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The feature representation learning is the basic task that plays an important role in
artificial intelligence, data mining and robotics. With the recent rapid development of
deep learning, many advanced methods have been proposed and have gained remark-
able successes both in academia and in industry, such as auto-encoders, convolutional
neural networks, generative adversarial networks, and so on. However, many questions
remain unsolved. What makes one representation better than another? What are appro-
priate objectives for learning representations well? How can security and the algorithm
be explained?

This special issue aims to highlight the latest results on the mathematical methods in
feature representation learning for artificial intelligence, data mining and robotics, covering
several recently reported methods.

The representation learning is the basic problem for computer vision. For example,
the authors of [1] comprehensively reviewed the development of vehicle re-identification
and revealed that representation learning plays a vital role in the vehicle re-identification.
Furthermore, they classified the vehicle re-identification feature representation approaches
into two parts: hand-crafted and deep learning based feature representations. In [2],
semantic intelligent detection of vehicle color was studied under rainy conditions for jointly
detaining and recognizing vehicle color. Specifically, the feature maps of the recovered
clean image and the extracted feature maps of the input image are cascaded into the feature
pyramid net (FPN) module to achieve joint semantic representation learning. Based on
the YOLOX algorithm, works [3,4] proposed to learn representation features for high-
performance head counting and garbage quantity identification, respectively.

Based on the fact that the low-level features contain small object information, while the
high-level features contain accurate, large object information, the authors of [5] proposed
an effective approach by integrating the characteristics of different stages on pedestrian
detection. To explore the high-order information representation in vision tasks, the authors
of [6] developed second-order spatial-temporal correlation filters for visual tracking, and
the authors of [7] studied facial recognition via compact second-order image gradient
orientations. In work [8], the authors proposed deep-learning based cyber & physical
feature fusion for anomaly detection in industrial control systems.

In [9], discriminative multidimensional scaling based on pairwise constraints for a
feature learning model was proposed considering both the topology of samples in the
original space and the cluster structure in the new space. The authors of [10] proposed deep
large-margin rank loss for feature learning for multi-label image classification. Ref. [11]
proposed reinforcement learning-based representation approach for resource allocation in

Mathematics 2023, 11, 940. https://doi.org/10.3390/math11040940 https://www.mdpi.com/journal/mathematics1
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the elastic optical networks, and Ref. [12] presented a deep reinforcement learning based
framework for gait adjustment for the patients suffer from physical disabilities.

Representation learning also plays an important role for the low-level image processing
task. The authors of [13] studied blind image deblurring and proposed and learned an
innovative sparse channel prior. The authors of [14] proposed a joint deep recovery model
to efficiently address motion blur and resolution reduction simultaneously. The proposed
multi-order attention mechanism comprehensively and hierarchically extracts multiple
attention features and fuses them properly by drop-out gating. In [15], the authors reported
an image aesthetic quality assessment and proposed a method that includes a representation
learning step and a label propagation step. The authors of [16] developed a plug-and-play-
based algorithm for mixed noise removal with the logarithm norm approximation model.

Since available source data are collected from related domains, multi-domain adapta-
tion (MDA) has become increasingly popular. Although multiple source domains provide
a significant amount of information, the processing of domain shifts becomes more chal-
lenging, especially in learning a common domain-invariant representation for all domains.
In [17], due to the ambiguity of the category boundary, the authors proposed Dempster–Shafer
evidence theory (DST) to reduce category boundary ambiguity and output reasonable
decisions by combining adaptation outputs based on uncertainty. Inspired by generative
adversarial networks (GANs), the authors of [18] proposed a novel adversarial domain
adaptation method with an initial state fusion strategy followed by a domain similarity
strategy based on information entropy. In [19], the authors adopt domain adaptation
strategy to solve the remaining useful life (RUL) prediction caused by insufficient sample
data of equipment under complex operating conditions. The authors of [20] proposed a
geometric metric learning method for multi-output learning.

Sentiment classification is an important task in natural language processing. Tradi-
tional word-level vector representations provide the same representation for words that
express different sentiment polarities in various domains. In [21], the authors proposed a
dual-word embedding model considering syntactic information for cross-domain sentiment
classification. The authors of [22] reported a graph convolutional network for aspect-based
sentiment analysis considering the dependencies between words and the types of these
dependencies simultaneously. The authors of [23] proposed a knowledge-enhanced dual-
channel GCN for aspect-based sentiment analysis. In [24], the authors developed a triplet
contrastive learning network to coordinate syntactic and semantic information for the
domain of aspect-level sentiment classification. Works [25,26] show that the effectiveness
of the knowledge enhanced sentiment feature learning for aspect-level the sentiment classi-
fication and hate speech detection. [27] studied the embedding representation learning for
the uncertain temporal knowledge graph while [28] studied Tensor Affinity Learning for
Hyperorder Graph Matching.

Some other representative works also show the importance of the feature represen-
tation learning. Such as, Ref. [29] studied the 3D reconstruction of self-rotating objects,
Ref. [30] presented a fusion verification method cross-site scripting attacks. Ref. [31]
proposed a novel feature transformation-based method to improve the robustness of ad-
versarial example by transforming the features of data. Ref. [32] studied the requirement
analysis for complex mechanical products scheme design, while Ref. Ref. [33] studied
stability of switched systems with time-varying delays.

Briefly, this Special Issue received 65 submissions, 33 of which were published, in-
cluding 32 research articles and 1 review article. All submissions covered topics from
low-level vision feature learning to high-level semantic representation learning, including
texts, images and videos from single domains to cross-domains. We believe that these will
effectively boost the research on representation learning. We found the selection of papers
for this Special Issue very inspiring and we thank the editorial staff and reviewers for their
efforts and assistance during the process.
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Abstract: Blockage of pedestrians will cause inaccurate people counting, and people’s heads are
easily blocked by each other in crowded occasions. To reduce missed detections as much as possible
and improve the capability of the detection model, this paper proposes a new people counting
method, named Soft-YoloV4, by attenuating the score of adjacent detection frames to prevent the
occurrence of missed detection. The proposed Soft-YoloV4 improves the accuracy of people counting
and reduces the incorrect elimination of the detection frames when heads are blocked by each other.
Compared with the state-of-the-art YoloV4, the AP value of the proposed head detection method
is increased from 88.52 to 90.54%. The Soft-YoloV4 model has much higher robustness and a lower
missed detection rate for head detection, and therefore it dramatically improves the accuracy of
people counting.

Keywords: head detection; YoloV4; NMS; soft-NMS; people counting

1. Introduction

People counting is a process of counting the number of people in images. It is one
of the most important features in a modern intelligent camera. Without this artificial
intelligence technique, we have to manually count the number of people in the surveillance
video. However, this is unacceptable due the fact that the scale of video data becomes larger
and larger. What is worse, it is unlikely to have a precise count when the number of people
is too large. For this reason, many automatic people counting methods have been proposed
based on the detection of skin color [1], facial features [2], and pedestrians [3]. Nowadays,
deep learning, image recognition, and other artificial intelligence (AI) technologies are
continuously developing [4]. These intelligent technologies are gradually being applied
in our daily life, e.g., face recognition [5] and human action recognition [6]. In typical
places, like classrooms and shopping malls, pedestrians are easily blocked by other objects,
which prevents a precise counting of people. The good news is that this problem happens
relatively infrequently on head counting. A computer can be adapted to detect human
heads and, in turn, count the number of people. For example, the people counting system
can detect the head of the student’s heads in the classroom, so that the teachers can know
whether a student is absent or not. In another case, the number of people in a self-study
room can be counted and fed back to the mobile phone in real-time by head detecting. In
this way, the students can quickly know which self-study room still has available seats,
avoiding spending lots of time and energy searching for an unoccupied space. Besides
these, a shopping mall owner can analyze the laws of customer flow by detecting heads
in each store, which helps them make appropriate marketing strategies. All of these
demonstrate that high-performance head detection and counting is one of the most crucial
techniques in modern AI systems and applications.
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2. Related Work

As a fundamental technique of people counting, head counting belongs to target
detection in computer vision. A lot of machine learning methods have been proposed for
this task. The traditional machine learning target detection algorithms include AdaBoost
based on Harr features [7], SVM based on Hog [8] and LBP [9] features, etc. The principle of
these detection algorithms mainly depends on the traditional manually extracted features.
The procedure usually includes extracting features from the images, then constructing
a classifier for classification, and finally obtaining the targets. However, most of these
traditional target detection algorithms cannot produce a high accuracy for real applications,
neither have a good enough generalization ability.

Deep neural networks, on the other hand, have a much better performance in target
detection. Hinton et al. published a deep neural network using RBM coding [10]. Since
then, deep learning methods have dominated the implementation of target detection
applications. Currently, deep target detection algorithms are mainly divided into three
categories. The first one is the multi-stage algorithms such as R-CNN [11] and SPPNet [12].
Then, two-stage implementations like Fast R-CNN [13], Faster R-CNN [14], Mask R-
CNN [15], and HyperNet [16] have shown very promising performance. However, the
speed of these methods is not fast enough for real applications. Besides these, there are
many one-stage algorithms including YoloV1 [17], YoloV2 [18], SSD [19], Retina-Net [20],
AlignDet [21], CenterNet [22], FSAF [23], FCOS [24], and YoloV4 [25]. All of the above one-
stage algorithms have a fast recognition speed, but the accuracy is far from high enough.
There is still a gap to be filled. For this reason, our goal is to improve the YoloV4 model,
which represents the current state-of-the-art, to create a high-performance head detection
and counting model.

In the conventional YoloV4, non-maximum suppression (NMS) sets the score of
adjacent detection frame (adjacent detection frame probably contains object) to 0, then
the final output will not contain this detection frame, which caused the occurrence of
missed detection. This is harmful in the head-counting application. Soft-NMS algorithm
was proposed to attenuate the score of the adjacent detection frame rather than set it to
0 [26]. As long as the score of the adjacent detection frame is greater than the threshold, the
final output will contain this detection frame. Inspired by the above inference, this paper
proposes a novel head detection method based on YoloV4, which we call Soft-YoloV4 (the
NMS in YoloV4 is replaced by Soft-NMS). We make the following novel contributions:

1. We reveal why the conventional YoloV4 model is prone to miss detection in the case
of people’s heads are blocked by each other;

2. We proposed a new head detection model (Soft-YoloV4) by improving YoloV4. The
experiments in two datasets show that the number of people can be counted more
accurately by Soft-YoloV4;

3. We compared the Soft-YoloV4 and other methods previously reported, which showed
that the Soft-YoloV4 has a better performance and is more conducive to real applications.

The present paper is organized as follows. Section 2 introduces the algorithm design
of Soft-YoloV4 and presents the acquisition of experimental data. The results of Soft-YoloV4
in a real application and the comparison of Soft-YoloV4 between other several methods are
presented in Section 3. The conclusion is provided in Section 4.

3. Methods

3.1. NMS Algorithm

The YoloV4 model mainly consists of the following parts: CSPDarknet53 (the backbone
features extraction network), SPP (the strengthened features extraction network), PANet,
and Yolo Head [27]. When the size of the inputted picture is 416 × 416 × 3, the architecture
consisting of CSPDarknet53, SPP, PANet, and Yolo Head is shown in Figure 1.

6



Mathematics 2021, 9, 3096

Figure 1. The architecture of YoloV4 network.

In particular, CSPDarknet53 mainly consists of a series of ResNet [28]. The detailed
description can be found in the cspdarknet53 module in Figure 1.

Max-pooling in the SPP architecture mainly uses different pooling kernel sizes of
5 × 5, 9 × 9, 13 × 13. It pools the inputted feature layers and stacks each output. The
Max-pooling process reduces the features and parameters of the result and keeps some
invariance well, like rotation, translation, expansion, and others. The SPP architecture also
increases the receptive field of the output unit nicely.

PANet was proposed by Shu Liu et al. [29]. This architecture makes full use of shallow
and deep features. It obtains a more effective feature layer by fusing shallow features
and deep features. In YoloV4, PANet is mainly used on three effective feature layers
(13, 13, 1024), (26, 26, 512), (52, 52, 256). By fusing the features in PANet, three effective
feature layers are available in sizes of 52 × 52 × 128, 26 × 26 × 256, and 13 × 13 × 512,
respectively. Yolo Head has two convolution layers: the first layer is a 3× 3 convolution,
the second is a 1× 1 convolution. For the case of Yolo Head1, the input of Yolo Head1 is
52 × 52 × 128 feature layer, and 52 × 52 × 18 feature layer is obtained after Yolo Head1
processing. Likewise, 26× 26× 18 feature layer is obtained after Yolo Head2 processing,
13 × 13 × 18 feature layer is obtained after Yolo Head3 processing. Finally, 52 × 52 × 18,
26× 26× 18, and 13× 13× 18 feature layers will be the output of YoloV4.

In the original YoloV4 model, NMS is used to sift out the detection frame with the
highest scores in the same category. However, the elimination mechanism of NMS is very
strict, only considering the detection frame and its IOU (Intersection over Union), which
easily leads to a missed detection. For example, a missed detection as an instance is shown
in Figure 2:
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Figure 2. A missed detection happened using NMS.

There are three people in Figure 2. However, only two people were detected using
NMS, which means a missed detection. Obviously, in a crowded occasion, using NMS
algorithm to remove the redundant detection frames when people’s heads are blocked by
each other is likely to cause a missed detection.

In our improvement, the key step to achieve people counting is detecting people’s
heads. When there are too many people, their heads are easily blocked by each other.
Therefore, we utilize Soft-NMS to replace NMS in the Soft YoloV4 model to fix the problem.
Here, we have the following analysis.

3.2. Principle of Soft-NMS Algorithm

From a mathematical point of view, the mechanism of NMS to remove redundant
frames can be expressed as:

scorei =

{
0, IOU(M, bi) ≥ threshould of IOU

scorei, IOU(M, bi) < threshould of IOU
(1)

where scorei represents the score of the current detection frame. The best threshold of IOU
we found is 0.5 after multiple debugging in the data set of this experiment.

In other words, for the detection frame with a higher IOU adjacent to one with the
highest score, NMS will set the score of this frame to 0 and then remove it. It is very likely
to cause a missed detection when in the situation shown in Figure 2. The mechanism of
Soft-NMS to remove redundant detection frames can be expressed as:

scorei = scoreie−
IOU(M,bi)

2

θ (2)

It means that Soft-NMS will not directly set the score of the detection frame with a
higher IOU adjacent to the one with the highest score to 0. Instead, it penalizes the score.
The multiplication of the score of the current detection frame and the weight function is
to penalize this detection frame. We used the Gaussian function as the weight function:

e−
IOU(M,bi)

2

θ (θ is the parameter of the weight function. After debugging, the detection
effect is the best when θ is 0.1). The higher overlap with the highest-score detection frame,
the more severe the score of this detection frame decreases. Finally, only the detection
frame with a score higher or equal to 0.5 remains. In this way, Soft-NMS can remove the
redundant detection frame and reduce the missed detection rate as well. The flow chart of
Soft-NMS is shown in Figure 3.
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Figure 3. The flow chart of Soft-NMS.

In summary, the main idea of Soft-NMS is as follows. Firstly, it finds out all the
detection frames which have a higher confidence level than a certain artificial-set confidence
level from an image. The circumstance that the confidence level is lower than this certain
confidence level means that there is no target object in the detection frame. Secondly, it
processes the detection frames that belong to the same category. Finally, it establishes a
set B and puts all the detection frames that belong to the same category into this set. The
specific algorithm of Soft-NMS is as follows.

1. Sort the score of the detection frame in set B (this score indicates the probability that
the position of the detection frame belongs to this category) from high to low, and
choose the frame H with the highest score from the B set.

2. Traverse all the detection frames in set B, and calculate the IOU of each detection
frame and the detection frame H with the highest score. Soft-NMS does not directly
remove a detection frame from set B but makes a corresponding penalty for this
detection frame to decrease the score. The higher the degree of overlapping with the
detection frame with the highest score, the more severe the score of this detection
frame decreases. Then saving the detection frame H into truth_box.

3. Return to 1. until the set B is empty, and finally, keep the detection frame with a score
higher or equal to 0.5 in the truth_box as the output.

After processing Figure 2 by Soft-NMS, the detecting result is as shown in Figure 4.
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Figure 4. Soft-NMS processing, no missed detection.

4. Experimental Datasets and Evaluation Indexes

The experiments were conducted on two human heads data sets: Brainwash [30]
and SCUT_HEAD [31]. The Brainwash data set contains 11,438 images, with a total
of 81,975 human heads. The scene in this data set is a coffee shop, and the annotation
method of the data set is not the Pascal VOC format. It needs to convert to the Pascal
VOC annotation format. The SCUT_HEAD data set contains 4405 images with a total
of 11,251 heads. Two data sets include lots of complex scenes, such as classrooms, cafes,
daytime, night, and others.

For the case of Brainwash, the size of each image is 640 × 480, 300 images are se-
lected randomly as the testing set, and 11,138 images as the training set. For the case of
SCUT_HEAD, the size of each image is different, 141 images are selected randomly as the
testing set, and 4264 images as the training set. The third dataset contains all images of
A and B, 441 images are selected randomly as the testing set, and 15,402 images as the
training set. For the YoloV4 model, the size of the input image is 416× 416, so all images
will be preprocessed, which means all images will be resized to 416 × 416 before being put
into the YoloV4 model.

The indexes of the evaluation model in this experiment include the Precision value,
the Recall value, and AP value [32]. The calculation of the Precision value and the Recall
value are respectively represented by Formulas (3) and (4):

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

On the above formulas, TP means the prediction result is classified correctly into
positive samples, FP indicates the wrong classification into positive samples, and FN
represents the wrong into negative samples. The PR curve is the relationship between the
Precision value and the Recall value. We can see the PR curve in Figure 5:
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Figure 5. The PR curve.

AP is the area enclosed by the PR curve (the blue area). The higher the value of AP,
the better the predictive ability of the model.

5. Results

5.1. Comparison of NMS and Soft-NMS

To verify the efficiency of the Soft YoloV4 model, the same prediction parameters and
data sets (more than 400 complex images) are used for head detection in the YoloV4 model
using NMS and Soft-NMS. Judging whether the recognition is accurate is based on whether
there is a missed detection.

The AP value of the YoloV4 model before improvement is 88.52%, the Precision is
91.15%, and the Recall is 86.93%. When using Soft-NMS, the prediction result of the Soft
YoloV4 model is improved, where the AP value is 90.54%, the Precision is 91.94%, and the
Recall is 85.55%.

The comparison results on the third dataset between the YoloV4 model before and
after improvement are shown in Table 1.

Table 1. The comparison results.

Model AP/% Precision/% Recall/%

Original YoloV4 88.52 91.15 86.93
Soft YoloV4 90.54 91.94 85.55

After contradistinction and analysis, we can see that the AP value and the Precision
value are improved compared with the original model. However, the Recall has declined.
Soft-NMS remove the redundant detection frame by penalizing the score. There is an
adjustable parameter θ in Formula (2). A large parameter θ will result in a smaller penalty,
then the redundant detection frame may not be removed, which means the model may
indicate that there are two objects although there is only one object. The reason why recall
has declined is that the parameter θ is large. Recall or Precision cannot be used to evaluate
the effect of the algorithm comprehensively, so the AP index is selected. The experiments
proved that the AP value using Soft YoloV4 was higher than that using Original YoloV4,
even though recall dropped a little. In this way, replacing NMS with Soft-NMS in YoloV4
is effective.

5.2. Comparison with State-of-the-Arts

The experiments include the following comparison methods: end-to-end people detec-
tion (abbreviated as ReInspect [30]), detecting heads using features refined net and cascaded
multi-scale architecture (abbreviated as FRN_CMA [31]), target detection algorithm based
on YoloV3 (abbreviated as YoloV3 [33]), and pedestrian head detection algorithm based on
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clustering and Faster RCNN (abbreviated as CFR-PHD [34]). All methods use the same
evaluation index. The detection results of each method on the Brainwash data set and
SCUT_HEAD data set are shown in Table 2.

Table 2. Experimental results obtained on Brainwash and SCUT_HEAD.

Methods Brainwash (AP/%) SCUT_HEAD (AP/%)

ReInspect 78.10 77.50
FRN_CMA 88.10 86.30

YoloV3 85.11 84.13
CFR-PHD 90.20 87.70

Soft YoloV4 92.29 91.70

According to the experiment results on the Brainwash data set and the SCUT_HEAD
data set, our Soft YoloV4 algorithm improves detection performance compared to the above
algorithms. On the Brainwash data set, the AP value dramatically increases. Compared
to the ReInspect, FRN_CMA, YoloV3, and CFR-PHD algorithms, the improvements are
14.19%, 4.19%, 7.18%, and 2.09%, respectively. On the SCUT_HEAD data set, the improve-
ments by the AP value are 14.20, 5.40, 7.57, and 4.00%. Therefore, the performance of our
proposed improvement can be approved.

Here are three examples, as shown in the following Figures 6–8.

 

Figure 6. One example of people counting results. There are 33 people in the classroom, and it was
predicted that there would be 33 people. The result is completely correct.

 

Figure 7. One example of people counting results. There are 77 people in the classroom, and it was
predicted that there would be 77 people. The result is completely correct.
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Figure 8. One example of people counting results. There are 79 people in the classroom, and it was
predicted that there would be 81 people. The result is not completely correct.

The result in Figure 8 is not completely correct. With the increase of pedestrian density
in a scene, the visibility of heads decreases with the increase of mutual occlusions, resulting
in the decrease of head detection, as shown in Figure 8. The possible reason why the model
cannot predict objects over heavily overlapped with others is that a detection frame only
predicts an object rather than a set of correlated objects.

6. Conclusions

Compared with other target detection models, the Soft-YoloV4 model in this paper has
a higher recognition accuracy and a better people counting effect. Soft-YoloV4 can be built
on the server. By recognizing the images sent by the client, the server can return the specific
number of people to the client. In this way, the number of people in the classroom can be
counted conveniently and quickly, which helps teachers count the number of students, and
students do not need to go to each classroom to check whether there is an available seat for
them, and then quickly choose a self-study room.

This paper is still unable to accurately recognize the situation that the degree of
blockage is too high. In the future, we can consider combining the human body model
to determine whether there is a blockage in the detection frame. The network architec-
ture of the target detection model is also too large. Although the accuracy is high, the
detecting speed is relatively slow. The next step is to modify the network architecture of
the model to speed up the recognition process without significantly decreasing the accu-
racy. KuralNet is a lightweight deep learning model that strikes a good balance between
parameters and effectiveness [35]. In the KuralNet, the inverse residual block with deep
convolution and frequency-doubling convolution can be used for signal processing to
reduce the computational cost. Perhaps we can learn from this to reduce the complexity
of Soft-YoloV4.

This paper proposes a head detection model by improving YoloV4 to count the number
of people. By detecting people’s heads, we have an improved version YoloV4 using Soft-
NMS. In this way, the number of people can be counted more accurately and performance
close to the requirement of real applications is obtained. The original YoloV4 model uses
the NMS algorithm to remove redundant detection frames. The Soft-YoloV4 model uses the
Soft-NMS algorithm. After comparative analysis, Soft-YoloV4 has a higher accuracy in head
detection. The AP value of Soft-YoloV4 is 90.54%, 2.02% higher than the original YoloV4
model. Therefore, Soft-YoloV4 is more suitable for head detection on crowded occasions.
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Abstract: Vehicle Re-identification (re-id) over surveillance camera network with non-overlapping
field of view is an exciting and challenging task in intelligent transportation systems (ITS). Due to
its versatile applicability in metropolitan cities, it gained significant attention. Vehicle re-id matches
targeted vehicle over non-overlapping views in multiple camera network. However, it becomes
more difficult due to inter-class similarity, intra-class variability, viewpoint changes, and spatio-
temporal uncertainty. In order to draw a detailed picture of vehicle re-id research, this paper gives
a comprehensive description of the various vehicle re-id technologies, applicability, datasets, and
a brief comparison of different methodologies. Our paper specifically focuses on vision-based vehicle
re-id approaches, including vehicle appearance, license plate, and spatio-temporal characteristics. In
addition, we explore the main challenges as well as a variety of applications in different domains.
Lastly, a detailed comparison of current state-of-the-art methods performances over VeRi-776 and
VehicleID datasets is summarized with future directions. We aim to facilitate future research by
reviewing the work being done on vehicle re-id till to date.

Keywords: vehicle re-identification; license plate recognition; video surveillance; feature extraction

1. Introduction

Due to growing global population, commercial activities have been extensively in-
creasing, which leads everyone to access road transportation as a source of mobility. Due
to easy accessibility of road transportation system, traffic on roads is massively increasing
that not only creates the problem of high traffic congestion but also a drastic increase in
carbon dioxide emissions. Along with these issues, road accident risks and the overall
transportation complexity increases as well. Therefore, a smooth transportation source and
medium is always required for growing commercial activities. Furthermore, traffic man-
agement authorities are facing hectic challenges to maintain an undisturbed transportation
system. Their task includes tracking the suspicious vehicle, handling traffic jam, and to
check whether the vehicle is registered or not. Maintaining undisturbed transportation
becomes harder when a large number of vehicles are on the roads.

1.1. Intelligent Transportation System

Transport is essential for the daily routine functioning of the economy and the society.
Over the past few decades there is huge development, deployment, and growth in the
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transport system and have notable effect of development in society and daily life. Therefore,
transportation should be redefined as ITS. Currently, not only mechanical and engineering
fields are doing research and development for better transportation facility, but computer
science related concepts are also playing major role for instance, artificial intelligence (AI),
communication, machine learning (ML), internet and so many other emerging technologies.

Due to traffic problems in China, the average speed of vehicle has been decreased
to 20 km/h, even in some areas between 7 and 8 km/h [1,2]. Such low speed of vehicles
for a long time on roads is a threat for the natural environment of the world like exhaust
emissions that deteriorate air quality. In order to deal traffic problems and alleviate the
pressure of vehicles on roads, the governments are investing too much on research and
ITS development. ITS based infrastructure strengthens the relationship between people,
vehicles, and road networks.

ITS have the capability to enhance the performance of current transportation system
and make it efficient, safe, comfortable as well as reduces harmful environmental con-
sequences. ITS based real-time applications include electronic payment systems, traffic
management systems, emergency vehicle pre-emption management system, advanced vehi-
cle control systems, weather precautionary measures management system, and commercial
vehicle operations. Applications of ITS now regularly deployed, such as closed-circuit
television surveillance, automatic car parking, electronic toll collection, border control, and
in-car navigation equipment. Therefore, an ITS is needed to analyze the recorded video,
control, maintain and communicate to ground transport and improve mobility and manage
problems efficiently. Furthermore, Figure 1 demonstrates the ITS based environment.

Figure 1. Depicts smart city and intelligent transportation system.

1.2. Video Surveillance

In metropolitan cities, cameras are widely adopted in numerous areas to monitor
activities [3]; but most of the current video surveillance systems provides the facilities like
capture, storage and distribute video, while leaves unwanted event detection task totally
on human operators. Human operator-based monitoring of the surveillance system is not
as efficient and a very labour-intensive task, as shown in Figure 2. It requires full visual
attention by watching the video in control room and it is very difficult for single person
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as everyday tasks. Specifically, the ability to focus and react to occasionally occurring
activities that require full attention. Furthermore, millions of hours of video data generated
by multiple cameras over surveillance network require large number of operators for the
task. It’s almost infeasible, inefficient and costly to obtain real-time prevention.

Figure 2. Shows view of manually traffic monitoring at control room.

Due to digital cameras and the advent of powerful computing resources, automatic
video analysis become possible and more and more common in video surveillance ap-
plications [4], thus reduces the labor cost. Practically, the objective of automatic video
analysis for safety, security, and surveillance is to detect automatically unwanted events
or situations that need security attention. Automated video analysis not only process
the data faster but also significantly improve the ability to preempt incidents on time.
Augmenting security staff with automatic processing increases their efficiency and effec-
tiveness. For the posterior mode, searching a specific vehicle in hundreds of hours of
camera recorded video footage needs large number of officers to do this task and takes a lot
of time. Automated content-based video retrieval reproducing and assisting human analy-
sis on recorded videos largely enhances forensic capabilities. Furthermore, the surveillance
systems application’s main goal is to develop intelligent systems that automate the human
decision-making mechanism.

An important task to maintain a smooth transport system is to re-identify the specific
vehicle that appeared in different cameras over the surveillance network. The vehicle re-id
module in ITS should recognize same vehicle that appears in surveillance cameras installed
in different geographical locations. Specifically, vehicle re-id can be treated as a fine-grained
recognition problem [5,6] that identifies the subordinate type of input class. However, the
vehicle re-id problem’s granularity is much finer since the system should search specific
targeted vehicle instead of the same vehicle model and type. Moreover, recently vehicle re-
id gained more attention in research community because of various significant real-world
applications. It is a difficult task to analyze the surveillance environment for effective
vehicle identification. An example of practical environment can be seen in Figure 3, where
surveillance cameras can be observed over roads and public places.
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Figure 3. Illustrates the practical scenario of surveillance camera network.

1.3. Re-Identification

In a surveillance camera without overlapping vision, re-id is defined as a task to
identify objects’ captured images taken from different camera networks. It is used to know
whether the object image captured by multiple surveillance cameras matches the same
object or a different image of the object. Object re-id technology has a significant role
in multi-object tracking, intelligent monitoring, and other fields. Recently, re-id gained
extensive attention in the computer vision research community. The main application fields
of an object re-id are vehicle re-id and person re-id.

Formally, re-id can be defined as a matching task. A targeted image (Query) is matched
against a gallery set image (representing the previously captured images in the surveillance
camera network). Thus, the query of re-identifying targeted image can be defined by its
descriptor P, and it is formulated as:

T = argTi minD (Ti, Q), Ti ∈ T (1)

where T = {T1, . . . ,TN} is a gallery set of N image descriptors, and D(,) represents the dis-
tance metric. Therefore, to solve above the re-id problem, it is important first to answer how
we can represent targeted object using a descriptor to robust performance. Furthermore,
rest of the paper investigates this topic.

Vehicle Re-identification: Similar to person re-id, vehicle re-id is also a demanding
task in camera surveillance. Aim of vehicle re-id is to match vehicle images with already
captured vehicle images over the camera network [7–9]. However, due to surveillance
cameras on the roads for smart cities and traffic management, the demand to perform
vehicle search from the gallery set is increased. Vehicle re-id is similar to several other
applications, such as person re-id [10], behavior analysis [11], cross-camera tracking [12],
vehicle classification [13], object retrieval [14], object recognition [15,16], and so on.

To understand designing the vehicle re-id system, we analyze how a person re-identifies
the vehicle. A person re-identifies vehicle by keeping in mind some characteristics like unique
feature, color, size etc., our brain and eyes are learned to detect and identify different objects,
as shown in Figure 4 and how system identify vehicle is shown in Figure 5.
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Figure 4. Shows how human re-identify vehicle?

Figure 5. Illustrates how machine re-identify vehicle?

1.4. Vehicle Re-Identification Practical Application

There are many significant real-world applications where vehicle re-id system can be
utilized and satisfies the great needs of our practical life. However, some major applications
are briefly discussed as follows:

• Suspicious vehicle search: Most of the time terrorists use vehicle for their criminal
activities and soon leave that spot on vehicles. It is very difficult to fast search
suspicious vehicle manually from surveillance camera.
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• Cross camera vehicle tracking: In vehicle race sports, some of the viewers on television
wish to watch specific vehicle. With vehicle re-id system broadcaster can only focus on
that specific vehicle when it comes in the field of view of surveillance camera network.

• Automatic toll collection: Vehicle re-id system can be used at toll gates to identify
vehicle type like small medium and large and charge the toll rate accordingly. Auto-
matic toll collection reduces delay and improves the toll collection performance by
saving travelers time and fuel consumption.

• Road access restriction management: In big cities, heavy vehicles like trucks are not
permitted in the daytime, or some of the vehicles with specific license plate number
are permitted on specific days to avoid congestion in city or officially authorized
vehicles can enter in city.

• Parking lot access: vehicle re-id system can be deployed at the gate of parking lot of
different places like head offices, and residential societies. So only authorized vehicles
are allowed to park.

• Traffic behavior analysis: Vehicle re-id can be used to examine the traffic pressure on
different roads at different times, such as peak hours calculation or particular vehicle
type behavior.

• Vehicle counting: System can be useful to count a certain type of vehicle.
• Speed restriction management system: Vehicle re-id system can be utilized to calculate

the vehicle’s average speed when it is crossing from two subsequent surveillance
camera positions.

• Travel time estimation: Travel time information is important for a person who is
traveling on road, it can be calculated when a vehicle is passing in between consecutive
surveillance cameras.

• Traffic congestion estimation: By knowing the number of vehicles flow from one point
to another point within a specific time period using vehicle re-id system, we can
estimate traffic congestion at the common spot from where all vehicles may cross.

• Delay estimation: Specific commercial vehicle delay can be estimated after predicting
traffic congestion on the rout that vehicle follows.

• Highway data collection: Highway data can be collected through surveillance cameras
that are installed on roadsides and that data can be used for any purposes after
processing and analyzing at the traffic control center.

• Traffic management systems (TMS): Vehicle re-id is an integral part of TMS, it helps to
increase transportation performance, for instance, safe movement, flow, and economic
productivity. TMS gathers the real-time data from the surveillance cameras network
and streams into the Transportation Management Center (TMC) for data processing
and analyzing.

• Weather precautionary measures: When specific vehicle is identified that may be
affected by weather, then traffic management systems notify that vehicle about weather
conditions like wind velocity, severe weather etc.

• Emergency vehicle pre-emption: If any suspicious vehicle is identified at any event or
road then vehicle pre-emption system passes messages towards lifesaving agencies
such as security, firefighters, ambulance, traffic police, etc. to reach in time and stabilize
the scene. With this system, we can maximize safety and minimize response time.

• Access control: Vehicle re-id system can be implemented for providing safety and
security, logging and event management. With the implementation of the system only
authorized members can get an automatic door opening facility, which helps guards
on duty.

• Border control: Vehicle re-id system can be adopted at different check posts to min-
imize illegal vehicle border crossing. Vehicle re-id system can provide vehicle and
owner’s information as it approaches security officer after identifying the vehicle.
Commonly these illegal vehicles are involved in cargo smuggling.

• Traffic signal light: When the traffic light is red and any vehicle crosses stop line, the
vehicle re-id system can be implemented to identify that vehicle for fine.
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• Vehicle retrieval: In this case, re-id is associated with a recognition task. The specific
query with a target vehicle is provided, and all the related vehicles are searched in the
database. The re-id task is thus employed for image retrieval and usually provides
ranked lists, similarly related items, and so on.

However, due to the vast range of practical applications that employ vehicle re-id
system and to limit the scope of the paper, this review article mainly focuses only on
vision-based methods. Moreover, it is very hard to cover all technologies for vehicle re-id
in one survey paper but despite of that we have summarized the strengths and weaknesses
of all technologies in Table 1. Therefore, this review article focuses on the use of vision-
based approaches including, Appearance, license plate, contextual information etc. In
last few years, there has been lack of comprehensive study of the overall problem and
different solutions. This paper fills the gap by providing a detailed review covering main
challenges, different approaches, and applicability. In addition, it provides the analysis and
comparison of existing vehicle re-id methodologies. Aiming to facilitate other researchers,
this review also provides the required information about the publicly available datasets
and discusses several important research directions with under-investigated open issues
to narrow the gap between the closed-world and open-world applications, taking a step
towards real-world re-id system design.

Table 1. Summary of strengths and weaknesses of different vehicle re-id technologies.

Technology Strengths Weaknesses

Surveillance camera

Don’t require the owner’s cooperation.
Low cost because usually cameras are installed on

roadsides, so don’t require
additional charges to install.

Complex and unconstrained environment
along with varied road topology affects

the performance.
Performance degrades due to dirt, snow,

occluded image, blurry image, and sunshine, etc.
The vehicle is identified only when it comes in

the field of view of the camera.

Magnetic Sensor Insensitive to bad weather like snow, fog, and rain.
There is no privacy issue in magnetic sensors.

Complicated installation.
Embedding magnetic sensor under carriageway

after drilling hole.
Identified only at the detection terminal.

Inductive loop Provides different traffic parameters like speed,
volume, headway, presence, and occupancy etc.

Installation of inductive loop technology
requires metallic loops under the road.

The vehicle is identified in the field-of-view of
detection terminal.

GPS
Provides continuous vehicle information, such as

space and time, to the control centre.
100% vehicle recognition rate.

Require owner’s cooperation to install
hardware in vehicle.

Varying accuracies, minimal fleet penetration,
and signal loss because of tunnels, trees,

and tall buildings.

Two ways for writing surveys can be found in the object re-id literature; first way gives
a deep insight into methodologies, whereas the second way covers the overall perspective
related to the problem [17,18] This survey includes both methodologies and overall perspective
of vehicle re-id literature. We also review the recent development of vision-based vehicle
re-id along with other technologies. In addition, this survey draws a timeline to introduce
important milestones for vehicle re-id, which can be seen in Figure 6.
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Figure 6. Milestones existing re-id approaches in the Vehicle re-id history.

The paper is organized in the following way. Sections 2–5 provide an overview of recent
state-of-the-art proposed methodologies in various technologies. Section 6 presents a publicly
available benchmark dataset that covers various real-world surveillance scenarios. Section 7
discusses the challenging problems in vehicle re-id. Section 8 sheds light on the evaluation
measures for vehicle re-id. Section 9 analyzes and compares the experimental results of
various approaches. Meanwhile, the last section concludes and discusses future work.

The main contributions of this review paper is summarized as follows:

• To the best of our knowledge, this is the first comprehensive review paper that covers
computer vision-based methods for vehicle re-id tasks, with a different technological
background of approaches for completeness such as, global positioning systems (GPS),
inductive loop and magnetic sensors.

• Discusses various real-world applications of vehicle re-id in different domains includ-
ing the intelligent transportation system.

• Comprehensive comparisons of existing methods on several state-of-the-art publicly
available vehicle re-id datasets are provided, with brief summaries and insightful
discussions being presented.

• Discusses the challenges in detail for designing an efficient vehicle re-id system and
illustrates the recent trends and future directions.

2. Methods Used for Vehicle Re-Identification

Traditionally different traffic sensors are adopted to know the vehicle presence, vol-
ume, occupancy, and speed data. Nowadays, new sensor-based technology is adopted
to get more information like origin-destination estimation, travel time and other travel
information applications. Based on different technologies vehicle re-id approaches can be
divided into six categories, as depicted in Figure 7.

24



Mathematics 2021, 9, 3162

Figure 7. Shows vehicle re-id methods.

2.1. Magnetic Sensor-Based Vehicle Re-Identification

An electromagnetic field is used to detect the vehicle, when it crosses and it is used
to provide occupancies, counts, and vehicle speed. However, vehicles are made up of
metal. It disrupts the magnetic field, so magnetic signature regenerated by one vehicle is
different from the other vehicle [19]. This approach helps in re-identifying a specific vehicle.
Moreover, for ITS the Berkeley’s company sells magnetic sensors with the name “Sensys
Network” [20]. A straight-line re-id rat is 50%, and the approach reduces the magnetic sig-
nature peak value sequence for calculating the signature distance to prevent vehicle speed
dependency [21]. For real-time vehicle re-id processing unit is associated to thousands
of magnetic sensor nodes and a large number of magnetic sensors that generate massive
data streams, and to deal with real-time data stream mining, high-performance FPGAs and
low-performance microcontroller are used [22,23]. Sylvie Charbonnier et al. [24] studied
various approaches for vehicle re-id by adopting vehicle tridimensional magnetic signature
measured with sensor, when car passes sensor and changes in the magnetic field were
induced and measured in three different directions like X, Y, Z. Rene O. Sanchez et al. [25]
investigated vehicle re-id approaches by using wireless magnetic sensors and compares
vehicle magnetic signatures to overcome the limitations of system while vehicle is stopped
or moving slow at detection station.

2.2. Inductive Loop-Based Vehicle Re-Identification

Vehicle can be re-identified using inductive loops embedded in the road surface for
the detection of vehicle. From those loops, a fingerprint is captured for every car passing
by. The travel time can be determined when those fingerprints or certain aspects of them
coming from different locations are compared with each other. Jeng and Chu [26] designed
a real-time inductive loop signature-based vehicle re-id method named RTREID-2M. Induc-
tive signature is used for vehicle re-id and much efforts have been done to utilize inductive
loop signature technology. Inductive signature-based vehicle re-id algorithms identify
specific vehicle at downstream detection station by matching the inductive signature at up-
stream detection station, considering that vehicle have same signature by crossing different
loop detection stations [27]. Vehicle re-id researchers have proposed several algorithms
like optimization, piecewise slope rate (PSR) matching [28], lexicographic and blind decon-
volution [29], all these proposed approaches are for raw signature processing, signature
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feature extraction, and vehicle matching. R.J. Blokpoel [30] proposed an algorithm with
different sizes of a single loop. Validation tests depict re-id rates up to 100%, when loops
are identical to the similar type and 88% when compare between different types.

2.3. Global Positioning Systems-Based Vehicle Re-Identification

Global Positioning Systems (GPS) technology is an essential and valuable tool for ITS
and traffic surveillance, because it provides positioning data for every single vehicle [31,32].
There are still some limitations in vehicle re-id using GPS like varying accuracy, minimal fleet
penetration, and signal loss because of tunnels, trees, tall buildings, etc. GPS is adopted with
vehicles to locate and get travel information along with longitude and latitude information
and timestamp. GPS is special form of mobile sensing technology that enables the devices
like GPS logger, GPS cellular phones, and smartphones moves with vehicles to get speed
information and location continuously. However, different types of vehicles have different
behaviors such as deceleration rates, acceleration, and speed variation. This encourages the
author to adopt GPS technology for vehicle classification and re-id [33].

2.4. Vision-Based Vehicle Re-Identification

In computer vision, the aim of vehicle re-id is to identify specific vehicle that appeared
over in multiple cameras network. The large surveillance camera network is deployed in
different areas of public places like hospitals, parks, colleges, roads, and other areas. It is
also difficult and tiresome job for security officers to track targeted or specific vehicle over
multiple camera network manually. However, computer vision techniques can automatically
re-id a vehicle and basic five main working steps are discussed below (shown in Figure 8).

Figure 8. The flow of designing a practical vehicle re-id system, including five main steps.

• Step 1: Data Collection: For real-time video analysis raw videos from surveillance
cameras is one of the key component. The cameras are fixed at different locations in
an unconstrained environment [34].

• Step 2: Bounding Box Generation: It is very difficult almost impossible when we have
large scale surveillance videos to extract vehicle image. We use a bounding box and it
is obtained by vehicle detection technique [35].

• Step 3: Training Data Annotation: Data annotation is a process of labeling the videos
or images of dataset with metadata. It is an indispensable step for vehicle re-id model
training because each surveillance camera video recording is in a different environment.

• Step 4: Model Training: Model training is simply the task of learning discriminative
features and good values for all the weights and the bias from previous annotated
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vehicle videos or images of the dataset. It is a key step in vehicle re-id systems and
a widely explored area in literature.

• Step 5: Vehicle Retrieval: Vehicle retrieval is a task of matching targeted vehicle (query
image) over a gallery set.

3. Vision-Based State-of-the-Art Vehicle Re-Identification Approaches

Vision-based methods focus on examining robust feature representations to calculate
the distance between features of two-vehicle images and vehicles with the same class
have a low distance otherwise high. However, vehicle features are difficult to distinguish
when a captured vehicle image consists of similar colors and pose. In this section gives
an overview of recent works on computer vision-based methods for vehicle re-id problem,
furthermore general approach for vision-based method is shown in Figure 9. Several
impressive vision-based methods have been proposed to improve vehicle re-id performance
either by modifying the existing DL architectures or designing a new deep neural network
(DNN). Generally speaking, eight different techniques have been employed in this research
area: (A) Feature representation for vehicle re-id, (B) Similarity metric for vehicle re-id,
(C) Traditional machine learning-based vehicle re-id, (D) View-aware-based vehicle re-id,
(E) Fine-grained visual recognition-based vehicle re-id, (F) Generative adversarial network-
based vehicle re-id, (G) Attention mechanism, (H) License plate-based vehicle re-id.

Figure 9. The vehicle re-id problem: given a Query, find the matching candidate in the gallery.

3.1. Feature Representation for Vehicle Re-Identification

Feature representation play vital role in progress of many different computer vision
tasks. In this regard, vehicle re-id features representation approaches can primarily be
classified into two parts: hand-crafted and deep learning features representations. Hand-
crafted feature representations BOWCN [36], and LOMO [37] initially utilized in person
re-id and then applied directly on vehicle re-id task. Some well-known deep learning-
based feature representations such as GoogLeNet [38], VGGNet [39], AlexNet [40], and,
ResNet [41] are used for vehicle re-id. The researcher also adopts these baseline models in
their approaches for vehicle re-id. Such as, NuFACT [42] takes GoogLeNet [38], FACT [43]
uses AlexNet [40], DRDL [44] utilizes VGGNet [39] to extract features of vehicles. Various
type of loss functions are utilized to efficiently learn vehicle image discriminative feature
representation to train deep learning-based model vehicle re-id; such as the deep joint
discriminative learning (DJDL) [45] approach uses identification, and verification and
triplet loss functions improved triplet convolutional neural network [46] uses classification
and-oriented and triplet loss function to extract discriminative feature representation.
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3.2. Traditional Machine Learning-Based Vehicle Re-Identification

In traditional machine learning (TML), we adopt feature engineering to artificially
clean and refine data. However, previously proposed approaches are grouped into for
robust features extraction and learning discriminative classifiers. In TML extracted fea-
tures are directly computed from image pixels and it is low level feature representation.
Moreover, TML-based algorithm design is expensive and difficult. Broadly, it consists of
two steps feature extraction and feature classification. There are many algorithms pro-
posed for low level feature extraction for instance speeded up robust features (SURF) [47],
scale-invariant feature transform (SIFT) [48], and histogram of oriented gradient (HOG).
After feature extraction different classifiers are applied, which are widely used in TML
approaches such as linear regression, k-Nearest Neighbor (KNN) [49], logistic regression,
support vector machine (SVM) [50], bayes classification [51], and decision tree [52]. The fea-
tures extracted using SIFT are local features of the image, which maintains the scale scaling,
invariance of rotation, and brightness variation. In addition, it also maintains a particular
degree of stability to affine transformation, the viewing angle change, and noise.

Moreover, one of the feature descriptor adopted for targeted object detection in
image processing is HOG. The large area of image features are formed by calculating
the gradient direction histograms of its local regions. However, an overlapping local
contrast normalization approach is adopted to improve the performance. Zapletal and
Herout [53] utilize the color histogram and the HOG features with linear regression to
re-id vehicle. Chen et al. [54] designed a method to re-id vehicles grid-by-grid with HOG
features extraction for coarse search and further improves the result by utilizing histograms
of matching pairs. In [55], vehicle re-id local variance measures are applied using local
binary patterns and joint descriptors.

3.3. Similarity Metric for Vehicle Re-Identification

Performance of vehicle re-id can be improved by selecting appropriate distance ma-
trices regardless of appearance representation. Distance metric learning approaches [56]
are thoroughly studied in image retrieval and recognition tasks, in which matric space is
defined in such a way that features that belong to same class are kept closer and differ-
ent are at distant as shown in Figure 10. In the re-id task, image features are known as
appearance descriptor. In this the learned distance matric in appearance space minimizes
the distance for descriptor between same vehicles and maximizes distance for descriptor
of different vehicles. As in various face recognition algorithms [57,58] uses Euclidean and
Cosine distance matric to measure the similarity, and FACT [43] also utilizes Euclidean
and cosine distance metrics to measure similarity between the pair of vehicle for re-id.
Similarly, NuFact [42] utilizes the Euclidean distance to measure the similarity between
the probe and gallery set vehicle images in discriminative null space [59]. Furthermore,
deep relative distance learning (DRDL) [44] studied a two-branch convolutional neural
network to covert the raw vehicle images into a Euclidean space, so that distance can be
used directly to measure the similarity of two individual vehicles.

Pairwise constraints are required for matrix learning and it is done in supervised
fashion. During the training features of appearance descriptor are in pair and labelled as
positive and negative. It is totally depending on appearance descriptor whether it belongs
to the same vehicle or different vehicle. Appearance descriptors are represented as x1, x2,
. . . , xn, here n represents number of training instances and the dimensionality of every
instance is represented by m. The aim of metrics learning is to learn distance metric and
matrix D ∈ Rmxm represents it; thus, the distance between pair of appearance descriptors
xi and xj is as follows:

d
(
xi, xj

)
=
(
xi − xj

)T D
(

xi − xj
)

(2)
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d(xi, xj) is a true metric only possible when matrix D is symmetric positive semi-
definite. This issue is resolved by adopting convex programming as follows:

minD ∑
(xi ,xj)∈Pos

‖
(
xi − xj

)
‖2

D s.t.D ≥ 0, and ∑
(xi ,xj)∈Neg

‖
(
xi − xj

)
‖2

D ≥ 1 (3)

where Pos represents the positive label in training samples, and it is the appearance
descriptor of the same vehicle, whereas Neg represents the negative label in training
samples and it is the appearance descriptor of a different vehicle.

Figure 10. Vehicle re-id system based on metric-based methods.

3.4. Fine-Grained Visual Recognition-Based Vehicle Re-Identification

Vehicle re-id is fine-grained recognition task, and fine-grained vehicle recognition can
be divided into two parts, representation learning model and part-based model. Many
approaches are proposed [60] that utilize alignment and part localization for feature ex-
traction of main parts and then those parts are compared for vehicle re-id. Xiao et al. [61]
studied weakly supervised way in fine-grained domain using reinforcement learning to get
discriminative parts of vehicle. In addition, Lin et al. [62] presents a bilinear architecture
to get the pair of local features in which output descriptors of two networks are merged
in an invariant way. Boonsim et al. [63] presents an approach for fine-grained recognition
of vehicles at night. The authors utilize shape and lights of vehicle visible in night and
relative position to identify model and make of a vehicle, which are visible from the front
and rear side.

In fine-grained recognition, local region features are extracted from different points
such as logo, annual inspection stickers, and decorations, to make system more efficient
and robust various attributes of vehicles are also incorporated like color, model, and type
information. For example, in different vehicles with similar global appearance in Figure 11,
all the vehicles are different in each column. The differences between each vehicle are
pointed out with red circles. From Figure 11 it can also be seen that the differences between
similar global appearance vehicles lie in some local regions.
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Figure 11. Shows vehicles that are same in global appearance but differentiated by local regions that
are marked in red circle.

3.5. View-Aware-Based Vehicle Re-Identification

Most of the above discussed deep learning features [38,39,45] are general, and these
learned features end at multiple fully connected layers. Despite that, all these approaches
performance is not bad. But these approaches are not designed for a specific problem
related to view point variation. It is a central challenge in vehicle re-id task. Vehicle re-id is
closely related to person re-id, however, intra-class variation is a major problem in person
re-id in which the same person looks different by changing viewpoint. Zhao et al. [64]
designed a novel approach that achieved satisfactory results and the method was based
on person body parts guided for re-id. Wu et al. [65] proposed a study with pose prior
that made identification efficient and robust to viewpoint. Zheng et al. [66] proposed
the pose box structure that generates the pose estimation after affine transformations. It
is also challenging and crucial in vehicle re-id, because image viewpoint is the same as
a consequence of vehicle rigid motion. Wang et al. [67] studied the orientation invariant
feature embedding to solve the issue of viewpoint variation influence on vehicle re-id
system. Prokaj et al. [68] proposed a pose estimation-based approach to handle multiple
viewpoint problem. Yi Zhou et al. [69] studied uncertainty in the viewpoint of vehicle re-id
system and designed end to end deep learning-based architecture on Long Short-Term
Memory (LSTM) bi-directional loop and concatenated CNN, in this model author takes
full advantage of LSTM and CNN to learn the different viewpoints of vehicle. And also,
there are many more approaches are proposed to handle the view point variation issue in
vehicle re-id such as adversarial bi-directional long short-term memory (LSTM) network
(ABLN) [70], spatially concatenated convolutional network (SCCN) and CNN-LSTM bi-
directional loop (CLBL) [69]. However, all these approaches need vehicle datasets. Every
vehicle image is densely sampled camera viewpoints. Despite that, it is hard to gain in
real-time camera surveillance systems. Therefore, there is still ample room for vehicle re-id
by thoroughly considering viewpoint variations.

3.6. Generative Adversarial Network-Based Vehicle Re-Identification

GAN [71] is one of the hot technique in semi-supervised and unsupervised learning
algorithms. It is proposed by Goodfellow by deriving backpropagation signals through
a competitive process involving a pair of networks. GAN can be adopted in different appli-
cations, like style transfer, image synthesis, image super-resolution, semantic image editing,
image super-resolution, classification and person/vehicle re-id. The GAN-based vehicle
re-id flow is shown in Figure 12. At present, there have been many papers that adopt
GAN to solve the problems of vehicle re-id. The existing datasets have low diversities and
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small scales, which leads to poor generalization performance on the trained models. To
solve this problem. Generative Adversarial Network (GAN) in Object re-id is among the
latest research trends in the deep learning approaches. GANs achieved significant perfor-
mance in in many fields such as translation [72] and image generation [73]. Furthermore,
recently GANs are also utilized for re-id problems (person re-id and vehicle re-id) [74,75].
Zheng et al. [76] proposed a method in which they used the DCGAN [73] with Gaussian
noises to generate unlabeled person images before training. Wei et al. [77] studied a PT-
GAN to minimize the domain gap by transferring person images between different styles.
Zhou et al. [78] proposed GAN based model to solve cross-view vehicle re-id problem by
generating vehicle images in different viewpoints. Lou et al. [74] designed a model to
generate the same and cross-view vehicle images from original images to facilitate training
model. Zhou et al. [78] proposed a conditional generative network to generate cross-view
images from desired vehicle pairs.

Figure 12. Vehicle re-id system based on GAN diagram.

Aihua et al. [79] proposed a framework that primarily comprises view transform and
vehicle re-id model. The view transform model comprises of GAN to generate vehicle
images in different views to overcome the viewpoint related issue. The vehicle re-id model
consists of one backbone, three subnetworks, and one embedding network. The overall
framework is illustrated in Figure 13.

Figure 13. Overview of deep feature representations guided by the meaningful attributes.

3.7. Attention Mechanism

The neural networks at some extent imitate human brain actions in simple way. At-
tention Mechanism is also an effort to develop a technique that concentrate on selective
thing/actions that are relevant to task and neglecting the others in neural networks. Cur-
rently, researchers are trying hard to design an efficient attention-based neural network for
vision-related applications. Such as image classification [80], fine-grained image recogni-
tion [81], action recognition [82], and re-id [83]. The commonly followed strategy in these
approaches is integrating a hard part selection subnet work or soft mask branch into the
deep networks. Such as Zhao et al. [84] studied the part-localization CNN for predicting
salient parts and features of these parts exploit for person re-id. Wang et al. [80] utilizes
residual learning technique [41] to develop the Residual Attention unit for soft mask learn-
ing and gained significant image classification results. Though, only the soft pixel-level
attention has very small participation in the performance of vehicle re-id task. It gives only
global information like vehicle logo, annual inspection stickers, and personalized decora-
tions. So, they presented joint learning framework for vehicle re-id in which both soft and
hard level attentions are utilized Furthermore, Guo et al. [85] proposed a model with one
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trunk and two salient part branches for hard part level attention. Trunk branches extracts
the global features of vehicle and salient branches extracts the features from vehicle head
parts and windscreen. For soft pixel level attention residual attention modules are inserted
into trunk and salient branches. Lastly, global and salient part features of vehicle are put
to gather for effective feature representation with the supervision of multi-grain ranking
loss for vehicle re-id task and complete framework is shown in Figure 14. Furthermore,
comparison of different attention mechanism-based approaches are shown in Table 2.

Figure 14. An overview of Two-level Attention network supervised by a Multi-grain Ranking loss (TAMR) structure.

Table 2. Comparison of different attention mechanism-based approaches.

Method and Reference mAP% Rank-1 (%) Rank-5 (%)

RNN-HA [86] 56.80 74.79 87.31
SCAN [87] 49.87 82.24 90.76

AAVER [88] 61.18 88.97 94.70
PGAN [89] 79.30 96.50 98.30

3.8. License Plate-Based Vehicle Re-Identification

Vehicle re-id using license plate is simply the system’s ability to automatically de-
tect, extract, and recognize license plate characters automatically from vehicle image.
License plate recognition (LPR) is a conventional method to identify a specific vehicle [90].
An automatic LPR system is mainly divided into two parts, first license plate detection and
second, interpreting the vehicle license plate image into numerically readable form. There
are many approaches proposed in past for LPR. However, it is still challenging due to some
reasons like vehicle image is not captured perfectly, some characters may be occluded,
illumination, variation in size of an image, camera distance and zooming. Li and Shen [91]
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studied a sequence labelling-based approach to recognize the vehicle license plate without
character-level segmentation using recurrent neural networks (RNN). The input feature
sequence to RNN is extracted using a nine-layer CNN. Super-resolution is also proposed to
restore a license plate image to improve performance. Shi et al. [92] designed convolutional
recurrent neural network (CRNN) for scene text recognition that incorporates feature
extraction, transcription and sequence modeling into a unified framework. Moreover,
Figure 15 shows the basic steps of license plate-based vehicle re-id.

Figure 15. The flow of the license plate-based vehicle recognition.

4. Spatio-Temporal Cues-Based Vehicle Re-Identification Approaches

Introducing contextual information in vehicle re-id system can increase the efficiency
and reduces irrelevant vehicle gallery images. As compared to person, for vehicle it is
necessary to follow traffic rules for instance, practically vehicle follows speed limits, routes,
and traffic lanes, so in this scenario vehicle moving in between different cameras at specific
time and location helps a lot in vehicle re-id. Spatio-temporal cues are greatly examined for
various objects association in surveillance camera network [93]. As in [94] concluded few
key findings. Firstly, one specific captured vehicle in one camera cannot appear at more
than one location at the same time. Secondly, along the time vehicle is moving continuously
based on these finds, authors use location and time slots to eliminate irrelevant vehicle
images from list as demonstrated in Figure 16. Ellis et al. [93] proposed approach that
trains the model on temporal and topological transitions of trajectory data and is acquired
from surveillance camera network. Loy et al. [95] presented a method for obtaining the
spatio-temporal topology of surveillance camera network using multiple camera correlation
analysis. Furthermore, time and location information is also exploited for vehicle re-id task.
Liu et al. [96] studied a spatio-temporal affinity method for quantifying different pairs of
vehicle images. Shen et al. [97] also introduces the spatio-temporal path data for vehicle re-id.
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Figure 16. Depicts the spatio-temporal information.

5. Hybrid Methods-Based Vehicle Re-Identification

To further enhance the robustness and efficiency of vehicle re-id system researchers
have proposed the approaches in which they combined the two or more different tech-
niques, for instance Liu et al. [42] proposed a framework with name PROVID, in this
framework author not only consider the visual appearance of vehicle for re-id system, but
also exploits the license plate and spatio-temporal cues of vehicle as shown in Figure 17.
Jiang et al. [98] studied vehicle re-id algorithm using appearance and contextual informa-
tion, author examines the multiple attributes during training like vehicle model, color, and
vehicle image features individual respectively and sort vehicles on the bases of spatio-
temporal cues. Shen et al. [97] designed a two-step architecture, a pair of query vehicle
images with contextual information and visual temporal path are produced using Markov
Random Fields (MRF) chain model, and then the similarity score is generated.

Figure 17. The architecture of the PROVID framework.

6. Vehicle Re-Identification Benchmark Datasets

Datasets are the key components to measure the performance of vehicle re-id system
and should reflect the practical surveillance camera data. We cannot avoid some factors
like occlusion, background clutter, change in illumination etc. to evaluate the approach [99].
However, multiple benchmark datasets are available, some well-known like VeRi-776,
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VehicleID, etc. that are prepared by the research community to evaluate vehicle re-id
techniques. Table 3 and Figure 18 lists the commonly used vehicle re-id dataset with
attributes. Furthermore, a brief description of the most popular datasets is as follows:

Table 3. Characteristics of publicly available datasets.

S. No Dataset Year
Total No.
of Images

No. of
Vehicle Models

No. of
Vehicles

No. of
Viewpoints

No. of
Cameras

1 VeRi-776 [43] 2016 50,000 10 776 6 18
2 PKU VehicleID [44] 2016 221,763 250 26,267 2 12
3 Vehicle-1M [100] 2018 936,051 400 55,527 ...... ......
4 BoxCars21k [35] 2016 63,750 148 21,250 4 ......
5 VehicleReId [53] 2016 47,123 ...... 1232 ...... ......
6 CompCars [101] 2015 136,726 1716 ...... 5 ......
7 VRIC [102] 2018 60,430 ...... 5622 ...... 60
8 VRID [103] 2017 10,000 10 1000 ...... 326
9 VERIWild [104] 2019 416,314 ...... 40,671 Unconstrained 174

Figure 18. Depicts the number of total images per vehicle re-id dataset.

VeRi-776: [43] VeRi-776 is a publicly available vehicle re-id dataset, and often adopted
by the computer vision researcher community. Dataset images are gathered in real scenario
using surveillance cameras, and the total images in dataset are 50,000 of 776 different vehicles.
Each captured vehicle images have 2 to 18 viewpoints with different resolution, occlusion,
and illumination. Furthermore, spatio-temporal relations and license plate are annotated for
all vehicles. To make dataset more robust, images are labelled with color, type, and vehicle
model. In Figure 19 various types of vehicles from VeRi dataset are shown.

Figure 19. Depicts the sample images of VeRi-776 dataset.
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PKU VehicleID: [44] VehicleID dataset is developed by Peking University with the
funding of the Chinese national natural science foundation and national basic research
program of China in the national engineering laboratory for video technology (NELVT).
The vehicle dataset consists of 221,763 total images of 26,267 vehicles, and all the images are
captured during daytime in a small town of China with multiple surveillance cameras with
10,319 vehicles model information i.e “Audi A6L”, “MINI-cooper” and “BMW 1 Series” are
labeled manually. In Figure 20 different vehicles from PKU vehicleID dataset are shown.

Figure 20. Depicts the sample images of PKU VehicleID dataset.

Vehicle-1M: [100] Vehicle-1M dataset is developed by the University of Chinese
Academy of Sciences in the National laboratory of pattern recognition, Institute of Automa-
tion. This benchmark dataset contains 55,527 vehicles with 400 different vehicle models,
and the total captured images are 936,051. Surveillance cameras capture all the images in
China’s town at day and night time and consist of a vehicle’s rear and head view. Moreover,
each image in this dataset is labeled with a model, make, and vehicle year. Images from
Vehicle-1M are shown in Figure 21.

Figure 21. Depicts the sample images of vehicle-1M dataset.

BoxCars21k: [35] BoxCar116k dataset is developed using 37 surveillance cameras,
and this dataset consists of total images 116,286 of 27,496 vehicles. For the preparation of
dataset, 45 brands of the vehicle are used. Moreover, captured images of the vehicle in the
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dataset are in an arbitrary viewpoint, i.e., side, back, front, and roof. All vehicle images in
the dataset are annotated with 3D bounding box, model make, and type. However, some
sample images are shown in Figure 22.

Figure 22. Depicts the sample images of BoxCar21k dataset.

VehicleReId: [53] VehicleReId dataset provides 47,123 vehicle images and all these
images are extracted from five different video shots by using two surveillance cameras, out
of total images 24,530 vehicle image pairs are human annotated.

CompCars: [101] CompCars dataset consists of two types of image nature (1) Web-
nature images (2) Surveillance-nature images. There are total of 136,726 web-nature images
in which there are 163 car makers with 1716 car models. However, in surveillance-nature,
the total car images are 50,000 that are captured from the front view. Samples of CompCars
dataset are shown in Figure 23.

Figure 23. Depicts the sample images of CompCars dataset.
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VRIC: [102] VRIC contains 5622 vehicles with 60,430 total images with different traffic
road surveillance cameras and images captured at day and night. Images with different angles,
viewpoints, occlusions and illuminations from VRIC dataset are depicted in Figure 24.

Figure 24. Depicts the sample images of VRIC dataset.

VRID: [103] This dataset contains total 10,000 images and specially developed for
vehicle re-id with 326 surveillance cameras the VRID images were captured from 7 a.m.
to 5 p.m. for one week. In the development of the dataset there are 1000 vehicles used
with 10 commonly used vehicle models, and at least 10 times each vehicle is captured
over a camera network in Guangdong city, China. Surveillance cameras have been fixed
in a practical environment with arbitrary directions and angles; therefore, dataset images
have various resolutions and poses distributed from 400 × 424 to 990 × 1134 pixels.

VERI-Wild: [104] Collects a large-scale vehicle re-id dataset in the unconstrained
environment. For dataset development, an existing large CCTV system is utilized. It
consists of 174 cameras across, recorded till one month (30 × 24 h). The CCTV cameras
are spread over a large city consists of 200 km2. The dataset includes 12 million vehicle
raw images, and 11 volunteers cleaned the dataset for one month. After data cleaning
and annotation, 416,314 vehicle images of 40,671 identities are collected. VERI-Wild
dataset images with viewpoint changes, illumination variations, occlusion, and background
variations are presented in Figure 25, and statistics are shown in Figure 26.

Figure 25. Depicts the sample images of VERI-Wild dataset.
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Figure 26. Illustrates the characteristics of VERI-Wild dataset. (a) The number of identities across
multiple surveillance cameras; (b) Total number of IDs captured in different slots of each day;
(c) Division of vehicle types; (d) Division of vehicle colors.

7. Challenges Regarding Vehicle Re-Identification

The vehicle re-id is among an essential and challenging task, and it is defined as,
either any specific vehicle captured in one camera has already appeared over multiple
camera network or not. With the increasing need for automated video analysis, the vehicle
re-id receives increasing attention these days in the computer vision research community.
Therefore, some key factor and their effects on performance are explained following.

• Insufficient data: For vehicle re-id systems each single image should match with
gallery images, so it is very hard to get sufficient data for good model learning of
each intra-class variability. However, it is also major challenge that dataset should
reflect the real-world surveillance, currently, most of the datasets available are consists
of non-overlapping views with a limited number of cameras; as a result, datasets
have few viewpoints with unchanged regulation, and most of the publicly available
datasets are consists of limited instances and classes that influence the performances.

• Inter-class similarity: This problem arises due to different automobile manufacturing
companies have a similar visual appearance, as a result, two different make, model, and
type of vehicles looks similar from rear or front side, as shown in Figure 27. [105,106].

• Intra-class variability: due to the unconstrained environment and viewpoint, the same
vehicle looks different over different geographical locations of the surveillance camera
network [107], as depicted in Figure 27.

• Pose and viewpoint variations: Due to the camera calibration, viewing angle and
location on the roadside, captured vehicle image appearance varies, and the same
vehicle looks different and different looks same. A learned model on the rear pose
of a vehicle will probably fail to detect a vehicle’s front, side pose. Furthermore, the
effect of viewpoint change on vehicle is shown in Figure 28.
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Figure 27. Demonstration of two main challenges in vehicle re-id. (a) Intra-class variance;
(b) Inter-class similarity.

Figure 28. Images of the same vehicle taken from different cameras to illustrate the appearance changes.

• Partial occlusions: If some part of an input vehicle is hidden by any object or vehicle
in congestion as result, some key discriminative parts are not visible and the matching
fails probably. Moreover, due to these features generated by an occluded vehicle
image is corrupted [108].

• Illumination changes: Vehicle captured images illumination varies surveillance camera
to surveillance camera and surveillance camera scenes and also illumination changes
on the same surveillance camera due to different time slots like day and night. The
same vehicle observed in different lighting conditions can have a color difference
on the appearance because of the unconstrained environment [109]. Vehicles lights
also have an effect on image illumination, so vehicle appearance changes at different
a period of time and multiple camera network [110].

• Resolutions variation: Changes in resolution in pair of same vehicle occurs because
of camera calibration, and another factor is various old surveillance cameras with
different heights are fixed on the roadside that give a different-resolution,

• Deformation: Due to load or accident, vehicle shape, and body changes.
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• Background clutter: This problem occurs in vehicle re-id when the vehicle’s color and
image background is the same.

• Changes in color response: The color attribute is one of the key parameters in vehicle
re-id, but surveillance cameras color response changes because of camera settings
features [110].

• Lighting effects: Specular reflection and shadows of the vehicle body generate the
noise in vehicle image feature descriptor. If vehicle shadow is larger, there are more
chance of inconsistency and noise in feature descriptor. As compared to the practical
environment in a controlled environment, the lights and specular reflections can be
controlled; but practically, we cannot control shadows, and it is one of the major
problems in extracting information from the vehicle image

• Long-term re-id: If the same vehicle is captured after a long time or captured at
different locations, then there is a high possibility that the vehicle looks different shape
wise due to extra carry load/object.

• Cross dataset vehicle re-id: In vehicle re-id systems training and testing of model is
performed on same dataset, but it is practically infeasible, due to significant difference
between training and testing data and model may not generalize well.

• Insufficient temporal data: Due to the absence of unconstrained environmental in-
formation in datasets, it is impossible to exploit temporal data. However, temporal
information can play an important role in the performance of vehicle re-id system.

• Vehicle re-id system scalability: Scalability means the system can adapt to varying
factors while maintaining the performance, such as storing large gallery sizes that are
constantly increasing and computational devices that efficiently analyze data.

• Real-time processing: Practical applications require real-time video processing, and
the time constraint is the main challenge in vehicle re-id systems.

• Data labeling: This is a common difficulty in the computer vision field. Training
a good model robust to all variations in a supervised way couldn’t be done without
a sufficient amount of annotated data. For a large camera network, manually collecting
and annotating the amount of data from each surveillance camera is expensive.

• A small number of images per identity for training: Since one vehicle may appear
very limited times in a camera network, it’s difficult to collect much data of one
single vehicle. Thus, usually data is insufficient to learn a good model of each specific
vehicle’s intra-class variability.

• A large number of candidates in gallery set: A camera network may cover a large
public space, like a parking lot. Thus, there can be a huge amount of candidate for
a given re-id query, and the number of candidates increases over time. The computa-
tion for matching with a large gallery set becomes expensive.

• Camera setting: Due to different camera settings and features, the same vehicle image
captured by different cameras shows color dissimilarities. There may also be some
geometric differences. For example, the shape of a vehicle may be observed with
varying aspect ratios.

• Computation: All the proposed methods are based on deep learning. The computation
for the training step with back propagation is more expensive than classical methods.
In most cases, a powerful GPU is advisable for training, and more computation and
memory resources are thus necessary. In applications with real-time constraints and
without GPU, a very deep network may not be suitable for inference.

8. Evaluation Metrics

In the re-id task, the target object’s images are mostly aligned and cropped. How-
ever, the vehicle re-id task is same as the instance retrieval. Given the input image, the
candidates with a similar input image in the gallery set are required to be placed in the top
positions within a ranking list. To measure the performance of vehicle re-id approaches, the
cumulative matching characteristics (CMC), curve HIT@1 and HIT@5 are commonly used
by researchers. CMC curve provides the probability that an input image identity appears
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in a different-sized gallery set as shown in Figure 29. The cumulative number of correctly
matched inputs is demonstrated based on the rank list in which inputs are re-identified.
Moreover, HIT@1 is precision at rank-1 and HIT@5 is precision at rank-5. Rank is utilized to
measure the matching score of test image to its own class, and higher value of rank indicates
the improved performance of the system. Where the number of correctly re-identified input
images in rank 1 is q(i), the CMC value for rank i can be defined as:

CMC(i) =
i

∑
r=1

q(r) (4)

where r represents the rank index. CMC curve not only computes the rank-1 but also places
the correctly matched images top ranks. Therefore, the CMC curve is a suitable option to
describe the vehicle re-id performance of different approaches. Besides, CMC curves, if
multiple ground truths for each query image in the gallery set are available, mean average
precision (mAP) is used to measure the overall performance for vehicle re-id system. For
the given query image, the average precision (AP) can be defined as:

AP =
∑n

k=1 P(k)× G(k)
Ngt

(5)

where n is the number of test tracks and Ngt represents the number of ground truths. P(k)
shows the precision at cut-off k in the ranking lists. G(k) equals 1 if the k-th match is true,
otherwise 0. The mAP measures the overall performance of vehicle re-id system. Therefore,
the mAP can be defined as:

mAP =
∑Q

q=1 AP(q)

Q
(6)

where Q denotes the number of queries.

Figure 29. Cumulative matching characteristics (CMC) curve.

Another way by which vehicle re-id techniques performance can be evaluated is the
confusion matrix. A confusion matrix consists of various columns and rows; it depends on
the number of classes. It’s diagonal represents the recognizing accuracy or true classification
and off-diagonal express the misclassification.
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9. Performance Comparison of Recently Proposed State-of-the-Art Approaches

The first phase in vehicle re-id is to decide whether the given vehicle image exists in
the gallery set or not. In other terms, before considering for a similar match, the vehicle
re-id system should have the capacity to decide whether the given vehicle probe image
is a part of the gallery set or not. This approach is known novelty detection and it needs
that vehicle re-id systems to have the ability to discard the miss-matched vehicle images.
Usually in vehicle re-id systems, once the gallery set images are ranked in comparison
with the given query image, the query image belongs to the gallery set if the similarity
distance is higher than an operating threshold. We give a summary of the vehicle re-id
mAP of some state-of-the-art methods including CMGN+Pre+Track [111], DF-CVTC [79],
PROVID [42], and RAM [112] etc. on VeRi-776 dataset mentioned above. We have chosen
VeRi-776 dataset for comparison because it is consisting of varying illumination, more
viewpoints, and resolution. In short, this dataset fulfills most of the aspects of real-world
camera surveillance data. The statistics about this dataset have been provided in Table 3.

However, Table 4 provides recently proposed state-of-the-art approaches on VeRi-776
dataset. For comparison, we measure the performances of each method in mAP, HIT@1
and HIT@5. From Table 4, and Figure 30 we can observe that mAP of different models is
increasing during the years 2016 to 2020. As on VeRi-776 dataset from the years 2016 to
2020, the performances of state-of-the-art methods have improved from 12.76% to 85.20%,
with an increase of 72.44%. Moreover, Figure 31 shows the CMC of different state-of-the-art
approaches on VehicleID dataset with different test size.

Table 4. Performance analysis of some proposed approaches in state-of-art on VeRi-776.

Reference Venue Approach mAP HIT-1% HIT5%

Year 2020

L. Xiangwei et al. [113] Mobile Networks and
Applications JPFRN 72.86 93.14 97.85

Z. Aihua et al. [114] Neural Computing and
Applications MSA 62.89 92.07 96.19

Q. Jingjing et al. [115] Measurement Science and
Technology SAN 72.5 93.3 97.1

W. Honglie et al. [116] Applied Sciences LFASM 61.92 90.11 92.91

Z. Jianqing et al. [117] IEEE Internet of Things JQD3Ns 61.30 89.69 95.17

Z. Hui et al. [118] IEEE ITNEC AAN+triplet +focal+range (Model-3 75.14 5.17 97.80

O. Daniel et al. [119] IEEE Access MidTriNet+UT ...... 89.15 93.74

L. Sangroket al. [120] CVPRW StRDAN (R+S, best) 76.1 ...... ......

J. Zhu et al. [121] IEEE TITS QD-DLF 61.83 88.50 94.46

L. Xiaobin et.al. [122] IEEE Trans. on Image Processing GRF+GGL 00.61 0.89 0.95

Year 2019

A. A-Acevedo et al. [111] IEEECVPR CMGN+Pre+Track 85.20 96.60 ......

F. Wu et al. [123] Image Communication SSL+re-ranking 69.90 89.69 95.41

S. Ahmed et al. [124] IEEE ICIP Mob.VFL-LSTM + Mob.VFL 59.18 88.08 94.63

G. Rajamanoharan et al. [125] IEEE CVPR MTML-OSG 68.3 92.0 94.2

P. Khorram et al. [88] ArXiv AAVER+ResNet-101 61.18 88.97 94.70

A. Zheng et al. [79] ArXiv DF-CVTC 61.06 91.36 95.77

Y. Lou et al. [74] IEEE TIP Hard-View-EALN 57.44 84.39 94.05

J. Hou et al. [126] Neurocomputing Baseline + MLL + MLSR 57.52 87.19 94.16

B. He et al. [127] IEEE CVPR Part-reg. discr. feature preserving 74.3 94.3 98.7

X. Zhong et al. [128] ICMM PGST+visual-SNN 69.47 89.36 94.40

R. Kumar et al. [107] IJCNN BS 67.55 90.23 96.42
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Table 4. Cont.

Reference Venue Approach mAP HIT-1% HIT5%

Year 2018

X. Liu et al. [42] IEEE Trans. on Multimedia PROVID 53.42 81.56 95.11

Y. Bai et al. [8] IEEE Trans. on Multimedia GS-TRE loss W/mean VGGM 59.47 96.24 98.97

J. Zhu et al. [129] IEEE Access JFSDL 53.53 82.90 91.60

Y. Zhou et al. [70] IEEE WACV ABLN-Ft-16 24.92 60.49 77.33

Y. Zhou et al. [69] IEEE TIP SCCN-Ft+CLBL-8-Ft 25.12 60.83 78.55

N. Jiang et al. [98] IEEE ICIP App +Color +Model + Re-Ranking 61.11 89.27 94.76

J. Zhu et al. [130] MM Tools and Applications VRSDNet 53.45 83.49 92.55

X. Liu et al. [112] IEEE IME RAM 61.5 88.6 94.0

D. Xu et al. [110] ICIMCS MTCRO 62.61 87.96 94.63

D. Sun et al. [131] Springer ICBICS ResNet-50 +GoogleNet,+ F.F via CSR 58.21 90.52 93.38

S. Teng et al. [87] Springer PCM Light_vgg_m+SCAN 49.87 82.24 90.76

Y. Zhou et al. [83] CVPR VAMI 50.13 77.03 90.82

Xiu-Shen et al. [86] ACCV RNN-HA (ResNet) 56.80 74.79 87.31

Year 2017

Y. Zhou et al. [78] BMVC XVGAN 24.65 60.20 77.03

Y. zhang et al. [46] IEEE ICME VGG+C+T 58.78 86.41 92.91

Z. Wang et al. [67] ICCV OIF+ST 51.4 92.35 ......

Y. Shen et al. [97] ICCV Siamese-CNN-Path-LSTM 58.27 83.49 90.04

Y. Tang et al. [132] IEEE ICIP Combining Network 33.78 60.19 77.40

Year 2016

X. Liu et al. [43] IEEE ICME FACT 18.75 52.21 72.88

H. Liu et al. [44] CVPR VGG 12.76 44.10 62.63

X. Liu et al. [96] ECCV FACT + Plate-SNN + STR 27.77 61.44 78.78

L. Yang et al. [101] CVPR GoogLeNet 17.89 52.32 72.17

Figure 30. Demonstrates the performance comparison of different state of the art approaches.
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Figure 31. Demonstrates the performance comparison of different state-of-the-art approaches on VehicleID dataset. (a) Test
size = 800; (b) Test size = 1600; (c) Test size = 2400.

10. Conclusions & Way Forward

Vehicle re-id is one of the most critical and challenging area in the ITS. Despite
high significance, it is not well explored compared to a similar problem that is person
re-id. In this review paper, the authors present recent advancements being done for ve-
hicle re-id. Moreover, to draw a detailed picture of study, the authors discuss different
vehicle re-id technologies, especially vision-based, including appearance, license plate,
spatio-temporal, etc., along with the quantitative and qualitative comparison of differ-
ent vision-based methods on VeRi-776 and VehicleID datasets. In addition, this review
provides comprehensive synopses of publicly available benchmark datasets utilized for
performance evaluation with a brief description of re-id evaluation techniques. This paper
also presents applications as well as the main challenges of camera-based vehicle re-id such
as complex and unconstrained environment, dirt, snow, occluded image, blurry image,
and sunshine, etc., along with varied road topology that affects the performance.

There are many aspects of vehicle re-id that can be improved. In the future, a reader
can explore possibilities to enhance the overall performance of vehicle re-id. Moreover,
there is significant potential to extend the approach with some of the following concepts:

CNN works on edges, shapes, and original vehicle features, but the relationship be-
tween these features is not considered; hence, the model performance is often unsatisfactory
when the vehicle image is rotated or captured with a different rotation. However, a recent
capsule network [133] is introduced, which showed improved performance in handling
different poses, orientations, and occluded objects.

Secondly, attention-based deep neural network models have gained encouraging
results on various challenging tasks, including machine translation [134], caption genera-
tion [135], and object recognition [136]. However, attention-based neural network models
are still not well investigated for vehicle re-id.

Lastly, due to the development of large-scale real-world data sets, the vehicle re-id
system’s performance is significantly increased. However, existing datasets offer a specific
range of vehicle images with correlated data that causes over-fitting due to over-tuned
parameters on specific data. Therefore, the system cannot efficiently generalize other
data. A reader can develop large scale real-world surveillance vehicle datasets in an
unconstrained environment with multiple views to enhance the training of the state-of-the-
art approaches for performance improvement.

Concisely, Vehicle re-id is a demanding and challenging area with massive opportunities
for improvement and research. This review paper attempts to provide an overview of the
vehicle re-id problem, its challenges, and applications, and, simultaneously, present a way
forward. We hope this paper will be valuable for anyone who wants to work in this area.
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Abstract: The detection method based on anchor-free not only reduces the training cost of object
detection, but also avoids the imbalance problem caused by an excessive number of anchors. However,
these methods only pay attention to the impact of the detection head on the detection performance,
thus ignoring the impact of feature fusion on the detection performance. In this article, we take
pedestrian detection as an example and propose a one-stage network Cascaded Cross-layer Fusion
Network (CCFNet) based on anchor-free. It consists of Cascaded Cross-layer Fusion module (CCF)
and novel detection head. Among them, CCF fully considers the distribution of high-level information
and low-level information of feature maps under different stages in the network. First, the deep
network is used to remove a large amount of noise in the shallow features, and finally, the high-level
features are reused to obtain a more complete feature representation. Secondly, for the pedestrian
detection task, a novel detection head is designed, which uses the global smooth map (GSMap) to
provide global information for the center map to obtain a more accurate center map. Finally, we
verified the feasibility of CCFNet on the Caltech and CityPersons datasets.

Keywords: pedestrian detection; machine learning; end-to-end; anchor-free; feature reuse

1. Introduction

Pedestrian detection is a crucial but challenging task in computer vision and mul-
timedia, which has been applied in various fields. The goal of pedestrian detection is
to find all pedestrians in images and videos. Early detection methods [1–6] show that
directly using the features of the backbone output is not conducive to the detection of small
objects in the image. Recent detection methods show that obtaining high-resolution and
high-quality feature representations is the key to improving detection results. As we all
know, the low-level features of the backbone contain accurate small object information,
while the high-level features contain accurate large object information. Therefore, how
to more effectively integrate the characteristics of different stages has been the focus of
research on pedestrian detection in recent years.

According to the feature detection method, we divide the feature fusion methods into
FPN-like (Like Feature Pyramid Networks) methods and FCN-like (Like Fully Convolu-
tional Networks) methods. The specific difference is that the FPN-like methods detects
features of different scales separately, while the FCN-like methods only detects final feature
after the fusion of features of different scales. The basic idea of the FPN-like methods is
proposed by Single Shot MultiBox Detector (SSD) [2], and its main process is to detect ob-
jects in feature maps at different resolutions. However, SSD ignores the spatial information
in the shallow feature map, and thus loses the information of small objects in the shallow
feature. To improve the recognition performance of small objects, Feature Pyramid Net-
works (FPN) [7] combines high-level feature maps with strong semantic information and
low-level feature maps with weak semantic information but rich spatial information. Some
recent works have proposed some FPN-like methods [8–14]. In order to more effectively
integrate features of different scales. However, these methods mainly focus on the features

Mathematics 2022, 10, 139. https://doi.org/10.3390/math10010139 https://www.mdpi.com/journal/mathematics53



Mathematics 2022, 10, 139

of adjacent stages in the feature fusion process, and the deep features containing rich se-
mantic information gradually weaken during the top-down process. Therefore, high-level
semantic information is lost when detecting shallow features, so that small objects in the
image can not be effectively detected.

To avoid the shortcomings of FPN-like methods, some methods directly fuse features
of different scales, and then only need to detect the fused features. The origin of this
type of method comes from Fully Convolutional Networks (FCN) [15], which combines
the features of different stages to obtain feature maps containing semantic information
of different scales. In this paper, structures similar to FCN are collectively referred to as
the FCN-like methods [15–24]. Compared with FPN-like methods, FCN-like methods
have lower computational complexity and faster computational speed, while avoiding
the situation that small objects can not be detected due to loss of high-level semantic
information. These methods have the same weights for feature fusion at different scales in
the feature integration process. In this case, the noise in the shallow features will directly
affect the accuracy of the final feature. Previous work Semantic Structure Aware Inference
(SSA) [25] proved that the information of small objects is not only in the shallow features,
but there is also a small amount of small object information in the deep features. However,
the noise information in the shallow network is huge, so how to reduce the impact of the
noise information in the shallow features on the detection accuracy is a problem that has
not been solved by the current FCN-like methods.

Toward this end, this work takes pedestrian detection as an example and proposes
a novel Cascaded Cross-layer Fusion Network (CCFNet), which consists of backbone
network, Cascaded Cross-layer Fusion module (CCF), and novel detection head. The basic
process framework is shown in Figure 1. First, the CCF merges the features in different
stages in the backbone to obtain the final feature map and then performs detection on
the feature map. Different from the previous method, CCF uses deep features to denoise
shallow features and then reuses deep features to increase the semantic information in
the final feature map. To improve the running speed of the algorithm, CCFNet adopts
the anchor-free method, based on the detection of pedestrian center points, does not
generate anchor points and anchor boxes, and does not match multiple key points. In
the detection head, we introduced the center map and global smooth map (GSMap) of
the object respectively to reduce the impact of complex scenes and object crowding on
the detection performance. Traditional anchor-free detection head only rely on scale map
to solve the problem of ‘where’ and ‘how size’ the object is. This approach increases the
difficulty of training the detector. Therefore, we first introduce the center map to undertake
the task of ‘where the object is’, while the scale map only needs to undertake the task of ‘how
size the object is’. The center map is obtained by convolution, so the center map is obtained
by local feature inference. The finiteness of local features limits the accuracy of the center
map, so we introduce global smooth map to provide global information for the center map.
The specific process is shown in the detection head in Figure 1. Extensive experimental are
conducted on the Caltech and CityPersons datasets. The superior performance of CFFNet
for pedestrian detection is demonstrated in comparison with the state-of-the-art methods.

The main contributions of this work are summarized as follows:

(1) We propose a novel Cascaded Cross-layer Fusion module (CCF) to reduce the noise
information in the shallow features through high-level semantic information, and
at the same time reuse high-level semantic information to strengthen the high-level
semantic information in the final feature map;

(2) The center map provides the confidence of each object center point, but the confidence
is obtained from local information. Therefore, this paper proposes global smooth map
to provide the center map with global information, thereby improving the accuracy of
the center map;

(3) The feasibility of CCFNet is verified on the Caltech and CityPersons Datasets.
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Figure 1. The overall structure of Cascaded Cross-layer Fusion Network (CCFNet). It includes two
parts: CCF module and detection head. CCF cascades and reuses features to generate low-level
feature maps with contextual semantic information. This feature map generates center map, scale
map, and global smooth map through the detection head. And generate the new center map with
global information by integrating center map and global smooth map. Finally, locate and mark the
objects.

2. Related Work

2.1. Anchor-Base and Anchor-Free

The object detection model can be divided into anchor-based detection network and
anchor-free detection network. The anchor-based detection network uses anchor points
and anchor boxes to generate high-quality prediction regions, then classifies and regresses
the prediction regions, which have high accuracy and can extract richer features. Such
as Faster Regions with CNN Features (Faster R-CNN) [1], Cascade Regions with CNN
Features (Cascade R-CNN) [26], SSD [2], You Only Look Once Version 2 (YOLOv2) [27], etc.
However, anchor-base detection network requires manual intervention due to the number
of anchor points and the large aspect ratio of the anchor box, which has disadvantages such
as too many parameters and insufficient flexibility.

Therefore, people study methods that do not rely on anchor points and anchor boxes,
this method is called the anchor-free detection network. The anchor-free detection network
are divided into two types: anchor-free detection network based on key points and anchor-
free detection network based on object center. The former generate an object bounding box
through a set of predefined or self-learned key points (usually a set of corner points of the
bounding box) to locate the object, such as CornerNet-Lite [28] and ExtremeNet [29], etc.
The latter locates the object by calculating the distance from the object center to the four
sides of the bounding box, such as Center and Scale Prediction (CSP) [23], CenterNet [30],
etc. The anchor-free detection network based on object center is similar to the anchor-base
detection network, but there is not need to generate a large number of anchor points to
predict the bounding box, which improves the detection speed of the algorithm. Recently,
Zhang et al. [31] proposed that the definition of positive and negative samples of the
dataset is the fundamental difference between their performance. Therefore, CCFNet is
also built with an anchor-free structure and has reached or even exceeded the accuracy
anchor-base detection network.

2.2. FPN-like Methods

The main idea of FPN [7] is to build a top-down feature pyramid to fuse feature maps
at different stages of the backbone, and to detect objects of different sizes on feature maps
of different scales. This idea is used in different models, You Only Look Once Version 3
(YOLOv3) [8] obtains multi-scale information through multiple convolutions and repeated
fusion of the features of the last three stages of the backbone. Adaptively Spatial Feature
Fusion (ASFF) [9] adds attention structure based on YOLOv3, which realizes the selective
use of the feature information of different stages by controlling the contribution degree of
the features of other stages to the current feature. Bi-Directional Feature Pyramid Network
(BiFPN) [11] realize adaptive control of the size of FPN by overlapping effective blocks
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in FPN multiple times. Recursive Feature Pyramid Network (Recursive-FPN) [12] uses
recursive FPN to re-input the mixed multi-scale feature map to the backbone, extract the
features again, and finally achieve extremely competitive performance. Multi-level Feature
Pyramid Network (MLFPN) [13] proposes three modules, Feature Fusion Module (FFM1),
Thinned U-shape Module (TUM), and Scale-wise Feature Aggregation Module (SFAM),
to integrate semantic information and detailed information by overlapping feature maps
multiple times. However, FPN-like methods not only need to fuse feature maps multiple
times but also need to build detection head on feature maps of different output sizes to deal
with objects of different sizes. Therefore, FPN-like has shortcomings such as a complex
model and slow calculation speed.

2.3. FCN-like Methods

With the attention of anchor-free detection networks, the idea of FCN-like gradually
shifted from the segmentation task to the object detection task. Different from the FPN-
like methods, the FCN-like methods only outputs a feature map that integrates feature
information of different scales to the detection head. FCN [15] uses deconvolution layer to
upsample the feature map of the last stage of the backbone to restore it to the same size of the
input image, thereby preserving the spatial information in the input image to classify each
pixel in the feature map. In contrast, the reference [24] adopts a completely symmetrical
structure, uses deconvolution to restore the image size, splices and fuses feature information
of different scales according to the dimension of the feature map. However, its parameters
are few and it is not suitable for large-scale detection or segmentation tasks. CornerNet [21]
and CSP [23] use FCN to generate feature maps adapted to the detection head. FCN-like
methods have fast calculation speed, but the feature information contained in feature maps
of different scales is different. If two feature layers with a large semantic information gap
are mixed through dimensionality reduction, a large amount of feature information will be
lost, and small objects in the image will be lost.

The difference from the above is that CCF combines the advantages of FPN-like
methods and FCN-like methods, and retains more low-level detailed information and
high-level semantic information through feature reorganization. In addition, CCFNet also
proposes global smooth map that enhances the global perception of the center map to deal
with the problem of object occlusion.

3. Methods

This section will elaborate on the proposed Cascaded Cross-layer Fusion Network
(CCFNet) for pedestrian detection by exploring the feature fusion and global dependencies.

3.1. Detection Network

The object detection network is usually divided into backbone network, neck, and
detection head. The backbone network is responsible for extracting features from the image.
A high-quality feature will significantly improve the ability of object localization. The neck
is the hub connecting the backbone and detection head. It integrates the features obtained
by the backbone network and then inputs the integrated features into the detection head. A
high-quality neck can more fully integrate the high-level and low-level information of the
image to improve the representation ability of the model. The detection head is responsible
for classification and regression.

Most backbone networks [32–36] can be divided into five stages. With the deepening
of the network stage, the resolution of the feature map is reduced at a rate of 2 times. In
other words, the size of the feature map obtained in the last stage is 1/32 of the input image,
which is not friendly to the small object. Previous work [37,38] proposed that the size of
the feature map generated in the fifth stage of backbone should be kept at 1/16 of the input
image, which can improve the detailed information in the deep feature map to increase the
ability to detect small objects.

The input image I ∈ R3×H×W passes through each stage of the backbone network to
obtain a set of feature maps F = {F1, F2, F3, F4, F5}. The low-level feature maps generated in
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the previous stage have more detailed information, but it has a lot of noise. The high-level
feature maps generated in later stages have more semantic information. The neck [13,19,39]
will reprocesses the feature map set F of the backbone network to obtain feature map fdet
suitable for the detection head. The detection head [1,40,41] is used to classify and locate
the object on the feature map fdet output by the neck. In anchor-free detection network, the
detection head is defined as Fdet = {cls( fdet), regr( fdet))}, cls(·) represents the classification
branch that classifies the object by key points, regr(·) represents the regression branch that
locates the object by scale.

3.2. Cascaded Cross-Layer Fusion Module

We combine the advantages of the FPN-like methods and the FCN-like methods,
propose Cascaded Cross-layer Fusion module (CCF) to more effectively extract the feature
information of the object. CCF uses deconvolution to change the scale of the deep feature
map to fuse with the shallow feature map. CCF transfers the deep features to the shallow
features in a top-down method, enriching the shallow features while removing noise.
However, in this transfer process, the semantic information contained in the deep feature
map will continue to be lost. Therefore, CCF supplements missing semantic information
by reusing deep feature maps. In this way, the final feature map can not only retain the
detailed information in the shallow feature map, but also have the semantic information in
the deep feature map. Following [23,37], the final feature map size of CCF is [H/4, W/4].
It is worth noting that this is the same size as the feature map of the second stage. The
specific implementation process is as follows:

As shown in Figure 2, CCF uses F4 and F5 as the source to deliver deep semantic
information and denoise the shallow feature maps, because the feature maps generated in
the fourth and fifth stages of the backbone network contain rich semantic information. In
addition, to reduce the computational complexity of the network, the dimensions of F4 and
F5 are reduced by 1 × 1 convolution to generate Fc4 and Fc5. Finally, Fc4 and Fc5 are fused to
obtain the feature map Fs4. Fs4 retains the semantic information of F4 and F5 and continues
to be used for subsequent transmission of semantic information. The fusion generation
method of feature map Fs4 can be expressed as:

Fs4 = Sum(Fc4, Fc5) (1)

where Sum(·) indicates that the fusion method of Fc4 and Fc5 is the element-wise addition
between the feature maps Fc4 and Fc5.

The feature map Fs4 will serve two purposes: (1) Regarding Fs4 as a new source, it will
fuse with the new receiver F3 and continue to convey semantic information from the deep
features map. Only the output features of the last two stages in the backbone have the same
size. Therefore, it is necessary to perform deconvolution before fusing the shallow features
to make it the same size as the previous layer. Therefore, the new source Fs4 performs
up-sampling through deconvolution to obtain a feature map Fsd4 of the same size as Fc3.
The process is as follows:

Fsd4 = DC(Fs4) (2)

where DC(·) means 4 × 4 deconvolution. Fsd4 will be used as the new source, and Fc3
after dimensionality reduction of feature map F3 will be fused to obtain Fs3 according to
Equation (1). Fs3 will be used to transfer the semantic information and detailed information
contained in the feature maps F3, F4 and F5. (2) As mentioned before, in purpose (1), the
semantic information of the deep feature map will continue to be lost, so the feature map
Fsd4 needs to be transformed into a feature map Fd4 of size [H/4, W/4] for feature reuse
(Equation (2)). Fd4 can retain the feature representation in the deep feature map.

To continue to transmit the semantic information from the deep feature map and
retain the detailed information in F3, the feature map Fs3 is transformed to the same size as
F2 through deconvolution, and the resulting Fsd3 will be used for subsequent operations
(Equation (2)).
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Figure 2. Cascaded Cross-layer Fusion Module (CCF).

The feature map F3 only contains part of the detailed information, which is not enough
to support the network to detect small objects, as shown in the ablation study (Section 4.3).
Therefore, CCF refers to the feature map F2 generated in the second stage, so that the
final feature map input to the detection head has more detailed information. However,
F2 contains a lot of noise. CCF uses Fsd3 containing depth semantics to denoise F2. In
other words, the feature map Fc2 is obtained by reducing the dimension of F2 through
1 × 1 convolution. Fc2 and Fsd3 are calculated by Equation (1) to get the feature map Fs2. It
is worth noting that the size of Fs2 is [H/4, W/4]. There is no need to perform additional
processing on Fs2.

Finally, CCF merge all feature maps through Concat(·) to obtain a final feature map
Flc with rich detailed information and semantic information, Flc can be expressed as:

Flc = Concat(Fd4, Fsd3, Fs2) (3)

Following [7], CCF use 3 × 3 convolution after Flc to reduce the aliasing effect pro-
duced in the process of deconvolution and feature fusion.

3.3. Detection Head

Our detection head contains center map, scale map, and global smooth map. Following
CSP [23], the center map is equipped with gaussian heat map to locate the object, and scale
map is used to determine the size of the object. Although the Gaussian heat map can reduce
the weight of negative samples around the object center point, the center map only obtains
local perception and lacks global perception. To this end, we add global smooth map,
which is fused with the center map, and the generated new center map will have global
perception. In addition, considering that the aspect ratio of the pedestrian will change with
the change of the pedestrian state, we discarded the scale map that predicts the size of the
pedestrian by only predicting the height and fixing the width. The scale map was modified
to predict the height and width of pedestrians at the same time.

As shown in Figure 3, the detection head includes center map, global smooth map
and scale map. They are all obtained by the feature map Flc generated by CCF through
different 1 × 1 convolutions. Then we use the global smooth map to modify the center map
to obtain a more accurate new center map. Finally, the new center map and scale map are
used to generate detection results. Optionally, the offset map can be added to the detection
head to correct the position of the object.
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×

Figure 3. The overall architecture of the detection head mainly includes three map components,
namely the center map, the scale map and the global smooth map (GSMap).

3.4. Loss Function
3.4.1. Center Loss

Combined with the global smooth map, the center loss is modified as follows:

Lcenter = − 1
K

W/4

∑
i=1

H/4

∑
j=1

(sij fij + (1− sij)bij)log(1− pij) (4)

where {
fij = gsij(1− pij)

γ

bij = pγ
ij(1− Mij)

β
(5)

from Equations (4) and (5), K is the total number of objects, W and H are the width and
height of the input image respectively, sij represents the true label on the coordinates
(i, j), pij represents the probability of the positive on the coordinates (i, j), gsij is global
smooth confidence, Mij is Gaussian heat map [23], fij and bij represent the foreground and
background scores in the image, respectively.

3.4.2. Scale Loss

Calculate the scale map by SmoothL1 loss [42] to predict the error between the height
and width of the object according to the ground truth. The details of scale loss as follows:

Lscale = − 1
K
(

K

∑
k=1

SmoothL1(hk, ĥk) +
K

∑
k=1

SmoothL1(wk, ŵk)) (6)

where hk and ĥk respectively represent the height of the prediction boxes of the network
and the height of the ground truth of each positive, wk and ŵk respectively represent the
width of the prediction boxes of the network and the width of the ground truth of each
positive.

3.4.3. Total Loss

Optionally, if the offset map is added to correct the object position, the offset loss is:

Lo f f set = − 1
K
(

K

∑
k=1

SmoothL1(ok, ôk)) (7)

where ok represents the predicted offset of each positive and ôk represents the ground truth
of each positive.

Therefore, the complete loss function is:
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L = λcLcenter + λsLscale + λoLo f f set (8)

where λc, λs, and λo are the weights of center loss, scale loss and offset loss, which is set to
0.01, 1 and 0.1 in this experiments. Although on the surface, our loss function is similar to
the loss of many methods, from the details we can know that this is different.

4. Experimental Results

To evaluate the proposed CCFNet, we conducted comparative experiments on Cal-
tech [43,44] and CityPersons [45]. In this section, we introduce the datasets and exper-
imental setting, then verify the effectiveness of the model by the ablation study on the
CityPersons dataset, and finally show the compare experimental results with state-of-the-art
methods and visualize to verify the superiority of the CCFNet.

The details of each section are as follows: The Section 4.1 introduces the datasets and
evaluation indicators of pedestrian detection. The Section 4.2 introduces the experimental
setting. The ablation studies on the CityPersons dataset will be analyzed in the Section 4.3.
In Section 4.4, the superiority and effectiveness of the model is verified by comparison
with other methods on the Caltech and CityPersons datasets. In Section 4.5, visualize the
detection results to further illustrate the superiority of CCFNet. Finally, in Section 4.6, we
discuss all the experimental results.

4.1. Datasets

The Caltech dataset is about 10 hours of video data, divided into 11 subsets, of which
6 subsets are training sets and 5 subsets are test sets. We divided the video into RGB frames,
the training set extracts one image for every 3 frames (total of 42,782 images) and the test set
extracts one image for every 30 frames (total of 4024 images). It is observed in Figure 4a,b:
the training set contains 5564 pedestrians and 4992 ignored regions, the test set contains
7596 pedestrians and 0 ignored regions.

Figure 4. The histogram and pie chart represent the distribution statistics of each category in the
Caltech and CityPersons datasets. (a) represents the label distribution of the training set in the Caltech
dataset. (b) represents the label distribution of the test set in the Caltech dataset. (c) represents the
label distribution of the training set in the CityPersons dataset. (d) represents the label distribution of
the validation set in the CityPersons dataset.

The CityPersons dataset is a subset of the Cityscapes dataset, it has a training set of
2975 images and a validation set of 500 images. From Figure 4c,d, we can clearly known
that objects with 59.51% in the training set are marked as pedestrian labels. Objects with
24.37% are marked as ignore labels, including object height pixels less than 20, unclear
object status, billboards, etc. Objects with 6.05% are marked as rider labels, Objects with
3.72% are marked as sitting labels. Objects with 1.50% are marked as other labels, including
being held of the people. Objects with 4.85% belong to the group. It is worth noting that
during the evaluation process, prediction boxes that match rider, sitting, other, ignored
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areas, etc. It will not be included in the error sample. The label distribution of the validation
set is similar to the training set.

Following [44], we using Log-Average Miss Rate (MR−2) as an evaluation indicator.
It evaluates the False Positive Per Image (FPPI) of each image between [0.01, 1]. The
Caltech dataset is evaluated on the Reasonable and Reasonable_Occ=Heavy subsets. The
CityPersons dataset is evaluated on the Reasonable, Bare, Partial and Heavy subsets. The
definition rules of subsets are shown in Table 1, where in f means infinity.

Table 1. Standards for dividing subsets of the pedestrian datasets.

Subsets Height Visibility

Reasonable [50, in f ] [0.65, in f ]
Bare [50, in f ] [0.90, in f ]

Partial [50, in f ] [0.65, 0.90]
Heavy [50, in f ] [0, 0.65]

Reasonable_Occ=Heavy [50, in f ] [0.2, 0.65]

4.2. Experimental Setting

Unless otherwise specified, The construction of CCFNet follows mmdetection [46]
and pedestron [47]. The experiment in this paper is run on a TITAN RTX. On the Caltech
dataset, the batch size is set to 16, the initial learning rate is 2× 10−4, and the iteration is
20 epoch. On the CityPersons dataset, the batch size is set to 4, the initial learning rate is
2× 10−4, and the iteration is 150 epoch. Our experimental setup is based on [48,49].

4.3. Ablation Study

For CCF. To study the effective combination methods of the feature maps, we test the
impact of different fusion strategies on model performance. CCF starts with the features of
the second stage and keeps the final feature map size as [H/4, W/4], which is consistent
with the feature map size of the second stage. As shown in Table 2, sn represents the feature
map generated at the n-th stage of the backbone. It can be easily observed that the last
model combines feature maps {s2, s3, s4, s5} obtains the best performance. When s2 is
removed, that is, the combination way {s3, s4, s5} gets a poor result, which indicates that the
lack of detailed information makes it impossible to accurately locate the object. When s5 is
removed, that is, the combination way {s2, s3, s4} also obtains a bad result, which shows
that the semantics information contained in the deep features information is crucial. In
summary, {s2, s3, s4, s5} is the most suitable combination methods.

Table 2. Ablation study analysis of different combinations of multi-scale feature on the Citypersons
dataset.

Feature Maps
Backbone Reasonable Bare Partial Heavys2 s3 s4 s5

� � - - ResNet-50 29.4 22.8 26.9 67.0
- � � - ResNet-50 16.6 12.3 15.4 55.2
- - � � ResNet-50 15.5 10.3 15.4 56.3
� � � - ResNet-50 16.3 12.4 15.3 54.4
- � � � ResNet-50 15.4 10.8 14.6 53.7
� � � � ResNet-50 10.6 7.1 10.1 48.4

To verify the effectiveness of CCF, we use different neck to connect the backbone network
ResNet-50 and the detection head [23], such as FPN [7], Augmented FPN (AugFPN) [50],
Attention-guided Context Feature Pyramid Network (ACFPN) [51] and CSP [23]. As
shown in the table 3, we can observe that compared with necks of other models, CCF
has strong competitiveness in Reasonable, Bare and Partial subsets. In the Heavy subset,
CCF is also better than part of the necks. Compared with FPN, CCF reuses the semantic
information of deep feature maps to obtain more contextual information in the final feature
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map. In addition, CCF does not need to output multi-scale feature maps to detect objects.
Compared with CSP, CCF removes the noise in the shallow feature map, and retains more
detailed information by cascading.

Table 3. Ablation study of different neck module on the Citypersons dataset.

Reasonable Bare Partial Heavy

ResNet-50 + FPN 11.9 8.1 11.6 48.6
ResNet-50 + AugFPN 11.9 8.5 11.7 50.2
ResNet-50 + ACFPN 11.8 8.2 11.2 50.7
ResNet-50 + CSP 11.2 7.7 10.6 45.7
ResNet-50 + CCF 10.6 7.1 10.1 48.4

For GSMap. Table 4 shows the ablation study on GSMap. The Baseline contains neck
and detection head. The neck contains the deconvolution of the fifth stage of ResNet-50 and
the detection head contains center map and scale map. Baseline + GSMap means adding
GSMap to the detection head. Baseline + GSMap means replacing the neck in the baseline
with CCF. Baseline + CCF + GSMap uses CCF to replace the neck in the baseline and adds
GSMap to the detection head. As shown in Table 4, we can be observed that adding GSMap
separately based on the baseline increases the Reasonable subset by 0.7%, the Bare subset
by 0.3%, the Partial subset by 0.8%, and the Heavy subset by 3.7%. If CCF and GSMap
work at the same time, compared with baseline + CCF, each subset increases by 0.4%, 0.3%,
0.6% and 5.7%, respectively. This result shows that GSMap enhances the locating ability by
making the center map have global feature information. Its performance is enhanced as the
effective feature information increases.

Table 4. Ablation study of global smooth map on the Citypersons dataset.

Backbone Reasonable Bare Partial Heavy

Baseline ResNet-50 11.2 7.3 10.8 50.3
Baseline + GSMap ResNet-50 10.5 7.0 10.0 46.6
Baseline + CCF ResNet-50 10.6 7.1 10.1 48.4
Baseline + CCF + GSMap ResNet-50 10.2 6.8 9.5 42.7

For Scale Prediction. Table 5 shows the impact of scale prediction on CCFNet. Fol-
lowing previous work [23], we set the three scale predictions of height, width and height
+ width. Compared with the predicted height, height + width increases by 0.6% on the
reasonable subset and 4.5% on the heavy subset. Compared with the predicted width,
height + width increases by 1.2% on the reasonable subset and 7.2% on the heavy subset.
Simultaneously predicting the height and width of the object can further improve the
performance of CCFNet. This result is attributed to predicting the height and width of the
object at the same time, which can adapt to objects with different aspect ratios, rather than
being limited to a certain aspect ratio. In addition, retaining more feature information is
conducive to the prediction of object width. From the results of the heavy subsets, it can be
concluded that predicting the height and width at the same time helps to deal with dense
and overlapping objects.

Table 5. Ablation study of different definitions for scale prediction on the Citypersons dataset.

Scale Prediction Backbone Reasonable Bare Partial Heavy

Height ResNet-50 10.8 7.2 10.7 47.2
Width ResNet-50 11.4 8.1 11.0 49.9

Height + Width ResNet-50 10.2 6.8 9.5 42.7
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4.4. State-of-the-Art Comparisons

Caltech Dataset: CCFNet compares some excellent methods in reasonable and Rea-
sonable_Occ=Heavy subset. As shown in the Figure 5, CCFNet has 4.33% MR-FPPI on
the Reasonable subset, which is 0.37% more advanced than the best method. On the
Reasonable_Occ=Heavy subset, CCFNet has 43.21% MR-FPPI, which is also competitive.
When the model is initialized on the CityPersons dataset, the performance of CCFNet has
increased by 6.04%, surpassing other comparison methods. CCFNet uses feature cascading
and reorganization to retain more contextual information, and improves the positioning
ability of the center map through global smoothing graph.
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Figure 5. The results of various models on the Caltech dataset. (a) Compare with existing methods
on Reasonable subset. (b) Compare with existing methods on the Reasonable_Occ=Heavy subset.

