance laws (29), can only be either irreversible or reversible but not
over-reversible, because otherwise its representative curve γ would contain at least an
over-ideal point against Corollary 2. On the other hand, such a property of the solutions of
the system of balance laws is not guaranteed, whatever Aβα and Cβ are, and for arbitrary
s and Jk, because, given the state space, only particular forms of those functions defined
on it lead to a nonnegative entropy production. Then, the role of the unilateral differential
constraint in Equation (32) is just to select such forms.

5. Discussion

Exploitation of the second law of thermodynamics is based on the assumption that the
constitutive equations modeling material properties must be assigned in such a way that all
solutions of the field equations satisfy the entropy inequality. An alternative interpretation
of the second law consequences is that we must exclude from the set of solutions of
the balance equations ones that do not guarantee a nonnegative entropy production. The
problem of the choice between the two interpretations above was solved in 1996 by Muschik
and Ehrentraut [13], by postulating an amendment to the second law, which states that, at
a fixed instant of time and in any point of the body, the entropy production is zero if, and
only if, this point is in a thermodynamic equilibrium. Muschik and Ehrentraut proved that,
under the validity of the amendment, the constitutive equations and not the thermodynamic
processes are restricted by the second law of thermodynamics. Such a result provides the
theoretical basis to the rigorous mathematical procedures for the exploitation of the second
law proposed by Coleman and Noll in 1963 [1], and by Liu in 1972 [12].

In the present paper, we revisited the Muschik and Ehrentraut theorem, highlighting
some geometric aspects that were hidden in reference [13]. Moreover, we proposed a gener-
alized formulation of the second law of thermodynamics that incorporates the amendment.
Progresses in the analysis of the entropy principle achieved in this way are the following:

1. In the analysis of the efficiency of the thermodynamic systems, the concept of the
Carnot cycle plays a fundamental role. Carnot was the first to prove that the efficiency
of a quasi-static transformation is maximum for a Carnot cycle. However, since
quasi-static transformations require an infinite time, the Carnot efficiency is not
suitable to describe the performance of real heat engines, which produce irreversible
transformations taking over in a finite time. Thus, for real processes, it is important
to investigate how much the efficiency deteriorates when the cycle is operated in a
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finite time. This is the task of finite time thermodynamics, a modern non-equilibrium
theory, which has been developed in the last four decades [16–18]. Since the global
formulation of the second law of thermodynamics proposed here explicitly mentions
the fact that a reversible transformation lies in the equilibrium bundle E , it seems
to be more appropriate for finite time thermodynamics with respect to the classical
formulation, which does not contain such information.

2. Owing to the Definitions 11 and 12, we have given a general but intuitive definition of
reversible and irreversible processes, by analyzing the properties of its representative
curve in the fiber bundle of the configuration spaces. To the best of our knowledge,
such a definition has never been presented in literature. Furthermore, such proper-
ties provide a generalized formulation, both local and global, of the second law of
thermodynamics, leading to the main results of the present paper, namely, Theorem 1.

3. As a final consideration, we observe that, in non-equilibrium thermodynamics, the
concepts of entropy and temperature are still open problems, since their definitions,
far from equilibrium, are questionable [6]. Usually, the problem is solved by postu-
lating the principle of the local equilibrium, which assumes that, at least locally, the
thermodynamic functions defined at the equilibrium can describe the thermodynamic
properties of the materials in non-equilibrium situations [19]. Thus, our geometric
framework, providing a meaningful representation of the state spaces involved in
equilibrium and non-equilibrium processes, allows to interpret the validity of the
principle of the local equilibrium as the extension of some properties that are valid in
the subspace E of H, to the whole H. In Figure 1, we provide a sketch of the analysis
of the entropy principle developed in the present paper and its relation with the
Muschik and Ehrentraut theory.

Figure 1. A schematized explanation of the analysis of the entropy principle developed in the present
paper, and of its relation to the Muschik and Ehrentraut theory. An Amendment to second law of
thermodynamics has been proposed by Muschik and Ehrentraut in 1996 [13]; rigorous procedures for
the exploitation of the entropy principle have been formulated by Coleman and Noll in 1963 [1], and
by Liu in 1972 [12]; the general tenets of Finite Time Thermodynamics have been summarized by
Andresen, Salomon and Berry in 1984 [17].
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In reference [21], the results in [13] were extended in order to encompass non-regular
processes. Such an investigation deserves consideration, since thermodynamic processes
involving discontinuous solutions are frequent in physics. In future research studies, we
will aim to reanalyze the results in [21], within the mathematical framework presented here.
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Abstract: Assume that each species l has its own jump rate bl in the multi-species totally asymmetric
simple exclusion process. We show that this model is integrable in the sense that the Bethe ansatz
method is applicable to obtain the transition probabilities for all possible N-particle systems with up
to N different species.

Keywords: TASEP; ASEP; multi-species; Bethe ansatz

1. Introduction

The multi-species asymmetric simple exclusion process on Z is a generalization of
the asymmetric simple exclusion process (ASEP) on Z in the sense that each particle may
belong to a different species labelled by an integer l ∈ {1, 2, · · · }. Each particle jumps to
the right by one step with the probability p or to the left by one step with the probability
q = 1 − p after a waiting time that is exponentially distributed with rate 1. If a particle
belonging to l attempts to jump to the site occupied by a particle belonging to l′ ≥ l,
the jump is prohibited; however, if a particle belonging to l′ attempts to jump to the site
occupied by a particle belonging to l < l′, then the jump occurs by interchanging positions.

The transition probabilities and some determinantal formulas for the multi-species
ASEP and its special cases were found in [1–5]. For certain special initial conditions with a
single second class particle, some distributions and their asymptotics were studied in [6,7].
More recently, asymptotic behaviors of the second class particles were studied using the
color-position symmetry, see [8]. In fact, the multi-species asymmetric simple exclusion
process can be considered in a more general context—that is, the coloured six vertex
model [9].

Another direction of generalizing the ASEP and other models studied in the integrable
probability is to make the jump rates inhomogeneous. It is known that the Bethe ansatz
method is still applicable to some single-species model with inhomogeneous jump rates.
The basic idea of using the Bethe ansatz in the ASEP is that the generator of the ASEP is a
similarity transformation of the XXZ quantum spin system. Considering that the Bethe
ansatz is a method to find eigenvalues and eigenvectors of a certain class of quantum spin
systems, we use the Bethe ansatz to find the solution of the forward equation of a certain
class of Markov processes, that is, the transition probabilities of the processes.

Of course, for some particle models, the Bethe ansatz method cannot be used. For the
background of Bethe ansatz, see [10,11]. It is known that the Bethe ansatz is applicable to
some generalization of the ASEP. For example, the transition probability and the current
distribution of the totally asymmetric simple exclusion process (TASEP) with particle-
dependent rates were studied in [12], and the transition probabilities and some asymptotic
results for the q-deformed totally asymmetric zero range process with site-dependent rates
were studied in [13,14].

In this paper, we consider the multi-species totally asymmetric simple exclusion
processes with N particles in which particles move to the right and each species l is allowed
to have its own rate bl . Following the notations used in [4], let X = (x1, · · · , xN) ∈ ZN

with x1 < · · · < xN represent the positions of particles, and let π = π(1)π(2) · · · π(N)

Symmetry 2021, 13, 1578. https://doi.org/10.3390/sym13091578 https://www.mdpi.com/journal/symmetry17
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be a permutation of a multi-set M = [i1, · · · , iN ] with elements taken from {1, · · · , N} and
π(i) representing the species of the ith leftmost particle. Then, the state of an N-particle
system is denoted by

(X, π) =
(
x1, · · · , xN , π(1), · · · , π(N)

)
.

Let us write P(Y,ν)(X, π; t) for the transition probability from (Y, ν) at t = 0 to (X, π)
at a later time t. For fixed X and Y, P(Y,ν)(X, π; t) is regarded as a matrix element of an
NN × NN matrix denoted by PY(X; t) whose columns and rows are labelled by ν, π =
1 · · · 11, 1 · · · 12, · · · , N · · · N, respectively. Throughout this paper, given an Nn × Nn matrix,
we assume that its rows (i1 · · · in) and columns (j1 · · · jn) are labelled by 1 · · · 1, · · · , n · · · n
and that these labels are listed lexicographically, unless stated otherwise. The main result
of this paper is that the multi-species TASEP with species-dependent rates is an integrable
model, and we provide a formula analogous to (2.12) in [4] using the Bethe ansatz method.

Statement of the Results

We first introduce a few objects to state the main theorem. Define an N2 × N2 matrix
Rβα =

[
Rij,kl

]
with

Rij,kl =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Sβα(i) if ij = kl with i ≤ j;

−1 if ij = kl with i > j;

Tβα(i) if ij = lk with i < j;

0 for all other cases,

(1)

where

Sβα(i) =−
1 − biξβ

1 − biξα
, Tβα(i) =

bi(ξβ − ξα)

1 − biξα
, ξα, ξβ ∈ C. (2)

Remark 1. The form of the matrix (1) was obtained by induction via similar arguments to Sec-
tions 2.1 and 2.2 in [3], which treats a special case, and the motivation of (2) is given in Section 2.1.
Finding the form of (1) with (2) is the key idea of this paper.

Let Tl be the simple transposition that interchanges the number at the lth slot and the
number at the (l + 1)st slot. If Tl maps a permutation ( · · · αβ · · · ) to ( · · · βα · · · ), we
write Tl = Tl(β, α) when necessary. Corresponding to a simple transposition Tl(β, α), we
define NN × NN matrix Tl(β, α) by the tensor product of matrices,

Tl(β, α) = IN ⊗ · · · ⊗ IN︸ ︷︷ ︸
(l−1) times

⊗ Rβα ⊗ IN ⊗ · · · ⊗ IN︸ ︷︷ ︸
(N−l−1) times

(3)

where IN is the N × N identity matrix. For a permutation σ in the symmetric group
SN written

σ = Tij · · · Ti1 = Tij(β j, αj) · · · Ti1(β1, α1) (4)

for some i1, · · · , ij ∈ {1, · · · , N − 1}, we define

Aσ = Tij(β j, αj) · · · Ti1(β1, α1). (5)

Here, Aσ is well defined, that is, Aσ is unique regardless of the representation of σ by
simple transpositions. This well-definedness is due to the following lemma.

Lemma 1. The following consistency relations are satisfied.

(a) Ti(β, α)Tj(δ, γ) = Tj(δ, γ)Ti(β, α) if |i − j| ≥ 2.
(b) Ti(γ, β)Tj(γ, α)Ti(β, α) = Tj(β, α)Ti(γ, α)Tj(γ, β) if |i − j| = 1.
(c) Ti(β, α)Ti(α, β) = INN .
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The relations in Lemma 1 with bl = 1 for all l are already known for the multi-species ASEP.

Remark 2. The definitions of Tl and Aσ are motivated by the arguments for N = 2, 3 in
Sections 2.1 and 2.2 in [3], which treats a special case.

Let J(t) be the NN × NN diagonal matrix whose (π, π)-element is given by eεππ t where

εππ = εππ(ξ1, · · · , ξN) =
1
ξ1

+ · · ·+ 1
ξN

−
(
bπ(1) + · · ·+ bπ(N)

)
, ξ1, · · · , ξN ∈ C,

let D(x1, · · · , xN) be the NN × NN diagonal matrix whose (π, π)-element is given by
bx1

π(1) · · · bxN
π(N)

, and let D′(y1, · · · , yN) be the NN × NN diagonal matrix whose (ν, ν)-

element is given by b−y1
ν(1) · · · b−yN

ν(N)
where yis are the initial positions. In the next theorem,

the integral of a matrix implies that the integral is taken element-wise, and −
∫

implies 1
2πi

∫
.

Theorem 1. Let Aσ be given as in (5) and c be a positively oriented circle centred at the origin with
a radius less than bl for all l in the complex plane C. Then, the matrix of the transition probabilities
of the multi-species TASEP with species-dependent rates is

PY(X; t) = ∑
σ∈SN

−
∫

c
· · · −

∫
c

J(t)D(x1, · · · , xN)AσD′(y1, · · · , yN)
N

∏
i=1

(
ξ

xi−yσ(i)−1
σ(i)

)
dξ1 · · · dξN . (6)

Remark 3. If ν = 12 · · · N, in other words, all N particles belong to different species, and the
species are initially arranged in ascending order, then the system is the same as the TASEP with
particle-dependent rates studied in [12]. Hence, the transition probability P(Y, 12 ··· N)(X, 12 · · · N; t)
can be expressed as a determinant (see Theorem 1 in [12]).

Remark 4. Theorem 1 partially extends (2.12) in [4]. In other words, (6) with bl = 1 is equal to
(2.12) in [4] with p = 1.

The proofs of Lemma 1 and Theorem 1 are given in the next section.

2. Proof of Theorem 1

In order to prove that the (π, ν)-element of the right-hand side of (6) is P(Y,ν)(X, π; t),
we should show that the (π, ν)-element satisfies its forward equation and the initial condi-
tion P(Y,ν)(X, π; 0) = δX,Y.

2.1. Forward Equations

We first study the two-particle systems, which will be building-blocks for the formulas
for N-particle systems. When x1 < x2 − 1, the forward equations of P(Y,ν)(x1, x2, π; t) are
straightforward because two particles act as free particles. Hence, the forward equations of
P(Y,ν)(x1, x2, π; t) are expressed as

d
dt

PY(x1, x2; t) =

⎡
⎢⎢⎣

b1 0 0 0
0 b1 0 0
0 0 b2 0
0 0 0 b2

⎤
⎥⎥⎦

︸ ︷︷ ︸
(r1)

PY(x1 − 1, x2; t) +

⎡
⎢⎢⎣

b1 0 0 0
0 b2 0 0
0 0 b1 0
0 0 0 b2

⎤
⎥⎥⎦

︸ ︷︷ ︸
(r2)

PY(x1, x2 − 1; t)

−

⎡
⎢⎢⎣

b1 + b1 0 0 0
0 b1 + b2 0 0
0 0 b2 + b1 0
0 0 0 b2 + b2

⎤
⎥⎥⎦PY(x1, x2; t)

(7)

19



Symmetry 2021, 13, 1578

where the derivative of the matrix PY(x1, x2; t) on the left-hand side implies the matrix
of the derivatives of elements of PY(x1, x2; t). The matrices (r1) and (r2) account for the
probability current in the states (x1, x2, π) by a particle’s jump to the right next site, which is
empty. On the other hand, when x1 = x2 − 1, if two particles belong to different species,
two particles may swap their positions. For example, if the initial state is (Y, 12), the system
cannot be at (X, 21) at any later time t. Hence, the forward equation of P(Y,12)(x1, x1 +
1, 12; t) is

d
dt

P(Y,12)(x1, x1 + 1, 12; t) = b1P(Y,12)(x1 − 1, x1 + 1, 12; t)− b2P(Y,12)(x1, x1 + 1, 12; t).

On the other hand, P(Y,12)(x1, x1 + 1, 21; t) = 0 for all t, because the model is totally
asymmetric. If the initial state is (Y, 21), the forward equation of P(Y,21)(x1, x1 + 1, 21; t) is

d
dt

P(Y,21)(x1, x1 + 1, 21; t) = b2P(Y,21)(x1 − 1, x1 + 1, 21; t)− (b2 + b1)P(Y,21)(x1, x1 + 1, 21; t)

and the forward equation of P(Y,21)(x1, x1 + 1, 12; t) is

d
dt

P(Y,21)(x1, x1 + 1, 12; t) = b1P(Y,21)(x1 − 1, x1 + 1, 12; t) + b2P(Y,21)(x1, x1 + 1, 21; t)

− b2P(Y,21)(x1, x1 + 1, 12; t).

Hence, the forward equations of P(Y,ν)(x1, x1 + 1, π; t) are expressed as

d
dt

PY(x1, x1 + 1; t) =

⎡
⎢⎢⎣

b1 0 0 0
0 b1 0 0
0 0 b2 0
0 0 0 b2

⎤
⎥⎥⎦PY(x1 − 1, x1 + 1; t) +

⎡
⎢⎢⎣

0 0 0 0
0 0 b2 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦

︸ ︷︷ ︸
(B)

PY(x1, x1 + 1; t)

−

⎛
⎜⎜⎜⎜⎝

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 b2 0
0 0 0 0

⎤
⎥⎥⎦

︸ ︷︷ ︸
(C)

+

⎡
⎢⎢⎣

b1 0 0 0
0 b2 0 0
0 0 b1 0
0 0 0 b2

⎤
⎥⎥⎦
⎞
⎟⎟⎟⎟⎠PY(x1, x1 + 1; t).

(8)

Here, the matrix (B) accounts for probability current going in the states (x1, x1 + 1, 12)
by the species-2 particle’s jump from the state (x1, x1 + 1, 21). Similarly, the matrix (C)
accounts for probability current going out of the states (x1, x1 + 1, 21) by species-2 particle’s
jump to the state (x1, x1 + 1, 12). Equations (7) and (8) imply that, if U(x1, x2; t) is a
4 × 4 matrix whose elements are functions on Z2 × [0, ∞), then the forward equation of
P(Y,ν)(x1, x2, π; t) for any x1 < x2 is in the form of the (π, ν)-element of

d
dt

U(x1, x2; t) =

⎡
⎢⎢⎣

b1 0 0 0
0 b1 0 0
0 0 b2 0
0 0 0 b2

⎤
⎥⎥⎦U(x1 − 1, x2; t) +

⎡
⎢⎢⎣

b1 0 0 0
0 b2 0 0
0 0 b1 0
0 0 0 b2

⎤
⎥⎥⎦U(x1, x2 − 1; t)

−

⎡
⎢⎢⎣

b1 + b1 0 0 0
0 b1 + b2 0 0
0 0 b2 + b1 0
0 0 0 b2 + b2

⎤
⎥⎥⎦U(x1, x2; t)
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subject to the (π, ν)-element of⎡
⎢⎢⎣

b1 0 0 0
0 b2 0 0
0 0 b1 0
0 0 0 b2

⎤
⎥⎥⎦U(x1, x1; t) =

⎡
⎢⎢⎣

b1 0 0 0
0 b1 b2 0
0 0 0 0
0 0 0 b2

⎤
⎥⎥⎦U(x1, x1 + 1; t).

Now, we extend the argument for two-particle systems to N-particle systems. The ma-
trices (r1) and (r2) in (7) for two-particle systems are generalized to

ri = IN ⊗ · · · ⊗ IN︸ ︷︷ ︸
i−1

⊗ r ⊗ IN ⊗ · · · ⊗ IN︸ ︷︷ ︸
N−i

, i = 1, · · · , N

where r is the diagonal matrix,

r =

⎡
⎢⎣

b1
. . .

bN

⎤
⎥⎦.

The matrix (B) in (8) is generalized to an N2 × N2 matrix B =
[
Bij,kl

]
with

Bij,kl =

{
bj if ij = lk with i < j;
0 for all other cases,

and let
Bi = IN ⊗ · · · ⊗ IN︸ ︷︷ ︸

i−1

⊗ B ⊗ IN ⊗ · · · ⊗ IN︸ ︷︷ ︸
N−i−1

.

The matrix (C) in (8) is generalized to N2 × N2 matrix C =
[
Cij,kl

]
with

Cij,kl =

{
bi if ij = kl with i < j;
0 for all other cases,

and let
Ci = IN ⊗ · · · ⊗ IN︸ ︷︷ ︸

i−1

⊗ C ⊗ IN ⊗ · · · ⊗ IN︸ ︷︷ ︸
N−i−1

.

