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Preface to “Entropy in Real-World Datasets and Its

Impact on Machine Learning”

Nowadays, machine learning is considered as a group of various methods used to solve the

most complex real-world problems. Its usability is crucial in fields such as medicine, finance, text

mining, image analysis, and more. Among the most prominent examples of machine-learning-related

methods, we can find ensemble methods, multicriteria evolutionary algorithms, deep learning in

neural networks, etc. Here, we are particularly interested in subjects connecting the entropy of

datasets and the effectiveness of machine learning algorithms.

The main aspect of this book is devoted to entropy in the ever-growing amount of data available

for users. Concepts such as big data and data streams are still increasingly gaining attention. The

efficiency of classical methods seems to create debate amongst these types of data; thus, we believe

that there is a necessity for continuous improvements in what is widely understood as machine

learning. This book is dedicated to the analysis of real-world datasets, in particular, in terms of the

entropy present in them and the impact on machine learning.

The topic of the book is very important nowadays, because ever-evolving machine learning

techniques make it possible to obtain better real-world data. Therefore, this book contains information

related to real data in fields such as automatic sign language translation, bike-sharing travel

characteristics, stock index, sports data, fake news data, and more. However, it should be noted

that the book also contains a lot of information on new developments in machine learning, new

algorithms, algorithm modifications, and a new measure of classification quality assessment that also

takes into account the preferences of the decision maker.

Jan Kozak and Przemysław Juszczuk

Editors
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Abstract: Applying machine learning algorithms for assessing the transmission quality in optical
networks is associated with substantial challenges. Datasets that could provide training instances tend
to be small and heavily imbalanced. This requires applying imbalanced compensation techniques
when using binary classification algorithms, but it also makes one-class classification, learning
only from instances of the majority class, a noteworthy alternative. This work examines the utility
of both these approaches using a real dataset from a Dense Wavelength Division Multiplexing
network operator, gathered through the network control plane. The dataset is indeed of a very
small size and contains very few examples of ‘bad” paths that do not deliver the required level
of transmission quality. Two binary classification algorithms, random forest and extreme gradient
boosting, are used in combination with two imbalance handling methods, instance weighting and
synthetic minority class instance generation. Their predictive performance is compared with that of
four one-class classification algorithms: One-class SVM, one-class naive Bayes classifier, isolation
forest, and maximum entropy modeling. The one-class approach turns out to be clearly superior,
particularly with respect to the level of classification precision, making it possible to obtain more
practically useful models.

Keywords: machine learning; optical networks; imbalanced data; one-class classification

1. Introduction

Constantly growing traffic in backbone networks makes dynamic and programmable
optical networks increasingly important. This particularly applies to Dense Wavelength
Division Multiplexing (DWDM) networks whereby efficient use of network resources is
of paramount importance. Introducing automation, frequent network reconfiguration,
re-optimization and network reliability monitoring allows DWDM network operators
to minimize the capital expenditures (Capex) and operating expenditures (Opex) [1–6].
Currently, software-defined networking (SDN) is used to achieve all these objectives. SDN
uses a logically centralized control plane in a DWDM network that is realized using
purpose-built flexible hardware such as reconfigurable optical add/drop multiplexers
(ROADMs), flexible line interfaces, etc. [7,8]. In modern DWDM optical networks, follow-
ing the software defined network paradigm, DWDM network reconfiguration is becoming
more frequent, making the evolving network more resilient and adapting faster to real
changes in bandwidth demand so that network reconfigurations can closely match changes
in bandwidth demand. However, bandwidth demand can change very quickly (fluctu-
ations can occur within minutes), while network reconfigurations typically take much
longer. This is mainly due to operational processes that are too slow to allow real-time
network re-optimization. It is therefore important that DWDM network reconfigurations
are automated and as fast as possible, without significantly increasing operational costs.

Entropy 2021, 23, 1504. https://doi.org/10.3390/e23111504 https://www.mdpi.com/journal/entropy
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Frequent network reconfiguration and re-optimization necessary to make the best
use of available resources has been facilitated by the introduction of software-defined
networking (SDN) and knowledge-based networking (KDN) paradigms [7,9–11]. Central
to SDN and KDN is automatic provisioning of optical channels (lightpaths), which is
based on accurate quality estimation for them. Machine learning (ML) is a promising
solution to this problem. Therefore, a number of algorithms have been proposed that first
create a database using numerical modelling tools and then implement ML to estimate
the quality of optical links ([6,7,12]). However, in the approach presented here, we apply
ML to a database that has been extracted directly via the control plane from the DWDM
network under analysis. This approach leads to an ML problem that is clearly different
from the one addressed in [6,7,11,12], as there are significant challenges in using real optical
network datasets, related to data representation, data size and class imbalance, which
is intrinsic to data gathered via control plane from an operating DWDM network. The
class imbalance follows from the fact that in an operating DWDM network there may be
dozens or hundreds of operating connections but there is not much information available
(if any) on connections that could not be realized due to excessive bit error rate. Therefore,
a specially tailored ML approach is required to tackle this problem.

The main advantage of gathering data via the control plane is that it can be easily
implemented by a DWDM network operator. As it will be further explained later, this
approach imposes some constraints on the choice of appropriate ML methods due to
above-mentioned class imbalance, which is an intrinsic feature of data collected via control
plane. As already mentioned this makes the ML problem considered in this contribution
clearly different from those considered so far in most of the available literature [6,7,12,13].
Expanding upon our previous work [14,15], we compare the predictive performance of
the most successful binary classification algorithms combined with different techniques
for class imbalance compensation and that of one-class classification algorithms that learn
from majority class instances only.

1.1. Machine Learning Challenges

Successful applications of machine learning to support optical network design require
real training data. While experiments on synthetic data may provide encouraging demon-
strations, they are likely not to adequately represent the challenges that are associated
with this application area and therefore provide overoptimistic predictive performance
estimates or fail to identify potential obstacles and culprits. These challenges are mainly
related to data size and quality.

DWDM network operators, particularly operating small or medium networks, may
be unable to provide a dataset with more than several dozen or at best several hundred
paths. More importantly, the vast majority if not all of those path configurations would
usually correspond to correct, working channel designs. This is because unsuccessful
path configurations are often discarded rather than archived, at least before the provider
becomes aware of their utility as training data for machine learning. Before this awareness
increases, available real datasets remain tiny and extremely imbalanced.

The data that has been made available for this study comes from a DWDM network
operator providing services in Poland and is an excellent example of these issues. It contains
just about a hundred of paths, including only three “bad” ones (i.e., such that could not be
allocated due to a low quality of transmission). While it is still possible to use such data
to train predictive models using classification learning algorithms, special care is needed
to increase their sensitivity to the minority class and to reliably evaluate their quality.
The extreme dominance of the “good” class makes it easy to come up with apparently
accurate models with little or no actual predictive utility. To avoid this, we compensate the
class imbalance using instance weighting and synthetic minority-class instance generation.
However, the tiny size and extreme imbalance of the data may be still on the edge of the
capabilities of standard binary classification, even with such compensation techniques.
Therefore one-class classification, in which only “good” paths are used as training data,
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may be a viable and promising alternative. To compare the predictive performance of the
binary and one-class classification approaches, their predictions are evaluated using ROC
and precision-recall curves in combination with stratified cross-validation.

1.2. Related Work

To the authors’ best knowledge this work is the first to apply one-class classification in
the optical network domain and to compare its predictive performance to binary classifica-
tion using different techniques of handling class imbalance. There is, however, some related
prior work on applying other machine learning methods to optical networks as well as on
using one-class classification as an alternative to binary classification for imbalanced data.

Considering work related to optical networks first, in [16] authors show that a routing
and spectrum allocation (RSA) that monitors QoT in multiple slices significantly improves
network performance. Rottondi et al. [12] extensively discuss and use ML techniques to
optimise complex systems where analytical models fail. However, the network data in [12]
was generated artificially, whereas in this contribution the data is collected by control plane
from an operating network.

Similar problems related to lightpath QoT estimation are addressed by Mata et al. [17]
but they mainly focus on the SVM classifier only. Barletta et al. [18] on the other hand,
use mainly Random Forest algorithm that predicts whether the BER (Bit Error Rate) of
unestablished lightpaths meets the required threshold based on traffic volume, desired
route and modulation format. As in [12] the system is trained and tested on artificial data,
which is different to the approach adopted in this contribution.

Japkowicz [19] compared different ways of handling class imbalance including one-
class classification. Japkowicz [19] found binary classification with imbalanced compensa-
tion superior to one class classification but experiments performed in [19] used artificial
data and neural network classifier (with one-class classification performed using an autoas-
sociative network type).

Lee and Cho [20] advocated the use of one-class classification for imbalanced data
and demonstrated that it can outperform binary classification if the imbalanced ratio is
high. They experimented with the standard and one-class versions of the SVM algorithm.

Bellinger et al. [21] discuss the potential utility of one-class classification in binary
classification tasks with extreme class imbalance, as in our case. Their results suggest that
binary classification with class imbalance compensation methods may be more useful than
one-class classification when dealing with data from complex multi-modal distributions.
However their results are based on datasets where the number of minority class instances
is bigger than in our case.

1.3. Article organization

The rest of the paper is organized as follows. In Section 2 the analyzed optical
network data, the applied machine learning algorithms, and model evaluation methods are
described. The results of the experimental study are presented in Section 3 and discussed
in Section 4. Contributions of this work and future research directions are summarized in
Section 5.

2. Materials and Methods

The data comes from a real DWDM optical network of a large telecom operator. The
network uses 96 DWDM channels allocated in C-band and is physically located in Poland,
with network nodes corresponding to Polish cities.

2.1. Data

The network is equipped exclusively with coherent transponders. This is a typical
representative of a new network created by an operator. The coherent transponders belong
to Ciena’s 6500 family, with transmission rates of 100 G, 200 G and 400 G and four types of
modulation: QPSK, 16QAM, 32QAM and 64QAM.

3
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Data preparation process is depicted in Figure 1. In order to better understand the
meaning of the various database attributes presented later in the subsection, in the context
of DWDM technology, an example DWDM network topology is shown in Figure 2. Figure 3
illustrates the concepts of network node, hop, hop length, path, and transponder. The
dataset contains 107 optical paths, 3 of which correspond to unsuccessful designs (“bad”)
and rest of them (104) are operational (“good”).

Figure 1. Data preparation process.

Figure 2. An example DWDM network topology.
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Figure 3. Network subsection illustrating the meaning of the specific channel attributes occurring in
the studied database.

2.1.1. Path Description

Network paths are described by several properties that may be related to transmission
quality and expected to be predictively useful. The hop_lengths property gives the length
of each hop that forms a path from the initial transponder to the destination transponder.
This property is important because the signal to noise ratio depends on the length of
the fibre connecting both transponders. In each hop there are usually more wavelengths
occupied. This is because these wavelengths are used by paths other than the one occupied
by the considered path. All paths can interact through nonlinear phenomena like four wave
mixing and thus affect the quality of transmission. Therefore, the num_of_paths_in_hops
property, which gives the number of adjacent DWDM wavelengths in a given hop, is
included. The hop_losses property gives the value of the optical loss for a given hop.
Again, hop losses affect the signal to noise ratio and hence the corresponding property
was included. Another property, number_of_hops, provides information on how many
hops are present in a path from the initial to destination transponder. Since each hop
corresponds to a signal passing through a DWDM node, the number of hops affects the
signal to noise ratio due to optical regeneration taking place in a DWDM node. The last
two properties are intrinsically related with a specific type of transponder used. The
transponder_modulation property stores information on the transponder modulation
format, e.g., QPSK or 16QAM. This property is important because modulation format is
related to receiver sensitivity. Finally, the transponder_bitrate property is in essence self
explanatory and gives the bit rate of a given transponder. Transponder bit rate also affects
receiver sensitivity and hence it is included.

2.1.2. Vector Representation

Path descriptions were transformed to a vector representation, as expected by clas-
sification algorithms for tabular data, by a simple aggregation-based feature engineering
technique. Each of the available edge properties (hop_lengths, num_of_paths_in_hops,
hop_losses) was aggregated by calculating the mean and standard deviation over all
edges in the path. This gives 6 attributes derived from edge properties (2 attributes for
each of the 3 edge properties), in addition to the 3 path attributes unrelated to individual
edges (number_of_hops, transponder_modulation, and transponder_bitrate).

Applying additional aggregation functions to edge properties, such as the minimum,
the maximum, the median, the first quartile, the third quartile, or the linear correlation

5
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coefficient with the ordinal number of the edge in the path, as in our prior work [14],
may create some additional predictively useful attributes. However, this would make
the dimensionality of this representation relatively high in comparison to the size of the
available dataset, considerably increasing the risk of overfitting.

2.2. Binary Classification

Any standard classification algorithm can be used to predict channel “good”/“bad”
class labels or probabilities. In this work we limit our attention to the two algorithms
that performed the best in our previous study [14]: Random forest and extreme gradient
boosting. They belong to the most successful learning algorithms for tabular data and it is
very unlikely that their performance could be beaten by other algorithms using the same
vector path representation.

2.2.1. Random Forest

The random forest algorithm creates a model ensemble consisting of multiple decision
trees [22]. They are grown on bootstrap samples from the training set by using a mostly
standard decision tree growing algorithm [23,24]. However, since the expected improve-
ment of the resulting model ensemble over a single model is contingent upon sufficient
diversity of the individual models in the ensemble [25,26], the following modifications
are applied to stimulate the diversity of decision trees that are supposed to constitute a
random forest:

• large maximally fitted trees are grown (with splitting continued until reaching a
uniform class, exhausting the set of instances, or exhausting the set of possible splits),

• whenever a split has to be selected for a tree node, a small subset of available attributes
is selected randomly and only those attributes are considered for candidate splits.

To use a random forest model for prediction, simple unweighted voting of individual
trees from the model is performed, and vote distribution is used to obtain class probability
predictions. With dozens or (more typically) hundreds trees this voting mechanism usually
makes random forests highly accurate and resistant to overfitting. An additional important
advantage of the algorithm is its ease of use, resulting from limited sensitivity to parameter
settings, which makes it possible to obtain high quality models without excessive tuning.

2.2.2. Extreme Gradient Boosting

Extreme gradient boosting or xgboost is is another highly successful ensemble modeling
algorithm. As other boosting algorithms, it creates ensemble components sequentially
in such a way that each subsequent model best combines with the previously created
ones [27–30].

The xgboost algorithm internally uses regression trees for model representation and
optimizes an ensemble quality measure that includes a loss term and a regularization
term [31]. Each subsequent tree is grown to minimize the sum of loss and regularization
terms of all trees so far. Split selection criteria, stop criteria, and leaf values are derived
from this minimization by the Taylor expansion of the loss function, using its gradient and
hessian decomposed to terms for particular training instances and then assigned to the
corresponding nodes and leaves of the tree being grown.

Extreme gradient boosting applied to binary classification is typically used with
logarithmic loss (the negated log-likelihood) and the summed up numeric predictions
of individual regression trees are transformed by a logistic link function to obtain class
probability predictions.

The extreme gradient boosting algorithm is capable of providing excellent prediction
quality, sometimes outperforming random forest models. It can overfit, however, if the
number of trees grown is too large.
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2.2.3. Handling Class Imbalance

Techniques for compensating class imbalance can be divided in the following three
main categories:

• internal compensation by the learning algorithm, controlled by its parameter settings,
• compensation by data resampling,
• compensation by synthetic minority class data generation.

Techniques of the first category are generally supposed to increase sensitivity to the
minority class without modifying the training data. They are possible with many classifi-
cation algorithms and often consist in specifying class weights or prior probabilities. The
binary classification algorithms used by this work are both ensemble modeling algorithms,
which tend to be quite robust with respect to class imbalance, but their model quality can
be still improved by such compensation mechanisms.

In the case of the random forest algorithm there are actually two possible related
techniques. One is drawing bootstrap samples in a stratified manner, with different
selection probabilities for particular classes. In the extreme case, a bootstrap sample may
contain all instances from the minority class and the sample of the same size from the
dominating class. The other is to specify instance weights affecting split selection and
stop criteria for tree growing. Since in our case classes are extremely imbalanced and
there are very few instances of the minority class, the weighting technique is preferred
to the stratified sampling technique, since the latter would have to severely undersample
the dominating class, with a possibly negative effect on model performance. The same
weighting technique is also used with the the xgboost algorithm. In this case instance
weights are used when calculating the logarithmic loss, so that the contribution of minority
class instances to the loss function minimized by the algorithm is increased.

Data resampling may be performed by minority class oversampling (replicating
randomly selected minority class instances), majority class undersampling (selecting a
sample of majority class instances), or a combination of both, so that the resampled training
set has either fully balanced classes or at least considerably more balanced than originally.
Unfortunately these techniques have very limited utility for datasets that are both small and
extremely imbalanced, as in our case. Undersampling would remove most of the available
training data, and oversampling would replicate the very few “bad” paths increasing the
risk of overfitting to these specific instances. They can be therefore hardly expected to offer
any advantages over internal imbalance compensation by weighting and are not used in
this work.

Potentially more useful techniques of generating synthetic minority class instances
can be considered more refined forms of oversampling in which minority class instances
available in the training data are not directly replicated, but used to generate new synthetic
instances. This is supposed to make the increased representation of the minority class in
the modified training set more diverse and thus reduce the risk of overfitting. Two well
known specific techniques based of this idea are SMOTE [32] and ROSE [33] and they are
both used in our experimental study. SMOTE finds nearest neighbors of each minority
class instance and then generates new synthetic instances by interpolating between the
instance and its neighbors. ROSE adopts a smoothed bootstrap sampling approach, with
new instances generated in the neighborhood of original instances by drawing from a
conditional kernel density estimate of attribute values given the class. Both minority and
majority class instances are generated, and the class distribution in the generated dataset
can be controlled to achieve a desired level of balance.

2.3. One-Class Classification

One-class classification follows the following learning scenario [34,35]:

• the training contains only instances of a single class,
• the learned model is supposed to predict for any instance whether it belongs to the

single class represented in the training set.
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In our case the single class represented in the training set corresponds to “good” paths.
When the obtained model is applied to prediction, it identifies paths which are likely to
also be “good” (i.e., be of the same class as that represented in the training set) and those
which are likely to be “bad” (i.e., not to be of the same class as that represented in the
training set). It can be assumed that model predictions are provided in the form of decision
function values (numeric scores) such that higher values are assigned to instances that are
considered less likely to be if the same class as that represented in the training set, i.e., in
our case, more likely to be “bad” paths.

One-class classification is most often applied to unsupervised or semi-supervised
anomaly detection [36], where an unlabeled training set, assumed to contain only normal
instances, sometimes with a small fraction of anomalous instances, is used to learn a model
that can detect anomalous instances in new data. It can be also useful, however, for binary
classification tasks with extreme class imbalance [21], particularly when the number of
minority class instances is too small for standard binary classification algorithms, even
combined with imbalance compensation techniques. This may be often the case with data
for optical channel classification.

The best known and widely used one-class classification algorithm is one-class SVM.
In our experimental study it is compared with three other algorithms: The one-class
naive Bayes classifier, the isolation forest algorithm, and the maximum entropy modeling
algorithm. The first of those is a straightforward modification of the standard naive Bayes
classifier and probably the simplest potentially useful one-class learning algorithm. The
second one, while designed specifically for anomaly detection applications, can also serve
as a general-purpose one-class classification algorithm. The third one, while originally
intended for creating models of species distribution in ecosystems, has been also found to
be useful for one-class classification.

2.3.1. One-Class SVM

The one-class SVM algorithm uses a linear decision boundary, like standard SVM,
but adopts a different principle to determine its parameters. Rather than maximizing the
classification margin, which is not applicable to one-class classification, it maximizes the
distance from the origin while separating the majority of training instances therefrom [37].
The side of the decision boundary opposite from the origin corresponds to the class
represented in the training set. Only a small set of outlying training instances are permitted
to be left behind, and the upper bound on the share of such outlying instances in the
training set is specified via the ν parameter.

The principle of separating most of the training set from the origin of the space is
typically combined with a translation-invariant kernel function (such as the radial kernel),
sothat instances in the transformed representation lie on a sphere centered in the origin.
The separating hyperplane then cuts off a segment of the sphere where most training
instances are located.

One-class SVM predictions are signed distances from the decision boundary, positive
on the “one-class” (normal) side and negative on the outlying side. The negated value of
such signed distance can therefore serve as a numeric score for ranking new instances with
respect to their likelihood of not belonging to the class represented in the training set.

2.3.2. One-Class Naive Bayes Classifier

The one-class modification of the naive Bayes classifier is particularly straightforward.
Since only one class is represented in the training set, its prior probability is assumed to
be 1, conditional attribute-value probabilities within this class are estimated on the full
training set, and the probability of an instance belonging to this class is proportional to the
product of such attribute-value probabilities [38]. For numeric attributes, Gaussian density
function values, with the mean and standard deviation estimated on the training data, are
used instead of discrete attribute-value probabilities.
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Discrete class predictions can be made by comparing the product of attribute-value
probabilities for a given instance to a threshold, set to or around the minimum value of this
product over the training set. Numeric scores (decision function values) can be defined as
the difference between such a threshold and the probability being compared.

2.3.3. Isolation Forest

The isolation forest algorithm was proposed as an anomaly detection method [39],
but it can also serve as a one-class classification algorithm regardless of whether instances
not belonging to the class represented in the training set are interpreted as anomalous. Its
model representation consists of multiple isolation trees grown with random split selection.
These are not standard decision or regression trees, since no labels or values are assigned
to leaves, and they just partition the input space. Splitting is stopped whenever a single
training instance is left or a specified maximum depth is reached.

In the prediction phase each isolation tree is used to determine the path length between
the root node and the leaf at which the instance arrives after traversing down the tree
along splits. Instances that do not belong to the class represented in the training set can
be expected to be easier to isolate (have shorter paths) than those which do belong to the
class. The average path length over all trees in the forest can then serve as a decision
value function for determining whether an instance is likely to belong to this class or not.
The original algorithm transforms this average path length into a standardized anomaly
score for generating alerts in anomaly detection applications, using the expected depth
of unsuccessful BST searches. This is not necessary for one-class classification, since
the negated average path length is sufficient to rank new instances with respect to their
likelihood of not belonging to the class represented by the training set.

An extended version of the isolation forest used for this work employs multivariate
rather than univariate splits [40]. This eliminates a bias that resulted in the original
algorithm from using axis-parallel hyperplanes for data splitting.

2.3.4. Maximum Entropy Modeling

The maximum entropy modeling or maxent algorithm was originally developed for
ecological species geographical distribution prediction based on available presence data,
i.e., locations where a given species has been found and their attributes, used to derive
environmental features [41]. These features, besides raw continuous attribute values,
include attributes derived by several transformations, as well as binary features obtained
by comparing continuous attributes with threshold values and by one-hot encoding of
discrete attributes, with an internal forward feature selection process employed based on
nested model comparison [42].

The algorithm, following the maximum entropy principle [43], identifies a species
occurrence probability distribution that has a maximum entropy (i.e., is most spread out)
while preserving constraints on environmental features. These constraints require that
the expected values of environmental features under the estimated species occurrence
probability distribution should be close to their averages from the presence points. The
obtained model can provide, for an arbitrary point, the prediction of the species occurrence
probability.

Despite its original intended purpose, maxent has been found to be useful as a
general-purpose one-class classification algorithm [44,45]. Training instances take the
role of “presence points”, and input attributes are used to derive “environmental features”,
whereas background points can be generated by uniformly sampling the attribute ranges.
Model prediction for an arbitrary instance can be interpreted as the probability that it
belongs to the class represented in the training set.

2.4. Model Evaluation

Both binary and one-class classification algorithms used by this work produce scoring
predictive models – their predictions are numeric values ranking instances with respect
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to the likelihood of being a “bad” path (or not belonging to the class represented in the
training data). When applying standard binary classification quality measures to evaluate
these predictions using, we refer to to the “good” class (represented in the training data for
one-class classification), as negative, and the “bad” class (not represented in the training
data for one-class classification) as positive.

ROC and precision-recall (PR) curves are used to visualize the predictive performance
of the obtained models. ROC curves make it possible to observe possible tradeoff points
between the true positive rate (the share of positive instances correctly predicted to be
positive) and the false positive rate (the share of negative instances incorrectly predicted to
be positive) [46,47]. PR curves similarly present possible levels of tradeoff between the
precision (the share of positive class predictions that are correct) and the recall (the same as
the true positive rate). The overall predictive power is summarized using the area under
the ROC curve (AUC) and the area under the precision-recall curves (PR AUC).

In our case the true positive rate and the recall is the share of “bad” paths that are
correctly predicted to be “bad”, the false positive rate is the share of “good” paths that are
incorrectly predicted to be “bad”, and the precision is the share of “bad” class predictions
that are correct. The area under the ROC curve can be interpreted as the probability that
a randomly selected “bad” path is scored higher by the model than a randomly selected
“good” path and the area under the PR curve can be interpreted as the average precision
across all recall values.

When using data with heavily imbalanced classes, where positive instances are ex-
tremely scarce, even numerous false positives do not substantially decrease the false
positive rate, since the number of false positives may be still small relative to the dominat-
ing negative class count. This is not the case for the precision, though, which is much more
sensitive to false positives. Therefore precision-recall curves may be expected to be more
informative and better highlight differences in the predictive performance obtained using
different algorithms. For a more complete picture, however, both ROC and PR curves
are presented.

To make an effective use of the small available dataset for both model creation and
evaluation as well as to keep the evaluation bias and variance at a minimum, the n × k-fold
cross-validation procedure (n × k-CV) is applied [48]. The dataset is split into k equally
sized subsets, each of which serves as a test set for evaluating the model created on the
combined remaining subsets, and this process is repeated n times to further reduce the
variance. To evaluated binary classification models, the random partitioning into k subsets
is performed by stratified sampling, preserving roughly the same number of minority class
instances in each subset. For the evaluation of one-class classification models a one-class
version of the n × k-CV procedure is used in which the few instances of the “bad” class are
never used for training but always used for testing. The true class labels and predictions
for all n × k iterations are then combined to determine ROC curves, PR curves, and the
corresponding AUC values.

While it appears a common practice to use the leave-out-out procedure rather than
k-fold cross-validation when working with small datasets, the only potential advantage
of the former would be avoiding the pessimistic bias resulting from the fact that in each
iteration of the latter 1

k of the data are not used for model creation. However, the leave-one-
out procedure has high variance (that cannot be reduced by multiple repetitions since the
procedure is fully deterministic) and excluding only a single instance from the training data
may cause optimistic bias due to underrepresenting the differences between the training
data and the test data. We find it therefore more justified to use the n × k-fold cross-
validation procedure where the variance is substantially reduced and accept the fact that it
may be pessimistically biased. This means that our reported results may underestimate the
actually possible predictive performance levels, which should be preferred to any risk of
optimistic bias.
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3. Results

In the experimental study presented in this section binary and one-class classification
algorithms described in Sections 2.2 and 2.3 are applied to the small and imbalanced
dataset described in Section 2.1. The objective of the study is to verify the level of optical
channel classification quality that can be obtained using these two types of algorithms. For
binary classification the effects of class imbalance compensation using instance weights
and synthetic minority class instance generation are also examined.

3.1. Algorithm Implementations and Setup

The following algorithm implementations are used in the experiments:

• random forest (RF): the implementation provided by the ranger R package [49],
• extreme gradient boosting (XGB): The implementation provided by the xgboost R

package [50],
• SMOTE: The implementation provided by the smotefamily R package [51],
• ROSE: The implementation provided by the ROSE R package [52],
• one-class SVM (OCSVM): The implementation provided by the e1071R package [53],
• one-class naive Bayes classifier (OCNB): The implementation provided by the e1071

R package [53], with a custom prediction method to handle the one-class classification
mode specifically implemented for this work,

• isolation forest (IF): The implementation provided by the isotree R package [54],
• maximum entropy modeling (ME): The implementation provided by the MIAmaxent

R package [55], with background data generation by random sampling of attribute
value ranges specifically implemented for this work.

Since the xgboost algorithm does not directly support discrete attributes and one
attribute in the dataset is discrete, it was preprocessed by converting discrete values to
binary indicator columns.

The tiny size of the dataset and, particularly, the number of “bad” path configurations
makes it hardly possible to perform algorithm hyper-parameter tuning. While the perfor-
mance evaluation obtained by n × k-fold cross-validation could be used to adjust algorithm
settings and improve the results, as demonstrated in our previous work [14], without the
possibility to evaluate the expected predictive performance of the tuned configurations on
new data it could lead to overoptimistic results. This is why the algorithms are used in the
following mostly default configurations, with only a few parameters set manually where
defaults are unavailable or clearly inadequate:

• random forest: A forest of 500 trees is grown, with the number of attributes drawn at
random for split selection set to the square root of the number of all available attributes,

• extreme gradient boosting: 50 boosting iterations are performed, growing trees with
a maximum depth of 6 and scaling the contribution of each tree by a learning rate
factor of 0.3, and applying L2 regularization on leaf values with a regularization
coefficient of 1,

• SMOTE: The number of nearest neighbors of minority class instances is set to 1 (which
is the only available choice given the fact there are just three minority class instances in
the data two of which are available for model creation in each cross-validation fold),

• ROSE: The generated dataset size and the probability of the minority class are set so
as to approximately preserve the number of majority class instances and increase the
number of minority class instances,

• one-class SVM: The radial kernel function is used, with the γ kernel parameter set to
the reciprocal of the input dimensionality, and the ν parameter specifying an upper
bound on the share of training instances that may be considered outlying is equal 0.5,

• isolation forest: The extended version of the algorithm is used [40], with multivariate
splits based on three attributes, a forest of 500 isolation trees is grown, and for each
of them the data sample size is equal the training set size (which is a reasonable
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setup for a small dataset), and the maximum three depth is the ceiling of the base-2
logarithm thereof,

• maximum entropy modeling: All available attribute transformations [42] are applied
to derive environmental features (linear, monotone, deviation, forward hinge, reverse
hinge, threshold, and binary one-hot encoding), a significance threshold used for
internal feature selection is set to 0.001, and the generated background data size
is 1000.

For imbalance compensation with instance weighting the majority class weight is
fixed as 1 and the minority class weight is set to values from the following sequence:
1, 2, 5, 10, 20, 50, 100 (where 1 corresponds to no weighting). When using synthetic in-
stance generation, the number of generated minority class instances is set to d − 1 times
the number of real minority class instances, where d is in the same sequence as above.
This can be achieved exactly for SMOTE and only approximately for ROSE due to its
probabilistic nature.

The n × k-fold cross-validation procedure is used with k = 3 (since there are only
3 minority class instances) and n = 50 (to keep the evaluation variance at a minimum).

3.2. Classification Performance

For each of the binary and one-class classification algorithm configurations described
above cross-validated ROC and PR curves, with the corresponding area under the curve
values, are reported and briefly discussed below. A bootstrap test (with 2000 replicates drawn
from the data) is used for verifying the statistical significance of the observed AUC differences.

3.2.1. Binary Classification

Figure 4 presents the ROC and PR curves obtained for binary classification with
instance weighting. The numbers in the parentheses after algorithm acronyms in the plot
legends specify the minority instance weight value. For readability, only the results without
weighting and with the best weight value are included. All the observed differences are
statistically significant according to the bootstrap test except for those between RF(1) and
XGB(5), and between RF(20) and XGB(5). One can observe that:

• according to the ROC curves the prediction quality appears very good, with AUC
values of 0.96–0.97,

• nearly perfect ROC operating points are possible, with the true positive rate of 1 and
the false positive rate of 0.05 or less,

• the precision-recall curves reveal that the prediction quality is not actually perfect,
with the average precision just above 0.3 at best,

• without instance weighting the random forest algorithm outperforms xgboost, but
with instance weighting they both perform on roughly the same level,

• imbalance compensation with instance weighting improves the predictive performance
of both the algorithms, with the effect more pronounced for extreme gradient boosting.

Figure 4. The ROC and PR curves for binary classification with instance weighting.
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Figure 5 presents the ROC and PR curves obtained for binary classification with syn-
thetic instance generation. The numbers in the parentheses after algorithm acronyms in the
plot legends specify the minority class size multiplication coefficient. For readability, only
the best results obtained when using SMOTE and ROSE are included and the results with
no synthetic instance generation as a comparison baseline. All the observed differences
are statistically significant according to the bootstrap test. One can observe that:

• synthetic instance generation reduces the prediction quality of the random forest
algorithm, but provides an improvement for extreme gradient boosting,

• the effects of SMOTE and ROSE for xgboost are similar except for the fact that the latter
works better with bigger minority class multiplication coefficients,

• the results for both SMOTE and ROSE are worse than those obtained with instance weighting.

Figure 5. The ROC and PR curves for binary classification with synthetic instance generation.

3.2.2. One-Class Classification

The ROC and precision-recall curves for one-class classification are presented in
Figure 6. All the observed differences are statistically significant according to the bootstrap
test except for the one between IF and OCNB. One can observe that:

• all the algorithms produce models capable of successfully detecting out-of-class
instances (“bad” paths), with AUC values between 0.96 and 0.98,

• the one-class naive Bayes and isolation forest algorithms achieve the maximum true
positive rate value for a slightly less false positive rate value than the one-class SVM
and maxent algorithms,

• the algorithms differ more substantially with respect to the average precision achieved,
which is about 0.6 for one-class SVM and maxent, 0.66 for the one-class naive Bayes
classifier, and 0.77 for the isolation forest algorithm,

• the isolation forest and one-class naive Bayes models maintain a high precision of 0.7
or above for a wide range of recall values (up to about 0.9), whereas the one-class SVM
and maxent models can only maintain a precision level of 0.6 and 0.5, respectively, in
the same range of recall values,

• all the one-class algorithms produce better models than those obtained by binary classification.
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Figure 6. The ROC and PR curves for one-class classification.

4. Discussion

As discussed in Section 2.4, ROC curves do not provide a sufficient picture of model
performance under severe class imbalance, because even with many false positives the
false positive rate remains small due to the dominating overall negative class count. This is
why they suggest that all the investigated algorithms achieve excellent prediction quality
and their models exhibit only minor performance differences. Precision-recall curves
indeed show a more useful view of the predictive quality of models obtained by particular
algorithms and better highlight the differences between them.

For binary classification algorithms the simple instance weighting technique appears
more useful than the more refined and computationally expensive synthetic instance
generation techniques. This may be surprising at first, but actually neither SMOTE or
ROSE are well suited to working with datasets not only heavily imbalanced but also very
small. With just three minority class instances (two remaining for model creation within a
single cross-validation fold) there is probably not enough real data to provide a reliable
basis for synthetic data generation.

One-class classification algorithms, although using less input information (training
data of the majority class only), all produce clearly better models than the best of those
obtained using binary classification. The isolation forest algorithm turns out to deliver
a superior overall predictive power and considerably more preferable operating points,
with near-perfect detection of true positives (“bad” paths) without excessively many
false positives. While all the algorithms deliver high quality models, the one-class naive
Bayes and isolation forest algorithms clearly outperform the one-class SVM and maxent
algorithms. It is particularly noteworthy that they can provide high precision in a wide
range of recall values.

This study suggests that standard methods of handling class imbalance may be
insufficient when the dataset is of a very small size. Indeed, it is not only the small share,
but also the small absolute number of “bad” paths that prevents binary classification
algorithms from creating more successful models. While the skewed class distribution can
be compensated for by weighting, just a few training instances provide very poor basis
for detecting generalizable patterns and for generating synthetic instances. Using only
“good” paths for model creation leads to better results. The best obtained one-class models
providing a precision level of about 0.7 are much more practically useful than the best
binary classification models with precision just above 0.3.

5. Conclusions

The work has provided additional evidence that applying machine learning to optical
channel classification is a promising work direction, but is associated with important
challenges. To achieve models applicable in real-world conditions one has to use real-
world datasets, but these suffer from severe imperfections, the most important of which are
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a small size and a heavy class imbalance. We have demonstrated that state-of-the-art binary
classification algorithms may not achieve a very high level of prediction quality even when
coupled with appropriate imbalance compensation techniques. The utility of the latter may
be limited by the fact that it is not only the relative share of the minority class instances
in the data that is small, but also their absolute count. The reported results confirm that
one-class classification is a viable alternative, and models learned using majority class data
only achieve better classification precision that those obtained using binary classification
learning from all data.

Our findings provide an encouragement to continue this research direction by extend-
ing input representation with additional attributes, applying more one-class classification
algorithms, and tuning their parameters to further improve the predictive performance.
Gathering additional data not only would make the results of these enhanced future studies
more reliable, but also make it possible to examine further ideas, such as model transfer
between different networks or combining models trained on data from different networks.
Expert knowledge on the physics of optical networks may permit defining alternative
or additional path attributes, creating a more adequate input space representation for
machine learning. Such knowledge could also be used to design a domain-specific data
augmentation method that might be expected to perform better than general-purpose
techniques of synthetic minority-class instance generation.
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Abstract: In the era of the Internet of Things and big data, we are faced with the management of
a flood of information. The complexity and amount of data presented to the decision-maker are
enormous, and existing methods often fail to derive nonredundant information quickly. Thus, the
selection of the most satisfactory set of solutions is often a struggle. This article investigates the
possibilities of using the entropy measure as an indicator of data difficulty. To do so, we focus on real-
world data covering various fields related to markets (the real estate market and financial markets),
sports data, fake news data, and more. The problem is twofold: First, since we deal with unprocessed,
inconsistent data, it is necessary to perform additional preprocessing. Therefore, the second step
of our research is using the entropy-based measure to capture the nonredundant, noncorrelated
core information from the data. Research is conducted using well-known algorithms from the
classification domain to investigate the quality of solutions derived based on initial preprocessing
and the information indicated by the entropy measure. Eventually, the best 25% (in the sense of
entropy measure) attributes are selected to perform the whole classification procedure once again,
and the results are compared.

Keywords: entropy measure; real-world data; preprocessing; decision table; classification

1. Introduction

In present times, we are facing the problem of a large amount of data flowing from
different sources. In the era of the Internet of Things (IoT) and big data, the challenge is to
effectively use and present the acquired data without generating redundant information.
Due to the size of data available for decision-makers, it is nearly impossible to manually
make any complex decisions. This difficulty is experienced even in machine learning
algorithms, which must manage too many attributes, variables, and additional constraints,
resulting in the whole process being lengthy and complicated [1]. As such, it is essential to
simplify data in the cases where the decisions should be made very quickly, and a need
exists to use a decision support system to maintain the decision-maker’s sovereignty.

The main drawback of the existing datasets is their uniform structure. For the data
related to a single domain, the distribution of attribute values, the size of data, or the
overall difficulty of the given dataset classification is expected to be on a similar level.
However, in the case of more general approaches, we often face inconsistency in data,
including the need to use additional knowledge from the domain experts. In general, data
available in repositories are mostly preprocessed and directed on a particular problem (like
the classification or the regression). At the same time, the initially collected data may still
be very complex.

The above problem had led to the construction of many complex algorithms and
methods intending to decrease the complexity of the data used in the decision process.
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Among these methods, we can emphasize approaches for reducing the number of variables
included in the algorithm [2,3]. The idea of initially preprocessing the data related to
the feature selection, removing the redundant data, or including more general attributes
replacing the existing ones is not a new concept and it was deeply studied in many articles,
where initial data limitation was needed. Examples of such feature selection methods can
be found, for example, in extensions of the Principal Component Analysis method. One
of the newest review articles in this subject can be found in [4]. A more general approach
for future selection involving the swarm methods is presented in [5,6]. In comparison, one
of the newest review articles related to the swarm methods is [7]. The second large set
of algorithms used for the feature selection is related to the tree-based methods. In these
methods, the attributes can be selected based on the importance of the attribute in the
process of building the tree (classifier). An example of comparison for such algorithms can
be found in [8].

For many cases, data dependencies are not linear. Thus, a complex method of vari-
ables elimination should be applied. For example, in the case of periodically important
variables or in situations where the linear dependencies between elements are not obvious,
different methods must be used to emphasize the crucial variables in the system. To avoid
redundancy in the data, the selected variables should exhibit little or no mutual correlation.
This requirement was described by [9], in which the phenomenon of the illusion of validity
occurs: people have confidence in the results, which are based on redundant data. Thus,
in decision support systems and during attribute selection, the role of decision-makers can
also be marginalized.

A method that effectively identifies the crucial variables present in the complex
data can be essential for the whole system’s efficiency. However, in the case where the
data structure and its complexity makes the data difficult or even impossible to process,
the decision-maker faces a two-step problem: First, there is a need to adapt the data to
fit the algorithm’s input format. This can be achieved by some additional preprocessing
methods, leading to a data format acceptable as the algorithm’s input. However, the whole
process may be lengthy and complex. It often covers concepts such as filling the missing
data, discretization, and scalarization. Dealing with missing data cannot be solved with
simple methods, and the literature covers various approaches to this problem [10–12].

Thus, today we observe many algorithms dedicated to a particular domain, which,
opposite to the general approaches, can deal with the problems more efficiently. However,
one should know that such available methods can still be beneficial, even as a starting point
for emerging domains related to complex or big data. Our idea was to collect raw data from
different fields and prepare it in a uniform, easy-to-analyze format based on decision tables.
At the same time, we tried to use as general tools as possible, which unfortunately can lead
to a decrease in classification quality. However, it maintains the generalized approach for
all datasets.

Furthermore, we selected entropy as a concept, which allows us to describe the
disorder of the data. By the disorder, we understand here the measure of complexity, where
the more complex data (fewer dependencies between objects and attributes is visible)
is defined by the higher entropy values. Therefore, we assumed that the increase in
entropy could be equated with data difficulty. Furthermore, this assumption is verified by
performing the actual classification on various datasets. Eventually, the results from the
classification on the full set of attributes and subset generated on the basis of entropy can
be compared. It is expected that high entropy should lead to less effective classification.

The entropy measure is considered from the point of view of all attributes. Thus, it
is possible to identify the attributes with small disorder values (smaller entropy values).
A subset of attributes with small entropy could be used to perform the classification while
the data is limited.

In our data, a clear distinction exists between conditional attributes and decision
class. Data from various fields cover several objects as well as different numbers of
attributes. However, the common goal is to perform a classification task on the presented
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data. The second step of our research completely focused estimating the impact of the
entropy-based measure on the classification task. First, we tried to determine if entropy
can be effectively used to indicate data difficulty. Eventually, we investigated the results of
the classification of the data. We expected that, initially, all conditional attributes analyzed
in the dataset could be treated uniformly (i.e., have similar entropy values). Thus, the main
questions were: is there a correlation between the entropy values and the quality of
classification, and can the entropy-based measure be used to select the best-fitted attributes
for the classification problem? To summarize, our research steps were as follows:

• initial preprocessing of real-world data;
• entropy calculation for different datasets;
• classification on all datasets;
• selection of the best-fitted 25% of attributes based on the lowest entropy measure;
• the comparison between the classification results for the full and limited set of at-

tributes on different datasets.

To generalize our observations as much as possible, we tried to select data from various
fields and describe the whole preprocessing framework with the use of domain knowledge
presented by experts from different fields. Moreover, this preprocessing schema allowed
us to use a general data format, which can be effectively used in entropy calculation and,
finally, in classification problems.

The paper is organized as follows: In the next section, we present the related studies.
In Section 3, we discuss the theoretical background related to the subject, including a
description of entropy, decision tables, and efficiency measures used in classification
tasks. Section 4 contains a description of the real-world data covering different domains.
Section 5 presents the results of our experiments based on entropy calculation as well as
the classification problem. Eventually, we conclude the study in Section 6.

2. Related Works

By classical entropy, we understand the measure of uncertainty related with some
data. The idea was introduced by Shannon in 1948 [13] and further extended, for example,
by Renyi and Tsallis [14,15], where Renyi entropy is the generalization of the Shannon
entropy for specific parameters.

The classical entropy measure is used as a crucial element in many different algorithms
and methods. Amongst the most prominent examples are the well-known classification
algorithm C4.5 developed by Quinlan [16] as an extension of algorithm ID3 [17]. In both
examples, entropy was used as a measure to generate a classifier (a decision tree). In C4.5,
entropy was used for all algorithm steps to calculate the information gain based on the
entropy for every attribute available in the dataset. A similar idea is used in greedy
heuristic ID3, where, once again, the attribute used as a split criterion for the data is based
on the highest information gain. Such an approach has been successfully used in machine
learning [18] and signal processing [19].

Entropy is often used as an element of broader methods rather than a standalone
measure. It has a role in novel metaheuristics such as an extension of classical particle
swarm optimization [20]. In [21], it was used as an alternative approach to the concept of
fuzzy sets to measure the uncertainty of the task in a task assignment problem. Entropy
was used as an extension of the binary classification problem solved by particle swarm
optimization [22]. In many articles, entropy has often been used as a replacement for
classical measures such as variance [23].

Entropy mixed with the concept of fuzzy sets was included in an outlier detection
approach [24]. In [25], entropy was included as a part of the feature selection mechanism
based on fuzzy sets. Finally, a more complex approach, including the fuzzy multicriteria
approach based on the TOPSIS method, was presented in [26].

Entropy was used in many different approaches to measure randomness in a clinical
trial [27]. In [28], entropy was introduced to measure the uncertainty of ordered sets.
In general, it can be used as an idea of measure for different fields such finance [29,30],
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chemistry [31], physics [32], and more. However, no works used entropy as a general
measure for different domains simultaneously. A separate direction of research is devoted
to various extensions of classical entropy. In [33], the idea of measuring an entropy
on different scales (multiscale entropy) was presented. In the case of time-series data,
the concept of approximate entropy is often used [34]. In [35], approximate entropy was
extended, called sample entropy. This idea was further extended in [36]. Both methods
were used in different applications to address various dynamic aspects of systems.

Another prevalent extension of the classical measure is permutation entropy, effec-
tively used as a nonlinear measure in different fields such as cyber-security [37] and
fault diagnosis in systems [38]. Some preliminary comparisons between the classical en-
tropy measure and Pearson correlation were introduced [39]. In this example, the authors
focused on the data derived from the system from the Internet of Things, focusing on
spatio-temporal data.

The idea of using entropy as a complexity measure is well-known, and it has been
recently studied by many researchers. Among interesting examples, we mention [40],
where information entropy was used to measure the genetic diversity in colonies. Another
example covers the general idea of measuring the complexity of time series [41].

Entropy as a measure of diversity was presented in [42], where the authors used
Shannon entropy to measure the urban growth dynamics for a case study related to
real-world data from the city of Sheffield in the U.K. More complex examples related
to health and perception can be found in [43,44]. In the first case, the authors used
entropy-based concepts for knowledge discovery in heart rate variability, whereas in the
second example, approximate entropy was used for EEG data. Finally, among the newest
works from the medical domain, Coates et al. [45] used entropy in the Parkinson’s disease
recognition process.

3. Methodology

For a set of objects X, every element can be described by a vector of n conditional
attributes �xatr = {xatr1 , xatr2 , . . ., xatrn} where n is a number of conditional attributes. A de-
cision class is denoted as xclass. Thus, every object is described by a pair ( �aatr, xclass).
For every conditional attribute, we have the attribute and value pair, and every attribute
can have a numeric or symbolic value. In the case of attributes with continuous values,
the discretization procedure, leading to limiting the number of values for a single attribute,
is often performed.

In classification problems, the decision class xclass, including information about the
decision class for a single object, has one of the values belonging to the decision class set
of values.

In this article, we perform the preprocessing of real-world data, which allows trans-
forming the initial raw data into a decision table defined as follows:

DS = (X, �xatr, xclass). (1)

All analyzed data differ in terms of the size of set X and the number of attributes in the
vector of conditional attributes �xatr. We did not assume simplifications related to the
cardinality of the decision class. Thus, for some sets, this attribute is continuous, and an
additional discretization procedure is needed. Eventually, for all datasets, the number of
values in decision class xclass is discrete.

3.1. Entropy as a Measure of Classification Uncertainty

According to our aim, we wanted to explore the possibility of using entropy as an
indicator of data difficulty. Therefore, we treated entropy as a measure of classification
uncertainty. In addition, we explored how data can be simplified using only attributes
selected in terms of entropy value. Therefore, we also examined the information attribute
to assess the usefulness of entropy for data simplification.
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Assuming that several different symbols describe information, entropy, in its basic
form, can be calculated as follows:

E(DS) = −
|C|
∑
i=1

pi · log(pi), (2)

where |C| is the number of different decision classess, and pi is the probability of occurence
of the i-th decision class. With such a definition, entropy can be understood as a measure
of data complexity. With an increasing number of decision classess available in the data,
the overall complexity increases. In the most trivial case, for a single decision class, the pi
value is equal to 1, whereas log(pi) is zero (as well as the entropy). Thus, any increase in
this value leads to higher entropy.

The value of the information attribute (Equation (3)) is determined for each conditional
attribute to determine how it can change the entropy of the decision table DS. The resulting
value determines the entropy that can be obtained by considering that attribute.

The information attribute is thus based on the calculation of entropy due to decision
classes (Equation (2)), but this is performed due to the cases grouped by the values of the
attribute being analyzed.

Formally, the information attribute is written as Equation (3), but note that these
determinations are required for each attribute, where k is the number of attributes being
analyzed, m is the number of possible values of the k-th attribute, and |DSi| is the number
of instances having the i-th attribute value (analogously, DSi is the subset of the decision
table DS that has only the i-th attribute value on attribute k).

in f o_att(k, DS) =
m

∑
i=1

|DSi|
|DS| · E(DSi) (3)

In our considerations, in f o_att is crucial for simplifying the dataset. For each decision
table DS with the number of conditional attributes n, values are determined based on
Equation (4). This observation is used for further analysis.

all_in f o_att(DS) =
n

∑
k=1

in f o_att(k, DS) (4)

3.2. Classification Measures

In our research, we wanted to examine the classification quality using state-of-the-art
machine learning algorithms. We chose decision trees (CART algorithm) and ensemble
methods: Random Forest, Bagging, and AdaBoost. To assess the quality of classification,
in addition to the classical measures of classification quality (accuracy), we also used
precision (called positive predictive value (PPV)) and recall (called true positive rate (TPR)).
Notably, these are binary classification measures, i.e., for a dataset with only two decision
classes. In real datasets, there are often more decision classes. Several methods can be used
to generalize precision and recall. We wanted to provide as much information as possible
in our solutions, so we computed precision and recall for each decision class.

Therefore, for PPV, the analyzed decision class is treated as positive and all others as
negative, and analogously for TPR. So, in the definition of the measures of the quality of
classification (accuracy in Equation (5), precision in Equation (6), and recall in Equation (7)),
we denote:

TP: to identify all correctly classified cases of the analyzed class;
TN: to identify all cases outside the analyzed class that were not assigned to this class;
FP: to identify all cases outside the analyzed class that were assigned to this class;
FN: to identify all misclassified cases of the analyzed class.

accuracy = TP+TN
TP+TN+FP+FN , (5)
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PPV =
TP

TP + FP
, (6)

TPR =
TP

TP + FN
. (7)

4. Data Preparation and Preprocessing

In this section, we provide details of the real-world data used in further experiments.
The data were collected from external sources and cover various fields. We adapted the
raw data into a decision table format, described in detail in the previous section, to perform
the tests based on the classification problem. All necessary steps for data processing are
described in this section.

However, despite the processing of all datasets, some general preprocessing steps
were used. Below we indicate these steps in points with a short description.

• collect data in the raw format—the first step was to obtain the entire data. Please note
that for some cases, these data were obtained from different sources; however, all
information initially was presented as a table;

• join data tables from different sources—this step was used to merge all obtained data
into a single table structure;

• eliminate all missing and incomplete data—no artificial methods allowing to repair
missing data were included in this point;

• eliminate potential outliers in the data—by outlier, we mean observation outside the
range 〈Q1 − 3· IQ : Q3 + 3· IQ〉 (where Q1 is the first quartile, Q3 is the third quartile,
and IQ is the interquartile range);

• perform discretization for selected attributes (attributes pointed out by the domain
expert having a relatively large number of values).

Please note that the last step was used for both conditional attributes as well as the
decision attribute (if needed). Moreover, these were general steps adapted for all data.
However, additional steps were explicitly performed for the selected data (for example,
related to the natural language processing), described in detail in subsections related to
different data.

4.1. Fake News Data

Universal access to the Internet created the possibility of the rapid creation and gaining
of knowledge by users, which became a threat through the easy spread of false information
in the form of fake news. Fake news aims to present users with a view that is not in line
with reality or leads them to make wrong decisions or actions based on false information.

The problem of disinformation is best visible on social networking services and news
sites, where fake news is spreading widely in the form of sharing, passing on to friends,
or creating documents based on unreliable sources [46]. Therefore, it is essential to quickly
classify the documents posted and adequately mark the articles as true or fake news.
The subject matter of the documents from the fake news dataset is related to many different
fields; in particular, it concerns political, media, and financial content, as well as current
events [47,48].

Kannan et al. [49] claimed that preprocessing real text data for analysis using machine
learning algorithms is always the longest stage and often amounts to around 80% of the
total processing time. Therefore, to transform the fake news dataset into a decision table,
we propose applying the statistical approach of natural language processing (NLP).

In the first step of NLP, the tokenization process is carried out, dividing a given text
into the smallest unit (e.g., a sequence of words, bytes, syllables, or characters) called a
token. The result is the creation of an n-gram model that is used to identify and analyze
attributes used in natural language modeling and processing [50]. In our research, we
used n-gram to define individual words from document titles, from which we additionally
rejected words appearing on the stop word list. An example of a stop words list is presented
in Figure 1.

24



Entropy 2021, 23, 1621

a, an,
about,
are, be, is, was, will,
as, how,
by, f or, o f , f rom,
in, on,at,
or, and,
the, that, these, this,
too,
what, when, where, who,

Figure 1. A sample list of rejected words, the so-called Stop Words.

The next step in NLP is to perform the normalization process using two methods:
stemming and lemmatization. The stemming method is used to extract the subject and the
endings of the words. Eventually, similar words are replaced by the same base word [51].
The method of lemmatization consists of reducing the word to its basic form [52]. The pur-
pose of the normalization process is to reduce the variability in the set of terms.

The final step in the NLP covered in this research is creating a word vector model
as a document representation. Our vector model is presented as a matrix (Figure 2),
where documents ( dok_1–dok_n) are presented in the form of feature vectors representing
particular attributes (at_1–at_n). In the model, we use a binary representation, where
each value from the {0,1} set determines whether the word appears in a given document.
In addition, the number of attributes is limited to the most common words in the title of
the document. On this basis, the fake news dataset was transformed into a decision table
consisting of the attributes of the most common words and a decision attribute (decision)
containing two classes (true or fake).

at_1 at_2 at_3 at_4 at_5 at_6 at_7 at_8 . . . at_n decision

dok_1 1 0 0 1 0 0 1 0 . . . 0 0

dok_2 1 0 1 0 0 0 0 0 . . . 0 0

dok_3 0 0 0 0 1 0 0 1 . . . 0 0

dok_4 0 0 0 1 0 0 0 0 . . . 1 1

dok_5 0 1 0 0 0 1 0 0 . . . 0 0

dok_6 0 0 1 0 1 0 0 0 . . . 0 0

dok_7 0 1 0 0 0 0 0 0 . . . 0 1

dok_8 0 0 0 0 0 1 0 0 . . . 0 0

dok_9 0 1 0 0 0 0 0 1 . . . 1 0

dok_10 0 0 0 1 0 0 0 0 . . . 0 0

dok_11 0 1 0 0 0 0 0 0 . . . 1 0

dok_12 0 0 0 0 0 0 0 0 . . . 0 0

dok_13 0 0 0 0 0 0 0 0 . . . 0 1

dok_14 0 0 0 0 0 0 0 0 . . . 1 0

dok_15 0 0 0 1 0 0 1 0 . . . 0 1

dok_16 0 0 0 1 0 0 1 0 . . . 0 0

dok_17 1 0 1 0 0 0 1 0 . . . 0 1

dok_18 0 0 0 1 0 0 0 0 . . . 1 0

dok_19 0 0 0 0 0 0 0 1 . . . 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

dok_n 0 0 0 0 0 0 0 0 . . . 0 0

Figure 2. The sample matrix of words occurrence (selected as conditional attributes) in documents.
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The decision table structure consists of columns with conditional attributes and one
decision, whereas rows include all documents from the set. Conditional attributes are
words most often appearing in the text. The presence of specific words (in the decision table)
is strictly dependent on the analyzed dataset. For this reason, the number of attributes
is limited. Table 1 shows an example of the frequency of words (selected as conditional
attributes) in the titles of true and fake news.

Table 1. The example frequency of words (selected as conditional attributes).

Attribute Name True News Fake News

word_1 608 463

word_2 592 715

word_3 1036 78

word_4 1151 655

word_5 840 585

word_6 631 692

word_7 2193 47

word_8 572 1441

word_9 2520 666

word_10 1227 654

word_11 859 975

word_12 371 970

word_13 471 1167

word_14 577 821

word_15 920 269

word_16 8843 5538

word_17 8369 40

word_18 592 703

word_19 1975 36

word_20 2874 815

Real text datasets are challenging to analyze due to the large number of attributes [53]
that constitute single words for the fake news dataset. The distribution of attribute values
due to decision classes (fake and true) is presented in Figure 3.

For each attribute, there is one histogram (Figure 3) consisting of two columns, which
corresponds to the number of values for each attribute. The first column shows the number
of objects (article content) in which the selected word does not appear (as an attribute
value), while the second column shows the number of objects in which the selected word
appears at least once. These numbers are shown in the chart. Additionally, each column
shows the assignment of a word to the appropriate class: blue is the true class, and red is
the fake class.

By such a distribution of attributes due to decision classes (fake and true), it can be
seen that some words (such as word_3, word_7, word_17, word_19) do not appear at all in
the fake class—the right column is entirely blue. However, in the case of the first column,
the division into both classes is equal for almost all attributes.
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Figure 3. The distribution of attribute values due to decision classes for fake news data.

4.2. User Websites Navigation Data

Electronic commerce (e-commerce) has become popular as the Internet has grown,
with many websites offering online sales, and e-commerce activity is undergoing a signifi-
cant revolution. The major challenges in research are the collection, identification, and adop-
tion of data supplied by Internet services to provide actionable marketing intelligence.

The main difficulty in web usage mining is the procurement of the desired database,
as the only information we can collect from users visiting a website is through tracing the
pages they have accessed.

Data collected from log files must be processed before data mining techniques (based
on machine learning algorithms) can be used. Then, the personalization process is per-
formed in the six main steps generally used in the field:

1. Data collection: Collecting the data from the server or the user side.
2. Data filtering: Removing or correcting undesirable data such as the log information

obtained by crawlers.
3. User identification: Identification of user by IP address, cookies, and direct identifi-

cation.
4. Session identification: Tracking the activity of the same user.
5. Characteristics selection: Selecting characteristics that can be useful for user behavior

analysis.
6. User behavior analysis: Studying the behavior of different users for selecting dom-

inant ones (i.e., the characteristics that change significantly from one behavior to
another).

The main idea of analyzing the users’ behavior during user navigation was to limit
the users’ sessions to 10 actions. Each action corresponds to a one-page view by the users.
We chose the 10 actions limitation in the session because it was impossible to perform
a pertinent clustering using less than 10 actions for the user session; the cluster was not
significant enough, and differences between clusters were negligible.

Before the phase of navigation conditional attributes selection, the hierarchy of the
website was derived. An example division of the site is as follows: First, we separated

27



Entropy 2021, 23, 1621

thematic websites to create universes. Websites from each universe were about the same
topic. Then, we divided the entire site into seven different universes:

1. Store: the main universe (for example with products list),
2. Quick order: direct purchases by entering the catalog reference,
3. Shopping cart (purchase),
4. Sales,
5. Consulting: customers questions and FAQs,
6. Condition: Terms of sale and shipping, and
7. Various: all others, such as home pages.

The universe store was divided into three levels of hierarchy: section, subsection,
and subsubsection. Generally, the final product page corresponds to the subsubsection.

From this hierarchy, we selected conditional attributes that describe the user naviga-
tion of our commercial partner’s website. The attributes are presented in Table 2.

Table 2. Session attributes.

User ID Session ID

Day/Month/Year Hour of begin

Hour of end Purchase

Total amount No. products bought

No. references bought Discount code

New user Source of navigation

Total time Time universe (1–7)

No. total pages seen No. pages universe (1–7) seen

No. universes changes No. sections changes

No. subsect. changes No. subsubsect. changes

No. of section seen No. of subsection seen

No. product pages seen No. of same product seen

The presented attributes are described as follows:

• User ID describes the ID based on cookies, a unique ID for each user;
• Session ID describes the session ID during one day each session is considered as

closed after 30 min of inaction;
• Purchase is a binary value that shows if the user made a purchase during their action;
• Discount code is a boolean value describing the presence of a discount code during

the purchase;
• New user describes whether the user was recognized as a user who already made a

purchase on the site;
• Source of navigation describes whether the user is entered into our commercial

partner’s site voluntarily by using, for example, the search engine, or was pushed to
visit the site by a mail company;

• Total time describes the length of a session in seconds;
• Total universe (1–7) represents the seven different attributes that describe the time

that a visitor spends in each universe;
• Total no. of pages seen describes the number of all the pages visited by the user

during a session;
• No. pages universe (1–7) seen represents the seven different attributes that describe

the number of pages visited by a user in each universe;
• No. of universe, section, subsection, and subsubsection changes are the four fea-

tures that describe the number of changes the user makes during their navigation. If,
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for example, the user switches universe and then returns to the previous one, the value
of this attribute is equal to 2;

• No. of sections or subsections seen are the two attributes that describe the number
of different sections or subsections seen during the user session;

• No. of product pages seen describes the number of product pages seen in total;
• No. of same product seen describes the sum of product pages that have been seen

several times.

For the decision attribute, we chose the binary attribute purchase. Decisions classes
were “yes” and “no”. All the attributes were normalized.

The distribution of attribute values due to decision classes—purchase is presented
in the Figure 4. Two colors correspond to the decision classes: blue indicates sessions
not completed with the purchase, and red indicates the sections in which the purchase
was made.

Figure 4. The distribution of attribute values due to decision classes for user websites navigation data.

As we can see in the Figure 4, some attributes do not discriminate the decision
class. For example, the decision class distribution is identical for attributes such as
Day/Month/Year, Hour_o f _end, and Source_o f _navigation. On the other hand, attributes
such as Discount_code, Total_time, or New_user, clearly indicate the purchase class. Ac-
cording to the presented data distribution, we can determine that the user’s session
ending with purchase has the following attribute values: avg._no_o f _pages_viewed and
average_amount_o f _time_spent_on_navigation, the customer is not the first time on the
website, and he has a discount code, the customer does not spend a lot of time in the store
section, but frequently changes subpages in this category.

4.3. Real Estate Market Data

The real estate market has grown rapidly during the recent years [54]. As such, both
the volume of data and the number of processed details have increased. Investors are
looking for attractive properties from which profit can easily be earned. As customer habits
change, so do the features connected to a particular property that is essential for buyers.

The change in investor and end-consumer behavior has led to the inclusions of ad-
ditional details in advertisements of properties. Each advertisement is currently filled
with much additional information, some of it structured and some of it only provided
in descriptive text. The real estate market data used in this paper originated from actual
advertisements presented on multiple Polish market web pages. The details of the adverts
are often hidden inside the text describing a particular property. However, many details
are often presented in a structured form, allowing less sophisticated automatic scrapers to
gather the data. For some of the conditional attributes, it is still necessary to perform more
advanced processing. For instance, the_ f loor_number is usually provided as a number in
the vast majority of cases. However, there are some occasions where it is stated verbally
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as “ground floor” or “higher than the 10th floor”. Most of the advertising portals do not
provide a good enough validation of this data, which is why, during the data acquisition,
we had to construct more detailed methods to handle the special types of values and data.
A similar process had to be performed for geo-encoding the spatial data. In almost every
advertisement, the exact address of the property was not given; only the street name and
the city were described. Sometimes the street names had spelling errors, were not correctly
placed on a map, or used an old street name before the mandatory change of street names
in Poland that recently occurred [55].

Notably, the process of acquiring data from web pages is complicated. The dataset
used in the current study consists of the following conditional attributes:

• Build date is the year the property was built. This attribute needed extra preprocessing
steps, as some of the records provided a textual representation such as “the late 1980s”.
Therefore, the dates were given as is without any numerical processing.

• Total number of floors in a whole building. As mentioned before, more advanced
NLP methods were applied to clean up the data.

• Building material. As the materials change across the decades, a whole dictionary
of construction materials was created using both automatic methods and expert
knowledge. We also constructed a synonyms dictionary. The provided value was then
compared to the dictionaries and cleaned up. This is a categorical attribute.

• Floor number on which the particular property is situated.
• Area] of the property. Here, the vast majority of data were provided in square meters,

but some of the land properties provided this value in acres, which had to be converted
to an SI-derived unit of measure.

• Building type is a categorical attribute denoting the building type (e.g., semi-detached
building, loft, etc.). Here, we used similar preprocessing techniques to those used for
building material.

• Condition state describes the overall condition of a property. As this is highly sub-
jective, as there are virtually no norms that can standardize this attribute, we used a
two-fold approach. As a starting point, the value presented in the advertisement was
taken directly as-is. Next, this value was then compared to the dictionary of values
and corrected for spelling errors and synonyms. In a second step, the description
text was analyzed to find keywords that could decrease or increase the overall condi-
tion of a property. For instance, if the property was marked as “ready to move in”,
but the description mentioned that “painting needed” or “kitchen is not equipped
with stove”, the overall condition was decreased. Although this is considered a cate-
gorical attribute, current works involve introducing the order relation to items from
the condition dictionary. Additionally, we are working on an image classifier that will
automatically label the state of a property.

• Windows with which the property is equipped (wooden, PCV, etc.).
• Private ad is a dichotomous attribute discriminating if an advert was published by

a professional dealer or a private party. As research has shown, these two types are
constructed vastly differently. Most of the time, private advertisements have lower-
quality photographs, but the description is more accurate and meaningful than in
professional ads. The former often includes additional costs in the description (such
as a mandatory extra-paid parking space).

• Market type has two values: primary and aftermarket.
• Ownership type describes the legal ownership type of a given property.

The last attribute, being the decision one, denotes the price per square meter. As this
value can fluctuate widely, we transformed it using a simple discretization:

bucket = � price_per_sq_mt
1000 �. (8)

Because of the nature of scrapped data and the frequent necessity for repairing or
transforming the data (e.g., converting units of measurement between imperial and metri-
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cal), this data is rather difficult to analyze. Furthermore, many attributes, all interesting for
the end-user, make this processing even more complicated.

The distribution of attribute values in accordance with decision classes was created,
as shown in the Figure 5. Please note that due to many values in the decision class, there
was no visible distinction related to color for each class.

Figure 5. The distribution of attribute values due to decision classes for real estate market data.

Even though the data has been preprocessed extensively, some of the original values
with mistakes were left intact. This is the case for area attribute, where one of the flat’s
areas is set to 349,000 square meters. This is clearly seen in the distribution plot, where the
plot is heavily skewed. The same thing is happening with the build_date (a building has
a date set to 892,007; there are also some spelling errors with a date like 19,000 or 20,014
where an individual probably inserted an additional 0). Because the number of records
with such mistakes is relatively small (less than 0.02%), the authors included these outliers
in the dataset to determine their influence on the overall entropy and classification results.

It is clearly seen that most of the properties are situated below fourth floor, which is
expected, as it is far more easy to build such buildings in Poland compared to skyscrappers
due to legal reasons. The owners tend to over-estimate the quality of interior, therefore
the vast majority of apartments have the “ready to be moved” condition_state. Most of the
analyzed apartments also have modern PVC windows.

4.4. Sport Data

Sport is a valuable part of many people’s lives, understood both as physical activity
and in terms following individual teams or athletes. Football is the most popular sport
known, with the European leagues being some of the most famous in the world. Therefore,
the top leagues from Germany, Italy, and Spain were selected for our analysis.

Numerous studies based on both expert analysis and machine learning techniques
for predicting sports results can be found in the literature [56–59]. The most popular and
accessible are predictions of match results in the form of win/loss/draw; however, both
analyses and predictions may concern other elements such as the number of goals scored,
the exact score, or the number of yellow cards [56,60].

The dataset was created from the tabular data available on a website [61]. For complete
information, the data were extracted using the scraping method from two tables. The first
one contains data about the league table. The second one consists of information about
individual matches. The tables were then combined to obtain a full decision table that was
divided into sets for each country. The conditional attributes included in the decision tables
are presented below:
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• Season: The season in which the games were played: a nominal variable using data
for 10 consecutive seasons from 2011–2012 (“11/12”) to 2020–2021 (“20/21”).

• Round: The number of competition rounds. A quotient, integer variable ranging from
six to 34 for Germany, and to 38 for Spain and Italy. Based on conducted experiments
and the arguments indicated in the literature, the data for the first five rounds of each
of the seasons were excluded from the analysis [62].

• Team1: The name of the first team. Categorical variable taking different values 28 for
Germany 28, 34 for Italy 34, and 33 for Spain.

• Position T1: Position of Team1 in the competition table. A quotient, integer variable
ranging from 1 to 18 for Germany, and 20 for Spain and Italy.

• Match T1: Match played by Team1 up to the current round. A quotient, integer
variable ranging from six to 34 for Germany, and to 38 for Spain and Italy.

• Winnings T1: The number of matches won by Team1 up to the current round. A quo-
tient, integer variable ranging from six to 34 for Germany, and to 38 for Spain and Italy.

• Draws T1: The number of draws for Team1 up to the current round. A quotient,
integer variable ranging from six to 34 for Germany, and to 38 for Spain and Italy.

• Losses T1: The number of matches lost by Team1 up to the current round. A quotient,
integer variable with values ranging from six to 34 for Germany, and to 38 for Spain
and Italy.

• Goals scored T1: Goals scored by Team1 up to the current round. A quotient, integer
variable.

• Goals conceded T1: Goals conceded by Team1 up to the current round. A quotient,
integer variable.

• Goal difference T1: Difference between goals scored and lost by Team1. A quotient,
integer variable.

• Points T1: The number of points gained by Team1 up to the current round.
• Series T1: Series of results match for Team1. A nominal variable, consisting of

three symbols containing information about the results of the last three games played
by the team. In the first position, there is the last played game, where W is team wins,
R is a draw, P is team loss, and B indicates no data.

The same attributes are available for the second team as for the first team. The con-
ditional attributes for the second team were marked by “T2”. The last of the attributes is
the decision class (match_result), which can have three values: 1 indicates a win for team 1,
2 indicates a win for team 2, and X is a draw. Team 1 is the team playing the game on its
home field; team 2 is the team playing away.