As shown in the Table 6, CCFNet also compares advanced algorithms, such as Repul-
sion Loss (RepLoss) [38] used to solve the occlusion problem and anchor-free detection
network CSP, etc. In the reasonable subset, CCFNet achieved 4.3% MR-FPPI, which is 0.7%
and 0.2% lower than that of RepLoss and CSP, respectively. In the Reasonable_Occ=Heavy
subset, CCF has reached 43.2% MR-FPPI, which is an increase of 4.7% and 2.6% compared
to RepLoss and CSP, respectively. This is an impressive improvement. When the model is
initialized on the CityPersons dataset, CCFNet reaches 3.5% on a reasonable subset, and
36.2% on the Reasonable_Occ=Heavy subset. It is proved that CCFNet reuses high-level
features in cascaded manner is effective.

Table 6. The results of various models on the Caltech dataset.

Reasonable Reasonable_Occ=Heavy

ALFNet [52] 6.1 51.0
MGAN [53] 6.8 38.2
HyperLearner [54] 5.5 48.7
RepLoss [38] 5.0 47.9
CSP [23] 4.5 45.8
CCFNet (ours) 4.3 43.2

ALFNet + city [23,52] 4.5 43.4
RepLoss + city [23,38] 4.0 41.8
CSP + city [23] 3.8 36.5
CCFNet + city (ours) 3.5 36.2

CityPersons Dataset: We verify the performance of CCFNet on CityPersons dataset,
which contained reasonable, heavy, bare and partial subsets. The comparative experiment
results as show in Table 7. MR−2 of CCFNet on the reasonable subset is 10.2%, on the
bare subset is 6.8%, on the partial subset is 9.5%, and on the heavy subset is 42.7%. In
the reasonable subset, CCFNet is 0.4% and 0.3% lower than Attribute-aware Pedestrian
Detection (APD) [55] and Mask-Guided Attention Network (MGAN) [53], respectively.
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In the heavy subset, CCFNet is increased by 7.1% and 4.5% compared with APD and
MGAN, respectively. It can be seen that CCFNet achieved best performance beyond other
comparison methods. It reflects the strong competitiveness of CCFNet.

Table 7. The results of various models on the CityPersons dataset.

Backbone Reasonable Bare Partial Heavy

TLL [37] ResNet-50 15.5 10.0 17.2 53.6
TLL + MRF [37] ResNet-50 14.4 9.2 15.9 52.0
RepLoss [38] ResNet-50 13.2 7.6 16.8 56.9
OR-CNN [56] VGG-16 12.8 6.7 15.3 55.7
ALFNet [52] ResNet-50 12.0 8.4 11.4 51.9
CSP [23] ResNet-50 11.0 7.3 10.4 49.3
APD [55] ResNet-50 10.6 7.1 9.5 49.8
MGAN [53] VGG-16 10.5 - - 47.2
CCFNet (ours) ResNet-50 10.2 6.8 9.5 42.7

4.5. Visualization

To further illustrate the superiority of CCFNet, we visualized the detection results
on the CityPersons dataset, as shown in Figure 6. The first line (a) represents the original
image in the validation set of the CityPersons dataset. The second line (b) represents the
ground truth. The third line (c) represents the visualization result of the CSP. And the
fourth line (d) represents the visu.alization result of CCFNet. The visualization results of
CSP and CCFNet rely on the same confidence.

To show the effectiveness of the CCFNet, we selected three images from different
scenes to compared with CSP. The first image belongs to a crowded scene. The second
image belongs to a simple scene containing small objects. The third image is a scene with
low visibility, low exposure, and small objects. The visualization result as show in Figure 6.
It can be seen that in the first image, CSP and CCFNet generate a large number of detection
boxes, but CCFNet has fewer false detection boxes. In addition, CCFNet can better solve
the problem of multiple detection boxes for one single object. From the second image, CSP
and CCFNet have the problem of overlapping detection boxes, but CSP has extremely bad
results. In contrast, CCFNet has better visualization. From the third image, CSP can detect
small objects in the image, but it also gets a lot of objects that should not be detected. In
contrast, CCFNet avoids this problem. Therefore, CCFNet not only has good performance,
but its visualization results are also robust.

As shown in Figure 7, the first line (a) represents the original image in the validation
set of the CityPersons dataset. The second line (b) represents the heat map of the ACFPN.
The third line (c) represents the heat map of the CSP. And the fourth line (d) represents
the heat map of CCFNet. We also selected the images of the three scenes for comparison.
The three images respectively cover complex environments, crowded scenes, and general
scenes. It can be seen that the highlight of ACFPN presents a discrete distribution, the
highlight of CSP presents a concentrated distribution, and the highlight of CCFNet is
multi-peak. The ACFPN can not distinguish which type of person belongs to, and can not
cope with the crowded state of objects, this is related to the fact that ACFPN is a general
object detection network. The CSP responds to certain backgrounds, which makes CSP a
bad visualization result, even though it has a low error detection rate. The CCFNet will not
over-respond to the background and can distinguish the categories of people, it not only
has a lower error detection rate, but its visualization results are also more optimistic.
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a.

b.

c.

d.

Figure 6. Visualization results of CCFNet and CSP do not limit the visibility of pedestrian objects.
(a) Input the original image for the CityPersons dataset; (b) is the ground truth corresponding to (a);
(c) is the visualization result of CSP; (d) is the visualization result of CCFNet.

a.

b.

c.

d.

Figure 7. Visualization results of ACFPN, CSP, and CCFNet. (a) Input the original image for the
CityPersons dataset; (b) is the visualization result of ACFPN; (c) is the visualization result of CSP;
(d) is the visualization result of CCFNet.

4.6. Discussion

The proposal of CCFNet is influenced by the anchor-free object detection network. In
the anchor-free network, how to make the neck effectively use the feature representation
extracted by the backbone network will directly affect the performance of the detection
head. Previous work [50,51] has achieved good performance in general object detection,
but it can not be generalized to some special tasks, such as pedestrian detection.

65



Mathematics 2022, 10, 139

Table 2 shows the ablation experiment of multi-scale features in the CCF module. By
combining the feature maps of different stages, the optimal feature map combination is
discussed. CCF reduces the noise in the shallow feature map by cascading and reusing deep
semantic information, while retaining the semantic information lost due to dimensionality
reduction operations. The purpose of this is to make the final feature map have more
features.

Table 3 shows the comparative experiments between CCF and other necks. The
previously proposed FPN-like methods and FCN-like methods achieve the most advanced
performance in general object detection, but they are not suitable for pedestrian detection
tasks. CCF module shows a very competitive performance.

Table 4 shows the ablation experiment of GSMap. The center map reduces the weight of
negative samples through the Gaussian heat map, but does not change the shortcomings of
convolution operation that can only obtain partial global information [57–59]. The proposal
of GSMap can enable the center map to obtain more global information. In addition,
according to the results of the heavy subset. It not only proves that the congestion problem
between objects can not be completely solved by enhancing the semantic information in
the feature map, but also requires additional modules for assistance, such as GSMap.

Table 5 shows the experiment of object scale prediction. The previous work only
determines the size of the object by predicting the height [23,48]. We have proved through
experiments that predicting the height and width of objects at the same time is the most
suitable for CCFNet. In addition, this can also help cope with dense and overlapping
problems.

Figure 5 and Table 6 show the comparative experiments of CCFNet with other ad-
vanced algorithms on the Caltech dataset. Table 7 shows the comparative experiments of
CCFNet with other advanced algorithms on the Citypersons dataset. Their results prove
the effectiveness of CCFNet.

5. Conclusions

In this paper, we proposed Cascaded Cross-layer Fusion module (CCF), which com-
bines deep semantics and shallow details to obtain features, which will obtain more con-
textual semantic information. In order to cope with the situation of highly congested
and severely occluded objects, we designed global smooth map (GSMap) and improved
center loss function, which can effectively solve this problem at a small cost. Cascaded
Cross-layer Fusion Network (CCFNet) can achieve better performance without relying on
anchor points, multiple key points and complex post-processing. Finally, we conducted a
large number of experiments on Caltech and CityPersons datasets to verify the superiority
of CCFNet. Although the model introduces dimensionality reduction operations in the
design process to reduce the computational complexity of the model, the final model still
uses a large number of parameters that cannot meet the requirements of the real-time
system. Therefore, designing an effective lightweight module is the focus of our next work.
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Abstract: Discriminative correlation filters (DCFs) have been widely used in visual object tracking,
but often suffer from two problems: the boundary effect and temporal filtering degradation. To deal
with these issues, many DCF-based variants have been proposed and have improved the accuracy
of visual object tracking. However, these trackers only adopt first-order data-fitting information
and have difficulty maintaining robust tracking in unconstrained scenarios, especially in the case
of complex appearance variations. In this paper, by introducing a second-order data-fitting term to
the DCF, we propose a second-order spatial–temporal correlation filter (SSCF) learning model. To be
specific, the SSCF tracker both incorporates the first-order and second-order data-fitting terms into
the DCF framework and makes the learned correlation filter more discriminative. Meanwhile, the
spatial–temporal regularization was integrated to develop a robust model in tracking with complex
appearance variations. Extensive experiments were conducted on the benchmarking databases
CVPR2013, OTB100, DTB70, UAV123, and UAVDT-M. The results demonstrated that our SSCF can
achieve competitive performance compared to the state-of-the-art trackers. When penalty parameter
λ was set to 10−5, our SSCF gained DP scores of 0.882, 0.868, 0.706, 0.676, and 0.928 on the CVPR2013,
OTB100, DTB70, UAV123, and UAVDT-M databases, respectively.

Keywords: correlation filters; second-order fitting; visual tracking

MSC: 68T45

1. Introduction

Visual object tracking is a fundamental problem in the field of computer vision, which
has a wide range of applications in human–computer interaction, video surveillance,
unmanned driving, and so on. The task of visual object tracking always suffers from the
challenges of appearance variations, such as illumination variation, fast motion, out-of-
plane rotation, and in-plane rotation. To deal with these challenges, various innovative
trackers have been proposed and achieved significant progress in tracking performance
and robustness. Among these tracking methods, discriminative-filter-based trackers [1–5]
have received significant attention due to their competitive performance.

The standard discriminative-correlation-filter (DCF)-based tracker treats the filter
learning as a ridge regression problem, and the objective function can be transferred
to the frequency domain by the fast Fourier transform (FFT) for the solution. Bolme
et al. [6] first learned the correlation filter to perform the target tracking task and proposed
a minimum output sum of squared error (MOSSE) model. The MOSSE trains the filter

Mathematics 2022, 10, 684. https://doi.org/10.3390/math10050684 https://www.mdpi.com/journal/mathematics69



Mathematics 2022, 10, 684

by calculating the minimum actual and expected mean-squared errors of sequence im-
ages. Inspired by the MOSSE, Henriques et al. [7] considered that cyclic displacement
could be used to replace random sampling to achieve dense sampling and proposed a
theoretical framework to explore the effect of dense sampling. The proposed framework
formulates a kernelized correlation filter to improve the tracking performance. Zhang
et al. [8] adopted the Bayesian principle to build a spatial–temporal context model for
tracking. However, these CF-based trackers only utilize single-channel features, which is
not robust in the tracking scenarios with complex appearance variations. To tackle this
issue, some CF-based methods [9–19] extract multiple features to learn the filters. The
commonly used handcrafted features include the histogram of oriented gradients (HOG),
color names (CNs), the local binary pattern (LBP), and scale-invariant feature transform
(SIFT). These features describe the shape and color information of the targets. Trackers
using multiple features are more robust to the fast movement and deformation variation of
targets. For instance, Galoogahi et al. [17] employed multi-channel HOG descriptors in the
frequency domain to extract HOG features for filter learning and proposed a multi-channel
CF tracker (MCCF). Huang et al. [14] used hybrid color features to learn filters in which the
compressed CN features and the HOG features based on the opponent color space were
extracted, and principal component analysis was used to reduce the computational cost.
Li et al. [12] integrated the raw pixel, HOG, and color label features into the DCF frame-
work and presented an adaptive multiple feature tracker. Kumar et al. [19] exploited
the LBP, color histogram, and pyramid of the histogram of gradients to model the ob-
ject’s appearance and developed an adaptive multi-cue particle filter method for real-time
visual tracking.

Even though these DCF-based trackers using multi-channel features succeed to some
extent, some aspects such as the redundancy of multi-channel features, the boundary effect,
and data fitting have not been fully explored. To tackle these issues, many structural
regularized DCF methods [20–26] have been presented. Zhu et al. [2] proposed an adaptive
attribute-aware strategy to distinguish the importance of different channel features. Jain
et al. [20] presented a channel graph regularized CF model by introducing a channel
weighing strategy in which a channel regularizer was integrated into the CF framework
to learn the channel weights. Xu et al. [22] proposed a channel selection scheme for
multi-channel feature representations and adopted a low-rank approximation to learn
filters in a low-dimensional manifold. In addition, many trackers propose a variety of
strategies to solve the boundary effect. The SRDCF [23] incorporates a spatial regularizer
into the DCF to deal with the problem caused by the periodic assumption. Li et al. [24]
supplemented the temporal regularization term into the SRDCF tracker [23] and proposed
a spatial–temporal regularization CF framework. To be specific, the STRCF integrates both
temporal regularization and spatial regularization into the standard DCF model and can
perform model updating and DCF learning simultaneously. As a result, the STRCF could
be regarded as an approximation of the SRDCF with multiple samples and achieves better
tracking performance than the SRDCF. The BACF [25] utilizes a cropping matrix to extract
patches densely from the background and expands the search area at a low computational
cost. Xu et al. [26] combined temporal consistency constraints and spatial feature selection
to propose an adaptive DCF model in which the multi-channel filters can be learned in a
low-dimensional manifold space. However, the aforementioned trackers only employ the
first-order data-fitting information of the feature maps. In other words, such methods do
not consider high-order data-fitting information for tracking.

On the basis of the above-mentioned analysis, we propose a novel CF-based tracker,
the second-order spatial–temporal correlation filter (SSCF) learning model. We formulated
our tracking algorithm by incorporating a second-order data-fitting term into the DCF
framework, which helps to take full advantage of target features against surrounding
background clutter. The main contributions of the SSCF are summarized as follows:

• We propose a new discriminative correlation filter model for visual tracking with
complex appearance variations, unlike prior DCF-based trackers in which the first-
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order data-fitting information is only used. We incorporated the second-order data
fitting and spatial–temporal regularization into the DCF framework and developed a
more robust tracker;

• An effective alternating-direction method-of-multipliers (ADMM)-based algorithm
was used to solve the proposed tracking model;

• Extensive experiments on the benchmarking databases demonstrated that our SSCF
can achieve competitive performance compared to the state-of-the-art trackers.

The remainder of this paper is organized as follows. Section 2 introduces the related
work. Section 3 describes the detailed mathematical formulation of the proposed model
and introduces the optimization algorithm. Section 4 reports the experimental results and
the corresponding analysis. Finally, Section 5 draws the conclusions.

2. Related Work

In this section, we review mainly three categories of tracking methods, including
trackers based on target detection, trackers based on clustering, and channel-reliability
learning trackers.

Since target detection techniques [27–29] have attracted wide attention in the computer
vision field, many trackers based on target detection have been proposed. Guan et al. [30]
proposed a joint detection and tracking framework for object tracking in which the detection
threshold was adaptively modified according to the information fed back to the detector
by the tracker. Zhang et al. [31] employed a faster recurrent convolutional neural network
to extract the candidate detection areas and proposed a multi-target tracking algorithm.
In [32], Liu et al. combined motion detection with correlation filtering and presented a
new model for object tracking. The presented model determines the object position via
the weighted outputs of motion detection and the tracker. Considering that the existing
kernelized correlation filter tracking methods fail to identify occlusion, Min et al. [33]
adopted a detector to assist the occlusion judgment and improve the tracking performance.

Clustering-based algorithms [34,35] have been commonly used in pattern recognition
and computer vision, such as image segmentation [36] and patten classification [37]. In-
spired by this, many researchers use clustering algorithms to improve the performance of
object tracking. For instance, Keuper et al. [38] combined motion segmentation with object
tracking and presented a correlation co-clustering model to improve the performance.
In [39], Li et al. developed an intuitionistic fuzzy clustering model for object tracking.
Specifically, the local information of the targets is incorporated into the intuitionistic fuzzy
clustering to improve the robustness. Considering that DBSCAN clustering does not require
the number of clusters, He et al. [40] employed a DBSCAN clustering-based track-to-track
fusion strategy for multi-target tracking.

Recently, the idea of different weights distinguishing the importance of different com-
ponents has been widely used in pattern classification [41,42] and face recognition [43].
Similarly, some DCF-based channel-reliability learning trackers have been proposed to deal
with the problem of model degradation. Du et al. [44] argued that different channels have
different contributions in the tracking process and proposed a joint channel-reliability and
correlation-filter learning model. The proposed tracker assigns each channel a weight to
distinguish the different importance. To exploit the interaction between different channels,
Jain et al. [20] assigned similar weights to similar channels to emphasize important channels
and developed a channel attention model. Li et al. [45] argued that the existing trackers
do not consider the complementary information of different channels and proposed a
channel-feature integration method. All channels of each feature share an importance
map to avoid overfitting. In [46], the authors introduced channel and spatial reliability to
the DCF framework and employed the reliability scores to weight the per-channel filter
responses. The experiments showed that the channel weights were able to improve the
tracking performance. These methods principally focus on overcoming model degrada-
tion by incorporating channel reliability and enhance the discriminative performance to
some extent.
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3. The Proposed Model

3.1. Objective Function Construction

As mentioned above, the existing DCF-based methods only utilize first-order data-
fitting information and ignore high-order data-fitting information for tracking, which
cannot take full advantage of target features against surrounding background clutter
and suffer from the stability–plasticity dilemma. To deal with these issues, we built
a second-order spatial–temporal correlation-filter learning framework. Specifically, we
incorporated a second-order data-fitting term and spatial–temporal regularization into
the DCF framework and formulated a robust model. The objective function is able to be
formulated as below.

We first denote the dataset S = {Xt}T
t=1, and each frame Xt ∈ RM×N×K contains K

feature maps with a size of M × N. Y ∈ RM×N is the Gaussian-shaped label. Our aim
was to learn a multi-channel convolution filter F ∈ RM×N×K by minimizing the following
objective function:

min
F

1
2
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∑
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Xk
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2
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where ∗ represents the convolution operator and · denotes the Hadamard product. W is
the spatial regularization matrix, and Ft−1 is the correlation filter used in the t − 1-th frame.
λ and μ are penalty parameters. The first term is the first-order data-fitting term, which is a
generic formulation for learning the filter in DCF-based trackers. The second term is the
spatial regularizer to solve the boundary effect. The third term is the second-order data-
fitting term, which can be helpful to make full use of discriminative target features. The
last term is the temporal regularizer to force the current frame filter close to the previous
one, which helps to prevent the effect caused by the corrupted samples.

3.2. Optimization Algorithm

It can be noted that the objective function in Equation (1) is convex, and the mini-
mization problem can be solved by the ADMM algorithm. To be specific, we introduced
an auxiliary variable G ∈ RM×N×K by restricting F = G and constructed the augmented
Lagrangian form of Equation (1) as:
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where S = [S1, S2, · · · , SK] ∈ RM×N×K is the Lagrange multiplier and γ is the stepsize.
Assuming H = 1

γS, Equation (2) can be written as:
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The optimization problem can be divided into several subproblems as follows.
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F

∥∥∥∥∥ K

∑
k=1

Xk
t ∗ Fk − Y

∥∥∥∥∥
2

F

+

∥∥∥∥∥ K

∑
k=1

Xk
t ∗ Fk ∗ Xk

t − Y

∥∥∥∥∥
2

F

+ γ
K

∑
k=1

∥∥∥Fk − Gk + Hk
∥∥∥2

F
+ μ‖F− Ft−1‖2

F (4)

G(l+1) = arg min
G

K

∑
k=1

‖W · Gk‖2
F + γ

K

∑
k=1

∥∥∥Fk − Gk + Hk
∥∥∥2

F
(5)

H(l+1) = H(l) + F(l+1) −G(l+1) (6)

Then, we can alternatively solve each subproblem as follows:
Solving F: According to Parseval’s theorem, the subproblem in Equation (4) can be

formulated in the Fourier domain as:

arg min
F̂

∥∥∥∥∥ K

∑
k=1

X̂k
t · F̂k − Ŷ

∥∥∥∥∥
2

F

+ λ

∥∥∥∥∥ K

∑
k=1

X̂k
t · F̂k · X̂k

t − Ŷ

∥∥∥∥∥
2

F

+ γ
K

∑
k=1

∥∥∥F̂k − Ĝk + Ĥk
∥∥∥2

F
+ μ‖F̂− F̂t−1‖2

F (7)

Here, F̂ represents the discrete Fourier transform (DFT) of F. From Equation (7), it can
be noted that the i-th row and the j-th element of Ŷ only depend on the i-th row and the
j-th element of F̂ and X̂t across all K channels. Assume vij(F) is a K-dimensional vector
that contains the i-th row and the j-th elements of F along all K channels. Optimizing the
problem in Equation (7) is equivalent to solving the following MN subproblems:

arg min
vij(F̂)

‖ vij(X̂t)
Tvij(F̂)− ŷij ‖2

2 +μ ‖ vij(F̂)− vij(F̂t−1) ‖2
2

+ λ ‖ (vij(X̂t) · vij(X̂t))
Tvij(F̂)− ŷij ‖2

2

+ γ ‖ vij(F̂)− vij(Ĝ) + vij(Ĥ) ‖2
2 (8)

where i = 1, · · · , M and j = 1, · · · , N.
Taking the derivative of Equation (8) with respect to vij(F̂) as zero, we have:

vij(F̂) =(Q + (γ + μ)I)−1z (9)

Here, Q = vij(X̂t)vij(X̂t)T + λ(vij(X̂t) · vij(X̂t))(vij(X̂t) · vij(X̂t))T and z = vij(X̂t)ŷij +

μvij(F̂t−1) + λ(vij(X̂t) · vij(X̂t)) + γvij(Ĝ)− γvij(Ĥ).
Solving G: From Equation (5), each element of G is able to be updated independently,

and we adopted the same strategy as solving F. Assume vij(G) is a K-dimensional vector
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that contains the i-th row and the j-th elements of G along all K channels. Optimizing the
problem in Equation (5) is equivalent to solving the following MN subproblems:

arg min
vij(G)

w2
ij ‖ vij(G) ‖2

2 +γ ‖ vij(F)− vij(G) + vij(H) ‖2
2 (10)

Taking the derivative of Equation (10) with respect to vij(G) as zero, we have:

vij(G) = (PTP + γI)−1(γvij(F) + γvij(H)) (11)

where P is a diagonal matrix and each diagonal element is wij.
Updating H: Let vij(H) be a K-dimensional vector that contains the i-th row and the

j-th elements of G along all K channels. In the l + 1-th iteration of the ADMM, the Lagrange
multiplier vector vij(H) can be updated as follows:

vij(H)(l+1) = vij(H)(l) + vij(F)
(l+1) − vij(G)(l+1) (12)

The details of the optimization procedure can be seen in Algorithm 1.

Algorithm 1 SSCF algorithm

Input: Feature maps Xt, Gaussian-shaped label Y, previous correlation filters Ft−1,
spatial regularization matrix W, initial values G(0) and H(0).
Output: Estimated correlation filters F.
1: repeat Step 2–Step 5

2: Update vij(F̂)
(l+1) via Equation (9);

3: Update vij(G)(l+1) via Equation (11);

4: Update vij(H)(l+1) via Equation (12);

5: l = l + 1;

6: Until vij(F̂), vij(G), vij(H) have converged;

7: Obtain correlation filters F by applying the inverse DFT.

3.3. Computational Complexity

In this subsection, we discuss the computational complexity of the presented SSCF.
As shown in Section 3.2, we divided the optimization problem into several subproblems.
According to the Parseval theorem and the ADMM algorithm, the complexity of solv-
ing F is O(KMN) in each iteration. Taking the DFT and inverse DFT into account, the
computational complexity of solving F is O(KMNlog(MN)). Moreover, the complexity
of subproblems H and G is O(KMN). Suppose the number of iteration is T: the whole
computational complexity of the proposed SSCF is O(TKMN(log(MN) + 1)). In view of
this, the speed of our tracker is not fast.

4. Experiment Results and Analysis

This section provides the experiments to validate the superiority of the presented SSCF
in target tracking. To evaluate the performance of the proposed model, we compared it
with the state-of-the-art trackers, including spatially regularized discriminative correlation
filters (SRDCFs) [23], kernelized correlation filters (KCFs) [47], spatial–temporal regular-
ized correlation filters (STRCFs) [24], background-aware correlation filters (BACFs) [25],
learning adaptive discriminative correlation filters (LADCFs) [26], discriminative scale
space tracking (DSST) [48], the scale-adaptive with multiple features tracker (SAMF) [12],
ECOHC [49], ARCF-HC [50], the MSCF [51], and AutoTrack [52]. These experiments were
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conducted on the CVPR2013 [53], OTB50 [54], OTB100 [54], DTB70 [55], UAV123 [56], and
UAVDT-M databases [57].

In the experiments, our tracker was implemented using MATLAB R2017a on a com-
puter with an i7-8700K processor (3.7GHz) with 48GB RAM. λ was set to 10−5, and other
parameters were set to the same values as the STRCF. The histogram of oriented gradients
(HOG) features were used to conduct the comparative experiments. In addition, we fol-
lowed the one-pass evaluation (OPE) protocol [53] to evaluate the performance of different
trackers. The success and precision plots are reported based on the bounding box overlap
and center location error. The AUC is the area under the curve of the success plot, and the
distance precision (DP) is the percentage of the location errors within 20 px.

4.1. Results on the CVPR2013 Database

The CVPR2013 database contains 50 fully annotated video sequences with 11 different
attributes, such as background clutter, low resolution, occlusion, and out of view. The
overall performance, which is summarized by the success and precision plots, is listed in
Figure 1. It can be observed that the proposed SSCF achieved the top-ranking results.
The area under the curve (AUC) and distance precision (DP) scores were 0.681 and 0.882,
respectively. Specifically, the AUC and DP scores of SSCF were higher by 1.2% and 0.9%
than the STRCF. This indicates that incorporating the second-order data-fitting term is
effective at improving the tracking performance.

(a) (b)

Figure 1. Success plots (a) and precision plots (b) of the proposed SSCF and other trackers on the
CVPR2013 database.

To evaluate the robustness of the proposed SSCF on different attributes, we constructed
subsets with different dominant attributes for the experiments. The 11 challenging factors
were background clutter (BC), low resolution (LR), illumination variation (IV), motion blur
(MB), out of view (OV), fast motion (FM), deformation (DEF), occlusion (OCC), out-of-
plane rotation (OPR), scale variation (SV), and in-plane rotation (IPR). Table 1 shows the
AUC and DP scores of the proposed SSCF and the other trackers on the 11 attributes on
the CVPR2013 database. Despite not all scores of the proposed SSCF being the highest,
our method achieved the best robustness. Especially for the AUC scores on the different
attributes, our SSCF outperformed the other trackers, except LADCF.

4.2. Results on the OTB100 Database

OTB100 is a database containing 100 challenging video sequences, and these sequences
consist of more than 28,000 fully annotated frames. The results of the success and precision
plots for all trackers are shown in Figure 2. From the figure, the proposed SSCF outper-
formed all the competing trackers in its overall performance. Our tracker achieved 0.664
and 0.868 in terms of the AUC and DP scores, respectively.
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We also provide the attribute-based evaluation to validate the robustness of our SSCF.
The AUC and DP scores of all trackers on the 11 different attributes are reported in Table 2.
From the DP scores listed in the table, the proposed SSCF outperformed all competing
trackers on eight attributes. In terms of the AUC scores, our tracker performed better
than the other trackers on seven attributes. On other attributes, the SSCF was among
the top-three trackers. These results demonstrate that our SSCF is more robust than the
other trackers.

Table 1. The area under the curve (AUC) and distance precision (DP) scores of the proposed SSCF
and the other trackers on different attributes on the CVPR2013 database. The top-three methods on
each attribute are denoted by different colors: red, blue, and green. That is, red represents the best
performance, blue represents the second best, and green represents the third best (AUC/DP).

Attributes DSST [48] KCF [47] SAMF[12] SRDCF [23] BACF [25] STRCF [24] LADCF [26] SSCF

FM 0.413/0.485 0.435/0.559 0.460/0.568 0.541/0.691 0.583/0.766 0.572/0.697 0.591/0.728 0.604/0.754
BC 0.517/0.694 0.535/0.753 0.520/0.676 0.587/0.803 0.631/0.833 0.625/0.850 0.592/0.783 0.641/0.840

DEF 0.492/0.633 0.512/0.702 0.604/0.775 0.609/0.811 0.644/0.832 0.639/0.854 0.657/0.852 0.680/0.885
IPR 0.555/0.753 0.484/0.702 0.512/0.692 0.550/0.739 0.622/0.824 0.621/0.802 0.612/0.785 0.633/0.826
IV 0.551/0.711 0.477/0.699 0.498/0.655 0.557/0.727 0.600/0.788 0.599/0.779 0.599/0.752 0.630/0.799
LR 0.378/0.682 0.272/0.629 0.376/0.709 0.471/0.767 0.406/0.659 0.540/0.777 0.580/0.776 0.510/0.744
MB 0.433/0.504 0.462/0.589 0.428/0.507 0.560/0.719 0.609/0.790 0.566/0.681 0.579/0.702 0.626/0.778

OCC 0.523/0.690 0.499/0.724 0.598/0.816 0.610/0.815 0.612/0.797 0.646/0.854 0.673/0.869 0.673/0.872
OPR 0.529/0.723 0.485/0.710 0.549/0.749 0.586/0.796 0.620/0.822 0.651/0.863 0.657/0.850 0.667/0.875
OV 0.462/0.511 0.550/0.650 0.555/0.636 0.555/0.680 0.553/0.706 0.632/0.728 0.633/0.720 0.652/0.748
SV 0.546/0.738 0.427/0.679 0.507/0.723 0.587/0.778 0.584/0.765 0.647/0.836 0.649/0.821 0.639/0.823

(a) (b)

Figure 2. Success plots (a) and precision plots (b) of the proposed SSCF and the other trackers on the
OTB100 database.

Table 2. The area under the curve (AUC) and distance precision (DP) scores of the proposed SSCF
and the other trackers on different attributes on the OTB100 database. The top-three methods on
each attribute are denoted by different colors: red, blue, and green. That is, red represents the best
performance, blue represents the second best, and green represents the third best (AUC/DP).

Attributes DSST [48] KCF [47] SAMF [12] SRDCF [23] BACF [25] STRCF [24] LADCF [26] SSCF

FM 0.439/0.540 0.457/0.617 0.502/0.649 0.586/0.749 0.600/0.791 0.617/0.780 0.625/0.790 0.635/0.803
BC 0.521/0.703 0.509/0.731 0.532/0.705 0.584/0.777 0.643/0.861 0.648/0.872 0.637/0.830 0.679/0.884

DEF 0.414/0.532 0.427/0.600 0.500/0.671 0.533/0.715 0.599/0.802 0.596/0.825 0.595/0.812 0.613/0.835
IPR 0.496/0.681 0.468/0.698 0.515/0.717 0.535/0.729 0.583/0.787 0.593/0.794 0.601/0.810 0.602/0.817
IV 0.551/0.709 0.468/0.699 0.524/0.697 0.600/0.770 0.632/0.821 0.640/0.819 0.649/0.808 0.666/0.833
LR 0.370/0.649 0.290/0.671 0.425/0.766 0.514/0.765 0.516/0.797 0.579/0.843 0.614/0.850 0.576/0.834
MB 0.458/0.551 0.456/0.594 0.519/0.648 0.580/0.739 0.590/0.762 0.637/0.797 0.646/0.807 0.672/0.845

OCC 0.447/0.587 0.442/0.626 0.536/0.722 0.551/0.719 0.576/0.743 0.606/0.797 0.644/0.830 0.638/0.827
OPR 0.466/0.637 0.447/0.665 0.530/0.728 0.542/0.729 0.584/0.785 0.619/0.836 0.632/0.838 0.632/0.850
OV 0.383/0.481 0.418/0.540 0.495/0.662 0.464/0.601 0.521/0.721 0.585/0.766 0.613/0.815 0.600/0.777
SV 0.468/0.638 0.400/0.642 0.498/0.713 0.562/0.746 0.571/0.769 0.632/0.842 0.636/0.836 0.634/0.843
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4.3. Results on the OTB50 Database

Figure 3 lists the success plots comparing the presented method on OTB50 with the
existing trackers. The overall performance is summarized in Figure 3a. It can be seen
that the proposed SSCF had the best success rates. The success plots of all trackers on
the 11 different attributes are shown in Figure 3b–l. The proposed SSCF outperformed
the existing trackers on eight attributes, i.e., fast motion, background clutter, motion blur,
illumination variation, in-plane rotation, occlusion, out-of-plane rotation, and out of view.
Our SSCF incorporates the second-order data fitting and spatial–temporal regularization
into the DCF framework to develop a robust tracking pattern. The tracking results of the
SSCF on the other three attributes were among the top two. This also demonstrates the
effectiveness and robustness of our tracker.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 3. Success plots of the proposed SSCF and the other trackers on the OTB50 database. (a) Overall
performance; (b–l) success plots on the 11 different attributes.

77



Mathematics 2022, 10, 684

4.4. Results on the DTB70 Database

Figures 4 and 5 show the success plots and precision plots comparing the presented
method on the DTB70 database with the existing trackers. The overall performance is
summarized in Figures 4a and 5a. It is observed that our SSCF achieved the best results
in the overall performance. The success plots and precision plots of all trackers on the
11 different attributes are shown in Figures 4b–l and 5b–l. Our SSCF outperformed the
existing trackers on nine attributes except motion blur and low resolution.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4. Success plots of the proposed SSCF and the other trackers on the DTB70 database. (a) Overall
performance; (b–l) success plots on the 11 different attributes.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 5. Precision plots of the proposed SSCF and the other trackers on the DTB70 database.
(a) Overall performance; (b–l) precision plots on the 11 different attributes.

4.5. Results on the UAV123 Database

The UAV123 dataset contains 123 video sequences, which is the most commonly used
and most comprehensive dataset for UAV tracking. The overall performance, which is
summarized by success and precision plots, is listed in Figure 6. It can be observed that
the proposed SSCF achieved the top-ranking results. The area under the curve (AUC) and
distance precision (DP) scores were 0.479 and 0.676, respectively.

In order to visually show the performance of the proposed SSCF in the tracking
process, we selected three different types of video sequences, namely person, boat, and car
sequences, to conduct the experiments. As shown in Figure 7, each column corresponds
to three frames of the images, and the images were randomly selected from the video
sequences. The comparative methods were five trackers, including our SSCF, AutoTrack,
the MSCF, the STRCF, and the LADCF, marked in green, red, blue, yellow, and orange,
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respectively. It can be seen that our SSCF always tracked the correct target and had the best
performance. The STRCF and LADCF were not robust in tracking the small targets.

(a) (b)

Figure 6. Success plots (a) and precision plots (b) of the proposed SSCF and the other trackers on the
UAV123 database.

Figure 7. The qualitative analysis of different trackers on three video sequences.

4.6. Results on the UAVDT-M Database

In this section, we compare our SSCF with the existing methods on the UAVDT-M
database. We also report the running speed of these methods. The running speed was
measured in frames per second (FPS). Table 3 shows the comparison results. It can be
observed that our SSCF achieved better performance than the existing trackers. The area
under the curve (AUC) and distance precision (DP) scores were 0.667 and 0.928, respectively.
However, It should be pointed out that the performance improvement of our tracker came
at the expense of speed reduction.

Table 3. The area under the curve (AUC), distance precision (DP) scores, and FPS of the proposed
SSCF and other trackers on the UAVDT-M database.

Methods SSCF AutoTrack [52] MSCF [51] STRCF [24] ARCF-HC [50] LADCF [26] ECOHC [49] DSST [48]

DP 0.928 0.917 0.913 0.904 0.902 0.895 0.891 0.878
AUC 0.667 0.655 0.642 0.625 0.636 0.614 0.602 0.530
FPS 3.8 65.4 37.6 9.3 15.3 18.2 15.9 100.7

5. Conclusions

In this paper, we proposed a new model called the second-order spatial–temporal
correlation filter (SSCF) for visual object tracking. The SSCF is a DCF framework of
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combining the second-order data-fitting term and spatial–temporal regularization. To solve
the proposed model, we divided the optimization problem into several subproblems and
adopted the ADMM algorithm to solve each subproblem. By taking full advantage of the
second-order data-fitting information, the SSCF becomes more discriminative and robust
in addressing complex tracking situations. Extensive experiments on the benchmarking
databases demonstrated that our SSCF can achieve competitive performance compared to
the state-of-the-art trackers.

It can be noted that the presented SSCF achieved better tracking results than the
existing trackers on most of the attributes, but it was not robust on a few attributes, such as
low resolution and occlusion. Recently, occlusion-processing methods have been presented
in face recognition such as occlusion dictionary learning [58,59] and the occlusion-invariant
model [60]. Can these occlusion processing methods be used for object tracking with occlu-
sion? If the answer is yes, how can we design a new model to enhance the performance? It
also should be pointed out that the performance improvement of our tracker came at the
expense of speed reduction. How to improve the running speed of our SSCF is an important
problem. In addition, although the proposed SSCF achieved better results than the existing
methods, the accuracy was not high when tracking small targets. Self-paced learning has
been widely used in computer vision and machine learning [61]. Combining self-paced
learning and filter learning could potentially yield better performance in tracking small
targets. In future work, we will focus on these topics.
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Abstract: To solve the problem of low accuracy of remaining useful life (RUL) prediction caused
by insufficient sample data of equipment under complex operating conditions, an RUL prediction
method of small sample equipment based on a deep convolutional neural network—bidirectional
long short-term memory network (DCNN-BiLSTM) and domain adaptation is proposed. Firstly, in
order to extract the common features of the equipment under the condition of sufficient samples, a
network model that combines the deep convolutional neural network (DCNN) and the bidirectional
long short-term memory network (BiLSTM) was used to train the source domain and target domain
data simultaneously. The Maximum Mean Discrepancy (MMD) was used to constrain the distribution
difference and achieve adaptive matching and feature alignment between the target domain samples
and the source domain samples. After obtaining the pre-trained model, fine-tuning was used to
transfer the network structure and parameters of the pre-trained model to the target domain for
training, perform network optimization and finally obtain an RUL prediction model that was more
suitable for the target domain data. The method was validated on a simulation dataset of commercial
modular aero-propulsion provided by NASA, and the experimental results show that the method
improves the prediction accuracy and generalization ability of equipment RUL under cross-working
conditions and small sample conditions.

Keywords: DCNN-BiLSTM; domain adaptation; MMD; fine-tuning; C-MAPSS; cross-working;
small sample

1. Introduction

As one of the key technologies of Prognosis and Health Management (PHM), RUL
prediction has become an important research content. RUL refers to the length of continuous
working time of equipment components or systems from the current moment to the moment
when a specific function cannot be performed [1]. Accurate RUL prediction plays a crucial
role in guaranteeing system reliability and preventing system failures [2].

At present, the widely studied equipment RUL prediction methods can be divided into
physical model-based methods and data-driven methods [3]. Due to the complex structure
of some systems, the diverse failure modes, and the uncertainty of operating conditions,
it is difficult to establish a physical failure model [4]. Data-driven methods without prior
knowledge and complex physical modeling process [5] have become a research hotspot in
recent years. Among them, deep learning has attracted much attention due to its powerful
nonlinear mapping ability and high-dimensional feature extraction ability [6]. Babu et al. [7]
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first tried to use the Convolutional Neural Network (CNN) to apply it to the RUL prediction
of aero-engines. This model can automatically extract multi-dimensional sensor features
and obtain better results than the shallow regression model. Zheng et al. [8] proposed a
prediction model based on a Long Short-Term Memory (LSTM) network, which can extract
the features of time series, is suitable for RUL prediction of most equipment.

The premise of data-driven methods is that the training and test data come from the
same operating conditions. As a new machine learning method, transfer learning relaxes
the premise that training samples and test samples must obey the same data distribution.
The knowledge learned from the source domain is applied to different but related target
domains to solve the problem of only a small number of labeled sample data in the target
domain. Transfer learning improves the generalization ability of the machine learning
model to a certain extent [9]. When the feature space and data distribution between the
source domain and target domain samples are quite different, how to use the transfer
learning strategy to solve the small sample problem becomes the focus of research.

Domain adaptation is an important research direction in transfer learning, which is
used to solve the problem of transfer learning when the feature space and category space of
two domains are consistent but the feature distribution is inconsistent. Domain adaptation
methods have been used in the field of RUL prediction of equipment. Fu et al. [10]
proposed a domain adaptation SAE-LSTM model, which adopted MMD to reduce the data
distribution difference in RUL prediction. Li et al. [11] first proposed a multi-core MMD-
based convolutional neural network model. Ragab [12] proposed a Contrastive Adversarial
Domain Adaptation (CADA) method to learn similar features between different domains
and improve the RUL prediction accuracy and noise immunity. Miao [13] proposed a
Deep Domain Adaptative Network (DDAN) to solve the problem of cross-domain feature
distribution shift under different operating conditions and failure modes. Costa et al. [14]
proposed a domain adaptation method for RUL prediction under cross-working conditions
based on LSTM and Domain Adversarial Neural Network (DANN). In order to solve the
problem of low RUL prediction accuracy caused by small sample data sets, Lv et al. [15]
proposed a Sequence Adaptation Adversarial Network (SAAN) to expand the dataset.

Traditional deep learning relies heavily on labeled data. Therefore, in view of the
problem that small-sample equipment status data under different working conditions
affect the RUL prediction accuracy, this paper proposes a small-sample equipment RUL
prediction method based on DCNN-BiLSTM and domain adaptation. The model includes
a pre-training stage, a parameter-transfer stage, and an RUL predicting stage. The pre-
training and MMD constraints are used to reduce the distribution differences of sample
data under different working conditions and learn the common characteristics of the source
domain samples and the target domain samples after domain adaptation. Then transfer the
trained model to the target domain for training fine-tune the pre-trained model to obtain
an RUL prediction model more suitable for the target domain task. Finally, the Commercial
Modular Aero-Propulsion System Simulation (C-MAPSS) dataset provided by NASA was
used to verify the effectiveness of the method proposed in this paper.

2. Related Work

2.1. CNN Convolution Model

The CNN has powerful parameter learning and feature extraction capabilities and can
be used to process multi-dimensional matrix data. In practical engineering applications,
each device has multiple sensors to detect the operating status of the device, and the
collected data also contains a lot of information. In order to extract deeper features, this
paper used a DCNN, which consists of multiple layers of CNN.

Since the degradation data of the equipment is the time series data collected by the
sensor, in this study, the input data is a two-dimensional vector, the length represents the
number of features collected by the sensor, and the width represents the time series of each
feature. After the two-dimensional data is processed by time window, the size of each
sample obtained is represented as (Nw, m), where Nw represents the size of the time window
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and m represents the number of features. Each convolutional layer performs convolution
operations on the input data along the time series direction through convolution kernels of
different sizes, which can extract different features between the data, and finally combine
the generated local feature maps as the input of the BiLSTM.

2.2. BiLSTM Network Model

The LSTM model is used to process sequence data. Compared with the Recurrent Neu-
ral Network (RNN), LSTM is mainly used to solve the problems of gradient disappearance
and gradient explosion in the training process of long sequence data. The LSTM model
consists of an input layer, a hidden layer, and an output layer, with three gating units and
memory units, and the historical information is affected by the input gate, forgetting gate,
and output gate, respectively [16]. The dependencies between long and short periods of
time series can be better learned.

As shown in Figure 1, it, ot, ft represent the input gate, output gate, and forget gate,
respectively. The forget gate decides whether to retain the previous cell state information
Ct−1; the input gate updates the long-term memory of the cell state; the output gate is the
output of the current LSTM; C̃t represents the current temporary memory unit; xt represents
the time series of moments t; ht−1 represents the output value of the previous moment; ht
represents the output value of the current moment. Then the calculation formula of each
threshold state in the forward propagation process of LSTM is as follows:

C̃t = tanh(Wxcxt + Whcht−1 + bc) (1)

Ct = ftCt−1 + itC̃t (2)

it = σ(Wxixt + Whiht−1 + Wcict−1 + bi) (3)

ft = σ
(

Wx f xt + Wh f ht−1 + Wc f ct−1 + b f

)
(4)

ot = σ(Wxoxt + Whoht−1 + Wcoct−1 + bo) (5)

ht = ot·tanh(ct) (6)

where σ represents the sigmoid activation function, tanh is the hyperbolic tangent activation
function, Wxc, Whc, Wxi, Whi, Wci, Wx f , Wh f , Wc f , Wxo, Who, Wco, bc, bi, b f , and bo represent
the weights and bias terms of each respective gate. LSTM contains many neurons, and
the neurons exchange information with each other to extract time-dependent features of
the data.

toti

tC
tC

tf

tx

tx tx

tx th

thth

th th

cb

ob

fb

ib

Figure 1. LSTM structure diagram.
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Bi-directional LSTM (BiLSTM) contains two LSTM network layers in opposite direc-
tions, namely the forward propagation layer and the backward propagation layer, which
connect the input layer and the output layer at the same time, perform time-sequence and
reverse-order calculations, respectively, and obtain the output of the forward and backward
hidden layer at each moment in turn. Finally, the final output is obtained by combining the
corresponding output results of the forward layer and the backward layer at each moment.
The BiLSTM structure diagram is shown in Figure 2. The specific calculation formula is
as follows:

ht = f (w1xt + w2ht−1) (7)

ht
′ = f

(
w3xt + w5ht−1

′) (8)

ot = g
(
w4x4 + w6ht

′) (9)

where ht and h′t are the outputs of the forward propagation layer and the backward
propagation layer at time t, respectively. w1 and w3 are the weight matrices from the input
layer to the forward and backward propagation layers, respectively. w2 and w5 are the
weight matrices from the forward and backward propagation layers to the self-propagation
layer, respectively. w4 and w6 are the weight matrices from the forward and backward
propagation layers to the output layer, respectively. ot is the output values of the final
output gate. g are the functions for splicing the forward and backward propagation results.

ix ix ix

w ww

w w w w

w w w

w w w

w

wwww
w w w

io io io

Figure 2. BiLSTM structure diagram.

3. Proposed Method

3.1. RUL Prediction Model Based on DCNN-BiLSTM

The multi-dimensional sensor data obtained through time window processing is used
as the input of the DCNN-BiLSTM fusion model, and the structure of the fusion model
is shown in Figure 3. DCNN and BiLSTM process the input data, where DCNN consists
of four layers of CNN and activation functions. Each layer of CNN performs low-level
feature extraction by setting convolution kernels of different sizes, and then input to two
layers of BiLSTM to extract time-series features, and finally two layers of fully connected
layers. The BiLSTM network can comprehensively consider the historical information and
future information at each moment and make full use of the information of the previous
and subsequent moments to make the feature extraction process more comprehensive,
improve the prediction accuracy of the time series model, and reduce the risk of overfitting.
The output of the first fully connected layer is used as the measurement value of MMD.
The second layer is the final prediction layer, and the output represents the RUL value of
the device.
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Figure 3. DCNN-BiLSTM structure diagram.

3.2. Domain Adaptation Method Based on MMD

Domain adaptation is a method of transfer learning. Domain adaptation is a machine
learning algorithm that targets the distribution difference between source and target do-
mains. A wide variety of domain adaptation methods aim to apply knowledge learned
from the source domain to the target domain in the absence or few labels of the target
domain by learning domain-invariant features of the source and target domains.

The MMD is the most widely used loss function in transfer learning, especially domain
adaptation, and is mainly used to measure the distance between two different but similar
distributions. Compared to other metrics, MMD can estimate nonparametric distances
between various distributions and avoid the computation of intermediate process quantities.
MMD maps the source and target domains to a Reproducing kernel Hilbert space (RKHS)
and then calculates the distribution distance between the two domains. MMD is defined as:

MMD(X, Y) =

∣∣∣∣∣
∣∣∣∣∣ 1
ns

ns

∑
i=1

ϕ(xi)−
1
nt

nt

∑
j=1

ϕ(yj)

∣∣∣∣∣
∣∣∣∣∣
2

H
(10)

where H represents the RHKS space, ns and nt represents the number of samples in the
source domain and the target domain, respectively, ϕ(x) : X → H represents the mapping
function from the original feature space to the RKHS, and then uses the kernel method to
calculate the inner product to avoid high-dimensional complex operations, usually using a
Gaussian kernel function, which represents for:

K(μ, ν) = e
−‖μ−ν‖2

σ (11)

where μ and ν represent different samples and σ is the width parameter of the function,
which controls the radial range of the function.

In the case where there is a difference in the distribution between the source domain
data and the target domain data, the MMD is added to the loss function to optimize the
target. Therefore, the loss function of the pre-trained network model is defined as:

Loss = MSE_loss + λMMD_loss (12)

where MSE_loss is the mean square loss function and λ represents the balance function,
λ > 0.

The transfer learning in this paper is based on the method of domain adaptation.
During the pre-training process, the source domain and target domain datasets are trained
at the same time. The output value of the first fully connected layer of the DCNN-BiLSTM
network model is used as the sample space for calculating the distribution distance between
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the two domainsm, and finally, the pre-training model after domain adaptation is obtained.
The training process is shown in Figure 4.

Figure 4. The pre-training framework based on domain adaptation.

3.3. Fine-Tune the Target Model

In order to shorten the training time of the target model, make the target model
more adaptable to different operating conditions and environments, and improve the
generalization ability. In this section, the Adam optimizer is used to fine-tune the pre-
trained model. The flowchart of fine-tuning is shown in Figure 5. First, initialize the
target model with the weights and parameters of the pre-trained model, then freeze the
parameters of the feature extraction layers, including 4-layer CNN and 2-layer BiLSTM,
and only update the parameters of the task-specific layer, i.e., the two-layer fully connected
layer. Furthermore, to prevent overfitting, different learning rates are set for the two fully
connected layers. Finally, a prediction model that is more suitable for the target domain
task and has strong generalization ability is obtained by training.

Figure 5. The flowchart of fine-tuning.

4. Experimental Results and Analysis

4.1. Dataset Description

The method in this paper was evaluated using the turbofan engine degradation
data of the Commercial Modular Aero-Propulsion System Simulation (C-MAPSS) dataset
provided by NASA. The detailed information of the dataset is presented in Table 1.This
dataset consists of four different sub-datasets with different operational conditions and
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fault modes. Each sub-dataset contains time-series information collected by 21 sensors and
3 measurements of operational conditions. The training set and the test set have different
numbers of degraded engines, each with a different degree of initial wear, and after the
number of cycles increases, the engine slowly ages until it fails to work. The training set
records the degradation process of the entire life cycle of the engine, while the test set only
includes a certain moment before failure. The task is to predict the remaining useful life
(RUL) of the engine units in the test set.

Table 1. Information of the C-MAPSS dataset.

Subdataset FD001 FD002 FD003 FD004

Training set engine unit 100 260 100 249

Test set engine unit 100 259 100 248

Training set sample size 17,731 48,558 21,220 56,815

Test set sample size 100 259 100 248

Maximum life cycle 362 378 512 128

Operational conditions 1 6 1 6

Fault modes 1 1 2 2

Seven sensor values were observed to remain unchanged within the FD001 subset. In
order to save computing resources, meaningless data is eliminated, and 14 sensors were
obtained as 2, 3, 4, 7, 8, 9, 11, 12, 13, 14, 15, 17, 20, and 21.

4.2. Data Processing

The original data is composed of data detected by multiple sensors. Different data
sets have different sequence lengths, and the data dimensions are high and have different
dimensions. Therefore, the min-max normalization method is used to unify the data into
the range [−1,1]. Each measurement xi,j is min-max normalized and can be expressed
as [17]:

x̃i,j =
2 (xi,j − xj

min )

(xj
max − xj

min )
− 1 (13)

where x̃i,j represents the normalized data, xj
min and xj

max represents the minimum and max-
imum values of the data monitored by the jth sensor in one operating cycle, respectively.

In order to obtain more useful temporal information from the input data, the nor-
malized data is subjected to time windowing. For continuous time-series data, a sliding
time window is used to define data labels, and the size of the input model sequence is
determined by the size of the time window.

The window of size Nw slides along the time series, and each time step slides l will
feedback the data to the slider, which is used as the input of the prediction model, so the
input size of the network is Nw × m. To get more samples and reduce the risk of overfitting,
the sliding time step is set to 1.

When the engine is running under normal conditions, taking the remaining operat-
ing cycle period as RUL, then we assume that RUL decreases linearly, using a piecewise
linear function, choose 125 as the initial life period [18], and apply it to the training set
and test set.
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4.3. Selection of Evaluation Indicators

To verify the effectiveness of the method in this paper, two functions were used as
evaluation metrics, namely the Root Mean Square Error (RMSE) function and the Score
function [19]. The RMSE function formula is:

RMSE =

√
1
N ∑N

i=1(ŷi − yi) (14)

The formula for the Score function is:

Score =

{
∑N

i=1 (e
− ŷi−yi

13 − 1 ), ŷi − yi < 0

∑N
i=1 (e

ŷi−yi
10 − 1 ), ŷi − yi ≥ 0

(15)

where ŷi and yi represent the predicted value and the actual value of RUL, respectively.
RMSE reflects the degree of fit between the predicted life and the actual life, and the

size of the Score measures the rationality of life prediction. The lower the values of RMSE
and Score, the better the predictive ability of the model.

4.4. Experimental Configuration and Parameters

All experiments in this paper are performed on a processor configured with 16 GB
memory (RAM), NVIDIA GeForce TITAN XP graphics card, and Intel(R) Xeon(R) CPU
E5-2620 v4 @ 2.10GHz processor. The network model proposed in this paper is based
on Python3.6 and the PyTorch deep learning framework. In the experiments in this
paper, considering the influence of the sample size on the prediction accuracy and the
influence of different operational conditions and fault modes, in order to improve the
generalization ability of the RUL prediction model, according to the size of the data,
we use FD002 and FD004 with the sufficient sample size in C-MAPPS as source domain
datasets, and FD001 and FD003 datasets in C-MAPPS with insufficient sample size as
target domains. We evaluate the performance of transfer learning in RUL prediction of
the target domain and investigate how different working conditions and the number
of samples of the source and target domain datasets affect the performance of the final
prediction model. Therefore, set the experimental tasks as shown in Table 2.

Table 2. Transfer learning experiment tasks.

Source Domain Target Domain Operational Conditions Fault Mode

FD002
FD001 6→1 1→1

FD003 6→1 1→2

FD004
FD001 6→1 2→1

FD003 6→1 2→2

4.5. Model Prediction Results and Analysis

In order to compare the effectiveness of the transfer learning method proposed
in this paper, the results of the method were compared with the experiments without
transfer, as shown in Table 3. Source-Only refers to directly testing the target domain
with the pre-trained model, Target-Only refers to training and testing only on the
target domain.
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Table 3. Compare transfer learning with no transfer.

Methods
FD002→FD001 FD002→FD003 FD004→FD001 FD004→FD003

RMSE Score RMSE Score RMSE Score RMSE Score

Source-Only 84.63 5,355,207.6 51.39 362,392.1 41.45 18,345.5 42.65 14,591.2

Target-Only 15.84 534.13 14.66 281.12 17.28 473.87 16.32 349.55

TL 14.36 371.86 13.66 243.22 16.35 432.37 14.79 296.34

As can be seen from Table 3, the transfer learning algorithm proposed in this paper
greatly improves the accuracy of the prediction model. Due to the influence of the difference
in the distribution of the data set, the pre-training model of Source-Only was directly
used for testing, and the effect was very bad. On the basis of the traditional Target-Only
prediction method, the pre-training model after domain adaptation was loaded, and then
the model was optimized in the target domain, and the prediction accuracy was improved.
Take FD002→FD003 as an example, the RMSE increased by at least 6.82%, and the score
function value increased by at least 13.48%.

In the pre-training stage, the MMD item of the tuning process not only affected the
prediction accuracy of the data set but also affected the matching degree of the conditional
distribution. Therefore, the coefficient λ of MMD_loss of the loss function had a greater
impact on the adaptive effect. Taking FD002→FD001 as an example, when −1 was used
as the median value, a large number of comparative experiments were carried out by
increasing or decreasing order of magnitude. As shown in Figure 6, the horizontal axis is
the value size, and the vertical axis is the two evaluation indicators values of RMSE and
Score. It can be seen that when λ = 0.001, both RMSE and Score achieve the minimum
value, so the coefficient value λ of MMD_loss in this experiment was 0.001.

Figure 6. The impact of different λ values on the prediction results.

In order to compare the prediction effect of the DCNN-BiLSTM model based on
transfer learning on the small sample data set, Figure 7 shows the prediction results of all
the engine units on the test set sorted from small to large according to the RUL value of
the four tasks of experiments. The horizontal axis represents the test engine unit, and the
vertical axis represents the RUL. It can be seen from Figure 7 that the DCNN model could
effectively extract the detailed features and similar features of the engine degradation, even
if it is difficult to predict at the beginning of the operation. The value was also closer to
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the set value of 125. As the running period increases, BiLSTM could effectively obtain the
relationship between the time series before and after. Combining the functions of fusion
model and domain adaptation, it can be seen from Figure 7 that its prediction trend was
stable and could better fit the real degradation curve. Therefore, the transfer learning model
proposed in this paper shows a good prediction effect.

(a) (b)

(c) (d)

Figure 7. RUL prediction results of four tasks of experiments. (a) FD001 Engine Prediction Results
(FD002→FD001). (b) FD001 Engine Prediction Results (FD004→FD001). (c) FD003 Engine Prediction
Results (FD002→FD003). (d) FD003 Engine Prediction Results (FD004→FD003).

Taking FD002→FD001 as an example, the error and relative error of all engines in
FD001 are used to intuitively show the accuracy of RUL prediction with the method in
this paper. The results are shown in Figure 8. It can be seen from Figure 8a that when the
engine starts to run, the RUL value is relatively large, and the prediction error is relatively
large. When the engine runs for a long time or is about to fail, the degradation information
is more obvious, and the prediction performance is significantly enhanced. Under a limited
sample, it is difficult to accurately predict the equipment life of one set of different working
conditions with the sensor data of another set of working conditions. The method in this
paper improves this problem to a certain level so that the relative error generally remains
at [−25%, 25%] as the Figure 8b.
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(a)

(b)
Figure 8. Error curve of RUL prediction results in task FD002→FD001. (a) Absolute error. (b)Relative error.

In order to verify the effectiveness of the DCNN-BiLSTM, the five state-of-the-art net-
work models are used to compare the hybrid network DCNN-BiLSTM; the RUL prediction
results are shown in Table 4. It can be observed that the DCNN-BiLSTM model performed
significantly better than SVM, MLP, CNN, LSTM, and CNN-LSTM in datasets FD001 and
FD003. The DCNN-BiLSTM adopts a multi-layer convolutional network structure and a
bidirectional long and short-term memory network, which can extract spatial and temporal
features in detail, strengthen the feature extraction ability, and effectively improve the
prediction accuracy.

Table 4. The results of the hybrid network model in this paper are compared with other network
models on the C-MAPSS dataset.

Methods
FD001 FD003

Score RMSE Score RMSE

SVM [20] 7730.33 40.72 22,541.58 46.32
MLP [20] 560.59 16.78 479.85 18.47
CNN [7] 1290 18.45 1600 19.82
LSTM [8] 338 16.14 852 16.18

CNN-LSTM [21] 303 16.13 1420 17.12
DCNN-BiLSTM 532.16 15.98 365.41 15.63

95



Mathematics 2022, 10, 1022

To further verify the effectiveness and superiority of the proposed method in this paper,
this method is compared with the advanced methods in recent years, and the comparison
results with CORAL, WDGRL, DDC, ADDA, and RULDDA methods are shown in Table 5.

Table 5. The results of the methods in this paper are compared with other methods on the
C-MAPSS dataset.

Methods
FD002→FD001 FD002→FD003 FD004→FD001 FD004→FD003

Score RMSE Score RMSE Score RMSE Score RMSE

CORAL [22] 3590 24.43 23,071 42.66 154,842 51.44 6919 30.44

WDGRL [23] 157,672 15.24 19,053 41.45 45,394 42.01 77,977 18.18

DDC [24] 640 46.96 62,823 39.87 162,100 41.55 1623 44.47

ADDA [25] 689 19.73 11,029 37.22 43,794 37.81 1117 23.59

RULDDA [14] 2430 23.91 12,756 47.26 13,377 32.37 1679 23.31

DCNN-BiLSTM (TL) 371.86 14.36 243.22 13.66 432.37 16.35 296.34 14.79

From Table 5, we can see the proposed DCNN-BiLSTM (TL) method obtained sub-
stantially improved RMSE and Score prediction accuracy on all tasks. More specifically,
RMSE and Score indicators on four tasks had reduced 5.77%, 63.26%, 49.49%, 18.65%, and
41.89%, 97.79%, 96.76%, and 73.47%, respectively, compared with the best result in the
state-of-the-art methods. In addition, it can be observed that knowledge transfer between
simple and complex datasets is challenging due to the large domain shift. For example,
FD002→FD003 and FD004→FD001 are the transfer learning tasks of simple and complex
datasets, and our proposed method obtained the greatest improvement and successfully
aligned the two distant domains. The results show that the proposed transfer learning
method could reduce the impact of operational conditions and fault modes on the RUL pre-
diction accuracy of the target domain and effectively transfer the knowledge of the source
domain with a large sample size, which is equivalent to data augmentation effectively
for the target domain with small sample sizes. It improves the performance of the RUL
prediction model. This is of great significance for equipment RUL prediction with small
sample sizes in complex environments. Therefore, the proposed method is very promising
in solving the small sample problem in the field of RUL prediction.

5. Conclusions

In the traditional data-driven RUL prediction method, the state detection data of
the training set and the test set are required to have the same or similar distribution.
However, due to different operational conditions, fault modes, and some force majeure
factors in the actual working environment, it is generally difficult to obtain data sets that
satisfy the same data distribution. In order to solve the problem that it is difficult to
collect equipment operational data in some specific environments and the RUL prediction
accuracy of equipment is not high, and the generalization ability is weak under different
working conditions, this paper proposes a transfer learning-based RUL prediction method
for small-sample equipment.

The method in this paper uses the DCNN-BiLSTM model to simultaneously train
the source and target domain data and uses MMD to constrain the distribution difference
between the two domains so as to realize the adaptation matching and feature alignment
of the target domain samples and the source domain samples. The deep features are
extracted to obtain a pre-trained model. Then, the network structure and parameters of the
pre-trained model are transferred to the target domain for training by a fine-tuned transfer
learning strategy, and the network is optimized. Finally, an RUL prediction model that is
more suitable for the target domain data is obtained. When used on the C-MAPSS dataset,
compared with other state-of-the-art methods, it verifies the effectiveness of the method
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proposed in this paper for predicting the RUL of aero-engines. For the subsets FD002 and
FD004 with complex operating conditions and sufficient sample data, the transfer learning
method is used to solve the subsets FD001 and FD003 with single operating conditions and
small data samples, and the effect is significantly improved.

In future research, more experiments will be conducted on different degradation
datasets to demonstrate the reliability and generality of the proposed model. Furthermore,
domain adaptation methods are applied to make unsupervised predictions on incomplete
data of target domains with missing labels. Although the experiments in this paper have
obtained good experimental results, it is still necessary to further optimize the network
structure and parameters to improve the performance of the RUL model.
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Abstract: Blind image deblurring (BID) is a long-standing challenging problem in low-level image
processing. To achieve visually pleasing results, it is of utmost importance to select good image priors.
In this work, we develop the ratio of the dark channel prior (DCP) to the bright channel prior (BCP) as
an image prior for solving the BID problem. Specifically, the above two channel priors obtained from
RGB images are used to construct an innovative sparse channel prior at first, and then the learned
prior is incorporated into the BID tasks. The proposed sparse channel prior enhances the sparsity
of the DCP. At the same time, it also shows the inverse relationship between the DCP and BCP. We
employ the auxiliary variable technique to integrate the proposed sparse prior information into the
iterative restoration procedure. Extensive experiments on real and synthetic blurry sets show that the
proposed algorithm is efficient and competitive compared with the state-of-the-art methods and that
the proposed sparse channel prior for blind deblurring is effective.

Keywords: blind image deblurring; image prior; sparse channel; sparsity

MSC: 68U10

1. Introduction

The goal of blind image deblurring is to restore a sharp image and a blur kernel
from the input degraded image. The degradation types include motion blur, noise, out-
of-focus and camera shake. Assuming that the blur is uniform and spatially invariant, the
mathematical formulation of the blurring process can be modeled as

b = l ∗ k + n (1)

where b is the blurry input, k is the blur kernel and n is the additive noise. The ∗ denotes
the convolution operator. This problem is highly ill-posed because both the latent sharp
image l and blur kernel k are unknown. In order to make this problem well-posed, most
existing methods utilize the statistics of natural images to estimate the blur kernel. For
example, a heavy-tailed distribution [1], patch recurrence prior [2], nuclear norm [3,4],
low-rank prior [5], sparse prior [6], multiscale latent prior [7] or additional information of a
specific image [8–10] have been used to estimate a better kernel.

Strong sparsity of image intensity and gradient has been widely used in low-level
computer vision processing problems. It also has mature applications in the field of image
deblurring [6,11–13], such as the L1/L2 [14] norm, the reweighted L1 norm [15], the L0
norm prior [16–19] and the sparse prior–local maximum gradient (LMG) [20]. For favoring
clear images over blurry ones, the edge selection method [21–23] is embedded in the blind
deconvolution framework. However, strong edges are not always available in many cases.
The channel prior was introduced by He et al. for image defogging in Ref. [24]. Then,
Pan et al. [18] enforced the sparsity of the dark channel by the L0 norm for kernel estimation.
Unfortunately, this prior does not work well on images with large noise and large numbers
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of pixels. To solve this problem, Yan et al. [19] proposed an extreme channel prior (ECP)
which utilizes both the dark channel and bright channel for estimating the blur kernel.

In this paper, a novel sparse channel prior is proposed for blind image deblurring.
Inspired by [18,19,24], we take the advantages of the DCP and BCP to construct a con-
frontation constraint D/B. We prove its characteristic from a mathematical perspective
and explore how these properties can be used to estimate the blur kernel. In the proposed
algorithm, the optimization of the proposed prior is a challenging problem. We use the idea
of auxiliary variables and the alternating minimization method to decompose the problem
into independent subproblems optimised by the alternating direction minimization (ADM)
method. The main contributions of this work can be stated as follows:

• A new D/B prior is presented for kernel estimation, which fully explores the relation-
ship between the DCP and BCP. We also verify the effectiveness of D/B.

• We develop an effective optimization strategy for kernel estimation based on the idea
of auxiliary variables and the alternating direction minimization (ADM) method.

• Experiments on four databases show that the proposed method is competitive com-
pared with the state-of-the-art blind deblurring algorithms.

The rest of this paper is organized as follows. Section 2 introduces the related work.
The proposed D/B is detailed in Section 3. Our blind deblurring model and optimization
strategy are presented in Section 4. Section 5 shows the experimental results. Further
discussion of our proposed deblurring algorithm is given in Section 6. Section 7 summarizes
this paper.

2. Related Work

Blind image deblurring algorithms have made great progress due to the use of the
proper kernel estimation model. In this part, we introduce the methods related to our work
in an appropriate context.

The success of many blind image deblurring algorithms is based on the use of the
statistical characteristics of the image intensity and gradient. Krishnan et al. [14] presented
the L1/L2 norm based on the sparsity of image intensity. The L1/L2 norm is a normalized
version of L1, which enhances the sparsity of L1. Levin et al. [1] observed the heavy-tailed
distribution of image intensities and introduced a maximum posteriori (MAP) framework.
Shan et al. [25] introduced a probability model to fit the sparse gradient distribution of a
natural image. Pan et al. [16] developed a method in which both intensity and gradient are
regularized by the L0 norm for text image deblurring. These methods are limited by the
modeling of more complex image structures and contexts.

Another group of blind image deblurring methods [22,23] employs a significant edge
detection step for kernel estimation. Specifically, Cho et al. [21] predicted sharp edges
by the bilateral and shock filters. Joshi et al. [26] detected image contours by locating
the subpixels’ extrema. These methods cannot capture the sparse kernel and structures,
which makes the restored image blurry and noisy sometimes. To solve these problems,
researchers have proposed many better models to estimate the blur kernel. Xu et al. [27]
presented a two-phase kernel estimation algorithm, which separates kernel initialization
from the iterative support detection (ISD)-based kernel refinement step, giving an efficient
estimation process and maintaining many small structures. Zoran and Weiss [28] proposed
the expected patch log likelihood (EPLL) method, which imposes a prior on the patches of
the final image. However, this will iteratively restore the degradation. Vardan et al. [29]
exploited the multiscale prior to further improve the EPLL and reduce the error to that
of the global modeling. Bai et al. [7] developed a multiscale latent structures (MSLS)
prior. Based on the MSLS prior, their deblurring algorithm consists of two stages: sharp
image estimation in the coarse scales and a refinement process in the finest scale. For the
patch-based methods, global modeling is a difficult problem.

With the rapid development of the deep learning method, remarkable results have
been achieved in the field of blind image deblurring [30–34]. For example, convolutional
neural networsk (CNN) [35], Wasserste generative adversarial networks (GAN) [36], deep
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hierarchical multipatch networks (DMPHN) [37], ConvLSTM [38] and scale-recurrent
networks (SRN) [39] are all designed for image deblurring. Zheng et al. [40] presented
an edge heuristic multiscale GAN, which utilizes the edge’s information to conduct the
deblurring process in a coarse-to-fine manner for nonuniform blur. Liang et al. [41] learned
novel neural network structures from RAW images and achieved superb performance.
Chang et al. [42] proposed a long–short-exposure fusion network (LSFNet) for low-light
image restoration by using the pairs of long- and short-exposure images. The success of
deep-learning-based methods mainly relies on the consistency between training and test
data, which limits the generalization ability of these methods.

Recently, the classical dark channel prior (DCP) has been proved effective for image
deblurring. The DCP was introduced by He et al. [24] for image defogging. It is based on
the observation that there is at least one color channel that has very low and close-to-zero
pixel values on outdoor haze-free nonsky image patches. Pan et al. [18] further found
that most elements of the dark channel are zero for nature images and then enhanced the
sparsity of dark channel for image deblurring. Inspired by the DCP, the bright channel
prior (BCP) is proposed. That is, in most of nature patches, at least one color channel has
very high pixel values. Yan et al. [19] used the simple addition of the DCP and BCP to
form an extreme channel prior (ECP) for a blind image deblurring algorithm. However, the
relationship between the BCP and DCP is not fully explored in the ECP.

3. Proposed Sparse Channel Prior

To explain that the proposed sparse channel vary after blurring, we model the blurring
process as described in [43]. For an image I, consider the noise is small enough to be
neglected. We have:

b(x) = ∑
z∈Ψ(x)

l
(

x +
[m

2

]
− z

)
k(z) (2)

where x and m denote the coordinates of the pixel and the size of the blur kernel k, respec-
tively. Ψ(x) represents an image patch centered at x, ∑z∈Ψ(x) k(z)= 1 and k(z) ≥ 0. [·] is a
rounding operator.

Inspired by the two channels (dark and bright channels) and the statistics of images,
we observe that when the dark channel is more different from the bright channel of one
image patch, the edges are more salient, which is helpful to estimate an accurate blur kernel.
To formally describe this observation, the proposed sparse channel prior is defined by:

R(x) = miny∈Ψ(x)

(
minc∈(r,g,b)(Ic(y))

)
/
(

maxy∈Ψ(x)

(
maxc∈(r,g,b)(Ic(y))

)
+ ε

)
=D(x)/(B(x) + ε)

(3)

where x and y denote the coordinates of the pixel, ε is a non-negative constant and Ψ(x)
represents an image patch centered at x. Ic is the c-th color channel of image I. As
described in Equation (3), B(x) = maxy∈Ψ(x)

(
maxc∈(r,g,b)(Ic(y))

)
represents the BCP and

D(x) = miny∈Ψ(x)

(
minc∈(r,g,b)(Ic(y))

)
represents the DCP. Dark channels are obtained

by two minimization operations: minc∈(r,g,b) and miny∈Ψ(x). The bright channel is obtained
by two maximization operations: maxc∈(r,g,b)and maxy∈Ψ(x). In the implementations of the
DCP and BCP, if I is a gray image, then only the latter operation is performed. A small
value of R(x) implies there are salient edges in the image patch. On the contrary, a large
R(x) implies that there are fine structures in an image patch. The reason is that when the
edge is salient, the pixel values are more different between the two sides of edges. It means
that the minimum value is more different from the maximum value of the image patch.
Conversely, when the difference between the DCP and BCP is not that large, the image
edge is unclear, and the value of R(x) is large. Therefore, it is natural to think that if the
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DCP is equal to or slightly smaller than the BCP, small edges can be accurately removed by
minimizing Equation (3).

Consider a natural image that was blurred by a blur kernel. Blur reduces the maximum
pixel value and increases the minimum pixel value of one patch. In other words, the
DCP of one patch will increase and the BCP will decrease. Let R(b) and R(l) denote the
proposed sparse channel of the blurred and clear image, respectively, when the l(x) =
maxy∈Ψ(x)l(y) = miny∈Ψ(x)l(y), R(b)(x) ≥ R(l)(x). To further apply this proposition to
the definition of the proposed sparse channel, we have:

R(b)(x)=
miny∈Ψ(x)

(
minc∈(r,g,b)(bc(y))

)
maxy∈Ψ(x)

(
maxc∈(r,g,b)(bc(y))

)
+ ε

=
miny∈Ψ(x) b(y)

maxy∈Ψ(x) b(y) + ε

=
miny∈Ψ(x) ∑z∈Φ(x) l

(
y +

[m
2
]
− z

)
k(z)

maxy∈Ψ(x) ∑z∈Φ(x) l
(
y +

[m
2
]
− z

)
k(z) + ε

≥ ∑z∈Φ(x) miny∈Ψ(x) l
(
y +

[m
2
]
− z

)
k(z)

∑z∈Φ(x) maxy∈Ψ(x) l
(
y +

[m
2
]
− z

)
k(z) + ε

≥
∑z∈Φ(x) minŷ∈Ψ̂(x) l

(
ŷ +

[m
2
]
− z

)
k(z)

∑z∈Φ(x) maxŷ∈Ψ̂(x) l
(
ŷ +

[m
2
]
− z

)
k(z) + ε

=
minŷ∈Ψ̂(x) l(ŷ)

maxŷ∈Ψ̂(x) l(ŷ) + ε

=R(l)(x)

(4)

Let m̂ and SΨ denote the size of Ψ̂(x) and Ψ(x), respectively. Then we have m̂ = SΨ + m.
Equation (4) shows that R(x) of the image patch centered at x after blurring is no less than
the value of the original image patch centered at x.

Equation (4) proves R(l)(x) ≤ R(b)(x). This means that after blurring, the difference
between the DCP and the BCP is smaller than that of the corresponding patch in a sharp
image. In other words, R(x) always favors the sharp image. We further validate our
analysis on the dataset [44]. Figure 1a–c show the histogram of the average number of
dark channel pixels, bright channel pixels and D/B channel pixels, respectively. As can be
observed, a large portion of the pixels in the dark channels and bright channels possess
very small or large values, and our D/B channel pixels possess smaller values than those
of the DCP and BCP. As shown in Figure 1, the proposed sparse channels of clear images
have significantly more zero elements than those of blurred images. Thus, the sparsity of
the proposed channel is a natural metric to distinguish clear images from blurred images.
This observation motivates us to introduce a new regularization term to enforce sparsity of
the proposed channels in latent images.

Proposed Sparse Channel as an Image Prior

Equation (4) shows that after blurring, the difference between the DCP and BCP is
smaller than that of the corresponding patch in a sharp image. Therefore, in order to
generate sharp and reliable salient edges, we propose a novel sparse channel prior which
combines the D/B and L0 norm:

P(x) =
‖D(x)‖0

‖B(x)‖0 + ε
(5)
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(a) (b) (c)

Figure 1. The statistics of the DCP, the BCP and our proposed D/B prior: (a–c) average channel
pixels distribution of bright, dark and our D/B, respectively.

We define P(x) as a D/B prior, and the L0 norm is used for sparsity. Let Ψ(x) denote
one patch of the image I. If there exist some pixels x ∈ Ψ(x) such that I(x) = 0, we have

P(b)(x) ≥ P(l)(x) (6)

where P(b)(x) and P(l)(x) denote the D/B prior of the blurred and clear image, respectively.
This property directly follows from Equation (4). In the framework of MAP, by minimizing
the sparse prior P(x), we obtain a result that favors a sharp image. This property is also
validated using dataset [44]. As shown in Figure 1c, the average number of D/B channels
in clear images has significantly more zero elements than that of blurred ones.

4. Proposed Blind Deblurring Model

Based on the proposed D/B prior, we construct the blind deblurring model under the
maximum a posteriori (MAP) framework.

argminl,k‖l ⊗ k − b‖2
2 + μP(l) + ϑ‖∇l‖0 + γ‖k‖2

2 (7)

where P(l) is our proposed prior, ∇ denotes the gradient operation and μ, ϑ and γ are
non-negative weights. The data-fitting term of our model ensures that the latent sharp
image is consistent with the observed image. ‖∇l‖0 is the L0 norm of the image gradient,
which is used to suppress ringing and artifacts. Finally, we use the L2 norm to increase the
sparsity of the blur kernel.

4.1. Optimization

In this part, we adopt the ADM method to obtain the solution to the objective function.
By using the idea of alternating optimization, we can obtain two independent subproblems
about l and k, respectively:

argminl‖l ⊗ k − b‖2
2 + μ

‖D(l)‖0
‖B(l)‖0 + ε

+ ϑ‖∇l‖0 (8)

and
argmink‖l ⊗ k − b‖2

2 + γ‖k‖2
2 (9)

Equation (9) is a classical least squares problem with respect to k. By introducing the
auxiliary variable g, which is related to ∇l, Equation (8) can be written as follows:

argminl,g‖l ⊗ k − b‖2
2 + λ‖∇l − g‖2

2 + μ
‖D(l)‖0

‖B(l)‖0 + ε
+ ϑ‖g‖0 (10)
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Equation (10) can be decomposed into:

argminl‖l ⊗ k − b‖2
2 + λ‖∇l − g‖2

2 + μ
‖D(l)‖0

‖B(l)‖0 + ε
(11)

and
argmingλ‖∇l − g‖2

2 + ϑ‖g‖0 (12)

Equation (12) is an L0 norm minimization problem for g.

4.2. Estimating Intermediate Image l

For the k-th iteration, we consider B(l) estimated in the (k − 1)-th iteration as a
constant. Denoting

wk = μ/(‖B(l)‖0 + ε) (13)

Equation (11) can be rewritten as follows:

argminl‖l ⊗ k − b‖2
2 + λ‖∇l − g‖2

2 + wk‖D(l)‖0 (14)

By introducing an auxiliary variable, p, which is related to D(l), Equation (14) can be
reformulated as follows:

argminl,p‖l ⊗ k − b‖2
2 + ξ‖D(l)− p‖2

2 + λ‖∇l − g‖2
2 + wk‖p‖0 (15)

Using the idea of alternating optimization, we can obtain two independent subprob-
lems to solve for l and p, respectively:

argminl‖l ⊗ k − b‖2
2 + ξ‖D(l)− p‖2

2 + λ‖∇l − g‖2
2 (16)

and
argminpξ‖D(l)− p‖2

2 + wk‖p‖0 (17)

Equation (16) contains all quadratic terms, and we can obtain its solution by the least
squares method. In each iteration, the FFT (Fast Fourier Transform) is used to accelerate
the computation process. Its closed-form solution is given as follows:

l = F−1

(
F (k)F (b) + ξF (p) + λFg

F (k)F (k) + λF (∇)F (∇) + ξ

)
(18)

where Fg =
(
F (∇v)F (gv) +F (∇h)F (gh)

)
and F (·) and F−1(·) are the Fast Fourier

Transform (FFT) and its inverse, respectively. F (·) denotes the complex conjugate operator
of FFT and ∇v and ∇h are gradients in the vertical and horizontal directions, respectively.

4.3. Estimating p and g

Equations (12) and (17) are minimization problems of the L0 norm. Due to the difficulty
of solving the L0 norm minimization problem, we adopt the method described in Ref. [13].
As a result, the solution of Equation (17) can be expressed as:

p =

{
D(l), D(l) ≥ wk

ξ

0, otherwise
(19)

Given l, the solution of Equation (12) can be expressed as:

g =

{
∇l, |∇l|2 ≥ ϑ

λ
0, otherwise

(20)
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4.4. Estimating Blur Kernel k

Since the updating of the blur kernel is an independent subproblem, we estimate k in
the gradient space. Specifically, we obtain the solution to the blur kernel by minimizing the
following problem though the known intermediate image l:

mink‖∇l ⊗ k −∇y‖2
2 + γ‖k‖2

2 (21)

where ∇ denotes the gradient operation. Note that we use Equation (21) to estimate the
blur kernel instead of Equation (9), which helps to suppress ringing artifacts and eliminate
noise. The closed-form solution to Equation (21) is obtained by FFT.

k = F−1

(
F (∇l)F (∇y)

F (∇l)F (∇l) + γ

)
(22)

The coarse-to-fine strategy is used in the process of blur kernel estimation, which is
similar to that used in [26,45]. In the process of solving the problem, it is very important to
restrict the small values of the blur kernel by thresholding at fine scale, which enhances the
robustness of the algorithm to noise.

4.5. Estimating Latent Sharp Image

Although the latent sharp images can be estimated from Equation (18), this formulation
is less effective for fine-texture details. For the purpose of suppressing ringing and artifacts,
we fine-tune the final restored image. With the estimated blur kernel and blur input image
y, we can use the nonblind deconvolution method to obtain the final latent sharp image
llatent. Algorithm 1 summarizes the main steps of the final latent sharp image restoration
method. Firstly, we estimate the restored image lh by the method in Ref. [46] using the
hyper-Laplacian prior. Then we restore image lr according to the method in Ref. [47] using
the total variation prior. Finally, the latent sharp image llatent is calculated by the average of
the two restored images, i.e., llatent = (lh + lr)/2. The main steps of our proposed algorithm
are summarized as Algorithm 2.

Algorithm 1 Final latent sharp image restoration.
Input: Blurry image b and estimated kernel k.

1: Estimate latent image lh by using the method described in [46] with Laplacian prior;
2: Estimate latent image lr by using the method described in [47] with total variation prior;

3: Restore the final sharp image llatent:
llatent = (lh + lr)/2.

Output: Sharp latent image llatent.

Algorithm 2 The proposed blind deblurring algorithm.
Input: Blurry image y;

1: Initialize the intermediate image l and blur kernel k;
2: Estimate blur kernel k from b;
3: Alternately calculate l and k by the manner of coarse-to-fine levels:
4: Estimate intermediate image l by Equation (18);
5: Estimate blur kernel k by Equation (22);
6: Interpolate solution to finer level as initialization;
7: Calculate the latent sharp image according to Algorithm 1.

Output: Sharp latent image llatent.

We first initialize the intermediate image l and blur kernel k according to the blurry
input. Then we alternately update l and k. In order to avoid falling into a local minimum,
our algorithm is executed in a coarse-to-fine manner. The results of the coarse layer are
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up-sampled with the bilinear interpolation method as the initialization of the next fine layer.
Finally, a latent sharp image is obtained by Algorithm 1 with the estimated blur kernel.

5. Results

We examine our method and compare it with the state-of-the-art BID methods on
different image datasets, including a synthetic image dataset and real-world blurred images.
We then evaluate the quality of deblurring models by different metrics, including the peak
signal-to-noise ratio (PSNR, unit: dB), which is a measure of image quality, and cumulative
error ratio (CER). The higher the CER value, the better the model.

In all the experiments, the parameter settings of our model are as follows: μ = ϑ = 0.003,
γ = 2 and the size of image patch to compute the D/B channel is set to be 35. The maximum
iteration is empirically set to 5 as a trade-off between accuracy and speed.

5.1. Synthetic Image Deblurring

We first test our method on the synthetic image dataset [44] for quantitative evalua-
tions. This dataset includes 4 ground truth images and 12 different kernels. We compare
our results with the state-of-the-art methods [11,14,18,19,21,27,48]. Our algorithm performs
well with other methods on this benchmark dataset. Additionally, we present a challenging
example in Figure 2. We record the largest PSNR calculated by comparing each restored
result with 199 ground truth images captured along the camera shake trajectory in Figure 3.
Since the proposed method considers not only BCP and DCP information but also the
relationship between them, the PSNR values of the restored images achieved by our method
are higher than those of the state-of-the-art algorithms [11,14,18,19,25,45,48–50].

Figure 2. Visual comparison of the results using one challenging image from dataset [44]. The image
(a) is blurry input; (b–h) are deblurring results of Ref. [21], Ref. [27], Ref. [14], Ref. [48], Ref. [18],
Ref. [19] and our proposed method, respectively.

We also test our algorithm against the competing methods [6,14,18,19,21,48,51,52]
on another benchmark dataset [12], which includes four ground truth images and eight
different kernels. One example is shown in Figure 4 with a visual result comparison against
the state-of-the-art methods [18,19]. Although the image restored by Pan et al. [18] performs
well against other approaches, the generated image still contains significant fake textures
and blur regions in Figure 4b. The algorithm proposed by Yan et al. [19] considers both the
DCP and BCP, but the generated result still has unclear edges, as Figure 4c shows. However,
our method generates a sharp image with fine textures, as shown in Figure 4d. We can
observe that the result is more visually pleasing than that of others. The main reason is
that the enhanced edges in local patches help to remove the small textures and fine details.
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Figure 5a plots the cumulative error ratios of our method and the other competing methods.
Note that our D/B-based method outperforms state-of-the-art algorithms by 100% under
error ratio 2. All the experimental results consistently show that our method is competitive
on this dataset.

Figure 3. Quantitative evaluations on benchmark dataset [44]. Our method performs competitively
against the state-of-the-art deblurring approaches.

(a) (b) (c) (d)

Figure 4. A comparison of our method with state-of-the-art methods. The images (a–d) are blurry
input, result of Pan et al. [18], result of Yan et al. [19] and our result, respectively. The PSNR values
of (b–d) are 30.19, 30.33 and 32.15, respectively.

We further carry out experiments of our method against the state-of-the-art ap-
proaches [16,19] on text images from the dataset [16]. This dataset consists of 15 images and
eight different kernels ranging in size from 13 × 13 to 27 × 27. Figure 6 visually shows that
our method performs well on a challenging blurry image in comparison with [19] and the
method designed for text images [16]. As shown in the figure, the DCP and ECP also help
the blind deblurring of text images. Our deblurred result in Figure 6d utilizing the proposed
D/B generates sharper edges and clearer text compared to other results [16,19]. Another
text example is shown in Figure 7. Note that the text becomes extremely sharper after the
deblurring process, which demonstrates that our proposed L0 norm based on the D/B is
helpful for kernel estimation and image deblurring. In particular, sharp text images contain
more salient edges in local patches, which drives our D/B to perform well. Table 1 presents
the average PSNR values of the deblurred results on the text image dataset [16] compared
with the state-of-the-art methods. Our method achieves the maximum PSNR value.
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(a) (b)

Figure 5. Quantitative results of our method on two benchmark datasets [12,22]: (a) error ratios com-
parison between our approach and the other methods on the benchmark dataset [12]; (b) quantitative
evaluations on the benchmark dataset [22].

(a) (b) (c) (d)

Figure 6. A comparison of our method with state-of-the-art methods. The images (a–d) are blurry
input, result of Pan et al. [16], result of Yan et al. [19] and our result, respectively.

Figure 7. Visual comparison of the results using one challenging image: (a) blurry image; (b–h) deblur-
ring results generated by Ref. [14], Ref. [6], Ref. [52], Ref. [48], Ref. [19], Ref. [18] and our method,
respectively. The recovered image by the proposed algorithm is visually more pleasing.
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Table 1. PSNR values of state-of-the-art text image deblurring methods.

Method Cho et al. [21] Xu et al. [13] Levin et al. [1] Pan et al. [16] Ours

PSNR 23.80 26.21 24.90 27.94 28.23

5.2. Real Image Delurring

In this part, we test our method on real-world blurred images against the recent
state-of-the-art blind single image deblurring methods [11,14,18,19,21,48]. We analyze
the deblurring results qualitatively as the blur kernels and ground truth images are un-
known. Figure 8 shows one challenging real-world blurred image. The recovered im-
ages generated by the proposed algorithm are sharper and clearer than those generated
by [11,14,18,19,21,48]. As shown in Figure 8, the blurry image contains large and small
edges and textures, which causes trouble for deblurring with the methods designed for
natural images. Pan et al. [18] exploited the dark channel and achieved encouraging results.
However, the deblurred image still contains visually blurry artifacts. In contrast, by further
utilizing the edge information in local patches, our method generates sharper and clearer
image details compared with other methods as shown in Figure 8. As a second example,
we present deblurring results on a challenging image in Figure 9. Note that our deblurred
image has clear background and sharp edges against other results.

Figure 8. Visual comparison of the results using one challenging image. (a) is blurry input and
(b–h) are generated by [11,14,18,19,21,48] and our proposed method, respectively.

(a) (b) (c) (d) (e)

Figure 9. An example of real-world image results. The images (a–e) are blurry input, result of
Krishnan et al. [14], result of Pan et al. [18], result of Yan et al. [19] and our result, respectively

5.3. The Effectiveness of Proposed Sparse Channel Prior

In this subsection, experiments are conducted to verify the performance of the pro-
posed D/B for blind image deblurring. As mentioned above, the proposed D/B regu-
larization term considers the contrast and salient edges’ information in local patches. To
demonstrate the effectiveness of the proposed prior, we compare the proposed method with
the DCP-based method [18] and the ECP-based method [19] in image deblurring. Figure 10
shows the changes of the DCP, the BCP and the proposed sparse channel prior in each
phase of the image. Initially, the contrast and clarity of the DCP, the BCP and the proposed
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sparse channel prior of the proceeding blurred images are very low, while the contrast
of the middle layer is significantly improved and the final restored images have a higher
contrast and sharper contour. At this time, the ringing and artifacts in the images are greatly
reduced. Note in each stage, the proposed sparse channel prior has a clearer outline than
the DCP and BCP. Compared with the literature [18], the proposed method estimates the
blur kernels better with less artifacts. Figure 11 shows the quantitative evaluations on the
benchmark dataset [12] by the ECP and our method with and without the proposed D/B.
Note that the PSNR (Figure 11a) of the proposed D/B-based method is higher than that
of the ECP and our method without D/B. Moreover, our method with the proposed D/B
prior performs more favorably in terms of error ratio (Figure 11b) than without the D/B
regularization, which further demonstrates the effectiveness of the proposed D/B-based
methods. The proposed D/B-based algorithm generates the results with PSNR values
higher than the other two methods.

Figure 10. Visual comparison of the intermediate results generated during iteration. (a–c) are intermedi-
ate results generated during iteration using the DCP, ECP and our sparse channel prior, respectively.

(a) (b)

Figure 11. Quantitative results of our method on benchmark dataset [12]: (a) quantitative evaluations
on the benchmark dataset by [12] and our method with and without D/B; (b) error comparison
between our approach and the other methods.
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In addition, our method has a higher success rate on the dataset [22], as shown in
Figure 5b. All the results consistently demonstrate that the proposed sparse channel prior
improves the deblurring performance.

6. Discussion

6.1. Comparison with Other Related Methods

In this part, we will discuss some methods most related to the algorithm in this paper.
The dark channel prior was used by Pan et al. [18] for blind image deblurring. They
enhanced the sparsity of the DCP and achieved good results on low-light images. Yan
et al. [19] used the ECP to solve the problem that the DCP has less effect on sky images.
However, the ECP is a simple addition of the DCP and BCP, and the relationship between
them has not been deeply studied.

Figure 10 shows the intermediate images of three different methods (Refs. [18,19] and
ours). Although the intermediate results become clearer and sharper as iterations increase,
the images (Figure 10c) generated by our method have sharper edges and clearer contents
than those of Refs. [18] (Figure 10a) and [19] (Figure 10b). Figure 12 shows the results
generated by these three methods on some challenging images, including real blurred and
low-light images. Our results have fewer blurred areas and ringings, which look more
pleasant. Table 2 shows the error ratio of two related approaches [18,19] on dataset [22],
and the proposed method fails on one image in which the error ratio value is larger than 4.

(a) (b) (c) (d)

Figure 12. Deblurring results on some challenging examples. (a) Blurry inputs. (b–d) Deblurring
results generated by Ref. [18], Ref. [19] and our method, respectively.

In order to analyze the three methods in more detail, we show the different maps of
the DCP, the BCP and our D/B in Figure 13. Although the dark channel, bright channel
and our D/B map of the recovered image all have improvement with respect to that of
the corresponding blurry image, our D/B map improves more than the dark channel and
bright channel. Moreover, our D/B map is clearer (higher contrast and sharper edges) than
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the dark channel and bright channel in both the blurry image and recovered image. All
have improvement with respect to that of the corresponding blurry image.

Table 2. Quality evaluation of competitive methods on dataset [22] in terms of error ratio.

Error Ratio ≤2 ≤3 ≤4

Pan et al. [18] 594/640 627/640 633/640
Yan et al. [19] 596/640 636/640 638/640

Ours 623/640 639/640 639/640

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 13. Visual comparison of different maps. (a) is blurry image. (b–d) are dark channel, bright
channel and our D/B map of (a), respectively. (e) is recovered image. (f,g) are dark channel, bright
channel and our D/B map of (h), respectively.

6.2. Convergence Analysis

Blind deconvolution is a highly ill-posed problem and we introduce a new spare prior
to make the problem produce feasible results in this paper. The optimization scheme of our
model is challenging, and with the idea of auxiliary variables and the alternating direction
minimization (ADM) method, one may question the convergence. Thus, we show the
traces of the objective function (computed from Equation (8)) and kernel similarity [53] on
dataset [12] with respect to iterations in Figure 14. Figure 14a shows our method converges
after less than 30 iterations, and Figure 14b shows the kernel similarity [53] becomes higher
with more iterations. Overall, our method converges well after less than 30 iterations.

(a) (b)

Figure 14. Convergence analysis of the proposed algorithm. (a) Energy value computed from
Equation (8). (b) Average kernel similarity [53] becomes higher with more iterations.
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6.3. Running Time

We simply explain the computational complexity through the running time of the
algorithms. We select several competing algorithms closely related to this paper to run
on the same database as this algorithm. All experiments were carried out under the same
computer. The running time on different sizes of images is summarized in Table 3. As can
be seen from the table, our algorithm is faster than [19] and slower than [14].

Table 3. Running time (s) of competing approaches.

Image Size Krishnan et al. [14] Pan et al. [18] Yan et al. [19] Ours

255 × 255 4.80 111.51 306.56 115.04

600 × 600 21.82 563.33 1250.12 571.57

800 × 800 95.62 1150.17 2331.02 1202.51

7. Conclusions

In this paper, a novel, simple yet efficient image prior D/B for blind image deblurring
is proposed, which builds on the DCP and BCP. An extensive investigation on natural
images shows that the DCP behaves inversely to the BCP, and a large difference between
the DCP and BCP preserves salient edges. For blind image deblurring, salient edges are
helpful to estimate the blur kernel. In order to utilize the advantages of the DCP and
BCP and further exploit the edge information in a local patch, we propose the D/B prior
for image deblurring. The D/B prior preserves the main edges and eliminates the fine
textures of intermediate latent images. Meanwhile, it retains the advantages of the DCP
and BCP. The feasibility and effectiveness of using the D/B prior to estimate the blur kernel
are discussed. The experimental results show that our algorithm is competitive with the
state-of-the-art algorithms. In addition, experiments with our proposed prior show that it
can significantly improve the performance of the deblurring algorithm.
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Abstract: Due to its wide applications, multi-output learning that predicts multiple output values
for a single input at the same time is becoming more and more attractive. As one of the most popular
frameworks for dealing with multi-output learning, the performance of the k-nearest neighbor
(kNN) algorithm mainly depends on the metric used to compute the distance between different
instances. In this paper, we propose a novel cost-weighted geometric mean metric learning method
for multi-output learning. Specifically, this method learns a geometric mean metric which can make
the distance between the input embedding and its correct output be smaller than the distance between
the input embedding and the outputs of its nearest neighbors. The learned geometric mean metric
can discover output dependencies and move the instances with different outputs far away in the
embedding space. In addition, our objective function has a closed solution, and thus the calculation
speed is very fast. Compared with state-of-the-art methods, it is easier to explain and also has a
faster calculation speed. Experiments conducted on two multi-output learning tasks (i.e., multi-label
classification and multi-objective regression) have confirmed that our method provides better results
than state-of-the-art methods.

Keywords: multi-output; kNN; metric learning; cost-weighted; geometric mean metric

MSC: 68T10

1. Introduction

In real-world applications, many machine-learning problems, e.g., multi-label learning
and multi-target regression, involving diverse prediction can be classified as multi-output
learning. Multi-output learning is an emerging machine-learning paradigm that aims to
predict multiple output values of a given input at the same time [1]. For example, text
documents or semantic scenes can be assigned to multiple topics; one sensor can output
different environmental coefficients; a gene can have multiple biological functions; a patient
may suffer from multiple diseases, and so on.

Let there be a multi-output training set D = {xj, yj|1 ≤ j ≤ n}, where n is the
number of instances, xj ∈ X and yj ∈ Y are the feature vector and the output vector for
the j-th instance, respectively, and X ∈ Rp denote the p-dimensional input space and
Y ∈ Rc denote the output space with c output variables. Multi-output learning aims to
learn a mapping function h : X → Y from D to assign an instance with a proper output
vector. Compared with the traditional single-output learning, multi-output learning has a
multivariate nature and its output values have diverse data types; thus it subsumes many
learning problems in many real-world applications. For example, binary output values
yj ∈ {0, 1}c can refer to a multi-label classification problem [2] and real-valued outputs
yj ∈ Rc to a multi-target regression problem [3].

As one of the the most popular frameworks for solving multi-output problems, it has
been proven that the k nearest neighbor (kNN) algorithm’s prediction performance can be
significantly improved by learning a proper distance metric. For example, by imposing
the constraint that two nearby instances from different classes will be pushed further apart
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with a large margin, Gou et al. [4,5] show that the prediction performance of kNN can
be greatly improved. For handling multi-label learing, Zhang et al. [6] proposed a novel
maximum margin output coding (MMOC) method based on structural SVMs [7,8]. It learns
a distance metric such that the instances with different multiple outputs will be moved
far away. Unfortunately, the training and testing of MMOC are time-consuming, which
involves both solving a box-constrained quadratic programming (QP) problem for each
training sample and a QP problem on {0, 1}c space, respectively. Even if approximate
inference is used to solve this QP problem, it is still computationally expensive. Inspired
by kNN and MMOC, Liu et al. [9] proposed a large margin metric learning paradigm
(LMMO) for multi-output tasks with only k nearest neighbor constraints, reducing the
training computationally complexity from O(nc3 + npc2 + n4) of MMOC to O(c3 + knpc2)
for each iteration, and the testing computationally complexity from O(c3) of MMOC to
O(cn + pc), thus significantly breaking the bottleneck of MMOC. Nevertheless, as the
state-of-the-art metric learning method for multi-output learning, the LMMO algorithm
adopts the accelerated proximal gradient (APG) method to train LMMO, but cannot directly
obtain the optimal metric with a closed-form solution. To achieve an ε-solution, the number
of iterations needed by APG update is at least O( 1√

ε
). In order to obtain the metric with

good performance, more iterations of APG are needed to obtain the more accurate solution.
Therefore, it is non-trivial to develop a gradient-free metric learning algorithm for a

multi-output task. To achieve this goal, this paper presents a novel geometric mean metric
learning method for multi-output tasks, which learns a cost-weighted metric such that the
instances with very different multiple outputs will be moved far away. Our formulation also
possesses several attractive properties: closed-form solution, ease of interpretability, and
computational speed several orders of magnitude faster than the state-of-the-art method.

Our contributions are as follows. (1) We propose a novel geometric mean metric
learning method for multi-output tasks, which possesses several attractive properties:
closed-form solution, ease of interpretability, and computational speed several orders of
magnitude faster than the state-of-the-art method. (2) Experiments conducted on two
multi-output learning tasks have confirmed that our method provides better results than
the state-of-the-art methods.

This paper is organized as follows. Section 2 gives related work. Section 3 presents
our geometric mean metric learning method for multi-output tasks. The performance of
our proposed method for MLC and MTR is evaluated in Section 4. Section 5 concludes
the work.

2. Related Work

2.1. Multi-Output Learning

Multi-output learning is an important machine-learning paradigm, which subsumes
many learning problems in many practical applications. This paper focuses on the following
two most popular multi-output learning tasks, namely multi-label classification and multi-
objective regression.

Multi-label Classification aims to predict multiple different labels of a single sample.
It has become an attractive emerging field and can be used in many practical applica-
tions, such as document classification [10], image retrieval [11], and image annotation [12].
In the past few years, many multi-label classification algorithms have been proposed.
According to [2], these methods can be roughly divided into two categories: problem
transformation and algorithm adaptation. By transforming popular learning techniques,
algorithm adaptation methods try to directly deal with multi-label learning problems.
ML-kNN [13], ML-DT [14], and Rank-SVM [15] are the typical methods. By converting the
original problem into other well-established learning problems, the problem transformation
methods try to use off-the-shelf techniques to solve the problem. Binary relevance [16],
random k-labelsets [17], calibrated label ranking [18] and classifier chains [19] are the
representive methods.
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Multi-target Regression aims to predict the values of multiple continuous target vari-
ables for a set of predictor variables. Similar to multi-label learning methods, multi-objective
regression methods can also be roughly divided into two categories: algorithm adaptation
and problem transformation [20]. Compared with the existing problem transformation
methods, the algorithm adaptive methods usually generate a single multi-output model,
which is easier to interpret and can be extended to a larger output space. On the other hand,
by adopting suitable basic learners, the problem transformation methods can easily adapt
to the the problem at hand, and it is found that it is generally better than the algorithm
adaptive method in terms of accuracy [21].

2.2. Metric Learning

Given a set of a pair of similar/dissimilar points, metric learning aims to learn the
distance metric to keep similar/dissimilar points close/away in the embedding space.
The distance metric retains the distance relationship between the training data [22]. The pre-
vious works [23–25] show that designing appropriate metrics can significantly improve the
kNN classification accuracy of single-output learning tasks and multi-output learning tasks.

Metric learning methods can be roughly divided into global distance metric learning
and local distance metric learning. Global distance metric learning learns appropriate
metrics to keep all data points in the same class close, while pulling instances of different
classes away. The most representative methods are found in [26,27]. The second type of
methods tries to learn the distance metric that satisfies the local pairwise constraints, which
is particularly useful for the kNN classifier. The most representative methods are found
in [9,28]. However, these methods usually use gradient-based optimization methods to
obtain appropriate metrics. On the contrary, we proposed a novel cost-weighted geometric
mean metric learning method for multi-output tasks. It learns a cost-weighted metric with
a gradient-free optimization method. This makes the learned metric more accurate and the
training procedure more efficient.

3. The Proposed Method

3.1. Background

Suppose we are given a multi-output training set with n instances, i.e., D = {xj, yj|1 ≤
j ≤ n}, where xj ∈ X and yj ∈ Y are the feature vector and the output vector for the j-th
instance, respectively. Multi-output learning aims to learn a function h : X → Y from D to
predict the corresponding output vector of an instance.

To address this problem, a linear regression model simply learns the matrix W accord-
ing to the following formulation:

min
W∈Rp×c

1
2
‖XW − Y‖2

F, (1)

where ‖ · ‖F is the Frobenius norm, X ∈ Rn×p is the input matrix and Y ∈ Rn×c is the
output matrix. However, due to a lack of modeling correlations of output space, this
method usually yields low performance.

LMMO [9] learns a large margin metric to model correlations of output space. It
forces the distance between input WTxi and its corresponding output yi to be smaller than
the distance between WTxi and the output y of the nearest neighbors of xi with at least a
margin, which is measured by Δ(yi, y), the difference between yi and y. The large margin
metric learning formulation is formulated as follows:

minQ∈S+
c ,{ξi≥0}n

i=1

1
2 trace(Q) + C

n ∑n
i=1 ξ2

i
s.t. φT

xi ,yi
Qφxi ,yi + Δ(yi, y)− ξi

≤ φT
xi ,yQφxi ,y, ∀y ∈ Nei(i), ∀i

, (2)

where S+
c represents a c × c symmetric positive semidefinite matrix, φxi ,yi = WTxi − yi , ξi

is the slack variable, C is a positive constant that controls the trade-off between the square
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loss function and the regularizer and Nei(i) is the output set of k nearest neighbors of input
instance xi. The constraints in Equation (2) guarantee that the distance between WTxi and
its correct output yi stays closer, but it enlarges the distance between WTxi and any other
output in the metric space.

However, as the state-of-the-art metric learning method for multi-output learning, the
LMMO algorithm cannot directly obtain the optimal metric with a closed-form solution.
To achieve an ε-solution, the number of iterations needed is at least O( 1√

ε
). Thus, it is

worth studying to further improve the computing efficiency of metric learning in multi-
output learning.

3.2. Proposed Formulation

It is non-trivial to further obtain a closed-formed solution for LMMO. Inspired by
GMML [29], we propose a novel metric learning method with a closed-form solution for
multi-output learning, namely, geometric metric learning for cost-weighted multi-output
learning (GCMoL), as follows:

min
Q∈S+

c

n

∑
i=1

⎛⎝φT
xi ,yi

Qφxi ,yi + ∑
∀y∈Nei(i)

Δ(yi, y)φT
xi ,yQ−1φxi ,y

⎞⎠, (3)

where S+
c represents a c × c symmetric positive semidefinite matrix, φxi ,yi = WTxi − yi and

Nei(i) is the output set of k nearest neighbors of input instance xi, and Δ(·) represents the
cost functions of interest.

Compared with LMMO, in Equation (2), we have transformed several independent
inequality constraints into a very uniform formulation. According to Lemma 1, the distance
between input WTxi and its correct output yi increases monotonically in G, whereas
the distance between WTxi and the output y of the nearest neighbors of xi decreases
monotonically in G. By optimizing the object function in Equation (3), the distance between
input WTxi and its correct output yi is naturally smaller than the distance between WTxi
and the output y of the nearest neighbors of xi.

For GCMoL, Equation (3), it is cost-weighted of the distance between WTxi and the
output y of the nearest neighbors of xi. Thus, by using the loss function Δ(·) the metric G

can be learned in the cost-sensitive way. For simplicity, the loss functions Δ(·) = ‖ · ‖1 is
always used to measure the distance between different outputs for multi-label learning and
mutli-target regression.

Lemma 1. Let A, B be (strictly) positive definite matrices such that A  B. Then, A−1 ≺ B−1.

In the following, we further simplify the objective function in Equation (3). Let us
define the following two matrices:

S :=
n

∑
i=1

φxi ,yi φ
T
xi ,yi

(4)

D :=
n

∑
i=1

∑
∀y∈Nei(i)

Δ(yi, y)φxi ,yφT
xi ,y. (5)

Then, the objective function in Equation (3) can be reformulated as

min
G

tr(GS) + tr(G−1D). (6)
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The minimization problem (6) is both strictly convex and strictly geodesically convex
(Theorem 3 of [29]), which is similar to problem (13) of [29]. It has a global optimal solution
and a closed form solution as shown below:

G = S−1
�1/2

D = S−1/2
(

S1/2DS1/2
)1/2

S−1/2. (7)

Clearly, solution of (6) is the geometric mean between S−1 and D. But the matrix
S might sometimes be non-invertible or near-singular in practice. To address this issue,
a regularizing term, which can be used to incorporate prior knowledge about the distance
function, is added to the objective function,

min
G0

λDsld(G, G0) + tr(GS) + tr
(

G−1D
)

, (8)

where G0 is the “prior” and Dsld(G, G0) is the symmetrized LogDet divergence, which is
equal to

Dsld(G, G0) := tr
(

GG−1
0

)
+ tr

(
G−1G0

)
− 2c. (9)

The minimization problem in (8) also has a closed-form solution,

Greg =
(

S + λG−1
0

)−1
� 1

2
(D + λG0). (10)

From Equation (10), we can see that the solution is given by the midpoint of the
geodesic joining S + λG−1

0 and D + λG0. From a geodesic viewpoint, assigning different
weights to the matrices is also pivotal for the solution of (3). Therefore, we introduce a
nonlinear cost guided by Riemannian geometry of the SPD manifold and obtain a weighted
version of (3) below:

min
G0

ht(G) := (1− t)δ2
R

(
G, S−1

)
+ tδ2

R(G, D), (11)

where t is a parameter that determines the balance between the cost terms of δ2
R
(
G, S−1)

and δ2
R(G, D). Moreover, δR denotes the Riemannian distance

δR(X, Y) :=
∥∥∥log

(
Y−1/2XY−1/2

)∥∥∥
F

for X, Y  0 (12)

on SPD matrices.
The problem outlined in (11) is geodesically covex and its unique solution is the

weighted geometric mean
G = S−1�tD. (13)

Similar to the regularized solution to problem (8), the solution to the regularized form
of problem (11) is given by

Greg =
(

S + λG−1
0

)−1

�t
(D + λG0), (14)

for t ∈ [0, 1]. In the case where t = 1/2, it is equal to (10). Many approaches, e.g., Cholesky–
Schur and scaled Newton methods, can be used for fast computation of Riemannian
geodesics of SPD matrices. In this paper, we use the Cholesky–Schur method to implement
the computation of Riemannian geodesics. The summary of our GCMoL algorithm for
multi-output learning is presented in Algorithm 1.
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Algorithm 1: GCMoL.
Require: Input: Training dataset matrix X ∈ Rn×p and its corresponding output set

Y ∈ Rn×c, the number of nearest neighbors k, the loss function Δ(·), step length of
geodesic t, regularization parameter λ and prior knowledge G0.