All forward equations of P(Y,ν)(x1, · · · , xN , π; t) may be expressed as a matrix equation.
For example, if xi < xi+1 − 1 for all i, then the forward equation of P(Y,ν)(x1, · · · , xN , π; t)
is the (π, ν)-element of

d
dt

PY(x1, · · · , xN ; t) = r1PY(x1 − 1, x2, · · · , xN ; t) + · · ·

+ rNPY(x1, · · · , xN−1, xN − 1; t)− (r1 + · · ·+ rN)PY(x1, · · · , xN ; t)
(9)

and if x = xi = xi+1 − 1 and xj < xj+1 − 1 for all j = i,
d
dt

PY(x1, · · · , xi−1, x, x + 1, xi+2, · · · , xN ; t) =

+ ∑
j =i+1

rjPY(x1, · · · , xj−1, xj − 1, xj+1, · · · , xN ; t) + BiPY(x1, · · · , xi−1, x, x + 1, xi+2, · · · , xN ; t)

− ∑
j =i

rjPY(x1, · · · , xj−1, x, x + 1, xj+2, · · · , xN ; t)− CiPY(x1, · · · , xi−1, x, x + 1, xi+2, · · · , xN ; t).

(10)

For other configurations of (x1, · · · , xN), the form of the matrix of the forward equa-
tions may be different from (9) and (10). However, as in other Bethe ansatz applica-
ble models, if U(x1, · · · , xN ; t) =

[
Uπν(x1, · · · , xN ; t)

]
is an NN × NN matrix whose el-
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ements Uπν(x1, · · · , xN ; t) are functions on ZN × [0, ∞), then the forward equation of
P(Y,ν)(x1, · · · , xN , π; t) for any x1 < · · · < xN is in the form of the (π, ν)-element of

d
dt

U(x1, · · · , xN ; t) =
N

∑
j=1

rjU(x1, · · · , xj−1, xj − 1, xj+1, · · · , xN ; t)− (r1 + · · ·+ rN)U(x1, · · · , xN ; t) (11)

subject to the (π, ν)-element of

ri+1U(x1, · · · , xi−1, xi, xi, xi+2, · · · , xN ; t) =

(Bi + ri − Ci)U(x1, · · · , xi−1, xi, xi + 1, xi+2, · · · , xN ; t)
(12)

for all i = 1, · · · , N − 1.

2.2. Solutions of the Forward Equations via Bethe Ansatz

The (π, ν)-element of (11) is
d
dt

Uπν(x1, · · · , xN ; t) =

N

∑
j=1

bπ(j)Uπν(x1, · · · , xj−1, xj − 1, xj+1, · · · , xN ; t)−
(
bπ(1) + · · ·+ bπ(N)

)
Uπν(x1, · · · , xN ; t).

Assume the separation of variables to write Uπν(x1, · · · , xN ; t) = Uπν(x1, · · · , xN)T(t).
Then, the equation of the spatial variables is

εUπν(x1, · · · , xN) = bπ(1)Uπν(x1 − 1, x2, · · · , xN) + · · ·
+ bπ(N)Uπν(x1, · · · , xN−1, xN − 1)−

(
bπ(1) + · · ·+ bπ(N)

)
Uπν(x1, · · · , xN)

(13)

for some constant ε with respect to t, x1, · · · , xN . Then, we observe that, for any σ ∈ SN ,

N

∏
i=1

(
bπ(i)ξσ(i)

)xi
, ξ1, · · · , ξN ∈ C

solves (13) if and only if

ε =
1
ξ1

+ · · ·+ 1
ξN

−
(
bπ(1) + · · ·+ bπ(N)

)
. (14)

Based on the observation in the above, assume that the matrix U(x1, · · · , xN ; t) is
invertible and that it is decomposed as

U(x1, · · · , xN ; t) = J(t)U(x1, · · · , xN)

where J(t) =
[

Jπν(t)
]

is an NN × NN diagonal matrix where Jππ(t) are functions of time
only. Hence, from (11), we obtain

J(t)−1
(

d
dt

J(t)
)
=

(
r1U(x1 − 1, x2, · · · , xN) + · · ·+ rNU(x1, · · · , xN−1, xN − 1)

− (r1 + · · ·+ rN)U(x1, · · · , xN)
)

U(x1, · · · , xN)
−1.

(15)

Both sides of (15) must be a diagonal matrix E =
[
εππ

]
whose elements are some con-

stants with respect to t, x1, · · · , xN . Thus, we obtain the matrix equation for spatial variables

EU(x1, · · · , xN) = r1U(x1 − 1, x2, · · · , xN) + · · ·+ rNU(x1, · · · , xN−1, xN − 1)

− (r1 + · · ·+ rN)U(x1, · · · , xN)
(16)
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and the matrix equation for the time variable

d
dt

J(t) = J(t)E = EJ(t).

Lemma 2. Let D(x1, · · · , xN) =
[
Dπν(x1, · · · , xN)

]
be an NN × NN diagonal matrix with

Dππ(x1, · · · , xN) = bx1
π(1) · · · bxN

π(N)
.

Then, for any σ ∈ SN,

U(x1, · · · , xN) = D(x1, · · · , xN)A
N

∏
i=1

ξ
xi
σ(i) (17)

where A is an arbitrary invertible NN × NN matrix whose elements are constants with respect to
x1, · · · , xN is a solution of (16) if and only if εππ is given by

εππ =
1
ξ1

+ · · ·+ 1
ξN

−
(
bπ(1) + · · ·+ bπ(N)

)
. (18)

Proof. First, we observe that

riD(x1, · · · , xi−1, xi − 1, xi+1, · · · , xN) = D(x1, · · · , xN)

because ri is a diagonal matrix whose (π, π)-element is bπ(i). We observe that

D−1(x1, · · · , xN) = D(x−1
1 , · · · , x−1

N ),

and
D(x1, · · · , xN)D(y1, · · · , yN) = D(x1 + y1, · · · , xN + yN).

Now, we prove the statement. Suppose that (17) is a solution of (16). Substituting (17)
into (16) and then dividing both sides by ∏N

i=1 ξ
xi
σ(i), then

ED(x1, · · · , xN)A = r1D(x1 − 1, x2, · · · , xN)Aξ−1
σ(1) + · · ·

+ rND(x1, · · · , xN−1, xN − 1)Aξ−1
σ(N)

− (r1 + · · ·+ rN)D(x1, · · · , xN)A

= D(x1, · · · , xN)Aξ−1
σ(1) + · · ·+ D(x1, · · · , xN)Aξ−1

σ(N)

− (r1 + · · ·+ rN)D(x1, · · · , xN)A.

Multiplying by A−1D−1(x1, · · · , xN) on both sides, we obtain

E =
(

1
ξσ(1)

+ · · ·+ 1
ξσ(N)

)
INN − (r1 + · · ·+ rN),

and thus, the (π, π)-element of E is given by (18). The second part of the proof can be done
via the reverse way of the first part of the proof.

The previous lemma implies that the general solution of (16) is given by

U(x1, · · · , xN) = ∑
σ∈SN

D(x1, · · · , xN)Aσ

N

∏
i=1

ξ
xi
σ(i). (19)

2.3. Boundary Conditions

Now, (19) should satisfy the spatial part of the boundary condition (12), that is,
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ri+1U(x1, · · · , xi−1, xi, xi, xi+2, · · · , xN) =

(Bi + ri − Ci)U(x1, · · · , xi−1, xi, xi + 1, xi+2, · · · , xN)
(20)

for i = 1, · · · , N − 1. Extending the technique used in [4], we will find the formulas of Aσ

in (19), which satisfy (20). Define an N × N diagonal matrix,

rxi :=

⎡
⎢⎣

bxi
1

. . .
bxi

N

⎤
⎥⎦

and recall the definition of Rβα in (1). Then, we observe that

Rβα = −
[(

IN2 − ξα(B + r ⊗ IN − C)
)(

rxi ⊗ rxi+1)]−1[(
IN2 − ξβ(B + r ⊗ IN − C)

)(
rxi ⊗ rxi+1)].

Lemma 3. If

ATiσ =
(

INi−1 ⊗ Rσ(i+1)σ(i) ⊗ INN−i−1

)
Aσ (21)

for all even permutations σ and i = 1, · · · , N − 1, then (20) is satisfied.

Proof. First, we note that

ri+1 = IN ⊗ · · · ⊗ IN︸ ︷︷ ︸
i−1

⊗ (IN ⊗ r) ⊗ IN ⊗ · · · ⊗ IN︸ ︷︷ ︸
N−i−1

,

Bi + ri − Ci = IN ⊗ · · · ⊗ IN︸ ︷︷ ︸
i−1

⊗ (B + r ⊗ IN − C) ⊗ IN ⊗ · · · ⊗ IN︸ ︷︷ ︸
N−i−1

,

and
D(x1, · · · , xN) = rx1 ⊗ · · · ⊗ rxN .

Substituting (19) into (20), we obtain

∑
σ∈SN

[(
rx1 ⊗ · · · ⊗ rxi−1 ⊗

(
rxi ⊗ rxi+1) ⊗ rxi+2 ⊗ · · · ⊗ rxN

)
−

(
rx1 ⊗ · · · ⊗ rxi−1 ⊗

(
B + r ⊗ IN − C

)(
rxi ⊗ rxi+1) ⊗ rxi+2 ⊗ · · · ⊗ rxN

)
ξσ(i+1)

]
× Aσξ

xi
σ(i)ξ

xi
σ(i+1) ∏

j =i, i+1
ξ

xj
σ(j) = 0.

(22)

If we express (22) as a sum over the alternating group AN

∑
σ∈AN

([(
rx1 ⊗ · · · ⊗ rxi−1 ⊗

(
rxi ⊗ rxi+1)⊗ rxi+2 ⊗ · · · ⊗ rxN

)
−

(
rx1 ⊗ · · · ⊗ rxi−1 ⊗

(
B + r ⊗ IN − C

)(
rxi ⊗ rxi+1)⊗ rxi+2 ⊗ · · · ⊗ rxN

)
ξσ(i+1)

]
Aσ

+
[(

rx1 ⊗ · · · ⊗ rxi−1 ⊗
(
rxi ⊗ rxi+1)⊗ rxi+2 ⊗ · · · ⊗ rxN

)
−

(
rx1 ⊗ · · · ⊗ rxi−1 ⊗

(
B + r ⊗ IN − C

)(
rxi ⊗ rxi+1)⊗ rxi+2 ⊗ · · · ⊗ rxN

)
ξσ(i)

]
ATiσ

)
× ξ

xi
σ(i)ξ

xi
σ(i+1) ∏

j =i, i+1
ξ

xj
σ(j) = 0.

(23)

However, (23) is satisfied if
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[(
rx1 ⊗ · · · ⊗ rxi−1 ⊗

(
rxi ⊗ rxi+1)⊗ rxi+2 ⊗ · · · ⊗ rxN

)
−(

rx1 ⊗ · · · ⊗ rxi−1 ⊗
(
B + r ⊗ IN − C

)(
rxi ⊗ rxi+1)⊗ rxi+2 ⊗ · · · ⊗ rxN

)
ξσ(i+1)

]
Aσ

= −
[(

rx1 ⊗ · · · ⊗ rxi−1 ⊗
(
rxi ⊗ rxi+1)⊗ rxi+2 ⊗ · · · ⊗ rxN

)
−

(
rx1 ⊗ · · · ⊗ rxi−1 ⊗

(
B + r ⊗ IN − C

)(
rxi ⊗ rxi+1)⊗ rxi+2 ⊗ · · · ⊗ rxN

)
ξσ(i)

]
ATiσ

for each even permutation σ, which is equivalent to (21).

In fact, (3) and (5) implies that the assumption of Lemma 3 is satisfied, hence (19) with
Aσ in (5) satisfies (20).

2.4. Consistency Relations—Proof of Lemma 1

Lemma 1 confirms that the multi-species TASEP is integrable even when the rates
are species-dependent.

2.4.1. Proof of Lemma 1 (a)

It suffices to show that

(Rαβ ⊗ IN ⊗ IN)(IN ⊗ IN ⊗ Rγδ) = (IN ⊗ IN ⊗ Rγδ)(Rαβ ⊗ IN ⊗ IN).

This equality clearly holds because both sides are equal to Rαβ ⊗ Rγδ.

2.4.2. Proof of Lemma 1 (b)—Yang-Baxter Equation

It suffices to show

(Rγβ ⊗ IN)(IN ⊗ Rγα)(Rβα ⊗ IN) = (IN ⊗ Rβα)(Rγα ⊗ IN)(IN ⊗ Rγβ). (24)

If we re-arrange the columns and the rows of the N3 × N3 matrices in (24) so that all
their labels from the same multi-set [i, j, k] are grouped together, then the matrices in (24)
become block-diagonal (See Figure 1).

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

111 222 ⋯ 112 121 211 ⋯ 123 132 213 231 312 321 ⋯

111

222

⋮ ⋱

112

121

211

⋮ ⋱

123

132

213

231

312

321

⋮ ⋱

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Figure 1. Form of the N3 × N3 matrices in (24) after re-ordering the rows and columns.
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Let (R ⊗ IN)[i,j,k] be the sub-matrix of (R ⊗ IN) whose rows and columns are
labelled by the permutations of the multi-set [i, j, k], and similarly, we define (IN ⊗ R)[i,j,k].
Then, in order to show (24), it suffices to show

(Rγβ ⊗ IN)[i,j,k](IN ⊗ Rγα)[i,j,k](Rβα ⊗ IN)[i,j,k] =

(IN ⊗ Rβα)[i,j,k](Rγα ⊗ IN)[i,j,k](IN ⊗ Rγβ)[i,j,k]
(25)

for each multi-set [i, j, k] whose elements are from {1, 2, 3} because all matrices are block-
diagonal matrices in the same form. If i = j = k, (25) is equivalent to

Sγβ(i)Sγα(i)Sβα(i) = Sβα(i)Sγα(i)Sγβ(i),

which is trivially true. If i = j > k, then (25) is equivalent to⎡
⎣ Sγβ(k) Tγβ(k) 0

0 −1 0
0 0 Sγβ(i)

⎤
⎦
⎡
⎣ Sγα(i) 0 0

0 Sγα(k) Tγα(k)
0 0 −1

⎤
⎦
⎡
⎣ Sβα(k) Tβα(k) 0

0 −1 0
0 0 Sβα(i)

⎤
⎦

=

⎡
⎣ Sβα(i) 0 0

0 Sβα(k) Tβα(k)
0 0 −1

⎤
⎦
⎡
⎣ Sγα(k) Tγα(k) 0

0 −1 0
0 0 Sγα(i)

⎤
⎦
⎡
⎣ Sγβ(i) 0 0

0 Sγβ(k) Tγβ(k)
0 0 −1

⎤
⎦,

which can be easily verified by direct computation. Similarly, the other two cases of (25) for
i = j < k and for the case that all i, j, k are distinct can be verified by direct computation.

2.4.3. Proof of Lemma 1 (c)

It suffices to show that RβαRαβ = IN2 . Let us re-arrange the rows and the columns in
the same way as in the proof of Lemma 1 (b) to make Rβα and Rαβ block-diagonal. Then, each
block on the diagonal of Rβα is either a 1 × 1 matrix or a 2 × 2 matrix. The 1 × 1 sub-matrix
of Rβα consisting of the row ii and the column ii is

[
Sβα(i)

]
. The 2 × 2 sub-matrix of Rβα

consisting of the rows ij, ji and the columns ij, ji with i < j is[
Sβα(i) Tβα(i)

0 −1

]
.

Similarly, the 1 × 1 sub-matrix of Rαβ consisting of the row ii and the column ii is[
Sαβ(i)

]
, and the 2 × 2 sub-matrix of Rαβ consisting of the rows ij, ji and the columns ij, ji

with i < j is [
Sαβ(i) Tαβ(i)

0 −1

]
.

It is trivial that Sβα(i)Sαβ(i) = 1, and this can be verified,

[
Sβα(i) Tβα(i)

0 −1

][
Sαβ(i) Tαβ(i)

0 −1

]
=

[
1 0
0 1

]
,

by the direct computation.

2.5. Initial Condition

The contour integral of (19) multiplied by J(t) from the left and by D′(y1, · · · , yN)∏i ξ
−yi−1
i

from the right, that is, the right-hand side of (6) still satisfies (11) and (12). (The contour is
the one introduced in Theorem 1). Hence, it remains to show that all transition probabilities
P(Y,ν)(X, π; t) satisfy the initial condition
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P(Y,ν)(X, π; 0) = ∑
σ∈SN

−
∫

c
· · · −

∫
c

Aπν
σ

N

∏
i=1

bxi
π(i)b

−yi
ν(i)

N

∏
i=1

(
ξ

xi−yσ(i)−1
σ(i)

)
dξ1 · · · dξN

=

{
1 if (Y, ν) = (X, π);
0 otherwise

(26)

where Aπν
σ is the (π, ν)-element of Aσ. We will show that the integral with the identity per-

mutation in the sum satisfies (26), and other integral terms with non-identity permutations
are zero.

Proof. If σ is the identity permutation, then Aσ is the identity matrix. Hence, if π = ν,
then the integral is zero. It is easy to see that if π = ν and xi = yi for all i, then the integral
is 1. If π = ν and xi > yi for some i (recall that our model is totally asymmetric), then
the integral becomes zero when integrating with respect to ξi. Now, suppose that σ is not
the identity permutation. Note that the factors in Aπν

σ are from (1), all poles arising from
Aπν

σ , if any, are outside the contours. There exists an i such that xi − yσ(i) − 1 ≥ 0 because
each xi ≥ yi and σ is not the identity permutation. Hence, integrating with respect to i,
the integral is 0.

3. Conclusions

In this paper, we have shown that the Bethe ansatz method is still applicable to the
multi-species TASEP with species-dependent rates. Theorem 1 provides the transition
probabilities for all possible compositions of species, which is expected to be used to study
further objects, such as the current distribution for certain special initial configurations.
The methods used in this paper have limitations in extending to the ASEP (0 < p < 1) for
now, but it would be interesting to see if the methods can be used to study the species-
inhomogeneity of other multi-species models.
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Citation: Madjarević, D.; Pavić-Čolić,
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Abstract: The shock structure problem is studied for a multi-component mixture of Euler fluids
described by the hyperbolic system of balance laws. The model is developed in the framework
of extended thermodynamics. Thanks to the equivalence with the kinetic theory approach, phe-
nomenological coefficients are computed from the linearized weak form of the collision operator.
Shock structure is analyzed for a three-component mixture of polyatomic gases, and for various
combinations of parameters of the model (Mach number, equilibrium concentrations and molecular
mass ratios). The analysis revealed that three-component mixtures possess distinguishing features
different from the binary ones, and that certain behavior may be attributed to polyatomic structure of
the constituents. The multi-temperature model is compared with a single-temperature one, and the
difference between the mean temperatures of the mixture are computed. Mechanical and thermal
relaxation times are computed along the shock profiles, and revealed that the thermal ones are smaller
in the case discussed in this study.

Keywords: shock structure; extended thermodynamics; kinetic theory of gases

1. Introduction

A shock wave is a paradigm of non-equilibrium process with irreversible character.
It drives the system out of equilibrium and, at the same time, causes irreversible changes
observed through the increase of entropy [1–3]. In idealized models, shock waves are
described as singular surfaces on which jumps of field variables occur. However, when
dissipation is taken into account, shock waves are smeared out into continuous profiles,
thus creating the so-called shock structure. [4].

Analysis of the shock structure in gaseous media is strongly influenced by the model
taken to describe dissipation. For the present study, two approaches are significant—
continuum (macroscopic) and kinetic (mesoscopic) one. Continuum approach uses macro-
scopic field variables and their governing equations to describe the system. Within it,
classical continuum models assume non-local constitutive relations for non-convective
fluxes like stress tensor, heat flux, or diffusion flux. Typical examples are Navier–Stokes
model, Fourier law and Fick law [5]. Such models usually lead to parabolic partial differen-
tial equations, or their generalizations. In the same (continuum) setting, dissipation may
also be described by means of relaxation, which assumes that non-equilibrium variables
converge (relax) towards their equilibrium values during the process. They yield models
which usually consist of the hyperbolic systems of balance laws. It is remarkable that in
the classical (thermodynamic) limit, i.e., in the small relaxation time approximation, one
may recover the classical parabolic models starting from the hyperbolic ones [6–9]. In more
physical terms, classical models can be regarded as approximations of the hyperbolic ones
when processes occur in the neighborhood of the local equilibrium state [10].