The Figure 6 shows examples of distributions for the data of the German Bundesliga.
A significant part of the data is characterized by right-hand asymmetry, which is naturally
related to the domain specificity of the data. Representative examples of this fact are,
among others, Winnings_T1, Draws_T1, Goals_scored_T1, Goals_conceded_T1, Points_T1.
A team starts with a value of 0 for the number of games won/lost, goals scored/conceded
or the number of points. During the game, teams increase the values of these attributes,
or they remain unchanged. This behavior contributes to the right asymmetry in the data.
The distribution for Goal_di f f erence_T1 is much closer to the normal distribution. In the
decision class distribution, it can be seen that the most common values are related to
the home team win (color = red), then the visiting team wins (color = cyan) and draw
(color = blue). The last two classes have numbers much more similar to each other. The fol-
lowing rules are also observed for the “Team2” data and for other countries’ leagues.
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Figure 6. The distribution of attribute values due to decision classes for sport data.

4.5. Financial Data

From financial data, we can highlight two main groups of data. The first one is
related to the well-known Markowitz model (and its extensions) and the portfolio selection
problem, which is beyond the scope of this study. The second group is related to the price
and indicator data from various markets. In this group, the most popular data are obtained
from the financial markets (also known as forex market or foreign exchange market) and
concerns the currency pairs.

A single market indicator (or group of indicators used jointly) is used in trading
systems to generate buy signals. All indicator data were calculated according to market
indicator formulas, which can be divided into two separate groups. The first covers trend-
following indicators, which include the moving average (MA) market indicator. The MA
for time t and s periods, denoted MAs(t), is calculated as:

MAs(t) =
∑t−1

i=t−s pricei

s
, (9)

where pricei is the value of the corresponding instrument at time i. In the above context,
the period is the number of values considered when calculating the indicator. The second
group of indicators covers the oscillators, whose primary purpose is to indicate rising or
falling potential for the given currency pair. The indicator value is calculated using the
currency value and can include the closing, opening, minimum, or maximum currency
pair value from previous sessions (or any combination of the above). As an example,
the oscillator Relative Strength Index (RSI ) is calculated based on the last n periods in
time t as follows:

RSIs(t) = 100 − 100

1 − avggain
avgloss

, (10)

where avggain is the sum of gains over the past s periods and avgloss is the sum of losses
over the past p periods.

All mentioned, indicators are calculated based on the currency pair value, which was
included in the data. The decision (BUY or SELL) is based on the indicator value in time t
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and its relation to the indicator value at time t − 1. Therefore, the general rule for opening
the trade for indicators can be defined as follows:

condBuy = true if (inds(t − 1) < c) ∧ (inds(t) > c), (11)

where inds(t) is the value of indicator ind in the present reading t considering the last s
readings, t − 1 is the value in the previous reading, and c is the indicator level (different for
each indicator), which should be crossed, to observe the signal.

As shown, the crucial aspect related to generating the signal by the indicator is the
value difference between two successive readings. Thus, we decided to include this infor-
mation in our data in some limited way (in the case of the MA indicator). For the remaining
indicators, a discretization procedure was performed because, in the classification process
performed in the experimental section, only a limited number of indicator values was
accepted. The summary for each indicator is presented in Table 3.

Table 3. Discretization procedure for the market indicators. * in the rare cases, where indicator value
exceeds the border value (cases with the word “above” or “below”, the indicator value is set to the
border value).

Indicator Name Range * Discretization Step

Bulls 〈0 : 0.01〉 0.0005

Bulls 〈−0.01 : 0〉 0.0005

Bulls Above 0.1 0.005

Bulls Below −0.1 0.005

CCI 〈−200 : 200〉 20.0

DM 〈0 : 1〉 0.1

OSMA 〈0 : 0.01〉 0.0005

OSMA 〈−0.01 : 0〉 0.0005

OSMA Above 0.1 0.005

OSMA Below −0.1 0.005

RSI 〈0 : 100〉 10.0

Stoch 〈0 : 100〉 10.0

Each of our readings in data also included the decision taken as one of the following
values: STRONG BUY, BUY, WAIT, SELL, or STRONG SELL. Each set’s decision was
based on calculating the difference between the present instrument value and the value
observed after p readings. This schema is presented in Figure 7. In this study, we examined
p equal to 5.

Figure 7. Decision calculation method for the financial data.
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The distribution of attribute values in accordance to decision classes was created,
as shown in Figure 8. We selected an example data for the AUDUSD instrument; however,
a similar distribution of attribute values was noted for the remaining datasets. The blue
color on the chart denotes the number of objects for which the STRONG BUY class was
observed. Cyan color is related to the STRONG SELL class. Both classes cover the majority
of all objects in the data. The red color shows the objects belonging to the SELL class.
The two remaining classes are BUY and WAIT, respectively.

In general, we can divide the whole attribute set into three different categories.
The first one is related to the instrument price (which is Close on the chart) and two
indicators (the_moving_average) based on the price. For this category, we observe at-
tributes, for which there are several values with a reasonably high number of objects
assigned. The second category is related to the same indicators, where the difference be-
tween two successive readings was calculated. It gives us a distribution close to the normal
distribution, where the minor differences (close to the 0) have a high number of objects
assigned. Finally, the last category is related to the oscillator indicators like Bulls or OSMA,
for which once again the approximation of the normal distribution is observed. Also,
for these attributes, relative change between successive readings was included. The main
problem in this data is that the slight differences (the middle part of attributes number 4 to
11) are frequently observed in the data. At the same time, most information comes from
the relatively significant differences (tails of the distribution). Thus the most promising
attribute values are the least observed in the data.

Figure 8. The distribution of attribute values due to decision classes for financial data.

5. Numerical Experiments

In this section, we describe the experiments we performed on different real-world
datasets. For every set, the experiments consisted of four steps:

• calculation of the information for each conditional attribute (information attribute);
• classification of the obtained data;
• classification on the limited set of attributes (including the best 25% of the conditional

attributes selected based on the information attributes) as well as the classification on
the set of attributes selected by the correlation-based approach;
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• sensitivity analysis on the parameter related to the percent of attributes included in
the limited set of attributes.

We selected a group of well-known state-of-the-art algorithms for the classification:
decision tree, Random Forest, Bagging, and AdaBoost. Two measures were used to estimate
the quality of classification: the positive predictive value (PPV) and the true positive rate
(TPR). Additionally, the accuracy of the classification was measured.

5.1. Fake News Data

The fake news detection research was conducted on the ISOT Fake News Dataset pro-
vided by the University of Victoria, Canada [63]. This collection includes 44,898 documents,
of which 21,417 are real news cases and 23,481 are fake news. Each document in the set is
described with the following attributes:

• title,
• text,
• subject,
• date.

Additionally, to determine the decision class, the main file was divided into two
separate files:

• FAKE: documents that were detected and marked by Politifact.com as untrue sources;
• TRUE: real documents from Reuters.com, accessed on 31 August 2021.

In our fake news detection experiments, the dataset was limited to the title, and the
decision (true or fake news) attributes only. This restriction allowed us to quickly mark the
document based on the title without analyzing its content. In our previous research [64], we
showed that the fake news detection model analyzing the titles produces accurate results
and reduces the runtime of classification algorithms compared to the analysis of the entire
content of the document.

In the first step of the experiments, we calculated the entropy of the decision class
(see Equation (2)) and the information for each conditional attribute, which were the most
common words in the documents. Notably, the values of the decision table (frequency of
the occurrence of certain words) are strictly dependent on the documents that comprise
the set on which the algorithm was trained. For this reason, the number of attributes was
limited to 20. The results of this experiment are presented in Table 4. As can be seen, almost
all information values for individual attributes are close to the maximum entropy value
(1.0) and are in the range of 0.958–0.998. However, the last row in Table 4 shows the entropy
value for the entire dataset.

In general, it is difficult to determine the set of attributes that most impact the clas-
sification results. Only attribute word_17 has an advantage over other attributes because,
for attribute word_17, the value of the information is visibly lower and amounts to 0.83.
This means that after a single attribute—in this case, one word per document title—whether
the document’s full title is true or false cannot be determined. Moreover, the conditional
attributes are different for a different set of documents, which entails the possibility of
entirely different entropy values.

In the next step of the experiments, the values of the classification evaluation measures
were calculated using selected machine learning algorithms, which were derived for each
of two decision classes (true or fake news). Table 5 shows the results for the classification
of fake news data by decision class for all twenty attributes.

In the case of decision class FAKE, PPV values were in the range of 91.38–98.88%,
where the best result was obtained using a decision tree, where TPR values were in the
range 46.05–58.67%, and the best result was obtained with Bagging. However, in the case of
decision class TRUE, PPV values were in the range of 62.70–67.46% (Bagging was superior),
and TPR values were in the range of 94.65–99.43% and the best results were obtained by
the decision tree.
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We also checked the influence of a limited number of attributes on the classification
results. For this purpose, 25% of the attributes with the lowest value information attribute
were selected (in this case, the top five attributes were selected). The obtained results are
presented in Table 6, where the values are similar to those in Table 5. This proves that
with a significantly limited number of attributes—in this case, up to 5 single words per
document—the classification results for the algorithms used are the same as for a full set of
conditional attributes.

The classification accuracy values for the entire set were calculated in terms of the
number of attributes (five or 20 attributes), and the results are presented in Table 7. As can
be seen, for the three algorithms, the accuracy was in the range of 74.17–75.49%, while for
the decision tree, the accuracy was slightly lower at 71.51%.

When detecting fake news by title only, the classification accuracy measure determined
how many documents were correctly classified. However, when using the PPV and TPR
measures, it was possible to assess how many documents in a given class were correctly
recalled and with what confidence (precision).

Table 4. Information attribute values for fake news data.

Attribute Name Value Count Information Attribute

word_1 2 0.998331

word_2 2 0.998048

word_3 2 0.983818

word_4 2 0.996864

word_5 2 0.998051

word_6 2 0.998287

word_7 2 0.957435

word_8 2 0.990542

word_9 2 0.981507

word_10 2 0.996318

word_11 2 0.998106

word_12 2 0.992925

word_13 2 0.992260

word_14 2 0.997342

word_15 2 0.993210

word_16 2 0.986877

word_17 2 0.803497

word_18 2 0.998101

word_19 2 0.961002

word_20 2 0.998470

Attribute Name Value Count Entropy

Decision 2 0.998473
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Table 5. Classification results for fake news data by decision class for full set of attributes [in %] (all
bold numbers correspond the best values obtained).

Decision Tree Random Forest Bagging AdaBoost

Decision Class PPV TPR PPV TPR PPV TPR PPV TPR

FAKE 98.88 46.05 93.95 54.87 91.38 58.67 92.10 56.88

TRUE 62.70 99.43 66.02 96.12 67.46 93.93 66.69 94.65

Table 6. Classification results for fake news data by decision class for limited set of attributes
(5 attributes selected) [in %] (all bold numbers correspond the best values obtained).

Decision Tree Random Forest Bagging AdaBoost

Decision Class PPV TPR PPV TPR PPV TPR PPV TPR

FAKE 98.88 46.05 93.68 54.04 93.67 54.28 93.67 54.28

TRUE 62.70 99.43 65.58 96.00 65.69 95.97 65.69 95.97

Table 7. Accuracy results for the classification over fake news data [in %].

Decision Tree Random Forest Bagging AdaBoost

Accuracy (20 attributes) 71.51 74.55 75.49 74.89

Accuracy (5 attributes) 71.51 74.56 74.17 74.17

5.2. User Websites Navigation Data

The vital part of preprocessing the data is converting the raw data into a set of
navigation attributes. During our research, we obtained the data of our commercial partner
for one entire year. This data was more than 85 GB in size. For our learning base, we
used a sample of data of one month. We chose the month of April due to avoid any
marketing actions. The database for one month represents more than one million sessions
with more than 10 actions performed. On account of the scale of the database, the treatment
is time-consuming. After performing the limitation, we obtained 211,639 user sessions.

For entropy and classification analyses, we eliminated significantly correlated at-
tributes such as total_amount. In the end, we obtained 31 attributes and one binary decision
attribute, purchase.

The dataset for user behavior analysis consists of 211,639 unique rows. Each entry
represents a unique user navigation session. First, the entropy value represents the entropy
of a decision class of individual conditional attributes. Second, the results are shown in
Table 8 along with the cardinality of the value set for each conditional attribute.

The entropy values for most attributes were near 0.5. For several attributes, the entropy
value was lower than 0.5. For few attributes, the entropy was less than 0.2. An explanation
may be the distribution of values for these attributes, which was strongly unbalanced.
In most cases, the value of an attribute was equal to zero, only occasionally taking different
values. Examples of these attributes are discount_code and new_user. When analyzing
other attributes, the values of entropy were similar, indicating that most attributes carried
an equivalent level of information. Intuitively, it seems that some attributes should be more
discriminatory, but the analysis of the results did not confirm this. There were no highly
biased attributes in the analyzed dataset.

Table 9 provides the classification results for the same dataset divided by each deci-
sion class value. The efficiency measures indicated relatively accurate results: PPV, TPR,
and accuracy values were in the range of 0.89–1. However, both PPV and TPR were better
for the decision class equal to “no”. The results for the decision tree, Random Forest,
and AdaBoost were similar. The results obtained using the Bagging algorithm were visibly
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worse than for the other algorithms. The PPV value for the class “yes” was around 0.5.
Again, the reason seems to be the uneven distribution of the values of the target class.

Table 8. Information attribute values for user websites navigation data.

Attribute Name Value Count Information Attribute

No. o f session 14 0.478533

No. total pages seen 65 0.465879

Hour o f begin 101 0.478267

Hour o f end 101 0.479259

Day/Month/Year 30 0.474476

Total time 77 0.402749

Discount code 2 0.173014

New customer 2 0.161386

Source o f navigation 3 0.479204

No. universes changes 87 0.364767

Time Universe quick order 64 0.347537

Time Universe store 74 0.445645

Time Universe shopping cart 61 0.214535

Time Universe sales 27 0.481156

Time Universe consulting 36 0.481021

Time Universe condition 48 0.481082

Time Universe various 74 0.323663

No. pages universe quick order 38 0.339926

No. pages universe store 65 0.432955

No. pages universe shopping cart 60 0.217707

No. pages universe sales 20 0.481144

No. pages universe consulting 7 0.481129

No. pages universe condition 7 0.481159

No. pages universe various 64 0.349787

No. subsections seen 16 0.439947

No. o f section changes 47 0.464543

No. product pages seen 64 0.478707

No. o f same product seen 42 0.468668

No. o f subsection seen 88 0.436594

No. subsection changes 78 0.471988

No. subsubsection changes 89 0.470698

Attribute Name Value Count Entropy

Purchase (Decision) 2 0.481233

Finally, we performed the limitation of the attributes used in classification. The lim-
itation was based on the analysis of the value of entropy for each attribute. We selected
the 25% most significant conditional attributes and performed the classification with a

39



Entropy 2021, 23, 1621

limited number of attributes. The classification results for user websites navigation data
by decision class values for 25% of the attributes with the lowest information attribute are
presented in Table 10.

The accuracy of the results for user websites navigation data is compared in Table 11.
The number of all attributes participating in the classification process was 31. After limiting
the set of attributes to seven, the results of the classifier efficiency increased, which may be
counterintuitive. Depending on the classifier used, the improvement in efficiency ranges
from 0% (DT) to 10% (Bagging). The presented analysis shows the importance of limiting
the attributes at the data preprocessing stage and of classification parameterization.

Table 9. Classification results for user websites navigation data by decision class values for full set of
attributes [in %].

Decision Tree Random Forest Bagging AdaBoost

Decision Class PPV TPR PPV TPR PPV TPR PPV TPR

Purchase = yes 99.91 89.50 99.92 87.44 49.46 92.55 89.15 91.49

Purchase = no 98.80 99.99 98.56 99.99 99.03 89.03 99.01 98.70

Table 10. Classification results for user websites navigation data by decision class values for limited
set of attributes (7 attributes selected) [in %].

Decision Tree Random Forest Bagging AdaBoost

Decision Class PPV TPR PPV TPR PPV TPR PPV TPR

Purchase = yes 99.92 89.50 99.92 89.50 96.70 92.42 98.83 90.61

Purchase = no 98.80 99.99 98.80 99.99 99.13 99.63 98.92 99.88

Table 11. Accuracy results for user websites navigation data [in %].

Decision Tree Random Forest Bagging AdaBoost

Accuracy (31 attributes) 98.90 98.69 89.40 97.96

Accuracy (7 attributes) 98.90 98.90 98.89 98.91

5.3. Real Estate Market Data

The goal of the real estate market data experiment presented in this paper was to find
which attributes are crucial and essential for AI model creation based on the presented
decision table. To achieve this, the values of the information attributes were computed.

The dataset consisted of 14,344 unique rows. There were 13 conditional attributes (de-
scribed earlier) and one decision (price bucket). In the first experiment, we computed the
entropy of a decision class and the information of individual conditional attributes. The re-
sults are shown in Table 12, along with the cardinality of the value set for each attribute.

Because the data were obtained from actual advertisements, the cardinality of a
decision class fell more or less in a normal distribution (Figure 9). The most frequent price
fell into the PLN 6000–7000 per square meter bucket. The far-right side of the histogram
plot shows the luxury properties that are part of the dataset. Remember that the property’s
region heavily influences the real estate market. A property located in the capital is far more
expensive than the same property in a less rich part of the country. The overall decision
entropy is relatively high, as the classification problem is rather difficult. Most of the
attributes maintain a similar entropy value, with a single exception being the property area.
Because of the cardinality of this attribute and the fact that the price of a property is usually
heavily correlated with the location, this is to be expected. However, the surprising finding
is that the value of entropy is also relatively high, which means that the price fluctuation
between a property with a similar area is also significant. We found no noticeable changes
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in information for attributes such as market_type or ownership_type, indicating that such
features have secondary importance for the selling price.

All attributes except the area obtained an information value close to the maximal
entropy for the whole dataset. That means that no single conditional attribute was enough
to predict the price bucket of a given property. Even the area conditional attribute, with a
visibly lower information value equal to 2.07, was insufficient to correctly predict the price
range. The price range agrees with intuition: a large but poorly located and unfurnished
ruin might be cheaper than a downtown loft.

Table 13 provides the classification results for the same dataset divided by each
decision class value. The Bagging algorithm produced the best results by far in nearly
every decision class, both in terms of PPV and TPR. When using the limited set of attributes
the following results were obtained (Table 14). Overall accuracy results were also superior
using the Bagging algorithm (Table 15). Further research is required to determine whether
a precise fine-tuning of hyper-parameters would increase the quality of results produced
by the other algorithms.

Table 12. Information attribute values for real estate market data.

Attribute Name Value Count Information Attribute

Build date 166 3.294200

Total number o f f loors 35 3.418894

Building material 6 3.529588

Floor number 14 3.536040

Area 3,698 2.071138

Building type 5 3.455887

Condition state 6 3.485657

Windows 3 3.542212

Private ad 2 3.576844

Market type 2 3.552212

Ownership type 2 3.572712

Attribute Name Value Count Entropy

Price bucket (decision) 16 3.579787

Figure 9. Histogram of cardinality of the decision set.
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Table 13. Classification results for real estate market data by decision class for full set of attributes [in
%] (all bold numbers correspond the best values obtained).

Decision Tree Random Forest Bagging AdaBoost

Decision Class PPV TPR PPV TPR PPV TPR PPV TPR

1 40.00 9.52 0.00 0.00 25.00 23.80 0.16 23.81

2 0.00 0.00 100.0 0.00 99.47 99.68 24.61 10.02

3 0.00 0.00 0.00 0.00 99.27 99.85 0.00 0.00

4 0.00 0.00 0.00 0.00 99.12 99.47 0.00 0.00

5 0.00 0.00 0.00 0.00 99.23 100.0 0.00 0.00

6 0.00 0.00 0.00 0.00 97.24 99.64 0.00 0.00

7 0.00 0.00 49.08 21.62 94.47 94.47 27.44 87.80

8 0.00 0.00 0.00 0.00 79.01 60.95 0.67 9.52

9 0.00 0.00 0.00 0.00 93.09 92.33 0.00 0.00

10 99.57 100.00 100.00 7.10 99.57 99.74 99.57 79.98

11 0.00 0.00 0.00 0.00 98.97 100.0 0.00 0.00

12 21.55 100.00 31.25 21.79 99.91 100.0 67.78 10.03

13 99.85 100.00 32.13 91.97 99.85 99.90 0.00 0.00

14 99.82 0.99 73.49 100.0 99.82 99.65 38.48 100.0

15 100.00 100.00 87.70 100.0 100.0 100.0 39.41 9.97

Table 14. Classification results for real estate market data by decision class for a limited set of
attributes (3 attributes selected) [in %]. (all bold numbers correspond the best values obtained).

Decision Tree Random Forest Bagging AdaBoost

Decision Class PPV TPR PPV TPR PPV TPR PPV TPR

1 0.00 0.00 0.00 0.00 27.78 23.81 0.16 23.81

2 0.00 0.00 56.27 15.61 99.58 99.79 24.61 10.02

3 0.00 0.00 0.00 0.00 99.14 100.00 0.00 0.00

4 0.00 0.00 0.00 0.00 98.79 99.82 0.00 0.00

5 0.00 0.00 0.00 0.00 99.24 100.00 0.00 0.00

6 0.00 0.00 0.00 0.00 96.91 99.64 0.00 0.00

7 0.00 0.00 0.00 0.00 89.01 90.89 27.44 87.80

8 0.00 0.00 0.00 0.00 60.38 30.48 0.67 9.52

9 0.00 0.00 0.00 0.00 89.37 91.53 0.00 0.00

10 99.57 100.00 98.91 15.57 99.57 99.66 99.57 79.98

11 0.00 0.00 0.00 0.00 98.79 99.82 0.00 0.00

12 21.56 100.00 39.43 30.61 99.92 99.92 67.78 10.03

13 99.85 100.00 30.61 99.95 99.85 99.74 0.00 0.00

14 99.74 100.00 94.89 100.00 99.74 99.82 38.49 100.00

15 100.00 100.00 98.98 100.00 100.00 100.00 39.55 10.03
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Table 15. Accuracy results for the classification over real estate data [in %].

Decision Tree Random Forest Bagging AdaBoost

Accuracy (15 attributes) 69.00 53.69 99.07 28.92

Accuracy (3 attributes) 69.00 56.71 98.71 28.92

5.4. Sport Data

Three datasets with 3362 unique rows for Spain, 2674 for Germany, and 3359 for
Italy were analyzed. There was a total of 26 conditional attributes with match_result as
a decision class. In the first stage, we calculated the entropy of a decision class and the
information attribute values. The results are shown in Table 16, along with the cardinality
of the value set for each attribute.

In all three analyzed datasets, the information attribute value was relatively small.
It was the lowest for Goal difference T1 and Goal difference T2, oscillating between 1.38 and
1.40. The highest information attribute value was recorded for Season. The next conditional
attributes with high values were Round and Matches T1 (T2). For the remaining measures,
the values of attributes were similar. Table 16 presents the entropy of the datasets, all of
which are similar (1.52–1.55).

Of the selected methods, random forest had the highest accuracy, followed by the Ad-
aBoost algorithm. The decision tree performed the worst in the classification. None of the
algorithms provided a significant advantage in terms of efficiency measures. A summary
of the results is presented in Table 17.

Tests were also conducted using fewer attributes (from 24 to 6; 25% of the set based on
the information attributes values). The results obtained are presented in Tables 18 and 19.
As can be observed, similar results were obtained with a limited list of attributes. For some
cases, the results obtained with a limited set of attributes were better. The best algorithms,
in this case, were AdaBoost and random forest, whereas Bagging worked poorly.

Table 16. Information attribute values for sport data.

Attribute Name Value Count Information Attribute

Germany

Season 10 1.535055

Round 30 1.514509

Team1 (Team2) 28 (28) 1.471725 (1.464826)

Position T1 (T2) 18 (18) 1.417129 (1.438857)

Matches T1 (T2) 30 (30) 1.514509 (1.514509)

Winnings T1 (T2) 30 (30) 1.461058 (1.469589)

Draws T1 (T2) 16 (16) 1.506093 (1.502721)

Losers T1 (T2) 24 (25) 1.473808 (1.468121)

Goals scored T1 (T2) 92 (94) 1.457664 (1.454900)

Goals conceded T1 (T2) 74 (77) 1.476410 (1.470156)

Goal di f f erence T1 (T2) 116 (117) 1.382856 (1.395159)

Points T1 (T2) 85 (86) 1.440930 (1.452137)

Series T1 (T2) 40 (40) 1.505347 (1.498025)

Match Result (Decision) 3 1.539089
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Table 16. Cont.

Attribute Name Value Count Entropy

Match Result (Decision) 3 1.545029

Italy

Season 10 1.538402

Round 34 1.531829

Team1 (Team2) 34 (34) 1.458934 (1.460329)

Position T1 (T2) 20 (20) 1.415896 (1.424320)

Matches T1 (T2) 34 (34) 1.531829 (1.531829)

Winnings T1 (T2) 33 (32) 1.468639 (1.475596)

Draws T1 (T2) 19 (19) 1.514713 (1.512888)

Losers T1 (T2) 29 (30) 1.469099 (1.465326)

Goals scored T1 (T2) 92 (91) 1.481346 (1.475606)

Goals conceded T1 (T2) 86 (86) 1.484403 (1.488688)

Goal di f f erence T1 (T2) 112 (110) 1.397699 (1.398332)

Points T1 (T2) 97 (97) 1.448064 (1.454139)

Series T1 (T2) 40 (40) 1.506473 (1.516376)

Attribute Name Value Count Entropy

Match Result (Decision) 3 1.545029

Spain

Season 10 1.519782

Round 34 1.514018

Team1 (Team2) 33 (33) 1.438616 (1.436341)
Position T1 (T2) 20 (20) 1.403615 (1.401159)

Matches T1 (T2) 34 (34) 1.514018 (1.514018)

Winnings T1 (T2) 32 (32) 1.451360 (1.455801)
Draws T1 (T2) 19 (19) 1.493165 (1.486429)

Losers T1 (T2) 27 (27) 1.462337 (1.453162)

Goals scored T1 (T2) 115 (111) 1.448292 (1.437169)

Goals conceded T1 (T2) 82 (81) 1.467792 (1.464831)

Goal di f f erence T1 (T2) 130 (132) 1.376633 (1.375712)

Points T1 (T2) 95 (94) 1.438554 (1.435251)

Series T1 (T2) 40 (40) 1.493445 (1.488321)

Attribute Name Value Count Entropy

Match Result (Decision) 3 1.523545
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Table 17. Classification results for sport data by decision class for full set of attributes [in %] (all bold
numbers correspond the best values obtained).

Decision Tree Random Forest Bagging AdaBoost

Decision Class PPV TPR PPV TPR PPV TPR PPV TPR

Germany

1 53.66 85.51 53.96 88.01 56.94 70.36 58.71 68.44

2 55.74 48.34 58.74 51.66 51.92 49.94 55.05 50.92

X 38.18 3.18 0.00 0.00 33.09 20.45 38.31 30.30

Italy

1 54.45 87.44 54.57 89.79 60.39 70.85 58.90 69.58

2 56.56 52.63 59.12 53.13 52.04 55.81 50.17 57.10

X 45.16 1.62 100.00 0.46 34.40 21.21 39.87 20.97

Spain

1 55.78 88.11 55.57 90.12 59.72 69.23 60.34 69.79

2 52.00 46.88 54.85 44.87 49.55 46.98 50.73 40.53

X 0.00 0.00 58.33 0.85 30.29 22.83 31.73 29.47

Table 18. Accuracy results for the classification over sport data [in %].

Decision Tree Random Forest Bagging AdaBoost

Germany 53.89 55.24 51.83 53.70
Accuracy 24 attributes

Germany 53.31 54.84 49.01 55.78
Accuracy 6 attributes

Italy 54.96 55.85 53.59 53.35
Accuracy 24 attributes

Italy 54.47 54.85 50.09 53.54
Accuracy 6 attributes

Spain 54.82 55.41 51.55 51.64
Accuracy 24 attributes

Spain 55.01 55.49 51.74 55.31
Accuracy 6 attributes

The results (Table 17) show a problem with the prediction of class X (draw), which is
best exemplified by the complete lack of prediction results by the Random Forest algorithm
for data from Germany and Spain; for the remaining cases, this class had poor results.
The unbalanced values in the decision class may be the reason for this finding. Note that a
draw between teams seldom occurs.

The classification accuracy for the three sets and all selected algorithms oscillated
between 51.55% and 55.85%, being higher than the random approach (for the three decision
classes = 33.33%). The Random Forest algorithm achieved the highest classification accuracy
on the Italy dataset and the lowest was achieved by Bagging on the Spain dataset. The exact
results are presented in Table 18.
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Table 19. Classification results for sport data by decision class values for for limited set of attributes
(6 attributes selected) [in %] (all bold numbers correspond the best values obtained).

Decision Tree Random Forest Bagging AdaBoost

Decision Class PPV TPR PPV TPR PPV TPR PPV TPR

Germany

1 53.43 84.93 54.28 86.59 56.06 65.86 57.08 80.27

2 54.53 48.83 56.27 52.40 49.08 49.20 54.77 60.76

X 22.22 1.21 0.00 0.00 26.62 18.06 40.24 5.01

Italy

1 54.47 86.83 53.73 89.05 58.12 67.61 55.92 80.31

2 55.76 54.32 57.96 51.34 49.85 50.94 52.44 55.51

X 2.00 0.12 0.00 0.00 27.26 18.89 28.39 5.10

Spain

1 55.98 87.78 55.88 89.48 60.12 71.28 58.03 85.14

2 52.24 48.15 54.28 46.98 49.23 47.62 51.08 50.26

X 0.00 0.00 0.00 0.00 27.84 18.96 31.68 3.86

5.5. Financial Data Results

We used daily forex data in this study, which means that every new value was
obtained at the beginning of the daily market session. We selected four different currency
pairs as separate datasets: AUDUSD, EURUSD, GBPUSD, and NZDUSD, each containing
2865 readings. In addition, we used six different oscillator indicators: the Bulls indicator
(Bulls), Commodity Channel Index (CCI), DeMarker indicator (DM), Oscillator of Moving
Average (OSMA), Relative Strength Index (RSI), and the stochastic_oscillator. Additionally,
the moving average (MA) indicator, calculated for 14 (MA14) and 50 (MA50) past readings,
were included. For the results, we used the MA indicator and MA to denote the absolute
difference between two successive readings for the indicator. It provided us with an overall
number for 10 attributes.

In Table 20, we present the entropy of the decision class along with the information
attributes values for the four different datasets. Firstly, there are no visible differences
between the entropy values for the different datasets. However, a significant difference
exists in the case of trend-following indicators (the first four attributes related to the MA
indicator). This is obvious for MA14 and MA50. However, these attributes were not
preprocessed and were used as was. Small entropy values suggest the strong predictive
power of these indicators; however, their practical usability is lower due to a large number
of different attribute values (in comparison to other oscillator indicators such as RSI).

In the case of oscillators, information attribute values were held on the same level
instead, and it would not be easy to identify the best (in the sense of information) indicators.
However, it is easy to find many examples of articles confirming that indicators’ predictive
capabilities are similar.

Table 21 presents the results of classification based on the PPV and TPR measures
for the complete set of attributes available in the dataset. The decision class values were
highly unbalanced, and for some cases, values such as BUY or SELL did not occur even
once. For other cases (such as in the case of the GBPUSD dataset), the results were poor
quality because we observed the STRONG BUY or STRONG SELL decision for most cases.
However, in general, the AdaBoost algorithm for these rare cases with buying or selling
values was slightly better than the Bagging algorithm. For the remaining cases, all four
algorithms achieved similar results oscillating between 30% and 40%. Lower results for
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some cases (such as the STRONG BUY for the EURUSD dataset) could be related to the
market situation and overall advantage of the bearish trend.

Table 20. Information attribute values for the financial data (all bold numbers correspond the best values obtained).

Attribute Name

AUDUSD EURUSD GBPUSD NZDUSD

Value Inf. Value Inf. Value Inf. Value Inf.
Count Attribute Count Attribute Count Attribute Count Attribute

SMA14 2714 0.077183 2717 0.078407 2749 0.050490 2665 0.098638

SMA50 2686 0.087042 2673 0.094808 2734 0.057822 2653 0.119658

SMA14′ 689 1.380616 767 1.258658 853 1.103368 623 1.417858

SMA50′ 440 1.612055 497 1.467387 510 1.355281 389 1.652498

Bulls 341 1.747386 336 1.654923 296 1.584065 290 1.800077

CCI 78 1.936437 76 1.852890 80 1.752818 80 1.964629

DM 10 2.008175 11 1.928776 10 1.807938 9 2.035717

OSMA 154 1.899572 166 1.812773 214 1.653933 131 1.939371

RSI 5 2.014515 5 1.931348 6 1.812072 5 2.039597

Stoch 10 2.008801 11 1.928170 12 1.807163 11 2.034959

Attribute Name
Value

Entropy
Value

Entropy
Value

Entropy
Value

Entropy
Count Count Count Count

Decision 5 2.321928 5 1.935982 5 1.815961 5 2.044563

Table 21. Classification results for the financial data by decision class for full set of attributes [in %].

Decision Tree Random Forest Bagging AdaBoost

Decision Class PPV TPR PPV TPR PPV TPR PPV TPR

AUDUSD

BUY 4.05 1.53 - - 1.52 2.55 - -

SELL - - - - 1.99 3.23 6.25 0.46

STRONG BUY 35.55 34.77 33.22 49.91 31.03 30.81 33.15 37.32

STRONG SELL 35.08 53.50 30.57 32.15 26.75 21.89 35.76 49.59

WAIT - - - - 1.29 0.93 5.88 0.47

EURUSD

BUY - - - - 1.83 2.30 2.22 0.57

SELL - - - - 1.44 1.62 - -

STRONG BUY 33.01 20.79 29.45 19.65 35.46 38.43 34.06 35.28

STRONG SELL 38.06 66.58 37.71 65.08 36.43 34.42 35.80 44.44

WAIT - - - - 1.49 0.61 4.76 0.61

GBPUSD

BUY - - - - 2.27 0.88 - -

SELL - - - - 1.56 2.05 - -

STRONG BUY 42.92 84.02 46.09 65.25 42.82 48.61 43.09 51.39

STRONG SELL 44.44 16.84 47.45 43.72 41.20 40.00 44.17 49.72

WAIT - - - - 2.22 0.67 - -
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Table 21. Cont.

Decision Tree Random Forest Bagging AdaBoost

Decision Class PPV TPR PPV TPR PPV TPR PPV TPR

NZDUSD

BUY - - - - 5.95 4.81 12.82 2.40

SELL - - - - 5.21 4.80 7.27 1.75

STRONG BUY 40.20 85.76 39.35 83.06 37.41 45.94 40.11 62.01

STRONG SELL 39.63 13.94 39.29 16.25 33.80 31.02 38.48 35.00

WAIT - - - - 5.81 2.50 - -

Next, we performed the classification once again on the limited set of attributes.
The results are presented in Table 22. For both measures (PPV and TPR), the quality of
classification slightly worsened. However, the results improved for some rare cases (for
example, EURUSD and GBPUSD and the TPR measure). This was achieved despite consid-
erably reducing the number of conditional attributes included in the classification process.

Table 22. Classification results for the financial data by the decision class values for 25% of attributes
with the lowest information attribute (in %).

Decision Tree Random Forest Bagging AdaBoost

Decision Class PPV TPR PPV TPR PPV TPR PPV TPR

AUDUSD

BUY 2.74 1.02 4.44 1.02 2.33 3.06 2.33 0.51

SELL - - - - 2.95 4.61 - -

STRONG BUY 33.43 29.69 32.32 36.56 33.85 34.45 36.80 44.23

STRONG SELL 34.89 56.49 31.99 44.60 29.72 23.89 32.94 43.60

WAIT - - - - 4.85 5.12 - -

EURUSD

BUY - - - - 2.97 3.45 - -

SELL - - - - 3.91 5.41 - -

STRONG BUY 32.11 21.50 34.14 28.23 38.10 38.20 30.41 24.21

STRONG SELL 39.37 67.34 37.81 59.23 41.24 38.76 36.59 58.48

WAIT - - - - 3.73 3.05 - -

GBPUSD

BUY - - - - 2.70 2.65 16.67 0.88

SELL - - - - 2.11 3.42 - -

STRONG BUY 41.28 37.05 44.40 54.92 42.92 42.95 42.87 48.77

STRONG SELL 42.52 60.73 43.32 47.53 42.21 41.05 44.39 52.55

WAIT - - - - - - - -
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Table 22. Cont.

Decision Tree Random Forest Bagging AdaBoost

Decision Class PPV TPR PPV TPR PPV TPR PPV TPR

NZDUSD

BUY 3.51 0.96 - - 1.27 1.44 - -

SELL - - - - 6.46 8.30 27.27 1.31

STRONG BUY 39.61 84.97 38.87 82.60 37.45 38.72 40.69 70.28

STRONG SELL 39.13 11.63 42.26 16.90 29.32 27.89 39.56 30.10

WAIT - - - - 2.50 1.50 5.13 1.00

Eventually, we analyzed the classical accuracy measure for two cases: with the full set
of conditional attributes along with the limited set. These results are presented in Table 23.
Surprisingly, the results do not indicate that the full set of attributes allows obtaining
the highest accuracy values. These results are ambiguous; for some cases, (AUDUSD or
EURUSD with the Bagging algorithm), accuracy was higher using the limited number
of attributes.

These observations were also confirmed for the remaining sets. Thus, it can be
assumed that some core sets of attributes can allow obtaining a relatively accurate clas-
sification. However, dependencies between these attributes are more sophisticated than
simple linear correlations.

Table 23. Accuracy results for the classification over the financial data [in %].

Decision Tree Random Forest Bagging AdaBoost

AUDUSD 34.45 32.15 21.12 33.93

AUDUSD 2 atr. 33.55 31.70 23.78 34.32

EURUSD 36.13 35.04 30.02 32.74

EURUSD 2 atr. 36.73 36.03 32.19 34.11

GBPUSD 43.04 46.63 38.12 43.32

GBPUSD 2 atr. 41.97 43.89 36.28 43.47

NZDUSD 39.55 39.34 30.99 38.32

NZDUSD 2 atr. 38.41 39.39 26.89 39.63

5.6. Attributes Selection and the Sensitivity Analysis

To test and evaluate our results based on the attributes selection (based on the en-
tropy values), we used the well-known correlation-based feature selection (CFS) method
implemented in the WEKA system [65]. As a result, a subset of attributes, including the
essential elements, were selected—comparison of a number of attributes obtained by our
method and the WEKA system can be found in Table 24. As it can be noted, for most
cases, the number of attributes in our approach is smaller than the number of attributes
selected by the CFS method. For example, only the User Websites Navigation Data at-
tribute selection is shown five instead of seven (out of 31 possible) attributes. In the case of
the financial data, the number of attributes was the same for both methods. In contrast,
for the remaining datasets, our proposed method allowed us to use a smaller number of
attributes—extreme cases related to Real Estate Market Data indicated nine instead of three
(out of 31) attributes.
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Table 24. Number of attributes after selection.

CFS Proposed Approach Original

Fake News Data 8 5 20

User Websites Navigation Data 5 7 31

Real-Estate Market Data 9 3 15

Sport Data (Germany) 8 6 24

Financial Data (GBPUSD) 2 2 11

A smaller number of attributes resulting from the use of our method does not affect
the overall quality of classification. The results of classification after the selection are
presented in Table 25 (names of datasets were written as an acronym). The table shows
the difference in classification based on the attribute set calculated using the CFS method
and our proposed approach. As can be observed, despite the smaller number of attributes
indicated by the proposed method, the classification quality is similar—mostly does not
exceed 0.3%. Only for the Random Forest method used for the Real Estate Market Data,
an overall improvement close to 1% is observed—it is the case, where the number of
attributes selected by the CFS method was equal to nine (instead of three in our proposed
method). Similarly for the Sport Data, where there is improvement around 1%. While for
the Financial Data, the highest differences (favoring our proposed method) were observed.
In the case of the Random Forest and Bagging algorithms, the attributes selection worsens
the results for over 2%. For the Financial Data for both cases, the classification was
performed based on two attributes.

Table 25. Accuracy results for the classification over the data after selection [in %].

Data Decision Tree Random Forest Bagging AdaBoost

FN 71.51 74.24 74.25 74.27
Change: — −0.32 +0.08 +0.10

UWN 98.90 98.90 98.60 98.81
Change: — — −0.29 −0.10

R-EM 69.00 57.67 98.93 28.92
Change: — +0.96 +0.22 —

SD 53.87 55.67 50.39 55.89
Change: +0.56 +0.83 +1.38 +0.10

FD 42.44 41.55 33.52 43.51
Change: +0.47 −2.34 −2.76 +0.04

In the case of the proposed method, we used the threshold of 25% of attributes
included in the classification. It was shown to evaluate if the small subset of attributes
allows maintaining the relatively high classification quality. Attributes were selected as
the most important from the point of view of the entropy measure. This threshold was
set experimentally, and it was based on several different indicators. Going below the 25%
could limit the subset of attributes to two or even a single value in the case of analyzed
data. At the same time, in the case of many attributes, it was possible to observe the
visible decrease of classification quality. An example chart for the Sport Data (Germany)
is presented in Figure 10, where the quality of classification (the Y-axis) is presented
depending on the number of attributes (the X-axis). The vertical line points out the 25% of
attributes used in the article.
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Figure 10. Classification accuracy depending on the number of attributes.

6. Conclusions and Future Works

In this study, we investigated the possibilities of using the entropy measure to select
the best set of conditional attributes to be used in a classification problem. The general idea
of the entropy, related works, and the problem background was introduced in the first part
of the article. We also selected real-world data covering different fields. These data were
retrieved and described with the use of domain knowledge experts. Finally, preprocessing
was applied to all datasets, which were transformed into decision tables.

The datasets differed in their complexity, number of objects, number of conditional
attributes, and the number of decision classes. Our goal was to calculate the entropy of
decision classes and the information attribute values. Furthermore, we performed the
classification with a set of well-known state-of-the-art algorithms. To estimate the quality
of classification, we used the recall, precision, and accuracy measures. After the initial
results, we selected the 25% best attributes (attributes with the best information attribute
values) and performed the classification on the limited number of attributes.

For most of the cases, the algorithms obtained similar results. However, there were
some examples, such as the real estate dataset, in which the Random Forest produced
better results using only the limited attribute set. The Bagging algorithm showed slightly
lower classification accuracy. The nature of the Random Forest algorithm, as the name
implies, conducts each run providing similar but different results. The hyperparameters of
Random Forest are the most prone to fine-tuning, but optimizing the parameter of each
used algorithm for each used dataset was beyond the scope of this study. Notably, the value
of real estate cannot be classified only using the significance of attributes but also must
consider emotions and non-technical factors. For instance, we were unable to quantize the
“cool” factor of a given property.

For the remaining datasets, the results were not uniform. It was difficult to identify the
attributes with the best information attributes value. Differences in these values amongst
the attributes in the single dataset were often negligible. However, eventually, we were
able to select a subset of attributes with which the classification procedure was performed
once again. Surprisingly, the limited set of attributes often allowed obtaining similar
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classification results. Unfortunately, it was impossible to capture the complex, nonlinear
relations amongst the conditional attributes within the single dataset.

In the case of classification, we used the classical algorithms considered as a state-of-art
approach. However, the multicriteria efficiency measure based on different entropy types
could give much more useful information. This can be the case, especially for complex
datasets without uniform structure (like Big Data). At the same time, we only investigated
entropy in its basic form. An interesting approach could be related to introducing different
entropy measures or even deriving estimates based on other entropy types.

In this article, we obtained some advantages over classical methods; however, the
obtained results are not uniform. Therefore, our future goal could be related to extending
the number of analyzed sets and emphasizing the quantitative results rather than focusing
on the description of every single piece of data used in the experiments.
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Abstract: A new two-stage method for the construction of a decision tree is developed. The first stage
is based on the definition of a minimum query set, which is the smallest set of attribute-value pairs for
which any two objects can be distinguished. To obtain this set, an appropriate linear programming
model is proposed. The queries from this set are building blocks of the second stage in which we try
to find an optimal decision tree using a genetic algorithm. In a series of experiments, we show that
for some databases, our approach should be considered as an alternative method to classical ones
(CART, C4.5) and other heuristic approaches in terms of classification quality.

Keywords: query set; decision tree; classification

1. Introduction

One of the main problems in machine learning is finding associations in empirical
data in order to optimize certain quality measures. These associations may take different
forms, such as Bayesian classifiers, artificial neural networks, rule sets, nearest-neighbor
or decision tree classifiers [1]. Classical decision tree learning is performed using sta-
tistical methods. However, due to the large space of possible solutions and the graph
representation of decision trees, stochastic methods can also be used.

Decision trees have been the subject of scientific research for many years [2]. The
most recognized algorithms in that class are ID3 [3], C4.5 [4], and CART [5]. There are
also works on the evolutionary approach to generating trees. The most popular ideas
connected with this research direction are described in the article of Barros et al. [6]. Other
approaches, for instance, the ant colony system, also have been studied [7]. To evaluate
the performance of our approach, the following methods are selected for comparison:
C4.5, CART (classification and regression trees), EVO-Tree (evolutionary algorithm for
decision tree induction) [8], and ACDT (ant colony decision trees) [9]. We test the predictive
performance of our method using publicly available UCI data sets.

The present proposal is about the building of decision trees which maximize the
quality of classification measures, such as accuracy, precision, recall and F1-score, on a
given data set. To this end, we introduce the notion of minimum query sets and provide a
tree construction algorithm based on that concept. The purpose of the present proposal
is fourfold:

1. Defining an integer linear programming model for the minimum query set problem.
It entails preparing zero-one variables along with the set of linear inequalities and an
objective function before starting the searching process.

2. Devising an algorithm for the construction of a decision tree with respect to the
minimum query set. The second objective is also to implement this model through
an available MIP (mixed integer programming) solver to get our approach working.

3. Performing experimental studies confirming the high classification quality of the
proposed method. The third objective is also to investigate to what extent the power
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of MIP solvers makes it possible to tackle the tree induction problem for large-size
instances and to compare our approach with existing ones.

4. Sharing our program because of the possibility of future comparisons with other meth-
ods. The Crystal language implementation of our method is publicly available via
GitHub. (https://github.com/w-wieczorek/mining, accessed on 8 December 2021).

This paper is organized into six sections. In Section 2, we present the necessary
definitions and facts originated from the data structures and classification. Section 3 briefly
introduces the related algorithms, while Section 4 describes our tree-construction algorithm
based on solving an LP (linear programming) model and the genetic algorithm. Section 5
shows the experimental results of our approach with suitable statistical tests. Concluding
comments and future plans are made in Section 6.

2. Preliminaries

In this section, we describe some definitions and facts about binary trees, deci-
sion trees, and the classification problem that are required for good understanding of
our proposal. For further details about the topic, the reader is referred to the book by
Japkowicz and Shah [10].

2.1. Observations and the Classification Problem

In supervised classification, we are given a training set called samples. This set consists
of n observations (also called objects):

X = {x1, x2, . . . , xn}. (1)

For each 1 ≤ i ≤ n, an observation xi is described by m attributes (also called features):

d(xi) ∈ A1 × A2 × · · · × Am, (2)

where Aj (1 ≤ j ≤ m) denotes the domain of the j-th attribute and d : X → A1 × · · · × Am
is a function. The values of the attributes can be quantitative (e.g., a salary) or categorical
(e.g., sex—“female” or “male”). Furthermore, each observation belongs to one of k ≥ 2
different decision classes defined by a function c : X → C:

c(xi) ∈ C = {c1, c2, . . . , ck}. (3)

We assume that there are no two objects with the same description and different decision
classes, that is, for any 1 ≤ q, r ≤ n, q �= r,

d(xq) = d(xr) ⇒ c(xq) = c(xr). (4)

Based on the definitions given above, the classification problem can be defined as follows:
assign an unseen object x to a class, knowing that there are k different decision classes
C = {c1, c2, . . . , ck}, each object belongs to one of them, and that d(x) = (a1, a2, . . . , am).
When k = 2, we are faced with the problem called binary classification. A learning algorithm
L is first trained on a set of pre-classified samples S. In practice, a set S consists of indepen-
dently obtained samples, according to a fixed—but unknown—probability distribution.
The goal of an algorithm L is to produce a “classifier” which can be used to predict the
value of the class variable for a new instance and to evaluate the classification performed
on some test set V. Thus, we can say that in the learning process, a hypothesis h is proposed
and its classification quality can be measured by means of accuracy, precision, recall, etc.

2.2. Decision Trees

We define a binary tree recursively as a tuple (S, L, R), where L and R are binary trees
or the empty set, and S is a singleton set containing the value of the root. If L and R are
empty sets, S is called a leaf node (or leaf ); otherwise, S is called a non-leaf node. If (U, L1, R1)
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is a binary tree and L1 = (VL, L2, R2) or R1 = (VR, L2, R2), then we say that there is an edge
from U to VL (or from U to VR). Furthermore, VL and VR are called, respectively, left and
right sons of U.

Let Q = {Q1, Q2, . . . , Qt} be a collection of binary test (called queries) Qi : X → {0, 1},
where X is a set of objects for which we define functions d and c as described in (2)–(4). A
decision tree, TX, is a binary tree in which each non-leaf node is labeled by a test from Q
and has non-empty left and non-empty right subtrees; each leaf is labeled by a decision
class; the edge from a non-leaf node to its left son is labeled 0 and the one to its right son is
labeled 1. If Qi1 , Oi1 , Qi2 , Oi2 , . . . , Qih , Oih is the sequence of node and edge labels on the
path from the root to a leaf labeled by c∗ ∈ C, then c(x) = c∗ for all objects x ∈ X for which
Qij(x) = Oij for all j (1 ≤ j ≤ h). We also require that in this manner all leaves in a decision
tree cover the whole set X, i.e., for all x ∈ X, there is at least one path from the root to a leaf
corresponding to x.

The tree in Figure 1 is said to have a depth of 3. The depth (or height) of a tree is defined
as the number of queries that have to be resolved down the longest path through the tree.

A2 = b?

A1 = d?

T

0

A3 = a?

F

0

T

1

1

0

T

1

Figure 1. An exemplary decision tree.

Naturally, every decision tree T can play the role of a classifier as long as the queries
can be resolved for other objects, i.e., those outside the training set. Having given a new
object, let us say y, one may apply queries from the tree starting from the root and ending in
a leaf � that points out the predicted class p to which the object should belong. Every query
in the tree directs us to a left or right son, toward a leaf �. We denote such a prediction
as T(y) = p.

2.3. Quality of Classification

To assess the quality of classification, we use the classical measures of classification
quality: accuracy (5), precision (6), recall (7), and F1-score (8). Notably, these are binary
classification measures, i.e., for a data set with only two decision classes. However, there
are often more decision classes in data sets, so we use the so-called macro method to
determine the values of these measures. Thus, in the definitions, we denote the following:
TPi to identify all correctly classified cases of the ci class; TNi to identify all cases outside
the ci class that are not assigned to this class; FPi to identify all cases outside the ci class
that are assigned to this class; FNi to identify all misclassified cases of the ci class; and k as
the number of decision classes.
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acc =
1
k

k

∑
i=1

TPi + TNi
TPi + TNi + FPi + FNi

(5)

pre =
1
k

k

∑
i=1

TPi
TPi + FPi

(6)

rec =
1
k

k

∑
i=1

TPi
TPi + FNi

(7)

f 1 =
1
k

k

∑
i=1

2 · TPi
2 · TPi + FPi + FNi

(8)

3. Related Works

This section describes the tree construction methods taken for our comparison. These
are well-known, deterministic C4.5 and CART, and stochastic, population-based algorithms:
EVO-Tree and ACDT.

3.1. C4.5

Developed initially by Ross Quinlan in 1993 [4], the C4.5 algorithm became one of
the most popular decision tree-based algorithms [11] implemented as the standard in
data mining tools, i.e., Weka (https://www.cs.waikato.ac.nz/~ml/weka/, accessed on
8 December 2021). Conceptually, the heuristic is a more advanced version of the ID3
algorithm proposed by the same author in 1986 [3]. The tree-building process recursively
chooses the attribute with the highest information gain ratio. The higher the information
gain the attribute has, the higher position in the tree from the root it has. Each selected
feature splits a node’s set of samples into subsets enriched in one class or the other [12]. To
avoid over-fitting, the pruning technique is used to remove parts of the tree that minimally
affect the estimated classification error. In contrast to ID3, some improvements can be
made to handle missing values and continuous data [12].

3.2. CART

The classification and regression trees algorithm was co-authored by Leo Breiman,
Jerome Friedman, Richard Olshen, and Charles Stone in 1984 [5], and is one of the most
widely used decision tree making algorithms [11]. The CART is a binary (each node has
two branches), recursive and non-parametric algorithm. It can be used for regression and
classification problems. The decision tree making process uses the Gini impurity measure to
determine attribute order in the tree [12]. The measure can be interpreted as the probability
of incorrect classifying a randomly chosen observation from sample data if the attribute
for the calculation is selected as the new decision tree node. The pruning mechanism is
complex and produces a sequence of nested pruned trees, all candidate optimal trees. The
best one is identified by evaluating the predictive performance of every tree in the pruning
sequence by cross-validation.

3.3. EVO-Tree

The EVO-Tree algorithm [8] is an evolutionary algorithm that generates binary deci-
sion trees for classification. It uses the minimization of a multi-objective fitness function
that utilizes the balance between the number of correctly classified instances and the size of
the generated decision tree. The algorithm starts with the randomly initialized population
of trees and uses two standard genetic operators: crossover and mutation. The crossover
creates offspring by replacing a randomly selected sub-tree in the first parent with a sub-
tree from the second parent. The parents’ selection is made in a series of tournaments. In
each tournament, a certain number of individuals from the population is randomly picked.
Then, the best individual in terms of the fitness function value is chosen as a tournament
winner to be put into the the pool of parents. The mutation randomly changes both at-
tribute and split value of a decision tree. Finally, the algorithm stops if the maximum
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number of generations is reached or the fitness of the best individual does not improve
after a fixed number of iterations.

3.4. ACDT

The ant colony decision tree (ACDT) algorithm [7] is an application of ant colony
optimization algorithms [13] in the process of constructing decision trees. The good results
typically achieved by the ant colony optimization algorithms when dealing with combina-
torial optimization problems suggest the possibility of using that approach for the efficient
construction of decision trees [14,15]. In the ACDT algorithm, each agent ant chooses an
appropriate attribute for splitting the objects in each node of the constructed decision tree
according to the heuristic function and pheromone values. The heuristic function is based
on the twoing criterion (known from the CART algorithm) [5,16], which helps agent ants
divide the objects into two groups. In this way, the attribute which best separates the objects
is treated as the best condition for the analyzed node. Pheromone values represent the best
way (connection) from the superior to the subordinate nodes—all possible combinations in
the analyzed subtrees. For each node, the following values are calculated according to the
objects classified, using the twoing criterion of the superior node.

4. Proposed Method

Our learning algorithm L receives as its input samples S, which are split into two
subsets, the training set X and the test set Y (in experiments, we chose the proportions 4/7
to X and 3/7 to Y). Hypothesis space HL = {Ti

X}i∈I is searched in order to find a decision
tree that approximates best the unknown true function. To this end, each tree is validated
against Y: as a result, we output a tree T∗

X that minimizes err = |{y ∈ Y : T∗
X(y) �= c(y)}|.

Unfortunately, in practice, we are not able to cover the whole hypothesis space. The selected
hypothesis T∗

X can then be used to predict the class of unseen examples in the validation set,
taken for the evaluation of L. More exactly, L has two stages. In the first stage, by means of
zero-one linear programming, a minimum query set Q is determined. In the second stage,
by means of the genetic algorithm, the best ordering of Q—in the view of a decision tree
construction—is settled. Let x ∈ X, d(x) = (a1, a2, . . . , am), and v ∈ Aj (1 ≤ j ≤ m). In our
approach, a query can be a function defined by Qi(x) = 1 if aj = v and Qi(x) = 0 if aj �= v.
Thus, non-leaf nodes contain “questions” such as Aj = v?.

We require Q to be a minimum size query set satisfying the following condition: for
each pair of distinct elements u, w ∈ X with c(u) �= c(w), there is some query q ∈ Q that
q(u) �= q(w). We verified experimentally that this minimality is crucial in achieving good
quality decision trees.

4.1. Linear Program for the Minimum Query Set Problem

Let us show how a collection of queries, Q, is determined via an integer program for
the training set X = {x1, x2, . . . , xn}. The integer variables are zjv ∈ {0, 1}, 1 ≤ j ≤ m,
v ∈ Aj, assuming that there are m attributes, A1, A2, . . . , Am. The value of zjv is 1 if some
query in Q is defined with Aj and v ∈ Aj; in other words, Aj = v? is taken as a non-leaf
node label representing the query and zjv = 0 otherwise, i.e., there is no query based on
Aj and v. Let us now see how to describe the constraints of the relationship between a
set Q and a set X, with features and classes defined by functions d (as in (2)) and c (as
in (3)), in terms of linear inequalities. For every pair of distinct elements u, w ∈ X with
c(u) �= c(w), we should have at least one query that distinguishes between the two. The
following equation is the standard way of showing in a linear program that some elements
(i.e., queries modeled as 0–1 variables) have to be included in the solution:

∑
1≤j≤m
aj �=bj

zjaj + zjbj
≥ 1, (9)
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where (a1, a2, . . . , am) = d(u) and (b1, b2, . . . , bm) = d(w). Obviously, we are to find the
minimum value of the linear expression

∑
{(j,v) : 1≤j≤m, v∈Aj}

zjv. (10)

Please note that the above-mentioned problem is computationally complex (that is why
we use an LP solver, specifically Gurobi optimizer) since Garey and Johnson’s [17] NP-
complete problem SP6 can be easily transformed to the decision version of the minimum
query test problem.

4.2. The Construction of a Decision Tree with the Help of the Genetic Algorithm

After obtaining a minimum query set Q = {Q1, Q2, . . . , Qt}, we are ready to create
a decision tree TX by Algorithm 1.

Algorithm 1 A recursive algorithm for the construction of TX .

function BUILDTREE(X, Q) � objects X as set, queries Q as array
if all x ∈ X have the same decision c(x) then

return ({c(x)}, ∅, ∅) � a leaf inside
else

find first i for which Qi splits X into to non-empty sets
XL = {x ∈ X : Qi(x) = 0}
XR = {x ∈ X : Qi(x) = 1}
return ({Qi}, BUILDTREE(XL, Q), BUILDTREE(XR, Q))

end if
end function

Theorem 1. Let X be a set of n ≥ 1 observations and let Q = {Q1, . . . , Qt} be a set of such queries
that for every pair of distinct elements u, w ∈ X with c(u) �= c(w) there is some i (1 ≤ i ≤ t) for
which Qi(u) �= Qi(w). Then BUILDTREE(X, Q) constructs a decision tree for X.

Proof. Let TX be a tree returned by BUILDTREE(X, Q). The conclusion of the theorem can
be written as follows: TX(x) = c(x) for an arbitrary x ∈ X. We prove it by induction on n.
Basis: We use n = 1 as the basis. The tree consisting of one leaf is returned, with the
decision c(x), so TX(x) = c(x), where x is the only element of X.
Induction: Suppose that the statement of the theorem holds for all k < n, where k = |X|.
We want to show that for an arbitrary x ∈ X, where |X| = n, TX(x) = c(x) holds. Let
us consider two cases: (i) all x ∈ X have the same decision c(x), and (ii) there is such
y ∈ X that c(x) �= c(y). In the former case, we can easily verify that TX(x) = c(x). In the
latter case, there is some i (1 ≤ i ≤ t) for which Qi splits X into two non-empty sets, XL
and XR. An element x is put into one of them. If it is XL (i.e., x ∈ XL), by the inductive
hypothesis, we can claim that TXL(x) = c(x), where TXL is the left subtree of a non-leaf
node containing Qi. Thus, TX(x) = c(x). For x ∈ XR, we can repeat our reasoning.

Therefore, by strong induction, BUILDTREE(X, Q) constructs a decision tree for any
set X of n ≥ 1 observations.

Please notice that the shape of a tree TX depends on the ordering of queries in an array
Q. As a consequence, the order decides the quality of classification done by a tree returned
by function BUILDTREE. That is why we apply the genetic algorithm (Algorithm 2) as
a heuristic method to search such a large solution space [18]. Each individual is the
permutation of the set {1, 2, . . . , t}, which determines the order of Q = {Q1, Q2, . . . , Qt}.
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Algorithm 2 The genetic algorithm for finding an optimal permutation.

function GENETICALGORITHM
make an initial population P of POP_SIZE individuals
iteration := 0
while iteration < MAX_ITER and err(best_ind) > 0 do

iteration := iteration + 1
select T_SIZE elements from P
recombine two best of them by means of PMX
replace the worst selected element with the child
mutate it with a probability PROB_MUTATION

end while
return best_ind

end function

The population size depends on the complexity of the problem, but usually con-
tains several hundreds or thousands of possible solutions. We follow the advice of
Chen et al. [19] and take POP_SIZE = 2t ln t (they suggested |P| = O(ln n), where n is the
problem size, while our n is t!). The initial population is generated randomly, allowing the
entire range of possible permutations.

During each successive iteration, a portion of the existing population (T_SIZE = 3 is
chosen during preliminary experiments) is selected to breed a new individual. Solutions
are selected through a fitness-based process, where fitter solutions (as measured by a fitness
function) are chosen to be parents.

The fitness function is defined over the genetic representation and measures the
quality of the represented solution. We use Algorithm 1 to decode a permutation. The
number of misclassified objects for a test set Y is the fitness value.

For each new solution to be produced, a pair of “parent” solutions is selected for
breeding from the pool selected previously. By producing a “child” solution using the
crossover and mutation operations, a new solution is created which typically shares many
of the characteristics of its “parents”. We use partially mapped crossover (PMX for short)
because it is the most recommended method for sequential ordering problems [18,20]. In
the mutation operation, two randomly selected elements of a permutation are swapped
with a probability PROB_MUTATION = 0.01. This process is repeated until one of the two
termination condition is reached: (i) a solution is found that satisfies minimum criteria, or (ii)
fixed number (MAX_ITER = 500t) of iterations reached. As a result, the best permutation
encountered during all iterations is returned.

The final Algorithm 3 is depicted below. Note that heuristic search procedures that
aspire to find globally optimal solutions to hard optimization problems usually require
some diversification to overcome the local optimality. One way to achieve diversification
is to restart the procedure many times [21]. We follow this advice and call the genetic
algorithm 30 times, returning the best solution found over all starts.

Algorithm 3 The final algorithm.

Require: S = X ∪ Y the set of objects with functions d and c
Ensure: a decision tree TX that tries to match a subset Y

define a linear programming model according to (9) and (10)
solve the model to obtain a minimum query set Q = {Q1, . . . , Qt}
multiple times run GENETICALGORITHM to obtain a permutation π
return BUILDTREE(X, [Qπ(1), Qπ(2), . . . , Qπ(t)])

Because our algorithm relies on solving the minimum query set problem (finding the
minimum set of attribute-value pairs that distinguishes every two objects) that is NP-hard,
its overall complexity is exponential with respect to the size of input data. To tackle the
problem, we use an integer linear programming solver. As modern ILP solvers are very
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ingenious, for practical data sets the computing time is not a big problem. Algorithms for
solving ILP-problems and their NP-completeness were described in the book of [22].

5. Experiments

The section describes the comparison between selected referenced methods introduced
in Section 3 and our proposed Algorithm 3 devised in the previous section.

5.1. Benchmark Data Sets

To verify our approach, we select 11 publicly available data sets with different numbers
of objects, attributes, and decision classes. Used data sets are downloaded from the UCI
data sets repository (https://archive.ics.uci.edu/, accessed on 8 December 2021) and are
not subject to any modifications, except for possible ID removal. They are presented in
Table 1, where the abbreviation used further in the paper is given in brackets, followed
by the number of objects in the data set, the number of attributes, and the number of
decision classes.

Table 1. Characteristics of data sets.

Data Set Objects
Number of

Classes
Attributes

balance-scale (bs) 625 4 3

breast-cancer-wisconsin (bcw) 699 9 2

car (car) 1728 6 4

dermatology (derm) 366 34 6

house-votes-84 (hv84) 435 16 2

lymphography (lymp) 148 18 4

monks-1 (monk1) 432 6 2

Somerville Happiness Survey 2015 (SHS) 143 6 2

soybean-large (soy-l) 307 35 19

tic-tac-toe (ttt) 958 9 2

zoo (zoo) 101 16 7

5.2. Performance Comparison

In this section, we describe some experiments comparing the performance of our ap-
proach implemented (https://github.com/w-wieczorek/mining, accessed on 8 December
2021) in Crystal language with ACDT implemented (https://github.com/jankozak/acdt_
cpp, accessed on 8 December 2021) in C++, Weka’s C4.5 implemented in Java, Scikit-learn’s
CART and EVO-Tree implemented (https://github.com/lazarow/dtree-experiments, ac-
cessed on 8 December 2021) in Python.

For the purpose of the experimental study, all data sets described in Section 5.1 are
divided into three sets: training set (40%), test set (30%), and validation set (30%). For the
classical algorithms (CART, C4.5) and EVO-Tree, the training and test sets are combined
and used to learn the algorithm, while for the other algorithms, the training and test sets are
used separately (according to the rule of the algorithm). In each case, the results are verified
through the validation set. In this section, all given values are the results of classification
performed on the validation set. So a train-and-test approach is used, but it is ensured that
the data breakdowns are exactly the same in each case.

Additionally, for the algorithms that do not work deterministically (the proposed
MQS and the compared EVO and ACDT) each experiment is repeated 30 times and the
values presented in Tables 2 and 3 are the averages. The stability of the results obtained by
these algorithms is also tested, which is presented in the form of box plots in Figures 2–4.
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Table 2. The quality of classification depending on the approach (bold text is the best value).

Data Set Measure MQS C4.5 CART EVO ACDT

bs acc 0.7551 0.6809 0.8085 0.7730 0.7936
pre 0.5559 0.4562 0.5891 0.5196 0.5482
rec 0.5360 0.4843 0.5739 0.5505 0.5646
f1 0.5436 0.4656 0.5783 0.5290 0.5538

bcw acc 0.8817 0.9333 0.9190 0.9317 0.9192
pre 0.8855 0.9340 0.9252 0.9270 0.9144
rec 0.8808 0.9261 0.9059 0.9313 0.9173
f1 0.8812 0.9300 0.9135 0.9290 0.9158

car acc 0.9210 0.9056 0.9730 0.7069 0.9492
pre 0.7946 0.7667 0.9267 0.3029 0.8511
rec 0.8565 0.7600 0.9329 0.2609 0.9131
f1 0.8205 0.7630 0.9275 0.2306 0.8714

derm acc 0.8861 0.9364 0.9273 0.7879 0.9361
pre 0.8605 0.9334 0.9152 0.7753 0.9276
rec 0.8478 0.9244 0.9157 0.7225 0.9248
f1 0.8488 0.9278 0.9142 0.7293 0.9253

hv84 acc 0.9078 0.9466 0.9313 0.9603 0.9450
pre 0.8897 0.9300 0.9224 0.9528 0.9385
rec 0.9096 0.9534 0.9326 0.9641 0.9442
f1 0.8981 0.9436 0.9269 0.9578 0.9412

lymp acc 0.8222 0.8222 0.8222 0.7896 0.8163
pre 0.5411 0.7613 0.6677 0.6178 0.5764
rec 0.6683 0.9122 0.6722 0.4980 0.5741
f1 0.5837 0.7912 0.6679 0.5290 0.5718

monk1 acc 1.0000 0.8385 0.9538 0.7959 0.9331
pre 1.0000 0.8807 0.9548 0.8469 0.9330
rec 1.0000 0.8333 0.9548 0.7899 0.9330
f1 1.0000 0.8323 0.9538 0.7857 0.9330

SHS acc 0.6125 0.4419 0.4186 0.4682 0.4985
pre 0.6481 0.5974 0.4378 0.5837 0.6118
rec 0.6500 0.5428 0.4352 0.5532 0.5785
f1 0.6124 0.4028 0.4173 0.4481 0.4844

soy-l acc 0.5634 0.8478 0.8495 0.4706 0.7789
pre 0.4974 0.8565 0.8560 0.4912 0.7173
rec 0.6348 0.8553 0.8382 0.3224 0.6909
f1 0.5294 0.8229 0.8232 0.3418 0.6367

ttt acc 0.9514 0.8368 0.9132 0.7434 0.8927
pre 0.9626 0.8092 0.8951 0.7387 0.8978
rec 0.9253 0.8146 0.9066 0.6175 0.8485
f1 0.9412 0.8118 0.9005 0.6217 0.8675

zoo acc 0.8800 0.9677 0.9677 0.8720 0.9505
pre 0.7381 0.9524 0.7857 0.7998 0.9080
rec 0.8163 0.9643 0.8571 0.7539 0.8964
f1 0.7636 0.9510 0.8095 0.7587 0.8857
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Table 3. Decision tree characteristics depending on the approach.

Data Set Parameter MQS C4.5 CART EVO ACDT

bs time[s] 76.1 <0.1 <0.1 20.5 0.3
size 257.1 31.0 241.0 15.1 79.4

height 14.9 4.0 10.0 8.1 8.9

bcw time[s] 11.7 <0.1 <0.1 12.5 0.2
size 51.1 22.0 71.0 9.1 18.0

height 8.0 3.0 12.0 5.4 5.7

car time[s] 114.1 <0.1 <0.1 11.2 0.5
size 318.9 134.0 163.0 1.7 109.4

height 13.3 6.0 14.0 1.5 11.8

derm time[s] 26.6 <0.1 <0.1 10.2 0.4
size 64.7 25.0 27.0 10.8 16.6

height 9.0 7.0 10.0 5.7 6.8

hv84 time[s] 2.6 <0.1 <0.1 4.3 0.1
size 31.6 7.0 41.0 3.8 16.4

height 5.9 3.0 6.0 2.5 4.2

lymp time[s] 1.2 <0.1 <0.1 5.5 0.1
size 34.0 20.0 49.0 11.0 20.0

height 6.0 6.0 7.0 6.2 5.0

monk1 time[s] 0.1 <0.1 <0.1 3.9 0.1
size 20.3 32.0 89.0 4.1 23.0

height 5.0 5.0 10.0 2.6 6.1

SHS time[s] 2.4 <0.1 <0.1 2.5 0.1
size 64.3 9.0 87.0 8.0 15.6

height 7.9 3.0 13.0 4.2 6.1

soy-l time[s] 14.6 <0.1 <0.1 14.3 1.3
size 151.8 67.0 75.0 14.0 45.8

height 9.3 9.0 17.0 6.6 8.8

ttt time[s] 24.9 <0.1 <0.1 17.5 0.4
size 228.2 124.0 151.0 7.8 54.2

height 9.0 7.0 11.0 4.1 8.0

zoo time[s] 0.5 <0.1 <0.1 3.3 <0.1
size 19.1 15.0 19.0 9.0 13.2

height 4.9 6.0 7.0 5.1 4.9

5.3. Results of Experiments

The proposed algorithm is compared with two classical approaches and two heuristic
algorithms (another genetic algorithm and the ant colony optimization algorithm). Our
goal was to experimentally verify whether the MQS algorithm allows finding different
(often better) solutions than the compared algorithms. The achieved results show that our
assumption is confirmed.