Ensure: Output: Regression matrix W and the learned metric G.
1. Set W := arg minW∈Rp×c

1
2‖XW − Y‖2

F.
2.Search the output set of k nearest neighbors of each input instance,
namely Nei(i), ∀i.
3. Compute S = ∑n

i=1 φxi ,yi φ
T
xi ,yi

.
4. Compute D := ∑n

i=1 ∑∀y∈Nei(i) Δ(yi, y)φxi ,yφT
xi ,y.

5. Compute G =
(

S + λG−1
0

)−1

�t
(D + λG0).

3.3. Prediction

In the metric space, our metric learning formulation can make the input WTxi and its
correct output yi as close as possible. For a new test instance x, we can obtain its output by
a decoding method. In general, the decoding process requires solving the QP problem on
a combinatorial space [6], which is computationally expensive. In this paper, we follow
the same prediction method as in [9]. Specifically, we find k nearest neighbors for a new
testing input instance x in our learned metric space, where the distance between x and xi
can be computed as (WTx − WTxi)

T)G(WTx − WTxi). Then, we conduct voting based on
weighted nearest neighbors for the prediction. In particular, for multi-label classification
problems, we set 0.5 as the threshold.

3.4. Complexity Analysis

In this subsection, we compare the training and testing time complexity of different
methods.

3.4.1. Training Time

The training of MMOC involves an exponential number of constraints and solving
a box-constrained QP problem for each training instance. The authors therefore use the
over-generating technique with the cutting plane method and CVX (http://cvxr.com/cvx/,
accessed on 8 March 2022) to solve these problems, respectively. Because MMOC is op-
timized based on the gradient method, it is assumed that this method iterates η times
at least to get the desired performance. From Liu et al. [9], the training time complexity
of MMOC is at least O(nc3 + npc2 + n4) for each iteration. Therefore, the total training
time complexity of MMOC is at least O(ηnc3 + ηnpc2 + ηn4). The training time of LMMO
is dominated by the APG algorithm. To achieve an ε-solution, the number of iterations
needed by the APG update is O( 1√

ε
). According to Liu et al. [30] , the time complex-

ity for each iteration is O(c3 + knpc2). Therefore, the total training time complexity of
LMMO is at least O( 1√

ε
c3 + 1√

ε
knpc2). The training time of our method (GCMoL) is domi-

nated by the computation of Riemannian geodesics for SPD matrices. Many approaches,
e.g., Cholesky–Schur and scaled Newton methods, can be used for fast computation of Rie-
mannian geodesics of SPD matrices. Following [29], we use the Cholesky–Schur method to
implement the computation of Riemannian geodesics. So, the time complexity of GCMoL
is O(c3 + knpc2).

3.4.2. Testing Time

We analyze the testing time for each testing instance. Because the test time of MMOC
involves solving a QP problem on the {0, 1}c space, which is essentially a combinatorial
optimization problem, it is very intractable. To address this problem, MMOC uses a mean-
field approximation to iteratively obtain approximate solutions. The time complexity of
each iteration of the average approximate field is O(c2). If it iterates many times until
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convergence, its time complexity is at least O(c3). Both LMMO and our method (GCMoL)
use the same prediction method and therefore have the same prediction time complexity,
i.e., O(nc + pc) .

4. Experiments

In this section, we extensively compared the proposed GCMoL method with related
approaches on real-world multi-label classification and multi-target regression datasets. All
the methods compared are implemented in MatLab. All experiments are conducted on a
desktop with a 3.2 GHZ Intel CPU and 32 GB main memory running on a Windows platform.

4.1. Experimental Setup

(1) Datasets: We conduct experiments on five benchmark multi-label datasets (http://
mulan.sourceforge.net/, accessed on 9 March 2022), including emotions, scene, cal500 and
genbase, and four benchmark multi-target regression datasets (http://mulan.sourceforge.
net/, accessed on 9 March 2022), including edm, enb, jura, and scpf. We summarize
the dataset details in the Table 1, where |S| represents the number of examples, dim(S)
represents the number of features, L(S) represents the number of class labels, and Card(S)
represents the average number of labels per example, Dom(S) represents the feature type
of the dataset S, and Cat represents the type of task category.

Table 1. Characteristics of datasets.

Cat(S) Dataset |S| dim(S) L(S) Card(S)

MLC

emotions 593 72 6 1.869
scene 2407 294 6 1.074
cal500 502 68 174 26.044

genbase 662 1186 27 1.252

MTR

edm 154 16 2 -
enb 768 8 2 -
jura 359 15 3 -
scpf 1137 23 3 -

(2) Evaluation Metrics: To testify to the performance, we focus on two evaluation
metrics, i.e., Micro-F1 and Macro-F1, for multi-label classification datasets, and one evalua-
tion metric, i.e., aRMAE, for multi-target regression datasets. For Micro-F1 and Macro-F1,
the larger the values the better the performance. Their concrete metric definitions are de-
fined in [2]. For aRMAE, the smaller the values the better the performance. It is defined as:

aRMAE(h, D) =
1
m

m

∑
j=1

∑(x,y)∈D
∣∣ŷj − yj

∣∣
∑(x,y)∈D

∣∣Ȳj − yj
∣∣ , (15)

where Ȳj is the mean value of Yj over dataset D and ŷj is the prediction of h for Yj. Intuitively,
aRMAE measures how much better (aRMAE < 1) or worse (aRMAE > 1) the prediction
model is compared to a naive baseline that always predicts the mean value of each target.

(3) Comparing Methods: We compare our proposed method GCMoL with the follow-
ing state-of-the-art multi-output learning methods.

• BR [16] is the most intuitive solution to multi-label learning. It works by decomposing
the multi-label learning task into multiple independent binary learning tasks, so it is
a problem transformation method. In order to be fair in the experiment, we use the
kNN model as the base classifier and set k = 10.

• ML-kNN [13] is also a problem transformation method, which learns a classifier for
each label by combining kNN and Bayesian inference. According to [13] , we still use
k = 10 in our experiments, which usually yields the best performance.
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• LMMO [9] is a recently proposed large-margin metric learning method for multi-
output tasks. It projects both input and output into the same embedding space,
and then learns a distance metric to keep instances with the same output close and
instances with very different outputs farther away. Its formulation is presented in
Equation (2) and can only be used for multi-label learning task. Parameter λ is selected
from {10−5, 10−4, · · · , 104, 105}.

The hyper-parameters in compared methods are selected via 10-fold cross-validation
on the training set. The parameter λ is selected from {10−5, 10−4, · · · , 104, 105}, and t is
selected from {0.2, 0.5, 0.7}. We adopt k = 10, which yields the best performance.

4.2. Experimental Results

Detailed experimental results are reported in Table 2, where the performance rank
on each dataset is also shown in the parentheses. Moreover, to show whether GCMoL
achieves statistically superior performance against compared approaches, we employ a
Nemenyi test (at 0.05 significance level) whose statistical test results are summarized in
Figure 1. The performances between two methods will be significantly different if their
average ranks differ by at least one critical difference CD = qα

√
k(k + 1)/6N. For the

Nemenyi test, qα = at significance level α = 0.05, and thus CD = 1.2075(k = 4, N = 12).
In Figure 1, the connected algorithms indicate that their average rank difference is within
one CD. Any unconnected pair of algorithms is considered to have a significant difference
in performance.

Table 2. Experimental results for multi-output learning. The best ones are in bold.

Method
Task Criteria Dataset

BR MLkNN LMMO GCMoL

emotions 0.4905 0.4918 0.6753 0.6774
genbase 0.9607 0.9505 0.9697 0.9791
yeast 0.6330 0.6392 0.5600 0.6376Micro-F1

CAL500 0.3131 0.3185 0.3339 0.3709

emotions 0.4170 0.3811 0.6563 0.6634
genbase 0.5683 0.5321 0.5877 0.6258
yeast 0.3892 0.3697 0.3748 0.4056

MLC

Macro-F1

CAL500 0.0738 0.0534 0.0689 0.1049

edm 0.9335 - 0.9010 0.8591
enb 0.2230 - 0.2488 0.1538
jura 0.6030 - 0.7158 0.5704

MTR aRMAE

wq 0.8628 - 0.9933 0.8713

Figure 1. Comparison of GCMoL against other comparing algorithms with the Nemenyi test.
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Based on the reported experimental results, the following observations can be made:
(1) Regarding Micro-F1 of the MLC task, GCMoL is basically better than other methods
and only slightly inferior to MLkNN on the yeast dataset. (2) Regrading Macro-F1 of the
MLC task, GCMoL is always better than other methods. (3) Regarding aRMAE of the MTR
task, GCMoL is also basically better than other methods and only slightly inferior to BR
on the wq dataset. (4) According to the Nemenyi test results, MLKNN, LMMO, and BR
perform not significantly differently from each other, but GCMoL performs significantly
better than other methods, which verifies the effectiveness of our method.

4.3. Analysis
4.3.1. Hyper-Parameter Sensitivity Analysis

There are two hyper-parameters, i.e., λ and t, in our proposed method. To give their
sensitivity analysis, we conduct experiments on CAL500 and edm datasets. The experimen-
tal results of GCMoL with different values of λ and t are depicted in Figure 2a–f. From the
experimental results, we note that the performance of GCMoL is relatively insensitive to
the value of λ and t.

(a) (b)

(c) (d)

Figure 2. Cont.
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(e) (f)

Figure 2. Sensitivity analysis about GCMoL with different λ and t. (a) Micro-F1 scores of different
λ on CAL500 dataset. (b) Micro-F1 scores of different t on CAL500 dataset. (c) Macro-F1 scores of
different λ on CAL500 dataset. (d) Macro-F1 scores of different t on CAL500 dataset. (e) aRMAE of
different λ on edm dataset. (f) aRMAE of different t on edm dataset.

4.3.2. Time-Comsuming Analysis

To further compare the time consumption of different methods, Figure 3 reports the
single training time of 10-fold cross validation of our method and baseline approaches in
terms of CAL500 dataset. The results illustrate that BR, MLkNN, and GCMoL complete the
training in 3 s, but LMMO lasts more than 240 s. Our method is almost 100 times faster than
LMMO. In Section 3.4, the results of theoretical analysis for the time complexity show that
our method runs slower than BR and MLkNN, but faster than LMMO. The experimental
results also confirmed this conclusion.

Figure 3. Running time results of different methods on the CAL500 dataset.

5. Conclusions

We proposed a novel cost-weighted geometric mean metric learning method for multi-
output tasks in this paper. Our method can model output dependency by the learned
geometric mean metric, which can make the instances with very different outputs far
away. It also admits a closed-form solution and computational speed several orders of
magnitude faster than the state-of-the-art LMMO method. Experiments show that our
method outperforms the state-of-the-art methods on multi-output learning tasks.

There are several directions worth exploring further in our future work. First, we
will try to design a novel robust geometric metric learning method to generalize our
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technique to weakly supervised multi-output learning task. In weakly supervised multi-
output learning tasks, missing or noisy supervision information may bring great challenges
to metric learning. Secondly, we will try to design new weakly supervised contrastive
learning methods to effectively apply self-supervised learning techniques to a multi-output
learning task.
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Abstract: Resolution decrease and motion blur are two typical image degradation processes that are
usually addressed by deep networks, specifically convolutional neural networks (CNNs). However,
since real images are usually obtained through multiple degradations, the vast majority of current
CNN methods that employ a single degradation process inevitably need to be improved to account for
multiple degradation effects. In this work, motivated by degradation decoupling and multiple-order
attention drop-out gating, we propose a joint deep recovery model to efficiently address motion blur
and resolution reduction simultaneously. Our degradation decoupling style improves the continence
and the efficiency of model construction and training. Moreover, the proposed multi-order attention
mechanism comprehensively and hierarchically extracts multiple attention features and fuses them
properly by drop-out gating. The proposed approach is evaluated using diverse benchmark datasets
including natural and synthetic images. The experimental results show that our proposed method
can efficiently complete joint motion blur and image super-resolution (SR).

Keywords: motion deblurring; image super-resolution; multi-order attention; gated learning; decoupling

MSC: 37M99

1. Introduction

Motion blur and resolution decrease are the two dominant forms of image quality
degradation. The former is caused by the relative motion between the camera and the
object, while the latter is generally originated by down-sampling. The inverse processes
of these degradation forms are individual motion deblurring and image SR—recovering
clear images from blurred ones or reconstructing high-resolution (HR) images from low
resolution (LR) ones, respectively, which are the practical main means to deal with image
quality degradation.

Assuming the original sharp image is x, and the blurred image is y; if ignoring the
effect of the non-linear camera response function (CRF), theoretically the motion blur
degradation may be represented as:

y = (x ∗ h) + n , (1)

where h represents the motion blur kernel, ∗ denotes the convolution operation and n
usually indicates the random noise. According to Equation (1), obviously, the inverse
motion deblurring process is a typical ill-conditioned problem because for one clear image
there are possibly many blur images corresponding to it.

Actually, there are two different implementation methods for motion deblurring,
namely, blind deblurring or the non-blind method. The usual non-blind method acquires
the clear image x based on the estimated blur kernel and the observation y. However, the
major difference in blind deblurring is that no kernel estimation is required. Due to the
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end-to-end mapping and the powerful approximation properties, CNNs are particularly
well suited for blind motion deblurring. For example, some recent CNN-based works [1,2]
are presented for blind deblurring duties.

Compared with motion blur degradation, in the process of resolution degeneration, in
addition to the low pass blur filter k and the noise n, there is another degradation down-
sampling operator at work. For an HR image x, a typical resolution degradation model to
acquire the corresponding LR image y is formulated as:

y = (x ∗ k) ↓ s + n· (2)

where k denotes a low pass blur filter, ∗ denotes the convolution operation, ↓ s indicates
a s× down-sampling (decimating) operation, and n represents the noise. Obviously, the
inverse problem of Equation (2)—image SR—is also a typical ill-posed one as there is
usually a non-unique solution.

Motion blur degradation is superficially seen to be a simpler problem than resolution
degeneration due to there being no down-sampling operation. However, motion blur is
most likely to be non-linear or non-uniform, which is usually more complex than resolution
degradation (the blur kernel is generally linear and uniform). This makes it a difficult
challenge to directly estimate the blur kernel used for non-blind deblurring.

In recent years, deep learning-based networks, especially CNN-based methods, have
been the mainstream of image SR and motion deblurring research, such as [3–5]. Although
CNN-based image SR and deblurring methods have reported fairly good results, CNN-
based image restoration is far from simple when the resolution and motion blur are reduced
simultaneously. In this case, either image SR or motion deblurring does not work well due
to degraded convolution or the blur kernels not being equivalent, and the two degradation
processes are not complementary with each other when they occur simultaneously.

Recently, there have been some CNN works [6–8] that have addressed simultaneous
image SR and motion deblurring. All of these methods explicitly or implicitly adopt a
global or local feature coupling structure—a deblurring part and an SR part are involved or
intervene with each other, to recover the resolution and the motion details at the same time.
Actually, these recovery methods only construct different comprehensive CNN mapping
networks from the degraded images to the corresponding sharp and high-resolution
ones, but do not fully utilize the characteristics of motion deblurring and image SR to
achieve decoupling. Therefore, even if the results of these methods are good, they lack an
explanation and have low efficiency.

On the other hand, typical deep image recovery models always use the residual con-
nection to convey features. However, due to a lack of ability to mine the feature information
across different layers, some complex residual variants are proposed, such as DRRN [9] and
RDN [10], etc. Among them, RDN (Residual Dense Network) is representative, which uses
not only local dense residual learning but also global residual learning, to extract and adap-
tively fuse the local and global features from all the observed layers. Since RDN makes full
use of multiple hierarchical features, it is very beneficial to construct an image restoration
model. In addition to the work on feature learning across different layers, recent attention
mechanism-based methods, for example, RCAN [11] and SAN [12], select and enhance
useful and important channel feature maps of the same layer through weighting for image
or video restoration. In fact, these channel feature attention methods utilize the first- or
second-order statistics of the channel maps of certain layers to calculate the dependence of
channel features, and then select and weigh the important features. However, single first-
or second-order feature statistics cannot make full use of the relationship between different
channel feature maps.

In order to overcome the limitations of coupling recovery and single-order attention
feature weighting, in this work, we first analyze the compound multiple degradation model
of motion blur and resolution reduction and discuss the maximum likelihood (ML) solution
of the degradation model. Then, based on the analysis, we discuss decoupling induction
multi-task learning and the CNN model construction method for multiple degradation
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image restoration. In addition, we obtain the first-order and second-order attention features
of the decoupled structures for motion deblurring and SR, respectively, and obtain the
third-order attention features by combining local series and parallel features. On this basis,
for the sake of improving the feature redundancy and generalization ability of multi-order
attention fusion, we utilize the drop-out gating integration method, which enhances the
robustness and stability of the proposed multi-order attention mechanism.

An example result of the proposed method to deal with compound degeneration
(motion blur as well as 4× down-sampling) is shown in Figure 1, where the comparisons
to those results of RCAN [11] and SCGAN [6] are also demonstrated. The dominant
contributions of the work are summed up as follows:

• We propose a novel joint motion deblurring and image SR model based on decoupling
induction and multi-order attention drop-out gating. The proposed method can
overcome the limitation of the single type degeneration assumption to achieve joint
recovery with the aid of decoupling induction multi-task learning.

• We propose the use of decoupling dual-branch multi-order attention features for clear
HR image reconstruction and select the drop-out gating learning method to enhance
the robustness and the generalization of features’ fusion.

• We validate and compare the presented model, not only with the publicly available
and widely used natural image datasets, but also with synthetic images completely
different from the training images. We show that, through decoupling induction and
multi-order attention drop-out gating learning, our method can produce visual results
of a quality that competes with the most advanced motion deblurring and image SR
methods for LR and blurred images.

  

(a) (b) 

  
(c) (d) 

Figure 1. An example result of the presented decoupling induction and multi-order attention gating
model for joint deblurring and 4× super-resolution. The details in the recovered image of our
proposed method (d) are much clearer than those of RCAN [11] (b) and SCGAN [6] (c); the LR and
blurred image is shown (a).
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2. Related Work

2.1. Joint Image Deblur and SR

Compared with the traditional image SR methods, the first CNN-based image SR
method, SRCNN [3,4], proposed by Dong et al., can generate more accurate HR details
owing to powerful non-linear mapping. To extend three convolutional layers of SRCNN
to a deeper level, Kim et al. [13] presented a true deep image SR model called VDSR
via residual connection [14]. Recently, Liu et al. [15] also proposed a multi-scale deep
encoder–decoder network called MSDEPC to super resolve LR images with the edge maps’
prior information. In addition, Ledig et al. [16] proposed the application of a generative
adversarial network (GAN) [17] for image SR, called SRGAN. SRGAN takes the perceptual
loss and the adversarial loss to supervise the reconstruction of super-resolved images and
can obtain more realistic SR results.

CNNs also play an effective role in motion deblurring. Xu et al. [18] and Sun et al. [1]
developed some CNN-based methods to recover blurred images based on blur kernel
estimation. Besides these non-blind deep methods, some deep blind deblurring meth-
ods [2,5] are also proposed. Nah et al. [2] applied a multiple scales CNN to recover clear
images directly. Motivated by the work, Tao et al. [5] designed a simple structure motion
deblurring network characterized by scale recursion. Moreover, inspired by the work of
image translation [19], Ramakrishnan et al. [20] first applied GAN for motion deblurring.
Then, Kupyn et al. [21] proposed DeblurGAN for blind motion deblurring, which utilizes
the WGAN [22] with a gradient penalty to avoid the mode collapse issue in the classical
GAN. Subsequently, Kupyn et al. [23] presented a new and very efficient GAN-based
model for single image motion deblurring, named DeblurGAN-v2, which is based on a
relativistic conditional GAN with a double-scale discriminator. Furthermore, for meteoro-
logical prediction application, Manzo et al. [24] adopted a pretrained deep network-based
architecture for clouds’ image description and classification. Recently, in order to address
the problem that blurred images suffer from other degradation such as down-scaling and
compression, Xu et al. [25] proposed the enhanced deep pyramid network (EDPN) model
for blurry image restoration, by fully exploiting the self-scale and cross-scale similarities.

Few works can use CNNs for simultaneous motion deblurring and SISR. Xu et al. [6]
solve the problem of super-resolving blurred facial images by SCGAN. However, their
method is restricted to facial images, and it is not easy to obtain a good performance in
real scenarios. Zhang et al. [7] proposed using a deep encoder–decoder model to perform
joint motion deblurring and image SR. Zhang et al. [8] once again proposed a gated fu-
sion method for concurrent motion deblurring and image SR. Recently, Liang et al. [26]
utilized the dual supervised network to address this issue. However, they did not achieve
satisfactory results. In addition, for plug-and-play image SR, Zhang et al. [27] proposed
a new blind SR framework to achieve the processing of arbitrary blur kernels. In addi-
tion, Zhang et al. [28] proposed a dual supervised learning strategy to fully exploit the
representation capacity of their deep model, which imposes constraints between LR and
HR images.

2.2. Attention

In addition to feature transfer by residual connection, the attention mechanism is
another widely used method for feature preservation and enhancement used in many
image SR models [11,12,29,30]. Zhang et al. presented the RCAN [11] (residual channel
attention network) model that utilizes channel attention with residual blocks to adjust
the task adaptability of channel features and to strengthen their expression ability. Since
RCAN only uses the first-order statistical information of channel features, Dai et al. [12]
presented the so-called SAN (second-order attention network) model, which replaces the
global average pooling with the global covariance pooling (second-order statistics) to obtain
a better effect of channel features’ selection and enhancement. Very recently, Niu et al. [31]
designed a novel pixel-guided dual-branch attention network (PDAN) to jointly restore
image details and the spatial scale.
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In addition, Wang et al. [29] proposed the extraction and fusion of temporal and
spatial attention features for video restoration. Furthermore, Fu et al. [30] introduced a
dual attention network—containing one spatial branch and one channel branch for scene
segmentation, which can adaptively extract and integrate the local and non-local features
of spatial and channel attention.

3. Methodology

3.1. Multiple Degradation Decoupling Induction

For motion deblurring and image SR, we used the following equations to describe the
corresponding degradation models, which are used to generate the LR and blur images
for training.

y =
(
∑N

i=1 xi

)
/N + n (3)

y = (x ↓ s) + n, (4)

where Equation (3) represents one typical motion degradation of a certain image sequence-
averaging blur and Equation (4) denotes the process of image resolution reduction. Here, xi
and y in Equation (3) represent a sharp image of one clear HR image sequence (the image
number of the sequence is N) and the corresponding blur image, respectively; and x and y
in Equation (4) are the HR image and the corresponding LR image, respectively. N in the
equation denotes the additional noise (normally it is Gaussian white noise). ↓ s is s× the
down-sampling operator (can be bicubic sub-sampling).

Based on Equations (3) and (4), the motion blur and the resolution reduction compound
degeneration may be formulated as

y =
((

∑N
i=1 xi

)
/N
)
↓ s + n (5)

Obviously, averaging N frame images lead to blurring degradation and the subsequent
down-sampling operation also reduces the resolution of the generated blur image.

Theoretically, if the frame averaging blur kernel and the spatial down-sampling kernel
are denoted as h and k, respectively, Equation (5) can be generalized as the following:

y = (x ∗ h) ∗ k + n, y = (x ∗ S) + n (6)

Here the kernel convolution h ∗ k is defined as a new kernel S. This equation means
the comprehensive function of multi-degradation basically equals one blur operation.
Moreover, according to Equation (6), the residual r between the sharp HR image x and the
degraded observation y is easily calculated. Assuming the image data obey the Gaussian
distribution, a solution of maximum likelihood estimation (MLE) for Equation (6) can be
obtained by x̃ = y + r. Naturally, if the residual r is looked upon as the high-frequency
details of x, the observation y becomes its approximation component. Here, if assuming
the details r can be decoupled into the deblurring details rdb and the SR details rsr that is
r = rdb + rsr, the MLE solution is further expressed as

x̃ = y + rdb + rsr (7)

According to Equation (7), if we can obtain the deblurring and the SR details individu-
ally through deep decoupling induction learning, then the original clear and HR image can
be recovered. Moreover, although changing the sequence between motion blur and resolu-
tion reduction will lead to the multiple degraded models being different from Equation (5),
the MLE solution with decoupling details (Equation (7)) remains the same. This indicates
that our proposed decoupling induction method is robust to different sequences of multiple
degenerated images.
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3.2. Multi-Order Attention Gating

The decoupled deblurring features and SR features were then exploited to calculate
the first-order channel attention (FOCA) and the second-order channel attention (SOCA),
respectively. Meanwhile, their SOCAs were concatenated to calculate the FOCA again,
which acquires the so-called third-order channel attention (TOCA). Then, all the acquired
multiple order attentions were fused with multi-routes gating. Closing a route means
that the corresponding feature attention is blocked and cannot be used for subsequent
reconstruction. In fact, we used the drop-out mechanism—a probability of 0.5 was used
to turn off some feature attentions randomly. The above processes are called multi-order
attention drop-out gating. We used a similar method to calculate the FOCA and the SOCA,
as explored in RCAN [11] and SAN [12]. Based on the principles of the SOCA and FOCA,
we give the mathematical description of the third-order channel attention (TOCA) and
multi-order attention drop-out gating learning in the following.

Given the deblurring feature maps xdb and the SR feature maps xsr, assume they are
with C feature channels and size H × W. Note that the channel size of xdb and xsr does not
need to be equal and in the following we just take xdb as an example. We reshape the feature
map xdb to a matrix X with the size H× W; each element of which is C dimension. Here, if
we treat the feature elements as samples, then the covariance matrix may be calculated and
decomposed by the eigenvalue decomposition (EIG) as:

∑ XIXT = UΛUT (8)

where I = 1
s

(
I− 1

s 1
)

, s = H × W, and I and 1 are the identity matrix and the all-ones
matrix, respectively. In addition, U is an orthogonal matrix and Λ = diag(λ1, . . . , λC) is a
diagonal matrix with eigenvalues in decreasing order. Then, the normalized covariance
matrix can be acquired as Ŷ = ∑α = UΛαUT; α is a positive real number. Obviously, the nor-
malized covariance contains the correlations of channel-wise features. Let Ŷ = y1, . . . , yC;
the c-th channel-wise statistics zc can be obtained by global pooling Ŷ as:

zc =
1
C ∑C

i=1 yc(i) (9)

Based on the equation, the feature weighting coefficient can be obtained through a
simple sigmoid gating function [32] as:

ωc = f(WUδ(WDzc)) (10)

where WD and WU are usually the convolution layers to adjust the number of feature
channels to C/r and C, respectively. f(·) and δ(·) are individually the sigmoid functions
and RELU function. Thus, for deblurring feature xdb the second-order channel attention
(SOCA) weighting is represented as:

xdb = ωc·xdb,c (11)

Based on the equation, the SOCA weighting for image SR features xsr, can be similarly
described as xsr = ωc·xsr,c. Then, xdb,c and xsr,c are concatenated and passed through
the FOCA to obtain the final TOCA. Let xcat = concat(xdb, xsr) = [xcat,1, . . . , xcat,2C]; we
calculate the global average pooling along each channel dimension and then transform the
statistics with channel scaling convolution layers and proper activation functions to obtain
the FOCA weighting, which can be described as:

ztoa,c =
1

H× W
= ∑H

i=1 ∑W
j=1 concat(xdb, xsr)c(i, j), (12)

Stoa,c = f(WSδ(WIztoa,c)) (13)
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where xcat,c(i, j) is the value at the position (i, j) of the c-th concatenated SOCA features
xcat, and WS and WI are the channel up-scaling and down-scaling convolution layers,
similar to WU and WD in Equation (10). Finally, the third-order channel attention (TOCA)
weighting can be denoted as:

x̂toa,c = Stoa,c·xccat (14)

If the FOCA of the deblurring features and SR features are denoted as
.
xdb and

.
xsr,

respectively, then all the multi-order attention features,
.
xdb, xdb,

.
xsr, xsr, and x̂toa, are sent to

one five-routes gate for fusion. The gate works with the drop-out mechanism. Let the j-th
route switch be a random variable rj and obey the Bernoulli distribution with the parameter
p (which is set to 0.5 in our practice)—that is rj ~ Bernoulli(p)—and then, all the attention
that can pass through will be fused by concatenation as:

x̃ = concat
(
r1

.
xdb, r2xdb, r3

.
xsr, r4xsr, r5x̂toa

)
(15)

3.3. Network Architecture

Based on Equation (7), we can design two CNN branches to learn the deblurring
details rdb and the SR details rsr separately. This step is called decoupling induction
learning. Moreover, we can individually calculate their multiple orders attention features,
and utilize the drop-out gating method to fuse them. Here the step is named multi-order
attention drop-out gating. The fused attention features concatenated with the LR and blur
input images are then sent to the subsequent reconstruction module to obtain the final
SR result.

The overall architecture of the proposed model is illustrated in Figure 2. Our model
contains four dominant modules: the first one is the deblurring features extraction module,
which can be used to predict the sharp LR image; the second one is the SR features extraction
module, which can be utilized to obtain the super-resolved blur images; the third is the
proposed multi-order attention drop-out gating module, which calculates different order
attentions and fuses them with the drop-out gating mechanism; and the fourth one is
the reconstruction module to recover the final clear and SR result. In the figure, the four
modules mentioned are indicated by dashed boxes of different colors.

 

Figure 2. The overall architecture of the proposed model. Our model mainly contains four modules—
deblurring feature extraction, SR feature extraction, multi-order attention drop-out gating, and
reconstruction. An LR and blur input image is first passed through the separate SR and deblurring
branches to obtain the decoupled features; then, they go through a multi-order attention drop-out
gating fusion, before being reconstructed to output a super-resolved and clear image.
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3.3.1. Deblurring Feature Extraction

This module aims to acquire the decoupled deblurring features, and henceforth, sharp
LR images from blurry LR images ILR+blur. Inspired by [21], we adopted a residual encoder–
decoder structure in this module. The encoder part is composed of several convolution
layers which reduce the size of feature maps to a quarter of the input image size. We
then added nine residual blocks between the encoder and decoder to refine the deblurring
features. Then, the decoder exploits two deconvolutional upscaling layers to raise the
resolution of the deblurring feature maps. Additionally, based on the deblurring features,
we can use another two convolution operations to obtain a deblur LR image ILR+deblur (see
Figure 2).

Here, we denote the output deblurring features of the decoder as xdb, which were later
sent to the multi-order attention gating module. All the used activation layers are the leaky
rectified linear units (LeakyReLU), and we used IN (instance normalization) operations in
the residual blocks instead of the BN (batch normalization) ones, because the BN layer may
reduce the flexibility of the network and undermine the scale information by normalizing
the features and increasing computation. The mapping relationship learned from this
module between the input ILR+blur and the output xdb can be described as:

xdb = H↑2

(
H↑1

(
RB
(
H↓2

(
H↓1(Hc(ILR+blur))

))))
(16)

where H↓2 and H↓1 are the down-scaling convolution layers of an encoder, H↑1 and H↓1 are
the deconvolution layers of a decoder, RB represents the nine residual blocks, and Hc is
the first convolution layer acting on the input ILR+blur. The activation and normalization
operations are included in the layers by default.

3.3.2. SR Feature Extraction

The purpose of this module is to obtain decoupled SR image details. We utilized
eight residual dense blocks [10] (each block contains five convolution operations with four
LeakyReLU layers; see Figure 2 for reference) and one convolution layer to construct the
deep structure to extract the high-frequency spatial detail features. From this, the super-
resolved blur image ILR+blur can also be acquired through two consecutive pixel shuffle
layers and several convolution layers. To maintain the spatial information, neither the
pooling layer nor stride operation is used in the module. At the same time, no normalization
operations are applied. If denoting the extracted SR features as xsr, then the mapping
relationship learned from the module between the input ILR+blur and the output xsr can be
described as:

xsr = RDB8(Hc(ILR+blur)) (17)

where RDB8 represents the eight consecutive residual dense blocks.

3.3.3. Multi-Order Attention Drop-Out Gating

This module summarizes the multiple orders attention of the learned deblurring
features xdb and the SR features xsr to obtain high-frequency image recovering details.
xdb and xsr are the inputs of the module and their first-order, second-order, and common
third-order feature attention maps are calculated, respectively. Then, all these attention
features are concatenated and sent to the drop-out layer to obtain the final feature maps x̃.
The mapping relationship of this module and its processing details can be referred to in the
previous Section 3.3.2 and Figure 2.

3.3.4. Reconstruction Module

In this module, the gated attention features x̃ and the blur LR image are sent into
16 residual dense blocks [10] and the result is further fed to two-pixel shuffle layers to
improve the spatial resolution to 4×. After that, two convolution layers are used to acquire
the final SR and clear image ISR+clear. Since most operations of our model are performed in
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the LR low dimension functional space, the computation cost both in training and in the
testing stages is quite low. The mapping relationship of the module is described as:

ISR+clear = H2c(P2(P1(RDB16(concat(x̃, ILR+blur))))) (18)

where RDB16 is the 16 consecutive residual dense blocks, P1 and P2 are the two-pixel
shuffle layers, and H2c represents two convolution operations.

3.4. Loss Functions

Our proposed model has three outputs: the LR deblurring image ILR+db, the SR blur
image ISR+blur, and the clear SR image ISR+clear. Then, the total loss of our model contains
three parts: the LR but clear image loss, the HR but blur image loss, and the final HR and
clear image loss. In our case, we usually calculate the difference between a certain output
and its expectation with the �1 norm and treat it as the loss. The three losses of our model
can be described as:

�1 = ∑N
i=1

‖yHR+clear,i − ISR+clear,i‖1 (19)

�2 = ∑N
i=1

‖yLR+clear,i − ILR+db,i‖1 (20)

�3 = ∑N
i=1

‖yHR+blur,i − ISR+blur,i‖1 (21)

where yHR+clear,i, yLR+clear,i, and yHR+blur,i are the expectations of the three outputs, re-
spectively. N is the number of training samples. Thus, the total loss is the sum of the above
three losses:

L = �1 + α�2 + (1− α) �3 (22)

where α is the loss balance factor, which is set to be 0.5 in our experiments.
In addition, sometimes in order to generate a more realistic image, we also consider in-

troducing an SSIM [33] measure into the loss �1. At this time, the loss �1 can be modified as:

�1 = ∑N
i=1

(βSSIM
(

yHR+clear,i, ISR+clear,i

)
+ (1− β)‖yHR+clear,i − ISR+clear,i‖2 (23)

where the β is used to balance these two terms, which is set to 0.84.

4. Experimental Results

4.1. Datasets and Training Details

Many experiments and performance comparisons are performed on the well-known
public blur datasets: the GOPRO dataset [2] and the dataset developed by Lai et al. [34].
Originated from some natural video sequences, the GOPRO [2] dataset contains 2103 high-
resolution training pairs (the sharp image and the blurry image) and 1111 test images. The
size of every image in the dataset is 1280 × 720. The motion-blurred image is obtained
by averaging several neighboring frame images and the LR image can be acquired by
bicubic down-sampling on the corresponding HR image. In contrast to GOPRO, the
dataset of Lai et al. [34] is composed of many man-made generated blur images, in which
each degenerated image is the convolution result of the sharp image with a blur kernel.
Here, the size of the degraded kernel may range from 21 × 21 to 75 × 75. Note that
Lai et al.’s dataset [34] contains both uniform and non-uniform blurred images. The main
characteristics of the two datasets are summarized in Table 1.

The training of the proposed model can be divided into two steps. In the first step,
the model is trained by supervision with the LR blurry patches ILR+blur, the sharp LR
patches ILR+clear, and the clear HR patches IHR+clear. During training, the loss of our
model (Equation (22)) is minimized. In the second step, the trained model is finetuned by
using Equation (23) to replace the original �1 in Equation (22). The training procedure is
implemented by the SGD solver from Pytorch [35] and the learning rate decreases from
0.01 to 0.00001 and the decay is set to be 0.5. In addition, the moment of the used solver
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is 0.9 and the batch size of the training samples is 12. It takes about two days to train the
proposed model if using an Nvidia Titan GTX1080ti GPU.

Table 1. Basic dataset characteristics of GOPRO [2] and Lai et al. [34].

Dataset Lai et al. [34] GOPRO [2]

Synthetic/Real Synthetic and Real Real

Blur type Uniform and Non-uniform Uniform

Ground-truth images 125 3214

Blurred images 300 3214

Depth variation Yes No

4.2. Experiments and Comparisons

Based on numerous LR and blurry input images on different test datasets, we per-
formed lots of joint image deblurring and SR experiments and made comparisons with
some recent SOTA (state-of-the-art) image SR models [10–12], the deblurring method [5],
and the multiple degradations recovery approaches [6–8,36]. We also compared the com-
bination method of the SR algorithm [10] and the deblurring method [5]. For fair play,
all the comparisons were made by using the public codes provided by these methods.
For those ones which cannot be publicly acquired (such as ED-DSRN [7]), we used our
dataset to retrain the original networks. The comparisons with these related methods using
the datasets of GOPRO [2] and Lai et al. [34], in terms of the PSNR, the SSIM, the model
parameters, and the test time, are demonstrated in Tables 2 and 3. The visual results of
these methods are also compared in Figures 3–5.

     
(a) HR 

(PSNR/SSIM) 
(b) RCAN 
(26.01/0.87) 

(c) SCGAN 
(24.81/0.80) 

(d) GFN 
(28.86/0.90) 

(e) Ours 
(28.79/0.912) 

     
(f) HR 

(PSNR/SSIM) 
(g) RCAN  

(19.695/0.58) 
(h) SCGAN  
(19.97/0.54) 

(i) GFN 
(19.2/0.54) 

(j) Ours 
(20.21/0.59) 

Figure 3. The details in the deblurred and super-resolved (4×) images generated by the presented
decoupled induction and multi-attention drop-out gating model on GOPRO [2] and Lai et al. [34];
using our method, the image details are clearer than the ones acquired from RCAN [11], SCGAN [6],
and GFN [8].
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Table 2. The comparisons with SOTA methods of the quantitative performance on GOPRO dataset [2].
Best results are marked in bold.

Measures RDN [10] SRN [5] SCG-AN [6] RCAN [11]
RDN [10] +

SRN [5]
ED-DSRN

[7]
Zhang

et al. [33]
GFN [8]

Our
Proposed

PSNR 24.370 25.829 22.791 25.328 26.211 26.331 25.80 27.81 27.82

SSIM 0.739 0.782 0.783 0.804 0.792 0.810 0.768 0.83 0.848

Parameters 178 M 28.8 M 15 M 1.5 M 305 M 25 M 7 M 11 M 27 M

Training/Inference
time

1.0
day/2.8 s

3
days/0.4 s

1.5
days/0.68 s

1.5
day/0.55 s

3.8
days/4 s

1.5
days/0.22 s

2
days/1.3 s

2
days/0.07 s

2
day/0.33 s

Table 3. The comparisons with SOTA methods of the quantitative performance on Lai et al.
dataset [34]. Best results are marked in bold.

Measures RDN [10] SRN [5] SCG-AN [6] RCAN [11]
RDN [10] +

SRN [5]
ED-DSRN

[7]
Zhang

et al. [33]
GFN [8]

Our
Proposed

PSNR 17.780 17.444 18.572 17.729 18.861 18.791 19.003 19.12 19.17
SSIM 0.416 0.408 0.460 0.471 0.423 0.473 0.466 0.574 0.59

Inference time 2.3 s 0.3 s 0.50 s 0.9 s 2.2 s 0.20 s 1.1 s 0.42 s 0.5 s

     
(a) HR 

(PSNR/SSIM) 
(b) RCAN 

(27.874/0.821) 
(c) SCGAN 
(24.61/0.727) 

(d) GFN 
(30.271/0.869) 

(e) Ours 
(30.316/0.872) 

     
(f) HR 

(PSNR/SSIM) 
(g) RCAN  

(26.948/0.881) 
(h) SCGAN  
(23.10/0.786) 

(i) GFN  
(31.904/0.931) 

(j) Ours 
(31.886/0.935) 

Figure 4. More visual comparison of our model with other methods on GOPRO [2].

     
(a) HR 

(PSNR/SSIM) 
(b) RCAN 

(24.555/0.72) 
(c) SCGAN 
(24.39/0.67) 

(d) GFN 
(25.297/0.713) 

(e) Ours 
(25.279/0.731) 

     
(f) HR 

(PSNR/SSIM) 
(g) RCAN 

(21.446/0.61) 
(h) SCGAN 
(21.295/0.56) 

(i) GFN 
(21.358/0.578) 

(j) Ours 
(21.78/0.61) 

Figure 5. More visual comparison of our model with other methods on Lai et al. [34].
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According to Tables 2 and 3, it is clear that in most cases our model achieves the
best multi-degradation recovery effects, and only in certain special scenarios, it is slightly
inferior to GFN [8] (see Figure 3d,e), which seems to be the best joint image SR and the
deblurring algorithm available at present. In Figure 3d,e and Figure 4, although the PSNR
is slightly lower, the image we recovered looks better than the image generated by GFN [8].
Such contradictions may stem from the fact that the calculation of PSNR or SSIM only
requires the neighborhood operations of certain image pixels and cannot reflect the true
perception of human vision. In light of the quantitative metrics in Tables 2 and 3, it is
easy to see that, compared to the other methods, even under multiple different blurs and
LR datasets, the proposed method can achieve the best or the second best PSNR and
SSIM performance.

According to Figure 5, we can easily see that on the Lai et al. [34] dataset, our approach
shows a significant improvement. Although adjustments have been made to RCAN by
fine-tuning the dataset, it still cannot compete with our trained network (see Figure 5b,g).
It is clear that Figure 5b,g contains less texture detail than Figure 5e,j. This performance gap
is mainly due to the lack of an encoder–decoder structure, which is a key architecture when
designing a blind deblurring network. Although the performance of the retrained SCGAN
is better than its pre-trained model, because of its small model capacity, this method cannot
handle complex non-uniform blurs well.

In general, compared with other methods, especially GFN, the superiority of our
method lies in (1) our two branches (super-resolution and motion deblurring), which
are fully disentangled, whereas GFN’s are not; and (2) we use multi-order attention to
obtain the attention features of the two branches at different orders separately, and perform
gated fusion through the drop-out mechanism, whereas GFN computes the correlation of
different branches for fusion. Due to the simpler structure, the GFN method has fewer
parameters and a faster computation speed than our approach. However, in practical
applications, assuming no particular requirements for machine memory or computing
speed, our method can be used in preference if the scene is rich in significant textures and
the objects have multi-scale variations. Benefiting from joint attention learning, our method
produces clearer and higher resolution images with good perceptual quality.

5. Ablation Study

For the sake of dissecting the role of the key components of the proposed decoupling
induction and multi-order attention gating model, several variants were developed and
tested: (1) deblurring alone, (2) SR alone, (3) without TOCA, and (4) no drop-out gating.
These variants were trained with almost the same hyper-parameters as our original model.
For the variants of deblurring alone and SR alone, the FOCA and SOCA features were
concatenated and pushed to the reconstruction module. For the variant without TOCA,
there were only four attention routes (

.
xdb, xdb,

.
xsr, xsr) for drop-out gating. The final variant

used direct concatenating to replace drop-out gating. The results are shown in Table 4.

Table 4. Ablation study on GOPRO [2] dataset. The best results are indicated in bold.

Methods
GOPRO [2]

PSNR SSIM

Deblurring alone 26.97 0.815

SR alone 25.84 0.791

Without TOCA 27.51 0.833

No drop-out gating 27.20 0.827

Ours 27.82 0.848

From Table 4, it is clear that without drop-out gating, the performance of the proposed
approach is much suppressed. At the same time, the high-order attention TOCA really can
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help to improve the reconstruction effects. In addition, it seems that the deblurring branch
contributes more than the SR forking in multiple degradation decoupling reconstruction.
Thus, we can conclude that the proposed mechanism of multi-order attention and drop-out
gating is very effective for joint deblurring and super-resolution.

6. Conclusions

In this work, we proposed an effective end-to-end deep model which can deal with
multiple degeneration problems for concurrent motion deblurring and image SR. Inspired
by the idea of decoupled learning and multi-order attention features selection, our model
firstly manages to construct the discrete network structures of motion deblurring and image
SR respectively, and then realizes selective features’ enhancement and fusion through multi-
order attention drop-out gating. Many experimental results and comparisons to other
SOTA methods were carried out to demonstrate the superior performance of our method
in compound degradation recovery and generalization power.

Future work will focus on two aspects. The first one is to investigate why the de-
blurring branch matters more than SR forking in the proposed multiple degradation
reconstruction approaches. Secondly, based on blur and resolution reduction, if more
degeneration action (such as noise interference) is also introduced, a way to obtain a good
image recovery effect will be investigated.
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Abstract: Conventional subspace learning approaches based on image gradient orientations only
employ first-order gradient information, which may ignore second-order or higher-order gradient
information. Moreover, recent researches on the human vision system (HVS) have uncovered that
the neural image is a landscape or a surface whose geometric properties can be captured through
second-order gradient information. The second-order image gradient orientations (SOIGO) can
mitigate the adverse effect of noise in face images. To reduce the redundancy of SOIGO, we propose
compact SOIGO (CSOIGO) by applying linear complex principal component analysis (PCA) in SOIGO.
To be more specific, the SOIGO of training data are firstly obtained. Then, linear complex PCA is
applied to obtain features of reduced dimensionality. Combined with collaborative-representation-
based classification (CRC) algorithm, the classification performance of CSOIGO is further enhanced.
CSOIGO is evaluated under real-world disguise, synthesized occlusion, and mixed variations. Under
the real disguise scenario, CSOIGO makes 2.67% and 1.09% improvement regarding accuracy when
one and two neutral face images per subject are used as training samples, respectively. For the mixed
variations, CSOIGO achieves a 0.86% improvement in terms of accuracy. These results indicate that
the proposed method is superior to its competing approaches with few training samples, and even
outperforms some prevailing deep-neural-network-based approaches.

Keywords: face recognition; second-order gradient; image gradient orientations; collaborative-
representation-based classification

MSC: 68T10

1. Introduction

As one of the most active research topics, face recognition (FR) has aroused great
attention in the domain of pattern recognition and computer vision. Considerable progress
has been made during the past decades and many successful methods have been proposed.
Nevertheless, complicated variations in face images (e.g., occlusion, illumination, and
expression) bring a great challenge for FR systems. To increase the robustness to occlu-
sion, researchers have developed a variety of approaches. Sparse representation-based
classification (SRC) [1] was developed for FR and shows robustness to occlusion and cor-
ruption in the test images when combined with the block partition technique. Naseem
et al. [2] proposed a modular linear regression classification (Modular LRC) approach with
a distance-based evidence fusion (DEF) algorithm to tackle the problem of contiguous
occlusion. Dividing an image into different blocks is an effective way for feature extraction.
Adjabi et al. [3] developed the multiblock color-binarized statistical image features (MB-
C-BSIF) method for single-sample face recognition. Abdulhussain et al. [4] presented a
method for fast calculation of features of overlapping image blocks. To further enhance the
performance of SRC, Li et al. [5] proposed a sparsity augmented weighted CRC approach
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for image recognition. Dong et al. [6] designed a low-rank Laplacian-uniform mixed
(LR-LUM) model, which characterizes complex errors as a combination of continuous
structured noises and random noises. Yang et al. [7] presented nuclear norm-based matrix
regression (NMR), which employs two dimensional image-matrix-based error model rather
than the one-dimensional pixel-based error model. The representation vector in NMR is im-
posed by the �2 norm, to make use of the discriminative property of sparsity, Chen et al. [8]
proposed a sparse regularized NMR (SR-NMR) by replacing the �2 norm constraint on
the representation vector with the �1 norm. However, the above approaches need uncor-
rupted training images. When providing corrupted training data, their performance will
be deteriorated. To tackle the situation that both the training and test data are corrupted,
low-rank matrix recovery (LRMR) can be applied. Chen et al. [9] proposed a discriminative
low-rank representation (DLRR) method, which introduces the structural incoherence
into the framework of low-rank representation (LRR) [10]. Gao et al. [11] proposed to
learn robust and discriminative low-rank representation (RDLRR) by introducing low-rank
constraint to simultaneously model the representation and each error term. Hu et al. [12]
presented a robust FR method, which employs dual nuclear norm low-rank representation
and a self-representation induced classifier. Yang et al. [13] developed a sparse low-rank
component-based representation (SLCR) method for FR with low-quality images. Recently,
Yang et al. [14] extended SLCR and proposed a FR technique named sparse individual
low-rank component representation (SILR) for IoT-based systems. Inspired by LRR and
deep learning techniques, Xia et al. [15] developed an embedded conformal deep low-rank
autoencoder (ECLAE) neural network architecture for matrix recovery.

Recently, image gradient orientation (IGO) has attracted much attention due to its
impressive results in occluded FR. Wu et al. [16] presented a gradient direction-based hier-
archical adaptive sparse and low-rank (GD-HASLR) model, which performs in the image
gradient direction domain rather than the image intensity domain. Li et al. [17] incorpo-
rated IGO into robust error coding and proposed an IGO-embedded structural error coding
(IGO-SEC) model for FR with occlusion. Apart from the above two works, Zhang et al. [18]
designed Gradientfaces for FR under varying illumination conditions. In essence, Gradient-
faces is the IGO. Tzimiropoulos et al. [19] introduced the notion of subspace learning from
IGO and developed approaches such as IGO-PCA and IGO-LDA. Vu [20] proposed a face
representation approach called patterns of orientation difference (POD), which explores
the relations of both gradient orientations and magnitudes. Zheng et al. [21] presented an
online image alignment method via subspace learning from IGO. Qian et al. [22] presented
a method called ID-NMR, in which the local gradient distribution is exploited to decompose
the image into several gradient images. Wu et al. [23] proposed a new feature descriptor
called the histogram of maximum gradient and edge orientation (HGEO) for the purpose
of multispectral image matching.

The above IGO-based approaches only take the first-order gradient information into
account, thus neglecting the second-order or higher-order gradient information. Latest
researches on human vision have discovered that the neural image is a landscape or a
surface whose geometric properties can be described by local curvatures of differential
geometry through second-order gradient information [24,25]. Based on the second-order
gradient, Huang et al. [24] presented a new local image descriptor called histograms of
second-order gradient (HSOG). Li et al. [26] proposed a patterned fabric defect detection
method based on the second-order, orientation-aware descriptor. Zhang et al. [27] designed
a blind image quality assessment (IQA) method based on multiorder gradient statistics.
Bastian et al. [28] developed a pedestrian detector utilizing both the first-order and the
second-order gradient information in the image. Nevertheless, the above second-order-
gradient-based approaches do not involve a dimensionality reduction technique, which
results in redundant information. To alleviate this problem, we introduce PCA into the
framework of SOIGO to extract more compact features. Moreover, we employ CRC as the
final classifier due to its effectiveness and efficiency. Experimental results show that our
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proposed method (CSOIGO) is robust to real disguise, synthesized occlusion, and mixed
variations and is superior to some popular deep-neural-network-based approaches.

Our main contributions are outlined as follows:

1. We find that SOIGO is more robust to variations in face images compared with the first-
order IGO. After extracting the SOIGO features of training samples, linear complex
PCA is applied to reduce the redundancy of SOIGO.

2. The classic CRC algorithm is utilized to predict the identity of test samples, and it can
further enhance the classification performance of CSOIGO.

3. Experiments on different scenarios demonstrate the efficacy and robustness of CSOIGO
compared with other approaches.

The remainder of this paper is arranged as follows. Section 2 reviews some related
work. In Section 3, we present our proposed approach. Section 4 conducts several experi-
ments to demonstrate the efficacy of our proposed method. Finally, conclusions are drawn
in Section 5.

2. Related Work

2.1. IGO-PCA

Given a set of images {Zi} (i = 1, 2, . . . , N), where N denotes the number of training
images and Zi ∈ Rm×n. Suppose that I(x, y) is the image intensities at pixel coordinates
(x, y) of sample Zi, the horizontal and vertical gradient can be obtained by the following
formulations:

Gi,x = hx ∗ I(x, y)

Gi,y = hy ∗ I(x, y),
(1)

where ∗ expresses convolution, and hx and hy are filters employed to approximate the ideal
differentiation operator along the image horizontal and vertical directions, respectively [29].
Image gradient contains edge information and is used to characterize the structure of
an image. In [30], gradient feature map is extracted from the input image and exploited
as a structural prior to guide the process of image reconstruction. However, the image
data mostly distribute discretely in real-world scenarios; so, we usually use differences to
compute the gradients, i.e., achieving the gradients through the difference between adjacent
pixels’ gray values. Thus, horizontal and vertical gradients can be reformulated as

Gi,x = I(x + 1, y)− I(x, y)

Gi,y = I(x, y + 1)− I(x, y).
(2)

Then, the gradient orientation of the pixel location (x, y) is

Φi(x, y) = arctan
Gi,y
Gi,x

, i = 1, 2, ..., N. (3)

For each image Zi whose size is m × n, we can obtain a corresponding gradient
orientation matrix Φi ∈ [0, 2π)m×n. Then, we can obtain the corresponding sample vectors
by converting 2D images Φi into 1D vectors φi. Referring to [19], we also define the
mapping from [0, 2π)K(K = m × n) onto a subset of complex sphere with radius

√
K,

ti(φi) = ejφi , (4)

where ejφi = [ejφ1 , ejφ2 , ..., ejφK ]T and ejθ is Euler form, i.e., ejθ = cosθ + jsinθ. Then, we
can apply complex linear PCA to the transformed ti—that is, we seek for a set of d < K
orthonormal bases U = [u1, u2, ..., ud] ∈ CK×d by solving the following problem:

ε(U) =
∥∥∥X − UUHX

∥∥∥2

F
, (5)
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where X = [t1, t2, ..., tN ] ∈ CK×N , UH is the conjugate transpose of U, and ‖.‖F denotes the
Frobenius norm. Equation (5) can be reformulated as

Uo = arg max
U

tr(UHXXHU), s.t. UHU = I. (6)

The solution is given by the d eigenvectors of XXH corresponding to the d largest
eigenvalues. Then, the d-dimensional embedding Y ∈ Cd×N of X is produced by Y = UHX.

2.2. Collaborative-Representation-Based Classification

During the past few years, the representation-based classification method (RBCM) has
attracted lots of attention in the community of pattern recognition. The pioneering work
is SRC [1]. In SRC, the �1 norm constraint is employed to attain the sparse coefficient of
test data. Zhang et al. [31] argued that it is the collaborative representation mechanism
rather than the �1 norm constraint that makes SRC successful for FR. Therefore, they
developed the CRC method, which replaces the �1 norm constraint with the �2 norm.
Afterwards, many improved methods were proposed to further boost the classification
performance of CRC. Gou et al. [32] developed a class-specific mean vector-based weighted
competitive and collaborative representation (CMWCCR) method, which fully employs the
discrimination information in different ways. Motivated by the idea of linear representation,
Gou et al. [33] proposed a representation coefficient-based k-nearest centroid neighbor
(RCKNCN) method. Recently, Gou et al. [34] presented a hierarchical graph augmented
deep collaborative dictionary learning (HGDCDL) model, which applies collaborative
representation to the deepest-level representation learning. For simplicity, in this paper, we
employ the original CRC as the classifier, and the objective function of CRC is formulated
as follows:

min
α

{
‖y − Dα‖2

2 + λ‖α‖2
2

}
, (7)

where y is the test sample, D is the dictionary that contains all the training data from C
classes, and λ is a balancing parameter. Equation (7) has the following closed-form solution,

α = (DTD + λI)−1DTy. (8)

In the classification stage, apart from the class-specific reconstruction error
∥∥y−Djαj

∥∥
2,

j = 1, 2, . . . , C, where αj is the coefficient vector corresponding to the jth class, Zhang et al. [31]
found that

∥∥αj
∥∥

2 also contains some discriminative information for classification. Thus, they
presented the following regularized residuals for classification,

identity(y) = arg min
j

∥∥y − Djαj
∥∥

2∥∥αj
∥∥

2

. (9)

3. Proposed Method

Previous studies revealed that gradient information at different orders characterize
different structural features of natural scenes. The first-order gradient information is re-
lated to the slope and elasticity of a surface, while the second-order gradient delivers the
curvature-related geometric properties. Figure 1 depicts two images and their correspond-
ing landscapes plotted as surfaces; one can see that these landscapes contain a variety of
local shapes, such as cliffs, ridges, summits, valleys, and basins. Inspired by the above
results, we propose a new FR method that exploits the SOIGO. The second-order gradient
is obtained based on the first-order gradient information defined in Equation (2),

G2
i,x = Gi,x(x + 1, y)− Gi,x(x, y)

G2
i,y = Gi,y(x, y + 1)− Gi,y(x, y),

(10)
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where G2
i,x and G2

i,y are the second-order gradient along the horizontal and vertical direc-
tions, respectively. Therefore, the SOIGO is computed as follows:

Φ2
i (x, y) = arctan

G2
i,y

G2
i,x

. (11)

Figure 1. Original images (left part) and their surface plots (right part).

Figure 2 presents an original face image and its gradient orientations of the first and
second orders; one can see that, compared with the first-order IGO, the SOIGO significantly
depresses the noise in the orientation domain. Moreover, the SOIGO contains more fine
information than the first-order IGO, e.g., areas around the eyes, nose, and mouth.

Figure 2. Original face image and its gradient orientations of the first and second orders, respectively.

To further illustrate the effectiveness of using the SOIGO, we visualize the original
data, the first-order IGO, and the SOIGO on the AR database by employing the t-SNE
algorithm [35] in Figure 3. These data are selected from the first ten subjects on the AR
database; for each person, seven nonoccluded face images in Session 1 are used. Then,
these images are occluded by a square baboon image with a percentage of 30%. For detailed
experimental settings, please refer to Section 4.3. As can be seen from Figure 3, though the
first-order IGO looks better compared with the original data, clusters of different classes
are mixed together. In Figure 3c, the cluster of the same class is more compact than that of
Figure 3b, which is beneficial for subsequent classification.
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(a) (b)

(c)

Figure 3. t-SNE visualization of (a) original data, (b) the first-order IGO with the mapping defined in
Equation (4), and (c) the SOIGO with the mapping defined in Equation (4); each color represents a
class. For better visualization, please refer to the electronic version of this paper.

The procedures of obtaining the projection matrix U is the same as in IGO-PCA. Then,
for a test image Zt, we first compute its SOIGO and obtain t after the mapping defined by
Equation (4). Embeddings of training and test images are derived as follows:

Y = UHX, z = UHt, (12)

where Y ∈ Cd×N and z ∈ Cd×1. To make the embeddings of training and test images
suitable for CRC, we employ both the real and imaginary parts of Y and z as the input of
CRC; let

D =

[
real(Y)

imag(Y)

]
, y =

[
real(z)

imag(z),

]
(13)

where real(·) and imag(·) are the real part and imaginary part of complex number, re-
spectively. Then, we compute the representation coefficient vector of y over D; this is
followed by checking which class results in the least regularized residual. The pipeline of
our proposed CSOIGO is illustrated in Figure 4, and the complete process of CSOIGO is
outlined in Algorithm 1.

When assessing the performance of an algorithm, we should take its computational
complexity into account. The major consumption of CSOIGO lies in the linear complex
PCA and CRC, and they both involve the operation of matrix. It takes O(K2N) to compute
the covariance matrix and O(K3) for eigen-decomposition in the process of PCA, where
K = m × n and N denote the dimensionality and total number of training images. From
Equation (8), one can see that CRC contains matrix multiplication and matrix inversion,
and it takes O(N2d) to compute DTD and O(N3) for the inverse operation of matrix,
where d is the reduced dimensionality. Suppose there are p test samples, CRC takes
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O(N2d + N3 + Ndp) to completely classify them. Therefore, the total computational
complexity of CSOIGO is O(K2N + K3 + N2d + N3 + Ndp).

X

y

y

 D

t

Figure 4. The pipeline of our proposed CSOIGO.

Algorithm 1 CSOIGO

Input: A set of N training images {Zi}(i = 1, 2, . . . , N) from C classes, test image Zt, the
number of principal components d, and the regularization parameter λ for CRC.

1. Obtain the SOIGO Φ2
i of training images and convert it to 1D vector φ2

i .
2. Compute ti(φ

2
i ) = ejφ2

i ; all the SOIGO of training images form the matrix X =
[t1, t2, ..., tN ].

3. Obtain the projection matrix U via Equation (6).
4. For the test image Zt, obtain its SOIGO Φ2

t and convert it to 1D vector φ2
t ; then,

compute t = ejφ2
t .

5. Obtain the embeddings of training and test images via Equation (12).
6. Obtain D and y by Equation (13).
7. Code y over D by Equation (8).

8. Compute the regularized residuals r j =
‖y−Djαj‖2
‖αj‖2

, j = 1, 2, . . . , C.

Output: identity(Zt) = arg min
j

r j.

4. Experimental Results and Analysis

In this section, experiments are conducted under different scenarios to validate the
effectiveness of the proposed method. For reproduction, the source code of CSOIGO is
available at https://github.com/yinhefeng/SOIGO.
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4.1. Recognition with Real Disguise

The AR database contains over 4000 images of 126 subjects. For each individual,
26 images are taken in two separate sessions. There are 13 images for each session, in which
three images with sunglasses, another three with scarves, and the remaining seven have
different illumination and expression changes; the 13 images of one subject from Session
1 are shown in Figure 5. Each image is 165 × 120 pixels. For fair comparison, we use the
same subset as in [16], which consists of 50 men and 50 women, and all images are resized
to 42 × 30 pixels. The neutral face image of each subject is used as training data, and
the sunglasses/scarf occluded images in each session for testing. The proposed method
is compared with other state-of-the-art approaches, including HQPAMI [36], NR [37],
ProCRC [38], F-LR-IRNNLS [39], EGSNR [40], LDMR [41], and GD-HASLR [16]. To better
illustrate the superiority of CSOIGO, we also present the results of IGO-PCA-NNC [19],
IGO-PCA-CRC, and SOIGO-PCA-NNC. Table 1 summarizes the experimental results; one
can see that CSOIGO achieves the highest recognition accuracy under all cases except
for the sunglasses scenario of session 1. Since the test images are partially occluded by
sunglasses or scarf, HQPAMI, NR, ProCRC, and LDMR seem not very robust to contiguous
occlusion. Due to the preprocessing step that separates outlier pixels and corruptions from
the training samples, the overall classification accuracy of F-LR-IRNNLS is higher than
that of EGSNR. IGO-PCA-CRC ranks second over all methods and achieves 5.66% higher
accuracy than IGO-PCA-NNC, which validates the efficacy of CRC when coping with IGO
features. GD-HASLR has competitive performance with SOIGO-PCA-NNC. However, the
overall accuracy gain of CSOIGO over GD-HASLR and IGO-PCA-CRC is 4.5% and 2.67%,
respectively. The above experimental results indicate that our proposed CSOIGO is robust
to real disguise even when a single training sample per person is available.

Figure 5. Some example face images from the AR database: (a) the neutral image of a subject
from Session 1; (b) face images with illumination and expression variations; (c) images occluded by
sunglasses/scarf.

Next, we utilize two neutral face images per subject from Sessions 1 and 2 for training,
and the test sets are identical with the first experiment. The results are reported in Table 2.
As can be seen from Table 2, CSOIGO yields the best overall recognition accuracy and
outperforms GD-HASLR by 2.92%. Again, IGO-PCA-CRC ranks second in all methods.
SOIGO-PCA-NNC outperforms IGO-PCA-NNC, and CSOIGO achieves higher accuracy
than IGO-PCA-CRC, which indicates that SOIGO is more robust to occlusion than IGO.
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Table 1. Recognition accuracy (%) of competing approaches on a subset of the AR database (test
samples contain sunglasses occlusion or scarf occlusion) when only one neutral face image per subject
from Session 1 is used as training sample. The dimension that leads to the best result for IGO- and
SOIGO-based approaches is given in parentheses.

Methods
Sunglasses Scarf

Overall
Session 1 Session 2 Session 1 Session 2

HQPAMI [36] 56.67 38.00 38.00 22.33 38.75
NR [37] 28.33 16.67 29.67 17.33 23.00

ProCRC [38] 53.07 31.00 18.67 7.33 27.52
F-LR-IRNNLS [39] 88.67 60.33 67.00 49.67 66.42

EGSNR [40] 84.00 54.00 70.33 48.33 64.16
LDMR [41] 68.33 45.67 59.67 34.00 51.92

GD-HASLR [16] 92.00 66.67 82.67 58.67 75.00
IGO-PCA-NNC [19] 89.00 (99) 69.00 (99) 73.33 (97) 53.33 (96) 71.17

IGO-PCA-CRC 93.00 (85) 74.33 (92) 81.67 (88) 58.33 (95) 76.83
SOIGO-PCA-NNC 88.67 (92) 73.33 (96) 80.33 (99) 61.00 (88) 75.83

CSOIGO 92.67 (89) 76.67 (93) 83.33 (75) 65.33 (99) 79.50

Bold values indicate the best recognition accuracy.

Table 2. Recognition accuracy (%) of competing approaches on a subset of the AR database (test
samples contain sunglasses occlusion or scarf occlusion) when two neutral face images (from Sessions
1 and 2) per subject are used as training samples, the dimension that leads to the best result for IGO-
and SOIGO-based approaches is given in parentheses.

Methods
Sunglasses Scarf

Overall
Session 1 Session 2 Session 1 Session 2

HQPAMI [36] 61.33 59.33 44.67 48.00 53.33
NR [37] 34.00 33.33 33.00 35.67 34.00

ProCRC [38] 53.00 54.67 18.00 17.67 35.84
F-LR-IRNNLS [39] 90.33 87.67 78.67 76.00 83.17

EGSNR [40] 88.00 89.33 80.00 73.00 82.58
LDMR [41] 71.00 63.67 64.00 61.00 64.92

GD-HASLR [16] 93.00 93.33 82.67 84.00 88.25
IGO-PCA-NNC [19] 93.00 (182) 91.67 (191) 78.00 (199) 74.00 (193) 84.17

IGO-PCA-CRC 96.00 (128) 95.33 (116) 85.00 (190) 84.00 (160) 90.08
SOIGO-PCA-NNC 96.33 (187) 92.67 (197) 86.33 (166) 83.67 (189) 89.75

CSOIGO 97.33 (144) 95.67 (124) 86.00 (119) 85.67 (198) 91.17
Bold values indicate the best recognition accuracy.

4.2. Comparison with CNN-Based Approaches

In this subsection, we compare our proposed method with prevailing deep-learning-
based approaches. The first one is VGGFace [42], which is based on the VGGNet [43] and
has 16 convolutional layers, five max-pooling layers, three fully-connected layers, and a
final linear layer with softmax layer. In our experiments, we employ FC6 and FC7 for
feature extraction. The second one is Lightened CNN [44], which has a low computational
complexity. Lightened CNN consists of two different models, i.e., Model A and Model B.
Model A is based on the AlexNet [45], which contains four convolution layers using the
max feature map (MFM) activation functions, four max-pooling layers, two fully-connected
layers, and a linear layer with softmax activation in the output. Model B is based on
the Network in Network model [46] and consists of five convolution layers using the
MFM activation functions, four convolutional layers for dimensionality reduction, five
max-pooling layers, two fully-connected layers, and a linear layer with softmax activation
in the output. For Lightened CNN, FC1 is used for feature extraction. All the features
extracted by VGGFace and Lightened CNN are classified using the nearest neighbor
classifier with cosine distance. When training VGGFace, the size of input image is 224×224,
and the preprocessing operation involves subtracting the mean RGB value, computed on
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the training set, from each pixel. The batch size, number of epochs, and optimizer are 256,
74, and sgdm, respectively. The learning rate is initially set to 1 × 10−2 and then decreased
by a factor of 10. For training Lightened CNN, the size of input image is 144 × 144, and the
input image is cropped into 128 × 128 and mirrored. The batch size, number of epochs, and
optimizer are 20, 150, and rmsprop, respectively. The learning rate is set to 1 × 10−3 initially
and reduced to 5 × 10−5 gradually.

As in Section 4.1, the first experiment is one neutral face of each subject for training
on the AR database, and the experimental results are summarized in Table 3. Table 4
lists the results when two neutral faces are used for training. From Tables 3 and 4, we can
see that VGGFace performs better in the scarf scenario than in the sunglasses scenario.
This indicates that VGGFace has difficulty tackling the upper face occlusion, and this
phenomenon is also observed in [47]. Moreover, when using more training samples, the
performance of VGGFace does not improve. Hence, to increase robustness to upper face
occlusion, VGGFace may need much more training data. By comparison, our proposed
CSOIGO can achieve better results even with few training samples. In practical applications,
training data may be insufficient. In this situation, CSOIGO is more appropriate to realize
robust face recognition than VGGFace.

Table 3. Comparison with CNN-based approaches on a subset of the AR database (test samples
contain sunglasses occlusion or scarf occlusion) when only one neutral face image per subject from
Session 1 is used as training samples. The dimension that leads to the best result for IGO- and
SOIGO-based approaches is given in parentheses.

Methods
Sunglasses Scarf

Overall
Session 1 Session 2 Session 1 Session 2

VGGFace FC6 [42] 54.00 45.00 91.67 88.00 69.67
VGGFace FC7 [42] 45.67 40.00 88.67 84.00 64.59

Lightened CNN (A) [44] 67.33 56.00 87.00 82.33 73.17
Lightened CNN (B) [44] 36.33 31.33 80.67 73.67 55.50

GD-HASLR [16] 92.00 66.67 82.67 58.67 75.00
IGO-PCA-NNC [19] 89.00 (99) 69.00 (99) 73.33 (97) 53.33 (96) 71.17

IGO-PCA-CRC 93.00 (85) 74.33 (92) 81.67 (88) 58.33 (95) 76.83
SOIGO-PCA-NNC 88.67 (92) 73.33 (96) 80.33 (99) 61.00 (88) 75.83

CSOIGO 92.67 (89) 76.67 (93) 83.33 (75) 65.33 (99) 79.50
Bold values indicate the best recognition accuracy.

Table 4. Comparison with CNN-based approaches on a subset of the AR database (test samples
contain sunglasses occlusion or scarf occlusion) when two neutral face images (from Sessions 1 and 2)
per subject are used as training samples. The dimension that leads to the best result for IGO- and
SOIGO-based approaches is given in parentheses.

Methods
Sunglasses Scarf

Overall
Session 1 Session 2 Session 1 Session 2

VGGFace FC6 [42] 44.67 51.00 91.67 93.33 70.17
VGGFace FC7 [42] 41.67 44.67 88.67 89.33 66.08

Lightened CNN (A) [44] 64.67 58.33 86.67 85.33 73.75
Lightened CNN (B) [44] 38.67 38.00 81.67 79.33 59.42

GD-HASLR [16] 93.00 93.33 82.67 84.00 88.25
IGO-PCA-NNC [19] 93.00 (182) 91.67 (191) 78.00 (199) 74.00 (193) 84.17

IGO-PCA-CRC 96.00 (128) 95.33 (116) 85.00 (190) 84.00 (160) 90.08
SOIGO-PCA-NNC 96.33 (187) 92.67 (197) 86.33 (166) 83.67 (189) 89.75

CSOIGO 97.33 (144) 95.67 (124) 86.00 (119) 85.67 (198) 91.17
Bold values indicate the best recognition accuracy.

Similar to the results of VGGFace, Lightened CNN performs worse in the sunglasses
scenario than in the scarf scenario. Additionally, Model A outperforms Model B, and Model
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A also achieves higher accuracy than VGGFace. However, whether one or two neutral face
images per subject are used for training, our proposed CSOIGO achieves the best overall
recognition accuracy.

4.3. Random Block Occlusion

Here, we conduct other experiments using synthesized occluded face data as testing
data. For each subject, seven nonoccluded face images in the AR dataset in Session 1 are
used for training and the other seven nonoccluded images in Session 2 for testing, the
image size is 42 × 30 pixels. Block occlusion is tested by placing the square baboon image
on each test image. The location of the occlusion is randomly chosen and is unknown
during training. We consider different sizes of the object such that the face is covered with
the occluded object from 30% to 50% of its area; some occluded face images are shown
in Figure 6. The above experimental results indicate that GD-HASLR is superior to other
competing approaches; therefore, in this subsection and the following subsection, we
report the result of GD-HASLR for comparison. Recognition results for different levels
of occlusion are shown in Table 5. One can see that CSOIGO outperforms GD-HASLR
by a large margin, and the performance gain is significant with the increasing percentage
of occlusion. Moreover, SOIGO-PCA-NNC outperforms IGO-PCA-NNC and CSOIGO
performs better than IGO-PCA-CRC, which demonstrates that SOIGO is more robust than
IGO when dealing with artificial occlusion.

Figure 6. Original face image and its occluded images with different occlusion percentages; from the
second to the last, the percentage is 30%, 40%, and 50%, respectively.

Table 5. Recognition accuracy (%) of competing methods under different percentages of occlusion
on a subset of the AR database (original training and test samples have no sunglasses occlusion or
scarf occlusion). The dimension that leads to the best result for IGO- and SOIGO-based approaches is
given in parentheses.

Occlusion Percentage 30% 40% 50%

GD-HASLR [16] 81.29 71.14 56.14
IGO-PCA-NNC [19] 86.14 (588) 80.57 (606) 66.29 (321)

IGO-PCA-CRC 89.14 (205) 80.14 (185) 71.29 (569)
SOIGO-PCA-NNC 88.86 (458) 84.57 (575) 73.29 (693)

CSOIGO 93.57 (423) 87.00 (533) 76.57 (698)

Bold values indicate the best recognition accuracy.

To vividly show the performance of IGO- and SOIGO-based approaches under differ-
ent numbers of features, in Figure 7 we plot the recognition accuracy against the number
of features when the percentage of occlusion is 30%. We can clearly see that with the
increasing number of features, CSOIGO consistently outperforms the other three compet-
ing approaches.
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Figure 7. Recognition accuracy versus different numbers of features when the percentage of occlusion
is 30%.

4.4. Recognition with Mixed Variations

In this subsection, we evaluate our proposed CSOIGO and other compared approaches
under the mixed variations. As shown in Figure 5a,b, the first seven images per subject in
Session 1 have variations of expression and illumination; thus, seven nonoccluded images
from Session 1 of the AR database are selected for training and another seven undisguised
images from Session 2 are used for testing. Recognition accuracy and testing time of
compared methods are shown in Table 6. It should be noted that the testing time refers
to the time that classifies all the test samples. All experiments are performed on a laptop
with Windows 10, an Intel Core i9-8950HK CPU at 2.90 GHz, and 32.00 GB RAM. The
implementation software is MATLAB R2022a. From Table 6, we can see that CSOIGO has
the best classification performance. Specifically, it makes 1.86% and 0.86% improvement in
terms of accuracy over GD-HASLR and IGO-PCA-CRC, respectively. Due to the complex
optimization process, GD-HASLR consumes much more time than the other approaches.
The testing time is almost the same for both IGO-PCA-NNC and SOIGO-PCA-NNC. NNC
is a simple and efficient classifier, while CRC involves the computations of coefficient vector
and classwise residual. As a result, CSOIGO takes a little longer than SOIGO-PCA-NNC.
However, CSOIGO is much faster than GD-HASLR.

Table 6. Recognition accuracy (%) and testing time (s) of compared approaches with mixed variations
on a subset of the AR database (training and test samples have expression and illumination changes).
The dimension that leads to the best result for IGO- and SOIGO-based approaches is given in
parentheses.

Methods Accuracy (%) Testing Time (s)

GD-HASLR [16] 96.71 414.29
IGO-PCA-NNC [19] 93.14 (478) 0.50

IGO-PCA-CRC 97.71 (100) 1.92
SOIGO-PCA-NNC 94.71 (371) 0.45

CSOIGO 98.57 (171) 2.43
Bold values indicate the best recognition accuracy.

As in the previous subsection, we show the recognition accuracy against the number
of features in Figure 8. It can be seen that as the number of features increases, the recog-
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nition accuracies of IGO-PCA-NNC, SOIGO-PCA-NNC, and CSOIGO also increase. The
recognition accuracy of IGO-PCA-CRC firstly increases, then decreases to some extent, and
then it increases again. When the number of features exceeds 108, CSOIGO always achieves
higher accuracy than its competing methods. This again demonstrates that CSOIGO is
robust to mixed variations in face images.

Figure 8. Recognition accuracy versus different number of features under mixed variations.

5. Conclusions

In this paper, we present a new method for occluded face recognition, namely, CSOIGO,
by exploiting the second-order gradient information. SOIGO is robust to real disguise,
synthesized occlusion, and mixed variations. By employing CRC as the final classifier, our
proposed method achieves impressive results in various scenarios and even outperforms
some deep-neural-network-based approaches. Taking the real disguise experiment as an
example, when one and two neutral face images per subject are used as training samples,
CSOIGO attains an overall accuracy of 79.50% and 91.17%, respectively. Therefore, our
proposed CSOIGO is superior to its competing approaches.

The limitation of CSOIGO is that it needs registered images for training and testing,
i.e., when classifying face images with pose changes, its recognition performance will
be degraded. Consequently, CSOIGO can be applied to applications of access control,
automatic teller machines, or other security facilities. In these circumstances, we can obtain
controlled training images in advance and the test images will be collected under similar
scenarios. However, if registered face images cannot be collected during either the training
or test stage, one can employ image registration methods to remedy the above limitation to
some extent.

In future work, we will introduce SOIGO into other popular subspace learning ap-
proaches, e.g., linear discriminant analysis (LDA), to extract more discriminative features.
Moreover, other variants of CRC will also be investigated to further enhance the perfor-
mance of recognition.
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Abstract: Image aesthetic quality assessment (IAQA) has aroused considerable interest in recent
years and is widely used in various applications, such as image retrieval, album management, chat
robot and social media. However, existing methods need an excessive amount of labeled data to train
the model. Collecting the enormous quantity of human scored training data is not always feasible due
to a number of factors, such as the expensiveness of the labeling process and the difficulty in correctly
classifying data. Previous studies have evaluated the aesthetic of a photo based only on image
features, but have ignored the criterion bias associated with the themes. In this work, we present a
new theme-aware semi-supervised image quality assessment method to address these difficulties.
Specifically, the proposed method consists of two steps: a representation learning step and a label
propagation step. In the representation learning step, we propose a robust theme-aware attention
network (TAAN) to cope with the theme criterion bias problem. In the label propagation step, we use
preliminary trained TAAN by step one to extract features and utilize the label propagation with a
cumulative confidence (LPCC) algorithm to assign pseudo-labels to the unlabeled data. This enables
use of both labeled and unlabeled data to train the TAAN model. To the best of our knowledge,
this is the first time that a semi-supervised learning method to address image aesthetic assessment
problems has been studied. We evaluate our approach on three benchmark datasets and show that it
can achieve almost the same performance as a fully supervised learning method for a small number
of samples. Furthermore, we show that our semi-supervised approach is robust to using varying
quantities of labeled data.

Keywords: image aesthetic assessment; semi-supervised learning; label propagation; deep learning;
computer vision

MSC: 68T07

1. Introduction

With the vigorous development of mobile Internet, images have become an indis-
pensable part of our life. In the face of vast amounts of data, relying solely on human
beings for the aesthetic analysis of images is not able to meet our needs, so the design
of automatic aesthetic assessment algorithms has aroused considerable interest in the
research community.

With respect to the various methods available for generating features, existing image
aesthetic quality assessment methods can be broadly divided into two categories. The first
category includes shallow modeling methods which use hand-crafted features to infer
image aesthetic quality [1–3]. These methods use global, local and general features to
represent aesthetic attributes. Among them, the Fisher vector (FC) [3] is used to construct
aesthetic attributes and predict aesthetic quality. However, The representation ability
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of hand-crafted features is limited. The second category includes deep-learning-based
methods. Because of the outstanding capabilities in efficient feature learning, convolutional
neural networks (CNNs) have been used to infer composition information and learn new
aesthetic representations (see, for example, [4–6]). Since the high-level features constructed
by convolutional neural networks can better express the aesthetic quality, the performance
of convolutional neural networks is better than that of traditional hand-crafted feature
methods. Earlier attempts to develop CNNs [4–11] were able to help computers learn how
to automatically evaluate an image. However, there are two major flaws in existing deep
learning-based methods: Firstly, existing deep-learning-based methods require a large
number of labeled datasets to train the network. However, collecting the enormity of
human scored training data is not always feasible since manual annotation of aesthetic
quality is a time-consuming, expensive and error-prone task. Thus, it is crucial to develop
a method that only uses a small quantity of training data to reduce the reliance on manual
annotation. Second, most previous research has only focused on the aesthetic features of
the images but has ignored the criterion bias associated with their themes. Photographers
shoot different scenes with different shooting methods. The scenes shot by each shooting
method can be regarded as having a specific theme, but different shooting methods have
different standards for the assessment of aesthetic quality. Thus, different themes use
different evaluation criteria. For example, a highly blurred image may obtain a significant
high score under the theme “Motion Blur” because blurring is regarded as a good feature’;
however, it will obtain a low aesthetic score under the theme “Landscape”, since blurring
is considered to be a drawback for landscape images. Thus, it is appropriate to take the
themes into account when aesthetic decisions are made.

Therefore, we propose a theme-aware semi-supervised image aesthetic quality assess-
ment to solve the above-mentioned problems. To deal with the first problem, we employ
a deep-learning-based label propagation method which is based on the assumption of
making predictions on the entire dataset and using these to generate pseudo-labels for
the unlabeled data. To handle the noise label problem in the process of label propagation,
we also propose a cumulative confidence algorithm which can apply different weights
to different unlabeled data. For data similar to previous prediction results, we apply a
higher confidence weight; for dissimilar data, we apply a lower confidence weight. For the
second problem, we propose a theme-aware attention network that considers the theme of
an image when an aesthetic decision is made. This network consists of three components:
an image feature extractor (backbone), a self-attention-based theme encoder and a residual
connection module. The proposed network not only aims to extract visual features more
effectively, but also leverages the theme power of tag and challenges to make aesthetic
predictions more accurate.

The contributions of this paper are as follows:

• We are the first to tackle the image aesthetic quality assessment task via a semi-
supervised learning method. We propose a label propagation with cumulative confi-
dence algorithm (LPCC) to infer the pseudo-labels for unlabeled data. The proposed
method greatly reduces reliance on human annotation.

• We design a theme-aware attention network to combine theme information with visual
features to predict aesthetic quality. The proposed network can alleviate the criterion
bias of the human aesthetic quality assessment process.

• We conduct extensive experiments to demonstrate the superiority of our proposed
theme-aware semi-supervised method. Experimental results obtained show that our
method can achieve almost the same performance as fully supervised learning.

The remainder of this paper is organized as follows: Section 2 summarizes related
work. Section 3 introduces the methodology of the proposed theme aware semi-supervised
approach. Section 4 quantitatively analyses the effectiveness of the proposed method and
compares it with state-of-the-art results. Finally, Section 5 contains a summary and plans
for future work.
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2. Related Work

2.1. Image Aesthetics Quality Assessment

Image aesthetic quality assessment is a branch of image quality assessment (IQA) [12–14].
A broad collection of methods has been proposed in the last few years. Earlier image
aesthetic assessment methods rely on handcrafted features to extract the aesthetic attributes
of images [1,2]. These hand-crafted features include global features, such as saturation,
brightness and hue, local features, such as contrast, and general features, such as SIFT and
the Fisher vector [3]. With the advent of deep convolutional neural networks, deep CNNs
have been deployed in image aesthetic quality assessment and have proved to be effective.
For instance, Lu et al. [4] proposed a double-column DNN architecture, the RAPID-Net,
which extracts global features from the whole image and local features from a randomly
cropped patch. To capture more high-resolution fine-grained details, Lu et al. [5] proposed
a deep multi-patch aggregation network, the DMA-Net. The DMA-Net extracts aesthetic
features from a bag of randomly cropped patches, and uses statistics and sorting network
layers to aggregate these multiple patches. Later, researchers found that processing images
in the data augmentation stage entails loss of the original information of the image, which
will affect the performance of the network. Thus, Mai et al. [6] added an adaptive spatial
pooling layer onto the regular convolution to handle images with original sizes. In a similar
vein, Ma et al. [15] proposed the non-random selection of multiple patches to extract image
features according to the significance of the image without any transformation. Jia et al. [10]
combined padding with ROI pooling to handle the arbitrary sizes of batch inputs.

Since previous work has focused only on the aesthetic features of images and ignored
image content, some researchers have resorted to the use of semantic information to enhance
the accuracy of aesthetic prediction. For example, Kao et al. [9] proposed the use of semantic
labels to guide aesthetic assessment. Kong et al. [16] regularized the complicated photo
aesthetics rating problem by applying joint learning of meaningful photographic attributes
and image content information. However, these methods still cannot cope with the theme
criterion bias problem. Using the method of [16], photographic attributes cannot solve
the problem of theme criterion bias well. Firstly, the same image can belong to multiple
aesthetic attributes, so we cannot uniquely determine the theme of the image through
photographic attributes. Secondly, photographic attributes focus on different perspectives
to evaluate an image, such as light, color, DOF, etc., rather than the theme. In the method
of Kao et al. [9], although semantic labels can guide the aesthetic assessment, the semantic
information is used simply as ground truth labels, which cannot fully interact with images.
In this paper, we take the tag and challenge themes into account. To fully utilize them,
we encode the theme information and combine it with the extracted visual features via
an attention mechanism. Experiments undertaken demonstrated the effectiveness of the
proposed module.

2.2. Semi-Supervised Learning

Supervised learning methods need to use labeled data to build models. However, label-
ing training data in the real world may be expensive or time-consuming. A semi-supervised
learning (SSL) model can allow the model to integrate part or all of the unlabeled data in its
supervised learning to solve this inherent bottleneck. The goal is to maximize the learning
performance of the model through information revealed by both limited labeled images and
sufficient unlabeled images. The study of semi-supervised learning (SSL) has a long history
with various models being proposed. For example, Zhang et al. [17] proposed a simple
learning principle, MixUp, to reduce memory and sensitivity to antagonistic examples
of large deep neural networks. Berthelot et al. [18] unified the mainstream methods of
semi-supervised learning and proposed MixMatch that guesses low-entropy labels for
unlabeled examples and uses MixUp to mix labeled and unlabeled data. Laine et al. [19]
introduced self-ensembling, in which the output of the network in different periods of
training is used to form a consistent prediction of unknown tags. However, since the
target changes only once in each epoch, temporal ensembling becomes very clumsy when
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learning huge datasets. To overcome this problem, Tarvainen et al. [20] proposed Mean
Teacher, a method that defines the weight of the teacher model parameters obtained in each
round as an exponential moving average. Iscen et al. [21] proposed a label propagation
method based on transductive learning, which can assign pseudo-labels to unlabeled data
using a k-nearest neighbor graph. Although based on this method, our proposed method
represents an improvement in terms of cumulative confidence. The experimental results
demonstrate that our improved method can solve the problems caused by label noise.

Although SSL has been evaluated for various tasks, few investigations have considered
its application to an image aesthetic prediction task. Image aesthetic prediction is highly
subjective and complex. Annotating aesthetic labels is a time-consuming and error-prone
task. To reduce reliance on manual annotation, it is crucial to develop the SSL method
to leverage dependencies on labeled data. Therefore, in this paper, we propose a theme-
aware semi-supervised method which exhibits equivalent performance to that of a fully
supervised method.

3. Methodology

In this section, we first describe preliminary details and the overall architecture of our
method. Then, we introduce each module in detail.

3.1. Preliminaries

In semi-supervised image aesthetic assessment prediction, a dataset can be expressed
as X := (x1, . . . , xl , xl+1, . . . , xn) . The dataset contains l labeled examples and u = n − l
unlabeled examples. The labeled examples xi for i ∈ L := (1, . . . , l), denoted by XL, are
labeled according to YL := (y1, . . . , yl) with yi ∈ C, where C := (1, . . . , c) is a discrete label
set for c classes. The remaining unlabeled examples are denoted as XU = xl+1, . . . , xn.
The goal in semi-supervised learning (SSL) is to use all examples X and labels YL to train a
classifier that maps previously unseen samples to class labels.

In supervised learning, the network is trained by minimizing the following supervised
loss term:

Ls(XL, YL; θ) :=
l

∑
i=1

loss( fθ(xi), yi), (1)

where θ is the parameters of the network and fθ is the forward function of the network.
The supervised loss applies only to labeled data in XL. The loss function in classifica-

tion is cross-entropy (CE) loss under standard conditions, which is given by

loss(p, y) :=
l

∑
i=1

(−yi log pi), (2)

where y is the label and p is the predict logits.
In semi-supervised learning, pseudo-labeling is the process of using the labeled data

trained model to assign labels for unlabeled data. The additional pseudo-label loss term is
defined as follows:

Lp(XU , YU ; θ) :=
n

∑
i=l+1

loss( fθ(xi), yi), (3)

where YU := (yl+1, . . . , yn) denote the collection of pseudo-labels for XU , and the loss can
be any supervised loss function, such as cross-entropy.

3.2. Overall Architecture

An overview of our proposed framework is illustrated in Figure 1. Our training
is divided into two steps: a representation learning step and a label propagation step.
These two steps are iteratively trained. In the representation learning step, we train the
theme-aware attention network in a fully supervised fashion on the l labeled examples.
The theme-aware attention network generates two outputs: an embedding output f̂v and
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a category prediction output. In the label propagation stage, we construct a k-nearest
neighbor graph through the embedding output f̂v and perform label propagation on the
training set. The known labels YL are propagated from XL to XU , creating pseudo-labels
YU . Then, we estimate confidence scores reflecting the uncertainty of each unlabeled
example. The confidence scores are then used as loss weights during the representation
learning stage. Finally, we inject the obtained labels into the representation learning step.
By iteratively applying the label propagation and representation learning steps, our model
builds a good underlying representation and trains an accurate classifier for the image
aesthetic prediction task.

Figure 1. Overall architecture of our theme-aware semi-supervised image aesthetic quality assess-
ment. First, in step one, we train our theme-aware attention network (TAAN) using a small amount of
labeled data in a supervised fashion. In step 2, we use a label propagation with cumulative confidence
algorithm (LPCC) to transduct the pseudo-labels for unlabeled data. We extract the features of the
entire training set and compute a k-nearest neighbor graph. Then we propagate labels by transductive
learning and train the theme-aware attention network (TAAN) on the entire training set. These two
steps are iteratively trained. When testing, we send the input image directly into the trained TAAN
model to obtain the predicted aesthetic quality. More detailed illustrations of label propagation with
cumulative confidence algorithm (LPCC) can be found in Algorithm 1.

3.3. Theme-Aware Attention Network

In recent years, the attention mechanism has been shown to be effective in capturing
important information from raw features in either linguistic or visual representations [22].
In contrast to the above approaches, we propose theme-aware attention to jointly exploit
attention mechanisms to encode the theme features. Inspired by the success of self-attention,
the proposed theme-aware attention module can capture the complex interactions between
the theme features and different spatial locations in the input image.

The pipeline of our proposed theme-aware attention network (TAAN) is shown in
Figure 2, which consists of the following three parts: an image feature extractor (backbone),
a self-attention-based theme encoder and a residual connection module. Given the image,
the image feature extractor firstly extracts high level features. Then these features are sent
into the self-attention-based theme encoder. Finally, the visual features and the theme-based
features are combined via a residual connection module.
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Algorithm 1 Label propagation with cumulative confidence.

1: procedure LPCC(X, YL)
2: θ ← initialize randomly
3: for epoch ∈ [1, . . . , T1] do � step 1
4: J ← CrossEntropy( fθ(XL), YL)
5: θ ← θ − η � J/ � θ
6: end for
7: for epoch ∈ [1, . . . , T1] do � step 2
8: F ← fθ(X) � extract features
9: D, I ← search(F, k) � knn search for the graph

10: A ← compress(D, I) � create the adjacency matrix of the graph
11: A ← A + AT � symmetric affinity
12: A∗ ← D−1/2 AD−1/2 � normalize the graph
13: Z ← Z(I − αA∗) = YL � solve the equation
14: YU ← argmax(normalize(Z)) � get pseudo-label
15: ω ← 1− (Entropy(Z)/log(c)) � get entropy weight
16: con f ← similarity(YU , pre) � cumulative confidence weight
17: pre ← epoch ∗ pre + YU)/(epoch + 1) � update cumulative info
18: J ← CrossEntropy( fθ(XL), YL)× ω × con f
19: θ ← θ − η � J/ � θ
20: end for
21: end procedure

Figure 2. Details of our theme-aware attention network (TAAN). The TAAN consists of an image
feature extractor (backbone), a self-attention-based theme encoder and a residual connection module.

The image feature extractor is a residual network with 18 layers, as described in [23],
pretrained on ImageNet [24]. Images in the AVA dataset not only have semantic tag
information (such as Macro, Animals and Portraiture), but also have challenge information
(such as Fairy Tales, Flowers, Black and White, Street Photography). The tag information
and challenge information both encode the theme information. Thus, we turn the tag
information and challenge information into one-hot codes, and then process the one-hot
codes with a fully connected layer to extract the theme features. Given the extracted visual
feature fv and theme features ftheme, the self-attention-based theme encoder first produces
a set of query, key and value pairs by linear transformations as q1 = Wq ftag, k = Wk fv,
q2 = Wq2 fchallenge, v = Wv fv, where Wq, Wq2, Wk, Wv are part of the model parameters to be
learned. Then the tag-theme-based attention and the challenge-theme-based attention are
computed as follows:

αtag = So f tmax(qT
1 k)

αchallenge = So f tmax(qT
2 k),

(4)
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where αtag and αchallenge denote the tag-theme-based attention and the challenge-theme-
based attention, respectively. Then the final theme-attentive features v̂ are computed
as follows:

v̂ = αtag × v + αchallenge × v (5)

We then combine the theme-attentive features with visual features via a residual
connection. This allows the insertion of the proposed module into any backbone network
without disrupting its initial behavior. The operations can be defined as follows:

f̂v = v̂ + fv (6)

where v̂ is the theme-attentive features, fv is the extracted visual feature, and f̂v denotes
theme-attentive features with residual features.

3.4. Label Propagation with Cumulative Confidence Algorithm

The label propagation algorithm is an iterative process for semi-supervised learning.
More specifically, we first construct a nearest neighbor graph and perform label propagation
on the whole training set. Then, we calculate an entropy weight reflecting the uncertainty of
label propagation for each unlabeled example. Inspired by [25], we believe that the results
obtained from early propagation should also be considered as a constraint, so we propose
a cumulative confidence weight to improve the traditional label propagation [21]. Finally,
we inject the obtained pseudo-labels into the network training process. This method
is described in detail below; the process of the proposed approach is demonstrated in
Algorithm 1.

K-nearest neighbor search for the graph. Given an image feature matrix f̂v with di-
mensions (n, dim), we first calculate the similarity between every two points (the Euclidean
distance or cosine similarity can be used).

Create the adjacency matrix of the graph. For the first k nearest neighbors of each
point, the similarity is the weight of the edge, and the weight of the edge after more than k
is set to 0. A sparse affinity matrix A ∈ Rn×n is constructed as follows:

aij =

{
[ f T

vi
fvj ]

γ, i f i �= j ∧ fvi ∈ KNN( fvj);

0, otherwise.
(7)

where KNN denotes the set of the first k nearest neighbors in X, and γ is a parameter
following work on a manifold-based search [26]. So far, we obtain the adjacency matrix A.

Normalize the graph. Since the full affinity matrix is not tractable, it may lead to
the following problems: node a is the k-nearest neighbor of node b, but node b is not the
k-nearest neighbor of node a, so we symmetrize it and turn it into a real undirected graph.
The operation is defined in Equation (8). Then we use regularization of the Laplace matrix
for the adjacency matrix A to build its symmetrically normalized counterpart A*, which is
defined in Equation (9);

A = A + AT , (8)

A∗ = D−1/2 AD−1/2, (9)

where A is the adjacency matrix, D is the degree matrix of A, which is defined as D :=
diag(A1n), where 1n is the all-ones n-vector , and A∗ is the normalized adjacency matrix.

Diffusion for transductive learning [27]. The label matrix Y(nc) is defined with elements:

Yij =

{
1, i f i ∈ L ∧ yi = j;
0, otherwise.

(10)

167



Mathematics 2022, 10, 2609

where L represents the index of labeled data. This means that the rows of the label matrix Y
corresponding to the labeled examples are one-hot encoded labels. The remaining elements
are zero. The diffusion process is equivalent to the solution of linear equations:

(I − αA∗)Z = Y (11)

where α is the adjustable parameter and I is the identity matrix. Because matrix (I − αA∗)
is positive-definite, we can use the conjugate gradient (CG) method to solve the linear
system. This solution is known to be faster than the iterative solution. Finally, we infer
the pseudo-labels:

Z∗ = normalize((I − αA∗)−1Y) (12)

YU = argmax(Z∗) (13)

where Z∗ is the row-wise normalized counterpart of Z and YU are the predicted pseudo-labels.
Entropy weight. We need to evaluate the reliability of the predicted pseudo-labels.

Firstly, we consider the credibility of a single round. The prediction matrix Z we obtained
has a probability prediction value for the category to which each sample point belongs.
For points with small entropy, we think it is more credible, while for points with large
entropy, we think it is less credible, so our weight is calculated by the following:

ω = 1− H(Z∗)
log c

(14)

where Z∗ is the row-wise normalized counterpart of Z and c is the number of classes, so
log(c) is the maximum possible entropy.

Cumulative confidence weight. To improve the fault tolerance and reliability of label
propagation, we propose a second weight, the cumulative confidence weight Fcon f . We
maintain an array Fpre to record the average value of the previous prediction. Fpre reflects
the reliability of the prediction (higher Fpre means higher reliability). Fcon f denotes the
similarity between Fpre and the pseudo-labels in each epoch; it can be directly multiplied
with the previous entropy weight. We have also designed three similarity functions and can
manually select the appropriate one to deploy to the final architecture. Fcon f is calculated
by the following equation:

Fcon f = similarity(YU , Fpre) (15)

Fpre =
epoch × Fpre + YU

epoch + 1
(16)

where YU denote the pseudo-labels of unlabeled data. So, the final loss with weight is
calculated by the following formula:

Lp(XU , YU ; θ) :=
n

∑
i=l+1

loss( fθ(xi), yi)× ωi × Fi
con f . (17)

where XU denote the image features of unlabeled data, YU denote the pseudo-labels of
unlabeled data, ωi denote the entropy weights in index i and Fi

con f denote the cumulative
confidence weights in i.

4. Experiments

4.1. Datasets

AVA. Aesthetic Visual Analysis (AVA) [28] is a large-scale database for image aesthetics
quality assessment. The images of this dataset are crawled from www.DPChanllenge.com
(accessed on 5 May 2022). It contains more than 255,000 images. The aesthetic assessment
is scored by 78 to 549 individuals, and the scores given by the voters are from 1 to 10.
The AVA dataset provides 66 kinds of semantic tags and 1409 kinds of style tags. Each
image in the AVA dataset has 0 to 2 semantic tags and belongs to one specific challenge
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theme. We follow the official dataset partition as in [28], randomly selecting 235,508 images
as the training set, and 20,000 images as the testing set.

Photo.net. The Photo.net dataset [1] contains about 20,278 images. Unlike the AVA
dataset, it contains only aesthetic labels. The aesthetic assessment is scored by at least 10
individuals, and the scores given by the voters are from 1 to 7. For some images, only
the mean score and standard deviation are given and voting information is lost. Since
the website has been updated several times, there are only 17, 253 images that can be
downloaded. The Photo.net dataset contains no theme information. Thus, similar to
previous work [10], we only use Photo.net as a test set.

CUHK. CUHK [2] is a small-scale dataset that can clearly distinguish high-quality
and low-quality images. We only use photos that have a clear consensus on their quality.
The images of this dataset are also crawled from www.DPChanllenge.com (accessed on
5 May 2022). About 3000 images (half of the photos) were used for testing. For the same
reason as the Photo.net dataset, we only use the test dataset of CUHK to evaluate our model.

4.2. Implementation Details

We implemented our method using the PyTorch framework. We used the Adam
optimizer with β1 = 0.9 and β2 = 0.999, and the learning rate was 1× 10−5. Our GPU uses
GeForce RTX 3080Ti.

Networks. We used many backbone networks in our experiment. For VGG, ResNet
and DenseNet, we used the implementation provided in the Torchvision project [29].
For Swin-T, we used the implementation provided in https://github.com/WZMIAOMIAO/
deep-learning-for-image-processing (accessed on 5 May 2022). In our experiment, the input
image size was [3, 224, 224]. When we used ResNet18, ResNet34 or VGG16, the output
feature dim was 512; when we used ResNet50, ResNet101 or ResNet152, the output feature
dim was 2048; when we used Swin-T, the output feature dim was 768. Then we used the
flattened feature as our image feature vector.

Hyper-parameters. We trained 10 epochs for step one (i.e., the representation learning
step) and 20 epochs for step two (i.e., the label propagation step). Step two uses the
embedding output f̂v of step one to infer the pseudo-labels. For step one, the mini-batch
size is a certain number which is determined by the depth of the network backbone (usually
32 or 64). For step two, the mini-batch size needs to use two steam samplers: the labeled
data sampler and the unlabeled sampler. The unlabeled data sampler guarantees that all
unlabeled data will be traversed, while the labeled data sampler constantly iterates over the
labeled data. The total mini-batch size B = Bl + Bu. Bl is the labeled mini-batch size and
Bu is the unlabeled mini-batch size. The value of Bl is usually half that of B. In our TAAN
network, we set the scale factor α = 1. In our LPCC algorithm, the diffusion parameters
were set as follows: the value of γ was set to 3, k was set to 50 and the CG iteration was set
to 20.

4.3. Ablation Studies

Effectiveness of the theme-aware attention network. The proposed method employs
themes as privileged information to improve the performance. To evaluate the performance
of our proposed theme-aware attention network, we compared the proposed module with
the following models:

• ResNet18: ResNet18 means baseline ResNet18 network. In this model, we did not add
theme information.

• ResNet18 + Theme: In this baseline, the theme information is directly added to the
ResNet18 network.

• ResNet18 + TAAN: ResNet18 + TAAN denotes the proposed theme aware
attention network.

The comparison results are shown in Table 1. To prove the effectiveness of the pro-
posed module, we tested it both in a full supervised condition and in a semi-supervised
condition. From the Table, we make the following observations. First, the proposed
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ResNet18 + TAAN had the best performance. For example, ResNet18 + TAAN achieved
76.6% in full supervised method, while the other two models achieved 76.28% and 76.32%,
respectively. Similar results were also found for the semi-supervised learning method.
Second, compared to ResNet18, ResNet18 + Theme achieved better performance, using
both the fully supervised method and the semi-supervised method, which demonstrates
the effectiveness of the theme information. Third, ResNet18 + TAAN performed better
than ResNet18 + Theme, which demonstrates the superiority of the attention mechanism.
This is because the attention mechanism makes the visual features and theme features fully
interact with each other.

Table 1. Accuracy (%) of different modules. For the semi-supervised method, the value is the accuracy
of step 2 (δ = 1).

Modules Fully Supervised
Semi-Supervised

(Labeled Rate: 0.05)

ResNet18 76.28 76.02
ResNet18 + Theme 76.32 76.10
ResNet18 + TAAN 76.60 76.23

Effectiveness of cumulative confidence weight. We propose a cumulative confidence
weight to estimate the fault tolerance and reliability of the samples. We tested three different
similarity estimation methods for the cumulative confidence weight, i.e., the linear function,
the square function and the sigmoid function. We first define distance

d = Yu − Fpre (18)

where YU are the pseudo-labels of all the data items, Fpre is the average value of the previous
prediction, and d means the distance between the current predicted pseudo-label YU and
the average previous prediction value Fpre. The linear function is defined as follows:

similaritylinear = 1− d (19)

The square function is defined as follows:

similaritysquare = 1− d2 (20)

The sigmoid function is defined as follows:

similaritysigmoid = 1− 1
e(0.5−d)×λ

(21)

where λ controls the slope of the sigmoid function. To separate the predicted values into
two categories, we use λ = 10 as our final method. Table 2 illustrates the comparison results.
The base-line model in Table 2 did not include a cumulative confidence weight. From the
table, we can draw the following conclusions. First, adding a cumulative confidence weight
can result in better performance. For example, the performance of the base-line model was
75.01%; by adding a cumulative confidence weight (using the linear similarity function for
the cumulative confidence weight) the model was able to achieve at least 75.96%. Second, it
can be seen that using the square similarity function resulted in slightly better performance
than for the other two similarity functions. Thus, in this paper, we use the square function
as the similarity function for the cumulative confidence weight.
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Table 2. Accuracy (%) of different similarity strategies in the cumulative confidence algorithm (δ = 1).

LP Strategies Semi-Supervised (Labeled Rate: 0.05)

base-line model 75.01
linear similarity function 75.96
square similarity function 76.09

sigmoid similarity function 76.03

4.4. Experiments on Different Label Rates

To evaluate how good the proposed model is at using unlabeled images, we trained
our model under different labeling rates. As can be seen from Table 3, with the 90% label
missing (i.e., the labeling rate was 10%), step one achieved 73.86% accuracy. However, with
the help of unlabeled images, in step two, our model improved the accuracy to 76.12%. This
demonstrates that the proposed method consistently benefits from additional unlabelled
images. Similar results were also found for other labeling rates, such as 5% and 2%. Figure 3
shows the t-SNE visualization of the embedded output f̂v under different labeling rates.
Purple dots represent unlabeled images, yellow dots represent labeled low-quality images
and green dots represent labeled high-quality images. From the figure, we can easily make
the following two observations: First, our method can cluster unlabeled data (purple)
with labeled data under these three labeling rates. Thus we can easily deploy our LPCC
algorithm. Second, our method has a robust discrimination effect for data under different
labeling rates.

Figure 3. Visualization of the features of labeling rate 0.02 (left), 0.05 (middle) and 0.1 (right) on the
test set by TSNE. Purple dots represent unlabeled images, yellow dots represent labeled low-quality
images and green dots represent labeled high-quality images.

Table 3. Accuracy (%) of experiments on different labeled rates.

labeling Rates Step 1 Step 2 (Best)

1.0 (Fully supervised) 76.31 -
10% 73.86 76.12
5% 72.75 76.09
2% 71.67 74.18

4.5. Extension to Different Backbones

Our model can use a variety of different feature extractors. Therefore, we used
different pre-training models as our backbones. We chose VGG16, ResNet18 [23], ResNet34,
ResNet50, ResNet101, DenseNet121 [30] and Swin Transformer-T [31] to experiment on the
label rate of 0.05 with the AVA dataset. All networks were pretrained on ImageNet [24].
The performance of different CNN feature extractors is given in Table 4.
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Table 4. Accuracy (%) on different backbones. For the semi-supervised method, the value is the
accuracy of step 2.

Architecture Backbones Semi-Supervised

VGG16 75.73
ResNet18 76.09
ResNet34 75.82
ResNet50 76.16
ResNet101 76.63

Densenet121 76.45
Swin-T 76.82

It can be seen that with increase in the complexity of the model, the accuracy increases.
Figure 4 illustrates the embedded features f̂v with different backbones. We can also clearly
see that the discrimination of features extracted with a better backbone framework is
significantly higher.

Figure 4. Visualization of the fc-features of ResNet18 (top left), ResNet34 (top right), ResNet50
(bottom left) and ResNet101 (bottom right) on the test set by TSNE. Purple dots represent low-
quality images and yellow dots represent high-quality images.

4.6. Performance Evaluation

To demonstrate the effectiveness of our method, we performed a comparative eval-
uation with existing approaches on the AVA dataset. It should be noted that the existing
methods are based on the assumption of full supervision, while our method is a semi-
supervised method. We selected some mainstream methods for comparison. During the
comparative study, it was found that the source codes of [4–6,9] were unavailable and the
experimental details were not mentioned. As a result, it might be infeasible to implement
them precisely. Thus the experimental data were taken from their paper. For those methods
that published the code, such as [7,32,33], we used the same dataset (5% labeling rates)
to evaluate their models and to obtain the corresponding experimental data provided in
Table 5.
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Table 5. Comparison with state-of-the-art methods on AVA dataset.

Method Accuracy (%)

RAPID 73.70
DMA-Net 75.42

MNA-CNN 76.10
MTCNN#1 75.90

Enhanced MTCNN 76.04
NIMA 74.87 (5% labeling rates)
MPA 70.52 (5% labeling rates)

MUSIQ 73.46 (5% labeling rates)
Our Semi-supervised (ResNet18) 76.09 (5% labeling rates)
Our Semi-supervised (Swin-T) 76.82 (5% labeling rates)

The methods we compared were as follows:

• RAPID: The authors of [4] proposed a method called RAPID, which consists of two
columns of neural networks, representing global and local inputs, respectively.

• DMA-Net: The deep multi-patch aggregation network (DMA-Net) [5] is an improve-
ment on RAPID. It is a multi-shared column CNN with four convolution layers and
three fully connected layers.

• MNA-CNN: The MNA-CNN [6] is a neural network with multiple subnets sharing
the same input image. Its output is combined with the average operator to obtain the
overall aesthetic prediction of the picture.