Symmetry 2021, 13, 955. https://doi.org/10.3390/sym13060955 https://www.mdpi.com/journal/symmetry29
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The kinetic approach is focused on the smaller (meso) scale. It takes statistical
description—single particle velocity distribution function—and mutual interaction be-
tween the particles which causes its change. It is built around the Boltzmann equation
and inherits dissipation by construction, through the collision operator [11]. A remarkable
feature of the kinetic theory is that it can recover classical continuum models in the so-called
hydrodynamic limit, when the Knudsen number is small, using the Chapman-Enskog
asymptotic expansion. On the other hand, by means of the moment method kinetic theory
yields hyperbolic systems of balance laws for macroscopic observables, taken as moments
of the velocity distribution function. Under appropriate assumptions, relaxation continuum
models of rarefied gases are completely equivalent to moment equations of the kinetic
theory of gases [12,13].

Either approach described above has its advantages and shortcomings. For example,
kinetic theory is obviously more refined than the continuum one, but evolution of the
system is eventually monitored through macroscopic observables. In this study we shall try
to take the benefits from both approaches and analyze the shock structure in the hyperbolic
model of the multi-component mixture of Euler fluids. By an Euler fluid we consider
the fluid in which viscous and heat conducting effects are negligible. By a phrase multi-
component mixture, although it seems to be a pleonasm, we reveal our intention to analyze
the mixture of more than two constituents (as opposed to binary, i.e., two-component
mixture). In fact, we shall analyze the shock structure in a three-component mixture as a
paradigmatic example of the multi-component one. It is known that a multi-component
mixture exhibits peculiar phenomena with respect to the binary one, as for instance the
uphill diffusion [14–16]. Before we embark on the shock structure analysis, a short review
of modelling issues and important results in this particular problem relevant to our study
will be given.

Our analysis will be based upon the continuum model of mixture developed within
the framework of rational extended thermodynamics (RET) [13,17] (for a review of the
model one may consult [18]). This model is rather peculiar from macroscopic point of
view since it takes velocities and temperatures of the constituents as field variables. RET
formalism, i.e., Galilean invariance of the governing equations and their compatibility
with the entropy inequality, makes the model thermodynamically consistent. The model
is hyperbolic, and dissipation is taken into account through mutual interaction between
the constituents, which turns out to be of the relaxation type. However, this approach
is limited in the sense that phenomenological coefficients, which appear in the closure
process, cannot be explicitly determined within its framework. To resolve this problem, we
turn to the kinetic approach based upon the polyatomic gas mixture model, i.e., the system
of Boltzmann equations, with the continuous internal energy variable [19–21], which is
more tractable than the semi-classical model with discrete energy levels [22–25], yet shown
to reproduce physical requirements [26–29] and to be well posed mathematically in the
case of space homogeneity [30]. Moreover, the multi-temperature (MT) model for mixture
of Euler fluids is fully compatible with moment equations derived from this system at an
Euler level [31,32]. In particular, we find the complete closure of the MT model by using
the phenomenological coefficients from the weak form of the continuous collision operator
at an Euler level [33].

In this study, the shock wave will be treated as a continuous traveling wave solution
of the governing equations which converges to equilibrium states at infinity. Such an
assumption makes feasible the use of dynamical systems approach. This kind of theoretical
shock structure analysis in continuum models of single-component fluids has its roots
in [34], where it was applied to Navier–Stokes–Fourier model. Further application of this
method to hyperbolic continuum models was studied in [35] (see also Chapter 12 in [13] for
a comprehensive review). The main feature of this approach is that the shock structure is
described by a heteroclinic orbit in the state space which connects stationary points related
to upstream and downstream equilibrium. More precisely, this orbit is an intersection
of unstable and stable manifolds of these stationary points [36], and can be related to
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the bifurcation of the upstream equilibrium point [37]. This could also be useful for the
numerical computation of the shock profiles, albeit in the limited way. Namely, it was
shown [38] that in hyperbolic systems of balance laws, endowed with a convex entropy
density, continuous shock structure does not exist if the shock speed is greater than the
highest characteristic speed of the system; instead, there appears a continuous solution
with the so-called sub-shock.

Apart from single-component models of gases, shock waves were also studied in the
context of mixtures. In the early stage, they were analyzed by means of classical models [39]
and DSMC [40]. Efficient computing devices moved the focus towards development of
numerical methods for the solution of Boltzmann equations for mixtures [41–43]. On the
other hand, shock structure was also analyzed for the moment equations of mixtures,
derived from the kinetic theory for various types of interaction [44,45]. At the same
time, detailed and systematic analysis of the shock structure in hyperbolic MT mixture of
Euler fluids was given in [46,47], which revealed certain new features of the temperature
overshoot. In this context, existence of continuous profiles and appearance of sub-shocks
turned out to be more delicate than in the one-component case, as discussed in [48–50].
Shock structure in the mixture of noble gases was revisited by DSMC in [51]. Recently,
attention was given to the entropy growth and the entropy production analysis in the
mixture of Euler fluids [52], and the mixture with viscous and thermal dissipation [53]. It
was found out that in former case diffusion makes the major contribution to dissipation,
while in the latter one it is the thermal conduction.

It is remarkable that most of the studies mentioned above were concerned with
binary mixtures. They certainly reveal the properties which distinguish them from single-
component fluids, like temperature overshoot or influence of diffusion on the shock
thickness. However, there are phenomena which can be observed only when the multi-
component mixture is studied. This gives us strong motivation to analyze the shock
structure problem in three-component mixture of Euler fluids. So far, only few references
were found which analyze the shock waves in multi-component mixtures within the frame-
works indicated above. In [54], the shock structure was analyzed in a mixture of gases
with disparate molecular masses, and viscous and thermal dissipation; ternary mixture is
studied as a final example, with a special attention on the presence of two zones within the
shock profile. In [55], the analysis was based upon numerical solution of the Boltzmann
equations; although the main focus was on binary mixture, three-species mixture was
studied for the computation of parallel temperatures which exhibit an overshoot. Finally,
in [56], three- and four-component mixtures are studied by numerical solution of the Boltz-
mann equations; profiles of macroscopic variables are found to have good agreement with
experiments and computations by other authors.

Our study will be focused on the shock waves in mixtures of Euler fluids, using the
MT model developed in [17], together with phenomenological coefficients from [33]. It will
be assumed that the mixture is homogeneous in the sense that in each infinitesimal volume
element all the constituents are present. It will also be assumed that all the constituents are
ideal gases, described by usual thermal and caloric equations of state, and that chemical
reactions do not occur between them. Once equipped with the closed, thermodynamically
consistent system of governing equations, we shall analyze numerically computed shock
structures in three-component mixtures. Our aim is to reveal and bring to light possible
qualitative novelties which appear when the mixture contains more than two components.

In the rest of the paper, model of the mixture of Euler fluids is presented in Section 2.
It brings together continuum modeling and kinetic theory results to get the closed system
of equations. In Section 3, the shock structure problem for a three-component mixture is
formulated. It contains all the information needed for derivation of equations, their trans-
formation into dimensionless form, and building up an appropriate numerical procedure.
Section 4 contains numerical solutions of the shock structure equations and their analysis.
Shock profiles are analyzed for different values of parameters of the model (Mach number,
equilibrium concentrations and molecular mass ratios), which provides an insight of their
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importance in the shock structure analysis. Additionally, multi-temperature shock profiles
are compared with single-temperature ones, and the norm of their difference is computed.
Finally, Section 5 brings the analysis of relaxation processes captured by the model. It
is of utmost importance since they manifest dissipation. Therefore, relative magnitudes
of relaxation times for mechanical and thermal relaxations are computed throughout the
profile. Paper ends up with proper conclusions and an outlook of future research directions.

2. Multi-Component Mixture of Euler Fluids

A mixture is a medium consisted of more than one identifiable constituent. One of the
most comprehensive mathematical models for multi-component mixtures of Euler fluids
is developed within the framework of rational extended thermodynamics (RET) [13]. It
inherits the postulates, so-called metaphysical principles, which are the basis for rational
thermodynamics of mixtures [57], but also exploits the principles of RET—local dependence
of constitutive functions on field variables, Galilean invariance of governing equations
and entropy principle with the convex entropy density. As a result, governing equations
have the structure of hyperbolic system of balance laws. For a complete resolution of
the closure problem, it is important to note that these models are fully compatible with
transfer equations for moments, obtained from Boltzmann equation(s) by means of the
moment method.

2.1. General Structure of the Model

In the RET approach to the mixture modelling it is assumed that the state of each
constituent α = 1, . . . , n is described by its own set of field variables—mass density ρα,
velocity vα and temperature Tα. There lies the main difference with respect to other, more
traditional approaches—it is (primarily) multi-velocity, and multi-temperature model. Fur-
ther assumptions constitute the set of postulates known as metaphysical principles [57]:
(i) all properties of the mixture are mathematical consequences of properties of the con-
stituents; (ii) behavior of each constituent is governed by the same equations as if it were
isolated from the mixture, but mutual interactions with other constituents must be taken
into account; (iii) behavior of the whole mixture is governed by the same equations as is a
single body.

Application of postulate (ii) yields governing equations for the constituents:

∂ρα

∂t
+ div(ραvα) = τα,

∂

∂t
(ραvα) + div(ραvα ⊗ vα − tα) = mα, (1)

∂

∂t

(
1
2

ραv2
α + ραεα

)
+ div

{(
1
2

ραv2
α + ραεα

)
vα − tαvα + qα

}
= eα,

where εα are the specific internal energies, tα are the stress tensors, qα are the heat fluxes
and τα, mα and eα are the source terms describing interaction between the constituents. To
apply postulate (iii) we must introduce restriction (axiom) regarding the source terms:

n

∑
α=1

τα = 0,
n

∑
α=1

mα = 0,
n

∑
α=1

eα = 0. (2)

Then, summation of Equation (1) yields the conservation laws for the mixture:

∂ρ

∂t
+ div(ρv) = 0,

∂

∂t
(ρv) + div(ρv ⊗ v − t) = 0, (3)

∂

∂t

(
1
2

ρv2 + ρε

)
+ div

{(
1
2

ρv2 + ρε

)
v − tv + q

}
= 0,
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provided we define the mixture variables as follows:

ρ =
n

∑
α=1

ρα, v =
1
ρ

n

∑
α=1

ραvα, uα = vα − v,

ε I =
1
ρ

n

∑
α=1

ραεα, ε = ε I +
1

2ρ

n

∑
α=1

ραu2
α, (4)

t =
n

∑
α=1

(tα − ραuα ⊗ uα), q =
n

∑
α=1

{
qα + ρα

(
εα +

1
2

u2
α

)
uα − tαuα

}
,

where ρ is the mixture mass density, v is the mean velocity, uα is the diffusion velocity,
ε I is the intrinsic specific internal energy, ε is the specific internal energy, t is the mixture
stress tensor, and q is the mixture flux of internal energy. Definitions (4) comprise the
postulate (i).

In the sequel we shall introduce further restrictions into our model. First, we shall
assume that all the constituents are Euler fluids, i.e., their stress tensors are symmetric and
heat fluxes vanish:

tα = −pαI, qα = 0, (5)

where pα are partial pressures, and I is the identity tensor. Second, we shall assume that
each constituent obey thermal and caloric equation of state of ideal gas:

pα = ρα
kB

mα
Tα, εα =

kB

mα(γα − 1)
Tα = cVαTα, (6)

where kB is the Boltzmann constant, and mα are the molecular masses of the constituents.
Ratios of specific heats γα and constant volume specific heats cVα of the constituents
are assumed to be constant. Finally, we shall assume that there are no mutual chemical
interactions between the constituents, which amounts to:

τα = 0, α = 1, . . . , n. (7)

To describe behavior of the mixture, 5n scalar field variables are used. Thus, 5n scalar
governing equations are needed, and this choice may not be unique. Here, we follow the
standard procedure and choose conservation laws (3) for the mixture, and n − 1 balance
laws (1) (we drop the balance laws for the constituent α = n, and use index b = 1, . . . , n − 1
instead of α). Such a model is usually called the multi-temperature (MT) model of mixture.

The RET approach is peculiar in the sense that it requires Galilean invariance of
governing equations from the outset, and the compatibility with the entropy inequality
with convex entropy density. This resolves the closure problem to an extent standard
for macroscopic theories. To summarize the consequences of these principles, primarily
reflected on the source terms, we emphasize that Galilean invariance restricts their velocity
dependence:

mb = m̂b; eb = êb + m̂b · v, b = 1, . . . , n − 1, (8)

while the entropy principle yields more specific structure of velocity independent terms
m̂b and êb:

m̂b = −
n−1

∑
c=1

ψbc(w)

(
uc

Tc
− un

Tn

)
; êb = −

n−1

∑
c=1

θbc(w)

(
− 1

Tc
+

1
Tn

)
, (9)

where ψbc(w) and θbc(w) are positive semi-definite matrix functions of objective quantities
w [17,18].

If the conditions of thermodynamic process are such that large discrepancies between
species temperatures are not expected, one may use the single-temperature (ST), but still
multi-velocity model. All the constituents have the same temperature T, and governing
equations consist of the conservation laws (3) and the balance laws (1)1,2, i.e., energy
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balance laws for the constituents are discarded. This system is a principal subsystem in the
hierarchy of hyperbolic systems, as described in [17,58].

Local equilibrium conditions mb = 0, eb = 0 imply the following conditions:

T1 = T2 = . . . = Tn = T;

u1 = u2 = . . . = un(= 0) ⇔ v1 = v2 = . . . = vn = v,
(10)

i.e., all the constituents have common temperature, and common velocity. Conditions (10)
determine the so-called equilibrium subsystem [58].

A brief comment on source terms may shed a light on their role in the model. They are
introduced in accordance with metaphysical principles [57]—principle (ii) in particular—
and they describe mutual interaction between the constituents. Their form (9) comes out
as a consequence of the entropy inequality, and it secures the proper sign of the entropy
production rate. In that sense, although the constituents are ideal gases, dissipation is
brought into system through the source terms. Finally, their structure reveals also the
physical basis of dissipation—it is a consequence of mutual exchange of momentum and
energy between the constituents.

2.2. Equations of State and Average Quantities for the Mixture

The use of conservation laws (3) as governing equations implicitly introduces assump-
tion that total pressure p of the mixture and intrinsic specific internal energy ε I mimic the
equations of state of constituents. Namely:

p = ρ
kB

m
T, ε I =

kB

(γ − 1)m
T. (11)

where T is the average temperature of the mixture, m is the average atomic mass, and γ
is the average ratio of specific heats. Total pressure and intrinsic specific internal energy
must obey Dalton’s law and defining relation (4):

p =
n

∑
α=1

pα, ρε I =
n

∑
α=1

ραεα. (12)

In the sequel, we shall introduce the mass concentration variables cα along with restriction
which they obey due to (4):

cα =
ρα

ρ
,

n

∑
α=1

cα = 1. (13)

Since relations (11) and (12) must hold in local equilibrium, T1 = . . . = Tn = T, the
following implicit definitions emerge:

1
m

=
n

∑
α=1

cα

mα
,

1
(γ − 1)m

=
n

∑
α=1

cα

(γα − 1)mα
, (14)

where, obviously, m = m(cα) and γ = γ(cα). On the other hand, in general case, from (11),
(12) and (14) one obtains definition of the average temperature T:

T = (γ − 1)m
n

∑
α=1

cα

(γα − 1)mα
Tα. (15)

Note that although mixture equations of state (11) resemble the form of the same equations
in the single-component gas, they depend on concentrations of the constituents due to (14).
Furthermore, the mixture cannot be treated as ideal gas since the stress tensor t, apart
from total pressure p, has non-vanishing diagonal and off-diagonal terms, and the flux of
internal energy q does not vanish (see Equation (4)).
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2.3. Diffusion Fluxes and Diffusion Temperatures

It is common in the mixture theory to introduce quantities which describe the differ-
ence between the state of constituents and certain properly defined state of the mixture.
One such example is the diffusion velocity uα = vα − v. In this study we shall choose
the so-called diffusion quantities which frequently appear in the literature. These are the
diffusion fluxes Jα and the diffusion temperatures Θα:

Jα = ραuα, Θα = Tα − T. (16)

Due to (4), (14) and (15), they are not independent and must satisfy the following con-
straints:

n

∑
α=1

Jα = 0,
n

∑
α=1

cα

(γα − 1)mα
Θα = 0. (17)

Therefore, in the sequel whenever appears summation over α, or quantities related to nth
constituent appear, the following relations will be assumed:

cn = 1 −
n−1

∑
b=1

cb; Jn = −
n−1

∑
b=1

Jb; Θn = −
n−1

∑
b=1

ΥbnΘb, (18)

where:

Υbn =
cb
cn

(γn − 1)mn

(γb − 1)mb
. (19)

Additionally, in definitions of all the mixture variables (4) partial mass densities ρα will
be replaced with mass concentrations, i.e., ρα = ρcα, and diffusion velocities uα will be
replaced with diffusion fluxes, i.e., uα = Jα/ρα.

2.4. Phenomenological Coefficients

As a continuum theory, RET is limited in the sense that phenomenological coefficients,
which appear in the source terms (9), cannot be determined explicitly within its framework.
This could be overcome by matching with an experimental evidence, or by means of some
more refined approach. In this study, the latter path is taken, so that the kinetic theory
of gases and moment equations appear as a natural choice. This procedure is completely
developed in [33], albeit with slightly different notation. In the sequel, we shall briefly
outline these results.

Basis for computation of the phenomenological coefficients, proposed in [33], is the
multi-velocity and multi-temperature model of mixture of gases described by means of
Boltzmann equations. The model is analyzed at an Euler level, i.e., using Maxwellian veloc-
ity distribution function for each constituent, with its own velocity and its own temperature.
Moment equations consisted of mass, momentum and energy balance laws. However,
source terms obtained as moments of collision operator had a structure that cannot be
correlated to (9). Therefore, both source terms were linearized in the neighborhood of the
local equilibrium state, and the explicit form of phenomenological coefficients ψbc and θbc
was determined.

The source terms (9) can be linearized near the local equilibrium state determined
with conditions (10). Firstly, the objective quantity w = w(u1, . . . , un, T1, . . . , Tn) evaluated
at the local equilibrium state (0, . . . , 0, T, . . . , T) is denoted with:

w0 = w(0, . . . , 0, T, . . . , T). (20)

Then the source terms (9) can be approximated by:

m̂b ≈ −
n−1

∑
c=1

ψbc(w
0)

(
uc − un

T

)
; êb ≈ −

n−1

∑
c=1

θbc(w
0)

(
Tc − Tn

T2

)
,

35



Symmetry 2021, 13, 955

Such an approximation enables comparison with the source terms computed from the Boltz-
mann collision operator in a suitable asymptotics. Namely, in [33] the phenomenological
coefficients are explicitly computed, depending on the parameter sαβ of the cross-section,
and satisfying sαβ = sβα and sαβ > −3/4 for each α, β = 1, . . . , n. In our notation, they read:

ψbc(w
0) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

− 2
3

T μbc Kψ
bc, b = c,

2
3

T
n

∑
�=1
� =b

μb�K
ψ
b�, b = c,

θbc(w
0) =

⎧⎪⎪⎨
⎪⎪⎩

− kBT2Kθ
bc, b = c,

kBT2
n

∑
�=1
� =b

Kθ
b�, b = c, (21)

for any b, c = 1, . . . , n − 1. Coefficients Kψ
αβ and Kθ

αβ are defined for any α, β = 1, . . . , n, as
long as α = β, and read as follows:

Kψ
αβ = K κ

ψ
αβ

ρα

mα

ρβ

mβ
μ
−

sαβ
2

αβ (kBT)−(dα+dβ)+
sαβ

2 , Kθ
αβ = κθ

αβKψ
αβ (22)

where the following constants are introduced:

κ
ψ
αβ =

2
sαβ

2 +4Γ
[ sαβ+3

2

]
sαβ + 5

√
π

Γ[dα + 1]Γ
[
dβ + 1

] ,

κθ
αβ =

2
(
sαβ + 5

)
sαβ + 7

(
1

sαβ + 3
+

μαβ

mα + mβ

)
.