The MQS algorithm, in terms of the analyzed metrics (see Section 2.3), allows for a
significant improvement in the results for 3 out of 11 data sets. Thus, in the case of the
monks-1 data set, the improvements in classification quality of almost 5% (with respect to
CART), almost 7% (with respect to ACDT), about 16% (with respect to C4.5), and as much
as about 20% with respect to another genetic algorithm (EVO-Tree) are obtained. There
is an even greater improvement for the 2015 Somerville Happiness Survey data set and
slightly less for tic-tac-toe.
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Figure 2. Box plot—accuracy of classification for the MQS algorithm.
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Figure 3. Box plot—accuracy of classification for the EVO-Tree algorithm.
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Figure 4. Box plot—accuracy of classification for the ACDT algorithm.
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For the remaining data sets, the MQS algorithm obtains similar or slightly worse
results, but only in one case the difference in classification quality is large—this is for
the soybean-large data set. However, in two more cases, it is noticeable: dermatology
and zoo. In each of these cases, the second GA algorithm has also poorer classification
quality. As can be seen, the problem concerns sets with a large number of attributes (34 for
dermatology, 16 for soybean-large, and 16 for zoo), so as the solution space increases (for
classification, it depends on the number of attributes and the values of these attributes),
the MQS algorithm has a harder time finding a suitable solution.

Our aim is to propose a new algorithm that will allow finding new optima in the
solution space (in terms of classification quality). Thus, in some cases, it will allow to
improve the quality of classification compared to other algorithms. Therefore, we do not
try to improve either the size of the tree, the height of the tree, or the algorithm’s running
time, which is hard to compare between genetic and deterministic algorithms. However,
we make a comparison of these decision tree-related parameters, and the results are shown
in Table 3.

As can be seen, the MQS algorithm is similar in the decision tree learning time to
another algorithm related to genetic algorithms (EVO-Tree). However, in terms of decision
tree size and height, the proposed algorithm mostly constructs the largest trees. This
is probably related to searching the solution space and covering the solution with the
local optima. The size of the decision tree does not correlate with its classification quality
(in relation to other algorithms) and so a significantly larger tree, e.g., in the case of the
balance-scale data set, does not improve the results, while in the case of tic-tac-toe, the
results are improved while increasing the decision tree.

The stability of the results obtained is also subject to our analysis, because the stability
allows us to assume that the classifier will always be of similar quality. While in the case of
classical algorithms, the results are deterministic, in the case of MQS, EVO-Tree and ACDT,
a different classifier may emerge each time. Box plots are prepared with classification
accuracy for each data set in case of MQS (Figure 2), EVO-Tree (Figure 3), and ACDT
(Figure 4) algorithms. To prepare the graphs, the corresponding quantiles (minimum value
is lowest on the OY axis, 1st quantile, 2nd quantile (median), 3rd quantile and maximum
value that is highest on the OY axis) from all 30 repetitions of learning the decision tree
are determined.

The MQS algorithm is the most stable; in Figure 2, we can see that only for the
Somerville Happiness Survey 2015 and soybean-large data set, small (compared to the
other algorithms) differences appear. For the other data sets, the results are very repeatable.
For the other algorithms, the repeatability of the results is much lower, and so for EVO-
Tree, we can see in Figure 3 that in seven cases, the differences are quite divergent; for
the dermatology, soybean-large and tic-tac-toe databases, the classification accuracy in
successive repetitions changes even by several dozen percentage points. In the case of
the ACDT algorithm, the results are more reproducible (Figure 4)—significant differences
appear in two to three cases, while for the monks-1 set, the difference can be as much as
several dozen percentage points.

5.4. Statistical Analysis

The experimental results of the MQS approach are compared using a non-parametric
statistical hypothesis test, i.e., the Friedman test [23,24] for α = 0.05. Parameters of the
Friedman test are shown in Table 4. The same table presents the average rank values
for the compared algorithms for learning decision trees (in terms of classification qual-
ity). Results in terms of each of the classification quality measures analyzed are used for
statistical testing.

The MQS algorithm obtains a rank of 3.1591, so it is significantly better than the
EVO-Tree algorithm (the 5% critical difference is 0.6192); MQS is worse than the other
algorithms, but this is by no means a critical difference. Therefore, we confirm that it is
possible to use the MQS algorithm in the decision tree learning process, so it should always
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be considered and tested because it can output a significantly better classifier than the other
algorithms. This is especially valid when we are given a data set with a small number of
attributes. At the same time, we confirm that the proposed algorithm is significantly better
than another genetic algorithm used for decision tree learning.

Table 4. The Friedman test results and mean ranks.

Values

N 44

Chi-Square 24.0594

degrees of freedom 4

p value is less than 0.0001

5% critical difference 0.6192

Mean ranks

MQS 3.1591

C4.5 2.6932

CART 2.5568

EVO 3.9545

ACDT 2.6364

As the EVO-Tree algorithm is found to be critically inferior to all other approaches
analyzed, we perform a second round of statistical analysis. The results of the Friedman
test and the mean ranks after rejecting the critically inferior method are recorded in Table 5.
As can be seen, in this case, none of the methods is critically better or worse than all the
others. The big difference remains only when contrasting MQS with CART.

Due to the lack of significant differences and the advantage of obtaining significantly
higher results (when the MQS algorithm gets a rank of 1, it is better by several/dozen
percentage points, where in other methods, the advantage is often negligible—see Table 2),
the proposed method can be considered for use in selected classification problems.

Table 5. Friedman test results and mean ranks after rejection of the critically worse method.

Values

N 44

Chi-Square 5.8

degrees of freedom 3

p value is less than 0.1218

5% critical difference 0.5305

Mean ranks

MQS 2.8864

C4.5 2.4205

CART 2.2614

ACDT 2.4318

5.5. Discussion

To evaluate the proposed algorithm, we made comparisons with classical approaches
and other non-deterministic algorithms. This is a new algorithm proposal, so we wanted to
make a fair comparison. We used up to four different measures of classification quality. We
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also compared the size and height of the decision tree and the learning time of the classifier.
Finally, we performed statistical tests.

As decision trees learned with non-deterministic methods often search a much larger
solution space, this must affect their running time. It can also result in larger, more
extensive decision trees. When proposing the MQS algorithm, we knew that the classifier
learning time would require more time. Therefore, its application, like other stochastic
methods, should be considered for classifiers that are built once in a while—not online
classifiers. Our study confirmed that the MQS algorithm takes longer to learn than statistical
methods. However, it is comparable to non-deterministic methods (especially another
genetic algorithm).

In this case, the classification time is more important, and it depends primarily on the
height of the decision tree. Our analyses indicated, for example, that the MQS algorithm
is better than the CART algorithm in 10 out of 11 cases, remaining worse than the other
algorithms in 7–9 cases. In terms of the size of the decision trees (this affects the memory
occupation needed to store the finished classifier), the situation is similar. The MQS
and CART algorithm learn larger decision trees than the others. However, it should be
emphasized that no pruning of decision trees is performed for the proposed MQS algorithm.
At this stage, we wanted to keep the complete decision trees.

However, our aim was to find new alternative classifiers with which a better classifica-
tion could be achieved. Therefore, the most important analysis concerned the evaluation
of classification quality. In this case, we were able to see that for some data sets, the MQS
algorithm allows to build a classifier better than all other algorithms.

This is particularly important because often the differences (in classification quality
assessment) between different algorithms are a few percentage points. However, for the
monks-1, Somerville Happiness Survey 2015 and tic-tac-toe data sets, the MQS algorithm
allows a very large improvement in each of the classification quality assessment measures.

We analyzed the exact structure of these data sets. Our observations show that the
application of the proposed algorithm can be particularly beneficial for data sets with two
decision classes and attributes with a small number of possible values (3–5 values of each
attribute). However, the decision classes can be of different numbers. This does not mean,
however, that the MQS algorithm obtains bad results with other sets—the suggestion
described above indicates a situation where a classifier learned by MQL obtains results
with much better classification quality.

Finally, we analyzed the stability of the results obtained. We did this to determine
whether the classifiers learned by the MQS algorithm are always of similar quality. For this
purpose, we performed 30 independent runs of the algorithm and obtained 30 independent
classifiers. We performed the same tests with other stochastic algorithms (EVO-Tree and
ACDT). The obtained results clearly indicate that the proposed algorithm is the most stable
one, so it can be assumed that the classifier will always obtain similar results.

To confirm our observations, a statistical test was performed twice: the first time, for
all approaches (and all classification quality values) and the second time, after rejecting
the EVO-Tree algorithm (it obtained results with a critical difference with respect to other
algorithms). This time, the critical difference of one algorithm against all others was
not shown.

6. Conclusions

This paper deals with the construction of decision trees based on the finite set of
observations (objects). In order to address the problem, we introduced the notion of
minimum query set and made use of the genetic algorithm for suitable ordering of the
found queries. As the result of the implemented algorithm, we achieved decision trees
that perfectly match the training data set and have good classification quality on the test
set. The conducted experiments and statistical inference showed that the new proposed,
two-stage algorithm should be considered as an alternative method to classical ones (CART,
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C4.5) and other heuristic approaches in terms of accuracy, precision, recall, and F1-score
for all 11 UCI data sets.

Our method has also a few disadvantages. The most significant ones are that (i) the
first stage of our approach relies on solving a computationally intractable problem, and (ii)
for some cases, the obtained decision trees have too many nodes. In the near future, we
are planning to adapt our approach to handle continuous attributes. In order to make it
possible to reproduce our results or apply our method on new data, we share the source
code of all algorithms via the Github platform.
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Abstract: This article presents the author’s own metaheuristic cryptanalytic attack based on the
use of differential cryptanalysis (DC) methods and memetic algorithms (MA) that improve the local
search process through simulated annealing (SA). The suggested attack will be verified on a set of
ciphertexts generated with the well-known DES (data encryption standard) reduced to six rounds.
The aim of the attack is to guess the last encryption subkey, for each of the two characteristics Ω.
Knowing the last subkey, it is possible to recreate the complete encryption key and thus decrypt the
cryptogram. The suggested approach makes it possible to automatically reject solutions (keys) that
represent the worst fitness function, owing to which we are able to significantly reduce the attack
search space. The memetic algorithm (MASA) created in such a way will be compared with other
metaheuristic techniques suggested in literature, in particular, with the genetic algorithm (NGA) and
the classical differential cryptanalysis attack, in terms of consumption of memory and time needed to
guess the key. The article also investigated the entropy of MASA and NGA attacks.

Keywords: differential cryptanalysis; metaheuristics; symmetric block ciphers; memetic algorithms;
DES; simulated annealing

1. Introduction

The growing popularity of computerisation, and at the same time the Internet itself,
results in a growing demand for more and more advanced security methods. Restrictions
such as individual user access control or basic authentication have become insufficient today.
For several decades, engineers concentrating on the topic of information security have
designed special cryptographic algorithms that meet the most important security aspects.

The main assumption of cryptography is not to hide the fact of the existence of
information, but to keep its real image secret. The message is transformed in such a way
that it is readable only to its author and the recipient it is dedicated to [1,2].

Contemporary symmetric block ciphers implement the process of transformation
of the plain text using the Feistel cipher and the generalized substitution-permutation
network [2]. In 1990, a completely new cryptanalytical method was made public, namely
differential cryptanalysis [3]. In the case of the most modern and advanced encryption
algorithms, the differential cryptanalysis itself turns out to be ineffective. In order to
improve the attack performance, it was proposed to combine metaheuristic algorithms
with the differential cryptanalysis algorithm.

In general, metaheuristic algorithms are used to obtain approximate solutions. In the
case of cryptanalysis, it is necessary to guess the ideal decryption key—an approximate
solution is unacceptable. Due to the avalanche effect present in every encryption algorithm
today, changing any bit at the input causes a complete mixing of all bits at the output,
which in fact results in the generation of a completely new ciphertext [1]. The developed
algorithm enables automatic sifting of the keys with the worst value of the fitness function,
owing to which the set of potential solutions will be significantly reduced.

Entropy 2021, 23, 1697. https://doi.org/10.3390/e23121697 https://www.mdpi.com/journal/entropy
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Additional analytical properties of memetic algorithms improve the local search
process in such a way as to achieve the best solution in the shortest possible time.

Metaheuristic algorithms are more and more often used in computer science, and thus
in the domain of computer security. In the literature, we can find publications describing
all kinds of metaheuristic attacks targeting both classical ciphers, contemporary symmetric
block ciphers and stream ciphers. A literature review of publications is presented in Table 1.

Table 1. Literature review of researches on metaheuristics cryptanalysis.

Year Authors Algorithm Cipher

2007 Song et al. [4] GA Four-Round DES

2007 Tadros et al. [5] GA Four-Rounded DES

2009 Garg [6] GA and MA Simplified Data Encryption
Standard (SDES)

2010 Hu [7] GA Tiny Encryption Algorithm (TEA)

2011 Abd-Elmonim [8] PSO DES

2011 Vimalathithan and
Valarmathi [9]

GA, PSO and Genetic
Swarm Optimization
(GSO)

Simplified Data Encryption
Standard (SDES)

2012 Jadon et al. [10] Binary PSO DES

2012 Pandey and
Mishra [11] PSO DES

2013 Ali [12] Bees algorithm Substitution Ciphers

2014 Boryczka and
Dworak [13] EA Transposition Cipher

2014 Mekhaznia and
Menai [14] ACO and PSO Feistel, Vigenere, and substitution

ciphers

2015 Bhateja et al. [15] Cuckoo Search Vigenere cipher

2015 Jain et al. [16] Cuckoo Search Substitution Ciphers

2016 Amic et al. [17] Binary Firefly Algorithm DES

2016 Dworak et al. [18] GA and MA Simplified Data Encryption
Standard (SDES)

2016 Dworak and
Boryczka [19] EA Four-Rounded Fast Data

Encipherment Algorithm (FEAL)

2017 Amic et al. [20] Binary Cat Swarm
Optimization (BCSO) DES

2017 Jain et al. [21] Cuckoo Search Knapsack Cryptosystem

2017 Dworak and
Boryczka [22] GA Six-Rounded DES

2018 Polak and
Boryczka [23] Tabu Search RC4 and VMPC

2019 Amic et al. [20] Dolphin Swarm
Algorithm (DSA) DES

2019 Kamal et al. [24] Binary Cuckoo Search Simplified Data Encryption
Standard (SDES)

2019 Polak and
Boryczka [25] Tabu Search RC4+

2020 Sabonchi et al. [26] DE, GA and PSO Vigenere cipher

2021 Grari et al. [27] ACO Merkle-Hellman cipher
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In [4], the authors focused on evolutionary cryptanalysis using GA on DES4 ciphers
by comparing the same bits between original and encrypted ciphertexts. Tadros in [5]
presented another GA used to break FEAL8 and DES4 ciphers. Garg in [6] included a com-
parison between MA and GA during cryptanalysis of SDES encryption algorithm relying
on n-gram statistics and frequency analysis method. Another approach was present by
Hu in [7], quantum-inspired GA has been applied to break TEA. Abd-Elmonim described
another attack, based on the PSO algorithm, responsible to break the full 16-rounded DES
cipher in [8]. Vimalathithan and Valarmathi presented their researches about combining
the effectiveness of GA and PSO as a new Generic Swarm Optimization algorithm to attack
SDES cipher. In 2012, Jadon [10] and Pandey, with Mishra published interesting approaches
related to Binary PSO and original PSO algorithms used in cryptanalysis attacks dedicated
to DES cipher.

In the following years, Ali [12], Mekhaznia and Menai [14], Bhateja [15], Jain [16,21],
and Sabonchi [26] focused on cryptanalysis of classical ciphers such as substitution, trans-
position, and Vigenere ciphers using many popular metaheuristics like Bees, EA, ACO,
PSO and Cuckoo Search algorithms.

Amic in [17,20,28] presented Binary Firefly, Binary Cat Swarm Optimisation (BCSO),
and Dolphin Swarm (DSA) algorithm—all directed against DES cipher. In [24] Kamal de-
scribed the Binary Cuckoo Search algorithm used on ciphertext generated by SDES cipher.

Polak and Boryczka presented new cryptanalysis attacks dedicated to another subset
of encryption algorithms—stream ciphers (RC4, VMPC, and RC4+), using Tabu Search
in [23,25]. In 2021, Grari [27] published ACO algorithm dedicated Markle-Hellman cipher.

The next chapter is dedicated to a brief introduction to symmetric block ciphers and the
DES cipher. The third chapter presents the basic assumptions of differential cryptanalysis,
which were used and which constituted a basis for the design work on the MASA algorithm.
Chapter four contains a detailed description of the developed metaheuristic attack carried
out with the use of MA. The next chapter focuses on describing the runtime environment,
including presenting all the parameters selected for each attack. This chapter also presents
the results of the experiments, including the entropy studies for the MASA and NGA
algorithms. The second to last chapter presents a detailed analysis of the effectiveness of
the attacks presented, both in terms of the number of proven solutions and the time of
decryption of the cryptogram. The article is concluded with a brief summary of the various
stages of the research. This chapter also suggests further research directions. Appendix A
is attached to this article, detailing the results for the Ω2 characteristic.

2. Symmetric Block Ciphers

Symmetric ciphers are still one of the most popular encryption algorithms. In this type
of ciphers, only one main key is used, which simultaneously takes on a role of an encryption
and decryption key, which can be written as KE = KD. In the case of block ciphers, each
message is divided into a finite number of blocks of the same length—for example, 64-bit
blocks. Then they are transferred to the appropriate encryption function. Exactly one block
of the ciphertext is generated from one block of plain text. If the message cannot be divided
into even blocks, an additional block is created to store the last, incomplete, fragment of
data. Then, for consistency, it is supplemented with default values or zeros.

These algorithms are perfect for encrypting larger volumes of data stored, that is, in
all kinds of warehouses, wholesalers or databases. The most popular block cipher schemes
include ciphers such as: DES and AES.

Data Encryption Standard

The DES cipher has been designed in such a way that the avalanche effect occurs from
the very beginning of the algorithm [1]. Changing any input bit forces us to change at least
half, and sometimes even all, of the output bits. The state of each bit at the output depends
on each bit specified at the input [29].
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The basic version of the cipher converts 64-bit plain text blocks into 64-bit ciphertext
blocks, using a 64-bit encryption key K [2,30]. After running the algorithm, the primary key
is reduced to 56 bits by removing every eighth parity bit. K is then subjected to breaking
into six 48-bit subkeys, used in each of the cipher rounds, K1, ..., K6—A description of the
primary key distribution process is presented in detail in [1,2,29–32]. Figure 1 shows a
6-round DES algorithm.

Figure 1. Simplified diagram of the six-rounded Data Encryption Standard DES algorithm.

The plain text block is passed to the initial IP permutation. Then, the generated block
is divided into two regular 32-bit parts, R and L. In the next steps, six identical encryption
cycles will be run, in which the right part of the Ri is passed to the f -round function along
with the corresponding subkey Ki. Then, the generated data block is subjected to the
exclusive disjunction operation with the left part of the Li, resulting in a new right part of
the Ri+1. The new left part of the Li+1 is copied from the right part of the previous Ri cycle.

After all the cipher rounds have been completed, parts of the L6 and R6 are com-
bined into a 64-bit block, which will undergo the last transformation by the IP−1 inverse
permutation function. The result of transposition of individual bits will be a 64-bit cryp-
togram block.

The f round function has been visualized in Figure 2. As an input parameter, a 32-bit
data block is given, which at the very beginning will be extended via permutation E. The
aim of this transformation is to align the length of the transferred block with the size of the
subkey by duplicating the selected bits. By allowing one bit to influence two substitutions,
the avalanche effect is increased [1]. The generated sequence is modulo two sum with
subkey bits and then divided into eight 6-bit B1–B8 blocks.

Figure 2. The f round function of the Data Encryption Standard DES algorithm. The only one,
nonlinear, element of the DES cipher.

Each of the Bj blocks will be transferred to the so-called substitution matrix called
S-blocks Sj. The main aim of this transform is to compress the input data. 6-bit data
blocks will be converted into 4-bit blocks. Sj consist of integers between 0 and 15, stored
in matrices of sixteen columns and four rows. The first and last bits of a 6-bit sequence Bj
determine the line number. The remaining four bits represent the number of the column
from which the return value will be selected [1,2,30].
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Sj are the only nonlinear element of the DES standard. Changing one bit in an input
sequence can lead to a complete mixing of all generated bits at the output. Modifications
carried out in them have a significant impact on the level of complexity of cryptanalysis of
the entire cipher. At the end of the f function, the generated sequences are combined into
one 32-bit block, which will be passed to the permutation P—aimed at mapping each of
the input bits to exactly one output bit without duplicating or omitting any of them [1].

3. Differential Cryptanalysis

The suggested algorithm is based on an attack with selected plain text. At the begin-
ning, it should be assumed that the cryptanalyst has continuous access to the encryption
algorithm, which allows him to select a pair of plain texts and analyse the generated
ciphertexts. It is important that the tested pairs must differ from each other in a certain
way. Most symmetric block ciphers determine this difference on the basis of a simple
symmetric difference operation, which is written as P′ = P ⊕ P∗, where P and P∗ are two
crafted plain texts. Pairs may be generated in a pseudorandom way, although the most
important condition is the difference P′, which must follow the established process. Next,
the cryptanalyst checks how the determined difference changes in the subsequent phases of
the cipher. Using the difference between the texts in individual iterations of the cipher, for a
sufficiently large number of pairs, it is possible to assign different probabilities, suggesting
the correctness of some subkeys [3]. When analyzing subsequent pairs of plain texts and
ciphertexts, it turns out that one key may be more probable than the others.

Every modern cipher is non-linear—it means that it is not possible to find any pattern
or rule by which to determine the value of a function for the next argument [3]. This nonlin-
earity is obtained via the round f function. Each of all possible differences is characterized
by a certain probability, which determines how often the f function returns the expected
value [3]. These differences are called characteristics Ω. All possible characteristics can be
determined by means of an additional matrix, where the rows correspond to all possible
symmetric differences of the input blocks, and the columns to all possible symmetric
differences of the output blocks [1]. Each of the elements will determine how many times
the sum of the output bits occurs for the selected sum of the input bits.

By analysing the diagram shown in Figure 2, the input symmetric difference B′ can be
determined assuming that E = E(Ri−1):

B′ =
8�

j=1

Bj ⊕ B∗
j =

8�

j=1

(Ej(Ri)⊕ Ki)⊕ (Ej(R∗
i )⊕ Ki) =

8�

j=1

Ej ⊕ E∗
j , (1)

where symbol
�

stands for the concatenation of the successive data blocks. From the
expression above, it can be seen that B′ has nothing to do with the subkey. When the value
of each B′

j is known, the set of all ordered pairs (Bj, B∗
j ) can be determined for the input

symmetric difference as suggested in [31]:

Δ(B′
j) = {(Bj, Bj ⊕ B′

j) : Bj ∈ (Z2)
6}. (2)

Knowing the output difference C′
j = Sj(Bj)⊕ Sj(B∗

j ), it becomes possible to generate
the distribution of all possible input differences to all output differences according to the
theorem described in [31]:

INj(B′
j, C′

j) = {Bj ∈ (Z2)
6 : Sj(Bj)⊕ Sj(Bj ⊕ B′

j) = C′
j}. (3)

Most often, this distribution will be steady. The cryptanalyst’s task is to find distribu-
tions that are as unsteady as possible. Based on the expression (3), an additional test set
can be determined using the following formula [31]:

testj(Ej, E∗
j , C′

j) = {Bj ⊕ Ej : Bj ∈ INj(E′
j, C′

j)}. (4)
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If the number of elements in testj is equal to the power of INj set, then the set must
contain bits of the Kij subkey [31].

This method makes it possible to restore the correct decryption key using 247 selected
plain texts and the corresponding ciphertexts.

4. Metaheuristics Differential Cryptanalysis

From the point of view of the developed attack, the IP and IP−1 permutations may be
omitted. The algorithm begins by selecting the two most probable 3-round characteristics
Ω1

P and Ω2
P mentioned in [31,32], which are presented in Figure 3, where P denotes

characteristics for plaintext and C for ciphertexts.

Ω1
P

= 0x4008000004000000

0x040000000x40080000
f

0x000000000x00000000
f

0x040000000x40080000
f

Ω1
C

= 0x4008000004000000

Ω2
P

= 0x0020000800000400

0x000004000x00200008
f

0x000000000x00000000
f

0x000004000x00200008
f

Ω2
C

= 0x0020000800000400

p=1
4

p=1
4

p=1

Figure 3. The two the most probable 3-round characteristics Ω1
P and Ω2

P for six rounded cipher
DES [31,32].

The probability of each characteristic is exactly PΩ = 1
16 in the fourth round of the

encryption algorithm S-Blocks S2, S5, S6, S7, S8 for Ω1
P and S1, S2, S4, S5, S6 for Ω2

P for some
input symmetric difference B′

j return an output symmetric difference C′
j equal to zero.

Owing to this, it becomes possible to determine the sets I1 = {2, 5, 6, 7, 8} for Ω1
P and

I2 = {1, 2, 4, 5, 6} for Ω2
P. The further description of the attack is identical for each of

the characteristics Ω so it was decided to generalize it by introducing one generic I set
consisting of elements of sets I1 and I2.

The next step will be to generate a set of plain text pairs, along with a set of correspond-
ing cryptograms, where the symmetrical difference will correspond to the characteristics
Ω1 and Ω2. The number of pairs needed is calculated using the signal-to-noise ratio [3]:

S/N =
m · p

m · α · β/2k =
2k · p
α · β

=
230 · 1/16

45 = 216, (5)

where:

• m—the number of pairs generated, having no effect on S/N;
• p—the probability of the selected characteristic Ω;
• k—number of bits of the subkey;
• α—the average number of subkeys, suggested by one pair;
• β—the ratio of the analysed pairs to all possible ones.

As suggested in [3], for S/N = 216, 7–8 correct pairs are needed for each of the
characteristics. Due to the probability of PΩ, a minimum of 150–200 pairs of plain text
should be generated [3].

Additionally, the testj test set is determined, owing to which it will be possible to
partially filter pairs from the set. If the power of the test set for at least one element from
set I is equal to 0, the pair may be rejected:
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∧
j∈I

|testj| > 0. (6)

The aim of the suggested attack is to guess the last K6 encryption subkey. If the
difference of C′ and part of R5 is known, it becomes possible to analyze the various subkeys
closely by comparing all bits of the output of the S-blocks with C′. A brute-force attack
would need to check all 230 solutions. MA can be used as an optimization tool that finds
the correct solution in much shorter time.

Each individual is represented by a 30-bit Kj subkey. The fitness function is defined
with the following formula:

Ff =
n

∑
i=0

L − ∑
j∈I

H((Sj(Bj)⊕ Sj(B∗
j )), P−1(R′

6 ⊕ L′
3)), (7)

where:

• H—is the Hamming distance;
• L—the length of the subkey.

Owing to the knowledge of the probability of PΩ, it is possible to estimate the value
of L′

3, while R′
6 can be obtained by analyzing a pair of generated ciphertexts. Ff counts

the number of overlapping bits between the difference obtained from the S-blocks and the
C′ difference.

The algorithm uses standard one-point crossover. The locus is selected pseudoran-
domly from 1 to 30. The newly created subkeys can be modified with the use of a mutation
operator—which consists in replacing two pseudorandomly selected bits. The algorithm
selects individuals using tournament selection. A leader is elected from the set of all
subkeys and it is passed to the crossover operator.

There is an additional local search process in the algorithm—it is performed using the
simulated annealing algorithm. The MASA attack pseudocode for the ΩP characteristic
is shown below. Due to the complexity of this algorithm, it was decided to divide it into
two parts:

• the first one, Algorithm 1—responsible for generating a set of filtered pairs of plain
text, ciphertexts and determining the testj test set for each of the indexes;

• the second one, presented in Algorithm 2—describing the memetic algorithm, along
with the processes of selection, crossing, mutation and exploitation, taking into account
the pseudocode of the basic simulated annealing algorithm.

Algorithm 1: The pseudocode of the set of pairs preparation process for the
MASA attack.
1 ΩP := find_most_probabilistic_characteristic()
2 I := determine_set_of_indexes()
3 set_o f _pairs := generate_set_of_plaintext_and_ciphertext_pairs()
4 for i := 0 to size(set_of_pairs) do

5 pair := set_o f _pairs[i]
6 foreach j ∈ I do

7 testj := determine_test_set(pair)
8 if |testj| == 0 then

9 filter_invalid_pair(set_o f _pairs, pair)
10 break

11 end

12 end

13 end
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Running the MASA algorithm for Ω1
P will make it possible to guess 30 out of 48 bits

of the K6 subkey. Re-running the algorithm, this time for Ω2
P, allows us to find an extra

12 bits. In order to obtain the remaining 6 bits of the last K6 subkey—coming from the
S-block S3, we can use the brute-force method. Having the K6 subkey, it is possible to
recover 48 out of 56 bits of the decryption key by reversing the key decomposition process.
The remaining 8 bits can be guessed using the brute-force method once again—for example,
a brute force attack.

Algorithm 2: MASA attack pseudocode.

1 P(0) := create_initial_population()
2 for i := 0 to number_of_iterations do

3 calculate_fitness_function_value_for_each_individual()
4 for j := 0 to population_size do

5 parentA := tourney_selection()
6 parentB := tourney_selection()
7 o f f spring := [parentA, parentB]
8 if random(0, 1) ≥ crossover_probability then

9 childA, childB := crossover(parentA, parentB)
10 if random(0, 1) ≥ mutation_probability then

11 childA := mutation(childA)
12 end

13

14 if random(0, 1) ≥ mutation_probability then

15 childB := mutation(childB)
16 end

17 o f f spring := [childA, childB]
18 end

19

20 foreach child ∈ offspring do

21 T = T0
22 while T ≥ TMIN do

23 new_child := change_random_bit(child)
24 di f f erence := new_child. f itness - child. f itness
25 if di f f erence > 0 or
26 probability_ f un(di f f erence, T) > random(0, 1) then

27 child := new_child
28 end

29 T = T · α

30 end

31 end

32 end

33 end

5. Experimental Results

This chapter describes the analysis of the proposed memetic attack MASA and NGA
in terms of the quality and number of solutions obtained [22]. It was important to check
whether the suggested algorithms make it possible to improve the time of finding the correct
subkey. Another important aspect was to check whether the MASA memetic algorithm
enables a more effective, and therefore more successful, differential cryptanalysis.
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5.1. Selecting Parameters

As part of the experiments, the impact of the parameters listed below for each of
the attacks on the convergence of the algorithm and the quality of the obtained solutions
was examined:

• number of iterations for the MASA and NGA algorithms;
• population size for the MASA i NGA algorithms;
• number of plaintext and ciphertext pairs γ for the MASA and NGA algorithms;
• probability of the heuristic negation Pn for the NGA algorithm.

In the conducted experiments, the parameter values were used in various combi-
nations and for the subsequent experiments, potentially the best values in terms of the
running time of the algorithm were established. For the MASA memetic algorithm, the
parameters were set according to Table 2 below:

Table 2. Parameters of the MASA algorithm.

Id Parameter Symbol Value

1 Maximum number of iterations ItMAX 100
2 Population size N 10
3 Number of plaintext pairs γ 200
4 Tourney size TSIZE 10
5 Crossover probability Pc 0.9
6 Mutation probability Pm 0.02
7 Initial temperature T0 1
8 Minimal temperature TMIN 0.1
9 Cooling rate α 0.9

The description of the NGA algorithm parameters has been described in detail in the
publication [19]. Table 3 presents the most important parameters of the NGA algorithm:

Table 3. Parameters of the NGA algorithm.

Id Nazwa Symbol Value

1 Maximum number of iterations ItMAX 100
2 Population size N 10
3 Number of plaintext pairs γ 200
4 Tourney size TSIZE 10
5 Crossover probability Pc 0.9
6 Mutation probability Pm 0.02
7 Heuristic operator probability Pn 0.25

As was mentioned before, for the purposes of the tests, a simplified version of the
DES cipher was used, in which the number of rounds was limited from 16 to 6. All other
processes in the encryption algorithm, such as subkey generation and S-block compression,
remained unchanged.

5.2. Comparative Study

Each of the algorithms was tested 30 times for each of the characteristics Ω. Table 4
below shows the value of the Ff fitness function for the MASA and NGA algorithms for
the first characteristic Ω1. The remaining results—for the characteristic Ω2 are given in
Appendix A in the Table A1.
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Table 4. Fitness function values for MASA and NGA algorithms for characteristic Ω1
P.

ID

MASA NGA

Min Med Avg Max
Std.
Dev.

Min Med Avg Max
Std.
Dev.

1 885 953 95.5 1014 39.9 982 993 994.7 1014 11.5
2 929 997 989.2 1014 30.8 899 947 960.3 1012 40.3
3 888 935 948.7 1012 49.2 916 992 977.4 1014 37.8
4 978 1010 1003.9 1014 12.3 886 945 943.0 997 33.5
5 910 950 960.9 1014 38.9 922 978 982.3 1014 25.5
6 915 971 971.6 1014 35.1 871 978 960.1 1014 53.2
7 877 925 953.7 1014 52.6 928 998 990.1 1014 30.3
8 920 982 983.6 1014 31.1 900 960 958.9 1012 36.2
9 895 997 978.6 1014 35.2 943 980 981.3 1012 20.7

10 949 957 981.0 1014 30.1 863 934 945.9 1014 50.5
11 938 1014 996.8 1014 25.5 921 974 973.0 997 27.6
12 947 995 988.6 1014 22.1 899 975 965.1 1014 42.1
13 903 936 952.0 1014 36.9 891 978 962.3 1014 48.7
14 886 997 975.5 1014 46.6 855 991 958.0 1014 55.8
15 960 990 992.3 1014 20.0 881 920 951.3 1014 52.3
16 892 996 970.6 1014 42.3 884 998 978.0 1014 45.4
17 880 984 960.8 1014 50.1 911 954 962.5 1012 29.2
18 983 1014 1008.8 1014 10.0 865 978 958.1 1014 54.5
19 893 992 975.8 1014 38.1 878 951 951.3 998 44.0
20 956 1010 1003.3 1014 17.7 922 990 977.3 1014 34.1
21 892 979 965.9 998 38.3 875 929 945.5 1010 45.3
22 962 1009 1003.6 1014 15.1 909 1014 990.2 1014 38.2
23 885 939 960.7 1014 41.2 940 981 978.3 1010 23.2
24 901 970 962.2 1014 40.6 872 935 936.3 988 41.9
25 864 949 949.9 1014 50.3 890 954 944.9 988 34.9
26 958 992 991.8 1014 15.9 931 955 972.2 1014 28.4
27 899 920 949.2 1014 44.8 888 965 964.5 1014 43.2
28 902 966 965.4 1014 40.2 893 957 959.4 1014 40.6
29 971 997 999.2 1014 13.0 912 980 973.1 1014 37.2
30 922 997 977.2 1014 36.0 953 976 987.7 1014 21.2

Experiments in which the correct decryption key could not be guessed were marked
in bold in the table above.

The probability of each of the characteristics for this cipher is not 100%. It means that
despite striving for the maximum value of the fitness function, it will never be achieved.
The inability to obtain the maximum value means that we are not able to terminate the
running of the algorithm earlier than after the completion of all predetermined iterations.

Figures 4 and 5 present a list of all correctly guessed bits of the K6 subkey for the
MASA and NGA algorithms for the Ω1 characteristic. The remaining results—for the Ω2
characteristic are present in Appendix A in the Figures A1 and A2.

Figure 4. List of correctly guessed bits of MASA attack for the Ω1 characteristic.

In a large number of cases, the MASA attack finds the correct subkey in the first
25 iterations. In approximately 6–7 cases, the algorithm found a solution using half of the
available iterations, while in the other two cases (tests #3 and #21, marked as red on the
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figure) the attack failed to cope with the given ciphertext. The algorithm found the correct
decryption subkey in 93% of the cases - markes as green on the figure.

Figure 5. List of correctly guessed bits of NGA attack for the Ω1 characteristic.

In the case of the NGA algorithm, the cipher was not cracked 11 times—which is over
37% of all possible approaches—red bars on the figure. During the remaining 63% of the
tests, it was possible to crack the cipher with the decryption algorithm—green color. In
most cases, it was possible to guess the correct subkey using only 30–40 iterations. The
tests with identifiers #1 and #26 also deserve special attention. They show a very large
number of iterations (over 80), which means that the NGA algorithm found the correct
solution at the very end of its running.

On the presented bar plots we can notice the MASA algorithm is much effective
because it successfully found the correct subkey in almost every test when NGA attack
has worked in only 63% of experiments. Simulated annealing, used as an additional
exploitation step of the MA, is more effective than the heuristic negation operator used in
the NGA attack.

The next stage of the experiments was to analyze the course of the fitness function
value using the convergence diagrams, which were presented successively, for the MASA
attack and Ω1 in Figures 6 and 7, for the NGA algorithm. Convergence diagrams for the
Ω2 were present in Appendix A in the Figure A3, for the MASA algorithm, and Figure A4
for the NGA attack.

Figure 6. The MASA fitness function Ff convergence diagrams for Ω1 (tests #3 and #4).

The above graph shows tests #3 and #4 with minimum, maximum, medians and
averages—and average values increased and decreased by the standard deviation of the
fitness function. The tests were selected in such a way as to visualize both a positive
case—when it was possible to guess the correct subkey, and a negative one.

In the case of both tests of the MASA algorithm, a rapid increase in the maximum
value of Ff can be noticed at the very beginning of the algorithm’s running. In further
iterations, there are single drops of this value, after which the maximum value is stabilized
and then increased again. The median for 60% of the algorithm’s running time remains
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similar, only at the very end of its running we can notice its decrease. When analyzing
the case #4 diagram, already in the first iterations of the algorithm, a rapid increase in
the median value can be observed—the majority of individuals in the population have a
similar value of the fitness function. This may be related to the algorithm falling into the
local extreme, which it has not managed to leave.

Figure 7. The NGA fitness function Ff convergence diagrams for Ω1 (tests #1 and #2).

The next stage of the tests was to review the distribution of the fitness function values
in the last iteration of each attack—the distribution is presented in Figure 8 for the MASA
algorithm, and Figure 9 in the case of an NGA attack. Boxplots for the Ω2 characteristic
were present in Appendix A in the Figure A5, for the MASA algorithm, and Figure A6 for
the NGA attack.

Figure 8. The distribution of the fitness function Ff values in the last iteration for the MASA algorithm and Ω1 characteristic.

Figure 9. The distribution of the fitness function Ff values in the last iteration for the NGA algorithm and Ω1 characteristic.

In the case of the MASA algorithm, some of the tests—for example, #18, #20 or #22—
are characterized by a high degree of homogeneity, which means that the population is
characterized by a low diversity of individuals. When analyzing each of the attacks, a large
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degree of variability between individuals can be observed, which is undoubtedly indicated
by the median value, changing its position between the first and the third quartiles. In the
case of the NGA algorithm, in some experimentes, an unexpected increase of the value
of the fitness function can be observed at the very end of the algorithm’s running—it is
evidenced by the presence of the outlier of the maximum value.

The MASA and NGA attacks are characterized by a certain degree of pseudo-randomness.
In order to perform statistical verification of the algorithms, a non-parametric Wilcoxon’s
test was used to compare the results. The hypothesis H0, specifying no difference when
comparing the samples, and the hypothesis H1, assuming a difference between the two
samples, were set. The following criteria were used to perform the test:

• value of the fitness function—performed for the best quality subkeys found for
each run;

• number of subkeys checked.

The weight of each criterion was expressed at the same value, set to 0.5. For the
analyses performed, hypothesis H0 was rejected at p < 0.05—thus indicating the statistically
important differences between the best results retrieved. The results obtained through the
MASA algorithm are significantly better than the NGA attack.

5.3. Entropy Study

The possibility to maintain a highly diverse population may improve the algorithm’s
ability not to fall into local extremes. In order to estimate the size of the disorder in the
system, the entropy was used:

H(X) =
n

∑
i=1

p(xi)log2
1

p(xi)
= −

n

∑
i=1

p(xi)log2 p(xi). (8)

The entropy was computed by comparing the respective bits of each subkey with
the corresponding bits of the best-adapted individual. An example for the population
P = {11101, 10101, 11011, 11110}, where the last individual 11110 is the leader, is pre-
sented below (Table 5):

Table 5. Example scenario of the entropy calculation.

Subkey Bit 1 Bit 2 Bit 3 Bit 4 Bit 5

A 1 1 1 0 1
B 1 0 1 0 1
C 1 1 0 1 1

Leader 1 1 1 1 0

p(x1) 1 0.75 0.75 0.50 0.25
p(x2) 0 0.25 0.25 0.50 0.75
H(x1) 4 · log2(1) 3 · 3

4 log2(
3
4 ) 3 · 3

4 log2(
3
4 ) 2 · 1

2 log2(
1
2 )

1
4 log2(

1
4 )

H(x2) 0 1
4 log2(

1
4 )

1
4 log2(

1
4 ) 2 · 1

2 log2(
1
2 ) 3 · 3

4 log2(
3
4 )

where:

• p(x1)—the probability of an identical bit occurring in a given position between indi-
viduals and the leader;

• p(x2)—the probability of a different bit occurring in a given position between individ-
uals and the leader;

• H(x1)—entropy values for the probability p(x1), at a given position;
• H(x2)—entropy values for the probability p(x2), at a given position.

Based on the example listed in Table 5, the entropy value of the entire system can be
computed as follows:

H = −(0 + 0 − 0.93 − 0.5 − 0.93 − 0.5 − 1 − 1 − 0.5 − 0.93) = 6.29. (9)

83



Entropy 2021, 23, 1697

Entropy for the MASA and NGA algorithms was visualized respectively in
Figures 10 and 11. The charts show the maximum, minimum and average values. More-
over, it was decided to visualize the average value of entropy for both attacks on one graph,
which is presented in Figure 12. The remaining results—for the characteristic Ω2 are given
in Appendix A in Figures A7–A9.

Figure 10. Minimum, maximum and average entropy, during all iterations, for MASA algorithm and
Ω1 characteristic.

Figure 11. Minimum, maximum and average entropy, during all iterations, for NGA algorithm and
Ω1 characteristic.
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Figure 12. The comparison of the entropy of the MASA and NGA algorithms for the Ω1 characteristic.

The entropy value was computed during each iteration and 30 launches of MASA
and NGA attacks. During all the conducted tests, identical pairs of plain text and the
corresponding ciphertexts were used, as well as the same encryption key—owing to which
it was possible to make the most reliable comparison.

When analyzing the graphs presented above (Figures 10 and 11), a decrease in the
entropy value can be noticed from the very beginning of the running of each of the
algorithms. In the last iterations, a gradual stabilization of the system becomes visible,
which would most probably be more noticeable after increasing the number of iterations.
Comparing the average courses, it can be noticed in Figure 12 that the entropy value for
the MASA attack is lower from the very beginning. Only from about the thirtieth iteration,
the NGA algorithm obtains a similar value, and sometimes even lower, in relation to the
MASA attack. Eventually, the entropy values for the NGA algorithm begin to stabilize at
around the sixtieth iteration, while in the case of the MASA attack it continues to decrease.
At the end of the algorithms’ running, the difference in entropy value between attacks
becomes visible.

The experiments carried out and described above clearly confirm the effectiveness
of the suggested MASA attack, based on the use of memetic algorithms and simulated
annealing. This information may be important during the running of the algorithm, since
the probability of leaving the local extremum will be higher, and thus the quality of the
final results will be better.

6. Conclusions

The article presents the results for the NGA genetic algorithm enriched with an
additional heuristic negation operator and the MASA memetic algorithm that performs the
local search process through simulated annealing. Both algorithms undoubtedly improve
the process of an attack of differential cryptanalysis against the ciphertexts generated with
the DES standard. An important aspect is the attempt to minimize the number of verified
subkeys, which is presented in the table below:

The developed algorithms improve the effectiveness and efficiency of the attack, which
is extremely important from the point of view of a cryptanalyst. Presented metaheuristics
cryptanalysis, based on the differential cryptanalysis approach, can be helpful to raise
the security level in already implemented IT systems. It can also be used to improve the
complexity of ciphers at the design level. Proposed attacks, verified on the DES cipher, can
be tested on more complicated modern encryption algorithms like AES or GOST ciphers.
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Based on the tests presented in the previous section and Table 6, it is possible to
clearly state the superiority of the MASA attack and the NGA algorithm over the classic
differential cryptanalysis attack, due to the frequency of correctly guessed subkey and the
number of proven solutions.

Table 6. Comparison of checked subkeys between MASA, NGA and differential cryptanalysis attacks.

Attack
Total Number

of Checked Subkeys
Average Number

of Checked Subkeys

MASA algorithm
Ω1 687,752 22,925.1
Ω2 687,788 22,926.3

∑ 1,375,540 45,851.3

NGA algorithm
Ω1 252,456 8415.2
Ω2 252,899 8430.0

∑ 505,355 16,845.2

Differential Cryptanalysis
Ω1 30 · (6 · 230 + 1024) 6 · 230 + 1024
Ω2 30 · (6 · 230 + 1024) 6 · 230 + 1024

∑ 30 · (12 · 230 + 1024) 12 · 230 + 1024

There are many parameters that influence the quality of offered solutions. Analyzing
the importance of individual parameters, we intend in the future to conduct an analysis
based on removing some of them or replacing them with a simplified version, without
losing the quality of the offered solutions. Such approach (an ablation study) is very
common when estimating costs of deep learning solutions and we hope that it will also be
very effective here.

Work is currently underway on modifications of the developed attack, which would
enable an even faster exploration of the solution space. In the future, an adaptive ver-
sion of the memetic algorithm is expected to be developed to automatically adjust the
attack parameters. A parallel implementation is also planned, which should be much
more effective.

Simplified and the original DES encryption algorithms are commonly used by many
cryptanalysts as a starting point to perform research and experimental studies in this
discipline of science. It can be found in the literature review, presented in Table 1, in the
introduction section. The authors of this article decided to use a reduced DES cipher for
the purposes of developing new metaheuristic attacks described in the paper. Starting
experiments from modern ciphers could be too complicated and significantly extend the
research process. At the current state, we can test the proposed algorithms against more
advanced symmetric block ciphers such as Twofish, AES, or GOST, which will definitely
be the next step in future works.
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Abbreviations

The following abbreviations are used in this paper:

ACO Ant Colony Optimization
BCSO Binary Cat Swarm Optimization
DC Differential Cryptanalysis
DES Data Encryption Standard
DSA Dolphin Swarm Algorithm
EA Evolutionary Algorithms
FEAL Fast Data Encipherment Algorithm
GSO Genetic Swarm Optimization
MA Memetic Algorithms
MASA Memetic Algorithm Simmulated Annealing
NGA Negation Genetic Algorithms
PSO Particle Swarm Optimization
RC4 Rivest Cipher 4
SDES Simplified Data Encryption Standard
TEA Tiny Encryption Algorithm
VMPC Variably Modified Permutation Composition

Appendix A. The Comparative and Entropy Studies for the Ω2 Characteristic

Table A1. Fitness function values for MASA and NGA algorithms for characteristic Ω2
P.

ID

MASA NGA

Min Med Avg Max
Std.
Dev.

Min Med Avg Max
Std.
Dev.

1 906 984 1002.6 1095 57.1 987 1027 1041.5 1095 38.0
2 967 1059 1043.0 1095 42.6 1008 1034 1043.3 1074 21.3
3 946 973 997.8 1095 50.7 993 1010 1025.2 1075 29.2
4 1008 1041 1048.5 1095 29.2 968 1047 1046.8 1074 31.5
5 1008 1044 1045.6 1095 20.2 922 1021 1024.3 1095 52.7
6 943 989 1018.7 1095 60.7 964 1044 1043.5 1074 35.4
7 959 1041 1038.8 1095 40.0 888 957 994.0 1095 72.2
8 940 1011 1020.6 1095 44.0 953 1059 1036.3 1095 49.8
9 928 1028 1029.0 1095 56.6 958 1030 1031.6 1095 39.1

10 953 1011 1019.9 1095 47.3 895 1059 1017.1 1074 64.7
11 941 1041 1022.8 1095 50.8 958 1059 1043.7 1095 44.2
12 993 1033 1045.5 1095 30.0 1006 1021 1036.7 1075 26.7
13 955 1060 1039.2 1095 50.0 959 1053 1049.5 1095 38.1
14 946 1006 1012.2 1095 49.0 927 1027 1022.9 1095 59.4
15 949 1021 1019.4 1053 27.0 916 1034 1028.2 1095 56.3
16 891 979 992.2 1075 58.3 995 1068 1054.6 1095 32.5
17 897 1002 1004.4 1095 55.4 958 1054 1045.2 1095 46.4
18 902 952 974.1 1075 53.2 939 963 989.1 1074 47.4
19 969 1025 1033.3 1095 45.5 884 989 990.6 1074 62.6
20 950 1023 1037.6 1095 52.0 985 1027 1039.0 1095 35.3
21 899 1036 1026.9 1095 57.7 940 977 992.1 1075 44.3
22 1016 1032 1043.9 1095 27.2 957 1007 1021.2 1095 49.1
23 947 1036 1027.0 1095 56.6 902 1021 1007.4 1039 38.0
24 977 1068 1053.6 1095 39.7 913 1013 1016.1 1074 48.6
25 945 1021 1031.1 1095 42.9 905 1028 1024.2 1075 53.2
26 1011 1041 1043.7 1095 25.1 952 1031 1036.4 1095 50.1
27 937 1013 1010.0 1095 45.0 961 996 1013.6 1095 49.9
28 971 1002 1027.2 1095 52.1 936 1017 1023.8 1074 46.6
29 907 1038 1027.5 1095 64.6 949 1018 1018.6 1075 32.0
30 950 1018 1016.0 1095 50.4 949 1065 1054.8 1095 41.8
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Figure A1. List of correctly guessed bits of MASA attack for the Ω2.

Figure A2. List of correctly guessed bits of NGA attack for the Ω2.

Where the red color indicates experiments when the algorithm wasn’t able to find the
correct subkey and the green bars indicate are tests when the subkey was
successfully guessed.

Figure A3. The MASA fitness function Ff convergence diagrams for Ω2 (tests #14 and #15).

Figure A4. The NGA fitness function Ff convergence diagrams for Ω2 (tests #1 and #2).
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Figure A5. The distribution of the fitness function Ff values in the last iteration for the MASA algorithm and Ω2 character-
istic.

Figure A6. The distribution of the fitness function Ff values in the last iteration for the NGA algorithm and Ω2 characteristic.

Figure A7. Minimum, maximum and average entropy, during all iterations, for MASA algorithm
and Ω2 characteristic.
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Figure A8. Minimum, maximum and average entropy, during all iterations, for NGA algorithm and
Ω2 characteristic.

Figure A9. The comparsion of the entropy of the MASA and NGA algorithms for the Ω2 characteristic.
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Abstract: The COVID-19 pandemic has raised many questions on how to manage an epidemiological
and economic crisis around the world. Since the beginning of the COVID-19 pandemic, scientists
and policy makers have been asking how effective lockdowns are in preventing and controlling
the spread of the virus. In the absence of vaccines, the regulators lacked any plausible alternatives.
Nevertheless, after the introduction of vaccinations, to what extent the conclusions of these analyses
are still valid should be considered. In this paper, we present a study on the effect of vaccinations
within the dynamic stochastic general equilibrium model with an agent-based epidemic component.
Thus, we validated the results regarding the need to use lockdowns as an efficient tool for preventing
and controlling epidemics that were obtained in November 2020.

Keywords: COVID-19; vaccination; agent-based modelling; dynamic stochastic general equilibrium
models; scenario analyses; validation of results

1. Introduction

Last year was dominated by discussions on how to contain the spread of the Sars-
CoV-2 virus and the economic impact of the prevention and control measures. The need to
effectively introduce lockdowns has been discussed in the literature, in particular, when
there had not yet been widespread vaccinations and there was no consensus on how to
treat patients who had contracted COVID-19. It was also unclear how contagious the virus
was and whether it was possible to get re-infected or whether the body developed an
immunity against the virus. While many open questions have already been answered since
the outbreak of the pandemic, some crucial questions are still unanswered. It is especially
worth considering how justified and effective lockdowns are in the era of widespread
vaccinations against COVID-19.

In our article [1], which was published in November 2020, we studied the shape and
range of state interventions whose goal was to limit the negative effects of the pandemic,
in particular, by reducing the number of infections and deaths that were caused by the
pandemic. As it was emphasised, lockdowns have been introduced in many countries
around the world in order to limit the spread of the virus and to prevent the collapse of
the health systems. In some countries, a deep lockdown strategy was abruptly adopted,
while in others, the focus was put on gradually closing certain sectors of the economy.
The effectiveness of a lockdown in a given country is influenced by many factors, the most
important of which are legal, behavioural, cultural and social factors. Hence, the impact of
a lockdown on the course of the epidemic and its impact on the given economy could be
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different than in other countries. In our previous paper, we advised on how the lockdown
policy should be implemented. In this article, we would like to validate the results taking
into account that the COVID-19 vaccinations started in most developed countries in 2021.
Therefore, we address the same two major questions:

• Should we freeze an economy in order to decrease the pace of SARS-CoV-2 transmission?
• What should the scale and composition of an efficient lockdown policy look like?

However, this time, we did take immunity into account in our analysis.

2. Literature Review

The efficiency of the COVID-19 vaccination process in the context of the potential to
achieve herd immunity by a society is one of the most frequently discussed topics in the
literature today. In simple terms, “herd immunity works through achieving a threshold
immunity at the population level that is able to theoretically cut the transmission chain of a
given infectious disease, be it obtained through natural infection or vaccination” [2]; for
general studies on the topic, see also [3–6]. In the most general terms, two main sources of
achieving herd immunity were discussed—through a natural infection and recovery or by
a vaccination [3].

In the literature, the results of many studies whose goal was to compute the thresholds
for infectious diseases have been presented, including recent works that have focused
on the threshold for the COVID-19 disease. Fontanet and Cauchemez [6] suggested that
under the assumption about the absence of control measures (pc = 0), i.e., without phar-
macological interventions, among others, “the condition for herd immunity (R < 1, where
R = (1− pi)Ro) is attained when the proportion of immune individuals reaches pi = 1− 1

Ro
,

where Ro denoted the reproduction number in the absence of control measures in a fully
susceptible population” and that it can vary across populations and over time. In the for-
mula above, which was presented by [6], R denotes the effective reproduction number that
is explained as “the average number of persons infected by a case”. As is clarified, in the ab-
sence of interventions, the number R is lower than 1 and this case denotes the possibility of
the occurrence of herd immunity, i.e., a situation in which one infected person is responsible
for inducing “less than one secondary case on average”, see [6]. The rest of the abbrevia-
tions that are used by the authors in the formula explaining herd immunity are as follows:
pi is the proportion of the society that is immune and pc denotes the relative reduction in
the transmission rates that is achieved by using non-pharmaceutical interventions.

The estimates for the COVID-19 pandemic differ. As was mentioned in [6], Ro varies
across populations and over time. The literature review emphasises the differences across
countries and regions. For example, Kwok et al. [7], in a sample of 32 countries, estimated
that the effective reproduction number ranged from 1.06 in Kuwait to 6.64 in Bahrain as of
13 March 2020. As a result, the minimum proportion of the total population, in percentage
terms, that would be required to recover from COVID-19 was between 5.66% in Kuwait to
85% in Bahrain, see [8]. As was emphasised by Fontanet and Cauchemez [6], in the case of
SARS-CoV-2, most estimates of Ro are in the range of 2.5 and 4. Moreover, Kwok et al. [7]
obtained the Ro between 2 and 4 for the largest group of countries. For Ro = 2, which they
estimated for Iran, the herd immunity threshold for SARS-CoV-2 was expected to require
50% of the population to have immunity, for Ro = 2.09, while the threshold increased to
65.5% for the UK. The estimates for Israel (a country with one of the widest distributions of
vaccines against COVID-19 among its population, [9]), the Ro was 3.02 and the estimated
threshold was 66.9%. As has been argued, the low figures for Kuwait reflected the fact
that the country had strong lockdowns and put many measures in place to control the
SARS-CoV-2 virus and an escalation of the COVID-19 pandemic [10]. Aschwanden in
her article [10] emphasised that the threshold for herd immunity, taking into account the
literature overview, ranged from 10% to more than 70%. However, in the most compelling
research, it has ranged between 60 and 70% [10]. Gomes et al. [11] indicated that the initial
and simple estimates of a COVID-19 threshold that were based on relying on homogeneity
assumptions ranged between 60 and 80% of a population to become immune. In their study,
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which was based on the earlier models that had been explored in the literature, but with
the individual variations in susceptibility or in exposure to infection incorporated into the
data, they obtained a lower herd immunity threshold, for example, for SARS-CoV-2, they
calculated the threshold that was associated with a natural infection to be in the range of
10–30%. As has been presented, in order to obtain the required threshold for herd immunity,
the specified size of the proportion of the population to have immunity is required.

The thresholds of herd immunity that have been presented in the literature are in-
fluenced by the vaccination process and vaccine coverage. Using the SMEIHRDV model,
Dashtbali and Mirzaie [12] predicted that the number of infected cases at the height of
the COVID-19 pandemic was significantly reduced by the increasing vaccine coverage of
between 0.2 and 0.6. Their results were predicted for Egypt and Germany. In the case of
Egypt, the number of infected cases at the height of the epidemic was estimated to decrease
from around 540 cases with a vaccine coverage of 0.2 to around 200 cases when the vaccine
coverage increased to 0.6. In the case of Germany, the obtained predictions suggested that
increasing the vaccine coverage from 0.2 to 0.6 affected the pandemic peak, in which the
cases decreased from approximately 320 to 120. Moreover, the German case enabled it
to be predicted that, both investing in a strategy of social distancing and increasing the
vaccine coverage, the length of the epidemic peak of infected cases might shorten from
approximately 200 to 55 by increasing vaccine coverage from 0.2 to 0.6.

The results obtained by Makhoul et al. [13] indicated that even a partially efficient
vaccine was able to affect the spread of SARS-CoV-2 virus and the COVID-19 pandemic.
The authors calibrated and estimated their model for the Chinese case and assumed a long
duration of vaccine protection that lasted ten years. As was argued, the simulated scenarios
emphasised that the three vaccines do not need to provide complete immunity to be able
to completely control the infection. As it was also emphasised, a vaccine with VEs ≥ 70%
(i.e., a vaccine efficacy in reducing susceptibility of greater than 70%) would have enabled
us to control the pandemic at ≥80% coverage before its onset. However, as was estimated,
when the reproduction number Ro is assumed to be three, then the minimum VEs that is
required to eliminate infections is about 90%.

The simulations of Charumilind et al. [14] for the US and the UK showed that the use
of a vaccine that is 95% effective at preventing transmission and with a natural immunity
between 5–20%, the required vaccine coverage had to increase when more than a 40–80%
transmissible COVID-19 strain was predominant, and more stringent non-pharmaceutical
interventions should be used to manage the pandemic. For example, under the assumption
that a COVID-19 strain is 40% more transmissible, then the required coverage for the two
countries would be 65–72% (or 78–86% if limited only to those more than 12 years old).
However, when a new COVID-19 strain was assumed to be 80% more transmissible, then the
required coverage should be increased and it would be 75–80% (or 89–95% if limited to only
those more than 12 years old). As was investigated, if the transmissibility of a new variant
increased by 40% or 80%, then COVID-19 herd immunity can only be achieved once the total
immune population reaches 70% (under assumption Ro = 3.4) or 77% (with Ro = 4.3).

Using a deterministic model, Han et al. [15] analysed “the connection between the
daily vaccination capacity (rollout speed) and transmissibility in determining the optimal
(vaccine prioritisation) strategies” based on the case of China. They argued that introducing
a high vaccination capacity in the early phase of a vaccination campaign is crucial for
achieving large increases in strategic prioritisations. The simulations were based on a
time-varying optimisation of the COVID-19 vaccine prioritisation. The obtained findings
enabled them to conclude that increasing the vaccination capacity to 2.5 million first doses
per day (0.17% roll-out speed) or higher could considerably reduce the COVID-19 burden,
when the assumed reproduction number was equal to 1.5 (Ro = 1.5).

The Chen et al. [16] study was based on eight selected countries: Chile, Hungary,
Israel, Serbia, Qatar, the UAE, the UK and the USA. These countries were selected due
to their high degree of effectiveness in mitigating the COVID-19 pandemic in a situation
in which the rate of vaccination achieved the level of criticality, even if it was lower than
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the herd immunity threshold. The results of the research suggested that a value of the
vaccination rate of 50.91 doses per 100 people could be perceived as the minimum condition
for avoiding an exacerbation of the pandemic in a society.

Coccia’s [8] study, which was based on 192 countries with data from March to May
2021, indicated that the optimal levels of vaccination in the global context for decreasing
the number of infected cases and deaths would require about “80 doses of vaccines per
100 inhabitants in order to sustain a decrease in confirmed cases and the number of deaths”.
As was shown, approximately 47 doses of vaccines have to be administered in order to
reduce infected cases when an intensive vaccination campaign was introduced at the
beginning of the pandemic wave. However, the findings also indicate a need to increase
the number of doses when the pandemic grew—data retrieved from May 2021 enabled
them to conclude that an increase of COVID-19 wave required a higher optimal level of
vaccines to be administered—it was estimated to be about 90 doses.

Finally, in the literature, there are also many interesting studies related to analyses
of the impact of vaccinations and their combination with other non-pharmaceutical mea-
sures were presented. Among others, Viana et al. [17] studied the case of Portugal, while
Maghadas et al. [18] and Coccia [19] provided evidence for the US.

The short literature review, presented above, strongly emphasises the fact that the
assumptions concerning the size of the proportion of the immune population, the coverage
of vaccinations or the reproduction number all affect herd immunity.

In our new study, we would like to present the results of virus spread simulations in
three scenarios with immunity. We will also refer to the scenarios described in [1], which
did not include immunity. The new scenarios took into account the process of vaccinating
the population over time and its impact on the course of the pandemic. In the first scenario,
approximately 50% of the population was vaccinated. In the second one, approximately
80% of the population was immune. In the last scenario, we present the conditions under
which herd immunity can be expected in a relatively small economy, and therefore, we offer
evidence about why lockdowns are still an important tool in the fight against a pandemic.

3. Updated ABM Component for Studying the Dynamics of the COVID-19 Pandemic

We updated the agent-based model that was presented in [1] in order to introduce
immunity into the system (we present the details of the ABM model in Section 3). Using
this ABM component, we simulated the spread of the COVID-19 virus and analysed the
impact of the COVID-19 pandemic on society’s overall labour productivity within three
scenarios that took into account both vaccinations and natural immunity. Those scenarios
will be described in Section 4. In this section, the results that were obtained in 2020 in
connection with the introduction of vaccination will be validated. Then, we will estimate
the economic impact of the COVID-19 pandemic using the dynamic stochastic general
equilibrium (DSGE) model (see Section 5).

We describe the functioning of the model in the following six modules. The way
in which the program works is analogous to the one described in [1], but this time, the
program and the analyses included the vaccinations and immunity of individuals who had
previously contracted COVID-19. We listed the most important elements of the program
and we emphasised the changes that had been made recently.

In the first module, the initial conditions were defined. The variables and parameters
that had to be specified in order to run the simulations are presented in Tables 1–3.

We estimated the values of the parameters and the transition probabilities that would
be assumed in a specific scenario using the empirical data. We present the calibration for a
given scenario in Tables 4 and 5.

The health status of an agent, their age and location were randomly assigned at the
beginning of the simulation (the number of infected agents were set in the initial conditions).
In the second module, the characteristics of the agents were recorded in the matrices after
each time step. The simulation was conducted for the values of the parameters that had
previously been defined. Among the most important characteristics that were recorded
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after each time step (weekly) were: the health status of each individual in a society (an
M × T matrix H∗), the productivity of each individual in a society (an M × T matrix W∗),
the age of each individual in a society (an M × T matrix A∗) and the location of each
individual on the map after each iteration (x- and y-coordinates) (an M × 2T matrix X∗).
The full dataset was also recorded in the matrix (an M × 4 matrix F∗).

Table 1. The list of initial conditions to be set.

Initial Conditions Explanation Restrictions

T Number of time steps (weeks) ≥0

sInd
t

Health status of the individual at time t = 0
(1—healthy, 2—infected, 3—treated, 4—healthy individual in preventive
quarantine, 5—deceased; 6—recovered, 7—vaccinated)

Int ∈ {1, 2, 3, 4, 5, 6, 7}

(Age)Ind
t Age of an individual at time t = 0

NInd Number of individuals at time t = 0 Int ≥ 0

KInd Number of infected individuals at time t = 0 (including
asymptomatically infected) Int ≥ 0

λmax The parameter corresponding to the maximum number of vaccinated persons
in the iteration (week) Int ≥ 0

St × St Dimensions of the grid at time t * Int ≥ 0

(Ag)1
t Share of citizens of pre-working age at time t ∈〈0,1〉

(Ag)2
t Share of citizens of working age at time t ∈〈0,1〉

(Ag)3
t Share of retired individuals at time t ∈〈0,1〉

(W p)av_h
t

The productivity of an individual when healthy at time t (it was assumed to be
equal to one) ∈〈0,1〉

(W p)av_in f
t

The productivity of an individual when infected at time t (the decline in
productivity was estimated based on empirical data) ∈〈0,1〉

(W p)av_r
t

The productivity of an individual after recovery at time t (the decline in
productivity was estimated based on empirical data) ∈〈0,1〉

(W p)av_t
t

The productivity of an individual when treated or who is infected and in
quarantine at time t (the decline in productivity was estimated based on
empirical data)

∈〈0,1〉

(W p)av_q
t

The productivity of an individual who is healthy and in quarantine at time t
(the decline in productivity was estimated based on empirical data) ∈〈0,1〉

(W p)av_v
t

The productivity of an individual who has been vaccinated at time t (it was
assumed to be equal to one) ∈〈0,1〉

* The dimensions do not have to be constant in all scenarios for all t. We assumed that in baseline scenario and in
scenarios with immunity St = S.

Note that this approach is analogous to the one that we adopted in our study in
November 2020. However, because we added two variables (recovered and vaccinated
agents), this also affected the way the transition probabilities had to be defined. Therefore,
the matrices H∗, W∗, A∗ and X∗ are different from the H, W, A, X that were presented in
November 2020. Moreover, because the simulations were stochastic, the results that were
recorded for each simulation also differed. In the article, we present the results that were
averaged for 100 simulations.

The movements of the agents were described in the third module. The grid repre-
sented a closed economy. Although this simplification is easily modifiable and there is the
possibility to introduce new infections from outside the economy, the aim of this study
was to show the validity of lockdowns in the simplest way. The research results would
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be similar, even if this assumption was lifted. The logic that is known from the cellular
automata models was adopted in the study, see [20,21]. We tested several neighbourhoods
of a cell in which a healthy agent could move. As the adoption of a specific neighbourhood
did not significantly affect the results, we present the conclusions for a simulation in which
the agents can move around in the Moore neighbourhood of a cell, which was defined as
a two-dimensional square lattice and was composed of a central cell and the eight cells
that surround it. An infected agent (symptomatically or asymptomatically), while moving
on the grid, encounters other agents and thus spreads the virus. Agents that are receiving
treatment, in quarantine or are deceased stop moving on the grid. The size of the grid was
carefully selected in order to represent the actual scaled empirical population density of
the selected country.

Table 2. Probabilities that are set as parameters *.

Parameter Explanation Restrictions

(Pr)12
t The probability that a healthy agent (1) will become infected (2) at time t ∈(0, 1)

(Pr)14
t The probability that a healthy agent (1) will be in quarantine (although she is healthy) (4) at time t ∈(0, 1)

(Pr)15
t

The probability that a healthy agent (1) will become infected and will die almost instantly (within
week) (5) ∈(0, 1)

(Pr)17
t The probability that the healthy agent (1) will be vaccinated (7) ∈(0, 1)

(Pr)26
t The probability that an infected agent (2) will become healthy (will recover) (6) ∈(0, 1)

(Pr)23
t The probability that an infected agent (2) will be treated in a hospital or will stay in quarantine (3) ∈(0, 1)

(Pr)25
t The probability that an infected agent (2) dies (5) ∈(0, 1)

(Pr)35
t The probability that an infected agent in a hospital or quarantine (3) dies (5) ∈(0, 1)

(Pr)36
t The probability that an infected agent in a hospital or quarantine (3) gets better (6) (recovers) ∈(0, 1)

(Pr)41
t The probability that a healthy agent in quarantine (4) will end the quarantine, that is, is healthy (1) ∈(0, 1)

(Pr)43
t

The probability that a healthy agent in quarantine (4) will become infected during the quarantine
and she is still in quarantine (but now is already infected) (3) at time t ∈(0, 1)

(Pr)45
t The probability that a healthy agent in quarantine (4) dies (5) ∈(0, 1)

(Pr)46
t

The probability that a healthy agent in quarantine (4) was not infected and returned to the state
“recovered” (6) ∈(0, 1)

(Pr)47
t

The probability that a healthy agent in quarantine (4) was not infected and returned to the state
“vaccinated” (7) ∈(0, 1)

(Pr)61
t The probability that the recovered agent (6) will get infected (1) ∈(0, 1)

(Pr)64
t The probability that the recovered agent (6) will go to the quarantine (4) ∈(0, 1)

(Pr)65
t The probability that the recovered agent (6) will die (5) ∈(0, 1)

(Pr)67
t The probability that the recovered agent (6) will get vaccinated (7) ∈(0, 1)

(Pr)72
t The probability that the vaccinated agent (7) will get infected (2) ∈(0, 1)

(Pr)74
t The probability that the vaccinated agent (7) will go to the quarantine (4) ∈(0, 1)

(Pr)75
t The probability that the vaccinated agent (7) will die (5) ∈(0, 1)

* Estimated on empirical data.