• MTCNN#1: The MTCNN was proposed by [9] and predicts both aesthetic quality and
tag labels. Enhanced MTCNN: The Enhanced MTCNN is an improved framework
for MTCNN which adds extra aesthetic details supervised in the first two layers in
MTCNN #1 and provides two convolutional layers and two fully-connected layers
which are learned for two tasks (aesthetic quality and tag labels).

• NIMA: NIMA [7] formulates the aesthetic prediction task as a label distribution
prediction problem, which is different from the above aesthetic prediction task. EMD
loss is used to deal with the aesthetic distribution for the first time, and achieved good
results. The code of NIMA is available at https://github.com/truskovskiyk/nima.
pytorch (accessed on 20 May 2022).

• MPA: MPA [32] uses an attention-based mechanism to dynamically adjust the weight
of each patch. It assigns larger weights to patches on which the current model has
made incorrect predictions during the training process and aggregates the prediction
results of multiple patches during the test. The code of MPA is available at https:
//github.com/Openning07/MPADA (accessed on 20 May 2022).

• MUSIQ: MUSIQ [33] uses a multi-scale image quality transformer to process origi-
nal resolution images with different sizes and aspect ratios. The code of MUSIQ is
available at https://github.com/anse3832/MUSIQ (accessed on 20 May 2022).

The experimental results are illustrated in Table 5. From the table, we can make the
following two observations: First, the semi-supervised accuracy can reach, or even exceed,
that of some fully supervised models. For example, MTCNN [9] achieved 75.9% accuracy,
while our method achieved 76.82% accuracy with only 5% labeling rates. Second, our
semi-supervised accuracy can exceed the current model when using the same labeling rate.
For example, MPA [32] and NIMA [7] achieved 70.52% and 74.87% accuracy, respectively,
while our method achieved 76.82% accuracy with only 5% labeling rates. The reason
for the difference is clear: the lack of data leads to the degradation of the other models’
performance, while our proposed model can improve performance by using a large
quantity of unlabeled data.

4.7. Experimental Results on Photo.net and CUHK Dataset

Tables 6 and 7 show the comparison results for the Photo.net and CUHK datasets,
respectively. As stated earlier, the Photo.net and CUHK datasets are both small datasets and
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have no theme information. Thus, we used the AVA dataset to train the model, and tested
on the Photo.net and CUHK datasets. We used the published Pytorch code of NIMA [7]
and MUSIQ [33] to implement 5% labeling rates for the Photo.net and CUHK datasets;
these are compared with our method in Tables 6 and 7. From Tables 6 and 7, we can
see that our proposed method outperformed previously used methods by using a large
quantity of unlabeled data. This also demonstrates that our proposed model produces
good generalization performance for different datasets.

Table 6. Comparison with state-of-the-art methods on the Photo.net dataset.

Method Accuracy (%)

MTCNN#1 65.20
NIMA 67.63 (5% labeling rates)
MUSIQ 68.84 (5% labeling rates)

Our Semi-supervised (ResNet18) 73.10 (5% labeling rates)

Table 7. Comparison with state-of-the-art methods on CUHK dataset.

Method Accuracy (%)

NIMA 75.12 (5% labeling rates)
MUSIQ 77.85 (5% labeling rates)

Our Semi-supervised(ResNet18) 78.25 (5% labeling rates)

4.8. Discussion of Experiment on Labeled Data Sensitivity

To explore whether the proposed method is sensitive to the labeled data, we randomly
divided the labeled data under labeling rate 5% into five groups: split 1, 2, 3, 4 and 5.
We used these groups of labeled data to train our model and record the best accuracy.
The experimental results are shown in Table 8. Evidently, no matter which split we used,
the accuracy did not fluctuate significantly. Therefore, we hold that our model is insensitive
to the selection of labeled data.

Table 8. Experiment on sensitivity analysis. Split 1, 2, 3, 4 and 5 are random labeled data splits under
labeling rate 5%. The best accuracy (%) of each split is recorded.

Split 1 Split 2 Split 3 Split 4 Split 5

76.09 75.92 75.96 76.02 75.97

4.9. Computational Complexity
4.9.1. Theoretical Analysis

Our training was divided into two steps. In the first step, we trained our theme-aware
attention network (TAAN) using small quantities of labeled data in a supervised fashion.
In the second step, we used the label propagation with cumulative confidence algorithm
(LPCC) to transduct the pseudo-labels for unlabeled data. These two steps were iteratively
trained. Since label propagation tends to be viewed as entailing considerable complexity,
we mainly analyzed the computational complexity of label propagation theoretically.

The computational complexity of traditional label propagation is mainly composed
of KNN search and creation of the graph. Suppose the data scale is n, if no optimization
measures are taken, the computational complexity of the KNN search is O(n × n). This
is because the KNN search needs to traverse n features to find the k most similar vectors.
The floating-point operation required by a vector point multiplication is proportional to
the vector dimension. Suppose the vector dimension is m, the computational complexity of
the KNN search is

FLOPs = n × n × m (22)
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Considering the computational cost is quite high, we use the inverted file system (IVF)
and product quantification (PQ) in the Faiss library to reduce the computational complexity
of label propagation.

Using the inverted file system(IFS) to optimize the KNN search: we index the entire
dataset and cluster it into several subspaces. When we query a vector, we first calculate the
subspace of query vector, and then search in the corresponding subspace. Suppose that the
average size of our subspace is 1

s of the original space size, the computational complexity
of the KNN search can be reduced to:

FLOPs =
n × n × m

s
(23)

Using product quantification(PQ) to further optimize the KNN search: the details
of the product quantification are illustrated in Figure 5. As can be seen from Figure 5, we
assume that the vector dimension m is 128 (our whole dataset is n× 128). We split each vec-
tor into four sub-vectors with 32 dimensions and group the n sub-vectors (in four columns)
into 256 classes, respectively. The sub-vectors of each data item are represented by four
class centers (such as [12, 45, 240, 48]); thus, each vector can be saved in four bytes (int type).
We need to calculate the distance table in advance. Building the distance table requires
4× 256× 32 floating-point operations, which are independent of n. Once the distance table
is built, our distance query calculation (needing n × 4 times) is a table lookup operation,
which takes much less time than performing floating-point multiplication calculations, so
we also need to divide by a constant c to derive the computational complexity. The final
computational complexity can be reduced to:

FLOPs =
n × 4 + 4× 256× 32

s × c
(24)

Figure 5. Details of Product Quantification.

When n is particularly large (large-scale data), 4 × 256 × 32 can be ignored. When s is
set to 10, c is set to 5, and m is 512, the IFS + PQ algorithm can be 6400 times faster than
using a violent search method. To verify the reliability of the theoretical analysis, we tested
one epoch running time for our whole AVA dataset. The running times for each step of our
method are reported in Table 9. It can be seen clearly from the table that the time required
for label propagation is negligible compared with the time in training.
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Table 9. The one epoch running time in each step of our method are reported in the table. When
training, we used the whole training set of the AVA dataset. When inferring, we used the whole
testing set of the AVA dataset. Step 1 DNN means deep neural network pass of step 1. Step 2 LP
means label propagation of step 2. The items explain in more detail what is done at each step. FP
means forward pass and BP means back propagation.

Training & Inferring Steps Items Running Time (s)

Training
Step 1 DNN FP + BP 580.86 s
Step 1 DNN Extract f̂v (FP) 345.02 s

Step 2 LP Label propagation 2.2063 s

Inferring Step 1 DNN FP 74.56 s

4.9.2. Inference Computational Cost Comparison

We analyzed the time consumption to compare the computational complexity of dif-
ferent methods. Thus, we only compared the computational complexity with methods that
published the code, such as NIMA, MPA and MUSIQ. Table 10 shows the computational
complexity results. The timings of an image forward pass are reported in the table. Our
inference Pytorch implementation and TensorFlow implementation were tested on an Intel
i7-11700H @ 2.5 GHz with 32 GB memory and 8 cores, and NVIDIA 3080Ti GPU. From the
table, we can see that our method has similar running time to NIMA and MPA when using
the same ResNet18 backbone.

Table 10. Comparison of image forward pass running time for different methods (ResNet18 backbone).

Method Running Time (s)

NIMA 0.345 s
MPA 0.362 s

MUSIQ 0.410 s
Our Semi-supervised (ResNet18) 0.351 s

5. Conclusions and Discussion

In this paper, we propose a theme-aware semi-supervised architecture for image
aesthetic quality assessment with the aim of reducing the dependence on image label
annotation and making full use of a large number of unlabeled images on the network.
For the noise label problem encountered in the process of label propagation, we propose a
cumulative confidence algorithm by improving the traditional label propagation algorithm.
We applied it to our image aesthetic quality assessment task, and achieved satisfactory
results. We also found that our theme-aware architecture can solve the problem of theme
sensitivity in image aesthetic quality assessment. The experimental results show that our
method is robust to different label rates, different labeled data selection and different
datasets.

Although our method achieves promising results, several issues need to be considered
in our future research. First, we will continue to focus on how to use EMD loss for the label
propagation algorithm to improve the accuracy of semi-supervised learning. Second, to
make good use of the collaborative attention between images and other information, such
as user comments, we will start from a multi-modality position to seek better solutions. We
will also explore new semi-supervised algorithms, such as curriculum learning, to improve
the existing label propagation algorithms.
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Abstract: Urban waterlogging is mainly caused by garbage clogging the sewer manhole covers. If the
amount of garbage at a sewer manhole cover can be detected, together with an early warning signal
when the amount is large enough, it will be of great significance in preventing urban waterlogging
from occurring. Based on the YOLOX algorithm, this paper accomplishes identifying manhole covers
and garbage and building a flood control system that can automatically recognize and monitor the
accumulation of garbage. This system can also display the statistical results and send early warning
information. During garbage identification, it can lead to inaccurate counting and a missed detection
if the garbage is occluded. To reduce the occurrence of missed detections as much as possible and
improve the performance of detection models, Soft-YOLOX, a method using a new detection model
for counting, was used as it can prevent the occurrence of missed detections by reducing the scores of
adjacent detection frames reasonably. The Soft-YOLOX improves the accuracy of garbage counting.
Compared with the traditional YOLOX, the mAP value of Soft-YOLOX for garbage identification
increased from 89.72% to 91.89%.

Keywords: garbage quantity identification; YOLOX; NMS; Soft-NMS

MSC: 68T45

1. Introduction

With the development of science and technology competing with the gradual improve-
ment of urban construction levels, image recognition is increasingly being applied to urban
informatization and digital construction. Among the recognition methods, the YOLOX
detection framework is particularly famous. It is widely used in urban object detection [1],
pedestrian detection [2], and other environments due to its advantage of fast response and
high precision.

Modern cities are divided into regions and assigned sanitation workers for garbage
cleaning using a grid management method [3] to improve the efficiency of urban manage-
ment and sanitation. Workers only need to conduct regular inspections and cleanings of
the place they are responsible for to ensure basic hygiene everywhere in the city. However,
the regionalization management level is still insufficient. The fixed personnel allocation
method cannot adjust the number of people according to the dynamic change in the amount
of garbage in each area. There is a situation where the garbage accumulates in some areas,
but there are insufficient sanitation workers there. However, sanitation workers in other
places have few things to do. Relying on regular inspections by sanitation workers cannot
keep up with the real-time changes in the amount of garbage. If the sanitation workers do
not clean in time, accumulation of garbage will happen. Over time, garbage accumulation
has become a hidden danger of flood disasters. The work of dealing with urban floods has
remained a tricky problem for a long time.

With the help of target detection technology and the support of the urban public
surveillance system, real-time monitoring is prevailing in the maintenance of various areas,
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roads, and sewer manholes. The monitoring capability of an urban flood control system
highly depends on the in-time identification of a garbage’s type and quantity and the
collection of data. An efficient urban flood control system can help sanitation workers
check and clean up the underlying danger areas such as sewer manhole covers. Committed
to the goals of improving the city’s ability to prevent floods and waterlogging while
reducing the work intensity of sanitation workers, a method based on the YOLOX detection
framework was designed to reflect the garbage accumulation in the flood control area.
The working mechanisms of analyzing the monitoring images and identifying the type
and quantity of garbage on the manhole cover have improved the efficiency and ability of
urban sanitation cleaning, flood controlling, and waterlogging prevention. If the garbage
is occluded by other garbage during detection, it causes inaccurate counting and missed
detection. A well-designed detection scheme is sufficient to solve such problems. To further
improve the detection accuracy, reduce the missed detection rate, and give early warning
signals more precisely, our team proposed a new detection method, Soft-YOLOX, to solve
the problems above.

2. Related Work

Garbage counting is a basic application scenario in target detection [4], and many
machine learning methods have been proposed in this field to solve target detection and
counting problems. Traditional machine learning cases include multi-vehicle counting algo-
rithms based on the Haar feature principle [5], SVM based on HOG [6] and LBP [7] features,
and others. These traditional machine learning target detection algorithms mainly rely on
manual feature extraction. First, the features are extracted from the image, then a classifier
is built to classify, and finally, the wanted target is obtained. However, most of these tradi-
tional target detection algorithms do not have high accuracy and good generalization ability.

With the continuous development of artificial intelligence, deep learning technology
in image recognition [8] has been relatively mature [9]. For example, great achievements
have been made in the fields of face recognition [10], medical image recognition [11],
remote sensing image classification [12], ImageNet classification and recognition, traffic
recognition, and character recognition. Deep learning can extract image features and
achieve the function of image classification [13] and recognition after a large-scale training.
Therefore, deep learning is a very effective and universal technology in the field of target
detection. Currently, target detection algorithms using deep learning methods are mainly
divided into three categories, and the difference is whether there is a region proposal in the
algorithm. The first category is multi-stage algorithms, such as R-CNN [14] and SPPNet [15].
The second is two-stage algorithms such as Fast R-CNN [16], Faster R-CNN [17], Mask
R-CNN [18], and Light-Head R-CNN [19]. The third is single-stage algorithms, including
YOLOV1 [20], YOLOV2 [21], YOLOV3 [22], SSD [23], Retina U-Net [24], CenterNet [25],
FSAF [26], FCOS [27], YOLOV4 [28], and YOLOX [29]. The detection performance of the
multi-stage algorithm and the two-stage algorithm is outstanding, but the detection rate
in practical applications is not as good as that of the single-stage algorithm. Although the
single-stage algorithm has a fast recognition speed, the accuracy rate is not high, and there
are still cases of missed detection when the target to be detected is occluded. Therefore,
our goal is to improve the YOLOX model and devise a solution that can address the
above problems.

In traditional YOLOX, non-maximum suppression (NMS) sets the score of adjacent
detection frames (the number of adjacent detection frames containing similar targets is
greater than or equal to 2) to 0, resulting in the final output missing some of the target
objects. This mechanism leads to missed detection that reduces detection accuracy [30]. The
Soft-NMS algorithm attenuates the scores of the above types of adjacent detection frames,
rather than directly reducing their scores to 0. As long as the final score of the adjacent
detection frame is greater than a certain threshold, the final output detection frame meets
the expected result. The improved YOLOX is called Soft-YOLOX (using Soft-NMS instead
of NMS in YOLOX). After Soft-NMS processing, the mAP value of YOLOX was 91.89%,
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which is 2.17% higher than that of the Original-NMS method. In the real-time detection
case, the FPS reached 15.46. To further ensure the effectiveness of the improvement, we
also used Soft-YOLOX to compare with other target detection algorithms, such as YOLOV4,
Fast R-CNN, SSD, YOLOV5, etc. It can be seen from the mAP value in the comparison
that Soft-YOLOX has greater detection performance and a lower missed detection rate. We
make the following contributions:

1. We reveal why the traditional YOLOX model easily misses the target when the target
is occluded, resulting in missed detection;

2. By improving YOLOX, we propose a new detection scheme (Soft-YOLOX). Experi-
ments on the datasets show that the improved Soft-YOLOX can detect objects more
accurately;

3. We compare Soft-YOLOX with other previous object detection algorithms, showing
that Soft-YOLOX has better performance and is more favorable for deployment in
real applications.

3. Methods

3.1. YOLOX and NMS Algorithms

The most significant thing in the YOLOX target detection algorithm is the YOLOX-
CSPDarknet53 network structure. Figure 1 shows the network structure of YOLOX-
CSPDarknet53. We split the YOLOX-CSPDarknet53 network structure into four parts:
input, backbone network, neck, and prediction.

Figure 1. YOLOX-CSPDarknet53 network structure diagram.

1. Input: YOLOX adopts two data enhancement methods, Mosaic [31] and Mixup [32].
In the realization process of this system, we only used the Mosaic data enhancement.
Mosaic achieves data enhancement by using four images to be randomly scaled,
cropped, and spliced, further improving the detection effect of small targets;

2. Backbone network: YOLOX uses the CSPDarknet53 network, which has 53 layers in
total of convolutional networks. The last of these is a fully connected layer. What is
used in the CSPDarknet53 is the residual network, Residual, which consists of two
parts. One is mainly a 1 × 1 and 3 × 3 convolution, and another is the non-processed
residual side part;

3. Neck: In the neck is a construction of the FPN feature pyramid for enhanced feature
extraction. The FPN can fuse feature layers of different shapes, which can help
improve the performance of the model and the detection ability of small targets;

4. Prediction:

a. The decoupled head is used in YOLOX. Compared with the previous target
detection algorithm of the YOLO series, the decoupling head of YOLOX con-
sists of two parts which are implemented separately and integrated at the
final prediction;
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b. The anchor-free detector does not use a priori box;
c. The SimOTA strategy, which can dynamically match positive samples to objects

of different sizes, is adopted.

The original YOLOX model uses NMS to filter out the detection frames with the
highest scores in a certain area belonging to the same category. However, only considering
the detection frame and its IOU (Intersection over Union) in the calculation process, the
elimination mechanism of NMS is very rigid, which easily leads to missed detection.
Figure 2 shows the missed detection of a target object.

 
Figure 2. The situation of missed detection using NMS.

As can be seen from Figure 2, the sample is wrong. There are three leaves and a box
on the drain cover. After NMS processing, there are cases of missed detection, such as the
one leaf that is not detected in the figure. Obviously, the predicted results are not in line
with the reality and cannot meet our expectation.

The critical step of accurate counting is meant to detect the targets successfully. When
the target objects are blocked by each other, it is easy to cause missed detection. There-
fore, we used Soft-NMS instead of the NMS method in the original YOLOX model as an
improvement to solve this problem.

3.2. Principle of Soft-NMS Algorithm

First of all, from a mathematical point of view, the following principles explain the
mechanism of NMS removing redundant frames:

scorei =

{
0, IOU(M, bi) ≥ threshold of IOU

scorei, IOU(M, bi) < threshold of IOU
(1)

The scorei is the score of the current detection frame. After multiple tests on the
dataset of this experiment, we found that the best threshold for IOU is 0.5.

During the experiment, we further found that when the detection frame with a higher
IOU is adjacent to the detection frame with the highest score in all current detection frames,
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NMS reduces the score of this frame to 0, and then deletes it from the candidate frame set.
Like the case in Figure 2, it is likely to cause missed detection. Soft-NMS can solve this
problem very well, and its mechanism for removing redundant frames is as follows:

scorei = scorei e−
IOU(M,bi)

2

θ (2)

It means that when Soft-NMS encounters a detection frame with a high IOU adjacent
to the detection frame with the highest score, it does not directly set the score of the frame
to 0. Compared with NMS, Soft-NMS adopts a penalty mechanism, which assigns the
multiplication of the score of the current detection frame and the weight function as a
penalty score and assigns it to the current detection frame. We used the Gaussian function
as the weight function (θ is the parameter of the weight function; after many times of
debugging, we defined the value of theta and set it to 0.1 according to the reference [30]):

e−
IOU(M,bi)

2

θ (3)

The larger the overlapped area of the detection frame with the highest score, the
smaller the score this detection frame obtains. Lastly, only those detection frames with
scores greater than or equal to 0.5 were left in the frame set, which is the candidate. Thus,
Soft-NMS can remove redundant detection frames to reduce the rate of missed detection
with effect. The flow chart that describes the Soft-NMS method is shown in Figure 3.

Figure 3. Flowchart of Soft-NMS.
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The main idea of the Soft-NMS is as follows. At first, find all detection frames with
a confidence higher than a threshold set manually from an image (no target object in the
detection frame if below). Then, process the detection frames belonging to the same class.
Finally, put all these detection frames into an established set S.

1. Sort all the detection frames in the set S according to their scores from high to low.
The higher the score is, the higher the probability that the detection frame belongs
to the category. Then, select the detection frame F with the highest score from the
ordered set S;

2. Traverse each detection frame in set S, and then calculate the IOU of each detection
frame and F. The Soft-NMS uses the weight function to calculate the weighted score
of the current detection frame, and further assigns the weighted score to the currently
traversed detection frame. The larger the overlapped area between the detection
frame and F, the more serious the score attenuation. Finally, save F into the truth_box;

3. Go back to step 1 until the set S is empty. Finally, in truth_box, select detection frames
with a score greater than or equal to 0.5 as the output of the target object.

After using the Soft-NMS method to process Figure 2, the detection result can be seen
in Figure 4.

 

Figure 4. No missed detection after using Soft-NMS.

As can be seen from Figure 4, the correct sample was obtained. There are three leaves
and a box on the drain cover. After Soft-NMS processing, the missed detection in Figure 2
disappeared. All objects in the image can be detected correctly. Obviously, the predicted
results are in accordance with the reality and can meet our expectations.

3.3. System Framework

Figure 5 shows the application hierarchy of the system built on the problems studied
in this paper.
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Figure 5. Flowchart of the application deployed by YOLOX.

1. Data layer: The area of sewer manhole covers is photographed and collected by road
surveillance cameras. The camera is responsible for collecting image data, storing the
image data in the system, and transmitting the image to the model in real time;

2. Processing layer: The recognition layer is the image processing layer of the system. It
identifies manhole covers and garbage on them by the trained network model and
returns the identification results to the system;

3. Application layer: The system makes real-time statistics and analysis according to
the identification results of the model. Apart from this, the system also displays the
results. If the amount of the garbage on the cover reaches the threshold, the system
sends a corresponding early warning signal to the relevant staff.

4. Experimental Datasets and Evaluation Metrics

The datasets in this paper came from a research group that used a camera to simulate
a road surveillance camera in a specific road scene, acquiring the situation of garbage near
the sewer manhole covers at different periods and under various weather conditions at
a roughly fixed angle. The advantage of doing this is that the trained model can make
predictions for different scenarios and has better adaptability. Each video obtained ranged
from more than ten seconds to several minutes, and the resolution of all videos was
1365 × 1024. Lastly, videos were split into frames, which were divided into two parts. Both
parts contain the above datasets from different periods and under various circumstances.
One of the parts was used as training sets and validating sets for training and validation of
convolutional networks. The other part was used as a test for the trained model.

The annotation of the dataset was in the Pascal VOC format, and the size of each image
was 1365 × 1024. For the YOLOX model, the input image was 640 × 640, thus all images
could be preprocessed. There were 1800 images in the processed dataset with different
types of garbage, drainage covers, and road information under different periods, weather,
and road sections. To strengthen the effectiveness of the data in training, the research team
also framed the data at different frame rates to reduce the workload of labeling and improve
the learning efficiency of the model. Finally, we divided the dataset into the training set,
verification set, and test set in the ratio of 7:2:1.
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In the model evaluating the works of this paper, we had Precision, Recall, and mAP
values as the evaluation indexes to evaluate the model [33]. The calculation of Precision
and Recall values are expressed by Formula (4) and Formula (5), respectively.

Precision =
TP

TP + FP
(4)

Recall =
TP

TP + FN
(5)

In the above two equations, TP means the prediction result is correctly classified as a
positive sample, FP means the result is incorrectly classified as a positive sample, and FN
means the result is incorrectly classified as a negative sample.

The dataset used in the evaluation includes the environment of daytime and rainy
days, but excludes nighttime. In Figure 6, the mAP values processed by NMS and Soft-NMS
can be seen.

Figure 6. The mAP values processed by NMS and Soft-NMS.

AP refers to the combination of Precision and Recall; Precision shows the prediction
ability of the hit target passing the threshold in all prediction results, whereas Recall shows
the ability to cover the real target in the test set. By combining the two, we can better
evaluate our model. The mAP is the average of the average accuracy of each category, that
is, the average AP of each category. The higher the mAP, the better the prediction ability of
the model.

5. Results

5.1. Principle of Soft-NMS Algorithm

For YOLOX and Soft-YOLOX, the same prediction parameters and datasets were used
to verify the effectiveness of the improvement we made. The difference is that YOLOX uses
NMS, whereas Soft-YOLOX uses Soft-NMS. In the verification process, the detection effect
and performance of the model are reflected by the evaluation metrics.

The mAP value of the YOLOX model processed by NMS is 89.72%, Precision is 91.54%,
and Recall is 89.53%. The prediction results of the Soft-YOLOX model processed by Soft-
NMS are improved, in which the mAP value is 91.89%, Precision is 92.93%, and Recall is
88.42%. The comparison results between the YOLOX model before and after improvement
are shown in Table 1.

Table 1. The comparison results.

Model mAP/% Precision/% Recall/%

Original YOLOX 89.72 91.54 89.53
Soft YOLOX 91.89 92.93 88.42

Since Recall and Precision cannot comprehensively evaluate the effect of the algo-
rithm, the mAP index was selected for analysis. As can be seen from the results in Table 1,
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the mAP value and Precision value are higher than those of the original model, whereas
Recall is lower. Soft-NMS removes redundant detection frames through the penalty mecha-
nism of the weight function, thus reducing the missed detection rate. We found that the
improvement of Soft-NMS was effective from the results.

5.2. Comparison with State-of-the-Art Methods

The experiments included the following comparison methods: Fast R-CNN [16], target
detection algorithm based on YOLOV4 (abbreviated as YOLOV4 [34]), SSD [23], and target
detection algorithm based on YOLOV5 (abbreviated as YOLOV5 [35]). All methods used
the same evaluation index. It is not difficult to see that the Soft-YOLOX model improved
performance compared with other algorithms. The detection results of each method on our
dataset are shown in Table 2.

Table 2. Experimental results of different algorithms.

Model mAP/%

YOLOV4 88.54
Fast R-CNN 89.34

SSD 85.52
YOLOV5 89.72

Soft YOLOX 91.89

5.3. Actual Application of the System

The left side of Figure 7 shows that the system can detect the specific types and
quantities of garbage in a complex garbage environment, which is convenient and allows
for the system to further send early warning signals. The right side of Figure 7 shows the
real-time prediction results of the system on rainy days, in which the graphics card model
used for reasoning was the RTX 1060 Ti, and the FPS (frames per second) was 15.46. The
above results effectively demonstrate the feasibility of the project, and support our team in
carrying out further research and development.

 

Figure 7. The application of the system.
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Currently, there are many cases about embedded deployment in YOLO series of
algorithms, such as Fast YOLO [36], Efficient YOLO [37], YOLO nano [38], and so on. The
YOLOX algorithm in this paper can be implemented by exporting the ONNX model for
embedded deployment, or by pruning and quantization to build the lightweight model of
YOLO to, finally, achieve embedded deployment.

6. Conclusions

Compared with other target detection models, the new detection model and counting
method of Soft-YOLOX proposed in this paper has better detection performance and
robustness, and a lower missed detection rate. Garbage can be identified and counted
accurately in the case of occlusion, which effectively avoids the phenomenon of missed
detection.

With the help of public surveillance cameras on urban roads, the system collects
real-time images of sanitary conditions in the areas with urban sewer manhole covers.
After identifying, analyzing, and processing data by the Soft-YOLOX model, the client
is shown the returned results. With future development of urban public facilities, the
number of urban surveillance cameras and the area covered by cameras will continue
to increase. A large amount of available image data can improve the accuracy of the
model and the availability of the system. The enhancement of identification accuracy and
processing capacity will also effectively help urban sanitation construction and improve
urban sanitation levels [39].

This paper proposed a new detection model called Soft-YOLOX based on YOLOX. By
using Soft-NMS, the number of garbage can be accurately counted and the performance
close to the actual application requirements obtained. The original YOLOX model is based
on the NMS algorithm to remove redundant detection frames, whereas the YOLOX model
proposed in this paper penalizes the score of detection frames based on the Soft-NMS
algorithm. After comparative analysis, Soft-YOLOX had higher accuracy and lower missed
detection in garbage detection applications. The mAP value of Soft-YOLOX was 91.89%,
which is 2.17% higher than the YOLOX model. Therefore, Soft-YOLOX is more suitable for
accumulated garbage quantity detection.
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Abstract: This paper studies the stability of linear switched systems with time-varying delays and all
unstable subsystems. According to the largest region function strategy, the state-dependent switching
rule is designed. By bringing in integral inequality and multiple Lyapunov-Krasovskii functionals,
the stability results of delayed switched systems with or without sliding motions under the designed
state-dependent switching rule are derived for different assumptions on time delay. Several numerical
examples are employed to show the effectiveness and superiority of the proposed results.
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1. Introduction

The dynamics of switched systems are affected by both subsystems and switching
rules. For example, Decarlo R A has indicated that some appropriate switching rules
can make switched systems unstable (or asymptotically stable) even if all subsystems are
asymptotically stable (or unstable) [1]. Therefore, we must concentrate on both subsystems
and switching rules to derive the stability results. In recent years, the stability issue of
switched systems with unstable subsystems has been extensively investigated. For instance,
in [2–7] the researchers have derived some stability results for switched systems with both
stable and unstable subsystems. The main strategy of some literature is to ensure that the
dwell time of stable subsystems is sufficiently large to compensate for the state divergence
caused by unstable subsystems and switching behaviors. Obviously, if there is no stable
subsystem to absorb the state divergence, these results proposed in [2–7] are disabled.

Because of the absence of stable subsystems, the stability analysis of switched systems
with all unstable subsystems is more complicated. How to design appropriate switching
rules to stabilize switched systems with all unstable subsystems has become an interesting
and challenging problem. Ordinarily, switching rules can be designed by two strategies:
time-dependent switching and state-dependent switching. The main idea of the first one
is to use the stabilization of switching behaviors to stabilize switched systems and the
designed switching rules usually have both upper and lower bounds. In [8–12], the time-
dependent switching rules are designed to stabilize switched systems with or without time
delay by using discretized Lyapunov function approach or bound maximum average dwell
time. The time-dependent switching strategy requires that switching behaviors have a
good characteristic of stabilization. Therefore, when all switching behaviors do not contain
stabilization characteristics, the time-dependent switching strategy is invalid.

In many instances, time-dependent switching rules that can stabilize switched sys-
tems are hard to design or even non-existent, which signifies that the state-dependent
switching strategy becomes the unique way to stabilize switched systems. Up to now,
the state-dependent switching rules can be designed by two methods. The first one is

Mathematics 2022, 10, 2722. https://doi.org/10.3390/math10152722 https://www.mdpi.com/journal/mathematics191
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based on the regional partition of state space. Its basic idea can be summarized as follows:
(a) divide the state space into different switching regions; (b) determine the index of acti-
vated subsystems for each switching region; (c) derive the stability conditions for switched
systems under the designed switching rule. Under the assumption that there exists a
Hurwitz convex combination of system matrices, the state-dependent switching rules have
been designed via the regional partition of state space and some significant stability results
have been deduced by common Lyapunov function (functional) in [13–19]. Remarkably,
this assumption is a severe prerequisite. In order to relax this assumption, by employing
some free matrices, a more flexible Hurwitz convex combination is presented in [20]. In [21]
the regional partition of state space is implemented directly by the negative definite of
the time-derivative of common Lyapunov functional. To ensure the strict completeness
of regional partition, one additional condition is introduced. Based on newly introduced
symmetric matrices, Pettersson S has defined switching rules via the largest region function
strategy and established the stability results by multiple Lyapunov functionals [22,23].
Some restrictions are also employed to guarantee the decrease of Lyapunov functional
when switching events occur. However, the largest region function strategy has not been
generalized to switched systems with time delay. The second one is that the switching rules
are defined in terms of the set-valued function. One typical state-dependent switching rule
is given by σ(t) = arg min{xT(t)P1x(t), · · · , xT(t)Pmx(t)}, where Pi is a symmetric posi-
tive determined matrix, m is number of subsystems. In [24–27], the authors have designed
the switching rules by the set-valued function and given the stability conditions with the
Lyapunov-Metzler inequalities. Although there are numerous results for state-dependent
switching, it is noteworthy that this issue still needs to be further studied. Designing new
state-dependent switching rules and getting lower conservative stability results is still our
research motivation.

Up to now, the literatures on the stability of delayed switched systems with state-
dependent switching rules include [15–21,27]. However, the assumption that there exists a
Hurwitz convex combination of system matrices is serious, which affects the effectiveness
of stability results presented in [15–20]. The additional condition on strict completeness of
regional partition makes it difficult to get appropriate switching regions [21]. Additionally,
the results presented in [27] are only available for switched systems with constant delay.
Therefore, the stability of switched systems with time-varying delays under state-dependent
switching rules still deserves further attention. The main objective of this paper is to derive
some new stability results for this problem. Based on the largest region function strategy,
we design a state-dependent switching rule. By using integral inequality and the Leibniz-
Newton formula, novel asymptotic stability results under different assumptions on time
delay are presented in the form of bilinear matrix inequalities (BMIs). The effectiveness of
the proposed results is shown via several numerical examples.

Notations: matrix A > 0(<0) yields that A is symmetric positive(negative) matrix, Rn

denotes the n−dimension Euclidean space, arg max S is defined as the index of maximum
element of order set S.

2. Preliminaries

This paper considers the following switched systems with time-varying delay{
ẋ(t) = Aσ(x(t))x(t) + Bσ(x(t))x(t − d(t)), t > 0,
x(s) = φ(s), s ∈ [−d, 0],

(1)

where x(t) ∈ Rn is the state vector, σ(x(t)) ∈ M = {1, 2, · · · , m} is the switching rule,
Ap, Bp ∈ Rn×n, p ∈ M, are known matrices, d(t) is the time-varying delay, φ(s) is a piece-
wise continuous function. If σ(t) = p, we say that the p-th subsystem
ẋ(t) = Apx(t) + Bpx(t − d(t)) is activated.

Remark 1. σ(x(t)) is a state-dependent switching rule which is generated by switching device [13].
Similar to [13–23], in this paper we also assume that there is no delay produced in switching device.
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That is to say, the switching rule σ(x(t)) is one dependent on the current state but irrelevant to the
delayed state.

We would like to design a state-dependent switching rule σ(t) such that switched
system (1) is globally asymptotically stable. We employ the state-dependent switching
strategy introduced in [22,23], which is based on the appropriate choice of symmetric
matrices Qp, p ∈ M. Define the following regions

Ωp =
{

x ∈ Rn|xTQpx ≥ 0
}

, p ∈ M,

Ωpq =
{

x ∈ Rn|xTQqx = xTQpx ≥ 0
}

, p, q ∈ M, p �= q.

We hope that the p-th subsystem is activated if x(t) ∈ Ωp and switching events occur
at the region Ωpq. The following properties should be satisfied to ensure that the switched
system (1) is well-defined [22],

(a) Covering property:
⋃

p∈M Ωp = Rn,
(b) Switching property: Ωpq ⊆ Ωp

⋂
Ωq.

The covering property points out that there is at least one activated subsystem on an
arbitrary region of the state space. The switching property implies that the switch from
subsystem p to q occurs only if regions Ωp and Ωq are adjacent. According to [22,23], the
covering property is satisfied, if there exists θp > 0, p ∈ M, such that for any x ∈ Rn,

∑
p∈M

θpxTQpx ≥ 0. (2)

The switching rule can be defined as the following largest region function strategy [22,23]

σ(x(t)) = arg max
{

xT(t)Q1x(t), · · · , xT(t)Qmx(t)
}

. (3)

As can be seen from [22] we know that if (2) is true and the switching rule (3) is used,
the switching property is also satisfied.

The main purpose of this work is to get the stability results under one of the following
assumptions.

Assumption 1. The time delay and its time-derivative are bounded. Namely, there exist nonnega-
tive constants d, d̄ and constant d̃ such that

0 ≤ d(t) ≤ d, d̃ ≤ ḋ(t) ≤ d̄. (4)

Assumption 2. The time delay is bounded. Namely, there exists a nonnegative constant d
such that

0 ≤ d(t) ≤ d. (5)

The following lemma is the core of this research.

Lemma 1 ([28]). If matrix M > 0 and function x : [a, b] → Rn is differentiable, then the following
inequality is satisfied

(b − a)
∫ b

a
ẋT(s)Mẋ(s)ds ≥ βTdiag(M, 3M, 5M)β,

where β =
(

βT
1 , βT

2 , βT
3
)T, β1 = x(b) − x(a), β2 = x(b) + x(a) − 2

b − a
∫ b

a x(s)ds,

β3 = x(b)− x(a) +
6

b − a
∫ b

a x(s)ds − 12
(b − a)2

∫ b
a

∫ b
θ x(s)dsdθ.
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3. Main Results

This section presents the stability criteria for the switched system (1) under the
state-dependent switching rule (3). Owing to the Leibniz-Newton formula, we have
the following equation

x(t)− x(t − d(t)) =
∫ t

t−d(t)
ẋ(s)ds. (6)

Some notations are given as follows

υ1 =
2

d − d(t)

∫ t

t−d(t)
x(s)ds, υ2 =

12

(d − d(t))2

∫ t

t−d(t)

∫ t

θ
x(s)dsdθ,

η(t) =
(

xT(t), xT(t − d(t)), xT(t − d), ẋT(t −d(t)), ẋT(t − d), υT
1 , υT

2

)T
.

Theorem 1. Under Assumption 1, assume that for any p ∈ M, there exist n × n matrices Pp > 0,
Ri > 0, Si > 0, U > 0, (i = 1, 2), Qp = QT

p , positive constants μp, θp, constants ηp,q, q ∈ M,
q �= p, such that (

Λp
l + μpeT

1 Qpe1
√

deT
1 PpBp√

dBT
p Ppe1 −U

)
< 0, l = 1, 2, (7)

Pp = Pq + ηp,q
(
Qq − Qp

)
, q ∈ M, q �= p, (8)

∑
j∈M

θjQj ≥ 0, (9)

where

Λp
1 =Φp

1 + Φ2 + Φp
3 + Φp

4 +
(
1− d̄

)
(Ψ2 +Ψ3)−

1
d

Ξ4, Λp
2 = Φp

1 + Φ2 + Φp
3 + Φp

4+(
1− d̃

)
(Ψ2 +Ψ3)−

1
d

Ξ4, Φp
1 = eT

1

((
Ap + Bp

)T Pp + Pp
(

Ap + Bp
))

e1,

Φ2 =eT
1 R1e1 − eT

3 R2e3, Φp
3 =

(
Ape1 + Bpe2

)TS1
(

Ape1 + Bpe2
)
− eT

5 S2e5,

Φp
4 =d

(
Ape1 + Bpe2

)TU
(

Ape1 + Bpe2
)
, Ψ2 = eT

2 (R2 − R1)e2, Ψ3 = eT
4 (S2 − S1)e4,

Ξ4 =(e2 − e3)
TU(e2 − e3) + 3(e2 + e3 −e6)

TU(e2 + e3 − e6) + 5(e2 − e3 +3e6 − e7)
TU×

(e2 − e3 + 3e6 − e7), ei =
(

0n×(i−1)n, I, 0n×(7−i)n

)
, i = 1, 2, · · · , 7.

Then, the switched system (1) is globally asymptotically stable under the state-dependent
switching rule (3), if there is no sliding motion or there exist sliding motions on the switching
surface Ωpq with ηp,q > 0.

Proof. Condition (9) implies that (2) is true, which indicates that the covering property
holds. Therefore, under the switching rule (3), the switched system (1) is well-defined.

Now we prove that the switched system (1) is globally asymptotically stable. Similar
to [29,30], for each subsystem p, we choose the Lyapunov-Krasovskii functional as follows

Vp(t) = Vp1(t) +
4

∑
i=2

Vi(t), (10)

where

Vp1(t) = xT(t)Ppx(t), V2(t) =
∫ t

t−d(t)
xT(s)R1x(s)ds +

∫ t−d(t)

t−d
xT(s)R2x(s)ds,
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V3(t) =
∫ t

t−d(t)
ẋ(s)S1 ẋ(s)ds +

∫ t−d(t)

t−d
ẋT(s)S2 ẋ(s)ds, V4(t) =

∫ 0

−d

∫ t

t+θ
ẋ(s)Uẋ(s)dsdθ.

In each region Ωp, the time derivate of Vp1(t), Vi(t), i = 2, 3, 4, along the trajectory of
the subsystem p are given as follows

V̇p1(t)

=xT(t)
((

Ap + Bp
)T Pp + Pp

(
Ap + Bp

))
x(t)−

∫ t

t−d(t)

(
ẋT(s)BT

p Ppx(t) + xT(t)PpBpẋ(s)
)

ds

≤xT(t)
((

Ap + Bp
)T Pp + Pp

(
Ap + Bp

)
+d(t)PpBpU−1BT

p Pp

)
x(t) +

∫ t

t−d(t)
ẋT(s)Uẋ(s)ds (11)

=ηT(t)
(

Φp
1 + d(t)Θp

1

)
ηT(t) +

∫ t

t−d(t)
ẋT(s)Uẋ(s)ds.

V̇2(t) =xT(t)R1x(t) +
(
1− ḋ(t)

)
xT(t − d(t))(R2 − R1)x(t − d(t))− xT(t − d)R2x(t − d)

=ηT(t)
(
Φ2 +

(
1− ḋ(t)

)
Ψ2
)
η(t). (12)

V̇3(t)

=ẋT(t)S1 ẋ(t)− ẋT(t − d)S2 ẋ(t − d) +
(
1− ḋ(t)

)
ẋT(t − d(t))(S2 − S1)ẋ(t − d(t))

=
(

Apx(t) + Bpx(t − d(t))
)TS1

(
Apx(t) +Bpx(t − d(t))

)
− ẋT(t − d)S2 ẋ(t − d) (13)

+
(
1− ḋ(t)

)
ẋT(t − d(t))(S2 − S1)ẋ(t − d(t))

=ηT(t)
(

Φp
3 +

(
1− ḋ(t)

)
Ψ3

)
η(t).

V̇4(t)

=dẋTUẋ(t)−
∫ t

t−d(t)
ẋT(s)Uẋ(s)ds −

∫ t−d(t)

t−d
ẋT(s)Uẋ(s)ds

=d
(

Apx(t) + Bpx(t − d(t))
)TU

(
Apx(t) +Bpx(t − d(t))

)
−
∫ t

t−d(t)
ẋT(s)Uẋ(s)ds (14)

−
∫ t−d(t)

t−d
ẋT(s)Uẋ(s)ds.

where Θp
1 = eT

1 PpBpU−1BT
p Ppe1. Under Lemma 1, one can obtain

(d − d(t))
∫ t−d(t)

t−d
ẋT(s)Uẋ(s)ds ≥ ξT

1 Uξ1 + 3ξT
2 Uξ2 + 5ξT

3 Uξ3= ηT(t)Ξ4η(t),

where ξ1 = x(t − d(t)) − x(t − d), ξ2 = x(t − d(t)) + x(t − d) − υ1, ξ3 = x(t − d(t)) −
x(t − d) + 3υ1 − υ2. Above inequality implies that (14) can be continued as

V̇4(t) ≤ηT(t)
(

Φσ
4 −

1
d − d(t)

Ξ4

)
η(t)−

∫ t−d(t)

t−d
ẋT(s)Uẋ(s)ds (15)

Then, it follows from (10)–(13), (15) that

V̇p(t)

≤ηT(t)
(

φ
p
1 + φ2 + φ

p
3 + φ

p
4 + d(t)Θp

1 +
(
1− ḋ(t)

)
(Ψ2 + Ψ3)−

1
d − d(t)

Ξ4

)
η(t) (16)

=
1

d − d(t)
ηT(t)

(
(d − d(t))

(
φ

p
1 + φ2 + φ

p
3 + φ

p
4 + d(t)Θp

1 +
(
1− ḋ(t)

)
(Ψ2 + Ψ3)

)
− Ξ4

)
.
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Due to Schur complements [31], Condition (7) indicates that

Λp
l + dΘp

1 + μpeT
1 Qpe1 < 0, l = 1, 2. (17)

Namely,⎧⎪⎨⎪⎩
φ

p
1 + φ2 + φ

p
3 + φ

p
4 +

(
1− d̄

)
(Ψ2 + Ψ3) + dΘp

1 + μpeT
1 Qpe1 −

1
d

Ξ4 < 0,

φ
p
1 + φ2 + φ

p
3 + φ

p
4 +

(
1− d̃

)
(Ψ2 + Ψ3) + dΘp

1 + μpeT
1 Qpe1 −

1
d

Ξ4 < 0.
(18)

The above inequalities declare that

φ
p
1 + φ2 + φ

p
3 + φ

p
4 +

(
1− ḋ(t)

)
(Ψ2 + Ψ3) + dΘp

1 + μpeT
1 Qpe1 −

1
d

Ξ4 < 0. (19)

Due to 0 ≤ d(t) ≤ d and Θp
1 > 0, it is clear from (19) that

d
(

φ
p
1 + φ2 + φ

p
3 + φ

p
4 +

(
1− ḋ(t)

)
(Ψ2 + Ψ3) + d(t)Θp

1 + μpeT
1 Qpe1

)
− Ξ4 < 0. (20)

Noting that 0 ≤ d − d(t) ≤ d and Ξ > 0, (20) shows that

(d − d(t))
(

φ
p
1 + φ2 + φ

p
3 + φ

p
4 +

(
1− ḋ(t)

)
(Ψ2 + Ψ3) + d(t)Θp

1 + μpeT
1 Qpe1

)
− Ξ4 < 0. (21)

Based on (16) and (21), one can derive that

V̇p(t) < −μpηT(t)Qpη(t) ≤ 0, (22)

where the fact xT(t)Qσx(t) ≥ 0 is used.
Note that for arbitrary x ∈ Ωpq, xTQpx = xTQqx. Then, due to Condition (8) we

can derive that Vp(t) = Vq(t) if x(t) ∈ Ωpq. Therefore, when the trajectory x(t) traverses
from Ωp to Ωq, the Lyapunov functional Vσ(t) is not increasing. In particular, if the sliding
motion does not occur, the Lyapunov functional Vσ(t) will be approximate to zero and
shows that the switched system (1) is globally asymptotically stable.

Now we consider the case of sliding motions. Assume that the sliding motions occur
along the switching surface Ωpq at the boundary of regions Ωp and Ωq. According to
Filippov’s definition [32], we get

ẋ(t) =α
(

Apx(t) + Bpx(t − d(t))
)
+ α̃

(
Aqx(t) +Bqx(t − d(t)

)
=α

((
Ap + Bp

)
x(t)− Bp

∫ t

t−d(t)
ẋ(s)ds

)
+ α̃

((
Aq + Bq

)
x(t)− Bq

∫ t

t−d(t)
ẋ(s)ds

)
, (23)

where α ∈ (0, 1),α̃ = 1 − α. Under the analysis of sliding motions [33], the sliding motions
on the surface Ωpq state that

xT
((

Ap + Bp
)TQpq + Qpq

(
Ap + Bp

))
x(t)− xT(t)QpqBp

∫ t

t−d(t)
ẋ(s)ds

−
∫ t

t−d(t)
ẋT(s)dsBT

p Qpqx(t) < 0, (24)

and
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xT
((

Aq + Bq
)TQpq + Qpq

(
Aq + Bq

))
x(t)− xT(t)QpqBq

∫ t

t−d(t)
ẋ(s)ds

−
∫ t

t−d(t)
ẋT(s)dsBT

q Qpqx(t) > 0 (25)

hold, where Qpq = Qp − Qq. Let Pqp = Pq − Pp. Owing to Condition (8) and ηp,q > 0,
we obtain

xT
((

Ap + Bp
)T Pqp +

(
Pq − Pp

)(
Ap + Bp

))
x(t)− xT(t)PqpBp

∫ t

t−d(t)
ẋ(s)ds

−
∫ t

t−d(t)
ẋT(s)dsBT

p Pqpx(t) < 0, (26)

xT
((

Aq + Bq
)T Pqp +

(
Pq − Pp

)(
Aq + Bq

))
x(t)− xT(t)PqpBq

∫ t

t−d(t)
ẋ(s)ds

−
∫ t

t−d(t)
ẋT(s)dsBT

q Pqpx(t) > 0, (27)

which are equivalent to

xT(t)
((

Ap + Bp
)T Pq + Pq

(
Ap + Bp

))
x(t)− xT(t)PqBp

∫ t

t−d(t)
ẋ(s)ds

−
∫ t

t−d(t)
ẋT(s)dsBT

p Pqx(t)

<xT(t)
((

Ap + Bp
)T Pp + Pp

(
Ap + Bp

))
x(t)− xT(t)PpBp

∫ t

t−d(t)
ẋ(s)ds (28)

−
∫ t

t−d(t)
ẋT(s)dsBT

p Ppx(t),

xT(t)
((

Aq + Bq
)T Pp + Pp

(
Aq + Bq

))
x(t)− xT(t)PpBq

∫ t

t−d(t)
ẋ(s)ds

−
∫ t

t−d(t)
ẋT(s)dsBT

q Ppx(t)

<xT(t)
((

Aq + Bq
)T Pq + Pq

(
Aq + Bq

))
x(t)− xT(t)PqBq

∫ t

t−d(t)
ẋ(s)ds (29)

−
∫ t

t−d(t)
ẋT(s)dsBT

q Pqx(t).

Note that the switching signal is not unique on sliding surface Ωpq. If σ(t) = p, one
can derive

V̇p1(t)

=αxT(t)
((

Ap + Bp
)T Pp + Pp

(
Ap + Bp

))
x(t)− αxT(t)PpBp

∫ t

t−d(t)
ẋ(s)ds

− α
∫ t

t−d(t)
ẋT(s)dsBT

p Ppx(t) + α̃xT(t)
((

Aq + Bq
)T Pp + Pp

(
Aq + Bq

))
x(t)

− α̃

(
xT(t)PpBq

∫ t

t−d(t)
ẋ(s)ds +

∫ t

t−d(t)
ẋT(s)dsBT

q Ppx(t)
)

≤αxT(t)
((

Ap + Bp
)T Pp + Pp

(
Ap + Bp

))
x(t)− αxT(t)PpBp

∫ t

t−d(t)
ẋ(s)ds (30)
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− α
∫ t

t−d(t)
ẋT(s)dsBT

p Ppx(t)

+ α̃xT(t)
((

Aq + Bq
)T Pq +Pq

(
Aq + Bq

))
x(t)− α̃

(
xT(t)PqBq

∫ t

t−d(t)
ẋ(s)ds

+
∫ t

t−d(t)
ẋT(s)dsBT

q Pqx(t)
)

≤αηT(t)eT
1

(
Φp

1 + d(t)Θp
1

)
e1η(t) + α̃ηT(t)eT

1

(
Φq

1 + d(t)Θq
1

)
e1η(t) +

∫ t

t−d(t)
ẋT(s)Uẋ(s)ds.

Under (7), (10)–(13), (21) and (30), it is easy to deduce that

V̇p(t) <− ηT(t)
(

αeT
1 Qpe1 + α̃eT

1 Qqe1

)
η(t) ≤ 0.

Similarly, when σ(t) = q, we can also obtain

V̇q1(t) ≤αηT(t)eT
1

(
Φp

1 + d(t)Θp
1

)
e1η(t) + α̃ηT(t)eT

1

(
Φq

1 + d(t)Θq
1

)
e1η(t)

+
∫ t

t−d(t)
ẋT(s)Uẋ(s)ds,

which further yields V̇q(t) < 0. Therefore, the Lyapunov-Krasovskii functional Vσ(t) is
decreasing when the sliding motions occur on switching surface Ωpq. According to (22)
one can deduce that the switched system (1) under the switching rule (3) is also glob-
ally asymptotically stable if the sliding motions occur on switching surfaces Ωpq with
ηp,q > 0.

Remark 2. According to the Proof of Theorem 1, one can see that the chosen Lyapunov functional
is function of x(t) and ẋ(t). Similar Lyapunov functionals have been employed to establish the
stability results for delayed systems [29,30]. This is because such Lyapunov functionals can fully
utilize the features of systems. Most noteworthy, the proposed Lyapunov functional can be viewed
as a special case of that presented in [29,30].

Remark 3. Condition (7) ensures that the time derivate of Lyapunov functional along the trajectory
of switched systems is less than zero for each region Ωp. Condition (8) guarantees that the Lyapunov
functional is not increasing when the switching event occurs in the absence of sliding motion.
When sliding motions occur, Conditions (7) and (8) can warrant that the time derivate of Lyapunov
functional along the trajectory is less than zero when the trajectory slides on the surfaces Ωpq.
Condition (9) ensures that the switched system is well-defined.

Remark 4. In [15–19], the researchers have also studied the stability of delayed switched systems
under state-dependent switchings. However, these results assume that there exists a Hurwitz linear
convex combination of Ap + Bp(or Ap). Generally speaking, this assumption is rigorous and may
not be satisfied in some cases. Obviously, in Theorem 1 we have removed this restriction, which yields
that our results are more flexible. Moreover, in the proof of Theorem 1 new inequality (Lemma 1) is
employed, which states that Theorem 1 is less conservative.

Remark 5. When there exist infinite switching events in an arbitrary time interval, we call it
Zeno-behaviors. The switching rule (3) cannot avoid Zeno-behaviors. However, Theorem 1 can
also ensure stability when Zeno-behaviors occur. The reasons can be listed as follows: (a) If the
switching event does not occur, it is obvious that the time derivate of Lyapunov functional along
the trajectory is less than zero. (b) If the switching event occurs, there are two cases. The first one
is that the sliding motion does not occur. Obviously, for this case, the Lyapunov functional is not
increasing. The second one is that the sliding motions occur. For this case, we have that the time
derivate of Lyapunov functional along the trajectory is still less than zero. Although Zeno-behaviors
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may lead to the accumulation of switches in finite time, the Lyapunov functional along the trajectory
is always gradually decreasing.

By restricting R1 = R2 = R and S1 = S2 = S, one can obtain the stability results under
Assumption 2.

Theorem 2. Under Assumption 2, assume that for any p ∈ M, there exist n × n matrices Pp > 0,
R > 0, S > 0, U > 0, Qp = QT

p , positive constants μp, θp, constants ηp,q, q ∈ M, q �= p, such
that Conditions (8) and (9) and(

Λp + μpeT
1 Qpe1

√
deT

1 PpBp√
dBT

p Ppe1 −U

)
< 0, (31)

where Λp = Λp
1 with R1 = R2 = R and S1 = S2 = S. Then, the switched system (1) is globally

asymptotically stable under the state-dependent switching rule (3), if there is no sliding motion or
there exist sliding motions on the switching surface Ωpq with ηp,q > 0.

Due to the existence of the product of unknown scalars and matrices, the conditions
in Theorems 1 and 2 are BMIs. Therefore, the standard semi-positive definite programming
methods cannot work. One can adopt two strategies to get a feasible solution. The first one
is to utilize directly BMI solvers (such as PENBMI) to obtain these undetermined scalars
and matrices. The second one, which is similar to [22], is to grid up the unknown scalars
μp, θp and ηp,q. While these parameters are fixed, the BMIs in Theorems 1 and 2 degenerate
into ordinary linear matrix inequalities, which can be solved by standard solvers such as
lmilab and mosek.

When the switched system (1) is composed of two subsystems, one can set
Q1 = −Q2 = Q = QT , η1,2 = η2,1 = η, P2 = P, P1 = P− 2ηQ, constants θ1 = θ2 = 1. Then,
Conditions (8) and (9) are always satisfied. The following corollaries can be derived readily
from Theorems 1 and 2.

Corollary 1. When M = {1, 2}, under Assumption 1, assume that there exist n × n matrices
P > 0, Ri > 0, Si > 0, U > 0, (i = 1, 2), Q = QT, positive constants μ1, μ2, constant η,
such that (

Λ1∗
l + μ1eT

1 Qe1
√

deT
1 (P − 2ηQ)B1√

dBT
1 (P − 2ηQ)e1 −U

)
< 0, (32)

(
Λ2∗

l − μ2eT
1 Qe1

√
deT

1 PB2√
dBT

2 Pe1 −U

)
< 0, l = 1, 2, (33)

where

Λ1∗
1 =Φ1∗

1 + Φ2 + Φ1
3 + Φ1

4 +
(
1− d̄

)
(Ψ2 +Ψ3)−

1
d

Ξ4,

Λ2∗
1 =Φ2∗

1 + Φ2 + Φ2
3 + Φ2

4 +
(
1− d̄

)
(Ψ2 +Ψ3)−

1
d

Ξ4,

Λ1∗
2 =Φ1∗

1 + Φ2 + Φ1
3 + Φ1

4 +
(
1− d̃

)
(Ψ2 +Ψ3)−

1
d

Ξ4,

Λ2∗
2 =Φ2∗

1 + Φ2 + Φ2
3 + Φ2

4 +
(
1− d̃

)
(Ψ2 +Ψ3)−

1
d

Ξ4,

Φ1∗
1 =eT

1

(
(A1 + B1)

T(P − 2ηQ) + (P − 2ηQ) (A1 + B1))e1,

Φ2∗
1 =eT

1

(
(A2 + B2)

T P + P(A2 + B2)
)

e1,
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and the other notations are in agreement with the ones presented in Theorem 1. Then, the switched
system (1) is globally asymptotically stable under the state-dependent switching rule (3) if there is
no sliding motion or there exist sliding motions on switching surfaces with η > 0.

Corollary 2. When M = {1, 2}, under Assumption 2, assume that there exist n × n matrices
P > 0, R > 0, S > 0, U > 0, Q = QT, positive constants μ1, μ2, constant η, such that(

Λ̄1∗ + μ1eT
1 Qe1

√
deT

1 (P − 2ηQ)B1√
dBT

1 (P − 2ηQ)e1 −U

)
< 0, (34)

(
Λ̄2∗ − μ2eT

1 Qe1
√

deT
1 PB2√

dBT
2 Pe1 −U

)
< 0, (35)

where Λ̄1∗ = Λ1∗
1 , Λ̄2∗ = Λ2∗

1 with R1 = R2 = R and S1 = S2 = S. Then, the switched
system (1) is globally asymptotically stable under the state-dependent switching rule (3), if there is
no sliding motion or there exist sliding motions on switching surfaces with η > 0.

4. Numerical Simulations

In this section, several numerical examples are employed to illustrate the validity of
the proposed results.

Example 1. Consider the switched system (1) with M = {1, 2} and

A1 =

(
0.8 −4
0 0.8

)
, B1 =

(
0.2 −1
0 0.2

)
, A2 =

(
0.8 0
4 0.9

)
, B2 =

(
0.2 0
1 0.1

)
.

By choosing μ1 = μ2 = 1, η = −0.7 and letting d̄ = −d̃ = δ, according to Corollaries 1
and 2, we can obtain the upper bound d for different δ, which is given in Table 1 (in order to avoid
zero solution, the matrix inequalities P, Ri, Si, U > aI with a = 10−7 are employed to replace
P, Ri, Si, U > 0, i = 1, 2). For numerical simulation, we choose d(t) = 0.1 + 0.1 sin(10t), which
shows d = 0.2 and d̄ = −d̃ = 1. By solving the matrix inequalities in Corollary 1, we get

Q1 =− Q2 = Q =

(−0.2567 0.1996
0.1996 0.2565

)
, P1 = P − 2ηQ =

(
0.0935 0.1402
0.1402 4516

)
,

P2 = P =

(
0.4528 −0.1393
−0.1393 0.0925

)
.

The stable dynamics and convergent time response curves with φ(s) = (−1, 2)T,
s = [−0.2, 0], are plotted in Figure 1. The corresponding switching rule (3) is also shown in
the sub-figure of Figure 1. Numerical simulations indicate that there is no sliding motion.

Now we give some comparisons with the existing results for this example to validate the
superiority of our results.

(a) Note that for any α ∈ [0, 1], the eigenvalues of α(A1 + B1) + (1 − α)(A2 + B2) are
1 ± 5i

√
α(1− α), which yields that there is no Hurwitz linear convex combination of

A1 + B1 and A2 + B2. Therefore, the stability results proposed in [15–17,19] are not available
for this example. Additionally, the eigenvalues of αA1 + (1 − α)A2 are 0.85 + 0.05α ±
0.5

√
64.01α2 − 63.98α − 0.01, α ∈ [0, 1], which indicates that there is no Hurwitz linear

convex combination of matrices A1 and A2. This shows that the stability results in [18] are
also invalid for this example.

(b) The results derived in [20,21] are also applicable for the switched system (1). For compar-
ison, by restricting d = 0.01 we solve the stability conditions in ([20] Corollary 2) and
([21] Theorem 3.1) for d̄ = 0, 0.1, 0.2, 0.5, 0.8 and 1, respectively. Unfortunately, there
is no feasible solution, which demonstrates that the results in [20,21] are not flexible for
this example.

200



Mathematics 2022, 10, 2722

(c) For the case of constant time delay, by solving the matrix inequalities in ([27] Theorem 5),
one can get the upper bound d = 0.2455, which is also less than d = 0.2489. Therefore, the
restriction on the time delay of our results is weaker than that proposed in ([27] Theorem 5).

Table 1. The upper bound d of time delay for different d̄ = −d̃ = δ.

0 0.1 0.2 0.5 0.8 1 δ is Unknown

0.2489 0.2445 0.2417 0.2411 0.2411 0.2411 0.2411
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Figure 1. The stable dynamics (Left) and convergent response curves (Right) of the system in
Example 1 with d(t) = 0.1 + 0.1 sin(10t).

Example 2. Consider the switched system (1) wiht M = {1, 2}, d(t) = 0.01+ 0.01 sin(50t), and

A1 =

(
0 1
2 −8

)
, B1 =

(
0 0
0 −1

)
, A2 =

(
0 0.5
−2 1

)
, B2 =

(
0 0.5
0 1

)
.

It is easy to derive that d = 0.02, d̄ = −d̃ = 0.5. By choosing η = 0.01, μ1 = μ2 = 1,
according to Corollary 1, we get the following feasible solution

Q1 =− Q2 = Q =

(−0.02252 0.0251
0.0251 0.0287

)
, P1 = P − 2ηQ =

(
0.0202 0.1940
0.0055 0.0028

)
,

P2 =P =

(
0.0198 0.0060
0.0060 0.0034

)
.

The sliding dynamics and stable response curves are shown in Figure 2. Numerical simulations
indicate that there are sliding motions, which can make the trajectory approach the origin along the
switching surfaces.

If we choose η = −1, μ1 = μ2 = 1, by solving the matrix inequalities in Corollary 1,
we obtain

Q1 =− Q2 = Q =

(
0.0127 −0.0964
−0.0964 0.4049

)
, P1 = P − 2ηQ =

(
0.0397 −0.1802
−0.1802 0.8545

)
,

P2 = P =

(
0.0143 0.0125
0.0125 0.0446

)
.

Numerical simulations show that there are unstable sliding motions for this case (see Figure 3),
which is due to η1,2 = η2,1 = η < 0. This demonstrates that ηp,q > 0 is essential for the stability of
the switched system (1) when sliding motions occur.
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Figure 2. The stable dynamics (Left) and convergent response curves (Right) of the system in
Example 2.
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Figure 3. The unstable dynamics (Left) and unstable response curves (Right) of the system in
Example 2.

5. Conclusions

This paper has investigated the stability of delayed switched systems with all unstable
subsystems. Under the designed state-dependent switching rule, some stability results
for different assumptions on time delay are derived via integral inequality and multiple
Lyapunov-Krasovskii functionals. Numerical simulations demonstrate that the proposed
results are more effective and less conservative than that presented in [15–21,27].

The main deficiency of this paper is that the condition that determines whether sliding
motions occur is not employed. As a matter of fact, similar to [21,22], we have derived some
conditions to verify the existence or non-existence of sliding motions. Unfortunately, if we
introduce these conditions to the stability results, it is difficult to get a feasible solution. In
desperation, we adopt the way which is used in [34,35]. Namely, the condition to determine
whether sliding motions occur is not given and the existence or non-existence of sliding
motions is revealed via numerical simulation. We hope some more feasible conditions on
sliding motions can be deduced in the future.
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Abstract: In this era of big data, Multi-source Domain Adaptation (MDA) becomes more and more
popular and is employed to make full use of available source data collected from several different,
but related domains. Although multiple source domains provide much information, the processing
of domain shifts becomes more challenging, especially in learning a common domain-invariant
representation for all domains. Moreover, it is counter-intuitive to treat multiple source domains
equally as most existing MDA algorithms do. Therefore, the domain-specific distribution for each
source–target domain pair is aligned, respectively. Nevertheless, it is hard to combine adaptation
outputs from different domain-specific classifiers effectively, because of ambiguity on the category
boundary. Subjective Logic (SL) is introduced to measure the uncertainty (credibility) of each domain-
specific classifier, so that MDA could be bridged with DST. Due to the advantage of information
fusion, Dempster–Shafer evidence Theory (DST) is utilized to reduce the category boundary am-
biguity and output reasonable decisions by combining adaptation outputs based on uncertainty.
Finally, extensive comparative experiments on three popular benchmark datasets for cross-domain image
classification are conducted to evaluate the performance of the proposed method via various aspects.

Keywords: multi-source domain adaptation; Dempster–Shafer evidence theory; cross-domain classification

MSC: 68T07

1. Introduction

Recently, Deep Learning (DL) has made remarkable advances in various fields [1–7],
especially in classification [8–10]. Despite excellent results, the success of deep methods
highly relies on: (1) large-scale labeled data for supervised learning and (2) the training
and test data meeting the requirement of being Independently Identically Distributed (IID).
However, annotation is time-consuming and unaffordable in practice. If a model is trained
on a dataset (known as the source domain), but tested on another non-IID dataset (known
as the target domain), domain shifts occur and tend to severely degrade the performance
of the learned model [11,12]. Therefore, it is necessary to develop models that are trained
on the given labeled datasets, but that can generalize well to a non-IID unlabeled dataset.

Domain Adaptation (DA) aims to learn a discriminative model by reducing do-
main shifts between training and test distributions [13]. DA transfers the given labeled
source domain knowledge to tackle the task to the different, but related target domain
by learning domain-invariant representation between domains. Most approaches focus
on Single-source Domain Adaptation (SDA), where the labeled data from only one single
source domain are considered. Many achievements have emerged in this decade [14–18].
For example, DDC [14] adds an adaptation layer to the pre-trained AlexNet model to con-
fuse the feature representation between the single source domain and the target domain.
DSAN [16] proposes a novel fine-grained metric function to align the distribution of the sin-
gle source domain and the target domain. Most of them learn to map the data from both
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domains into a common feature space to learn domain-invariant representations by mini-
mizing domain distribution discrepancy, so that the source classifier could then be directly
applied to target instances.

However, in practice, it is very likely to obtain multiple available source domains,
while SDA is not up to employing those source data adequately. Hence, more challeng-
ing, Multi-source Domain Adaptation (MDA) is developed to utilize labeled data from
multiple source domains with different distributions and has attracted extensive attention
these days [19–21]. The most straightforward way is to combine all source domains into
one single source domain and, then, directly apply SDA methods to align distributions.
Due to the dataset expansion, the methods might improve the performance. However,
the improvements might not be sufficient; the more accurate ways are supposed to explore
to make full use of source domains.

With the spurt of progress in DL and SDA today, MDA has been gradually developed.
However, there are two typical issues with most techniques [22–28]. (1) Firstly, it is more
challenging to learn a common domain-invariant representation for all domains in MDA,
because the damages of domain shifts cannot be eliminated even in SDA. Thereby, MDA
is processed by aligning the domain-specific distribution for each source–target domain
pair. (2) Secondly, multiple source domains are treated as equivalents. However, the ben-
efits of each source domain to the target domain tasks are diverse in reality. The final
output should be closer to the adaptation output of the source–target domain pairs with
higher credibility. Some studies [29,30] add extra neural network components to measure
the credibility (i.e., transferability). In this research study, we employed Subjective Logic
(SL) [31] to obtain the uncertainty of every source domain without any addition of the neu-
ral network. Regarding source–target domain pairs as witnesses with different credibility
(uncertainty), we introduced Dempster–Shafer evidence Theory (DST) to combine all
domain-specific adaptation outputs.

As an uncertainty reasoning method, DST can effectively and reliably deal with uncer-
tainty. It relies on Basic Probability Assignment Functions (BPAFs) to measure the initial
degree of belief in the occurrence of an event, which is similar to the concept of the “proba-
bility” of a random event in probability theory. To generate BPAFs, DST is bridged with
MDA and DL by subjective logic.

Our contributions are summarized as follows:

• A novel multi-source domain adaptation method with Dempster–Shafer evidence
theory is proposed. We provide an effective cross-domain classification solution
without any addition of the neural network.

• There are few studies combining multi-source domain adaptation and Dempster–
Shafer evidence theory as of yet. We explored this kind of research early. In our work,
DST is employed to fuse all domain-specific adaptation results and output the final
credible results.

• The effectiveness of our cross-domain classification method is verified by conducting
comprehensive experiments on three well-known benchmarks. The experimental
results prove that the proposed method has better performance than other com-
pared approaches.

The rest of this paper is organized as follows. Section 2 reviews the related work.
In Section 3, the preliminaries are given. Section 4 describes the proposed method in detail.
A series of experiments is reported in Section 5 and discussed in Section 6. Finally, Section 7
summarizes this research study.

2. Related Work

2.1. Single-Source Domain Adaptation

Single-source Domain Adaptation (SDA) is bound up with multi-source domain
adaptation. SDA aims to generalize a model learned from a labeled source domain to a
related unlabeled target domain with a different data distribution by reducing the domain
shift. SDA can be roughly divided into three categories according to different alignment

206



Mathematics 2022, 10, 2797

strategies. (1) Discrepancy-based approaches utilize different metric schemas to explicitly
measure the distance between the source and target domains and diminish the domain shift.
Commonly used discrepancy metrics for domain adaptation include Maximum Mean Dis-
crepancy (MMD) [32–34], moment matching [35,36], Kullback–Leibler (KL) divergence [37],
correlation alignment [38,39], and mixture distance [40]. (2) Adversarial-based approaches
align different data distributions by confusing a well-trained discriminator (domain clas-
sifier). Many methods [41–46] are based on Generative Adversarial Networks (GANs),
which align different data distributions by implicitly learning the metric function (i.e.,
domain discriminator) between the source and target domains. (3) Reconstruction-based
approaches assume that reconstructing the target domain from a latent representation by
using the source task model can help learn domain-invariant representations. The recon-
struction is usually obtained via an auto-decoder [47–49] or a GAN discriminator [50–52].

In our work, the first kind of approach was chosen and the most widely used discrep-
ancy MMD was employed to align the distributions.

2.2. Multi-Source Domain Adaptation

In practice, available source data often come from several different, but related do-
mains. Multi-source Domain Adaptation (MDA) is developed to make full use of these
data. However, multiple source domain data provide much information, but challenge
the processing of domain shifts. (1) Based on the assumption that the target domain distri-
bution can be approximated by mixing the source domain distribution [53,54], some MDA
methods focus on the weighted combination of source domains. For example, Sun and
Shi [22] designed a method to weight the source domain classifiers based on the Bayesian
learning principle. Xu et al. [23] proposed a voting method for multiple classifiers, which is
based on the output of domain discriminators. (2) In addition, some methods are devised
to map all source domains and the target domain to a unified feature space. For instance,
MDAN [24] aligns the distribution of source domains with the target domain through
multiple domain discriminators. M3SDA [25] employs moment matching to align the
source–target and source-source domains in a common feature space. HoMM [26] ex-
ploits the high-order statistics for domain alignment in a reproducing kernel Hilbert space.
(3) Some other methods are based on reconstruction [27,28], which reconstruct multiple
source domains into an intermediate single source domain and then directly carry out SDA.

Sadly, the damages of domain shifts cannot be eliminated in SDA. It is more difficult
to learn a common domain-invariant representation for all domains in MDA.
Following MFSAN [55], the domain-specific distribution and classifier alignment architec-
ture for cross-domain classification has proceeded. However, MFSAN treats every source
domain equally. This is counter-intuitive because different source domains help the target
task differently. Thus, regarding source–target domain pairs as witnesses with different
credibility (uncertainty), DST is employed to combine all domain-specific adaptation results.
Specifically, the uncertainty is captured, and BPAFs are generated by using subjective logic.

2.3. Dempster–Shafer Evidence Theory

Dempster–Shafer evidence Theory (DST) was first introduced in the 1960s. Based
on the investigation of statistical problems, Arthur P. Dempster introduced the concept
of upper and lower probabilities and their combining rules [56]. Then, the form of probabil-
ity that does not satisfy additivity was defined for the first time [57]. Later, Glenn Shafer
reinterpreted the upper and lower probabilities based on the belief function and developed
the theory into a general framework for modeling epistemic uncertainty [58]. DST allows
beliefs from different sources to be fused with various operators to obtain new beliefs
considering all available evidence [59]. Currently, generating the belief function through
DL has proven to be successful and efficient [60]. These unique characteristics make DST
particularly suitable for information fusion [61,62]. Similar to information fusion, the idea
of our MDA method is to combine evidence from multiple sources.
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3. Preliminaries

3.1. Unsupervised Multi-Source Domain Adaptation

In this research study, the unsupervised MDA problem is investigated. Let Ds =
{Dsi}N

i=1 denote a collection of N available datasets of source domains, and each labeled

source dataset Dsi = {(X(j)
si , y(j)

si )}
nsi
j=1 with nsi samples is sufficient to train a source domain

distribution model. Meanwhile, a target dataset Dt = {X(j)
t }nt

j=1 with nt samples drawn
from the target domain Dt has no labels to support training a reasonable distribution model.
With given Ds ∪ Dt, the general goal of this problem is to train a cross-domain classifier
fθ(x), which has a low target risk εt = Ex∈Dt [ fθ(x) �= yt].

The domain-specific distribution and classifier alignment architecture in MFSAN [55]
has proceeded to cross-domain classification. Thus, the domain adaptation model involves
the source domain task loss Ls, the domain adaptation loss Ld, and the classifier constraint
loss Lr. As shown in (1), λ and γ are trade-off parameters.

L = Ls + λLd + γLr (1)

3.2. Maximum Mean Discrepancy

Maximum mean discrepancy, inspired by the two-sample test in statistics [63,64], is
the most widely used discrepancy to align the distributions in domain adaptation. In
general, MMD is interpreted as the maximum value (upper bound) of the expectation
difference between two distributions mapped by any function f in a predefined function
field F , which is an arbitrary vector in the unit sphere (i.e., ‖ f ‖ < 1) of the reproducing
Hilbert space:

MMD[F , p, q] := sup
f∈F

(
Ep[ f (x)]− Eq[ f (y)]

)
(2)

In practice, an estimate of the MMD compares the square distance between the empir-
ical kernel mean embeddings as (3). H is the Reproducing Kernel Hilbert Space (RKHS)
endowed with a characteristic kernel k. k means k

(
xs, xt) = 〈

φ(xs), φ
(
xt)〉, where 〈·, ·〉 rep-

resents the inner product of vectors and φ(·) denotes some feature map to map the original
samples to the RKHS H.

MMD2[F , Xs, Xt] =

∥∥∥∥∥∥ 1
ns

∑
xi∈Ds

φ(xi)−
1
nt

∑
xj∈Dt

φ
(
xj
)∥∥∥∥∥∥

2

H

(3)

3.3. Basic Concepts of DST

The Basic Probability Assignment Function (BPAF) is the fundamental unit of DST,
which expresses the initial degree of belief in the proposition. Let Θ be a frame of discern-
ment, which specifies the proposition range. The function m : 2Θ → [0, 1] becomes the
BPAF when it satisfies (4). If m(A) > 0, m(A) is also called the belief mass, and A is named
the focal element. {

m(∅) = 0
∑A⊆Θ m(A) = 1

(4)

Dempster’s rule ⊕ is at the core of DST, as it provides algorithmic rules for combining
two pieces of evidence, as shown in (5). Besides, Dempster’s rule is invoked N − 1 times
to combine N sets of evidence.

m1(X)⊕ m2(X) =

{
0, X = ∅

1
1−K ∑Ai∩Bj=X m1(Ai)m2

(
Bj
)
, X �= ∅ (5)
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The definition of conflict factor K, shown in (6), reflects the degree of conflict between
m1 and m2, whereby 1/(1 − K) represents the normalization factor. Obviously, Dempster’s
rule tries to fuse shared parts from different sources and ignores conflicting beliefs.

K = ∑
Ai∩Bj=∅

m1(Ai)m2
(

Bj
)

(6)

3.4. Dirichlet Distribution

The Dirichlet distribution is involved in SL, which bridges DL, MDA, and DST. In
the context of multi-class classification, SL converts the outputs (from DL and MDA)
of the neural networks into the concentration parameter of the Dirichlet distribution
and associates it with the belief masses (for DST). Accordingly, DST could combine multi-
source evidence after BPAFs are obtained and output the final decision.

If the probability density function of multivariate continuous random variable θ =
{θ1, θ2, . . . , θk} is (7):

p(θ | α) =
Γ
(

∑k
i=1 αi

)
∏k

i=1 Γ(αi)

k

∏
i=1

θ
αi−1
i (7)

where ∑k
i=1 θi = 1, θi ≥ 0, αi > 0, i = 1, 2, . . . , k, and Γ(·) is the Gamma function.

Then, the random variable θ is said to obey the Dirichlet distribution with concentration
parameter α and denoted as θ ∼ Dir(α).

Dirichlet distribution θ exists on the (k− 1)-dimensional simplex, as shown in Figure 1.

(a) (b) (c)

Figure 1. Visualization of Dirichlet distribution, where θ = {θ1, θ2, θ3} and θ1, θ2, θ3 ≥ 0, θ1 + θ2 +

θ3 = 1. (a) α = (10, 1, 1); (b) α = (1.001, 1.001, 1.001); (c) α = (10, 10, 10). Bright yellow represents
high probability, and dark blue represents low probability. In the multi-classification problem, each
vertex is regarded as a category.

The most important property of the Dirichlet distribution is that it is the conjugate prior
to the multinomial distribution. If θ follows the Dirichlet distribution, its prior probability distri-
bution is p(θ|α) = Dir(θ|α) and posterior probability distribution is p(θ|D, α) = Dir(θ|α + n),
where D is the given simplex and n = (n1, n2, . . . , nk) is the observation count of the multino-
mial distribution. The concentration parameters α = {α1, α2, . . . , αk} of the Dirichlet distribution
as a priori distribution are also called the hyperparameters of the posterior distribution. Hence,
it is convenient to obtain the posterior distribution from the prior distribution.

4. Research Methodology

Following the two-stage alignment framework in MFSAN [55], a novel Multi-source
domain Adaptation Network with Dempster–Shafer evidence theory (MAN-DS) for cross-
domain classification is proposed. MAN-DS aims to train a model based on multi-source
domain labeled samples and adapts to classify target instances with different distribu-
tions. As shown in Figure 2, the MAN-DS framework consists of four key components,
i.e., common feature extractor, domain-specific feature extractor, domain-specific classifier,
and Dempster’s combination. Different source domains are extracted into different feature
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spaces, and then, the distribution alignment of each pair of source and target domains
and the output alignment of every source classifier are imposed. Domain-specific adap-
tation outputs are combined by Dempster’s rule in the end. Besides, the so f tmax layer
of the classifier is replaced with an activation layer (e.g., ReLU).

Figure 2. The overall structure of MAN-DS.

4.1. Common Feature Extractor

The damages of domain shifts cannot be eliminated in SDA, so it is more difficult
to learn a common domain-invariant representation for all domains in MDA. To address this
problem, the easiest way is to train multiple networks to map each source–target domain
pair into a specific feature space. However, this would take too much time and space.
Thus, the feature extractor is divided into two parts. The first part extracts common
features, and the second part extracts domain-specific features (see the next section). In
the first part, a common convolutional neural subnetwork f (·) is used to automatically
map samples in all domains from the original feature space into a common feature space.

4.2. Domain-Specific Feature Extractor

Now, we come to the second part where domain-specific features are extracted by
different extractors. For each pair of source and target domains, a specific subnetwork
hi(·) aims to map f (xsi) and f (xt) into the same domain-specific feature space. The objec-
tive of domain adaptation is to find a domain-invariant representation between domains.
In other words, an hi(·) is desired, which makes the distribution discrepancy between
hi( f (xsi)) and hi( f (xt)) as small as possible. There are many explicit or implicit methods
to achieve this goal. Here, the most widely used MMD is employed to reduce the distribu-
tion discrepancy between domains. The MMD loss is reformulated as:

Lmmd =
1
N

N

∑
i=1

MMD2[F , hi( f (Xsi)), hi( f (Xt))] (8)

4.3. Domain-Specific Classifier

Traditionally, a series of so f tmax classifiers ci(·) is employed to classify the source do-
main samples after extracting domain-specific invariant features, respectively.
However, the use of the exponent in the so f tmax function leads to the probability of the pre-
dicted category being inflated. It was replaced with an activation function (e.g., RELU)
to ensure that the network outputs non-negative values in this research study. The multi-
classification problem is a multinomial distribution fitting problem. As the conjugate prior,
the Dirichlet distribution is convenient to obtain the posterior distribution from the prior dis-
tribution.
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Subjective logic [31] defines a theoretical framework for obtaining the probabilities
of different classes and the overall uncertainty of the multi-classification problem based
on the evidence collected from the data. SL provides an additional mass function, which
allows the model to distinguish between a lack of evidence. In our model, SL provides
the degree of overall uncertainty of each source, which is important for final decisions
to some extent.

For the K-classification problem, the nonnegative-activated output e = (e1, e2, . . . , ek)
of the last fully connected layer of the classifier refers to evidence and is closely related
to the concentration parameters α = (α1, α2, . . . , α + k) of the Dirichlet distribution, as shown
in the following:

αk = ek + 1, k = 1, 2, . . . , K (9)

With subjective logic, for each pair of the source–target domain, the probability b(i)k
for the kth category and the overall uncertainty u(i) are calculated by:

b(i)k =
e(i)k

S(i)
=

α
(i)
k − 1

S(i)

u(i) =
K

S(i)

(10)

where S(i) = ∑K
k=1(e

(i)
k + 1) = ∑K

k=1(α
(i)
k ) is the Dirichlet strength. Obviously, u(i) +

∑K
k=1 b(i)k = 1. Correspondingly, the less total evidence observed, the greater the total

uncertainty is. The mean of the corresponding Dirichlet distribution P̂si for the probability

p̂(k)i is computed as p̂(k)i =
α
(i)
i

S(i) .
In addition, Figure 3 demonstrates the process of the outputs of multiple domain-

specific classifiers in detail. The evidence of each source is obtained using neural networks
(Step �). According to subjective logic [31] , the obtained evidence parameterizes the Dirich-
let distribution (Step �) to induce the classification probability and uncertainty (Step �).
The classification probability and overall uncertainty are inferred by combining the belief
masses of multiple sources based on Dempster’s rule (Step �). Dempster’s combining is
discussed in Section 4.4.

Figure 3. The process of combining the outputs of multiple domain-specific classifiers.

Source domain task loss Lcls is calculated here. To adapt to the Dirichlet distribu-
tion [65], the cross-entropy function is formulated as (11).

Lace

(
α(i)

)
=
∫ [ K

∑
k=1

−yij log
(

pjk

)] 1
B
(
αj
) K

∏
k=1

p
α
(i)
jk −1

jk dpj

=
K

∑
k=1

yjk

(
ψ
(

S(i)
)
− ψ

(
α
(i)
jk

)) (11)
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where ψ(·) is the digamma function, the parameter αi of the Dirichlet distribution and form-
ing the multinomial opinions D(pi αi), where pi is the category assignment probabilities
on a simplex, and pjk is the predicted probability of the jth sample for category k.

The above loss function ensures that more evidence is generated for the correct label
of each sample than for other classes, but there is no guarantee that less evidence is
generated for the incorrect label. That is, in MAN-DS, the expected evidence of incorrect
labels shrinks to 0 [66]. To this end, the following KL divergence term is introduced:

KL
[
D
(
pj | α̃j

)
‖D
(
pj | 1

)]
= log

⎛⎝ Γ
(

∑K
k=1 α̃jk

)
Γ(K)∏K

k=1 Γ
(

α̃jk

)
⎞⎠

+
K

∑
k=1

(
α̃jk − 1

)[
ψ
(

α̃jk

)
− ψ

(
K

∑
r=1

α̃jr

)] (12)

Therefore, given parameter αj of the Dirichlet distribution for each sample j, the loss is:

L
(

α(i)
)
=

nsi

∑
j=1

L
(
αj
)
=

nsi

∑
j=1

{
Lace

(
αj
)
+ ρKL

[
D
(
pj | α̃j

)
‖D
(
pj | 1

)]}
(13)

where ρ > 0 is a balance factor. In practice, ρ increases slowly from zero to 1 to avoid
paying too much attention to the KL divergence term in the early stage of learning.

That is, the classification loss is formulated as:

Lcls =
N

∑
i
L
(

α(i)
)

(14)

4.4. Dempster’s Combination

With subjective logic, there is an FoD Θ = {1, 2, . . . , K} and K + 1 focal elements
{{1}, {2}, . . . , {K}, Θ} with belief mass {b1, b2, . . . , bk, u} in every source–target domain
pair. To fuse these adaptation outputs from N sources, only call Dempster’s rule (defined
in (5)) N − 1 times as:

m⊕(bk) = m1(bk)⊕ m2(bk)⊕, . . . ,⊕mN−1(bk) (15)

In addition, the prediction results of multiple classifiers for the same target sample
should be consistent. Dempster’s combination could help to avoid ambiguity and large
uncertainty on the category boundary, which is demonstrated in Figure 4.

Moreover, the Manhattan distance is used to measure the difference among the classi-
fiers to achieve this goal, as well. Denote e(i) = e(i)1 , e(i)2 , . . . , e(i)k , e(i) = α(i) − 1 = b(i)S(i) as
the final output of the ith source–target domain pair. The loss-of-label Manhattan distance
is formulated as:

Ldist =
1
N

N

∑
i
|e(i) − m⊕(e)| (16)

4.5. Objective Function and Algorithm

The overall objective function of the proposed model is formulated as (17).

arg min
f ,h,c

(Lcls + γLmmd + λLdisc) (17)

In detail, Lcls is minimized to accomplish the source domain task; Lmmd is minimized
to reduce the domain shifts between each source domain and the target domain; Ldisc
is a consistent regular term and minimized to constrain the outputs of domain-specific
classifiers. In addition, γ and λ are trade-off parameters; refer to (1).
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Figure 4. The demonstration the prediction conflict of domain-specific classifiers.
The algorithm of MAN-DS is summarized in Algorithm 1, and it can be trained by

the standard back-propagation.

Algorithm 1 The algorithm of the proposed method

Input: source domain data {Dsi}N
i=1, target domain data Dt, the number of training itera-

tions T, and batch size M;
Output: model parameters;

1: Initialize the parameters of f (·), g(·), hi(·), ci(·);
2: for t = 1, . . . , T do

3: Randomly sample a batch of {(x(j)
si , y(j)

si )}M
j=1 from Dsi, respectively;

4: Randomly sample a batch of {x(j)
t }M

j=1 from Dt;

5: Extract common features f (x(j)
si ) and f (x(j)

t );

6: Extract domain-specific features hi( f (x(j)
si )) and hi( f (x(j)

t ));

7: Compute Lmmd with hi( f (x(j)
si )) and hi( f (x(j)

t )) by (8);

8: Obtain ci(hi( f (x(j)
si ))) for classification and compute Lcls by (14);

9: Obtain ci(hi( f (x(j)
t ))), and combine them by (5)

10: Compute Ldist by (16);
11: Update parameters by (17).
12: end for

5. Experiment

The effectiveness of our cross-domain classification method was verified by conducting
comprehensive experiments on three well-known benchmarks: ImageCLEF-DA, Office-31,
and Office-Home.

5.1. Data Preparation

ImageCLEF-DA [67] is a benchmark dataset for the ImageCLEF 2014 domain adap-
tation challenge, which is organized by selecting the 12 common categories shared by
the following three public datasets, each considered as a domain: Caltech-256(C), Ima-
geNet ILSVRC 2012(I), and Pascal VOC 2012 (P). There are 50 images in each category and
600 images in each domain. All domain combinations were used, and three transfer tasks
were built: C, I → P; C,P → I; I,P → C.

Office-31 [68] is a benchmark for domain adaptation, comprising 4110 images in 31 classes
collected from three distinct domains: Amazon (A), which contains images downloaded
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from amazon.com, Webcam (W), and DSLR (D), which contains images taken by a web
camera and digital SLR camera with different photographic settings. The images in each
domain are unbalanced. To enable unbiased evaluation, all methods were evaluated on all
three transfer tasks: A, W → D; A,W → D; W,D → A.

Office-Home [69] consists of 15,588 images, larger than Office-31 and ImageCLEF-DA.
It consists of images from 4 different domains: Artistic images (A), Clip Art (C), Product
images (P), and Real-World images (R). For each domain, the dataset contains images of 65 object
categories collected in the office and home settings. All domain combinations were used, and
four transfer tasks were built:: A, P, R → C; A, P, C → R; A, R, C → P; P, R, C → A.

5.2. Compared Method

There is a small amount of MDA work based on a domain-specific distribution and
classifier alignment architecture. To verify the effectiveness of our MDSAN model, the
Multiple Feature Spaces Adaptation Network (MFSAN) [55] was introduced as the multi-
source baseline. In addition, the proposed method was compared with ResNet [70], Deep
Domain Confusion (DDC) [14], the Deep Adaptation Network (DAN) [71], Deep CORAL
(DCORAL) [72], and Reverse Gradient (RevGrad) [73].

There are several comparative standards for different purposes. (1) Source combine:
all source domains are combined into a traditional single-source vs. target setting; (2) Single

best: the best single source transfer results among the multiple candidate source domains
with SDA methods; (3) Multi-source: the results of MDA methods. The first standard is
to verify whether multiple source domains are beneficial for the target task or whether
the simple combination of source domains will lead to negative transfer. In addition,
the second standard evaluates whether the best SDA method could be further improved
by introducing other source domains. The third standard demonstrates the effectiveness
of the proposed approach.

Furthermore, ablation experiments were performed to verify the effectiveness of DST
for adaptation outputs’ fusion. This variant is denoted as V1, which simply averages
the outputs in the end. In addition, variant V2 does not consider Lmmd, and variant V3
ignores Ldist.

5.3. Implementation Details

All methods were implemented based on the PyTorch framework and deployed and
testified on the same device. For a fair comparison, the same data pre-processing routines
and model architecture were utilized in all experiments. The pre-trained ResNet50 [70]
was employed as the common feature extractor, where the fine-tuning strategy was used
to save time. For all domain-specific feature extractors, the same structure (conv(1 × 1),
conv(3× 3), conv(1× 1)) was utilized. At the end of the neural network, the channels were
reduced to 256, like DDC [14]. According to subjective logic, the so f tmax layer was replaced
with so f tplus to activate the outputs and avoid negative values. The optimization method
was mini-batch stochastic gradient descent with a momentum of 0.9. The learning rate was
gradually decreased by ηp = η0

(1+α)β , where p is the training progress linearly changing
from 0 to 1, and η0 = 0.01, α = 10, β = 0.75. This would optimize to promote convergence
and low error on the source domain. As for the hyperparameters, γ = ρ = 100λ was simply
set. They were changed from 0 to 1 by a progressive schedule γp = 2

exp(−θp) − 1, (θ = 10),
instead of fixing them throughout the experiments.

5.4. Experimental Results

MAN-DS was compared with the above-mentioned methods on three datasets, and the
average results of five repeated experiments are reported in Tables 1–3, respectively. The
maximum accuracy in a transfer task is marked in bold.
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Table 1. Performance comparison of classification accuracy (%) on Office-31 dataset.

Standards Method A,W→D A,D→W W,D→A Average

ResNet 99.33 96.50 61.87 85.90
DDC 99.33 95.80 67.33 87.49

Single Best DAN 99.43 97.61 66.70 87.91
DCORAL 99.53 98.20 65.20 87.64
RevGrad 99.27 96.67 68.53 88.16

DAN 99.57 97.50 67.73 88.27
Source

Combine DCORAL 99.33 98.00 67.83 88.39

RevGrad 99.73 97.67 67.77 88.39

MFSAN 99.33 98.67 71.50 89.83
V1 99.79 98.50 67.02 88.44

Multi-Source V2 99.73 98.74 66.02 88.16
V3 99.79 98.86 73.87 90.84

MAN-DS 100.00 99.12 74.16 91.09

Table 2. Performance comparison of classification accuracy (%) on Image-CLEF dataset.

Standards Method C,P→I I,P→C I,C→P Average

ResNet 74.83 91.53 83.90 83.42
DDC 74.37 91.33 85.33 83.68

Single Best DAN 75.10 93.33 86.13 84.85
DCORAL 76.67 93.43 88.33 86.14
RevGrad 75.07 94.00 87.07 85.38

DAN 77.67 93.00 91.70 87.46
Source

Combine DCORAL 77.73 93.20 91.33 87.42

RevGrad 78.00 93.03 91.87 87.63

MFSAN 79.17 94.50 93.33 89.00
V1 77.67 95.50 92.83 88.67

Multi-Source V2 77.16 93.50 91.33 87.33
V3 79.56 94.50 91.87 88.40

MAN-DS 79.00 95.67 93.17 89.28

Table 3. Performance comparison of classification accuracy (%) on Office-Home dataset.

Standards Method C,P,R→A A,P,R→C A,C,R→P A,C,P→R Average

ResNet 65.28 48.54 77.56 74.55 66.48
DDC 64.13 50.22 78.42 75.00 66.94

Single Best DAN 69.07 56.46 79.63 74.65 69.95
DCORAL 66.56 55.15 81.38 76.32 69.85
RevGrad 67.58 55.88 80.32 75.86 69.91

DAN 69.07 59.40 78.41 82.50 72.35
Source

Combine DCORAL 68.24 57.62 79.67 83.24 72.19

RevGrad 67.88 57.22 79.52 82.74 71.84

MFSAN 72.86 62.34 80.32 81.86 74.35
V1 74.32 62.12 82.31 83.13 75.47

Multi-
Source V2 72.86 62.34 80.32 81.86 74.35

V3 74.12 63.56 82.52 82.74 75.74
MAN-DS 74.50 64.44 82.56 83.29 76.20
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6. Discussion

6.1. Result Observations

From these experimental results, insightful observations are given:

• The results of Source combine were better than Single best, which shows that the knowl-
edge of the multi-source domain is useful to the target task. That is, the multi-source
domains have transferability. Combining sources into a single source is helpful in most
domain adaptation methods. The performance improvement might be attributed
to the data enrichment.

• MAN-DS outperformed all compared methods on most transfer tasks in all three
datasets, especially in the Office-Home dataset. The results indicate that it is beneficial
to learn the domain-invariant representation and align the distribution in each pair
of the source and target domain with considering domain-specific category boundaries.
Besides, DST alleviates the ambiguity and uncertainty of the prediction and promotes
classification accuracy successfully.

• Comparing MAN-DS with the variant V1, the only difference is that the proposed
method employs DST to fuse the adaptation outputs, while V1 averages them sim-
ply. Although DST was applied in Ldist to align domain-specific boundaries, the
proposed method still has an improvement over V1. Thus, DST is excellent to tackle
the ambiguity and uncertainty of the prediction.

• Comparing MAN-DS with the variant V2, the only difference is that V2 does not
consider Lmmd. The experimental results show that MMD helps domain adaptation
very little. Meanwhile, the proposed Ldist and Dempster’s combination rule could
also help to align the distribution to some extent.

• Comparing MAN-DS with the variant V3, the only difference is that V3 ignores Ldist.
There is little difference in the experimental results, which indicates that DST is
powerful to handle the prediction conflicts on the category boundaries.

6.2. Ablation Experiment

Ablation experiments were implemented by conducting V1, V2, and V3, as shown
in Tables 1–3. The encouraging results show that every component of MAN-DS is positive
to improve performance.

To further verify the effectiveness of the DST fusion strategy, supplementary experiments
were carried out where Si is the isth domain-specific classifier, as reported in Table 4. The
maximum accuracy in a transfer task is marked in bold.

Table 4. Classification accuracy (%) with and without DST fusion strategy on Office-Home dataset.

Method C,P,R→A A,P,R→C A,C,R→P A,C,P→R

S1 72.56 59.48 80.33 80.59
S2 65.58 61.54 75.54 75.78
S3 71.39 60.56 79.87 82.36

DST 74.50 64.44 82.56 83.29

6.3. Feature Visualization

Feature visualization is demonstrated in Figure 5. The category boundaries of the
domain-specific classifier on the task D,W→A learned by MAN-DS and MFSAN are
visualized by using t-SNE embeddings. It is clear that MAN-DS is more effective in dealing
with prediction conflicts, in which DST is effective.
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(a) MAN-DS (b) MFSAN

Figure 5. Domain-specific classifier feature visualization.

6.4. Parameter Sensitivity

Parameter sensitivity was tested by sampling the trade-off parameter (where γ = ρ =
100λ for simplicity) values in {0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2}. To study the parameters’
sensitivity, the experiments were implemented on task D,W→A and A,C→R, and the
results are shown in Figure 6. As observed, the accuracy increases with the increase of γ
and reaches a peak at γ = 1, then decreases. The proposed method MAN-DS can keep a rel-
atively stable result in the range of (0.1, 2) of γ, which is higher than the baseline. Generally,
MAN-DS is not sensitive to changes in the parameters in a certain range. Hence, setting
γ to (0.1, 2) is recommended to achieve better performance. In the reported experiment,
the parameters {γ, ρ, λ} were set to {1, 1, 0.01}, respectively.

Figure 6. Accuracy with respect to γ = ρ = 100λ.
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6.5. Computational Complexity

The FLoating point OPerations (FLOPs) were used to measure the operation times
of forward propagation in neural network; the smaller the FLOPs, the faster the computa-
tion speed is. In addition, the smaller the number of PARAMeters (PARAMs) in the neural
network, the smaller the size of the model is. Table 5 shows the FLOPs and PARAMs
of MAN-DS, MFSAN, and ResNet50. Compared with ResNet50, the small increase of com-
putational complexity mainly comes from the component of domain-specific feature extrac-
tors and classifiers. Compared with the baseline MFSAN, MAN-DS improves the accuracy
without increasing the computational complexity.

Table 5. FLOPs and PARAMs.

Method FLOPs PARAMs

MAN-DS 4.23 G 25.88 M
MFSAN 4.23 G 25.88 M

ResNet50 4.12 G 25.56 M

Moreover, Dempster’s combination does not increase the computational complexity
of the algorithm. For the K-classification task, MAN-DS always obtains K + 1 instead of 2K

focal elements, which is {1, 2, . . . , K, Θ}. That is, the computational complexity caused by
Dempster’s combination is not O(2n), but O(n).

7. Conclusions

The core of MDA is making full use of available source data collected from sev-
eral different, but related domains. However, it becomes difficult and challenging due
to the multiple domain shifts. Following the domain-specific alignment architecture, this
study proposed a novel multi-source domain adaptation network combing Dempster–
Shafer evidence theory for cross-domain image classification to reduce multiple domain
shifts and enhance transfer accuracy. In addition, SL and the Dirichlet distribution were
employed to bridge MDA with DST.

To evaluate the effectiveness of the proposed method, three popular benchmark
datasets were used and ten transfer tasks were devised to train and validate MAN-DS.
Extensive experiments demonstrated that MAN-DS outperforms its competitors in cross-
domain image classification. The insightful conclusions are as follows:

• MAN-DS achieved good accuracy in all ten transfer tasks of three datasets.
On the Office-Home dataset, MAN-DS even improved the average adaptation ac-
curacy to 76.20%, which is about 2% higher than the best baseline.

• Feature visualization shows that MAN-DS could alleviate boundary conflicts to some
extent, due to effective DST.

• MAN-DS is not sensitive to changes in parameters in a certain range γ ∈ (0.1, 2), generally.
• MAN-DS improved accuracy without increasing computational complexity. Compared

with the baseline MFSAN, the FLOPs and PARAMs of MAN-DS were 4.23 G and 25.88 M,
which are close to the 4.12 G and 25.56 M of ResNet. Especially, MAN-DS reduced
the computational overhead of the outputs’ combination from O(2n) to O(n).

• Ablation experiments indicated that every component of MAN-DS is positive to im-
prove performance.

• The encouraging results show that SL could effectively bridge MDA with DST.
• This research study empirically demonstrates DST could reduce the category boundary

ambiguity, so as to mitigate the negative impact of multiple domain shifts.

In this research study, the original and unimproved Dempster’s rule was used. In the
future, the combination rules will be optimized based on the improved information entropy
method to take more evidence information into account. Besides, more effective MDA and
DST bridging methods will be investigated.
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Abstract: The 3D reconstruction experiment can be performed accurately in most cases based on
the structure from motion (SfM) algorithm with the combination of the multi-view stereo (MVS)
framework through a video recorded around the object. However, we need to artificially hold the
camera and stabilize the recording process as much as possible to obtain better accuracy. To eliminate
the inaccurate recording caused by shaking during the recording process, we tried to fix the camera
on a camera stand and placed the object on a motorized turntable to record. However, in this case,
the background did not change when the camera position was kept still, and the large number of
feature points from the background were not useful for 3D reconstruction, resulting in the failure of
reconstructing the targeted object. To solve this problem, we performed video segmentation based
on background matting to segment the object from the background, so that the original background
would not affect the 3D reconstruction experiment. By intercepting the frames in the video, which
eliminates the background as the input of the 3D reconstruction system, we could obtain an accurate
3D reconstruction result of an object that could not be reconstructed originally when the PSNR and
SSIM increased to 11.51 and 0.26, respectively. It was proved that this algorithm can be applied to the
display of online merchandise, providing an easy way for merchants to obtain an accurate model.
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1. Introduction

3D reconstruction refers to the establishment of mathematical models of three-dimensional
objects that are suitable for computers to process, which is the foundation for processing,
manipulating, and analyzing their properties in a computer environment and the key
technology for establishing a virtual reality expressing the objective world in a computer.
3D reconstruction is generally vision-based, and is a way to obtain a 3D model of the
target object by collecting images from a camera and obtaining 3D coordinates according
to the triangulation principle [1]. 3D reconstruction plays a very significant role in object
recognition, scenery understanding, 3D modeling and animation, industrial control, etc. [2].
The development of deep learning in recent years has also brought a new impact and
convenience to 3D reconstruction [3].

Applications of 3D reconstruction have appeared in many fields such as the real-time
reconstruction of nearby scenes in robot navigation and mobile robots [4], the research on
tumors in the medical field [5], and the reconstruction of artifacts in tourist attractions [6].
During the development of computer vision, techniques to study the direction of 3D recon-
struction have become more and more mature, and many methods have been proposed for
this direction, but some problems still remain inevitable. For example, 3D reconstruction
can be an issue for weak texture regions and highlight regions. Both of the problems are
caused by the regions having a lot of similar RGB information, which leads to failures in
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feature extraction and feature point matching. Another example is that in some scenarios, a
constant background or a too complex background can also have a significant impact on
the 3D reconstruction.

When we sell products online, we often choose to record an introductory video about
our products and then upload the video with the details of the item online. In this case,
users are able to look at the pictures or watch the pre-recorded video by the merchants,
but cannot freely view the appearance and details of the product, so there are limitations
to this approach. In this paper, we wished to apply the SfM algorithm to the field of
commodity reconstruction to provide multiple views for customers. Hence, we considered
a fixed camera instead of a moving one to remove any artificial influence such as shaking
to improve the accuracy of the results obtained from SfM. For many online merchants, it
may be more convenient for them to put an object on an auto turntable since they may not
know how to take pictures appropriately. If the background has not changed and only the
object is rotating, we call it a “self-rotating” state, since it is the same as the rotation of the
Earth. Most of the feature points will come from the outside of the object instead of the
object itself, which are not useful at all for 3D reconstruction. This kind of problem will
also lead to a poorly reconstructed model. When using the SfM algorithm provided by
OpenMVG [7] in performing SIFT (scale-invariant feature transform) feature extraction [8]
and feature point matching, we found that such an algorithm was very flawed in the case
where the object is in a self-rotating state while the background does not change.

From the issues above, it can be concluded that the background has a bad influence on
the accuracy of 3D reconstruction, so we proposed a Matting-SfM algorithm in this paper,
in which we eliminated the background of the targeted object. This method removed the
influence of the background on the SfM and thus helped us obtain a good result in the end.

In summary, the conventional SfM algorithm is not able to reconstruct an accurate
result of an object that is in a self-rotating state. In response to such a problem, we propose
the Matting-SfM method, which has made the following contributions:

1. We reveal the reason why conventional SfM cannot reconstruct self-rotating objects.
2. We propose a new algorithm called Matting-SfM, and compare the results of the two

algorithms (Matting-SfM and the SfM) after the MVS reconstruction. It was proven
that Matting-SfM algorithm possessed more accurate results and solved the problem
that the self-rotating objects could not be reconstructed.

The rest of this paper is organized as follows. Section 2 introduces the existing
3D reconstruction techniques. Section 3 presents our methods. The illustration of our
experimental materials is provided in Section 4. Our experimental results are provided in
Section 5, and the conclusions is presented in the last section.

2. Related Work

At present, the major 3D reconstruction methods generally include visual geometric
3D reconstruction and deep learning reconstruction. In visual geometry 3D reconstruc-
tion, there are some classical open source projects such as Colmap [9], OpenMVG [10],
VisualSfM [11], etc. On the other hand, there are also some deep learning methods for
3D reconstruction such as PatchMatchNet [12], MVSNet [13], R-MVSNet [14], PointMVS-
Net [15], Cascade series [16], etc. All of these methods can be used with a MVS framework
such as OpenMVS [17], CMVS [18], PMVS [19], etc. to obtain a good reconstruction result.
Moreover, further developments such as real-time reconstruction [20] or the applications in
embedded devices and hardware [21,22] are also very impressive.

Several 3D reconstruction algorithms are currently being widely used. In terms of
computing camera poses, there are two representative examples. One is based on RGB-D
(e.g., BundleFusion [23]), which requires a camera with depth information and has more
accuracy, but it also causes a device limitation. The other is RGB-based such as SfM
(structure from motion) [24] or SLAM [25], which does not require the camera to have
depth information, but the depth should be calculated during the computing process.
These methods can be applied to the MVS system after obtaining the camera poses and
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a surface-optimized model with mapping will be obtained. In classical visual geometric
reconstructions, the SfM algorithm has been widely used, and thanks to the achievements
of people nowadays, we obtained a global SfM with high efficiency optimization [26].
Zhu et al. used a hybrid global and incremental SfM algorithm [27], and the following year,
they pushed the global SfM to a scale of millions of input images, larger than any previous
work [28]. Chen et al. proposed a tree-structured SfM algorithm [29], which greatly
improved the efficiency compared to the traditional SfM algorithm and also handled the
outliers more reliably, making the SfM algorithm more efficient and fault-tolerant.

Although the previous algorithm produced these exciting results, there is currently
none that can specifically handle the 3D reconstruction of self-rotating objects well. In order
to solve such a problem, we used the ResNet [30] to solve the defect of the algorithm, which
cannot reconstruct the rotating objects. We propose a Matting-SfM algorithm, in which we
segmented the targeted object based on Background Matting v2 [31], using it to eliminate
the background completely. It largely removes the influence of the background on SfM.
The experiment proved that the Matting-SfM algorithm showed a great improvement over
the traditional SfM algorithm in the case of rotating objects and the background remains
unchanged, thus laying a good foundation for subsequent MVS reconstruction.

3. Methods

3.1. Video Segmentation and Background Replacement

Conventionally, the matting approach contains some of the classical algorithms, among
which the Canny algorithm [32] suits our task most. The problem is, for some complex
backgrounds, the results of the traditional algorithm are not always satisfying (Figure 1).
In Figure 1, the left background such as the areas marked in red boxes are not useful and
the object in the yellow box is the only area of interest. That is, the traditional algorithm
cannot eliminate the background totally.

Figure 1. The matting result of the Canny algorithm.

To solve this problem, in this paper, foreground segmentation and background replace-
ment of objects were performed based on Background Matting v2 (BGMv2 for shortcut).
We needed to provide a video or an image dataset of the object with the background and a
background image without the object. The more accurately the background is aligned with
the original video, the better (Figure 2).

We trained a new model by ourselves based on the approach of Lin’s team [31],
which was more suitable for our task to perform 3D reconstruction. The network was
ResNet 50, the epoch was set to 30 with a batch size of 16. We first trained the base
network and the refinement network was trained after it. Our two datasets comprised
VideoMatte240 K and a dataset made by ourselves. VideoMatte240 K contained 484 pairs of
high-resolution Alpha matte and foreground video clips extracted from green screen stock
footage, constituting 240,709 unique frames. The self-made dataset contained 1000 pictures
of different objects such as toys and models. The Alpha matte α and foreground F were
extracted by Photoshop manually.
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Figure 2. The input video (I) and background image (B).

First, the original video or image I and the background image B were linked to a
size of 6 ∗ HC ∗ WC, where the H represents the Height of the image, W represents the
Width of the image. Then, the image will be downsampled with multiplier C to generate
an input of size x 6 ∗ HC ∗WC, which is fed to the basenet. The input and output results
of the two networks can be briefly represented as follows (Figure 3). The model ends
up with five results: Alpha, Foreground, ...Error Map, Refine, and Composite. For us,
Composite was the result that we needed to focus on, which is the core input of our 3D
reconstruction system.

Figure 3. The two network structures of BGMv2 and the input and output results.