(23)

In (22) and (23), μαβ and dα are the reduced mass and the parameter related to the ratio of
specific heats, respectively:

μαβ =
mαmβ

mα + mβ
, dα =

−5γα + 7
2(γα − 1)

.

Dimensional constant K in (22) secures the proper dimension of the coefficients, and can
be represented as a product of constituent-related part Kαβ and common term K∗ in the
following way:

K = K∗Kαβ, Kαβ =
m2

0
ρ2

0
(kBT0)

dα+dβ

(
kB

μαβ
T0

)−
sαβ

2

, (24)

where subscript 0 indicates the values of average quantities (mass, density and temperature)
in a reference state.

2.5. Relaxation Times

Source terms (9) describe mutual interaction of the constituents and model dissipation
in the system through relaxation towards (local) equilibrium. This process is usually
expressed in terms of relaxation times—quantities which provide estimates of time-rate of
convergence towards equilibrium. They can be related to phenomenological coefficients,
and in the case of n-component mixture they read:

τDbc = (−1)1−δbc
1

ψbc(w0)

ρcρn

∑n
α=1 ρα

T, τTbc = (−1)1−δbc
1

θbc(w0)

ρccVcρncVn

∑n
α=1 ραcVα

T2, (25)
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where τDbc and τTbc denote mechanical (diffusion) and thermal relaxation time, respectively,
and factor (−1)1−δbc , with δbc being Kronecker delta, is used to secure their positivity. Using
relaxation times (25), source terms may be formally expressed in the following form:

m̂b = −
n−1

∑
c=1

(−1)1−δbc
1

τDbc(w0)

ρcρn

∑n
α=1 ρα

T
(

uc

Tc
− un

Tn

)
;

êb = −
n−1

∑
c=1

(−1)1−δbc
1

τTbc(w0)

ρccVcρncVn

∑n
α=1 ραcVα

T2
(
− 1

Tc
+

1
Tn

)
,

(26)

It may be observed that relaxation times (25) present proper generalization of the relaxation
times given in [47].

3. Shock Structure Problem for Three-Component Mixture of Euler Fluids

Our main concern in this study is the shock structure problem for three-component
mixture of Euler fluids. In idealized situation (non-dissipative models) shock waves are
(singular) surfaces, which move through space, on which jumps of field variables occur.
If s denotes the shock speed—propagation velocity component perpendicular to shock
surface—then the values of field variables in front and behind the shock are related to
s by celebrated Rankine–Hugoniot conditions. In our analysis we shall analyze single
shock whose surface is plane, and the mixture flows in direction perpendicular to the
shock wave. If the dissipation is present in the model, shock wave is smeared out into the
shock structure (profile). This is smooth solution, in the form of traveling wave, which has
steep gradients in the small neighborhood of the shock wave and asymptotically connects
equilibrium states in front (upstream) and behind (downstream) the shock. Equilibrium
states are related to the shock speed s through the Rankine–Hugoniot equations.

With these preliminaries at hand, we may sketch the steps which will lead us to a
formulation of the shock structure problem for three-component mixture of Euler fluids
(n = 3). Since the analysis is restricted to plane waves, we shall first expose governing
equations for one-dimensional flow. Then, taking the traveling wave solution ansatz we
shall derive equations which determine the shock structure. Finally, the shock structure
problem will be put into dimensionless form which will be subsequently numerically
integrated and analyzed.

3.1. Equations for One-Dimensional Flow

In one dimensional settings, certain simplifications have to be done. If ei, i = 1, 2, 3,
represents standard basis in R3, then we assume motion in e1 direction and respective
coordinate denote by x. Velocities will be v = ve1 and uα = uαe1, and diffusion fluxes
Jα = Jαe1. Mixture stress tensor will have the form t = t11e1 ⊗ e1, and flux of internal
energy will be q = qe1, where:

t11 = −p −
3

∑
α=1

1
ρα

J2
α , q =

3

∑
α=1

(
εα +

pα

ρα
+

1
2ρ2

α
J2
α

)
Jα, (27)

whose more explicit form will be given in the sequel. Source terms then read m̂b = m̂be1.
Simplifications introduced above lead us to the following one dimensional governing

equations, conservation laws for the mixture:

∂ρ

∂t
+

∂

∂x
(ρv) = 0,

∂

∂t
(ρv) +

∂

∂x

(
ρv2 − t11

)
= 0, (28)

∂

∂t

(
1
2

ρv2 + ρε

)
+

∂

∂x

[(
1
2

ρv2 + ρε

)
v − t11v + q

]
= 0,
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and balance laws for the constituents:

∂

∂t
(ρcb) +

∂

∂x
(ρcbv + Jb) = 0,

∂

∂t
(ρcbv + Jb) +

∂

∂x

(
ρcbv2 +

J2
b

ρcb
+ 2vJb + pb

)
= m̂b, (29)

∂

∂t

[
1
2

ρcb

(
v +

Jb
ρcb

)2
+ ρcbεb

]

+
∂

∂x

{[
1
2

ρcb

(
v +

Jb
ρcb

)2
+ ρcbεb + pb

](
v +

Jb
ρcb

)}
= êb + m̂bv,

where b = 1, 2.

3.2. Shock Structure Equations

To derive equations which determine the shock structure we assume the traveling
wave profile of the solution. In that case generic field variable U(t, x) depends on a single
composite variable ξ = x − st, U = U(ξ), where s is the shock speed. Partial derivatives
are replaced with ordinary derivatives in the following manner, ∂/∂t = −s(d/dξ), ∂/∂x =
d/dξ, and relative velocity with respect to the shock front is defined as u = v − s. After
straightforward computations our system of governing equations is transformed into ODE
system of shock structure equations, i.e., conservation laws for the mixture:

d
dξ

(ρu) = 0,

d
dξ

(
ρu2 − t11

)
= 0, (30)

d
dξ

[(
1
2

ρu2 + ρε

)
u − t11u + q

]
= 0,

and balance laws for the constituents:

d
dξ

(ρcbu + Jb) = 0,

d
dξ

(
ρcbu2 +

J2
b

ρcb
+ 2uJb + pb

)
= m̂b, (31)

d
dξ

{[
1
2

ρcb

(
u +

Jb
ρcb

)2
+ ρcbεb + pb

](
u +

Jb
ρcb

)}
= êb + m̂bu,

where b = 1, 2. It may be noted that equations (30) express the conservation of fluxes of
mass, momentum and energy of the mixture across the shock wave, while (31)1 expresses
the conservation of mass fluxes of the constituents. On the other hand, equations (31)2,3
imply that fluxes of momenta and energies of the constituents are not conserved, but rather
balanced by the mutual interactions with other constituents (source terms).

3.3. Dimensionless Shock Structure Equations

To obtain results as general as possible, we transform our problem into dimensionless
form. Field variables will be scaled with respect reference values, which are taken to be ones
in upstream equilibrium indicated by the subscript 0. To that end we shall introduce refer-
ence (equilibrium) mass density ρ0, temperature T0, and velocity a0 = (γ0(kB/m0)T0)

1/2,
which is the speed of sound in upstream equilibrium. Here, m0 and γ0 are average
mass and average ratio of specific heats in upstream equilibrium. Reference length l0 is ex-
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pressed in terms of a0 and diffusion relaxation time τ0
D12 evaluated in upstream equilibrium,

l0 = a0τ0
D12. Dimensionless variables now read:

ρ̃ =
ρ

ρ0
, ũ =

u
a0

, T̃ =
T
T0

, J̃b =
Jb

ρ0a0
, Θ̃b =

Θb
T0

, ξ̃ =
ξ

a0τ0
D12

. (32)

Without ambiguity we may drop tilde in subsequent equations.
Mixture conservation laws for the shock structure read:

d
dξ

(ρu) = 0,

d
dξ

(
ρu2 − t11

)
= 0, (33)

d
dξ

[(
1
2

ρu2 + ρε

)
u − t11u + q

]
= 0,

where we the following relations hold:

t11 = − 1
γ0

m0

m
ρT − 1

ρc1
J2
1 −

1
ρc2

J2
2 −

1
ρc3

J2
3 ,

ρε =
m0

γ0

1
(γ − 1)m

ρT +
1

2ρc1
J2
1 +

1
2ρc2

J2
2 +

1
2ρc3

J2
3 , (34)

q =

[
1

2ρ2c2
1

J2
1 +

1
γ0

m0

m1

γ1

γ1 − 1
(T + Θ1)

]
J1

+

[
1

2ρ2c2
2

J2
2 +

1
γ0

m0

m2

γ2

γ2 − 1
(T + Θ2)

]
J2

+

[
1

2ρ2c2
3

J2
3 +

1
γ0

m0

m3

γ3

γ3 − 1
(T + Θ3)

]
J3.

In Equation (34) we have to take into account constraints (17):

c3 = 1 − c1 − c2, J3 = −J1 − J2, Θ3 = −Υ13Θ1 − Υ23Θ2, (35)

where Υ13 and Υ23 are determined by (19). Balance laws for the constituents read:

d
dξ

(ρcbu + Jb) = 0,

d
dξ

(
ρcbu2 +

J2
b

ρcb
+ 2uJb +

1
γ0

m0

mb
ρcb(T + Θb)

)
= m̂b, (36)

d
dξ

{[
1
2

ρcb

(
u +

Jb
ρcb

)2
+

m0

mb

γb
γ0

1
γb − 1

ρcb(T + Θb)

](
u +

Jb
ρcb

)}
= êb + m̂bu
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where b = 1, 2. Dimensionless source terms m̂b read:

m̂1 = −c20 c30

[
ψ11

ψ0
12

(
J1

ρc1(T + Θ1)
− J3

ρc3(T + Θ3)

)

+
ψ12

ψ0
12

(
J2

ρc2(T + Θ2)
− J3

ρc3(T + Θ3)

)]
,

m̂2 = −c20 c30

[
ψ21

ψ0
12

(
J1

ρc1(T + Θ1)
− J3

ρc3(T + Θ3)

)

+
ψ22

ψ0
12

(
J2

ρc2(T + Θ2)
− J3

ρc3(T + Θ3)

)]
.

(37)

Dimensionless source terms êb read:

ê1 =− c20 c30

[
θ11

a2
0ψ0

12

Θ1 − Θ3

(T + Θ1)(T + Θ3)
+

θ12

a2
0ψ0

12

Θ2 − Θ3

(T + Θ2)(T + Θ3)

]
,

ê2 =− c20 c30

[
θ21

a2
0ψ0

12

Θ1 − Θ3

(T + Θ1)(T + Θ3)
+

θ22

a2
0ψ0

12

Θ2 − Θ3

(T + Θ2)(T + Θ3)

]
.

(38)

In (37) and (38), c20 and c30 denote mass concentrations in upstream equilibrium. Ratios of
phenomenological coefficients are given in the Appendix A.

Governing Equations (33) and (36), along with (34), (37) and (38), constitute the system
of (dimensionless) shock structure equations for a multi-temperature three-component
mixture of Euler fluids. If the shock structure is analyzed in a single-temperature model,
then equations (36)3 should be dropped from the system, and Θ1 = Θ2 = Θ3 ≡ 0 set in the
remaining equations.

3.4. Parameters of the Model

The dimensionless form of the model substantially reduces the number of parameters.
In previous study of binary mixtures [47] there were three parameters upon which the
solution depend—Mach number and mass concentration of one constituent in upstream
equilibrium, and mass ratio of the constituents. Increase of the number of constituents
increases the number parameters. Thus, in this study, in which we deal with n = 3,
constituents the following parameters will be used:

M0 =
u0

a0
, Mach number in upstream equilibrium;

c10 =

(
ρ1

ρ

)
0
, c20 =

(
ρ2

ρ

)
0
, mass concentrations in upstream equilibrium;

μ1 =
m1

m3
, μ2 =

m2

m3
, mass ratios of the constituents.

To avoid ambiguity, we shall assume that the following inequality holds, m1 < m2 < m3,
which implies 0 < μ1 < μ2 < 1. Additionally, the ratios of specific heats of the constituents
γα, α = 1, 2, 3, have to be fixed.

3.5. Numerical Procedure

Governing equations of the shock structure consist of conservation laws (33) for the
mixture, and balance laws for the constituents (36), where explicit form of the fluxes and
source terms are given by (34), (37) and (38), respectively. Governing equations could be
formally written in the form:

d
dξ

F(U(ξ)) = f(U(ξ)), (39)
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where U = (ρ, u, T, c1, c2, J1, J2, Θ1, Θ2)
T denotes the vector of field variables, and F(U)

and f(U) have obvious meaning.
Shock structure is continuous solution of the system (39) which asymptotically con-

nects upstream equilibrium U− with downstream equilibrium U+, i.e., a heteroclinic orbit.
Equilibrium states are not independent, but related by Rankine–Hugoniot equations. As a
consequence, the system of first-order ordinary differential equations (39) is adjoined with
the following boundary conditions:

U(−∞) = lim
ξ→−∞

U(ξ) = U−, U(+∞) = lim
ξ→+∞

U(ξ) = U+,

U′(±∞) = lim
ξ→±∞

dU(ξ)

dξ
= 0,

(40)

where the boundary data are as follows:

U− =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ−
u−
T−
c1−
c2−
J1−
J2−

Θ1−
Θ2−

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
M0
1

c10
c20
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, U+ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ+
u+

T+

c1+
c2+
J1+
J2+

Θ1+
Θ2+

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M2
0

1−μ2
0+μ2

0 M2
0

1−μ2
0+μ2

0 M2
0

M0
1−μ2

0+μ2
0 M2

0
M2

0

[
(1 + μ2

0)M2
0 − μ2

0
]

c10
c20
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (41)

where μ2
0 = (γ0 − 1)/(γ0 + 1). In the case of a ST mixture, field variables Θ1 and Θ2

should be dropped from the vector U, as well as from boundary data (41).
Note that the role of Rankine–Hugoniot equations in this problem is not the same

as in the models without dissipation, like Euler equations for single-component gases [1].
In the Euler equations, they relate the jump of field variables at the shock wave (singular
surface) to the shock speed. Here, instead, they relate the equilibrium states, upstream and
downstream, which are connected by a continuous shock structure. However, they coincide
with Rankine–Hugoniot equations for Euler equations because equilibrium states lie on
equilibrium manifold, and the equilibrium subsystem for our model coincides with the
Euler equations. They are derived by means of integration of conservation laws (33), taking
into account equilibrium values of non-convective fluxes t11 and q from (34) and Jα = 0.

Numerical computation of the shock structure in hyperbolic systems of balance laws
is delicate because continuous solution does not exist for all values of the shock speed.
Namely, it was shown that continuous solution breaks down, and there appears the profile
with a sub-shock, if shock speed exceeds the greatest characteristic speed of the system
in upstream equilibrium [38]. However, there may also appear a regular singularity,
within the continuous profile, if the shock speed reaches the critical value in downstream
equilibrium. These cases are carefully analyzed in [35], and existence of continuous shock
profiles in mixtures was the subject of several recent studies [48,49].

To find numerical solution of the problem (39)–(41), the infinite domain of definition
of heteroclinic orbit, −∞ < ξ < ∞, has to be truncated; however, the new finite domain,
ξ ∈ [ξ0, ξ1], has to be large enough to secure that the whole profile is properly captured.
Further computation may be based upon two different strategies. First one takes into
account the type of stationary/equilibrium points and finds the shock structure as solution
of the initial value problem. This approach is described in details in [47]. It is simple,
straightforward, with low computational cost. Nevertheless, its applicability is limited
since regular singularity, if it appears, cannot be overcome. Second strategy uses the
finite-difference scheme to compute the shock structure as solution of the boundary value
problem. This method may require several steps of computation. Adaptive step size has to
be used, with smaller steps in the sub-domain in which steep gradients of field variables
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occur. However, position of this sub-domain is not known beforehand. Additionally, an
initial guess has to be provided for numerical computation. On the other hand, boundary
value approach may produce continuous solution even when regular singularity appear in
the domain. Details about this approach may be found in [18,53].

Our analysis will try to take advantages of both strategies described above. In cases in
which initial value problem can be solved, we shall first use this method, and then exploit
this solution as initial guess for the boundary value problem. In such a way we shall get
the estimate of domain width and the location of sub-domain with steep gradients in first
place. After that, finite-difference scheme will be used to further improve the solution. On
the other hand, when initial value strategy is not applicable, we shall use as an initial guess
the continuous solution obtained for some other (not too distinct) values of parameters.

4. Analysis of the Shock Structure

Analysis of the shock structure in three-component mixture of Euler fluids has several
goals. First, we want to validate our model, especially phenomenological coefficients, by
computing typical profiles that are comparable with the ones obtained by other methods.
Second, we want to recognize the features typical for polyatomic gases. Third, we want
get a glimpse of the influence of Mach number on the shock structure. Fourth, we want
set up the data which mimic the binary mixture and find out what are the differences that
three-component model brings. Finally, we shall compare the multi-temperature shock
structure with the single-temperature one, and try to estimate the effect obtained by the
MT assumption.

Computation are performed in the way explained in Section 3. However, field vari-
ables are scaled to change in the [0, 1] interval, where it is appropriate.

4.1. Shock Structure in the MT Model

Our model contains several parameters, whose values have to be given prior to
numerical computation. First, phenomenological coefficients (21) depend on the type of
particle interaction through the parameter sαβ of the cross-section, (22) and (23). In the
sequel, we shall assume sαβ = 1, which corresponds to the hard-sphere model of particle
interaction. Furthermore, in all the computations we shall assume the following values
of ratios of specific heats: γ1 = 7/5, γ2 = γ3 = 9/7. In most of the computations mass
ratios will be μ1 = 0.01 and μ2 = 0.1, unless stated otherwise (see Case 4). This assumption
tends to cover the most interesting case from the MT point of view—the one with a mixture
whose constituents have disparate masses.

Case 1. In this case it is analyzed the situation with small equilibrium concentration
c30 of the heaviest constituent, and large equilibrium concentration c20. Shock structure
is computed for c10 = 0.10, c20 = 0.75 and c30 = 0.15, and M0 = 1.30, and shown in
Figure 1. Average mixture variables ρ, u and T have proper monotonic profiles, as well
as velocities of the constituents. However, it may be observed that temperature T3 of
the heaviest constituent has an overshoot—the zone in which the variable has the value
greater than the downstream equilibrium value. This result corresponds to similar obser-
vations in binary mixtures, where an overshoot appears when heavier constituents have
small concentration [41,42,47]. It may also be noted that the difference between the veloci-
ties of the constituents is significant. Therefore, this case corresponds to typical profiles
which can be found in [55,56]. Implicitly, it validates the structure of phenomenological
coefficients (21) obtained by matching the continuum and kinetic approach.