In the fourth module, we defined how the virus can be spread in the society. The pro-
gram analyses the neighbourhood of each individual and determines whether there is
someone who might infect other agents.

Cases for Healthy Individuals

The program determines whether there were any infected (sInd
t = 2) or treated indi-

viduals (sInd
t = 3) in the neighbourhood of a healthy agent (sInd

t = 1). If there were, they
could have been infected (sInd

t = 2) with a certain probability. With a given probability,
they could also have been treated in hospital (or put in isolation) (sInd

t = 3). Infection
was not equivalent to a diagnosis of sickness. This part of the program is based on two
probabilistic tests. The first probabilistic test determined whether an individual had been
infected. However, only the second one determined whether the individual had been
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diagnosed and had been receiving treatment. If an individual was not infected, they could
still be directed into preventive quarantine (sInd

t = 4) with a certain probability. There are
also non-negative chances that a healthy agent might die within one week (sInd

t = 5). If the
system determined that no prior changes in status could be applied, then with a certain
probability, a person could be vaccinated and remain healthy (sInd

t = 7). The state transition
probabilities in the agent-based epidemic component that included immunity are presented
in Figure 1.

Table 3. Variables and parameters that were computed by the program after each iteration.

Variable Explanation Restr.

(Pr)13
t

The probability that a healthy agent (1) will become treated in the hospital (or
isolation) after becoming infected (3) at time t ∈(0, 1)

(Pr)42
t

The probability that a healthy agent in quarantine (4) will become infected at the
end of her quarantine at time t ∈(0, 1)

(Pr)63
t The probability that a recovered agent (6) will be hospitalised (3) at time t ∈(0, 1)

(Pr)73
t The probability that a vaccinated agent (7) will be hospitalised (3) at time t ∈(0, 1)

p Temporal variable that defines a threshold probability 1 ∈(0, 1)
q Temporal variable that defines a threshold probability 2 ∈(0, 1)
r Temporal variable that defines a threshold probability 3 ∈(0, 1)
z New temporal variable that defines a threshold probability 4 ∈(0, 1)

sInd
t

Health status of the agent at time t > 0
(1—healthy, 2—infected, 3—treated, 4—healthy individual in preventive quarantine,
5—deceased, 6—recovered, 7—vaccinated)

Int ∈ {1, 2, 3, 4, 5, 6, 7}

(Age)Ind
t Age of an agent at time t > 0 ≥0

(W p)Ind
t Productivity of an agent at time t > 0 ∈〈0, 1〉

Cases for Infected Individuals

For all of the agents that were already infected (sInd
t = 2), the program performed

probabilistic tests that determined whether an agent should be referred for treatment
(sInd

t = 3) or whether they had managed to overcome the virus (sInd
t = 6) (’recoveries’) or

had died (sInd
t = 5).

Cases for Treated or Infected Individuals in Isolation

With certain probabilities, an agent that was also receiving treatment (sInd
t = 3) could

change their state to recovered (sInd
t = 6) or deceased (sInd

t = 5). They could also remain in
hospital or in isolation (sInd

t = 3).

Cases for Healthy Individuals in Preventive Quarantine

For the agents in preventive quarantine (sInd
t = 4), the program determined the length

of time that an individual had remained in quarantine. There were two alternatives based
on a probabilistic test. The individual could be released after two time steps (weeks) or
an agent would have to remain in quarantine. If an agent was healthy after quarantine,
the program would assign his prior state (healthy, recovered, vaccinated) with a certain
probability: (sInd

t = 1, sInd
t = 6 or sInd

t = 7). Moreover, a quarantined agent could
have contracted the virus as a result of contacts during or at the end of the quarantine
(respectively, states sInd

t = 3 and sInd
t = 2) with a certain probability. In the worst-case

scenario, an agent could have died in isolation with a very low probability (sInd
t = 5).

Cases for Recovered Individuals

These agents were treated in the same way as healthy ones. However, in their case,
we assumed a decreased probability of them becoming infected or being hospitalised.
In addition, recovered agents would become immune to COVID-19 for several weeks in all
three scenarios.
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Cases for Vaccinated Individuals

These agents were treated in the same way as recovered ones. However, we assumed a
lower probability of them becoming infected or being hospitalised. In addition, vaccinated
agents would become immune for a longer period of time than recovered patients.

In our stylised simulation, we attempted to take into account the most important char-
acteristics that could affect the dynamics of the spread of the virus and the impact of the
pandemic on an economy. Therefore, all of the probability tests considered the age of an
individual. This is important because, according to the empirical data, in the first waves of
the coronavirus, the elderly were more likely to suffer with a severe disease or die from the
coronavirus. Apart from changes in the health status, one of the most important characteristics
of the agents was productivity. When their health status changed, an agent’s productivity
was updated accordingly. Any decrease in an agent’s productivity was extensively consulted
with both medical specialists and economists. The calibration was also consistent with the
conclusions that had been extracted from the literature.

Figure 1. State transition probabilities in the agent-based epidemic component. Health status:
1—healthy (h), 2—infected (i), 3—treated (t), 4—healthy individuals in preventive quarantine (q),
5—deceased (d), 6—recovered (r), 7—vaccinated (v) Pij—transition probability between states i and j,
see Tables 2 and 3.

In the fifth module, the aggregation for each iteration is performed. As a result, we
obtained the overall number of:

• Healthy individuals by age for each iteration;
• Infected agents by age for each iteration;
• Recovered agents by age for each iteration;
• Vaccinated agents by age for each iteration;
• Individuals receiving treatment by age for each iteration;
• Agents in preventive quarantine by age for each iteration;
• Agents deceased by age for each iteration.

These data were used as the input data for the dynamic stochastic general equilibrium
model, which will be described in the following sections.
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The last part of the code helps us visualise the results of the simulations. It also
permits the results to be systematised in csv tables for further analysis using the DSGE
model. The most important input data were the productivity shock.

4. Validation of Scenarios in Connection with the Introduction of Vaccination

In Kaszowska-Mojsa and Włodarczyk (2020) [1], four scenarios were analysed. How-
ever, because it was the early stage of the COVID-19 pandemic, we did not assume immu-
nity or the effects of vaccinations in our study.

In the first scenario in [1], we studied the spread of the coronavirus in a country
that was under mild restrictions. Home isolation was compulsory in this scenario. We
also assumed that in more severe cases, people would be hospitalised. In both cases,
the agents spent at least three weeks there. However, agents who had contact with an
infected individual were quarantined only with a given probability. The quarantine period
was a minimum of two weeks. At the same time, no additional restrictions were assumed
by the regulator. In 2020, we treated this scenario as a baseline scenario (1). In 2021, we
updated this scenario in order to introduce different levels of population immunity into
the model (see: scenarios 1.1., 1.2. and 1.3) and hence validated the results. We managed
to prove that the conclusions that had been presented in [1] were still valid when the
vaccination process and natural immunity after recovery were taken into account.

The results for scenarios 1.1, 1.2 and 1.3 were presented in relation to scenarios 1–4
from the research conducted in 2020 [1]. For ease of reading, we briefly described below the
assumptions of scenarios 2–4 and the main conclusions. For specific calibration of scenarios
1–4, see Table 4. For more information, see [1].

Table 4. Comparison of the calibration of scenarios 1–4.

Notation Scenario 1 Scenario 2 Scenario 3 Scenario 4

T 104 104 104 104
NInd 10,000 10,000 10,000 10,000
KInd 150 150 150 150

St × St 100 × 100 for all t Dynamic adjustment ∗ Dynamic adjustment * 100 × 100 for all t
(Ag)1

t 0.181 0.181 0.181 0.181
(Ag)2

t 0.219 0.219 0.219 0.219
(Ag)3

t 0.6 0.6 0.6 0.6
(W p)av_h

t 1 for all t Dynamic adjustment * Dynamic adjustment * 1 for all t
(W p)av_in f

t 0.9 0.9 0.9 0.9
(W p)av_q

t 0.8 0.8 0.8 –
(W p)av_t

t 0.3 0.3 0.3 0.3
(Pr)12

t 0.03 0.03 Dynamic adjustment * 0.2
(Pr)13

t 0.1 0.1 Dynamic adjustment * 0
(Pr)15

t 0.00002 0.00002 Dynamic adjustment * 0.00002
(Pr)21

t 0.6998 0.6998 Dynamic adjustment * 0.6998
(Pr)24

t 0.2 0.2 Dynamic adjustment * 0.2
(Pr)25

t 0.0002 0.0002 Dynamic adjustment * 0.005
(Pr)41

t 0.6 0.6 Dynamic adjustment * –
(Pr)43

t 0.1 0.1 Dynamic adjustment * –
(Pr)45

t 0.0002 0.0002 Dynamic adjustment * –
(Pr)31

t 0.7 0.7 Dynamic adjustment * 0.7
(Pr)35

t 0.0002 0.0002 Dynamic adjustment * 0.002

* The details of dynamic adjustment were described in [1].
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In the second scenario, we simulated the spread of the COVID-19 pandemic under
mobility restrictions, i.e., we focused on the impact of a lockdown on the spread of the
SARS-CoV-2 virus and on the economy. We assumed that the duration of a lockdown
would be at least two months (the lockdown was relatively long). The main observation
was that “an extreme lockdown resulted in the long-term decrease in productivity in the
economy” [1]. However, the pre-crisis level of productivity was achieved within two years
after the outbreak of the COVID-19 pandemic. There was no permanent loss of productivity
due to “an increase in the number of deaths and the permanent destruction of jobs”.

In the third scenario, we studied the effects of gradually introducing preventive
restrictions on a society, such as mobility restrictions, restrictions that could affect the
probability of infection and a lockdown. Then, we analysed the impact of these restrictions
on the spread of the virus and the economy.

In the fourth scenario, we described the situation in which the coronavirus spread in
a society in a much more aggressive manner. At the same time, the death rate was also
higher. In this scenario, no restrictions were imposed on a society by the government and
the spread of the virus was unrestricted. No large-scale testing was performed. Quarantine
or home isolation was not mandatory.

For each of the four scenarios, we generated the labour productivity paths using the
agent-based epidemic component. We then used these to obtain conditional forecasts of
the main macroeconomic indicators, i.e., output, capital and investments as well as the
unemployment rate, see Sections 5 and 6 (using the DSGE model).

To validate the results after introduction of COVID-19 vaccine, we developed three
new scenarios. In the first one (1.1), we updated the baseline scenario (1) with the immunity
periods for vaccinated and recovered agents. Like in baseline scenario (1), we assumed
the existence of only mild restrictions. In this scenario, the agents were vaccinated under
certain probability (representing their willingness to get vaccinated) or under the condition
that they were healthy or had recovered. In addition, there was a restriction on how many
agents could be vaccinated in one period of time. We assumed that vaccinated agents
would be immune for 20 weeks and that they would have a lower probability of being
infected afterwards. Similarly, recovered people would be protected for ten weeks and
would have lower a probability of being reinfected. Furthermore, our code enabled the
period of immunity and transition probabilities to be modified. In this scenario, on average,
we achieved up to 50% of immune agents in the population. In addition, we assumed that
the effects of the vaccine would decrease over time. However, when the positive effects
of vaccinations would be fading away, new individuals would be getting vaccinated. We
also included the possibility of receiving additional dose of vaccine. For those reasons, we
observed fluctuations in the number of infected people (as well as of the other states, see
Figure 2) that translated into fluctuations in productivity.

In the second scenario (1.2), we tested whether a higher percentage of immune agents
in a society (80%) would enable herd immunity to be achieved and thus could avoid intro-
ducing further prevention and control measures. In order to obtain this higher percentage
of vaccinated agents, we assumed that the vaccination process would be more effective (i.e.,
a larger number of agents could be vaccinated each day and we also increased probability
of getting vaccinated. This probability of getting vaccinated would be higher, e.g., if there
had been efficiently conducted pro-vaccination campaigns that increased public willingness
to get vaccinated). In Figure 3, a gradual decrease in the number of agents in quarantine can
be observed, however, a relatively high percentage of individuals were still being infected
and hospitalised. Unfortunately, a large percentage of people also died. After recovery,
immunity was gradually built up in a society. Building herd immunity is supported by
the vaccination process, although it should be emphasised that herd immunity was not
achieved. A higher vaccination coverage led to a lower number of infected individuals and
a correspondingly fewer number of recoveries over time. Vaccinating agents at a higher
level also reduced the burden on the health care system. Changes between the states would
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also update the states of the agents in terms of their productivity. Taken together, in the
aggregate, we observed changes in the productivity shock, which then fed the DSGE model.

Figure 2. Changes in the health states in Scenario 1.1 (with immunity).

Figure 3. Changes in the health states in Scenario 1.2 (with immunity).

In the third scenario (1.3), we further increased the effectiveness of the vaccination
process as well as the probability of getting vaccinated. We did this until we achieved herd
immunity. This was achieved when approximately 90% of the population was vaccinated or
had already recovered, see Figure 4. In all three scenarios, we observed a moderate decrease
in productivity during the second year. This can be easily explained by the existence of a
group of individuals who were against vaccinations and the other new forms of COVID-19
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treatment. This trend also reflected the fact that part of population had died as a result
of being infected with COVID-19 or from natural causes (for now, we did not allow new
agents to be created in the model). In Table 5, the calibration for all three scenarios with
vaccinations and immunity after recovery is compared.

Table 5. Comparison of the calibration of scenarios 1.1–1.3 (with immunity).

Notation Scenario 1.1 Scenario 1.2 Scenario 1.3

T 104 104 104
NInd 10,000 10,000 10,000
KInd 150 150 150

St × St 100 × 100 for all t 100 × 100 for all t 100 × 100 for all t
(Ag)1

t 0.181 0.181 0.181
(Ag)2

t 0.219 0.219 0.219
(Ag)3

t 0.6 0.6 0.6
(W p)av_h

t 1 for all t 1 for all t 1 for all t
(W p)av_in f

t 0.9 0.9 0.9
(W p)av_q

t 0.8 0.8 0.8
(W p)av_t

t 0.3 0.3 0.3
(Pr)12

t 0.03 0.03 0.03
(Pr)13

t 0.1 0.1 0.1
(Pr)14

t 0.1 0.1 0.1
(Pr)15

t 0.00002 0.00002 0.00002
(Pr)17

t 0.05 0.05 0.3
(Pr)23

t 0.2 0.2 0.2
(Pr)25

t 0.0002 0.0002 0.0002
(Pr)26

t 0.6998 0.6998 0.6998
(Pr)35

t 0.0002 0.0002 0.0002
(Pr)36

t 0.7 0.7 0.7
(Pr)41

t 0.6 0.6 0.6
(Pr)43

t 0.1 0.1 0.1
(Pr)45

t 0.0002 0.0002 0.0002
(Pr)46

t 0.06 0.06 0.06
(Pr)47

t 0.06 0.06 0.06
(Pr)62

t 0.01 0.01 0.01
(Pr)63

t 0.0005 0.005 0.005
(Pr)64

t 0.05 0.05 0.05
(Pr)65

t 0.00001 0.00001 0.00001
(Pr)67

t 0.009 0.1 0.2
(Pr)72

t 0.009 0.005 0.005
(Pr)73

t 0.00045 0.00025 0.00025
(Pr)74

t 0.05 0.05 0.05
(Pr)75

t 0.00001 0.00001 0.00001
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Figure 4. Changes in the health states in Scenario 1.3 (with immunity).

In Figure 5, the labour productivity paths for four scenarios without immunity
are presented.

In Figure 6, the productivity paths for all three scenarios with immunity are presented.
It is easy to observe that all of the scenarios that included the vaccination process achieved
much better results than the baseline scenario that had only standard preventive measures
(face masks and quarantine). However, because approximately 90% of population needs
to be vaccinated or has to recover in order to obtain herd immunity, the use of lockdowns
seems to be indispensable. In the following sections, we used those productivity shocks
as an input into the DSGE model in order to obtain a conditional forecast of the main
macroeconomic variables, which would indicate the impact of vaccinations on the economy
(i.e., output, investment, capital and unemployment rate).

0 10 20 30 40 50 60 70 80 90 100

80
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95

100

Scenario 1 Scenario 2 Scenario 3 Scenario 4

Figure 5. Aggregate labour productivity under the different COVID-19 prevention and con-
trol schemes. Please note that this figure is similar to the one that was published in [1] in November
2020. This figure enables the results for the scenarios that were analysed in 2021 to be compared with
those from 2020.
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Figure 6. Aggregate labour productivity under the different COVID-19 vaccination schemes. Vacci-
nation Scenario 1 is (1.1); Vaccination Scenario 2 is (1.2) and Vaccination Scenario 3 is (1.3).

5. Macroeconomic Consequences of Pandemics—The DSGE Approach

Like in [1], we also used the DSGE model to assess the macroeconomic consequences
of the COVID-19 pandemic under the different prevention and control schemes, with a
special emphasis on vaccinations. We used the approach that enabled the business cycles of
modern economies to be replicated. The model was based on the model that was elaborated
by Gali [22]. However, our aim was to extend it in a such way that the capital accumulation
and labor market components could be introduced. We developed our model in line
with the works of Christiano et al. [23], Gali [24,25], Gali et al. [26]. A description of the
equations that were used in the modelling process can be found in our previous paper [1].
The changes in the calibration are explained in this section.

In order to study the impact of the COVID-19 pandemic on the economy using this
framework, we introduced an additional labour productivity shock into the DSGE model.
This shock was obtained from the agent-based component that was previously described.
This approach enabled us to assess the consequences of a change in the availability of
employees because they were infected, hospitalized, quarantined and because of the
introduction of remote work. A change in their health status or working remotely made
employees less effective or prevented them from working at all. It should be noted that
these employees continued to work for the company in question and received either wages
or sickness benefits for this work. Therefore, the COVID-19 shock should not be considered
to be a labour supply shock, which pushes part of the labour force into inactivity as was
the case in [27]. In our view, illness may have caused employees to be unproductive
or not fully productive, but in many cases, it did not have any negative impact on the
formal employment relationship. Such an approach located the first impact of a COVID-19
pandemic on the supply side of an analysed economy, which led to better reproducing
the character of the pandemic disturbances. The demand-side effects were a second-order
phenomenon. Such an approach is also in line with the results of the research on the
nature of pandemic shock that assesses the supply-side effects as being the major factor
that is responsible for the economic disturbances that have been caused by the SARS-CoV-2
pandemic [28].

The model assumed that “an economy was populated by a unit mass continuum of
households that maximised their utility levels by solving the optimisation problem” as was
described in [1]. The model is expressed in weekly terms in order to be able to study the
dynamics of the COVID-19 pandemic. This approach was also used in [27,29]. In Table 6,
the calibration of the model is presented. It was performed in such a way so that it matches
the standard stylised facts associated with the business cycles of developed economies. Our

106



Entropy 2022, 24, 126

model successfully reproduced the results of the empirical studies such as, for example,
the estimated model of Christiano et al. [30].

Table 6. Proposed calibration of the parameters of the model.

Variable Description Calibrated Values

A Elasticity of output towards the changes of labour 0.25
ϕ Reverse of the labour supply elasticity 5

εw Elasticity of substitution between types of labour 4.52
εp Elasticity of substitution between types of goods 9
θw Calvo index of wage rigidity 0.9807
θp Calvo index of price rigidity 0.9807
β Discount factor 0.9996
δ Capital depreciation rate 0.0175

φk Capital adjustment costs’ scaling parameter 12
h Habit persistence parameter 0.9
ρa Autoregressive parameter of the technological shock 0.99
ρχ Autoregressive parameter of the labour supply shock 0.99
ρa Autoregressive parameter of the technological shock 0.99
ρχ Autoregressive parameter of the labour productivity shock 0.99
ρM Autoregressive parameter of the monetary policy shock 0.965
φπ Central bank’s reaction to the deviation of inflation from its steady state value 0.115
φy Central bank’s reaction to the deviation of output gap from its steady state value 0.0096

The model was slightly recalibrated with respect to [1] based on the fact that new
information about the COVID-19 pandemic was provided. We assumed a discount factor
β = 0.9996, which resulted in a steady-state interest rate of 2.1% in annual terms. Following
the approach adopted by Christiano et al. [30] and Gali [25], we set the expected duration
of prices and wages to 52 weeks, which makes θp = θw = 0.9807. As in the study of
in Gali [25], we assumed that εw = 4.52 and ϕ = 5. As a result of the adopted calibration,
the steady-state unemployment rate was approximately 4.8%. In our model, the unemploy-
ment rate could be identified with the natural unemployment rate under certain restrictions.
The habit persistence parameter, h, was set at a relatively high level of 0.9. Nonetheless, this
value is acceptable if we consider the fact that we adopted the calibration in weekly terms.
As was expected, consumption was characterised by a relatively high week-to-week inertia.
We calibrated the capital share in production to 0.25 (α = 0.25). Following the analysis of
the empirical data concerning the behaviour of capital during the pandemic, we decided
to slightly recalibrate the parameters concerning the capital accumulation φk = 12 and
δ = 0.0175 (compared to φk = 8 and δ = 0.05 in [1]). Both parameters enabled us to obtain
the reactions of capital and investment that were better fitted to the actual tendencies that
were observed in the data. These values also permitted the model to be identified.

Because the model was calibrated in weekly terms, the parameters of the Taylor rule
also had to be adjusted. We assumed φπ = 0.115 and φy = 0.0096. This calibration is
consistent with the values of 1.5 and 0.125 in quarterly terms, respectively. Finally, we had
to recalibrate the autoregressive parameters of the shocks in order to obtain the duration of
the shocks in weekly terms. As a result, the values of ρa = ρχ = ρN = 0.99 and ρM = 0.965
were assumed. The main advantage of the proposed calibration is that the Blanchard–Kahn
conditions were fulfilled and the model could be identified. In both this article and in the
research that was conducted in November 2020, the model was solved in nonlinear terms
(no log-linearisation around the steady state was required).

6. COVID-19 Prevention and Control Schemes—What Does the Vaccination Change?

Using the DSGE model and the labour productivity shocks that had been obtained
from the agent-based epidemic component, we generated conditional forecasts of the
standard macroeconomic indicators: output, capital, investments and the unemployment
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rate. In Figure 7, we present the results of the four scenarios without immunity (for a
description of the scenarios, see Section 4). The analyses were performed for 104 weeks
(two years). The results are expressed as the relative difference from the steady-state value.
A mean of 10,000 simulations of the model is reported.

Figure 7. The major macroeconomic indicators under the different COVID-19 prevention and control
schemes (conditional forecasts using the DSGE model). Please note that this figure is similar to
the one that was published in [1] in November 2020. However, the capital accumulation process
was recalibrated in the DSGE model as is explained in Section 5. This figure enables the results for
scenarios analysed in 2021 to be compared with those from 2020.

Our analysis in November 2020 showed that the scenarios could easily be divided into
two groups, that produced similar economic trends. The first group consisted of scenarios
1 and 4, which “resulted in the occurrence of negative economic trends that persisted in an
economy in the medium or even long term”. The other group was composed of scenarios
with lockdowns (2 and 3). The use of lockdowns led to a deeper response of macroeconomic
variables, but the negative effects were observable over a shorter period of time.

The first group consisted of “the scenarios that assumed that the government permit-
ted the persistent spread of the disease by introducing only general sanitary restrictions
(scenario 1) or by not introducing any restrictions at all and hoping that the propagation of
the virus would finally cease at some point (scenario 4). Both of these approaches resulted
in a relatively high share of people who were either infected or were placed in quarantine,
which translated into a persistent decrease in the productivity of labour” [1].

In the case of the first scenario, the labour productivity stabilised at a level of approxi-
mately 92% of full capacity. In this scenario, we observed that the output initially decreased
to approximately 97.5% of the steady value. Nonetheless, then it stabilised at 98% of its
steady-state value. At the same time, it should be emphasised that there was a decrease in
capital and investment by approximately 10% during the first year after the outbreak of the
COVID-19 pandemic. During the second year after the onset of the pandemic, the unem-
ployment rate stabilised at 5 pp. above the steady state, which translated into an actual
unemployment rate of approximately 9%.

After the introduction of vaccinations, we modified this scenario to include immunity.
We will present the results after commenting on the main results that were obtained from
the scenarios 2–4 in 2020 in order to facilitate the reference of the results to the original
study that we wanted to validate.

The strategy that enabled the virus to spread without restriction led to a permanent de-
crease in productivity to a level of 80% within two years after the outbreak of the COVID-19
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pandemic that was described in scenario 4. In this scenario, output decreased by approxi-
mately 4% in the first half of the year. Then, it stabilised for another six months. During the
second year, the output continued in a downward trend and reached approximately 94%
of the steady-state value. While the output decreased, firms stopped making further in-
vestments. As a result, the level of investment was lower and the capital decreased as
well. The unemployment rate increased by approximately 15 pp. within the next two
years. We estimated a vast social cost as the actual unemployment rate reached 20%. These
estimations did not include the long-term effects, i.e., due to the loss of human capital.
The results of our analysis clearly show that the policy makers should not have followed
the strategy of no reaction.

In scenarios 2 and 3, we compared the strategy of a strict lockdown with a gradual one.
In both cases, the macroeconomic variables (output, capital, investment and unemployment
rate) decreased by almost the same amount, see Figure 7. A lockdown that lasted for two
months caused a contraction of output and economic activity that disappeared within six
months. The main difference between scenarios 2 and 3 was the duration of the economic
downturn that was caused by a lockdown. Gradual lockdowns unnecessarily prolonged the
duration of restrictions as well as the adverse effects that were caused by the introduction
of the prevention and control schemes, and thus seems to be suboptimal compared to an
immediate action strategy.

To summarise, the main conclusion was that “if we decide to shape our policy accord-
ing to scenarios 2 or 3, the changes in economic activity might be abrupt but short-lived.
In the case of scenarios 1 or 4, the decrease in economic activity might not be as deep but
would be rather permanent” [1]. However, the question of whether in the era of widespread
vaccination, it would not make sense to follow the first baseline scenario instead of continu-
ing to implement costly lockdowns remains? As we show, our results are still valid despite
the introduction of a vaccine against COVID-19.

In Figure 8, the results of three scenarios with immunity (1.1–1.3) compared to the
baseline scenario (1) are presented. In the first scenario with immunity (1.1), the output
initially dropped by at least 2%. For the following 1.5 year, the output stabilised at 98.5% of
its steady-state value. In this scenario, the contraction of capital and investment (of approx.
4%) was permanent. In the first 25 weeks, the unemployment rate increased by 5 pp. Then,
it stabilised at 2.5 pp. above the steady state.

In the second scenario with immunity (1.2), we observe that the output decreased by at
least 1.5% in the first 20 weeks. In the next few weeks, it returned to a level of approximately
99% of its steady-state value. There was a permanent decrease in capital and investment of
approximately 2%. The situation on the labour market deteriorated in this first period (the
unemployment rate was greater by 3 pp. during that period). However, in the second half
of the year of the COVID-19 pandemic, the unemployment rate stabilised at 2 pp. above
the steady state.

Only in the third scenario with immunity (1.3) was the decrease in output temporary
and negligible in the long term. Capital and investment decreased but the contraction
was not permanent. The social costs were also low. The unemployment rate increased in
the first weeks of the pandemic but decreased after a society had been vaccinated (after
obtaining immunity at a level of 90%).

To conclude, the use of lockdowns is still an effective strategy that we should use
because a vaccination coverage of 0.5 (50% of the population) does not contain the spread
of the virus enough. Herd immunity was only achieved when the vaccination coverage
was very high (approximately 90% of the society needs to be immune). Such a high
vaccination coverage of the population is virtually impossible when people’s skepticism
towards vaccinations is considered and the presence of contraindications to vaccinations
(i.e., children under five years of age cannot be vaccinated and certain diseases are also
contraindications).
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Figure 8. The major macroeconomic indicators under the different COVID-19 vaccination schemes
(conditional forecasts using the DSGE model). Vaccination Scenario 1 is (1.1); Vaccination Scenario 2
is (1.2) and Vaccination Scenario 3 is (1.3).

7. Conclusions

Our analysis showed that vaccines and after-recovery immunity do change the dynam-
ics of a contagion or reduce the adverse effects of pandemics on an economy. Although the
consecutive pandemic waves have developed some self-limiting characteristics, we proved
that it is hard to develop “herd immunity”. Even when vaccines are available, the disease
remains a constant feature of the economic landscape, which causes losses in economic
welfare. The outcomes that resemble “herd immunity” might only be generated for very
high vaccination rates (i.e., approximately 90% of the population should be vaccinated or
should obtain natural immunity).

The introduction of vaccines in the analysis did not change the main conclusions
of the research that was conducted in November 2020. In the article, we showed that
the changes in labour productivity that were caused by the spread of disease still lead to
negative changes of the macroeconomic aggregates. Despite the fact that the magnitude
of these changes is much smaller than in the case in which people did not vaccinate at all,
the pandemic still depresses economic activity over a relatively long period of time. As the
resulting economic fluctuations are not very abrupt, strategies that promote vaccination
do permit the economic costs of pandemic to be reduced in terms of output losses, capital
depreciation and unemployment. On the other hand, they prevent the occurrence of an
economic recovery after the peak of pandemic wave as the labour productivity does not
reach the steady state level.

A lockdown strategy causes bigger falls of productivity, output and capital, which are
accompanied by increases in unemployment, in the initial phase, when harsh constraints
on personal and economic activity are introduced. On the other hand, as the constraints are
lifted, an economic recovery is observed. That recovery is a representation of the “creative
destruction” phenomenon, which leads to the occurrence of microcycles of capital working
towards an improvement of the economic perspectives after the lockdown. As a result,
lockdowns do not extend the duration of a recession, which confirms that they are still a
viable alternative in the fight against an epidemic.
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Abstract: The stock index is an important indicator to measure stock market fluctuation, with a
guiding role for investors’ decision-making, thus being the object of much research. However, the
stock market is affected by uncertainty and volatility, making accurate prediction a challenging task.
We propose a new stock index forecasting model based on time series decomposition and a hybrid
model. Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN)
decomposes the stock index into a series of Intrinsic Mode Functions (IMFs) with different feature
scales and trend term. The Augmented Dickey Fuller (ADF) method judges the stability of each IMFs
and trend term. The Autoregressive Moving Average (ARMA) model is used on stationary time
series, and a Long Short-Term Memory (LSTM) model extracts abstract features of unstable time
series. The predicted results of each time sequence are reconstructed to obtain the final predicted
value. Experiments are conducted on four stock index time series, and the results show that the
prediction of the proposed model is closer to the real value than that of seven reference models, and
has a good quantitative investment reference value.

Keywords: stock index forecasting; CEEMDAN; ADF; ARMA; LSTM; hybrid model

1. Introduction

The stock index is calculated based on some representative listed stocks. To some
extent, it can reflect price changes of the whole financial market, hence its use as an
important indicator of the country’s future macroeconomic performance. Forecasting the
stock index accurately is of paramount importance for reducing risks in decision-making,
by providing some important reference information [1]. However, owing to the complexity
of the internal structure and the variability of external factors, changes of the stock market
are dynamic and uncertain, and forecasting the stock index has always been a challenge.
Many stock forecasting models are mostly classified as either statistical or machine learning
models [2]. Statistical models were first used to predict the stock market in finance, and have
made some achievements. However, they assume a linear and stationary time series, which
is inconsistent with the dynamic, non-linear characteristics of the real stock market, so
they have great limitations. A deep learning model can overcome the defects of traditional
statistical models in time series prediction but is easily affected by noise in some complex
and dynamic financial systems, making it difficult to mine the hidden features of time
series, resulting in poor learning ability and limited prediction accuracy.

Therefore, a single statistical or machine learning model cannot well predict the
stock index. To overcome these limitations, we propose a hybrid stock index forecasting
model based on Complete Ensemble Empirical Mode Decomposition with Adaptive Noise
(CEEMDAN) [3]. In this model, CEEMDAN is first used to decompose the original financial
time series into a series of Intrinsic Mode Functions (IMFs) and a residual term. Then, the
stability of the IMFs and the residual term is characterized using the Augmented Dickey
Fuller (ADF) method, the low-volatility time series are classified as linear components,
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and high-volatility time series are classified as non-linear components. In the final step,
the Autoregressive Moving Average (ARMA) model is applied to the linear component,
and Long Short-Term Memory (LSTM) is applied to the non-linear component. The final
prediction result is obtained by reconstructing each prediction series. This method makes
full use of ARMA in linear problems and uses LSTM to identify and abstract non-linear
features, mining the movement rules of hidden components in time series and improving
prediction accuracy. Hence, our proposed method is referred to as CAL (CEEMDAN-
ARMA-LSTM). In the CAL model, CEEMDAN sequence decomposition can reduce the
complexity of time series, and the sequences that pass the ADF stationarity test have
significant linear trends. Therefore, we employ ARMA to predict the data of the linear part,
avoiding the waste of effective information caused by differential operation.

The hybrid model combining linear and non-linear methods has great advantages in
time series prediction [4]. Ref. [5] proposed a hybrid time-series prediction model taking the
residual generated by Autoregressive Integrated Moving Average (ARIMA), combining the
differences in a non-stationary time series with ARMA, as the input of LSTM for fitting. The
ARIMA-LSTM model has achieved more accurate forecasting results than the individual
LSTM and ARIMA models. A moving average filter was used to decompose a time series
into linear and non-linear components [6]. ARIMA and Artificial Neural Network (ANN)
were used to model low- and high-volatility data, respectively. This hybrid ARIMA-ANN
model can achieve good prediction results. Each hybrid model in the literature combined
linear and non-linear models in different ways, providing different perspectives for time
series data prediction. However, these methods have the limitations that the error sequence
generated by a linear model is assumed to be non-linear [5], and the original sequence is
decomposed into single linear and non-linear components, which cannot mine the internal
features of an overly complicated time series [6].

Our proposed model can properly decompose the original time series, and the ARMA
and LSTM models are applied, which overcomes the defects of strong assumptions [5] and
insufficient decomposition [6]. We validate our model’s effectiveness on four stock market
indices. The experimental results show that the proposed model has higher prediction
accuracy than seven reference models on these indices. The main contributions of this
study are summarized as follows:

1. The advantages of CEEMDAN are used to decompose the original complex sequential
data into trends of different scales. This reduces the complexity of the original time
series to extract abstract and deep features.

2. The ADF test method effectively combines the linear and non-linear models. This
method can judge the stationarity of data. The linear prediction method of ARMA is
used for the stationary time series, and the non-linear prediction method of LSTM for
unstable time series.

3. The proposed CAL model is compared with the individual LSTM, Gated Recurrent
Units (GRU), Bi-directional LSTM (Bi-LSTM), ARIMA models and the hybrid EMD-
ARMA-LSTM, CEEMDAN-LSTM [7], and ARIMA-ANN [6] models. Experiments on
different datasets show that the CAL model outperforms traditional hybrid models,
improved deep learning model, and their separate component models.

The remainder of this article is organized as follows. Section 2 summarizes related
work. Section 3 introduces the proposed CAL model. Section 4 experimentally evaluates
the proposed method on real stock index datasets. Section 5 summarizes the paper and
points out future research directions.

2. Related Work

Time series analysis is an important tool in many stock market prediction methods,
and it makes predictions by analyzing observed points in the series. As one of the most
widely used linear time series forecasting methods, the ARIMA model [8] integrates the
Autoregressive (AR) and Moving Average (MA) models. It assumes that future predictions
have a linear dependence on the current and past data values. Therefore, ARIMA can
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only fit linear stationary time series data; the non-stationary time series might not be
modeled effectively.

Deep learning can overcome the limitations of traditional linear models, such as weak
fitting ability and weak feature extraction ability with non-linear data, and has gradually
become a key research method in stock prediction. Some deep learning models, such as
Convolutional Neural Networks (CNNs), can identify non-linear relationships and extract
hidden information from data. LSTM can retain long historical information and achieve
high prediction accuracy in sequential pattern learning problems. It does not require select-
ing features manually [9] and the performance to be superior to that of Feedforward Neural
Network (FNN) [10], a Deep Neural Networks (DNN) [11], and Support Vector Machines
(SVM) [12]. Although deep learning well models some complex problems, the traditional
linear model still has some advantages. For example, the regression method sometimes has
better prediction performance than deep learning in power system prediction [13,14].

Based on the above analysis, no individual model can be applied well in all circum-
stances. In a practical problem, the appropriate model depends on the characteristics of
the dataset. However, in time series prediction, it is sometimes difficult to define whether
the data are linear or non-linear, especially when there are multiple linear or non-linear
components, making it difficult to choose an appropriate prediction model.

Various hybrid techniques exploit the unique strengths of both types of model to
effectively improve prediction performance [4–6]. Ref. [15] combined ARIMA and SVM,
which showed that the combined model was better than either of its components at stock
price prediction. LSTM and an Autoregressive Conditional Heteroscedasticity (GARCH)
model were combined to predict stock price volatility, with relatively accurate results [16].
Ref. [17] proposed an ARIMA-ANN hybrid model to improve time series predictions when
a time series has both linear and non-linear components. Ref. [18] developed three different
hybrid models combining linear ARIMA and non-linear models, such as SVM, ANN, and
random forest (RF) models, to predict stock index returns. Experimental results showed
that the hybrid model ARIMA-SVM achieved the highest accuracy and the best return.

3. Stock Index Forecasting Model

3.1. Related Models
3.1.1. CEEMDAN

Empirical mode decomposition (EMD) [19] can decompose time series data into
subseries according to their own time scales without setting a basis function, for effective
treatment of non-linear and unstable data. However, mode aliasing can occur during EMD
data decomposition. Ensemble Empirical Mode Decomposition (EEMD) addresses this
problem but cannot completely eliminate reconstruction error after the introduction of
Gaussian white noise [7]. In the process of decomposition, CEEMDAN adaptively adds
white noise to avoid mode mixing of EMD, and addresses reconstruction error due to
noise. The prediction of stock prices is affected by multiple factors and is a non-linear
complex model. The components of CEEMDAN are relatively simple; hence, more accurate
predictions can be obtained.

3.1.2. LSTM

As a special recurrent neural network, LSTM solves the problem of gradient disappear-
ance and explosion in the training process of long sequences, and it has a more complex
network structure. LSTM introduces a cellular state and combines forgetting, input, and
output gates to discard, maintain, and update information. The output of the model is
calculated by multiple functions involving some summation operations, so it is not easy to
produce the problems of gradient disappearance and explosion in the process of backprop-
agation. LSTM has advantages in some problems related to time series, such as industrial
time series prediction [20] and text translation [21]. We take this model as the non-linear
part of time series prediction.
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3.1.3. ARMA

ARMA is a linear sequential method that predicts a future according to historical
and current data. ARMA data prediction must meet the requirements of stationarity. In
practice, trends and periodicity often exist in many datasets, so there is a need to remove
these effects before applying such models. Removal is typically carried out by including an
initial differencing stage in the model, and the model is transformed into an ARIMA model.
Therefore, ARIAM can be seen as an enhanced version of ARMA. It has a wider range of
applications but a certain amount of information loss.

3.2. Proposed Model

It is widely accepted that the financial market is complex and dynamic, which calls for
a noise elimination or time series decomposition. For this purpose, a multi-scale decompo-
sition method called CEEMDAN is used in our model. The decomposed components have
different scales; ARMA and LSTM are used as linear and non-linear prediction modules to
exploit their respective advantages. Thus, a hybrid ARMA-LSTM model for time series
forecasting based on CEEMDAN is proposed, which is called CAL (CEEMDAN-ARMA-
LSTM). CEEMDAN can adaptively decompose a time series, yielding a series of IMFs and
residue with different characteristic scales. The decomposition principle is given by

s(t) =
n

∑
i=1

im fi(t) + res(t), (1)

where s(t) represents given time series data; im fi(t) (i = 1, 2,. . . ,n) represents the different
IMFs; and res(t) is the residue. Each IMF and residue has its own local characteristic time
scale. A low-volatility sequence contains more linear features, and ARMA is more suitable
for processing. A high-volatility sequence can be considered non-linear, which better suits
LSTM. We require a method to separate the linear and non-linear components and feed
them into ARMA and LSTM.

Each hybrid model brings its own perspectives to time series decomposition. We
use a statistical ADF method to separate linear and non-linear components. The ADF test
can identify whether a time series is stationary. The existence of a unit root in a sequence
indicates that a series is unstable. A more negative ADF test result indicates more stable
data, and 0.05 is an accepted threshold to judge the stability of a dataset, which can used to
separate linear and non-linear sequences [4].

s(t) =
m

∑
i=1

li +
n+1

∑
i=m+1

ni. (2)

An ADF stationary test separates time series decomposed by CEEMDAN in Equation (2),
where li and ni, respectively, denote linear and non-linear components.

Lt = g(lt−1, lt−2, . . . , lt−p, εt−1, εt−2, . . . , εt−q). (3)

After the linear and non-linear components, respectively. The modeling process of
ARMA is described by Equation (3), where lt−1 to lt−p are time sequence values of the
past p days, εt−1 to εt−q denote corresponding random error, and g is the linear function
of ARMA. It can be seen from Equation (3) that the results are related to the sequential
values and random errors in a past period of time, so it can be concluded that its prediction
process can reflect the continuity of the original sequence in time.

LSTM can mine the characteristics of non-linear time series, which we use to fit non-
stationary sequences.The LSTM modeling process is described by Equation (4), where f is
the non-linear function of LSTM, and a is the number of days observed by the model, i.e.,
how far we will go back in time. The prediction results of the linear and non-linear parts

116



Entropy 2022, 24, 146

are obtained by the corresponding models, and the final prediction is the integration of the
linear and non-linear parts in Equation (5), where y(t) denotes the final predictions.

Nt = f (nt−1, nt−2, . . . , nt−a), (4)

yt =
m

∑
i=1

Li +
n+1

∑
i=m+1

Ni. (5)

To sum up, the CAL model prediction consists of time series decomposition, an ADF
stationary test, model fitting, and integration of results. Figure 1 shows the prediction
model, where IMF1-IMFn are IMF components after time series decomposition, and res is
the residue. ARMA1-ARMAm denote that the m sequences pass the ADF test and are fitted
using ARMA, and LSTM(m+1)-LSTM(n+1) denote the n − m + 1 sequences that fail the ADF
test and are modeled by LSTM. The steps of the proposed hybrid model are as follows.

1. Given time series decomposition, using a CEEMDAN method (Equation (1)), time
series data are decomposed into finite IMFs and residue. Components can be more or
less volatile.

2. Sequences with different stability are separated by an ADF stationary test (Equation (2)).
3. Low- and high-volatility components are fitted by ARMA (Equation (3)) and LSTM

(Equation (4)), respectively.
4. The final result is the sum of the predictions of each component (Equation (5)).

Figure 1. Stock market index forecasting model.
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4. Experimental Results and Discussions

In this section, we experimentally present the predictive ability of the CAL model.
In Section 4.1, datasets used in experiments are introduced. In Sections 4.2 and 4.3, the
evaluation metrics and parameter settings in the experiment are discussed, respectively.
The decomposition results of EMD and CEEMDAN are compared in Section 4.4. The
models for comparison are listed in Section 4.5. The predicted effects of the CAL model
and other comparative methods are evaluated in Section 4.6.

4.1. Datasets

We use one-step-ahead prediction to verify the prediction accuracy of the proposed
CAL model on four major global stock indices: Deutscher Aktien (DAX), Hang Seng (HSI),
Standard and Poor’s 500 (S&P500), and Shanghai Stock Exchange Composite (SSE). These
have strong representation in the global financial market and can reflect stock market
changes, which has much research value. Stock market indices are affected by national poli-
cies, market environments, and other factors presenting different characteristics. Research
on stock market indices in different financial markets can examine the prediction accuracy
of the model.

The dataset comes from Yahoo! Finance. The range of each stock index is from
13 December 2007, to 12 December 2020, and the daily closing price is selected as the
research object. The first 90% of the dataset in the time order of each stock index is used as
the training set, and the last 10% is used as the test set. Only the data of trading days are
used for research.

The statistical analysis of each stock index is shown in Table 1, where we determine
the amount of data contained in each stock market index, as well as the average, maximum,
minimum, standard deviation, and ADF test results of the closing index. As can be seen
from Table 1, there is a large gap between the maximum and minimum values, and a large
standard deviation, indicating that these closing indices have great volatility within the
research range. Moreover, the ADF test results of the DAX and S&P500 are greater than
the threshold 0.05, indicating that the dataset is highly volatile and non-stationary. SSE is
somewhat more stable than the other three datasets. Figure 2 shows the sequential change
of the closing index within the study range, from which it can be seen that the four indices
all have great volatility and instability in the short term.

Table 1. Descriptive statistics of closing indices.

Index Count Mean Max Min Standard Deviation ADF Test

DAX 3300 9118.21 13,789.00 3666.41 2722.52 0.79
HSI 3219 23,206.70 33,154.12 11,015.84 3660.60 0.11
S&P500 3273 1915.40 3702.25 676.53 713.03 0.99
SSE 3163 2846.43 5497.90 1706.70 586.51 0.01
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(a) (b)

(c) (d)

Figure 2. Daily closing index series of four financial markets. (a) DAX. (b) HSI. (c) S&P500. (d) SSE.

4.2. Evaluation Metrics

We evaluate the proposed CAL model by the Mean Absolute Error (MAE), Root
Mean Square Error (RMSE), Mean Absolute Percentage Error (MAPE), and R-squared (R2),
defined as Equation (6) to Equation (9).

MAE =
1
n

n

∑
i=1

|pt − yt| (6)

RMSE =

√
1
n

n

∑
t=1

(pt − yt)2, (7)

MAPE =
1
n

n

∑
t=1

| pt − yt

yt
|×100, (8)

R2 = 1 − ∑n
i=1(pt − yt)2

∑n
i=1(pt − ȳt)2 . (9)

Here, pt, yt, and ȳt are the predicted, actual, and average of actual values, respectively,
and n is the prediction horizon. MAE measures the average magnitude of the errors in a
set of predictions, without considering their direction. RMSE is a quadratic scoring rule
that also measures the average magnitude of the error. It is the square root of the average
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of squared differences between prediction and actual observation. MAPE measures the
percentage error of the forecast in relation to the actual values. R2 is a statistical measure in
a regression model that determines the proportion of variance in the dependent variable
that can be explained by the independent variable. It corresponds to the squared correlation
between the observed values and the predicted values by the model. A higher value of R2

means a better prediction accuracy.

4.3. Parameter Settings

The sequential model structure in Keras is used to build the LSTM network. The batch
size of the model is 128. Two layers of LSTM are employed to build the sequential model,
and the output of the second layer of the last LSTM unit is connected to a fully connected
layer. Then, the fully connected layer is connected to another fully connected layer for the
final output. Figure 3 shows the LSTM network structure, where xi (i = 1, 2,. . . , n) is the
input to the model. The numbers of units in each LSTM in the first and second layers are
128, 64, respectively. The third fully connected layer has 16 neurons, and the last layer has
only one unit, which will provide a predicted value. Fully connected units and LSTM units
use the ReLU and tanh activation function, respectively. We use MSE as a loss function, and
use Adam as an optimization algorithm. Adam is an adaptive learning rate optimization
algorithm that utilizes both momentum and scaling, and it has two decay parameters
that control the decay rates and adjust the learning rate adaptively [22]. We explore the
influence of different training epochs on the experimental results, and the results suggest
that more training epochs result in a more skillful model, but it may lead to the problem of
overfitting. Therefore, it is suitable to set the epoch to 200. The time steps works best at 10.
The detailed parameter settings are shown in Table 2.

Figure 3. LSTM network architecture.
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Table 2. Details of the parameters of the CAL model.

Parameter Meaning Value

Input layer Number of input layer nodes 128
Hidden layer 1 Number of first hidden layer nodes 64
Hidden layer 2 Number of second hidden layer nodes 16
Output layer Number of output layer nodes 1
Batch size Pass through to the network at one time 128
Optimization algorithm Select the training mode Adam
Loss function With the goal of minimizing the loss MSE
Epochs Number of training 200
Timesteps Input time steps 10

The best fitted ANN of ARIMA-ANN model in comparison has a layered architecture
of 17 × 17 × 1 [4]. The parameters of CEEMDAN-LSTM refer to Ref. [7]. The parameters of
LSTM, GRU, and Bi-LSTM, in comparison, are similar to that of LSTM in the CAL model.

Grid search is used to determine the optimal parameters p and q of the ARMA model.
The range of the grid search is [0, 5], and the group with the smallest Akaike Information
Criterion (AIC) value is selected.

4.4. Decomposition Results of EMD and CEEMDAN

Stock indices, which contain many influencing factors, can be decomposed used EMD
or CEEMDAN. We take the SSE stock index as an example to decompose the original time
series, so as to compare the two decomposition methods. To intuitively compare the results,
we limit CEEMDAN and EMD to generate the same number of IMFs.

In Figure 4, the decomposing results of the original SSE index series are demonstrated.
The results of sequence decomposition range from high to low frequency. The first few IMFs,
with more noise, represent the high-frequency components in the original data; the middle
IMFs, with reduced frequency, represent middle-frequency components; and the last few
IMFs, with less volatility, which is similar to the long-term movement trend of a stock,
represent the low-frequency components. The left and right sides of Figure 4 show the
results of CEEMDAN and EMD data decomposition, respectively. It can be found that IMF5
and IMF6 on the right of Figure 4 have similar scales and are not easily distinguished. This
is because the mode aliasing of EMD leads to the distribution of some similar time scales in
different intrinsic mode functions, resulting in waveform aliasing and mutual influence.
As a result, the features of a single sequence are not obvious, and feature extraction of
later prediction models is more difficult. CEEMDAN data decomposition effectively solves
this problem. As can be seen from the decomposition results on the left side of Figure 4,
CEEMDAN decomposed the stock index into several components, from high- to low-
frequency, whose characteristics are obvious, and there is no waveform aliasing.
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Figure 4. SSE decomposition results.

4.5. Comparative Models

To verify the effectiveness of the proposed CAL model for stock market prediction,
we experimentally compare seven models. Table 3 lists the models and reference purposes
of these seven controlled experiments, which verify the proposed model from different
perspectives.

1. LSTM deep learning model: LSTM networks can automatically detect the best patterns
suitable for raw data, and are widely utilized in financial time series modeling [23–25].
However, LSTM methods are susceptible to noise. The comparison result of CAL and
LSTM can evaluate whether the proposed model can effectively improve the results
of LSTM in complex time series modeling.

2. Linear ARIMA model: ARIMA can better predict linear time series, but is not suitable
for complex non-linear time series [4]. We combine ARMA and LSTM to extend the
application range of the ARIMA time series model. In addition, the prediction effects
of the ARIMA and CAL models are compared, which verifies the effectiveness of the
proposed model compared with a single linear model.

3. GRU: GRU is a simplified version of the LSTM. It uses only one state vector and two
gate vectors, i.e., reset gate and update gate. The comparison result can evaluate
whether the CAL model is better than other deep learning model.
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4. Bi-LSTM: To preserve the future and the past information, Bi-LSTM makes the neural
network have the sequence information in both directions, i.e., backwards (future to
past) and forward (past to future). The aim of the experiments is to show whether
Bi-LSTM improves the prediction accuracy of LSTM. The experiments also verify the
effectiveness of the proposed model compared with a single improved model.

5. EMD-ARMA-LSTM model: EMD can generate more predictable components when
fed into the decomposing module. CEEMDAN is designed to solve the problem of
EMD mode mixing. To compare the prediction effects of EMD-ARMA-LSTM, and
CAL, we verify the influence of different decomposition methods on model prediction.

6. Hybrid ARIMA-ANN model [6]: ARIMA and ANN are adopted to model the linear
and non-linear data [6], and empirical results demonstrate that ensemble models can
effectively improve performance. We use the ARIMA-ANN model for comparison.
The results can demonstrate the advantages of CAL over ARIMA-ANN when combin-
ing linear and non-linear models. The advantages of LSTM over an ANN in abstract
feature extraction and prediction ability could also be verified.

7. CEEMDAN-LSTM model [7]: The CEEMDAN-LSTM model integrates the advan-
tages of CEEMDAN and LSTM but does not consider that the original time series
may contain linearly correlated components, and the non-linear prediction of all
decomposed sequences will affect the prediction performance of the model. The
empirical results demonstrate the validity of the CAL model in comparison to the
CEEMDAN-LSTM model.

Table 3. Contrastive experiments.

Model Comparison Purpose of Model Settings

LSTM Comparison to single deep learning model
ARIMA Comparison to single linear model
GRU Comparison to other single non-linear model
Bi-LSTM Comparison to improved deep learning model
EMD-ARMA-LSTM Evaluation of CEEMDAN and EMD
ARIAM-ANN Comparison of CAL to hybrid models [6]
CEEMDAN-LSTM Comparison of CAL to stock forecasting model [7]

4.6. Experiments and Discussions

We verify the effectiveness and superiority of the proposed model from three aspects:

1. Statistics of MAE, RMSE, MAPE, and R2 are chosen to assess the consistency between
predicted and observed terms. These indicators measure the deviation between
forecast and reality from different aspects.

2. The deviation between real and predicted values can be observed from Figure 5, and
the variation of the error can be utilized to observe the stability of the CAL model
from Figure 6.

3. A linear regression model is then used to further observe the performance of the
CAL model; then, a series of technical diagnostics are leveraged to check the regres-
sion models.

4.6.1. Observation of the Statistical Data

It can be observed from Table 4 that the CAL model has obvious advantages in stock
index DAX series prediction, which decreases by 56.71% when compared to LSTM, and
by 46.83% when compared to ARIMA in MAE. This indicates that a single model cannot
effectively capture data patterns and make excellent predictions. Although GRU and Bi-
LSTM improve the prediction accuracy of LSTM, their prediction accuracies are still lower
than CAL.
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Table 4. Prediction results of different models in DAX.

Model MAE RMSE MAPE (%) R2

LSTM 167.0816 224.5003 1.4006 0.9570
ARIMA 136.0422 206.5253 1.1633 0.9650
GRU 153.5215 216.7465 1.2982 0.9608
Bi-LSTM LSTM 138.0041 209.2315 1.1768 0.9641
ARIMA-ANN 140.4099 211.9800 1.1966 0.9630
CEEMDAN-LSTM 97.2277 128.2331 0.8106 0.9866
EMD-ARMA-LSTM 127.1255 191.0622 1.0771 0.9687
CAL 72.3340 101.8321 0.6099 0.9915

Methods with EMD achieve remarkably less error in their forecasts than CEEMDAN-
LSTM and CAL, which shows that experimental results vary with data decomposition, and
CEEMDAN-based methods can achieve better predictive performance. The ARIMA-ANN
model is inferior to EMD- and CEEMDAN-based methods, perhaps because it has limited
decomposition ability to extract hidden features. CEEMDAN properly decomposes time
series, reduces their complexity, and improves LSTM information extraction, so the hybrid
CEEMDAN-LSTM model can achieve a better prediction effect than just LSTM. However,
CEEMDAN-LSTM is not as good as CAL because it does not consider linear factors that
may exist in the original sequence in time series prediction.

Table 5 lists the prediction performance of different models on the HSI stock index,
where we find a large error between the real and predicted values. This is mainly because
the data of the HSI stock index are more volatile and difficult to predict. The CAL model
achieves the best prediction accuracy, followed by CEEMDAN-LSTM, EMD-ARMA-LSTM,
and ARIMA-ANN. ARIMA-ANN achieve higher prediction accuracy than the individual
ARIMA and LSTM models, and ARIMA obtains better results than LSTM. As deep learning
is easily affected by noise, it is difficult to learn effective data patterns in complex dynamic
time series. Deep learning methods, such as LSTM, GRU, and Bi-LSTM, have the largest
prediction error on the HSI stock index. Although ARIAM has a higher prediction accuracy
than them, the gap between predicted and actual values of ARIAM is still large. This
indicates the predictive performance of a single model is very limited. The hybrid model
performs better than the single ARIMA and LSTM models. The experimental results show
that ARIAM-ANN gives poorer results than CEEMDAN-LSTM, EMD-ARMA-LSTM, and
CAL, perhaps due to an insufficient scale of decomposition. CEEMDAN-LSTM and EMD-
ARMA-LSTM effectively improve prediction accuracy, but the effect is still inferior to the
proposed CAL model, which has advantages and good potential in high-volatility time
series data.

Table 5. Prediction results of different models in HSI.

Model MAE RMSE MAPE (%) R2

LSTM 257.7703 347.1944 1.0197 0.9454
ARIMA 250.9188 345.3399 0.995 0.9470
GRU 256.1635 345.9382 1.0134 0.9451
Bi-LSTM 258.2292 353.4523 1.0249 0.9450
ARIMA-ANN 249.1046 344.5775 0.9882 0.9469
CEEMDAN-LSTM 127.0750 168.3214 0.5023 0.9879
EMD-ARMA-LSTM 181.7516 235.1773 0.7187 0.9751
CAL 120.8184 159.8226 0.4789 0.9885

Figure 2c shows that the movement trend of S&P500 is relatively stable, with little
fluctuation in the research interval, and an overall upward trend. Hence, the predicted
results are closer to the observed values of stock indices. Table 6 shows the experimental
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results of S&P500. The data show that the CAL model yields the smallest prediction error,
with MAE 48.84% less than LSTM and 49.75% less than ARIMA. This shows that the
single model has better prediction performance in some stable time series sets, but there
is still room for improvement. However, GRU and Bi-LSTM cannot effectively improve
the prediction accuracy. The prediction effect of EMD-ARMA-LSTM is still inferior to
that of CAL, which further demonstrates the superiority of CEEMDAN over EMD data
decomposition. CEEMDAN-LSTM achieves better prediction performance than the single
LSTM model, and ARIMA-ANN yields higher prediction accuracy than ARIAM, showing
that sequence decomposition and model combination can improve the prediction accuracy
of financial series.

Table 6. Prediction results of different models in S&P500.

Model MAE RMSE MAPE (%) R2

LSTM 33.4958 53.4345 1.1207 0.9595
ARIMA 34.1031 54.8336 1.1411 0.9598
GRU 43.3137 63.2251 1.4416 0.9469
Bi-LSTM 33.5198 53.4177 1.1262 0.9610
ARIMA-ANN 33.7170 53.6489 1.125 0.9608
CEEMDAN-LSTM 21.1496 30.1187 0.6964 0.9878
EMD-ARMA-LSTM 22.1886 33.4485 0.7334 0.9843
CAL 17.1362 26.1373 0.5645 0.9910

Table 7 shows the prediction performance results for SSE datasets. From Table 7, we
can see that CAL has better predictive accuracy than the other seven models, with MAE up
to 14.0294, followed by CEEMDAN-LSTM and EMD-ARMA-LSTM. ARIMA can achieve
higher prediction accuracy than ARIMA-ANN and EMD-ARMA-LSTM. GRU and Bi-LSTM
achieve higher prediction accuracy than LSTM.

Table 7. Prediction results of different models in SSE.

Model MAE RMSE MAPE (%) R2

LSTM 38.3486 47.9563 1.2468 0.9475
ARIMA 25.1019 36.9815 0.819 0.9690
GRU 31.8217 43.1568 1.0355 0.9599
Bi-LSTM 31.8026 42.7439 1.0382 0.9596
ARIMA-ANN 25.6976 37.4014 0.8383 0.9686
CEEMDAN-LSTM 14.3562 19.6741 0.4681 0.9913
EMD-ARMA-LSTM 19.5074 28.5532 0.6382 0.9814
CAL 14.0294 19.9246 0.459 0.9911

Several important results are obtained on the SSE dataset. GRU and Bi-LSTM outper-
forms LSTM, but their prediction results are lower than ARIMA, which shows that a linear
model can sometimes achieve a better prediction effect than a deep learning model. The
prediction accuracy of EMD-ARMA-LSTM is relatively low, perhaps because the mode
mixing of EMD leads to the inclusion of other scales of data in an IMF, and these abnormal
data interfere with information extraction.

4.6.2. Prediction Results and Errors

As demonstrated in Figure 5, we zoom in a part of the prediction interval to observe the
consistency between the real and predicted values of different models. It can be seen that
the CAL model yields the closest prediction results, and CEEMDAN-LSTM is closer to the
observed values in comparison with EMD-ARMA-LSTM and ARIAM. LSTM and GRU have
larger volatility and prediction error than the other models. The stem diagram oscillates up
and down around the zero axis in Figure 6 and is locally symmetrical concerning the zero
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axis, indicating that the prediction results of the CAL model are relatively stable within the
prediction interval.

 

Figure 5. SSE comparison of sequence prediction results.

Figure 6. SSE error changes between real and predicted values.

4.6.3. Regression Analysis

We conduct a linear regression to assess the correlation between the real data and the
predicted values. The predicted value is denoted as x, and the real value is y, respectively.
The regression equation is y = ax + b. The metrics, including standard error (SE), p-value
(p) and t-value (t), are used to test the results of regression analysis. The definitions of SE
and t are as follows, and p is derived from the t distribution.

SE = σ√
n , (10)

t = x̄−μ
σ√
n

. (11)

Here, σ is the standard deviation of the predicted values, n is the number of the
predicted (or real) values, x̄ is the mean of the predicted values, and μ is the mean of real
values. Table 8 lists the regression parameters and diagnostics results. It is observed that
the slope a of each stock index is close to 1, the SE for a is relatively small, which means
that the predicted values are very close to the real values. Furthermore, for each linear
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regression model, p for a is below the standard cutoff of 0.05, and t for a is high, suggesting
it is a good model. In addition, Figure 7 shows the linear regression results of each stock
index. The scattered points are evenly distributed near the fitting line, which indicates that
the predicted and real values are highly correlated.

Table 8. The regression parameters and diagnostics results.

Model Parameter Estimation SE t p

DAX a 0.9909 0.005 196.519 0.000
b 104.2845 62.836 1.660 0.098

HSI a 1.0012 0.006 167.616 0.000
b −12.2083 153.286 −0.080 0.937

S&P500 a 0.9844 0.005 192.819 0.000
b 44.7296 16.195 2.762 0.006

SSE a 0.9913 0.005 187.342 0.000
b 28.5226 16.263 1.754 0.080

(a) (b)

(c) (d)

Figure 7. Linear regression analysis. (a) DAX. (b) HSI. (c) S&P500. (d) SSE.
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4.6.4. Summary

Based on the above experiment results, the observations are summarized as follows.

1. Our proposed CAL model, with CEEMDAN-based methods, outperforms seven
benchmark models in predictive accuracy on four stock indices from different devel-
oped stock markets, which indicates that methods with multi-scale decomposition
can reduce the complexity of sequences, extract hidden features, and improve predic-
tion accuracy.

2. CAL can obtain predictions closer to real values than CEEMDAN-LSTM, which
indicates that components after decomposition may have both linear and non-linear
characteristics. Therefore, models combining ARMA and LSTM can obtain more
accurate predictions than individual LSTM models.

3. CAL can yield the closest prediction results in comparison to ARIMA-ANN. This
indicates that the CAL model has advantages over some traditional hybrid models.

4. The prediction results show that CAL has a smaller prediction error than EMD-ARMA-
LSTM does, and this indicates that the CEEMDAN method is superior to EMD in
data decomposition.

5. In some volatile financial markets, a single prediction model, even improved deep
learning model, has limited prediction ability because they cannot excavate internal
movement rules of time series and reflect the multi-scale characteristics of financial
time series.

6. The linear regression analysis shows the strong correlation between the predicted
values and the real values, and the proposed prediction model is effective.

5. Conclusions and Discussion

Stock market index prediction plays an important role in reflecting overall stock
market trends and has strong practical investment value. We proposed a hybrid stock
index prediction model based on CEEMDAN and ARMA-LSTM. It takes the strengths of
CEEMDAN in data decomposition, combines linear and non-linear models, and can well
model complex time series. To verify the effectiveness of the prediction model, CAL was
used to forecast the closing index of four stock markets, and seven control experiments
were conducted for comparison. The results show that CAL can achieve the highest
prediction accuracy. To optimize the model, future research can be conducted from the
following aspects.

1. Single data source analysis has certain limitations. Combined analysis with different
data sources, such as text information [26], can improve prediction to a certain extent.

2. Stock market data contain noise that affects forecast results. Methods, such as wavelet
denoising [27] and principal component analysis [28], can eliminate the influence of
irrelevant factors and improve the prediction effect to a certain extent.

3. Time series analysis has been applied in fields, such as natural science [29] and in-
dustrial time series prediction [30]. The application scope of the temporal sequence
model in this paper can be extended, especially in some complicated temporal se-
quence scenes.
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Abstract: Classification is one of the main problems of machine learning, and assessing the quality of
classification is one of the most topical tasks, all the more difficult as it depends on many factors. Many
different measures have been proposed to assess the quality of the classification, often depending
on the application of a specific classifier. However, in most cases, these measures are focused on
binary classification, and for the problem of many decision classes, they are significantly simplified.
Due to the increasing scope of classification applications, there is a growing need to select a classifier
appropriate to the situation, including more complex data sets with multiple decision classes. This
paper aims to propose a new measure of classifier quality assessment (called the preference-driven
measure, abbreviated p-d), regardless of the number of classes, with the possibility of establishing
the relative importance of each class. Furthermore, we propose a solution in which the classifier’s
assessment can be adapted to the analyzed problem using a vector of preferences. To visualize the
operation of the proposed measure, we present it first on an example involving two decision classes
and then test its operation on real, multi-class data sets. Additionally, in this case, we demonstrate
how to adjust the assessment to the user’s preferences. The results obtained allow us to confirm that
the use of a preference-driven measure indicates that other classifiers are better to use according to
preferences, particularly as opposed to the classical measures of classification quality assessment.

Keywords: classification measure; quality of classification; quality measure; preference-driven
classification; machine learning

1. Introduction

Classification continues to be one of the most important subjects in machine learning.
Despite this, we still lack a general measure of quality independent of the specific charac-
teristics of the data set. Moreover, in the situations where there is a necessity to involve
the human decision maker in the classification process, we are forced to switch between
different measures. Among the general ones, there are accuracy, precision or recall, and
others that are data-dependent. Choosing the right (optimal) one is especially important
because choosing a particular classification method depends heavily on the calculated
quality measures.

Moreover, there is no single best classification measure that effectively identifies the
method suitable for every task. Classification algorithms/methods have many character-
istics. Consequently, there are many measures of classification because there is no single
measure covering all the characteristics simultaneously [1]. Thus, finding an appropriate
classification measure for a specific task is difficult and requires answering the question of
what conditions, in specific circumstances, must be met by the measure.

One of the ways to bypass the problem of unambiguous assessment of the classifier’s
quality and selecting one best-suited classifier is ensemble and hybrid methods, which
simultaneously use many different algorithms to perform a specific task. Within this ap-
proach, we can point out the homogeneous and heterogeneous solutions [2]. In the first
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group, we can find methods allowing us to create large groups of classifiers belonging to
the same category (or even classifiers generated with the same method, but with different
starting parameters), which allow the classification process simultaneously. The heteroge-
neous approach involves using a large variety of classifiers, for which the main advantage
is the diversity of obtained results. Thus, the basic idea of these methods is the idea of
collective decision making [3].

One should note that the above approach based on the ensemble methods allows
for more robust classifier selection. However, it still leaves the decision maker with the
problem of estimating the classification quality. In medicine, military or finance, the
well-known accuracy measure seems to derive unsatisfactory results and present limited
usability [4,5]. On the other hand, measures such as recall or precision are directed towards
the binary classification problem. Most of the proposed measures are directly connected to
the confusion matrix and related absolutely to the numerical outcome of the classification [6].
In most cases, it is strongly needed, but it makes the whole process independent of the
user’s preferences. In the decision-making context, taking them into account may be
vital to make the process effective and at the same time maintain the sovereignty of the
decision maker.

Incorporating users in the process of preparing a machine learning solution is an
essential element of the entire procedure, the subject of many studies, and can take various
forms [7,8]. One of the goals of the actions taken is to help the user to choose a suitable
classifier. Most often, this task comes down to comparing simple measures of classification
quality, which is usually carried out by trial and error, and yet can be unreliable [9]. This
task becomes even more complicated if individual users’ preferences are to be taken into
account. This applies especially to issues of a managerial nature, but more generally
wherever a human being to some extent participates in the decision-making process. In
practice, this applies to all issues except physical or technical ones, where only objective
laws are in force [10]. The main intention of introducing the new measure is to make this
stage of a research procedure more methodical. To the best of our knowledge, there are
no clear guidelines for taking into account the parameters in the learning process and the
selection of a classifier in conjunction with individual preferences. The next issue is the
systematic classification into the following application areas, thus expanding the group
using machine learning methods. Finally, some users need a tool to control the process
of selecting a classifier for their own needs, which are more complex and related to many
classes. For such users, a measure that allows them to simply, directly, and methodically
include their preferences in selecting and training the classifier would be very beneficial.

To cope with the above drawbacks, and at the same time maintain the role of the
decision maker in the process, we propose the idea of a new measure in which their
preferences are vital to the importance of individual classes. We aim to propose a measure
that balances a thorough analysis of the classifier’s performance and the selection of the
classifier that performs best under the conditions (preferences) specified by the user.

The main intention of introducing the new measure is to make this stage of the research
procedure more methodical. Users need a tool with which they will be able to select a
classifier for their own needs, which are more complex and related to many classes. A
measure that allows them to directly and methodically include their preferences in selecting
and training the classifier would be very beneficial for such users.

We undertook to propose such a measure because, to the best of our knowledge, there
is no reasonable alternative where, for any number of decision classes, it is possible to
aggregate the quality of classification depending on the weight for a particular decision
class. First, our solution was discussed in detail on prepared examples for two decision
classes. It was then tested on real-world data sets and re-examined for a more significant
number of decision classes that occurred in these data sets.

This article is organized as follows. Section 1 introduces the subject of this article.
Section 2 provides an overview of the work related to the classification, particularly the
measures for assessing the quality of the classification. In Section 3, we describe the
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classification problem and the classification quality assessment measures based on the error
matrix for binary and multi-class classification. In Section 4, we present a new measure for
classification, in which it will be possible to control preferences. In Section 5, we present the
analysis of our research on real data sets. Finally, in Sections 6 and 7, we discuss the results
of the experiments and end with general remarks on this work and available directions for
future research.