The architecture of the basenet is based on DeepLabV3 [33] and DeepLabV3+ [34],
where basenet consists of the backbone and ASPP module [35] along with a decoder
module. The above generated images of size 6 ∗ HC ∗ WC are input to the backbone for
feature extraction. Behind the backbone, the atrous spatial pyramid pooling (ASPP) module
is connected, which is a model that combines null convolution [33] with spatial pyramid
pooling (SPP) [36]. The decoder is connected behind the ASPP and stitches together the
previous output and the extracted special features of the backbone through skip connection
and performs bilinear upsampling, and then extracts the coarse result that consists of four
parts: Coarse Alpha αC; Foreground Residual FR

C ; Error Map Ec; Hidden Hc. The subscript
C indicates the downsampling multiplier and the R refers to the word residual. We set
the downsampling multiplier to 4, which means that the four coarse results generated by
basenet were 1/16 of the original image.

Unlike basenet, operations are not performed on the original map in refinenet, but on
the patches with the K highest prediction errors extracted from the feature map with the
help of Error Map EC. Since the multiplier C in the previous step was set to 4, the input EC
obtained in refinenet is 1/16 of the original image, so each pixel within EC corresponds to a
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patch of 4 * 4 size of the original image. Refinenet connects the four coarse results output
from basenet with the processed image I and background map B as feature maps, selects
patches in the feature maps by EC, and then performs two 3 * 3 convolutions to output 4 * 4
patches. The next step performs upsampling to output 8 * 8 patches, connects this patch
with the corresponding 8 * 8 patches in the original map, performs two 3 * 3 convolutions
again, and finally obtains 4 * 4 Alpha outputs and Error Map patches. Finally, the coarse
Alpha and coarse Error Map are upsampled until the original size, and then the patches are
replaced with the 4 * 4 Alpha and Error Map patches obtained by refinenet.

Using the black background as the final composite image background, given as image I,
background map B using the obtained Alpha mask map α and foreground map F, the new
image I′ can be synthesized by replacing the B with B′ as follows (1):

I′ = αF + (1− α)B′ (1)

While the above I and background map B were provided by us, B′ was set to a black
background since we wanted to remove the background. Alpha mask and foreground
F were predicted by the network structure of BGMv2 as follows. After performing the
processing of the two networks, the final output foreground residual FR can be expressed
in Equation (2):

FR = F − I (2)

F can then be obtained by feeding FR into image I in Equation (3), and by combining
Equations (2) and (3), we can obtain a more detailed foreground image F:

F = max
(

min
(

FR + I, 1
)

, 0
)

(3)

The L1 loss is employed over the entire Alpha matte and its (Sobel) gradient to learn
with respect to the ground truth, α is the ground truth of α obtained by manual processing:

Lα = ‖α − α∗‖1 + ‖∇α −∇α∗‖1 (4)

Using Equation (3), we can calculate the foreground layer using the predicted fore-
ground residual FR. We only calculated the L1 loss on pixels when α > 0, where α > 0 is a
Boolean expression, and F* is the ground truth of F obtained by manual processing:

LF = ‖(α∗ > 0) ∗ (F − F∗)‖1 (5)

The ground truth error map is defined as in Equation (6) for the refinement region
selection. Next, we determined the loss by computing the mean squared error between the
expected error map and the actual error map E, where E* is the ground truth error map
defined by [28]:

E∗ = |α − α∗| (6)

LE = ‖E − E∗‖2 (7)

According to the above formulas, the base network (αc, FcR, Ec, Hc) = Gbase (Ic, Bc)
operates at 1/c of the original image resolution and the loss function is used as:

Lbase = LαC + LFC + LEC (8)

The same as refinenet (α, F, R) = Grefine (αc, FcR, Ec, Hc, I, B), the loss function of it is
used as Equation (9):

Lre f ine = Lα + LF (9)

3.2. Reconstructing Sparse Point Cloud

In visual geometric 3D reconstruction, there are two methods of the SfM algorithm:
incremental SfM and global SfM. In this paper, we used incremental SfM for reconstruction,
so the Global SfM was not included. Before the steps of 3D reconstruction, we had to
conduct some pre-processing steps such as SIFT feature extraction [8], AC-RANSAC [37]
for linear fitting, etc. The main steps of pre-processing can be described as follows (Figure 4).
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Figure 4. The pre-processing process.

In order to find the connection between p and p′, we used the AC-RANSAC algorithm
provided by OpenMVG to calculate the Basic Matrix in Equation (10), and the parameters
in the formula can be referred to in Figure 5.

F = K′−T [TX ]RK−1 (10)

where F is the basic matrix, and K and K′ are the internal parameter matrix of the two
cameras. l and l′ are the rays of p and p′, I and I′ are two different planes. O1 and O2 two
diferent views. R and T are the rotation and translation matrix in 3D coordinates, and
[TX ]R is referred to as the essential matrix in Equation (11):

E = T × R = [TX ]R (11)

Figure 5. The parameter in the basic matrix.
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In the pre-processing stage, we also need to obtain the homography matrix (Figure 6).
It is known that the internal parameter matrix K of the first camera, the internal parameter
matrix K′ of the second camera, the position of the second camera with respect to the

first camera is
(

R,
→
t
)

,
→
t is a vector,

→
n is the unit normal vector of the plane π in the

coordinate system of the first camera, and d is the distance from the coordinate origin to
the plane π (7). P, p and p’ are three corresponding points in different planes. Through
the parameters above, we can gain the homography matrix in (12). Once the basic matrix
and homography matrix are obtained, we can use these two matrices to the following
triangulation calculation, which is a very important step of the SfM.

H = K′
(

R +
→
t ×→

n
T
d

)
(12)

Figure 6. The parameter in the homography matrix.

In the pre-processing stage, we could see a certain problem that the same background
feature points could be observed in every image with the same background; instead,
the feature points of the reconstructed object showed less matching compared to the
background. We used OpenMVG as an example and the SfM algorithm provided by
OpenMVG for reconstruction, which has the following approximate steps (Figure 7).

Figure 7. The steps of the SfM provided by OpenMVG for 3D reconstruction.
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In the step of ‘Reconstructing the Initial Point Cloud from Two Views’ (see Figure 7),
we needed to select an edge from the connected graph obtained from the previous step.
In this step, the relationship between the edges should be satisfied that when all points
correspond to point triangulation, the median angle between the camera and the ray on
the 2D image cannot be greater than 60◦, but not less than 3◦. For a dataset with a large
number of feature points that come from the background, the ray pinch angle is basically
constant, which is the reason why no feature points meet the requirement. In the 2D image,
it looks like there is a certain angle (see Figure 8) between these two pairs of points, but the
corresponding 3D points of these two pairs are completely unchanged after triangulation
and do not satisfy the case where the median of the ray angle is greater than 3◦ when the
corresponding points are triangulated, so such pairs of points will not be selected. All of
the features extracted from the dataset and their matches are shown in Figures 9 and 10.
Although there were indeed a large number of matches in Figure 9, most of them were not
useful at all because they came from the background.

Figure 8. The angle of the ray at the triangulation point.

Figure 9. The features extracted from the image.
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Figure 10. The useless matches between two images.

The dataset of the Composite result after segmentation was input (Figure 2). It is easy
to extract feature points from such a dataset; for the SIFT feature extractor, a large amount
of the same black RGB information in the background cannot be extracted as features, so
most of the feature points will come from the object that needs to be reconstructed and a
sparse point cloud will be gained step-by-step (Figure 11).

Figure 11. The sparse point cloud obtained from the SfM.

3.3. Densifying the Sparse Point Cloud by MVS

After obtaining the sparse point cloud and camera poses in the previous step, for
a better observation, these results were used as the input to MVS to densify the sparse
point cloud. For all of the sparse point clouds in this paper, OpenMVS [16] was used to
finish that task except for VisualSfM. Note that OpenMVS does not support VisualSfM
anymore since 2 years ago, so we were only able to use CMVS-PMVS [18,19] to densify
the sparse point cloud, but there will not be too much difference. The inputs to the whole
MVS system are the image dataset and the camera poses, which need to be processed with
domain frame selection [38] as well as the global best domain frame selection [39] in the
initial stage of data preparation. In the DensifyPointCloud step, the semi-global matching
(SGM) [40] is used to compute the depth of the image and input the computed depth map
into MVS to obtain the dense point cloud, which is more complete and tighter than the
sparse point cloud.

In this way, the sparse point cloud is made more tighter and easy to observe, which
means that we have an intuitive way to compare the results obtained by different methods.
The output can be clearly seen in Figure 12 and the difference between the sparse point
cloud and dense point cloud can be well observed in Figure 13.
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Figure 12. The output of densifying the sparse point cloud by MVS.

Figure 13. The comparison between the sparse and dense point cloud.

4. Experiment Materials and Evaluation Indices

For the experimental part, the dataset organization is shown in Figure 14, and more
details will be introduced as follows. A single image was selected to see the details, and
for better observation, some of the total were chosen to show the continuous images in the
dataset. Four representative experiments were selected in this paper. These experiments
were all conducted in a well-lit environment, and the resolution and frame rate of the
three videos were all 4 k/60 Hz. Thirty frames of each of these three videos were used
as the three groups of the dataset that were input to Colmap, VisualSfM, and OpenMVG.
Since we wanted to place more emphasis on the influence of the background, a single
typical car model was chosen to test our algorithm. Our final purpose was to gain a very
accurate object without any residue of the background since merchants may not know how
to eliminate the residual 3D points in the point cloud. All of the experiments focused on
the influence of the background.
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Figure 14. The dataset organization.

The first experiment was to verify the performance of the traditional reconstruction
method by putting the object on the turntable and recording a video using a camera to
shoot around the targeted object. The targeted object of the video was a car model, and
there were a large number of feature points on the object that could be provided to the
algorithm for computation. The left side of Figure 15 shows one of the images in the object’s
image dataset obtained from the video, and the right side shows a general overview of the
30 image dataset of the object.

Figure 15. The image dataset used in experiment 1.

The second experiment was to investigate whether the traditional algorithm could
use the dataset of a self-rotating object for 3D reconstruction. The object of the video was
the same car model, and we put the car on a motorized turntable and fixed the camera on
a camera mount. In this experiment, the background was complicated. The left side of
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Figure 16 shows one of the images in the object’s image dataset obtained from the video,
and the right side shows a whole look of the 30 image dataset.

Figure 16. The image dataset used in experiment 2.

Next, to eliminate the impact of the background, we tried to artificially remove the
background of the dataset, making it as simple as possible. Therefore, we proceeded with
the third experiment. A smooth and white background was chosen to obtain the dataset.
The same as in the above figures, on the left side of Figure 17 is one of the images of the
object’s image dataset from the video, and on the right side is an overview of the 37 image
dataset of the object.

Figure 17. The image dataset used in experiment 3.
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The fourth experiment was to explore the performance and accuracy of the Matting-
SfM algorithm. The background of the second dataset was replaced with a black back-
ground without feature points, which means that the original background eliminated the
background totally. Figure 18 shows the intermediate products of the Matting-SfM, that is,
the dataset after segmentation.

Figure 18. The image dataset used in experiment 4.

When it came to the evaluation, we choose three methods: hist similarity; peak signal
to noise ratio (PSNR); and the structural similarity index (SSIM). All of these were used to
evaluate the similarity between the original image and the models.

For the hist similarity, the histogram data of the source image and the image to be
filtered were collected, and the collected image histograms were normalized, then we
directly performed a correlation comparison provided by OpenCV.

For the PSNR, given a clean image I and noisy image K of size m * n, the formulas
used were:

MSE =
1

mn

m−1

∑
i=0

n−1

∑
j=0

[I(i, j)− K(i, j)]2 (13)

PNSR = 10× log10

(
MAX2

I
MSE

)
(14)

where the MSE is the mean square error; MAXI
2 refers to the maximum possible pixel value

for the images.
For SSIM, given two images X and Y, the formulas are as follows. The L(X,Y), C(X,Y)

and S(X,Y) refer to the luminance, contrast, and structure of two images, respectively:

L(X, Y) =
2uXuY + C1

uX2 + uY2 + C1
(15)

C(X, Y) =
2σXσY + C2

σX2 + σY2 + C2
(16)

S(X, Y) =
σXY + C3

σXσY + C3
(17)
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where uX, uY represent the mean of image X and Y; σX and σY represent the standard devia-
tion of image X and Y; σX2 and σY2 represent the variance of image X and Y; σXY represents
the covariance of image X and Y; C1, C2, and C3 are constants to avoid the denomina-
tor being 0 and maintain stability. Usually C1 = (K1 * L)ˆ2, C2 = (K2 * L)ˆ2, C3 = C2/2, and
generally K1 = 0.01, K2 = 0.03, L = 255.

Finally SSIM can be expressed as:

SSIM(X, Y) = L(X, Y) ∗ C(X, Y) ∗ S(X, Y) (18)

5. Results

For all of the experiments, the SfM system was set to a high quality mode to ensure
that all of the SfM systems were run in the same way, but in some cases, the high quality
mode still did not go well.

The first experiment was to explore the performance of the traditional SfM algorithm.
The experiment results proved that the traditional SfM algorithm worked well when the
camera recorded around the object (the object was kept still and the background changed,
see Figure 12). In the first experiment, the models were indeed obtained, but the background
influenced the accuracy (see the blue edges around the model in Figure 19) of the model,
making it look coarse and rough. Furthermore, the shaking of the video will also have an
impact on the result, so we must make a lot of effort to stabilize the camera in our hands.

Figure 19. The results of experiment 1.

In order to solve the problem raised in experiment 1, we proceeded with experiment
2. The recording method of fixing the camera position and making the targeted object
rotate was used. This way avoided the bad impact of human factors on the reconstruction.
However, for this dataset, we could not obtain any results at all, and all of the methods
failed when reconstructing the second dataset (Figure 20).

It is deduced that this phenomenon was due to the unchanged background, so next,
the third dataset was used for testing. Although we tried to simplify the background, the
background still had a certain impact on the accuracy of the result (Figure 21). In this case,
the results were obtained but they were still not satisfactory, so the influence of background
still existed. Moreover, a result could not be gained even in the high quality mode for
OpenMVG, as we only obtained a defective result from it.
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Figure 20. The results of experiment 2.

Figure 21. The results of experiment 3.

After several experiments, it was obvious that the effect of the background of the
datasets was always bad for the traditional SfM algorithm, so we introduced our method
of Matting-SfM. In experiment 4, Matting-SfM was used to process the second dataset by
simply providing a background image (Figure 2) and totally eliminated the background
(Figure 22).

Figure 22. The dataset after segmentation.
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The second dataset was put directly into our Matting-SfM algorithm, and after pro-
cessing, it produced an intermedia dataset (Figure 22). In this experiment, we removed
the effect caused by the background. Finally, we performed the whole procedure of 3D
reconstruction, where it can be seen that a 3D model with high accuracy and detailed
texture was reconstructed (Figure 23).

Figure 23. The final reconstruction of Matting-SfM after segmentation.

For all of the datasets above-mentioned, except for the first one, we used the same
method to process the dataset, and finally, the comparisons are listed in Table 1. Note that
Table 1 only includes the third dataset because Colmap, VisualSfM, and OpenMVG did not
obtain any results from the second dataset; since Matting-SfM is an algorithm that focuses
on the self-rotating object, the first dataset was not included.

Table 1. A comparison of all of the datasets using the mathematical method.

Methods Hist Similarity (%) PNSR SSIM

Colmap 99.85% 10.95 0.25

VisualSfM 99.80% 10.79 0.21

OpenMVG 99.50% 9.55 0.14

Matting-SfM 99.90% 11.51 0.26

The experiments used three methods to evaluate the results, all of which were used to
evaluate the similarity between the original image and the models. To ensure the accuracy
of the results, all models were set to the same direction and the screenshot was compared
to the original image. We compared all of the same angles with the datasets and calculated
the mean values of the three methods. For the parameters above, the higher the parameters,
the more similar the model to the original image.

238



Mathematics 2022, 10, 2892

What should be emphasized is that the parameters are only a digital way to evaluate
the results, and the mathematical method is not always the best way to distinguish the
differences between images as they may produce some misunderstandings and the models
actually look more different than the display of numbers. Therefore, we have to use a
visible way to evaluate the results, as shown in Figure 24. Through the mathematical
methods and visible ways, we can clearly distinguish the results of four approaches, where
Matting-SfM obtained more accurate results than the others.

Figure 24. A comparison of all of the datasets using the visible method.

In addition, the performance of Matting-SfM was tested on other objects (Figure 25).
Three objects were selected, the first one being a money jar, the second one being a dog doll,
and the last was a very small accessory. Note that the background of the three datasets
was chosen to be as complex as possible. It can be seen that the first two objects were
reconstructed well through Matting-SfM, however, it did not work well on the conventional
SfM. Furthermore, due to the tiny size and the complex background of the last object,
the conventional SfM did not produce any results, while for Matting-SfM, the object was
indeed reconstructed, but the quality leaves some small room to be improved.

It can be concluded that Matting-SfM can work properly with fixed camera position
and self-rotating object and it can reconstruct a good result. Matting-SfM solves the
problem of not being able to reconstruct self-rotating objects with unchanging background.
Experiments have shown that our results are greatly improved after applying the Matting-
SfM algorithm. The result shows that the Matting-SfM algorithm is able to reconstruct the
object under rotation normally, which solves the problem that the traditional SfM algorithm
cannot reconstruct the object under a self-rotating state.
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Figure 25. More objects used to test the performance of Matting-SfM.

6. Conclusions

In this paper, we proposed a Matting-SfM algorithm to solve the problem of recon-
struction failure under the condition of a self-rotating object and maintain a high accuracy.
Since the SfM algorithm has certain requirements on the stability and lighting of the camera,
we selected an indoor environment. We fixed the camera using a camera support and
placed the object on a motorized turntable to make the object rotate for shooting. This
approach not only ensured the stability to achieve high precision reconstruction, but also
avoided the negative impact of artificial recording.

At present, we have embedded the algorithm in our system and have deployed it
on the server. By uploading the format of mp4 videos and the background image, the
algorithm in the server will eliminate the background using deep learning methods, then
output the video with the background in black after segmenting the object. The video is
processed by intercepting key frames and outputting them as an image dataset, and the
output dataset will be automatically reconstructed after the processing is completed. Finally,
the system downloads the results (GLTF Files and PNG Texture Image) to the computer, so
we can simply view the result through the website constructed by Web OpenGL.

Although this algorithm solves the problem that self-rotating objects with unchanging
background cannot be reconstructed, there is still no way to match the feature points well for
some objects with not enough feature points, or regions with highlights and weak textures
such as the back of the car in Figure 22. We can see that the depth information was wrong
when calculating, leading to a dent in the back of the model. For some excessively detailed
and skeletonized areas, a background that is very aligned with the original video needs
to be provided, otherwise it will output less accurate results. Sine we cared more about
accuracy than real-time, in the future, we will try to solve the problem of highlights and
weakly textured areas with a deep learning approach, replacing such areas with valid RGB
information from a deep learning method in a better way. In this way, feature extraction,
feature point matching, and texture mapping will not be affected badly. Furthermore, it
is a good way to improve feature extraction by replacing the CNN (convolutional neural
network) [41–45] with a traditional algorithm such as SIFT as it may perform better.
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Abstract: The transferability of adversarial examples allows the attacker to fool deep neural networks
(DNNs) without knowing any information about the target models. The current input transformation-
based method generates adversarial examples by transforming the image in the input space, which
implicitly integrates a set of models by concatenating image transformation into the trained model.
However, the input transformation-based methods ignore the manifold embedding and hardly ex-
tract intrinsic information from high-dimensional data. To this end, we propose a novel feature
transformation-based method (FTM), which conducts feature transformation in the feature space.
FTM can improve the robustness of adversarial example by transforming the features of data. Com-
bining with FTM, the intrinsic features of adversarial examples are extracted to generate transferable
adversarial examples. The experimental results on two benchmark datasets show that FTM could
effectively improve the attack success rate (ASR) of the state-of-the-art (SOTA) methods. FTM im-
proves the attack success rate of the Scale-Invariant Method on Inception_v3 from 62.6% to 75.1% on
ImageNet, which is a large margin of 12.5%.

Keywords: adversarial example; feature transformation; black-box attack; ensemble attack; deep
neural network

MSC: 68T10

1. Introduction

DNNs have been shown to perform well in many fields, for example, image clas-
sification [1–3], human recognition [4], image segmentation [5], image fusion [6], visual
object tracking [7,8], super-resolution [9], etc [10]. The ultimate goal of these studies is
to make DNN-based applications more practicable and efficient. However, the existence
of adversarial examples presents a concern for security of many applications, such as
autonomous driving [11], face recognition [12–14], etc.

Adversarial examples [15], generated by adding indistinguishable perturbations to
the raw images, can lead the DNNs to make completely different predictions. They can
even take effect for completely unknown models, which is called the transferability of
adversarial examples. In addition to this, there are several studies on universal adversarial
perturbations [16,17], which are able to take effect on any image. Some studies are devoted
to the application of adversarial examples to real-world scenarios, such as face recognition,
autonomous driving, etc. [18–22]. Studying both adversarial attack and defense [23–26] is
of significance, not only in revealing the vulnerability of DNNs, but also in improving the
robustness of DNNs.

Many white-box attack methods have been proposed, such as Fast Gradient Sign
Method (FGSM) [27], Basic Iterative Method (BIM) [28], etc. However, it is difficult for an
attacker to obtain the structure and other parameters of the target model in the real-world
situation. Therefore, various approaches have emerged to enhance the transferability of
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adversarial examples for black-box attack. Ensemble Attack [29] is an effective method to
enhance the transferability of adversarial examples. Lin et al. [30] proposed Scale-Invariant
Method (SIM), which utilizes input transformation to obtain a new model. A set of models
can be obtained by using different transformations several times. With this approach, they
can perform an ensemble attack with only one trained model, which is an implicit ensemble
attack. Input transformation-based methods are successfully used for an adversarial attack,
such as Diverse Input Method (DIM) [31], Translation-Invariant Method (TIM) [32], Admix
Attack Method (Admix) [33], etc. However, these methods ignore the manifold structure of
adversarial examples and few works focus on feature transformation. To this end, this work
proposes a feature transformation-based method (FTM) to improve the transferability of
adversarial examples. Compared with the input transformation, our approach transforms
the intrinsic features of data instead of the input images. FTM is an implicit ensemble
attack that can simultaneously attack multiple models that extract different features. It can
improve the robustness of the adversarial example at the feature level. This work proposes
several feature transformation strategies. FTM could effectively improve the performance
of the SOTA adversarial attacks. Our contributions can be summarized as follows.

• This work proposes a novel feature transformation-based method (FTM) for enhancing
the transferability of adversarial examples.

• We propose several feature transformation strategies and comprehensively analyze
the hyper-parameters of them.

• The experimental results on two benchmark datasets show that FTM could effectively
improve the attack success rate of the SOTA methods.

The structure of the paper is organized as follows. Section 2 introduces related work.
Section 3 details the proposed FTM. Section 4 shows the experimental results. Section 5
gives a summary of this work.

2. Related Work

2.1. Adversarial Example and Transferability

It is firstly pointed out by Szegedy et al. [15] that DNNs are vulnerable to adversarial
examples, which are generated by adding imperceptible noises to raw images.

Let x be a clean image, y = f (x; θ) be the output label predicted by the model with
parameters θ, and || · · · ||p denotes the p-norm. The adversarial example is an image xadv

whose output label f (xadv, θ) �= f (x, θ), and the Lp norm of the adversarial perturbation
xadv − x is smaller than a threshold ε as ||xadv − x|| ≤ ε. p = ∞ is used to limit the
distortion. Many methods are proposed to improve the attack success rate (ASR) of
adversarial examples. These methods can be divided into two branches: advanced gradient
calculation and input transformations.

2.2. Advanced Gradient Calculation

This branch exploits better gradient calculation algorithms to enhance the performance
of adversarial examples in both white-box settings and black-box settings.

Fast Gradient Sign Method (FGSM): Szegedy et al. [27] make the point that linear
behavior in high-dimensional spaces is sufficient to cause adversarial examples. According
to this point, they propose the FGSM, which generates an adversarial example xadv by
maximizing the loss function J(xadv, y; θ) with a one-step update:

xadv = x + ε · sign(∇x J(x, y, θ)) (1)

where J(x, y : θ) denotes the loss function of classifier f (x : θ), ∇x J(x, y, θ) is the gradient
of loss function with regard to x and sign(·) is the sign function to make the perturbation
meet the Lp norm bound.
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Basic Iterative Method (BIM): Kurakin et al. [28] extend FGSM to an iterative version
by iteratively applying gradient updates multiple times with a small step size α. BIM can
be expressed as:

xadv
t+1 = Clipε

x{xadv
t + α · sign(∇x J(x, y, θ))} (2)

where x0 = x and Cilpε
x(·) restricts generated adversarial examples to be within the ε-ball

of x.
Momentum Iterative Fast Gradient Sign Method (MI-FGSM): To reduce the varia-

tion in update direction and avoid local minima, Dong et al. [34] introduce momentum into
the BIM. The update procedure is formulated as follows:

gt+1 = μ · gt +
∇x J(x, y, θ)

||∇x J(x, y, θ)||1
(3)

xadv
t+1 = Clipε

x{xadv
t + α · sign(gt+1)} (4)

where gt gathers the gradient of the first t iterations with a decay factor μ.
Nesterov Iterative Fast Gradient Sign Method (NI-FGSM): NI-FGSM [30] adopts

Nesterov’s accelerated gradient to improve the transferability of MI-FGSM. This method
replaces xadv

t in Equation (4) with xnest, while xnest can be formulated as follows:

xnest = xadv
t + α · μ · gt (5)

2.3. Input Transformations

Various input transformation-based methods, such as DIM, TIM, SIM, and Admix, are
proposed to generate transferable adversarial examples.

Diverse Input Method (DIM): Inspired by the facts that data augmentation is effective
to prevent networks from overfitting, Xie et al. [31] apply random resizing and random
padding to the inputs to improve the transferability of adversarial examples.

Translation-Invariant Method (TIM): Dong et al. [32] propose to replace the gradient
on the original image with the average value of multiple translated images for the update.
Inspired by the translation-invariant property, they approximate this process by convolving
the gradient with a predefined kernel matrix to avoid introducing much more computations.

Scale-Invariant Method (SIM): Lin et al. [30] discover the scale-invariant property of
deep learning models and introduce the definition of loss-preserving transformation and
model augmentation. Accordingly, they present SIM that calculates the average gradient
on the scaled copies of the original image for the update.

Admix Attack Method (Admix): Admix is proposed by [33] to enhance the transfer-
ability of the adversarial examples. It integrates gradient information of different categories
of images for the update. Specifically, Admix randomly selects a number of different
categories of images and then admix the sampled image with a minor weight to the original
input image. It calculates the gradient on the mixed image for update.

2.4. Adversarial Defense

In addition to adversarial attacks, many works on adversarial defense have been
proposed to improve the robustness of the classifiers. The current defense methods can be
divided into two categories.

One category aims to improve the robustness of the classifier itself, such as adversarial
training [27,35]. It adds adversarial examples to the training set during the training of the
model, making it immune to the adversarial examples. This is a popular and effective
defense method and has many great following works [36,37]. However, its effectiveness is
largely limited by the method of generation of the added adversarial examples.

Another category of defense methods reduces the impact of adversarial perturbations
by modifying the input images, such as adding noises and compressing the images [38,39].
Xie et al. [40] propose to perform randomized resizing and padding to inputs at inference

245



Mathematics 2022, 10, 2976

time, which is the top-1 defense solution in the NIPS competition. Nips-r3 fuse multiple
adversarial trained models and perform several input transformations at inference time.
These methods require no additional training computational overhead and are effective
against various attack approaches.

3. Our Approach

A DNN model could be formulated as f (x) = lin(con(x)), where con(·) and lin(·)
denote the convolutional part and the fully connected part, respectively. p = con(x)
denotes the feature extracted by the convolutional part.

To obtain an ensemble of models that extract different features, we propose the feature
transformation denoted as FT(·). Through introducing feature transformation, we can
obtain a new model f ′(x) = lin(p′) = lin(FT(con(x))) extracting different features from
the original model during every iteration. FTM optimizes the adversarial perturbations
over several different transformed features:

arg min
xadv

1
m

m

∑
i=0

J(lin(FTi(con(xadv))), ytrue), (6)

s.t., ‖xadv − x‖∞ ≤ ε, (7)

where m denotes the number of iterations and FT(·) denotes the feature transformation.
Thus, FTM is an implicit ensemble attack that simultaneously attacks m models. The
illustration of the FTM is shown in Figure 1.

Convolution

eature ransformation

p

p

p m Linearnput

eature

r r 

oisepace

r r 

oisepace

r r m

oisepace

Figure 1. Illustration of the proposed FTM. The feature transformation shown in the illustration is
the Strategy I. The random noise vectors zi sampled from the uniform distribution are added to the
feature p. The average loss of the transformed features is calculated to update the input image.

In this paper, we consider five strategies of feature transformation as follows:
Strategy I: Fixed threshold random noise: Add a random vector z sampled from the

uniform distribution U (−r, r):

FT(p) = p + z (8)

Strategy II: Mean-based threshold random noise: z is a random vector sampled from
the uniform distribution U (−r, r) and p is the mean value of feature p. Adding p · z to
feature p:

FT(p) = p + p · z (9)
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Strategy III: Feature overall scaled: Multiply the features p by a random number k
sampled from the uniform distribution U (−r, r):

FT(p) = k · p (10)

Strategy IV: Each value of feature scaled separately: Multiply feature p by a random
vector z sampled from the uniform distribution U (−r, r):

FT(p) = z · p (11)

Strategy V: Offset mean random noise: Add a random vector z sampled from the
uniform distribution U (−r + s, r + s) to feature p:

FT(p) = p + z (12)

The feature transformation should also be an accuracy-preserving transformation. We
define the accuracy-preserving feature transformation as follows:

Definition 1 (Acc-preserving Feature Transformation). Given a test set X and a classi-
fier f (x) = lin(con(x)), Acc(lin(con(x)), X) denotes the accuracy of model f (x) on data
set X. If there exists an feature transformation FT(·) that satisfies Acc(lin(con(x)), X) ≈
Acc(lin(FT(con(x))), X), we say FT(·) is an accuracy-preserving feature transformation.

We experimentally study the acc-preserving feature transformation strategies in
Section 4.1.2. We determine the magnitude r of uniform distribution to ensure that our
feature transformations are accuracy-preserving transformations. The algorithm of the
FTM attack is summarized in Algorithm 1.

Algorithm 1 Algorithm of FTM.

Input: Original image x, true label ytrue, a classifier f = lin(con(x)), loss function J,
feature transformation FT(·)
Hyper-parameters: Perturbation size ε, maximum iterations T, number of iterations of
feature transformation m
Output: Adversarial example xadv
1: perturbation size in each iteration: α = ε/T
2: while 0 ≤ t < T − 1.
3: if k = 0.
4: x0 = x.
5: end if
6: g = 0
7: while 0 ≤ i < m − 1
8: feature:p = con(x)
9: transformed feature: p′ = FT(p)
10: Get the gradients by ∇x J(lin(p′), ytrue)
11: Update g = g +∇x J(lin(p′), ytrue)
12: end while
13: Get average gradients as g = 1

m · g
14: Update xadv

i+1 = Clipε
x{xadv

i + α · sign(g)}
15: end while
16: return xadv = xadv

T
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4. Experimental Results

4.1. Experiment on ImageNet
4.1.1. Experimental Setup

Dataset. We perform experiments on ImageNet, which is the most common and
challenging image classification dataset. 1000 images from the ImageNet [41] are selected
as our test set. The 1000 benign images belong to 1000 different categories and can be
correctly classified by the tested models.

Networks. This work selects four mainstream models, including Inception_v3 (Inc_v3) [42],
Inception_v4 (Inc_v4), Inception-Resnet_v2 (IncRes_v2) [43], and Xception(Xcep) [44].

Attack setting. We follow the setting in Lin et al. [30] with the maximum perturbation
as ε = 16, number of iteration T = 16, and step size α = 1.6, which is a difficult and
challenging attack setting. We adopt the decay factor μ = 1.0 for MI-FGSM. The trans-
formation probability is set to 0.5 for DIM. The number of scale copies is set to m = 5
for SIM. We set m1 = 5 , and randomly sample m2 = 3 images with η = 0.2 for Admix.
The hyper-parameter settings of these attack methods are all consistent with the original
papers.

4.1.2. Accuracy-Preserving Transformation

To investigate accuracy-preserving transformations, we test the accuracy of the models
integrated with the five strategies on the ImageNet dataset. We keep the magnitude r of
uniform distribution in the range of [0, 10].

The magnitude of uniform distribution is an important hyper-parameter of FTM. A
larger magnitude will increase the diversity of the implicit ensemble models and thus
improve the transferability of the adversarial examples. However, too large a magnitude
will make the model invalid and thus lose the ability to guide the generation of AE. As
shown in Figure 2, the accuracy curves are smooth and stable for strategies I, II, and V when
the magnitude is in the range of [0, 4]. They drop significantly after the magnitude exceeds
4. Moreover, the accuracies for strategy III and IV are extremely low when the magnitude
is close to 0. They turn to remain stable after the magnitude exceeds 4. It can be seen
that the feature transformation strategy with scaled operation is more sensitive to small
magnitude, e.g., strategies III and IV. The feature transformation strategy of adding noise is
more sensitive to a large magnitude, e.g., strategies I, II, and V. Based on the experimental
results, the magnitude of uniform distribution is set to 4 in the following experiment to
ensure that the feature transformations are accuracy-preserving transformations.

Figure 2. The average classification accuracy of Inc_v3, Inc_v4, IncRes_v2, and Xcep integrated
with five different feature transformation strategies on ImageNet. The horizontal coordinate is the
magnitude of uniform distribution and the vertical coordinate is the accuracy of the model.
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4.1.3. Feature Transformation Strategies

In this section, we show the experimental results of the proposed FTM with five
feature transformation strategies. We set m = 1 and generate adversarial examples on the
Inc_v3 by FT-FGSM, FT-MI-FGSM, and FT-SIM. The ASRs against the other three black-box
models are presented in Table 1.

Table 1. The black-box ASRs (%) of FT-FGSM, FT-MI-FGSM, and FT-SIM with five strategies on
ImageNet. The adversarial examples are generated on Inc_v3. The highest ASRs are shown in bold.

Method Strategy Inc_v3 Inc_v4 IncRes_v2 Xcep

FT-FGSM

I - 36.1 33.5 35.3
II - 37.3 33.7 35.1
III - 37.0 35.9 37.5
IV - 37.5 32.0 34.7
V - 37.7 33.4 34.4

FT-MI-FGSM

I - 55.1 52.5 59.8
II - 53.0 50.4 54.4
III - 54.9 51.6 57.8
IV - 53.4 50.8 56.5
V - 57.0 53.3 59.2

FT-SIM

I - 43.0 41.3 42.9
II - 38.5 34.9 39.3
III - 42.9 42.6 44.0
IV - 42.2 42.4 43.5
V - 41.1 41.9 42.6

When combined with FT-FGSM, Strategy III achieves the best overall attack perfor-
mance, reaching 35.9% and 37.5% when attacking IncRes_v2 and Xcep, respectively. When
attacking with FT-MI-FGSM, Strategy V attains the best overall attack performance, reach-
ing 57% and 53.3% when attacking Inv_v4 and IncRes_v2, respectively. When FT-SIM is
used to attack IncRes_v2 and Xcep, Strategy III achieves the ASRs of 35.9% and 37.5%, which
outperforms the other strategies. It can be seen that the overall performance of Strategy III
is better and it performs better in the experiments combined with SIM, which is an input
transformation-based method. Thus, we adopt Strategy III in the following experiments.

4.1.4. Attack with Input Transformations

We test the ASRs of MI-FGSM, SIM, DIM, and Admix, respectively. Then we combine
these methods with FTM as FT-MI-FGSM, FT-SIM, FT-DIM, and FT-Admix. Some adver-
sarial examples are shown in Figure 3. We adopt Strategy III, set m = 1, set the magnitude
of uniform distribution r = 4, and then use the generated adversarial examples to attack
the four models. We compare the black-box ASRs of FT-MI-FGSM, FT-SIM, FT-DIM, and
FT-Admix with MI-FGSM, SIM, DIM, and Admix in Tables 2–5. In the tables, the first
columns are the local models, and the first rows are the target models. The values in
the tables are the attack success rates (ASRs) on the target models using the adversarial
examples generated from the local models. The higher ASRs are bolded.

When combined with MI-FGSM, the ASRs is increased by up to 9.4%, from 55%
to 64.4% when attacking Xcep with Inc_v4. When FT-SIM is used to attack IncV3 with
IncRes_v2, the ASR is improved from 62.6% to 75.1%, which outperforms the SIM by 12.5%.
The adversarial examples generated by FT-DIM achieved about 55% ASR against all models.
When FT-Admix is used to attack IncV3 with Xecp, the ASR reaches 72.2%.

According to the reported experimental results, it can be observed that FTM could im-
prove the ASRs of adversarial examples generated by the SOTA black-box attack methods.
It is confirmed that feature transformation can improve the transferability and robustness
of adversarial examples.
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Figure 3. Adversarial examples generated by MI-FGSM, DIM, SIM, Admix, the proposed FT-MI-
FGSM, FT-DIM, FT-SIM, and FT-Admix on the Inc_v3.

Table 2. The black-box ASRs of MI-FGSM and FT-MI-FGSM on ImageNet. The first column is the
local model, and the first row is the target model. The values in the table are the ASRs (%) on the
target models using the adversarial examples generated with the local models. The higher ASRs are
shown in bold.

Local Model
Attack

Method
Inc_v3 Inc_v4 IncRes_v2 Xcep

Inc_v3 MI-FGSM - 51.3 49.6 53.0
FT-MI-FGSM - 54.9 51.6 57.8

Inc_v4 MI-FGSM 56.0 - 48.5 55.0
FT-MI-FGSM 58.9 - 53.1 64.4

IncRes_v2 MI-FGSM 56.2 51.8 - 55.9
FT-MI-FGSM 64.1 57.4 - 63.0

Xcep MI-FGSM 51.4 50.8 45.3 -
FT-MI-FGSM 54.4 55.0 48.7 -

Table 3. The black-box ASRs of SIM and FT-SIM on ImageNet. The first column is the local model,
and the first row is the target model. The values in the table are the ASRs (%) on the target models
using the adversarial examples generated with the local models. The higher ASRs are shown in bold.

Local Model
Attack

Method
Inc_v3 Inc_v4 IncRes_v2 Xcep

Inc_v3 SIM - 37.4 34.7 37.0
FT-SIM - 42.9 42.6 44.0

Inc_v4 SIM 64.0 - 51.9 59.7
FT-SIM 71.0 - 59.0 64.9

IncRes_v2 SIM 62.6 52.8 - 55.2
FT-SIM 75.1 63.4 - 65.2

Xcep SIM 57.9 54.3 50.0 -
FT-SIM 63.4 58.9 53.0 -
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Table 4. The black-box ASRs of DIM and FT-DIM on ImageNet. The first column is the local model,
and the first row is the target model. The values in the table are the ASRs (%) on the target models
using the adversarial examples generated with the local models. The higher ASRs are shown in bold.

Local Model
Attack

Method
Inc_v3 Inc_v4 IncRes_v2 Xcep

Inc_v3 DIM - 59.5 55.3 56.3
FT-DIM - 61.8 58.3 60.4

Inc_v4 DIM 59.0 - 52.0 61.7
FT-DIM 63.4 - 56.5 66.6

IncRes_v2 DIM 58.6 57.7 - 60.7
FT-DIM 67.2 66.8 - 66.5

Xcep DIM 57.3 64.3 55.6 -
FT-DIM 61.8 69.1 58.2 -

Table 5. The black-box ASRs of Admix and FT-Admix on ImageNet. The first column is the local
model, and the first row is the target model. The values in the table are the ASRs (%) on the target
models using the adversarial examples generated with the local models. The higher ASRs are shown
in bold.

Local Model
Attack

Method
Inc_v3 Inc_v4 IncRes_v2 Xcep

Inc_v3 Admix - 52.8 49.1 56.2
FT-Admix - 57.3 54.4 60.0

Inc_v4 Admix 70.8 - 61.1 67.2
FT-Admix 72.2 - 64.0 68.3

IncRes_v2 Admix 64.1 57.4 - 60.5
FT-Admix 66.0 58.7 - 60.4

Xcep Admix 70.4 64.3 60.0 -
FT-Admix 72.2 65.2 61.6 -

4.1.5. Attack against Defense Method

In this section, we quantify the effectiveness of FTM against several defense meth-
ods, including random resizing and padding (RandP) [40], JPEG compression (JPEG) [39],
randomized smoothing (RS) [38], and the rank-3 submission in the NIPS-2017 (NIPS-r3).
RandP is the top-1 submission in the NIPS competition, which mitigates the effect of adver-
sarial perturbations by randomized resizing and padding. JPEG is a defensive compression
framework, which could rectify adversarial examples without reducing classification accu-
racy on benign data. RS constructs a “smoothed” classifier from an arbitrary base classifier,
which is more adversarially robust. NIPS-r3 fuses multiple adversarial trained models and
performs several input transformation at inference time.

We choose SIM as the comparison method and generate adversarial examples with
Inc_v3. The average ASRs on Inc_v4, IncRes_v2, and Xcep are shown in Table 6. The
ASRs are improved by a large margin of 9.5% on average. It validates that the adversarial
examples generated by FTM are more robust to fool models with defense mechanisms.

Table 6. The black-box ASRs of SIM and FT-SIM on ImageNet against four defense methods. The
adversarial examples are generated with Inc_v3. The values in the table are the average ASRs (%) on
the Inc_v4, IncRes_v2, and Xcep. The higher ASRs are shown in bold.

Attack Method RandP JPEG RS Nips-r3

SIM 30.3 32.7 25.2 31.6
FT-SIM 38.5 41.0 37.8 39.5
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4.1.6. Parameter Analysis

In this section, we perform additional analysis for the difference among different
numbers of iterations m. The adversarial examples are generated by FT-DIM on Inc_v3.
The number of iterations of feature transformation ranges from 1 to 9.

As shown in Figure 4, the average black-box ASR increases from 59.2% for 1 iteration
to 62.7% for 3 iterations. As the number of iterations increases to 9, the success rate of
the attack increases to 65.3%. It validates that the ASR of FTM increases as the number
of iterations of feature transformation increases. The sensitivity of the attack success
rate gradually decreases as the number of iterations increases. Since a higher number of
iterations results in a larger computational overhead, the trade-off between effectiveness
and overhead needs to be made according to the specific scenario.

Figure 4. The black-box ASRs of FT-DIM attack with different number of iterations on ImageNet.
The adversarial examples are generated on Inc_v3 and the ASRs are the average ASRs on Inc_v4,
IncRes_v2, and Xcep.

4.2. Experiment on Cifar10
Cifar10

To further demonstrate the effectiveness of our approach, we also conducted experi-
ments on the Cifar10 [45] dataset. Cifar10 has 60,000 color images with 32 × 32 pixels and
is divided into 10 categories. We select 1000 images belonging to the 10 categories from
the test set, which are correctly classified by all the experimental models. We compare the
effects of the FTM with the MI-FGSM, SIM and Admix using the ResNet [46] family of
models. The maximum perturbation ε = 4, number of attack iterations T = 4, and the step
size α = 1.

The experimental results for FT-MI-FGSM, FT-SIM, and FT-Admix are shown in Tables 7–9.
The first columns are the local models and the first rows are the target models. It can be
seen that our method improves the ASRs across all experiments. FT-MI-FGSM achieves
83.8% ASR, when attacking Res152 with Res50. FT-SIM improves the ASR of SIM from
66.6% to 73.9%, when attacking Res101 with Res152. FT-Admix boosts the ASR of Admix
attack from 43.1% to 55.1%, when attacking Res101 with Res152.

The experimental results on Cifar10 validate that FTM is effective not only on large
image dataset, but also on small image dataset. Moreover, FTM can significantly improve
the transferability and robustness of the adversarial examples generated by the SOTA
black-box attack methods.
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Table 7. The black-box ASRs of MIM (MI-FGSM) and FT-MIM (FT-MI-FGSM) on Cifar10. The first
column is the local model, and the first row is the target model. The values in the table are the ASRs
(%) on the target models using the adversarial examples generated with the local models. The higher
ASRs are shown in bold.

Local
Model

Attack
Method

Res18 Res34 Res50 Res101 Res152

Res18 MIM - 78.3 68.7 67.3 71.1
FT-MIM - 78.8 69.2 70.5 73.4

Res34 MIM 78.7 - 70.0 69.5 72.3
FT-MIM 79.8 - 72.9 71.2 74.1

Res50 MIM 76.5 76.8 - 80.2 82.5
FT-MIM 77.8 78.1 - 82.4 83.8

Res101 MIM 71.4 71.7 76.9 - 80.5
FT-MIM 74.2 73.2 79.3 - 82.6

Res152 MIM 75.2 73.4 76.8 81.0 -
FT-MIM 76.8 74.9 78.7 82.0 -

Table 8. The black-box ASRs of SIM and FT-SIM on Cifar10. The first column is the local model, and
the first row is the target model. The values in the table are the ASRs (%) on the target models using
the adversarial examples generated with the local models. The higher ASRs are shown in bold.

Local
Model

Attack
Method

Res18 Res34 Res50 Res101 Res152

Res18 SIM - 73.0 60.1 59.5 62.3
FT-SIM - 73.9 62.2 62.9 66.0

Res34 SIM 74.9 - 60.2 60.9 63.3
FT-SIM 76.2 - 61.5 62.8 63.4

Res50 SIM 68.0 69.3 - 70.6 71.9
FT-SIM 72.2 68.2 - 73.9 76.0

Res101 SIM 69.2 67.7 71.0 - 73.9
FT-SIM 71.5 69.9 71.9 - 75.9

Res152 SIM 65.6 62.3 63.8 66.6 -
FT-SIM 69.5 67.9 70.4 73.9 -

Table 9. The black-box ASRs of Admix and FT-Admix on Cifar10. The first column is the local model,
and the first row is the target model. The values in the table are the ASRs (%) on the target models
using the adversarial examples generated with the local models. The higher ASRs are shown in bold.

Local
Model

Attack
Method

Res18 Res34 Res50 Res101 Res152

Res18 Admix - 49.0 41.9 42.5 45.0
FT-Admix - 56.4 47.3 50.4 51.9

Res34 Admix 52.5 - 42.7 46.5 46.0
FT-Admix 58.5 - 47.5 50.1 50.4

Res50 Admix 48.6 43.9 - 44.9 47.4
FT-Admix 56.1 50.7 - 53.9 54.4

Res101 Admix 48.2 44.6 44.6 - 49.3
FT-Admix 54.0 50.5 50.8 - 57.7

Res152 Admix 45.3 40.6 39.5 43.1 -
FT-Admix 55.0 51.6 50.2 55.1 -
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5. Conclusions

We propose a novel feature transformation-based method (FTM), which effectively
improves the transferability of adversarial examples. Five feature transformation strategies
are proposed and the hyper-parameters of them are comprehensively analyzed. The exper-
imental results on two benchmark datasets show that FTM can improve the transferability
of the adversarial example significantly. It improves the ASRs of the SOTA methods by up
to 12.5% on ImageNet. Our method can be combined with not only any gradient-based
attack methods but also any neural networks that can extract features. However, the tun-
ing of hyper-parameters is difficult, because different models and feature transformation
strategies require a large number of experiments to choose the magnitude of uniform
distribution. In the future, we will explore more feature transformation strategies to im-
prove the transferability of adversarial examples while reducing the difficulty of tuning
hyper-parameters.
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Abstract: Due to the configuration process of a complex product scheme, a design structure often
has the characteristics of multi-level, multi-attribute, creativity, and complexity; in order to improve
the efficiency and quality of product scheme design, it has important research value to reasonably
organize, reason, and reuse design knowledge. In this paper, the extension modeling problem under
the extension design mode of complex product scheme is studied, the multitype design knowledge
element modeling expression model of complex product scheme design is given, and the extension
process model and the implication process model of requirement analysis of complex product scheme
design is established. A new demand element weight assignment method based on extension
distance is proposed to obtain accurate demand analysis index weight from the perspective of
combined qualitative and quantitative analysis. On the basis of constructing the extension correlation
degree of demand primitives, this paper puts forward the implementation method of the extension
design pattern for the demand analysis of a complex product scheme design and gives the specific
implementation algorithm. Finally, an example of product design is given to illustrate the method,
and the results show the effectiveness and operability of the method.

Keywords: intelligent design; data analysis; models and algorithms; extension theory; scheme design

MSC: 68T20

1. Introduction

The product scheme design of the aerospace industry or power generation equipment
industry is creative, skilled labor based on the combination of some theories and a large
amount of practical experience; its design process is a multi-level multi-attribute creative
and complex configuration process, the interaction of various design factors generate
design constraints and design conflicts in the design process [1–4], so accurately describing
analyzing and transforming the customers’ requirements is very important for the smooth
development of the product. Requirement analysis is not only considering the customer’s
requirement information but also considering the information of the entire life cycle of the
product, that is, the design’s feasibility, manufacturability, reliability, maintainability, energy,
and environmental protection; they are the design goals of the various activities in the
product development process to make requirements analysis better guide the subsequent
design. Because of that, scheme design cannot, in isolation, describe the requirement model
from the customer’s point of view; it should consider the entire life cycle of the product and
strive to make the requirement model, and not only output necessary design requirements
but also be conducive to the mapping between product’s function and structure, and lay
the foundation for product design automation [5–7].

Currently, many scholars analyze and discuss the customer’s requirements from dif-
ferent perspectives and give its corresponding method of requirement analysis [8–11],
but it usually has some problems, such as the formalization of requirement description is
not enough or the information of product requirements lack objectivity [12–14]. Extenics,

Mathematics 2022, 10, 3132. https://doi.org/10.3390/math10173132 https://www.mdpi.com/journal/mathematics257



Mathematics 2022, 10, 3132

which is founded by Chinese scholar Professor Cai Wen, is an emerging discipline; it uses
a formal model to study the possibility of object extension, and its pioneering and inno-
vative rules and methods use formal implementation to search the rules of contradiction
issues from qualitative and quantitative angles [15–17]. Extenics, which depends on basic
element theory and extension mathematics, formalize the process of solving problems
to establish the corresponding mathematical model and, on the basis of it, develops a
new calculation method and technology that is more intelligent and formally resolves
the issue of deep knowledge’s storage representation and processing in the knowledge
base [18,19], to promote knowledge in knowledge engineering more formal, deeper, and
more fundamental. At present, extenics has some successful applications in the field of
product design [15,20–23], but the study of systematically applying extenics in requirement
analysis of complex mechanical products is rare, and it is still in its infancy. Axiomatic
design is a new conceptual product design theory proposed by Suh of MIT in the early
1990s. Its purpose is to establish a scientific basis for complex product design and improve
design activities in product development by providing designers with thinking methods
and tools based on logic and rationality [24–27]. Different from the research method of
discrete products [28,29], the research method of this paper is the extension intelligent
design method, which aims to study and analyze the extension and implication of design
problems in the process of requirement analysis of complex product scheme design. The
formal modeling problem of design knowledge is solved by establishing a knowledge
model, the extension reasoning problem of requirement analysis is solved by establishing
a requirement analysis process model, and the extension design mode of requirement
analysis is established to realize the extension requirement analysis of complex product
scheme design.

Therefore, on the basis of integrating extension design and axiomatic design, and the
relevant design methods and the concept of optimal solution [30–33]. This paper studies the
extension process model and implication process model of requirement analysis in complex
product concept design. Due to the problem of multi-attribute and multi-parameter require-
ment analysis, we put forward an allocation model of requirement basic element weight
based on extensible distance, calculated the extensible relational degree of requirement basic
element from the angle of a combination of qualitative and quantitative, and constructed
the framework of extension design pattern of requirement analysis for complex mechani-
cal product scheme design. In this paper, we will give the specific process with examples.
Firstly, the extension modeling for the extension design pattern of concept design is given in
Section 2. Then, the extension design pattern of requirement analysis of conceptual design is
described in Section 3. Then, an extension design pattern of requirement analysis for complex
mechanical products scheme design is provided in Section 4. Finally, the discussions and
acknowledgments are given in Sections 5 and 6, respectively.

2. Extension Modeling for Extension Design Pattern of Concept Design

Due to dealing with the various complex design reasoning problems in product
concept design, it needs to solve the issue of deep knowledge’s storage representation and
processing in the process of concept design reasoning. For this, extenics introduces basic
element theory into product concept design; it takes a basic element as the logic cell of
extensible design, and it gathers the represented design object’s quality, quantity, action,
and relation into an ordered triple J = (Γ, c, v) which is constituted of the design object Γ,
object’s characteristics c and the value v of characteristics. Formal modeling describes the
information action and relation in the design process and puts forward a new methodology
system for people to know the world and solve contradictions in the real world.

2.1. The Basic Element Modeling of Multitype Design Knowledge

On the basis of the semantic segmentation method multitype, design information in
the conceptual design process is analyzed and arranged to form the minimum complete
independent units of design information that can represent the design characteristics.
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Due to the manifestations of different units, we can establish the corresponding design
knowledge units; formal and modeling describe it by basic element. In this paper, the
design information in the conceptual design is divided into static design information,
behavioral design information, and relational design information.

When modeling the static design information, we can describe it by the matter element
model J(R), which belongs to basic element theory. If the design object has characteristics,
then its matter element model J(R) is as below:

J(R) =

⎡⎢⎢⎢⎣
Γ(N) C(N)1 [V(C)1, W(C)1]

C(N)2 [V(C)2, W(C)2]
...

...
C(N)n [V(C)n, W(C)n]

⎤⎥⎥⎥⎦ (1)

Among it, Γ(N) describes the name of the object, V(C) is the value of design char-
acteristic, W(C) is the weight of design characteristic, V(C) and W(C) have many forms
such as the value of precise point, interval value with Fuzzy Information, subordinate
function, the qualitative semantic description, and so on. Thus, in order to express more
general, assuming V =

[
vL, vR], W =

[
wL, wR], both of them are interval values with

Fuzzy Information, then Formula (1) can be expressed as follows:

J(R) =

⎡⎢⎢⎢⎣
Γ(N) C(N)1

([
v(C)L

1 , v(C)R
1
]
,
[
w(C)L

1 , w(C)R
1
])

C(N)2
([

v(C)L
2 , v(C)R

2
]
,
[
w(C)L

2 , w(C)R
2
])

...
...

C(N)n
([

v(C)L
n , v(C)R

n
]
,
[
w(C)L

n , w(C)R
n
])
⎤⎥⎥⎥⎦ (2)

When modeling the behavioral design information, we can describe it by the affair
element model J(I), which belongs to basic element theory. If the design object has m
characteristics, then its affair element model J(I) is as below:

J(I) =

⎡⎢⎢⎢⎣
Γ(D) B(D)1

(
U(B)1,

[
w(B)L

1 , w(B)R
1
])

B(D)2
(
U(B)2,

[
w(B)L

2 , w(B)R
2
])

...
...

B(D)m
(
U(B)m,

[
w(B)L

m, w(B)R
m
])
⎤⎥⎥⎥⎦ (3)

Among it, Γ(D) is the name of design behavior, B(D) is the operating characteristic of
design behavior, and W(B) is the weight of operating characteristic.

When modeling the relational design information, we can take the relational element
model J(Q) to describe the configuration relationship, logical relationship, implication
relationship, comparative relationship, and assembly relationship in the design process; if
the design constraints relationship has characteristics, then its relational element model
J(Q) is as below:

J(Q) =

⎡⎢⎢⎢⎣
Γ(S) A(S)1

(
G(A)1,

[
w(A)L

1 , w(A)R
1
])

A(S)2
(
G(A)2,

[
w(A)L

2 , w(A)R
2
])

...
...

A(S)k
(
G(A)k,

[
w(A)L

k , w(A)R
k
])
⎤⎥⎥⎥⎦ (4)

Among it, Γ(S) is the name of the design constraints relationship, A(S) is the relational
characteristic of the design constraints relationship, and W(A) is the weight of the relational
characteristic.

In the process of complex product conceptual design, the design knowledge often
has mixing characteristics; that is, the combination of static design information, behavioral
design information, and relational design information; for this, we describe it by the com-
pound element model J(F), which belongs to basic element theory. Through the function of
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conjunction Θ to represent the multilayer semantic and more abundant design information,
which is the frequently used conjunction, Θ is conjunction “∧” and/or conjunction “∨” and
forms the corresponding and compound element or compound element and/or compound
element, thus forming the overall design information of scheme design. The compound
element model J(F) can be expressed as follow:

J(F) =

⎡⎣Γ(F) (Θ)Γ(J(Ri)) (V(J(Ri)), W(J(Ri)))
(Θ)Γ

(
J
(
Ij
)) (

V
(
J
(
Ij
))

, W
(
J
(
Ij
)))

(Θ)Γ(J(Qs)) (V(J(Qs)), W(J(Qs)))

⎤⎦ (5)

Among it, i, j, s separately represent the number of matter element, affair element, and
relational element.

It should be emphasized that when taking the above models as representing design
knowledge, it only expresses a state of the design attributes and does not express the degree
of importance; the weight will not have to be contained in the above models.

2.2. Construction of Extension Set of Basic Element

In the process of product design, the customer’s requirements can be divided into
two components of common requirements and personalized requirements. Common
requirements are the customer’s knowledge and requirements for the product convergence;
for this part of the design, we generally use the existing classical structure model or variant
structure of the existing structure model to accomplish the conceptual product design.
Personalized requirements are the customer’s special knowledge and requirements for
the product, and conceptual product design is often required by attaining innovation or
extension on the structure or function of the existing product. Thus, in order to meet the
customer’s requirements comprehensively, the design process has the characteristics of
dynamics, diversity, relevance, and level; the existing dominant design information may not
be able to fully meet the design requirements; for this, it needs to mine design knowledge
and form a set of design knowledge to improve the innovation ability of conceptual design.

According to the basic element theory of extenics, we know that the basic element has
properties of implication and extension; through extension transformation, we can obtain
more abundant tacit knowledge and obtain the corresponding extension set; this provides
a means of support for the smooth implementation of the conceptual product design.

(1) Implication and the set of the basic element. For basic element J1 and J2, if J1 exists,
then J2 must exist, we call it J1 contains J2, recording it as @J1 ⇒ @J2 , among it, @represents
identification of existing. Because basic elements can be complex by conjunction Θ, the
implication of basic element can be represented by @JiΘ@Jj ⇒ @JsΘ@Jt , among it, i, j, s, t
all represent the number of basic elements. Form the implication set of basic elements by
basic elements, which is obtained by implication. The implication of basic elements can
transmit and transform, so we can carry out the reasoning of the conceptual design process
by the implication.

(2) Extensibility and basic element extension set. The extensibility of basic elements
contains three aspects: divergence, expansion, and relevance. In the design field, through
carrying out extension transformation of basic element characteristics and the value of
characteristics, on the one hand, it can create the ways and approaches for design objects to
outward divergence and expand, and acquire the extension design knowledge in the design
field, on the other hand, it can build relationships between design objects, and acquire the
relational design knowledge in the design field. We can acquire an extension set of the
basic element S(J)T by extension transformation.

S(J)T =
{
(J, Φ, Ψ)

∣∣∣J ∈ TΩ(J)Ω(J), Φ = K(J) = k(X),
Ψ = TKK(TJJ) = Tkk(X∗), X = c(J), X∗ = c∗(TJJ)

} (6)

Among it, TΩ, TK, and TJ separately represent design object J’s extension transforma-
tion of the domain, correlation function, basic element characteristics, and its value. c is
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the evaluation characteristic of J; its value is X = c(J); c* is the evaluation characteristic
of J that is acquired by extension transformation TJ, its value is X∗ = c∗(TJJ); Φ = k(X) is
the correlation function of evaluation characteristic, Ψ = Tkk(X∗) is correlation function of
evaluation characteristic that is acquired by extension transformation TJ.

By Equation (6), the objects in the existing basic element set can be subject to extension
transformation in many ways, such as domain, correlation function, basic element feature,
and eigenvalue, so as to obtain more extensive design knowledge in the design field and
related design knowledge among the design fields, thus providing support for subsequent
extension reasoning.

3. The Extension Design Pattern of Requirement Analysis of Conceptual

For the conceptual design of complex products, the customer’s requirements generally
have the characteristics of abstraction, ambiguity, variability, diversity levels, and relevance;
this often troubles designers in obtaining a correct understanding of the customer’s design
purpose, and it affects the design quality and design efficiency of products. Thus, on
the basis of extension theory, analyze the customer’s requirements, transform the design
requirement into an objective expression of formal and modeling product requirement
information, clearly reflect the level relationship and relational characteristics of customer’s
requirements, make the requirements information transform into technology requirements
information effectively to guide products conceptual design, on the basis of these, to make
the requirement analysis of products conceptual design more reasonable comprehensive
and standard.

3.1. The Extension Process Model of Requirement Analysis

Due to the requirement analysis of products can acquire the initial design scheme of
products conceptual design, the model of requirement analysis will directly affect the sub-
sequent product’s whole process of design, manufacturing, use, and maintenance; it can be
seen that requirement analysis is an important part in the process of product design. Thus,
for requirement analysis of complex product conceptual design, we cannot, in isolation,
describe the requirement model from the customer’s requirements and should carry out
requirement transformation from the angle of the product life cycle; this process involves
the whole product life cycle information, such as the design feasibility, manufacturability,
assembly, maintainability, reliability. Strive to make the requirement model useful for the
relevance and mapping of customer domain, functional domains, structural domain, and
process domain in conceptual product design, and then provides a theoretical foundation
and practical means and methods for the automation of complex product design.

On the basis of basic element theory, we can build a basic element model for every
requirements information in requirements analysis, separately build the matter-type re-
quirement basic element model J(R)C, behavior-type requirement basic element model J(I)C,
relation-type requirement basic element model J(Q)C and compound -type requirement
basic element model J(F)C. Matter-type requirement basic element model J(R)C describes
characteristics requirements, functional requirements, structural requirements, environ-
mental requirements, performance requirements, and other aspects of static properties
and design information. Behavior-type requirement basic element model J(I)C describes
design behavior-type information related to requirement analysis in the product design
process, such as solving problems, judgment knowledge, process planning, and reasoning.
Relation-type requirement basic element model J(Q)C describes the various constraints or
dependent information between requirement characteristics in the product design process,
such as configuration relationship, comparative relationship, and logical relationship. The
compound-type requirement basic element model J(F)C is the combination of the various
requirement basic elements. On the basis of the above basic element models, we can acquire
the set of requirement basic element S(J)CT and the corresponding knowledge database of
various requirement basic elements. Based on the extension theory, the demand information
is analyzed, evaluated, and transformed to form the subsequent product design information,
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which can better support the rapid design of complex products. The extension process model
of requirement analysis in complex product conceptual design is shown in Figure 1.

CJ Q

CJ I

CJ R

CJ F

CTS J

Figure 1. The extension process model of requirement analysis of complex product conceptual design.

It can be seen that after obtaining the corresponding demand information based on
the relevant design requirements, the demand information can be decomposed based on se-
mantic transformation and combined with extension analysis and evaluation methods, and
then the primitive modeling can be carried out to form the extension set of demand primi-
tives Extension reasoning and extension transformation are used to map the requirements
hierarchically, so as to obtain the design information that meets the design requirements.
After the primitive modeling, it is stored in the primitive knowledge base.

3.2. The Implication Process Model of Requirement Analysis

In the extension process model of the requirement of complex product conceptual
design, after semantic transforming requirement information, extension analyzing, and
evaluating it, we can acquire the minimum, complete, independent design information unit
in the representation design process, and after modeling it, we can acquire its correspond-
ing requirement basic element. By requirement analysis process of product design, we
know that customer requirements in the field of product design can generally be divided
into common customer requirements and individual customer requirements; common cus-
tomer requirements are the converging understanding and requirements of the customers
for the product in the design field, individual customer requirements are some special
understanding and requirements based on common customer requirements.

Because the representation of common customer requirements is common design
information in the design field, obviously, in order to provide improved support for the
rapid design of the product, it needs effectively reuse this part of the common design
information, which is a common requirement basic element. Because the basic elements
have the property of implication, the experts in the design field use the method of analysis
and evaluation or the method of data mining to acquire the implication relationship in
the extension set of requirement analysis, and due to the implication relationship, in new
product design, it only needs to match the condition items of implication, then we can
reuse the result items of implication relationship, thus to effectively reuse existing design
results, short the design cycle and improve the design efficiency. The implication process
model of requirement analysis that is oriented toward the rapid design of the product is
expressed as follows:
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⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∀(JCm, JCn)JCm ∈ Ω ∧ JCn ∈ Ω ∧ (JCmΘJCn) ∈ Ω ∧ ((JCmΘJCn) ⇒ (JsΘJt)) ∈ Ω, m �= n
i f @JC0i ∈ Ω ∧@JC0j ∈ Ω ∧ @

(
JC0iΘJC0j

)
∈ Ω, i �= j

∃
((

JC0iΘJC0j

)
Ξ(JCmΘJCn)

)
∧ K

((
JC0iΘJC0j

)
Ξ(JCmΘJCn)

)
≥ K0(Ω)

then
(

JC0iΘJC0j

)
∈ S(JCmΘJCn)CT

(7)

Among it, JCm and JCn represent the existing requirement basic elements, Js and
Jt represent the basic elements of design result in extension set, JC0i and JC0j represent
basic requirement elements in the process of requirement analysis, Ω represents dis-
course domain of design, Ξ represents matching identification of basic element model,
K((JC0iΘJC0j)Ξ(JCmΘJCn)) represents the matching degree of basic element model, K0(Ω)
represents the allowable matching threshold in discourse domain.

From the above implication process model of requirement analysis, it can be seen that
when the match degree between the requirement basic element or its compound element
and the existing requirement basic element or its compound element meets the given match
threshold, the design results contained in the existing requirement basic element or its
compound element can apply into product scheme design as an effective reusable object.
In the extension multiplexing method of fast configuration conceptual design, the basic
element matching algorithm based on extension theory is described.

3.3. The Weight Distribution Model of Requirement Basic Element Based on Extension Distance

The extension process model of requirement analysis based on complex product
conceptual design can achieve the decomposition and mapping of the design requirements,
but because requirement information in requirement analysis of conceptual product design
has characteristics of fuzziness and relevance, the weight of requirement characteristics and
design parameters is usually not easy to be determined. For this, this paper puts forwards
a new method of weight allocation based on extension distance compared with the existing
weight allocation method; the weight allocation method based on extension distance is an
analysis method combined qualitative and quantitative, and it can preferably solve the
problems that evaluation indicators are difficult to quantify and statistical in requirement
analysis, and can exclude the impact of human factors, make the result of weight allocation
more scientific, more objective and more accurate.

Assuming after decomposing the requirement, it has P requirement basic elements;
According to the design requirement, it needs to invite Z experts in the design field; On the
basis of importance degree of costumer’s requirement, separate ratio scale of requirement basic
element into 0~9, form the ratio scale interval uij = [ul

ij, ur
ij]; that is, j the expert evaluates

the requirement basic element Ji, among it 0 ≤ ul
ij ≤ 9, 0 ≤ ur

ij ≤ 9, ul
ij ≤ ur

ij. Thus
acquire the ratio scale interval sequence of requirement basic element Ji that is expressed by
U(Ji) = ([ul

i1, ur
i1], [u

l
i2, ur

i2], · · · , [ul
iZ, ur

iZ]). Build ideal ratio scale interval sequence of basic
requirement element U(J0) = ([ul

01, ur
01], [u

l
02, ur

02], · · · , [ul
0Z, ur

0Z]) based on P requirement

basic elements’ ratio scale interval sequence, and meets [ul
0j, ur

0j] =

[
max

1≤i≤p
ul

ij, max
1≤i≤p

ur
ij

]
.

Then construct the extension relational coefficient ρij that is U(Ji) and U(J0) concerning
j the scale value based on extension distance:

ρij = ρ
([

ul
ij, ur

ij

]
,
[
ul

0j, ur
0j

])
=

ρ
(

ul
ij ,
[
ul

0j ,u
r
0j

])
+ρ
(

ur
ij ,
[
ul

0j ,u
r
0j

])
2

=

(∣∣∣∣∣ul
ij−

ul
0j+ur

0j
2

∣∣∣∣∣− 1
2

(
ur

0j−ul
0j

))
+

(∣∣∣∣∣ur
ij−

ul
0j+ur

0j
2

∣∣∣∣∣− 1
2

(
ur

0j−ul
0j

))
2

(8)
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Then the extension degree λi between U(Ji) and U(J0) is:

λi =
1
Z

Z

∑
j=1

(
9− ρij

)
(9)

Then the relatively of requirement is expressed by:

wUi = λi/
P

∑
i=1

λi (10)

Thus, obtaining the sequence of the weight of basic requirement element
wU = [wU1, wU2, · · · , wUP]

T , and meet ∑P
i=1 wUi = 1.

The weight distribution of basic elements of design parameters obtained by map-
ping requirements analysis takes each basic element of demand as the standard, that is,
the scale interval of each basic element of demand as the ideal scale interval, and the
extension correlation coefficient is calculated. Assuming it has Q design parameters and
basic elements, it needs to invite Z experts in the design field. On the basis of the im-
portance degree of costumer’s requirement, a separate ratio scale of requirement basic
element into 0~9 acquire design parameter basic element Jk’s ratio scale interval sequence
V(Jk) = (lbrackul

k1, ur
k1], [u

l
k2, ur

k2], · · · , [ul
kZ, ur

kZ]), k = 1, 2, · · · , P. By using the above simi-
larly processing process, take the requirement basic element Ji as the evaluation standard,
then the extension relational degree λik between design parameter basic element Jk and
requirement basic element Ji can be expressed by:

λik =
1
Z

Z
∑

j=1
ρ
([

vl
kj, vr

kj

]
,
[
ul

ij, ur
ij

])
= 1

Z

Z
∑

j=1

(
9−

ρ
(

vl
kj ,
[
ul

ij ,u
r
ij

])
+ρ
(

vr
kj ,
[
ul

ij ,u
r
ij

])
2

)

= 1
Z

Z
∑

j=1

⎛⎜⎜⎝9-

(∣∣∣∣∣vl
kj−

ul
ij+ur

ij
2

∣∣∣∣∣− 1
2

(
ur

ij−ul
ij

))
+

(∣∣∣∣∣vr
kj−

ul
ij+ur

ij
2

∣∣∣∣∣− 1
2

(
ur

ij−ul
ij

))
2

⎞⎟⎟⎠
(11)

On the basis of it, we can acquire an extension relational degree matrix AJ between Q
design parameter basic elements and P requirement basic elements:

AJ =

⎡⎢⎢⎢⎣
λ11 λ12 · · · λ1Q
λ21 λ22 · · · λ2Q

...
...

...
...

λP1 λP2 · · · λPQ

⎤⎥⎥⎥⎦
P×Q

(12)

The design parameter basic element weighting extension relational degree sequence
wV based on requirement basic element weight sequence is:

wV = wT
U ∗AJ = [w1, w2, . . . , wP]1×P ∗

⎡⎢⎢⎢⎣
λ11 λ12 · · · λ1Q
λ21 λ22 · · · λ2Q

...
...

...
...

λP1 λP2 · · · λPQ

⎤⎥⎥⎥⎦
P×Q

(13)

Then absolutely weight wVk of design parameter basic element Jk is:

wVk = ∑P
i=1(wUi ∗ λik), 1 ≤ i ≤ P (14)

Then absolutely weight w∗
Vk of design parameter basic element Jk is:

w∗
Vk = wVk/ ∑Q

k=1 wVk (15)
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From these, acquire design parameter basic element weight sequence

wV =
[
w∗

V1, w∗
V2, · · · , w∗

VQ

]T
, and meets ∑Q

k=1 wVk = 1.

3.4. The Implementation of Extension Design Pattern of Requirement Analysis

The final result of product conceptual design requirements analysis can effectively map
the design parameters of subsequent products, including functional design parameters,
structural design parameters, and process design parameters. The essence of extension
design for requirement analysis of conceptual product design effectively transformed the
basic requirement element into a design parameter basic element and formed an extensible
design frame. Based on extension theory and axiomatic design, the traditional QFD
is improved, and a demand analysis extension design mode that transforms customer
requirements into design parameters is proposed. Compared with traditional quality
function deployment QFD [34,35], the extension design pattern of requirement analysis
is not just formulate the product planning or improve the product structure; it also uses
the improved quality function deployment QFD to acquire design information that guides
and runs through the product lifecycle. Figure 2 gives the frame of implementation of the
extension design pattern of requirement analysis.

 
Figure 2. The extension design pattern of requirement analysis of conceptual product design.

It can be seen from Figure 2 that the extension design mode of product scheme design
requirement analysis divides the process of product scheme design requirement analysis
into customer domain, function domain, structure domain, process domain, etc. The ex-
tension set of the basic requirement element corresponds to the extension modeling of the
customer domain. The extension set of the design parameter basic element includes the
extension set of the functional characteristic basic element, the extension set of the structural
characteristic basic element, and the extension set of the process characteristic basic element.
The extension set of the functional characteristic basic element corresponds to the extension
modeling of the functional domain, the extension set of the structural characteristic basic ele-
ment corresponds to the extension modeling of the structural domain, and the extension set
of process characteristic basic element corresponds to the extension modeling of the process
domain. Based on axiomatic design theory, adjacent design domains have corresponding
mapping relations, which can be realized by z-mapping. Similarly, the corresponding basic
element extension sets of adjacent design domains also have corresponding z-mapping
and corresponding extension incidence matrix. By using the demand analysis implication
process model, extension analysis and extension transformation, and the z-mapping of
axiomatic design, the extension set of the design parameter basic element and extension
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scheme set is generated, and the optimal design scheme is obtained based on the extension
optimization method. The extension optimization method will be discussed in detail in
the subsequent papers. It needs to be explained here that the effective construction of
the extension set of the design parameter basic element is acquired by the combination of
Z mapping in the design field, the implication process model of requirement analysis, and
the method of extension analysis and transformation. Specifically, by Z mapping in the
design field based on axiomatic design, design parameters commonly have the structural
characteristics of the level association. However, using compound elements can formally and,
with modeling, describe the design parameters which have the structural characteristics of the
level association so that the product extension design can be implemented smoothly.

In summary, the implementation steps of the extension design pattern of requirement
analysis for conceptual product design can be expressed as follow:

Step1: Acquire requirement information in the design field, decompose the require-
ment, build the unit of requirement information, and build the model of the basic require-
ment element.

Step 2: Construct the extension set of the basic requirement element, and build the
implication process model of the basic requirement element.

Step 3: On the basis of axiomatic design, hierarchical Z-mapping requirement basic ele-
ment in customer domain into design parameter basic element in function domain, structural
domain, and process domain, transform the design parameters combined with the implica-
tion process model of requirement basic element and its relational extension transformation
method and acquire its relational extension set of design parameter basic element.

Step 4: Construct a weight allocation model of the basic requirement element, and
build an extension correlation matrix in different design fields.

Step 5: On the basis of the basic element knowledge base, rule base, and case base that
is constructed in the design field, they match the design parameter basic element to acquire
the set of conceptual design schemes.

4. Application Example

This paper takes a selection scheme of large-scale hydropower turbines as an example
to describe the implementation of extension design patterns for complex products. Due to
the different areas of local geology, topography, water quality, current, and the environment
have a big difference, so the design requirement of hydroelectric power stations in the
different regions has characteristics of diversity and dynamic; it needs a variety of types
of turbines to meet the corresponding design requirements. However, because the large
turbine design theory is imperfect, the internal fluid motion of the turbine is complex, and
the production model of turbine design has characteristics of a single piece, small-batch, and
large sets; these make the large turbine design process have characteristics that are multi-
level, multi-attribute, multi-constrained and multi-objective, and the implementation of the
design scheme becomes very cumbersome. Therefore, based on the extension design mode
of complex products, this paper conducts an extension analysis of design requirements for a
large turbine selection scheme, determines the design domain of turbine products, and obtains
the basic design parameters of a large turbine selection scheme in the design domain.

It is known that a large-scale hydropower’s geographical environment is a multi-
mountainous region; its terrain is relatively steep, the water’s silt content is high, the water
flow is relatively large, and the head is relatively high. Table 1 gives the design requirement
parameters of a hydropower station.
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Table 1. The Design and Exploitation Requirement Parameters of a Hydropower Station.

Requirement Item
The Value of
Requirement

Requirement Item
The Value of
Requirement

Average annual flow ≥235.0 m3/s Design flow ≥307.0 m3/s
Maximum head 126.0 m Minimum head 86.0 m

Design head 112.0 m Rated power ≥300.0 MW
Maximum power ≥306.0 MW Rated speed 125.0 r/min

Runaway rotation rate ≤260.0 r/min Prototype efficiency ≥93.5%
Amount of leakage ≤0.1 m3/s Control mode Automatic control

Operational stability Long-term stability Energy consumption property Low
Environmental

protection property Less pollution Noise property Low

Structure type Compact Runner weight Light

To make a selection design of the turbine, you must first determine the direction of
the design of the turbine, that is, determine the structure type of turbine based on the
actual situation of hydropower, such as geology, topography, water quality, and water flow.
According to the experience in the field of design, we know that large turbine structure
type contains Francis, axial, oblique flow, tubular, and pelton, and each type of turbine
applies to different conditions; it is generally determined by the head, power, load changes,
sediment concentration, flow, etc. By analyzing the hydropower station’s requirement
information, we know that the hydropower station has a high head, medium-power,
medium load changes, high sediment concentration, and large water flow, so it is suitable
to use a Francis turbine. By experts’ analysis, discussion, and evaluation, the hydropower
design requirement information is broken down into common requirement information
and individual requirement information; the specific content is shown in Table 2.

Table 2. The Decomposition of Design Requirement Information.

Design Direction
The Category of

Requirement
Information

Requirement Characteristic

Francis turbine

Common
requirement

Head

Output

Information

Efficiency

Cavitation property

Runaway property

Individual
requirement
information

Operation
controllability

Automatic control

Simple, safe

Environmental
protection and energy

saving property

Low energy
consumption

Low pollution

Low noise

Structure type and
weight

Compact

Light

For common requirement information, new product design parameters can be ob-
tained based on common design requirements templates in the design field; For individual
requirement information, due to the diversity of information change, there are no corre-
sponding templates to be chosen, and we need to take an approach that is same as common
design requirements templates to the analysis, that is transformation and mapping among
the customer domain, functional domains, structure domain and process domain based
on the axiomatic design theory to obtain the corresponding product design parameters.
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Figure 3 shows the framework of the Francis turbine’s common design requirements
information template based on axiomatic design theory and extension theory.

 
Figure 3. The framework of the Francis turbine’s common design requirements information template.

It can be seen from Figure 3 that the common design requirement information template
for the hydraulic turbine includes three parts: the requirement domain, the functional
domain, and the structural domain. For different design domains, the corresponding design
domain structural template and the corresponding basic element set can be generated; that
is, the requirement domain corresponds to the requirement domain structural template
and the requirement domain basic element set, and the functional domain corresponds
to the functional domain structural template and the functional domain basic element
set. The structure domain corresponds to the structure template of the structure domain
and the basic element set of the structure domain. Based on the axiomatic design theory,
it can be seen that the structure template of the demand domain, the structure template
of the function domain, and the structure template of the structure domain have the
same mapping relationship. Similarly, there is the same mapping relationship between
the demand domain basic element set, the functional domain basic element set, and the
structure domain basic element set.

Quick configuration of the selection of the turbine design is to determine the turbine’s
critical flow path model such as runner, volute, draft tube, the guide vane, and so on. In
shunt turbine general design requirements information as you can see, in the framework of
the template, volute, guide tube, and turbine guide vane wheel are key design components
in turbine products secondary components devices, thus determine key flow turbine
model can obtain the key design parameters of the turbine design, be able to support the
smooth implementation of subsequent turbine design. To this end, in the framework of the
common Francis turbine design requirements template, we use the extension process model
of requirement analysis to model the design requirement information and two object-type
basic elements to describe design requirement items in Table 1, which are fundamental
design parameter requirement basic element J(R)C0-D and auxiliary design parameter
requirement basic element J(R)C0-P. The fundamental design parameter requirement basic
element J(R)C0-D is used to design the runner model and volute, draft tube, the guide vane
flow path model, and the auxiliary design parameter requirement basic element J(R)C0-P is
used to assist and guide selection design of the turbine.
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J(R)C0-D =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Basic design requirements Maximum head Hmax (m) 126.0
Rated head H0 (m) 112.0

Minimum head Hmin (m) 86.0
Design flow Qd

(
m3/s

)
≥ 307.0

Average flow Qv
(
m3/s

)
≥ 235.0

Rated power Pr (MW) ≥ 300.0
Maximum power Pmax (MW) ≥ 306.0
Rated rotation rate nr (r/min) 125.0

Runaway rotation rate nR (r/min) ≤ 260.0
Amount of leakage q

(
m3/s

)
≤ 0.1

Efficiency η ≥ 93.3%

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

J(R)C0-P =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Auxiliary design requirement Control mode Automation
Operational stability Long-term

Energy consumptionproperty Low
Environmental protection property Less pollution

Noise property Low
Structure type Compact
Wheelweight Light

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
After modeling the design information, it can build the corresponding extension set

of basic elements and the basic element knowledge base. Therefore, according to the
fundamental design parameter requirement, basic element J(R)C0-D’s head to retrieve basic
element knowledge base and acquire runner model which meets head range requirements,
the matched runner, basic element models, in basic element knowledge base are as below:

JTurb-Runner01 =

⎡⎢⎢⎢⎢⎢⎢⎣

D257 Maximum head Hmax (m) 109.5
Rated head H0 (m) 101.1

Minimum head Hmin (m) 62.1
Rated power Pr (MW) 102.0

Maximum power Pmax (MW) 114.3
Efficiency η 93.53

⎤⎥⎥⎥⎥⎥⎥⎦

JTurb-Runner02 =

⎡⎢⎢⎢⎢⎢⎢⎣

A630 Maximum head Hmax (m) 143.0
Rated head H0 (m) 119.9

Minimum head Hmin (m) 83.0
Rated power Pr (MW) 310.0

Maximum power Pmax (MW) 340.0
Efficiency η 93.20

⎤⎥⎥⎥⎥⎥⎥⎦

JTurb-Runner03 =

⎡⎢⎢⎢⎢⎢⎢⎣

D203 Maximum head Hmax (m) 135.6
Rated head H0 (m) 130.5

Minimum head Hmin (m) 114.5
Rated power Pr (MW) 408.2

Maximum power Pmax (MW) 408.8
Efficiency η 92.57

⎤⎥⎥⎥⎥⎥⎥⎦

JTurb-Runner04 =

⎡⎢⎢⎢⎢⎢⎢⎣

A364 Maximum head Hmax (m) 121.5
Rated head H0 (m) 106.7

Minimum head Hmin (m) 80.7
Rated power Pr (MW) 310.0

Maximum power Pmax (MW) 330.0
Efficiency η 94.00

⎤⎥⎥⎥⎥⎥⎥⎦
According to the experience in the selection of the turbine design, we know that when

it meets head range requirements, the power and efficiency are the main basis for selecting
the runner model. It can be seen that in matched runner basic element models, JTurb-Runner01
cannot meet the power design requirement, JTurb-Runner03 cannot meet the efficiency design
requirement. Although JTurb-Runner02 and JTurb-Runner04 both can meet the power design
requirement and efficiency design requirement when rated power and maximum power
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are close, JTurb-Runner04 has higher efficiency, so JTurb-Runner04 is the best runner matching
object in the basic element knowledge base.

Take basic element model JTurb-Runner04’s name as the condition item for the extension
process model of requirement analysis, use the classic frequent pattern tree algorithm
(FP_growth), set condition item A364 as the root node of frequent pattern tree, carry out
frequent pattern mining among runner models and volute, draft tube, guide vane’s flow
path models in basic element knowledge base and rule base. If the acquired frequent
pattern meets the requirements of the support and confidence, then we can acquire a strong
implication relationship between runner model and volute, draft tube, guide vane’s flow
path models, that is JTurb-Runner04|A364 ⇒ JWK-94|A364, JTurb-Runner04|A364 ⇒ JDY-43|A364,
JTurb-Runner04|A364 ⇒ JWSG-51|A364. According to the extension implication relationship,
and on the basis of volute JWK-94|A364 , draft tube A364 ⇒ JWSG-51 and guide vane
JDY-43|A364 , we can carry out selection design of volute, draft tube, guide vane’s flow path
which is associated to target runner.

At the same time, although JTurb-Runner04 is the best runner matching object in the basic
element knowledge base, JTurb-Runner04’s property parameters are not fully compliant with
design requirements; for this, it needs to carry out an extension transform for the value
of characteristics of JTurb-Runner04, that is use expertise of turbine to analyze and optimize
the value of characteristics of JTurb-Runner04, acquire reasonable nominal diameter of runner,
rotational rate and flow path combination which meet force requirement and have high
efficiency, and then to determine the other design parameters of target runner. On the basis
of the description in the paper, combined with knowledge in the turbine design field, and
according to the comprehensive characteristic curve of the existing turbine runner, we can
first take the maximum head, design head, and head range as the characteristics of extension
transform, take the force and efficiency as constraints of extension transform, to carry out
multi-level reasoning analysis for runner JTurb-Runner04, find design parameter combination
of matched runner’s unit speed and unit flow in the comprehensive characteristic curve of
the turbine runner. If the design parameter combination meets the design requirements,
then take it as an extension reuse object; If the design parameter combination cannot meet
the design requirements, it needs to take unit speed and unit flow as characteristics of
extension transform to carry out the next level extension transformation, and so forth,
ultimately acquire runner basic element model that meets requirements:

JTurb-TA364-1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Runner TA364-1 Nominal diameter D1 (m) 5.50
Maximum height H1 (m) 2.92
Design flow Qd

(
m3/s

)
307.00

Rated rotation rate nr (r/min) 125.00
Runaway rotation rate nR (r/min) ≤ 260.0

Efficiency η (%) 94.30
Reliability Γ (%) 95.00

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

JTurb-TA364-2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Runner TA364-2 Nominal diameter D1 (m) 5.775
Maximum height H1 (m) 3.202
Design flow Qd

(
m3/s

)
301.20

Rated rotation rate nr (r/min) 136.40
Runaway rotation rate nR (r/min) ≤ 260.0

Efficiency η (%) 95.03
Reliability Γ (%) 92.00

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

JTurb-TA364-3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Runner TA364-3 Nominal diameter D1 (m) 5.50
Maximum height H1 (m) 3.217
Design flow Qd

(
m3/s

)
348.00

Rated rotation rate nr (r/min) 125.00
Runaway rotation rate nR (r/min) ≤ 250.0

Efficiency η (%) 93.50
Reliability Γ (%) 93.00

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

JTurb-TA364-4 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Runner TA364-4 Nominal diameter D1 (m) 5.734
Maximum height H1 (m) 3.337
Design flow Qd

(
m3/s

)
326.00

Rated rotation rate nr (r/min) 136.40
Runaway rotation rate nR (r/min) ≤ 270.0

Efficiency η (%) 94.00
Reliability Γ (%) 93.00

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Take efficiency and reliability as the main evaluation characteristics in the extension
design of runner selection, and take the compact of structure type (that is, the diameter
and height dimensions), runaway rotation rate, rated rotation rate, and rated flow as
referenced evaluation characteristics, it can be seen that JTurb-TA364-1 is the best runner object
of extension transform, that is:

JTurb-best = JTurb-TA364-1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Runner TA364-1 Nominal diameter D1 (m) 5.50
Maximum height H1 (m) 2.92
Design flow Qd

(
m3/s

)
307.00

Rated rotation rate nr (r/min) 125.00
Runaway rotation rate nR (r/min) ≤ 260.0

Efficiency η (%) 94.30
Reliability Γ (%) 95.00

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Because there is an extension implication relationship between runner JTurb-Runner04 and

volute JWK-94|A364, draft tube JWSG-51|A364, guide vane JDY-43|A364, when carrying out
extension transform for runner JTurb-Runner04’s characteristic value, the volute JWK-94|A364,
draft tube JWSG-51|A364 and guide vane JDY-43|A364’s design requirement parameters
would change. According to the comprehensive characteristic curve of the turbine runner,
we can acquire the corresponding design requirement interval. Table 3 gives the design
requirement parameters of the partial flow path model.

Table 3. The Design Requirement Parameters of Partial Flow Path Model.

The Name of
Characteristic

The Value of
Characteristic

The Name of
Characteristic

The Value of
Characteristic

The diameter of
volute inlet side 6.200–7.800 (m)

The pitch circle
diameter of guide

vane
5.300–6.650 (m)

The thickness of the
volute inlet side 35.000–65.000 (mm) The height of the

guide vane 1.000–1.560 (m)

The thickness of the
end of volute 18.500–26.000 (mm) The relative height of

the guide vane 0.200–0.275

The weight of volute 140.000–180.000 (T) The weight of the
guide vane 1.650–2.820 (T)

The thickness of draft
tube lining 15.000–18.500 (mm) The weight of draft

tube lining 15.700–21.100 (T)

For this, it needs to carry out volute, draft tube, and guide vane’s extension con-
figuration design and extension adaptive design based on the new design requirement
parameters, and then complete the scheme design of large turbine selection. If carrying out
extension configuration design and extension adaptive design, it needs to carry out weight
allocation for every characteristic. Because extension configuration design is mainly too
fast and extensible to match the design objects based on existing design instances or design
results, so the influence of common requirement characteristics for the weight of every
characteristic parameter is most prominent; for this, this paper takes common requirement
characteristics as evaluation standards of the design characteristic parameters weight alloca-
tion. On the basis of the description in the paper, take common requirement characteristics
of the head, output, efficiency, cavitation property, and runaway property as requirement
basic element items, and take volute, draft tube, and guide vane as design parameter basic
element items, invite six experts in the turbine design field to grade requirement basic
element items and design parameter basic element items by ratio scale interval [1–9], the
specific values are shown in Tables 4 and 5.
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Table 4. The Scoring Results of Requirement Basic Element Items.

The Requirement
Basic Element Item

The Scoring Result

head ([7.0, 8.0], [7.5, 8.0], [7.0, 8.0], [8.0, 8.5], [8.0, 9.0], [7.5, 8.0])
Output ([9.0, 9.0], [9.0, 9.0], [9.0, 9.0], [9.0, 9.0], [9.0, 9.0], [9.0, 9.0])

Efficiency ([7.5, 8.0], [8.0, 8.5], [8.0, 8.5], [7.5, 8.0], [7.5, 8.5], [8.0, 9.0])
Cavitation property ([6.0, 7.0], [6.5, 7.5], [6.0, 6.5], [7.0, 7.5], [7.5, 8.0], [7.0, 8.0])
Runaway property ([7.5, 8.0], [7.5, 8.0], [8.0, 9.0], [8.0, 8.5], [7.5, 8.0], [7.5, 8.0])

Table 5. The Scoring Results of Design Parameter Items.

The Design Parameter Item The Scoring Result

Volute ([7.5, 8.0], [8.0, 8.5], [8.0, 8.5], [8.0, 8.5], [7.5, 8.0], [7.5, 8.0])
Draft tube ([7.5, 8.0], [8.0, 8.5], [7.0, 7.5], [8.0, 8.5], [7.0, 7.5], [7.5, 8.0])

Guide vane ([8.0, 8.5], [8.5, 9, 0], [8.0, 8.5], [8.0, 8.5], [8.5, 9.0], [8.5, 9.0])

Build requirement basic elements’ ideal ratio scale interval sequence
U(0) = ([9, 9], [9, 9], [9, 9], [9, 9], [9, 9], [9, 9],), based on the Formula (7) build exten-
sion correlation coefficient matrix ρ between the requirement basic element items and
requirement basic elements’ ideal ratio scale interval sequence U(0):

ρ =

⎡⎢⎢⎢⎢⎣
7.500 7.750 7.500 8.250 8.500 7.750
9.000 9.000 9.000 9.000 9.000 9.000
7.750 8.250 8.250 7.750 8.000 8.500
6.500 7.000 6.250 7.250 7.750 7.500
7.750 7.750 8.500 8.250 7.750 7.750

⎤⎥⎥⎥⎥⎦
Build extension correlation sequence λ between the requirement basic element items and

requirement basic elements’ ideal ratio scale interval sequence U(0) based on Formula (8):

λ = [7.875, 9.000, 8.083, 7.042, 7.958]T

Acquire the weight sequence of requirement basic element items based on Formula (9):

wU = [0.197, 0.226, 0.202, 0.176, 0.199]T

For design parameters items, separately select requirement basic element items as
ideal ratio scale interval sequence, acquire extension correlation degree matrix AJ between
design parameters and requirement basic element items based on Formulas (10) and (11):

AJ =

⎡⎢⎢⎢⎢⎣
8.917 8.917 8.708
8.000 7.750 8.500
8.958 8.792 8.875
8.375 8.500 7.917
9.000 8.792 8.625

⎤⎥⎥⎥⎥⎦
We can acquire the design parameters’ weight sequence wV = [0.364, 0.321, 0.333]T

based on Formulas (12)–(14). By weight sequence, it can be seen that the weights of the
various design parameters are consistent with turbine design because volute, draft tube,
and guide vane are all the core components of each functional unit, so when carrying out
fast configuration design, the weight of them is little difference; At the same time, due
to the volute as diversion components, we should lead water into hydraulic components
by minimum hydraulic losses and ensure water flow uniform, then it is conducive to
the guiding apparatus that the guide vanes carry out flow regulation and draining parts
that are draft tube carry out reflow processes, so the weight of volute is slightly higher.
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In addition, as the volute, draft tube, and guide vane’s design requirement parameters are
all the key control parameters, so volute, draft tube, and guide vane’s respective design
attributes have the same weight; that is, the volute’s respective design attributes weights
are wV-WK = 0.250, draft tube’s respective design attributes weights are wV-WSG = 0.500,
guide vane’s respective design attributes weights are wV-DY = 0.250.

5. Discussion

From the above theoretical discussion and application cases, it can be seen that the
method proposed in this paper has a strong theoretical foundation. From the topological
knowledge modeling, extension analysis, implication analysis, demand analysis index
weight acquisition, and extension pattern generation in demand analysis, an extension
demand analysis method system for complex product scheme design is formed, which has
good engineering applicability.

By establishing the basic element model of complex product scheme design require-
ment information and the corresponding extension set of requirement basic elements,
this method can formally represent various deep-seated design requirement information.
This method establishes the extension process model of complex product scheme design
requirement analysis and the implication process model of requirement analysis. Based
on the inherent implication and relevance of design requirement information, the rapid
transformation and hybrid reasoning of design requirements are carried out, which makes
the mapping of complex product scheme design requirements more intuitive and effective.
Moreover, this method gives a basic demand element weight distribution model based on
extension distance, which can obtain accurate demand analysis weight from the combina-
tion of qualitative and quantitative perspectives and can take into account the influence of
design constraints and design characteristics on the design demand attribute weight. At the
same time, based on the extension correlation degree of basic demand elements, this paper
establishes the implementation framework and algorithm of the extension design pattern
for the demand analysis of complex product scheme design, which comprehensively re-
flects the design requirements and design intent of the scheme and provides support for
the smooth implementation of complex product design. The application of the example
also verifies the effectiveness and feasibility of the algorithm.

In addition, the application of knowledge extension reuse technology in complex prod-
uct scheme design not only makes product design standardized and systematic but also
expands the application field of expert systems, provides a theoretical basis for computer-
aided product conceptual design, and plays an important role in the smooth implementa-
tion of complex product design scheme development.

6. Conclusions

In view of the multi-level, multi-attribute, and creative product structure configuration
process of complex products, this paper studies and analyzes the extension design mode
of complex product scheme design demand analysis with the characteristics of abstrac-
tion, fuzziness, variability, diversity, hierarchy, and relevance. The specific results and
conclusions are as follows: (1) The basic element model of the demand information of
complex product scheme design and the corresponding extension set of the basic demand
element are established to realize the formal modeling of the demand analysis and de-
sign information of the product scheme design. (2) The extension process model and the
implication process model of demand analysis for complex product scheme design are
established, which provides support for generating more abundant knowledge of demand
analysis. (3) The weight distribution model of the basic demand element based on exten-
sion distance is established, which provides support for improving the reasoning ability
of product demand analysis. (4) The framework and algorithm of the extension design
pattern for the requirement analysis of complex product scheme design are proposed, and
the extension requirement analysis of complex product scheme design is realized. On the
basis of obtaining the results of extension requirement analysis, how to effectively carry
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out extension knowledge reasoning and extension knowledge reuse of complex product
scheme design will have important research significance, which will provide important
support for rapid configuration design of complex products.
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Abstract: Domain adaptation has been used to transfer the knowledge from the source domain to
the target domain where training data is insufficient in the target domain; thus, it can overcome the
data shortage problem of power load forecasting effectively. Inspired by Generative Adversarial
Networks (GANs), adversarial domain adaptation transfers knowledge in adversarial learning.
Existing adversarial domain adaptation faces the problems of adversarial disequilibrium and a lack of
transferability quantification, which will eventually decrease the prediction accuracy. To address this
issue, a novel adversarial domain adaptation method is proposed. Firstly, by analyzing the causes of
the adversarial disequilibrium, an initial state fusion strategy is proposed to improve the reliability of
the domain discriminator, thus maintaining the adversarial equilibrium. Secondly, domain similarity
is calculated to quantify the transferability of source domain samples based on information entropy;
through weighting in the process of domain alignment, the knowledge is transferred selectively
and the negative transfer is suppressed. Finally, the Building Data Genome Project 2 (BDGP2)
dataset is used to validate the proposed method. The experimental results demonstrate that the
proposed method can alleviate the problem of adversarial disequilibrium and reasonably quantify
the transferability to improve the accuracy of power load forecasting.

Keywords: domain adaptation; adversarial learning; adversarial equilibrium; transferability quantifi-
cation; power load forecasting

MSC: 68T07

1. Introduction

Power load forecasting aims to predict the power load in the power system in the
future by mining the characteristics of users’ power consumption behavior hidden in
historical records, weather, dates, and other data. According to the forecast time, power
load forecasting can be divided into long-term, medium-term, and short-term. Short-term
power load forecasting refers to prediction of the power load value several hours or days in
the future, which is an important basis for realizing the rapid response of the power system
to changes in power load.

Recently, machine learning has accomplished extraordinary triumphs in the avenue of
computer vision [1], semantic segmentation [2], regression prediction [3], natural language
processing [4], etc. However, two problems of traditional machine learning are gradually
exposed: Firstly, traditional machine learning requires a large amount of labeled data, and
the cost of collecting and labeling data is expensive; thus, it is difficult to be applied in
fields that lack the data required for training models. Secondly, an important condition for
traditional machine learning being effective is that test and train data obey the assumption
of independent and identical distributions (IIDs); however, the condition of IID is usually
not satisfied in the real world, resulting in a decrease in the accuracy and generalization
capabilities. Correspondingly, due to the strong personalization of power consumption
behavior, there are differences in the distribution of power load data of different users. Due

Mathematics 2022, 10, 3223. https://doi.org/10.3390/math10183223 https://www.mdpi.com/journal/mathematics277



Mathematics 2022, 10, 3223

to the difficulty in collecting historical data, there is a lack of labeled data for training. The
above factors hinder the application of traditional machine learning methods in short-term
power load forecasting.

Domain adaptation has received extensive attention as one of the effective methods to
overcome the difficulties of few-shot learning [5–7]. Domain adaptation aims to transfer
knowledge from related labeled data by reducing the distribution difference between the
source domain and the target domain. Domain adaptation reduces the number of labeled
samples required to achieve the target task and does not strictly require the data to satisfy
the condition of IID.

The key aim of the domain adaptation method is to align the feature distribution of the
source domain and target domain data. The process of aligning the feature distribution is
also called domain alignment. Domain adaptation methods can be divided into three types
roughly according to different alignment strategies: discrepancy-based, adversarial-based,
and reconstruction-based.

Discrepancy-based methods use different metric schemas to measure the distance be-
tween the source domain and the target domain; it aligns the distribution by reducing the
difference metric schemas. The method adds different distance loss functions to the artificial
neural network. The most widely used metric schemas include Maximum Mean Discrepancy
(MMD) [8–10], KL (Kullback–Leibler) divergence [11], JS (Jensen–Shannon) divergence [12],
Wasserstein distance [13–15], CORAL (CORrelation ALignment) [16,17], etc.

Adversarial-based methods [18–25] are inspired by GANs and use artificial neural
network modules instead of metric schemas to measure the distance. The key components
of the adversarial domain adaptation model include a feature extractor and a domain
discriminator. The feature extractor extracts the domain-invariant features of the source
and target domains to confuse the domain discriminator; at the same time, the domain
discriminator distinguishes a sample from the source domain or the target domain, and
the strategy of maximizing and minimizing the domain discrimination loss is used to
form a confrontation between the two and to implement domain alignment during the
adversarial training.

Reconstruction-based methods [26–29] aim to reconstruct all domain data under
the premise of preserving domain-specific features to better help learn domain-invariant
features. The encoder–decoder is a typical implementation of reconstruction-based meth-
ods, the shared encoder encodes the input data as hidden features and learns domain-
invariant features, and the decoder reconstructs the hidden features and preserves domain-
specific features.

Domain adaptation methods realize the cross-domain transfer and reuse of knowledge,
and so many researchers use it to overcome the problem of data shortage in power load
forecasting: Ref. [30] proposes a general framework for adversarial domain adaptation
methods on time series prediction problems; Ref. [31] introduces a contrastive evaluation
module to protect the task-specific features of the target domain in domain alignment;
Ref. [32] builds adversarial feature capture networks to achieve reliable energy prediction.
Ref. [33] proposes an electricity load forecasting algorithm through bidirectional generative
adversarial networks and validates it on user data with different behavior patterns; the
flexibility and accuracy of the algorithm are improved. Ref. [34] proposes to construct a time-
independent model by maximizing the segmentation of time series differences to suppress
the unstable prediction accuracy caused by the time distribution shift. The above studies
focus on solving the problem that traditional machine learning relies on a large amount of
labeled data and cannot learn knowledge from non-IID data. However, the methods do not
consider the problem of lack of transferability quantification, and the adversarial-based
methods [30,33] do not consider the problem of adversarial disequilibrium. Both of the
above two problems will lead to the decline of the accuracy of the domain adaptation
method and the robustness of the model. Therefore, this paper focuses on analyzing and
researching these two problems and their solutions.
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The main contributions of this paper include:

• This paper proposes a novel adversarial domain adaptation method, which alleviates
the adversarial disequilibrium problem through the initial state fusion strategy and
quantifies transferability by calculating domain similarity based on information entropy.

• The proposed method is used for power load forecasting, which improves the accuracy
of power load forecasting with a small amount of data.

• This paper compares and analyzes the proposed method with a variety of baselines.
The results show that the proposed method can effectively maintain the adversarial
equilibrium and reasonably quantify the transferability.

The rest of this paper is organized as follows: Section 2 analyzes two problems and
summarizes the current solutions; Section 3 details the framework of the proposed method;
Section 4 shows the experimental content and the analysis of the results; Section 5 concludes
this article.

2. Related Work

This section briefly summarizes the current solutions for the adversarial disequilibrium
and the approaches to design metrics of transferability.

2.1. Adversarial Disequilibrium Problem

For adversarial-based methods, the domain discriminator distinguishes whether they
originate from the source domain or the target domain according to the features generated
by the feature extractor; the domain discriminant results make a key impact on the parame-
ter update of the model. However, the feature extractor easily wins the competition when
it only retains shallow feature representation and discards the deep feature representation,
which leads to the fact that the domain discriminator cannot accurately reflect the distance
in distribution. The methods for solving the adversarial disequilibrium problem can be
divided into two categories according to different enhancement strategies.

One way to address this problem is to combine the different metrics, which means
the metric is introduced in adversarial training, and the training goal is to confuse the
discriminator and reduce the metric. When adversarial disequilibrium occurs and the
domain discriminator fails, the model can continue to optimize parameters according to
the metric, so the method can effectively improve the training stability. Difference metrics
have been maturely applied, but they are suitable for different scenarios due to differences
in measurement dimensions, time overhead, gradient information, etc. Therefore, an
effective selection from numerous metrics becomes the key to the feasibility of the method.
Ref. [35] adopts Maximum Density Divergence (MDD) to minimize inter-domain distance
and maximize intra-domain density, and embeds MDD into an adversarial-based domain
adaptation framework to overcome the adversarial disequilibrium problem. Ref. [36]
combines Multi-Kernel Maximum Mean Discrepancy (MK-MMD) reduces the fluctuation
of the training process and maintains the adversarial equilibrium; Ref. [37] integrates
MK-MMD in the partial adversarial domain adaptive network to deal with the adversarial
disequilibrium problem.

Domain discriminator augmentation increases the domain information contained in
the input features of the domain discriminator. From the view of the adversarial game,
the method adds information to the domain discriminator for avoiding it being in a weak
position in the confrontation. The stronger the domain discriminator, the better it can guide
the feature extractor to learn domain-invariant features in adversarial. Ref. [38] proposes a
conditional adversarial domain adaptation method, which supplements category informa-
tion in the input features of the domain discriminator, and uses a multi-linear mapping
method to describe the joint representation of feature information and category information.
Ref. [39] combines features and labels to help model learning discriminative features, and
proposed the principle of entropy minimization to set reliable pseudo-labels for the target
domain. Ref. [40] proposed to normalize the conditional information so that it has the same
norm as the feature, expand the conditional output norm, and improve the conditional

279



Mathematics 2022, 10, 3223

strategy based on the prototype. Ref. [41] proposes that the sample adversarial domain
adaptively converts the noncentral sample distribution to the central sample distribution
to improve the classification degree of feature distribution, and indirectly adds category
information to the input of the feature extractor through clustering methods.

2.2. Lack of Transferability Quantification Problem

Domain adaptation learns domain-invariant features by reducing the distribution dis-
tance between the source domain and the target domain and then transferring knowledge
from the source domain to the target domain. However, not all source domain knowledge
can promote the achievement of the target task. Traditional domain adaptation methods
lack the contribution differentiation of source domain knowledge. Useless information and
noise in the source domain will hinder the model from achieving the target task, which will
eventually lead to the degradation of method performance and the occurrence of negative
transfer. The similarity-based quantification of transferability is currently an effective
method for alleviating this problem.

The similarity-based transferability quantification method is based on the assumption
that the higher the similarity is, the higher the transferability is, and the contribution of
the source domain to the target task is distinguished according to the domain similarity,
and the knowledge that is conducive to achieving the target task is selectively transferred.
The key to this method is how to quantify domain similarity. Ref. [42] proposes an atten-
tion mechanism to quantify domain similarity, enhance semantic information with high
transferability between domains and within domains, and improve the generalization
ability and robustness of the algorithm. Ref. [43] proposes a weighted moment distance
to quantify domain similarity, enhance the impact of high domain similarity data on the
transfer process. Ref. [44] fuses batch spectral penalty in an adversarial-based domain
adaptive network to suppress the phenomenon of forced alignment of low-transfer features,
and enhance method transferability and discriminating ability.

3. Proposed Method

This section mainly introduces the novel method: Section 3.1 proposes an initial state
fusion strategy to maintain the adversarial equilibrium, Section 3.2 designs a selective
transfer method based on information entropy, and Section 3.3 details the architecture
of models.

3.1. Adversarial Equilibrium Strategy Based on Initial State Fusion

The key of the domain discriminator augmentation is to supply domain structure
information to the features, thereby improving the reliability of the domain discrimination
and avoiding adversarial disequilibrium; therefore, the information introduced in the
features has a crucial impact on the effectiveness of the method.

The initial state refers to the original data without feature extraction and distribution
alignment, which has the most complete domain structure information, and the statistical
features of the source domain and target domain data are highly distinguishable. These
characteristics meet the requirements of the information for implementing domain discrim-
inator augmentation. Therefore, this paper proposes to fuse the initial state in the input
features of the domain discriminator. The reliability of the domain discrimination results
is improved by supplementing the domain structure information of the input features.
It avoids the domain discriminator being weak in the adversarial training and finally
realizes the domain discriminator to reflect the distance of distribution implicitly and
more accurately.

Due to the large dimensional difference between the intermediate features and the
initial state, conventional feature fusion operations such as concat and add are easy to fail.
We propose a strategy of splitting features first and then fusing them. Critical steps are
shown in Figure 1. Firstly, the domain features (yellow in Figure 1) of the data are extracted
using the feature extractor. Secondly, the domain features are split into several subfeatures
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with dimensions equivalent to the initial state (pink in Figure 1), and subfeatures gradually
dot the product with the initial state; the dot product is given by

a • b =
n

∑
i=1

aibi = a1b1 + a2b2 + · · ·+ anbn (1)

where a and b represent the subfeature and the initial state, respectively, and ai and bi
represent the i-th element.

Each subfeature will perform the operation of (1) with the initial state; new feature
elements are merged to form the fused feature (red in Figure 1). Finally, the fused feature is
input into the domain discriminator for domain discrimination.

Figure 1. Initial state fusion strategy.

3.2. Transferability Quantification Based on Information Entropy

The quantification of transferability is based on the premise that domain similarity
and transferability are positively correlated. In the adversarial domain adaptation method,
the information entropy of domain discrimination can objectively reflect domain similarity.
Therefore, we propose a transferability quantification method based on information entropy,
which realizes the transfer source domain samples selectively and inhibits the occurrence
of negative migration to a certain extent.