Case 2. In the second case, two profiles were computed for the same value of Mach
number, M0 = 1.20. The difference appears in equilibrium concentrations: for c10 = 0.60,
c20 = 0.30, and c30 = 0.10, profiles are presented in Figure 2, graphs (a) and (b); for
c10 = 0.60, c20 = 0.20, and c30 = 0.20, profiles are presented in Figure 2, graphs (c) and (d).
The profiles consist of two zones: upstream one with steeper gradients of field variables,
and downstream one with moderate gradients. This appears to be more prominent in the
profiles of mixture variables, especially on graph (a). This kind of profile, named Type-C,
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was firstly observed in [59] for the shock structure in ET14 model of a polyatomic gas (see
also [18] for a contextualized account). The result was further supported by numerical
solution of the Boltzmann equation for polyatomic gases [60], as well as two-temperature
Navier–Stokes equations for polyatomic gases [61]. The main cause of such a profile is
attributed to the presence of dynamic pressure and its relaxation (bulk viscosity), which is
longer than the relaxation of viscous stress and heat flux. Although our model does not take
into account these processes, there exists certain resemblance to this phenomenon in our
profiles as well. To the best of our knowledge, such profiles do not appear in monatomic
gases and their mixtures, and we are convinced that polyatomic molecular structure is
the cause for this result. Note that such profiles appear in the case with an overshoot and
without it alike.
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Figure 1. Shock structure for c10 = 0.10, c20 = 0.75, c30 = 0.15, and M0 = 1.30: (a) mixture field
variables; (b) velocities; (c) temperatures; (d) diffusion fluxes; (e) concentrations.
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Figure 2. Shock structure for M0 = 1.20, c10 = 0.60, c20 = 0.30, and c30 = 0.10: (a) mixture field
variables; (b) temperatures. Shock structure for M0 = 1.20, c10 = 0.60, c20 = 0.20, and c30 = 0.20:
(c) mixture field variables; (d) temperatures.
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Case 3. In this case we examined the profiles with the highest equilibrium concentra-
tion c30. In particular, we computed the profiles for c10 = 0.20, c20 = 0.20 and c30 = 0.60,
and for two different values of Mach number, M0 = 1.20 and M0 = 1.40, presented in
Figure 3a,b, respectively. For these profiles it is remarkable that temperatures Tα of the
constituents have negligibly small difference, which is almost indistinguishable on the
scale of graph (and thus not presented here). Therefore, we present the two cases which
are in accordance with the results for binary mixture [47]—shock thickness decreases with
the increase of Mach number. This conclusion is valid for small values of M0.
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Figure 3. Shock structure for c10 = 0.20, c20 = 0.20 and c30 = 0.60: (a) mixture field variables for
M0 = 1.20; (b) mixture field variables for M0 = 1.40.

Case 4. Here we computed the profiles for c10 = 0.40, c20 = 0.50 and c30 = 0.10.
However, we analyzed two different cases: (a) M0 = 1.20 and μ2 = 0.10, and (b) M0 = 1.40
and μ2 = 0.80, presented in Figure 4. These results give an insight into the influence
of mass ratio on the shock structure. In case (a), in the mixture with disparate masses
of constituents, one may observe the temperature overshoot in T3. However, in case (b)
where constituents 2 and 3 have comparable masses, temperatures of the constituents are
almost indistinguishable.
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Figure 4. Shock structure for c10 = 0.40, c20 = 0.50 and c30 = 0.10: (a) temperatures for M0 = 1.20
and μ2 = 0.10; (b) temperatures for M0 = 1.40 and μ2 = 0.80.

4.2. Comparison with a Single-Temperature Model

There always appears a question of the relevance of the MT assumption in the mix-
tures. Certainly, there are non-equilibrium processes in which this assumption cannot be
dropped (e.g., in plasma). On the other hand, it also proved to be relevant in mixtures
whose constituents have disparate atomic/molecular masses, like noble gases. Within the
framework of RET, even if the multi-temperature assumption is dropped, one ends up
with a multi-velocity model which is still hyperbolic and does not produce the paradox of
infinite speed of pulse propagation.

Our intention is to quantify the discrepancy in mixture field variables, primarily in
the average temperature of the mixture, which appears within the shock profile computed
for MT model, and the one computed for ST model. To that end, we compute the sup-norm
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of the difference of numerically computed solutions, i.e., ‖T − TST‖ = supξ∈[ξ0,ξ1]
|T(ξ)−

TST(ξ)|, where TST(ξ) denotes the temperature field along the shock profile in ST model.
For the shock structure with a temperature overshoot, presented in Case 1. of this

study, sup-norm of the difference of normalized temperature profiles (the ones whose
equilibrium values are set to 0.0 and 1.0) is ‖T − TST‖ ∼ 0.01 (see Figure 5). This im-
plies that processes of energy exchange between the constituents, which appear due to
the temperature difference, do not have a significant influence on the average value of
temperature in MT model. However, this does not mean that they may be neglected. It was
shown that appearance of temperature overshoot is directly related to insufficient energy
exchange/transfer [43,47]. Additionally, preliminary computations, not reported here,
show that there are cases with extremely large temperature overshoot, (Tmax

3 − T+)/(T+ −
T−) ≈ 0.70, in which ST is not capable of proper capturing the behavior of the mixture
temperature. This will be the subject of our prospective study.
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Figure 5. Difference of the mean temperatures in MT and ST model, computed for the Case 1,
c10 = 0.10, c20 = 0.75, c30 = 0.15, and M0 = 1.30.

5. Relaxation in the Shock Structure

One of the main features of hyperbolic systems of balance laws is that dissipation is
achieved through the relaxation process, i.e., convergence of non-equilibrium variables to a
certain (local) equilibrium state. Quantitative measure of the rate of convergence towards
equilibrium is relaxation time. In simpler mathematical models, relaxation time may be
unique for the whole system. However, if the model describes complex physical processes,
there may be a need for more than one relaxation time. This is the case in our model of
multi-component mixtures.

Mechanical (diffusion) and thermal relaxation times were introduced in (25), while
their influence on the source terms was described in (26). It was shown recently [53] that
the rate of convergence may not be the same for different processes. Therefore, our aim is to
compare different relaxation times and to get an insight to the rate of convergence towards
equilibrium for different processes. We shall compare the relaxation times in a relative sense,
i.e., by computing the ratio of relaxation times τDbc and τTbc to the reference relaxation time
τ0

D12 along the shock profiles. After straightforward calculation, one may find the explicit
dimensionless form of ratios of the diffusion relaxation times to the reference one:

τD11

τ0
D12

=
ψ0

12
ψ11

c1c3

c20c30
ρT = τ̃D11;

τD12

τ0
D12

= −ψ0
12

ψ12

c2c3

c20c30
ρT = τ̃D12;

τD21

τ0
D12

= −ψ0
12

ψ21

c1c3

c20c30
ρT = τ̃D21;

τD22

τ0
D12

=
ψ0

12
ψ22

c2c3

c20c30
ρT = τ̃D22.
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Ratios of the thermal relaxation times to the reference one in dimensionless form read:

τT11

τ0
D12

=
a2

0ψ0
12

θ11

γ − 1
γ0(γ1 − 1)(γ3 − 1)

m0m
m1m3

c1c3

c20c30
ρT2 = τ̃T11;

τT12

τ0
D12

= − a2
0ψ0

12
θ12

γ − 1
γ0(γ2 − 1)(γ3 − 1)

m0m
m2m3

c2c3

c20c30
ρT2 = τ̃T12;

τT21

τ0
D12

= − a2
0ψ0

12
θ21

γ − 1
γ0(γ1 − 1)(γ3 − 1)

m0m
m1m3

c1c3

c20c30
ρT2 = τ̃T21;

τT22

τ0
D12

=
a2

0ψ0
12

θ22

γ − 1
γ0(γ2 − 1)(γ3 − 1)

m0m
m2m3

c2c3

c20c30
ρT2 = τ̃T22.

Ratios of the phenomenological coefficients needed to complete these expressions are given
in the Appendix A.

Relaxation times, presented in Figure 6, are computed for the profiles analyzed in
Case 1. They share one common property—a decrease along the shock profile, although it
may not be monotonic. However, the most remarkable feature of the relaxation times in
the multi-component mixture, at least in this case, is that the thermal relaxation times τ̃Tbc
are considerably smaller than the diffusion relaxation times τ̃Dbc. These results oppose the
ones obtained in the case of binary mixture [40,47], even when the viscous and thermal
dissipation are taken into account [53]. This certainly calls for deeper analysis of relaxation
processes in the mixture. Additionally, it must be kept in mind that relaxation times may be
strictly related to the rate of convergence towards equilibrium only in the simplest possible
space-homogeneous cases. Therefore, relaxation times (25) in our model cannot be simply
identified as the time-rates of convergence of non-equilibrium variables.
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Figure 6. Relaxation times in the shock structure for c10 = 0.10, c20 = 0.75, c30 = 0.15, and M0 = 1.30:
(a) mechanical (diffusion) relaxation times; (b) thermal relaxation times.

6. Conclusions and Outlook

This paper was devoted to the study of shock structure in multi-component mixture
of Euler fluids. Analysis was based upon the hyperbolic MT model for mixtures developed
within the framework of RET. Explicit form of phenomenological coefficients, which
appear in the source terms, was determined by matching with a linearized weak form of
the collision operator in the system of Boltzmann equations for mixtures of polyatomic
gases. The analysis was restricted to the normal shock waves, smeared out into a shock
structure due to dissipation. Therefore, the shock structure was assumed in the form of a
traveling wave. The original governing equations are transformed into a system of ODE’s
that determine the shock structure as a heteroclinic orbit which asymptotically connects
stationary points. Shock profiles were found as numerical solutions to the system of shock
structure equations in dimensionless form, and analyzed for the several different sets of
values of the parameters.
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Our attention was focused on cases which possess certain distinguishing features,
and thus can be taken as representatives of a broader class of qualitatively similar shock
profiles. In particular, the following representative cases were recognized:

(a) shock profiles with an overshoot in T3 (the temperature of the heaviest constituent);
this appears in the mixture with disparate masses of the constituents, μ1 = 0.01,
μ2 = 0.1, and when the equilibrium concentration c30 of the heaviest constituent
is small;

(b) shock profiles with two zones; in this case one distinguishes the front part of the profile,
with steep gradients of field variables, and the rear part with moderate gradients of
field variables;

(c) shock profiles with small magnitude of the diffusion temperatures, and decreasing
thickness with the increase of Mach number; this case is typical for large equilibrium
concentration c30 of the heaviest constituent;

(d) shock profiles which depend on the mass ratio; increase of the mass ratio μ2 leads
to disappearance of the temperature overshoot, and resembles the behavior of bi-
nary mixture.

We also analyzed the ST model and compared its profiles with the MT ones. It was
recognized that MT assumption does not produce significant difference between the profiles
of the average temperatures in MT and ST case. However, certain profiles exist with larger
magnitude of temperature overshoot, and systematic analysis of MT assumption in these
cases is a matter of ongoing research.

Finally, to perceive the rate at which dissipation occurs, we computed the relaxation
times which appear in the source terms. It was found out that relaxation times decreased
along the shock profile (but not monotonically). Analysis also shed new light on their
magnitudes by giving an estimate that thermal relaxation times could be smaller than the
diffusion ones.

The present study opens a new chapter in analysis of the shock structure in gaseous
mixtures. It is important to note that the model took advantage of the continuum approach,
which secured thermodynamic consistency and peculiar structure of the source terms,
and the kinetic theory, which equipped us with explicit form of the phenomenological
coefficients. In such a way we obtain reliable and tractable mathematical model at the
same time. Results obtained in this way are in good agreement with the results of other
studies, and therefore confirm validity of the model. Further analysis, which is a work in
progress, will be concerned with a systematic study of the shock structure in the regions of
parameter space in which continuous solutions exist. This will give a deeper insight into
the influence of certain parameters on quantitative characteristics of the shock profiles, like
the temperature overshoot or the shock thickness. Additionally, in continuation, it is our
intention to extend the analysis of the entropy growth and the entropy production rate,
given in [52] for the binary mixture, to three-component mixtures. Our aim is also to take
into account viscous and thermal dissipation and evaluate their influence on the shock
structure in multi-component mixtures, like it was done in [53] for binary mixtures. Finally,
it is our intent to analyze the cases of specific mixtures. To that end we plan to use novel
models of polyatomic gases, derived in the kinetic theory [21], to get better estimates of
phenomenological coefficients and to relate them to measurable physical quantities like
diffusivity. This will also lead to possible explicit estimate of the shock thickness in terms
of the average mean free path of the molecules.

Author Contributions: Conceptualization, M.P.-Č. and S.S.; methodology, D.M., M.P.-Č. and S.S.;
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Appendix A

Here we list the ratios of phenomenological coefficients which appear in the dimension-
less form of the source terms (37) and (38). We use the abbreviated notation, ψbc = ψbc(w

0),
θbc = θbc(w

0), and ψ0
12 denotes the phenomenological coefficient evaluated at upstream

equilibrium. We also take into account that coefficients are symmetric, i.e., ψ21 = ψ12 and
θ21 = θ12.

Ratios of coefficients in (37) read:

ψ11

ψ0
12

= T

[
Kψ

12

Kψ0
12

+
μ13

μ12

Kψ
13

Kψ0
12

]
,

ψ12

ψ0
12

= −T
Kψ

12

Kψ0
12

,

ψ21

ψ0
12

=
ψ12

ψ0
12

= −T
Kψ

12

Kψ0
12

,
ψ22

ψ0
12

= T

[
Kψ

12

Kψ0
12

+
μ23

μ12

Kψ
23

Kψ0
12

]
.

Ratios of coefficients in (38) read:

θ11

a2
0ψ0

12
=

3
2

1
γ0

m0

μ12
T2

[
κθ

12
Kψ

12

Kψ0
12

+ κθ
13

Kψ
13

Kψ0
12

]
,

θ12

a2
0ψ0

12
= −3

2
1

γ0

m0

μ12
T2κθ

12
Kψ
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Kψ0
12

,
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0ψ0

12
=

θ12
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0ψ0

12
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2
1
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T2κθ
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Kψ
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θ22
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0ψ0

12
=

3
2

1
γ0

m0

μ12
T2

[
κθ

12
Kψ
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Kψ0
12

+ κθ
23

Kψ
23

Kψ0
12

]
.

Ratios of coefficients given above are expressed in terms of Kψ
bc given in (22). Taking into

account (22)–(24), one may find their explicit form:

Kψ
12

Kψ0
12

= ρ2 c1 c2

c10 c20
T−(d1+d2)+

s12
2 ,

Kψ
13

Kψ0
12

= ρ2 c1 c3

c10 c20

κ
ψ
13

κ
ψ
12

μ2T−(d1+d3)+
s13
2 ,

Kψ
23

Kψ0
12

= ρ2 c2 c3

c10 c20

κ
ψ
23

κ
ψ
12

μ1T−(d2+d3)+
s23
2 .
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To facilitate numerical computation, we list below some useful expressions which appear
in the model:

m0

m
=

(
c1

μ1
+

c2

μ2
+ c3

)(
c10

μ1
+

c20

μ2
+ c30

)−1
,

m0

m1
=

1
μ1

(
c10

μ1
+

c20

μ2
+ c30

)−1
,

m0

m2
=

1
μ2

(
c10

μ1
+

c20

μ2
+ c30

)−1
,

m0

m3
=

(
c10

μ1
+

c20

μ2
+ c30

)−1
,

m0

μ12
=

μ1 + μ2

μ1μ2

(
c10

μ1
+

c20

μ2
+ c30

)−1
,

μ13

μ12
=

μ1

μ1 + 1
μ1 + μ2

μ1μ2
,

μ23

μ12
=

μ2

μ2 + 1
μ1 + μ2

μ1μ2
.
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Abstract: The ideal Stirling cycle describes a specific way to operate an equilibrium Stirling engine.
This cycle consists of two isothermal and two isochoric strokes. For non-equilibrium Stirling engines,
which may feature various irreversibilities and whose dynamics is characterized by a set of coupled
ordinary differential equations, a control strategy that is based on the ideal cycle will not necessarily
yield the best performance—for example, it will not generally lead to maximum power. In this paper,
we present a method to optimize the engine’s piston paths for different objectives; in particular,
power and efficiency. Here, the focus is on an indirect iterative gradient algorithm that we use to solve
the cyclic optimal control problem. The cyclic optimal control problem leads to a Hamiltonian system
that features a symmetry between its state and costate subproblems. The symmetry manifests itself
in the existence of mutually related attractive and repulsive limit cycles. Our algorithm exploits these
limit cycles to solve the state and costate problems with periodic boundary conditions. A description
of the algorithm is provided and it is explained how the control can be embedded in the system
dynamics. Moreover, the optimization results obtained for an exemplary Stirling engine model
are discussed. For this Stirling engine model, a comparison of the optimized piston paths against
harmonic piston paths shows significant gains in both power and efficiency. At the maximum power
point, the relative power gain due to the power-optimal control is ca. 28%, whereas the relative
efficiency gain due to the efficiency-optimal control at the maximum efficiency point is ca. 10%.

Keywords: cyclic optimal control; finite time thermodynamics; endoreversible thermodynamics;
Stirling; optimization

1. Introduction

Stirling engines are closed-cycle regenerative heat engines that harness a temperature
difference between two external heat baths. At the cost of taking entropy from the hot heat
bath and disposing it to the cold heat bath, they generate mechanical work. This means that
Stirling engines are very flexible regarding the possible technical representations of those
two heat baths. Therefore, they can be applied in various scenarios. Some current example
applications are power generation from burnable industrial waste gases [1], domestic
combined heat and power generation [2], electro-thermal energy storage systems for re-
newable energies as an alternative to lithium-ion batteries [3], and low-maintenance power
generation in remote regions with harsh climatic conditions [4], among others. If prop-
erly designed, Stirling engines can achieve high efficiency, durability, low-maintenance,
and low-noise operation. Hence, they are considered to be one good candidate technology
for enhancing the sustainability of power systems.

One certain ideal representation of the thermodynamic cycle performed in Stirling
engines is commonly referred to as the ideal Stirling cycle. It consists of four distinct strokes
(processes) that an enclosed working gas cyclically performs:

1. Isothermal compression at TExL
2. Isochoric regenerative heating to TExH
3. Isothermal expansion at TExH
4. Isochoric regenerative cooling to TExL

Symmetry 2021, 13, 873. https://doi.org/10.3390/sym13050873 https://www.mdpi.com/journal/symmetry53
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where TExH and TExL are the temperatures of the hot and cold heat bath, respectively.
If those four ideal processes are repeated in the prescribed order, the cycle represents
an ideal heat engine, operating with Carnot efficiency ηC = 1 − TExL/TExH. In the two
regenerative processes 4 and 2, heat needs to be stored and provided at a range of temper-
atures. The combined process is called regeneration, and is accomplished with help of a
multi-temperature heat storage, referred to as a regenerator.

In real Stirling engines, the working gas is typically contained in two working spaces.
One of them, the hot working space, is in thermal contact with the hot heat bath. The
other one, the cold working space, is in thermal contact with the cold heat bath. The two
working spaces’ volumes can be changed by moving pistons. As a result of those pistons’
movements, the working spaces exchange working gas through the regenerator, which is
often implemented as a porous metal structure.

In contrast to the ideal Stirling cycle, in real Stirling engines, the four above-described
strokes can typically not be clearly distinguished. This is due to several reasons. First of all,
the engine’s piston movements (piston paths) usually do not exactly reproduce the two
isochoric strokes. Moreover, the regenerator, as well as the hot and cold working spaces,
have non-zero dead volumes. The most important reason, however, is connected to the fact
that real engines are supposed to produce a finite amount of work in finite time, which
is in contrast to the assumptions of equilibrium thermodynamics, and thus to the ideal
Stirling cycle. Consequently, in real Stirling engines, various inevitable loss phenomena
occur, for example, finite heat transfer between the working gas and the external heat baths
or the regenerator matrix, pressure drop across the regenerator, and heat leaks through
the engine’s internal components.

Correspondingly, real Stirling engines are non-equilibrium devices. Hence, piston
paths aiming to emulate the ideal Stirling cycle’s four strokes would not necessarily yield
best performance. The question of what piston paths yield best performance, for example,
optimal net power, constitutes a cyclic optimal control problem.