2. Related Works

Evaluating the classification performance is a difficult task, and the discussion on this
topic arose from the beginning of work on automatic classification. The initial set of five mea-
sures (sensitivity, specificity, efficiency, positive and negative predictive value) was rapidly
expanded [11]. The most often used measure of classification performance is accuracy. However,
it is not the only measure of the quality of predictive models. Despite optimizing the classifi-
cation error rate, high-accuracy models may fail to capture crucial information transfer in the
classification task [12,13]. Despite the simplicity and intuitive interpretation, there are many
reasons and situations in which accuracy should not be used [14]. Instead, the authors advocate
for using Cohen’s kappa as a better meter for measuring classifiers’ own merits than accuracy.
Moreover, [15] indicates that the most frequently used measures, which focus on correctly
classified cases (precision, recall, or F-score), do not meet the needs of various decision-making
situations, especially when more than one class is essential. The authors advocate for using three
other measures—Youden’s index, likelihood, and discriminant power—because they combine
sensitivity and specificity and their complements.

While most studies concern binary classification, in [16], the authors focused on
multi-class classification problems. The authors showed that the extension of measures
to the classification of many classes is associated with averaging the results achieved for
individual classes in most cases. Finally, in [17], the authors point out some shortcomings
of the accuracy measure and list five conditions that the newly constructed discriminator
metric should meet.

To solve the dilemma related to the choice of a measure for a given problem, a list
of desired features of an ideal measure and analysis of the most known measures was
proposed in [1]. More importantly, they proved that it is impossible to satisfy them simulta-
neously. They also proposed a new family of measures (Generalized Means) that meet all
desirable properties except one, and a new measure called Symmetric Balanced Accuracy.

A comparative analysis and taxonomy of the quality of classification measures have
been the subject of many studies. For instance [18], in their experimental comparison con-
ducted on 30 data sets, proposed dividing the performance measures into three categories:

• Measures based on a threshold, such as accuracy, modified accuracy measure, F-
measure, or Kappa statistic, which are used to minimize the number of errors in the
model. They are based directly on a confusion matrix, and they are widely used in
many classification tasks. One should note that the overall efficiency of these measures
is strictly related to the quality of the data. However, some measures, such as accuracy,
can be less effective in the case of unbalanced data sets.

• Measures based on a probabilistic approach to understanding error, i.e., measuring
the deviation or entropy information between the actual and predicted probability,
such as mean absolute error, mean square error (Brier score), LogLoss (cross-entropy).
These measures are useful in measuring the probability of selecting the wrong class,
which is essential in ensemble methods or for a committee of classifiers.

• Measures based on the model’s ability to correctly rank cases include ROC, AUC,
the Youden index, precision–recall curve, Kolmogorov–Smirnov, or lift chart. They
are helpful when indicating the best n occurrences in a data set or when good class
separation is needed. They are widely used in recommendation systems, design
marketing campaigns, fraud detection, spam filtering, and more.

In a survey [19], the authors grouped the measures depending on the type of outcome
on which a given measure is focused (correct or incorrect outcome). In turn, [20] presents an
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in-depth analysis of over twenty performance measures used in different classification tasks
in the context of changes made to a confusion matrix and their relations with particular
measures (measure invariance). In contrast, a comparative study of two or more classifiers
based on statistical tests was presented in [21]. A comprehensive analysis of the methods
and measures of classification assessment is also included in [22], where the relationships
between all measures calculated based on the confusion matrix are shown. Finally, a
different approach to the analysis of performance measures was presented in [23]. First, the
authors grouped classification measures according to classification difficulty, which they
defined in relation to a distance between the boundary lines and each correctly classified
case. The authors later developed their idea and proposed an instance-based measure
for calculating the performance of classification from the perspective of instances, called
degree of credibility [24].

The set of measures is constantly growing. For instance, in [25] was proposed a
measure that compares classifiers, which combines three measures from different groups:
Matthews correlation coefficient as a measure, which is calculated from both true and false
positives and negatives, and AUC (area under the curve), derived from ROC and accuracy.
To overcome the shortcomings of the accuracy measure in evaluating multi-class classifiers
and to improve the quality of classifiers, in [26], the authors proposed a metric based on
the combined accuracy and dispersion values. They also showed experimentally that this
two-dimensional metric is particularly suitable in complex, unbalanced data sets and with
many classes.

The new measures are also proposed to supplement the already used measures that
work better for specific tasks. For example, [27], as an alternative to measures used in medi-
cal diagnostics, which use only part of the values from the error matrix, define the measure
AQM, which takes into account all values from the confusion matrix. Similarly, in [28], for
image analysis, a new measure of classification performance called robust-and-balanced
accuracy was introduced. It aims to connect balanced accuracy with measures of variations.
In another proposition, to improve face recognition processes, a new classification measure,
called the volume measure, based on the volume of the matrix, was proposed [29]. In turn,
a measure dedicated to the analysis of imbalanced data sets based on the harmonic mean
of recall and selectivity was proposed in [30].

Existing measures are also modified. For example, in [31], the F∗ measure was pro-
posed as a modification of the F-score, towards the more straightforward interpretation of
this measure. The above short review shows that the issue of classification measures is con-
stantly under the attention of researchers. Moreover, for specific applications, new measures
are created that are better suited to the requirements of the domain or user preferences.

3. Classification and Quality Evaluation

Formally, the classification problem Q can be solved using empirical experience W,
while the quality of the solution is estimated by the quality measure Y. The value of Y
should be increasing, while the experience W rises as well [32].

In machine learning, classification refers to the prediction problem of determining
the class to which samples from a data set will be assigned. A classifier algorithm (often
shortened to “a classifier”) must be provided with training data with labeled classes. Then,
the classifier can predict classes for new test data based on the training data. This approach
is called supervised machine learning, and classification is one example of such a method.
The training set is selected as a subset of the whole data set. A typical approach is to divide
the known examples into a train and test set, following some general principles about the
ratio of the two. Eventually, the test set includes a far smaller number of samples than the
training set (preferably, the test set and training set should be disjoint). Test set is used to
evaluate classification quality. Every object (also called a sample or observation) from the
training data is assigned some predefined label (decision class). The idea is to build such
a classifier, which assigns the proper labels for the objects. In contrast, the evaluation is
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performed on the training set, where the difference between the assigned and the actual
label is estimated.

Classification algorithms for a prediction problem are evaluated based on performance.
Multiple measures for assessing classification quality can be used depending on the situa-
tion. One of the most commonly used measures is accuracy, which determines how many
samples from the entire data set were correctly classified into the appropriate classes. Often,
other measures are used in addition to accuracy that more accurately assess the classifier’s
performance. Such measures primarily include precision and recall. Unfortunately, there
are many problems in which classical measures are insufficient, and it is necessary to look
for new solutions.

Let us consider a set of all available samples (called the universe of objects) X, which
will include n number of objects:

X = {x1, x2, . . . , xi, . . . , xn}, (1)

A single observation xi will be described by a finite set of attributes and the decision
attribute:

a1, a2, . . . , am, (2)

where aj ∈ Aj, j = 1, . . . , m. In this context, Aj denotes the domain of the j-th attribute,
while features a1, a2, . . . , am create a feature space A1 × A2× . . .×Am.

There are no general restrictions related to the values of attributes, which can be quan-
titative or categorical. However, one should note that preprocessing allows for discretizing
selected quantitative attributes. The same procedure can be applied to the decision classes,
where many labels can be merged into fewer during the discretization process (trade-off
between the quality of classification and classification speed). Thus, the single sample can
be described as follows:

xi = (�Vi, ck), vj
i ∈ Aj, ck ∈ {1, . . . , C}, (3)

where �Vi = [v1
i , . . . , vm

i ] is a vector in an m-dimensional feature space, vj
i is the value of

attribute aj for observation (sample) xi, and ci is the class label (also called the decision
class) of this object. Thus, the universe X can be formally described as:

X : {(�Vi, ci)}n
i=1. (4)

Hence, the classification problem can generally be understood as the assignment
problem, where every element xi from the universe X should have the decision class ci
assigned. Eventually, we end with the classifier capable of assigning the newly arrived
objects from the test set into proper decision classes. However, even in the case of the binary
classification problem, the above is not trivial. It can be challenging to achieve when, for
example, we observe unbalanced data (i.e., the situation in which most of the objects from
universe X are assigned to a single class). Therefore, many different estimation methods
were proposed (both to binary and multiple-class classification problems) to cope with this.
Next, this section discusses various classification measures capable of dealing with both
mentioned classification problems.

3.1. Quality Assessment and Binary Confusion Matrix

A confusion matrix is among the most popular tools used in the process of the valida-
tion of the quality of performed classification. The confusion matrix for a binary decision
class is defined as a table with different combinations of predicted and actual values related
to the decision classes [33,34]. The rows contain existing classes, while the columns contain
predicted classes. The diagonal of the confusion matrix includes the correctly classified
samples for both classes, while the off-diagonal cells represent the errors (misclassified
samples for both decision classes). The confusion matrix represents the errors that the
classifier makes and shows the type of these errors. It represents a detailed breakdown of
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the answers considering the number of correct and incorrect classifications for both classes.
It is imperative when the cost of misclassification is different for these classes and when the
size of the classes is different [35].

For the binary classification (e.g., classification of emails and spam or sick and healthy
patients), see Table 1, where the prediction of a positive class (labeled 1) and a negative class
(labeled 2) can be uniquely determined. Such a situation indicates whether the classifier is
more likely to incur an error by assigning a positive class as a negative class or vice versa.
In Table 1, the confusion matrix for the binary classifier is shown, where:

• TP (true positive)–samples classified as predicted class 1, which are samples of actual
class 1;

• FN (false negative)–samples classified as predicted class 2, which are samples of actual
class 1;

• FP (false positive)–samples classified as predicted class 1, which are samples of actual
class 2;

• TN (true negative)–samples classified as predicted class 2, which are samples of actual
class 2.

Table 1. Confusion matrix for binary classification.

Predicted Class 1 Predicted Class 2

Actual class 1 TP FN
Actual class 2 FP TN

The quality of classifiers is measured based on a confusion matrix (as shown in Table 1).
Measures based on the confusion matrix include, but are not limited to, accuracy, precision,
recall, and F-score (also called F1, which is the measure Fβ for which β = 1). In addition,
the Matthews correlation coefficient (MCC) measure and BalancedAccuracy are also often
used for binary classification.

The accuracy measure indicates how often a classifier makes a correct prediction. It is
the ratio of the number of accurate predictions to the total number of predictions and is
calculated based on Formula (5).

accuracy_binary =
TP + TN

TP + FP + FN + TN
(5)

Precision determines how many samples, out of all those classified as positive, are
samples of the positive class. Precision is expressed by Formula (6).

precision_binary =
TP

TP + FP
(6)

Recall is used to determine how many samples belonging to a positive class were
classified as positive by the classifier. Recall is determined by Formula (7).

recall_binary =
TP

TP + FN
(7)

For binary classification, the measure Fβ is defined as the harmonic mean of precision
and recall, where additional precision or recall weights are used to obtain more accurate
results. By setting the value of β, it is possible to control the effect of recall weight with
respect to precision. Fβ is specified by Formula (8), where β is the number of times the
recall is as important as the precision [36]. The Fβ value ranges from 0 to 1 (with 0 being
the worst value and 1 being the optimal value). The most common value for β is 1, which
simply means measure F1 (Equation (9)). Other frequently used values are 2 and 0.5. In
the case of 2, recall weight is greater than precision; however, in the case of 0.5, recall
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weight is less than precision. The Fβ measure is based on the Van Rijsbergen measure of
effectiveness [37].

Fβ = (1 + β2)× precision_binary × recall_binary
β2 × precision_binary + recall_binary

(8)

The F1 measure is the instance of the measure Fβ (Equation (8)), for which β = 1. The
F1 measure is defined as the harmonic mean of precision and recall [38]. Therefore, F1 will
only take on a high value if both of its components reach a high value. The F1 measure
often replaces precision when class counts are unbalanced [39]. For example, if 97% of the
data belong to class 1 and only 3% belong to class 2, then classifying all observations as
class 1 would yield a misleading accuracy of 97%. The F1 measure is based on precision and
recall, and is thus robust to such distortions. The measure is calculated from Formula (9).

F1_binary = 2 × precision_binary × recall_binary
precision_binary + recall_binary

=
TP

TP + 1
2 (FN + FP)

(9)

The Matthews correlation coefficient (MCC) measure is often used for unbalanced
data [40]. For the precision, recall, and F1 measures, the TN value is not used, which is
very important if we are interested in both classes. Therefore, the Matthews correlation
coefficient, calculated based on all terms from the confusion matrix, can be used. The MCC
measure is calculated from Formula (10).

MCC_binary =
TP × TN − FP × FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(10)

The MCC value ranges within [−1 . . . 1] (with −1 equal to the misclassification of
all samples, while a value of 1 means that all samples are correctly classified). Therefore,
the higher the correlation between actual and predicted values, the better the prediction.
Furthermore, for the MCC measure, the two classes have the same importance weight, so
when positive classes are swapped with negative classes, the MCC value will be the same,
which means that the MCC measure is symmetric [40].

Another measure in binary classification is the BalancedAccuracy measure, which
calculates balanced accuracy for anomaly or disease detection, where significant differences
in the class size are observed [41]. Overestimated accuracy results can be avoided using the
BalancedAccuracy measure for unbalanced classes. For binary classification, the balanced
accuracy equals the arithmetic mean of the recall and specificity. The BalancedAccuracy
measure is calculated by Formulas (11) or (12).

BalancedAccuracy_binary =
recall_binary + speci f icity_binary

2
(11)

BalancedAccuracy_binary =
1
2

(
TP

TP + FN
+

TN
FP + TN

)
(12)

Specificity is used to determine the number of samples belonging to a negative class
that have been classified as negative by the classifier [42]. Specificity is measured by
Formula (13).

speci f icity_binary =
TN

FP + TN
(13)

3.2. Quality Assessment and Confusion Matrix for Multi-Class Classification

In addition to binary classification, it is common to classify samples into more than
two classes. We are dealing with multi-class classification in such a situation—not to be
confused with multi-label classification. The difference between multi-class and multi-label
classification is that a sample can only be assigned to one class selected from multiple
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classes for multi-class classification. In contrast, a sample can be assigned to multiple
classes for multi-label classification [43].

There is a need to construct an extended confusion matrix for a number of decision
classes greater than 2. Thus, the number of rows and the number of columns in such
an approach will equal the number of classes. For this purpose, we present the idea of
a confusion matrix for C classes, which is shown in Table 2. Similarly, for the binary
classification problem (see Table 1), we have listed four terms:

• TP (true positive) means that samples from the actual class have been classified into
the same predicted class—denoted as TP1, TP2, . . . , TPi, . . . , TPC−1, TPC;

• FN (false negative) indicates that samples in the actual class have been classified into
other predicted classes. This is the sum of the values of the corresponding row of the
real class except for the TP values for that real class—denoted as FN1, FN2, . . . , FNi,
. . . , FNC−1, FNC;

• FP (false positive) indicates that samples from other real classes have been classified
into the selected predicted class. This is the sum of the values of the corresponding
column of the predicted class except for the TP values for the actual class—denoted
as FP1, FP2, . . . , FPi, . . . , FPC−1, FPC;

• TN (true negative) indicates that, for the selected real class, samples from other
actual classes were classified into predicted classes other than the predicted class
corresponding to the chosen real class. For a given real class, it is the sum of the values
of all columns and rows except for the row and column values of that real class for
which we compute the values—denoted as TN\{i} or TN\{i,C}.

To evaluate the quality of multi-class classification, as in binary classification, measures
based on the confusion matrix shown in Table 2 were used. Therefore, referring to the
measures described in Section 3.1, we wish to present them for the multi-class classification
problem.

Accuracy is one of the most commonly used measures in a multi-class classification
problem [16] and is calculated according to Formula (14) or (15); when we define the sum
of all samples as s, this equation boils down to the form (16). To calculate accuracy, sum
all correctly classified samples and then divide by the number of all classified samples.
Correctly classified samples are shown in the confusion matrix (see Table 2) on the main
diagonal (from upper left corner to lower right corner).

accuracy =
∑c

i=1 TPi

∑c
i=1 TPi + ∑c

i=1 FPi
(14)

accuracy =
∑c

i=1 TPi

∑c
i=1 TPi + ∑c

i=1 FNi
(15)

accuracy =
∑c

i=1 TPi

s
(16)

Precision and recall are used for the multi-class approach as well. Two modifications
can be distinguished in this case: macro− and micro− precision or recall [16]. For the
macro− modification, to calculate the value of the measures for multiple classes, one must
count precision and recall for each class separately and then calculate the arithmetic mean of
these values. In this way, all classes during multi-class classification have the same validity,
regardless of the class count. In multi-class classification, macro_precision is calculated by
Formula (17) and macro_recall is calculated by Formula (18).

macro_precision =
1
c

c

∑
i=1

TPi
TPi + FPi

(17)

macro_recall =
1
c

c

∑
i=1

TPi
TPi + FNi

(18)
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Table 2. Confusion matrix for multiple classes.

Predicted
Class 1

Predicted
Class 2

Predicted
Class 3

· · · Predicted
Class i

· · · Predicted
Class C-1

Predicted
Class C

FP2 FP3 FPi FPC−1 FPC

Actual
class 1

TP1
TN\{1}

TN\{1,2} TN\{1,3} · · · TN\{1,i} · · · TN\{1,C−1} TN\{1,C}

FN1 FN1 FN1 FN1 FN1

FP1 FP3 FPi FPC−1 FPC

Actual
class 2

TN\{1,2}
TP2

TN\{2}
TN\{2,3} · · · TN\{2,i} · · · TN\{2,C−1} TN\{2,C}

FN2 FN2 FN2 FN2 FN2

FP1 FP2 FPi FPC−1 FPC

Actual
class 3

TN\{1,3} TN\{2,3}
TP3

TN\{3}
· · · TN\{3,i} · · · TN\{3,C−1} TN\{3,C}

FN3 FN3 FN3 FN3 FN3

· · · · · · · · · · · · · · · · · · · · · · · ·
FP1 FP2 FP3 FPC−1 FPC

Actual
class i

TN\{1,i} TN\{2,i} TN\{3,i} · · · TPi
TN\{i}

· · · TN\{i,C−1} TN\{i,C}

FNi FNi FNi FNi FNi

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
FP1 FP2 FP3 FPi FPC

Actual
class C-1

TN\{1,C−1} TN\{2,C−1} TN\{3,C−1} · · · TN\{i,C−1} · · · TPC−1
TN\{C−1}

TN\{C,C−1}

FNC−1 FNC−1 FNC−1 FNC−1 FNC−1

FP1 FP2 FP3 FPi FPC−1

Actual
class C

TN\{1,C} TN\{2,C} TN\{3,C} · · · TN\{i,C} · · · TN\{C−1,C}
TPC

TN\{C}

FNC FNC FNC FNC FNC

In contrast, for micro_ modification, to count the precision and recall values, one must
look at all classes together. In this way, each correctly classified sample into a class is a
component of all correctly classified samples. In other words, we calculate TP as the sum of
all TP values for individual classes (the sum of the values from the main diagonal). The FP
value will be the sum of all values off the main diagonal, equal to the FN value. Therefore,
micro_precision and micro_recall are the same because they are the sum of TP values to
all values in the confusion matrix [16]. In multi-class classification, micro_precision is
calculated by Formula (19) and micro_recall is calculated by Formula (20).

micro_precision =
∑c

i=1 TPi

∑c
i=1 TPi + ∑c

i=1 FPi
(19)

micro_recall = ∑c
i=1 TPi

∑c
i=1 TPi + ∑c

i=1 FNi
(20)

The Fβ measure is also used for multi-class classification problems; however, the
results of this measure are obtained by macro-averaging or micro-averaging [20]. When
we assume that all classes are of the same weight, we use macro-averaging, where two
additional methods can be adopted. The first is the calculation of the Fβ measure from the
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macro_precision (see Equation (17)) and macro_recall (see Equation (18)) measures, and the
second is the arithmetic mean of the F-beta scores for each class separately, based on the Fβ

measure for binary classification (see Equation (8)). The macro_Fβ measure is specified by
Formula (21).

macro_Fβ = (1 + β2)× macro_precision × macro_recall
β2 × macro_precision + macro_recall

(21)

In contrast, in the classification depending on the frequency of classes, the Fβ re-
sults are calculated by micro-averaging based on micro_precision (see Equation (19)) and
micro_recall (see Equation (20)). The micro_Fβ measure is specified by Formula (22). In
all of the discussed variants of the Fβ measure, the beta parameter determines the weight
of the reference in relation to the precision. When β < 1, precision has more weight, and
when β > 1, recall has more weight [20].

micro_Fβ = (1 + β2)× micro_precision × micro_recall
β2 × micro_precision + micro_recall

(22)

The F1 measure (the most common instance of Fβ, where β = 1) is calculated based on
recall and precision (present in the multi-class classification) [44], and thus can be used in
the multi-class classification as well. For a problem where class imbalance does not matter
and all classes are equally valid, we use the macro_ modification and apply macro_precision
(see Equation (17)) and macro_recall (see Equation (18)). Thus, the measure macro_F1 can
be calculated according to Formula (23).

macro_F1 = 2 × macro_precision × macro_recall
macro_precision + macro_recall

(23)

In problems with unbalanced classes, where selected classes are more important
than others, the micro_ modification leads to the micro_precision (see Equation (19)) and
micro_recall (see Equation (20)). Thus, the measure micro_F1 can be calculated according
to Formula (24).

micro_F1 = 2 × micro_precision × micro_recall
micro_precision + micro_recall

(24)

From Formulas (19), (20) and (24), one can conclude that, for the multi-class classification
problem, the values of the measures micro_precision, micro_recall, and micro_F1 are equal
to each other. At the same time, the values of these measures are equal to the accuracy of
Formula (16).

The Matthews correlation coefficient (MCC) is only used in classifications of up to
two classes (see Equation (10)). For classifications with more than two classes, it is often
irrelevant to determine the division of multiple classes into two classes (positive and
negative) [45]. Therefore, J. Gorodkin, in his work [46], proposed an extended correlation
coefficient (called the RK statistic, for K different classes) that can be used in multi-class
classification. Based on this, we defined MCC for multiple classes denoted as Formula (25),
where s is the sum of all samples, TPi + FPi is the value of all samples in row i, and
TPi + FNi is the value of all samples in column i.

MCC_multiclass =
s × ∑c

i=1 TPi − ∑c
i=1((TPi + FPi)× (TPi + FNi))√

s2 − ∑c
i=1 (TPi + FPi)2 ×

√
s2 − ∑c

i=1 (TPi + FNi)2
(25)

The last discussed measure is BalancedAccuracy, which could be used to calculate
accuracy for unbalanced classes [41]. According to Formula (11), BalancedAccuracy_binary
is the arithmetic mean of recall_binary and speci f icity_binary. For binary classification, the
value of speci f icity_binary for the first class equals recall_binary for the second class. For
this reason, in multi-class classification, to calculate BalancedAccuracy, one must count
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the recall for each class separately and then calculate the arithmetic mean of these values,
according to Formula (26).

BalancedAccuracy =
1
c

c

∑
i=1

TPi
TPi + FNi

(26)

4. Preference-Driven Quality Assessment for Multi-Class Classification

Considering the measures described above, the preferences for individual classes in the
classifier quality assessment are insufficient because there is no place in their construction
to indicate such preferences. Thus, we propose a new preference-driven classification
quality evaluation measure to evaluate classification quality based on different weights for
each decision class. The proposed measure works independently of the number of decision
classes—its definition is the same in binary and multi-class classification. We also suggest
default values for this measure that can be used, in the test case, without specifying exact
preferences for each decision class.

4.1. Proposed Preference-Driven Classification Measure

According to the measures given in Section 3.2, the proposed measure was defined
based on the confusion matrix given in Table 2. We aim to keep it as simple as possible while
satisfying the assumption of adjustment to preferences (of each decision class). Therefore,
the proposed measure is based on a confusion matrix and precision and recall measures
with κ parameters determining their relative importance.

The preference-driven classification measure is denoted as preference-driven−→κ , where−→κ is the preference vector, whose length is equal to the number of decision classes (see
Formula (27)). The κ weights for each of the subsequent measures are written on the
subsequent positions of the vector. The higher the κ value for a given decision class,
the greater the importance of precision (determined by Formula (28)) relative to recall
(determined by Formula (29))—based on this class only. Therefore, changing the κ values
of a given class makes it possible to control the relative importance of precision and recall.
This is a multi-criteria process because the κ value can differ for each class.

Finally, the preference-driven−→κ measure can be expressed by Formula (30). One
should note that −→κ is a parameter related to the measure by which the relative importance
between precision and recall can be established for each decision class separately. For
example, −→κ = [0.2, 0.6, 0.3] means that, for the first class, 20% precision and 80% recall are
used; for the second class, 60% precision and 40% recall are used, and for the third class,
30% precision and 70% recall are used. To keep the final value of the preference-driven−→κ
measure in the range [0.0, 1.0], the sum of all these values is divided by the number
of classes.

pre f erence-driven−→κ =
1
c

c

∑
i=1

κi ×
TPi

TPi + FPi
+ (1 − κi)×

TPi
TPi + FNi

(27)

precisioni =
TPi

TPi + FPi
(28)

recalli =
TPi

TPi + FNi
(29)

pre f erence-driven−→κ =
1
c

c

∑
i=1

κi × precisioni + (1 − κi)× recalli (30)

4.2. Proposed Measure Analysis in the Test Case

The sample confusion matrix was prepared for a classification problem with two
decision classes to demonstrate how the measure works depending on the preference and
classification outcome. The two classes were chosen to visualize the measure’s values.
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Figure 1 presents nine confusion matrices for which preference-driven−→κ values were
determined for −→κ , being a combination of all values from 0.0 to 1.0 with a step of 0.1, i.e.,

[0.0, 0.0], [0.0, 0.1], . . . [0.5, 0.4], [0.5, 0.5], [0.5, 0.6], . . . [1.0, 0.9], [1.0, 1.0].

It gives a total of 121 different combinations vectors of preferences. The results are visual-
ized in the following figures.

To better capture the distribution of values for the preference-driven measure, an
analysis based on the confusion matrix cm4 (see Figure 1) was presented. It was se-
lected because the quality assessment in terms of classical measures always means the
same values, i.e., precision (see Equation (17)) is 0.7500, and recall (see Equation (18)) is
0.8333. In Figure 2, one can see that the value of the preference-driven measure ranges
from 0.5833 for −→κ = [1.0, 0.0] to 1.0000 for −→κ = [0.0, 1.0]. It is possible to obtain ex-
actly the same values for recall (−→κ = [0.0, 0.0]) and precision (−→κ = [1.0, 1.0]), but
depending on the preference, the classifier will be evaluated differently. For example,
preference-driven[0.1,0.3], i.e., for κ1 = 0.1 and κ2 = 0.3 is 0.8083 (green dot in Figure 2); sim-
ilarly, preference-driven[0.1,0.8] = 0.9333 (black dot in Figure 2), preference-driven[0.4,0.4] =
0.7833 (red dot in Figure 2), preference-driven[0.9,0.1] = 0.6250 (light blue dot in Figure 2),
and preference-driven[0.9,0.8] = 0.8000 (bright orange dot in Figure 2).
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Figure 1. Confusion matrix used for measure analysis.

Figure 2. All possible values of the preference-driven measure for the confusion matrix cm4.
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Next, we present different solution spaces obtained for successive confusion matrices.
Figure 3 presents such solution spaces for the proposed measure for cm4 and cm8 confusion
matrices (please refer to Figure 1, which can be described as an opposition to each other,
and thus they were selected for the analysis. The value of κ1 increases, and the value of
κ2 decreases (the value of the proposed measure for cm4 decreases, while that for cm8
increases—and vice versa).

Figure 3. All possible values of the preference-driven measure for the confusion matrix cm4 and its
opposite cm8.

Different solution spaces for the confusion matrices from Figure 1 are presented in
Figures 4 and 5. In the first case (Figure 4), specific confusion matrices are selected:

• cm1, which represents the ideal classification—in Figure 4a, it can be seen that the
value of the preference-driven−→κ measure is the same for each −→κ vector;

• cm9, which represents a classification in which all samples are assigned to only one
class (in this case, the first one)—in Figure 4b, it can be seen that κ2 does not affect the
value of the preference-driven−→κ measure;

• cm4 and cm8, which were previously presented in Figure 3, but this time are shown
separately in Figure 4c,d, respectively—they represent an example, not an extreme,
case of classification.

Figure 5 presents the solution spaces for all (except cm9) confusion matrices from
Figure 1. It allowed us to present the dynamics of the solution space based on the
preference-driven−→κ , depending on the classification being evaluated and the value of
the −→κ vector. Depending on the values of the −→κ vector, the proposed measure differently
evaluates the classifier. It is also presented in Table 3, where the results for different values
of the −→κ vector are presented. Examples [0.3, 0.6], [0.9, 0.4], and [0.5, 0.5] have been cho-
sen, as well as precision (which is equivalent to −→κ = [0.0, 0.0]) and recall (equivalent to−→κ = [1.0, 1.0]). As can be seen, depending on the given preferences, the evaluation of the
classifier even in this case changes noticeably.
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Figure 4. Example distributions of values of the preference-driven measure: (a) confusion matrix
cm1; (b) confusion matrix cm9; (c) confusion matrix cm4; (d) confusion matrix cm8.

Figure 5. Solution spaces of proposed measure values for selected confusion matrices.

Analogously to Table 3, Figure 6 presents the classification quality assessment values
for each of the prepared confusion matrices. Such a visualization allows us to observe
the influence of the proposed measure on the classification evaluation (compare with the
earlier discussed example for cm4 and cm8 for which precision, recall, and F1 have identical
values), where diagonal lines allow a more straightforward analysis of changes between
sample confusion matrices; in this case, we can see that the mentioned measures have
identical values for these confusion matrices, but the proposed preference-driven measure
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obtains different scores for the same preference vectors. Please note that confusion matrices
should not be interpreted as consecutive occurrences. Classification evaluation values
should be compared regardless of the order in which they are presented.

To further compare the proposed preference-driven measure with the F1 measure,
which is also based on recall and precision values, we analyzed the values of the preference
vector (−→κ ) that produce the same classification score as the F1.

We performed careful analyses for all the confusion matrices described in this section,
except for cm1, for which the value of all measures is always 1.0000 (this confusion matrix
represents the ideal classification). Our observations indicate that there are (unlike the
recall and precision measures) no classical values for the preference vector to find the
equivalent value of the F1 measure. Therefore, for subsequent confusion matrices, the F1
counterparts are, respectively, preference-driven measures with preference vectors: for cm2,
it is −→κ = [0.015, 0.095], then for cm3, it is −→κ = [0.010, 0.145]; for cm4, it is −→κ = [0.189, 0.284];
for cm5, it is −→κ = [0.045, 0.095]; for cm6, it is −→κ = [0.06, 0.12]; for cm7, it is −→κ = [0.5, 0.5];
for cm8, it is −→κ = [0.284, 0.189], and for cm9, it is −→κ = [0.67, 0.00].

These observations indicate significant differences between the F1 and the proposed
preference-driven measures. As we have already presented, F1 for a single confusion matrix
(i.e., the classifier score) is always represented by a single value. In contrast, it is possible to
control the quality score according to preferences in the preference-driven case.

Table 3. Example values of the proposed preference-driven measure in comparison with other
measures for assessing the quality of classification (p-d is the abbreviation for the preference-driven
measure). Results determined for all confusion matrices presented in Figure 1.

p-d[0.3,0.6] p-d[0.9,0.4] p-d[0.5,0.5] Precision 1 Recall 2 F1 3

cm1 4 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
cm2 4 0.9350 0.8650 0.9083 0.9157 0.9000 0.9083
cm3 4 0.8771 0.7514 0.8286 0.8571 0.8000 0.8276
cm4 4 0.8500 0.7000 0.7917 0.8333 0.7500 0.7895
cm5 4 0.7250 0.6700 0.7042 0.7083 0.7000 0.7041
cm6 4 0.6866 0.6098 0.6574 0.6648 0.6500 0.6573
cm7 4 0.5585 0.5366 0.5503 0.5505 0.5500 0.5502
cm8 4 0.7250 0.9083 0.7917 0.8333 0.7500 0.7895
cm9 4 0.4250 0.2750 0.3750 0.2500 0.5000 0.3333

1 macro_precision (Equation (17)) is equal to preference-driven[1.0,1.0].
2 macro_recall (Equation (18)) is equal to

preference-driven[0.0,0.0].
3 macro_F1 (Equation (23)). 4 See Figure 1.
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Figure 6. Example values of the proposed measure in comparison with other measures for assessing
the quality of classification (the diagonal lines allow easier analysis of the changes between the
sample confusion matrices).

4.3. Default Values of the Preference Vector

The proposed measure is used to evaluate the classifier’s quality as closely as possible
to the stated preferences (as long as the decision maker clearly describes these preferences).
To make the measure more comparable with other measures, we propose, as an alternative,
the default values of the preference vector for the preference-driven−→κ measure.

The ratio of the number of objects in each class to the number of all samples is taken as
the default value of the preference vector. This means that, for classes with many samples,
higher weight is related to precision for this class, while, for classes with a relatively small
number of samples, higher weight is related to recall of this class. Such a solution allows
compensation for the situation in which the samples are more often classified into classes
with many samples. When validating a classifier, there is always a learning set (whether for
train-and-test or cross-validation), which each time allows the mentioned default values
of the preference vector to be determined—the preference vector can correspond to the
distribution of cases in the learning data.

In analogy with previously adopted designations, a notation for the default value of
the −→κ vector in Formula (31) is proposed. The designations are the same as those contained
in Table 2; additionally, s is the sum of all samples.

−→κ =

[
TP1 + FN1

s
,

TP2 + FN2

s
, . . . ,

TPi + FNi
s

, . . . ,
TPC−1 + FNC−1

s
,

TPC + FNC
s

]
(31)

For example, in the situation described in Section 4.2, where the classes in the confusion
matrix are at equilibrium, the implicit vector would be of the form −→κ = [0.5, 0.5]. Its value
is incidentally given in Table 3, in column preference-driven[0.5,0.5].

Extending the example, a confusion matrix is proposed, shown in Table 4. In this case,
there are three classes, containing 50, 20, and 30 samples each, respectively. Therefore, the
default values of the preference vector would be as follows:

−→κ =

[
50

100
,

20
100

,
30
100

]
,

so −→κ = [0.5, 0.2, 0.3].
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Here, 50 out of 100 instances are in class 1, 20 out of 100 instances are in class 2, and 30 out
of 100 instances are in class 3. The preference-driven measure value is 0.656, because

preference-driven[0.5,0.2,0.3] =
1
3
×

(
0.5 × TP1

TP1 + FP1
+ (1 − 0.5)× TP1

TP1 + FN1

)
+

1
3
×

(
0.2 × TP2

TP2 + FP2
+ (1 − 0.2)× TP2

TP2 + FN2

)
+

1
3
×

(
0.3 × TP3

TP3 + FP3
+ (1 − 0.3)× TP3

TP3 + FN3

)
so

preference-driven[0.5,0.2,0.3] =
1
3
×

(
0.5 × 40

40 + 8 + 9
+ 0.5 × 40

40 + 7 + 3

)
+

1
3
×

(
0.2 × 10

10 + 7 + 1
+ 0.8 × 10

10 + 8 + 2

)
+

1
3
×

(
0.3 × 20

20 + 3 + 2
+ 0.7 × 20

20 + 9 + 1

)

preference-driven[0.5,0.2,0.3] =
1
3
× (0.5 × 0.702 + 0.5 × 0.8 + 0.2 × 0.556 + 0.8 × 0.5 + 0.3 × 0.8 + 0.7 × 0.667)

preference-driven[0.5,0.2,0.3] =
1
3
× (0.351 + 0.4 + 0.111 + 0.4 + 0.24 + 0.467)

preference-driven[0.5,0.2,0.3] = 0.656

The results for the default values of the preference vector for the preference-driven−→κ
measure are also analyzed in Section 5, when testing the proposed measure with different
real data sets.

Table 4. Example confusion matrix used to demonstrate how to determine the proposed preference-
driven measure.

Predicted Class 1 Predicted Class 2 Predicted Class3

Actual class 1 40 7 3
Actual class 2 8 10 2
Actual class 3 9 1 20

5. Analysis on Real-World Data Sets

As the paper proposes a new classification quality assessment measure whose value
depends on the stated preferences (called preference vector), we conducted experiments on
real-world data sets. First, we checked the importance of the proposed measure depend-
ing on the given preference vector—while comparing the performance and ranks of the
classifiers with classical measures of classification quality assessment.

5.1. Experiment Conditions

The proposed measure preference-driven−→κ is compared with the classical measures
described in this paper (see Section 3.2). As some of the measures, in the case of multi-class
classification, reduce to the same measure, the following names are used in this section:
accuracy (see Equation (16)), precision (see Equation (17)), recall (see Equation (18)), F1 (see
Equation (23)), and MCC (see Equation (25)).
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Four well-known data sets were selected for classification, whose structures are de-
scribed in Table 5. As one can see, multi-class data sets were selected, in which, additionally,
the distribution of samples in classes was uneven (see “percent of samples per class” in
Table 5, where the ratio of samples of each class to the whole data set is given). On the other
hand, as test classifiers, we selected classifiers available in the system Weka-3-6-11 [47].
More specifically, these were the following classifiers: Bagging [48], BayesNet [49], Deci-
sionTable [50], C4.5 (J48) [51], and RandomForest [52]. In each case, 10-fold cross-validation
was used so that each sample was subject to prediction.

Classification results from the Weka system (including confusion matrices) and the
values of the proposed classification quality evaluation measure for fixed preference vectors
are available on the website of the Department of Machine Learning of the University of
Economics in Katowice (https://www.ue.katowice.pl/jednostki/katedry/wiik/katedra-
uczenia-maszynowego/zrodla-danych/preference-driven.html (accessed on 6 February
2022)).

Table 5. Characteristics of the real data sets used to test the proposed preference-driven measure and
comparison with classical measures.

Data Set Number of
Samples

Number of
Attributes

Number of
Classes

Percent of Samples

per Class

car 1728 6 4 0.70 0.22 0.04 0.04

nursery 12960 8 5 0.00 0.33
0.33 0.03 0.31

dermatology 366 34 6 0.17 0.31 0.20
0.14 0.13 0.05

krkopt 28056 6 18

0.10 0.00 0.00
0.01 0.00 0.01
0.02 0.02 0.02
0.05 0.06 0.07
0.10 0.13 0.15
0.16 0.08 0.01

The number of decision classes in each data set is different, so the checked combina-
tions of values in the preference vector determined different, possible values of subsequent
elements of the vector. Thus, the number of combinations is close to 15,000 (except for the
krkopt data set, which is too large and had to exceed this value). In this way, we obtained:

• car—[0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1], which gives 14,641 combinations
(because: 4 decision classes and 11 values of κ, so 114 = 14,641);

• nursery—[0, 0.166, 0.332, 0.498, 0.664, 0.83, 1], which gives 75 = 16,807 combinations;
• dermatology—[0, 0.25, 0.5, 0.75, 1], which gives 56 = 15,625; combinations;
• krkopt—[0.33, 0.66], which gives 218 = 262,144 combinations.

5.2. Experimental Results

Tables 6–9 present the results for all data sets and all classifiers. Ratings have been
made for all measures, with preference-driven−→κ determined each time for the default
values and five different, selected preference vectors. Evaluation values were presented
along with the ranking order of the classifier for each measure (in brackets). This approach
allows us not only to evaluate the differences between the evaluation values but also to
indicate whether, using the proposed measure, it could happen that another classifier would
be better than those indicated by the classical classification quality evaluation measures.
On the other hand, Figure 7 shows histograms of the preference-driven−→κ measure values
for all tested preference vectors.

Figure 7 presents 20 different histograms used to show the distribution of values
(without any unnecessarily detailed information). In part (a), successive histograms are
shown for the car data set, then (b) contains the nursery histograms, (c) is related to
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dermatology, and (d) is the krkopt results. This figure concerns the value of the preference-
driven measure determined for different preference vectors (−→κ ). Therefore, the X-axis
represents the value of the preference-driven measure, while the Y-axis represents the
number of occurrences of this value.

This presentation in Figure 7 allows us to notice that in each case, using the pro-
posed measure, it is possible to obtain a different score with the same confusion ma-
trix. In addition, in most cases, the values of the measure are close to a normal distri-
bution. A slightly more interesting case is (b), with the Bagging, BayesNet, and Ran-
domForest classifiers. In this case, however, it should be noted that the classification
each time gives a specific confusion matrix (detailed results are available on the UE Ka-
towice website (https://www.ue.katowice.pl/jednostki/katedry/wiik/katedra-uczenia-
maszynowego/zrodla-danych/preference-driven.html) (accessed on 6 February 2022)).
Note that there are only two samples in the first class. The class with the most significant
number of samples is always correctly identified. Additionally, in case (c), the particular
histogram is obtained for the RandomForest classifier, where the classification was excel-
lent, close to error-free. In contrast, the values were rounded to the second decimal for the
histogram, hence such a high concentration of preference-driven measure values.

(a)

(b)

(c)

(d)

Figure 7. Histogram of preference-driven measure values in the (a) car data set; (b) nursery data set;
(c) dermatology data set; (d) krkopt data set—the X-axis represents the value of the preference-driven
measure, while the Y-axis represents the number of occurrences of this value.

Analyzing the experimental results, it is worth noting that by using different vectors,
in the case of a preference-driven measure, it is possible to indicate a different classifier
as more adapted to the problem. For example, in the case of the car data set (see Table 6),
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the classifier DecisionTable turns out to be the best for some preference vectors (e.g.,
[0, 1, 1, 0.9]); similarly, the classifier BayesNet turns out to be better than Bagging if the
preference vector is, among others, [0.3, 1, 1, 1]. The situation is similar for the set of nursery
data (see Table 7), where also DecisionTable turns out to be the best, while the preference
vector is [0.498, 1, 0.166, 1, 0]. A similar difference, but on subsequent ranks (between 3
and 4), can be observed also in the case of the krkopt data set (see Table 9). Although, in
the case of the dermatology data set (see Table 8), no change of ranks was observed, it
could be observed that the disproportion between the assessment of specific classifiers
changed a lot and, e.g., in the case of vector [0, 0, 0, 1, 1, 0.75], the difference between the
best BayesNet and the second RandomForest was less than 0.0083, where, with classical
measures of classification quality assessment, this difference was around 0.02.

The aim of the experiment was to check whether the proposed measure will show
different classifiers for the same problem depending on the value in the preference vector.
It turned out that, indeed, the measure indicates different classifiers, even with a limited
number of vectors tested.

Table 6. Results for the car data set—the value of the classification quality assessment (in brackets,
we give the ranking of the classifier, according to the given measure). The ranking determines the
order of the classifier depending on the classification quality rating measure used.

Bagging BayesNet DecisionTable C4.5 (J48) RandomForest

accuracy 0.9167 (3) 0.8571 (5) 0.9149 (4) 0.9236 (2) 0.9462 (1)
precision 0.7586 (5) 0.7940 (4) 0.8557 (2) 0.8179 (3) 0.8565 (1)

recall 0.7665 (4) 0.6040 (5) 0.8177 (3) 0.8289 (2) 0.8581 (1)
F1 0.7625 (4) 0.6861 (5) 0.8363 (2) 0.8233 (3) 0.8573 (1)

MCC 0.8208 (3) 0.6737 (5) 0.8101 (4) 0.8345 (2) 0.8842 (1)
preference-driven 1 0.7670 (4) 0.6031 (5) 0.8171 (3) 0.8291 (2) 0.8584 (1)

p-d[0,0.8,0.6,1] 0.7757 (4) 0.7582 (5) 0.8600 (1) 0.8295 (3) 0.8600 (1)
p-d[0,1,0,1] 0.8021 (4) 0.6853 (5) 0.8631 (2) 0.8475 (3) 0.8647 (1)

p-d[0,1,1,0.9] 0.7494 (5) 0.7954 (4) 0.8601 (1) 0.8127 (3) 0.8499 (2)
p-d[0.3,1,1,1] 0.7555 (5) 0.8012 (4) 0.8609 (1) 0.8160 (3) 0.8534 (2)

p-d[0.6,1,0.8,1] 0.7664 (5) 0.7743 (4) 0.8587 (1) 0.8233 (3) 0.8572 (2)

1 Default value of the preference vector (see Section 4.3).

Table 7. Results for the nursery data set—the value of the classification quality assessment (in brackets,
we give the ranking of the classifier, according to the given measure). The ranking determines the
order of the classifier depending on the classification quality rating measure used.

Bagging BayesNet DecisionTable C4.5 (J48) RandomForest

accuracy 0.9737 (2) 0.9033 (5) 0.9470 (4) 0.9705 (3) 0.9909 (1)
precision 0.7518 (3) 0.7250 (5) 0.7661 (2) 0.7453 (4) 0.7849 (1)

recall 0.7226 (3) 0.5666 (5) 0.6722 (4) 0.7313 (2) 0.7765 (1)
F1 0.7369 (3) 0.6361 (5) 0.7160 (4) 0.7382 (2) 0.7806 (1)

MCC 0.9614 (2) 0.8579 (5) 0.9234 (4) 0.9568 (3) 0.9867 (1)
preference-driven 1 0.7224 (3) 0.5671 (5) 0.6727 (4) 0.7312 (2) 0.7764 (1)

p-d[0,0,0,1,0] 0.7550 (3) 0.7362 (5) 0.7733 (2) 0.7470 (4) 0.7857 (1)
p-d[0,0,0,1,1] 0.7524 (2) 0.7412 (5) 0.7520 (3) 0.7428 (4) 0.7850 (1)

p-d[0,0.83,0,1,0] 0.7545 (3) 0.7228 (5) 0.7850 (2) 0.7490 (4) 0.7856 (1)
p-d[0.498,1,0.166,1,0] 0.7544 (3) 0.7200 (5) 0.7874 (1) 0.7495 (4) 0.7855 (2)

p-d[0.83,0.332,0.166,0,1] 0.7198 (3) 0.5662 (5) 0.6555 (4) 0.7280 (2) 0.7757 (1)

1 Default value of the preference vector (see Section 4.3).
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Table 8. Results for the dermatology data set—the value of the classification quality assessment
(in brackets, we give the ranking of the classifier, according to the given measure). The ranking
determines the order of the classifier depending on the classification quality rating measure used.

Bagging BayesNet DecisionTable C4.5 (J48) RandomForest

accuracy 0.3798 (5) 0.9727 (1) 0.8388 (4) 0.9454 (3) 0.9536 (2)
precision 0.3798 (5) 0.9692 (1) 0.8549 (4) 0.9372 (3) 0.9492 (2)

recall 0.3947 (5) 0.9707 (1) 0.8204 (4) 0.9368 (3) 0.9477 (2)
F1 0.3871 (5) 0.9699 (1) 0.8373 (4) 0.9370 (3) 0.9484 (2)

MCC 0.2170 (5) 0.9660 (1) 0.7982 (4) 0.9316 (3) 0.9418 (2)
preference-driven 1 0.3923 (5) 0.9708 (1) 0.8217 (4) 0.9368 (3) 0.9477 (2)

p-d[0,0,0,0,1,0] 0.4090 (5) 0.9589 (1) 0.8030 (4) 0.9400 (3) 0.9506 (2)
p-d[0,0,0,1,1,0.75] 0.4014 (5) 0.9589 (1) 0.8430 (4) 0.9369 (3) 0.9506 (2)
p-d[0,0,1,1,0,1] 0.3807 (5) 0.9707 (1) 0.8800 (4) 0.9315 (3) 0.9477 (2)

p-d[0.5,0,0.25,0.5,0.5,1] 0.3823 (5) 0.9699 (1) 0.8575 (4) 0.9375 (3) 0.9492 (2)
p-d[0.5,1,0.75,0.5,0.5,0] 0.3921 (5) 0.9699 (1) 0.8178 (4) 0.9364 (3) 0.9477 (2)

1 Default value of the preference vector (see Section 4.3).

Table 9. Results for the krkopt data set—the value of the classification quality assessment (in brackets,
we give the ranking of the classifier, according to the given measure). The ranking determines the
order of the classifier depending on the classification quality rating measure used.

Bagging BayesNet DecisionTable C4.5 (J48) RandomForest

accuracy 0.5872 (2) 0.3607 (5) 0.4908 (4) 0.5658 (3) 0.7025 (1)
precision 0.5735 (3) 0.3579 (5) 0.5784 (2) 0.5547 (4) 0.7377 (1)

recall 0.5406 (2) 0.2982 (5) 0.5187 (3) 0.5178 (4) 0.6628 (1)
F1 0.5566 (2) 0.3253 (5) 0.5469 (3) 0.5356 (4) 0.6982 (1)

MCC 0.5377 (2) 0.2784 (5) 0.4300 (4) 0.5135 (3) 0.6669 (1)
preference-driven 1 0.5404 (2) 0.2967 (5) 0.5191 (3) 0.5177 (4) 0.6629 (1)
preference-driven−→κ

2 0.5776 (3) 0.3717 (5) 0.5806 (2) 0.5576 (3) 0.7426 (1)
preference-driven−→κ

3 0.5542 (2) 0.3176 (5) 0.5415 (3) 0.5288 (4) 0.6869 (1)
preference-driven−→κ

4 0.5554 (2) 0.3262 (5) 0.5462 (3) 0.5396 (4) 0.6925 (1)
preference-driven−→κ

5 0.5741 (2) 0.3467 (5) 0.5472 (4) 0.5485 (3) 0.7287 (1)
preference-driven−→κ

6 0.5638 (2) 0.3461 (5) 0.5587 (3) 0.5410 (4) 0.7033 (1)
1 Default value of the preference vector (see Section 4.3). 2 −→κ = [0, 1, 1, 1, 1, 1, 0.9, 0.9, 1, 0.9, 0.9, 0.9, 0, 0, 0, 0, 0.9,
1]. 3 −→κ = [0.33, 0.66, 0.33, 0.33, 0.66, 0.33, 0.66, 0.66, 0.33, 0.66, 0.66, 0.33, 0.66, 0.66, 0.66, 0.66, 0.33, 0.33]. 4 −→κ =
[0.66, 0.33, 0.33, 0.33, 0.33, 0.66, 0.66, 0.33, 0.66, 0.66, 0.66, 0.33, 0.33, 0.66, 0.33, 0.33, 0.33, 0.33]. 5 −→κ = [1, 0.1, 1, 1, 1,
1, 0.1, 0.1, 0, 0.1, 0.1, 0.1, 0, 0, 0, 0, 0.9, 1]. 6 −→κ = [1, 1, 0.9, 0.9, 0.8, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.3, 0.2, 0.2, 0.1, 0.1, 0.0, 0.0].

6. Discussion

In supervised learning, one of the necessary steps in adequately designed research is
teaching on training data different classifiers, sometimes with different parameters, and
then evaluating their quality. In our work, we assume that the user has specific preferences.
In addition, they relate to particular decision classes. Thus, we can immediately identify a
suitable classifier.

Using a vector of preferences, it is possible to indicate whether precision or recall is
more important. It is crucial for many problems to indicate that it is possible to select a
classifier better adapted to the structure of the data and decision makers’ expectations for
each class separately. The best strategy is to examine the training of as many classifiers
as possible (with different parameters). Such an approach allows the identification of the
potentially best classifiers for a given problem.

The proposed preference-driven measure used in the experiments allowed for a better
selection of the classifier most suitable for the task. With an approach allowing us to
indicate whether precision or recall is more important—for each class separately—it is
possible to select a classifier more adapted to the more important (from the evaluation
point of view) decision class.
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Despite the limited number of combinations, the conducted experiments indicated that
the proposed measure, depending on the preferences conveyed in the form of a preference
vector, points to different classifiers as the best choice for further prediction.

Since the set of values in the preference vector is infinite, the measurement values are
also unlimited. Therefore, the calculation of a measure and comparison with other measures
is possible only by calculating them at specific points. It should be noted that it is not
necessary to test many combinations of the preference vector in a real application. Instead,
these should be predetermined, indicating the relative importance of the recall–precision
balance in each decision class.

This also distinguishes the preference-driven measure from the Fβ measure, which also
raised attempts to weigh between precision and recall. However, the proposed preference-
driven measure is different. Note that, in the case of Fβ, there is a weighting between
precision and recall overall for the classifier. In contrast, there are weights for each decision
class with the preference-driven measure. It allows us to change the emphasis on precision
and recall depending on each decision class (differently). In the case of Fβ, this possibility
does not exist.

7. Conclusions

This article presents a new idea for a preference-driven classification measure. We
tried to show that the measure works, i.e.,

• for different preference vectors, different classifiers are more advantageous then others;
• the obtained results of the comparison make it easier for the user to understand the

effects of classification and make the right decision as to which classifier to use.

In the “objective” approach (without preferences), the result is unambiguous and
comparable, but the best classifier will not necessarily be adjusted to the subjective needs
of the user. In the “subjective” approach (preference-driven), comparability is difficult, but
in return, users can acquire a classifier better suited to their requirements.

The concept of this measure results from the shortcomings of measures related to the
multi-class classification. Nowadays, we observe a large number of classification methods.
There is no single versatile classification measure capable of catching up on concepts related
to both: overall good classification quality and a particular focus on the selected decision
classes. The whole idea of different classification measures is mostly extended for the
binary decision classes, which often fail to achieve good results for real-world data. At the
same time, multi-class classification measures are based on averaging the results, which
can be fair for general cases but fails to include decision makers’ preferences related to the
particular classes.

Similarly, for unbalanced cases, where there is a need to focus on particular classes,
the proposed preference-driven measure fits well for this gap. To be more precise, our
proposed preference-driven measure can be aligned with the decision makers’ preferences
regarding the relative importance of precision and recall. We also present the idea of setting
the default values for the vector of preferences based on the overall number of samples
assigned to every decision class. The most important advantage of the proposed idea is
the good fit between the well-known measures such as precision and recall. Moreover, the
κ preference vector allows us to direct the focus to a particular decision class, or even to
express the importance of selected decision classes in terms of the precision measure (and
others in terms of recall).

At the same time, we show that even for potentially trivial cases, such preference-
driven measures could lead to entirely different results based on the κ selection. It opens a
discussion for multi-class classification and leads to an interesting situation. The solution
for the classification problem should not be considered a single scalar value.

In the future, a preference-driven measure can be used in line with the proposed
approach. Alternatively, the factors of which the measure is composed could be scrutinized,
and other measures could be used instead of the class’s relative precision and recall values.
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Abstract: When rotating machinery fails, the consequent vibration signal contains rich fault feature
information. However, the vibration signal bears the characteristics of nonlinearity and nonstationar-
ity, and is easily disturbed by noise, thus it may be difficult to accurately extract hidden fault features.
To extract effective fault features from the collected vibration signals and improve the diagnostic
accuracy of weak faults, a novel method for fault diagnosis of rotating machinery is proposed. The
new method is based on Fast Iterative Filtering (FIF) and Parameter Adaptive Refined Composite
Multiscale Fluctuation-based Dispersion Entropy (PARCMFDE). Firstly, the collected original vibra-
tion signal is decomposed by FIF to obtain a series of intrinsic mode functions (IMFs), and the IMFs
with a large correlation coefficient are selected for reconstruction. Then, a PARCMFDE is proposed for
fault feature extraction, where its embedding dimension and class number are determined by Genetic
Algorithm (GA). Finally, the extracted fault features are input into Fuzzy C-Means (FCM) to classify
different states of rotating machinery. The experimental results show that the proposed method can
accurately extract weak fault features and realize reliable fault diagnosis of rotating machinery.

Keywords: fast iterative filtering; parameter adaptive refined composite multiscale fluctuation-based
dispersion entropy; rotating machinery; fault diagnosis

1. Introduction

Rotating machinery, such as electric motors, centrifugal pumps, and turbine engines,
represent the most widely used mechanical equipment in industrial processes [1]. The me-
chanical equipment usually operate under unstable loads and harsh working conditions,
thus various failures of their critical components, such as bearing damage and impeller
damage, are inevitable. The operating states of rotating machinery directly affect the pro-
ductivity and safety of the industrial sector. Therefore, accurate and reliable fault diagnosis
of rotating machinery is of great practical significance [2].

The key to fault diagnosis of rotating machinery is to extract fault features from
vibration signals. Vibration signals are nonlinear and nonstationary [3], and are easily
interfered by noise, thus it is difficult to extract hidden features. Therefore, it is necessary to
combine the appropriate time–frequency analysis method with the entropy measurement
method to extract the hidden tiny fault features. The first step is to choose the appropriate
signal processing method. Studies have shown that when the fault signal is disturbed
by noise, traditional time–frequency analysis techniques, such as Fourier transform (FFT)
and Wavelet Transform (WT) cannot accurately extract fault features [4,5]. The more com-
monly used method is the Empirical Mode Decomposition (EMD) method proposed by
Huang et al. in 1998 [6]. The EMD can adaptively decompose the signal into the sum of
finite intrinsic mode functions (IMF), each IMF component represents a set of characteristic
scale signals, and the feature extraction of each component can better reveal the fault
information intrinsic characteristics. However, EMD suffers from modal aliasing, end-point
effects, and a lack of rigorous mathematical framework for using envelopes in an iterative
manner [7]. Although the Ensemble Empirical Mode Decomposition (EEMD) [8] optimized
on the basis of EMD can effectively improve the problem of mode aliasing, and the Fast
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Ensemble Empirical Mode Decomposition (FEEMD) [9] further improves the calculation
speed, neither escape the drawbacks of using envelopes in an iterative fashion without a
rigorous mathematical framework. Subsequently, Dragomiretskiy K et al. proposed a new
adaptive Variational Mode Decomposition (VMD) method. The method is a non-recursive
variational decomposition model, and the optimal solution of the variational model is
iteratively searched by the alternating direction multiplier method, thereby determining
the center frequency and bandwidth of each mode. It avoids mode mixing in EMD, and has
better robustness to noise [10]. However, VMD suffers from relatively slow computational
efficiency, and its performance depends heavily on its two input parameters, namely the
penalty factor and the number of decomposition modes [11]. The Iterative Filtering (IF)
method proposed by Lin et al. and its derivatives [12], such as the Adaptive Local Iterative
Filtering (ALIF) method [13], the Fast Iterative Filtering (FIF) method [14] can produce
results similar to EMD-based algorithms, with the important advantage that their con-
vergence and stability are guaranteed. Moreover, the FIF method uses a fixed low-pass
filter function to replace the envelope mean curve in the EMD method, which solves the
problem of EMD lacking a strict mathematical framework. Meanwhile, the FIF method is
unaffected by mode aliasing, and mode splitting can be easily avoided by adjusting the
value of the stopping criterion parameter [4]. Furthermore, FIF greatly improves the calcu-
lation speed on the basis of ensuring decomposition accuracy, with small decomposition
error, good noise robustness, and can achieve efficient and accurate signal decomposi-
tion [15]. Therefore, this paper adopts the FIF method to decompose the vibration signal of
rotating machinery.

The components of the vibration signal following decomposition by FIF contain rich
fault information. Moreover, the components of vibration signals in different states of
rotating machinery show different complexity, so the entropy parameter can be used to
extract the fault information [16]. Approximate Entropy (ApEn), Sample Entropy (SampEn),
Fuzzy Entropy (FE), and Permutation Entropy (PE) are widely used in the field of rotating
machinery fault diagnosis to measure the complexity of vibration signals [17–19]. However,
ApEn and Multiscale Approximate Entropy include the comparison of their own data
segments in the calculation process, and their calculation depends on the data length.
If the data length is short, the obtained value is usually smaller than the actual value.
The SampEn is an improvement on the approximate entropy. It does not include the
comparison of its own data segments, and has higher calculation accuracy and better
consistency. However, SampEn and its improvements also have clear shortcomings: Firstly,
SampEn and its improvements use Heaviside functions to measure the complexity of time
series, resulting in inaccurate estimates in practical applications [20]. Secondly, SampEn
and its improvements are computationally inefficient, especially for long time series. FE
and its improvements replace the Heaviside function with a fuzzy membership function
that is insensitive to background noise and highly sensitive to dynamic changes, but it
is computationally inefficient [16]. PE is a method to measure the complexity of chaotic
time series. PE has high computational efficiency, can be used to calculate huge datasets,
and exhibits good anti-noise performance. However, the main disadvantage of PE is that
it is prone to generating undefined entropy values for short-term time series and cannot
classify well-defined patterns for a specific design [21]. In order to overcome the above
problems, Hamed Azami et al. proposed a nonlinear time complexity evaluation method
of Dispersion Entropy (DE). DE can generate reliable entropy values, is insensitive to
noise interference, can accurately capture signal characteristics, and calculate with high
efficiency [22]. Subsequently, in order to improve the extraction ability of hidden fault
features, Hamed Azam et al. continued to propose the Refined Composite Multiscale
Fluctuation-based Dispersion Entropy (RCMFDE), which can more accurately analyze
the complexity of nonlinear time series under various scale factors, with more stable
entropy values [23].

However, in the RCMFDE method, there are two key parameters (i.e., embedding
dimension and class number) that need to be manually selected in advance. Furthermore,
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the parameter setting of the RCMFDE algorithm will affect the final processing result. If the
parameter settings are unreasonable, the hidden tiny fault features may not be accurately
extracted, resulting in misclassification. Aiming at the determination of the embedding
dimension m and the class number c in the RCMFDE algorithm, this paper proposes a
Parameter Adaptive Refined Composite Multiscale Fluctuation-based Dispersion Entropy
(PARCMFDE). The method takes skewness as the objective function, and uses a Genetic
Algorithm (GA) to optimize parameters of RCMFDE. PARCMFDE can automatically and
effectively determine the important parameters of RCMFDE, so as to describe the complex-
ity and uncertainty of time series more accurately, and achieve the purpose of extracting
the features of hidden faults. In view of the shortcomings of existing methods, relevant
research is carried out, and the main contributions are as follows:

(1) PARCMFDE based on GA is proposed, which overcomes the insufficiency of experience-
based parameter selection. PARCMFDE can more accurately extract tiny fault features
hidden in vibration signals of rotating machinery.

(2) A fault diagnosis method for rotating machinery based on FIF, PARCMFDE and Fuzzy
C-Means (FCM) is proposed, which can classify rotating machinery faults accurately
and automatically without depending on the length of data samples.

(3) The effectiveness of the method is verified by the bearing data of Case Western Reserve
University and the experimental data of centrifugal pumps obtained by building a
water circulation experimental system. Compared with other methods, it shows
that feature extraction of PARCMFDE is more accurate and stable, and the rotating
machinery fault diagnosis method based on FIF, PARCMFDE and FCM exhibits better
classification effect.

This paper is mainly divided into the following sections: Section 2 briefly introduces
the basic principles and characteristics of the FIF algorithm. In Section 3, the principle of
PARCMFDE is introduced and compared with RCMFDE and Multiscale Sample Entropy
(MSE) and Multiscale Fluctuation-based Dispersion Entropy (MFDE). Section 4 briefly
introduces the principle and evaluation index of FCM. Section 5 presents the method of
fault diagnosis of rotating machinery. Section 6 verifies the effectiveness of the method and
compares it with other vibration signal fault diagnosis methods through the bearing data of
Case Western Reserve University and experimental data from centrifugal pumps obtained
by building a water circulation experimental system. Section 7 provides the conclusion.

2. Fast Iterative Filtering

The key idea of Fast Iterative Filtering is to iteratively subtract the simple oscillatory
components contained in the signal from the signal itself, the so-called IMFs, by approxi-
mating the moving average of the signal, thereby separating the simple oscillatory com-
ponents in the signal [14]. The approximate moving average is computed by convolution
with the window/filter function w. Consider a raw vibration signal s(x), define a win-
dow/filter function w is a non-negative even function in the range of C0([−L, L]), L > 0.
The Fokker–Plank filter is used here, and

∫
R w(z)z =

∫ L
−L w(z)z = 1, ŝ denotes the Fourier

transform of s, DFT denotes the discrete Fourier transform, and IDFT denotes the inverse
discrete Fourier transform. The specific implementation process of FIF is as follows:

(1) Calculate the length L of the corresponding filter w of the signal s(x):

L := 2
⌊

ξ
N
k

⌋
(1)

where N is the total number of sampling points of the signal s(x), k is the number of
its extreme points, and ξ is a tuning parameter, which is usually fixed around 1.6 for
the Fokker–Plank filter.

(2) Calculate the discrete Fourier transform of the signal s(x) and the corresponding filter
w, denoted as DFT(s) and DFT(w), respectively.
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(3) Calculate ŝm+1:
ŝm+1 = (I − diag(DFT(w))mDFT(s) (2)

(4) Calculate N0 ∈ N and IMF:

N0
N0

(N0 + 1)N0+1 <
δ

||sm||2
(3)

IMF =
n−1

∑
k=0

uk(1 − λk)
N0 σk = IDFT((I − D)N0 DFT(s)) (4)

where δ > 0, represents the required precision; N0 represents the number of itera-
tions required to achieve the required precision δ when calculating a specific IMF;
σk represents the kth element of the Fourier transform of the signal s; λk represents
the kth eigenvalue; uk is the kth eigenvector; I is the identity matrix; D is the diagonal
matrix, whose diagonal is the eigenvalue.

(5) Judgment of inner loop stop condition: if the stop standard SD is met, then stop
the inner loop, otherwise let m = m + 1 repeat steps (3)–(5), the stop standard SD is
calculated by the following formula:

SD :=
||sm+1 − sm||2

||sm||2
< δ, ∀m ≥ N0. (5)

(6) Calculate the IMF component and the new s:

IMF = IMF ∪ {IDFT(ŝm)} (6)

s = s − IDFT(ŝm). (7)

(7) Judgment of outer loop stop condition: Calculate the extreme point of s, if there is
only one extreme point of s or less, the outer loop stops, otherwise repeat steps (1)–(7).

(8) Extract the final IMF component

IMF = IMF ∪ {s}. (8)

In short, the FIF method includes two processes: inner loop and outer loop. The pur-
pose of the inner loop is to filter out the IMF components of each order. The purpose of
the outer loop is to end the process of extracting the IMF component of the inner loop.
When the residual obtained by removing all IMF components from the original signal s(x)
contains only one or less extreme points, the outer loop stops.

3. Parameter Adaptive Refined Composite Multiscale Fluctuation Based
Dispersion Entropy

3.1. Refined Composite Multiscale Fluctuation-Based Dispersion Entropy

Refined Composite Multiscale Fluctuation-based Dispersion Entropy (RCMFDE) ac-
counts for the shortcomings of Multiscale Fluctuation-based Dispersion Entropy (MFDE)
in the process of coarse-graining, which has low computational efficiency and a high proba-
bility of invalid entropy values. The entropy value is more stable, the operation speed is
faster, and the probability of invalid entropy occurrence is greatly reduced. The specific
process of RCMFDE is as follows:

(1) For a given univariate signal L : v = {v1, v2, . . . , vL}. Dividing v into non-overlapping
segments of length τ is called the scale factor. Construct a composite coarse-grained
time series:

x(τ)k (i) =
1
τ

iτ+k−1

∑
c=(i−1)τ+k

vc, 1 ≤ i ≤
⌊

L
τ

⌋
= n, k = 1, 2, . . . , τ (9)

where k represents the coarse-grained sliding number of the scale factor under τ.
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(2) Map X = {x1, x2, . . . , xn} to Y = {y1, y2, . . . , yn} through the normal cumulative
distribution function (NCDF) as follows:

yk(i) =
1

σ
√

2π

∫ xk(i)

−∞
e
−(t−μ)2

2σ2 dt (10)

where σ is the standard deviation of the time series X and μ is the mean.
(3) Linearly assign yk(i) to an integer zk(i) from 1 to c as follows:

zc
k(i) = round(c × yk(i) + 0.5) (11)

(4) Time series Zm,c
k (j) = {zc

k(j), zc
k(j + d), . . . , zc

k(j + (m − 1)d)}, j = 1, 2, . . . , n − (m −
1)d, (m − 1) is the embedding dimension and d is the time delay.

(5) Each time series Zm,c
k (j) maps to a fluctuation-based dispersion pattern πu0u1...um−1 ,

where zc
k(j) = u0, zc

k(j + d) = u1, zc
k(j + (m − 1)d) = um−1. The number of fluctuation-

based dispersion modes assignable to each time series Zm,c
k (j) is equal to (2c − 1)m−1.

(6) For each fluctuation-based dispersion pattern πu0u1...um−1 , the relative frequency is
obtained by Equation (12).

W(πv0...vm−1) =
#{j|j ≤ n − (m − 1)d, Zm,c

k (j)hastypeπv0...vm−1}
n − (m − 1)d

(12)

where # means cardinality.
(7) The Refined Composite Multiscale Fluctuation-based Dispersion Entropy (RCMFDE)

is obtained by the following formula:

RCMFDE = −
(2c−1)m−1

∑
π=1

τ

∑
k=1

W(πv0...vm−1)× ln(
τ

∑
k=1

W(πv0...vm−1)). (13)

The RCMFDE algorithm has four parameters, which are the embedding dimension m,
the class number c, the delay time d, and the maximum scale factor τmax. A study [23]
pointed out that the results of the RCMFDE do not change significantly with the time
delay d, and a different embedding dimension m and class number c have influence on
RCMFDE. The higher the number of dispersion modes based on potential fluctuations
(ln((2c − 1)m − 1)), the higher the RCMFDE value [23]. When m and c are too small,
the ability of RCMFDE to detect signal mutations is lower, but the larger m and c are,
the longer the algorithm runs. For samples of the same category, the feature vectors should
be as similar as possible; for samples of different categories, the feature vectors should be
significantly different. If the parameter selection is not suitable, it may cause instability
of entropy value, incomplete extraction of hidden feature information or excessively long
operation time, rendering it difficult to classify correctly. Therefore, it is necessary to select
appropriate values of the class number c and the embedding dimension m.

3.2. Genetic Algorithm

Genetic Algorithm (GA) is a computational model that simulates the biological evolu-
tion process of natural selection and genetic mechanism of Darwin’s theory of biological
evolution. It is a method to search for optimal solutions by simulating the natural evo-
lution process [24]. When solving more complex combinatorial optimization problems,
this algorithm can usually obtain better optimization results faster than some conventional
optimization algorithms. The specific process of GA is as follows:

(1) Set the evolutionary generation counter t = 0, set the maximum evolutionary genera-
tion T, and randomly generate M individuals as the initial population P(0).

(2) Determine the fitness function and calculate the fitness of each individual in the
population P(t).