In information theory, information entropy is used to measure the information content
of an event. The smaller the probability of an event, the greater the amount of information
it contains, and the information entropy also increases. p(xi) is used to represent the
probability density of event xi ∈ X, i = 1, 2, . . . , n, and the information entropy of event
X is calculated by

H(X) = − ∑
xi∈X

p(xi)lnp(xi) (2)

The domain discrimination is the basis for the adversarial domain adaptation method
to reflect the degree of feature distribution alignment. The essence of domain discrimination
is a two-class prediction task of the sample belonging to the source domain or the target
domain. When the output layer of the domain discriminator is activated by the Softmax
function, the output after activation is two predicted values whose sum equals 1, denoted
as [ps, pt], which respectively represent the probability that the domain discriminator thinks
the sample belongs to the source domain or the target domain. The Softmax activation is
calculated by

Si =
ei

∑n
j=1 ej (3)

The information entropy of the domain prediction value is used to reflect the domain
similarity. The closer the outputs ps and pt of the domain discriminator are, the more
successfully the features of the source domain sample confuse the domain discriminator,
making it impossible to make accurate domain discrimination. Furthermore, the high
domain similarity means that the information entropy of the domain prediction value is

281



Mathematics 2022, 10, 3223

maximized, and the source domain samples that generate this feature should be given a
higher weight during the transfer process. The weight is calculated by

ωi = exp[−psln(ps)− ptln(pt)]− 1 (4)

where the exponential is the information entropy of ps and pt.
We propose to quantify transferability based on information entropy to tackle the

problem of the lack of transferability quantification method, by weighting the source
domain samples according to the quantification results to transfer knowledge selectively.
The process of transferability quantification is shown in Figure 2. Firstly, the features
of samples are extracted. Samples with high domain similarity are shown as having
more domain-invariant features in the feature space, and the feature distribution of the
source domain and target domain has a high degree of coincidence. Then, make the
domain discrimination; the smaller the difference between the ps and pt output by the
domain discriminator, the higher the similarity that the samples have, and the richer
the transferable knowledge that is contained. At this time, the information entropy of
the domain discrimination increases. Finally, calculate the weights; samples with higher
transferability cause a greater impact on the transfer.

Figure 2. Transferability quantification process.

3.3. A Novel Adversarial Domain Adaptation Method
3.3.1. Model Structure

The one-dimensional convolutional neural network and Bidirectional Long Short
Term Memory Networks (1DCNN-BiLSTM) has both the efficient feature extraction abil-
ity of 1DCNN and the advantages of BiLSTM in describing the dependencies of a time
series [45,46]. We use 1DCNN to build a feature extractor and BiLSTM to build a predictor;
the model structure is shown in Figure 3. The model consists of three basic modules, a
feature extractor, predictor, and domain discriminator. In addition, the initial state fusion
module (the light blue module in Figure 3) is added before the domain discriminator, and
the transferability quantification module (light green module in Figure 3) is added after the
domain discriminator.

The model hyperparameters are shown in Table 1. The column hyperparameter are
the properties required to build the model, followed by the corresponding values. The
first line indicates that the feature extractor has three layers of 1DCNN. The values in the
brackets in the second row represent the respective kernel size of the aforementioned three
layers. The source domain and target domain data are convolved with 1DCNN to generate
domain-invariant features. Dropout [47] is used in the BiLSTM layer of the predictor to
randomly suppress neurons to avoid model overfitting. The features are fused with the
initial state, and domain discriminant results are used to calculate the total loss.
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Figure 3. Model structure. C represents 1DCNN, L represents BiLSTM, F represents fully connected
layer.

Table 1. Model Hyperparameters.

Module Hyperparameter Value

feature
extractor

Layer of 1DCNN 3
Size of the convolving kernel by each layer

of convolution (3, 3, 3)

The number of channels produced by each layer
of convolution (64, 64, 64)

domain
discriminator

Layer of Dense 2
Size of each output sample by each layer of Dense (32, 2)

predictor

Layer of BiLSTM 2
The number of features in the hidden state by each

layer of BiLSTM (64, 64)

Dropout probability 0.5
Layer of Dense 2

Size of each output sample by each layer of Dense (32, 1)

The domain discriminant loss is composed of the cross-entropy between the domain
discriminantion and the real domain label, which is calculated by

Lossdcls =
1
ns

ns

∑
i=1

Lce(di
s, ydi

s ) +
1
nt

nt

∑
i=1

Lce(di
t, ydt

t ) (5)

The prediction loss consists of two parts: the weighted source domain prediction loss
and the target domain prediction loss, which is calculated by

Losspred =
1
ns

ns

∑
i=1

ωi(yi
s − ypi

s )2 +
1
nt

nt

∑
i=1

(yi
t − ypi

t )2 (6)

The total loss of the model is composed of the domain discrimination loss and the
prediction loss, which is calculated by

Loss = Lossdcls + Losspred (7)

where subscript s indicates that the variable belongs to the source domain, subscript t
indicates that the variable belongs to the target domain, n is the number of samples in the
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domain; di is the domain label, ydi is the predicted domain label, yi is the true value, ypi is
the prediction, ωi is the weight, and Lce is the cross-entropy loss function.

3.3.2. The Critical Steps of the Algorithm

The algorithm flow is shown in Figure 4. The critical steps of each epoch during
training include:

1. Feature extraction; the feature extractor performs feature extraction and distribution
alignment on the source domain and target domain data to generate domain-invariant
features.

2. Initial state fusion; the domain-invariant features are split into sub-features, and the
sub-features are gradually fused with the initial state to generate fused features.

3. Prediction and domain discrimination; the input domain-invariant features into the
predictor and output predicted values, and input the fused features into the domain
discriminator and output domain discriminant values.

4. Transferability quantification; measure the domain similarity according to the domain
discriminant value and calculate the weight of the source domain samples.

5. Loss calculation; calculate the prediction loss and the domain discrimination loss
separately, then obtain the total loss.

6. Model parameter optimization; the gradient information is calculated based on the
loss value, and the model parameters are updated through the preset optimizer.

egin

nd
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nitial state fusion

odel fit or 
reac ed max 
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utputs prediction and discriminant value
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Calculate t e total loss  
optimi e t e model parameters

est accuracy on t e test set

yes
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Figure 4. Algorithm flow chart.

4. Experimental Setup and Results

In this section, we extensively evaluate our approach and compare it with state-of-
the-art domain adaptation methods. We also provide a detailed analysis of the proposed
framework, demonstrating empirically the effect of our contributions.

4.1. Datasets

We evaluate the proposed approach to the BDGP2 dataset [48]. The time range is
from 2016 to 2017. The sampling interval is 1 h. The sampling value includes power load,
heating, cooling water, steam, and other meter data; in addition, this data set integrates
outdoor temperature, humidity, cloud cover, and other climatic factors that can affect
power consumption.
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Four residential buildings are selected for analysis, namely Bear_lodging_Evan (domain
A), Robin_lodging_Renea (domain B), Rat_lodging_Ardell (domain C), and Fox_lodging_Angla
(domain D); the load has a periodic characteristic with the user’s living habits, which is shown
in Figure 5. We use the Augmented Dickey Fuller (ADF) to test that the time series is stationary.
The p value is 0.00000218, and the absence of missing values is also the important reason for
selecting the mentioned building’s data. The variables of the inputs are shown in Table 2.

(a) (b)

(c) (d)

Figure 5. Power load for the four buildings. (a) Building A; (b) building B; (c) building C; (d) building D.

Table 2. The Dataset Variables of Model Inputs.

Variables Units Definition

TimeStamp - Date and time in the local timezone
Load kWh The sum of the electric power used over a certain time

AirTemperature °C The temperature of the air in degrees Celsius

DewTemperature °C
The temperature to which a given parcel of air must be
cooled at constant pressure and water vapor content for

saturation to occur
SeaLevelPressure hPa The air pressure is relative to the mean sea level

WindSpeed m/s The rate of horizontal travel of air past a fixed point

The experiment adopts single-step time series forecasting, the input are the variables
in Table 2 of the first 24 h in each sliding window, and the true value is the load of the
next hour. To verify the effectiveness and accuracy of the proposed method, we construct
12 transfer tasks for each method, and each task is denoted as S→T, which means the S is
the source domain and the T is the target domain. When a building is selected as the source
domain, we use all the samples of the building as the source domain data train set. When
another building is selected as the target domain, we use 10% of the building’s samples
as the target domain train set and 20% of the samples as the target domain test set; the
remaining 70% of the samples are not used. We use samples from two different buildings
to create the condition of non-IID by retaining only a few samples of the target building to
simulate the lack of data in the target domain.

4.2. Implementation Details

The experiments in this paper are all implemented under the same framework; the
programming language is Python3.7.11, the deep learning framework is Pytorch1.10.1, the
CUDA11.3, the CUDNN8.2, and the operating system is Windows 10. The CPU is Intel
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i5-11400H, the base frequency is 2.7 GHz, the memory is 16 G, the GPU is RTX3050Ti, and
the GPU memory is 4 G.

The experiment in this paper adopts the same train setting; the optimizer is Adam,
the max epoch is 50, and the batch size is 32, the initial parameters are generated by
Pytorch-1.10.1 defaulted, and the learning rate can be calculated as

LR =
0.01

(1 + 10 ∗ p)0.75 (8)

where LR is the learning rate of the current epoch, and p is the ratio of the current epoch
round to the max epochs.

4.3. Results

The objective indicators for the experimental evaluation of prediction accuracy are Root
Mean Square Error (RMSE), Mean Absolute Error (MAE), and Mean Absolute Percentage
Error (MAPE).

RMSE is sensitive to outliers, and when it is small, it can be considered that the
method outputs less predictable values with great deviations. MAE describes the absolute
error between the prediction value and the true value, which is the most intuitive. MAPE
converts the error value into an error rate, which can evaluate the method performance
without considering the order of magnitude of the data.

RMSE =

√
1
n

n

∑
i=0

(yi − ypi)
2 (9)

MAE =
1
n

n

∑
i=0

|yi − ypi| (10)

MAPE =
100%

n

n

∑
i=0

∣∣∣∣yi − ypi

yi

∣∣∣∣ (11)

where n is the number of test samples, yi is the true value, and ypi is the prediction.
The proposed method was compared with FineTune (FT) [49], Wasserstein Distance

Guided Representation Learning (WDGRL) [50], Deep Adaptation Networks (DAN) [51],
Domain Adversarial Neural Networks–Long Short Term Memory Networks (DANN-
LSTM) [52], and Deep CORAL (DCORAL) [53].

FT is the lightest and most widely used method for knowledge transfer. DAN and
DCORAL use MMD and CORAL to measure the distance between domains, respectively,
which are widely used in discrepancy-based methods. The proposed method, WDGRL,
and DANN-LSTM are based on adversarial; however, the difference is our consideration,
and attempts to alleviate the adversarial disequilibrium problem. The performances of
RMSE, MAE, and MAPE are shown in Tables 3–5. The last row represents the average
performance of each method in different tasks, and the best performance of each task is
highlighted in bold.

The prediction error of the proposed method is smaller than other methods in most
of the adaptation tasks. The proposed method reduces RMSE by 1.53, MAE by 1.29, and
MAPE by 1.53%. The reduction in RMSE proves that the method predicts fewer outliers
and has a better stability. MAE is used to measure the absolute error, and MAPE is used to
measure the error rate. The reduction in the two factors proves that the proposed method
can improve the generalization ability of the model and the prediction accuracy effectively.
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Table 3. RMSE Performance. The best performance of each task is highlighted in bold.

Task FT WDGRL DAN DANN-LSTM DCORAL Ours

B→A 25.13 15.55 13.71 13.68 14.55 11.73
C→A 27.84 14.83 15.30 13.69 16.57 12.64
D→A 22.98 13.40 17.78 13.27 15.47 12.65
A→B 13.04 10.69 12.49 11.52 10.19 9.41
C→B 14.45 9.43 11.30 9.02 9.27 8.32
D→B 16.34 11.84 13.65 14.89 10.14 9.30
A→C 3.13 2.96 2.68 2.54 2.53 2.45
B→C 3.31 4.07 3.10 2.75 3.74 2.90
D→C 2.64 3.46 2.66 2.44 2.24 2.17
A→D 14.93 13.73 10.96 11.86 11.24 10.91
B→D 18.47 16.09 11.09 11.31 9.66 10.19
C→D 17.43 13.96 13.85 13.98 10.69 9.41

Average 14.97 10.83 10.71 10.08 9.69 8.51

Table 4. MAE Performance. The best performance of each task is highlighted in bold.

Task FT WDGRL DAN DANN-LSTM DCORAL Ours

B→A 21.32 12.50 10.53 10.26 11.71 9.10
C→A 23.39 11.80 11.66 10.20 13.73 9.77
D→A 18.95 10.40 14.45 10.77 13.09 9.57
A→B 10.25 7.45 9.78 9.21 7.63 6.32
C→B 11.54 6.58 8.58 6.29 6.59 5.57
D→B 13.88 9.06 10.24 11.22 8.00 6.71
A→C 2.55 2.30 2.17 2.01 2.09 1.87
B→C 2.57 3.40 2.53 2.17 2.79 2.21
D→C 2.12 2.78 2.10 2.03 1.86 1.72
A→D 11.71 10.85 8.39 9.52 8.92 8.52
B→D 14.74 12.47 8.66 8.49 7.23 7.81
C→D 13.72 10.83 11.10 10.92 7.98 6.94

Average 12.23 8.37 8.35 7.76 7.63 6.34

Table 5. MAPE Performance. The best performance of each task is highlighted in bold.

Task FT WDGRL DAN DANN-LSTM DCORAL Ours

B→A 12.22 7.12 5.88 5.65 6.56 5.29
C→A 13.84 6.76 6.10 5.67 7.96 5.55
D→A 12.31 5.91 8.78 6.67 8.73 5.33
A→B 11.87 8.33 11.33 10.72 8.96 6.98
C→B 13.83 7.41 9.45 7.07 7.28 6.08
D→B 16.88 10.06 10.72 13.31 9.73 7.78
A→C 16.47 13.91 15.25 14.09 14.05 11.57
B→C 15.65 22.12 17.38 13.98 14.57 12.83
D→C 13.87 17.63 13.63 15.94 13.54 11.89
A→D 11.64 10.53 8.25 9.45 8.58 8.32
B→D 14.20 11.36 8.74 8.41 6.80 7.45
C→D 14.11 10.32 11.23 11.02 7.31 6.60

Average 13.91 10.95 10.56 10.17 9.50 7.97

In the domain adaptation tasks of the same target domain but different source domains,
such as B→A, C→A, and D→A, the prediction error fluctuation of the method due to the
change of the source domain is the slightest, which proves the transferability quantification
based on information entropy success selectively transfers the knowledge in the source
domain and mitigates negative effects where the low-correlation samples in the source
domain lead to negative transfer.

287



Mathematics 2022, 10, 3223

The difference between the proposed method and other adversarial domain adaptation
methods (DANN-LSTM and WDGRL) is the addition of the initial state fusion module to
maintain the adversarial equilibrium. The proposed method has advantages in multiple
tasks, and reduces RMSE by 1.57, MAE by 1.42, and MAPE by 2.2%; the adversarial
equilibrium strategy based on initial state fusion effectively alleviates the adversarial
disequilibrium problem. Domain structure information is supplemented in the intermediate
features, which increases the reliability of domain discrimination. The domain discriminator
supervises the feature extractor to achieve feature distribution alignment more effectively,
thereby improving prediction accuracy.

The power load forecasting curves of the proposed method for one week from 0:00
on 14 March 2016, to 0:00 on 21 March 2016, are shown in Figure 6. The fitting degree
between the prediction and the true value is high. The proposed method improves the load
prediction accuracy effectively. However, the prediction error of the method for local peaks
and valleys in the four fields is relatively large, and the power load mutation in field C is
the most frequent, which means the user’s personalized behavior is the most significant;
thus, the prediction error of peaks is the largest, indicating that the prediction is easily
affected by user personalized behavior. The transfer is not precise enough. Therefore, it is
necessary to enhance the method’s ability to learn domain-specific features, achieve more
detailed selective transfer, suppress the occurrence of negative transfer more effectively,
and further improve the prediction accuracy.

(a) (b)

(c) (d)

Figure 6. The power load forecasting curves for four buildings. (a) Task B→A; (b) task C→B; (c) task
A→C; (d) task C→D.

Feature visualization is an important tool to measure the alignment degree of feature
distribution. T-SNE [54] is widely used to visualize the high-dimensional data distribution
in domain adaptation. The feature visualization results are shown in Figure 7. Red points
correspond to the source domain, while blue ones correspond to the target domain. The
more similar the source and target domain features are, the more effective the method is.
In the proposed method, the source domain and target domain features have the smallest
deviation, and the overlap between the two has a large proportion. Upon further analysis, it
can be found that the features extracted and aligned by the proposed method are clustered,
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and the boundaries of each cluster are sharper than the baseline method. Clusters represent
the features that the method extracts from different aspects, it indicates that the initial state
fusion strategy improves the domain discrimination ability of the domain discriminator,
further supervising the feature extraction to extract domain-invariant features effectively
during the adversarial training. There are few features that the proposed method fails
to align relative to the baseline method, indicating that the proposed method effectively
suppresses the low-correlation information in the source domain, and retains information
that can be transferred to the target effectively.

(a) (b)

(c) (d)

(e)

Figure 7. Feature visualization for different methods. Red points correspond to the source do-
main, while blue ones correspond to the target domain. (a) WDGRL; (b) DAN; (c) DANN-LSTM;
(d) DCORAL; (e) Ours.
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5. Conclusions

This paper focuses on the adversarial domain adaptation method and its application
in power load forecasting. Domain adaptation alleviates the problem where traditional
machine learning methods are limited by the amount of labeled data and the condition of
IID; this has a strong significance for promoting intelligent power load forecasting systems.
The adversarial domain adaptation method faces the problems of adversarial disequi-
librium and a lack of transferability quantitation. This paper proposes corresponding
solutions to the above two problems and conducts sufficient experimental verifications.
The experimental results in the BDGP2 dataset prove that the proposed method gains a
high power load prediction accuracy. This paper provides a research reference for solving
the problems of adversarial disequilibrium and a lack of transferability quantitation, and
provides an application reference for implementing power load forecasting based on the
adversarial domain adaptation method. Furthermore, due to the strong personalization
of users’ electricity consumption behavior, the method does not perform well in the local
peaks and valleys. Therefore, it is necessary to enhance the ability of the method to learn
domain-specific features to achieve more refined selective transfer. Our future work will
explore how to suppress the negative transfer better, and improve the prediction accuracy
more effectively.
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Abbreviations

The following abbreviations are used in this manuscript:

GANs Generative Adversarial Networks
BDGP2 Building Data Genome Project 2
IID Independent and Identical Distributions
MMD Maximum Mean Discrepancy
MK-MMD Multi-Kernel Maximum Mean Discrepancy
KL Kullback–Leibler
JS Jensen–Shannon
CORAL CORrelation ALignment
1DCNN One-dimensional convolutional neural network
BiLSTM Bidirectional Long Short Term Memory networks
ADF Augmented Dickey Fuller
RMSE Root Mean Square Error
MAE Mean Absolute Error
MAPE Mean Absolute Percentage Error
FT FineTune
WDGRL Wasserstein Distance Guided Representation Learning
DAN Deep Adaptation Networks
DANN-LSTM Domain Adversarial Neural Networks-Long Short Term Memory Networks
DCORAL Deep CORAL
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Abstract: The reinforcement learning-based routing, modulation, and spectrum assignment has
been regarded as an emerging paradigm for resource allocation in the elastic optical networks. One
limitation is that the learning process is highly dependent on the training environment, such as the
traffic pattern or the optical network topology. Therefore, re-training is required in case of network
topology or traffic pattern variations, which consumes a great amount of computation power and
time. To ease the requirement of re-training, we propose a policy distillation scheme, which distills
knowledge from a well-trained teacher model and then transfers the knowledge to the to-be-trained
student model, so that the training of the latter can be accelerated. Specifically, the teacher model is
trained for one training environment (e.g., the topology and traffic pattern) and the student model
is for another training environment. The simulation results indicate that our proposed method can
effectively speed up the training process of the student model, and it even leads to a lower blocking
probability, compared with the case that the student model is trained without knowledge distillation.

Keywords: routing, modulation and spectrum assignment; elastic optical networks; deep reinforcement
learning; knowledge distillation

MSC: 68T07

1. Introduction

Accompanied with the rapid development of the Internet technology, services such as
audio and video conferencing, webcasting, and cloud computing have become popular.
The growing demand of these services leads to an exponential increase in data traffic and
poses great challenges to the bearing communication networks [1]. Elastic optical networks
(EONs) have been regarded to be a promising candidate for the next-generation optical
communications [2,3]. In EONs, the spectrum is divided into narrow frequency slots, and
traffic requests can be served by different numbers of frequency slots according to their data
rate requirements and the quality of the connection. This flex-grid scheme greatly increases
the network resource allocation flexibility compared to the traditional wavelength-division
multiplexing (WDM)-based networks [4]. Meanwhile, it also brings difficulties for the
network resource management.

The routing, modulation, and spectrum assignment (RMSA) [5] is a key problem for
the EONs resource management. Due to the complexity, the RMSA problem is generally
divided into two sub-problems: the routing and spectrum assignment [6], each of them tack-
led by heuristic solutions [7–10]. For the routing sub-problem, representative approaches
include fixed routing, fixed alternative routing [11,12], and adaptive routing [4]. For the
spectrum assignment sub-problem, there are the first-fit [13] and random-fit schemes
and other methods. However, these rule-based heuristics, mostly relying on researchers’
cognition, cannot comprehensively capture the effect of the complex network conditions.
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To overcome the above limitation, deep reinforcement learning (DRL) has recently
been introduced to the RMSA problem [14–19], where the RMSA policies are parameterized
by deep neural networks and the RMSA policies are improved through interactions with
the optical network environment. Many of them have achieved a better performance than
heuristic methods. However, the learned policies of these DRL-based approaches are highly
related to the training environment, such as the traffic patterns and the network topologies.
However, in a practical network, the traffic patterns and the network topologies are very
likely to be changed. For example, the traffic volume from commercial and residential
areas varies from working hours to off-duty hours. Meanwhile, the network topology
becomes different in the case of a network failure or disasters. Once the environment
is changed, the effectiveness of the learned RMSA policies deteriorates significantly [20].
Therefore, re-training is required and consumes a lot of computing power and time. To
ease the requirement of re-training, Chen et al. [20] investigated the transfer learning (TL)
between different network topologies. They first trained and obtained a model from source
tasks, and then copied the parameters of the trained model as the starting point when
training the target task. The limitation is that the target task needs to use the same neural
network architecture with the source task. Moreover, the effect of traffic variation has not
yet been investigated.

In this paper, we extend our previously published conference paper [19] and apply
policy distillation [21] to the RMSA problem, combining knowledge distillation [22] with
reinforcement learning (RL). First, a teacher model is trained for one task with a specific
traffic pattern and network topology. Then, the well-trained policy of a teacher model
is distilled, and the knowledge is transferred to a student model with a different traffic
pattern and network topology, to assist the training of the student model. A major difference
between our work and the transfer learning in [20] is that the student model (target) and
the teacher model (source) can be different. This allows knowledge transfer in a broader
context. We have applied the proposed design in three different application scenarios,
which consider different traffic patterns and different topologies. The simulation results
demonstrate that policy distillation can accelerate the training speed of the student model
and improve its performance.

The rest of this paper is organized as follows. Section 2 surveys the related work. In
Section 3, we briefly introduce some basics of RL. In Section 4, we introduce the proposed
policy distillation architecture, including the problem formulation and the training of the
teacher model and the student model. Then, we present the simulation results in Section 5.
Lastly, we conclude the paper in Section 6.

2. Related Work

2.1. Deep Reinforcement Learning in RMSA of EONs

In recent years, research has emerged by exploiting DRL to solve the routing and
spectrum assignment problem in the optical networks. Chen et al. [23] proposed a DRL
framework, namely DeepRMSA, for the optical network management and resource al-
location. The DeepRMSA uses the deep Q-learning algorithm for the training. Because
the input-state representation has a significant impact on the performance, a series of
work has explored different state representations. Chen et al. [14] defined a list of features
of the candidate paths. Yan et al. [24] introduced the concept of a multi-modal optical
network by considering the topology modality and routing modality to represent different
features of the optical network and uses the actor–critic (AC) algorithm for the training.
Suárez-Varela et al. [25] captured the key relationships between the links in the input-state
representation, making the DRL agents easier and faster to learn. The same team then [26]
introduced the Graph Neural Networks to further capture the network-state features.
Xu et al. [18] introduced a link–path relationship matrix to capture the path information of
the elastic optical networks.

There are some other works exploring various aspects by applying DRL in the opti-
cal network management. Huang et al. [15] proposed a DRL-based self-learning routing
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scheme for the WDM-based networks. It allows the agent to continuously improve its
performance by self-comparison. Koch et al. [27] adopted the RL algorithm for parameter
optimization in EONs. In addition, a cost-efficient routing, modulation, wavelength, and
port assignment algorithm based on DRL was developed in [28]. Moreover, Li et al. [29]
investigated collaborative DRL agents for multi-domain provisioning in multi-area opti-
cal networks.

2.2. Transfer Learning in EONs

Transfer learning in EONs has recently attracted research interest. Yao et al. [30]
proposed a TL-based resource optimization strategy for predicting the spectrum defrag-
mentation time in space-division multiplexing EONs. Liu et al. [31] applied a TL approach
to implement a scalable quality-of-transmission estimation in EONs. To our knowledge, the
most relevant work of this paper is [20], where the authors propose a knowledge transfer
design that alleviates scalability issues by transferring knowledge between RMSA agents
with different tasks through a modular DRL agent structure. As mentioned in Section 1,
its limitation is that the target task needs to use the same neural network architecture
with the source task. In our previously published conference paper [19], we propose a
knowledge distillation scheme based on DRL to achieve RMSA policy scalability in EONs.
This paper extends [19] in three aspects: (1) the authors of [19] only consider different traffic
patterns, while this paper considers different traffic patterns and topologies; (2) the training
algorithm is updated to the most advanced asynchronous advantage actor–critic (A3C);
and (3) many more simulation results are provided to verify our proposal.

3. Preliminaries

As this work is based on RL, we first explain some basics about RL for the facility of
the readers.

3.1. Reinforcement Learning

Reinforcement learning is an important branch of machine learning. Many RL tasks
can be modeled as Markov decision processes (MDP), expressed as tuples {S, A, R, P}. S
is the state space of the environment; A is the action space of the agent; R is the reward
function; and P represents the state transition probabilities. In the RL framework, the agent
interacts with the environment. Specifically, given a state st ∈ S, the agent performs an
action at ∈ A according to a policy, and then the environment emits a reward rt and changes
its state from st to a new state st+1 according to the state transition probabilities P. In this
process, the agent influences the environment by taking the actions, and the environment
feeds back reward rt to the agent, which will guide the agent to choose better actions. The
goal of the agent is to improve its action policy by optimizing the cumulative future reward.

3.2. Asynchronous Advantage Actor–Critic

The RL agent needs to be trained by some training algorithm. In this work, we use
the A3C algorithm [32] for the training. It is the asynchronous multi-threaded version
of the AC algorithm [33]. The AC algorithm uses a policy network (also called actor) to
select the action and a value network (also called critic) to evaluate actions. The actor
updates its policy (i.e., action selection probability) according to the critic. Through the
agent–environment interaction, the critic improves its evaluation accuracy, and the actor
improves its policy gradually.

A3C makes the AC algorithm much easier and faster to converge. It adopts a multi-
threaded method, where each thread has an independent actor–critic pair interacting
with a copy of the environment. Each thread collects the exploration experience from its
environment copy and then regularly updates a shared global actor–critic pair. By doing
this, the algorithm converges faster.
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4. Policy Distillation Design with EONs

4.1. Elastic Optical Networks

In the EONs, the RMSA problem is to establish corresponding end-to-end paths and
allocate appropriate frequency slots (FSs) for different traffic requests according to their data
rate requirements. Furthermore, RMSA [6] algorithm must satisfy the spectrum contiguity
constraint and spectrum continuity constraint. The topology of the EONs can be denoted
by a graph G(V, E), where V and E represent the set of nodes and links, respectively. When
a traffic request, denoted by TR(vs, vd, b), arrives, RMSA is needed from the source node
vs ∈ V to the target node vd ∈ V with the required bandwidth b. The routing algorithm
first calculates all possible paths from the source to the destination, then selects one path
Pvs ,vd from the K-shortest paths. Corresponding number of FS n required on the selected
path Pvs ,vd can be calculated by Equation (1) and Table 1.

n =
⌈
b/(W · m(Pvs ,vd))

⌉
+ 1 (1)

W denotes the spectrum width of each FS; m(Pvs ,vd) ∈ [1, 2, 3, 4] corresponds to the modu-
lation format selected according to the physical length of Pvs ,vd [34]; and one FS is used for
the guard band. Then, n allocated FSs must be contiguous (spectrum contiguity constraint),
and each link along the demand path Pvs ,vd must be assigned the same n contiguous FSs
(spectrum continuity constraint).

Table 1. Transmission reach for different modulation formats [35].

m(Pvs ,vd) Modulation Format Transmission Reach

1 BPSK 5000 km
2 QPSK 2500 km
3 8-QAM 1250 km
4 16-QAM 625 km

4.2. Policy Distillation Scheme

We propose to integrate policy distillation into the RMSA problems of the optical
networks. The whole architecture is shown in Figure 1. Two models, namely the teacher
model and the student model, are trained for different tasks. First, a teacher model is trained
for one task with specific traffic pattern and network topology. Then, the well-trained
policy of the teacher model is distilled, and the knowledge is transferred to a student model
with a different traffic pattern and network topology, to assist the training of the student
model. There are three steps in the training process:

• Step 1: Train the teacher model. It is trained by interacting with the teacher environment.
• Step 2: Distill the knowledge from the teacher model and transfer the knowledge to

the student model. The training data of the student model are generated by calling the
well-trained teacher model obtained in Step 1, and then the student model is trained
by fitting these data.

• Step 3: Train the student model by itself. After the training in Step 2, the student
model will be further updated by interacting with student environment and no longer
rely on the knowledge distilled from the teacher model.

The RMSA policy for the student task is learned by the student model via Steps 2 and 3.
Step 2 distills the knowledge from the well-trained policy network of the teacher model
and transfers the knowledge to the student model to assist its training.

4.3. State, Action, and Reward

The optical network RMSA problem can be modeled as an MDP and solved in an
RL-based framework. In the RL framework, three essential elements are the state, the
action, and the reward. We consider the state only when there is a new traffic request. The
state st is a 1 × 5K vector containing spectrum utilization information on the K-shortest
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candidate paths of the traffic request [14]. For each candidate path, we considered five
elements of spectrum utilization as follows:

• Starting index of the first available FS-block;
• Size of the first available FS-block;
• Number of required FSs;
• Average size of the available FS-block;
• Total number of available FSs.

In addition, the action of the RMSA problem is to choose one path from the K-candidate
paths and allocate spectrum on the selected path based on the first-fit strategy. Therefore,
action at ∈ {1, 2, · · · , K}. The reward rt is defined to be 1 when the traffic request is
accepted, and −1 otherwise.

4.4. Teacher Model

According to Step 1 in Figure 1, a teacher model is first trained, which is illustrated
in more detail in Step 1 of Figure 2. We use DRL to train the teacher model and obtain
the RMSA policy to optimize the EONs resource management. The A3C algorithm is
adopted for the training, where multiple local actor–critic pairs are trained by interacting
with the copies of the environment in parallel, and then periodically update the global
actor–critic pair. The actor and critic are parameterized by two neural networks: the policy
network π(at|st; θp,T) and the value network V(st; θv,T). The policy network π(at|st; θp,T)
is used to generate the policy of RMSA, which is represented by a probability distribution.
The value network V(st; θv,T) is used to obtain the value of st and evaluate the RMSA
policy. T denotes the teacher model. θp,T and θv,T are the parameters of the policy and the
value network, respectively. The global parameters maintained by the A3C algorithm are
represented as θ∗p,T and θ∗v,T.

Teacher Environment

Teacher 
model

Student 
model

Student 
model

Training
Data

Step 1: train teacher
model

Step 2: generate data, then train 
student model via policy distillation

Step 3: train student 
model by itself

Student Environment 

Teacher 
model

Student Environment 

Figure 1. Overview of the policy distillation design with EONs.
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Figure 2. Detailed illustration of policy distillation design with EONs.
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The details of training process for the teacher model are given in Algorithm 1. First,
we initialize the experience buffer D to empty and set the initial exploration rate ε to 1. In
line 3, each actor–critic pair thread parameters are firstly updated by the global parameters.
Notice that for a general DRL task that can be modeled as a Markov decision process
{S, A, R, P} mentioned in Section 3, the state transition from st to st+1 follows a probability
distribution P. However, for the RMSA task in this paper, as the state space is extremely
large, state transitions are difficult to be modeled. Therefore, the RMSA task here belongs
to the model-free MDP and can only be optimized through samples. In lines 6–10, during
the sampling, we first input the 1 × 5K-dimensional state st into the policy and value
networks. Then, the policy network outputs a 1× K-dimensional probability distribution
π(at|st; θp,T), where each probability ranges from 0 to 1, and the summation of the output
K probabilities is 1. The value network outputs a value V(st; θv,T), which is a real number.
Finally, we store the sample (st, at, rt, V(st; θv,T)) generated by the interaction of the agent
and the environment in an experience buffer D. When the size of experience buffer reaches
2N − 1, we perform training based on the first N samples (lines 13–19). For each sample at
time t, the advantage function is calculated in line 15. To obtain the advantage function, we
first make cumulative the discounted reward for this sample (we only consider an episode
consisting of N consecutive samples after this sample and ignore the discounted reward
after N samples) by,

Qπ(st, at; θp,T) =
N−1

∑
i=0

γirt+i, t ∈ {t0, t0 + N − 1}, (2)

where γ is the discount factor, 0 < γ < 1. Then, the advantage of each action taken can be
obtained by,

A(st, at; θp,T, θv,T) = Qπ(st, at; θp,T)− V(st; θv,T). (3)

Equation (3) indicates how much better the actual selected action is than the average.
Note that an episode is defined to consist of N consecutive samples, where N is equal

to batch size. This way, all samples needed to calculate the advantage function can be
found in the experience buffer [14].

Then, the objective function of policy network Lθp,T and the loss function of value
network Lθv,T can be used to calculate the gradient of the policy and the value network, and
then the global parameters θ∗p,T and θ∗v,T can be updated according to the gradient (line 18).
Lθp,T and Lθv,T can be expressed as follows:

Lθp,T =−
t0+N−1

∑
t=t0

A(st, at; θp,T, θv,T) log π(at|st; θp,T)

− α
t0+N−1

∑
t=t0

∑
at∈{1,2,··· ,K}

π(at|s; θp,T) log π(at|s; θp,T),

(4)

Lθv,T =
t0+N−1

∑
t=t0

A(st, at; θp,T, θv,T)
2. (5)

To increase the diversity of the actions, the second term of Lθp,T introduces the policy
entropy to improve the agent’s ability to explore the environment, and α controls the
strength of the entropy regularization term. β and η are the learning rates.

The stopping criterion is that the model has converged. Specifically, we trace the
changing of the average blocking probabilities. If the difference between consecutive
average blocking probabilities is smaller than a pre-defined threshold, we regard the
model to be converged and therefore criterion is satisfied. Through the above steps
with Algorithm 1, we train a teacher model that can improve its RMSA policy under a
certain task.

298



Mathematics 2022, 10, 3293

Algorithm 1 Training algorithm of the teacher model.

1: Initialize: experience buffer D = φ, ε = 1.
2: while not stopping criterion do
3: Initialize each thread-specific policy network and value network:

θp,T ← θ∗p,T, θv,T ← θ∗v,T.
4: while |D| < 2N − 1 do
5: #SAMPLING
6: Upon the TR(vs, vd, b) arriving, obtain the state st.
7: Obtain π(at|st; θp,T) and V(st; θv,T) by the policy and the value network.
8: With probability ε select an action at according to π(at|st; θp,T), otherwise at =

argmaxa{π(at|st, θp,T)}.
9: Obtain reward rt.

10: Store sample (st, at, rt, V(st; θv,T)) in D.
11: end while
12: #TRAINING
13: For the first N samples (t ∈ {t0, t0 + N − 1}) in the experience buffer D.
14: for t ∈ {t0, t0 + N − 1} do
15: Calculate A(st, at; θp,T, θv,T) by Equation (3).
16: end for
17: Calculate Lθp,T and Lθv,T by Equations (4) and (5).
18: Obtain the policy network and value network gradients dθp,T and dθv,T with Lθp,T

and Lθv,T .
19: Global parameters θ∗p,T and θ∗v,T can be updated by:

θ∗p,T ← θ∗p,T − βdθv,T and θ∗v,T ← θ∗v,T − ηdθv,T.
20: Delete the first N samples in D and set ε = max{ε − ε0, εmin}.
21: end while

4.5. Student Model

Due to the similarities between tasks, we try to use the well-trained teacher model to
“teach” the student model to learn the optimal RMSA policy for student tasks, as shown in
Step 2 of Figure 1. This process is described in more detail in Step 2 of Figure 2. In this way,
the student model adjusts its training according to the experience knowledge of the teacher
model, in order to expect faster training speed or better performance.

Distillation is a method to transfer experience knowledge from a teacher model T to
a student model S. To transfer the knowledge, a straightforward method is to minimize
the distance between the output of the student model and the teacher model. Because the
action probability distribution of the output of policy network reflects the learned RMSA
policy, we use cross-entropy to fit the output of the two models’ policy networks. In order
to transfer more knowledge, the teacher model can utilize a relaxed (higher-temperature)
softmax than the one used during training [21]. Choose a temperature τ, the outputs of
the teacher model’s and the student model’s policy network are processed by softmax
functions to obtain the distributions: qτ(st, θp,T) and qτ(st, θp,S),

qτ(st, θp,T) = softmax(
π(at|st; θp,T)

τ
), (6)

qτ(st, θp,S) = softmax(
π(at|st; θp,S)

τ
). (7)

The softmax(·) is defined by:

softmax(i) =
ei

∑j ej . (8)
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Algorithm 2 describes in detail the training process of the student model. The sampling
part is same as the teacher model. When the training conditions are met, we first calculate
the cumulative discounted reward for each sample (we only consider the first N samples
and ignore the discounted reward after N samples) by:

Qπ(st, at; θp,S) =
N−1

∑
i=0

γirt+i, t ∈ {t0, t0 + N − 1} (9)

The advantage of each action can be calculated by:

A(st, at; θp,S, θv,S) = Qπ(st, at; θp,S)− V(st; θv,S). (10)

Let H(·, ·) be the cross-entropy function. Then, the similarity between the student
model’s and the teacher model’s policy network can be increased by minimizing the
objective function given below:

LPD
θp,S

=
t0+N−1

∑
t=t0

H(qτ(st, θp,T), qτ(st, θp,S)). (11)

During the distillation stage, although the value network did not directly obtain the
experience knowledge from the teacher model by cross-entropy fitting, the output of the
student model’s policy network trained via policy distillation affected the generation of the
samples, which indirectly affects the training of the value network.

The loss function Lθv,S of the student model’s value network during distillation is
given by:

Lθv,S =
t0+N−1

∑
t=t0

A(st, at; θp,S, θv,S)
2. (12)

By optimizing the objective and the loss function above, we can transfer knowledge
from the teacher model to the student model.

When the student model is initialized, its DRL agents start from tabula rasa, which
means that they have no professional knowledge about the optical network environment
of the task, and therefore, they need to learn the optimal RMSA policy by exploring the
state and action space for a long time. Therefore, we transfer the knowledge of the teacher
model to the poorly performing student model through distillation to reduce ineffective
exploration of the student model.

However, although the teacher model is well-trained for the teacher tasks, in the
process of policy distillation, its policy has limitations guiding the training of the student
model for the student tasks. Therefore, we conduct the policy distillation for the beginning
M TR(s, d, b) requests, and then let the student model learn by itself as shown in Step 3 of
Figure 2. The objective function and loss function of the first M traffic requests are given by
Equations (11) and (12), and the afterward is given by:

Lθ−p,S
=−

t0+N−1

∑
t=t0

A(st, at; θ−p,S, θ−v,S) log π(at|st; θ−p,S)

− α
t0+N−1

∑
t=t0

∑
at∈{1,2,··· ,K}

π(at|s; θ−p,S) log π(at|st; θ−p,S),

(13)

Lθ−v,S
=

t0+N−1

∑
t=t0

A(st, at; θ−p,S, θ−v,S)
2. (14)

where θ−p,S and θ−v,S are the parameters of the policy and the value network of the student
model during self-learning, respectively.
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Algorithm 2 Training algorithm of student model.

1: Initialize: experience buffer D = φ, ε = 1.
2: while not stopping criterion do
3: Initialize each thread-specific policy network and critic network by:

θp,S ← θ∗p,S, θv,S ← θ∗v,S.
4: while |D| < 2D − 1 do
5: #SAMPLING
6: Upon the TR(vs, vd, b) arriving, obtain the state st.
7: Obtain π(at|st; θp,S) and V(st; θv,S) by the policy and the value network.
8: With probability ε select an action at according to π(at|st; θp,S), otherwise at =

argmaxa{π(at|st; θp,S)}.
9: Obtain reward rt and store sample (st, at, rt, V(st; θv,S)) in D.

10: end while
11: #TRAINING
12: if before M requests then
13: #DISTILLATION
14: For the first N samples (t ∈ {t0, t0 + N − 1}) in the experience buffer D.
15: for t ∈ {t0, t0 + N − 1} do
16: Calculate A(st, at; θp,S, θv,S) by Equation (10).
17: end for
18: Obtaining training samples {(sj

t, qτ(s
j
t, θp,T)}N

j=1.

19: Calculate LPD
θp ,S by Equation (11) and Lθv ,S by Equation (12).

20: Obtain the policy network and value network gradients dθp,S and dθv,S with LPD
θp ,S,

Lθv ,S.
21: Global parameters θ∗p,S and θ∗v,S can be updated by:

θ∗p,S ← θ∗p,S − βdθv,S and θ∗v,S ← θ∗v,S − ηdθv,S.
22: Delete the first N samples in D and set ε = max{ε - ε0, εmin}.
23: else
24: #SELF-LEARNING
25: θ−,∗

p,S = θ∗p,S, θ−,∗
v,S = θ∗v,S.

26: For the first N samples (t ∈ {t0, t0 + N − 1}) in the experience buffer D.
27: for t ∈ {t0, t0 + N − 1} do
28: Calculate A(st, at; θ−p,S, θ−v,S) by Equation (10).
29: end for
30: Calculate Lθ−p,S

and Lθ−v,S
by Equations (13) and (14).

31: Obtain the policy network and value network gradients dθ−p,S and dθ−v,S with Lθ−p,S

and Lθ−v,S
.

32: Global parameters θ−,∗
p,S and θ−,∗

v,S can be updated by:

θ−,∗
p,S ← θ−,∗

p,S − βdθ−v,S and θ−,∗
v,S ← θ−,∗

v,S − ηdθ−v,S.
33: Delete the first N samples in D and set ε = max{ε - ε0, εmin}.
34: end if
35: end while

5. Performance Evaluation

In this section, we introduce the simulation results of the proposed policy distillation
design with the EONs. We applied the proposed method to three different scenarios:
(1) policy distillation between different traffic patterns, (2) policy distillation between differ-
ent topologies, and (3) policy distillation between different traffic patterns and topologies.

5.1. Parameter Settings

The common parameters used in the simulations are explained in below. For the
simulations in Sections 5.2–5.5, these common parameters are used unless otherwise speci-
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fied. Moreover, for convenience, the symbols of these key common parameters and their
corresponding meanings and values are listed in Table 2.

Table 2. Key parameters and their corresponding meaning and values.

Notation Meaning Value

DRL
Environment
(i.e., EONs)

Number of frequency slots per link 100

B Bandwidth requirement [25, 100] Gb/s

K Number of candidate paths 5

Bandwidth of a spectrum slot 12.5 GHz

DRL
agent

L Number of hidden layers
(teacher model/student model) 8/5

H
Number of neurons

for each hidden layer
(teacher model/student model)

256/128

DRL
training

γ Discount rate 0.95

β/η Learning rate 1× 10−5

α Entropy regularization coefficient 0.01

N Mini-batch size 200

M Number of traffic requests for distillation 100,000

τ Temperature 5

εmin Final explore rate 0.05

All the topologies used in the simulations are shown in Figure 3, where the weight
of each edge of the topology represents the physical length of each link, and they will be
used to calculate the FSs in Equation (1). We set the capacity of each fiber link to be 100 FSs.
The traffic requests are generated according to independent Poisson processes. In order to
ensure that the blocking probabilities of different topologies can fall within a reasonable
range, we set a different traffic load for all the different topologies. The traffic patterns and
the load for different simulation scenarios will be described in detail later. In addition, the
bandwidth requirement of each traffic request is evenly distributed within [25, 100] Gb/s.
The number of the shortest paths K is set to be 5, which means the DRL agent is to select a
path from 5 candidate paths.

In terms of the neural network architecture, for the teacher model, the policy and
value networks both have five hidden layers, with 256 neurons per layer. For the student
model, the policy and value networks both have five hidden layers, with 128 neurons per
layer. ReLU is used as the activation function for the hidden layers. We set the discount
factor γ, the learning rate β and η, the coefficient of the entropy regularization term α, and
the temperature of distillation τ to be 0.95, 1× 10−5, 1× 10−5, 0.01, and 5, respectively. In
addition, the number of traffic requests for distillation M is 100,000. During the training,
the mini-batch gradient descent algorithm and the Adam optimizer are used, with the
mini-batch size N to be 200. The exploration rate ε is set to be 1 at the beginning and
gradually decays by ε0 (set to be 10−5) units during each training process until it reaches
εmin, which is 0.05.
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Figure 3. Optical network topologies: (a) 8-node, (b) 14-node NSFNET, (c) 11-node COST 239, and
(d) 24-node US Backbone.

5.2. Policy Distillation for Different Traffic Patterns

We first evaluate the performance of our proposed scheme for different traffic patterns
and the same network topology. In this subsection, both the teacher and the student models
are trained over the same network topology: the 14-node NSFNET. The traffic patterns
are different. We set the model trained under a uniformly distributed traffic pattern as the
teacher model and the model applied for the non-uniformly distributed traffic patterns as
the student models.

The traffic pattern is denoted by an N × N matrix TP, where N(=14) denotes the
number of nodes of the NSFNET. The element TPij represents the traffic load ratio from
node i to node j, where TPij = 0 when i = j. If TPij are the same for all i-j pairs (i �= j), the
traffic pattern is uniformly distributed. Otherwise, it is non-uniformly distributed. For the
student model, we designed three different non-uniform traffic patterns, namely pattern
A, pattern B, and pattern C, as shown in Figure 4a,c,e. They correspond to the following
three settings:

• Pattern A: non-uniform; TPij = TPji, ∀i, j; TPij �= 0, ∀i �= j.
• Pattern B: non-uniform; TPij = TPji, ∀i, j; exist TPij = 0 when i �= j.
• Pattern C: non-uniform; exist TPij �= TPji; exist TPij = 0 when i �= j.

For the uniform traffic patterns, the arrival rate is 12 arrivals per time unit and the
average service time is 16 time units, while for the non-uniform traffic pattern, the arrival
rate is 16 arrivals per time unit and the average service time is 25 time units. Table 3 records
the traffic loads for all the traffic patterns in Section 5.2.

Figure 4b,d,f show the evolution of the simulation results as the number of requests
increase, with the blocking probability calculated every 1000 TR(vs, vd, b) requests. The
blue lines represent the blocking probabilities of the agents learning from scratch without
policy distillation (“w/o PD”), while the red lines represent the blocking probabilities of
the agents that learn with the policy distilled from the teacher model which is trained with
the uniform traffic pattern (“PD-14-Node-uniform”). The green lines represent the blocking
probabilities of the baseline algorithm: the K-shortest-path routing and first-fit spectrum
allocation (KSP-FF) [36]. The “KSP-FF” in Figure 4b,d,f are the results of applying the
KSP-FF algorithm to pattern A, pattern B, and pattern C of the 14-node NSFNET topology,
respectively. We can see that, by policy distillation (“PD-14-Node-uniform”), the agent
converges faster and achieves lower blocking probabilities, compared to the cases without
policy distillation (“w/o PD”). Specifically, the blocking probability reductions are 10%,
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10.7%, and 3.6% with pattern A, pattern B, and pattern C, respectively. These results imply
that the policy distillation does well in traffic pattern variation tasks.

(a) pattern A
(b)

(c) pattern B
(d)

(e) pattern C
(f)

Figure 4. (a,c,e): The non-uniform traffic patterns for the student models. (b,d,f): Blocking probabili-
ties under different traffic patterns ((b) pattern A, (d) pattern B, and (f) pattern C) for student model
with policy distillation, student model without policy distillation, and the baseline KSP-FF algorithm.

Table 3. Traffic loads for all traffic patterns in Section 5.2.

Topology Traffic Pattern Load

Teacher model 14-node NSFNET uniform 0.75

Student model
14-node NSFNET pattern A 0.64

14-node NSFNET pattern B 0.64

14-node NSFNET pattern C 0.64
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5.3. Policy Distillation for Different Topologies

We have also conducted simulations for different topologies to evaluate the perfor-
mance of the policy distillation scheme. In this case, we train two teacher models in the
8-node topology and the 14-node NSFNET topology, while the other two topologies (the
11-node COST 239 topology and the 24-node US Backbone topology) are used for training
the student models. The traffic patterns for all the teacher and student models are the same
in terms of distributions: uniform. For the 8-node, 11-node COST239, 14-node NSFNET,
and 24-node US Backbone topology, the arrival rate is 14, 16, 12, and 12 arrivals per time
unit, and the average service time is 25, 25, 16, and 14 time units, respectively. Table 4
records the traffic loads for all the traffic patterns in Section 5.3.

Table 4. Traffic loads for all traffic patterns in Section 5.3.

Topology Traffic Pattern Load

Teacher model
8-node uniform 0.56

14-node NSFNET uniform 0.75

Student model
11-node COST 239 uniform 0.64

24-node US Backbone uniform 0.86

Figure 5a,b show the evolution of the blocking probability by the student models
trained in different topologies. We denote the agents that learn with the policy distilled
from the teacher models for the 8-node and 14-node NSFNET as “PD-Eight-Node” and
“PD-14-Node”, respectively. The KSP-FF algorithm is adopted as the baseline, it is applied
to the training environment of the uniform distribution 11-node COST239 and 24-node
US Backbone topology, respectively, and the results of the “KSP-FF” in Figure 5a,b are
obtained. We can observe from Figure 5a that, for the student model trained in the
11-node COST239 topological environment, the cases with policy distillation (“PD-Eight-
Node” and “PD-14-Node”) reach the performance level of “KSP-FF” faster than the case
without the policy distillation (“w/o PD”). Specifically, the blocking performance of the
“PD-Eight-Node” and “PD-14-Node” matches that of the “KSP-FF” after about 150,000 and
244,000 traffic requests, but the “w/o PD” consistently performs worse than the “KSP-FF”
before 1,000,000 traffic requests.

Similar results are observed in Figure 5b when the student model is trained in the
24-node US Backbone topological environment. Moreover, it can be seen from Figure 5a,b
that the cases with the policy distillation (“PD-Eight-Node” and “PD-14-Node” ) have
lower blocking probabilities after convergence compared with the case without the pol-
icy distillation (“w/o PD”). These results show that when the topology changes, policy
distillation can assist the policy learning in the new environment. Figure 5c,d show the com-
plementary cumulative distribution function (CCDF) with a blocking reduction compared
to the “KSF-FF” from different schemes after training with 750,000 traffic requests. For the
COST 239 topology, the “PD-Eight-Node” and “PD-14-Node” outperform the “KSP-FF”
for around 54% and 52% cases, respectively, while the “w/o PD” only outperforms the
“KSP-FF” for around 33% of the cases. For the US Backbone topology, the “PD-Eight-Node”
and “PD-14-Node” outperform the “KSP-FF” for around 55.8% and 46.3% of the cases,
respectively, while the “w/o PD” outperforms the “KSP-FF” for around 29.5% of the cases.
This indicates the effectiveness of policy distillation.

305



Mathematics 2022, 10, 3293

(a) 11-node COST239 uniform (b) 24-node US Backbone uniform

(c) 11-node COST239 uniform (d) 24-node US Backbone uniform

Figure 5. (a,b): Blocking probability in training with different topologies, and (c,d): complementary
cumulative distribution function (CCDF) with blocking reduction compared to KSP-FF algorithm
after training with 750,000 traffic requests.

5.4. Policy Distillation for Different Traffic Patterns and Topologies

In this subsection, we change both the traffic patterns and the network topologies for
the policy distillation. Similar with Section 5.3, two teacher models are trained under the
8-node topology and the 14-node NSFNET topology, while the student models are applied
for the 11-node COST 239 topology and the 24-node US Backbone topology. Besides that,
the teacher models are trained under uniform traffic patterns, while the student models are
trained under a non-uniform traffic pattern. We have conducted four sets of simulations,
denoted as Simulation T-1 to T-4. Detailed simulation settings of the student models are
shown in Table 5, and the traffic loads of all the traffic patterns in Section 5.4 are shown in
Table 6.

The simulation results are shown in Figure 6a–d. First, we can see that compared with
the case without policy distillation (“w/o PD”), taking policy distillation from an eight-
node-topology-and-uniform-traffic-pattern teacher (“PD-Eight-Node”) and an NSFNET-
topology-and-uniform-traffic-pattern teacher (“PD-14-Node”) can effectively accelerate
the training of student models and obtain lower blocking probabilities for all simulations.
Specifically, the “PD-Eight-Node” achieves blocking reductions of 8.3%, 11.9%, 7.8%, and
9.8% for simulations T-1∼T-4, respectively. For the “PD-14-Node”, the blocking probability
reductions are 7.5%, 11%, 3.9%, and 2.4% for simulations T-1∼T-4, respectively. Meanwhile,
Table 7 records the time (approximately) spent by different schemes when the blocking
performance reaches the level of the “KSP-FF” in Simulation T-1∼Simulation T-4. In this
section, the “KSP-FF” in Figure 6a–d are the results of applying the KSP-FF algorithm to
the training environment of Simulation T-1∼Simulation T-4, respectively. We can notice
that the “PD-Eight-Node” and “PD-14-Node” learn faster. In Simulation T-1∼Simulation
T-4, when the blocking performance reaches that of the KSP-FF, the training time of the
“PD-Eight-Node” is reduced by 31.4%, 14%, 57%, and 60.3% compared with that of the “w/o
PD”, respectively. A similar trend can be seen between the “PD-14-Node” and “w/o PD”.
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Table 5. Simulation settings for the student models in Section 4.4.

Student Model

Simulation T-1
Topology 11-node COST239

Traffic pattern
pattern D (non-uniform; TPij = TPji, ∀i, j;

TPij �= 0, ∀i �= j)

Simulation T-2
Topology 11-node COST239

Traffic pattern
pattern E (non-uniform; TPij = TPji, ∀i, j;

exist TPij = 0 when i �= j)

Simulation T-3
Topology 24-node US Backbone

Traffic pattern
pattern F (non-uniform; TPij = TPji, ∀i, j;

TPij �= 0, ∀i �= j)

Simulation T-4
Topology 24-node US Backbone

Traffic pattern
pattern G (non-uniform; TPij = TPji, ∀i, j;

exist TPij = 0 when i �= j)

Table 6. Traffic loads for all traffic patterns in Section 5.4.

Topology Traffic Pattern Load

Teacher model
8-node uniform 0.56

14-node NSFNET uniform 0.75

Student model

11-node COST 239 pattern D 0.64

11-node COST 239 pattern E 0.64

24-node US Backbone pattern F 0.86

24-node US Backbone pattern G 0.86

Table 7. Training duration when performance reaches KSP-FF (in seconds).

“PD-Eight-Node” “PD-14-Node” “w/o PD”

Simulation T-1 1963 1956 2863

Simulation T-2 1939 1895 2258

Simulation T-3 3131 2868 7277

Simulation T-4 3743 3373 9427

For all of the above simulations, we only use the KSP-FF heuristic algorithm as the
baseline. As can be seen from the experimental figures, some DRL-based approaches can
only achieve a comparable performance with the KSP-FF. For such results, we believe that
the performance of the DRL-based approaches is limited by the design of the reward. In this
regard, our work [37] has investigated the reward design, and the results are significantly
better than the KSP-FF in terms of the blocking probability. However, the focus of this
paper is not on the reward design. We pay more attention to the performance comparison
before and after the introduction of knowledge distillation. From the above simulations, it
can be seen that the blocking performance can be improved by integrating the knowledge
distillation method.
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(a) Simulation T-1 (b) Simulation T-2

(c) Simulation T-3 (d) Simulation T-4

Figure 6. Blocking probability of different topologies with different non-uniform traffic patterns.

5.5. Policy Distillation with Different Neural Network Size of the Teacher Model

We have also investigated the effect of the size of the teacher model’s neural network
on the performance of the proposed policy distillation design. Specifically, we design
three different neural network settings for the teacher model: (1) three hidden layers with
64 neurons per layer (3 × 64) , (2) five hidden layers with 128 neurons per layer (5 × 128),
and (3) eight hidden layers with 258 neurons per layer (8 × 256). The teacher model
is trained under the uniform traffic pattern over the 14-node NSFNET, and the student
models are trained under the uniform traffic pattern over the COST239 topology. The
arrival rate and average service time are the same as in Section 5.2. The results of the
blocking probability are shown in Figure 7.

Figure 7. Blocking probability in training with different size of teacher model’s neural network.

The result shows that teacher models with different neural network sizes (PD-14-Node
(3 × 64), PD-14-Node (5 × 128), and PD-14-Node (8 × 256)) can carry out policy distil-
lation to the student models. This shows that the proposed policy distillation scheme
is not limited by the size of the teacher models’ neural network. When the neural net-
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work architecture of the teacher model and the student model are different, policy learn-
ing with policy distillation can also be carried out. This allows knowledge transfer in a
broader context.

6. Conclusions

This paper proposes a deep reinforcement learning-based RMSA policy distillation
design for the elastic optical networks. It allows the knowledge transfer from a well-
trained teacher model under one training environment to a student model under a different
environment, so that the training of the latter is accelerated with a better final performance.
One highlight is that the student model and the teacher model can be different in terms of
the neural network architecture. This allows the knowledge transfer in a broader context.
Our method is verified by the simulations of the policy distillation over different traffic
patterns and network topologies.

One limitation of our proposal is that the input dimension of the teacher model and
the student model must be the same. Recall that the input represents the state of the elastic
optical network; the above limitation poses constraints on the state representation. How
to break this limitation can be considered for future work. Meanwhile, the performance
of the learned RMSA policy in real optical networks should be studied experimentally in
future work.
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Abstract: Aspect-based sentiment analysis (ABSA) is a fine-grained task of sentiment analysis that
presents great benefits to real-word applications. Recently, the methods utilizing graph neural
networks over dependency trees are popular, but most of them merely considered if there exist depen-
dencies between words, ignoring the types of these dependencies, which carry important information,
as dependencies with different types have different effects. In addition, they neglected the corre-
lations between dependency types and part-of-speech (POS) labels, which are helpful for utilizing
dependency imformation. To address such limitations and the deficiency of insufficient syntactic and
semantic feature mining, we propose a novel model containing three modules, which aims to leverage
dependency trees more reasonably by distinguishing different dependencies and extracting beneficial
syntactic and semantic features to further enhance model performance. To enrich word embeddings,
we design a syntactic feature encoder (SynFE). In particular, we design Dependency-POS Weighted
Graph Convolutional Network (DPGCN) to weight different dependencies by a graph attention
mechanism we proposed. Additionally, to capture aspect-oriented semantic information, we design a
semantic feature extractor (SemFE). Extensive experiments on five popular benchmark databases
validate that our model can better employ dependency information and effectively extract favorable
syntactic and semantic features to achieve new state-of-the-art performance.

Keywords: aspect-based sentiment analysis; graph neural networks; dependency trees; dependency
types; graph attention mechanism; syntactic; semantic

MSC: 18C50

1. Introduction

Aspect-based sentiment analysis (ABSA) is a popular topic in natural language pro-
cessing with the purpose of identifying the sentiment polarities (i.e., positive, neutral and
negative) toward the specific aspects in given sentences. Take this review “The food in this
restaurant is delicious but the service is terrible” as an example. For aspect “food”, the polarity
is positive, while it is negative for aspect “service”. An ABSA model aims to infer the
sentiment polarities of the given aspects accurately on the fine-grained level.

The key to solving the ABSA task is to find the relations between aspects and cor-
responding opinion words properly. Early works combined recurrent neueal networks
(RNNs) and the attention mechanism [1–5] to capture semantic information related to
aspects and generate aspect-specific sentence representation. However, these methods
are vulnerable to noises introduced by unrelated words. They also ignored the syntactic
dependency information in the sentences, which makes it difficult for them to link aspects
and corresponding opinion words due to the long position distance between them. Most
recent works [6–10] applied graph-based networks such as graph convolutional networks
(GCNs) and graph attention networks (GATs) over dependency trees to explicitly exploit
syntactic dependency information, which achieved better performance. However, the draw-
back of these methods is that all dependencies are treated equally without weighting them
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according to their types. Linguistically, the dependencies with different types have dividual
significance, with some dependencies among words providing benefits to the ABSA task,
while others introduce noises that hurt model performance. As shown in Figure 1, the
aspect “food” has dependencies with two other words “the” and “delicious”. Obviously,
“delicious” as the opinion word is more important for sentiment analysis of aspect “food”,
while “the” does not show explicit information. Thus, the dependency type “nsubj” means
that “food” is a nominal subject of “delicious” and should be assigned more attention weight
than “det” only meaning that “The” is a determiner of “food”. It can be seen that modeling
dependency types properly is necessary for advancing the ABSA task. Meanwhile, the pre-
vious GCN-based models omitted the correlations between dependency types and POS
labels. For example, with comprehensive investigation from the datasets, we find that the
important dependency type “nsubj” is frequently connected with noun labels and verb
labels such as “JJ”, “NN”, “NNS”, etc. Normally, there are many words in a sentence, but a
few words are valuable for sentiment analysis of the aspect. After the investigation, we
conclude that the POS of opinion words is typically an adjective or verb due to words with
these POS usually carrying clear sentiment information. So, incorporating dependency
information and POS information is a potential way for upgrading the ABSA task.

To tackle the above limitations and improve model performance, we propose a novel
model including three effective modules: SynFE, DPGCN and SemFE. Particularly, the main
module DPGCN incorporates dependency information and POS information to weight
different dependencies. SynFE and SemFE supplement syntactic and semantic features for
aspects to further improve model performance.

Our contributions are summarized as follows:

• We propose to weight dependencies with different types in dependency trees ac-
cording to their contribution to ABSA task by capturing the correlations between
dependency types and POS labels.

• We propose DPGCN to weight different dependencies with a graph attention mech-
anism which incorporates dependency information and POS information. SynFE
and SemFE are developed to extract more feature information for elevating model
performance.

• We conduct extensive experiments on five benchmark datasets, and the results prove
the effectiveness of our model.

Figure 1. An example sentence with its dependency tree and POS labels.

2. Related Work

With the booming development of deep learning, relevant models were applied to
this task. Many early attention-based neural network models [1–5] achieved promising
performance, which aroused great concern. Ref. [1] proposed an attention-based LSTM
which focuses on the key part of sentences to obtain contextual representations. Refs. [2,3]
introduced a memory network with an attention mechanism to extract sentiment informa-
tion related to aspects. Ref. [4] utilized a multi-grained attention mechanism to capture
word-level interactions between aspects and contexts. Ref. [5] exploited the Attention over
Attention network to learn aspect representations and sentence representations together.
In addition, pre-trained language model BERT [11] has achieved remarkable performance
in a number of NLP tasks, including ABSA. Ref. [12] transformed the ABSA task into
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sentence–aspect pair classification and achieved excellent performance by fine-tuning the
BERT model.

Early works lost sight of the usefulness of syntactic knowledge to the ABSA task. To ex-
plicitly exploit syntactic dependency information, ref. [13] proposed an attention model
with syntactic dependency information to obtain attention weights, and ref. [14] introduced
syntactic relative distance to reduce the negative effects of words that are weakly related to
aspects. Graph Convolutional Network (GCN) [15] had achieved surprising performance
in many NLP tasks, including ABSA. Applying a GCN-based model over dependency trees
became a new trend, which developed several outstanding models. Refs. [6,7] applied
GCN over dependency trees to capture the syntactic dependency information for aspects.
Ref. [8] noticed the word co-occurrence information, building a hierarchical syntactic graph
and lexical graph for graph convolution. Ref. [16] proposed a relational graph attention
network (R-GAT) to encode the new dependency trees for sentiment analysis. Ref. [17]
designed DualGCN including SynGCN and SemGCN to extract syntactic and semantic
information for aspects, respectively.

3. Method

In this section, we elaborate the details of our proposed model. The overall structure
of our model is shown in Figure 2, and the details of SynFE and DPGCN are depicted in
Figure 3.

Our model mainly consists of three modules: (1) SynFE, which encodes the depen-
dency information and POS information of the sentences to enrich word-level vector
representations; (2) DPGCN, which captures the correlations between dependency types
and POS labels to weight dependencies with different types; and (3) SemFE, which ex-
tracts semantic features from the overall sentence to supplement sentiment features for
aspect representations. Each component will be presented in detail and analyzed for
their contribution.

Figure 2. The overall structure of our proposed model.

3.1. Problem Definition (ABSA)

Given an n-word review sentence S = {w1, w2, · · · , wa+1, · · · , wa+m, · · · , wn} with
an m-word aspect A = {wa+1, · · · , wa+m} in it, ABSA aims at identifying the sentiment
polarity (i.e., positive, neutral or negative) of the given aspect in a sentence. If there is more
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than one m-word aspect in a sentence, our model processes the sentence several times,
i.e., outputting the sentiment polarity of one aspect once.

keys POS valuesDep values

Figure 3. The details of (a) SynFE and (b) DPGCN.

3.2. Initial Embedding Module

The pre-trained language model BERT has the ability to provide word embeddnings
with rich feature information; thus, we construct a sentence–aspect pair (S, A) as the
input of BERT to initialize aspect-aware word vectors with the input form: “[CLS] sentence
[SEP] aspect [SEP]”, where ‘CLS’ is a symbol token for encoding overall sentence-level
representation, and ‘SEP’ is a separator for separating sentence and aspect. The calculations
in BERT are as follows:

{hCLS, HS, HA} = BERT({CLS, S, SEP, A, SEP}) (1)

where hCLS ∈ Rda is the overall sentence-level representation, HS = {h1, h2, · · · , hn} ∈
Rn×da are the word-level representations of the sentence, where n is the number of words in
one sentence and da is the dimension of each word vector, and HA = {ha+i, · · · , ha+m} ∈
Rm×da are the aspect representations. We only adopt HS, which contain aspect representa-
tions and contextual representations of the sentence.

3.3. Syntactic Feature Encoder (SynFE)

The quality of textual representations is critical to all NLP tasks. To enrich the features
for word representations of aspects and contexts, we encode syntactic information (i.e.,
dependency information and POS information) and fuse them into word representations.

According to the structures of dependency trees, we construct a key–value network to
learn syntax-aware representations. In detail, our module obtains dependency trees of the
given sentences from an off-the-shelf NLP toolkit (i.e., StanfordCoreNLP). We map depen-
dencies to key sets K, and dependency types and POS labels are mapped to dependency
value sets VD and POS value set VP. As illustrated in Figure 1, each word has dependencies
with other words. For wi (i.e., the i-th word in the sentence), we map the dependencies
related to it and corresponding dependency types to a key set Ki = {ki,1, ki,2, · · · , ki,n} in K
and a value set VD

i = {vd
i,1, vd

i,2, · · · , vd
i,n} ∈ Rn×db in VD, respectively. Each element in Ki

represents the weight for corresponding dependency; Ki,j = 0 if there is no dependency
between wi and wj. For VD

i , the element is the embedding vector for the corresponding
dependency type. For example, vd

i,j ∈ Rdb in VD
i represents a db-dimensional embedding

vector for the dependency type between wi and wj. In particular, the type is denoted as
“none” if there is no dependency between two words, while it is “self ” between one word
and itself. VP = {vp

1 , vp
2 , · · · , vp

n} ∈ Rn×dc represent the embedding vectors of POS labels
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for words in the sentence. The embedding vectors in VD and VP are randomly initialized
and trainable, but the weights in K are calculated by:

ki,j =
ai,j ∗ exp(hihT

j )

∑n
k=1 ai,k ∗ exp(hihT

k )
(2)

where T denotes vector transpose, ai,j = 1 if a dependency exists between wi and wj, and it
is 0 otherwise, ∗ is element-wise multiplication, and hi ∈ Rda and hj ∈ Rda are the word
representations of wi and wj from BERT. The syntactic feature representations for words
are learnt by:

od
i =

n

∑
j=1

ki,j ∗ vd
i,j, op

i =
n

∑
j=1

ki,j ∗ vp
j (3)

where vd
i,j ∈ Rdb and vp

j ∈ Rdc are the embedding vectors for the dependency type between

wi and wj and the POS label of wj, and od
i ∈ Rdb and op

i ∈ Rdc are the dependency
representation and POS representation for wi that provide beneficial syntactic features for
word representation. Afterward, we incorporate them into the word representations from
BERT by:

xi = hi ⊕ od
i ⊕ op

i (4)

where xi refers to the output of the key-value network for wi, and ⊕ denotes vector
concatenation. X = {x1, x2, · · · , xn} ∈ Rn×(da+db+dc) are updated word representations
with syntactic features output by the key-value network.

3.4. Dependency-POS Weighted Graph Convolutional Network (DPGCN)

An adjacency matrix A = {ai,j}n×n is used to represent the structure of a dependency
tree in a traditional GCN-based model, A is a 0-1 matrix where ai,j = 1 if there exists a
dependency between wi and wj, and ai,j = 0 otherwise. In order to make better use of
syntactic dependency information, we propose a graph attention mechanism to construct
DPGCN graph G = {gi,j}n×n by combining dependency types and POS labels, where
gi,j ∈ [0, 1] while ai,j = {0, 1}. First, ti,j is denoted as the dependency type between wi

and wj, and there is a trainable embedding vector αi,j ∈ R2∗da for each type ti,j. Then,
to alleviate noises introduced from POS, the POS labels of all words are divided into five
categories (i.e., Nouns, Verbs, Adjectives, Adverbs and Others), where there is a POS
mapping matrix wp ∈ Rda×da corresponding to each POS category. DPGCN is an L-layer
GCN-based module; each layer exists to a corresponding DPGCN graph Gl = {gl

i,j}n×n,

and all gl
i,j are calculated by:

rl
i,j = Relu(αT

i,j[h
l−1
i wp

i ⊕ hl−1
j wp

j ]) (5)

gl
i,j = so f tmax(rl

i,j) =
ai,j ∗ exp(rl

i,j)

∑n
k=1 ai,k ∗ exp(rl

i,k)
(6)

where ai,j ∈ A, hl−1
i ∈ Rda and hl−1

j ∈ Rda are hidden state representations for wi and

wj output by the (L − 1)-th layer of DPGCN, l stands for the L-th DPGCN layer, and gl
i,j

denotes the dependency weight between wi and wj at the L-th layer.
Based on DPGCN graph Gl , DPGCN learns refined word representations (i.e., both

aspect representations and contextual representations). First, X = {x1, x2, · · · , xn} ∈
Rn×(da+db+dc) from SynFE are fed into a feedforward network to obtain 768-dimensional
hidden state representations H0 = {h0

1, h0
2, · · · , h0

n} ∈ Rn×da as the input of DPGCN by:

H0 = HSWS + bS (7)
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where WS ∈ R(da+db+dc)×da and bS ∈ Rda are trainable weight matrix and bias. Then, all
layers of DPGCN proceed convolution as follows:

hl
i = σ(

n

∑
j=1

gl
i,j ∗ (hl−1

j Wl + bl)) (8)

Hl = σ(Gl(Hl−1Wl + bl)) (9)

where Wl ∈ Rda×da and bl ∈ Rda are the trainable weight matrix and bias in the L-th layer,
σ is the Relu activation function, and Hl = {hl

1, hl
2, · · · , hl

n} ∈ Rn×da output by DPGCN
represents the refined word representations for aspect and contexts. DPGCN learns high-
quality word representations in the way of more reasonably leveraging dependency trees.

3.5. Semantic Feature Extractor (SemFE)

To retrieve more sentiment features from the overall sentence for sentiment classifi-
cation, we extract semantic features related to aspect upon contexts to generate aspect-
oriented sentence representation.

Position Encoding: In terms of the common sense of linguistics, contexts close to
aspect generally have greater influences on the sentiment expression of aspect, so position
weights are defined as follows:

dt =

⎧⎨⎩
1, dis = 0,

1 − dis
n , 1 ≤ dis ≤ d,
0, dis > d,

1 ≤ t ≤ n (10)

where dis denotes the distance from contexts to aspect; it is aspect itself when dis = 0,
and we mask the word representations when dis > d to avoid introducing noises. Take this
simple sentence “The served food is delicious” as an example; the position weights are set to
dt = [0.8, 1, 1, 0.8, 0] when the aspect is “served food” and d = 1. The position-encoded word
representations P are obtained by:

pt = dt ∗ hl
t, 1 ≤ t ≤ n (11)

P = pt(1 ≤ t ≤ n) = {p1, p2, · · · , pn} (12)

where hl
t ∈ Rda is a word representation for wt from DPGCN. The final aspect-oriented

sentence representation s containing abundant semantic information is generated by:

δt =
m

∑
i=1

hl
a+i p

T
t , γt =

exp(δt)

∑n
i=1 exp(δi)

(13)

s =
n

∑
i=1

γt ∗ pt (14)

where hl
a+i ∈ Rda is the aspect representation from DPGCN for the i-th aspect word, and m

and n are the length of the aspect and sentence, respectively.

3.6. Model Training

We obtain the final aspect representation ha ∈ Rda and incorporate it and aspect-
oriented sentence representation s ∈ Rda to obtain final representation z ∈ Rda by:

ha =
1
m
∗

m

∑
i=1

hl
a+i (15)

z = ε ∗ ha + (1− ε) ∗ s (16)
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where ε ∈ (0, 1) is a trainable coefficient.The final representation z is passed through a fully
connected layer and a softmax activation function to obtain the probability distribution of
sentiment polarity, and the label of highest probability is chosen as the sentiment polarity
of the specific aspect by:

u = so f tmax(zwu + bu) (17)

where u is the probability distribution, and wu ∈ Rda×3 and bu ∈ R3 are the trainable
weight matrix and bias.

The model is trained by using the standard stochastic gradient descent to minimize
the cross-entropy loss of sentiment classification. The loss function is formulated as:

L(θ) = −
N

∑
i

uilogu̇i + λ||θ|| (18)

where N is the number of training samples, ui is the prediction for the sentiment polarity
of aspect, u̇i is the target label, θ represents all trainable parameters, and λ is the L2
regularization coefficient.

4. Experiments

4.1. Datasets

For the experiments, five benchmark datasets are adopted for the ABSA task to
evaluate our model, including the Twitter dataset constructed by [18] and another four
datasets (Lap14, Res14, Res15, Res16) all from the SemEval tasks [19–21], which are user
reviews related to computers and restaurants. The samples in these datasets contain a given
sentence, a specific aspect and the sentiment polarity (i.e., positive, neutral or negative)
toward the aspect. The information of these five datasets is shown in Table 1.

Table 1. The statistics of datasets.

Datasets
Positive Negative Neutral

Train Test Train Test Train Test

Twitter 1561 173 1560 173 3127 346

Lap14 994 341 870 128 464 169

Res14 2164 728 807 196 637 196

Res15 912 326 256 182 36 34

Res16 1240 469 439 117 69 30

4.2. Experimental Settings

In our experiments, the syntactic dependency trees and POS labels of the given
sentences are constructed via using StanfordCoreNLP toolkit (https://stanfordnlp.github.
io/CoreNLP/, accessed on 1 August 2022). The given sentences are encoded by pre-trained
model BERT (we obtain the BERT model from (https://github.com/huggingface/pytorch-
pretrained-BERT, accessed on 1 August 2022) to obtain 768-dimensional initialized word-
embedding vectors for each word. In addition, the dimensions of dependency-embedding
vectors and POS-embedding vectors are set to 100 and 50, respectively. For the parameter
settings, BERT is initialized with pre-trained parameters, while other trainable parameters
are initialized by Xavier [22]. The loss function of the model training is the cross-entropy
function, and the Adam optimizer is adopted. For key hyper-parameter settings, the batch
size is 16, the learning rate is 1× 10−5, the L2 regularization coefficient λ is 0.001, and the
dropout rate is 0.1. Our model is evaluated by both accuracy and macro-averaged F1 score.
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4.3. Baselines

To verify the effectiveness of our model, many comparative state-of-art models are
adopted and briefly described as follows:

IAN [23] proposes an interactive attention network based on LSTM and attention
mechanism to generate representations for aspects and sentences.

MGAN [4] designs a novel multi-grained attention network model to capture interac-
tions between the aspects and contexts.

ASGCN [6] first proposes leveraging GCN over dependency trees to learn aspect-
specific representations for the ABSA task.

CDT [7] utilizes GCN over dependency trees to extract syntactic information for aspect
representations.

BIGCN [8] constructs a syntactic graph and lexical graph for GCN to leverage word
co-occurrence information and syntactic information.

BERT [11] is the vanilla BERT, which adopts “[CLS] sentence [SEP] aspect [SEP]” as
input and uses the representation of [CLS] for predictions.

TD [24] implements a target-dependent BERT-based model with positioned output at
the target terms and an optional sentence for the ABSA task.

R-GAT [16] employs a relational graph attention network to exploit syntactic structure
information.

DGEDT [25] considers the flat representations and graph-based representations jointly
to alleviate the noise and instability of dependency trees.

LCFS [14] models contextual and syntactical features for the ABSA task.
TGCN [26] encodes dependency types and integrates the representations from all

GCN layers to learn aspect representations.
DualGCN [17] designs SynGCN and SemGCN to learn aspect representations by

considering syntax structures and semantic correlations simultaneously.

4.4. Results and Analysis

Comparisons of all model performance are presented in Table 2. It can be seen that
the results on the four SemEval task datasets (Lap14, Res14, Res15, Res16) outperform the
previous models, but the performance on the Twitter dataset is lower than DualGCN and
DGEDT due to the comments on the Twitter being informal and inclined to colloquial,
which are insensitive to syntactic information. The comparisons show that our model
surpasses many state-of-art GCN-based models, indicating that our model can better utilize
syntactic dependency information, and extracting sufficient syntactic and semantic features
for sentiment analysis is helpful for model performance.

Compared with the attention-based models IAN and MGAN, our model avoids the
noises introduced by the ordinary attention mechanism. Compared with the GCN-based
models utilizing dependency information, such as ASGCN, CDT, R-GAT, TGCN, DualGCN
and so on, our model combines dependency types and POS labels to weight dependencies
with different types according to their contribution to the ABSA task, which better exploits
syntactic dependency information.
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Table 2. The results of comparisons.

Model
Twitter Lap14 Rest14 Rest15 Rest16

Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

IAN 72.50 70.81 72.05 67.38 79.26 70.09 78.54 52.65 84.74 55.21
MGAN 72.54 70.81 75.39 72.47 81.25 71.94 79.36 57.26 87.06 62.29

ASGCN ! 72.15 70.40 75.55 71.05 80.77 72.02 79.89 61.89 88.99 67.48
CDT ! 73.29 72.02 75.63 72.01 83.10 73.01 79.42 61.68 86.24 67.62

BIGCN ! 74.16 73.35 74.59 71.84 81.97 73.48 81.16 64.79 88.96 70.84

BERT 73.27 71.52 77.59 73.28 84.11 76.68 83.48 66.18 90.10 74.16
TD �! 76.69 74.28 78.87 74.38 85.10 78.35 – – – –

R-GAT �! 76.15 74.88 78.21 74.07 86.60 81.35 – – – –
DGEDT �! 77.9 75.4 79.8 75.6 86.3 80.0 84.0 71.0 91.9 79.0

LCFS �! – – 80.52 77.13 86.71 80.31 – – – –
TGCN �! 76.45 75.25 80.88 77.03 86.16 79.95 85.26 71.69 92.32 77.29

DualGCN �! 77.40 76.02 81.80 78.10 87.13 81.16 – – – –

Ours �! 76.88 75.01 82.13 78.86 87.23 81.38 85.61 73.03 92.69 80.25

Models using BERT are marked by “�” and models using GCN and dependency information are maked by “!”.

4.5. Ablation Study

To explore the significance of each module, we conduct a series of ablation experiments,
where the results are shown in Table 3. The findings are listed as follows:

(1) The results decrease after removing the SynFE module, which indicates that the
SynFE module can effectively encode the syntactic information in the sentences to enrich
textual features. (2) If DPGCN removes dependency information (D) or POS information
(P) separately, the results slightly reduce, but they strongly reduce when removing both
simultaneously. It shows that DPGCN weighting dependencies with different types has a
great impact on model performance; both (D) and (P) contribute to it. (3) For the SemFE
module, similarly, the results demonstrate that position encoding helps to avoid introducing
noises, and aspect-oriented sentence representation has the ability to supplement semantic
features for a better performance. Overall, each component makes a contribution to the
model performance.

Table 3. The results of ablation study.

Models
Twitter Lap14 Rest14 Rest15 Rest16

Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

-SynFE 76.01 74.02 81.03 77.76 86.79 80.07 85.06 71.88 92.05 77.65
DPGCN -dep 76.16 74.54 80.56 77.12 86.16 79.11 84.87 70.24 91.88 77.98
DPGCN -POS 76.45 74.75 81.19 77.52 86.60 78.82 85.24 72.22 92.21 78.85
DPGCN -both 75.87 73.57 80.25 76.13 85.62 78.21 84.69 69.92 91.56 76.02

SemFE -PE 76.45 74.82 81.50 77.92 86.96 80.48 85.42 71.95 92.37 78.76
-SemFE 76.01 74.30 80.88 77.36 86.16 79.57 85.24 71.42 92.05 76.61

ours 76.88 75.01 82.13 78.86 87.23 81.38 85.61 73.03 92.69 80.25

- indicates the removal of a part of the model. -pos: remove wp. -dep: replace αi,j with α. -both: replace DPGCN
with GCN.

4.6. Case Study

For the purpose of illustrating the effectiveness of our model, we randomly select
sample data from the test set to launch a case analysis.

4.6.1. Weights Visualization

As can be seen in Figure 4a, for the aspect “food”, linguistically, the opinion word
“delicious” leads to the sentiment polarity of “food”; our model has learnt to assign higher
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weight to dependency type “nsubj” between “food” and “delicious”. The dependency type
“conj” between “delicious” and “terrible” may cause a negative effect for aspect “food”; our
model reduces the dependency weight for “conj” denoting the relation between two ele-
ments connected by a coordinating conjunction. In addition, other secondary dependencies
are assigned lower weights. In Figure 4b, under the guidance of DPGCN, aspect “food” has
higher semantic-based attention weight with opinion word “delicious”.

Similarly, as seen in Figure 4c,d, vital dependencies are assigned higher weights; thus,
aspect “service” aggregates feature information from important contexts which account for
“service” having higher semantic-based attention weights with them. Specially, our model
notices the semantic reversal information that “but” with dependency type “cc” standing
for a coordination relation expresses.

4.6.2. Probability Distribution Visualization

As shown in Figure 5, the SemFE module increases the probabilities of the true
sentiment polarities for aspects “food” and “service”. Due to pre-trained model BERT
being pretrained on large amounts of textual datasets, it can provide text embeddings
containing rich semantic features. Thus, “delicious” is encoded with positive sentiment
features and negative sentiment features for “terrible”. SemFE generating aspect-oriented
sentence representation s is able to supplement corresponding sentiment features for
aspects. For aspect “food”, the context words “service” and “terrible” carrying negative
sentiment features are masked by position encoding, and the positive sentiment features
from “delicious” are incorporated into s, which makes our model predict the sentiment
polarity of “food” more accurately. Similarly, for “service”, although it is disturbed by
“delicious”, “service” has higher semantic weight with “terrible”, and the s also can provide
correct sentiment features for “service”.

Figure 4. Visualization results of weights (darker color denotes higher weight).

0.72 0.16 0.12

0.63 0.21 0.16Non-SemFE:

Probability distribution of aspect ‘food’

0.19 0.20 0.61

0.21 0.22 0.57Non-SemFE:

Probability distribution of aspect ‘service’
Figure 5. Visualization results of probability distributions.

4.7. Impacts of DPGCN Layer Number

An appropriate layer number L for DPGCN is also beneficial to model performance,
so the impacts of different L values are explored, and the results are shown in Figure 6.
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It shows that the accuracy and F1 score on all datasets are highest when L = 2, and we
will analyze this phenomenon. As described in Figure 7a, aspect “place” has different
syntactic distances with contexts; through one DPGCN layer, each word node aggregates
feature information from neighbor word nodes (i.e., SD = 1), so aspect “place” only captures
feature information from contexts that SD = 1 with it when L = 1. Obviously, “good”
misleads the sentiment analysis for “place”; a two-layer DPGCN makes “place” capture
vital sentiment features from SD = 2 context word “not”. However, if L = 3 or more, it
will introduce irrelevant feature information such as “Thai” and “wonderful”, which carry
positive sentiment features.

As described in Figure 7b, when L = 3, aspect “place” has high semantic weights
(from SemFE) on itself and “good” through the 1st DPGCN layer. Through the 2nd DPGCN
layer, the semantic weight on “good” decreases and increases on “not”. After through the
3rd DPGCN layer, the distribution of semantic weights on contexts is decentralized, so
aspect “place” is difficult to focus on vital information, and much irrelevant information
is introduced.

In conclusion, our model is unable to capture sufficient contextual feature information
for aspects when L = 1, but it may introduce much more irrelevant information for aspects
that damage model performance when L = 3 or more. L = 2 is favorable for our model.
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Figure 6. Impacts of the layer number L.

Figure 7. Syntactic distances and semantic weights for aspect ‘place’.
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5. Conclusions

In this paper, we propose a novel model containing three effective modules (i.e., SynFE,
DPGCN and SemFE) for the ABSA task. To address the limitations upon utilizing the
syntactic dependency information of previous works, we propose to weight dependencies
with different types according to their contribution to the ABSA task, and the DPGCN
module is designed to combine dependency information and POS information to more
reasonably and comprehensively leveraged syntactic dependency information. To further
improve the model performance, SynFE is designed to encode syntax-aware features to
enrich word representations, and SemFE is designed to extract aspect-oriented semantic
information that supplements sentiment features for sentiment classification.

Extensive experiments are conducted on five benchmark datasets to demonstrate the
validity of our model, and the results show that our model achieves new state-of-the-art
performance. Compared to other outstanding models, our model achieves a higher accuracy
and F1 score. The ablation experiments show that each module in our model contributes
to the model performance, and the case study demonstrates that DPGCN has learnt to
assign appropriate weights to dependency types, which overcome the shortcomings of the
previous model on utilizing dependency trees. In addition, we have analyzed how SemFE
is auxiliary for sentiment prediction and explored the effects of the number of DPGCN
layers on the model performance.
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Abstract: Color is an important feature of vehicles, and it plays a key role in intelligent traffic
management and criminal investigation. Existing algorithms for vehicle color recognition are typically
trained on data under good weather conditions and have poor robustness for outdoor visual tasks.
Fine vehicle color recognition under rainy conditions is still a challenging problem. In this paper,
an algorithm for jointly deraining and recognizing vehicle color, (JADAR), is proposed, where
three layers of UNet are embedded into RetinaNet-50 to obtain joint semantic fusion information.
More precisely, the UNet subnet is used for deraining, and the feature maps of the recovered clean
image and the extracted feature maps of the input image are cascaded into the Feature Pyramid
Net (FPN) module to achieve joint semantic learning. The joint feature maps are then fed into the
class and box subnets to classify and locate objects. The Rain Vehicle Color-24 dataset is used to
train the JADAR for vehicle color recognition under rainy conditions, and extensive experiments
are conducted. Since the deraining and detecting modules share the feature extraction layers, our
algorithm maintains the test time of RetinaNet-50 while improving its robustness. Testing on self-
built and public real datasets, the mean average precision (mAP) of vehicle color recognition reaches
72.07%, which beats both sate-of-the-art algorithms for vehicle color recognition and popular target
detection algorithms.

Keywords: vehicle color recognition; low–high level joint task; object detection; joint semantic
learning; deep neural network; rainy image recovery

MSC: 54H30; 68U10; 94A08

1. Introduction

Vehicle information recognition has been applied in the field of intelligent traffic
management and criminal investigation. License plate, model, and vehicle color comprise
the main vehicle information. Although license plate recognition is a commonly used
vehicle information recognition technology [1], it also faces many challenges in criminal
investigation and for intelligent traffic law enforcement, as license plates can be easily
obscured (partially or fully) or faked/duplicated by criminals. As it can still be identified
despite partial occlusion or viewpoint changes, vehicle color recognition is widely applied
in video surveillance [2], vehicle detection [3], vehicle tracking [4], automatic driving [5,6],
criminal investigation [7], etc. All the above-mentioned tasks inevitably encounter adverse
weather conditions, especially rain. This, in turn, adversely affects the performance of object
recognition/retrieval, because rain can significantly reduce the contrast of the scene and
reduces visibility, compromising image quality. Many scholars have conducted research on
how to improve the performance of object detection under rainy conditions.
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Vehicle color recognition methods are typically classified as traditional model-driven [8–11]
or data-driven deep learning [12–18]. Traditional methods usually use handcrafted feature
descriptors to extract visual features and train a classifier to recognize vehicle color. For
example, Chen et al. [8] select the region of interest (ROI) of the vehicle to recognize its
dominant color and than train a linear support vector machine to classify it. Jeong et al. [9]
adopt AdaBoost to classify an HSV histogram of the vehicle’s homogeneity patches into
seven color categories.

Deep neural networks have been employed to learn effective feature representations
from raw pixels, which has proven to be more powerful than traditional methods. To
be more specific, these deep learning methods fall into two groups: general object de-
tection algorithms [19–24] applied to vehicle color recognition [16–18] and algorithms
specially designed for color recognition. All these algorithms are trained on datasets
with 7–24 colors [8–10,18] obtained under normal weather conditions. Of course, there
exists some research to address object recognition under rainy conditions; basically, these
proposed methods adopt two-stage instead of end-to-end procedures, which inevitably
increases the running time of the entire task.

On the other hand, a number of scholars have paid attention to joint processing of low-
level and high-level tasks. Generally, they improve the robustness of object detection [25–28]
by embedding domain adaptation, image restoration, style transfer, or other modules into
the object detection framework, or by a few-shot transfer learning mechanism [29–32]. These
methods have explored the robustness of performance for downstream tasks in many harsh
environments except under rainy weather conditions, which motivated our work in the
present paper.

In this paper, a Joint Algorithm for Deraining And Recognition (JADAR) is proposed
for fine recognition of vehicle color under rainy conditions. The network architecture
is shown in Figure 1. To be more specific, we embed the three-layer decoder of UNet-3
into the last three layers of the feature extraction submodule of RetinaNet-50. The main
contributions are as follows:

1. JADAR contains far fewer parameters than previous two-stage methods since its
subnets, UNET and RetinaNet share the same feature extracting layers. This is of high
practical value as the size of outdoor mobile equipment can be substantially reduced.

2. In JADAR, the multi-scale fusion information obtained by cascading feature maps
of original rainy images and recovered images are fed into the subsequent class-box
subnet. In so doing, multi-scale information across domains is crucially beneficial for
fine vehicle color recognition.

3. The joint processing of low-level and high-level tasks can be mutually beneficial.
Embedding the image restoration module can help improve the performance of
subsequent high-level tasks under severe weather; conversely, the performance of
subsequent high-level tasks as evaluation metrics can, in turn, fine-tune the image
restoration algorithms.

4. Comprehensive experiments show that our proposed methods outperform basic
detection networks and two-stage network and transfer learning methods for the task
of color recognition under rainy conditions. Further, our training and testing times
are shortened.
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Figure 1. Framework overview for our JADAR; detailed explanations are in the text.

Next, related work is introduced in Section 2. JADAR is constructed in Section 3.
Section 4 shows that our method is superior to the state-of-the-art quantitatively and
qualitatively. Section 5 concludes the main content.

2. Related Work

There exists some research on vehicle color recognition under normal weather and
object detection under adverse weather conditions, which is reviewed below.

2.1. Vehicle Color Recognition under Normal Weather Conditions

Vehicle color recognition methods generally fall into traditional model-based
methods [8–11] and data-based deep learning methods [12–18]. Regarding traditional
model-based methods, Chen et al. [8] train a linear support vector machine classifier on the
region of interest ROI in vehicle images based on eight color types; Jeong et al. [9] adopt
the multi-class AdaBoost algorithm to classify the color of front-of-vehicle images into
seven types; Dule et al. [11] train three classifiers (KNN, ANN, and SVM) for two ROIs
(smooth hood section and semi-front of vehicle).

Data-based methods have been receiving increasing attention for vehicle color recog-
nition. Hu et al. [12] were the first to apply a convolutional neural network (CNN) with a
spatial pyramid strategy to boost the accuracy of vehicle color recognition. Zhang et al. [15]
proposed a lightweight CNN for vehicle color recognition. Fu et al. [16] designed
MCFF-CNN (Multiscale Comprehensive Feature Fusion Convolutional Neural Network)
to recognize eight vehicle colors. Hu et al. [18] proposed vehicle color recognition based on
a Smooth Modulation Neural Network with Multi-Scale Feature Fusion (SMNN-MSFF).

It is worth mentioning that there has been no research on vehicle color detection under
bad weather conditions, which is the focus of this paper.

2.2. Object Detection under Adverse Weather Conditions

Bad weather includes rain, snow, haze, etc. The quality of outdoor images or videos
collected in these weathers is severely degraded, so target-detection models trained on
high-quality images have difficulty handling bad weather. This challenge has been inves-
tigated by many scholars with many solutions provided, such as embedding a domain-
adaptation module [25–28,31,33,34] into the object detection backbone, such as YOLO,
Faster RCNN, RetinaNet, etc., two-stages methods consisting of preprocessing and object
detection [35–40], or using a few-shot transfer learning mechanism [29–32].
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For example, Chen et al. [33] embedded two domain adaptation modules into Faster
RCNN to reduce the domain discrepancy on image level and instance level. Sindagi et al. [31]
proposed an unsupervised domain-adapting method to improve generalization of object detec-
tion under hazy and rainy conditions. Style transfer is considered in [27], in which the authors
construct a cross-domain representation learning method including domain diversification
and a multi-domain invariant. Huang et al. [41] combine dual subnet frameworks for object
detection under foggy conditions.

Except for the two-stage methods, the above-mentioned methods do not pay special
attention to the rainy conditions. However, two-stage methods such as [35–39,42] do
pay attention to image deraining instead of object detection. in other words, the joint
tasks of deraining and object detection are not taken seriously. Motivated by the above
considerations, we propose JADAR for joint semantic intelligent detection of vehicle color
in rainy scenes.

3. JADAR Algorithm

3.1. Fusion Network Design

In this paper, a Joint Algorithm for Deraining And Recognition (JADAR) is designed
for vehicle color recognition in inclement weather conditions; it is based on RetinaNet-50,
as shown in Figure 1. In Figure 1, O is the rainy image input, B is the corresponding clean
background image, B̂ and yo, respectively, are the outputs of the deraining and detecting
results. To see results clearly, we zoom in on the recognition results of each car in picture
yo

i (i = 1, 2, 3); yo
1 is the enlarged result of the first car in the picture—the recognition color

is silver-gray with a confidence level of 0.91; yo
2 is the enlarged result of the second car

in the picture—the recognition color is black with a confidence level of 0.58; yo
3 is the

enlarged result of the third car in the picture—the recognition color is dark gray with
a confidence level of 0.81. The green/blue/purple/orange boxes represent the feature
extraction module/UNet-3/ information fusion module/class+bbox subnets, respectively.
Lreg is the regression loss using the smooth L1 loss. Lcls is the classification loss using the
focal loss. The loss function for deraining is MSE loss. JADAR is trained by the weighted
sum of these three losses (see Equation (7)).

The JADAR framework is designed by embedding the three-layer decoder of UNet-3 [43]
into the last three sub-blocks of the feature extraction module, as illustrated by the green-tinted
box in Figure 1. The whole framework consists of four main modules: image feature extraction
module, deraining module, information fusion module, and class + box subnets. The rain
removal and feature extraction modules share three layers, avoiding extra computational
burden. In fact, Section 4.5 shows that JADAR has the same testing time as RetinaNet-50.
The last three feature maps and the corresponding recovered feature maps are cascaded
together and then fed into their respective class + box subnets, which can learn multi-scale
joint semantic representations to improve object detection accuracy under rainy conditions.
The feature fusion sub-module setting is illustrated in Figure 2.

The overall object function is back-propagated to train the deraining module and to
improve rainy image deraining performance recursively. The object detection backbone
network uses three-scale class + box subnets to leverage multi-scale fusion color feature
maps to classify 24 car color types and locate the bounding-box.
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Figure 2. Architecture and weights of the proposed network in detail.

3.2. Model Formulation and Model Optimization

Let the physical mechanism of rainy image corruption be

x = y + z (1)

where x, y, z denote rainy image O, recovered clean background image B, and rain
layer R, respectively. To tackle the problem of supervised vehicle object detection by
color in inclement weather conditions, a joint network is proposed to learn joint semantic
representation from an input rainy image x. Let y denote the corresponding label of rainy
image x.

As demonstrated by the green box in Figure 1, the last three feature maps f1(x), f2(x),
f3(x) are taken from the feature extraction sub-blocks of RetinaNet. Then, f1(x) is fed into
the corresponding last layer of the decoder of UNet-3, and g1(x) is output. Next, g1(x) and
f2(x) are cascaded into the penultimate layer UNet-3, and g2(x) is output; then g2(x) and
f3(x) are cascaded into the last decoder layer of UNet-3, and g3(x) is output. The output
of the deraining module ŷ is denoted by g3(x). Thus, the mean square error (MSE loss) is
used as deraining object function Lder as follows:

Lder =
1
n

n

∑
i=1

‖(ŷ − y)‖2 (2)

where n is the number of rainy images. Finally, f1(x) and g1(x), f2(x) and g2(x), and f3(x)
and g3(x) are cascaded and input into differently scaled class + box subnets, where joint
semantic information is fused, 24 vehicle colors are classified, and box-bounded regressions
are achieved; the last cascading output image is denoted yo.

The classification loss function is

Lcls(pit) = −
C

∑
i=1

(αt(1− pit)
γ log(pit) + (1− αt)(pit)

γ log(pit)) (3)

where αt is a balancing factor to balance the uneven proportion of positive and negative
examples of every vehicle color category, C = 24 denotes the number of all vehicle color cat-
egories, γ ≥ 0 is a tunable focusing parameter (we take γ = 2.0 in Section 4 following [24]),
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t is equal to 0 or 1, which denotes the positive or negative sample, pi1 ∈ [0, 1] denotes
the prediction probability of the positive sample of the i-th vehicle color class, and 1−pi1
indicates the prediction probability of negative examples of every vehicle color category
i ∈ {1, 2, · · · , 24}; i.e.,

pit =
{ rc1pi if t = 1

1− pi if otherwise
. (4)

The loss function of the box bounding regression is

Lreg =
1
n

n

∑
i=1

Lreg(i), (5)

with

Lreg(i) =
{ 0.5a2 if |a| < 1

|a| − 0.5 if otherwise
, (6)

where a = ti − t∗i , and ti = {tx, ty, tw, th}, t∗i = {t∗x, t∗y , t∗w, t∗h}. Here (x, y) denotes the center
coordinates of the bounding box, w/h denotes the width / height, and ti(t∗i ) represents the
offset of the prediction box ( the ground truth box).

Now, Lreg(i) represents the regression loss for the i-th image, and Lreg represents the
total regression loss for all images. The total loss function is then given by

Ltol = Lcls(pit) + Lreg + λLder, (7)

where λ ∈ [0, 1] is a hyperparameter controlling the strength of the image deraining
module’s adjustment to the rainy weather target detection performance. In this context,
for λ = 0.5, mAP of the proposed network detection is optimal from many ablation
experiments. See Section 4.3 for details.

4. Experiments

4.1. Experimental Setup

Implementation Details. JADAR is trained end-to-end on the Rain Vehicle Color-24
image set using the Adam optimizer [44] to simultaneously learn image deraining, color
classification, and object localization on the PyTorch platform. All experiments are im-
plemented on the AutoDL platform with a Tesla P40. The hyper-parameters α and γ
of the classification loss function Lcls are set to 0.25 and 2, respectively. We divide
Rain Vehicle Color-24 into a training set, a validation set and a testing set at a ratio of
8:1:1. The batch size is 4, the epoch is 100, and the confidence threshold is 0.5. The learn-
ing rate is 10−4 for the first 50 epochs, 10−5 for the next 30 epochs, and 10−6 for the last
20 epochs.

Evaluation Metric. Generally, object detection uses IoU (Intersection over Union) [21],
Precision (accuracy) [45], Recall [45], AP (Average Precision) [18], mAP (mean Average
Precision) [41], or other evaluation metrics; these concepts are well-known, so we list the
formulas in brief:

IoU =
A ∩ B
A ∪ B

(8)

where A/B denotes GT (bounding box of the object) / the prediction bounding box.
Mathematical definitions of Precision and Recall are as follows:

precision =
TP

TP + FP
(9)

recall =
TP

TP + FN
(10)

where TP is true positives (correctly predicted as positive), FP is false positives (incorrectly
predicted as positive), and FN is false negatives (failed to predict a positive).
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AP is calculated by

AP =
∫ 1

0
p(r)dr (11)

where p is Precision, and r is Recall.
The mAP (mean Average Precision) is the average of AP, so mAP is calculated by

mAP =
∑N

1 AP
N

(12)

where N is the number of categories.

4.2. Datasets
4.2.1. Synthetic Dataset Rain Vehicle Color-24

Few datasets are available for vehicle color recognition under rainy weather conditions.
All our experiments are conducted on enhanced Rain Vehicle Color-24 [46], from which
some examples are illustrated in Figure 3.

Rendered rain
image Type 1

Rendered rain
image Type 2

Rendered rain
image Type 3

Rendered rain
image Type 4

Rendered rain
image Type 5

Rendered rain
image Type 6

Figure 3. Examples from Rain Vehicle Color-24.

4.2.2. Real Rain Vehicle Datasets: RID and RIS

Li et al. collected two real rainy image vehicle datasets, RID and RIS [38], for testing
object detection. RID is rainy images collected from in-vehicle cameras while driving on
rainy days, and RIS is surveillance rainy images collected from network traffic surveillance
cameras during rainy weather conditions. The two datasets differ in many aspects: rainfall
type, image quality, target size and angle, etc. They represent real-world application
scenarios where deraining may be required. RID includes 2495 images, and its rainy image
effect is closest to “raindrops” on the camera lens. RIS includes 2048 images, and its rainy
image effect is closest to “rain and fog” (many cameras have fog condensation when it
rains, and lower resolutions also cause more fog effects) [47]. Due to the highly complex
scenes of these two rainy image datasets, it is a challenging dataset, and we choose these
two datasets for testing to better illustrate the effectiveness of our proposed algorithm.
Examples of these two datasets are given in Figure 4.
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Example image 1
of RID

Example image 2
of RID

Example image 3
of RID

Example image 1
of RIS

Example image 2
of RIS

Example image 3
of RIS

Figure 4. Examples of RID and RIS images [38].

4.3. Ablation Study

To determine the optimal design of our proposed framework, we train four combi-
nations on the Rain Vehicle Color-24 dataset: RetinaNet, JADAR1, JADAR2, and JADAR.
All these models are trained and tested on Rain Vehicle Color-24 using different loss func-
tions: λ = 0, 0.1, 1.0, and 0.5, respectively. Figure 5 shows that the testing mAP values of the
JADAR1, JADAR2, and JADAR models are 2.92%, −3.99%, and 4.3% higher, respectively,
than the RetinaNet model, which clarifies that joint semantic feature extraction is beneficial
to improve vehicle color recognition performance under rainy weather conditions. Refer-
ring to Table 1, when the hyper-parameter λ is 0.1, the rain removal module provides a
weak assisting effect on vehicle color recognition under rainy weather conditions. When λ
is 1.0, it plays the opposite effect. When λ is 0.5, JADAR performs best; so we choose this
value in our method.

(a) JADAR (b) RetinaNet

(c) JADAR1 (d) JADAR2

Figure 5. APs of different models on the Rain Vehicle Color-24 test set. The x-axis represents the
average precision, and the y-axis represents the color categories (24 categories in total).
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Table 1. The mAPs using different values for the loss function coefficient λ of the deraining module
in JADAR on the RVC-24 test set.

λ Model mAP

0.1 JADAR1 70.69%
0.5 JADAR 72.07%
1.0 JADAR2 63.78%

4.4. Experiments and Analysis
4.4.1. Results on Synthetic Datasets

In this section, our proposed algorithm, the vehicle color recognition method, the target
detection method, the two-stage method combining rain removal with target detection,
and the transfer learning method are compared.

To discuss vehicle color recognition performance, JADAR and SMNN-MSFF [18] are
compared. Both are trained on Rain Vehicle Color-24 training subset and tested on its test
subset. The quantitative results are shown in the second column of Table 2. These quantita-
tive results confirm that the mAP of our method reaches 72.07%, which is 23.49% higher
than SMNN-MSFF. The qualitative results are shown in Figure 6. JADAR outperforms
SMNN-MSFF under rainy conditions; for example, there are five vehicles recognized by
JADAR, while three vehicles are recognized by SMNN-MSFF. A white vehicle is recog-
nized by JADAR with a confidence score of 0.79, while SMNN-MSFF recognizes it with a
confidence score of 0.62.

To compare object detection performance, JADAR, RetinaNet [24], Faster RCNN [19],
SSD [20], and YOLO V3 [21] are compared qualitatively and evaluated by mAP quantita-
tively. In our experiments, the loss function and settings (i.e., scale, anchor or default box,
backbone network, classifier, etc.) of each compared method remains unchanged from the
original work. Furthermore, all methods are trained on the Rain Vehicle Color-24 dataset
and tested on its test set. The qualitative results of JADAR, Faster RCNN, YOLO V3, SSD,
and RetinaNet for vehicle color recognition in rain are shown in Figures 7 and 8. As can be
seen from the figures, our proposed JADAR outperforms other models for fine vehicle color
recognition. The quantitative results show that the proposed JADAR is 11.42%, 22.19%,
5.74%, and 4.3% better than Faster RCNN, YOLO V3, SSD and RetinaNet, respectively,
from Table 2.

Rainy image JADAR (w0.79) SMNN-MSFF (w0.62)

Figure 6. Test results of JADAR and SMNN-MSFF on the Rain Vehicle Color-24 test set. Each
subtitle gives object detection method with the corresponding confidence value in parentheses.

To compare recognition performances of different joint methods, three state-of-the-art
rain removal methods, i.e., LPNet [35], PReNet [48], and RCDNet [49]), are chosen to first
derain the images, and then RetinaNet is leveraged to recognize vehicle colors. These
methods are denoted LR, PR, and RR. Figures 9 and 10 give qualitative comparisons of our
JADAR and three two-stage methods for vehicle color recognition under rainy weather
conditions. JADAR performs better than other models. From Table 3, our JADAR is
15.56%, 20.37%, and 2.06% higher than LR, PR, and RR, respectively.

To compare with transfer learning methods, two domain-adaptation methods, Da-
f aster [33] and ATF [50], are compared with JADAR. Here, the VC-24 is the source domain,
and Rain Vehicle Color-24 is the target domain; they are leveraged to train the above algo-
rithms. From the 5-th and 6-th columns of Table 3, our method is 25.95% and 9.14% better
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than Da- f aster and ATF, respectively. The qualitative results in Figures 9 and 10 show that
JADAR identifies more vehicles with higher confidence than the other two methods.

Rainy image JADAR (w0.99) Faster RCNN (w0.98)

Yolo V3 (w0.94) SSD (w0.99) RetinaNet (w0.91)

Figure 7. Example 1 of test results of JADAR and object detection methods on the Rain Vehicle
Color-24 test set.

Rainy image JADAR (b0.92) Faster RCNN (b0.97)

Yolo V3 (b0.94) SSD (b0.71) RetinaNet (b0)

Figure 8. Example 2 of test results of JADAR and object detection methods and domain adaptation
methods on the Rain Vehicle Color-24 test set.

Rainy image JADAR (b0.92) LR (b0.60) PR (b0.60)

RR (b0.60) Da-faster (b0.77) ATF (b0.85)

Figure 9. Example 1 of test results of JADAR and two-stage methods on the Rain Vehicle Color-24
test set.
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Table 2. Comparison of recognition accuracy of 24 colors for different network classifications: SM,
SMNN-MSFF; FR, Faster RCNN; Yolo, Yolo V3; RN, RetinaNet.