In this paper we present an algorithm that can be used to solve such cyclic optimal
control problems. It is an indirect iterative gradient algorithm and based on Optimal
Control Theory. The algorithm starts with prescribing initial control functions determining
the piston paths. These control functions are then gradually modified over the course of
the iterations so as to gradually improve an objective and approach the optimal control.
To determine the gradual shifts in every iteration, not only does the system of ordinary
differential equations, describing the thermodynamics of the Stirling engine, need to be
solved, but also a conjugate system of differential equations. For the efficient practical
feasibility of this task, low numerical effort of the utilized thermodynamic model is crucial.
In detailed models of Stirling engines, significant numerical effort is usually connected to
the description of the regenerator. Therefore, here we will apply a Stirling engine model
with a reduced-order endoreversible regenerator model that provides a proper tradeoff
between accuracy and numerical effort for optimal control problems.

As indicated above, the core discrepancy between the ideal Stirling cycle and a real Stir-
ling engine is that, in the former, all processes are quasi-static, and hence reversible, whereas
the latter is required to produce a finite amount of work in finite time. Therefore, real Stir-
ling engines are non-equilibrium devices that could by no means achieve the performance
measures of the ideal cycle, such as Carnot efficiency. A non-equilibrium thermodynamics
field that studies how constraints on time and rate influence the performance of such
devices is Finite-Time Thermodynamics (FTT) [5,6]. FTT typically approaches this and
related questions with variational principles and global—rather than local—descriptions
of the irreversible systems considered [5].

Endoreversible Thermodynamics [7–11] can be regarded as a subfield of FTT that
intends to provide a toolbox of model building blocks from which an FTT model can
be constructed in a comprehensible way. The emphasis is placed on including the main
loss phenomena, while keeping the model structure clear and minimizing mathematical
complexity and numerical effort. The basic approach is to decompose the considered
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thermodynamic system into a network of reversible subsystems that are connected with
each other through (ir)reversible interactions. That is, in its endoreversible representa-
tion, the original system’s irreversibilities are captured by the interactions, whereas for
the reversible subsystems the known relations from equilibrium thermodynamics hold.

In the past, various endoreversible systems have been subject to investigations in-
volving control optimizations. In particular, for heat engines, the piston trajectories can
be optimized for objectives, such as power or efficiency. For example, such studies have
been carried out for engines with Diesel [11–14] and Otto [15–17] cycles, light-driven
engines [18–20], and Stirling engines [21–23].

The optimization approach used in the current study to optimize the Stirling engine
differs from [21–23] in that a cyclic version of Optimal Control Theory is applied. Be-
yond Endoreversible Thermodynamics, this has been done by Craun and Bamieh [24]
for an ideal beta-Stirling engine model with an actively controlled displacer. In [24],
the heat transfer between the heat baths and the working gas was infinitely fast and re-
generation was perfect. The pressure drop across the regenerator was thermodynamically
neglected, but considered in terms of mechanical losses. As opposed to this, in the current
study, an alpha-Stirling engine model with finite heat transfer between the heat baths and
the working gas, an external heat leak, gas leakages and friction of the piston rings, and an
irreversible regenerator is considered. Compared to the endoreversible regenerator models
used in [22,23], the EEn-regenerator model [25] used in this study features a significantly
higher degree of detail.

2. Stirling Engine Model

In this paper, our focus is on a cyclic control optimization algorithm that can be
applied to various Stirling engine models, or models of other cyclically operating systems.
Nevertheless, we here briefly introduce a Stirling engine model [25] that we will use to
demonstrate the algorithm’s usage. In particular, we will present optimization results for
this model in Section 5.

We consider an alpha-type Stirling engine as schematized in Figure 1, where the heat
transfer between the external heat baths and the working gas is realized through the
cylinders.

Figure 1. Schematics of the alpha-type Stirling engine considered. The corresponding endoreversible
model [25] has ten degrees of freedom (state variables), being the working space’s volumes Vi,
temperatures Ti, and particle numbers ni, the energies ER.h and ER.l of the hot and cold halves of
the regenerator matrix as well as the particle number nR.d and temperature TR.d of the gas inside
the regenerator dead space.

For the sake of simplicity, we assume a constant finite heat transfer coefficient. Further
irreversibilities result from an external heat leak between the heat baths, gas leakage of
the piston rings, friction of the pistons, pressure drop across the regenerator, and thermal
mixing at the interfaces of the regenerator and the working spaces.

The regenerator is described with the reduced-order endoreversible EEn-regenerator
model, developed in [25]. Essentially, this is based on the assumptions that the spatial
temperature distribution inside the regenerator is linear and that the temperature difference
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between the gas and matrix is small. Aside from external irreversibilities that automatically
occur due to thermal mixing in the regenerator’s interactions with the working spaces, inter-
nal irreversibilities can be included via entropy source terms in the EEn-regenerator model.
In the current study, the irreversibility due to the pressure drop across the regenerator is
accounted for by such an entropy source term.

The Stirling engine performance measures that are to be optimized in this study are
power and efficiency. The power, or net power output, is defined as

P =
W
τ

, (1)

with the fixed cycle time τ and the net cycle work

W =
∫ τ

0

(
pH V̇H + pL V̇L

)
− γ

(
V̇2

H + V̇2
L

)
dt, (2)

where Vi and pi are the volume and pressure of the working spaces i ∈ {H, L} and γ is
the friction coefficient of the pistons. Then, the efficiency is

η =

∫ τ
0

(
pH V̇H + pL V̇L

)
− γ

(
V̇2

H + V̇2
L

)
dt∫ τ

0 IH,ExH + KEx (TExH − TExL) dt
, (3)

where IH,ExH is the instantaneous heat flux to the hot working space and KEx (TExH − TExL)
corresponds to an external heat leak. We here use the same transfer laws and parameter
values as in [25], for example, the heat bath temperatures are defined as TExH = 500 K and
TExL = 300 K. Solely for the heat conductance of the external heat leak, we chose a different
parameter value: KEx = 5 W/K.

This Stirling engine model has ten state variables, which are the working spaces’
volumes Vi, temperatures Ti, and particle numbers ni with i ∈ {H,L}, the energies ER.h
and ER.l of the hot and cold halves of the regenerator matrix as well as the particle number
nR.d and temperature TR.d of the gas inside the regenerator dead space.

The state variables of this Stirling engine model can be arranged in a state vector x
and the state dynamics can be expressed in terms of ẋ = f (x, u). Here, f (x, u) is a vector-
valued function that depends on the state vector x and a control vector u. In our Stirling
engine model we define the control vector u in terms of an explicitly time-dependent,
τ-periodic control function u(t), which has the entries uH(t) and uL(t). Each of those two
sub-functions determines the dynamics of one working volume, as indicated in Figure 1.
An essential requirement that we raise is that the state dynamics ẋ = f (x, u(t)) features
a limit cycle with regard to all state variables, which will be necessary for the applicability
of the optimization algorithm. Therefore, care must be taken regarding the embedding of
the control in the system dynamics, which will be explained in Section 4.

3. Cyclic Optimal Control Problem

Optimal Control Theory provides a framework for the dynamic (or indirect) optimiza-
tion of dynamical systems, such as the above-described Stirling engine model. The type
of optimal control problem considered in this work can be formulated as: find an uncon-
strained, smooth, τ-periodic control function u(t) that maximizes the objective functional

J =
∫ τ

0
ζ(x, u(t))dt (4)

subject to the constraint

ẋ = f (x, u(t)) (5)
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for a fixed period τ. Here, x is the state vector of the system. The dynamics of the system is
determined by the ordinary differential Equation (5) and is influenced by the vector-valued,
explicitly time-dependent, τ-periodic control function u(t).

For the formulation of necessary conditions of optimality, a Hamilton function H is
defined as [26,27]

H(x, u, λ) := ζ(x, u) + λT f (x, u) (6)

with an adjoint vector λ, which varies over time and will henceforth also be called a costate
vector. As we will see later, there exists an interesting symmetry between the dynamics
of the state vector x and the costate vector λ. The first order necessary conditions for
the control u with the optimal value are [26,27]

ẋ = ∇λ H(x, u, λ), (7)

λ̇ = �∇x H(x, u, λ), (8)

0 = ∇u H(x, u, λ), (9)

combined with the respective transversality conditions that specify the boundary conditions
for the state and costate dynamics from Equations (7) and (8), respectively. In the case
of the optimal cyclic regime, as valid for the stationary operational state of a cyclically
operating engine, these boundary conditions are [27]

x|τ = x|0, (10)

λ|τ = λ|0. (11)

The notation x|t refers to the value of x at time t, while it does not indicate explicit
time dependence. These boundary conditions do not render the problem overdetermined,
since the initial and final values are not quantified, but only required to be equal.

In this way, the global dynamic optimization problem from Equation (4) with the con-
straint Equation (5) is turned into the continuous set of local (static) optimization problems
from Equation (9) with the constraints Equations (7) and (8). This means that H(x, u, λ)
must be locally maximized for all t ∈ [0, τ) with respect to u. For the optimal solution x∗, u∗,
λ∗ of the considered kind of cyclic optimization problem, without explicit time dependence
of ζ(x, u), the temporal value of the Hamilton function H∗ will then be constant [26,27].

3.1. Maximum Power

In the case of the optimization being performed for the objective functional, which is
the cycle-averaged net power output P, as defined in Equation (1), the definition of the path
target function ζ(x, u) for Equations (4) and (6) is straightforward:

ζW(x, u) :=
(

pH V̇H + pL V̇L
)
− γ

(
V̇2

H + V̇2
L

)
, (12)

which is simply the instantaneous power output. Since the optimization is performed for
fixed cycle time τ, maximum power corresponds to maximum work. Hence, a prefactor of
1/τ can be disregarded here.

3.2. Maximum Efficiency

In the case of the optimization being performed for the objective of efficiency η,
as defined in Equation (3), the definition of ζ(x, u) is slightly more involved. This is
because the definition of the efficiency corresponds to a ratio of two functionals (inte-
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grals) which need to be separately evaluated before calculating their ratio. This can be
seen in Equation (3) and is in contrast to the structure of Equation (4). In order to re-
solve this discrepancy, we investigate how variations in the cycle work W and the heat
QH :=

∫ τ
0 IH,ExH + KEx (TExH − TExL) dt translate to the first variation of the efficiency:

δη = δ

(
W
QH

)
=

∂η

∂W
δW +

∂η

∂QH
δQH =

1
QH

δW − W

Q2
H

δQH. (13)

This means that the problem of optimizing the efficiency can be morphed into an equiv-
alent optimization problem of the weighted sum λW W + λQH QH with the weights being
defined according to the partial derivatives:

λW = ∂η/∂W = 1/QH and λQH = ∂η/∂QH = �W/Q2
H. (14)

Within these weights, W and QH are the results obtained for a specific prescribed τ-periodic
control function u†(t) for which, at a given time t, the values of the control and state vectors
are u ≈ u†(t) and x ≈ x†(t). Here, x†(t) is the periodic solution of the state dynamics
for u†(t). Based on this, we can now define the path target function for maximizing
the efficiency:

ζη(x, u) :=
W

QH τ
+

1
QH

ζW(x, u)− W

Q2
H

IH,ExH(x, u). (15)

Here, W and QH are again the results obtained for a τ-periodic control function
u†(t) with the above-described closeness requirements for the instantaneous values of x
and u. In a strict sense, the path target function ζη(x, u) is therefore also a functional of

u†(t) and x†(t), that is: ζη(x, u) = ζη [ x†(·), u†(·) ](x, u) because W = W[ x†(·), u†(·) ] and

QH = QH[ x†(·), u†(·) ]. If the closeness requirement of x and u, regarding u†(t) is valid
for all t, the second and third terms in Equation (15) will (approximately) cancel upon
integration from 0 to τ. Therefore, the first term was added here to ensure that

∫ τ
0 ζη(x, u)dt

does actually represent η. This first term does, in fact, not influence the optimization
problem from Equation (7) to Equation (11), since it does not depend on the instantaneous
values of x and u.

3.3. Penalty Function

The cyclic optimal control problem introduced so far does not contain inequality
constraints for the state x or the control u. However, we can introduce inequality constraints
for x and u by means of a penalty function. In particular, we will use such a penalty function
to introduce lower and upper bounds for the Stirling engine’s working volumes:

ζpenalty(x, u) := �v0

(
e

v1
VH,min−VH

VH,sw + e
v1

VH−VH,max
VH,sw + e

v1
VL,min−VL

VL,sw + e
v1

VL−VL,max
VL,sw

)
(16)

where the working volumes Vi are contained in x, v0 = 1 W and v1 = 500 are penalty
factors, Vi,sw = Vi,max −Vi,min refers to the admissible swept volumes and Vi,max and Vi,min
are the maximum and minimum admissible working volumes with i ∈ {H, L}.

Accordingly, in the case of optimizing the Stirling engine’s piston paths for maximum
power, the overall path target function is defined as

ζ(x, u) := ζW(x, u) + ζpenalty(x, u), (17)

whereas in case of the optimization for maximum efficiency, it is defined as

ζ(x, u) := ζη(x, u) + ζpenalty(x, u). (18)
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4. Optimization Algorithm

The indirect iterative gradient method described in the following was inspired by
a contribution of Craun and Bamieh [24,28], who solved an optimal control problem of
a modified beta-Stirling engine using an ideal thermodynamic model, namely the Schmidt
model. Similar methods have earlier been used, for example, by Horn and Lin [29], Kowler
and Kadlec [30], as well as Noorden et al. [31] for other applications. The method presented
in this paper differs from the aforementioned ones in the means by which the periodic
solutions of the state and costate equations are obtained. A pseudocode representation of
the cyclic control optimization algorithm is shown in Algorithm 1.

Algorithm 1 Cyclic optimal control algorithm.

1: //############ Basic functions of the control problem ############
2: define f (x, u){ // RHS of state dynamics
3: return temporal rate of state vector;
4: };
5: define ζ(x, u, ā){ // Path cost function, ā may contain W and QH
6: return path cost value;
7: };
8: define H(x, u, λ, ā){ // Hamilton function
9: return ζ(x, u, ā) + λT f (x, u);

10: };
11: define �∇app

x H(x, u, λ, ā){ // Approximation of RHS of costate dynamics
12: declare ε = small number;
13: declare êm = unit vector of mth state component;
14: return ∑m �êm( H(x + ε êm, u, λ, ā)− H(x, u, λ, ā) )/ ε;
15: };
16: define ∇app

u H(x, u, λ, ā){ // Approximation of control gradient function
17: declare ε = small number;
18: declare êm = unit vector of mth control component;
19: return ∑m êm( H(x, u + ε êm, λ, ā)− H(x, u − ε êm, λ, ā) )/(2 ε);
20: };
21: //########## Declare control, state, and costate functions ###########
22: declare τ = cycle time; // Define cycle time
23: declare u(t) with t ∈ [0, τ); // Control vector function
24: declare x(t) with t ∈ [0, τ); // State vector function
25: declare λ(t) with t ∈ [0, τ); // Costate vector function
26: initialize u(t) with smooth guess of optimal control vector function;
27: initialize x(0) with arbitrary admissible values;
28: initialize λ(0) = 0;
29: //############ Iterative optimization of the control #############
30: for(n = 0; n < large number; n = n + 1){
31: while(ε > small number){ // Solve state dynamics
32: for(t = 0; t < τ; t += Δt){ x(t + Δt) = x(t) + f (x(t), u(t)) Δt; }
33: ε = ||x(τ)− x(0)||;
34: x(0) = x(τ);
35: }
36: declare a(t) = some_function(x(t),u(t)) for t ∈ [0, τ); // Auxiliary vector function
37: declare ā = cycle average of a(t) for t ∈ [0, τ); // Auxiliary vector cycle average
38: while(ε > small number){ // Solve costate dynamics
39: λ(τ) = λ(0);
40: for(t = τ; t > 0; t−= Δt){ λ(t − Δt) = λ(t)− �∇app

x H(x(t), u(t), λ(t), ā) Δt; }
41: ε = ||λ(τ)− λ(0)||;
42: }
43: declare s(t) = ∇app

u H(x(t), u(t), λ(t)) for t ∈ [0, τ); // Define search direction
44: smooth s(t) in the periodic domain t ∈ [0, τ); // Smooth search direction
45: declare Λ = small number; // Step-size factor
46: update u(t) = u(t) + Λ s(t) for t ∈ [0, τ); // Shift control
47: smooth u(t) in the periodic domain t ∈ [0, τ); // Smooth control
48: }
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In the first section, between lines 1 and 20, the basic function definitions are made.
First, the right-hand side (RHS) of the state dynamics is defined as a vector function f (x, u).
Afterwards, the path cost function ζ(x, u, ā) that is to be maximized in terms of the objective
functional from Equation (4) is defined. Here, the argument ā may, for example, contain
the cycle work W and heat QH, as required in Equation (15). Then, based on the definition
of the Hamilton function H(x, u, λ, ā) from lines 8 to 10, the right-hand side of the costate
dynamics −∇app

x H(x, u, λ, ā) is defined in terms of an approximation:

−∂H(x, u, λ, ā)
∂xm

≈ −H(x + ε êm, u, λ, ā)− H(x, u, λ, ā)
ε

(19)

where xm is the mth state component, êm is the corresponding unit vector and ε is a suf-
ficiently small difference. For simple systems, it is reasonable to derive this right-hand
side in terms of algebraic expressions. However, for involved systems it can be much
more practical to do this by numerical partial differentiation as, for example, according to
Equation (19). Note that for systems with discontinuous dynamics additional care must be
taken here in order to make sure that the derivatives are properly approximated in the vicin-
ity of the discontinuity. Similarly to −∇app

x H(x, u, λ, ā), the vector ∇app
u H(x, u, λ, ā) of

partial derivatives of the Hamilton function with respect to the control is defined from
lines 16 to 20. Here, the following approximation is used:

∂H(x, u, λ, ā)
∂um

≈ H(x, u + ε êm, λ, ā)− H(x, u − ε êm, λ, ā)
2 ε

(20)

where um is the mth control component, êm is the corresponding unit vector and ε is, again,
a sufficiently small difference.

In the second section between lines 21 and 28, the most relevant variables are declared
and initialized. These are the control vector function u(t), the state vector function x(t),
and the costate vector function λ(t). They are defined in the time domain [0, τ) and may
be implemented as vectors of arrays, where the array lengths correspond to the number of
time steps per period. That means that the values of u, x, and λ are saved at every time
step in the periodic domain. The control vector function u(t) is initialized with a smooth
τ-periodic guess of the optimal control. Moreover, x(0) is set to arbitrary but physically
admissible values, whereas λ(0) is set to 0.

The iterative control optimization itself is described in the third section between
lines 29 and 48. This starts at iteration n = 0 with the initial guess of the smooth τ-periodic
control function u(0)(t), and the previously defined state and costate initial values x(0)(0)
and λ(0)(0), respectively. Here, the bracketed superscript identifies the iteration n of the for-
loop from lines 30 to 48. Since the control is predefined, the state and costate problem can
be solved separately. The steps to obtain the subsequent iteration u(n+1)(t), according to
Algorithm 1, can be summarized in simplified terms:

0. If n = 0, set x(0)(0) to arbitrary physically admissible values and λ(0)(0) := 0.

Otherwise, set x(n)(0) := x(n−1)(τ) and λ(n)(0) := λ(n−1)(τ).
1. For given u(n)(t): Solve

ẋ(n)(t) = f (x(n)(t), u(n)(t))

by temporal forward integration in the periodic domain until the cyclic equilibrium is
reached. Save auxiliary quantities, such as the cycle work W and the heat QH in ā(n).
(Algorithm 1, lines 31 to 37: example with Euler method.)

2. For given u(n)(t), x(n)(t), ā(n): Solve

λ̇(n)(t) = �∇x H(x(n)(t), u(n)(t), λ(n)(t), ā(n))
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by temporal backward integration in the periodic domain until the cyclic equilibrium
is reached. (Algorithm 1, lines 38 to 42: example with Euler method.)

3. Calculate the search direction (See Algorithm 1, line 43.)

s(n)(t) := ∇u H(x(n)(t), u(n)(t), λ(n)(t)).