(3) Apply the selection operator, the crossover operator, and the mutation operator to the
population P(t), and then obtain the next generation population P(t + 1).
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(4) If t = T, or the change of the fitness function value reaches the given threshold,
the optimal fitness individual is used as the optimal solution output. If t < T,
and the change of the fitness function value is greater than the given threshold, define
t = t + 1, and repeat steps (2)–(4).

3.3. Parameter Adaptive Refined Composite Multiscale Fluctuation-Based Dispersion Entropy

The settings of the embedding dimension m and the class number c of RCMFDE affect
its final entropy value, entropy value stability and operation time. If the parameter settings
are unreasonable, the best processing effect will not be achieved. Therefore, a suitable
method is needed to adaptively select the embedding dimension m and the class number c
in RCMFDE. For the above problems, this paper proposes a Parameter Adaptive Refined
Composite Multiscale Fluctuation-based Dispersion Entropy (PARCMFDE). The method
performs parameter optimization through Genetic Algorithm (GA) to determine the optimal
parameter combination of the embedding dimension m and the class number c in RCMFDE.
Figure 1 shows the flowchart of using GA to optimize the parameters of RCMFDE. The steps
of parameter optimization in PARCMFDE are described as follows:

(1) Determine the approximate range and encoding length of the embedding dimension
m and the class number c, and perform real encoding. The constraint function of the
parameters is (2c − 1)m−1 <

⌊
L

τmax

⌋
, where L represents the data length, τmax is the

maximum scale factor, and �.� represents rounding.
(2) Initialization: Set the evolutionary generation counter t = 0, set the maximum evo-

lutionary generation T to 200, and randomly generate M individuals as the initial
population P(0).

(3) Calculate the fitness of each individual in the population P(t). Skewness can charac-
terize the overall profile of a set of data. The larger the absolute value of skewness,
the more problematic the performance of the mean, and the smaller the absolute value
of skewness, the more reliable the mean [25]. Therefore, this paper selects the square
function of RCMFDE skewness (ske) as the fitness function and finds its minimum
value. The RCMFDE at all scales of the time series S = {s1, s2, . . . , sn} are composed
of the series HP(x) = {Hp(1), . . . , Hp(m)}, and the skewness (ske) is calculated by the
following formula:

ske = E[Hp(X)− Hm
p (X)]3/[Hd

p(X)]3 (14)

where Hm
p (X) is the mean of Hp(X), Hd

p(X) is the standard deviation of Hp(X), and E[.]
represents the mathematic expectation. The fitness function is taken as f = ske2.

(4) Apply selection operator, crossover operator and mutation operator to the popula-
tion. After the population P(t) is selected, crossed and mutated, the next generation
population P(t + 1) is obtained.

(5) Judgment of termination condition: If t ≥ T, or the change of fitness function value is
less than 10−6, then the individual with the smallest fitness obtained in the evolution
process is used as the optimal solution, and the optimal parameter combination m, c
is obtained. If t < T, and the change of the fitness function value is greater than 10−6,
define t = t + 1, and repeat steps (3)–(5).

(6) Use the parameter-optimized RCMFDE to extract the features of the reconstructed
rotating machinery vibration signal.
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Figure 1. The flowchart of using GA to optimize the parameters of RCMFDE.

3.4. Error Analysis and Comparison Results

To demonstrate the effectiveness of PARCMFDE in assessing the complexity and irreg-
ularity of time series, PARCMEDE of white Gaussian and pink noise signals are calculated
and compared with RCMFDE, Multiscale Fluctuation-based Dispersion Entropy(MFDE),
and Multiscale Sample Entropy (MSE). Furthermore, to compare the accuracy of the com-
plexity measures with different entropies, 10 groups of white Gaussian noise and 10 groups
of pink noise were randomly generated. For unified comparison, the maximum scale factor
τmax of the entropy is set to 10, and the time delay d is set to 1. Among them, the embedding
dimension m and the class number c of PARCMFDE take 2 and 3, respectively, in white
Gaussian noise, and take m = 2, c = 21 in pink noise. Based on experience, the embedding
dimension m and the class number c of RCMFDE and MFDE take the default values of
m = 3 and c = 6, respectively. The MSE takes the default value of m = 2, r = 0.15 × σ,
and σ represents the standard deviation of the signal. Figure 2a,b show the time-domain
waveforms of white Gaussian noise and pink noise. Figure 3a,b plot the error bars of
different entropy algorithms for white Gaussian noise and pink noise, respectively. The en-
tropy value of pink noise time series should remain almost constant, while the entropy
value of white Gaussian noise data should decrease monotonically [26]. It can be seen
from Figure 3a that with the increase of the scale factor τ, the average curves of the four
entropies of white Gaussian noise (i.e., RCMFDE, PARCMFDE, MFDE and MSE) bear a
downward trend which indicates that the four algorithms have good sensitivity in detection
complexity. Furthermore, the standard deviation of PARCMFDE for white Gaussian noise
at each scale is smaller than that of RCMFDE, MFDE and MSE, indicating that PARCMFDE
has higher accuracy than the other three algorithms on the complexity measure of white
Gaussian noise. It can be seen from Figure 3b that the MSE of pink noise exhibits a slight
downward trend with large fluctuations, but the PARCMFDE remains almost unchanged,
indicating that the RCMFDE is better than the MSE. Furthermore, the standard deviation
of PARCMFDE for pink noise at each scale is smaller than that of RCMFDE, MFDE and
MSE, indicating that PARCMFDE can provide a more accurate complexity estimate for
pink noise [27]. That is, PARCMFDE is effective in complexity measurement and feature
extraction of nonstationary signals. The standard deviation of MSE is much larger than the
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other three methods, indicating that MSE is insufficiently accurate regarding the complexity
measurement and feature extraction of nonstationary signals.
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Figure 2. Time Domain Waveform of (a) White Gaussian Noise and (b) Pink Noise.
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Figure 3. Entropy of different algorithms of (a) White Gaussian Noise and (b) Pink Noise.

4. Fuzzy C-Means Clustering

Fuzzy C-means (FCM) clustering algorithm is the most widely used fuzzy clustering
algorithm based on objective function. It obtains the membership degree of each sample
point to all class centers by optimizing the objective function, so as to determine the class of
the sample point to achieve the purpose of automatically classifying the sample data [28].

Let R = {r1, r2, . . . , rn} be the set of data samples, and n is the number of samples.
C = {c1, c2, . . . , ct} is the cluster center vector, and t is the total number of clusters. The FCM
clustering algorithm minimizes the objective function shown in Equation (15) through con-
tinuous iteration of the least squares method, and its constraints are shown in Equation (16).

Jm =
t

∑
i=1

n

∑
k=1

[μik(rk)]
m||rk − ci|| (15)

t

∑
i=1

μik(rk) = 1 (16)

where rk is the kth sample point to be clustered, μik is the degree of membership of rk to the
ith cluster center ci, m is the weight index of the degree of membership, generally m = 2.

The cluster center ci and the membership matrix μik are randomly selected initially.
Then iteratively calculate through Equations (17) and (18), and stop until the change of the
objective function is less than the threshold.
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Ci =

n
∑

k=1
rkμ2

ik

n
∑

k=1
μ2

ik

, i = 1, 2, . . . , t (17)

μik =
1

t
∑

j=1

||rk−ci ||2/(m−1)
2

||rk−cj ||2/(m−1)
2

(18)

The average fuzzy entropy E, classification coefficient S and classification accuracy
Acc are used to analyze and evaluate the clustering effect of the fuzzy C-means, which are,
respectively, defined as:

E = − 1
n

t

∑
i=1

n

∑
k=1

μik ln μik (19)

S =
1
n

t

∑
i=1

n

∑
k=1

μ2
ik (20)

Acc =
1
n
(

n

∑
i=1

1{Rv == R̂V}) (21)

where Rv and R̂V denote the actual class and the class assigned by FCM on the test dataset,
n is the number of samples in the test dataset.

The ambiguity of clustering is represented by the average fuzzy entropy E, which reflects
the distribution characteristics of the clustering dataset, so it can be used as an index to judge
the clustering effect and correctness. The smaller the ambiguity, the higher the order of the
system. The classification coefficient S measures the overlap between clusters, and the closer
it is to 1, the more effective the clustering result [29]. Therefore, the closer E is to 0, the closer
S is to 1, and the closer Acc is to 100%, the better the sample clustering effect is.

5. Proposed Fault Diagnosis Method

In order to quickly and reliably extract the characteristic information of the vibration
signal and realize the automatic classification of the working state of the rotating machinery,
a new fault diagnosis method of the rotating machinery based on FIF-PARCMFDE and
Fuzzy C-means (FCM) is proposed. The specific process is as follows:

(1) Use the accelerometer to collect the original vibration signal y(x) of the rotating
machinery in different states.

(2) The FIF algorithm decomposes the collected vibration signal y(x) to obtain a series
of IMFs.

(3) Calculate the correlation coefficient of each order IMF, and select components with a
correlation coefficient greater than 0.4 for reconstruction.

(4) The PARCMFDE of the reconstructed signal S(x) is calculated, and the corresponding
entropy value is used as the characteristic information reflecting the working state of
the rotating machinery.

(5) Input the training set into FCM to obtain the cluster centers.
(6) Input the testing set and cluster centers into FCM to automatically classify the working

state of rotating machinery.

The block diagram of the proposed fault diagnosis method is shown in Figure 4.
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Figure 4. Block diagram of the proposed fault diagnosis method.

6. Experimental Verification

In this section, we apply the proposed fault diagnosis method to the bearing vibration
signal of Case Western Reserve University and centrifugal pump vibration signals obtained
by building a water circulation experimental system. It is compared with some similar
commonly used methods to evaluate the effectiveness and superiority of our method.

6.1. Experiment 1: Bearing Data From Cwru
6.1.1. Experimental Setup

The experimental data adopts the vibration signal from the Bearing Data Center of
Case Western Reserve University [30]. Vibration data are collected using accelerometers,
which are mounted on the drive end bearing housing. The outer race, rolling element and
inner race of rolling bearings are machined using electric sparks to simulate single point
crack failure of the outer race, rolling element and inner race. The selected test bearing
model is 6205-2RS, the rotational speed is 1750 r/min, and the sampling frequency is the
vibration data of 12 kHz. Analyze the vibration data of normal, inner ring failure, outer
ring failure, and rolling element failure. Twenty samples for each of the four bearing
conditions were obtained through a non-overlapping sliding window of length 5500 points,
that is, each sample contained 5500 points. The first 10 samples for each of the four bearing
conditions are selected as the training set, and the remaining 10 samples for each of the
four bearing conditions are selected as the testing set.

6.1.2. Comparison And Analysis

To verify the effectiveness of the FIF-PARCMFDE-FCM method for bearing fault
diagnosis, under the same test conditions, the vibration data of four operating states of
normal bearing, inner race fault, rolling element fault and outer race fault were classified
and identified.

The first 1000 points of the original vibration signal in the four states of the bearing
are selected, as shown in Figure 5. It can be seen from Figure 5 that the vibration signals in
the four states of the bearing are quite different and bear distinct characteristics, but they
are not enough to be directly classified according to the waveform.

FIF decomposes the vibration signals in the four states of the bearing, and selects
the first five-order IMF components for comparison. The IMF components with larger
correlation coefficients can well retain the fault characteristic information of the signals [31].
The correlation coefficient between the first five-order IMF components and the original
signal is shown in Table 1, and the component with the correlation coefficient greater than
0.4 is selected to reconstruct the signal. Therefore, the outer race fault selects IMF1 as the
reconstruction signal, the inner race fault and rolling element fault select IMF1 and IMF2
for reconstruction, and the normal signal selects IMF1, IMF2 and IMF4 for reconstruction.
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Figure 5. Time domain waveform of vibration signal under (a) Normal, (b) Inner Race Fault,
(c) Rolling Element Fault and (d) Outer Race Fault of bearing.

Table 1. Correlation coefficients of bearings in different states.

Bearing States
Correlation Coefficients

IMF 1 IMF 2 IMF 3 IMF 4 IMF 5

Normal 0.62 0.653 0.3923 0.5282 0.33
Outer Race Fault 0.9992 0.2421 0.0525 0.0203 0.0117
Inner Race Fault 0.9057 0.5787 0.2222 0.0509 0.0062

Rolling Element Fault 0.9708 0.4376 0.2246 0.1306 0.0661

The reconstruction signals s of different states of the bearing are selected. The skewness
is used as the objective function in GA, and set the maximum evolutionary generation T to
200, the threshold for the fitness function to change is 10−6. The parameters of RCMFDE
are optimized by GA. Calculate the PARCMFDE, RCMFDE and MSE of the reconstructed
signal s, where the scale factor is 10, and the embedding dimension m and class number
c of PARCMFDE under different conditions are shown in Table 2. Based on experience,
RCMFDE takes default values m = 3, c = 6, MSE takes default value m = 2 , r = 0.15 × σ,
σ represents the standard deviation of the signals s. It can be seen from Figures 6–8 that
PARCMFDE, RCMFDE and MSE can all distinguish the four states of the bearing, indicating
that the three methods can effectively extract the hidden features of different states of the
bearing. However, compared with RCMFDE and MSE, PARCMFDE can distinguish the
four states of the bearing more clearly, and is more suitable for further classification of
bearing faults as a feature vector.
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Table 2. PARCMFDE parameters of bearings in different states.

Bearing Status Embedding Dimension m Class Number c

Outer Race Fault 2 232
Inner Race Fault 3 7

Rolling Element Fault 3 5
Normal 4 4
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Figure 6. PARCMFDE in different states of bearing.
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Figure 7. RCMFDE in different states of bearing.
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Figure 8. MSE in different states of bearing.

Take PARCMFDE, RCMFDE and MSE as the eigenvector matrix. Perform FCM cluster
analysis on the eigenvector matrix of the training samples, and four cluster centers can
be obtained. Then the obtained cluster centers and testing sample eigenvector matrix are
input into FCM clustering. The clustering results are shown in Figures 9–11.
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Figure 9. FIF-PARCMFDE-FCM clustering results of different bearing states.
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Figure 10. FIF-RCMFDE-FCM clustering results of different bearing state data.
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Figure 11. FIF-MSE-FCM clustering results of different bearing state data.

It can be seen from Figures 9–11 that the data points of the same state are concentrated
around their respective cluster centers, and the data points of different states are separated
from each other. In addition, the positions of the cluster centers obtained by different
methods are different, and the degree of closeness of the data points distributed around
the cluster centers is also different. In comparison, FIF-PARCMFDE-FCM have the best
clustering effect, that is, the categories are most distinct, the clustering centers of various
signals are far apart, and the data points of various types are compactly clustered around
the clustering centers. Compared with FIF-RCMFDE-FCM and FIF-MSE-FCM, the class
center distance of FIF-PARCMFDE-FCM method is larger, and the different signals are
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more clearly distinguished, indicating that the method has a better classification effect on
various fault signals of rolling bearings.

The classification coefficient S, the average fuzzy entropy E and the classification
accuracy Acc of each clustering result were calculated, respectively, and the clustering
effect of the above three algorithms and the fault recognition rate were quantitatively
compared. The clustering results of the above three algorithms are shown in Table 3. It can
be seen from Table 3 that the classification accuracy Acc of the above four methods are all
100%. The classification coefficient S of the FIF-MSE-FCM method is 0.9913, the average
fuzzy entropy E is 0.0306, and the clustering effect is poor. The classification coefficient
based on FIF-PARCMFDE-FCM method is 0.9967, the average fuzzy entropy is 0.0123,
and the clustering effect is the best, indicating that this method can achieve a more accurate
and reliable fault diagnosis.

Table 3. FCM clustering effect of different bearing entropy algorithms.

Algorithms
Classification
Coefficient S

Average Fuzzy
Entropy E

Classification
Accuracy Acc

FIF-PARCMFDE-FCM 0.9967 0.0123 100%
FIF-RCMFDE-FCM 0.9935 0.0239 100%

FIF-MSE-FCM 0.9913 0.0306 100%

6.2. Experiment 2: Experimental Data of Centrifugal Pump
6.2.1. Experimental Setup

To verify the effectiveness of the method, a water circulation system was built in
Wuhan University of Technology, and the vibration signals of centrifugal pumps in different
states were collected. In this experiment, a model CDL1-11FSWPG light-duty vertical
multistage centrifugal pump was selected, with a rated speed of 2900 r/min, a lift of 61 m,
and a rated flow of 1 m3/h. According to GBT-29531-2013 pump vibration measurement
and evaluation method, the vibration sensor measurement points of centrifugal pump
are arranged, and vibration data in three directions of x, y, and z are collected at the
same time. The measuring point in the x-axis direction is arranged on the pump casing,
the measuring point in the z-axis direction is arranged on the base, and the measuring point
in the y-axis direction is arranged at the outlet flange. The structure of the pump body and
the arrangement of measuring points are shown in Figure 12.

Figure 12. Layout of measuring points of centrifugal pump.
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According to the actual situation during operation of the centrifugal pump, there are
rotor unbalance and air binding faults. The impeller is the main component of the rotor in
the centrifugal pump. During actual operation, the impeller is in contact with the working
medium, thus it is the rotor part most prone to failure. The laboratory conditions will
simulate a centrifugal pump rotor unbalance fault with impeller damage, as shown in
Figure 13. The centrifugal pump is not filled with the liquid to be conveyed before starting,
or air will infiltrate the pump during operation, because the density of the gas is less than the
density of the liquid, the centrifugal force generated is small, and the air cannot be expelled.
The negative pressure generated by the fluid in the pump casing during centrifugal motion
with the motor is not enough to suck the liquid into the pump casing, which is called the
air binding phenomenon of the centrifugal pump. In this experiment, by tightening the
exhaust screw of the centrifugal pump, and then removing the centrifugal pump, the air
can enter the inner chamber of the centrifugal pump. After installing the centrifugal pump,
the residual air cannot be discharged from the centrifugal pump through the exhaust screw,
so as to set the air binding fault of the centrifugal pump, as shown in Figure 14.

(a) (b)

Figure 13. Rotor unbalance fault setup: (a) Impeller in normal condition, (b) Impeller in damaged
condition.

(a) (b)

Figure 14. Air binding fault setting: (a) Exhaust screw loose, (b) Exhaust screw tightened.

After building the experimental platform, the sampling frequency was set to 1 kHz,
the motor speed to 1015 r/min, and the acquisition system developed by Labview was
employed to collect the vibration signals of the centrifugal pump in normal state. Then,
the vibration signals of rotor unbalance and air bind state of the centrifugal pump were
collected. A total of 25 samples for each of the three conditions of the centrifugal pump were
obtained through a non-overlapping sliding window of length 4000 points. This means
there are 4000 points per sample. The first 10 samples for each of the three conditions of the
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centrifugal pump are selected as the training set, and the remaining 15 samples for each of
the three conditions are selected as the testing set.

6.2.2. Comparison and Analysis

To verify the superiority of FIF-PARCMFDE-FCM clustering for fault diagnosis of
centrifugal pump, under the same test conditions, the vibration data of three operating
states of centrifugal pump normal, rotor unbalance fault and air binding fault were classified
and identified. Furthermore, these data were compared with the cluster analysis results of
FIF-RCMFDE-FCM and FIF-MSE-FCM.

The first 1000 points of the original vibration signal in the three states of the centrifugal
pump are selected, as shown in Figure 15. It can be seen from Figure 15 that the charac-
teristics of the vibration signals in the three states of the centrifugal pump are not clear
and cannot be directly classified according to the waveform. The vibration signals of the
centrifugal pump in three states were decomposed by FIF, and the first five-order IMF
components were selected for comparison. The IMF components with larger correlation
coefficients can well preserve the fault characteristic information of the signal. The cor-
relation coefficients between the first five-order IMF components and the original signal
are shown in Table 4. The components with a correlation coefficient greater than 0.4 are
selected to reconstruct the signal. Therefore, IMF1 and IMF2 are selected for reconstruction
for normal, rotor unbalance fault and air bind fault.
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Figure 15. Time domain waveform of vibration signal of centrifugal pump in (a) Normal, (b) Air
Bind Fault and (c) Rotor Unbalance Fault.
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Table 4. Correlation coefficients of centrifugal pumps in different states.

States
Correlation Coefficients

IMF 1 IMF 2 IMF 3 IMF 4 IMF 5

Normal 0.8241 0.5885 0.3266 0.3127 0.2019
Air Bind Fault 0.7979 0.5945 0.3538 0.3561 0.2545

Rotor Unbalance Fault 0.8230 0.5870 0.3244 0.2722 0.1289

The reconstructed signals of different states of the centrifugal pump are selected.
The skewness is used as the objective function in GA and the maximum evolutionary
generation T is set to 200, the threshold for the fitness function to change is 10−6. The
parameters of RCMFDE are optimized by GA. The PARCMFDE, RCMFDE and MSE of the
reconstructed signal s, are calculated where the scale factor is 10. The embedding dimension
m and the class number c of PARCMFDE in different situations are shown in Table 5. Based
on experience, RCMFDE takes default values m = 3, c = 6, MSE takes default values
m = 2, r = 0.15 × σ, σ represents the standard deviation of signal s. As shown in Figure 16,
PARCMFDE can clearly separate the three states of the centrifugal pump, indicating that
PARCMFDE can effectively extract the hidden features of the three states of the centrifugal
pump, which is suitable as a feature vector to further classify the states of the centrifugal
pump. As shown in Figures 17 and 18, RCMFDE and MSE are almost inseparable from
the three states of the centrifugal pump, indicating that RCMFDE and MSE may not be
able to effectively extract the small fault features hidden in rotating machinery, and are not
suitable for further classification of centrifugal pump states as feature vectors.

Table 5. PARCMFDE parameters of centrifugal pump in different states.

Status Embedding Dimension m Class Number c

Normal 2 7
Air Bind Fault 2 192

Rotor Unbalance Fault 2 3
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Figure 16. PARCMFDE in different states of centrifugal pump.
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Figure 17. RCMFDE in different states of centrifugal pump.
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Figure 18. MSE in different states of centrifugal pump.

Taking PARCMFDE as the eigenvector matrix. Perform FCM cluster analysis on the
eigenvector matrix of the training samples, and three cluster centers can then be obtained.
Next, the obtained cluster centers and testing sample eigenvector matrix are input into
FCM clustering. The clustering results are shown in Figure 19. Similarly, RCMFDE and
MSE are separately input into FCM clustering as eigenvector matrices. The clustering
results are shown in Figures 20 and 21.
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Figure 19. FIF-PARCMFDE-FCM clustering results of centrifugal pump data in different states.
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Figure 20. FIF-RCMFDE-FCM clustering results of centrifugal pump data in different states.
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Figure 21. FIF-MSE-FCM clustering results of centrifugal pump data in different states.

The clustering effect and classification accuracy of the above three algorithms are
quantitatively compared, and the classification coefficient S, average fuzzy entropy E
and classification accuracy Acc of each method are calculated, respectively, as shown in
Table 6. From Figure 19 and quantitative analysis, it can be seen that FIF-PARCMFDE-FCM
clearly distinguished the fault categories, the cluster centers of various signals are far apart,
and the data points of various types are compactly clustered around the cluster centers.
Moreover, the classification accuracy Acc is 100%. This shows that the method has a
good classification effect on the fault signals of the centrifugal pump in different states.
However, the methods based on FIF-RCMFDE-FCM and based on FIF-MSE-FCM exhibit
poor clustering effect, serious misclassification, and low classification accuracy Acc.

It can be seen from the above two experiments that the accuracy of the three methods in
experiment 1 is 100%, but the accuracy of FIF-MSE-FCM and FIF-RCMFDE-FCM is greatly
reduced in Experiment 2. There are two reasons: 1. The vibration signal fault feature of
Experiment 1 are more evident and easy to distinguish. However, the fault features of the
vibration signal in Experiment 2 are relatively weak and difficult to extract accurately. 2.
By using GA to optimize the parameters of RCMFDE, the problem regarding the selection
of m and c depends on experience is solved, and the performance of feature extraction is
improved. This reflects that the FIF-PARCMFDE-FCM can adaptively select parameter
combinations according to different application scenarios, which has better adaptability for
signals that are more difficult to classify and with less obvious fault features.

Table 6. FCM clustering effects of different entropy algorithms for centrifugal pumps.

Algorithms
Classification
Coefficient S

Average Fuzzy
Entropy E

Classification
Accuracy Acc

FIF-PARCMFDE-FCM 0.9933 0.0215 100%
FIF-RCMFDE-FCM 0.7819 0.3849 57%

FIF-MSE-FCM 0.6313 0.5962 63%
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7. Conclusions

To overcome the shortcomings of traditional feature extraction methods that bear
difficulty in extracting tiny fault features hidden in vibration signals, and the shortcom-
ings of RCMFDE to select parameters based on experience, a PARCMFDE is proposed.
PARCMFDE takes the skewness of RCMFDE as the objective function, and uses genetic
algorithm to optimize parameters. PARCMFDE can more accurately extract tiny fault
features hidden in vibration signals of rotating machinery. At the same time, a new fault
diagnosis method for rotating machinery based on FIF-PARCMFDE-FCM is proposed,
which can classify rotating machinery faults accurately and automatically without depend-
ing on the length of data samples. FIF quickly decomposes the original vibration signal,
and selects components with large correlation coefficients for reconstruction. The recon-
structed signal features are extracted by PARCMFDE, and the feature vector is formed
into FCM for automatic label-free classification. The bearing experiments with clear fault
characteristics prove that the classification performance of this method is superior to other
methods. Experiments on centrifugal pumps with weak fault features demonstrate that
this method can extract hidden weak fault features from vibration signals and perform
accurate and reliable automatic classification. Therefore, the proposed diagnostic method
can achieve reliable diagnosis performance for rotating machinery.

However, the proposed method only identifies single faults of rotating machinery,
and does not consider the identification of compound faults. Furthermore, PARCMFDE
is slower than RCMFDE. Therefore, the identification of compound faults in rotating
machinery and the improvement of the computing speed of PARCMFDE will be regarded
as the focus of our future work.
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Abstract: This paper proposes an accurate short-term prediction model of bike-sharing demand
with the hybrid TCN-GRU method. The emergence of shared bicycles has provided people with
a low-carbon, green and healthy way of transportation. However, the explosive growth and free-
form development of bike-sharing has also brought about a series of problems in the area of urban
governance, creating a new opportunity and challenge in the use of a large amount of historical
data for regional bike-sharing traffic flow predictions. In this study, we built an accurate short-
term prediction model of bike-sharing demand with the bike-sharing dataset from 2015 to 2017 in
London. First, we conducted a multidimensional bike-sharing travel characteristics analysis based on
explanatory variables such as weather, temperature, and humidity. This will help us to understand
the travel characteristics of local people, will facilitate traffic management and, to a certain extent,
improve traffic congestion. Then, the explanatory variables that help predict the demand for bike-
sharing were obtained using the Granger causality with the entropy theory-based MIC method to
verify each other. The Multivariate Temporal Convolutional Network (TCN) and Gated Recurrent
Unit (GRU) model were integrated to build the prediction model, and this is abbreviated as the
TCN-GRU model. The fitted coefficient of determination R2 and explainable variance score (EVar)
of the dataset reached 98.42% and 98.49%, respectively. Meanwhile, the mean absolute error (MAE)
and root mean square error (RMSE) were at least 1.98% and 2.4% lower than those in other models.
The results show that the TCN-GRU model has strong efficiency and robustness. The model can be
used to make short-term accurate predictions of bike-sharing demand in the region, so as to provide
decision support for intelligent dispatching and urban traffic safety improvement, which will help to
promote the development of green and low-carbon mobility in the future.

Keywords: short-term demand prediction; bike-sharing; travel characteristics analysis; hybrid
TCN-GRU model

1. Introduction

With the gradual improvement of people’s living standards and the enhancement of
environmental awareness, the series of negative social impacts brought about by rapid eco-
nomic growth, such as traffic congestion, environmental degradation and noise pollution
caused by overloaded motor vehicle usage, have undoubtedly led to an increasing demand
for green and low-carbon means of travel. Bike-sharing has not only made a contribution
to low-carbon environmental protection, but also alleviated the problem of “human trans-
portation” in the area of public transportation to a certain extent. However, the explosive
growth and “free-range” development of bike-sharing has also brought about a series of
problems: first, given the lack of supervision, the excessive proliferation of bike-sharing
has caused a waste of resources and urban “bicycle pollution”; second, the lack of overall
layout planning for bike-sharing parking has led to the occupation of crowded public land;
third, the free-moving bikes are unevenly distributed in time and space, and their operation
and maintenance is not timely.

Building a prediction model based on the historical data of bike-sharing demand can
effectively explain the time series characteristics of this phenomenon, but the influence
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of other elements in the bike-sharing system is not considered; thus, there is a certain
one-sidedness, and a limit to the ability to explain and predict the fluctuation mechanism
of bicycle travel demand [1]. Related studies have found that factors affecting the de-
mand for bike-sharing rides include external factors such as weather, air quality, spatial
location, user price sensitivity, and chance events, in addition to historical data on travel
demand [2]. Through a survey of bike-sharing programs in Beijing, Campbell et al. [3]
pointed out that the main factors affecting the demand for bike-sharing are distance, tem-
perature, precipitation, and air quality, and that the users’ own demographic characteristics
(including income, gender, and occupation) have no significant effect on the demand
for bicycles. Matton et al. [4] pointed out that climatic conditions such as temperature,
wind, and precipitation are the main factors affecting the demand for bike-sharing, and
Faghih et al. [5] suggested that point-in-time factors are also important variables affecting
the demand for bike-sharing, including the time of day, whether it is a weekend, and
peak hours. In addition, weather factors and point-in-time factors [6–8], population den-
sity [9,10], the availability of bicycle lane facilities [10–12], and distance to the urban CBD
and universities [5,10,13] are also related to the demand for bike-sharing.

Therefore, some studies have started to incorporate external factors such as weather,
time factors and holiday factors into the independent variables of bike-sharing demand pre-
diction. Li et al. [14] established an LSTM linear regression model considering the distance
variable of users’ rides, and the results of the study show that the prediction accuracy was
improved compared with the existing time series prediction models. Li et al. [15] proposed
a prediction method based on a clustering algorithm with an augmented regression tree
model based on weather conditions, temperature, and wind speed, so as to predict the
number of rentals and returns of bicycles at stations separately. Chen et al. [16] argued
that the demand for bike-sharing is affected not only by general factors such as time and
weather, but also by contingent factors such as traffic events, and proposed a dynamic
cluster-based forecasting framework.

From the perspective of forecasting model development, statistical methods such as
the Autoregressive Integrated Moving Average model (ARIMA) were first applied to solve
the bike-sharing cycling demand forecasting problem. Statistical inferential forecasting
methods based on statistics include traditional models such as ARIMA models, regression
analysis and Markov chains [17]. Andreas et al. [18] developed a prediction model based
on a differential sliding average autoregressive model, using operational data from bicycle
companies and data from bike-sharing in the Barcelona community, to forecast the number
of available bicycles at each bicycle station. To investigate the characteristics and patterns of
peak bicycle demand hours, Lin et al. built an ARIMA model [19]. Yan et al. [20] considered
both the temporal and spatial dependence of bicycle borrowing and returning demand. For
the time series, the cyclicality and trend of bicycle travel demand were obtained by building
an ARIMA model considering seasonal patterns; for the spatio-temporal dependence, the
inter-cluster transfer characteristics were portrayed by building a Bayesian transfer network
model. Zhou et al. proposed a prediction method based on the Markov chain model. The
study evaluated the model using data from the public bicycle system in Zhongshan City.
The results of the case analysis verify the high prediction accuracy and generalization
ability of the Markov chain model [21].

The traditional statistical methods are more sensitive to data, and the presence of
data noise can greatly reduce the reliability of model parameter estimation. At the same
time, there is a certain degree of spatial and temporal dependence between the demand
for bike-sharing trips and external influences such as weather, and the prediction models
based on statistical methods have weak explanatory power for the complex nonlinear
relationships between bicycle demand and the influencing factors. In the era of big data,
nonparametric methods can handle massive traffic trip data and discover the dynamic
characteristics of the bicycle system.

Nonparametric methods include machine learning methods and deep learning meth-
ods. Using machine learning methods such as random forests [22], Bayesian networks [23],
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GBDT [24] and artificial neural networks (ANN) [25], nonlinear prediction models can
be built based using a large amount of bike-share historical travel data to predict future
bike-share demand at any time interval. In addition, deep learning methods are gradually
being used to predict short-term bikeshare demand. Wang et al. [26] used a long short-term
memory (LSTM) neural network and gated recursive units (GRU) to predict short-term
bicycle availability. Chen et al. [27] proposed a recurrent neural network (RNN) using time,
weather, and seasonal data to predict the rental and return demand for each station in the
system. Zhang et al. [28] proposed a deep learning model for the short-term prediction of
bike-sharing demand, considering the correlation between bike-sharing users and public
transportation riders. He et al. [29] proposed a bike-share demand prediction (BDP) model
that incorporates a temporal convolutional network (TCN) and a self-attention mechanism.
The BDP model extracts feature information with multiple inputs of multiple sources of
data, and uses the parallelism of the self-attention mechanism to improve the training speed.
A better prediction accuracy is obtained in comparison with other models. Ma et al. [30]
proposed a Spatio-Temporal Graphical Attention Long-Term Memory (STGA-LSTM) neural
network framework for predicting demand for bike-sharing at the station level using a
multi-source dataset. This short-term prediction model can be used to help bike-sharing
users make better route choices, and help operators implement dynamic redistribution
strategies. Mehdizadeh et al. [31] proposed a hybrid CNN-LSTM model for the short-term
prediction of mountain biking demand, which had considerable prediction accuracy during
the COVID-19 pandemic after adding additional variables such as weather conditions and
time of day.

The research for this thesis includes two main aspects: (1) mining the travel pattern
of bike-sharing users, analyzing the travel characteristics of residents, and providing
references for bicycle demand prediction; (2) making accurate predictions of bike-sharing
demand, improving the bicycle turnover rate, and providing a decision basis for the
intelligent scheduling of regional bike-sharing.

The study is divided into the following sections: Section 1 focuses on the study
background, study content and literature review. Section 2 mainly concerns data description
and pre-processing, including a preliminary correlation analysis. Section 3 mines the
bike-sharing trip characteristics through multiple dimensions, such as time, temperature,
humidity, and weather. Section 4 introduces the TCN model, MIC variable selection
method, GRU model, hybrid time series model and evaluation indicators. This is followed
by multiple rounds of comparison experiments for validation. Sections 5 and 6 are the
discussion and conclusions sections, respectively.

2. Data Overview and Preprocessing

2.1. Data Overview

This paper used the London bike-sharing public dataset as the subject of the study.
The dataset recorded a total of 17,414 data points (one data point generated every hour, i.e.,
24 data points per day) for the London area from 4 January 2015 to 3 January 2017. The
dataset recorded the influencing factors, such as weather and travel time, related to the
demand of bike-sharing; we performed a data background gain by adding data nouns such
as “Hour” and “Month” with timestamp information. The descriptions of the data terms
and examples are shown in Table 1.

2.2. Data Preprocessing

Since the dimensionality and magnitude of each variable are not uniform, to eliminate
the influence of magnitude and to speed up model training, the normalization method
was used to normalize the data. This involves a linear transformation of the original data
that maps the data values to the [0, 1] interval. The transformation function is shown in
Equation (1):

x∗ =
x − min

max − min
(1)
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where max is the maximum value of the data, and min is the minimum value.

Table 1. Data set fields description.

Field Name Description Example

timestamp Timestamp for grouping data together 4 January 2015, 12:00
demand Counting of new bike share 182

t1 Actual temperature (◦C) 3.0
t2 Subjective perception of temperature (◦C) 2.0

hum Humidity percentage (%) 93.0
wind_speed Wind speed value (km/h) 6.0

weather_code Sunny: 1, Less Cloudy: 2, Cloudy: 3,
Overcast:4, Rainy: 7, Storms: 10, Snowy: 26 3

is_holiday Holiday: 1, Non-holiday: 0 0
is_weekend Weekend: 1, Non-weekend: 0 1

season Spring: 0; Summer: 1; Autumn: 2; Winter: 3 3
hour 24 h per day 12

day_of_month Natural days per month 1
day_of_week Monday: 0, . . . , Sunday: 6 1

month January: 1, . . . , December: 12 6

2.3. Correlation Analysis

There is correlation between different features in the data, resulting in feature redun-
dancy. In addition, not all influencing factors are related to the demand for bike-sharing.
The correlation analysis aimed to investigate the correlation between bike-sharing vari-
ables, i.e., a preliminary analysis of other variables that are correlated with the demand for
bike-sharing. After the normality test, the data of most of the variables used in this study
did not conform to a normal distribution. Therefore, we used Spearman’s rank correlation
coefficient for measuring the linear correlation between the variables [32].

The rank is the average descending position of a number in the overall data. If X
and Y are two observed variables with sample size n, and for each sample (Xi, Yi), the
corresponding rank is (xi,yi), then the Spearman’s rank correlation coefficient ρ between
these two variables is determined via Equation (2).

ρ = 1 − 6 ∑ (xi − yi)
2

n(n2 − 1)
(2)

The Spearman’s rank correlation coefficient ranges within [−1, 1]. When the absolute
value is close to 1, this indicates that the two variables are more strongly correlated. When
the value is positive, if one of the two characteristics shows an increasing trend, the other
also tends to increase, and when the value is 1, it indicates a perfect positive correlation;
when the value is negative, if one of the two characteristics tends to increase, the other
tends to decrease, and when the value is −1, it indicates a perfect negative correlation;
when the value is 0, this indicates a perfect non-correlation (the tendency of one to change
does not change with that of the other). In general, the absolute value of the correlation
coefficient in the range of (0.8, 1.0) is considered as very strong correlation, while the range
(0.6, 0.8) is considered strong correlation, (0.4,0.6) moderate correlation, (0.2, 0.4) weak
correlation, and (0, 0.2) very weak or no correlation.

The results of the correlation analysis between demand and each variable are shown
in Figure 1, which shows that the actual temperature t1 is highly correlated with the subjec-
tively perceived temperature t2, and there is a problem of feature redundancy. In addition,
temperature demand shows a weak positive correlation with temperature, while demand
shows a moderate negative correlation with humidity, a very weak positive correlation
with temperature, and a very weak negative correlation with weather and season. The
correlation analysis can roughly determine the linear relationship between demand and
its influencing factors. In order to obtain the trend of demand under its different influ-
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encing factors, data mining methods can be used to analyze the travel characteristics of
bike-sharing.

Figure 1. Bike-sharing demand correlation analysis heat map.

3. Bike-Sharing Travel Characteristics Analysis

As an important means of transportation for urban residents, bike-sharing often
presents different characteristics due to a variety of factors, which must be explored for
the purpose of traffic management. Therefore, based on the considered dataset, we ex-
plored bike-sharing travel characteristics via several dimensions such as time, temperature,
humidity, and weather [33].

3.1. Bike-Sharing Travel: Time Characteristics Analysis
3.1.1. Demand Varies with the Hours and Months

First, we assessed the distribution of the demand for bike-sharing in different months,
and the results are shown in Figure 2. The demand shows an obvious single hump shape
that develops with the month, i.e., the demand for bike-sharing in the area gradually
increases from January until it peaks in July, and it then starts to decrease month by month.

Next, we determined the distribution of bike-sharing demand at different times of the
day, and the results are shown in Figure 3. The demand shows an obvious double-hump
shape that develops with the time of the day, that is, the demand for bike-sharing in the
area is high at 7 and 8 a.m. and 5 and 6 p.m. This result coincides perfectly with people’s
commuting time to and from work on weekdays, and also reflects that bike-sharing is in
the highest demand when people commute to and from work, suggesting that bike-sharing
can provide convenience for people’s work travel.
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Figure 2. Box plot of demand for bike-sharing in different months.

Figure 3. Box plot of demand for bike-sharing at different hours.

We analyzed the distribution of bike-sharing demand by month at different moments
of the day with bubble chart statistics, where in larger bubbles indicate higher demand.
The statistical results are shown in Figure 4. As can be seen, the vast majority of months
show a double-hump distribution of demand. However, in December, demand for shared
bikes increases when people are at work, while demand is roughly the same throughout
the afternoon from 12:00 to 6:00, with no clear trend. This may have more to do with the
local climate as well as holidays.

Figure 4. Time bubble map of bike-sharing demand.
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It is known from the previous analysis that July is the month with the highest demand
for bike-sharing; so, we took July 2016 as the research object and analyzed the daily demand
changes in this month using heat maps, and the statistical results are shown in Figure 5. It
can be seen that there is an obvious cycle pattern in the demand distribution, with every
seven days being a cycle, and the demand distribution on five of the days corresponds
to the weekday travel characteristics, i.e., the obvious double-hump feature of on and off
work. This also reflects the obvious difference in the distribution of demand on weekdays
and non-working days. There is a high demand for bike-sharing on July 30 and 31, which
may be related to the local Prudential Ride London event, a popular ride that locals say
turned London into a bicycle-centric environment.

Figure 5. Bike-sharing demand time heat map.

3.1.2. Demand Varies with Working and Nonworking Days

We found in the previous analysis that there is a significant difference in the distribu-
tion of bike-sharing demand between weekdays and non-weekdays. Therefore, we took
weekends and holidays as the research object and used weekday data for comparative
analysis, and the analysis results are shown in Figure 6. It can be seen that the distribution
of people’s travel characteristics on holidays and weekends is roughly the same. On week-
days, 8:00 and 17:00 and 18:00 are the peak times for car use, which coincides with the time
points for going to and leaving work. In the case of nonworking days 14:00–15:00 is the
real peak period of car usage. This reflects people’s preference for using shared bikes to
travel in the afternoon during nonworking days.

3.1.3. Demand Varies with the Season

In addition, we analyzed the distribution of bike-sharing demand by season at different
moments of the day through line graph statistics. The results are shown in Figure 7. It can
be seen that the trend of bike-sharing demand is more or less the same in different seasons,
with higher demand in summer and autumn, and the lowest in winter, which is obviously
related to the seasonal climate.
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Figure 6. Bike-sharing demand on working and nonworking days.

Figure 7. Bike-sharing demand in different seasons.

3.2. Bike-Sharing Travel: Meteorology Characteristics Analysis

Many studies have shown that, as external environmental factors, weather type [34],
temperature [35], and air quality [36], also have direct and indirect effects on travel charac-
teristics. To investigate the influence of weather characteristics on bike-sharing trips, we
obtained the trends of bike-sharing demand with wind speed, humidity, weather type, and
temperature using line plots as well as box plots. The results are shown in Figure 8. It can
be seen that there is a local peak at a wind speed of 25 km/h, and the demand decreases at
higher and lower wind speeds. There is a negative correlation between air humidity and
demand; that is, with greater air humidity, the overall demand shows a decreasing trend.
In weather codes 2 and 3, that is, when the weather type is either less cloudy or cloudy,
the demand is larger; when the weather is more severe, the demand gradually decreases,
and when the weather code is 26 (snow), the demand is almost 0. The demand shows a
trend of increasing first and then decreasing with the rise in temperature; that is, below
the temperature is 25 ◦C, the demand shows a relatively strong positive correlation with
temperature, and after the temperature exceeds 25 ◦C, the demand shows a relatively weak
negative correlation with temperature.
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Figure 8. Bike-sharing demand under different meteorological conditions.

3.3. Bike-Sharing Travel: Characteristics Analysis Based on Granger Causality Test

The correlation analysis lacks an explanation for the causal mechanism of the fluctua-
tion in bike-sharing demand, and we next explore the impact of weather and other char-
acteristics on the demand for bike-sharing travel from the causality perspective. Weather
data indicators include t1, hum, weather_code and wind_speed. In order to further screen
the indicators that help predict the demand for bike-sharing travel, this paper uses the
Granger causality test method for weather and other features’ screening. The basic idea
of the method is that [37], if a series X helps to explain the future trend of series Y—that
is, in the regression model of series Y regarding its own historical information, adding
the historical information of X will significantly improve the explanatory power of the
regression model—then series X is the Granger cause of series Y.

Before Granger causality tests were performed on the weather indicator grid, the unit
root method was used to perform a smoothness test. For non-stationary series, differencing
was performed until it passed the stationarity test. The results of the causality test for each
variable at the significance level α = 0.05 are presented in Table 2.

Table 2. Results of causality tests for each variable.

Variable Original Hypothesis F-Statistic Probability (p)

t1 t1 is not a bike-sharing demand
Granger reason 230.8794 8.275 × 10−8

hum hum is not a bike-sharing demand
Granger reason 257.9023 1.296 × 10−9

weather_code windspeed is not a bike-sharing
demand Granger reason 20.1423 0.0728

wind_speed weather code is not a bike-sharing
demand Granger reason 5.1211 0.2036

When p < 0.05 rejects the original hypothesis, this indicates that there is a Granger
causality with statistical significance between weather indicators t1, hum and the demand
for bike-sharing, i.e., adding weather indicators t1 and hum to the model helps predict
the demand.

The analysis of bike-sharing travel characteristics in London reveals that both point-
in-time factors [5] and weather conditions [4] affect the variation in bike-sharing demand
to varying degrees. There is consistency and interoperability between our analysis and
the results of other literature analyses. In addition, we found that the factors influencing
bike-sharing demand were roughly the same across regions, i.e., differences in regional
attributes, culture, climate, and ethnicity do not affect travel characteristics. A survey of the
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Beijing [3] bike-sharing program also found that users’ own demographic characteristics
do not have a significant effect on bicycle demand.

4. Bike-Sharing Short-Term Demand Prediction

The bike-sharing demand data are susceptible to the influence of time, climate and
traffic management policies, showing strong volatility and nonlinearity. The bike-sharing
demand data used in this paper are hourly, and the sample size is relatively small. The
deep neural network has a strong fitting ability for nonlinear data but is prone to the risk of
overfitting in the case of small samples. Based on the above analysis, this paper has tried to
combine the typical models of deep learning temporal prediction, GRU and TCN, with the
principle of the least-squared error sum. In so doing we aimed to reduce the possibility of
overfitting and to take advantage of the fitting of deep learning models on nonlinear and
non-stationary data, in order to improve the prediction ability of the models.

4.1. Temporal Convolutional Network (TCN)

TCN is a novel architecture based on a Convolutional Neural Network (CNN). Unlike
general CNNs, TCNs use structures such as expanded causal convolution and residual
blocks [38–40]. This gives them the ability to extract features and achieve prediction from
large sample time series, and TCNs can effectively address the performance degradation
of deep networks during network training. TCN consists of dilated, causal 1D fully
convolutional layers with the same input and output lengths. The convolution in the TCN
model is causal convolution, wherein the layers are causally related to each other, thus
ensuring that no historical information or future data will be missed. In addition, TCN can
map sequences of arbitrary length to output sequences of the same length, using residual
modules and dilation convolution to better control the memory length of the model and
improve the predictive power.

4.1.1. TCN Modeling

Supposing that the input sequence is given as {x1, x2, · · · , xt}, and the expected
predicted output is {ŷ1, ŷ2, · · · , ŷt}, the equation of the predicted output versus the input
sequence can be presented by Equation (3):

(ŷ1, ŷ2, · · · , ŷt) = f (x1, x2, · · · , xt) (3)

where ŷt is only related to the input sequence at time t and in the past, and is independent
of any future input. The purpose of TCN modeling is to establish a mapping relationship f
between the input and output sequences, and its objective function is to minimize the error
loss between the actual output {y1, y2, · · · , yt} and the predicted values {ŷ1, ŷ2, · · · , ŷt}.

4.1.2. Extended Causal Convolution

The causal convolutions were originally proposed in the WaveNets [41] networks
for learning the input audio data before moment t to predict the output at moment t + 1.
Compared to RNNs, no circular connections are used in models using causal convolutions,
so time series data can be input in parallel, which allows for faster network training,
especially for large-sample time series [42]. However, standard causal convolution requires
increasing the receptive field of neurons in the neural network by stacking many network
layers or using very large convolutional kernels when dealing with large sample time series.
For this reason, TCN uses the Dilated Causal Convolution (DCC) technique to achieve an
increase in the perceptual field without a significant increase in computational cost. DCC is
a convolution operation that performs a step-skipping operation on the input sequence,
and its expression is given by Equation (4):

F(i) =
k

∑
j=1

h(j)x(i − dj) (4)
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where F(i) is the convolution result for the ith element in the sequence {x1, x2, · · · , xt}; h(j)
is the convolution kernel, and for a one-dimensional sequence its convolution kernel size
K = 1 × k; d is the expansion factor (when d = 1, that is the standard causal convolution).

The structure of DCC is shown in Figure 9 (K = 1 × 2 and d = 2l − 1, l is the number
of hidden layers). Compared with standard causal convolution, DCC allows the output to
be associated with as many inputs as possible with the same number of network layers.
Multilayer stacking combined with extended causal convolution also allows deep learning
networks to achieve very large sensory fields with fewer network layers [43]. Moreover,
the sliding operation of the convolution kernel on the input data allows the TCN to handle
inputs of variable length. Thus, in conjunction with the updating of the model’s input data
(i.e., the predicted values from the previous moment are added to the input as information),
new predictions can be continuously computed and output.

Figure 9. Schematic diagram of extended causal convolution.

4.1.3. Residual Block

Residual Block (RB) is proposed to solve the degradation problem of deep learning
networks, and its core idea is to introduce a “jump connection” operation that skips one
or more layers [44]. Assuming that x is the input of the residual block, the output o of the
residual block is shown in Equation (5), which is the result of linear variation and mapping
through the activation function. Since the residual κ(x) will not be zero in practice, the
stacked layers in the deep learning network can always learn new features, so the learning
performance of the deep network will not degrade [45].

In TCN modeling, using a network structure combining RB and DCC can effectively
improve the feature learning capability and robustness of TCN models.

o = Activation(x + κ(x)) (5)

4.2. Gated Recurrent Unit (GRU)

LSTM [46] and GRU [47] show strong potential applicability in the data prediction
problem studied in this paper, with GRU performing slightly better. Compared with
the LSTM method, GRU requires fewer training parameters, is easier to converge and
can reduce the risk of model overfitting in the case of limited time series data. GRU
optimizes the three gate functions of LSTM, turning the set of forgetting gates and input
gates into a single update gate, and mixing the neuron states with the hidden states. This
can effectively alleviate the problem of “gradient disappearance” in RNN networks and
reduce the number of parameters of LSTM network units, shortening the training time of
the model. The basic structure is shown in Figure 10, and the mathematical description is
shown in Equations (6)–(10):

rt = σ(Wr · [ht−1, xt]) (6)

ut = σ(Wu · [ht−1, xt]) (7)
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h̃t = tanh(Wh̃ · [rt ∗ ht−1, xt]) (8)

ht = (1 − ut) ∗ ht−1 + ut ∗ h̃t (9)

yt = σ(Wo · ht) (10)

where xt, ht−1, ht, rt, ut, h̃t and yt are the input vector, the state memory variable of the
previous moment, the state memory variable of the current moment, the state of the update
gate, the state of the reset gate, the state of the current candidate set, and the output
vector of the current moment, respectively. Wr, Wu, Wh̃ and Wo are the weight parameters
used for multiplying the update gate, reset gate, candidate set, and output vector with
the connection matrix composed of xt and ht−1, respectively; I denotes unit matrix; ·
denotes the matrix dot product; ∗ denotes the matrix product; and σ denotes the sigmoid
activation function.

 
Figure 10. GRU model’ internal structure.

GRU uses update and reset gates as core modules. The splicing matrix of the input
variable xt and the state memory variable ht−1 of the previous moment, are input into the
update gate after sigmoid nonlinear transformation, which determines the extent to which
the state variable of the previous moment is brought into the current state. The reset gate
controls the amount of information that was written to the candidate set at the previous
moment, stores the information at the previous moment by I − ut times ht−1, records the
information at the current moment by ut times h̃t, and sums the two as the output of the
current moment.

4.3. Hybrid Multivariate Bike-Sharing Demand Prediction Model

Hybrid model forecasting is used to try to combine different forecasting models
and the information they provide to derive a hybrid forecasting model in the form of an
appropriate weighted average. The key to hybrid model forecasting is how to find out
the weighting coefficients, which makes the hybrid forecasting model more effective in
improving the forecasting accuracy.

Different forecasting models have their own strengths, and a better linear hybrid
forecasting model can be obtained by the linear combination of different forecasting models.
The linear hybrid forecasting model’s form is shown in Equation (11):

ŷt =
m

∑
i=1

ωiyi(t) (11)

{
ω1 + ω2 + · · ·+ ωm = 1
ωi ≥ 0

(12)
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where ŷt is the combined forecast value at moment t; yi(t) is the forecast value of the

ith forecast model at moment t; W = (ω1, ω2, · · · , ωm)
T is the weighting coefficient of

the linear combination of m forecast models and satisfies the requirement, as shown in
Equation (12).

The key to the linear combination prediction model is to determine a reasonable
number of weights ωi, based on the principle of the minimum sum of squares of errors
(SSE) [48], which can make the prediction model more effective and accurate.

SSE =
n

∑
t=1

et
2 =

n

∑
t=1

(
m

∑
i=1

ωieit)
2

= WTEW (13)

{
minSSE = WTEW
s.t.RmW = 1, W ≥ 0

(14)

W0 =
E−1RmT

RmE−1RmT
(15)

where, eit = y(t) − yi(t) denotes the forecast error of the ith forecast model at moment t; y(t)
is a sequence of actual values of a certain index of a forecast object; et = y(t) − ŷt denotes

the forecast error of the linear combination model at moment t; E = (eit)m×n(eit)
T

m×n is
the information error matrix; the optimal weighting coefficient W0 is obtained by solving the
optimal solution of the linear programming problem, where Rm is an m-dimensional row vector
with all elements of 1, and the guaranteed non-negative optimal weighting coefficients enable
the linear combinatorial model to effectively improve the prediction accuracy.

Our hybrid multivariate bike-sharing demand forecasting model based on the princi-
ple of minimum error sum of squares is shown in Figure 11.

 

Figure 11. Basic structure of bike-sharing demand prediction combination model.

4.4. Variables Selection

The entropy of the variables in the data set will have a direct impact on the prediction
model, and this paper uses the maximum information coefficient (MIC) [49] method based
on entropy theory for variable selection. MIC is a combination of information theory and
probability [50] based on mutual information, and is used to detect nonlinear correlations
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between different variables and eventually obtain a measure of the strength of depen-
dencies between variables. The maximum information coefficient achieves universality
and equilibrium, where universality, with the help of MIC, can discover functional and
nonfunctional relationships between variables; equilibrium, with the help of MIC, can be
used to compare the strength of relationships between different variables, both horizontally
and vertically.

Suppose that, in the data set D, the sample size is s, where an explanatory vari-
able X = {xi, i = 1, 2, · · · , s} and the explanatory variable Y = {yi, i = 1, 2, · · · , s}; the
MIC(X, Y) between these two variables is calculated as follows.

(1) Calculate the mutual information MI(X, Y) between the explanatory variable X and
the explained variable Y:

MIC(X, Y) = ∑
yi∈Y

∑
xi∈X

p(xi, yi)log
p(xi, yi)

p(xi)p(yi)
(16)

where p(xi, yi) is the joint density function of the variables X and Y. p(xi) is the
marginal probability density function of the explanatory variable X, and p(yi) is the
marginal probability density function of the explanatory variable Y.

(2) The variables X and Y are divided into a grid of m ∗ n defined as G = (m, n). To
obtain the grid division that maximizes the MI, the value of MI is normalized. This
normalized maximum MI can be expressed as follows:

MID|G(X, Y) =
MI∗D|G(X, Y)
logmin{m, n} (17)

where MI∗D|G(X, Y) is the maximum MI of data set D under grid G.
(3) The MIC is defined as the maximum MI under all grids G, calculated as follows:⎧⎨⎩MIC(X, Y) = max

m∗n<B(s)

{
MID|G(X, Y)

}
B(s) = s0.6

(18)

where B(s) is the maximum number of unit grids as a function of the number of samples.

The larger the value of MIC(X, Y), the stronger the correlation between variables X
and Y. Therefore, we calculate the MIC values between all explanatory and explained
variables, and select the characteristics according to Equation (19):

MIC(X, Y) ≥ δ (19)

where δ is the lowest variable selection threshold.

4.5. Model Evaluation Methods

To validate and compare the accuracy as well as the robustness of the models, we used
R2, EVar, MAE, MedAE, and RMSE as evaluation metrics, respectively.

(1) Coefficient of determination (R2)

The coefficient of determination characterizes the extent to which the regression model
explains the variation in the dependent variable, or the goodness of fit of the model to
the observations.

R2 = 1 − ∑N
i=1 (yi − ŷi)

2

∑N
i=1 (yi − ȳi)

2 (20)

Here, yi is the actual value of the ith data point; ŷi is the corresponding predicted value;
and ȳi is the mean value of the time series. In general, the value of the coefficient of
determination R2 ranges from 0 to 1, where an R2 equal to 0 means that the model cannot
predict the target variable at all, and an R2 equal to 1 means that the model can make a
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perfect prediction. R2 can also have negative values, in which case the model’s prediction
ability is not as good as calculating the mean of the target variable directly.

(2) Explainable Variance Score (EVar)

The explainable variance score measures the degree to which the dispersion of errors be-
tween all predicted and actual values is similar to the dispersion of the true values themselves.

EVar = 1 − Var(y − ŷ)
Var(y)

(21)

A larger value of EVar indicates the better prediction ability of the model, and the best
possible value is 1.

(3) Mean Absolute Error (MAE)

The mean absolute error is the expectation of the absolute value of the error between
the predicted and actual values at each moment in time.

MAE =
1
N

N

∑
i=1

|yi − ŷi| (22)

(4) Median Absolute Error (MedAE)

The median absolute error is the median of the absolute error of the predicted and
actual values for all data points. The metric is robust to outliers.

MedAE = median(|y1 − ŷi|, · · · , |yN − ŷi|) (23)

(5) Root Mean Square Error (RMSE)

The mean square error calculates the mean of the square of the error between the
predicted and true values. The root mean square error, on the other hand, is the open
square of the mean square error, which is consistent with the target variable in terms of
magnitude.

RMSE =

√√√√ 1
N

N

∑
i=1

(yi − ŷi)
2 (24)

4.6. Verification Experiment and Result Analysis

To verify the validity of the proposed multivariate hybrid time series model, we
conducted a validation experiment on the London area bike-sharing data set. The MIC
method was first used for the variable selection part of this study, and the MIC values
between the variables are shown in Figure 12.

The number of explanatory variables was studied in descending order according to the
magnitude of MIC values between each explanatory variable and the dependent variable,
and R2, EVar, MAE, and RMSE were used as measures.

It can be seen from Figure 13 that the model works best when the number of features
is 5. That is, the lowest feature selection threshold δ = 0.07 and the combination of
explanatory variables chosen is {hour, hum, t1, is_weekend, day_of_week}. It can be seen
that the set of selected explanatory variables includes not only hour, weekend and day of
week, which closely correspond to the morning and evening peaks of people commuting to
work, but also includes the weather characteristics t1 and hum obtained by using Granger
causality tests.

We performed a parameter search with the goal of the optimization of the effect of the
hybrid model. The parameter search results of the TCN and GRU models are shown in
Tables 3 and 4.
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Figure 12. Heat map of MIC values between different variables.

Figure 13. Comparison of the effects of models with different quantitative characteristics.

We conducted two experiments: univariate prediction of the demand for bike-sharing
and multivariate prediction of the demand for bike-sharing, respectively. Univariate
prediction refers to the demand for bike-sharing as the only input without considering
other explanatory variables. Multivariate forecasting, on the other hand, considers the
influence of other explanatory variables on demand with the demand of bike-sharing as
input, and obtains the corresponding explanatory variables through variable selection
methods, which are also used as inputs to the model.
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Table 3. Parameter setting of the TCN model.

Parameter Value

Time Steps 13
Nb_filters 64

Kernel_size 3
Nb_stacks 1

Epochs 80
Batch Size 32
Drop out 0.2
Dilations [1, 2, 4, 8, 16, 32, 64]

Skip_connections True
Kernel_initializer he_normal

Optimizer Adam
Activation Function Rectified linear unit (ReLU)

Loss Function Mean Squared Error (MSE)

Table 4. Parameters setting of GRU model.

Parameter Value

Time Steps 13
Input Layer Units Number 100

Output Layer Units Number 1
Hide Layer Number 2

Hide Layer Units Number 100
Epochs 50

Batch Size 16
Learning Rate 0.001

Optimizer Adam

The comparison models used for the experiments include:

(1) Support Vector Regression (SVR) [51] (kernel = ‘rbf’, C = 1.0, max_iter = −1);
(2) XGBoost [52] (max_depth = 6, learning_rate = 0.1, eta = 1);
(3) ARIMA [53] (autocorrelation order: p = 9, difference order: d = 1, moving average

orders: q = 0);
(4) ARIMAX (autocorrelation order: p = 9, difference order: d = 1, moving average orders:

q = 8, exogenous variables: hour, hum, t1, is_weekend, day_of_week);
(5) LSTM (input_size = 6, hidden_size = 100, num_layers = 2, batch_size = 64, dropout = 0.2);
(6) History Average Model (HA) (history time step = 13);
(7) Prophet [54] (growth = “linear”, freq = ”H”, interval_width = 0.95);
(8) DeepAR [55] (input_size = 6, hidden_size = 64, num_layers = 3).

After averaging results over several iterations of the experiment, we determined the
performance of each model on this dataset, and the specific evaluation metrics are shown
in Table 5.

As can be seen from Table 5, the univariate model’s predictions are less effective overall
than the multivariate model’s predictions, which indicates that the prediction performance
of the model can be effectively improved with the inclusion of the selected explanatory
variables; for example, the MAE and RMSE of the multivariate predictions are reduced
by 7.0977 and 13.831, respectively, for the TCN-GRU model we used. In addition, some
models such as DeepAR and Prophet may show non-adaptability to this dataset, and
our experimental results are only better than those of the HA model. The hybrid model
performs better than the single model in multivariate prediction, which proves that the
hybrid model we use is more efficient and accurate based on the minimum sum of squares
of errors.

The fit of our proposed multivariate TCN-GRU model to the actual values of bike-
sharing demand for the last 480 data points (20 days) of the test set is shown in Figure 14.
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Table 5. Prediction results of each model.

Model

Metrics
R2 EVar MedAE MAE RMSE

Univariate

HA 0.4859 0.5234 457.8242 618.9324 864.8123
Prophet 0.5971 0.6616 428.9174 504.2642 716.3489

SVR 0.8287 0.8892 381.6209 308.4608 375.5922
ARIMA 0.8379 0.8919 257.3966 297.9913 370.8495
XGBoost 0.9657 0.9669 383.0468 111.5021 205.4212

LSTM 0.9730 0.9748 315.4528 112.4182 178.9126
GRU 0.9767 0.9769 312.3578 112.8749 171.3778
TCN 0.9806 0.9813 288.7231 89.8644 154.1625

TCN-LSTM 0.9808 0.9817 50.5265 90.0193 152.5853
TCN-GRU 0.9819 0.9825 52.1868 90.0910 149.3043

Multivariate

DeepAR 0.7278 0.7861 401.2352 456.8923 613.7432
ARIMAX 0.8529 0.8990 250.8287 285.9122 358.4603

TCN 0.9829 0.9837 49.1962 86.2586 143.8991
GRU 0.9817 0.9813 72.7963 104.2761 154.4806
LSTM 0.9799 0.9807 61.567 98.7257 156.6573

TCN-LSTM 0.9833 0.9841 48.1795 84.6395 142.0784
TCN-GRU 0.9842 0.9849 47.7591 82.9933 138.7543

Figure 14. Fitting curve for bike-sharing demand data prediction.

5. Discussion

In recent years, bike-sharing has become an important way for people to travel in an
environmentally conscious way. However, this free-form development mode has gradually
revealed many problems, such as over-placement, the serious waste of public resources,
and excessive growth, causing huge costs for urban management. The phenomenon of
the indiscriminate parking of bike-sharing vehicles has led to a large number of public
resources, such as subway station entrances, bus stops, bicycle lanes and pedestrian lanes,
being occupied. The surge in the number of shared bicycles not only affects the cityscape,
but also affects the safety of other public transportation. The uneven distribution of bicycles
makes it difficult to meet the volatile users’ travel demands. These problems are new
challenges for urban transportation managers.

To address the above problems, we took advantage of the fitting of deep learning
models on nonlinear and nonsmooth sample data, and we used TCN and GRU models for
bike-sharing demand prediction on the data set, combining the models with the principle
of the minimum error sum of squares. The hybrid model improved the prediction accuracy,
reduced the error, and effectively avoided the overfitting phenomenon. The experiments
also proved that the models were less effective than multivariate prediction in the univariate
prediction of bike-sharing demand, which meant that adding explanatory variables such
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as time, humidity, and temperature to the model input could improve the prediction
effect. The R2 and EVar of the proposed multivariate TCN-GRU model in this paper
were improved by at least 0.0023 and 0.0024, respectively, and the MedAE, MAE, and
RMSE decreased by at least 2.7674, 7.026, and 10.55, respectively, compared with univariate
forecasting models. At the same time, the R2 and EVar values of this model improved by
at least 0.0009 and 0.0008, respectively, and the MedAE, MAE, and RMSE decreased by at
least 0.4204, 1.6462, and 3.3241, respectively, compared with other multivariate forecasting
models. In order to achieve a more intuitive comparison of the prediction accuracy, we
drew a scatter density plot of the prediction effect of the compared models, as shown in
Figure 15. In the comparison, we can see that the density distribution of the predicted
values of the univariate SVR model, as well as the multivariate ARIMAX model, are not
uniform, the distribution is relatively more dispersed, and the prediction effect is average.
Our proposed multivariate TCN-GRU model predicts the values, while converging towards
the actual values, and the fitting effect is better. Thus, we have established an efficient
and robust short-term hybrid prediction model for bike-sharing demand considering
multiple variables.

  
(a) (b) 

  
(c) (d) 

Figure 15. Model scatter density plot. (a) Univariate SVR scatter density plot. (b) Univariate TCN-
GRU scatter density plot. (c) Multivariate ARIMAX scatter density plot. (d) Multivariate TCN-GRU
scatter density plot.

There are still several areas for improvement in this study.

(1) The combined model proposed in this paper showed good results in short-term bike-
sharing demand prediction, and when we tried long-term prediction, the results were
not satisfactory. Later, we will try to combine other models to improve performance in
long-term prediction.
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(2) In this study, we used a small-scale parameter-tuning method based on a grid search,
and subsequently we considered other optimization algorithms for parameter search-
ing which might improve the performance of the model.

(3) Due to limited data conditions, we were unable to obtain the main gathering locations
of bike-sharing in the region, and thus could not extract spatial characteristics that
could be used for further research following demand prediction.

6. Conclusions

In this paper, we built an accurate model that can be used for the short-term predic-
tion of bike-sharing demand, using bike-sharing data from 2015 to 2017 in the London
area. First, we analyzed multidimensional bike-sharing travel characteristics based on the
explanatory variables such as weather, temperature, and humidity to understand the travel
characteristics of local people, and thus facilitate traffic management and, to a certain extent,
improve traffic congestion. Considering the nonlinear relationship between each explana-
tory variable and bike-sharing demand, we used the MIC method for variable selection,
where variables were then used as part of the model input, and the experiments proved
that adding explanatory variables could greatly improve the prediction performance of the
model. In addition, considering the problems of over-fitting and poor stability that arise
when using a single model on a small sample of data, we proposed a hybrid multivariate
TCN-GRU model with the principle of the minimum error sum of squares, and the model
showed strong efficiency and robustness. This can facilitate the accurate short-term pre-
diction of bike-sharing demand in the region, which in turn provides decision support for
intelligent dispatching and urban traffic safety improvements. It will also help to promote
the development of green and low-carbon mobility in the future.

This study focuses on the possible prediction of factors affecting future bike-sharing in
the London area by studying the time series data of bike-sharing traffic demand. Probably
due to sensitivity issues, the data we obtained are limited, and we have been unable to
obtain the actual locations of the main concentrations of shared bicycles, i.e., individual
stations in the area. It would be useful to conduct a more in-depth study of intelligent
scheduling, if the researchers can obtain the specific cluster locations of shared bikes in
this area.
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Abstract: In this paper, we deal with distributed data represented either as a finite set T of decision
tables with equal sets of attributes or a finite set I of information systems with equal sets of attributes.
In the former case, we discuss a way to the study decision trees common to all tables from the set
T : building a decision table in which the set of decision trees coincides with the set of decision trees
common to all tables from T . We show when we can build such a decision table and how to build it
in a polynomial time. If we have such a table, we can apply various decision tree learning algorithms
to it. We extend the considered approach to the study of test (reducts) and decision rules common
to all tables from T . In the latter case, we discuss a way to study the association rules common to
all information systems from the set I : building a joint information system for which the set of true
association rules that are realizable for a given row ρ and have a given attribute a on the right-hand
side coincides with the set of association rules that are true for all information systems from I , have
the attribute a on the right-hand side, and are realizable for the row ρ. We then show how to build a
joint information system in a polynomial time. When we build such an information system, we can
apply various association rule learning algorithms to it.

Keywords: distributed data; decision tables; information systems; decision trees; decision rules; tests;
reducts; association rules

1. Introduction

Along with technological development, we are dealing with an increasing amount of
data that must be processed and stored. The way they are processed depends on many
factors, including the purpose of use and the type of data. One of the main goals is
to extract knowledge from data, for example, by discovering patterns and relationships
hidden in the data. Such knowledge can be presented by a set of decision rules, decision
trees, or association rules. When a selection of features is required in order to find the most
important and relevant ones, a test (reduct) is used. It is a (minimal) set of attributes that
provides the same classification of objects as the whole input set of features.

An important element that influences the result of the chosen approach to extracting
knowledge from data is their preparation. Pre-processing includes various algorithms,
depending on the needs. These can be, for example, the imputation of missing attribute
values, data normalization, or discretization. The type of method used depends on the goal
and affects the subsequent stages of the data mining process. This phase is particularly
difficult when we are dealing with distributed data that come from various data sources
and appear in a different format, depending on the data owner [1].

One popular form of data representation is the tabular form, presented either as a
decision table or as an information system. In the case of a distributed environment, such
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data can be represented as a finite set of decision tables with the same decision attribute [2,3].
Generally, these decision tables can have different sets of conditional attributes. However,
the consideration of the sets of decision tables with equal sets of attributes is of particular
interest. Data can also be represented by information systems [4,5]. As for the case of
decision tables, considering the sets of information systems with equal sets of attributes is
of most interest to us. This paper consists of the two parts. In the first one, we deal with
dispersed data represented by a finite set of decision tables with equal sets of attributes.
In the second part, we deal with dispersed data represented by a finite set of information
systems with equal sets of attributes.