Category (R, G, B) SM FR Yolo SSD RN JADAR

white (255, 255, 255) 0.60 0.96 0.95 0.95 0.97 0.97
black (0, 0, 0) 0.69 0.69 0.92 0.93 0.93 0.95

orange (237, 145, 33) 0.77 0.90 0.93 0.95 0.97 0.94
silver-gray (128, 138, 135) 0.31 0.81 0.86 0.86 0.86 0.85

grass-green (0, 255, 0) 0.82 0.93 0.95 0.96 0.96 0.96
dark-gray (128, 128, 105) 0.43 0.69 0.63 0.67 0.64 0.73

dark-red (156, 102, 31) 0.48 0.79 0.75 0.88 0.91 0.91
gray (192, 192, 192) 0.31 0.41 0.15 0.31 0.27 0.36

red (255, 0, 0) 0.44 0.56 0.60 0.76 0.77 0.83
cyan (0, 255, 255) 0.62 0.82 0.81 0.87 0.87 0.93

champagne (255, 227, 132) 0.28 0.74 0.58 0.73 0.66 0.69
dark-blue (25, 25, 112) 0.52 0.79 0.77 0.75 0.86 0.81

blue (0, 0, 255) 0.56 0.69 0.55 0.69 0.67 0.69
dark-brown (94, 38, 18) 0.35 0.18 0.40 0.47 0.37 0.50

brown (128, 128, 42) 0.35 0.10 0.22 0.34 0.30 0.21
yellow (255, 255, 0) 0.35 0.83 0.74 0.92 0.86 0.81

lemon-yellow (255, 215, 0) 0.57 0.99 0.73 0.75 0.75 0.94
dark-orange (210, 105, 30) 0.32 0.28 0.44 0.47 0.90 0.53

dark-green (48, 128, 20) 0.59 0.18 0.00 0.34 0.44 0.55
red-orange (255, 97, 0) 0.38 0.07 0.00 0.52 0.00 0.05

earthy-yellow (184, 134, 11) 0.68 0.45 0.00 0.28 0.93 1.00
green (0, 255, 0) 0.18 0.85 0.00 0.97 0.60 0.33

pink (255, 192, 203) 0.84 0.54 0.00 0.52 0.77 0.75
purple (160, 32, 240) 0.22 0.03 0.00 0.06 0.00 1.00

mAP 48.58% 60.65% 49.88% 66.33% 67.77% 72.07%

Rainy image JADAR (o0.98) LR (o0.92) PR (o0.87)

RR (o0.89) Da-faster (o0.91) ATF (o0.97)

Figure 10. Example 2 of test results of JADAR and two-stage methods and domain-adaptation
methods on the Rain Vehicle Color-24 test set.
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Table 3. Comparison of recognition accuracy of 24 colors for different network classifications.

Category (R, G, B) LR PR RR Da-Faster ATF JADAR

white (255, 255, 255) 0.88 0.86 0.95 0.74 0.93 0.97
black (0, 0, 0) 0.75 0.75 0.92 0.61 0.87 0.95

orange (237, 145, 33) 0.91 0.92 0.96 0.73 0.90 0.94
silver-gray (128, 138, 135) 0.71 0.66 0.82 0.63 0.63 0.85

grass-green (0, 255, 0) 0.84 0.88 0.95 0.73 0.92 0.96
dark-gray (128, 128, 105) 0.55 0.44 0.73 0.38 0.65 0.73

dark-red (156, 102, 31) 0.67 0.75 0.87 0.54 0.66 0.91
gray (192, 192, 192) 0.27 0.20 0.37 0.19 0.27 0.36

red (255, 0, 0) 0.74 0.70 0.87 0.46 0.63 0.83
cyan (0, 255, 255) 0.81 0.78 0.92 0.75 0.93 0.93

champagne (255, 227, 132) 0.42 0.43 0.62 0.18 0.67 0.69
dark-blue (25, 25, 112) 0.58 0.30 0.67 0.16 0.89 0.81

blue (0, 0, 255) 0.33 0.48 0.53 0.44 0.92 0.69
dark-brown (94, 38, 18) 0.44 0.32 0.56 0.37 0.75 0.50

brown (128, 128, 42) 0.33 0.25 0.45 0.06 0.00 0.21
yellow (255, 255, 0) 0.79 0.77 0.89 0.39 1.00 0.81

lemon-yellow(255, 215, 0) 0.77 0.78 0.97 0.06 0.00 0.94
dark-orange (210, 105, 30) 0.56 0.18 0.90 1.00 0.00 0.53

dark-green (48, 128, 20) 0.65 0.50 0.95 0.22 0.07 0.55
red-orange (255, 97, 0) 0.00 0.00 0.00 0.39 1.00 0.05

earthy-yellow (184, 134, 11) 0.05 0.67 0.25 0.01 0.40 1.00
green (0, 255, 0) 0.06 0.13 0.00 1.00 1.00 0.33

pink (255, 192, 203) 0.44 0.67 0.67 0.92 0.93 0.75
purple (160, 32,240) 1.00 0.00 1.00 0.00 0.00 1.00

mAP 56.51% 51.70% 70.01% 46.12% 62.93% 72.07%

4.4.2. Results on Real Datasets

We train JADAR, RetinaNet, Faster RCNN, SSD, YOLO V3, LR, PR, RR, Da- f aster,
and ATF on Rain Vehicle Color-24 and test them on real rainy image vehicle datasets, RID
and RIS. The test results are shown in Figures 11–14. As can be seen from these figures, the
test results of JADAR on the real datasets, RID and RIS, are generally better than those
of other methods. As can be seen from Figure 11, the JADAR and SSD algorithms can
correctly identify the two cars in the picture; Yolo V3 can also identify the two cars in the
picture, but the black color is mistakenly identified as silver-gray; while the other three
algorithms can hardly identify any vehicles in the picture. Referring to Figure 12, because
the recognition effects of Faster RCNN and SSD are better than others’, we find a limitation
of JADAR in recognizing small targets. Referring to Figure 13, all algorithms can identify
the color of the vehicle in the image but with different confidence values; specifically, ATF
has the highest confidence value for blue vehicle, with 0.98. However, Figure 14 shows that
only JADAR and ATF can identify a certain white vehicle.
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Rainy image JADAR (b0.7) SMNN-MSFF (b0) Faster RCNN (b0.59)

Yolo V3 (b0) SSD (b1.0) RetinaNet (b0)

Figure 11. Test results of JADAR and color recognition and object detection methods on the RID.

Rainy image JADAR (r0.58) SMNN-MSFF (r0) Faster RCNN (r0.97)

Yolo V3 (r0) SSD (r0.57) RetinaNet (r0)

Figure 12. Test results of JADAR and color recognition and object detection methods on the RIS.

Rainy image JADAR (b0.82) LR (b0.89) PR (b0.68)

RR (b0.92) Da-faster (b0.78) ATF (b0.98)

Figure 13. Test results of JADAR and two-stage and domain-adaptation methods on the RID.

Rainy image JADAR (w0.62) LR (w0) PR (w0)

RR (w0) Da-faster (w0) ATF (w0.69)

Figure 14. Test results of JADAR and two-stage and domain-adaptation methods on the RIS.
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4.5. Inference Time

In order to compare the test time of all methods, all network models are tested on a
testing subset with an input of 1920 × 1080 images. The test times are shown in Table 4.
JADAR takes 1.7 s per image on a single Tesla P40 GPU, which is the same as for RetinaNet,
but JADAR is 21.8, 1.1, 4.4, 0.8, and 0.9 seconds faster than LR, PR and RR, Da- f aster,
and ATF, respectively. Therefore, although JADAR has one more decoder module than
RetinaNet, it still maintains its original high detection speed.

Table 4. Comparison of different network recognition speeds (GPU).

Algorithm RN LR PR RR Da-Faster ATF JADAR

Speed (s) 1.7 23.5 2.8 6.1 2.5 2.6 1.7

5. Conclusions

In this paper, we study vehicle color recognition under rainy conditions and propose
a joint semantics learning method JADAR, which is designed by embedding UNet-3 into
RetinaNet. The UNet module achieves rainy image removal and restores the clean back-
ground image. The recovered background image and the rainy image are input together
into the class + bbox sub-module of RetinaNet network to accurately extract the joint se-
mantic of the vehicle color features maps. JADAR outperforms other methods under rainy
as well as normal conditions for fine vehicle color recognition. Extensive experimental
results show that the mAP of the proposed method reaches 72.07% in identifying 24 colors
under rainy conditions. Because our algorithm is trained on synthetic datasets, its general-
ization is not guaranteed. In the future, semi-supervised or few-shot learning is planned to
further improve the generalization and realizability of the algorithm. As a further research
topic, one can consider fusing overlap functions and fuzzy (rough) sets (see [51–55]) to
develop the method of this paper.
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Abstract: The frequent variations of XSS (cross-site scripting) payloads make static and dynamic
analysis difficult to detect effectively. In this paper, we proposed a fusion verification method
that combines traffic detection with XSS payload detection, using machine learning to detect XSS
attacks. In addition, we also proposed seven new payload features to improve detection efficiency. In
order to verify the effectiveness of our method, we simulated and tested 20 public CVE (Common
Vulnerabilities and Exposures) XSS attacks. The experimental results show that our proposed method
has better accuracy than the single traffic detection model. Among them, the recall rate increased by
an average of 48%, the F1 score increased by an average of 27.94%, the accuracy rate increased by
9.29%, and the accuracy rate increased by 3.81%. Moreover, the seven new features proposed in this
paper account for 34.12% of the total contribution rate of the classifier.

Keywords: XSS attack; traffic detection; payloads; fusion verification

MSC: 68T09

1. Introduction

XSS (cross-site scripting) attacks have caused enormous damage to economics and
individual privacy [1]. Moreover, XSS attacks have been adjusted from the seventh to the
third most common in the newly released 2021 version of OWASP (Open Web Application
Security Project) Top 10 [2].

Normally, there are three types of XSS attack, namely reflected XSS attack, stored XSS
attack, and DOM-based XSS attack. These three attack types usually use the GET or POST
methods of the HTTP protocol to inject malicious code at the URL or POST Body. Reflected
XSS usually injects malicious code into the URL, which can only be triggered in the current
browser and does not store malicious code permanently. The malicious code of stored XSS
is injected into the server-side database through vulnerabilities, which can cause long-term
information leakage and other hazards. In fact, we can think of DOM-based XSS as a special
kind of reflected XSS. Its malicious code can only be triggered in the current browser when
it runs the script on the client side for front-end page rendering.

In general, there are two popular methods to defend against XSS attack: static analysis
and dynamic analysis. Static analysis finds vulnerabilities by scanning the source code to
analyze information such as lexical, grammar, control flow, data flow, and other information.
It is in the development and coding phase of the program that requires developers to master
a lot of security-related knowledge. Dynamic analysis inputs test data during program
execution and analyze the output information to determine whether there are loopholes.
However, this method relies on the completeness of the test data.

In the face of frequent variations in XSS payloads, it is hard for traditional XSS detection
to have a pleasing result. There are some factors that have a significant impact on the results.
For example, traditional XSS detection requires a large number of manual participation
and the integrity of the attack vector.
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Recently, machine learning techniques have been widely used in XSS attack detection
and achieved good results. However, most of the detection approaches based on machine
learning only focus on one of the traffic or XSS payloads. On the one hand, traffic detection
has certain timeliness, but it is difficult to accurately detect and identify XSS attacks. On the
other hand, XSS payload detection has a certain degree of accuracy, but it lacks timeliness.
Another reason for this may be that there is currently no public dataset that includes both
normal traffic and XSS attack traffic (the only type of attack in the attack traffic is XSS).

As a result, a lot of XSS detection methods cannot meet the dual requirements of
timeliness and accuracy in real environments, and the pros and cons of a single model will
directly affect the performance of the entire detection model. This leads to the problem of
low accuracy and a high false negative rate for a single model.

The primary contribution of this paper is to propose a fusion verification method that
combines traffic detection and XSS payload detection. Previously, both traffic detection
and XSS payload detection have been separately applied to XSS detection. However, to
the best of our knowledge, fusion verification methods combining the two methods have
not been reported in the literature for detecting XSS attacks. The main contributions of this
paper are:

• Combine traffic detection and XSS payload detection for XSS attack detection through
fusion verification

• Propose seven new payload detection features through feature extraction based on
XSS attack methods

• Obtain datasets of normal traffic and XSS attack traffic by simulating public CVE

2. Related Work

For the study of XSS attack detection, network security researchers have successively
put forward some effective detection methods and preventive measures.

In terms of static analysis, Medeiros et al. [3] proposed a cross-site scripting vulner-
ability detection method combining static source code analysis and data mining in 2015.
The accuracy of XSS vulnerability detection and the effect of fixing code as improved by
this method, but the disadvantage was false positives. Choi et al. [4] proposed an HXD
(Hybrid XSS Detection) system. The system used both static string analysis and dynamic
browser rendering with a black-box detection approach. Experimental results showed
that HXD had a low false positive rate. Mohammadiet al. [5] detected XSS vulnerabilities
through an automatic unit testing method. They preferred to automatically construct
an XSS vulnerability unit test from each web page; the test input pair framework was
then automatically generated using a grammar-based attack generator, which was then
evaluated. The proposed method reduced the error rate of XSS vulnerabilities. In 2019,
YAN et al. [6] proposed a PHP code vulnerability detection method based on sensitive path
and taint analysis. The method first converted the background code of the web application
into the intermediate representation of the code, such as the abstract syntax tree, then found
the slot (dangerous function), then determined the sensitive path through the slot, and
finally performed taint analysis on this path to determine whether the vulnerability exists.
However, the disadvantages of static analysis were obvious, it relied on a lot of manual
work by human experts with knowledge of both programming and security domains, and
the source code was usually not open-source.

In terms of dynamic analysis, Parameshwaran et al. [7] designed a DOM-based XSS test
platform, which was based on taint analysis in 2015. The platform included a vulnerability
generator and a detection engine. Experiments showed that the method had an excellent
effect on detecting DOM-based XSS attacks. Wang et al. [8] proposed a TT-XSS framework to
detect DOM-based XSS using dynamic taint analysis. The application dynamically analyzed
the collected URLs that were then sent to the taint tracking analysis module, the obtained
taint trajectories were sent to the automatic vulnerability verification module, and the
verification module was completed by generating attack vectors from taint trajectories. In
2021, Khalaf et al. [9] proposed an algorithm that allowed attack detection and prevention
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using an input validation mechanism. This approach supported web security testing
by providing an easy-to-use and accurate vulnerability prediction model and validation
method, which had the advantage of having a very low false positive rate. However,
this method relied on the completeness of the testing dataset. If the testing dataset was
not perfect or faced deformation attacks, it would produce a high false negative rate. In
addition, this is a common problem for all dynamic analyses.

In recent years, zero-day attacks and deformation attacks are common, and it is difficult
for traditional static analysis and dynamic analysis to play an effective role in XSS detection.
Therefore, a large number of scholars have introduced machine learning technology for
XSS detection and achieved good results. Zuhair et al. [10] also extracted features from Web
pages and URLs but made a mixed feature subset division, combined with phishing attacks,
and finally used the SVM algorithm for training and testing. Rathore et al. [11] proposed a
machine learning method based on URLs, web pages, and SNSs to detect XSS attacks in 2017,
extracted twenty-five XSS attack features, and used ten classifiers for detection. To achieve
better performance, Hosseini et al. [12] proposed a model for detecting malicious crawler
behavior using machine learning techniques and tested and compared several machine
learning algorithms, such as Bayesian networks, SVM, and decision trees. Finally, in this
experiment, it was found that the SVM-based model had higher detection accuracy for
malicious crawlers and extracting effective features could improve the detection accuracy.
In 2021, Hu et al. [13] designed and implemented an XSS attack detection model for
web applications. This model added the verification code recognition function to solve
the problem of submitting data to the server just by entering the verification code; this
model had a low false positive rate. Malviya et al. [14] developed a web browser for
machine learning classification to mitigate XSS attacks. Experimental results showed
that the proposed method outperforms other proposed methods in classification accuracy,
recall, precision, and F1-score. Mokbal et al. [15] proposed a novel XSS attack detection
framework based on the ensemble learning technique for web applications, which used the
XG boost (Extreme Gradient Boosting) algorithm and the extreme parameter optimization
method. The proposed framework passed multiple tests on the testing dataset, and the
accuracy could reach 99.59%. Soltani et al. [16] proposed a framework for a DID (Deep
Intrusion Detection) system. The authors deployed and evaluated offline IDS (Intrusion
Detection System) following this framework. Experiments showed that the evaluation
indicators, such as the precision rate and recall rate, of this method, reached 0.992 and
0.998, respectively. In addition, the shortage of high-quality data has always been a key
problem in machine learning. Multi-fidelity classification algorithms [17–19] solve this type
of problem by incorporating information from other sources that can be obtained at a low
cost while maintaining good correlation. In this regard, it can also be applied to the XSS
attack detection model in the future to improve the generalization ability of the model.

Our previous work [20] can detect XSS attacks more accurately by using machine
learning to jointly detect traffic and logs and at the same time, trace the process of XSS
attacks in the entire network, but it needs to collect a large number of network device logs
for analysis.

To sum up, the current XSS attack detection approaches still have the following problems:

• XSS remains one of the most serious and common types of attacks. Therefore, a more
effective detection method is needed to defend against XSS attacks.

• The pros and cons of a single model of the existing detection methods will directly
affect the effectiveness of the entire detection model.

• Existing detection methods have a high false negative rate in the face of the frequent
variations in XSS payloads, which needs to be reduced.

• There is currently no public dataset that includes both normal traffic and XSS attack
traffic (the only type of attack in the attack traffic is XSS).

Therefore, this paper focuses on developing a fusion verification method. We obtain
a real-world experimental dataset by simulating XSS vulnerabilities in CVE (Common
Vulnerabilities and Exposures) and capturing network traffic on the web server side. Then
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we combined traffic detection with XSS payload detection to form a fusion verification
method to defend against XSS attacks. Moreover, this method combines the timeliness
advantages of traffic detection and the accuracy advantages of payload detection. We
expect that this method can improve the performance of detection models and solve the
problems that existing solutions have that make it difficult to meet actual needs.

3. Proposed Methodology

Figure 1 shows the overall framework for detecting the XSS proposed in this paper.
First, the original dataset of the experiment is obtained by reproducing the CVE vulnerabil-
ity. Then we use the rdpcap function of the Scapy library in Python to read the pcap file of
the original dataset and summarize the data according to the upstream and downstream of
the two-way communication. In addition, it is divided into two detection modules, one is
traffic detection and the other is XSS payload detection. We extract the traffic dataset and
the payload dataset separately through different modules. The two modules perform pre-
processing and feature extraction, respectively, to form a data format that can be recognized
by machine learning input. Next, the two modules separately perform preprocessing and
feature extraction to form a recognizable data format for machine learning input and send
it to the classifier for detection. Due to the particularity of the traffic itself, we found that
each flow in the pcap packet corresponds to multiple payloads at the same time, and each
result of the traffic detection module may correspond to the results of multiple payload
detection modules. Therefore, we can combine the results of the two modules by matching
the source port feature (src_port) common to both detection modules. Finally, the final
detection result is obtained through the fusion verification of the two detection models so
as to improve the detection performance of the entire model.

 

Figure 1. The framework of the proposed method.

3.1. CVE Vulnerability Set

This paper targets the widely used content management system—WordPress [21]
(43.0% of websites worldwide use WordPress). From NVD [22] (National Vulnerability
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Database), we have selected 10 recent XSS vulnerabilities for both reflected XSS and stored
XSS. The specific CVE list is shown in Table 1. Then, the original dataset is formed by
simulating locally and using WireShark [23] to capture the traffic packets of the reproduced
process, and the dataset format is pcap packet.

Table 1. CVE list.

XSS Type Vulnerability Number

Reflected XSS
CVE-2021-25067, CVE-2021-24234, CVE-2021-24180, CVE-2021-24225,
CVE-2021-24436, CVE-2021-24437, CVE-2021-24452, CVE-2021-25041,
CVE-2021-25047, CVE-2021-25065

Stored XSS
CVE-2021-25046, CVE-2021-24988, CVE-2021-24315, CVE-2021-24528,
CVE-2021-24658, CVE-2021-24518, CVE-2021-24505, CVE-2021-24504,
CVE-2022-1915, CVE-2022-1896

3.2. Traffic Features Extraction

After detection and analysis, it is found that the XSS attack traffic is different from
the normal traffic. Since XSS attack traffic not only needs to load normal web pages but
also needs to load malicious js files or external malicious links, resulting in extra network
resources and system resources. Thus, the packets of XSS attack traffic are generally larger.

A total of 1947 flows have been extracted for analysis in this paper. Two types of
features have been used for learning: traffic-related features and time-related features,
which help the classifier to distinguish between normal traffic and XSS attack traffic.
Moreover, the traffic-related features include the five-tuple features of the communication
process (due to the particularity of the format of the IP address itself, the source IP address
and the destination IP address are omitted), as shown in Table 2. This experiment has used
enough traffic to reflect the real network environment and real traffic features.

Table 2. Traffic features and descriptions.

Feature Type Feature Name Descriptions

Traffic-related
features

proto Transfer protocol number
src_port Source port
dst_port Destination port
up_pkts Total number of upstream packets
dw_pkts Total number of downlink packets

up_pl_bytes Total uplink load
dw_pl_bytes Total downlink load

up_min_plsize Upstream minimum payload
dw_min_plsize Downlink minimum payload
up_avg_plsize Upstream load average
dw_avg_plsize Downstream load average
up_max_plsize Upstream maximum payload
dw_max_plsize Downlink maximum payload
up_stdev_plsize Upstream load variance
dw_stdev_plsize Downlink load variance

Time-related
features

duration Stream duration
up_avg_ipt Average time interval of upstream packets
dw_avg_ipt Average time interval of downlink packets
up_min_ipt Uplink minimum time interval
dw_min_ipt Downlink minimum time interval
up_max_ipt Uplink maximum time interval
dw_max_ipt Downlink maximum time interval
up_stdev_ipt Upstream time interval variance
dw_stdev_ipt Downlink time interval variance
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3.3. Payload Features Extraction

In this section, after an in-depth study of XSS attack methods and causes, we have
summarized three representative attack methods from the attackers’ point of view. Then we
extracted seven attribute features of the payloads according to the summarized attack methods.

3.3.1. XSS Attack Methods

(1) Script: Script injection can be divided into static script injection and dynamic script in-
jection. Static script injection usually constructs malicious code within <script></script>
tags to trigger scripts. Dynamic script injection refers to triggering the browser to
introduce external malicious links through the src attribute of the script tag.

(2) JavaScript pseudo-protocol: XSS attack using JavaScript pseudo-protocol is also a
common injection method. The JavaScript pseudo-protocol treats the segment after
the code “javascript:” as a JavaScript script and executes it.

(3) Inline events: JavaScript interacts with HTML through DOM events. The HTML DOM
allows JavaScript to react to HTML events and execute JavaScript when events occur.
XSS attack can use DOM events to bind malicious code. Most DOM events have names
starting with “on”, and most HTML tags can use the on-event to trigger script code.
Table 3 shows some on-events.

Table 3. Some on-events and descriptions.

Attribute Descriptions

onerror Run the script when an error occurs
onload Run the script when the document loads
onfocus Run script when window gets focus
onclick Run a script when the mouse is clicked

onmouseover Run a script when the mouse pointer moves over an element

Table 4 shows examples of three XSS attack methods:

Table 4. XSS attack examples.

Methods Examples

Script <script>alert(123);</script>
JavaScript pseudo-protocol <iframe src=“javascript:alert(‘xss’)”>

Inline events <img src=# onerror=“alert(document.cookie)”>

3.3.2. Attribute Features

Usually, experienced attackers will change the encoding or capitalization of malicious
code to carry out deformation attacks. Therefore, this paper has preprocessed the extracted
sentences to convert them into original sentences. The preprocessing includes lowercase
conversion, URL decoding, HTML decoding, JavaScript decoding, ASCII decoding, Uni-
code decoding, and URL decoding twice. Values are then extracted from the processed
dataset to fit the features proposed in this paper.

Through extensive research on XSS attack methods and analysis of their lexical features,
we have found that text characters commonly found in malicious code are often combined
with certain fixed symbols. Therefore, matching the combined form can reduce the detection
of false positive rate compared to just matching text characters. The following seven
attribute features are summarized:

(1) HTML_Tags

HTML tags in XSS attacks typically appear more frequently than text loads in normal
traffic. In HTML tags, the label starts with a left angle bracket. For example, <script,
<iframe, and <img in Table 5 appear in the form of left angle brackets plus script, iframe,
and img characters. Therefore, the combination of the left angle bracket and the label
character is classified into a class of features.
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Table 5. Seven new attribute features.

Features Examples

HTML_Tags <script, <img, <body, etc.
JavaScript javascript:
On_Event onerror=, onmouseover=, onload=, etc.

Function_Body alert(, confirm(, eval(, etc.
Document_Object document.cookie, etc.
Third_Party_Links src=, href=, http:, https:, //

Delimiter space,/, +

(2) JavaScript

The JavaScript pseudo-protocol is usually combined with HTML tags to form mali-
cious code, such as <iframe src=“javascript:alert(‘xss’)”>, where the code feature that will
always appear is “javascript:”.

(3) On_Event

HTML5 allows browsers to trigger scripts through various events. For example, in the
malicious code “<img src=#onerror=“alert(document.cookie)”>”, the attacker deliberately
sets the src attribute of the img tag to be wrong and then uses the onerror event (run the
script when an error occurs) to trigger the malicious script. Therefore, the alert function is
triggered here, causing the cookie to be leaked. The features of the event attribute are the
form of the on-event followed by an equal sign, such as “onerror=”.

(4) Function_Body

Attackers can use some “dangerous functions” in JavaScript to steal sensitive informa-
tion. For example, the “alert()” function is often used to pop up a dialog box. If an attacker
combines it with the document object, the purpose of stealing cookies can be achieved. The
code feature of the JavaScript function body is “alert()”, which is obviously different from
ordinary characters.

(5) Document_Object

The document object is the root node of the HTML document. An attacker can use
the “document.write” property to write JavaScript code to the document or use “docu-
ment.cookie” to return all cookies associated with the current document. Its code feature
is “document.”

(6) Third_Party_Links

In order to better conceal cross-site scripting attacks, experienced attackers will build
an XSS attack server to receive and store the stolen sensitive information. As a result,
there will be third-party links in the attack traffic, which are mostly characterized by a
combination of src or href and third-party links.

(7) Delimiter

Delimiters, such as spaces, are unavoidably used within HTML tags due to the gram-
matical nature of HTML. Therefore, attackers must use delimiters to construct attack
statements when exploiting cross-site scripting vulnerabilities. “space”, “/”, and“+” are
known to be used as delimiters for malicious code.

In this paper, we have added 7 new features to the 30 features extracted by Zhou and
Wang (2019) [1], totaling 37 attribute features of the XSS payloads. Table 5 shows the seven
new attribute features added in this paper:

3.4. Fusion Verification

Both the traffic detection module and the XSS payload detection module can present
the malicious or normal status of the current stream or payload in binary form. In this paper,
we have adopted the fusion verification method. If either of the two detection modules
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declares that the current detection sample is malicious, it is considered to be malicious. In
addition, if both of them declare that it is normal, it is considered to be normal.

In this paper, Boolean variables Fv and Pv are used to represent the detection results
of the traffic detection module and the detection results of the XSS payload detection
module, respectively. The Boolean variable Rs is used to represent the final result of fusion
verification, and its calculation formula is as follows:

Rs = Fv ∨ Pv (1)

It is easy to know from Formula (1) that there are four cases in total. In these four
cases, the final result is normal only when the traffic detection determines that it is normal
and the payload detection determines that it is normal. In other cases, the result is judged
to be malicious.

3.5. Random Forest

The research of a large number of scholars shows that the ensemble method has
good performance in classification performance and robustness in the face of overfitting.
Therefore, these kinds of algorithms are very popular in the field of machine learning. In
this paper, the random forest algorithm has been used as the classification technique of the
experiment. Random forest is an ensemble algorithm based on decision tree, which not
only has good scalability but is also easy to use. The principle of random forest is to build
a strong model with better generalization performance and less overfitting by separately
averaging multiple decision trees affected by large variance.

In this paper, the random forest algorithm has been used as the classifier. The random
forest algorithm does not need to worry about the choice of hyperparameter values, and
pruning it is usually not necessary because of its strong resistance to noise from a single
decision tree. In this experiment, we have taken the size of the training dataset as the size,
n, of the bootstrap samples in order to obtain a better bias-variance tradeoff. We set the
number of features, d, in each split to a value less than the total number of features in
the training dataset. We have used the random forest classifier already implemented by
scikit-learn with relatively reasonable parameter settings. The default value is d =

√
m,

where m represents the total number of features in the training dataset. Additionally, we
have chosen entropy as the criterion used for splitting nodes. We have set the value of
the n_estimators parameter of the number of decision trees to 100. Because when the
n_estimators parameter reaches 100, the accuracy of the model no longer increases. We
have set the number of parallel computations, n_jobs, to 10 to use the multi-core computer
parallel computing model.

4. Experiments and Discussions

4.1. Experimental Dataset

This paper has formed a traffic dataset containing normal traffic and XSS attack
traffic by simulating the CVE. This dataset is called “CVE traffic”. “CVE traffic” contains
1747 normal traffic and 200 XSS attack traffic. Then we used Scapy’s rdpcap function to
extract the XSS payload dataset, referred to as “CVE payloads”. It contains 10083 normal
records and 231 XSS payloads.

XSS payloads [24] have been collected from GitHub and used as a training dataset
with a total of 151,658 records, including 135,507 normal records and 16,151 XSS payloads.
The testing dataset has been extracted from the traffic dataset above through the rdpcap
function of the Scapy library.

The specific information on the experimental datasets is shown in Table 6
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Table 6. Experimental dataset.

Datasets Normal XSS

CVE traffic 1747 200
CVE payloads 10,083 231

XSS payloads [24] 135,507 16,151

4.2. Experimental Results

This experiment uses twenty-fold cross-validations to assess the performance of the
model. In this method, 19 of the 20 CVE traffic datasets are used as training datasets, and
the remaining one is used as the test dataset. Additionally, each of the 20 subsets is only
used once as a test dataset. The cross-validation process has been repeated 20 times, and
the average of the twenty results for each CVE are taken as the result of this experiment.
Then, we used the fusion verification method mentioned in Section 3.4 of this paper to take
the average of 20 results for each CVE traffic detection result and XSS payload detection
result as the final result of our method.

This experiment aimed to solve a typical binary classification problem. As shown in
Table 7, we use a confusion matrix to represent the results.

Table 7. Confusion matrix.

Actual XSS Actual Normal

Predicted XSS TP FP
Predicted Normal FN TN

The confusion matrix is divided into four categories. TP (True Positive) means the
number of correctly classified as attack samples, and FP (False Positive) means the number
of normal samples classified as attack samples. In addition, TN (True Negative) means
the number of correctly classified as normal samples, and FN (False Negative) means the
number of attack samples classified as normal samples. This paper evaluates the accuracy,
precision, recall, and F1 score of the experimental results. The calculation formulae are
as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(2)

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

F1 =
2× Precision × Recall

Precision + Recall
(5)

The experimental results are shown in Figure 2.
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Figure 2. Experimental results (a–t).

As can be seen from Figure 2, in 17 out of 20 CVE experiments, the recall of our
fusion verification method can reach an astonishing 100%. We can know from Figure 3 that
under such a high recall rate, our accuracy is an average of 94.9%, which also remains at
a high level. Therefore, the fusion verification method can effectively defend against XSS
attacks. In addition, as shown in Figure 3, the average accuracy, precision, recall, and F1
score of this method are significantly improved compared to the single traffic detection
model. Among them, the average improvement in the recall rate is as high as 48%, the
average increase in F1 score is as high as 27.94%, the average increase in precision is 9.29%,
and the average increase in accuracy rate is 3.81%. The results show that our proposed
fusion verification model outperforms the single traffic detection model. However, the
number of experimental samples in the load detection process is relatively small. Therefore,
the performance of a few fusion validation models is slightly lower than that of a single
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detection model. In this regard, we consider using multi-fidelity classification algorithms
in future research and experiments to solve the problem caused by fewer training samples.

Figure 3. Average performance comparison.

In addition, taking XSS payloads [24] as the dataset, with a ratio of 7:3 between the
training set and test set, random forest is used to evaluate the importance of 37 features
of the payload detection link used in this paper. Among them, there are 30 features
whose contribution rate is larger than 0.01%, as shown in Figure 4. The first is the feature
“Function_Body” proposed in this paper, whose contribution rate is as high as 23.95%.
Moreover, the total contribution rate of the seven features in this paper is as high as 34.12%.
This means that it is feasible to extract detection features by summarizing XSS attack
methods in this paper, and it has better generalization and can detect variations in attacks
more effectively.

Figure 4. Assess the importance of the features of Zhou and Wang (2019) [1] and the newly proposed
features in this paper.
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5. Conclusions

We propose a fusion verification method that combines traffic detection with XSS
payload detection to effectively detect XSS attacks. The results show that the method
proposed in this paper has significant advantages for reducing the false negative rate of
the model. Under the premise of uniform sample distribution, there will be almost no
false negatives. Therefore, the fusion verification method can effectively defend against
XSS attacks. Moreover, compared with the traditional single-flow detection model, the
average recall rate of this method, F1 score, precision, and accuracy rate is increased by
48%, 27.94%, 9.29%, and 3.81%, respectively. Further, the seven new features of the XSS
payloads proposed in this paper account for 34.12% of the total contribution rate of the
37 features.

However, the method proposed in this paper has certain limitations. The cost of
keeping the false negative rate low is that the false positive rate of the entire model will
increase. In the follow-up research, we will try to solve the existing problem.
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Abstract: Hypergraph matching has been attractive in the application of computer vision in recent
years. The interference of external factors, such as squeezing, pulling, occlusion, and noise, results
in the same target displaying different image characteristics under different influencing factors.
After extracting the image feature point description, the traditional method directly measures the
feature description using distance measurement methods such as Euclidean distance, cosine distance,
and Manhattan distance, which lack a sufficient generalization ability and negatively impact the
accuracy and effectiveness of matching. This paper proposes a metric-learning-based hypergraph
matching (MLGM) approach that employs metric learning to express the similarity relationship
between high-order image descriptors and learns a new metric function based on scene requirements
and target characteristics. The experimental results show that our proposed method performs better
than state-of-the-art algorithms on both synthetic and natural images.

Keywords: hypergraph matching; similarity metric; information-theoretic metric learning

MSC: 68T20

1. Introduction

Graph matching has been applied in a variety of fields, including biological applica-
tions [1], remote sensing image recognition [2], and image retrieval [3]. The key to graph
matching is to find correspondences between image visual features using particular algo-
rithms. Graph matching is typically viewed as a quadratic assignment problem (QAP) [4],
and since the quadratic objective function is also non-convex, obtaining the global optimal
value is challenging [5]. Various approximation algorithms have been developed to settle
them under relatively relaxed conditions. Ref. [6] proposed a matching approach based on
linear programming. In [7], semidefinite programming was used to solve such a problem,
and [8] adopted a similar strategy. However, these algorithms are locally optimal in the
discrete domain, and discretization can cause extra errors. There are other methods based
on tree search that focus on the suboptimality; for instance, Sanfeliu improved the previous
method by considering the joint probability of points and edges in [9]. In [10], it is shown
that random walk-based models greatly enhance the graph topological features. A. Robles-
Kelly [11] introduced a novel algorithm based on the relationship between the adjacent
matrix of the two graphs and their stationary distribution.

Matching-based techniques have been adopted in a variety of study fields. Early
classification based on sparse representation (SRC) [12] is not satisfactory in the treatment
of occlusion. With the development of multiview non-negative matrix factorization (NMF)
methods [13], the local geometry is preserved while global representation under a global
alignment strategy is obtained. However, these methods are still affected by various noises
and cannot highlight the target characteristics. In [14], Ou et al. proposed a method
that used adaptively estimated occlusion information and robustly selected features to
improve the performance of facial recognition. The K-nearest neighbor (KNN) is also a non-
parametric classifier that is widely used in pattern recognition. However, the performance
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of KNN-based classification is severely affected by the sensitivity of the neighbourhood
size, especially when the sample size is small and there are outliers. Refs. [15,16] improve
this problem by weighting and averaging, and have a robust and effective classification
performance.

In recent years, high-order graph matching algorithms have put a large amount of
attention on the better fusion of structural similarities in order to improve the matching
accuracy. Zass and Shashua [17] proposed a probabilistic setting-based hypergraph match-
ing approach that uses an iterative successive projection process to find the global optimal
solution. Lee et al. [18] expanded the reweighted random walk approach to hypergraph
matching and probabilistically reinterpreted the idea of random walk on hypergraphs.
However, these matching algorithms employ Euclidean distance to generate an affinity
matrix, and each feature attribute is regarded as being independent from the others. Tradi-
tional methods lack a specific metric for feature description, their performance on different
types of data is highly variable, and their overall accuracy is low. In this paper, we present
an improved hypergraph matching algorithm on the basis of the metric learning theory. By
learning the training dataset, it obtains a Mahalanobis matrix that is used to consummate
the affinity formulation. Since the Mahalanobis distance is a measure considering the
correlation between feature descriptions as well as scaling relations, the assignment matrix
obtained by this method would be closer to the ground truth; in fact, experiments show that
our algorithm can improve the accuracy of their matching results. The main contributions
of this manuscript are described as follows:

• A novel approach for graph matching based on metric learning is proposed, in which,
the correlation of different features is well considered so that it can perform better.

• An information-theoretic metric learning (ITML) method was applied to solve the
learning task under high-order graph matching.

• The metric learning algorithm is proved by parallel computation, which greatly re-
duces the communication demands.

• Compared with other state-of-the-art algorithms in experiments on test datasets, our
proposed method can obtain more accurate results in an efficient way.

The rest of this article is structured as follows. Section 2 begins with an overview of
graph-matching-related work. Section 3 presents the proposed model as well as the generic
formula for graph matching. Section 4 develops the MLGM approach for optimizing the
suggested graph matching model. Section 5 evaluates and analyzes the experimental
results of the proposed method on synthetic and natural picture benchmarks. The final
section is the conclusion.

2. Related Works

In the last few years, spectral methods have developed into one of the most represen-
tative algorithms in graph matching. The eigenvalues of a matrix do not change when its
rows and columns are shuffled; thus, we can utilize this fact to find the adjacency matrix
that has the same eigenvalues between similar pictures. Earlier, the spectral method was
applied to perform feature matching [19]. Ref. [20] introduced a method incorporating
the grey level information around the feature points to improve the matching accuracy.
Leordeanu et al. [8] proposed a matching algorithm by building an affinity matrix of the
feature points that considered the effect of different weight functions in point matching. In
another direction, the grouping method can also improve the effectiveness of matching.
Egozi et al. [21] proposed a probabilistic interpretation of spectral matching schemes and
developed a unique probabilistic matching (PM) scheme that outperforms earlier methods.
Feature matching carried out by means of alternating the embedding and matching of the
adjacency spectrum was introduced in [22], and, in [23], a relaxation scheme with matching
constraints was proposed. Duchenne et al. [9] proposed a class algorithm that uses a tensor
to represent similarities between higher-order features, and the graph can be matched
after rank-one decomposition of the similarity tensor. This algorithm extends the spectral
method to the hypergraph, and it has been further improved through research [24]. The ad-
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jacency spectrum optimization of undirected weighted graphs [25] and the approximation
of the proximal matrix spectrum of undirected weighted graphs [26] have been developed
in recent years, and results have been gained in image processing applications.

The graph edit distance (GED), which represents the matching link between nodes
and edges in two graphs, was utilized to solve graph matching. For example, Ref. [27]
proposed a self-organizing mapping algorithm to learn the distance, which makes the
distance between similar images smaller, and this method was improved in [28]. Serratosa
proposed a method based on an adaptive learning paradigm, which was improved in [29].
Andreas Fischer and Kaspar Riesen presented an algorithm [30] combining Hausdorff
matching with greedy allocation to improve the quadratic time approximation of GED.

Metric learning has been widely used in face recognition [31,32], image retrieval [33],
re-recognition [34], and other fields. For traditional metric methods such as Euclidean
distance, it is challenging to capture the structure of diverse data sets. In order to increase
the performance of classification models, it is important to learn a specific measure for
various data sets, which is the objective of metric learning. The algorithm for metric
learning based on the Mahalanobis distance is still the primary focus of metric learning
research at the present time. Bohne et al. [35] proposed dividing the data and learning a
metric for each cluster, and Wang et al. [36] suggested learning a set of basis metrics and a
set of weights for each sample.

3. Problem Statement

As a mathematical expression of a relationship, a graph model [37] is composed of a
node set and edge set. Finding the corresponding relationship between two graphs is the
objective of graph matching. Generally, it seeks the relationship between nodes in graphs,
and the specific node may be a pixel, a graph area, or a feature point. In the study of the
graph matching and hypergraph matching algorithm, in order to express the relationship
between graph features more comprehensively, the structure information of graph model
is used to represent the problem in graph matching. Figure 1 depicts a graph matching
example diagram.

Figure 1. Graph matching schematic diagram.

We now consider two sets of feature points P = {p1, p2 . . . , pm} and Q = {q1, q2 . . . , qn},
which are extracted from graphs A and B, respectively. The number of points obtained in
each graph is m and n, which can be the same or different. In the high-order graph matching
algorithm [9], what is different from the previous methods is that it matches a tuple of points
instead of one to one or pair to pair, and k is used here to represent the number of points in
each tuple. High-order graph matching has a good robustness under unfavorable conditions
such as noise deformation and the rotation of external points [38], but it requires more space
and time complexity. The third order can reflect the invariance of the similarity transformation
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in the field of computer vision, and, as the smallest higher-order topology, it can measure
the subtle differences between high-order graphs. For convenience, only third-order graph
matching is discussed in this paper, and it is straightforward to generalize to higher-order
potentials.

The matching problem of the two graphs is to compute an optimal assignment relation-
ship between points. Mathematically, this is the equivalent of finding an m × n assignment
matrix X. If the feature point pi in P matches qj in Q, then the corresponding Xi,j is equal
to 1; otherwise, it is 0. In this paper, we assumed that each feature point in P can match
zero or more feature points in Q, but each point in Q can match only one point in P. As a
result, the set of assignment matrix X can be denoted as X .

X =

{
X | X ∈ {0, 1}m×n, ∀i,

n

∑
j=1

Xi,j = 1

}
(1)

where i ∈ [1, m].
The universal second-order graph matching model can be used to solve X as

max
X

Score(X) = ∑
i1,i2,j1,j2

Mi1,i2,j1,j2 Xi1,j1 Xi2,j2 (2)

where M is an affinity tensor and represents the affinity relationship between point pairs
(i1, j1) and (i2, j2). Score(X) is the sum of the affinity values of all of the matched tuples;
the higher the value corresponds to, the more precise the matching result. Establishing
the affinity tensor M for two graphs A and B requires taking into account the similarity
between pairs of nodes and pairs of edges.

Mi1,i2,j1,j2 = exp
(
−γ
∥∥ fi1 j1 − fi2 j2

∥∥) (3)

f is the feature of each tuple, which is represented by Euclidean distance between points in
second-order graph matching, and γ is the parameter [9].

However, the second-order graph matching model can only express paired relations,
which are not resistant to scale changes and difficult to express higher-order feature infor-
mation. Considering the high-order relation of feature points, we describe the similarity
between feature point sets based on the relation between point tuples. Given two point sets
P and Q, the affinity tensor can be expressed as

Mi1,i2,j1,j2,k1,k2 = exp
(
−ξ
∥∥∥ fi1,j1,k1 − fi2,j2,k2

∥∥∥2
)

(4)

where i1, j1, k1 represent the point tuples in point set P of graph A, i2, j2, k2 represent
the three potential point tuples to be matched in point set Q of graph B, ξ is a constant
that controls the distribution of the intimacy tensor value, and fi1,j1,k1 and fi2,j2,k2 represent
the vectors constructed from the feature information of point tuples in point set P and
Q, respectively. There are numerous ways to represent feature information; for ease of
calculation, we use the sine value of the inner angle of the triangle formed by point tuples.

Similar to model (2), the high-order graph matching model can be formulated as

max
X

Score(X) = ∑
i1,i2,j1,j2,k1,k2

Mi1,i2,j1,j2,k1,k2 Xi1,i2 Xj1,j2 Xk1,k2 (5)

In (5), only when point tuples (i1, j1, k1) match (i2, j2, k2) separately does Xi1,i2Xj1,j2Xk1,k2
equal 1. This is an optimal solution problem; by finding the assignment matrix correspond-
ing to the maximum value of Score(X), the matching relation between tuples can be
obtained. We can also write (5) as (6) by using the notation of tensor–vector multiplication:

max
X̃

Score(X̃) = M̃ ⊗3 X̃ ⊗2 X̃ ⊗1 X̃ (6)
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where X̃ represents the vector created by combining the X columns, M̃ stands for the
symmetric matrix produced by tensor expansion, and I, J, and K are the three dimensions
of tensor M.

In the traditional affinity measure, Function (4), each feature is considered to be of the
same importance. However, because these features may have different correlations with
sample categories, their weights need to be reconsidered. In other words, a suitable distance
or similarity measure based on the feature space of the sample should be used to measure
the difference in the sample. Due to its two characteristics, decoupling and dimensionality
independence, Mahalanobis distance [39] is an excellent measurement function for image
processing and computer vision. In this paper, we used the Mahalanobis distance function
to measure the affinity of feature vectors and create the appropriate metric learning model.

4. Tensor Affinity Learning for Hyperorder Graph Matching

4.1. A Short Introduction to Metric Learning

The study of metric learning has significant theoretical implications. Metric learning
is concerned with developing an accurate function model for an input feature vector
and obtaining an accurate similarity measure by learning the model’s parameters. It can
enhance the performance of the classifier by generating similarity relationships with high
accuracy [40]. However, how to accurately measure the similarity of samples affected
by different external factors is overlooked. The simple normalization method is used to
preprocess data samples in classical learning algorithms, and then Euclidean distance is
used to measure similarity. These normalization and measurement methods are crude, and
the resulting classifier’s performance is easily influenced by noise and interference.

Euclidean distance is a representative distance metric function, defined as

d(x1, x2) =

√
(x1 − x2)

T(x1 − x2) (7)

where x1, x2 are paired sets of samples. Although Euclidean distance is simple to under-
stand, it has several flaws. It treats the differences between the feature vectors of the sample
as the same, which is incompatible with the application requirements of high-order graph
matching. Another limitation of Euclidean distance is that it cannot handle data coupling
relationships. When calculating the similarity of point tuples, for example, it is necessary
to consider how points and edges are related to each other via the global structure formed.

To improve the deficiencies of traditional distance measurement, the (squared) Maha-
lanobis distance was used to measure similarity in this paper, which is defined as

dM(x1, x2) = (x1 − x2)
TW(x1 − x2) (8)

W represents the Mahalanobis matrix [39], which is a positive semidefinite symmetric
matrix. The purpose of the metric learning process is to obtain a positive semidefinite
symmetric matrix W for a given training dataset, which is used to establish the similarity
measurement between the features of the samples. In other words, it aims to make the
metric distance of similar features closer, and dissimilar features are estranged from each
other.

4.2. The Establishment of Training Constraints

For graph supervised learning, the assignment matrix represents the correspondence
between the points of two graphs. In hypergraph matching, it is easy to obtain the match-
ing relation of tuples according to the relationship between points represented by the
assignment matrix.

To consider the correlation of feature vectors in hypergraph matching and find the
Mahalanobis matrix, we used the binary tuple constraint [41] to represent the similarity
relation of training samples.

{(xi, xj), wij} (9)

361



Mathematics 2022, 10, 3806

where wij refers to whether the two training samples xi and xj are similar. If wij equals
1, indicating that (xi, xj) belongs to the set of similar samples, the given pair of samples
should be close to each other under the learned distance metric function. Similarly, when
(xi, xj) belongs to a dissimilar pairs set, wij equals −1, indicating that a given pair of
samples should be far apart under the learned distance metric function. For a training
dataset, wij can be easily obtained according to the assignment matrix. Each tuple is stored
as a feature vector; in order to reduce the distance between similar pairs and increase the
distance between dissimilar pairs in metric learning, we further constrain similar pairs set
S and dissimilar pairs set D by establishing thresholds.

S = {( fi, f j) : dM( fi, f j) ≤ g}
D = {( fi, f j) : dM( fi, f j) ≥ h}

(10)

where g and h are constants, and ( fi, f j) represents the pair of feature vectors.

4.3. Metric Learning Algorithm

Given a set of distance constraints as described in (10), our aim is to learn a positive-
definite matrix W that parameterizes the corresponding Mahalanobis distance. In order to
improve the computational efficiency, an information-theoretic metric learning approach
(ITML) [42] is introduced. It uses a natural information theoretic approach to handle
constraints on the distance function while minimizing the relative entropy between two
multivariate Gaussians. There is a straightforward bijection between the set of Mahalanobis
distances and the set of equalmean multivariate Gaussian distributions, and the multivari-
ate Gaussian that corresponds to a Mahalanobis distance parameterized by W can be stated
as follows:

p(x; W) =
1
z

exp(
1
2

dM(x, μ)) (11)

where μ is the mean value and z is the normalization factor. The relative entropy be-
tween corresponding multivariate Gaussians is used to measure the distance between two
Mahalanobis distance functions parameterized by W0 and W:

KL(p(x; W0)||p(x; W)) =
∫

p(x; W0) log
p(x; W0)

p(x; W)
dx (12)

KL(·) stands for relative entropy, which is known as Kullback–Leibler divergence [43].
We use it to represent the difference between two probability distributions. Given a similar
pair set S and a dissimilar pair set D, the distance measurement learning problem can be
transformed into:

min
W≥0

KL(p(x; W0)||p(x; W))

s.t.

dM( fi, f j) ≤ g, ( fi, f j) ∈ S

dM( fi, f j) ≥ h, ( fi, f j) ∈ D

(13)

where g and h are constants.
It has been demonstrated that the Mahalanobis distance between mean vectors and

the LogDet divergence between covariance matrices can be combined convexly to express
the differential relative entropy between two multivariate Gaussians [44]. To solve this
optimization function, the Logdet distance Dld(·) for measuring the difference of the matrix
was introduced to calculate:

KL(p(x; W0)||p(x; W)) =
1
2

Dld(W−1
0 , W−1)

Dld(W, W0) = tr(WW−1
0 )− log det(WW−1

0 )− d
(14)

where d is the number of rows in W.
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To facilitate the solution in the wider feasible region, the ITML algorithm introduces
the relaxation variable ξ, initializes it into ξ0, and further rewrites (14) as follows:

min
W≥0,ξ

(Dld(W, W0) + ρDld(diag{ξ}, diag{ξ0}))

s.t.

tr(W( fi − f j)( fi − f j)
T) ≤ ξi,j, ( fi − f j) ∈ S

tr(W( fi − f j)( fi − f j)
T) ≥ ξi,j, ( fi − f j) ∈ D

(15)

ρ is the equilibrium parameter. According to the principle of Logdet distance opti-
mization in [45], the iterative formula of optimization can be obtained:

Wt+1 = Wt + βWt( fi − f j)( fi − f j)
TWt (16)

where Wt is the metric matrix calculated by the t-th iteration, β is the mapping parameter,
and fi and f j are the constraint pairs.

4.4. Parallel Learning Algorithm

It is not feasible to apply the ITML method for distance measurement learning with
high-dimensional training data. The complexity of the ITML algorithm has a direct correla-
tion with the square of the data dimension, which leads to high heterogeneity in processing
high-dimensional data. Furthermore, the ITML method learns a full rank metric matrix
that scales quadratically with the number of input data dimensions, imposing a significant
computing overhead on the learning process.

Typically, actual high-dimensional datasets are contaminated with noise or contain
redundant information, so the algorithm cannot learn an effective measurement matrix.
Therefore, when the dimensions of training samples are large enough, the measurement
matrix obtained through ITML algorithm learning cannot effectively suppress the noise and
also has disadvantages, such as a low solving efficiency and vulnerability to inadequate
training data. To address the above challenges, we improved the metric learning algorithm
through parallel computing.

The following proposes a parallel computing process. We may reconstruct the Ma-
halanobis matrix W as W = I + ∑i αizizT

i using the principle in [46] that every positive
semidefinite matrix can be decomposed into linear combinations of rank-one matrices,
where zi ∈ Rd. It is clear that Wt( fi − f j) is d-dimensional, and Wt( fi − f j)( fi − f j)

TWT
t

is a rank-one matrix. We can concretize the expression for W by adding the Bregman
projections [47] of all pairs of constraints:

Wt+1 = I +
C

∑
i=1

βi(t)zi(t)zi(t)
T (17)

I represents the identity matrix of d dimensions, C is the number of constraint pairs
that represent the mapping parameters, β denotes the learning rate, and zi(t) = Wtci and
ci = f j − fk correspond to constraint pair ( f j, fk). In the algorithm framework, only z is
saved instead of Wt, preventing the issue where W tends to grow as d gets larger. Therefore,
the iteration is changed into the update formula of z:

zk(t + 1) = Wt+1ck = (I +
C

∑
i=1

βi(t)zi(t)zi(t)
T)ck (18)

According to the original algorithm, βi(t) should be the upper or lower bound con-
straint of the measured distance function. The key step in updating is to calculate the actual
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distance. Equation (19) can be used to express the real distance of the k-th constraint ck
when combined with Equation (17):

pk(t) = cT
k Wtck

= cT
k

(
I +

C

∑
i=1

βi(t)zi(t)zT
i (t)

)
ck

= cT
k ck +

C

∑
i=1

βi(t)cT
k zi(t)zT

i (t)ck

(19)

Due to the decomposable nature of W, the task of updating z and p is assigned to C
work units (worker), which reflects the concept of parallel execution. In our framework,
worker k needs to receive all z values generated by previous iterations from other workers
and then carry out the next iteration update. Each worker only needs to send the vector
z and receive (c − 1)z instead of the entire metric matrix. Therefore, the transfer amount
of each step is reduced from O(d2) to O(d). When d exceeds the number of constraints
C, the transfer requirements will be significantly reduced, which greatly reduces the
computational complexity.

We define affinity Ω in terms of the Mahalanobis distance instead of (4), which can
better account for the correlation between tuples through learning the training set.

Ωi1,i2,j1,j2,k1,k2 = exp(− ( f1 − f2)
TW( f1 − f2)

γ
)

f1 = (i1, j1, k1)

f2 = (i2, j2, k2)

(20)

Then, M is defined as the following:

Mi1,i2,j1,j2,k1,k2 = Ωi1,i2,j1,j2,k1,k2 , i f || f1 − f2|| ≤ σ

otherwise 0
(21)

The value of parameter σ corresponds to the degree of triplets deformation; a larger
value of σ reduces the sensitivity of matching. The resulting algorithm is given as Algorithm 1.
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Algorithm 1 Parallel Metric Learning

Input: S: similar data; D: dissimilar data; u, l: distance thresholds: γ: slack parameter
Output: W: Mahalanobis matrix

1: W = I, C = |S|+ |D|
2: for constraint (xp, xq)k, k ∈ {1, 2, . . . , C} do
3: λk ← 0
4: dk ← u for (xp, xq)k ∈ S otherwise dk ← l
5: ck ← (xp − xq)k, zk ← ck
6: end for
7: while β does not converge do
8: for all worker k ∈ {1, 2, . . . , C} do in parallel

9: zk = ck +
C
∑

i=1
βizizT

i ck

10: p ← cT
k zk

11: if (xp, xq)k ∈ S then

12: α ← min
(

λk, 1
2 (

1
p −

γ
dk
)
)

13: β ← α
1−αp

14: dk ← γdk
γ+αdk

15: else
16: α ← min

(
λk, 1

2 (
γ
dk
− 1

p )
)

17: β ← −α
1−αp

18: dk ← γdk
γ−αdk

19: end if
20: λk ← λk − α

21: zk ←
(

I +
C
∑

i=1
βizizT

i

)
ck

22: send zk to other workers
23: end for
24: end while

25: W = I +
C
∑

i=1
βizizT

i

5. Experiments

In the following, we compare our method to advanced hyper-graph matching algo-
rithms using benchmark data sets in which the original information for a specific sample
graph is the feature point set. In order to express conveniently, the proposed method was
represented by MLGM. We used the following advanced methods to compare with MLGM:
spectral matching (SM) [8], max-pooling matching (MPM) [22] and IPFP [29], probabilistic
graph matching (HGM) [17], tensor matching (TM) [9], reweighted random walk hyper-
graph matching (RRWHM) [18], block coordinate ascent graph matching (BCAGM) [23],
and alternating direction graph matching (ADGM) [48]. We introduced noise and distortion
to several datasets to distinguish our method’s performance from that of other approaches.
We compared the results to other algorithms in terms of accuracy and matching score. Ac-
curacy was determined as the ratio between the number of accurate matches and the total
amount of points and score was determined by Equation (6). The parameter settings for all
of the state-of-art algorithms were identical to those suggested in their respective articles.

In our method, the dimension of the feature vector for each tuple of points was set to
3. We used Equation (21) to compute the affinity tensor M, and γ was set as in [9]. In the
calculation process, we simply randomly selected N × m triplets from the graph model,
where N is a user-defined parameter (this paper was set to 50). For the best empirical
performance, only K nearest tuples matching for each triplet in the target image were
selected, where K was set to 300 in this paper.
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5.1. Synthetic Dataset

In this section, we introduce the popular benchmark datasets Blessing and Fish [49] in
our experiment, which are reliable in evaluating graph matching algorithms.

In Figures 2 and 3, we show examples of the existing synthetic database (the Chinese
character “blessing” and a tropical fish). The model shape is shown in the first column, in
which, the images of Blessing and Fish are composed of 105 and 98 points, respectively.
In order to validate the robustness of the proposed algorithm under noise, deformation,
outliers, and rotation conditions, we conducted four sets of experiments. Column b contains
examples of noisy targets produced by the addition of Gaussian random noise. Column
c contains examples of deformed targets created by applying nonrigid deformation to
model points. Column d contains examples of targets with outliers created by combining
random points with a normal distribution of unit variance and moderate degrees of rotation.
Column e contains examples of targets with large rotations and moderate Gaussian noise.
We then experimented with each group of graphs and evaluated the robustness of these
methods. The results are shown in Figures 4–7.

(a) (b) (c)

(d) (e)

Figure 2. (a) shows model fish point sets, and (b–e) show point sets added with deformation, noise,
outliers, and rotation, respectively.
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(a) (b) (c)

(d) (e)

Figure 3. (a) shows model blessing point sets, and (b–e) show point sets added with deformation,
noise, outliers, and rotation, respectively.

(a) (b)

(c) (d)

Figure 4. Accuracy comparison on the Fish dataset. (a) Accuracy with different degree of deformation.
(b) Accuracy with different noise level. (c) Accuracy with different number of outliers. (d) Accuracy
with different rotation angle.
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(a) (b) (c)

(d) (e)

Figure 5. The assignment matrix obtained by MLGM from matching results on the Fish dataset with
different degree of deformation (a–e).

(a) (b)

(c) (d)

Figure 6. Accuracy comparison on the Blessing dataset. (a) Accuracy with different degree of
deformation. (b) Accuracy with different noise level. (c) Accuracy with different number of outliers.
(d) Accuracy with different rotation angle.
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(a) (b) (c)

(d) (e)

Figure 7. The assignment matrix obtained by MLGM from matching results on the Blessing dataset
with different degree of deformation (a–e).

In the case of deformation disposal, the degree of deformation was set from 0.02 to
0.1; as it increases, the matching accuracy of all algorithms decreases correspondingly.
For each graph pair, we fixed the points of an image and used algorithms to find the
corresponding points in the other image. Each experimental result is the average of a
multigroup parallel experiment to ensure the reliability of the test. The results show that
the ITML method has an obvious advantage in this situation. For the noise condition
experiments, the target points were obtained by adding Gaussian random noise from
σ = 0.01 to σ = 0.05; we can see from Figures 4 and 6 that the methods using high-order
graph matching can achieve a higher accuracy because the internal information of the
image topology is applied to the feature description. For these groups of experiments on
synthetic database, our algorithm can obtain more accurate matching results. In particular,
our method can achieve 100% accuracy for datasets with outliers. Graphs in Figures 8 and 9
also display the matching scores under varying experimental conditions. In the case of
increased interference, the matching score remains steady at a higher level, demonstrating
that the affinity metric of the feature in our method is totally invariant to massive affine
deformations and strong Gaussian noise. With the addition of rotation, the results of images
show that the rotation angle has little effect on the matching results, but when the rotation
angle reaches 90 degrees, the accuracy obtained by our method has a slight decline at this
point. We believe that this is mainly because the 90-degree rotation has a degree of influence
on the algorithm that focuses on correlation. The experiments show that, after the metric
learning of the dataset, the results of matching can be improved.
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(a) (b)

(c) (d)

Figure 8. Matching score comparison on the Fish dataset. (a) Matching score with different degree of
deformation. (b) Matching score with different noise level. (c) Matching score with different number
of outliers. (d) Matching score with different rotation angle.

(a) (b)

(c) (d)

Figure 9. Matching score comparison on the Blessing dataset. (a) Matching score with different
degree of deformation. (b) Matching score with different noise level. (c) Matching score with different
number of outliers. (d) Matching score with different rotation angle.
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5.2. Face Dataset and Duck Dataset

In this section, we compare the performance of our method to other methods on the
Face dataset and Duck dataset, which are the sub-datasets from Caltech-256 [50]. These
datasets contain images from specific classes: 109 face images, and 50 duck images. The
ground truth is known for each graph pair. We chose 70 pairs of faces at random from
the data set for testing, manually picked 10 feature points from each picture, and chose
20 photographs from each class at random as the training dataset for metric learning.
The baseline was varied from 10 to 80 frames, and we tested all algorithms and obtained
the average of the results. The accuracy and matching scores were obtained by averaging
experiments of 10 frames to 80 frames. To make it more intuitive, we show several examples
of matching results in Figures 10 and 11. It can be seen that our algorithm performes better.
Figures 12 and 13 show that the MLGM method achieves the largest score value, and
obtains more accurate matching results than other test methods. It also demonstrates that
the compared approaches are easily affected by noise and distortion. The MLGM method
can obtain a better matching result for the entire dataset.

(a) (MLGM-SM-MPM)

(b) (IPFP-HGM-TM)

(c) (RRWHM-BCAGM-ADGM)

Figure 10. Example results of experiments on the Face dataset, in which red and yellow lines denote
correct and incorrect matching results.

(a) (MLGM-SM-MPM)

(b) (IPFP-HGM-TM)

(c) (RRWHM-BCAGM-ADGM)

Figure 11. Example results of experiments on the Duck dataset.
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(a) (b)

Figure 12. Trend chart of matching accuracy and score of the Face dataset. (a) Accuracy of the Face
dataset. (b) Matching score of the Face dataset.

(a) (b)

Figure 13. Trend chart of matching accuracy and score of the Duck dataset. (a) Accuracy of the Duck
dataset. (b) Matching score of the Duck dataset.

6. Conclusions

In this paper, we proposed a tensor graph matching model based on metric learning
that uses Mahalanobis distance as the affinity measure function and makes full use of
the distribution information and geometric information of hypergraphs. To solve the
proposed model, a parallel distance metric learning approach was used, which can learn
appropriate metrics from high-dimensional data without using low-rank approximation.
The experimental results of testing on several databases, such as the synthetic datasets
of Blessing, Fish, and Face datasets, and the Duck dataset, indicated that the suggested
method performs better than the existing ones. In the future, we may consider combining
this strategy with deep learning.
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Abstract: During imaging and transmission, images are easily affected by several factors, including
sensors, camera motion, and transmission channels. In practice, images are commonly corrupted by
a mixture of Gaussian and impulse noises, further complicating the denoising problem. Therefore,
in this work, we propose a novel mixed noise removal model that combines a deterministic low-
rankness prior and an implicit regularization scheme. In the optimization model, we apply the
matrix logarithm norm approximation model to characterize the global low-rankness of the original
image. We further adopt the plug-and-play (PnP) scheme to formulate an implicit regularizer by
plugging an image denoiser, which is used to preserve image details. The above two building
blocks are complementary to each other. The mixed noise removal algorithm is thus established.
Within the framework of the PnP scheme, we address the proposed optimization model via the
alternating directional method of multipliers (ADMM). Finally, we perform extensive experiments to
demonstrate the effectiveness of the proposed algorithm. Correspondingly, the simulation results
show that our algorithm can recover the global structure and detailed information of images well
and achieves superior performance over competing methods in terms of quantitative evaluation and
visual inspection.

Keywords: mixed noise removal; matrix nuclear norm; logarithm norm; ADMM; plug-and-play

MSC: 68U10

1. Introduction

Image denoising has been widely used in many applications, such as hyperspectral
imaging (HSI) [1], scene recognition [2], and image restoration [3]. However, due to imaging
conditions, natural images inevitably suffer from various kinds of noises, e.g., Gaussian,
random, salt-and-pepper (S&P), and stripe noises, which critically influence subsequent
applications. In particular, many images are contaminated by mixed noise, including
Gaussian noise plus random noise or Gaussian noise plus stripe noise. Therefore, restoring
a clean image from its corrupted version is the central issue in image denoising. From a
mathematical perspective, the denoising problem is morbid and irreversible. Hence, to
some extent, the prior knowledge of the image is of great importance.

In the past decade, scholars have proposed numerous image denoising models, such
as bivariate probability [4], Gaussian–Hermite distribution [5], total variation [6], au-
toregressive [7], Block-Matching 3D (BM3D) [8], and sparse representation-based image
modeling [9–11]. Among these models, the image sparse representation model has been
extensively studied and applied. It transforms a natural image into a linear combination of
a group of base or dictionary atoms and makes the transformed image coefficient sparse
and compressible. Finally, only a few coefficients are unequal to 0. A few examples of this
model are the common cosine, wavelet, and Fourier base methods. However, this image
denoising method can only address white Gaussian noise. In actual applications, images
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are often affected by many types of noise, such as Gaussian, S&P, or random noises. The
traditional denoising method cannot easily remove impulse noises, because it maintains
impulse noise points at edges [12,13].

In general, two types of typical impulse noises exist, i.e., S&P and random noises.
Conventional methods use two approaches to remove the mixture of Gaussian–impulse
noises. The first is the detection-based noise removal method, and the second is the
modeling-based method. The detection-based denoising method has been discussed in
existing research [14–17]. This method first detects the locations of damaged image pixels,
then handles the mixed noise. In fact, the accuracy of the detection of the damaged pixels is
very important for removing mixed noise. Generally, detection-based methods are effective
in removing impulse noise. However, their fidelity terms do not take Gaussian noise into
account. Therefore, they cannot remove Gaussian noise effectively.

The second method treats impulse noise as a sparse signal and constructs a statistical
distribution model on the basis of the impulse noise. A previously reported method [18]
adopts Laplacian scale mixture (LSM) modeling to characterize impulse noise and estimates
the hidden variables and impulse noise jointly from the noisy image. This method utilizes a
nonlocal low-rank regularizer to regularize the denoising model. Liu et al. [19] proposed a
mixed noise removal algorithm using weighted dictionary learning. Although this method
can handle mixed noise, its training process is time-consuming. Jiang et al. [20] developed
an image denoising method by combining weighted encoding and nonlocal self-similarity.
This method can remove Gaussian and impulse noises jointly. However, its denoising
performance relies on the design of the diagonal weight matrix.

Recently, low-rank matrix recovery has attracted considerable attention in the field of
image restoration [4,21–24]. The fundamental problem of this process is how to find and
use the low-dimensional structures of images. In contrast to the traditional mixed noise
denoising method, low-rank matrix recovery can handle different noise types without any
noisy prior information. Therefore, many researchers have applied the low-rank matrix
restoration model to reconstruct images. Zhang et al. [25] proposed a denoising method
for hyperspectral images based on a low-rank matrix recovery model. Subsequently,
a noise-adjustable low-rank matrix approximation model was applied to hyperspectral
image denoising [26]. However, in the above two methods [25,26], the upper bound
of the rank of a given matrix must be set. Nuclear norm was introduced to design the
rank approximation function in [27] for hyperspectral image denoising to solve the above
issue. This nuclear norm-based rank approximation function is mainly characterized by
its treatment of each singular value as equal. However, this approach ignores the fact that
the contribution of each nonzero singular value is different. As a result, some nonconvex
low-rank-based approaches are exploited for hyperspectral image restoration [28,29]. In
addition, the total variation-regularized low-rank restoration method has been developed
to remove mixed noise from HSI images [30,31]. In recent years, deep learning-based
approaches to image denoising have been extensively studied. Instead of mathematical
model construction, learning-based methods directly learn a mapping function from a noisy
image to a clean image. These methods include convolutional neural network-based CT
denoising [32], autonomous illumination systems [33], and deep plug-and-play (PnP) image
restoration [34]. Additionally, some low-rank tensor-based HSI restoration algorithms
have been proposed. These algorithms include weighted group sparsity-regularized low-
rank tensor decomposition (LRTDGS) [35] and fibered rank constrained tensor restoration
PnP [36].

In this work, inspired by PnP-based [34,36–39] and low-rank based [40,41] methods,
we propose a mixed noise removal algorithm by applying the PnP regularization-based
logarithm norm approximation (LNAM) model. First, the LNAM is used to characterize
the global low-rankness of the original image. Second, the PnP regularization method
is adopted to preserve the image detail information. Finally, the experimental results
obtained through simulations on test images are used to confirm the effectiveness of the
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proposed denoising method. The contributions of the proposed method can be summarized
as follows:

First, instead of utilizing the matrix-based low-rank approximation function, we intro-
duce a logarithm norm-based smooth rank function and propose the LNAM. Compared
with the nuclear norm-based low-rank function, the proposed model could more effectively
exploit the global low-rank structure of HSI and provides a tighter approximation.

Second, the low-rankness prior is known to usually face limitations in preserving the
local details of images. Therefore, the PnP framework is incorporated into the LNAM model
to break through this limitation. Furthermore, we introduce a classic BM3D denoiser [8]
that extensively exploits the nonlocal self-similarity prior of images.

Third, several simple subproblems are solved by decomposing the original problem
by using the framework of the alternating direction multiplier method (ADMM) to address
the LNAM optimization problem effectively.

The remainder of this article is organized as follows: Section 2 introduces the related
works using mixed noise denoising models on hyperspectral images. As described in
Section 3, the LNAM model is proposed and solved with the ADMM-based optimization
algorithm. Section 4 presents the experimental results of the test images and a discussion
on the effect of several parameters on the proposed algorithm. Finally, we conclude this
paper in Section 5.

2. Background of the Low-Rank-Based Hyperspectral Image Denoising Method

Mixed noise removal techniques based on low-rank matrix recovery are mainly in-
spired by the robust principal component analysis (RPCA) [42]. The main concept of
RPCA is that it aims to find the underlying low-dimensional subspace structure of high-
dimensional signals from the corrupted observation. The RPCA model can be expressed as

min
X,S

rank(X) + λ‖S‖0

s.t.Y = X + S
, (1)

where λ denotes the regularization parameter; Y represents the corrupted observational
data; X and S are denoted the unknown low-rank matrix and the sparse matrix, respectively;
and ‖ · ‖0 represents the �0-norm, which attempts to promote sparsity. Although the RPCA
model can be utilized to remove the sparse noise, however, it cannot work well when the
hyperspectral image is polluted by mixed noise, e.g., Gaussian noise plus sparse noise.
Therefore, an improved model has been proposed by considering the Gaussian noise E in
the following:

min
X,S,E

rank(X) + λ‖S‖0 +
η
2 ‖E‖2

F

s.t. Y = X + S + E
, (2)

where λ, η are both the regularization parameters. Problems (1) and (2) are NP-hard
problems. One common approach is replacing the rank function with the nuclear norm,
and correspondingly, the �0-norm is replaced with the �1-norm [43].

min
X,S,E

‖X‖∗ + λ‖S‖1 +
η
2 ‖E‖2

F

s.t. Y = X + S + E
, (3)

The low-rank matrix approximation model has been widely used in most hyperspectral
image denoising applications. However, this model suffers from the following aspects: First,
all nonzero singular values are known to have the same contribution to the rank function.
In fact, different singular values have different contributions. Large singular values would
be penalized more heavily than small ones by using the nuclear norm approach. This
situation easily leads to the overshrinking of the rank. Second, the rank function may be
impractical. Third, low-rank matrix approximation approaches require numerous iterations.
This requirement results in low computational efficiency.
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Recently, the nonconvex relaxation approach has been utilized to approximate the
nuclear norm [44]. In particular, a well-known method named the weighted Schatten
p-norm model was introduced [45] for hyperspectral image denoising. This method is
represented as

min
X,S

C‖X‖p
w,Sp

+ λ‖S‖1

s.t. Y = X + S + E, ‖E‖F ≤ ξ
, (4)

where C denotes the weights for the low-rank constraint, λ represents the regularization
constraint parameter, and ξ denotes the noise level. In ‖X‖p

w,Sp
= ∑i wiσ

p
i (X), wi represents

the ith non-negative weighted value, and σi is the ith singular value of matrix X. ‖E‖F
denotes the Frobenius-norm of matrix E.

This weighted Schatten p-norm model can effectively remove noise. However, it is
sensitive to the initial parameters, such as the noise level and the weights. Furthermore, the
model is difficult to adapt for the removal of mixed noise. Therefore, inspired by the idea
presented in a previous work [40,41], in this work, we use the matrix LNAM to eliminate
mixed noise from images.

3. Proposed Mixed Denoising Algorithm

As mentioned above, hyperspectral images are often contaminated by mixed noise,
and a strong structural correlation exists among the image blocks. This situation prompted
us to apply the rank function-based method. In this work, we propose a PnP-based
LNAM for mixed noise removal from hyperspectral images. Next, we adopt the ADMM
optimization algorithm to solve the proposed mixed noise removal model within the PnP
framework and develop the corresponding hyperspectral image denoising algorithm.

3.1. PnP-Based LNAM Model

Given that various noises in natural images are independent, we propose the mixed
noise removal model based on a logarithm norm-based rank approximation as follows:

min
X,S

‖X‖L + λ‖S‖1 + ρφ(X)

s.t. ‖Y− X− S‖2
F ≤ ζ

, (5)

where λ, ρ are the regularization parameters, Y is the corrupted image, and S denotes the
sparse noise. ζ > 0. ‖X‖L represents the logarithmic norm-based low-rank function. The
subscript “L” is the first letter of the logarithm, which can be expressed as

‖X‖L = ∑min{m1,m2}
i=1 log(σp

i (X) + δ), (6)

where X denotes a clear image with the size of m1 × m2, and σi(X) represents the ith
singular value of X. 0 < p ≤ 1, and δ > 0 denotes a constant that is used to avoid dividing
the result by 0.

In model (5), φ(X) denotes an implicit regularizer exploiting certain priors of natural
images, which can be selected from many famous denoisers, such as the BM3D denoiser [8],
DnCNN denoiser [46] and FFDNET [47]. In this work, the BM3D denoiser is selected as the
embedded regularization module. In summary, ‖X‖L characterize the global information of
the original image, i.e., low-rankness. Additionally, the image details can be persevered by
plugging the regularization module φ(X) into the PnP framework. To preserve the global
structure and detailed information of the image, the two above complementary modules
are used in our work.

Compared with the nuclear norm function, the logarithmic norm-based low-rank func-
tion can obtain a superior sparseness on real images. In reference to a previous work [48],
we suppose that a constant M is the boundary of feasible set X, such that ‖X‖ = |x| ≤ M,
and the convex envelop of rank(x) is 1

M‖X‖∗ = 1
M |x|1. The logarithmic function is clearly
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closer to rank(x) than the convex envelope when the positive constant δ → 0 . Therefore,
the logarithmic function can achieve stronger sparsity than the nuclear norm.

3.2. Optimization Method

We introduce an auxiliary variable L to address the PnP-based logarithmic norm
approximation model (7). Correspondingly, model (7) can be represented as

min
X,S

‖X‖L + λ‖S‖1 + ρφ(L)

s.t. ‖Y− X− S‖2
F ≤ ζ ; X = L

, (7)

Furthermore, the augmented Lagrangian function of (7) is constructed as

�(X, L, S, Λ1, Λ2, λ, ρ, β1, β2) = ‖X‖L + λ‖S‖1
+〈Λ1, Y− X− S〉+ β1

2 ‖Y− X− S‖2
F + ρφ(L) + 〈Λ2, X− L〉+ β2

2 ‖X− L‖2
F

, (8)

where Λ1, Λ2 denote the Lagrangian multipliers, and β1, β2 represent the penalty parame-
ters. Within the framework of ADMM, we minimize the augmented Lagrangian function (8)
by using an alternating strategy, i.e., at the (k + 1)th step. We thus update the solution by
fixing some variables and solving the remaining ones. Finally, the proposed mixed noise
removal method can be divided into the following three subproblems and summarized in
Algorithm 1.

(1) X-Subproblem

Given Sk and Lk, we update Xk as

Xk+1 = argmin
X

{
‖X‖L +

〈
Λ1, Y− X− Sk

〉
+ β1

2 ‖Y− X− Sk‖2
F

+
〈

Λ2, X− Lk
〉
+ β2

2 ‖X− Lk‖2
F }

= argmin
X

{
‖X‖L +

β1
2 ‖X− (Y− Sk + Λ1

β1
)‖2

F
+ β2

2 ‖X− Lk + Λ2
β2
‖2

F

}
= argmin

X

{
‖X‖L +

β1+β2
2 ‖X− β1A+β2B

β1+β2
‖2

F

} , (9)

where A = Y − Sk + Λ1
β1

, B = Lk − Λ2
β2

. We introduce the following theorem to obtain the
solution to (9).

Theorem 1 (Logarithmic Singular Value Thresholding [40]). Let G ∈ Rm1×m2 be a given
matrix, and the SVD of G is G = UG ∑G VT

G, where ∑G is the diagonal matrix whose diagonal
elements are the singular values. For any α > 0,the closed-form solution of the following problem:

min
X

α‖X‖L +
1
2
‖X− G‖2

F , (10)

is given by X = UGTα, ξ(∑G)VT
G, where Tα, ξ(·) represents the logarithmic singular value thresh-

olding function, which can be expressed as

Tα, ξ(x) =

⎧⎨⎩ 0, Δ ≤ 0
argminϕ(y), Δ > 0

y∈{0, (x−ξ+
√

Δ)/2}
, (11)

where Δ = (x − ξ)2 − 4(α − xξ) and ϕ(y) = α log(y + ξ) + (y − x)2/2.

(2) L-Subproblem

Given Xk and Sk, we update Lk as
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Lk+1 = argmin
L

ρφ
(

Lk
)
+

β2

2
‖Xk+1 − L +

Λ2

β2
‖

2

F
. (12)

Let σ̂2 = ρ
β2

. Equation (12) can be represented as

proxφ

(
Lk+1

)
= argmin

L
φ(L) +

1
2σ̂2 ‖Xk+1 − L +

Λ2

β2
‖

2

F
, (13)

where proxφ(·) denotes the proximal operator of regularization, which is replaced by
the embedded denoiser. It is known that BM3D [8] and FFDNET [47] are both famous
image denoisers. The main advantage of the BM3D denoiser is that it can be applied to
characterize the piecewise smoothness and the nonlocal self-similarity of images in a 3D
transform domain. Recently, deep learning-based image denoisers have shown promising
performance. However, the deep learning-based method needs a massive amount of
training data, and these datasets are difficult to obtain. Therefore, the BM3D denoiser [8] is
selected as a module within the PnP framework. By plugging in the BM3D denoiser, the
solution can be expressed as

Lk+1 = BM3D
(

Xk+1 +
Λ2

β2
, σ̂

)
. (14)

(3) S-Subproblem

Given Xk+1 and Lk+1, we update Sk as

Sk+1 = argmin
S

{
λ‖S‖1 +

〈
Λ1, Y− Xk+1 − S

〉
+ β1

2 ‖Y− Xk+1 − S‖2
F

}
= argmin

S

{
λ‖S‖1 +

β1
2 ‖Y− Xk+1 − S + Λ1

β1
‖2

F

} (15)

We apply the soft thresholding operator so f t(·) to obtain the solution to the sub-
problem of (15). The operator is defined as so f tτ(x) = max(|x| − τ, 0)sgn(x), where x
denotes the variable, and τ represents a parameter. Accordingly, the solution of (15) can be
represented as

Sk+1 = so f t λ
β1

(
Y− Xk+1 +

Λ1

β1

)
. (16)

(4) Update Multipliers

The Lagrangian multipliers are updated as follows:{
Λ1 = Λ1 + β1(Y− Xk+1 − Sk+1)
Λ2 = Λ2 + β2(Xk+1 − Lk+1)

. (17)

Algorithm 1. ADMM for Solving the PnP-Based LNAM Model.

Input: The noisy image Y, parameter λ, ρ, stopping criteria ε.

Initialization: t = 0, let X, L, S, and Lagrangian multiplies Λ1,Λ2 be zeros matrices, penalty
parameter β1= 1.1; β2= 1.2.
Step 1: Calculate X via (9).
Step 2: Calculate L via (14).
Step 3: Calculate S via (16).
Step 4: Update the multiplies Λ1, Λ2 via (17).

Step 5: Check convergence criteria: ‖Xt+1−Xt‖F
‖Xt‖F

≤ ε.

Step 6: If the convergence criteria are not met, set t = t + 1 and go to Step 1.
Output: The restored HSI X.
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4. Experimental Results

Simulated and real HSI image sets are selected to evaluate the performance of the
proposed method. Meanwhile, we conduct comparison experiments on these HSI datasets
with other mixed noise removal algorithms, including the modified BM3D method [8],
low-rank matrix recovery (LRMR) [25], low-rank global total variation (LRGTV) [31],
and a weighted group sparsity-regularized low-rank tensor decomposition (LRTDGS)
method [35]. In all experiments, each band of the HSI data is normalized into [0, 1],
and the parameters of the methods for comparison are based on the suggested values
in the original article. Moreover, the modified BM3D method proposed in [8] is used to
remove the Gaussian noise. Before denoising, the sparse noise is detected and removed
through adaptive median filtering. Then, BM3D can remove the Gaussian noise. Hence,
the modified BM3D method is called A-BM3D.

All the algorithm simulation environments used MATLAB R2018 and a 64-bit Win-
dows 10 operating system with 2.6 GB CPU and 16 GB memory. The configuration of the
experimental environmental parameters is summarized in Table 1.

Table 1. Experimental environmental configuration.

Name Configuration

Simulated images and size Sumi-Indian (145 × 145 × 224), Pavia (200 × 200 × 80)
Real HSI image and size Urban (307 × 307 × 210)
Performance Evaluation PSNR (dB), SSIM [49]
Experimental platform Windows 10, MATLAB R2018b, 16GB Memory

4.1. Simulated Data Experiment

In this study, the ground truth of the Simu–Indian data [50] and the Pavia City Center
data [51] are adopted to generate the synthetic data for our experiments. The sizes of the
Simu–Indian and the Pavia data are 145 × 145 × 224 and 200 × 200 × 80, respectively. In
addition, we normalize each band of the HSI data into [0, 1] and consider the synthetic HSI
data as the clean data. The mean of the peak signal-to-noise ratio (MPSNR) and the mean
of structural similarity (MSSIM) over all the bands are utilized to assess the performances
of different mixed noise removal algorithms. For the generation of a noisy image, Gaussian
and S&P noises are added into all the bands of the clean HSI data, as in the following
two cases:

Case 1: In this case, the noise intensity is equal in all bands. First, we add the Gaussian
noise with a zero mean into all bands with the noise standard variances G = 0.025, 0.05,
0.075, and 0.10. Second, we add S&P noise into all bands with the noise proportions
S&P = 0.05, 0.10, 0.15, and 0.20.

Case 2: In contrast to that in Case 1, the noise intensity in different bands differs in
Case 2. We add different zero-mean Gaussian noises into each band. In contrast to that in
Case 1, the Gaussian noise variance is randomly selected from 0.02 to 0.10. Then, different
percentages of S&P noise, which are randomly selected from [0.10, 0.20], are added into
each band. In addition, five selected bands of the Simu–Indian data and 10 selected bands
of the Pavia City Center data are corrupted with 10 and 15 stripes, respectively.

Tables 2 and 3 report the comparison results of different denoising methods for the
Simu–Indian and Pavia datasets in the above two cases. MPSNR and MSSIM are used to
evaluate the performances of different denoising algorithms. These two tables show that,
on the whole, the proposed algorithm provides satisfactory PSNR and SSIM values in most
cases when compared with other methods. This situation confirms the advantages of the
proposed algorithm in mixed noise denoising. For the Simu–Indian data, the performance
of the proposed algorithm is close to that of the LRTDGS algorithm when the mixed noise
intensity is low. For the Pavia data, the quality results of the LRGTV method are the
best likely, because the LRGTV algorithm processes all the patches together and uses the
spatial–spectral total variation regularization method to recover the whole 3D HSI. The
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restoration effect of the LRMR algorithm is relatively unsatisfactory when the Gaussian
noise is strong. Although the A-BM3D algorithm adopts the adaptive filter to remove S&P
noise, its denoising effect is not ideal when the density of the S&P noise is high. Table 3
shows that, surprisingly, the LRTDGS algorithm performs poorly on the Pavia data.

Table 2. Quantitative evaluation of the different methods on the Simu–Indian dataset.

Case Noise Level Evaluation Index A-BM3D LRMR LRGTV LRTDGS Proposed

Case 1

G = 0.025,
S&P = 0.05

MPSNR (dB) 32.7384 43.8913 48.3861 47.7429 47.8694
MSSIM 0.9603 0.9917 0.9966 0.9986 0.9928

G = 0.05,
S&P = 0.10

MPSNR (dB) 31.3988 39.4308 43.8277 44.1583 43.9426
MSSIM 0.9459 0.9756 0.9873 0.9950 0.9907

G = 0.075,
S&P = 0.15

MPSNR (dB) 29.5997 36.2251 40.2178 41.4578 40.3526
MSSIM 0.9121 0.9492 0.9701 0.9962 0.9821

G = 0.10,
S&P = 0.20

MPSNR (dB) 27.2071 33.6607 37.2842 39.0910 37.6930
MSSIM 0.8156 0.9122 0.9448 0.9912 0.9810

Case 2
MPSNR (dB) 25.0932 31.2765 34.9218 36.2435 35.1372

MSSIM 0.7126 0.9094 0.9343 0.9447 0.9351

Table 3. Quantitative evaluation of the different methods on the Pavia dataset.

Case Noise Level Evaluation Index A-BM3D LRMR LRGTV LRTDGS Proposed

Case 1

G = 0.025,
S&P = 0.05

MPSNR (dB) 29.1858 40.8327 43.1464 31.7501 42.4572
MSSIM 0.8255 0.9871 0.9916 0.9049 0.9689

G = 0.05,
S&P = 0.10

MPSNR (dB) 28.4427 36.3285 38.3019 30.3034 37.6853
MSSIM 0.8002 0.9663 0.9756 0.8690 0.9314

G = 0.075,
S&P = 0.15

MPSNR (dB) 27.4632 33.2836 34.9636 29.1936 33.7557
MSSIM 0.7656 0.9370 0.9512 0.8352 0.8888

G = 0.10,
S&P = 0.20

MPSNR (dB) 26.1708 31.1647 32.3247 28.1507 31.6958
MSSIM 0.7142 0.9026 0.9208 0.7980 0.8402

Case 2
MPSNR (dB) 24.7539 30.3447 31.5693 27.1295 30.9436

MSSIM 0.6820 0.9083 0.9205 0.7356 0.9347

Figures 1 and 2 provide a visual representation of the performances of different
methods based on their restoration results for the Simu–Indian dataset. In Figure 1, the
zero-mean Gaussian noise standard variance is 0.10, and the S&P noise intensity is 0.10.
Meanwhile, in Figure 2, we set the Gaussian intensity to be the same as that in Figure 1, but
the noise intensity of S&P is 0.20. Furthermore, the same subregion of each subfigure is
marked with red boxes and enlarged. Figures 1 and 2 show that all the compared algorithms
can remove mixed noise to some extent. The image tends to be blurry after the A-BM3D
method is used. Although the two LRMR algorithms can remove noise and preserve
spectral information, they cannot remove the Gaussian noise completely. LRGTV, by taking
advantage of the whole 3D structure and spatial–spectral total variation regularization,
can obtain satisfactory denoising results. However, it fails to recover the local details well.
The performance of the proposed method is close to that of the LRTDGS algorithm mainly
because we use the logarithm norm and PnP prior to describe the global structure and
nonlocal similarity of the HSI image.
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(a) Original (b) Noised (c) A-BM3D  

    
(d) LRMR (e) LRGTV (f) LRTDGS (g) Proposed 

Figure 1. Restored results of band 35 on Simu–Indian. From top to bottom: the results under a
subcase (the standard deviation of zero-mean Gaussian noise is G = 0.10, and the noise proportion of
S&P noise is S = 0.10).

   

 

(a) Original (b) Noised (c) A-BM3D  

    
(d) LRMR (e) LRGTV (f) LRTDGS (g) Proposed 

Figure 2. Restored results of band 57 on Simu–Indian. From top to bottom: the results under a
subcase (the standard deviation of zero-mean Gaussian noise is G = 0.10, and the noise proportion of
S&P noise is S = 0.20).

The visual results of the different denoising methods for the Pavia dataset are pre-
sented in Figures 3 and 4. The noise intensity in these figures is the same as that in
Figures 1 and 2. Figures 3 and 4 show that the denoising performance of the proposed
method is satisfactory. However, Figure 4 illustrates that LRGTV is the best algorithm,
mainly because it employs the global structure and the spectral information in the low-rank
constraint. Compared with the LRGTV method, the proposed method is more sensitive to
S&P noise when the noise level is strong. We will address this issue in our future work.
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(a) Original (b) Noised (c) A-BM3D  

    
(d) LRMR (e) LRGTV (f) LRTDGS (g) Proposed 

Figure 3. Restored results of band 35 on Pavia. From top to bottom: the results under a subcase (the
standard deviation of zero-mean Gaussian noise is G = 0.10, and the noise proportion of S&P noise is
S = 0.10).

   

 

(a) Original (b) Noised (c) A-BM3D  

    
(d) LRMR (e) LRGTV (f) LRTDGS (g) Proposed 

Figure 4. Restored results of band 57 on Pavia. From top to bottom: the results under a subcase (the
standard deviation of zero-mean Gaussian noise is G = 0.10, and the noise proportion of S&P noise is
S = 0.20).

Figures 5–8 provide the PSNR and SSIM values of each band for the Simu–Indian
and Pavia datasets, respectively. As shown in Figures 5 and 6, the proposed algorithm
presents satisfactory PSNR and SSIM values for almost all bands in the Simu–Indian
dataset, indicating that the proposed algorithm outperforms the algorithms for comparison
in mixed noise removal. As mentioned above, and as illustrated in Figures 7 and 8, LRGTV
achieves the best PSNR and SSIM values for each band in the Pavia dataset. However, the
performance of the proposed method is relatively weak. The main reason for this result is
not yet clear and will be addressed in our next work.
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(a) PSNR (b) SSIM 

Figure 5. PSNR and SSIM values of restored results by different methods on Simu–Indian data
(G = 0.10, S = 0.10).

 
(a) PSNR (b) SSIM 

Figure 6. PSNR and SSIM values of restored results by different methods on Simu–Indian data
(G = 0.10, S = 0.20).

 
(a) PSNR (b) SSIM 

Figure 7. PSNR and SSIM values of restored results by different methods on Pavia data (G = 0.10,
S = 0.10).
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(a) PSNR (b) SSIM 

Figure 8. PSNR and SSIM values of restored results by different methods on Pavia data. (G = 0.10,
S = 0.20).

4.2. Real Experiments

Only the Hyper-spectral Digital Imagery Collection Experiment urban dataset, which
can be downloaded online [52], is utilized in this experiment and described in this paper
due to space limitations. The size of the urban image is 307 × 307 × 210. Figure 9 shows
the real-world urban data.

Figure 9. Real-world urban data.

Figures 10 and 11 present bands 83 and 205 of the restored images. As shown in
Figure 10, the restoration result of A-BM3D is oversmoothed, causing the local details
to become distorted. Most other methods, such as LRMR and LRGTV, can effectively
remove noise from the urban image. Overall, the results show that the proposed algorithm
performs satisfactorily. However, when the band is in the range of [199, 210], the stripes
are considered to be the low-rank part, which is assumed to be the clean data, in the
low-rank decomposition. Although we use PnP-based regularization to mine the spatial
information of the real urban image, the proposed method cannot completely remove the
stripes in Figure 11. Therefore, we will explore and address the reason for this problem in
our future work.

386



Mathematics 2022, 10, 3810

   
(a) Original (b) A-BM3D (c) LRMR 

   
(d) LRGTV (e) LRTDGS (f) Proposed 

Figure 10. Restoration results on HYDICE urban image set: slight noise band.

   
(a) Original (b) A-BM3D (c) LRMR 

   
(d) LRGTV (e) LRTDGS (f) Proposed 

Figure 11. Restoration results on HYDICE urban image set: moderate noise band.

Figure 12 shows the vertical mean profiles of band 205 before and after restoration.
Concretely, it illustrates the spectral curves at one spatial location of the restored results
by different algorithms. In this figure, the horizontal axis represents the band index,
and the vertical axis represents the mean digital number value of each column. Rapid
fluctuations are observed in the curve given the presence of mixed noise. After restoration,
the fluctuations are more or less suppressed. Here, the proposed method appears to
perform satisfactorily in accordance with the visual results presented in Figure 11. In
summary, the above observations in Figure 12 prove that the proposed algorithm achieves
satisfied results on mixed noise removal and fine details preservation. The reason why our
method performs well is that it utilizes the logarithm norm-based rank function to exploit
the global information and PnP regularization module to preserve the details of the image.
Furthermore, the small singular values can be eliminated by using the logarithm-norm rank
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function. It helps to reconstruct the global structure information. However, the elimination
of small singular values results in the loss of image details. This can be restored by using
the BM3D regularization method.

  
(a) Original (b) A-BM3D 

  
(c) LRMR (d) LRGTV 

  
(e) LRTDGS (f) Proposed 

Figure 12. The vertical mean profiles of band 205 on a real urban image.

4.3. Performance Analysis

Generally speaking, HSI mixed noise removal is a highly ill-posed problem. In this
work, we introduce a PnP prior to make the problem produce feasible results. The non-
convex optimization of the proposed model is challenging, and with the idea of auxiliary
variables and the ADMM scheme, one problem that has been noted is convergence.

Therefore, we show the traces of the quality index PSNR with respect to the iter-
ations in Figure 13 to further verify the stability of the proposed algorithm. Figure 13
provides the curve of PSNR vs. iteration number for the Simu–Indian and Pavia datasets.
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The Gaussian and S&P noise intensities are set as 0.10 and 0.20, respectively. Figure 13
shows that, when the iteration number exceeds 60, the PSNR value tends to be stable.
Therefore, the effectiveness of the proposed algorithm is further demonstrated by these
experimental results.

Figure 13. PSNR values with respect to the iterations for different datasets.

Finally, we provide the computational time of the different methods in Table 4. Note
that all the results are implemented in MATLAB R2018. The Gaussian and S&P noise
intensities are also set as 0.10 and 0.20, respectively. As shown in Table 4, most of the
denoising methods have high computational efficiency. A-BM3D has the shortest running
time. However, the proposed algorithm has relatively low computational efficiency, mainly
because we use the PnP-based BM3D module to restore the HSI image, which is highly
time-consuming. Concretely, this is mainly because the whole HSI image has been divided
into image patches, and each image patch is restored by using the BM3D module separately.

Table 4. Computational times of different methods (unit: s).

HSI Image A-BM3D LRMR LRGTV LRTDGS Proposed

Simu-Indian 0.0906 62.9295 119.9487 74.8305 961.2586
Pavia 0.1807 54.4320 92.1933 49.3622 723.0967
Urban 0.5035 292.0146 507.7214 254.9293 1669.3409

5. Conclusions

We propose a logarithm norm nonconvex approximation-based HSI algorithm for
mixed noise removal. Specifically, the logarithm norm-based nonconvex low-rank is used
to characterize the global spatial–spectral correlation among all hyperspectral image bands,
and PnP-based regularization is introduced to further exploit the local detailed information
of HSI. Then, we develop the ADMM optimization scheme to address the proposed model.
Finally, through simulations, real experiments, and discussion, we demonstrate quantita-
tively and qualitatively that the proposed algorithm achieves satisfactory performance,
because the logarithm norm-based low-rank can help restore the global information of the
target hyperspectral image, while the embedded BM3D denoiser helps preserve the image
details and remove the image structure noise. Our future work will include investigating a
novel mixed noise removal algorithm by applying other technologies, such as LSM model-
ing, deep convolution neural network, attention mechanism, and transformer frameworks.
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Abstract: ALSC (Aspect-level Sentiment Classification) is a fine-grained task in the field of NLP (Nat-
ural Language Processing) which aims to identify the sentiment toward a given aspect. In addition to
exploiting the sentence semantics and syntax, current ALSC methods focus on introducing external
knowledge as a supplementary to the sentence information. However, the integration of the three
categories of information is still challenging. In this paper, a novel method is devised to effectively
combine sufficient semantic and syntactic information as well as use of external knowledge. The
proposed model contains a sentence encoder, a semantic learning module, a syntax learning module,
a knowledge enhancement module, an information fusion module and a sentiment classifier. The
semantic information and syntactic information are respectively extracted via a self-attention network
and a graphical convolutional network. Specifically, the KGE (Knowledge Graph Embedding) is em-
ployed to enhance the feature representation of the aspect. Then, the attention-based gate mechanism
is taken to fuse three types of information. We evaluated the proposed model on three benchmark
datasets and the experimental results establish strong evidence of high accuracy.

Keywords: aspect-level sentiment classification; external knowledge; KGE; GCN

MSC: 18C50

1. Introduction

The aspect-level sentiment classification, as a fine grained sentiment analysis task, is
widely considered as a main focus in the field of natural language processing. In ALSC
tasks, the sentiment polarity of a given aspect in a given text is classified as either positive,
neutral or negative [1]. As an example, in the sentence ‘the ambience was nice, but service
wasn’t so great’, the sentiment of the two discussed aspects, ‘ambience’ and ‘service’, are
predicted as positive and negative, respectively. In practice, ALSC has become an effective
approach to identify opinions and preferences towards products, stock and anything in
the world.

Currently, most methods involving ALSC are performed using the following steps:
sentence encoding, syntax dependency tree constructing, syntactic information captur-
ing via graph convolution network (GCN) [2], semantic information extracting based on
attention mechanism, information fusion and sentiment classification. So much is the effec-
tiveness of attention networks in attentive weights distribution, a number of studies show
their superiority in ALSC tasks [3–5]. Notwithstanding, for a long distance between aspect
and its dependency-words, more weight may be assigned to irrelevant words. On this
occasion, the establishment of the relation between aspect and its opinion words is thus
proposed, which exploits the sentence syntax dependency tree [6]. Figure 1 shows the
syntax dependency tree of a given sentence. One can easily see that the syntactical-related
words to the aspect, such as ‘nice’ and ‘great’, have impressive effects on sentiment polarity
prediction. In spite of the significance of syntax structure, the ALSC for informal grammar
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styles (e.g., colloquial comments, slang language, etc.) remains challenging. In these cases,
the connection between aspect and opinion words can be confusing. Thereby, the extracted
syntax can even become noise, which results in the misunderstanding of the sentiment.

The   ambience  was   nice   but   service   was   not   so   great
DET        NOUN              AUX        ADJ       CCONJ     NOUN        AUX      PART    ADV      ADJ  

DET NSUBJ ACOMP

CC

CONJ

NSUBJ NEG

ACOMP

ADVMOD

Figure 1. Syntax dependency tree.

Encouragingly, according to recent publications, external knowledge is also employed
to enhance the information of aspect for ALSC [7]. Generally, the exploiting of external
knowledge is carried out by searching the information related to the given aspect. That
is, the aspect is taken as the central node of the knowledge graph, based on which the
subgraphs are built up using its neighbor nodes. In such a manner, the selection of the
neighboring nodes is highlighted. The distinctiveness of the external knowledge is mainly
restricted by the selection method. Further, for the searched knowledge of substantial
distinction, the selected nodes must be revised to a large extent. Moreover, when dealing
with the knowledge graph, most of the previous methods used graph neural networks
such as the graph convolutional network to search the knowledge graph nodes, which
is inefficient.

In Consideration of the aforementioned issues, we propose a method that integrates
the sentence semantics and syntax as well as the external knowledge toward the aspect.
In order to fully extract the sentence information, the semantic relation between aspect
and its contexts is built. Likewise, the connection of opinion words to the aspect is set
up. With respect to external knowledge, the knowledge graph embedding (KGE) [8] is
employed to obtained the knowledge embeddings of the aspect which makes it more
efficient to deal with the knowldege graph. In addition, a fusion module is devised to
incorporate the relevant external information and the sentence information for sentiment
classification. The contributions of this paper are threefold and summarized as follows:

• The external knowledge is effectively applied to enhance the aspect information,
which is also supplementary to the sentence information.

• An information fusion approach is dedicatedly designed to integrate different types
of information for ALSC.

• Comparing with the state-of-the-art methods, experimental results on three benchmark
datasets corroborate the competitiveness of the proposed methods.

The rest of this paper is organized as follows: we review the recent studies on ALSC
methods and the KGE applications in Section 2. Section 3 presents the proposed model in
detail. In Section 4, experiments are carried out to investigate the working performance of
our model. Finally, concluding remarks of this work are given in Section 5.

2. Related Work

2.1. Aspect-Level Sentiment Classification

Early deep-learning based ALSC methods generally concentrate on extracting the
contextual semantics by using the integration of a RNN (Recurrent Neural Network) and
attention mechanism [9]. In terms of multiple aspects, the sentiment polarity determination
via only semantic information becomes insufficient. In addition to the semantic-based mod-
els, the exploiting of sentence syntax is one such approach as well. The relation between an
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aspect and its opinion words can be conveyed by a syntax dependency tree. Because of
the graph structure of dependency trees, graph neural networks [10] are employed to
cope with the syntactic information. Distinctively, the graph convolutional network is
most pronounced for processing graph structured data in a variety of tasks. In terms of
ALSC, GCN-based models are capable of not just aggregating and delivering information
among neighboring nodes, but also of extracting features and syntactic information of
the graph. Zhao [11] takes a GCN to model the sentiment dependencies between aspect
words, and thereby captures the sentiment relationships of multiple aspects in a sentence.
Zhang [12] characterizes the sentence using a syntax dependency tree, and extracts syntactic
information via the GCN. Furthermore, aiming to distinguish the importance of each node
in the graph, the attention mechanism is integrated into GCN-based methods. To com-
prehensively understand the relation between aspect and its opinion words, Tian [13]
exploits the attention mechanism to assign the attention weight to each word syntactically
connected with the aspect word, based on which the syntactic information can be precisely
extracted by GCN. By constructing an aspect-centered syntax dependency tree, Wang [14]
focuses on identifying each node using a graph attention, and thus aggregating information
from neighboring nodes.

2.2. Semantics and Syntax

Since both semantics and syntax have their own advantages and disadvantages,
some recent research solves ALSC by combining these two pieces of information to-
gether. Zhang et al. [15] propose an aspect-aware attention mechanism combined with
self-attention to obtain the attention score matrices of a sentence, which can not only learn
the aspect-related semantic correlations, but also learn the global semantics of a sentence.
Bie et al. [16] propose an end-to-end ABSA model, which fuses the syntactic structure
information and the lexical semantic information, to address the limitation that existing
end-to-end methods do not fully exploit the textual information. Zhang et al. [17] also ana-
lyze sentences both syntactically and semantically, and they propose a simple and effective
fusion mechanism to make the integration of aspect information and context information
more adequate. Some researchers also utilize GCN to capture the neighbor’s informa-
tion [18–20]. However, this research generally ignores that the sentence may not be well
formed, and that slang language and informal writing can be found in most user-generated
content. As a result, more information is required to help in these situations.

2.3. Knowledge Graph

A knowledge graph involves a great number of entities and their relationship types.
The application of a knowledge graph is carried out in a variety of domains, such as educa-
tion [21], medicine [22], cybersecurity [23], etc. More recent work validates the significance
of the knowledge graph in natural language processing [24]. As such, the utilization of
the knowledge graph is currently a main focus in NLP tasks. This also gives rise to new
opportunities for its use in ALSC. Zhou [25] has devised a GCN-based method that com-
bines syntactic information and external knowledge. Liang [26] introduced knowledge
from the SenticNet knowledge base, thus enhancing the information about aspectual word
sentiment in this context. However, these approaches generally ignore the inefficiency of
the GCN-based method when dealing with the knowledge graph.

Knowledge graph embedding (KGE) is a creative and practical method for introducing
the knowledge graph. Theoretically, KGE aims to represent both complex and sparse entity
relationship types with low-dimensional and continuous embeddings, which facilitates
the computation of introduced knowledge. KGE is currently a widely-used approach in
question answering [27], semantic retrieval [28] and recommendation systems [29]. Early
KGE methods, such as TransE [30], and TransH [31], consider the “relationship” as the inter-
pretation between head and tail entities. Furthermore, advances in deep-neural networks
have optimized the working performance of KGE. The state-of-the-art KGE methods, such
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as ConvE [32] and CapsE [33], are developed based on capsule neural networks, which
obtain the feature and calculate the credibility of a triplet through convolutional layers.

3. Methodology

Figure 2 shows the architecture of the proposed model. There are five main compo-
nents, namely the sentence encoder, semantic learning module, syntax learning module,
knowledge enhancement module, information fusion module and sentiment classifier.
More details of each component are presented as follows.

𝑤
𝑤𝑤
𝑤

𝑤
BiGRU

Self
Attention

Syntax
GCN

Aspect
Specific
Attention

Aspect
Specific
Attention

KGE
Aspect
Specific
Attention

Output

ℎℎ

ℎℎ

Attention
Mechanism

Attention
Mechanism

Figure 2. Model architecture.

3.1. Sentence Encoder

Let x =
{

ws
1, ws

2, . . . , wt
m, . . . , wt

m+l , . . . , ws
n

}
be an n-word sentence containing the

aspect. Each word is mapped into a low-dimensional vector by looking up in a pretrained
word embedding matrix. We can thus obtain the sentence embedding.

Then, the hidden state of the given sentence is extracted via Bidirectional-Gate Re-
current Unit (Bi-GRU) which outperforms other methods in extracting the long-term
information of a sentence. As a result, we use Bi-GRU to encode the sentence for further
processing. The forward and backward hidden states of the sentence are delivered as
−→
H GRU =

{−→
h s

1,
−→
h s

2, . . . ,
−→
h t

m, . . . ,
−→
h t

m+l ,
−→
h s

n

}
and

←−
H GRU =

{←−
h s

1,
←−
h s

2, . . . ,
←−
h t

m, . . . ,
←−
h t

m+l , . . . ,
←−
h s

n

}
, respectively. The sentence representation is the concatenation of

−→
H GRU

and
←−
H GRU , i.e.,

HGRU =
[−→

H GRU ,
←−
H GRU

]
(1)

3.2. Semantic Learning Module

The semantic learning module is mainly developed to establish the semantic relation
between aspect and its context. With the input sentence representation, in order to cor-
capture the semantic relation between aspect and its context, we proposed two attention
mechanisms. The self-attention mechanism is first performed to obtain the contextual
dependency of the given sentence. Subsequently, the aspect-specific attention mecha-
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nism is carried out to determine the relation between the aspect and context. Concretely,
the attention weights of each context word is computed:

Sel f Att =

(
HGRUWk

)(
HGRUWq)T

√
dk

(2)

where Wk and Wq are trainable parameter matrices and dk is the dimension of input vector.
Based on the attention weight, the hidden state in relation to the aspect can be derived,

which is:
Hse = Att

(
HSel f Att, Ha

)
(3)

where HSel f Att represents the outcome of the self-attention network and Ha is the hidden
state of the aspect word output from Bi-GRU. We take Hse as the semantic representation
for further processing.

3.3. Syntax Learning Module

Syntax can be seen as a supplement of semantics and it has shown to be helpful in
sentiment classification. So, to fully extract sentence information, syntactic information
is necessary. With respect to the syntactic information, the syntax dependency tree of the
given sentence is built in advance. In the syntax learning module, the syntax dependency
tree is transformed to the graph Gsy =

(
HGRU , Asy) to facilitate processing. Notably, HGRU

is the feature matrix derived from Bi-GRU, while Asy is the adjacency matrix of the syntax
dependency tree.

We employ GCN to extract the syntactic information of the sentence, which can be
written as:

Hsy(l+1) = GCN
(

Hsy(l), Ãsy, Wsy(l+1)
)

(4)

GCN
(

Hl , Ã, W(l+1)
)
= ReLU

(
Hl ÃW(l+1)

)
(5)

with
Ãsy = D̃− 1

2

(
Asy + I f

)
D̃− 1

2 (6)

where Hsy(l+1) stands for the output of the l-th layer in the GCN. The initial Hsy(0) is the
output from Bi-GRU. Ãsy represents the adjacency matrix with self-circulation. Wsy(l+1) is
the learnable-parameter-matrix of the l-th layer.

With the convolution of each layer, the information of every single node is aggregated
from its neighboring node, based on which the node information can be updated during
the iterative computation of the GCN. Thus, the syntax representation is the output of the
GCN after the last iteration.

3.4. Knowledge Enhancement Module

For the purpose of the aspect feature, supplementary, external knowledge is lever-
aged to enhance the information of the aspect. Specifically, we use Freebase [34] as an
external knowledge base, which contains a large number of words together with various
semantic relations.

For a word beyond comprehension, one can search for known information involved
with this word for better understanding. In such a manner, the external knowledge can be
applied to complement information related to the aspect during learning.

In most user-generated content, informal writing, such as errors in spelling and
grammar and slang language, can be found. On this occasion, the exploiting of external
knowledge makes a contribution to the determination of sentiment polarity. For instance,
the sentence ‘check out these songs! Especially that amazing rock one’ contains an aspect
word ‘songs’. Syntactically, there is no explicit opinion word in direct relation to the aspect
‘songs’ for sentiment classification. For this reason, external knowledge can be introduced,
based on which the relation between ‘songs’ and ‘rock’ is set up. That is, the word ‘rock’
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indicates a type of song, which is a subordinate of ‘songs’. Seeing that the opinion word
toward ‘rock’ is ‘amazing’, the sentiment polarity is identified as positive. In this way,
the sentiment polarity of the aspect ‘songs’ is similar to that of ‘rock’.