4. Calculate the next control vector function

u(n+1)(t) := u(n)(t) + Λ s(n)(t)

with a sufficiently small positive step-size factor Λ. (Algorithm 1, line 46.)

These five steps are repeated for increasing n until u(n)(t) has converged to the optimal
control. This can, for example, be checked with the below indicators which should both
approach a numerical zero:

C(n)
∇ :=

∫ τ

0

(
∇u H(x(n)(t), u(n)(t), λ(n)(t))

)2
dt, (21)

C(n)
H := max

t
H(x(n)(t), u(n)(t), λ(n)(t))− min

t
H(x(n)(t), u(n)(t), λ(n)(t)). (22)

4.1. Exploiting Limit Cycles

The dynamic systems considered here are required to posses a limit cycle. This means
that, given a proper periodic control function, the systems feature a closed state trajectory
x∞(t) in the state space, which is attractive. Here, the subscript ∞ refers to this limit cycle.
If the state dynamics is integrated forward in time starting from t = 0 with a proper initial
value x|0 in the vicinity of x∞(0), then x|t → x∞(t) for t → ∞. This is a property of many
dissipative systems, and it is directly made use of in the first step (Algorithm 1, lines 31 to
35) for finding the periodic solution of the state vector.

Numerical studies of optimal control problems carried out in the context of this work
show an interesting type of symmetry in that the costate dynamics then features a limit
cycle, too, for prescribed u(t) and x|t := x∞(t). However, the respective closed trajectory
λ∞(t) is repulsive when the costate dynamics is considered forward in time, and becomes
attractive in the reversed time direction: λ|t → λ∞(t) for t → �∞. Such a relation is not
surprising, as the overall Hamiltonian system is conservative and the expansive costate
dynamics compensates for the contractive state dynamics. Therefore, in the second step
(Algorithm 1, line 38 to 42), the temporal direction of integration is reversed to obtain
the periodic solution of the costate vector.

The correspondingly enhanced stability of the costate problem under temporal back-
ward integration can also be exploited without directly making use of the limit-cycle
property for obtaining the periodic solution, but for solving boundary value problems,
for example, see [26,31].

4.2. Proper Embedding of the Control

Note that the way in which the control is embedded in the system’s state dynamics, can
influence the existence of these limit cycles in the state and costate problems. In the Stirling
engine optimization problem, considered in this paper, our goal is to optimize the piston
paths. Hence, we chose to structure the system dynamics in such a way that the control
function determines the temporal evolution of the working space volumes Vi with i ∈
{H, L}. A rather obvious choice for embedding the control ui(t) would be:

V̇i = ui(t). (23)
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For an explicitly time-dependent, τ-periodic control ui(t) that has an average value∫ τ
0 ui(t)dt = 0, the resulting volumes Vi will be τ-periodic. However, this dynamics does

not feature a limit cycle: The solution of Vi|t will even for t being large integer multiples
of τ remain equal to the initial value Vi|0 from which integration was started. This will
translate to the costate problem, so that the solution algorithm from above will, in general,
not converge without further manipulation of the optimization problem.

A proper choice for embedding the control in the system’s state dynamics that leads
to the existence of a limit cycle for a continuous τ-periodic ui(t) is:

V̇i =
ν

τ
(ui(t)− Vi) (24)

with a sufficiently large number ν. This dynamics is similar to that of an overdamped
mass-spring-damper system, where the spring support moves according to ui(t). If ν → ∞
then Vi|t → ui(t) for t → ∞, independent of the initial value Vi|0. That is, for ν → ∞,
the control vector function u(t) represents the limit cycle V∞(t) of the volumes.

5. Results

The previously described optimization algorithm was applied to the exemplary alpha-
Stirling engine model presented in Section 2 to optimize the control (piston paths) regarding
both power and efficiency. The optimizations were performed for varying cycle time τ,
or correspondingly varying engine speed 1/τ. With help of the penalty function from
Equation (16), the working volumes were restricted to an approximate range from 100 cm3

to 1100 cm3. The initial control, from which the optimizations were started, corresponds
to harmonic piston paths exploiting the complete admissible working volume range and
featuring a phase shift of 90◦. This harmonic control will, in the following, also be used as
a benchmark.

In Figure 2, the Stirling engine’s power-optimal working volume trajectories are
shown for different engine speeds.

It can be seen that the power-optimal volume trajectories significantly deviate from
harmonic shapes. At low engine speeds, it is favorable to let the pistons rest in their extreme
positions for about half the cycle time. This feature is less pronounced at higher engine
speeds. Above ca. 1100 rpm and ca. 1300 rpm the power-optimal working volume trajecto-
ries detach from the maximum volume bounds, as can be seen in Figure 2 at t/τ ≈ 1/4
and t/τ ≈ 1, respectively. At the highest considered engine speed of 2000 rpm, the swept
volumes are considerably reduced. The power-optimal engine speed is ca. 920 rpm, which
is highlighted in Figure 2 by thick black lines. It is interesting that the power-optimal piston
motions found in [22] by direct optimization are similar to the trajectories from Figure 2
for low and medium engine speeds. This is the case even though, in the current study,
a Stirling engine with different parameters, and a much more detailed regenerator model,
are considered. Nevertheless, compared to the parametric AS class of piston motions
used in [22] for direct optimization, the trajectories from Figure 2 feature more details.

In Figure 3, the Stirling engine’s efficiency-optimal working volume trajectories are
shown, again for different engine speeds.
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Figure 2. Power-optimal trajectories of the working volumes VH (solid lines) and VL (dotted lines) of
an exemplary alpha-Stirling engine for varying engine speed 1/τ. The power-optimal engine speed
is ca. 920 rpm (thick black lines).
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Figure 3. Efficiency-optimal trajectories of the working volumes VH (solid lines) and VL (dotted lines)
of an exemplary alpha-Stirling engine for varying engine speed 1/τ. The efficiency-optimal engine
speed is ca. 430 rpm (thick black lines). The power-optimal engine speed for the efficiency-optimal
control is ca. 670 rpm (thick gray lines).
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Obviously, the efficiency-optimal volume trajectories are different from the power-
optimal ones. The tendency to let the pistons rest in their extreme positions at low engine
speeds can also be observed here. However, especially for the cold working volume,
this feature is less distinctive than with the power-optimal trajectories. The efficiency-
optimal volume trajectories tend to involve smaller piston velocities and reduced swept
volumes, when compared to the power-optimal trajectories for the same engine speed.
The efficiency-optimal engine speed is ca. 430 rpm, which is highlighted in Figure 3 by
thick black lines.

In Figure 4 the Stirling engine’s power and efficiency are plotted against the engine
speed for both the power-optimal control (solid, blue) and the efficiency-optimal control
(dashed, green). Moreover, the values obtained with the harmonic control (dotted, grey)
from which the optimizations were started is shown as a benchmark.
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Figure 4. Net output power P and efficiency η for the harmonic (gray, dotted), power-optimal (blue,
solid), and efficiency-optimal (green, dasehd) control plotted against the engine speed.

At the maximum power point, the relative power gain due to the power-optimal
control is ca. 28%. The relative efficiency gain at the maximum efficiency point, which is
achieved with the efficiency-optimal control, is ca. 10%.

Obviously, for a given engine speed, the power-optimal and efficiency-optimal controls
each lead to maximum power and maximum efficiency, respectively. However, the opti-
mization for one performance measure may come at the cost of the other. This can, in par-
ticular, be seen in the left-hand subfigure for the efficiency-optimal control: For medium
engine speeds, the optimization for maximum efficiency leads to remarkable reductions in
the output power. There, the power even drops below that obtained with the harmonic
control. As opposed to that, the power-optimal control also leads to higher efficiency than
the harmonic control over the complete considered range of engine speeds. Note, however,
that this may be different for a different set of model parameters.

In the left-hand subfigure of Figure 4, it can be seen that the efficiency-optimal control
(green, dashed) leads to a sharp bend at the maximum power point. This occurs at an engine
speed of ca. 670 rpm, where the hot working volume trajectory (solid gray line in Figure 3)
starts to detach from the maximum volume bound at t/τ ≈ 1.

Note that optimal controls obtained with the optimization algorithm introduced above
generally constitute local optima. This becomes obvious in Figure 4 when, for example,
comparing the powers resulting from the power-optimal controls at τ = 0.06 s (1000 rpm)
and τ = 0.12 s (500 rpm). At τ = 0.06 s the power is close to the maximum value, whereas
at τ = 0.12 s the power is much lower. However, it is clear that the power-optimal control
obtained for τ = 0.06 s is an admissible periodic control for τ = 0.12 s as well, since two
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oscillations could be performed in one cycle. Hence, the power obtained for τ = 0.06 s
(1000 rpm) constitutes a lower bound for the global optimum at τ = 0.12 s (500 rpm). It can
be concluded that the optimal control found for τ = 0.12 s (500 rpm) is a local optimum
and not the global one. Similar arguments are applicable for the efficiency-optimal control,
for example, with the efficiency values obtained at 400 rpm and 200 rpm.

6. Summary

In this paper, we presented an iterative gradient method for optimizing the piston
paths of Stirling engines, which is based on Cyclic Optimal Control Theory. After a brief
introduction to Stirling engines, we outlined an exemplary irreversible alpha-Stirling
engine model. This model served for illustrative purposes and is structured in such a way
that its state dynamics can be expressed as a set of coupled ordinary differential equations.
The Stirling engine’s state dynamics is influenced by an explicitly time-dependent, vector-
valued control function. In particular, this control function determines the temporal paths
of the engine’s two working pistons.

The question of which realization of those piston paths—or correspondingly what
control function—leads to optimal engine performance regarding a specific objective for
a fixed cycle time, constitutes a cyclic optimal control problem. We introduced the nec-
essary conditions of optimality for this problem, involving the definition of a Hamilton
function, a path target function, and a set of adjoint ordinary differential equations (costate
dynamics). For the optimization of Stirling engines, we presented proper definitions of
path target functions to maximize either power or efficiency. Maximum and minimum
volume constraints were accounted for here via an additional penalty term in the respective
path target function.

Then, we gave a detailed description of an iterative optimization algorithm that starts
with a predefined periodic control function, which is gradually shifted over the course of
the iterations, so as to gradually enlarge the objective and approach the optimal control. To
determine those gradual shifts of the control in every iteration, not only the engine’s state
dynamics needs to be solved, but also the costate dynamics. The cyclic optimal control
problem features a symmetry that manifests itself in attractive and repulsive limit cycles in
the state and costate dynamics, respectively. The algorithm exploits these limit cycles to
solve the state and costate dynamics for periodic boundary conditions.

This optimization algorithm was applied to both, power-optimize and efficiency-
optimize the control (piston paths) of the above-mentioned exemplary alpha-Stirling
engine model for a range of cycle times. The optimization results were compared to piston
paths that correspond to a harmonic control with 90◦ phase shift, which had been used as
an initial control for the optimizations. At the maximum power point, the relative power
gain due to the power-optimal control is ca. 28%, whereas the relative efficiency gain due
to the efficiency-optimal control at the maximum efficiency point is ca. 10%.

The developed optimization algorithm can easily be applied to other Stirling en-
gine models that involve additional irreversibilities or transfer laws that are adapted to
describe a specific experimental engine setup. Design limitations such as maximum pres-
sure or maximum piston acceleration can be included in the optimal control problem in
terms of additional constraints. Moreover, other types of machines, such as beta-type
or free-piston Stirling engines, Stirling cryocoolers, or Vuilleumier refrigerators can be
optimized analogously.

7. Conclusions

For the cyclic optimal control problems of a Stirling engine investigated here, we
observed that the existence of an attractive limit cycle in the state dynamics translates
to a repulsive limit cycle in the costate dynamics. We conclude that a very stable and
numerically efficient way to solve such problems is through using indirect iterative gradient
algorithms that exploit these limit cycles to solve the state and costate dynamics by temporal
forward and backward integration, respectively.
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In the case of the considered exemplary Stirling engine, the conducted piston path
optimizations lead to significant performance gains of ca. 28% in maximum power and
ca. 10% in maximum efficiency. This generally confirms earlier results [22–24] and we
conclude that it can be very worthwhile to perform such optimizations during the design
process of new engines or to improve the control strategy of existing ones. Numerous
types of energy conversion systems operate cyclically. We expect that cyclic optimal
control theory and, in particular, the developed algorithm can be applied to a wide class
of these systems, in order to identify potential performance improvements and enhance
their sustainability.
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Abstract: This paper is concerned with modeling nonequilibrium phenomena in spatial domains
with boundaries. The resultant models consist of hyperbolic systems of first-order partial differential
equations with boundary conditions (BCs). Taking a linearized moment closure system as an example,
we show that the structural stability condition and the uniform Kreiss condition do not automatically
guarantee the compatibility of the models with the corresponding classical models. This motivated
the generalized Kreiss condition (GKC)—a strengthened version of the uniform Kreiss condition.
Under the GKC and the structural stability condition, we show how to derive the reduced BCs for the
equilibrium systems as the classical models. For linearized problems, the validity of the reduced BCs
can be rigorously verified. Furthermore, we use a simple example to show how thus far developed
theory can be used to construct proper BCs for equations modeling nonequilibrium phenomena in
spatial domains with boundaries.

Keywords: hyperbolic relaxation system; structural stability condition; generalized Kreiss condition

1. Introduction

Irreversible thermodynamics is a theory in physics for the mathematical modeling
of nonequilibrium processes. The resultant models are usually time-dependent partial
differential equations (PDEs) [1]. So far, the theory is still developing, and there are
no well-accepted rules in establishing the equations. Therefore a number of different
theories exist [2–8], leading to various PDEs. It is a challenging issue to evaluate the
reasonableness of the different equations. To do so, four fundamental requirements were
proposed and expounded in [9]. They are the observability of physical phenomena, time
irreversibility, long-time tendency to equilibrium, and compatibility with possibly existing
classical theories.

Recall well-known theories extended irreversible thermodynamics (EIT) [4,5]), rational
extended thermodynamics (RET) [6]), and conservation–dissipation formalism (CDF) [8]).
Irreversible processes can be described with PDEs of the form:

Ut +
d

∑
j=1

Fj(U)xj = Q̃(U). (1)

Here, U = U(x, t) ∈ G ⊂ Rn is the unknown function of x = (x1, x2, , xd) with
d (=1, 2 or 3) for the spatial dimension and t > 0, G is an open set called the state space,
Fj(U) is the flux along the xj-direction, source term Q̃(U) represents the thermodynamical
force, and subscripts t, xj denote partial derivatives with respect to the corresponding
variables. Very often, the source term can be written as

Q̃(U) =

(
0

q(U)

)
.
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Accordingly, we partition

U =

(
u

v

)
, Fj(U) =

(
f j(u, v)

gj(u, v)

)
.

With this partition, u ∈ Rn−r stands for the conserved variables, and v ∈ Rr is referred
to as nonequilibrium variables. To cover more equations from EIT [4,5] and general
equation for nonequilibrium reversible–irreversible coupling (GENERIC) [7,10]), we also
consider the following equation.

Ut +
d

∑
j=1

Aj(U)Uxj = Q̃(U), (2)

which is more general than (1). Indeed, (1) can be written as (2) with Aj(U) =
∂Fj
∂U (U).

For such first-order PDEs, the first fundamental requirement corresponds to the
hyperbolicity of Equation (2) [11,12]. To see the other requirements, thermodynamic force
Q(U) contains a relaxation time ε in general, and we explicitly write it as Q̃(U) = Q(U)/ε.
The requirements are closely related to the limit as the relaxation time ε tends to zero—
the so-called zero relaxation limit. Without considering the boundary conditions, the
four requirements are fulfilled by (2) if the PDEs satisfy the structural stability condition
proposed in [13,14]. See [14,15].

When the nonequilibrium phenomena occur in a spatial domain with boundaries,
the PDEs alone cannot completely describe the physical processes, and proper boundary
conditions (BCs) are indispensable. However, it is a challenging task to have such BCs, since
the physical meaning of the nonequilibrium variables is often unclear (e.g., the higher-order
moments in moment-closure systems [6,16]). On the other hand, formulating proper BCs for
hyperbolic systems of PDEs is mathematically a tough issue [17]. For example, the number
of BCs for (2) should be equal to the number of positive eigenvalues of coefficient matrix
A1(U) in case that the boundary is x1 = 0; moreover, the BCs should satisfy the uniform
Kreiss condition (UKC) [18] to ensure the well-posedness of the complete model (PDEs
together with BCs)—the first fundamental requirement. Furthermore, the rest requirements
also apply to the complete model. This suggests to study the zero relaxation limit of
initial-boundary-value problems (IBVPs) for hyperbolic systems (1) or (2). The resultant
results are expected to be useful in providing reasonable constraints for the possible BCs
and in developing a systematical method to construct the required BCs.

The paper presents the first author’s considerations in the past two decades and recent
results on these issues. It is organized as follows. Section 2 contains some basic knowledges
about relaxation system (3) and boundary conditions. In Section 3, we show that the
structural stability condition and the UKC do not automatically guarantee compatibility,
and present a strengthened version of the UKC—the generalized Kreiss condition (GKC).
Section 4 is devoted to the derivation of the boundary condition for the zero relaxation
limit under the GKC and the structural stability condition. In Section 5, we use an example
to show how the theory presented above can be used to construct BCs for the PDEs (3).
Some concluding remarks are given in Section 6.

2. Preliminaries

To address the long-term tendency and compatibility requirements, we explicitly
introduce relaxation time ε and write Equation (3) as

Ut +
d

∑
j=1

Aj(U)Uxj =
1
ε

Q(U). (3)

For such a small parameter problem, the most fundamental is the following structural
stability condition proposed in [13,14]:
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(i) There is an invertible n × n-matrix P(U) and an invertible r × r-matrix S(U) (0 < r ≤ n),
defined on equilibrium manifold E = {U ∈ G : Q(U) = 0}, such that

P(U)QU(U) =

(
0 0

0 S(U)

)
P(U) for U ∈ E ;

(ii) As a hyperbolic system, (1) is symmetrizable, that is, there is a positive definite
symmetric matrix A0(U), such that

A0(U)Aj(U) = A∗
j (U)A0(U) for U ∈ G;

(iii) The hyperbolic part and the source term are coupled in the following sense.

A0(U)QU(U) + Q∗
U(U)A0(U) ≤ −P∗(U)

(
0 0

0 Ir

)
P(U) for U ∈ E .

Here and below, QU denotes the Jacobian matrix of Q = Q(U), Ik denotes the unit
matrix of order k, and superscript ∗ denotes the (conjugate) transpose of a matrix.

In the structural stability condition, (i) is just the usual assumption in the correspond-
ing theory for ordinary differential equations [14], that is, only for the source term; (ii) is
for the part of spatial derivatives and means that (3) is symmetrizable hyperbolic; and (iii)
is a coupling condition that involves the both parts. As observed in [14,19], the structural
stability condition is fulfilled by many classical models from mathematical physics. It is
related to the Onsager reciprocal relation and can be viewed as a stability criterion for
nonequilibrium thermodynamics. Regarding the Onsager relation, matrix A0(U)QU(U) is
often symmetric. For simplicity, this symmetry is assumed throughout the paper.

Under the structural stability condition, it was proved in [13,14] that the solution to
the initial-value problem of (3) converges to that of the corresponding equilibrium system
as ε goes to zero. For the case where

Q(U) =

(
0

q(U)

)

with q = q(U) ∈ Rr, we write

U =

(
u

v

)
, Aj(U) =

(
Aj11 Aj12

Aj21 Aj22

)
(U).

In this case, it is reasonable to assume that q(U) = 0 if and only if v = h(u). Then, the
equilibrium system can be expressed as

v = h(u),

ut +
d

∑
j=1

Aj11(u, h(u))uxj +
d

∑
j=1

Aj12(u, h(u))h(u)xj = 0.

Under the structural stability condition, it was also proved in [13,20] that the equilib-
rium system is symmetrizable hyperbolic.