In the first part of the paper, we assume that we have a finite set T = {T1, . . . , Tk} of
decision tables with equal sets of attributes. Our aim is to create tools for the work with
decision trees, rules, and tests (reducts) [4–6] that are common to all decision tables from T .

There are different algorithms for the construction and optimization of decision trees
for single decision tables [7–10]. To apply these algorithms to the set of decision tables T ,
we need to build a single decision table (called a joint decision table for T ) such that
the set of decision trees for this table is equal to the set of common decision trees for all
decision tables from T . The situation is the same for decision rules and tests (reducts). In
this paper, we show when we can build joint decision tables and how to build them in a
polynomial time.

Note that in the case of dispersed decision tables with different sets of conditional
attributes, instead of considering a joint decision table, we should study its lower and
upper approximations, which leads to the investigation of NP-hard problems [2].

In the second part of the paper, we assume that we have a finite set I = {I1, . . . , Ik} of
information systems, in which columns are labeled with the same attributes a1, . . . , an. We
fix a row ρ from one of the information systems from I and an attribute aj ∈ {a1, . . . , an},
and we consider the set Arules(I , ρ, aj) of association rules of the form (ai1 = σ1) ∧ · · · ∧
(aim = σm) → (aj = σ) that are true for each information system from I and are realizable
for the row ρ (i.e., such rule covers the row ρ). Our aim is to create tools for the work with
association rules from this set.

There are different algorithms for the construction and optimization of association
rules for single information systems [11–16]. To apply these algorithms to the set of
information systems I , we need to build an information system J (called a joint information
system for I , ρ, and aj) such that Arules({J}, ρ, aj) = Arules(I , ρ, aj). In this paper, we
show how to build joint information systems in a polynomial time.

The main contribution of this work is a proposed new methodology for working with
distributed data, presented as a set of decision tables or a set of information systems. It
is an interesting direction of research, especially in the areas of distributed data mining,
data processing, and knowledge extraction from dispersed data sources. The proposed
approach is different from the approaches described in the framework of distributed data
mining (Section 2.1). Our methodology is based on the transformation of distributed data
sources into the so-called joint tabular form of data, presented as a joint decision table or
as a joint information system. An important element is that the obtained decision table or
information system allows for the induction of decision rules, decision trees, reducts, or
association rules common to the distributed data. Moreover, existing algorithms for their
induction can be used.

The present paper is an extended version of two conference papers [17,18].
The rest of the paper is organized as follows. Section 2 presents some background

information related to distributed data, decision trees and rules, tests, and reducts as well
as association rules. In Section 3, we study distributed data represented as a finite set of
decision tables, and in Section 4, we study distributed data represented as a finite set of
information systems. Section 5 contains brief conclusions.
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2. Background Information

In this section some basic information related to distributed data, decision trees and
rules, tests, and reducts as well as association rules is presented.

2.1. Distributed Data

Technological development means that we are dealing with an increasing amount of
data that can be heterogeneous, taking into account their format and location.

One of the popular solutions for processing and storing decentralized data are data
warehouses [19,20]. They are used to store huge data sets. By using appropriate analytical
tools that allow for the employment of data mining algorithms, it is possible to mine
knowledge from data by analyzing trends, anomalies, or searching patterns. On this
basis, business decisions are made regarding, for example, sales planning or marketing
campaigns. In addition, data warehouses have ETL (Extraction, Trasformation, Loading)
tools, which are designed to properly prepare data from heterogeneous sources and various
locations.

Along with technological development and the necessity to process large amounts of
distributed data, the field referred to as distributed data mining has been developing in
recent years [21,22]. In this framework, different algorithms and approaches have been
developed and proposed for classification, association mining, clustering, and other data
mining tasks [23,24].

In this paper, a new methodology for working with distributed data is proposed. It is
based on the idea of constructing one tabular form of data representation, i.e, a decision
table or an information system for distributed sources, and then applying known algorithms
for the induction of data mining tools, i.e., association and decision rules, decision trees,
and reducts.

It should also be taken into account that distributed data mining techniques are more
complex in comparison to centralized ones. The main issues which should be considered
are: (i) heterogeneous data, i.e., local data sources can provide data with different formats
and attributes with different domains; (ii) data fragmentation, i.e., local sources can be
viewed as a horizontal or vertical fragmentation of the global data table, and therefore
based on them, only part of the knowledge can be induced; (iii) data replication, i.e.,
replication provides better data availability, but on the other hand, it can make it difficult
to ensure the consistency of distributed data; (iv) cost of communication in a distributed
environment plays an important role; (v) security, privacy, and autonomy of local sources;
(vi) integration results, i.e., discovered global interesting patterns and associations should
be collected from local sources, and their utility should be verified globally.

Distributed data mining aims to analyze and process distributed data while taking
into account resource constraints [25]. This task can be realized in the framework of a meta-
learning, multi-agent system, or based on grid. The multi-agent data mining environment
inherits properties of agents as interoperability and performance aspects. Interoperability
concerns working collaboratively with other agents in the entire system. Performance
measures can be improved or impaired by the data distribution at the local level. The
meta-learning system constitutes a learning method at the local level. Learning at the meta
level is based on accumulating experience on the performance of multiple applications
of a learning system. Data mining based on grid aims to create a distributed computing
environment in order to enable local data sources to use computing resources on demand.

2.2. Data Mining Tools

Data mining is a complex process that allows for the performance of analyses and
the acquisition of knowledge from data by using different methods, depending on the
aim and kind of data. Among data mining tools, decision rules, decision trees, reducts,
and association rules can be used. They can be considered as algorithms for solving
different problems and also as classifiers used in the area of machine learning [26]. A short
description can be found in the sections below.
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2.2.1. Decision Rules

Decision rules are popular and an often used form of knowledge representation. In
general, decision rules can be presented in the following form:

IF condition1 ∧ . . . ∧ conditionk THEN conclusion. (1)

Conditions (pairs attribute = value) correspond to descriptors that are present in the premise
part of the rule. Conclusion corresponds to the rule consequent part that present a class
label. Rules presented in such a form can be considered as a compact form of knowledge
representation. This form is simple and easily accessible from the point of view of under-
standing and interpreting knowledge represented by rules. Moreover, decision rules based
on background knowledge can be employed in classification tasks, where a class label for a
new object is assigned based on its conditions. Hence, decision rules can be applied in data
mining tasks related to (i) knowledge representation and (ii) classification [27]. Taking into
account these two perspectives, there are different measures used for rule evaluation and
many different approaches for the induction of decision rules. The aim is to find patterns
or regularities hidden in the data that are interesting and useful for users.

It should be noted that the minimization of length (number of conditions) and the
maximization of support (which allows to discover major patterns in data) of decision rules
are NP-hard problems [6,14]. The most part of approaches for construction of decision rules,
with the exception of brute force, Boolean reasoning [28], and dynamic programming [6],
cannot guarantee the construction of optimal rules, i.e., rules with minimum length or
maximum support. Consequently, different heuristic approaches have been proposed in
the literature [26,27,29,30]. Among them, greedy algorithms, genetic algorithms, ant colony
optimization algorithms, approaches based on a sequential covering procedure, and many
others can be mentioned.

2.2.2. Decision Trees

Decision trees are often used as classifiers, as a means of knowledge representation,
and as algorithms. A decision tree learning algorithm approximates a target concept using a
tree representation, where each internal node corresponds to an attribute, and each terminal
node known as a leaf corresponds to a class label. The root node is at the top and leafs are
at the bottom of a tree.

Most of the algorithms for decision tree induction use a greedy approach and a top-
down, recursive, divide-and-conquer technique. In general, the algorithm for decision tree
induction starts with the tree, which initially contains a single root node that is associated
with the objects included in a data set. Then, the instances are recursively partitioned into
smaller subsets according to a given splitting criterion. It indicates the attribute chosen as
the test condition and how the instances should be distributed to the child nodes of the
constructed tree. The creation and expansion of a node is finished when the stop criterion
is satisfied, for example, when all the instances associated with the node in the divided
data set have the same class label. However, there are also other criteria that allow for the
expansion of a node to be stopped earlier even if corresponding assigned instances have
different decisions.

An advantage of decision trees is that by reading a tree from root to leaves, a decision
(class label) is proposed for a considered case (object); it is also possible to see the reasons
for choosing a given decision. This feature is a very important element used in the domain
of applications aimed at supporting decision making. In addition, based on the decision
tree, decision rules can be obtained.

There are many algorithms for decision tree induction. The most popular are [8,9,31,32]:
CART (Classification and Regression Trees), ID3 (Iterative Dichotomiser 3), C4.5 (improved
version of the ID3 algorithm, where “C” shows that algorithm was written in C and the 4.5
specifics version of this algorithm), Sprint (Scalable PaRallelizable INduction of decision
Trees), Chaid (Chi-square automatic interaction detection), and their many modifications.
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There are also a variety of approaches based on meta-heuristics [33] such as genetic algo-
rithms, simulated annealing, ant colony optimization, and many others. An important
element during decision tree induction is selecting the best split, which allows for the
partitioning of instances into two or more subsets that are associated with the nodes of the
decision tree. Among the popular ones, measures based on entropy and the Gini index
used in CART can be distinguished.

2.2.3. Tests and Reducts

The construction of reducts and tests (super reducts) is closely connected with the
feature selection area [34–36]. The aim of this domain is to select from the entire set of
features only those attributes that are the most relevant while maintaining the descriptive
and classification properties of the original feature space. Hence, this reduced set of
attributes can be used instead of the entire attributes set for knowledge discovery. It is
an important task, especially in areas where data sets contain a huge number of features,
for example, in market basket analysis, stock trading, and sequence pattern discovery in
bioinformatics.

Reduct is as an irreducible subset of features providing a satisfactory level of informa-
tion about the considered target variable, which can be, for example, the accuracy of the
classifier constructed based on the features contained in it. Therefore, from the classification
point of view, a reduct can be interpreted as a minimal subset of attributes that has the
same classification power as the entire set of features. Definitions for attribute reducts can
be based on different criteria, for example, a reduct can also be considered as a minimal set
of attributes that preserves the degree of dependency of the full set of attributes [37].

In the rough sets theory, where the construction of reducts constitutes one of the main
research directions, decision super reduct (test) is defined as a subset of condition attributes
that is sufficient for discerning any of the objects in a decision table with different class
labels. A decision reduct is a test in the sense that each proper subset of this test is not a
test for the considered problem.

Unfortunately, finding a reduct with minimum cardinality is an NP-hard problem.
It is also known that the upper bound of a potential number of all reducts that can be
found for a given dataset with k attributes is equal to ( k

�k/2�). Taking into account that these
issues represent high computational costs and complexity brought by the tasks of all reduct
construction, different approaches and heuristics have been proposed for the construction
of many reducts in some acceptable time. The popular ones are Boolean reasoning [28],
genetic algorithms [38], greedy algorithms [39], fuzzy-rough approach, and others [14,40].

Based on the reduct constructed for a given decision table, decision rules can be
induced from reduced sets of attributes. In this indirect method of rule induction, it is easy
to see that the number of attributes which constitute a reduct is an important factor from
the point of view of knowledge representation. Short reducts allow for the construction of
short decision rules, which are more preferred from the point of view of understanding
and interpretation by users.

2.2.4. Association Rules

Association rule mining is one of the key and interesting methods of data mining and
knowledge discovery. It aims to extract co-occurrences of items as well as associations and
patterns hidden in the data. One of the most popular applications of association rules is the
market basket analysis, which finds associations between different items that customers
place in their shopping baskets. Other areas include business fields involving decision
making and effective marketing, medical diagnosis, stock trading, and others.

There are different types of association rules, for example: boolean association rules,
which are used in market basket analysis; qualitative association rules [11], which are
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induced from business data; spatial association rules [41]; multilevel association rules [42],
and others [29]. In general, association rules are presented in the following form:

X → Y, (2)

where X and Y are sets of items.
Two main quality measures of association rules are support and confidence [15]. Rules

that satisfy minimum thresholds of these measures indicated by a user are called strong
association rules.

It should be also noted that there are many algorithms for construction of association
rules, however the process of mining of association rules consists of two main stages:
(i) find all frequent itemsets, i.e., they occur at least as frequently as a predetermined
minimum support threshold, and (ii) generate strong association rules from the frequent
itemsets, i.e., rules that satisfy minimum support and minimum confidence thresholds. The
most popular algorithm based on mining frequent itemset is Apriori [43]. However, many
other approaches were proposed by researchers, for example, algorithms that use frequent
pattern growth approach [44], vertical data format [45], hash based technique, partitioning
the data and others [46].

One very important task in data mining is the classification process. In this framework,
association rules also have an application. The associative classification task aims to find
association rules that have only the class label in the consequent part of the rule and
which satisfies the minimum support and the confidence thresholds, the so-called Class
Association Rules. There are many methods for the construction of classifiers, which differ
in the approaches used for mining association rules and their selection [47].

3. Sets of Decision Tables

In this section, we deal with dispersed data represented as a finite set of decision tables
with equal sets of attributes.

3.1. Main Notions

A decision table T is a table filled with numbers from the set ω = {0, 1, 2, . . .} of non-
negative integers, in which columns are labeled with conditional attributes a1, . . . , an and
each row is labeled with a decision that is a number from ω (see Figure 1). We assume that
equal rows in the table T are labeled with equal decisions, i.e., we consider only consistent
decision tables. We associate the following problem with the table T: for a given row ρ of T,
we should recognize the decision attached to ρ using values of the condition attributes from
{a1, . . . , an} in this row. To this end, we can use decision trees, rules, and test (reducts).

A decision tree Γ over T is a finite directed tree with a root, in which each internal node
is labeled with an attribute from the set {a1, . . . , an}, edges leaving this node are labeled
with pairwise different numbers from ω, and each leaf node is labeled with a decision from
ω. For a given row ρ = (δ1, . . . , δn), the tree Γ work starts in the root of Γ. If the node under
consideration is a leaf, then the number attached to this node is the result of the Γ work.
Let the node under consideration be an internal node with an attribute ai attached to it. If
there is an edge that leaves the considered node and is labeled with δi, then we pass along
this edge. Otherwise, the decision tree Γ finishes its work without a result. We say that Γ is
a decision tree for T if, for any row of T, the work of Γ finishes in a leaf that is labeled with
the same decision as the considered row (see Figure 1). We denote with Trees(T) the set of
decision trees for T.

Any decision rule over T can be represented in the following form:

(ai1 = σ1) ∧ · · · ∧ (aim = σm) → t (3)

where ai1 , . . . , aim ∈ {a1, . . . , an} and σ1, . . . , σm, t ∈ ω. This rule is called realizable for
a row ρ = (δ1, . . . , δn) ∈ ωn (it is possible that this row does not belong to T) if δi1 =
σ1, . . . , δim = σm. This rule is called true for T if, for any row ρ′ of T, such that rule (3) is
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realizable for ρ′, the row ρ′ is labeled with the decision t. We say that (3) is a rule for T and
ρ if this rule is true for T and realizable for ρ (see Figure 1). We denote with Rules(T, ρ)
the set of decision rules for T and ρ. One can show that (3) is a rule for T and ρ if (i) ρ is
labeled with the decision t if ρ belongs to T, and (ii) if each row ρ′ of T, which is labeled
with a decision different from t, is different from ρ on at least one attribute from the set
{ai1 , . . . , aim}.

A test for T is a subset of the set of conditional attributes {a1, . . . , an}, such that any
two rows from T with different decisions are different on at least one attribute from this
subset. A reduct for T is a test for T, for which each proper subset is not a test (see Figure 1).
We denote with Tests(T) the set of tests for T.

(a) T0 =

a1 a2 a3
1 1 1 1
0 0 0 2
0 0 1 2
1 0 0 3

(b) (a1 = 1) ∧ (a2 = 0) → 3

(c) {a1, a2}

(d)

��
��

�
�� �

��

��
��

�
�� �

��
��
��

��
��

��
��

a2

a1

0 1

0 1

2 3

1

Figure 1. Considered objects: (a) decision table T0, (b) decision rule for T0 and row (1, 0, 0), (c) reduct
for T0, (d) decision tree for T0.

Let T = {T1, . . . , Tk} be a finite nonempty set of decision tables, in which columns
are labeled with the same conditional attributes a1, . . . , an. Each decision table from this
set is consistent, but different tables from T can contain equal rows labeled with different
decisions. Let ρ be a row of a decision table from T . We denote Trees(T ) =

⋂
Ti∈T Trees(Ti),

Rules(T , ρ) =
⋂

Ti∈T Rules(Ti, ρ), and Tests(T ) =
⋂

Ti∈T Tests(Ti). In the next three sec-
tions, we will consider joint decision tables for these sets of common decision trees, rules,
and tests (reducts) for T .

3.2. Joint Decision Tables for Decision Trees

Let T = {T1, . . . , Tk} be a set of decision tables, in which the columns are labeled with
the attributes a1, . . . , an. The set of decision tables T is called consistent if there are no two
tables in T containing equal rows labeled with different decisions.

First, we show that if the set T is not consistent, then Trees(T ) = ∅. Since T is not
consistent, there exist two tables Ti and Tj in T and a row ρ, such that ρ is a row of Ti
labeled with a decision p, ρ is a row of Tj labeled with a decision q, and p �= q. Let us
assume that Trees(T ) �= ∅ and Γ ∈ Trees(T ). Then, the output of Γ for the row ρ should
be equal to p and to q at the same time, but this is impossible. Therefore, Trees(T ) = ∅.

Let us assume now that the set T is consistent. With Ttrees(T ), we denote a decision
table in which columns are labeled with attributes a1, . . . , an, and the set of rows coincides
with the union of sets of rows of the tables T1, . . . , Tk. Each row belonging to Ttrees(T ) is
labeled with the decision attached to this row in the tables from T which this row belongs
to (see Figure 2). Note that the table Ttrees(T ) can be constructed in polynomial time.

We now show that Trees(T ) = Trees(Ttrees(T )). Let Γ ∈ Trees(T ). Then, for any
Ti ∈ T and any row ρ belonging to Ti, Γ returns the decision attached to ρ in Ti. Therefore,
for any row ρ of Ttrees(T ), Γ returns the decision attached to ρ, i.e., Γ ∈ Trees(Ttrees(T )).
Now, let Γ ∈ Trees(Ttrees(T )). Then, for any row ρ of Ttrees(T ), Γ returns the decision
attached to ρ. Therefore, for any table Ti ∈ T and any row ρ of Ti, Γ returns the decision
attached to ρ in Ti, i.e., Γ ∈ Trees(T ).

207



Entropy 2022, 24, 1401

P1 =

a1 a2 a3
1 1 1 1
0 1 0 2
1 1 0 2

P2 =

a1 a2 a3
1 1 0 2
0 0 1 3
1 0 0 3

Ttrees(T1) =

a1 a2 a3
1 1 1 1
0 1 0 2
1 1 0 2
0 0 1 3
1 0 0 3

Figure 2. Joint decision table Ttrees(T1) for the set of decision tables T1 = {P1, P2}.

3.3. Joint Decision Tables for Decision Rules

Let T = {T1, . . . , Tk} be a set of decision tables, in which columns are labeled with
attributes a1, . . . , an. A row ρ of a decision table from the set T is called inconsistent if there
are two tables in T that contain it and if the row ρ in these tables is labeled with different
decisions. Otherwise, the row ρ is called consistent.

First, we show that if the row ρ is inconsistent, then Rules(T , ρ) = ∅. Since ρ is
inconsistent, there exist two tables Ti and Tj in T , such that ρ is a row of Ti labeled with
a decision p, ρ is a row of Tj labeled with a decision q, and p �= q. Let us assume that
Rules(T , ρ) �= ∅. Then, the right-hand side of each rule from Rules(T , ρ) should be equal
to p and to q at the same time, but this is impossible. Therefore, Rules(T , ρ) = ∅.

Let us assume now that the row ρ is consistent, and that it is labeled with the decision
t. We denote with Trules(T , ρ) a decision table in which columns are labeled with attributes
a1, . . . , an, the first row is ρ, and the set of all other rows coincides with the union of the
sets of rows of the tables T1, . . . , Tk, which are labeled with decisions different from t. The
first row of Trules(T , ρ) is labeled with the decision t, and all other rows are labeled with
the decision t + 1 (see Figure 3). We cannot keep the initial decisions for rows that are now
labeled with t + 1 since in this case, the table Trules(T , ρ) can be inconsistent. Note that the
table Trules(T , ρ) can be constructed in polynomial time.

Q1 =

a1 a2 a3
1 1 1 1
0 1 0 2
1 1 0 3

Q2 =

a1 a2 a3
1 1 1 2
0 1 1 3
1 0 0 3

Trules(T2, ρ) =

a1 a2 a3
1 0 0 3
1 1 1 4
0 1 0 4

Figure 3. Joint decision table Trules(T2, ρ) for the set of decision tables T2 = {Q1, Q2} and row
ρ = (1, 0, 0).

We now show that Rules(T , ρ) = Rules(Trules(T , ρ), ρ). Let ρ ∈ Rules(T , ρ) and
ρ be equal to (3). Then, for any table Ti from T , any row of Ti labeled with a decision
different from t is different from ρ on at least one attribute from the set {ai1 , . . . , aim}.
Therefore, any row of Trules(T , ρ) labeled with the decision t + 1 is different from ρ on
at least one attribute from the set {ai1 , . . . , aim}, i.e., ρ ∈ Rules(Trules(T , ρ), ρ). Now, let
ρ ∈ Rules(Trules(T , ρ), ρ). Then, any row of Trules(T , ρ) labeled with the decision t + 1 is
different from ρ on at least one attribute from the set {ai1 , . . . , aim}. Therefore, for any table
Ti from T , any row of Ti labeled with a decision different from t is different from ρ on at
least one attribute from the set {ai1 , . . . , aim}, i.e., ρ ∈ Rules(T , ρ).

3.4. Joint Decision Tables for Tests (Reducts)

Let T = {T1, . . . , Tk} be a set of decision tables, in which columns are labeled with
attributes a1, . . . , an. Each decision table from this set is consistent, but different tables from
T can contain equal rows labeled with different decisions. It is clear that for each table Ti
from T , the set of attributes {a1, . . . , an} is a test. Therefore, Tests(T ) �= ∅.

We denote with Ttests(T ) a decision table in which columns are labeled with attributes
a1, . . . , an, the first row is filled with zeros, and the set of all other rows is constructed in
the following way. For any table Ti from T and any two rows ρ1 and ρ2 of Ti labeled with
different decisions, we add to the table Ttests(T ) the row c(ρ1, ρ2) filled with numbers from
the set {0, 1}. For i = 1, . . . , n, the row c(ρ1, ρ2) has the number 1 in the ith position if and
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only if the rows ρ1 and ρ2 are different on the attribute ai. The first row of the table Ttests(T )
is labeled with the decision 1. All other rows are labeled with the decision 2 (see Figure 4).
It is clear that the rows ρ1 and ρ2 are different on an attribute aj if and only if the first row
of the table Ttests(T ) and the row c(ρ1, ρ2) are different on the attribute aj. Note that the
table Ttests(T ) can be constructed in polynomial time.

R1 =

a1 a2 a3
1 1 1 1
0 1 0 1
1 1 0 2

R2 =

a1 a2 a3
1 1 1 2
0 1 1 2
1 0 0 3

Ttests(T3) =

a1 a2 a3
0 0 0 1
0 0 1 2
1 0 0 2
0 1 1 2
1 1 1 2

Figure 4. Joint decision table Ttests(T3) for the set of decision tables T3 = {R1, R2}.

We now show that Tests(T ) = Tests(Ttests(T )). Let B ∈ Tests(T ). Then, for any
table Ti from T , any two rows from Ti with different decisions are different on at least
one attribute from B. Therefore, the first row of the table Ttests(T ) is different from all
other rows of the table Ttests(T ) on the attributes from B, i.e., B ∈ Tests(Ttests(T )). Let
B ∈ Tests(Ttests(T )). Then, the first row of the table Ttests(T ) is different from all other
rows of the table Ttests(T ) on the attributes from B. Therefore, for any table Ti from T , any
two rows from Ti with different decisions are different on at least one attribute from B, i.e.,
B ∈ Tests(T ).

4. Sets of Information Systems

In this section, we deal with dispersed data represented as a finite set of information
systems with equal sets of attributes.

4.1. Main Notions

An information system I is a table filled with numbers from the set ω = {0, 1, 2, . . .}
of non-negative integers, in which columns are labeled with attributes a1, . . . , an. Each row
ρ of the information system I is interpreted as an object, and the number in the intersection
of the row ρ and the column ai is interpreted as the value ai(ρ) of the attribute ai for the
object ρ.

Any association rule over the set of attributes {a1, . . . , an} can be represented in
the following form:

(ai1 = σ1) ∧ · · · ∧ (aim = σm) → (aj = σ), (4)

where aj ∈ {a1, . . . , an}, ai1 , . . . , aim ∈ {a1, . . . , an} \ {aj}, and σ1, . . . , σm, σ ∈ ω. We will
say that this rule is based on the attribute aj. Rule (4) is called realizable for a row
ρ = (δ1, . . . , δn) ∈ ωn if δi1 = σ1, . . . , δim = σm. This rule is called true for the informa-
tion system I if for any row ρ′ of I such that rule (4) is realizable for ρ′, aj(ρ

′) = σ (see
Figure 5).

I0 =

a1 a2 a3 a4
1 0 1 0
0 0 0 1
0 0 1 1
0 1 0 0

(a1 = 0) ∧ (a2 = 0) → (a4 = 1)

Figure 5. Information system I0 and the association rule, which is based on the attribute a4, true for
the information system I0, and realizable for the row (0, 0, 0, 1).

4.2. Joint Information Systems for Association Rules

Let I = {I1, . . . , Ik} be a finite nonempty set of information systems, in which columns
are labeled with the same attributes a1, . . . , an. Let ρ = (δ1, . . . , δn) be a row of an in-
formation system from I and aj ∈ {a1, . . . , an}. We denote with Arules(I , ρ, aj) the set
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of association rules over the set of attributes {a1, . . . , an}, each of which is based on the
attribute aj, is realizable for the row ρ, and is true for each information system from I .

Our aim is to construct a so-called joint information system J, for which

Arules({J}, ρ, aj) = Arules(I , ρ, aj). (5)

In the information system J = J(I , ρ, aj), columns are labeled with the attributes
a1, . . . , an. This information system contains row ρ and all rows ρ′ from the information
systems I1, . . . , Ik, such that aj(ρ) �= aj(ρ

′) (we keep only one row from any group of
equal rows) (see Figure 6). Note that the information system J can be constructed in
polynomial time.

It is easy to show that the set of rules Arules({J}, ρ, aj) ∪ Arules(I , ρ, aj) is a subset of
the set A of rules in the following form:

(ai1 = δi1) ∧ · · · ∧ (aim = δim) → (aj = δj),

where ai1 , . . . , aim ∈ {a1, . . . , an} \ {aj}. To show that equality (5) holds, it is enough to
prove that, for any rule r ∈ A, r /∈ Arules({J}, ρ, aj) if and only if r /∈ Arules(I , ρ, aj). It is
clear that each rule from A is based on the attribute aj and is realizable for the row ρ. Let
r /∈ Arules({J}, ρ, aj). Then, the rule r is not true for J, and there exists a row ρ′ from J such
that r is realizable for ρ′ and aj(ρ) �= aj(ρ

′). It is clear that ρ′ is a row from an information
system Ii from I . Then, r is not true for Ii and r /∈ Arules(I , ρ, aj). Let r /∈ Arules(I , ρ, aj).
Then, there exists an information system Ii ∈ I for which r is not true, and there exists a
row ρ′ from Ii such that r is realizable for ρ′ and aj(ρ) �= aj(ρ

′). It is clear that ρ′ is a row
from the information system J. Then, r is not true for J, and r /∈ Arules({J}, ρ, aj). Thus,
the equality (5) holds.

I1 =

a1 a2 a3
1 1 1
0 1 0
1 1 0

I2 =

a1 a2 a3
1 1 1
0 1 1
1 0 0

J(I , ρ, a3) =

a1 a2 a3
1 0 0
1 1 1
0 1 1

Figure 6. Joint information system J(I , ρ, a3) for the set of information systems I = {I1, I2}, row
ρ = (1, 0, 0), and attribute a3.

5. Conclusions

In this simple methodological paper, we have shown the problem of studying common
decision trees for a dispersed set of decision tables with equal sets of attributes and how to
reduce this to the study of decision trees for a single decision table. We accomplished the
same for common decision rules and tests (reducts). The proposed approach allows us to
generalize known methods in the study of single decision tables to the case of dispersed
tables with equal sets of attributes.

We also showed the problem of studying common association rules for a dispersed set
of information systems with equal sets of attributes and how to reduce this to the study
of association rules for a single information system. The proposed approach allows us to
generalize known methods in the study of association rules for single information systems
to the case of dispersed information systems with equal sets of attributes.

The presented idea is different from the methods offered in the framework of dis-
tributed data mining or data warehouses. In our approach, the cost of communication
in a distributed environment is limited to the construction of a joint tabular form. Then,
depending on the aim of the data analysis, different existing algorithms for the induction
of decision trees, rules, reducts, or association rules can be used. In the case of data ware-
houses, the main application is the use of OLAP tools for supporting business decisions. In
the case of distributed data mining, collaboration among agents in the entire system and
learning at the local level are important factors that are omitted in the proposed approach.
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Future research will be connected with developing an algorithm for the induction
of decision rules from distributed data. The proposed idea will be different from the one
presented in this paper, since decision rules will be induced from a set of decision tables
without the process of transforming the distributed data into a joint tabular form.
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Abstract: The research concerns data collected in independent sets—more specifically, in local deci-
sion tables. A possible approach to managing these data is to build local classifiers based on each
table individually. In the literature, many approaches toward combining the final prediction results
of independent classifiers can be found, but insufficient efforts have been made on the study of tables’
cooperation and coalitions’ formation. The importance of such an approach was expected on two
levels. First, the impact on the quality of classification—the ability to build combined classifiers
for coalitions of tables should allow for the learning of more generalized concepts. In turn, this should
have an impact on the quality of classification of new objects. Second, combining tables into coalitions
will result in reduced computational complexity—a reduced number of classifiers will be built. The
paper proposes a new method for creating coalitions of local tables and generating an aggregated
classifier for each coalition. Coalitions are generated by determining certain characteristics of at-
tribute values occurring in local tables and applying the Pawlak conflict analysis model. In the study,
the classification and regression trees with Gini index are built based on the aggregated table for one
coalition. The system bears a hierarchical structure, as in the next stage the decisions generated by
the classifiers for coalitions are aggregated using majority voting. The classification quality of the pro-
posed system was compared with an approach that does not use local data cooperation and coalition
creation. The structure of the system is parallel and decision trees are built independently for local
tables. In the paper, it was shown that the proposed approach provides a significant improvement
in classification quality and execution time. The Wilcoxon test confirmed that differences in accuracy
rate of the results obtained for the proposed method and results obtained without coalitions are
significant, with a p level = 0.005. The average accuracy rate values obtained for the proposed
approach and the approach without coalitions are, respectively: 0.847 and 0.812; so the difference is
quite large. Moreover, the algorithm implementing the proposed approach performed up to 21-times
faster than the algorithm implementing the approach without using coalitions.

Keywords: Pawlak conflict analysis model; independent data sources; coalitions; decision trees;
dispersed data

1. Introduction

In today’s world, data are often collected in a decentralized and dispersed manner.
There are many examples that illustrate this process: hospitals that separately collect data
on the same issue/disease; banks that store data on their clients; applications on mobile
devices that collect various data. These data are collected independently and in separate
data storage.

It is crucial to use these data sets simultaneously to construct a classification of new
objects. Of course, a very significant consideration is to guarantee high efficiency in the clas-
sification process based on dispersed data.

The issues of dispersed data are mainly considered in distributed learning ap-
proaches [1,2]. The distributed models process all or part of the data at different nodes [3,4].
A solution in which all the data are simultaneously aggregated and stored in a single set is
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both inefficient and often impossible to apply [5]. Therefore, most research papers have
proposed a collaborative solution without data aggregation. In federated learning [6,7],
nodes perform multiple rounds with local data and send the local model to the central
server for aggregation into new global models. The main idea here is to guarantee data pro-
tection and privacy. Moreover, models are much shorter than raw data, so the exchange of
data is faster and less complex. In the distributed learning approach, methods can be found
in which local models are built independently, and the final decision is simply generated by
applying fusion methods. Various models have been proposed, both parallel [8] and hierar-
chical [9,10]. The concept of agent collaboration is also key here [11]; however, we do not
build aggregated tables as a result of this collaboration. In the literature, examples of classi-
fier ensembles in which feature subsets are considered can be found [12–14]. There are also
ensembles of classifiers built based on subsets of objects [15,16]. In the paper [17], an ap-
proach that considers missing values in the context of ensembles is considered. A crucial
matter that affects the quality of classification is diversity among the base classifiers [18,19].
The method for generating the final decision also has a significant impact on the efficiency
of ensembles [20,21]. Approaches recognizing relations between local data are considered
in the literature. In the paper [22], a hierarchical federated learning approach was proposed.
On the other hand, the paper [23] proposed a hierarchical approach in classifier ensem-
bles. Mainly in the literature, distributed learning is considered in terms of the following
issues [2,24]: data division—horizontal or vertical fragmentation; type of base classifiers—
can be homogeneous or heterogeneous; type and cost of communication—data or models
may be shared; privacy and data security—whether raw data exchange is allowed; fusion
methods—if local models are built (global model is not created) then fusion of predictions
is necessary to generate global decisions; data consistency—it can be assumed that objects
are shared between local tables and are consistent, or data can be independently created
and inconsistent. However, proposed approaches do not analyze the contents of local tables
and the relationships between them. In addition, the aggregation of local tables is seldom
considered in the literature.

Therefore, in this paper we fill this gap and propose a solution that performs a complex
analysis of tables’ content. The proposed approach aims to identify conflicts of local tables.
The term conflict used here refers to significant differences in the values of conditional
attributes occurring in local tables. We analyze relations and create coalitions of local tables
containing similar data. Based on the aggregated tables, a model is built. It is expected
that in this way we achieve better classification accuracy because models created via this
approach have a better ability to generalize concepts compared to approaches that use
a single model created based on a single table.

In the literature, conflict analysis is widely considered and various models are pro-
posed. Group decision-making represents an approach that solves the situation in which
each individual has their own private perspective [24]. In [25], a model is proposed for dis-
tributed group-decision support system that is suitable for use over the Internet. The theory
of negotiation and coalition formation presents an important issue regarding social interac-
tion and is also studied in computer science in the context of distributed systems [26,27].
Pawlak’s conflict analysis model [28,29] is yet another approach to conflict recognition that
provides excellent solutions in a variety of applications [30,31]. Pawlak conflict analysis
model was also considered in the context of dispersed data in the papers [32–34]. This
application shows that the Pawlak model provides excellent results for dispersed data when
tables are aggregated within coalitions. However, the approach discussed in their study
is completely different from the one proposed in this paper. Here, the compatibility of ta-
bles is examined in terms of the information stored in them—the values on the attributes.
In contrast, the papers [32–34] consider compatibility in terms of predictions generated
by the base models created based on the tables. Another difference is that in this paper
we assume that in local tables the same attributes are present, while in the papers [32–34]
there was no such assumption. Furthermore, in this paper, the system is static, whereas
previously it was dynamic. However, the success of the previous model provides the in-
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spiration for proposing a new approach in this paper. The main differences between these
approaches are listed in Table 1.

Table 1. Comparison of the new approach with the approach proposed in the papers [32–34].

New Proposed Approach
Approach Proposed

in the Papers [32–34]

System’s Structure Static Dynamic

Changeability of coalitions

Coalitions of local tables
determined only once

regardless of the object that
is being classified.

Coalitions of local tables
determined for each classified

object from scratch.

Basis for coalitions
designation

Information system in Pawlak
model created based

on characteristics of values
stored in local tables. So

coalitions are created based
on conditional attributes’

values occurring
in local tables.

Information system in Pawlak
model created based
on prediction vectors

generated for the
classified object.

Definition of aggregated table
for one coalition

Aggregated table is defined by
a sum of objects.

Aggregated table is defined by
the approximated method

for the aggregation of decision
tables—computationally

complex.

Base classifiers Decision tree, CART k–nearest neighbor classifier

Constraints on local tables The same conditional
attributes in all local tables. None

This paper proposes the use of the Pawlak conflict analysis method to generate coali-
tions of decision tables, in which there are similar values on a set of conditional attributes.
The goal is to achieve a better quality of classification by ensuring that similar units work
together. Formally, this approach requires that data are collected in a set of decision tables
(that were collected independently) in which the names of the conditional attributes are
identical (but the values on the objects may differ). Thus, coalitions of tables containing
similar values will be created. The tables in one coalition are then aggregated and a com-
mon model is determined based on the aggregated table. This approach seems natural,
since in everyday life we also notice that similar entities join forces to form better decisions
or to guarantee better management. This paper describes the process of using characteris-
tics of attribute values stored in decision tables in the Pawlak conflict analysis model. The
paper proposes a static and hierarchical classification model. The model is static because
coalitions—the model’s structure—are determined only once. Hierarchy of the model
results from the fact that tables in coalitions are aggregated and then models are built based
on them and these models perform classification. In this paper, decision trees are used
as base models. Specifically, classification and regression trees with Gini index (CART) [35]
are applied. The final classification of new objects is determined using majority voting
based on the predictions generated by the decision trees.

The paper also considers a parallel approach in which conflict analysis is not consid-
ered. In this approach, the CART trees are also employed as base models, but the coop-
eration of tables is not implemented, and the final decisions are made by majority voting
of decision trees generated independently based on tables.

The main objective in this study is to analyze how building coalitions of tables using
the Pawlak conflict analysis model affects the quality of classification and the running
time of the model. The two research hypotheses are verified in the paper. The first is
that applying the proposed model with Pawlak analysis and coalitions provides better
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classification quality than an approach in which coalitions are not used (in both models
the same base classifiers are used—the CART trees). The second research hypothesis is
that the algorithm implementing the proposed model has a lower time complexity than
the algorithm implementing the approach in which decision trees are built based on each
local table separately.

Herein, it is shown that combining local tables into aggregated tables significantly
improves classification quality. In addition, it reduces the number of generated trees and
thus reduces the time complexity of the method.

The main contributions of the paper are:

• proposing a new classification model using cooperation and coalitions of local tables
(tables contain the same attributes),

• proposing a new method for creating coalitions of tables using the Pawlak conflict
analysis model,

• developing a hierarchical system with CART trees for classification based on dispersed data.

The structure of the paper is organized as follows. Section 2 presents the proposed
model. The method of defining the coalitions and steps in building the model are described
there. Section 3 is dedicated to presenting the experimental results. The data, the measures
used and the methodology of the experiments are described in this section, and the results
obtained are also provided in tables. Section 4 contains the discussion and comparisons
of the obtained results. Section 5 gives conclusions and future research plans.

2. Materials and Methods

This section describes a new proposed hierarchical system for classification based
on dispersed data. In this research, we assume that the sets of attributes appearing in local
tables are equal. Stages of system construction are described in the following subsections.
The first step involves creating the system’s structure—generating coalitions of local tables.
This stage is implemented only once. Our goal here is the cooperation of tables that store
similar conditional attribute values. This concept detailing the cooperation of units that
share similar views with each other—have compatible values in this case—represents
a natural behavior that we can observe in everyday life and nature. For this purpose,
characteristics of conditional attributes’ values are calculated. In the next step, coalitions
are created based on these characteristics using the Pawlak conflict analysis model. The final
step is the aggregation of tables from one coalition. Based on such aggregated coalition’s
data, a classifier is built. In this study, we use a decision tree model. The final classification
model is a set of such decision trees generated for coalitions. The classification of an object
is conducted by the majority voting of these trees. Figure 1 illustrates the workflow
of the proposed model.

2.1. Basic Concepts and Method of Defining Characteristics of Conditional Attributes

We assume that a set of decision tables is given. The tables were collected indepen-
dently by separate units, but it is required that the same attributes are stored in all tables.
We do not impose any restrictions on the objects contained within the tables. We assume
that we do not know which objects are shared between local tables.

Formally, we assume that a set of decision tables Di = (Ui, A, d), i ∈ {1, . . . , n}
from one discipline is available, where Ui is the universe, a set of objects; A is a set
of conditional attributes; d is a decision attribute. As can be seen the sets of objects are
different between local tables. The names of attributes that occur in local tables, both
conditional and decision, are the same. Therefore, the conditional attributes A and decision
attribute d in all local tables are denoted in the same way. Clearly, from a formal point
of view, the attribute a ∈ A in the decision table Di is a function a : Ui → Va, where Va

is the set of values of the attribute a. Thus, the domains of the functions between local
tables are different. However, for the sake of simplicity, the same designations for attributes
were adopted in all local tables, and the domain of the function will be directly derived
from the attribute’s membership in the decision table. Aggregation for these tables is a
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difficult process and can generate inconsistencies. Another aspect that should be taken
into account is data protection and privacy. In addition, the process of aggregating all local
tables is highly complex. Thus, in the literature, rather, methods are proposed for partial
aggregation of tables or even building separate models based on each local tables, and then
aggregating these models or the predictions generated by the models [7,21,36].

Figure 1. The overall workflow of the proposed model.

In this paper, a new approach is proposed in which we aggregate tables that contain
similar values on conditional attributes. For this purpose, for each local table and for each
attribute, some characteristics of the attribute’s values occurring in the table are generated.
Suppose that in each local table we have m attributes card{A} = m (card denotes the num-
ber of elements in the set). Let us assume that we have m1 quantitative attributes and m2
qualitative attributes, so m1 + m2 = m.

For each quantitative attribute aquan ∈ A, we determine the average of all attribute’s

values present in local table Di, for each i ∈ {1, . . . , n}. Let us denote this value as Val
i
aquan .

We also calculate the global average and the global standard deviation. Let us denote
them as Valaquan and SDaquan . These values are determined based on the averages calculated
for the local decision tables according to the following formulas:

Valaquan =
1
n

n

∑
i=1

Val
i
aquan (1)

SDaquan =

√
1
n

n

∑
i=1

(
Valaquan − Val

i
aquan

)2 (2)

These characteristics for quantitative attributes will be used in the coalitions generation process.
For each qualitative attribute aqual ∈ A, we determine a vector over the values of that at-

tribute. Suppose attribute aqual has c values val1, . . . , valc. The vector Vali
aqual

= (ni
1, . . . , ni

c)
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represents the number of occurrences of each of these values in the decision table Di. More
precisely, the coordinate nj represents the number of objects in table Di that have value valj
on attribute aqual . This vector is normalized. This is done to ensure that in further analysis
the percentage of occurrences of a given value in the table matters rather than the number
of objects in the table.

The Pawlak conflict analysis model is employed to determine coalitions of local
tables that store similar attribute values. The next section presents the method to create
an information system with a description of the conflict situation and how coalitions are
generated with the use of the Pawlak model.

2.2. Pawlak Conflict Analysis Model and Creation of Coalitions

The Pawlak conflict analysis model is a very simple yet effective approach for rec-
ognizing coalitions of units involved in a conflicting situation [28,29]. In this model,
an information system is defined in which the views of agents—units involved in a conflict
situation—on the issues that are the matter of the conflict are stored. In the considered ap-
proach, the agents are local tables while the issues are conditional attributes stored in these
tables. Formally, an information system is defined S = (U, A), where U is a set of local
decision tables U = {D1, . . . , Dn} and A is a set of conditional attributes (qualitative and
quantitative) occurring in local tables, which was defined in the previous section. In the
Pawlak model, opinions of agents on issues are expressed by using three values. Value
1 means an agent is in favor of an issue, value 0 means an agent is neutral to an issue,
while value −1 means an agent is against an issue. The original interpretation differs
from that used herein. In this paper, the values refer rather to the differences in values
of a given attribute appearing in the local decision table. Depending on the type of attribute
(qualitative or quantitative), a different method of determining these values is used.

For the quantitative attribute aquan ∈ A a function aquan : U → {−1, 0, 1} is defined

aquan(Di) =

⎧⎪⎪⎨⎪⎪⎩
1 if Valaquan + SDaquan < Val

i
aquan

0 if Valaquan − SDaquan ≤ Val
i
aquan ≤ Valaquan + SDaquan

−1 if Val
i
aquan < Valaquan − SDaquan

(3)

The motivation for proposing this function originates from the method of estimating
typical values of normal distribution. It is known that about 68% of the typical values
from the normal distribution fall within the range: average ± standard deviation. Thus,
we assign the value 0 on attribute aquan to decision tables Di when the average of the at-
tribute’s values occurring in the table falls in the SDaquan -neighborhood of the global average
Valaquan .

This means that the values of the attribute occurring in the decision table are typical.
In contrast, the value 1 means that the average of the conditional attribute val-

ues in the decision table is above the global average more than SDaquan value; it devi-
ates more than the value of the standard deviation. Similarly, the value −1 indicates
an atypical—lower—average value of the conditional attribute in the decision table com-
pared to the global average value.

As mentioned above, the vectors that determine the distribution of values occurring
in the decision tables are generated for qualitative attributes. For an attribute aqual ∈ A
we have the vectors Vali

aqual
= (ni

1, . . . , ni
c), i ∈ {1, . . . , n}. In order to define three groups

of decision tables with similar distribution of the attribute’s aqual values, we group these
vectors with the k–means clustering algorithm, fixed number of groups k = 3 and the Eu-
clidean distance. We then place in descending order the centroids obtained for groups.
Ordering with respect to the value of the first centroid coordinate was applied. Let us
denote the groups of decision tables obtained from the k–means algorithm and indexed
in relation to the centroids’ order as G1, G2, G3. For the qualitative attribute aqual ∈ A
a function aqual : U → {−1, 0, 1} is defined
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aqual(Di) =

⎧⎨⎩
1 if Di ∈ G1
0 if Di ∈ G2
−1 if Di ∈ G3

(4)

The function above assigns values on a qualitative attribute to local tables that reflect
the consistency of the characteristics of this attribute appearing in the table. Thus, decision
tables that contain similar distribution of values of the qualitative attribute will have
the same value assigned in the information system S.

In this way, the information system S is defined that stores information about the com-
patibility of values of conditional attributes occurring in local tables. Based on this system,
we calculate the general similarity of values of all attributes for each pair of tables. For this
purpose, a conflict function is used that was proposed by Pawlak in their conflict analysis
model [28]. The conflict function ρ : U × U → [0, 1] is defined as follows

ρ(Di, Dj) =
card{a ∈ A : a(Di) �= a(Dj)}

card{A} . (5)

A pair of decision tables Di, Dj ∈ U is said to be [28]:

• allied, if ρ(Di, Dj) < 0.5,
• in conflict, if ρ(Di, Dj) > 0.5,
• neutral, if ρ(Di, Dj) = 0.5.

Set X ⊆ U is a coalition if for every Di, Dj ∈ X decision tables are allied ρ(Di, Dj) < 0.5.
By applying the Pawlak conflict analysis model, we obtain coalitions of local tables

that share similar values of conditional attributes. It should be noted that coalitions do not
have to be disjointed—one local table can be included in several coalitions. In fact, this is a
quite common case, as will be shown in the experimental section.

The pseudo-code of the algorithm that generates the coalitions of local tables is given
in Algorithm 1.

Algorithm 1 Pseudo-code of algorithm generating coalitions of local tables
Input: A set of local decision tables Di = (Ui, A, d), i ∈ {1, . . . , n}.
Output: A set of coalitions of local tables X1, . . . , Xk.
Construction of an information system S = (U, A), where U = {D1, . . . , Dn} and A is a set
of conditional attributes
for each a ∈ A:

if a is a quantitative attribute then
Use Equation (3) to define the function a

else
Use Equation (4) to define the function a

Conflict function values
for each pair Di, Dj ∈ U:

Use Equation (5) to calculate the value ρ(Di, Dj)

Creation of coalitions
X1 = U, i = 1, j = 1
while i ≤ j:

Repeat until there is a pair of tables Dl , Dk ∈ Xi so that ρ(Dl , Dk) ≥ 0.5:
j = j + 1
Xj = Xi \ {Dl}, Xi = Xi \ {Dk}

i = i + 1
Return only the largest sets, due to the inclusion relation, from the sets Xi, i = 1, . . . , j
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The computational complexity of the algorithm is exponential due to the number
of local tables. The greatest complexity is noted when there exists no pair of local tables
similar enough to satisfy the conditions of being allied. Subsequently, all subsets of the set
of local tables will eventually be checked. However, in most applications, the number
of local tables is not so large. In the experimental section, the application of the proposed
model is checked for dispersed data containing up to eleven local tables. The obtained
times in the worst cases are expressed in minutes.

2.3. Aggregation of Tables from Coalitions and Final Classification

An aggregated decision table is defined for each coalition of local tables generated
in the previous step. Suppose we have coalitions of tables X1, . . . , Xk. The aggregated deci-
sion table for the coalition Xj is denoted as Daggr

j = (Uaggr
j , A, d), where Uaggr

j =
⋃

Di∈Xj
Ui

and the names of attributes in the aggregated table are the same as those in local tables.
The attribute a from the aggregated table is a function defined on Uaggr

j that takes values
in Va. The attribute a from the aggregated table has the same value, on object x ∈ Ui,
as the corresponding attribute a from the local table Di on that object. Thus, an aggregated
table is defined by summing objects from local tables in the coalition without recogniz-
ing whether there are common objects in the local tables (based on the assumptions, we
do not possess this possibility). In the aggregated table, the values assigned to objects
on the attributes are taken from local tables.

Based on aggregated tables, models are generated. In this paper, the classification and
regression tree algorithm is used with Gini index [35]. It should be noted that prepruning
and postpruning were not used for this tree. An implementation available in Python
language was used for this purpose [37]. Specifically, DecisionTreeClassifier(criterion = “gini”)
function was used. The tree is built independently for each aggregated table, thus we
obtain k models M1, . . . , Mk.

The classification of a new object x is realized by each model separately. The final
decision—the global decision, which we denote as d̂(x)—is made by majority voting. This
means that there may be a tie, which we do not resolve in any way. Thus, d̂(x) is the set
of decisions that were most frequently indicated by models M1, . . . , Mk. In the experimental
part, the relevant measures for evaluating the quality of classification, which takes into
account the possibility of draws, were used.

In the section below, an illustrative example of the proposed approach is provided
for clarification.

2.4. Baseline Model without the Use of Coalitions

The results obtained using the proposed method are compared with the results gener-
ated by an approach without any conflict analysis. In the baseline approach, a model is built
based on each local table. In order to perform a fair comparison of the impact of the pro-
posed novelty on the results obtained, the same classification model was used—for each
local table the CART tree is used. Classification of a new object is realized by applying
the majority voting method to the classification results obtained using these decision trees.
Ties can occur, but as stated before, we do not resolve them in any way. The adequate
measures were used in the experimental part.

2.5. Example of Use of the Proposed Approach

Let us consider an example that uses the proposed approach. Suppose we have
a set of four local tables Di = (Ui, A, d), i ∈ {1, . . . , 4}. Each of them contains a set
of five conditional attributes A = {a1, . . . , a5} and a decision attribute d. We assume that
Vai = {0, 1, 2}, i ∈ {1, . . . , 5}, and Vd = {d1, d2} for each of the tables. For the purposes
of this example, the conditional attributes in the tables are quantitative. The local tables
defined above are given in Table 2.
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Table 2. Local tables used in the example.

U1 a1 a2 a3 a4 a5 d

x1 1 0 2 0 0 d2
x2 2 1 0 1 0 d2
x3 0 0 1 2 2 d1
x4 2 1 1 1 1 d1
x5 1 2 0 1 2 d2

U2 a1 a2 a3 a4 a5 d

x1 0 2 1 0 0 d2
x2 2 1 2 1 2 d1
x3 2 0 0 2 1 d2
x4 1 1 2 0 0 d2
x5 2 0 2 1 1 d1

U3 a1 a2 a3 a4 a5 d

x1 1 1 0 2 2 d1
x2 1 1 2 0 1 d1
x3 2 0 1 2 1 d2
x4 0 2 0 2 0 d2
x5 2 0 2 1 2 d2

U4 a1 a2 a3 a4 a5 d

x1 1 0 0 2 2 d1
x2 2 1 0 1 0 d2
x3 0 2 1 2 2 d2
x4 2 0 2 1 1 d1
x5 1 2 0 1 1 d2

Based on the attribute values in the local tables (Table 2), the information system is
generated as described in Section 2.2. In the first step, the average of all attribute’s values
occurring in the local table for each attribute and each table is calculated. These values

are denoted as Val
i
aj

, i ∈ {1, . . . , 4}, j ∈ {1, . . . , 5} and are given in Table 3. Furthermore,
the global average and the global standard deviation for each attribute are calculated,
the values are also shown in Table 3.

Table 3. Averages Val
i
aj

, i ∈ {1, . . . , 4}, j ∈ {1, . . . , 5}.

Local a1 a2 a3 a4 a5

Table

D1 Val
1
a1
= 1.2 Val

1
a2
= 0.8 Val

1
a3
= 0.8 Val

1
a4
= 1 Val

1
a5
= 1

D2 Val
2
a1
= 1.4 Val

2
a2
= 0.8 Val

2
a3
= 1.4 Val

2
a4
= 0.8 Val

2
a5
= 0.8

D3 Val
3
a1
= 1.2 Val

3
a2
= 0.8 Val

3
a3
= 1 Val

3
a4
= 1.4 Val

3
a5
= 1.2

D4 Val
4
a1
= 1.2 Val

4
a2
= 1 Val

4
a3
= 0.6 Val

4
a4
= 1.4 Val

4
a5
= 1.2

Global Vala1 = 1.25 Vala2 = 0.85 Vala3 = 0.95 Vala4 = 1.15 Vala5 = 1.05
metrics SDa1 = 0.087 SDa2 = 0.087 SDa3 = 0.296 SDa4 = 0.260 SDa5 = 0.166

Thus, according to Equation (3), the values in the information system for attribute a1
are assigned as follows

a1(Di) =

⎧⎪⎪⎨⎪⎪⎩
1 if 1.337 < Val

i
a1

0 if 1.163 ≤ Val
i
a1
≤ 1.337

−1 if Val
i
a1
< 1.163

(6)
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which means that a1(D1) = 0, a1(D2) = 1, a1(D3) = 0, a1(D4) = 0, a1(D5) = 0. For other
attributes, the values in the information system are determined similarly. The obtained
information system is shown in Table 4.

Table 4. Information system.

U a1 a2 a3 a4 a5

D1 0 0 0 0 0
D2 1 0 1 −1 −1
D3 0 0 0 0 0
D4 0 1 −1 0 0

In the next step, the values of conflict function for the local tables are determined
according to Equation (5). For example, for the pair (D1, D2) of local tables, the value is
calculated as follows

ρ(D1, D2) =
card{a ∈ A : a(D1) �= a(D2)}

card{A} =
4
5

. (7)

The values of the conflict function for the above information system are presented
in Table 5.

Table 5. Function values.

D1 D2 D3 D4

D1
D2 0.8
D3 0 0.8
D4 0.4 1.0 0.4

Figure 2 shows a graphical representation of the conflict situation. When agents (local
tables) are allied (ρ(Di, Dj) < 0.5), the circles representing the agents are linked. In order
to find coalitions, all cliques should be identified in the graph. In this example, there are
two coalitions: {D1, D3, D4} and {D2}.

Figure 2. A graphical representation of the conflict situation example.

An aggregated decision table is generated for each coalition. The aggregated tables
are presented in Table 6.

Now, a decision tree is built for each aggregated table. This is done using the function
implemented in the Scikit-learn library tree.DecisionTreeClassifier(criterion = ”gini”). The
built decision trees are presented in Figure 3. Test objects are classified based on these
models using the simple voting method.
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Table 6. Aggregated local tables.

U1
aggr a1 a2 a3 a4 a5 d

xaggr
1 1 0 2 0 0 d2

xaggr
2 2 1 0 1 0 d2

xaggr
3 0 0 1 2 2 d1

xaggr
4 2 1 1 1 1 d1

xaggr
5 1 2 0 1 2 d2

xaggr
6 1 1 0 2 2 d1

xaggr
7 1 1 2 0 1 d1

xaggr
8 2 0 1 2 1 d2

xaggr
9 0 2 0 2 0 d2

xaggr
10 2 0 2 1 2 d2

xaggr
11 1 0 0 2 2 d1

xaggr
12 2 1 0 1 0 d2

xaggr
13 0 2 1 2 2 d2

xaggr
14 2 0 2 1 1 d1

xaggr
15 1 2 0 1 1 d2

U2
aggr a1 a2 a3 a4 a5 d

xaggr
1 0 2 1 0 0 d2

xaggr
2 2 1 2 1 2 d1

xaggr
3 2 0 0 2 1 d2

xaggr
4 1 1 2 0 0 d2

xaggr
5 2 0 2 1 1 d1

Figure 3. Decision trees created for aggregated decision tables. (a) The aggregated table D1
aggr

(b) The aggregated table D2
aggr.
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Since local table D2 is left in a coalition containing only one element, the second
aggregated table is the same as the local table D2, therefore, the trees generated based
on them are also the same. So we should mainly focus on the tree generated based
on the first aggregated table and the three trees generated from local tables D1, D3 and
D4. As we can see, they are quite different. For example, in the tree generated based
on the aggregated table there is a condition a2 ≤ 1.5 the root, which does not correspond
to the conditions occurring in the trees in Figure 4a,c,d. In addition, in the aggregated tree,
there is the attribute a5 in two internal nodes and the attribute a4 in one internal node. These
attributes are not included at all in the trees generated from local tables D1, D3 and D4.

Since tables are combined into coalitions in terms of similarity of conditional attributes’
values, trees generated based on aggregated tables should not be very altered compared
to trees generated from local tables. In general, trees generated from a larger number
of training objects are expected to be more accurate and have better classification quality.

For comparison, let us also consider the baseline model, in which coalitions are not
generated. In this case, the decision trees are generated directly based on local tables.
Thus, we obtain four decision trees generated from the tables given in Table 2, which are
presented in Figure 4.

Figure 4. Decision trees created for local decision tables, (a) for the local table D1, (b) for the local
table D2, (c) for the local table D3, (d) for the local table D4.

3. Results

The experiments were carried out using the data available from the UC Irvine Machine
Learning Repository [38]. A total of three data sets were selected for the analysis—the Vehi-
cle Silhouettes, the Landsat Satellite and the Soybean (Large) data sets. Regarding the Land-
sat Satellite and Soybean data sets, the training and test sets are located in the repository.
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The Vehicle data set was randomly split into two disjoint subsets, the training set (70%
of objects) and the test set (30% of objects). Data characteristics are given in Table 7.

Table 7. Data set characteristics.

Data Set
# The Training

Set
# The Test

Set
# Conditional

Attributes
# Decision

Classes

Vehicle Silhouettes 592 254 18 4
Landsat Satellite 4435 2000 36 7

Soybean 307 376 35 19

The training sets of the above data sets were dispersed. A total of 5 different dispersed
versions with 3, 5, 7, 9 and 11 local tables were prepared to check for different degrees
of dispersion for each data set. This was done using a stratified mode. Each local table
contained the full set of attributes, and a subset of the set of objects.

The quality of classification was evaluated based on the test set. The following
measures were used:

• the classification accuracy

acc =
1

card{Utest} ∑
x∈Utest

I(d(x) ∈ d̂(x)),

where I(d(x) ∈ d̂(x)) = 1, when d(xi) ∈ d̂(x) and I(d(x) ∈ d̂(x)) = 0, when
d(x) /∈ d̂(x); d̂(x) is a set of global decisions generated by the system for the test object
x from the test set Utest

• the classification ambiguity accuracy

accONE =
1

card{Utest} ∑
x∈Utest

I(d(x) = d̂(x)),

where I(d(x) = d̂(x)) = 1, when {d(x)} = d̂(x) and I(d(x) = d̂(x)) = 0, when
{d(x)} �= d̂(x)

• the average size of the global decision sets

d =
1

card{Utest} ∑
x∈Utest

card{d̂(x)}.

The classification accuracy refers to the ratio of correctly classified objects from the test
set to their total number in this set. When the correct decision class of an object is contained
within the generated decision set, the object is considered to be correctly classified. The classifi-
cation ambiguity accuracy also describes the ratio of correctly classified objects from the test set
to their total number in this set. With the difference being that this time when only one correct
decision class is generated, the object is considered to be correctly classified. The third measure
allows us to assess the frequency and number of draws generated by the classification model.

The experiments were conducted according to the following scheme:

• Generating coalitions of local tables using the Pawlak conflict analysis model. Detailed
information on the coalitions that were generated is shown in Table 8. In cases where
no coalitions were generated for a set of local tables then the dispersed set was not
considered for further analysis. The reason for this is that the data in the tables are so
different that they should not be combined and the proposed model does not bring
any changes compared to the baseline approach.

• Defining aggregated tables for coalitions and generating decision tree models based
on them. The classifier is a set of decision trees generated based on the aggregated
tables for coalitions. Evaluating the proposed model using a test set.
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• Analysis of the baseline approach. Generating decision trees based on the local tables
(without any conflict analysis or coalitions). The final decision is made by simple
voting. Evaluating the baseline approach using a test set.

As mentioned above, Table 8 shows the coalitions generated during construction
of the proposed model. As can be seen, in two cases no coalitions were generated—for
the Satellite and Soybean data sets with three local tables. In most cases, coalitions were
created and, as can be seen, they are not disjoint sets. This means that some local tables were
involved in the creation of several aggregated tables. The reason for this is that a given local
table is partially similar to different sets of local tables and provides additional knowledge
to the construction of trees representing different concepts.

Table 8. Coalitions generated using the Pawlak conflict analysis model for dispersed data. LT
denotes local table.

Data Set
No.

of Local
Tables

Coalitions

Vehicle 3 {LT1, LT3}, {LT2}
5 {LT2, LT3, LT4}, {LT4, LT5}, {LT1}
7 {LT1, LT3, LT5, LT6, LT7}, {LT2}, {LT4}
9 {LT1, LT3, LT4, LT9}, {LT3, LT4, LT5, LT6}, {LT3, LT4, LT5, LT9},

{LT2, LT3, LT4, LT9}, {LT7, LT8}
11 {LT2, LT4, LT5, LT8}, {LT2, LT5, LT7, LT8},

{LT2, LT5, LT6, LT8}, {LT1, LT9}, {LT8, LT9}, {LT3, LT10}, {LT11}

Satellite 3 NO COALITIONS
5 {LT1, LT4}, {LT2}, {LT3}, {LT5}
7 {LT1, LT4, LT6, LT7}, {LT3, LT6}, {LT2}, {LT5}
9 {LT1, LT4, LT5, LT6, LT9}, {LT3, LT4, LT5}, {LT2}, {LT7}, {LT8}

11 {LT1, LT2, LT7, LT10}, {LT1, LT2, LT7, LT11}, {LT2, LT6, LT7, LT10},
{LT2, LT3, LT7, LT9}, {LT2, LT4, LT7},
{LT5, LT9}, {LT5, LT11}, {LT8}

Soybean 3 NO COALITIONS
5 {LT2, LT4}, {LT1}, {LT5}, {LT3}
7 {LT2, LT3, LT5}, {LT1, LT3}, {LT5, LT7}, {LT2, LT4}, {LT6}
9 {LT1, LT2, LT4}, {LT1, LT2, LT5}, {LT1, LT5, LT6}, {LT1, LT3, LT5},

{LT1, LT9}, {LT8, LT9}, {LT7}
11 {LT1, LT4, LT6, LT7, LT8, LT9}, {LT1, LT4, LT6, LT7, LT9, LT10},

{LT1, LT4, LT7, LT8, LT9, LT11}, {LT1, LT4, LT7, LT9, LT10, LT11},
{LT4, LT5, LT6, LT7, LT9, LT10}, {LT2}, {LT3}

Table 9 presents the classification accuracy acc values, the classification ambiguity
accuracy accONE values and the average number of generated decisions set d̄ obtained
for all dispersed data sets. The table shows the results obtained for both the proposed
approach and the baseline approach. For each data set, the better result is indicated in bold.
As can be seen, in the vast majority of cases better results are generated by the proposed
model with creation of coalitions and recognition of similarity of data stored in local tables.

To better visualize the differences in the results generated by the models, Figure 5
was prepared with the classification accuracy marked for each data set. As can be seen,
the most significant improvement in classification quality using the proposed approach was
observed for the Soybean data set. Here, the improvement is around 0.1. For the Vehicle
Silhouettes data set, the improvement in most cases is around 0.03 (even greater in certain
scenarios). Furthermore, for the Landsat Satellite data set, the improvement in results was
also noticed, but smaller at around 0.015. However, for all data sets, there is a noticeable
and seemingly significant improvement obtained using the proposed approach compared
to the baseline approach.
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Table 9. Results of classification accuracy acc, classification ambiguity accuracy accONE and the aver-
age number of generated decisions set d̄ for all dispersed data sets.

Data Set No. of Local Tables
Baseline Approach

acc/accONE/d̄
Proposed Approach

acc/accONE/d̄

Vehicle 3 0.803/0.673/1.268 0.831/0.496/1.409
5 0.756/0.677/1.094 0.791/0.709/1.173
7 0.752/0.681/1.114 0.780/0.669/1.228
9 0.760/0.693/1.098 0.740/0.685/1.075

11 0.740/0.673/1.087 0.776/0.728/1.051
Satellite 5 0.875/0.839/1.053 0.893/0.820/1.099

7 0.870/0.841/1.040 0.888/0.822/1.093
9 0.874/0.847/1.035 0.873/0.841/1.045
11 0.877/0.850/1.034 0.892/0.857/1.042

Soybean 5 0.858/0.784/1.142 0.868/0.791/1.132
7 0.807/0.716/1.135 0.899/0.834/1.074
9 0.794/0.703/1.152 0.905/0.875/1.037
11 0.787/0.723/1.108 0.878/0.855/1.064

Average 0.812/0.746/1.105 0.847/0.768/1.117

Figure 5. Comparison of classification accuracy (acc) of the baseline approach versus the proposed
approach: (a) the Vehicle data set (b) the Landsat Satellite data set (c) the Soybean data set.

In order to investigate the significance in differences of accuracy rate obtained for the pro-
posed model and the baseline approach, the results from Table 9 were used. Two dependent
samples were created—one containing the results for the proposed model and one containing
the results for the baseline approach. Each sample had a cardinality equal to 13 observations—
results obtained for different data sets and number of local tables. The Wilcoxon test con-
firmed that differences in the accuracy rate between these two groups are significant, with
p = 0.005.

Additionally, a comparative box-plot chart for the accuracy rate values was created
(Figure 6). We can observe an increase in accuracy rate when the proposed model is used.
Both the box alignment and the median itself are significantly higher when the proposed
model is employed.
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Figure 6. Box-plot chart with (median, the first quartile—Q1, the third quartile—Q3) the value
of accuracy rate acc for the proposed model and the baseline approach.

Furthermore, we also analyzed the time needed to generate decision trees in both
approaches. In the baseline method, the time needed to generate trees directly from local
tables was investigated, and in the proposed approach the time required to generate trees
from aggregated tables was considered. Table 10 shows the execution times of the decision
tree generation algorithms in the baseline approach and with coalitions.

Table 10. Execution times of the decision tree generation algorithms in the base approach and
with coalitions.

Data Set
No. of Local

Tables

Baseline
Approach Time

[s]

Proposed
Approach Time

[s]
Ratio Baseline

Proposed

Vehicle 3 41.258 3.423 12.05
5 46.694 4.332 10.78
7 52.810 4.294 12.30
9 61.634 6.704 9.19

11 68.064 7.760 8.77
Satellite 5 3044.087 139.973 21.75

7 3228.569 160.59 20.10
9 3497.267 175.614 19.91

11 3658.961 288.654 12.68
Soybean 5 58.542 4.538 12.90

7 63.733 5.610 11.36
9 72.051 7.714 9.34

11 82.072 8.560 9.59

The differences in execution times are notably significant. The proposed model has
significantly lower time complexity. This is due to the fact that with the proposed approach—
coalitions creation—a smaller number of trees is created than when decision trees are gener-
ated based on each local table separately. This results in the significantly reduced execution
time of making a final decision based on dispersed data.

Figure 7 illustrates the ratio of execution times of the baseline approach to the proposed
approach. As can be seen for the Satellite data set, in some cases, the proposed approach
exhibits an execution time more than 20-fold faster than the baseline approach. In general,
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it can be seen that for the largest data set (Satellite) the execution acceleration is the
most significant.

In addition, for a smaller degree of dispersion—smaller number of local tables—
the reduction in execution time using the proposed approach is greater than for data with a
larger degree of dispersion—greater number of local tables. This is due to the fact that for a
larger degree of dispersion, there is also a greater number of coalitions generated using the
Pawlak analysis model (as can be seen in Table 8).

Figure 7. Ratio of execution times of the algorithms implementing the baseline approach and
the approach with coalitions.

All experiments were performed on a portable computer with the following techni-
cal specifications:

• AMD Ryzen 54,600 h CPU,
• 32 GB RAM Memory,
• Microsoft Windows 11 Operating System.

The code used for the analyzed approaches has been implemented in Python and
all data-related calculations have been saved in a text document. Decision trees were built
using the function implemented in the Scikit-learn library tree.DecisionTreeClassifier(criterion
= “gini”). In all cases, the Gini index was used. The postpruning and prepruning methods
were intentionally not applied, since the main goal of this study focused on analyzing how
building coalitions of tables using the Pawlak conflict analysis model affects classification
quality and model running time. Combining local tables into aggregated tables was shown
to significantly improve classification quality. In addition, it also reduces the number
of generated trees and thus reduces the time complexity of the method.

4. Discussion

The paper proposes a new method for classification based on dispersed data.
This method is used when the same set of conditional attributes occurs in all local tables.
It should be noted that the conditional attributes can be of different types—both qualitative
and quantitative. Sets of objects in local tables can be diversified. Indeed, we do not con-
sider the possibility of examining whether identical objects occur in different local tables.
The main idea behind this method is the aggregation of tables that store similar values
on conditional attributes. In order to determine which tables should be aggregated, a new
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method for generating characteristics of values stored in tables and a new method for using
the Pawlak conflict analysis model are proposed. Next, a method for defining aggregated
tables and a method for final decision-making are defined. It was shown that the proposed
method brings a significant improvement in the quality of classification obtained based
on dispersed data compared to the approach when aggregation of tables and formation
of coalitions are not considered.