When Equation (3) is given in a spatial domain with boundaries, proper boundary
conditions (BCs) should be prescribed to solve the equations. By referring to [21], it is
adequate to consider that the spatial domain is half-space

(x1, x2, . . . , xd) ≡ (x1, x̂) ∈ [0,+∞)×R
d−1.
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For this domain, assume that coefficient matrix A1(U) has p positive eigenvalues.
According to the classical theory of hyperbolic equations [17,22], p independent BCs

B(U(0, x̂, t); t) = 0 (4)

should be prescribed at boundary x1 = 0. Moreover, they should satisfy the uniform Kreiss
condition (UKC) [18] to ensure the well-posedness, namely, there is a positive constant cK,
such that ∣∣∣det

{
BU RS

M̃(ξ, ω)
}∣∣∣ ≥ cK

√
det{RS∗

M̃ (ξ, ω)RS
M̃(ξ, ω)}

for all ω ∈ Rd−1 and all complex number ξ with Reξ > 0. To decode this UKC, we assume
that A1(U) is invertible, and know from [18] that matrix

M̃(ξ, ω) := A−1
1

(
− ξ I + i

d

∑
j=2

ωj Aj

)
,

has p stable eigenvalues (eigenvalues with negative real parts) for Reξ > 0 and
ω = (ω2, . . . , ωd) ∈ Rd−1. Then, there is a full-rank n × p-matrix RS

M̃(ξ, ω) (so-called right-
stable matrix of M̃ [23]) satisfying

M̃(ξ, ω)RS
M̃(ξ, ω) = RS

M̃(ξ, ω)Λ̃(ξ, ω)

with Λ̃(ξ, ω) a p × p-matrix having p stable eigenvalues.
When A1(U) is not invertible, boundary x1 = 0 is referred to as characteristic. In this

case, a modified UKC was formulated in [21] as a sufficient and essentially necessary
condition for well-posedness. In addition, it was indicated in [21] that the boundary
condition should not involve characteristic modes corresponding to the zero eigenvalue.

3. Generalized Kreiss Condition

This section shows that the structural stability condition together with the UKC do
not automatically guarantee a well-behaved zero relaxation limit. To do this, we start with
the linearized version of PDEs in (3):

Ut +
d

∑
j=1

AjUxj =
1
ε

QU, (5)

together with homogeneous boundary conditions

BU(0, x̂, t) = 0 (6)

for x = (x1, x̂) = (x1, x2, . . . , xd) with x1 > 0. Here, Aj(j = 1, 2, . . . , d) and Q are n × n
constant matrices and B is a full-rank constant p × n-matrix with p the number of positive
eigenvalues of A1.

Following [18,23,24], we consider the corresponding eigenvalue problem:⎧⎪⎨
⎪⎩

ξÛ + A1Ûx1 − i
d
∑

j=2
ωj AjÛ = QÛ,

BÛ(0) = 0
(7)

for complex number ξ with Reξ > 0 and ω = (ω2, . . . , ωd) ∈ Rd−1. Let Û = Û(x1) be a
bounded solution to the above problem. It is not difficult to verify that

Uε(x, t) := exp
(

ξt
ε
− iω · x̂

ε

)
Û
( x1

ε

)
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solves (5) and (6) with a bounded initial value. Since Reξ > 0, such a solution exponentially
increases as ε goes to zero for any t > 0. Apparently, the zero relaxation limit is not
well-behaved or does not exist in this situation.

In order to see when problem (7) has bounded solutions, we assume A1 to be invertible
and rewrite (7) as

dÛ
dx1

= M(ξ, ω, 1)Û (8)

with

M(ξ, ω, η) = A−1
1

(
ηQ − ξ I + i

d

∑
j=2

ωj Aj

)
.

Here, η ≥ 0 was introduced to cover the case without source term Q, namely,
M(ξ, ω, 0) = M̃(ξ, ω) in Section 2.

According to Lemma 2.3 in [23], under the structural stability condition, matrix
M = M(ξ, ω, η) has precisely p stable eigenvalues (with negative real parts) and (n − p)
unstable eigenvalues. Then, there is a full-rank n × p-matrix RS

M = RS
M(ξ, ω, η) satisfying

MRS
M = RS

MΛ

with Λ a p × p-matrix having p stable eigenvalues. If the p × p-matrix BRS
M(ξ, ω, 1) is not

invertible, then there is a nonzero p-vector ζ, such that BRS
M(ξ, ω, 1)ζ = 0. With Û(0) =

RS
M(ξ, ω, 1)ζ as initial value, the ordinary differential Equation (8) has a bounded solution

for x1 > 0.
Consequently, we obtain

Proposition 1. If there exists ξ with Reξ > 0 such that the p× p-matrix BRS
M(ξ, ω, 1) is singular,

then the problem in (5) and (6), with a bounded initial value, admits an exponentially increasing
solution for t > 0 as ε goes to zero.

The above discussion can be illustrated with the one-dimensional linearized moment
closure system [16,25]: {

Ut + A1Ux = QU/ε,

BU(0, t) = 0
(9)

with Q = diag(0, 0, 0,−1) and

A1 =

⎛
⎜⎜⎜⎝

0 ρ0 0 0

θ0/ρ0 0 1 0

0 2θ0 0 6/ρ0

0 0 ρ0θ0/2 0

⎞
⎟⎟⎟⎠, B =

(
0 1 0 0

0 0 χρ0
√

θ0 −1

)
.

Here, U = (ρ, u, θ, f ) is the unknown. ρ, u, θ are fluid density, velocity, and temper-
ature, respectively, while f is related to the heat flux. Constants ρ0 and θ0 in coefficient
matrix A1 denote density and temperature at the equilibrium. Constant χ in the BC is a
positive parameter. Obviously, the moment-closure system satisfies the structural stability
condition with symmetrizer

A0 =

⎛
⎜⎜⎜⎝

2θ3
0 0 0 0

0 2ρ2
0θ2

0 0 0

0 0 ρ2
0θ0 0

0 0 0 12

⎞
⎟⎟⎟⎠.
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It was shown in [25] that the BC in (9) satisfies the UKC if and only if

χ =
√

3 +
√

6 +
√

3 −
√

6
2(3 +

√
3)

.

Moreover, Proposition 3.3 in [25] says that if

χ ∈ (0,

√
3 +

√
6 +

√
3 −

√
6

2(3 +
√

3)
),

there is a positive ξ such that BRS
M(1, ξ) is singular. According to Proposition 1, the struc-

tural stability condition and the UKC do not automatically imply the existence of the zero
relaxation limit.

Proposition 1 and the example above indicate the following necessary condition for
the existence of zero relaxation limit:

det{BRS
M(ξ, ω, 1)} = 0, for any Reξ > 0, ω ∈ R

d−1.

Motivated by this, the following condition was proposed in [23]:
Generalized Kreiss Condition. There exists a constant cK > 0, such that∣∣∣det

{
BRS

M(ξ, ω, η)
}∣∣∣ ≥ cK

√
det{RS∗

M (ξ, ω, η)RS
M(ξ, ω, η)}

for all η ≥ 0, ω ∈ Rd−1 and ξ with Reξ > 0.
Clearly, this GKC does not depend on the special choice of RS

M(ξ, ω, η). It recovers
the standard UKC when η = 0. Unlike the UKC, the GKC involves parameters even for
one-dimensional problems. Moreover, it was shown in [23] that the GKC holds if the BCs
are strictly dissipative in the following sense:

Definition 1. The boundary condition is referred to as strictly dissipative with respect to sym-
metrizer A0 and A1, if there is a positive constant cd, such that

y∗A0 A1y ≤ −cd|y|2 + c−1
d |By|2

for all y ∈ Rn.

We conclude this section with the following remark:

Remark 1. In studying IBVPs for hyperbolic systems, it is important to distinguish whether
the boundary is characteristic or not [21], that is, whether A1 is invertible or not. In the above
discussions, the invertibility of A1 plays the role of the starting point. When A1 is not invertible,
a modified GKC was proposed in [26]. It covers the above GKC for noncharacteristic problems.

4. Reduced Boundary Conditions

Besides the GKC, deriving reduced boundary conditions is another crucial issue in
studying the zero relaxation limit for the initial-boundary-value problems. The relaxation
limit satisfies the equilibrium system under the structural stability condition [14]. When
the problem is given in the half-space, the equilibrium system alone can not determine the
limit. It must be supplemented with proper boundary conditions. As part of the system
determining the limit, such BCs should be completely derived from the relaxation system
and its BCs. BCs thus derived are called reduced boundary conditions.
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For linearized system (3) satisfying the structural stability condition, we assume
without loss of generality that Q = diag(0, S) with S being a negative definite matrix.
Corresponding to the partition of Q, we write coefficient matrix Aj as

Aj =

(
Aj11 Aj12

Aj21 Aj22

)
.

Thus, the aforementioned equilibrium system reads as⎧⎪⎪⎨
⎪⎪⎩

v = 0,

ut +
d
∑

j=1
Aj11uxj = 0.

(10)

Recall that coefficient matrices Aj11 are symmetrizable.
Let p1 be the number of positive eigenvalues for matrix A111. According to the

classical theory of IBVPs for hyperbolic systems [17,22], equilibrium system (10) needs
p1 BCs satisfying the UKC to be well-posed. As mentioned before, these BCs should be
completely determined from the relaxation system and its BCs:

BU(0, x̂, t) = (Bu, Bv)

(
u

v

)
(0, x̂, t) = b(t). (11)

In this regard, it was established in [23,27] that

Theorem 1. Under the structural stability condition and the GKC, there exists a p1 × p-matrix
Bp, unique up to an invertible p1 × p1-matrix multiplying Bp from left, such that relation

BpBuu(0, x̂, t) = Bpb(x̂, t) (12)

satisfies the UKC as a BC for the equilibrium system. Moreover, if boundary x1 = 0 is characteristic
for the equilibrium system, BC (12) does not involve the characteristic modes corresponding to the
zero eigenvalue.

The equilibrium system with the reduced BC (12) consist of a well-posed IBVP since
the reduced BC satisfies the UKC. The proof of this theorem involves the perturbation
theory of linear operators [28] and subtle matrix analysis. The key is to analyze the limit
of right-stable matrix RS

M(ξ, ω, η) as η → ∞. According to the GKC, BRS
M(ξ, ω,+∞) is a

p × p invertible matrix. Then, Bp can be chosen as the p1 × p-matrix consisting of the first
p1 rows of [BRS

M(ξ, ω,+∞)]−1. Such a matrix Bp is independent of ξ and ω. We omit the
details here, and the interested reader is referred to to [23,27].

Regarding this theorem:

Remark 2.

• For nonlinear problems, reduced BCs are quite complicated, but can be derived by considering
boundary-layer equations

A1(U)Uy = Q(U), y =
x1

ε
≥ 0.

For the details, the interested reader is referred to [23].
• In case the boundary is characteristic (for the relaxation system), a similar result can be found

in [26].
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To see the validity of the reduced BCs, we consider asymptotic solutions of the form:(
uε

vε

)
(x1, x̂, t; ε) =

(
ū

v̄

)
(x1, x̂, t) +

(
μ0

ν0

)
(

x1

ε
, x̂, t)

+

(
μ1

ν1

)
(

x1√
ε

, x̂, t) +
√

ε

(
μ2

ν2

)
(

x1√
ε

, x̂, t) (13)

for relaxation system (5) and its BC (11). Here, (ū, v̄) is the outer solution, and (μi, νi)
(i = 0, 1, 2) are boundary-layer corrections satisfying matching conditions

(μi, νi)(∞, x̂, t) = 0, i = 0, 1, 2.

By a standard procedure [27], the outer solution solves equilibrium system (10) with
reduced BC (12), while the other terms in (13) can also be determined.

If the boundary is not characteristic for the equilibrium system, there is no boundary-
layer with length

√
ε. In other words, the last two terms in (13) are void, and the three

scales in the expansion degenerate to two scales.
The validity of the reduced BC (12) is verified with the following theorem.

Theorem 2 ([27]). Assuming that the structural stability condition and the GKC hold, the initial
data are given at the equilibrium, and the BC is compatible with the initial condition, there exists a
constant K > 0, such that the exact solution (uε, vε) fulfils the following estimate.

‖(uε − uε, vε − vε)(·, ·, t)‖L2(R+×Rd−1) ≤ Kε1/2

for all time t ∈ [0, T].

Next, we return to one-dimensional linearized moment closure system (9) to illustrate
the reduced BCs. For this model, we have

A1 =

(
A11 A12

A21 A22

)
=

⎛
⎜⎜⎜⎜⎝

0 ρ0 0 0

θ0/ρ0 0 1 0

0 2θ0 0 6/ρ0

0 0 ρ0θ0/2 0

⎞
⎟⎟⎟⎟⎠,

and

B = (Bu, Bv) =

(
0 1 0 0

0 0 χρ0
√

θ0 −1

)
, b(t) = 0.

As shown in [25], coefficient matrix A1 has two positive eigenvalues,
√

3 ±
√

6
√

θ0, and
A11 has one positive eigenvalue

√
3θ0, that is, p = 2 and p1 = 1. Thus equilibrium system⎛

⎜⎝ ρ̄

ū
θ̄

⎞
⎟⎠

t

+

⎛
⎜⎝ 0 ρ0 0

θ0/ρ0 0 1

0 2θ0 0

⎞
⎟⎠
⎛
⎜⎝ ρ̄

ū
θ̄

⎞
⎟⎠

x1

= 0

needs one reduced boundary condition. On the other hand, in this case, we have

BRS
M(ξ,+∞) =

( √
3θ0/ρ0 0

2χθ0
√

θ0 −χθ0
√

θ0

)
.
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This matrix is obviously invertible, and its inverse is a lower-triangular matrix. There-
fore, Bp can be chosen as the 1 × 2-matrix (1, 0), and the reduced BC is

BpBŪ(0, t) = (1, 0)

(
0 1 0 0

0 0 χρ0
√

θ0 −1

)
Ū(0, t) = Bpb(t) = 0

with Ū = (ρ̄, ū, θ̄, f̄ ). That is, just no-slip velocity BC

ū(0, t) = 0.

5. Construction of BCs

In this section, we show how the theory presented above can be used to construct
BCs for PDEs (2). Usually, the relaxation system is derived by augmenting certain classical
equations to take account into more refined physical processes. However, proper BCs
for the relaxation systems are not always available, since the physical meaning of the
nonequilibrium variables is often unclear (e.g., the higher-order moments in moment-
closure systems [6,16]). Because of this, no physical means can be expected to obtain the
BCs for certain relaxation systems.

For our construction of the BCs, we assume that both the relaxation systems and the
well-posed BCs for the corresponding equilibrium systems are given. This assumption
is reasonable because there already exist many well-known approaches to construct the
relaxation systems, and much knowledge on equilibrium systems and their BCs exists.

We illustrate the construction with the following simple model.

∂tu − ∂xv = 0,

∂tv − ∂xσ = 0, (14)

∂t(σ − Eu) = (g(u)− σ)/ε.

This model was proposed in [29] for the isothermal motions of a viscoelastic material,
and can be viewed as an augmentation of classical equations of isothermal elastodynamics:

∂tu − ∂xv = 0,

∂tv − ∂xg(u) = 0. (15)

Here, u and σ denote strain and stress, v is related to particle velocity, E is a positive
constant called dynamic Young’s modulus, ε is the relaxation time, and g(u) is a given
function of u. For this model, the structural stability condition reads as

0 < g′(u) < E.

For simplicity, we assume that the model was defined in the domain where x ≥ −αt
and g(u) = Gu, with G > 0 a constant and α a parameter. Under change in variables
(x, t) → (x + αt, t), the system (14) becomes⎛

⎝ u
v
p

⎞
⎠

t

+

⎛
⎝ α −1 0

−G α −1
0 G − E α

⎞
⎠
⎛
⎝ u

v
p

⎞
⎠

x

=
1
ε

⎛
⎝ 0 0 0

0 0 0
0 0 −1

⎞
⎠
⎛
⎝ u

v
p

⎞
⎠ (16)

with p = σ − Gu and (15) reads as(
u
v

)
t
+

(
α −1

−G α

)(
u
v

)
x
= 0. (17)
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Moreover, the given BC for the equilibrium system is

B̂
(

u
v

)
(0, t) = b̂(t)

with B̂ = (B̂1, B̂2) being a constant full-rank matrix. The number of rows of B̂ is equal to
the number of positive eigenvalues of coefficient matrix

A11 ≡
(

α −1
−G α

)
.

This matrix has eigenvalues α ±
√

G, while coefficient matrix

A1 ≡

⎛
⎝ α −1 0

−G α −1
0 G − E α

⎞
⎠

has eigenvalues α ±
√

E and α.
To be precise and simple, we chose α ∈ (−

√
E,−

√
G), while other choices can

be found in [30]. For such an α, boundary x = 0 is noncharacteristic for both (17)
and (16), boundary matrix B̂ is void, and we need to construct one BC of the form

B

⎛
⎜⎝ u(0, t)

v(0, t)
p(0, t)

⎞
⎟⎠ = bε(t) (18)

for the relaxation system (16).
To find such a nonzero vector B ∈ R3, we consider the asymptotic solution of form⎛

⎜⎝ uε

vε

pε

⎞
⎟⎠(x, t; ε) =

⎛
⎜⎝ ū

v̄
p̄

⎞
⎟⎠(x, t) +

⎛
⎜⎝ μ

ν

π

⎞
⎟⎠(

x
ε

, t)

and require it to satisfy the BC (18):

B

⎛
⎜⎝ ū + μ

v̄ + ν

p̄ + π

⎞
⎟⎠(0, t) = b0(t).

In this way, we obtain some algebraic relations or restrictions on B, from which we
deduce that

B∗ =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 +
C1

α2 − G
√

G +
αC1

α2 − G

C1

⎞
⎟⎟⎟⎟⎟⎟⎠×

⎛
⎜⎜⎜⎜⎜⎜⎝

1 +
C2

α2 − G

−
√

G +
αC2

α2 − G

C2

⎞
⎟⎟⎟⎟⎟⎟⎠

with C1, C2 two free parameters. BCs thus constructed are not unique, which is expected.
It was shown in [30] that, when C1, C2 are both sufficiently small, the constructed

BCs are strictly dissipative. Thus, they satisfy the GKC. On this basis, the validity of the
constructed BCs was rigorously proved in [30].

6. Concluding Remarks

In this paper, we presented a systematical review on boundary conditions (BCs) for
partial differential equations (PDEs) from nonequilibrium thermodynamics. From a stabil-
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ity point of view, such PDEs should satisfy the structural stability condition. In particular,
they constitute hyperbolic systems, for which the uniform Kreiss condition (UKC) is a
sufficient and essentially necessary condition for the well-posedness of the corresponding
models (PDEs with BCs). Taking a linearized moment closure system as an example, we
showed that the structural stability condition and UKC do not automatically guarantee
the compatibility of the models with the corresponding classical models. This motivated
the generalized Kreiss condition (GKC)—a strengthened version of the UKC. It is expected
that the GKC and the structural stability condition are the very criteria to verify the four
fundamental requirements when modeling nonequilibrium phenomena in spatial domains
with boundaries.

The compatibility and long-time tendency requirements suggest to study the zero
relaxation limit of the PDEs with BCs. It is trivial to obtain the equilibrium system for the
limit. However, the equilibrium system alone cannot determine the limit, and proper BCs
are needed. The needed BCs are referred to as reduced BCs, and they should be completely
determined by the PDEs with the given BCs. The derivation of the reduced BCs is by no
means trivial.

Under the GKC and the structural stability condition, we showed how to derive the
reduced BCs for general relaxation models. For linearized problems, the validity of the
reduced BCs was rigorously verified. For nonlinear problems, such a verification is open.
Furthermore, we used a simple example to show how the thus far developed theory can be
used to construct proper BCs accompanying PDEs modeling nonequilibrium phenomena
in spatial domains with boundaries.
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