The main advantages of the proposed approach are:

• The proposed method guarantees higher quality of classification in comparison with
cases where conflict analysis and creation of coalitions are not used.

• The proposed method has less time complexity than methods where coalitions are
not considered.

• Combining several similar tables—aggregation of tables into one—increases readabil-
ity of the model. One decision tree generated based on an aggregated table provides
better readability and possibility to interpret the described concepts than several trees
generated independently from local tables.

The main limitations of the proposed approach are:

• The proposed model in the current stage of development is dedicated only to a set
of local tables with the same sets of conditional attributes.

• Although with the proposed model, the readability of the system is increased by
aggregating local tables, we still have not achieved full interpretability of the results.
The final classifier consists of a set of decision trees.

• In the proposed approach, it is necessary to exchange data and make them available.
The proposed model will not be suitable for dispersed data in which data protection
and privacy is a priority.

There are practically no parameters in the proposed model, since the Pawlak model
has no parameters, and the decision trees were built without prepruning or postpruning
(this will be implemented in the next stage of the future work). The only parameter we can
consider is the degree of data dispersion. The decision tables were dispersed to varying
degrees into 3, 5, 7, 9 and 11 decision tables. The dispersion was performed in relation
to the objects in stratified mode and ensuring the number of objects in the local tables
remains equal. Figure 8 shows the function of classification accuracy values in relation
to the number of local tables.

Figure 8. Classification of accuracy values in relation to the number of local tables: (a) for the baseline
approach (b) for the approach with coalitions.

In the case of the baseline method for both the Soybean and the Vehicle data sets,
an increase in the degree of data dispersion results in a deterioration of classification ac-
curacy. For the Landsat Satellite data set, this relation is not observed. For the proposed
approach, only for the Vehicle set can it be stated that an increase in the degree of disper-
sion affects the deterioration of classification accuracy. For the Soybean data set, the pro-
posed method eliminates the negative effect of high dispersion on classification accuracy.
Thus, it can be concluded that the use of the proposed approach allows improvement in
the quality of classification, especially in the case of high dispersion where many local tables
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occur. In other words, the proposed model generally improves the quality of classification,
but is particularly useful for data dispersed over a large number of local tables.

5. Conclusions

A new classification approach based on dispersed data was proposed in this paper.
The main innovation lies in the proposal of a method that combines local decision tables into
an aggregated table. For this purpose, a method based on the Pawlak conflict analysis model
was proposed. The new approach was shown to improve both the quality of classification
and the running time.

In future work, we plan to:

• use other classification models different from decision tree to build classifiers based
on aggregated tables,

• conduct research on the impact of tree optimization—prepruning and postpruning—
on the classification quality of the model,

• extend the proposed model to cases where only parts of the conditional attributes are
shared between local tables.
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41-200 Sosnowiec, Poland
* Correspondence: beata.zielosko@us.edu.pl
† These authors contributed equally to this work.

Abstract: In this article, we present a modification of the algorithm based on EAV (entity–attribute–
value) model, for induction of decision rules, utilizing novel approach for attribute ranking. The
selection of attributes used as premises of decision rules, is an important stage of the process
of rules induction. In the presented approach, this task is realized using ranking of attributes
based on standard deviation of attributes’ values per decision classes, which is considered as a
distinguishability level. The presented approach allows to work not only with numerical values of
attributes but also with categorical ones. For this purpose, an additional step of data transformation
into a matrix format has been proposed. It allows to transform data table into a binary one with
proper equivalents of categorical values of attributes and ensures independence of the influence of
the attribute selection function from the data type of variables. The motivation for the proposed
method is the development of an algorithm which allows to construct rules close to optimal ones in
terms of length, while maintaining enough good classification quality. The experiments presented
in the paper have been performed on data sets from UCI ML Repository, comparing results of the
proposed approach with three selected greedy heuristics for induction of decision rules, taking into
consideration classification accuracy and length and support of constructed rules. The obtained
results show that for the most part of datasests, the average length of rules obtained for 80% of best
attributes from the ranking is very close to values obtained for the whole set of attributes. In case
of classification accuracy, for 50% of considered datasets, results obtained for 80% of best attributes
from the ranking are higher or the same as results obtained for the whole set of attributes.

Keywords: decision rules; length; support; greedy heuristics; feature selection; rough sets

1. Introduction

Decision rules are one of popular and well-known form of data representation. They
are also often used in the classifier building process. Generally, it can be said that the process
of induction of decision rules may have two perspectives [1]: knowledge representation
and classification.

One of the main purposes of knowledge representation is to discover patterns or
anomalies hidden in the data. The patterns are presented in the form of decision rules
that map dependencies between the values of conditional attributes and the label of the
decision class. Taking into account this perspective of rule induction, there exists variety
of rules’ quality measures that are related to human perception. These are, among others
number of induced rules, their length and support [2,3].

The purpose of rule-based classifier is to assign a decision class label to a new object
based on the attributes values’ describing that object. One of the popular measure of
rule quality from this perspective belonging to the domain of supervised learning, is the
classification error. It is a percentage of the number of incorrectly classified examples.

There are different approaches for construction of decision rules. It is known that the
form of obtained rules, for example, their number, length, depend on the algorithm used
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for their induction. Moreover, the set of rules which consist of a classifier ensuring a low
classification error, is not always easy to understand and interpret from the point of view
of knowledge representation. On the other hand, a small number of induced rules that
are short and only reflect general patterns from the data, will not always ensure a good
classification quality. These discrepancies mean that different rule induction approaches
may be proposed, depending on the purpose of their application and mentioned two
perspectives of rule induction, i.e., classification and knowledge representation, which do
not coincide often.

In the paper, an approach that allows induction of decision rules, taking into account
both the knowledge representation and classification perspective is presented. The pro-
posed algorithm is based on the idea of an extension of the dynamic programming approach
for optimization of decision rules relative to length and partitioning table into subtables.

Unfortunately, for large data sets, i.e., with a large number of attributes with many
different values, the time for obtaining an optimal solution may be relatively long, which
motivated authors to develop the presented method. Moreover, the problem of mini-
mization of length of decision rules is NP-hard [4,5] and the most part of approaches for
decision rules construction, with the exception of brute force, Boolean reasoning, extension
of dynamic programming, Apriori algorithm, cannot guarantee the construction of optimal
rules, i.e., rules with minimum length. Exact algorithms for construction of decision rules
with minimum length have very often exponential computational complexity. Thus, for
large datasets the rule generation time can be significant. However, often results close
to optimal ones are enough for given application. Taking into account above facts, some
heuristic which allows to obtain rules close to optimal from the point of view of length and
with relatively good accuracy of classification was presented. The proposed algorithm is
an extension and modification of the approach presented in [6]. To ensure the possibility
of working with categorical values of attributes, and the independence of the attribute
selection function from the data type, the data preparation stage was introduced. It consist
of transforming data set into a matrix form and allows to work with binary data table
where each attribute value has the same weight and numerical values are assigned au-
tomatically. This step is important from the point of view of attribute selection process
performed during rule construction phase. An other element of the proposed approach is
transformation data table into EAV (attribute–entity–value) form which is convenient for
processing large amounts of data.

The methods and approaches for choosing of the attributes that consist of rules’
premises can be wrapped in the rule induction algorithms or can be performed immediately
preceding the rule induction step. An example of the latter approach is rule construction
based on reducts [7]. However, in both cases different measures, such as based on similarity,
entropy, dependency, distance or statistical characteristics are employed and used for
attributes evaluation. It is also possible that based on selected set of features their ranking
is constructed. It allows to indicate importance of variables. In the paper, the method
for selection of attributes directly precedes the rule induction step. It takes into account
an influence of features’ values into class labels and it is based on standard deviation of
attributes values per decision classes. Obtained values of standard deviation function are
used for creation of ranking of variables and user decides what percentage of attributes
with highest position in the ranking is taken into account during rule construction phase.

Decision rules induced by presented algorithm were compared with three selected
heuristics. The choice of these heuristics follows from the fact that they allow to obtain
rules close to optimal ones in terms of length and support. In [8] the experimental results
showed that the average relative difference between length of rules constructed by the best
heuristic and minimum length of rules is at most 4%, similar situation was observed in case
of support.

The paper consists of five sections. Section 2 is devoted to approaches and methods
for attribute selection during process of induction of decision rules. The main stages of the
proposed algorithm are presented in Section 3. Section 4 contains short description of three
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selected heuristics for induction of decision rules. Experimental results concerning analysis
of obtained sets of rules from the point of view of knowledge representation and classifica-
tion, and comparison with selected heuristics are included in Section 5. Conclusions and
future plans are given in Section 6.

2. Selection of Attributes for Rule Construction

The attribute selection process, in general, leads to the selection of a certain subset of
originally available features in order to accomplish a specific task, which is, e.g., creation a
model for classification purposes [9]. It also allows for removal redundant or irrelevant
variables from a set of all attributes. The feature selection stage is not only an important
element of data preprocessing, it plays a key role during induction of decision rules. The
obtained results impact on the knowledge representation perspective. A smaller set of
attributes is easier to check, understand and visualize, it has lower storage requirements
and from the classification point of view it allows to avoid overfitting [10]. Selection of
features can lead to the creation of their ranking. This approach is called feature ranking
and allows to estimate relevance of attributes based on some adopted threshold. As a result,
the most important variables have assigned the highest positions in the ranking, and the
least relevant—the lowest positions.

There are many algorithms for selecting features. The most popular is a division of
methods into filters, wrappers, and embedded [11]. Filter methods can be considered as
data preprocessing tasks that are independent on the classification systems. Therefore, their
advantage is speed and main drawback is what makes them fast and easily applicable in
almost all kinds of problems, i.e., neglecting the real-time influence on the classification
system. Wrapper methods, as opposed to filters, can be treated as feedback-based systems
by examining the influence of the choice of subsets of features on the classification result.
The last group, embedded methods contain a feature subset evaluation mechanism built
directly into the learning algorithm. As a result, they can provide good quality solutions
for specific applications where knowledge about characteristics of learning algorithm
is necessary.

A decision rule can be viewed as a hypothesis that maps to a pattern in the data or
a function that predicts a decision class label for a given object. From this perspective,
selection of attributes is one of element of decision rule construction process. It is often
performed during the rule induction algorithm work and it is an iterative step in which
the attributes are selected sequentially if adopted criterion is met. It is also possible to
construct rules using filter approach, e.g., based on reducts. In both cases, the chosen
attribute together with the corresponding value form a rule descriptor (attribute = value
pair) which constitutes a rule premise part. The attributes contained in rules determine
their quality, therefore the process of variable selection and the adopted criterion plays an
important role.

In the framework of rough sets theory there are many algorithms for induction of
decision rules [12]. During process of rules construction different evaluation measures are
used and they are based on discernibility relation, upper and lower approximations, depen-
dency degree concept, discernibility function and prime implicants and many others [13,14].
Reduct is a popular notion in the rough sets theory [15] and is interpreted as such minimal
subset of attributes that is sufficient to discern any pairs of objects with different class labels.
Based on the attributes which constitutes reduct, decision rules are constructed, so they are
induced from the reduced set of attributes [16,17]. The popular measures for selection of
attributes during reduct construction are based on, for example, discernibility matrix [18],
positive region-based dependency [19], neighbourhood information granules [20], entropy
and many others [21].

Another group of methods related to algorithms for induction of decision rules is
based on sequential covering approach [22,23], e.g., family of AQ algorithms, CN2, Ripper.
In this framework, candidates for the elementary conditions of a rule are evaluated taking
into account, for example, maximization of the number of positive examples covered by
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the conjunction of elementary conditions in premise part of a rule, maximization of the
ratio of covered positive examples to the total number of covered examples, minimization
of a rule length and others [24,25].

It should be also noted that there are many heuristics algorithms which uses different
criteria based on entropy, Gini index, information gain, statististical characteristics and
different their modifications [26–32].

In the proposed approach, selection of attributes is based on standard deviation of
attributes values in the framework of decision classes, described in Section 3.

3. Decision Rules Construction Approach

In this section, an algorithm for decision rules induction is presented. This algorithm
can be considered as an extension and improvement of the algorithm based on EAV model
presented in [6]. One of the important element of the considered approach is selection of
attributes based on standard deviation of their values in the framework of decision classes.
In order to calculate standard deviation of attributes values, categorical ones should be
transformed to numerical. The modification proposed in this paper provides independence
of the attribute selection function from the data type of variables and automatic assignment
of numerical equivalents to categorical values, so each attribute has the same weight. This
stage of the algorithm is considered as data preparation step which concerns transformation
data table into matrix form [33]. Then, based on numerical form of data, EAV table [34]
is created which allows to use the relational database engine to determine the standard
deviation of attributes within decision classes. This step of proposed approach is presented
as data transformation block on Figure 1. Employing selection of attributes based on
standard deviation approach results ranking of features that indicates order and importance
of attributes which are considered during process of rule construction. This stage of the
approach is presented as attribute selection block on Figure 1. The third phase is indicated
on Figure 1 as construction of decision rules block. The general idea of the proposed
approach, expressed in the form of an activity diagram, is presented on the Figure 1 and
described in detail in the following sections.

Figure 1. General idea of the approach for decision rules construction.
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3.1. Data Transformation and Attribute Selection

Popular form of data representation is tabular form defined as a decision table T [15],
T = (U, A∪ {d}), where U is a nonempty, finite set of objects (rows), A = {attr1, . . . , attrn}
is nonempty, finite set of condition attributes, attr : U → Vattr is a function, for any attr ∈ A,
Vattr is the set of values of an attribute attr. d /∈ A is a distinguished attribute called a
decision attribute with values Vd = {d1, . . . , d|Vd |}.

Data transformation stage consists of data transformation into matrix form and con-
struction of EAV table. The first one is applied in order to facilitate statistical analysis if
the attributes’ values are categorical. Such way of data preparation is known from CART
(ang. classification and regression trees) approach [35] and also used for induction of binary
association rules [36]. It is a tabular form where each attribute and its value from T is
represented as a single table column. Matrix data format incorporates two attribute values
only: 0 or 1. 1 represents the situation where a given attribute with its value occurs for the
given object, 0 represents the situation where a given attribute with its value does not occur
for the given row of T. Algorithm 1 presents conversion of symbolic values of attributes
from data table T into matrix form MX(T).

Algorithm 1 Algorithm for conversion of symbolic values of attributes into numerical
equivalents.

Input: decision table T with condition attributes attr1, . . . , attrn, row r = (vattr1 , . . . , vattrn)

Output: MX(T)-matrix data form of T

AV ← ∅; //AV is a set of unique pairs (attr, vattr) from T

for each r of T do

add descriptor (attr, vattr) to AV;

end for

for each descriptor (attr, vattr) from AV do

add column to MX(T), named avi, filled with 0’s;

end for

for each r of T do

set value to 1 for column named avi where a = attr and vi = vattr;

end for

An example of data table transformed into the matrix form is presented in Figure 2.

Figure 2. Data table T transformed to matrix form.

Based on data presented in the matrix form, average values of each column of MX(T)
are obtained and used for replacement of symbolic values of attributes by their numerical
equivalents in the table T.

The next stage of data transformation concerns conversion of a decision table with
numerical equivalents into EAV form. It is a tabular form where each row contains an
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attribute, its corresponding value, class label and the ordinal number of object to which the
given attribute is assigned. The main advantage of this approach is the possibility of using
a relational database engine to analyze large data sets, as it was shown in case of induction
of association and decision rules [37,38].

Then, calculation of standard deviation of attributes values per decision class is
performed and ranking of attributes is obtained (see Figure 3).

Figure 3. EAV table and ranking of attributes for data presented in Figure 2.

The standard deviation of average values of attributes per decision classes has been
chosen as a distinguishability level, following the intuitive idea that there is a correlation
between average attribute value in a given class and the class itself. The relation is directly
proportional, meaning that the highest the average standard deviation of the attribute, the
biggest impact on the decision class. This intuitive approach follows the ideas of Bayesian
analysis of data using Rough Bayesian model, which has been introduced in [39]. There
was shown a correspondence between the main concepts of rough set theory and statistics
where a hypothesis (target concept X1) can be verified positively, negatively (in favour of
the null hypothesis, which is a complement concept X0) or undecided, under the given
evidence E. The Rough Bayesian model is based on the idea of inverse probability analysis
and Bayes factor B1

0, defined as follows [39]:

B1
0 =

Pr(E|X1)

Pr(E|X0)
.

Posterior probabilities can correspond to the accuracy factor in the machine learning
domain [40]. Comparison of prior and posterior knowledge allows seeing if new evidence
(satisfaction of attributes’ values of objects) decreases or increases the belief in a given
event, i.e., membership to a given decision class.

Let us assume that Xk are events, then Pr(Xk) is the prior probability, ∑
|Vd |−1
l=0 Pr(Xl) =

1. It is possible that Xk will occur, but there is no certainty for that. Pr(Xk|E) is the
posterior probability meaning Xk can occur when the evidence associated with E appears,

∑
|Vd |−1
l=0 Pr(Xl |E) = 1. E can be considered in the framework of indiscernibility relation

E ∈ U/B, B ∈ A, which provides a partition of objects U from decision table T into
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groups having the same values of B. The above-mentioned probabilities can be estimated
as follows:

Pr(Xk) =
|Xk|
|U| , Pr(Xk|E) =

|Xk ∩ E|
|E| .

Obviously, the bigger value of Pr(Xk|E) is, the higher correlation between Xk and E exists.
Then, using the probability density function, it is possible to visualize the influence of the
posterior probability on the density range of E. This range can be approximated using the
standard deviation of the attribute values within a given decision class. Such an approach
was used in the feature selection process [41] and induction of decision rules [6,34,37].

3.2. Construction of Decision Rules

Based on the created ranking of attributes, it is possible to proceed to rules generation
stage. In the proposed approach, user can indicate a specified number of best attributes
which will be taken into consideration during the process of rules induction. On this basis,
descriptors from set AV, which is a set of unique pairs (attr, vattr) from T, are selected.
Starting with the highest ranked attribute, a separable subtable is created. It is a subtable
of the table T that contains only rows that have values vattr1 , . . . , vattrm at the intersection
with columns attri1 , . . . , attrim and is denoted by T′ = T(attri1 , vattr1) . . . (attrim , vattrm). The
process of the partitioning of the table T into separable subtables is stopped when the consid-
ered subtable is degenerate, i.e., the same decision values are assigned to all rows or when
all descriptors from AV based on the selected attributes were used. Pairs (attr = vattr) that
form separable subtables T′ at the bottom level corresponds to descriptors included in the
premise part of decision rules. mcd(T′) denotes the most common decision for rows of T′.
Algorithm 2 presents the algorithm for decision rules construction.

Algorithm 2 Algorithm for induction of decision rules.

Input: decision table T with numerical values of attributes, number p of best attributes to

be taken into consideration

Output: set of unique rules R

j ← ∅;

Q ← ∅;

convert T into EAV table;

∀attr∈A calculate STDattr grouped by Vd and create a ranking;

select p attributes from the ranking and select descriptors from AV containing selected

attributes;

while all selected descriptors are not processed do

create separable subtable Tj(attr, vattr);

Q ← Q ∪ {attr = vattr};

if Tj(attr, vattr) is degenerate OR j = p then

R ← R∪ ∀attr=vattr∈Q(attri = vattri ) → mcd(Tj), where mcd(Tj) is the most common

decision for Tj;

else

j = j + 1;

end if

end while
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The time and space complexity of the Algorithm 2 has been discussed in details in
the previous authors’ publication [6]. The mean computational complexity is linear and
only decision table specificity can lead to square complexity in the worst case scenario.
Algorithm 1 is part of the whole approach for decision rule construction with minor
influence on the whole complexity itself.

4. Selected Greedy Heuristics

Greedy algorithms are often used to solve optimization problems. This approach, in
order to determine the solution at each step, makes a greedy, i.e. the most promising partial
solution at a given moment.

In the paper, three greedy heuristics are presented. They are called M, RM and log
and used for rule induction. Detailed description of these heuristics can be found in [8].
The research has shown that on average the results of the greedy algorithms, in terms of
length and support of induced rules, are close to optimal ones obtained by extensions of
dynamic programming approach.

In general, the pseudocode of greedy heuristics is presented by Algorithm 3. Each
heuristic (M, RM or log) constructs a decision rule for the table T and a given row r with
assigned decision dk, k ∈ {1, . . . , |Vd|}. It is applied sequentially, for each row r of T and in
each iteration selects an attribute attri ∈ {attr1, . . . , attrn} with a minimum index, fulfilling
the given criterion.

Algorithm 3 Heuristic (M, RM or log) for induction of decision rules.

Input: Decision table T with condition attributes and row r

Output: Decision rule rul for T and given row r

Q ← ∅;

T0(attr, vattr) ← T;

while Tj(attr, vattr) is not degenerate do

select attribute attri as follows:

• heuristic M selects attri which minimizes the value M(attri, r, dk);

• heuristic RM selects attri which minimizes the value RM(attri, r, dk);

• heuristic log selects attri which maximizes the value β(attri ,r,dk)
log2(α(attri ,r,dk)+2) ;

Q ← Q ∪ {attr};

T(j+1) ← Tj(attr, vattr);

j = j + 1;

end while

rul ← ∀attr∈Q(attri = vattri ) → dk;

During the heuristics work, the following notation was used: N(T)-number of rows
in the table T, N(T, dk)-number of rows from T with a given decision.

• M(attri, r, dk) = M(Tj, dk) = N(Tj+1)− N(Tj+1, dk),
• RM(attri, r, dk) = (N(Tj+1)− N(Tj+1, dk))/N(Tj+1),
• α(attri, r, dk) = N(Tj, dk)− N(Tj+1, dk) and β(attri, r, dk) = M(Tj, dk)− M(Tj+1, dk).

Figure 4 presents separable subtables created based on the values of attributes assigned
to the second row of data table T.

240



Entropy 2023, 25, 91

Figure 4. Separable subtables T( f1, high), T( f2, good), T( f3, big) of decision table T.

The selected heuristics work as follows:

• M( f1, r2, 2) = 2, M( f2, r2, 2) = 0, M( f3, r2, 2) = 2,
f2 = good → 2;

• RM( f1, r2, 2) = 1
3 , RM( f2, r2, 2) = 0, RM( f3, r2, 2) = 1

2 ,
f2 = good → 2;

• α( f1, r2, 2) = 1, α( f2, r2, 2) = 0, α( f3, r2, 2) = 0,
β( f1, r2, 2) = 2, β( f2, r2, 2) = 4, β( f3, r2, 2) = 0,
f2 = good → 2;

Decision rules constructed by these heuristics for the second row from T are the same.

5. Experimental Results

Experiments have been executed on datasets from UCI Machine Learning Reposi-
tory [42]. Unique valued attributes have been eliminated. Any missing values have been
filled by the most common value for the given attribute. The sets taken into consideration
are the following:

• balance-scale,
• breast-cancer,
• cars,
• flags,
• hayes-roth-data,
• house-votes,
• lymphography,
• tic-tac-toe.

The aim of the experiments is to compare the proposed algorithm with the selected
heuristics. The study was performed from the point of view of knowledge representation
taking into account length and support of constructed rules and from the point of view
of classification accuracy. Length of the rule is defined as number of descriptors in the
premise part of the rule. Support of the rule is the number of rows from T which matching
conditions and the decision of a given rule. Classification accuracy is defined as the number
of properly classified rows from the test part of T, divided by the number of all rows from
the test part of T.

The algorithms have been implemented in Java 17 and Spring Boot framework and
experiments have been executed with Macbook Pro: Intel i7-9750H CPU, 16 GB of RAM
memory, macOS Monterey 12.2.1 operating system.

5.1. Comparison from the Point of Data Representation

From the point of view of data representation, two quality measures have been com-
pared: rule length and rule support. Tables 1–3 present minimal, average and maximal
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length and support of rules obtained by proposed algorithm taking into account 100%, 80%
and 60% of best attributes from the ranking.

Table 1. Values on minimum, average and maximum length and support of rules generated by
proposed algorithm taking into account the whole set of attributes in data table.

Data Set
Number of Length Support

Rows Attributes Min Avg Max Min Avg Max

balance-scale 625 4 3 3.64 4 1 2.44 5
breast-cancer 266 9 1 5.61 9 1 2.61 11

cars 128 6 2 3.90 6 1 79.31 192
flags 194 26 2 8.88 20 1 1.78 6

hayes-roth-data 69 5 1 2.64 4 1 3.81 12
house-votes 279 16 3 6.14 16 1 31.21 81

lymphography 148 18 1 8.40 16 1 2.85 6
tic-tac-toe 958 9 3 5.71 8 1 6.43 38

Table 2. Values on minimum, average and maximum length and support of rules generated by
proposed algorithm taking into account 80% of best attributes from the ranking.

Data Set
Number of Length Support

Rows Attributes Min Avg Max Min Avg Max

balance-scale 625 4 3 3.64 4 1 2.44 5
breast-cancer 266 9 1 5.58 8 1 2.61 11

cars 128 6 2 3.52 5 2 79.88 192
flags 194 26 2 8.88 20 1 1.78 6

hayes-roth-data 69 5 1 2.64 4 1 3.81 12
house-votes 279 16 3 6.09 13 1 31.23 81

lymphography 148 18 1 8.39 15 1 2.85 6
tic-tac-toe 958 9 3 5.71 8 1 6.43 38

Table 3. Values on minimum, average and maximum length and support of rules generated by
proposed algorithm taking into account 60% of best attributes from the ranking.

Data Set
Number of Length Support

Rows Attributes Min Avg Max Min Avg Max

balance-scale 625 4 3 3.00 3 2 3.94 5
breast-cancer 266 9 1 5.28 6 1 3.01 11

cars 128 6 2 3.11 4 6 82.78 192
flags 194 26 2 8.79 16 1 1.78 6

hayes-roth-data 69 5 1 2.51 3 1 3.94 12
house-votes 279 16 3 5.94 10 1 31.46 81

lymphography 148 18 1 8.17 11 1 3.01 6
tic-tac-toe 958 9 3 5.29 6 1 6.73 38

Figure 5 presents, the average length of rules relative to number of attributes, obtained
for 100%, 80% and 60% of best attributes from the ranking, for considered datasets. It is
possible to see that for most of the datasets, with the exceptions of breast-cancer and cars,
the average length of rules obtained for 80% of best attributes from the ranking is very
close to results obtained for the whole set of attributes. In case of average support the best
results, were obtained for datasets cars and house-votes. The function that determines the
choice of attributes during decision rule construction is the standard deviation of attribute
values within decision classes. Thus, the distribution of such values has an impact on the
obtained results.
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Figure 5. The average length of rules relative to number of attributes in given dataset, obtained for
100%, 80% and 60% of best attributes from the ranking.

Tables 4–6 present minimal, average and maximal length and support of rules obtained
by heuristics M, RM and log.

Table 4. Values on minimum, average and maximum length and support of rules generated by means
of M heuristic.

Data Set
Number of Length Support

Rows Attributes Min Avg Max Min Avg Max

balance-scale 625 4 3 3.41 4 1 3.38 5
breast-cancer 266 9 1 2.97 6 1 2.81 24

cars 128 6 1 5.57 6 1 6.69 576
flags 194 26 1 2.04 4 1 2.04 18

hayes-roth-data 69 5 1 2.88 4 1 2.33 12
house-votes 279 16 2 3.17 6 1 22.86 95

lymphography 148 18 1 2.32 4 1 5.34 32
tic-tac-toe 958 9 3 4.12 5 1 7.32 90

Table 5. Values on minimum, average and maximum length and support of rules generated by means
of RM heuristic.

Data Set
Number of Length Support

Rows Attributes Min Avg Max Min Avg Max

balance-scale 625 4 3 3.41 4 1 3.38 5
breast-cancer 266 9 1 3.52 8 1 3.25 24

cars 128 6 1 5.44 6 1 8.14 576
flags 194 26 1 2.23 9 1 2.59 18

hayes-roth-data 69 5 1 2.92 4 1 2.56 12
house-votes 279 16 2 3.29 5 1 32.22 95

lymphography 148 18 1 2.56 5 1 7.70 32
tic-tac-toe 958 9 3 4.32 7 1 13.21 90
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Table 6. Values on minimum, average and maximum length and support of rules generated by means
of log heuristic.

Data Set
Number of Length Support

Rows Attributes Min Avg Max Min Avg Max

balance-scale 625 4 3 3.41 4 1 3.38 5
breast-cancer 266 9 1 3.29 6 1 4.10 25

cars 128 6 1 5.45 6 1 8.11 576
flags 194 26 1 3.26 6 1 5.68 22

hayes-roth-data 69 5 1 2.90 4 1 2.87 12
house-votes 279 16 2 3.56 7 2 40.02 95

lymphography 148 18 1 2.85 5 1 10.83 32
tic-tac-toe 958 9 3 4.20 6 2 13.04 90

The statistical analysis by means of the Wilcoxon two-tailed test has been performed,
to verify the null hypothesis that there are no significant differences in the assessment of
rule from the point of view of length and support, average values of these measures have
been taken into consideration. The results of rule length comparison have been gathered in
the Figure 6.

Figure 6. Wilcoxon test results-comparison of the average rules length.

The results of rule support comparison have been gathered in the Figure 7.

Figure 7. Wilcoxon test results-comparison of the average rules support.

The results show that the values of supports are comparable for all heuristics and
100% of attributes for presented algorithm. For 80% and 60% of selected best attributes, the
supports results are noticeably better for the proposed approach. As for rule lengths, values
are also comparable for all heuristics and 100% of attributes for the presented approach.
Taking into account 80% and 60% of selected best attributes, it is possible to see that the
length vales are noticeable smaller for the presented algorithm.

244



Entropy 2023, 25, 91

5.2. Comparison From The Point Of Data Classification

From the point of view of classification, accuracy has been compared (see Tables 7
and 8). 10-fold cross validation has been performed. Column std in presented tables
denotes standard deviation of obtained results.

Table 7. Average classification accuracies of rules generated by means of the proposed algorithm.

Data Set 100% Std 80% Std 60% Std

balance-scale 0.89 0.05 0.93 0.05 0.73 0.05
breast-cancer 0.92 0.03 0.94 0.03 0.88 0.03

cars 0.95 0.06 0.86 0.04 0.84 0.07
flags 0.93 0.05 0.92 0.05 0.91 0.05

hayes-roth-data 0.92 0.07 0.88 0.07 0.90 0.05
house-votes 0.98 0.03 0.98 0.03 0.97 0.04

lymphography 0.95 0.11 0.94 0.11 0.92 0.04
tic-tac-toe 0.95 0.06 0.95 0.06 0.88 0.06

Table 8. Average classification accuracies of rules generated by means of M, RM and log heuristics.

Data Set M Std RM Std Log Std

balance-scale 0.94 0.06 0.95 0.05 0.95 0.05
breast-cancer 0.94 0.03 0.95 0.03 0.95 0.03

cars 0.97 0.11 0.97 0.11 0.97 0.11
flags 0.97 0.08 0.99 0.08 0.99 0.08

hayes-roth-data 0.94 0.07 0.94 0.07 0.94 0.07
house-votes 0.99 0.11 0.99 0.11 0.99 0.11

lymphography 0.94 0.05 0.98 0.06 0.98 0.06
tic-tac-toe 0.97 0.04 0.98 0.05 0.98 0.05

Figure 8 presents, the average accuracy of classification, obtained for 100%, 80% and
60% of best attributes from the ranking, for considered datasets. For four datasets, i.e.,
balance-scale, breast-cancer, house-votes and tic-tac-toe, the classification accuracy obtained
for 80% of best attributes from the ranking is higher or the same as results obtained for the
whole set of attributes.

Figure 8. The average accuracy of classification, obtained for 100%, 80% and 60% of best attributes
from the ranking.

The classification accuracy results once again have been compared by means of two-
tailed Wilcoxon test, average values have been taken into this comparison, to verify the
null hypothesis that there are no significant differences in the assessment of rule from the
point of view of classification accuracy. The results are shown in the Figure 9.
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Figure 9. Wilcoxon test results-comparison of the average classification accuracy.

The results show that the classification accuracies are comparable for all heuristics
and 100% as well as 80% of selected best attributes for proposed algorithm. For 60% of
selected best attributes the classification results are noticeably worse, for the proposed
approach. Such a situation is opposite to results obtained from knowledge representation
point of view.

6. Conclusions

Taking into account results obtained by the experiments performed, it is possible to
say that the proposed algorithm allows to obtain rules enough good from both perspectives:
data representation and classification. The described approach is a heuristic one, and it has
been compared with M, RM and log heuristics, which are good from the point of view of
knowledge representation. The obtained result show that the presented approach allows to
construct rules which are comparable with the heuristics in terms of classification accuracy
(except for 60% of selected best attributes). As for rule support and rule length it was
shown that the proposed algorithm allows to construct enough short rules with sufficiently
good support.

Unfortunately, the proposed algorithm does not allow to automatically perform the
feature selection stage. This issue will be considered as the next step on algorithm’s
improvement. Additionally, the possibility of working with missing values of attributes
will be studied. Future works will also concentrate on comparison with algorithms for
induction of decision rules based on sequential covering approach.
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25. Valmarska, A.; Lavrač, N.; Fürnkranz, J.; Robnik-Šikonja, M. Refinement and selection heuristics in subgroup discovery and

classification rule learning. Expert Syst. Appl. 2017, 81, 147–162. [CrossRef]
26. Kotsiantis, S.B. Decision Trees: A Recent Overview. Artif. Intell. Rev. 2013, 13, 261–283. [CrossRef]
27. Nguyen, H.S. Approximate Boolean reasoning: Foundations and applications in data mining. In Transactions on Rough Sets V;

Peters, J.F., Skowron, A., Eds.; Springer: Berlin/Heidelberg, Gernamy, 2006; Volume 4100, pp. 334–506.
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Abstract: Automatic translation between the national language and sign language is a complex
process similar to translation between two different foreign languages. A very important aspect is the
precision of not only manual gestures but also facial expressions, which are extremely important in
the overall context of a sentence. In this article, we present the problem of including facial expressions
in the automation of Polish-to-Polish Sign Language (PJM) translation—this is part of an ongoing
project related to a comprehensive solution allowing for the animation of manual gestures, body
movements and facial expressions. Our approach explores the possibility of using action unit (AU)
recognition in the automatic annotation of recordings, which in the subsequent steps will be used to
train machine learning models. This paper aims to evaluate entropy in real-life translation recordings
and analyze the data associated with the detected action units. Our approach has been subjected
to evaluation by experts related to Polish Sign Language, and the results obtained allow for the
development of further work related to automatic translation into Polish Sign Language.

Keywords: action units; automatic translation; sign language; entropy of real data

1. Introduction

Legislation currently in force in the European Union and around the world requires
that people with disabilities be treated equally and be provided with unrestricted commu-
nication and access to information [1]. In the Polish context, two documents have been
enacted over the past few years that specifically regulate information and communication
accessibility, and digital accessibility for people with disabilities, including Deaf people [2,3].
The documents mentioned above provided the impulse to search for technological solutions
to remove or minimize existing barriers in this area.

It is worth mentioning that, for many Deaf people, a sign language is the one first
and dominant in everyday life while the national language is the second one and the level
of personal proficiency in it varies [4]. In addition, the lack of a universally-valid written
form of a sign language promotes the use of digital technologies and, at the same time,
overcomes the barrier of this lack. It allows Deaf people to communicate at a distance that
just a few decades ago was impossible or greatly hindered. A number of studies about
a sign language recognition, generation and translation are currently underway. Their
purpose is to help break down barriers for a sign language users in everyday life. In this
regard, the topics of an ongoing research generally concern the translation of a national
language into a sign language as input using text, sound, or image [5,6]. There is also
emerging research into reverse translation, an example of which is a solution described
in [7]; if that is applied the system can recognise sign language poses and translate through
avatars in the form of talking faces. A lot of work is also focused on developing bidirectional
communication capabilities by creating solutions that translate spoken languages into sign
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languages and can also recognise sign languages as in the works of [8–10]. In addition,
in the aspect of Polish Sign Language, research work has been conducted to facilitate the
communication of a Deaf person who communicates using a sign language with a person
who does not know such a way of conversation [11–15].

Many of the works indicate the great importance of non-manual components in sign
communication. This language does not rely only on manual gestures but also on facial
expressions and other non-manual markers. It poses a major challenge to researchers
working on the topic of sign language analysis and synthesis. The examples of proposed
solutions for dealing with existing difficulties in designing facial expression recognition
systems are provided by research into Japanese and Brazilian Sign Language [16,17].

In addition, many research projects are being conducted in the area of sign language
synthesis and developing solutions that practically use developed systems, especially for
the development of signing avatars, which is also the subject of a project we are currently
conducting. In [18], the author indicates three interrelated threads related to the best way
to portray the linguistic and paralinguistic information expressed on a signer’s face. First,
it is a linguistic approach to facial expressions, and because of including that an avatar
must be required to communicate intelligibly; second, computer graphics, which should
provide the right tools and technologies. A third theme addresses the topic of sign language
representation systems from the point of view of their ability to represent non-manual
signs and facial expressions. Non-manual signs, facial expressions, and the generation of
synthetic emotions have also been addressed in papers [19–23]. Those articles also describe
efforts to improve the quality, realism, and facial expression in sign language animation.

In Poland, additional potential for research in the above-mentioned areas is provided
by extensive corpus-based research into Polish Sign Language conducted at the University
of Warsaw by the Section for Sign Linguistics [24]. In the project of corpus research, for a
period of 10 years, approximately 565 h of frontal-view recordings of individual signers
have been collected. What is important is that these elicited recordings were obtained
from 150 Deaf PJM signers from all over the country, and the group of informants included
people of various ages, places of origin, and gender in equal proportions. On the one
hand, the corpus thus developed provides an invaluable source of foundational data for
use in ongoing research into the recognition of facial expressions during the broadcast of
a message in Polish Sign Language. On the other hand, the development of automatic
systems for recognizing faces in footage will enable linguistic research in new areas and
will greatly speed up the search for and selection of non-manual data.

All research efforts related to the development of tools for the recognition of sign
language (both sign language gestures and non-manual components) and the proper
reproduction of this language in the form of images in motion aim to develop fully-fledged
automatic sign language technologies and to enable free communication between hearing
and Deaf people.

Digital solutions for sign communication and translation are being developed for the
fields of medicine [25], security and transportation [26,27] and public administration [28].
Many efforts have also been made in the field of education. Among others, a Turkish project
was described in [29], in which the benefits of using a 3D Avatar in the educational process
of Deaf children were presented. For the purpose of the experiment, an avatar was created
and a test was performed using it to compare the educational effectiveness of the avatar
with text-based educational tools. The results indicate that avatar-based tutoring was more
effective in assessing the child’s knowledge of certain words in a sign language. 3D avatars
are also being used to teach specific electrical engineering concepts in Portuguese Sign
Language (LIBRAS) [30], to present content from a Mexican history textbook for elementary
4th grade in Mexican Sign Language [31] or to create digital math educational materials in
American Sign Language and Arabic Sign Language [32,33]. Thanks to automated tools,
it is also possible to learn the basics of sign language (ASL) on one’s own. A computer
system has been developed in which, based on a neural network, it is possible to classify
fingerspelling alphabet letters recorded with a webcam [34].
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In the area of education, one can also consider the potential of using different types of
dictionaries such as Arabic [35] or Indian [36] and automatic translators such as Paula, the
Avatar of English Sign Language, being developed at DePaul University [37].

The technological solutions currently under development must address the problem
comprehensively, considering the current state of knowledge about Deaf communities and
culture, their needs and experiences, and actively including Deaf sign language users in
the research. It is also necessary to be aware of the complexity of the construction and
functioning of sign languages and to consider this fact in developing related technological
tools. A review of the presented publications showed that researchers are aware of the
existing problems and are making every effort to deal with them.

The presented solution can be applied, among other things, in linguistics (corpus
research, annotation, construction of sign language dictionaries), didactics (teaching of
mimic expression during sign language communication and verification of its correctness),
comparative social research (search and comparison, mimic characteristics in given sign
communities), or creation of technical solutions for sign language visualization.

Therefore, in this work, we propose the use of action units as support units for the
automatic annotation of facial expressions in the sign language translation process. The
main aim of this work is to evaluate entropy in real translation recordings and analyze
the data associated with the detected action units. This is an important contribution
because it is not possible to annotate every frame of the recording. Our work, among other
things, is an analytical contribution, allowing us to check the loss of information in real
recordings of sign language signers labelled with the use of action units. This paper is also
concerned with the analysis of the relationship between the different action units in real
data sets—recordings of a sign language signer. We also present the whole process carried
out from recording to the annotation of action units. Our discussions are supported by the
expertise of Polish Sign Language experts and their indications of the possible application
of the detected action units in a larger automatic sign language translation project.

The article is organized as follows: In the next section, we present the theoretical
background of the research. The literature review is discussed as well. The third section
presents our research methodology. The fourth section includes the numerical experiments
and the generated results. The discussion is included after the numerical experiments. The
two last sections include a short summary and details of future research.

2. Background

The research described in the paper has been undertaken within the Avatar2PJM
(Project: Framework of an automatic translator into the Polish Sign Language using the
avatar mechanism, The National Centre for Research and Development, GOSPOSTRATEG-
IV/0002/2020) project. The goal of the project is to develop a framework that would
allow to translate of utterances in the Polish language to Polish Sign Language using an
avatar and artificial intelligence methods. The innovative character of the solution lies in
consideration of emotions and non-verbal elements of the utterance in the visualization
of gestures. The basis for launching the research is the need to develop a solution that
will increase the activity of the deaf and contribute to the liquidation of social barriers that
these people face. These problems can be overcome by providing the deaf with the tool to
support communication in their native language (Polish Sign Language, PSL). The project
has been commissioned by the Chancellery of the Prime Minister and will be carried out
by the Łukasiewicz Research Centre—Institute of Innovative Technologies EMAG and the
Institute of the Polish Language of the Polish Academy of Sciences.

The project assumes the development of a method to translate the Polish language
into Polish Sign Language along with a mechanism to control the avatar application. The
sign language avatar is a computer representation (animation) of language phenomena.
Thanks to good video-recorded reference material, it is possible to animate any described
utterance. That is why one of the research stages dealt with acquiring the largest possible
number of video recordings of a sign language translator within a Motion Capture (MoCap)
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session. MoCap is a technique of recording the three-dimensional movements of an actor.
It is used in computer games and imitates the natural movements of objects or people in a
very realistic way in order to achieve a natural effect. In the case of sign language avatars,
MoCap allows copying the signs of the sign language and increasing the comprehension of
the communicated content because, from the animator’s perspective, the uttered signs of
the sign language consist of geometrical poses and movements.

A sign language message consists of sign language signs and different additional
information because what is expressed physically results from coexisting linguistic and
non-linguistic processes. While producing computer-generated animations, the emotional
context of the utterance is taken into account, along with such phenomena as proper lips
movements or voiceless speech, which are performed during sign language messages.
What is particularly important here is the sign language interpreter’s facial expressions
and the information they convey. Such elements are also significant in the context of data
indispensable to developing the translation module. The material acquired during the
MoCap session is used to feed the animation module and acquire a set of input data for
the translation module based on machine learning methods. To make it possible, it is
necessary to submit the set of recordings to the annotation process. Annotation describes
particular elements of sing-language signs in particular time intervals of the sign duration.
In addition, the process describes singular signs, dictionary-based interpretations (lemmas,
lexemes), and information, e.g., about non-manual elements of a sign. Because one of the
key annotated elements is the sign language interpreter’s face, and the process is very time-
consuming, the researchers attempted to examine the possibility of automatic recognition
of the translator’s mimic poses. Such automatic annotation would significantly improve
and speed up the annotator’s work. This paper describes the partial results of research
undertaken in this domain.

One of the expected effects of the project is pilot testing in selected on-line information
services run by the administration. A common use of automatic translation mechanisms in
public-service internet systems will be a constructive step to improve the digital availability
of public administration. In addition, the project team will examine the career potential of
the deaf as well as their satisfaction with contacting public administration before and after
the application of the virtual translator. This will allow determining social and economic
barriers faced by the deaf while contacting the administration and moving on the job
market. The career potential of the deaf will be analyzed and data acquisition methods will
be determined to achieve the highest possible professional activation result. The results
of the project will allow to permanently liquidate barriers encountered by Polish Sign
Language users.

2.1. Polish Sign Language—The Role of a Facial Expression

Polish Sign Language (pl. polski język migowy, PJM), like other sign languages, is an
autonomous, standard, and fully-fledged natural language, which means it constitutes a
two-class system of conventional characters for universal communication. The physical
nature of a sign language text, which makes it different from phonic languages, is not
vocal-auditory but visual-spatial [38].

An utterance in PJM is composed of manual and non-manual signals. What is essential,
the former one play both expressive and linguistic functions in natural sign languages.
The expressive function consists of presenting, by articulators such as eyes, eyebrows,
mouth, head, and shoulders, various emotional states while performing certain signs (e.g.,
expressing sadness while showing the SAD sign). However, more important is the linguistic
function of non-manual signals, which proves the autonomy of a sign language and allows
to distinguish PJM from the phonic Polish language [39]. The linguistic function of non-
manual components in PJM consists of several aspects: (1) their phonological construction
within signed words, (2) their lexical functioning as independent non-manual signs, (3) their
grammatical functioning at the morphological level, and (4) their syntactic functioning
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in distinguishing signed sentences [40,41]. In the next sections of this chapter, these four
aspects of the linguistic function of non-manual elements in PJM will be presented.

2.1.1. Non-Manual Component within Sign Words

At the phonological level, non-manual signals may be obligatorily embedded as an
additional element in some signs. It is important to note that the sign of sign language
consists of three sublexical parameters that are the sign equivalents of phonemes (cheremes).
They are hand configuration, the location of sign articulation, and the movement performed
during articulation [42]. Robert Battison [43] added two more properties: palm orientation
and non-manual elements to this classification.

Considering the above-mentioned elements, three types of signs are distinguished:
manual, multi-modal, and non-manual. Manual signs have only three basic parameters:
hand configuration, location, and movement. Apart from these three parameters, multi-
modal signs contain the fourth one—a non-manual signal. Non-manual signs are articulated
using only non-manual signals without the use of hands and, therefore, can be self-realized
at the lexical level and will be discussed in the next subsection [44].

Non-manual features in sign languages include facial actions and expressions, head
movements and positions, shoulders, and the position of an upper body as a whole. The
area of the body below the waist (hips, legs, and feet) very rarely serves as an active
articulator. In our research, attention will be focused on the aspects of a facial expression
which involve the eyebrows, eyelids, eye gaze, cheeks, nose, lips, and jaw. These parts of
the face can assume the role of independent articulators or can be used simultaneously
with the head, shoulders, and the whole body or with manual components [45,46]. Each of
the indicated parts of the face can make appropriate movements, which, for Polish Sign
Language, were included in the classification of Piotr Tomaszewski, presented below in
the form of a diagram (Figure 1) (In our research and further in this paper, we concentrate
only on facial expression, and we overlooked other “places” such as head, shoulders, and
body—torso—movements.) In it, no other parts of the face, such as the forehead, are
marked because they are redundant. For example, due to the anatomical structure, raising
the eyebrow always produces a frown of the forehead effect so this latter part of the face is
predictable. Each part of the face described as a category of “a place” feature has a set of
ways of expressing opinions, feelings, and meanings, defined as “a setting” feature. The
most numerous group of settings is boasted of by the mouths, which, both in PJM and in
other sign languages, also play an articulatory function with the use of certain signs [41].

Therefore, various mouth actions and their combinations are classified into at least
two clearly identifiable types of mouth patterns. These are “mouthings”, which are said to
be derived from the surrounding spoken language, and “mouth gestures”, formed within a
sign language and, thus, inherent to it [47,48]. Furthermore, different mouth configurations
form the basis to create “minimal pairs”, which means that these kinds of signals can
distinguish different sign words, e.g., pairs of words such as (BIEGLE “fluent” i.e., in
a sentence “Ja migam biegle”) and (SZKODA “too bad” i.e., in a sentence “Nie udało
mi się wygrać, szkoda”) are distinguished by different mouth configurations: round vs.
stretched [40].

2.1.2. Independent Non-Manual Sign Words

Non-manual signals, e.g., independent non-manual signs, can be used at the lexical
level. They refer to signs which do not require the use of the hands at all but employ, in the
articulation, only non-manual elements such as specific facial expressions or head move-
ments. An example of a sign using only a facial expression is a sign (NMS: ZGADZA_SIE
“That’s right. . . ”), which is articulated by wrinkling the nose, and the examples of signs
using only head movements are signs (TAK “yes”) and (NIE “no”) [40].
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Figure 1. Place and settings features of non-manual components in PJM signs.

2.1.3. Role of Non-Manual Signals in Modifying Some Sign Words

Non-manual signals can also be superimposed on a single sign word or a sequence of
words, fulfilling a grammatical function, e.g., to form comparative or superlative adjective
forms. Non-manual factors may constitute a meaning-modifying (enriching) feature. In
order to shorten the statement, the procedure of a simultaneous use of a feature is used,
during which, instead of the sequence of characters (“nominal” + “attributive”), only the
sign of the object with a non-manually assigned feature is used (e.g., sign DZIEWCZYNA
“girl”, NMS: a neutral facial expression, and sign ŁADNA_DZIEWCZYNA “pretty girl”,
NMS: smiling face, eyes squinting). A facial expression also allows to express the intensity
of a feature. It is a way of intensifying or weakening the meaning of adjectives (e.g.,
distinguishes signs ŁADNY “pretty”, NMS: calm, smiling face, and BARDZO_ŁADNY
“very pretty”, NMS: smiling face, squinting eyes, a slight head movement to the left), and it
is also a way of modifying the meanings of verbs (e.g., CHCIEĆ “want”, NMS: a slight nod,
lips tightened, and BARDZO_CHCIEĆ “want very much”, NMS: firmly nod, lips tighten,
looking up). The handshape of these lexemes remains the same, the only determinant of
intensity is the non-manual component [46,49].

2.1.4. Syntactic Functions of Non-Manual Signals in Distinguishing Signed Sentences

Non-manual signals in the syntactic function are essential, especially when distin-
guishing sentences. Due to the possibility of using non-manual grammatical components,
different kinds of sentences with different clauses are formed. Below are a few kinds of
sentences and examples of their non-manual components.

- yes/no questions—PJM they can be answered simply by confirming or denying the
entire sentence. They are marked in sign language by a slight forward tilt of the head
and raising the eyebrows during the whole sentence. That is the only non-manual
form that distinguishes the corresponding statement from the question.

- “wh” questions—PJM the group of question words used for this purpose includes
who, what, where, when, why, what kind of, how many and which. In this kind of
utterances, the grammatical non-manual component consists of lowered eyebrows and
squinted eyes that occur either over the entire wh-question or solely over a wh-phrase
that has moved to a sentence-final position.

254



Entropy 2023, 25, 120

- negative sentences—a kind of sentence into which signs indicating negation are added.
As a non-manual component, there is a relatively slow side-to-side head shake that
co-occurs with a manual sign of negation, and the eyes may squint or close.

- conditional sentences—they contain subordinate sentences that express the conditions
of implementing proposals included in superordinate clauses. In sign languages,
subordinate sentences are formed by raised eyebrows, wide eyes, head forward (or
back) and tilted to the side, followed by a pause after which the eyebrows and head
return to neutral position [39,40,50].

A facial expression, which is a grammatical exponent, imitates the natural facial
expressions accompanying the formation of the aforementioned types of sentences. It is
also possible to create sign sentences that combine some of the above sentence types [46,49].

2.2. Action Units

Action units (AUs) define facial muscle activity so that it is possible to indicate activity
that affects facial expressions (facial appearance). The origins of action units are related
to the facial coding system proposed in 1978 in the work [51]. In this system, all visually
perceivable facial expressions are described. The mentioned expressions are divided
according to muscle movements in the following steps.

In the following years, attempts were made to detect units of action automatically,
but mainly these were approaches related to a specific expression (happiness, sadness,
etc.). However, at the beginning of the 19th century, with the increase in computational
capabilities and thus the development of machine learning algorithms and computer vision,
work was taken on more complex AU [52].

With the development of more machine learning methods, including deep learning,
automatic AU detection became more and more precise [53–55]. This makes it possible to
apply models learned to detect AU to real-world problems (including real-time detection).
In general, however, many of the tools only detect a limited number of AUs. In this way,
the responsible action units shown in Figure 2 are most often recognised. In this case,
we have additionally subdivided the detected action units due to aspects related to sign
language (this is a subdivision for the execution of a movement with the corresponding
part of the face).

brows eyes

cheeks

mouth

nose mouth

inner brow raiser outer brow raiser brow lowerer, upper lid raiser lid tightener blink

cheek raiser lip corner dimpler nose wrinkler upper lip raiser lip corner puller lip corner depressor

chin raiser lip stretcher lip tightener lips part jaw drop lip suck

AU 1 AU 2 AU 4 AU 5 AU 7 AU 45

AU 6 AU 14 AU 9 AU 10 AU 12 AU 15

AU 17 AU 20 AU 23 AU 25 AU 26 AU 28

Figure 2. Action units with sign language-compatible facial parts—images from [56].

In this work, we aim to analyze the application of AU to the real-world problem of
automatic facial expression annotation in the sign language translation process. Therefore,
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we focus on using existing algorithms for AU detection [57] and rely only on the AU
detected by this tool, as described above.

3. Research Methodology

This article aims to analyze action units in the context of their use in automatic text-
to-sign language translation (using a specially prepared avatar that signs appropriate
sequences in sign language and performs body movements and facial expressions). Our
approach is one of avatar control and concerns facial expressions, so we focus only on the
face of the signer.

For the application of action units (AUs), analyses related to the entropy of specific
AUs depending on the recording, as well as correlation, were applied. The aim is to create
rules to correlate specific AU sequences with facial expression elements important for sign
language annotation.

In this work, we analyze the real recordings related to the Avatar2PJM project de-
scribed in Section 2. Consequently, our work is also related to image processing. Figure 3a
shows one frame of the actual recording. In our case, we only consider facial expressions,
so the identification of the face itself and the removal of the background must be made
(Figure 3b). Only the image prepared in this way is used to find action units.

The next step of the analysis carried out is AU detection. At this stage of the work,
we are using an off-the-shelf and tested tool for researchers working on computer vision
and machine learning for AU analysis—OpenFace 2.0 [57]. The approach used gives better
accuracy for detecting face landmarks and face action units than the OpenFace [58] tool.
The method is based on linear support vector machine learning. However, it has been
shown in the work [57] that the results obtained are similar to methods based on deep
learning. It is worth noting that, in the presented solution, AU is detected in two ways.
The first one (called presence) is about detecting whether AU is found in a given frame of
the video (0—not found, 1—found), while the second one (called intensity) determines the
intensity of occurrence of a given AU (from 0.0 to 1.0, where the closer to 0.0, the lower the
intensity and vice versa). It should be noted that both models were trained on different
learning datasets (described in more detail in [57]), so different results are possible.

Figure 3. The real data used in this work: (a) Image before face extraction. (b) Image after face
extraction and background removal.

The use of OpenFace 2.0 allows for real-time analysis – which is essential for our project.
Additionally, it is based on approaches [59–61], but for our work, the most important issue
is the quality of AU detection. In this case, the authors in the [57] paper showed that the
solution we used shows better results (reported as Pearson correlation coefficient) than
other popular solutions based on, among others, the convolutional neural network.
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The result of this part of the work was to obtain a table consisting of columns describing
each frame of the recording with 40 features related to, among others: frame number, time
stamp, and AUs. Depending on the method, these are different AUs for presence: 1, 2, 4, 5,
6, 7, 9, 10, 12, 14, 15, 17, 20, 23, 25, 26, 28, and 45; and for intensity: 1, 2, 4, 5, 6, 7, 9, 10, 12, 14,
15, 17, 20, 23, 25, 26 and 45. As our work is related to the analysis of the applicability of AUs
in automatic sign language translation, the AU results have been grouped, as suggested by
Polish Sign Language practitioners, due to the part of the face. They are matched with the
corresponding recording frame, as shown in Figure 4.

Figure 4. Matching AU with the corresponding recording frame.

It should be noted that the recordings used in our analyses consisted of 25 frames
per 1 s. Labeling facial expressions consistent with Polish Sign Language proved to be
impossible based on a single frame of the recording. Therefore, in the next step, it was
proposed to prepare average AU values for one second of recording—this gave 25 frames
in one comparison. The results of this approach are presented in Figure 5.

Figure 5. Matching AU with the corresponding one-second (5 frames) of the recording.
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The Polish Sign Language experts showed that the facial expression changes too often
for one second of recording. This is also evident in Figure 5. Therefore, analyses were also
carried out for a smaller number of frame of the recordings. As a result, finally, the average
AU values for 5 consecutive recording frames were determined. The final result of the data
preparation is presented in Figure 6.

Figure 6. Matching AU with the corresponding 5 frames of the recording.

4. Results

The experiments aimed to test the relationship between AUs in real sign language
recordings. In order to do this, recordings made for the Avatar2PJM project were
analyzed—a total of several hundred megabytes of recordings (25 frames per second).
During our analysis, a number of possibilities were tested—we also made comparisons
between the recordings of individual utterances in relation to the material as a whole. This
was all done to enable us to find correlations between AU and Polish Sign Language signs
in the future—during annotations for automatic translation.

All recordings were processed according to the steps described in Section 3. Conse-
quently, tables were created for each set of recordings describing:

• each frame of the recording;
• the average of 5 consecutive frames of the recording (with the frames averaged offset,

so first frames [1, 2, 3, 4 and 5] then [2, 3, 4, 5 and 6] etc. up to [n − 4, n − 3, n − 2, n − 1
and n], where n is the number of all frames in the recording;

• the average of 25 consecutive frames in the recording (analogous to the 5-frame
approach).

For the results presented in this work, tables were created containing respectively:
20,211, 20,127 and 19,665 rows. This is the result of combining several different recordings,
hence offsets reduce the number of frames (and thus indirectly the rows in the table).
In each row, AU-related labels have been extracted—depending on the method chosen
(presence or intensity).

4.1. Degree of Variability of the Data

As a result of our analyses, we used entropy (see Equation (1), where we are dealing
only with binary AU values, where p is the probability of one of these values occurring—the
probability that an AU occurs or does not occur in the recording) as a measure of variability
in the data. To do this, we determined the entropy value for each of the designated AUs
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over all the recordings. In this way, we are able to decide on how much the value of
each AU changes—an alternative to this is the histogram. Still, by using entropy, we can
indicate a gain or loss in variability, depending on our approach (single frame, 5 frames
and 25 frames analysis).

E(p) = −p log2 p − (1 − p) log2(1 − p). (1)

It should be noted that for the present approach, determining the entropy value was not
a problem—there are only two values of each feature (of each AU) in these data. In the case
of the intensity approach, on the other hand, we proposed to normalize the data so that all
values less than or equal to 0.5 were labeled, 0, and greater than 0.5 were labeled 1. Ultimately,
in both cases, there are two possible values of the feature so that when the entropy is 0.0, the
data are maximally ordered (there is only one AU value). When the entropy is 1.0, the data
are maximally unordered (i.e., an AU is found as many times as it is not found).

Tables 1 and 2 record the entropy values for each AU according to analyzing each
frame separately, averaging over 5 frames and averaging over 25 frames (analogous to the
description in Section 3). As can be seen, for the present approach, there are essentially no
differences in the entropy of each AU between the situation when each frame is analyzed
separately and five frames in sequence. Thus, it can be said that averaging the AUs with an
offset of five frames, i.e., 1

5 s, allows for a better analysis of the prepared data (see Figure 6)
by the expert while maintaining an identical distribution of information.

The situation is slightly different when averaging 25 frames, i.e., analyzing the entire
second. In this case, for as many as 10 AUs out of 18, there is a change of more than 0.04,
with a change of more than 0.1 once (in the case of AU12, the lip corner puller). In only two
cases is the change close to 0 (this is the case for AU4 and AU5, i.e., information related to
the elevation or lowering of the eyebrows). This indicates a change in the information in
the data for the vast majority of AUs.

Similar correlations are found for the intensity approach, although in this case differ-
ences also appear when changing from 1 frame to 5 frames. This has to do with normaliza-
tion; even so, the difference does not exceed 0.025 (in the case of AU5, so raising the eyelids
is precisely 0.0241). In total, only in 5 cases does the difference exceed 0.01.

Similarly, when comparing 1 frame with 25 frames, the differences are higher than for
the present approach. In this case, only twice are they smaller than 0.02 (not once are they
smaller than 0.01). In contrast, in as many as 8 cases (out of 17) the difference exceeds 0.1,
where for AU5 it is more than 0.18, and for AU17 (chin raise) it exceeds 0.21.

Table 1. Entropy value for each of the action units for the present approach.

Action Unit 1 Frame 5 Frames 25 Frames

AU1 0.7351 0.7354 0.6723
AU2 0.9407 0.9398 0.9231
AU4 0.9996 0.9997 0.9999
AU5 0.9984 0.9985 0.9990
AU6 0.2660 0.2659 0.1987
AU7 0.3489 0.3469 0.2768
AU9 0.4081 0.4089 0.3309
AU10 0.9666 0.9670 0.9617
AU12 0.5575 0.5561 0.4554
AU14 0.8885 0.8876 0.8420
AU15 0.9057 0.9063 0.8772
AU17 0.9659 0.9641 0.9338
AU20 0.8956 0.8932 0.8329
AU23 0.8357 0.8328 0.7647
AU25 0.9172 0.9183 0.8900
AU26 0.8238 0.8252 0.7472
AU28 0.0684 0.0669 0.0265
AU45 0.7198 0.7206 0.6368
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Our research indicates that it is possible to use the approach shown in Figure 6 to
support the work of the expert when investigating AU mapping rules in facial expressions
used in Polish Sign Language. Therefore, in the following steps, it is possible to focus
on the approach related to the analysis of five frames of recordings. In this case (and the
present approach), it can be observed that for some AUs the entropy value is very high
(above 0.8 and often close to 1.0), but in some cases, the entropy is low. For example, for
AU28 (lip suction), the entropy is only 0.0669, so the repeatability is very high. It is also
possible to distinguish AU6, AU7 and AU9, i.e., action units related to the cheeks and nose.

Interestingly, the intensity approach is characterized by slightly different values—this
has to do with the normalization of the values but also with the different ways of training
for each approach. Here, the lowest of the entropies relates to AU5 and is 0.3 (in the present
approach, it was close to 1.0). It can be seen that for the intensity approach, a certain
repetition of AU is noticeable in more cases.

Table 2. Entropy value for each of the action units for the intensity approach.

Action Unit 1 Frame 5 Frames 25 Frames

AU1 0.7721 0.7649 0.7506
AU2 0.3691 0.3581 0.3152
AU4 0.9768 0.9765 0.9873
AU5 0.3236 0.2995 0.1399
AU6 0.4370 0.4264 0.3061
AU7 0.9050 0.9073 0.9274
AU9 0.4542 0.4327 0.3109
AU10 0.8671 0.8671 0.8927
AU12 0.5216 0.5001 0.4184
AU14 0.6244 0.6150 0.5585
AU15 0.6726 0.6562 0.6267
AU17 0.9199 0.9023 0.7031
AU20 0.6407 0.6231 0.5620
AU23 0.5439 0.5208 0.4196
AU25 0.9904 0.9833 0.8872
AU26 0.9957 0.9983 0.9777
AU45 0.6477 0.6419 0.5226

4.2. Correlation of Action Units

Figures 7 and 8 present correlation heat maps for both approaches using five frames.
Based on expert knowledge and experiments from Section 4.1, in this section, we present
only the analyses for five frames.

As we can see, there are also differences between the two approaches used in the
case of correlation. In the case of the present approach, the correlation between AUs is
mainly noticeable between AU25 and AU26 (mouth opening and jaw lowering—this is a
well-known relationship), but the situation is more interesting for the correlation between
AU4 (eyebrow lowering) and AU45 (blink) and AU6 (cheek raiser) and AU12 (lip corner
puller). This indicates that more correlations can be found beyond the classical correlations
during sign language recordings, where facial expressions are very significant and often
emphasized. It is also possible to notice a considerable lack of correlation between, for
example, AU4 and AU5 or AU17 and AU25, i.e., opposite facial expressions. This confirms
that the use of AU in the sign language translation approach may be more relevant due to
the high emphasis on facial expressions by sign language speakers.

In the intensity approach, on the other hand, there is a correlation between AU in a
much higher number of cases. This is a signal to experts that when using the intensity
approach, AUs are more likely to occur simultaneously. It should be noted that for these
analyses, the AU values were not normalized in any way. The highest correlation concern-
ing the other AUs is shown by AU6. A significant correlation of AU6 is seen with respect
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to AU7, AU9, AU10, AU12 and AU14. Similarly, as with the present approach, a significant
lack of correlation occurs between AU17 and AU25.

Figure 7. Correlation heat map for the presence approach and the use of an average of 5 frames.

Figure 8. Correlation heat map for the intensity approach and the use of an average of 5 frames.

5. Discussion

In our work, we have seen an opportunity to use action units to mark facial expressions
during sign language translation. However, to enable the work of experts, it is necessary to
adapt the real data, in the form of recordings, for expert analysis. To this end, we proposed
a comparison of AUs found from two different approaches with real video recordings. A
comparison of the entropy of these data shows that it is possible to use five more frames
of footage simultaneously (with averaged AU values). This makes the determination of
facial expressions more precise and allows for a deeper analysis of the expert’s knowledge
of AU values.

It has also been shown that the correlation between the individual AUs in the case of
recordings of sign language signers shows other relationships in addition to the classical
ones. This is due to the high intensity of facial expressions and the particular emphasis of
facial expressions on individual gestures. Accordingly, the use of AU labeling is justified in
the context of future facial expression labeling during automatic sign language annotation.

An effective AU recognition program will be able to be successfully used in linguistics.
In particular, in corpus studies of Polish Sign Language. It will make it possible, for
example, to search corpus texts for the occurrence of a given facial expression or element of
facial expression and to analyze this occurrence in connection with the sign signs at which
the expression appears. This solution will also make it possible to build sign language
dictionaries (in particular, Polish Sign Language, which is of interest to us), in which
content searching can be carried out based on the indicated facial expression element or
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combinations of indicated features of individual facial parts forming the selected facial
expression system (Search-by-video sign language dictionaries).

Using such a solution will benefit linguistic research but will also make it possible
to develop and implement new methods to teach the correct reading of mimicry in PJM-
signaled communication by deaf people, as well as to teach proper mimicry expression in
conjunction with signaled manual communication.

Due to the implementation of the Avatar2PJM project, the team’s further work on
developing the tool for automatic translation into Polish Sign Language will focus on
using it to automate the annotation of Polish Sign Language in ELAN. The inspiration
for the work on automated annotation came from the very involved and time-consuming
work of annotating a large corpus of sign language texts needed for the next stages of
project work. Therefore, we began analyzing the possibility of automating this process.
The planned end result of the work is the possibility of automatically generating records in
ELAN with a precise indication of time intervals and annotating predefined non-manuals
in them. The basis for showing non-manuals in a given time interval is the achievement of a
sufficiently high AU detection rate in a given time interval of a recording with sign language
content. Non-manuals annotated in ELAN would be identified by the researcher as a closed
catalogue before the automatic annotation process begins as “controlled vocabulary” with
respect to the individual assumptions of a given project. An example of a catalogue of
non-manual names for the Polish Sign Language is Figure 1, where “place” denotes the
annotated part of the signer’s face (annotated in separate ELAN layers due to the potential
for overlapping intervals) and “settings” are lists of possible annotated changes in the
layout of that facial area.

The research carried out so far shows the potential and scope for using AU in automatic
annotation, but the execution of such a tool requires further research and implementation
work. The analyses performed so far have been conducted on real-life recordings, but our
trials demonstrate that the tool under development will be able to successfully annotate
recordings of a very different nature, such as video excerpts, found data from sign corpus,
social media materials, etc. These recordings should be prepared in advance and meet the
indicated criteria, e.g., regarding the quality/resolution of the recordings. Also important
is its ability to be used to annotate different sign languages, as the method of annotation
can be determined by the researcher himself and adapted to the non-manuals present in a
given sign language. Once developed, the automatic annotation model will therefore be
replicable for different sign languages.

In the model presented here, it is necessary to map AU detection in individual facial
areas to the corresponding names of non-manuals specified for a given sign language. On
the other hand, the tangible result of the implementation of the automatic annotation tool
is the ability to quickly acquire a large number of annotated recordings in terms of the non-
manuals present in them, which creates a large input database for the development of the
automatic translation tool. The final result of the automatic annotation tool of sign language
non-manuals is ready-made data files that are input for the automatic translation tool.

We are also aware of some limitations in the use of the described method and the need
for further analysis of the possibility of using AU in recognizing facial expressions in Polish
Sign Language.

In our study, we used 18 AUs responsible for recognizing muscle activity in different
parts of the face. After expert analysis, it can be concluded that this number of AUs is
insufficient to mark all facial expressions that are used during communication in Polish
Sign Language. Especially complex seems to be the aspect of mouth actions. Hanke [62]
points to an extensive list of 59 “mouth gestures” recognized in research on British, Dutch,
and German Sign Language. This should be included the large variety of “mouthings” as
non-manuals of sign language related to articulation in spoken language. Therefore, it will
be necessary to find solutions dedicated specifically to this area of faces. On the other hand,
we note that the developed method allows for the marking of crucial facial expressions,
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thus, providing a chance for at least partial automation of work during the translation or
annotation of sign language.

6. Conclusions

This work aimed to analyze actual sign language recordings in terms of the use of
action units in the automatic translation of the text into Polish Sign Language. This is part
of the Avatar2PJM project, in which correct translation into sign language with appropriate
facial expressions is an important aspect.

In this work, we analyzed the entropy of action units in real recordings and its change
when averaged—which has to do with the labeling of recordings by experts. Marking
at 1

25 s is impossible, but 1
5 s is already a sufficient time range for experts. It was shown

that the entropy does not change significantly when considering five frames of recording,
allowing further work on the design.

The correlation between each action unit and the frequency of occurrence of each was
also determined. This is valuable information for experts who are working on finding
rules to map known action units in facial expressions required for translation into Polish
Sign Language.

Future work will develop rules to label facial expressions based on detected action
units. In the case of the intensive approach, we will also examine the use of certain margins
when determining intensity—known from the three-way decision theory. In addition, it is
worth considering the approach of using machine learning directly to find the repetition of
the labeling (done by the experts) without using action units. For this purpose, however, a
sufficiently large dataset should be prepared.
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