In the knowledge enhancement module, we introduce the knowledge graph and
take KGE to tackle the external knowledge from Freebase. Notably, most state-of-the-art
methods employ GCN to encode the external knowledge. Whereas, a certain amount of
external knowledge bases contain heterogeneous graphs, which is challenging for the GCN
to deal with. In our model, the external knowledge is mapped into a continuous vector
space using KGE, which is more efficient. The enhancement of aspect is conducted by
computing the weights between aspect words and the knowledge embeddings.

On this occasion, we select DistMult [35] as the KGE of the proposed model. Every
single entity within the knowledge graph base is delivered as:

ye = f (Wxe) (7)

where f stands for either a linear or nonlinear function. W is the parameter matrix. xe
is a vector that represents an entity. Notably, the relationship representation is typically
obtained from the score function. DistMult takes the basic bilinear score function as:

gb
r (ye1, ye2) = yT

e1Mrye2 (8)

where the relation matrix Mr is a diagonal matrix whilst ye1 and ye2 are the vector represen-
tations of entities xe1 and xe2, respectively. The aspect-based knowledge embedding Hkg

can be obtained by computing the attentive weight between the aspect and its knowledge
embedding:

Hkg = Att(DistMult(xe), Ha) (9)

3.5. Information Fusion Module

Since we have gained different kinds of information including syntactic information,
semantic information and external knowledge information, how to effectively combine
these three kinds of information is of vital importance. The information fusion module is
devised to make full use of the syntactic information, the semantic information and the
external information. Both the syntax and the semantics can be considered as sentence
information while the external knowledge is the supplementary. During information
fusion, each type of information has to be controlled within a certain extent to prevent
the introduction of noise. Therefore, we shall compute the attention weights of syntactic
information toward the other two types of information. The attention weight between Hsy

and Hse is expressed as:

Att(Hsy, Hse) =
N

∑
i=1

α(i) · Hsy
(i) (10)

α(i) =
exp

(
∑N

i=1 HsyT

(i) Hse
(i)

)
∑N

j=1 exp
(

∑N
i=1 Hsy

(i)Hse
(i)

) (11)

Likewise, the attention weight of Hsy and Hkg is:

Att
(

Hsy, Hkg
)
=

N

∑
i=1

α(i) · Hkg
(i) (12)

Then, two gating units are established to filter the noise from the input information,
which are:

HL
i = tanh

[
Att
(

Hsy
i , Hse

i

)
·Ws + bs

]
(13)

HK
i = ReLU

[
Att
(

Hsy
i , Hkg

i

)
·Wk + bk

]
(14)
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where Wk, Ws, bk and bs are trainable parameters of the proposed model. The aspect-related
sentence representation is computed using cross product operation:

H = HL × HK (15)

3.6. Sentiment Classifier

The sentence representation H is sent to the sentiment classifier for sentiment polarity
classification. A fully connected layer is developed to obtain the score for each sentiment
polarity. The final sentiment probability distribution of the aspect is determined using a
SoftMax classifier, which is written as:

H̃ = Re LU
(

WT
1 H + b1

)
(16)

ỹ = so f tmax(H̃) (17)

where WT
1 and b1 are trainable parameters, and ỹ is the predicted sentiment polarity.

The training of the proposed is conducted using the cross entropy and regularization
as the loss function, i.e.

L = −∑
i

N

∑
j=1

yj
i log ỹj

i (18)

where i represents the i-th sample while j represents the j-th sentiment polarity. N is
the number of sentiment polarities. y is the real distribution of sentiment and ỹ is the
predicted one.

4. Experiment

4.1. Dataset

In this experiment, three publicly available benchmark datasets are used for working
performance evaluation, which are Laptop14 and Restaurant14 from SemEval2014 [36]
and Twitter [37]. All the samples in the experiment are labeled as three different polarities,
i.e., positive, neutral and negative. Each sample is a review sentence with the tagged aspect
within it. Details of each dataset are exhibited in Table 1.

Table 1. Statistics of datasets.

Dataset
Positive Negative Neutral

Train Test Train Test Train Test

Restaurant 2164 728 805 196 633 196
Laptop 987 341 866 128 466 169
Twitter 1560 173 1560 173 3127 346

4.2. Implementation Details

The initialization of sentence embeddings is conducted using both Glove [38] and
Bert [39]. The batch sizes of Restaurant14, Laptop14 and Twitter are 32, 64 and 32, respec-
tively. The learning rates of the Glove-based model and BERT-based model are separately
set to 1e-3 and 2e-5. In addition, the Adam optimizer is adopted during model training.

4.3. Baseline Methods

Aiming to corroborate the working performance of the proposed model, seven state-
of-the-art methods are taken for comparison.

Syntax- and semantic-based methods:

• BiGCN [40]: Two graphs, i.e., a global lexical graph and a concept hierarchy graph,
are constructed. A bi-level interactive GCN is established to deal with these graphs.

• R-GAT: An aspect-oriented dependency tree is constructed, which is encoded by a
relational graph attention network.
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• AFGCN [41]: An aspect fusion graph is constructed based on the syntax dependency
tree, which captures the aspect-related context words.

• InterGCN [42]: To capture the relation between multiple aspect words, an inter-aspect
GCN is devised on the foundation of the AFGCN.

KG-based methods:

• SK-GCN: A two-GCN-based model that deals with the syntax dependency tree and
knowledge graph, respectively.

• Sentic GCN: The external knowledge from SenticNet is introduced to the GCN, which
enhances the sentiment dependency between aspects and their contexts.

4.4. Experiment Results

Table 2 shows the experiment results on all datasets. As presented in Table 2, the pro-
posed model outperforms the-state-of-the-art methods on the datasets Restaurant14 and
Twitter. Notably, there is a considerable gap between our model and the baselines. The min-
imum accuracy gaps of the Glove-based model and Bert-based model are 3.57% (versus
SK-GCN) and 3.15% (versus RGAT+BERT), which are significant. The main reason is that
the introduction of external knowledge from Freebase provides a large amount of semantic
information and relationships. With the enhancement of external information toward the as-
pect, the sentiment classification performance can be optimized. With respect to Laptop14,
the working performance of the Sentic-GCN model is slightly better than the proposed
method. One possible explanation for this is that the syntactic structure plays a more
important role in the sentiment determination in sentences from Laptop14. The utilization
of SenticNet [43] brings information to the adjacency matrices. In this way, the syntactic
information can be extracted via graph convolution. Moreover, the pre-training of Bert
further provides an improvement to the ALSC results. Since the proposed model is capable
of integrating the sentence semantics, the sentence syntax and the external knowledge, we
can thus expect better sentiment classification results with information supplementary on
each other.

Table 2. Experimental results.

Models
Restaurant Laptop Twitter

Acc F1 Acc F1 Acc F1

BiGCN 81.96 73.53 74.61 71.19 74.13 72.64

AFGCN 81.70 73.43 76.80 72.88 - -

InterGCN 82.23 72.81 77.12 72.87 - -

RGAT 83.30 76.08 77.74 73.91 73.12 72.40

SK-GCN 81.53 72.90 77.62 73.84 71.97 70.22

Sentic-GCN 84.03 75.38 77.90 74.71 - -

Ours 84.23 76.12 77.81 73.47 77.70 76.27

BERT only 84.11 76.66 77.90 73.30 73.27 71.52

AFGCN+BERT 86.16 79.34 80.88 77.24 - -

RGAT+BERT 86.61 80.99 78.53 74.06 75.72 74.60

InterGCN+BERT 86.43 80.75 82.29 78.9 - -

Ours+BERT 86.93 81.05 82.41 79.32 78.87 77.97

4.5. Impact of GCN Layer Number

An GCN is a key component in the syntax learning module for syntactic information
encoding. On this occasion, we tend to explore the optimal GCN layer number for ALSC.
The number of GCN is set to 1, 2, 3, 4 and 5, respectively. According to Table 3, the GCN
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layer number of 2 obtains the best result in all evaluation settings. Comprehensively,
the configuration of the GCN determines the amount of contextual information that is
aggregated toward the aspect. It is clear that a one-layer GCN fails to capture sufficient
syntactic information from the sentence. When the GCN layer number ranges from 3 to
5, the working performance of our model declines with the increasing number of layers.
As such, there are two main considerations. Firstly, the connected context words increase in
line with the increment of layer number, based on which the syntactic noise is introduced.
Secondly, after multi-layer graph convolution, the nodes become less distinguishable whilst
the node representation vectors tend to be consistent, which results in the over-smoothing
problem of multi-layer GCN.

Table 3. ALSC accuracy in line with GCN layer numbers.

Num of GCN Layers Restaurant Laptop Twitter

1 83.68 76.94 77.13
2 84.23 77.81 77.70
3 83.12 76.55 76.81
4 82.83 75.98 76.44
5 82.35 75.50 75.93

4.6. Impact of KGE

We employ four distinguishing KGE methods and investigate their effectiveness in
external knowledge enhancement. Table 4 exhibits the ALSC results of the Glove-based
model of different KGEs.

Table 4. ALSC results of different KGE methods.

KGE Methods Restaurant Laptop Twitter

TransE 82.37 77.13 75.89
TransR 82.65 77.44 75.80
TransH 82.80 77.63 76.12

DistMult 84.23 77.81 77.70

TransE, TransR and TransH have minor accuracy compared with DistMult. The reason
for this is that these three translation models determine the word relationship by using
head and tail entities, rather than semantic information. By contrast, DistMult uses bilinear
methods, which are capable of computing the semantic credibility of entities and relation-
ships within vector space. That is, the introduction of semantic information results in the
incorporating of external knowledge, and thus a better sentiment classification accuracy.

4.7. Run Time and Parametric Amount

To further evaluate the efficacy of the proposed model, the run time for training and
testing, as well as the size of the parametric quantities of different methods are compared,
see Table 5. Both SK-GCN and our model take advantage of the knowledge graph. Our
model has a better performance in not only run time, but also the parameter amount.
In this way, our model shows its superiority over the GCN-based method in dealing with
knowledge graphs. On the other hand, the run time of BiGCN and the proposed model is
comparable, but the test accuracy of our model is far better than RGAT and BiGCN, which
indicates a higher working efficiency.
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Table 5. Results of run time and the parameter amount of different methods.

Method Training Speed (secs.) Params (M)

BiGCN 6.88 1.9
RGAT 4.22 3.9

SK-GCN 8.92 8.5
Ours 7.43 7.8

4.8. Case Study

The visualization of attention weights distribution of a given sentence is presented
in Figure 3. Words in the darker color are of greater weight, and vice versa. The former
is processed by integration of the semantic learning module and syntax learning module,
while the latter incorporates the external knowledge as well. According to Figure 3, more
attention is given to the words that are close to the aspect by using only sentence-related
information. One can easily see that the opinion word ‘love’ to aspect ‘drinks’ obtains a
higher attentive weight, which is the same with ‘great’ to ‘food’. However, for the aspect
‘lychee martini’, few syntactic- or semantic-related words are identified via the semantic
learning module and syntax learning module. The introduction of external knowledge
facilitates the sentiment word determination of ‘lychee martini’, which contributes to the
sentiment classification.

Figure 3. Attention weights to aspects ‘drinks’, ‘lychee martini’ and ‘food’.

5. Conclusions

In this work, we propose a model that integrates semantics, syntax and external
knowledge on the task of ALSC. Aiming to sufficiently incorporate the external information
into aspect words, we employ the KGE and aspect-specific attention mechanism to enhance
the aspect features. Further, a semantic-learning module and a syntactic-learning module
are devised to extract the sentence information. In addition, an information fusion module is
established to integrate three types of information for sentiment classification. Experiments
are carried out on three benchmark datasets. Our model is the best-performing method
compared with the baselines.

Further work will focus on more details of the knowledge graph processing. The loss
of graph structural information is still a question that in suspense.
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Abstract: As an important data analysis method in the field of machine learning and data mining,
feature learning has a wide range of applications in various industries. The traditional multidimen-
sional scaling (MDS) maintains the topology of data points in the low-dimensional embeddings
obtained during feature learning, but ignores the discriminative nature between classes of low-
dimensional embedded data. Thus, the discriminative multidimensional scaling based on pairwise
constraints for feature learning (pcDMDS) model is proposed in this paper. The model enhances
the discriminativeness from two aspects. The first aspect is to increase the compactness of the new
data representation in the same cluster through fuzzy k-means. The second aspect is to obtain more
extended pairwise constraint information between samples. In the whole feature learning process,
the model considers both the topology of samples in the original space and the cluster structure in
the new space. It also incorporates the extended pairwise constraint information in the samples,
which further improves the model’s ability to obtain discriminative features. Finally, the experimental
results on twelve datasets show that pcDMDS performs 10.31% and 8.31% higher than PMDS model
in terms of accuracy and purity.

Keywords: discriminative feature learning; multidimensional scaling; fuzzy k-means; pairwise
constraint propagation; iterative majorization algorithm

MSC: 62P25

1. Introduction

The high-dimensional nature of large amounts of image data, text data, and video
data is inevitable in today’s big data era. Although image data and text data are simple
and intuitive for humans, for machine learning models, there is a dimensional disaster.
Because the direct use of raw data will not only increase the processing time of subsequent
machine learning models, but may also reduce the performance of classification models
and clustering models due to the influence of information such as redundancy and noise in
the data. Based on this, how to obtain a more discriminative feature from the raw data has
also become a research objective for many scholars.

In feature learning, supervised, semi-supervised and unsupervised feature learning
methods are classified by whether or not the annotation information of the data is used
in the learning process. The classical methods for unsupervised feature learning, semi-
supervised feature learning and unsupervised feature learning are principal component
analysis (PCA) [1], semi-supervised dimensionality deduction (SSDR) [2] and linear dis-
criminant analysis (LDA) [3], respectively. PCA, SSDR and LDA are all linear feature
learning methods, which have the advantage of fast computation and the ability to quickly
compute the data representation of a new sample through the projection matrix when a
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new sample arrives. In contrast, nonlinear feature learning based on stream learning allows
the low-dimensional data representation to preserve the local topology of the original
data as much as possible, such as locally linear embedding (LLE) [4], multidimensional
scaling (MDS) [5] and laplacian eigenmaps (LE) [6], etc. Nonlinear feature learning can
discover the potential flow structure inside the data well, but face the problem of new
samples [7], so there are also a number of algorithms that maintain the local topology as
much as possible in the projection process. For example, locality preserving projection
(LPP) [8] and neighborhood preserving embedding [9] are projection matrices added to LE
and LLE, respectively.

Feature learning has important research significance because of its many applications,
such as data visualization [10], information retrieval [11], and clustering [12]. The MDS, as
a commonly used streaming learning method, considers the distance information between
samples in the feature learning process, but ignores the discriminative nature between data
categories. Based on this, a discriminative multidimensional scaling based on pairwise
constraints for feature learning (pcDMDS) is proposed in this paper in order to obtain more
discriminative features.

The main contributions of this paper are shown below.

• A feature learning algorithm named pcDMDS is proposed, and its corresponding tar-
get formula is designed. The target formula reflects the topological and discriminative
nature of learning, and the cluster structure is discovered while learning the low-
dimensional data representation. It makes the low-dimensional data representation of
the same cluster closer.

• The objective function is approximated using an iterative optimization method, and
the corresponding algorithm is designed according to the inference process.

• Comparative experiments are conducted using public datasets and evaluation criteria,
and the results show that the low-dimensional embeddings obtained by the algorithm
are more discriminative.

The remainder of this paper is organized as follows. In Section 2, existing works that
related to this paper is reviewed. In Section 3, some preliminaries about our work are
introduced. In Section 4, the details of the proposed model, including objective function
and inference are illustrated. Experiments and results are described in Section 5. Finally,
conclusions are drawn in Section 6.

2. Related Work

As a feature learning method that maintains the non-similarity of samples (generally
distance), the MDS is widely used because of its simplicity and efficiency. Feature learning
based on MDS can be divided into two categories [13], one is metric multidimensional
scaling (MMDS) and the other one is non-metric multidimensional scaling (NMDS). In
MMDS, the learned low-dimensional data representation is to preserve the distance of the
original data as much as possible. But in NMDS, the low-dimensional data representation
is to maintain the relationship of distance of the original data. Since the model proposed in
this paper is a MDS of metrics, the MDS of metrics is described in detail below, and MDS
generally refers to MMDS.

Different MDS methods have been proposed successively. The most classical MDS is
to give the distance between samples and then find a suitable low-dimensional embedding.
This method belongs to a nonlinear feature learning method, so that the sample distance
between the low-dimensional embedding points keeps the distance corresponding to the
original sample as much as possible, and its disadvantage is that it faces the problem of
new samples. Webb [14] introduced a set of basis functions for feature mapping, and then
achieved dimensionality reduction through a projection matrix. At the same time, the new
data representation keeps the Euclidean distance of the original samples as much as possible,
and an iterative update method was proposed to optimize the projection matrix. As an
important manifold learning method, isometric feature mapping [15] uses the geodesic
distance between samples to represent the dissimilarity between samples, and finally uses
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classical MDS to get low-dimensional embedding of data. Bronstein et al. [16] proposed
a generalized multidimensional scaling (GMDS), which uses a non-euclidean distance to
represent the non-similarity of samples, and applied GMDS to 3D face matching. In order
to enhance the discriminativeness of the features learned by MDS, Biswas [17] not only
considered that the low-dimensional embedding points should keep the distance between
the original images, but also considered that the distance between the low-dimensional
embedding points corresponding to the same face should be as small as possible.

Clustering, as an unsupervised machine learning method, is widely used in many
fields [18–20], and its purpose is to divide data into different clusters or subsets by some
criteria. In order to efficiently discover potential cluster structures in data, different scholars
have proposed different clustering algorithms, such as k-means (KM) algorithm [21], affinity
propagation (AP) algorithm [22], and density peak (DP) algorithm [23]. With the proposal
and refinement of fuzzy set theory, fuzzy clustering was proposed [24]. Unlike hard
clustering such as k-means, soft clustering algorithms such as fuzzy clustering can not
only discover the cluster structure among data efficiently, but also give the degree of
affiliation between samples and class clusters, which can discover the overlapping class
cluster structure well.

Fuzzy k-means was proposed by Bezdek et al. [24], which adopted the idea of fuzzy
sets. They believe that there is a degree of attribution between a sample and a cluster rang-
ing from 0 to 1. To improve the clustering performance of fuzzy k-means, Wang et al. [25]
proposed a fuzzy k-means model based on the Euclidean distance with weights by consid-
ering the feature weights while calculating the distance. The traditional FKM fails when
the input sample point information is not known and only the non-similarity information
of sample points is available. Therefore, Hathaway et al. [26] proposed a non-euclidean
relational fuzzy clustering, which can complete the fuzzy clustering under the condition
of only given the dissimilarity between sample points. In order to adopt the clustering
algorithm to noisy data, Nie et al. [27] combined fuzzy k-means with principal component
analysis so that fuzzy k-means can be performed in the low-dimensional subspace obtained
by principal component analysis. To obtain the potential cluster structure of the data on
multi-view data, Zhu et al. [28] proposed an adaptive weighted multi-view clustering
method. This method can not only automatically discover the importance, dispersion and
other information of each view from multi-view data, but also synthesize the common
information of each view to accomplish the clustering task.

Paired constraint information is widely used in feature learning to enhance the discrim-
inant of the learned features because of its ability to provide similar relationships between
samples. Zhang et al. [2] proposed a semi-supervised dimensionality reduction method
based on paired constraint information, whose idea is to obtain new sample points by
transforming the matrix so that the points with must-connect constraints are close together
after the transformation, while the points with do-not-connect constraints are far away
after the transformation. Du et al. [29] applied constraint transferring to dimensionality
reduction and proposed a new semi-supervised feature learning method. The method first
requires a pairwise constraint matrix with only 1, 0 and −1 values initially, where 1 means
constraints must be connected, −1 means constraints do not connected and 0 means the
constraint information is unknown. Then the constraint transferring algorithm is used
to extend the constraint information to other samples. Then it constructs a new weight
matrix using the extended constraint matrix, and finally uses the LPP algorithm for the
new data representation.

3. Preliminaries

3.1. Multidimensional Scaling

The classical MDS is a nonlinear feature learning method. Its characteristic is that
when only the dissimilarity between any two points is given, the corresponding new data
representation can be directly obtained so that the Euclidean distance between samples
is as equal to the given dissimilarity as possible, but it faces the problem of new samples.
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Webb [14] proposed the projective MDS (PMDS), so that the new data representation can
be obtained from the original data representation by projection transformation. In this
paper, a PMDS-based feature learning method is proposed and its principles are described
in detail below.

Given the original data matrix X = [x1, . . . , xN ] ∈ Rn×N , where n and N denote
the dimensionality and the number of the original samples, respectively. The learned
low-dimensional data representation Y = [y1, . . . , yN ] ∈ Rl×N , where l denotes the
dimensionality of the low-dimensional data representation. The loss function of MDS, a
feature learning method that maintains the sample distance, is [30]:

Omds(Y) = 1/2
N

∑
i=1

N

∑
j=1

sij

(
dij − d̂ij

)2
. (1)

dij denotes the distance between the original data points xi and xj, and d̂ij denotes the
distance between the corresponding low-dimensional data representation yi and yj. And
S =

[
sij
]
∈ RN×N is a non-negative symmetric weight matrix, with larger sij indicating a

greater desire for d̂ij to be close to dij , and the literature [6] gives two ways of constructing
the weights.

• Heat kernel weighting: sij = exp
(
−
∥∥xi − xj

∥∥2
2/t
)

if xi is a near neighbor to xj or xj is
a near neighbor to xi, otherwise sj = 0, where t is a real number.

• 0–1 weights: sij = 1 if xi is a near neighbor to xj or xj is a near neighbor to xi, otherwise
sij = 0.

The MDS in Equation (1) is a nonlinear feature learning method that obtains a di-
rect low-dimensional data representation Y. If new data arrives, its corresponding low-
dimensional data representation cannot be obtained directly, that is, the so-called new
sample problem. Webb incorporated the projection matrix into the MDS by means of
pre-given radial basis functions to achieve nonlinear transformations, and proposed the
PMDS, whose objective formulation is [14]:

Opmds(W) =
N

∑
i=1

N

∑
j=1

sij

(
dij − d̂ij

)2

=
N

∑
i=1

N

∑
j=1

sij

(
dij −

∥∥∥WT(xi − xj
)∥∥∥

2

)2
.

(2)

‖ · ‖2 denotes the two-parametric number of vectors and W ∈ Rn×d denotes the projection
matrix, and it can be seen that Y is directly projected from X.

3.2. Fuzzy k-Means Clustering

Fuzzy clustering can give the degree of affiliation of samples with clusters, and the
objective formula for fuzzy k-means is:

O f km(U, V) =
C

∑
k=1

N

∑
i=1

um
ik‖xi − vk‖2

2,

s.t.
C

∑
k=1

uik = 1, ∀i = 1, 2, . . . , N, uik ≥ 0, ∀i = 1, . . . , N, ∀k = 1, . . . , C.

(3)

U = [uik] ∈ RN×C is the affiliation matrix, uik denotes the affiliation of xi with cluster
Ck, and m � 1 denotes the fuzzy index weights.
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3.3. Pairwise Constraint Transmission

Given a sample X = [x1, . . . , xN ] ∈ Rn×N , and the pairwise constraint matrix
P =

[
pij
]
∈ RN×N . pij = 1 if there is a must-connect constraint between samples xi

and xj, pij = −1 if there is a do-not-connect constraint between samples xi and xj, and
pij = 0, if the constraint between xi and xj is unknown.

The constraint-passing algorithm is to extend the constraint matrix P to obtain more
pairwise constraint information. The result matrix is F =

[
fij
]
∈ RN×N , and F has the

following properties:

• fij takes the value in the range of [−1, 1], and the larger the absolute value, the higher
the confidence of the constraint information.

• fij > 0 means that the constraint between xi and xj is must-connect.
• fij < 0 means that the constraint between xi and xj is do-not-connect.
• fij = 0 means that the constraint information is unknown.

4. Proposed Method

4.1. Discriminative Multidimensional Scaling Based on Pairwise Constraints for Feature Learning

The overall process of model pcDMDS is shown in Figure 1, which shows that after
obtaining some of the pairwise constraint information through data X, more constraint
information is first extended by the constraint transferring algorithm. For the extended
constraint information, its value is [−1, 1]. If the value is greater than 0, it indicates a
must-connect constraint, while if it is less than 0, it indicates a do-not-connect constraint.
And the larger the absolute value, the higher the confidence level of the constraint. After
obtaining the extended pairwise constraint information, for each iteration of the model,
we hope to maintain the topology of the samples on the one hand. On the other hand, we
hope to find the cluster structure within the samples and make the data representations
of the samples in the same cluster close to their cluster centers. Furthermore, we hope to
make the data representations of the samples with the must-connect constraints close to
each other and the data representations of the samples with the do-not-connect constraints
far from each other through pairwise constraints. After several iterations, the model can
reach a balance between these three aspects. Thus, it further improves the discriminative
properties of the learned features. After the model converges or reaches the maximum
number of iterations, the new data representation is obtained by transforming the matrix.

Following this idea, the loss function can be described as the minimum of Opcdmds(W, U, V).
Moreover,

Opcdmds(W, U, V) =
N

∑
i=1

N

∑
j=1

sij

(
dij −

∥∥∥WT(xi − xj
)∥∥∥

2

)2

+β
N

∑
i=1

c

∑
k=1

uik
m
∥∥∥WTxi − vk

∥∥∥2

2

+λ

⎛⎝ 1
2NML

∑
(i,j)∈ML

φij

∥∥∥WT(xi − xj
)∥∥∥2

2

− 1
2NCL

∑
(i,j)∈CL

φij

∥∥∥WT(xi − xj
)∥∥∥2

2

⎞⎠
=O1(W) + βO2(W, U, V) + λOpcloss(W),

s. t.
c

∑
k=1

uik = 1, i = 1, 2, . . . , N,

uik ≥ 0, i = 1, . . . , N, k = 1, . . . , C.

(4)

In Equation (4), ML denotes the set of the indexes of the sample pairs with must-
connect constraints and CL denotes the set of the indexes of the sample pairs with do-
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not-connect constraints. NML denotes the number of sample pairs with must-connect
constraints, and ML is the size of the set. Similarly, NCL denotes the number of sample
pairs with do-not-connect constraints, and CL is the size of the set. Φ =

[
φij
]

denotes the
confidence of the pairwise constraint between samples xi and xj, which takes the values
[0, 1], and a larger value indicates a higher confidence of the pairwise constraint and a
symmetric matrix.
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Figure 1. The overall process of discriminative multidimensional scalar learning based on pair-
wise constraints.

From Equation (4), it can be seen that the objective formulation of the pcDMDS model
can be divided into three parts. It can be seen that the pcDMDS model is a balance among
these three terms.

i. The first part is used to make the Euclidean distance d̂ij between any samples xi
and the new data representation corresponding to xj keeps the Euclidean distance
dijin the original space as much as possible, which reflects the feature learning
process in which the new data representation keeps the topology in the original
data representation.

ii. The second part is used to automatically discover the cluster structure in the sam-
ples and make the data representation in the same cluster close to its cluster center
in the new data representation, increasing the compactness of the new data repre-
sentation in the same cluster, and reflecting the unsupervised way to enhance the
discriminative nature of the learned data representation and adjust its weight by
the parameter β.

iii. The third term is the loss term of the pairwise constraint, which aims to make
the data representation of sample points with the must-connect constraint close
and the data representation of sample points with the do-not-connect constraint.
The third term is the pairwise constraint loss term, which aims to make the data
representations of sample points with the must-connect constraint close and those of
sample points with the do-not-connect constraint far away, thus further enhancing
the model’s ability to learn discriminative features and controlling its weights by
the parameter λ.

To simplify Equation (4) for subsequent optimization, note the matrix Ψ =
[
ψij
]
∈ RN×N,

whose elements are defined as:

ψij =

⎧⎪⎨⎪⎩
1

NML
φij (i, j) ∈ ML,

− 1
NCL

φij (i, j) ∈ CL,
0 otherwise .

(5)
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Since Φ = Φ" , it follows that Ψ = ΨT . Then Equation (4) can be rewritten as:

Opcdmds(W, U, V) =
N

∑
i=1

N

∑
j=1

sij

(
dij −

∥∥∥WT(xi − xj
)∥∥∥

2

)2

+ β
N

∑
i=1

C

∑
k=1

uik
m
∥∥∥WTxi − vk

∥∥∥2

2

+
λ

2

N

∑
i=1

N

∑
j=1

ψij

∥∥∥WT(xi − xj
)∥∥∥2

2
,

s.t.
C

∑
k=1

uik = 1, i = 1, 2, . . . , N,

uik ≥ 0, i = 1, . . . , N, k = 1, . . . , C.

(6)

4.2. The Inference of Discriminative Multidimensional Scaling Based on Pairwise Constraints for
Feature Learning

For the objective Equation (6), the parameters to be solved are the transformation
matrix W, the samples and cluster affiliation matrix U, and the cluster center matrix V.
Since the closed-form solutions of Equation (6) with respect to W, U, and V cannot be
obtained directly, an iterative optimization approach is used for solving the problem.

(1) Fix U and V, and update W. At this point the target equation in Equation (6) is a
function of W only and can be expressed as:

L1(W) = O1(W) + βO2(W) + λOpcloss (W), (7)

to facilitate the solution, first rewrite Opcloss(W):

Opcloss (W) =
1
2

Tr
(

YDΨYT
)
− Tr

(
YΨYT

)
+

1
2

Tr
(

YDΨTYT
)

= Tr
(

Y(DΨ − Ψ)YT
)

= Tr
(

YLΨYT
)

= Tr
(

WTXLΨXTW
)

.

(8)

Since ‖A‖2
2 = Tr

(
AAT) = Tr

(
AT A

)
, Tr(·) denotes the trace of the matrix, a simplifi-

cation of the second term O2(W) in Equation (7) gives:

O2(W) = Tr
(
WTXDŨXTW

)
− 2 Tr

(
WTXŨVT

)
+ Tr

(
VDŨT VT). (9)

Ũ =
[
um

ik
]
∈ RN×C, DŨ and DÛT are all diagonal arrays,

Dv̄ =

⎡⎢⎣ (Dv̄)11
. . .

(DŪ)NN

⎤⎥⎦, DŪT =

⎡⎢⎣ (DŪT)11
. . .

(DŪT)CC

⎤⎥⎦. (10)
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The objective function in Equation (8) can be optimized using the IMA [5,14,17]
algorithm, the constructed auxiliary function is σpcdnds(W, Z) , which is defined as:

σpcdmds(W, Z) =Tr
(

WT AW
)
+

N

∑
i=1

N

∑
j=1

sijd2
ij − 2 Tr

(
ZTD(Z)W

)
+ β

(
Tr
(

WTXDŪXTW
)
− 2 Tr

(
WTXŨVT

)
+ Tr

(
VDŪT VT

))
+ λ Tr

(
WTXLΨXTW

)
.

(11)

A in Equation (11) is defined as:

A =
N

∑
i=1

N

∑
j=1

sij
(

xi − xj
)(

xi − xj
)T. (12)

The definition of D(Z) in Equation (11) is:

D(Z) = ∑N
i=1 ∑N

j=1 cij(Z)
(
xi − xj

)(
xi − xj

)T,

cij(Z) =

{
sijdij/d̂ij(Z) d̂ij(Z) > 0,
0 d̂ij(Z) = 0.

(13)

In Equation (13), d̂ij(Z) =
∥∥ZT(xi − xj

)∥∥
2.

Calculate the gradient of W with respect to Equation (11) and set the gradient to be 0,
then we have the update equation of W:

W =
(

A + βXDÛXT + λXLΨXT
)−1(

D(Z)Z + βXŨVT
)

. (14)

(2) Fix the matrices W and V, and solve for U. At this point, the first and third terms
in Equation (6) are constant terms, and the optimization of Equation (6) is equivalent to the
optimization of:

L2(U) =
N

∑
i=1

C

∑
k=1

um
ik‖yi − vk‖2

2

=
N

∑
i=1

C

∑
k=1

um
ik , d2(yi, vk),

s.t.
C

∑
k=1

uik = 1, i = 1, 2, . . . , N,

uik ≥ 0, i = 1, . . . , N, k = 1, . . . , C.

(15)

Using the Lagrangian multiplier method [31]:

Lλ(U) =
N

∑
i=1

C

∑
k=1

um
ikd2(yi, vk) + λ

(
C

∑
k=1

uik − 1

)
. (16)

By:
∂Lλ(U)

∂uik
= m(uik)

m−1d2(yi, vk)− λ = 0,

∂Lλ(U)
∂λ = ∑C

k=1 uik − 1 = 0,

(17)
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solve the update equation for uik as:

uih̄ =
1

∑c
j=1

(
1

d(yi ,vj)

) 2
m−1

(
1

d(yi, vk)

) 2
m−1

=
1

∑c
j=1

(
d(yi ,vk)

d(yi ,vj)

) 2
m−1

. (18)

The iterative update of the U matrix is given by:

uik =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1/ ∑c

j=1

(
d(yi ,vk)

d(yi ,vj)

) 2
m−1

Ii = ∅,
1
|Ii | Ii �= ∅, k ∈ Ii,
0 Ii �= ∅, k /∈ Ii.

(19)

Ii = {r ∈ N≤C | yi = vr} , N≤C denotes the set of positive integers less than or equal
to C, and |Ii| denotes the number of elements in the set Ii. It means that when there exists
a sample point yi that happens to be the cluster center of multiple clusters, yi has equal
affiliation with these clusters, both being 1/|Ii|.

(3) Fix W and U, and update V. Similar to step (2):

L3(V) =
N

∑
i=1

C

∑
k=1

um
ik

∥∥∥WTxi − vk

∥∥∥2

2

=
N

∑
i=1

C

∑
k=1

um
ik Tr

(
yiyT

i − yivT
k − vkyT

i + vkvT
k

)
.

(20)

Calculate the partial derivative with respect to vk for Equation (20):

∂L3(V)

∂vk
=

N

∑
i=1

um
ik(−yi − yi + 2vk) =

N

∑
i=1

um
ik(2vk − 2yi). (21)

According to Equations (20) and (21), the iterative update of V can be derived as:

vk =
N

∑
i=1

um
ikyi/

N

∑
i=1

um
ik . (22)

4.3. Algorithm
4.3.1. Algorithm Description

It can be seen from Algorithm 1 that the algorithm flow of pcDMDS is mainly divided
into two processes. The first process is mainly to expand pairwise constraint information
through constraint transferring. The second process is to update it iteratively according
to the update formulas of W, U and V, and output the transformation matrix after the
iteration is completed. Specifically, for the first process, the pairwise constraint matrix P is
first constructed according to the set of sample pairwise constraints. Then the extended
pairwise constraint information F is obtained through the constraint transfer algorithm,
and F is post-processed and assigned to Ψ. Then the distance matrices D, S and A are
calculated respectively, and then the W, V and U matrices are initialized. The second
process starts the iteration process, updating W, U and V in turn, and stops iteration when
W and U are stable or reach the maximum number of iterations. Finally, the transformation
matrix W is returned.
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Algorithm 1: pcDMDS feature learning algorithm
Input: X: data matrix; C: number of clusters; l: dimensionality of the

low-dimensional data representation; m: fuzzy index weight; β:
discriminative weight; λ: pairwise constraint loss weight; ML: set of
must-connect constraints; CL: set of do-not-connect constraints; α:
constraint transferring parameter; ò : stopping condition; T: maximum
number of iterations

Output: W: Projection matrix;
1 Construct the pairwise constraint matrix P from ML and CL;
2 Call the E2CP constraint transferring algorithm to obtain the constraint

transferring result F;
3 The maximum value of the absolute value of each element of the F matrix divided

by the absolute value in the F matrix;
4 Assignment Ψ = F ;
5 Constructing the distance matrix D from the data matrix X;
6 Construct the distance weight matrix S;
7 Calculate A = 2X(DS − S)XT ;
8 Initialize the matrices W and V as random numbers obeying a uniform

distribution of [−1, 1];
9 Initialize the elements of the matrix [−1, 1]U to 1/C;

10 for 1: T do

11 W
′ ← W, U

′ ← U, Z ← W;
12 Calculate Ũ =

[
um

ik
]

, and use Equation (10) to calculate Dũ ;
13 Use Equation (13) to calculate D(Z);
14 Update W using Equation (14);
15 Computation of the low-dimensional data representation Y = WTX ;
16 Update the matrix U using Equation (19);
17 Update the matrix V using Equation (22);

18 if
∣∣∣W ′ −W

∣∣∣ ≤ o and
∣∣∣U′ −U

∣∣∣ ≤ o then

19 return W
20 end

21 end

22 return W

4.3.2. Study on Computational Complexity

The time complexity of the model is discussed. According to the algorithm flow in
Algorithm 1, pcDMDS needs to call the constraint passing algorithm of the E2CP with a
time complexity of O

(
N3). The time complexity of the matrix D(Z) is O

(
n2N + nN2) . The

symmetric matrix of size D(Z) and its Moore-Penrose inverse can be obtained by singular
value decomposition, and since the time complexity of singular value decomposition is
O
(
n3) [32], the time complexity of updating W once is O

(
n2N + nN2 + n3) according to

Equation (14). According to Equation (19), the time complexity of updating the matrix U
once is O

(
NC2l

)
. From Equation (22), it is known that the time complexity of updating the

cluster center matrix V once is O(NCl). Considering that the updates of matrices W, U and
V are performed sequentially, and the time complexity of the three updates and the time
complexity of constraint passing are combined, it is known that the time complexity of the
pcDMDS algorithm is O

(
N3 = T

(
nN2 + nn2N + n3 + NC2l

))
, where T is the maximum

number of iterations.
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Then, the space complexity of the model is discussed. The input data matrix X has
size of Nn. The space complexity of P, F, D and S are O

(
N2). The space complexity of

A is O
(

Nn + N2 + n2). W, V and U has the size of nl, lC and NC, respectively. During
the iteration, the space complexity of Ũ and DŨ are O(NC) and O(N). The space com-
plexity of D(Z) is O(Nl). The space complexity of W is O

(
n2 + nN + N2 + nl + NC + Cl

)
.

The space complexity of Y is O(lN + ln + nN). Therefore, the total space complexity is
O
(

Nn + N2 + n2 + nl + lC + NC + Nl
)
.

4.3.3. Visualization

Figure 2 shows the visualization results of the wine dataset with 178 samples, 3 cat-
egories, and the number of attributes of each sample is 13. It can be seen from the visu-
alization results in Figure 2a that the boundaries of different categories in the 2D data
representation are fuzzy and unclear, that is, the discriminability between different cate-
gories has not been improved, and since the MDS method maintains the distance between
samples, the samples in the same category are not more compact. In order to more in-
tuitively show that pcDMDS can learn more discriminative features, the visualization
result graph of pcDMDS is shown in Figure 2b. By comparing Figure 2a,b, it can be found
that compared with MDS, pcDMDS has a more compact sample distribution in the same
category in the new data representation, and the boundaries between different categories
are clearer, which makes the learning features more discriminative.

Figure 2. Visualization of wine dataset after dimensionality reduction using MDS and pcDMDS.

5. Experiments

5.1. Datasets

The datasets used for the experiments on the discriminative multidimensional scalar
feature learning algorithm based on pairwise constraints are from 12 publicly available
datasets in the MSRA- MM [33] database. Table 1 describes the details of the 12 datasets used.

Table 1. Datasets.

No. Dataset Samples Features Categories

D1 amber 880 892 3
D2 arrow 834 892 3
D3 balloon 830 892 3
D4 bicycle 844 892 3
D5 birthdaycake 932 892 3
D6 boomerang 910 892 3
D7 border 840 892 3
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Table 1. Cont.

No. Dataset Samples Features Categories

D8 bow 834 892 3
D9 brain 891 892 3

D10 cactus 919 892 3
D11 vistawallpaper 799 899 3
D12 weapon 858 899 3

5.2. Experimental Setting

The pairwise constraint loss terms in pcDMDS are controlled by the parameter λ to
control their weights. The pairwise constraint information in the experiment is obtained di-
rectly from the ten percent label information, and then the constraint transferring algorithm
obtains the extended constraint information as the final pairwise constraint information.
For the pcDMDS algorithm, the parameter λ is set to 0.8, and the parameter α in the
constraint transferring algorithm is set to 0.1. In order to reduce the differences in the
experimental results, all feature learning algorithms are run 10 times in the experiments,
and then the average of the 10 times is taken as the final result.

The experiments of pcDMDS algorithm are to evaluate the ability of pcDMDS to
learn discriminative features. The experiments are designed in such a way that multiple
clustering experiments are performed on the low-dimensional data representation obtained
from the original data, the low-dimensional data representation obtained from the PMDS
algorithm and the data representation obtained from pcDMDS, respectively. If the data
representation is more discriminative, the clustering algorithm performs better. The selected
clustering algorithms include KM, AP and DP.

5.3. Evaluation Metric

Since features with discriminative properties tend to improve the performance of
subsequent machine learning tasks, the discriminative properties of the learned features
can be evaluated by evaluating the performance of subsequent machine learning tasks.
The subsequent machine learning tasks include clustering tasks and classification tasks,
so the performance of the learned features is evaluated by using the evaluation metrics of
clustering and classification.

5.3.1. Accuracy

Accuracy, a common metric for clustering, measures the degree of difference between
the sample cluster results given by a clustering model and the true labels of the samples.
The calculation of clustering accuracy and classification accuracy is slightly different. For
clustering, the accuracy is computed as [34].

Acc =
1
N

N

∑
i=1

δ(li, map(ri)). (23)

N denotes the number of sample points, and map(·) is a function that maps the cluster
index to the category label. li and ri denote the category label and the cluster index of
sample point xi, respectively. δ(a, b) is a function whose value is 1 when a = b. Otherwise,
it is 0. For the classification task, ri denotes the classifier’s predicted category label, at this
time map(·) can be considered as a constant mapping. The output value is equal to the
input value.

5.3.2. Purity

Purity is a common metric used to measure the performance of clustering algorithms
and is defined as [35]:
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Purity =
1
N

C

∑
k=1

max
1≤r≤q

nr
k. (24)

N denotes the number of sample points, C denotes the number of clusters, k denotes
the cluster index, and q is the number of classes. In general, q is equal to C. nr

k denotes the
number of samples with class label r in the k cluster.

5.3.3. Friedman Test

Friedman statistic is a statistical method for non-parametric testing to evaluate the
overall difference in performance of a set of algorithms on different datasets. Friedman
statistic requires first getting the ranking of each algorithm’s performance on the same
dataset, with the best performing algorithm ranked as 1, the next best algorithm ranked as
2, and so on to get the rankings of all algorithms, and if there is the same performance, the
average ranking value is taken. The ranking value of an algorithm is also called rank value.
Specifically, the Friedman statistic is defined as [36]:

XF
2 =

12a
b(b + 1)

[
b

∑
j=1

R2
j −

b(b + 1)2

4

]
. (25)

The a denotes the number of datasets, b denotes the number of algorithms,
Rj =

1
a ∑a

i=1 rji , rji denotes the rank value of the j-th algorithm on the i-th dataset, and it
can be seen that Rj denotes the average rank value of the j-th algorithm on all datasets, X2

F
obeys the chi-square distribution with degrees of freedom b − 1.

Iman and Davenport improved the deficiencies of the Friedman statistic X2
F by propos-

ing a better statistic defined as [37]:

FF =
(a − 1)X2

F
a(b − 1)− X2

F
. (26)

FF is the F distribution with degrees of freedom b − 1 and (b − 1)(a − 1). The p-value
is obtained by looking up the table, and the significance of the differences between all
algorithms is evaluated based on the p-value.

5.4. Results

Tables 2 and 3 give the accuracy and purity results obtained by clustering the 12 data
sets by KM, AP and DP under three different data representations, respectively. Specifically,
in Table 2, columns KM, AP and DP are the clustering accuracies of the three algorithms on
the original data representation. PMDS-KM, PMDS-AP and PMDS-DP are the clustering
accuracies of the three clustering algorithms on the low-dimensional data representation
obtained by the PMDS algorithm. pcDMDS-KM, pcDMDS-AP and pcDMDS-DP are the
clustering accuracies of the three clustering algorithms on the low-dimensional data repre-
sentation obtained by the pcDMDS algorithm. The Avg column is the mean of columns KM,
AP and DP. Column PMDS-Avg is the mean value of columns PMDS-KM, PMDS-AP and
PMDS-DP. Similarly, column pcDMDS-Avg is the mean value of columns pcDMDS-KM,
pcDMDS-AP and pcDMDS-DP. The meaning of the table headers in Table 3 is similar to
that in Table 2, except that the data in the table are purity rather than accuracy, which is not
repeated here.

From Table 2, it can be seen that 10 of the models with the highest accuracy in these
12 datasets are on the data representation learned by pcDMDS features (bolded data in
the table), and 2 are on the original data representation, which indicates that pcDMDS can
improve the discriminatory performance of the data representation. Moreover, for the same
clustering algorithm, the performance exhibited on the data representation obtained by the
pcDMDS algorithm is overwhelmingly better than the original data representation and the
PMDS data representation. In addition, in terms of the average accuracy, the 12 highest
average accuracies are in the feature representation of the pcDMDS algorithm, and the
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average accuracy of the data representation obtained by the pcDMDS algorithm is 10.31%
and 7.41% higher than that of the PMDS and the original space, respectively. This also
reflects that the data representation obtained after the DMDS feature learning algorithm can
improve the performance of the subsequent machine learning compared with the PMDS
and the original data representation.

Table 2. Accuracy of clustering with different data representations.

NO. KM AP DP
PMDS
-KM

PMDS
-AP

PMDS
-DP

pcDMDS
-KM

pcDMDS
-AP

pcDMDS
-DP

Avg PMDS
-Avg

pcDMDS
-Avg

01 0.5352 0.6761 0.5318 0.3693 0.4227 0.3897 0.7306 0.6568 0.6568 0.5810 0.3939 0.6814
02 0.5131 0.5011 0.5059 0.5203 0.4340 0.4964 0.5287 0.5647 0.5287 0.5067 0.4836 0.5407
03 0.4204 0.5710 0.4289 0.4096 0.4867 0.4012 0.5204 0.5204 0.5204 0.4734 0.4325 0.5204
04 0.4324 0.5426 0.4099 0.4170 0.5521 0.4206 0.5687 0.5177 0.5177 0.4616 0.4632 0.5347
05 0.4860 0.5954 0.4452 0.5246 0.5557 0.5815 0.6952 0.5633 0.5633 0.5088 0.5539 0.6073
06 0.4505 0.4428 0.4857 0.4142 0.4560 0.5098 0.5593 0.5538 0.4945 0.4596 0.4600 0.5359
07 0.5047 0.4440 0.4428 0.5238 0.4416 0.4059 0.5202 0.5535 0.5202 0.4638 0.4571 0.5313
08 0.3860 0.4376 0.4208 0.3764 0.4460 0.4328 0.5227 0.5215 0.5215 0.4184 0.4184 0.5219
09 0.3883 0.4406 0.4938 0.3860 0.3827 0.4107 0.3928 0.5824 0.5409 0.4409 0.3931 0.5054
10 0.4374 0.6702 0.5799 0.4744 0.5005 0.4124 0.5179 0.6659 0.5201 0.5625 0.4624 0.5680
11 0.4705 0.3904 0.4881 0.4605 0.4881 0.4242 0.5519 0.6020 0.4267 0.4496 0.4576 0.5269
12 0.4055 0.3613 0.4230 0.4032 0.3846 0.4090 0.5384 0.5384 0.5384 0.3966 0.3989 0.5384

Table 3. Purity of clustering with different data representations.

NO. KM AP DP
PMDS
-KM

PMDS
-AP

PMDS
-DP

pcDMDS
-KM

pcDMDS
-AP

pcDMDS
-DP

Avg PMDS
-Avg

pcDMDS
-Avg

01 0.6818 0.6909 0.5806 0.5715 0.5715 0.5715 0.7693 0.7693 0.7693 0.6511 0.5715 0.7693
02 0.5515 0.5023 0.5239 0.5563 0.4988 0.5143 0.5839 0.5647 0.5839 0.5259 0.5231 0.5775
03 0.5759 0.5759 0.5759 0.5759 0.5771 0.5759 0.6337 0.6337 0.6337 0.5759 0.5763 0.6337
04 0.5450 0.5473 0.5450 0.5462 0.5521 0.5450 0.5746 0.5616 0.5616 0.5457 0.5478 0.5659
05 0.6738 0.6083 0.5965 0.6652 0.6040 0.6330 0.7178 0.7178 0.7178 0.6262 0.6341 0.7178
06 0.5362 0.5362 0.5362 0.5362 0.5362 0.5373 0.5736 0.5582 0.5725 0.5362 0.5366 0.5681
07 0.5642 0.4452 0.4476 0.5595 0.4452 0.4476 0.5821 0.5821 0.5821 0.4856 0.4841 0.5821
08 0.4652 0.4700 0.4652 0.4652 0.4700 0.4652 0.5227 0.5215 0.5215 0.4668 0.4668 0.5219
09 0.5476 0.5476 0.5566 0.5476 0.5476 0.5555 0.5476 0.5824 0.5656 0.5506 0.5502 0.5652
10 0.6637 0.6735 0.6637 0.6637 0.6637 0.6637 0.6855 0.6670 0.6659 0.6669 0.6637 0.6728
11 0.6445 0.6320 0.6320 0.6382 0.6408 0.6320 0.6996 0.6495 0.6320 0.6361 0.6370 0.6604
12 0.4860 0.4860 0.4860 0.4860 0.4860 0.4860 0.5384 0.5384 0.5384 0.4860 0.4860 0.5384

The overall performance of the model is then evaluated based on the Friedman
statistic. Based on the last three columns of Table 2, the ranking values for the performance
of different data representations in each dataset can be first derived. The average ranking
values of 2.4583, 2.5416 and 1 for Avg, PMDS-Avg and pcDMDS-Avg on the 12 datasets can
be calculated, respectively. Since there are 12 datasets with three types of averages, FF obeys
a degree of freedom of 3 − 1 = 2 and (12− 1)(3− 1) = 22 for the F distribution. From
the F(2, 22) distribution, the p-value can be calculated as 2.2082 × 10−7, so the original
hypothesis is rejected at a high significance level, and the comprehensive evaluation of the
pcDMDS algorithm outperforms the PMDS algorithm. The data representation obtained
by the pcDMDS algorithm is more discriminative than the data representation obtained by
PMDS and the original data representation.

Table 3 lists the purity of the clustering results on the different data representations. It
can be seen that the 12 highest purity are on the data representation of pcDMDS. Overall,
the clustering performance on pcDMDS is better than PMDS and raw space. Also, the
average purity of the data representation obtained by the pcDMDS algorithm is 8.31% and
9.18% higher than that of the PMDS and the original space, respectively.

Similarly, the Friedman statistic is used to evaluate the overall performance of the
model. According to the last three columns of Table 3, the average ranking values of
Avg, PMDS-Avg and pcDMDS-Avg can be obtained as 2.5, 2.5 and 1, respectively. The
Friedman statistic can be calculated as X2

F = 13.0833, and then the Iman-Davenport as
FF = 13.1832. The p-value can be calculated from the F(2, 22) distribution as 1.7245× 104,
so the original hypothesis is rejected at a higher significance level, and the combined
evaluation of pcDMDS algorithm is better than PMDS and the original space.
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In terms of accuracy and purity, it can be seen that the data representation obtained by
pcDMDS has a better performance for subsequent clustering algorithms than the original
data representation and the data representation obtained by PMDS, which can learn more
discriminative features. For big datasets, pcDMDS can enhance the discriminativeness by
considering both the topology of samples in the original space and the cluster structure
in the new space, and also incorporating the extended pairwise constraint information in
the samples.

6. Conclusions

In this paper, a feature learning algorithm named pcDMDS is proposed and the
discriminability is enhanced in two aspects. Firstly, the ability to automatically discover
clusters in samples by fuzzy k-means, so that new data representations corresponding to
samples in the same cluster are close to the cluster center during feature learning. Then
the pairwise constraint information between more samples, noted as extended pairwise
constraint information, is obtained by a constraint transferring algorithm based on the
pairwise constraint information between a given part of samples. In the whole process of
feature learning, the ability of the original model to obtain discriminative features is further
improved. Because pcDMDS not only considers the topological structure of the sample
in the original space and the cluster structure in the new space, but also incorporates the
extended pairwise constraint information in the sample. However, the effect of different
values of parameter λ on the clustering performance of pcDMDS was analyzed in pcDMDS,
but the values are fixed, so the effect of β and λ can be considered jointly in the future.
Plus, the model does not use incremental learning, and it can be put into research in the
future work.
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Abstract: The domain of Aspect Level Sentiment Classification, in which the sentiment toward a
given aspect is analyzed, attracts much attention in NLP. Recently, the state-of-the-art Aspect Level
Sentiment Classification methods are devised by using the Graph Convolutional Networks to deal
with both the semantics and the syntax of the sentence. Generally, the parsing of syntactic structure
inevitably incorporates irrelevant information toward the aspect. Besides, the syntactic and semantic
alignment and uniformity that contribute to the sentiment delivery is currently neglected during
processing. In this work, a Triplet Contrastive Learning Network is developed to coordinate the
syntactic information and the semantic information. To start with, the aspect-oriented sub-tree is
constructed to replace the syntactic adjacency matrix. Further, a sentence-level contrastive learning
scheme is proposed to highlight the features of sentiment words. Based on The Triple Contrastive
Learning, the syntactic information and the semantic information are thoroughly interacted and
coordinated whilst the global semantics and syntax can be exploited. Extensive experiments are
performed on three benchmark datasets and achieve accuracies (BERT-based) of 87.40, 82.80, 77.55 on
Rest14, Lap14, and Twitter datasets, which demonstrate that our approach achieves state-of-the-art
results in Aspect Level Sentiment Classification task.

Keywords: Aspect Level Sentiment Classification; Contrasitve Learning; Graph Convolutional
Networks

MSC: 18C50

1. Introduction

Aspect Level Sentiment Classification (ALSC) is a fundamental subtask of fine-grained
sentiment analysis, which currently receives a great deal of attention [1]. The main focus
of ALSC is to identify the sentiment polarity (e.g., positive, neutral or negative) of aspects
explicitly given in sentences. For example, in the sentence “The price is reasonable although
the service is poor” (Figure 1), the sentiment toward aspects price and service is positive and
negative, respectively.

Advances of deep neural networks bring paradigm shift to various tasks of NLP and
the ALSC is no different [2–4]. The attention-based network is a most common approach
that exploits the semantic information to capture the sentiment words of the given aspect.
In Figure 1, more attentive weights can be assigned to the sentiment words reasonable and
poor via attention mechanism. However, the use of semantic feature alone can result in
the misunderstanding of contextual words, especially for sentences of complex syntax
structure. More recently, the application of Graph Convolutional Networks (GCN) in ALSC
is both creative and practical [5]. For one thing, the encoding of syntactic information
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using GCN mitigates the deficiencies of long-distance dependencies among words [6,7].
For another, not just the syntax, but also the semantic information can be processed by
GCN, which gives rise to opportunities to the integration of semantic features. As such, the
state-of-the-art approaches work on developing multi-channel GCNs to deal with multiple
information [8,9].

Figure 1. An example of ALSC.

Despite the progress of GCN-based method in ALSC, two main limitations are ob-
served. On the one hand, most syntactic parsing is performed on the whole sentence
without considering the importance of key phrases (e.g., aspect words, opinion words and
etc.) to sentiment determination. In such a manner, redundant information or even noise
can be incorporated during feature extraction. On the other hand, current methods set
the semantic information and syntactic information in two individual spaces for feature
extraction and fuse their features in a elementary way. But the alignment and uniformity of
these two categories of features are ignored [10].

Inspired by the methods reported by [8,11], a Triplet Contrastive Learning Network

(TCL) for ALSC is proposed to address the aforementioned issues. For the exploiting of
syntactic information, we start with reconstructing the syntax dependency tree by setting
the aspect as the root according to [12] (Figure 2). The dependencies between aspect word
and other words are explicitly established, which contributes to the capturing of opinions
words to the aspect and restricting the introduction of redundant information. As presented
in [13], the key phrase plays a pivot role in delivering the essence of texts. To further filter
the noise and highlight the key information, a contrastive learning scheme is proposed to
magnify the significance of sentiment-related words. In ALSC tasks, the key phrases are
either nouns, verbs, adjectives, or adverbs of degree [14]. With the application of masking
mechanism, both positive and negative examples are generated and fed into the contrastive
learning module to enhance the impacts of key phrases and distill the syntactic features.

Figure 2. Reconstruction of aspect-oriented syntax dependency tree.
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With respect to the integration of sentence syntax and semantics, recent publications
reveal that they are distinct and related [8,15]. Likewise, the features from both space,
conveying sentiment toward the aspect, also have a similar relationship between each other.
For this reason, the alignment of both features can facilitate the information integration.
Concretely, the features, within either syntactic or semantic space, expressing the same
sentiment polarity can be aligned while those expressing different sentiment polarities
can be separated. With this, the interaction between syntactic information and semantic
information is carried out, based on which a dual-contrastive learning scheme is devised.
For each data within the mini-batch, the features of the same sentiment polarity are getting
closer based on dual-contrastive learning, and vice versa. In this way, features of both
categories are thoroughly interacted and aligned. We can thus leverage feature integration
to improve the ALSC performance.

The contributions of this paper are as follows:

• The syntactic adjacency matrix of the dual-channel graph convolutional neural net-
work is replaced with an aspect-oriented tree structure, which helps the model to
better capture the information of opinion words related to aspect words.

• A syntactic contrastive learning scheme is designed to encourage the model to focus
on keywords that are helpful for sentiment polarity classification, and to better learn
features related to aspect words.

• Constructing the dual contrastive learning module can make the semantic features
and syntactic features of sentences more fully interact and align.

• Experiments show that our method outperforms baseline models on three benchmark
datasets.

This work is organized as follows. Section 2 gives an overview of relevant work of
ALSC and contrastive learning. Section 3 describes the TCL model in details. In Section 4,
the experiment is depicted, as well as the presentation of result analysis. Concluding
remarks are given in Section 5.

2. Related Work

2.1. Aspect Level Sentiment Classification

Sentiment classification tasks mainly focus on capturing the sentiment information
from the given text [16,17]. ALSC aims to classify the sentiment polarity of a specific aspect
from given texts. Within ALSC, a more detailed analysis about the sentiment associated
with the aspect is performed by using the textual information. Early research focuses on
employing CNN- and RNN-based method, together with the integration of attention mech-
anisms or knowledge distillation [18,19], to obtain aspect-related information. As such, the
utilization of attention mechanism to precisely capture the aspect-aware contextual infor-
mation becomes a main topic [2,3]. In recent years, GCN-based models rise to prominence
in a variety of NLP tasks, which is capable of alleviating the defects of attention networks.
On the task of ALSC, Ref. [6] first apply GCN to tackle the syntax dependency and resolve
the long-term multi-word dependencies. Later work aims to establish the syntax structure
and extract aspect-related features [7]. Ref. [12] re-shape the syntax dependency tree into
an aspect-oriented sub-tree, in order to determine the connection between aspects and its
opinion words. Ref. [20], fuse the syntax dependency types into GCN, based on which
to highlight the syntax corresponds to sentiment classification. So far, there is an ongoing
trend to combine the sentence syntax and semantics [8,9,21]. Most approaches tend to
separately construct adjacency matrix for syntactic and semantic information, generate
corresponding feature representations, and concatenate the representations for sentiment
classification.

2.2. Contrastive Learning

A fundamental focus of contrastive learning is the learning of alignment and unifor-
mity of given data [10]. Comprehensively, alignment is taken to indicate the similarity
among positive examples while uniformity refers to informative-distribution of features, so
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that negative examples are isolated from positive ones. In practical use, both alignment
and the uniformity are used as indexes to optimize the feature learning. That is, the cap-
turing intra-class similarities and inter-class differences can benefit the performance in
downstream tasks.

Recently, a number of studies apply contrastive learning to NLP tasks and achieve
satisfying results [22–24]. Ref. [22] devise a simple contrastive sentence embedding frame-
work, which can produce superior sentence embeddings on semantic textual similarity
tasks. For the aspect words absent from the training set, Ref. [25] take contrastive learning
to capture aspect-invariant and aspect-dependent features to distinguish the roles of valu-
able sentiment features. Ref. [11] propose a novel contrastive-learning-based approach that
simultaneously learns the features of input samples and the parameters of classifiers in the
same space on the task of text classification.

3. Proposed Method

Figure 3 shows the framework of the TCL Network. Let X = {x1, x2, . . . , xa, . . . , xa+la ,
. . . , xN} be a N-word sentence with aspect A =

{
xa, . . . , xa+la

}
in it where a represents

the starting index of A and la is the length of A. We feed the sentence into GloVe [26]
or BERT [27] encoder for sentence embedding establishment. For GloVe-based model,
each word is mapped into a low-dimensional vector by looking up in a pretrained word
embedding matrix E ∈ R|V|×dE where |V| is the lexicon size and dE is the dimension of word
vector. The sentence embedding is given as x = {e1, e2, . . . , eN}. The hidden states of the
sentence are extracted via Bi-LSTM. The contextual feature vector is H = {h1, h2, . . . , hN}
with H ∈ RN×2d and d representing the hidden layer dimension. In addition, the sequence
[CLS]X[SEP]A[SEP] can also sent to BERT encoder to obtain the contextual feature vector
H. Subsequently, H is taken as the input of both semantic-learning GCN module and
syntactic-aware GCN module. A multi-layer Biaffine unit is proposed to integrate the
semantic features and syntactic features. To further align the features from both space,
the dual contrastive learning scheme is carried out. More details of each component are
presented as follows.

Figure 3. The overall architecture of our Triplet Contrastive Learning Network.

3.1. Syntactic-Aware GCN Module

The architecture of syntactic-aware module is exhibited in Figure 4. As pointed out
in the Introduction, the syntactic-aware GCN in our model tends to precisely capture the
aspect-related context words and remove the redundant information. According to [12], a
relational graph attention network is devised. Specifically, we construct an aspect-oriented
dependency tree to replace the adjacency matrix of classical syntax dependency tree. Then,
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the attention mechanism is applied to the reshape sub-tree to capture the aspect-specific
contextual features. Moreover, to resolve the long-dependencies among words, we set four
categories of words as the key phrases that contributes to sentiment delivery, i.e., nouns,
verbs, adjectives, and adverbs of degree. As such, the contrastive learning is performed
to enhance the features of key phrases and effectively capture the word feature of long
dependency.

Figure 4. Architecture of syntactic-aware GCN module

3.1.1. Relational Graph Attention Module

At this stage, the aspect A is taken as the central word to construct the aspect-oriented
dependency tree; see Algorithm 1 For words syntactically related to the central word of
one hop, the corresponding dependency types are established. Through iteration, for
words syntactically related to the central word of n hops(n ≥ 2), the dependency types are
characterized by (con : n). If the aspect contains multiple words, these words are considered
as a whole. In such a manner, we shall thus obtain the re-constructed dependency tree as
D = {dep1, dep1, . . . , depN} and map it into embedding space to generate the dependency
representation HD =

{
hD1 , hD2 , . . . , hDN

}
. Notably, the randomly initialized dependency

embedding ED ∈ R|Vd |×dD is employed with |Vd| standing for the number of dependency
types. For HD ∈ RN×dD , we have dD representing the dimension of dependency type
embeddings.

The relational attention between aspect and the dependency type representation is
computed. Specifically, the syntactic dependency of context toward the aspect is incor-
porated within HD. Thus, the attentive weight between HD and H is calculated using a
simplified inner product operation, which is:

att = f

(
(WD HD + bD)× (Wh H + bh)

T
√

dm

)
(1)

where WD ∈ RdD×dm and Wh ∈ R2d×dm are linear layer weights; bD and bh are bias terms;
f (·) stands for the softmax activation function; and dm is the hidden layer dimension of the
attention module.

Then, the syntactic representation is given as:

Hsyn = att ∗ H (2)
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Algorithm 1 Aspect-Oriented Dependency Tree

Input: sentence X = {x1, x2, . . . , xN}, aspectA =
{

xa, . . . , xa+la
}

, dependency tree T, and
dependency relations R.
Output: aspect-oriented dependency T̃.

1: Construct the aspect root R̃ for T̃
2: for a to a + la do
3: for j = 1 to n do

4: if xj /∈ A and xj
Rja−→ xa then

5: xj
Rja−→ R̃

6: else if xj /∈ A and xj
Rja←− xa then

7: xj
Rja←− R̃

8: else
9: n = distance(a, j)

10: xj
n:con−−−→ R̃

11: end if
12: end for
13: end for
14: return T̃

3.1.2. Syntactic Contrastive Learning Scheme

The effectiveness of key phrases (i.e., nouns, verbs, adjectives or adverbs of degree) is
highlighted by using based on a sentence-level key phrases contrastive learning module.
To be specific, a mask operation, based on the POS information of phrases in the sentence,
is performed. Only if the position mask 1 assigned to key phrase and mask 0 to others, can
this representation defined as a positive example, i.e., Mpos ∈ RN . Conversely, a negative
example indicates a key phrase with a position mask 0 while other words with a mask 1,
i.e., Mneg ∈ RN .

The dependency type can be integrated into both positive and negative examples. We
shall thus compute the positive example dependency type representation and the positive
example dependency type representation as:

HDpos = HD ∗ Mpos (3)

HDneg = HD ∗ Mneg (4)

Similar to Equation (1), the attention weights of HDpos and HDneg toward the con-
text representation are available, as presented in Equations (5) and (6). Thus, the syn-
tactic representation of both positive examples and negative examples can be obtained
(Equations (7) and (8)):

attpos = f

⎛⎜⎝
(

WDpos HDpos + bDpos

)
×
(

Whpos H + bhpos

)T

√
dm

⎞⎟⎠ (5)

attneg = f

⎛⎜⎝
(

WDneg HDneg + bDneg

)
×
(

Whneg H + bhneg

)T

√
dm

⎞⎟⎠ (6)

Hsynpos = attpos ∗ H (7)

Hsynneg = attneg ∗ H (8)

For every sentence, we have its syntactic representation Hsyn, the syntactic represen-
tation with key phrases Hsynpos and syntactic representation without key phrases Hsynneg .
Each of these syntactic representations is fed into a shared-weight biaffine unit to fuse with

426



Mathematics 2022, 10, 4099

the semantic representation in following section. The final syntactic representations, with
the integration of semantic information, are presented as Msyn (derived from Equation (13)),
Msynpos and Msynneg , respectively.

Aiming to focus more on the key phrases, the contrastive learning scheme is carried
out with the loss function set as:

Lconsyn = − 1
B

B

∑
j=1

1
N

N

∑
i=1

log
esim(Mi

synpos ,Mi
syn)/τ1

∑N
t=1(e

sim
(

Mt
synpos ,Mi

syn

)
/τ1 + esim(Mt

synneg ,Mi
syn)/τ1)

(9)

where τ1 is the temperature coefficient, B is the batch size and N is sentence length men-
tioned above.

Distinguishing from the current contrastive learning approaches, in addition to the
positive example Mi

synpos , the other examples, containing N − 1 key-phrases-related syn-
tactic representations Mt

synpos(t �= i) and N syntactic representations without key phrases
Msynneg , are all considered as negative examples. In other words, the negative examples of
each word in the sentence is 2N − 1.

3.2. Semantic-Learning GCN Module

The sentence semantics is also encoded via GCN to enhance the modelling of sentiment
information. Seeing that the self-attention mechanism is capable of extracting the semantic
relevance of other words and the given word, we use self-attention network to construct a
semantic adjacency matrix Asem ∈ RN×N :

Asem = f

⎛⎜⎝QWq ×
(

KWk
)T

√
d

⎞⎟⎠ (10)

where both Q and K equal the context representation H, Wq and Wk are trainable weighting
parameters and d is the hidden layer size of attention network.

The semantic representation is derived from graph convolution, which is:

Hsem = σ(AsemWH + b) (11)

where σ(·) stands for the linear activation function, such as ReLU function.

3.3. Biaffine Unit

The interaction of semantic information and syntactic information is conducted via
multi-layer mutual Biaffine transformation. In Equation (12), Hsyn and Hsem are first
multiplied to obtain a syntactic-related matrix containing the semantic information. Then,
the syntactic-related matrix is mapped via Softmax and multiplied by the original semantic
information to obtain the final syntactic feature representation with semantic information
integrated. Via multi-layers of Biaffine unit, the semantic features can be fused to the
syntactic representation for sentiment polarity classification. So is Equation (13).

H(l)
syn = f

(
H(l−1)

syn W(l−1)
1

(
H(l−1)

sem

)T
)

H(l−1)
sem (12)

H(l)
sem = f

(
H(l−1)

sem W(l−1)
2

(
H(l−1)

syn

)T
)

H(l−1)
syn (13)

where l(l = 1, 2, . . .) stands for the layer number of the biaffine unit; both W1 ∈ R2d×2d and
W2 ∈ R2d×2d are learnable parameters. Specifically, we take H(0)

sem and H(0)
sem to represent

Hsem ∈ RN×2d and Hsyn ∈ RN×2d, which are the inputs of biaffine unit.
With the mutual Biaffine transformation, we thus obtain the final semantic repre-

sentation with fused syntactic features H(l)
sem which also presented as Msem and the final
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syntactic representation with fused semantic features H(l)
syn which also presented as Msyn.

The average pooling is performed on the outcomes in relation to the aspect.

MA
sem = avgpool

(
Msema , . . . , Msema+la

)
(14)

MA
syn = avgpool

(
Msyna , . . . , Msyna+la

)
(15)

Then, both the semantic representation and the syntactic representation of the aspect
are concatenated and sent to the linear classifier to determine the sentiment polarity of the
given aspect:

Z = f
(

W
[

MA
sem; MA

syn

]
+ b

)
(16)

where [; ] stands for the vector concatenation, W and b are learnable parameters in the
linear layer.

3.4. Dual Contrastive Learning Scheme

In the proposed model, the main purpose of the dual contrastive learning is to com-
prehensively align the features of both syntactic space and semantic space. The global
syntactic features and semantic features can thus be captured. Notably, the output of the
biaffine unit (i.e., Msyn and Msem are taken as the input of the dual contrastive learning
module. For each input Xi, the sequence with the same sentiment polarity within the same
batch is considered as the positive example P , otherwise as negative example N . The loss
function of the dual contrastive learning is presented as:

Lsyn−sem = − 1
B

B

∑
i=1

1
|P| ∑

j∈P
log

esim(Msyni ,Msemj )/τ2

∑B
t=1 esim(Msyni ,Msemt )/τ2

(17)

Lsem−syn = − 1
B

B

∑
i=1

1
|P| ∑

j∈P
log

esim(Msemi ,Msynj )/τ3

∑B
t=1 esim(Msemi ,Msynt )/τ3

(18)

where τ2 and τ3 are the temperature coefficients of contrastive loss.

3.5. Loss Function

The loss function for model training is expressed:

L = LCE + αLo + β
(
Lsyn−sem + Lsem−syn

)
+ γLconsyn + λ‖Θ‖ (19)

with
Lo = ||Asem Asem T − I||F (20)

where α, β and γ are hyperparameters; LCE represents the cross-entropy loss for sentiment
polarity classification; Θ denotes the training parameter set; λ represents the coefficient of
L2 regularization. Inspired by [8], for each word in the sentence, its attention distribution
on every other word is distinguishing. In other words, the overlap of attentive weights
has to be minimized especially for the application of semantic graph adjacency matrix.
Therefore, an additional orthogonal regularized loss function Lo is thereby introduced.
The parameter I in Equation (20) is an identity matrix and the subscript F stands for the
Frobenius norm.

Since the contrastive learning loss results are derived from various weighting param-
eters, the back propagation can be applied to optimize these parameters during the loss
function optimizing.
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4. Experiments

4.1. Datasets and Settings

Datasets: We evaluate the working performance of TCL network on three benchmark
datasets, which are Rest14 and Lap14 from SemEval 2014 Task4 [28] and Twitter [29]. Each
sample in these datasets is either a product review or tweet sentence, which contains
explicit aspect words and the corresponding sentiment polarities. Each aspect from the
product reviews or tweets in our experiments is labeled as positive, neutral or negative.
Details of each dataset are exhibited in Table 1.

Experimental Settings: For GloVe-based model, we initialize the word embeddings
with 300-dimensional vectors pretrained by Glove [26]. The dimension of the dependent
syntactic embeddings is set to 30. The hidden layer dimension of BiLSTM is 50. All the
weights in the model are initialized by Xavier uniform distribution. The layer number of
biaffine unit is set as 2. For the contrastive learning scheme, the temperature coefficient
determines how much attention the contrastive learning loss assign to the outlier negative
samples. The larger the temperature coefficient is, the greater the tolerance to negative
samples, and vice versa. In the syntactic contrastive learning module, it is desirable that
more attention is given to key phrases with a certain tolerance to other words. Therefore,
τ1 of the syntactic contrastive learning is 1 while τ2 and τ3 of the dual contrastive learning
is set to 0.1. In addition, he Adam optimizer is adopted with a learning rate of 2 × 10−3.
The batch size ranges from 16 to 64. The L2 regularization coefficient λ is set to 1× 10−4.
Notably, the values of α, β and γ vary in line with the datasets, which are 0.1, 0.5 and 0.5
for Rest14, 0.5, 0.7 and 0.8 for Lap14 and 0.2, 0.2 and 0.7 for Twitter.

Table 1. Statistics of datasets.

Dataset #Pos. #Neu. #Neg. Total

Rest14 Train 2164 637 807 3608
Test 728 196 196 1120

Lap14 Train 994 464 870 2328
Test 341 169 128 638

Twitter Train 1561 3127 1560 6248
Test 173 346 173 692

4.2. Baselines

In order to validate the effectiveness of the proposed model in ALSC, we take 10 state-
of-the-art methods for comparison:

1. ASGCN [6] The syntactical features are obtained using GCN via syntax depen-
dency tree while the aspect-specific attention is applied to extract the features related
to aspects.

2. CDT [30] The Bi-LSTM is taken to learn the sentence representations and the GCN
encodes the syntactic information and capture the aspect-related syntactic features.

3. RGAT [12] The aspect-oriented dependency tree is constructed, based on which the
relation graph attention network is developed to learn the dependencies between
aspect and other words.

4. BiGCN [31] A global lexical graph and a concept hierarchy graph are constructed,
which aims to integrate word pair co-occurrence and syntactic dependencies.

5. DualGCN [8] A dual-channel GCN method is proposed to extract both syntactic and
semantic information, and then fuse the two categories of information .

6. BERT-SPC [27] The sentence-aspect pair is sent to BERT model with its token [CLS]
used for sentiment classification.

7. T-GCN [20] A multilayer type-aware GCN is established to learn the relationship
among words.

8. BERT4GCN [32] The intermediate layers of BERT is employed to augment GCN
for ALSC.
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9. DR-BERT [33] The Dynamic Re-weighting Adapter is proposed to encourage model
to better understand aspect-aware sentiment through

4.3. Experimental Results and Analysis

We take two metrics, accuracy and Macro-F1, to evaluate the working performance
of the proposed model. The experimental results of 13 different methods are presented
in Table 2. Comparing with the state-of-the-arts, the TCL network is the best performing
method in most datasets. There is a considerable performance gap between the proposed
model and the baselines. According to Table 2, one can easily see that models using BERT-
based embeddings have a better performance than those of GloVe-based embeddings.
Indeed, the employment of GCN substantially contributes to the encoding of sentence
syntax and semantics. With respect to our model, the effectively use of syntactic information
highlights the contextual words related to the aspect. As a result, more attentive weights
are given to words that contribute to the sentiment delivery. In comparison with the single-
channel GCN (i.e., [6,12,30]), the dual-channel GCN methods (i.e., [8]), which deal with
both the syntactic information and the semantic information, shows their superiorities in
ALSC tasks. In this way, our model not just integrates different types of features, but also
exploits the global information to further optimize the sentiment classification results.

Table 2. Experimental results. Bold numbers represent the best results among methods of the
same type.

Models
Rest14 Lap14 Twitter

Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1

ASGCN [6] 80.77 72.02 75.55 71.05 72.15 70.40
CDT [30] 82.30 74.02 77.19 72.99 74.66 73.66

RGAT [12] 83.30 76.08 77.42 73.76 75.57 73.82
BiGCN [31] 81.97 73.48 74.59 71.84 74.16 73.35

DualGCN [8] 84.27 78.08 78.48 74.74 75.92 74.29

Our TCL 84.27 77.04 79.27 76.05 76.81 75.53

BERT-SPCBERT-SPC [27] 86.15 80.29 81.01 76.69 75.18 74.01
RGAT+BERT [12] 86.60 81.35 78.21 74.07 76.15 74.88

T-GCN [20] 86.16 77.11 77.49 73.01 74.73 73.76
DualGCN+BERT [8] 87.13 81.16 81.80 78.10 77.40 76.02

BERT4GCN [32] 84.75 77.11 77.49 73.01 74.73 73.36
DR-BERT [33] 87.72 82.31 81.45 78.16 77.24 76.10

Our TCL+BERT 87.40 82.12 81.80 78.96 77.55 76.57

However, the TCL network fails to overperform DR-BERT on the Rest14. A possible
explanation is that the samples of distinguishing sentiment occupy significantly different
proportion in the Rest14 dataset, which affects performance of contrastive learning scheme
as the generation of positive and negative samples is obtained by random sampling.

4.4. Ablation Study

An ablation study is carried out on three datasets to investigate the importance of the
contrastive learning losses; see Table 3. The dual contrastive learning scheme concerns the
syntactic-based semantic learning loss function Lsem−syn and the semantic-based syntactic
learning loss function Lsyn−sem. The results show that the ablating of both loss functions
leads to the most significant drop. The main reason is that the employment of global features
within the minibatch does benefit the sentiment delivery. We see that the contribution
of Lsem−syn is slightly higher than that of Lsyn−sem, which indicates the effectiveness of
semantic alignment. By contrast, the contribution of Lconsyn in the syntactic learning module
is relatively small, but its removal still results in an average decrease of 1.2% in accuracy.
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Table 3. Ablation study results. Bold numbers represent the best results.

Models
Rest14 Lap14 Twitter

Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1

TCL w/o Lsyn−sem 82.31 74.14 77.69 74.11 75.18 73.59
TCL w/o Lsem−syn 82.30 74.73 78.01 74.72 75.33 74.01

TCL w/o Lsyn−sem&Lsem−syn 81.94 74.17 77.53 74.57 74.00 72.76
TCL w/o Lconsyn 83.02 74.96 78.32 74.75 75.48 74.27

TCL 84.27 77.04 79.27 76.05 76.81 75.53

4.5. Case Study

Four examples of ALSC tasks are conducted and presented in Figure 5. The aspect
words in green, blue, and red represent the positive, neutral, and negative sentiment polari-
ties, respectively. The first case is a sentence of simple syntax and semantics. All the three
models are capable of identifying the sentiment as negative. Sentence 2 contains multiple
aspects. The ASGCN fails to determine the sentiment of aspect ‘disc drive’, because ‘disc
drive’ is syntactically close to the word negative word ‘not’. Similarly, in sentence 3, the
aspect ‘apple OS’ has a long distance dependency with its opinion word, which results in
the misunderstanding of the sentiment using ASGCN. By contrast, the DualGCN, which
integrates both syntactic and semantic information, can classify the sentiment toward
aspect ‘apple OS’ correctly. In the last sentence, despite the complexity in both the syntax
and semantics, the TCL network is capable of identifying the sentiment polarities of all as-
pects. The application of triplet contrastive learning effectively obtains alignment between
semantic and syntactic features, indicating its efficacy in ALSC of complex sentences.

Figure 5. Case study. ALSC results of TCL, ASGCN and DualGCN on testing examples, along
with their predictions and correspondingly, golden labels. The marker�and� indicate the correct
classification and incorrect classification, respectively

4.6. Visualization
4.6.1. Comparison of Syntactic and Semantic Vectors

The distribution of semantic and syntactic representations aims to verify the effective-
ness of the dual contrastive learning scheme. Figure 6 shows the visualization of semantic
and syntactic outputs of the dual contrastive learning module using t-SNE algorithm [34].
To facilitate the comparison, we only take the data with positive and negative sentiment
polarities for visualization. Apparently, both the basic TCL network and TCL without dual
contrastive learning can distinguish one type of representations. Notably, the proposed
model without dual contrastive learning fails to resolve the two types of vectors with the
same sentiment polarity, such as the distribution of red dots, which indicates the importance
of alignment between the semantic and syntactic spaces. Moreover, there are large amount
of overlapping for vectors with different sentiment polarities. The uniformity of syntax and
semantics is absent. In comparison, the TCL network considers both the alignment and
the uniformity of features. With the application of dual contrastive learning scheme, not
only the distribution of the same-polarity-representations is more concentrated, but also
the overlapping within different-polarities-representations are reduced to a large extent.
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Figure 6. Visualization of semantic and syntactic vectors. Triangle dots represent syntactic vectors;
round dots represent semantic vectors; dots in red represent positive samples; dots in green represent
negative samples.

4.6.2. Sentiment Classification Visualization

Similarly, the visualization of triplet contrastive learning is also performed; see
Figure 7. For the ASGCN that merely exploits the syntactic features, the neural sam-
ples can be distinguished from those of other two sentiment polarities. Whereas, the
classification between positive and negative samples is challenging, with large amount of
misunderstanding of the sentiment. Since DualGCN tackles both syntactic and semantic
information, the samples of three sentiment polarities can be better discriminated. The
distribution of neural samples is still not that distinctive, especially comparing with the
negative samples. By contrast, our model shows its dominance in sentiment classification.
It is clearly that a more concentrated distribution of samples with the same sentiment is
accessible. Due to the introduction of triple contrastive learning, a better performance of
feature learning and sentiment classification can be expected.

Figure 7. Visualization of sentiment classification results. The dots in green, red and blue respectively
represent the positive, neural and negative samples.

5. Conclusions

In this work, a TCL network is developed to deal with the ALSC tasks, which not
just exploits the global information, but also obtains the alignment of semantics and
syntax. To start with, an aspect-oriented dependency tree is constructed by reshaping
the syntactic adjacency matrix. Then, the sentence-level contrastive learning is applied
to highlight the effectiveness of key phrases toward sentiment delivery. Two GCNs are
employed to respectively encode the syntactic and semantic information. A dual contrastive
learning scheme is proposed to align the features from both syntactic and semantic spaces.
Experiments are carried out on three benchmark datasets. Our method produces results
considerably better than the state-of-the-art methods on the task of ALSC.
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Abstract: As a subtask of sentiment analysis, aspect-based sentiment analysis (ABSA) refers to
identifying the sentiment polarity of the given aspect. The state-of-the-art ABSA models are developed
by using the graph neural networks to deal with the semantics and the syntax of the sentence. These
methods are challenged by two issues. For one thing, the semantic-based graph convolution networks
fail to capture the relation between aspect and its opinion word. For another, minor attention is
assigned to the aspect word within graph convolution, resulting in the introduction of contextual
noise. In this work, we propose a knowledge-enhanced dual-channel graph convolutional network.
On the task of ABSA, a semantic-based graph convolutional netwok (GCN) and a syntactic-based
GCN are established. With respect to semantic learning, the sentence semantics are enhanced by using
commonsense knowledge. The multi-head attention mechanism is taken to construct the semantic
graph and filter the noise, which facilitates the information aggregation of the aspect and the opinion
words. For syntactic information processing, the syntax dependency tree is pruned to remove the
irrelevant words, based on which more attention weights are given to the aspect words. Experiments
are carried out on four benchmark datasets to evaluate the working performance of the proposed
model. Our model significantly outperforms the baseline models and verifies its effectiveness in
ABSA tasks.

Keywords: aspect-based sentiment analysis; graph convolutional networks; commonsense knowledge graph

MSC: 18C50

1. Introduction

Aspect-based sentiment analysis (ABSA) is a sentiment classification task that aims
to identify the sentiment of given aspects [1]. Within ABSA, the sentiment of each aspect
is classified according to a predefined set of sentiment polarities, i.e., positive, neutral or
negative [2]. In recent years, ABSA yields very fine-grained sentiment information, which
is useful for applications in a variety of domains [3].

In the context of advancing deep neural networks, state-of-the-art ABSA methods
report high accuracy and strong robustness on benchmark datasets. During the progress-
ing stage in ABSA tasks, efforts are generally made in two directions: one is to enhance
significant information from the given text and the other is to filter the irrelevant informa-
tion and its impact. A major step toward the comprehension of semantic information is
the integration of attention mechanism with deep neural networks [4–6]. More attentive
weights are assigned to aspect-related words, based on which to classify the sentiment
polarity. Nevertheless, it can be challenging to capture syntax dependencies between the
aspect and its contexts for attention-based models. More recently, research on graph neural
networks (GNNs) has given rise to dealing with the syntactic information from dependency
trees, a manner in which to prevent the syntactically irrelevant contextual noise [7–9].
The widespread GNNs, such as graph convolutional networks (GCNs) and graph attention
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networks (GATs), are capable of encoding both the semantics and the syntax. This has
been an ongoing trend to incorporate syntactic information and semantic information into
GNN-based models [10–12].

In spite of the collaborative exploiting of syntax and semantics, two main limitations
can be observed :

(1) For one thing, GNNs are generally used for tackling global syntactic information,
while the mask operation is lastly performed to conceal the context words. Thereby,
the sentiment of the aspect is determined. In practical application, the contextual noise can
be introduced, which results in minor importance given to the aspect words.

(2) For another, the semantic-based GNNs are typically built up based on attention
weights. With respect to the delicate relationship between aspects and opinion words, more
attention is assigned to other words instead of the sentiment words. This can further confuse
the sentiment aggregation. As presented in Figure 1, in the sentence ‘Meal is very expensive for
what you get’, the aspect ‘meal’ and its opinion word ‘expensive’ are semantically insensitive.

Meal was very expensive for what you get.

The menu may be small, but everything on it is delicious. 

The menu may be small, but everything on it is delicious. 

Meal was very expensive for what you get.

Figure 1. Attention weights towards aspects. Words in black bold are aspects; words with a blue
background are predicted attention weights; words with a green background represent desirable
attention distribution. A word in the darker color indicates a greater weight and vice versa.

On the task of ABSA, this work focuses on establishing a Knowledge-Enhanced Dual-
Channel Graph Convolutional Network (KDGCN). Two GCN-based modules, referred
to as syntax-based GCN and semantic-based GCN, are developed to separately deal with
the syntax structure and the semantic information. On the one hand, the syntactical
dependency tree of the sentence is pruned to remove the connections of minor relevance
to the aspect. Hence, the aspect-oriented syntactic information is sent to the syntax-
based GCN. Besides, the position information and the attention mechanisms are taken
to highlight the importance of the aspect. On the other hand, the external knowledge is
introduced to enhance the semantic-based GCN. The word sentiment vectors, together
with the supplementary of the aspect, are obtained (derived) by using SenticNet (i.e.,
a commonsense knowledge base); see Figure 2. A multi-headed attention mechanism
is carried out to re-assign the attentive weights among words. The sentiment of the
opinion words can thus be aggregated to the aspect via the knowledge-enhanced semantic-
based GCN.

It has so much more speed and the screen is very sharp .

1

0

-1

it so …… sharpSentiment vectors

Aspect expandings velocity speedy ……

Figure 2. Sentiment vectors and aspect supplementary based on SenticNet. The different colors and
shades represent the emotional polarity score of the word in SenticNet, where −1 is negative and 1
is positive.

436



Mathematics 2022, 10, 4273

Notably, a certain number of studies leverage the commonsense knowledge to en-
hance the sentiment expression and classify the sentiment polarity of the aspect [13,14].
Theoretically, the commonsense knowledge is involved with the background materials of
the entities under discussion. The commonsense knowledge is preserved in the common-
sense bases, such as ConceptNet [15], SenticNet [16] and WordNet [17], and recalled for
processing. In most cases, the integration of semantic-related commonsense knowledge
can generate noise from external information. Our model aims to exploit the sentence-
related external knowledge, not just the sentiment information of each word, but also the
relative knowledge of the aspect. In such a manner, the input of semantic-based GCN is
distilled. Accordingly, the more-related information is preserved with the noise removed.
The contributions of this paper are threefold and summarized as follows:

• Considering the deficiencies of the current ABSA methods, a dual-channel GCN based
model is proposed, which processes both the syntax structure and the semantic infor-
mation.

• The external knowledge is incorporated to enhance the semantics of the sentence,
while the multi-head attention mechanism is taken to further filter the noise.

• Experiments on a variety of datasets indicate the effectiveness of the proposed method.
Our model produces results considerably better than the baselines.

The paper is mainly divided into six sections. In the Introduction, we summarize
the content of the article in general and propose our solutions for the challenge of the
current ABSA task; in the Section 2, we will summarize the research related to our work;
in the Section 3, we will introduce our proposed model and each module in detail; in
the Section 4, we will conduct experiments on four public datasets and design ablation
experiments; in the Section 5, we will further analyze the general situation of the model
and the experimental results; in the Section 6, we summarize the full text.

2. Related Work

2.1. Aspect-Based Sentiment Analysis

As pointed out in the introduction, ABSA is a fine-grained sentiment classification task.
Rather than assigning an overall sentiment polarity to a sentence or a document, ABSA
aims at precisely determining the sentiment of a certain aspect. Early methods usually rely
on manual features when predicting, which cannnot model the dependency relationship
between the aspect and its context [18–20].

In recent years, advances in deep-learning algorithms significantly improved the
working performance of ABSA, while a more detailed analysis of the textual information
has risen [21,22]. The integrating of an attention mechanism into deep neural networks
highlights the contribution of opinion words towards the aspects. [4–6,23–25] The rela-
tionship between aspect and its opinion words are reliably modeled in attention-based
networks. Wang et al. [4] proposed an attention-long short-term memory (LSTM) method
to obtain more-related information about a given aspect. Chen et al. [5] devised a hierar-
chical multi-attention model to address the long-range dependency between aspect and
the opinion words. Whereas the attention mechanisms fails to cope with sentence syntax,
by contrast, the employment of GCN takes advantages of the syntactic dependencies of the
aspect and the opinion words. To be specific, an adjacency matrix is formed based on the
syntactic dependent tree, which is further modeled to aggregate the sentiment information
to the aspect by GCN [7,8]. Wang et al. [9] eliminated the noise from irrelevant contexts by
constructing an aspect-oriented syntactic dependency tree, and then encoded the syntax
relation by GNN. More recently, modules of multi-channel-GCNs have been carried out
to resolve the syntax and semantics of the given sentence, which effectively optimizes the
results of ABSA.
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2.2. Graph Convolutional Networks

As a classical variant of GNN, GCN was originally proposed by Kipf et al. [26] in 2017. So
far, GCN has shown its superiority in diversified NLP tasks, such as text classification [27,28],
relation extraction [29,30], knowledge distillation [31] and machine translation [32].

Most studies [7,8] take GCNs to capture the syntactic information of a sentence where
the nodes represent the words and the edges indicate the dependencies, which can in-
duce representation vectors of nodes based on their neighborhoods’ features. Likewise,
the semantic relation within the sentence can also be obtained using GCN. In [10,11], the se-
mantic graph was constructed with edges standing for the attention weights. Therefore,
both semantic features and syntactic features can be extracted via GCN-based modules.

Considering a graph as structured data, the multilayers of GCN are responsible for
information delivery. As such, every single node within the graph can learn the global
information. Let G = (V, E) , where V = {vi, v2, . . . , vn} is a set of N = |V| nodes and E is
the set of edges, and it represents an n−node graph with an adjacency matrix of A ∈ Rk×k.
In a graph, let vi ∈ V to denote a node and eij = (vi, vj) ∈ E to denote an edge between vi
and vj.

GCN can only capture information about neighbors with a layer. However, informa-
tion about more neighborhoods can be integrated when multilayers of GCN are stacked.
We define hl

i as the output of node i on the l − th layer and h0
i as the initial state of node i.

The graph convolution of node i can be written as:

hl
i = σ(

k

∑
j=1

AijWlhl−1
j + bl) (1)

where Wl is the weight of linear transformation, bl is the bias and σ is a nonlinear function
such as Relu.

2.3. Commonsense Knowledge

The commonsense knowledge for NLP is typically obtained through large-scale corpus
training and saved in commonsense bases. The commonsense is taken as prior knowledge
for the pre-training of knowledge-enhanced approaches. SenticNet [16] is one such com-
monsense knowledge base, which contains 100k concepts related to sentiment expression.
(e.g., mood, polarity, semantics and so on). Additionally, these affective properties provide
concept-level representation and semantic connections to the words.

To facilitate access to corresponding knowledge, SenticNet provides an application
programming interface. A series of sentiment scores of the word and its related concepts
can be obtained from the interface (as shown in Figure 2), which can expand the semantics
of the sentence.

The application of SenticNet into ABSA shows its distinctiveness in sentiment rep-
resentation learning [13,33]. Ma et al. [13] utilized the commonsense from SenticNet to
generate essays more closely surrounding the semantics of the input topics. Zhou et al. [14]
enlarged the sentence semantics using SenticNet 5, and then jointly modeled the syntactic
dependency trees and commonsense graph. Regardless of additional key information,
the filter of the noise during the external knowledge introducing remains unsettled.

3. Methodology

The architecture of KDGCN is presented in Figure 3. Our model consists of five
key components, i.e., a sentence encoder, a knowledge enhancement module, a semantic
learning module, a syntax aware module and a sentiment classifier. Firstly, each word of
the sentence is encoded as a vector by the sentence encoder. At the same time, the sentence
is input into the knowledge enhancement module, and the sentiment vector of each word
and the expanding words of aspect are obtained from SenticNet; secondly, the hidden state
vector of the sentence is sent into a semantic learning module and a syntax aware module,
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respectively, to obtain the syntactic and semantic representation. Finally, we can obtain the
sentiment polarity of the aspect from the sentiment classifier.
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Figure 3. Overall architecture of the proposed Knowledge-Enhanced Dual-Channel Graph Convolu-
tional Network.

3.1. Sentence Encoder

Glove embedding. For a sentence c = {w1, w2, . . . , wn}with the aspects a = {wa1, wa2,
. . . , wan}, we take the pre-trained embedding matrix E ∈ R|V|×de to map each word into a
low-dimensional vector, where |V| represents the lexicon size and de is the dimension of
the word vector [34].

BERT embedding. BERT [35] is a commonly used sentence encoder in recent years.
Each sentence is pre-processed by adding [CLS] at the beginning and [SEP] at the end,
respectively, to obtain c′ = {w0, w1, . . . , wn+1}, where w0 and wn+1 denote the two special
tokens inserted. Then, c′ is fed into BERT to obtain the textual feature representation
X = {x0, x1, . . . , xn+1}, where xi ∈ Rdbert .

A Bidrectional LSTM (Bi-LSTM) is employed for sentence encoding. The given
sentence embedding is sent to Bi-LSTM to generate the hidden state vector HLSTM =
{h1, h2, . . . , hn}. Specifically, the vector HLSTM ∈ R2dh is the hidden state at a time step and
is the hidden state vector dimension of LSTM.

3.2. Knowledge Enhancement Module

Word sentiment enhancement: For the given sentence c, the sentiment vector of each
word can be obtained based on the commonsense from SenticNet. A 23-dimensional
sentiment vector HLSTM ∈ R23 hat represents the sentence that is derived. Besides, for the
words that do not appear in SenticNet, the zero-vector is used instead. Then, HLSTM and
Hsen are fused to obtain the sentence representation, which is:

Hc = [HLSTM; Hsen] (2)

with Hc ∈ R2dh+23.
Aspect knowledge enhancement: In terms of the aspects a, the relative words of each

word within a is collected from SenticNet, i.e., {wex1, wex2, . . . , wexn}. For the purpose of
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word supplementary, the first five words in relation to the aspect are used. All the relative
words are also mapped to word embeddings and encoded with the Bi-LSTM encoder.

Hex = [HLSTM
ex ; Hsen

ex ] (3)

where HLSTM
ex stands for the hidden state vector of Bi-LSTM, and Hsen

ex is the corresponding
sentiment vector. The aspect expanding vector is denoted as Hex ∈ R2dh+23.

Notably, since the word co-occurrence in the corpus has an impact on the word
embedding of glove, to prevent the noise fusion, the aspect relative words are not pre-
trained by glove. We take a 〈unk〉 for relative words that are absent from the given texts.
Similarly, the absent-words of SenticNet are taken in place of zero.

3.3. Semantic Learning Module

Motivated by [10], most short sentences are of confused syntactic structure. That
is, the rigid extraction of syntactic information can lead to the misinterpretation of the
sentiment information. For this reason, a semantic learning module based on GCN is
proposed to capture the semantic information among words. Both the enhanced sentiment
vector and the aspect expanding vector are sent to the semantic learning module, which
aims to further enrich the semantic information.

Node construction: Each word wi from the sentence, together with each aspect relative
word wexi, is taken as a node. All nodes constitute a node set V.

Edge construction: The edge indicates the relationship between word nodes. Con-
cretely, two semantic-related nodes are connected with an edge and vice versa. To capture
the semantic relation of each word, we employ K − heads multi-head self-attention mecha-
nism to compute the attention weight, i.e.,

Attn =
(HseWse,k)(HseWse,q)T

√
dhead

(4)

where
H(0)

se = Hc (5)

dhead =
dlstm

k
(6)

where H(0)
se ∈ R2dh+23 is the commonsense-enhanced hidden layer output; K is the head

number of multi-head attention mechanism; Wse,k and Wse,q ∈ R(2dh+23)×dhead are trainable
matrices. Subsequently, based on the top-k selecting approach, the largest k values of
each dimension are selected and set to 1, while others are set to 0. Hence, the adjacency
matrix Ase is obtained; see Equation (7). Corresponding to the edge construction principle,
the adjacency matrix with value 1 denotes the semantic relevance between nodes. Notably,
the Ase remains symmetric with the application of the top-k selector.

Ase = topk
k

∑
i=0

Attn (7)

Thereby, a graph Gsem = (Ase, Hc) that concerns the node representations and the
adjacency matrix is constructed. The graph is fed into the N-layer GCN to obtain the hidden
layer state Hse :

H(l+1)
se = GCN(Ase, H(l)

se , W(l)
se ) (8)
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where H(l)
se ∈ R(2dh+23)×dgcn stands for the parametric matrix of GCN. The mask operation

is conducted on non-aspect words, following with the average pooling to compute semantic
hidden layer output hse, which is written as:

mask =

{
0 1 ≤ t < τ + 1, τ + m < t < n
1 τ + 1 ≤ t ≤ τ + m

(9)

hse = f (mask(Hse)) (10)

where τ + 1 ≤ t ≤ τ + m indicates the aspect index and f (·) is the average pooling function.

3.4. Syntax Aware Module

The syntax aware module is devised by modifying the method proposed by
Zhang et al. [7]. The sentence syntax is characterized by the syntax dependency tree.
Note that not all context words are syntactically related to the aspect—an aspect-related
selection approach is taken to reshape the syntax dependency tree. Only if a context word
reaches the aspect within n hops can the dependency edge between nodes be kept. We
can thus revise the adjacency matrix A0 to Asy. In this way, the revised graph is written as
Gsy = (Asy, HLSTM), where HLSTM is the current node representation. Before sending Gsy
to GCN, the position-aware transformation is performed [7]:

qi =

⎧⎪⎨⎪⎩
1− τ+1−i

n 1 ≤ i ≤ i + 1
0 τ + 1 ≤ i ≤ τ + m
1− τ+1−i

n τ + m < i ≤ n

(11)

with
F (hi) = qihi (12)

where qi ∈ R the position weight of the i-th token and F (·) is the function for position
weight assignment. The syntactic information is learned by using graph convolution.
The syntactic hidden layer output is expressed as:

H(l)
sy = F (H(l−1)

sy ) (13)

H(l+1)
sy = GCN(Asy, H(l)

sy , W(l)
sy ) (14)

H(0)
sy = F (HLSTM) (15)

where H(l) ∈ R2dh×dgcn is a trainable parametric matrix. Similar to the semantic-based
GCN, the syntactic hidden state representation Wsy is revised via masking (Equation (16)).
The

Ht = mask(Hsy) (16)

where Ht = {ht
1, ht

2, . . . , ht
j}. The outcome hidden layer state from Equation (16) concen-

trates more on the aspect words. In addition, to further detect the significant semantic
feature concealed within the syntax structure, the attention weight of each context word is
assigned. The dot product of ht

i and hi are obtained to denote the syntactic representation, i.e.,

hsy =
n

∑
j=1

ajht
j (17)

aj =
exp(β j)

∑n
i=1 exp(β j)

(18)

βt =
n

∑
i=1

ht
jhi =

τ+m

∑
i=τ+1

ht
jhi (19)
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3.5. Sentiment Classifier

Both the semantic representation and the syntactic representation are so far computed.
We shall thus concatenate hse and hsy to obtain the final representation ha (Equation (20)).
The sentiment polarity of the given aspect is classified by sending ha to the Softmax classifier,
which is:

Ha = [Hse; Hsy] (20)

y = so f tmax(ha) (21)

3.6. Model Training

The training process is performed by using the categorical cross entropy and L2
regularization as the loss function:

Loss = −∑
i

∑
j

yj
i log(pj

i) (22)

where i is the index of the ABSA sample and j is the corresponding sentiment polarity.

4. Experiment

In this section, we designed the main experiment and attention visualization to verify
the effectiveness of our model on the ABSA task. Specifically, we first introduce the
benchmark datasets used in our experiment, and then briefly introduce the details of the
experiment and the selected baseline. Then, we carried out the main experiment and
analyzed the experimental results. In addition, in order to explore the contribution of each
module to the model, we designed ablation experiments and analyzed the mechanism of
knowledge enhancement in attention visualization.

4.1. Dataset

To verify the working performance of the proposed model, experiments were carried
out on four publicly available benchmark datasets, i.e., Rest14 and Lap14 from SemEval
2014 [36], Rest15 from SemEval 2015 [37] and Rest16 from SemEval 2016 [1], containing
reviews of restaurant and laptop domains.

Every single sentence from the datasets contains at least one aspect. The sentiment
polarity of each aspect is given as well, including: positive, negative and neutral. For ex-
ample, in the sentence “Great food but the service was dreamful!”, there are two aspect terms,
‘food’ and ‘service’, and their sentiment polarity are positive and negative, respectively. The
details of each dataset are presented in Table 1.

Table 1. Statistics of datasets.

Dataset
Positive Neutral Negative

Train Test Train Test Train Test

Rest14 2164 728 637 196 807 196

Lap14 994 341 464 169 870 128

Rest15 1178 439 1c50 35 382 328

Rest16 1620 597 88 38 709 190

4.2. Implementation Details

The best test result of each method was taken for evaluation. For the proposed model,
the initialization of word embeddings was conducted using Glove [38] and uncased BERT
[35], respectively. The pretrained Glove provides a 300-dimensional word vector, with a
learning rate of 0.001 and a batch size of 64. Moreover, the dimension of Bert-based word
embeddings was 768, with a learning rate of 0.00002 and a batch size of 32. The head number
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of multi-head attention network was set to 1. The value of top-k selection was 2. Besides,
the Adam optimizer was employed. The L2 regularization weight was 0.0001. The value of
dropout was determined within the interval of [0.4, 0.6] using grid searching. With respect
to the GCN in our model, the number of layers and the dimension of hidden layers ranged
within [1,4] and [100, 200], respectively, which were also selected via grid searching.

4.3. Baseline

For the purpose of validating the effectiveness of our model, twelve state-of-the-art
methods were taken for comparison, which are presented as follows:

• CDT [8]: GCN is taken to deal with the syntax dependency tree, which aims to
learn the sentence syntactic information. Specifically, it exploits a GCN to model the
structure of a sentence through its dependency tree, where node (word) embeddings
of the tree are initialized by means of a Bi-LSTM network.

• ASGCN [7]: On the task of ABSA, GCN is applied to learn the aspect-specific rep-
resentation for the first time. Specifically, it starts with a LSTM layer to encode the
sentence, and a multi-layered graph convolution structure is implemented on top of
the LSTM output to obtain aspect-specific features.

• SK-GCN [14]: A syntax-based GCN and a knowledge-based GCN are designed to
model the syntax dependency tree and knowledge graph, respectively. Specifically, it
obtains the sentiment information from the SenticNet to enrich the representation of a
sentence toward a given aspect.

• R-GAT [4]: It reshapes and prunes an ordinary dependency parse tree to obtain an
aspect-oriented dependency tree structure rooted at a target aspect. Then, a relational
graph attention network (R-GAT) is introduced to encode the new tree structure for
sentiment prediction.

• DualGCN [5]: Considering the complementarity of syntax structures and semantic
correlations, a dual graph convolutional network is proposed to tackle both the
syntactic information and semantic information.

• DMGCN [11]: A multi-channel GCN-based method is developed to exploit not
only the syntax and the semantics, but also the correlated information from the
generated graph.

• BERT [35]: The basic BERT model is established based on a bidirectional transformer.
With the concatenation of sentence and the corresponding aspect, BERT can be applied
to ABSA.

• SK-GCN+BERT [14], R-GAT+BERT [9],DualGCN+BERT [10], DMGCN+BERT [11]
: The pre-trained BERT is integrated with SK-GCN, R-GAT, DualGCN and DMGCN,
respectively, where BERT is used for sentence encoding.

• TGCN+BERT [39]: The dependency type is identified with type-aware graph con-
volutional networks, while the relation is distinguished with attention mechanism.
The pre-trained BERT is used for sentence encoding.

4.4. Experimental Results

Experimental results on all datasets are exhibited in Table 2. In this experiment,
we took accuracy and macro-F1 as the method evaluation metrics. Comparing with the
baseline models, KDGCN generally obtained the best and most consistent results in all
evaluation settings. However, our model with the Bert encoder was less competitive
than DMGCN+BERT on the dataset of Rest14. A possible explanation is that the pre-
trained Bert contains a wealth of semantic information. The semantic enhancement via
SenticNet is not that distinctive. With respect to the Glove-based word embeddings,
the performance of KDGCN was 0.93% and 2.89% higher than DMGCN in accuracy and
Macro-F1, respectively.

Comprehensively, current GCN-based models focus on encoding either the syntactic
information (e.g., ASGCN, CDT, R-GAT and TGCN+BERT) or the semantic-integrated
syntactic information (e.g., DualGCN and DMGCN ). The performance of these methods
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largely depends on their fitting capabilities. By contrast, the proposed model adopted
the aspect-related selection approach to prune the edges of the syntax dependency tree,
based on which the unrelated information to the aspect was eliminated. On the other hand,
the commonsense knowledge was introduced to enhance the semantic information and the
sentiment of the aspect. In this way, the results of ABSA can be improved.

Furthermore, SK-GCN also uses the external knowledge derived from SenticNet to
construct the syntax-based GCN and semantic-based GCN. In comparison with SKGCN,
our model performs significantly better on all datasets. Clearly, KDGCN is capable of
exploiting the commonsense knowledge in ABSA tasks. As such, it is rational to expect the
integration of external knowledge into the given sentence and thus improved sentiment
classification results.

Table 2. Experimental results on four public datasets. The results of R-GAT and R-GAT+BERT are
retrieved from [40], and others are retrieved from the original papers.

Models
Rest14 Lap14 Rest15 Rest16

Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1

CDT [8] 74.66 73.66 77.19 72.99 - - 85.58 69.93
ASGCN [7] 80.77 72.02 75.55 71.05 79.89 61.89 88.99 67.48

SK-GCN [14] 80.36 70.43 73.20 69.18 80.12 60.70 85.17 68.08
R-GAT [9] 83.30 76.08 77.42 73.76 80.83 64.17 88.92 70.89

DualGCN [10] 84.27 78.08 78.48 74.74 - - - -
DMGCN [11] 83.98 75.59 78.48 74.90 - - - -

Our KDGCN 84.91 78.48 79.00 75.03 82.10 67.13 90.74 73.46

BERT [35] 85.62 78.28 77.58 72.38 83.48 66.18 90.10 74.16
SK-GCN+BERT [14] 83.48 75.19 79.00 75.57 83.20 66.78 87.19 72.02

R-GAT+BERT [9] 86.60 81.35 78.21 74.07 83.22 69.73 89.71 76.62
DualGCN+BERT [10] 87.13 81.16 81.80 78.10 - - - -
DMGCN+BERT [11] 87.66 82.79 80.22 77.28 - - - -

TGCN+BERT [39] 86.16 79.95 80.88 77.03 85.26 71.69 92.32 77.29
Our KDGCN+BERT 87.23 81.69 82.60 79.55 85.98 72.40 93.66 82.49

4.5. Ablation Study

An ablation study was conducted to quantitively investigate the importance of differ-
ent modules in the proposed model. The results of the ablation study are given in Table 3
and Figure 4. We took the basic KDGCN as the baseline and ablated the knowledge en-
hancement module, semantic learning module, syntax aware module and the aspect-related
select procedure. According to Table 3, the most important component for the proposed
model is the syntax aware module. The accuracy drop on four datasets were 6.78%, 6.12%,
4.61% and 3.08%, which are significant. Obviously, the use of syntactic information plays
a pivotal role in ABSA. Moreover, the contributions of the semantic learning module and
the knowledge enhancement module are comparable. The integration of commonsense
knowledge into the semantic learning process gives an improvement of the sentiment
classification performance. Lastly, withdrawal of the aspect-related selection also caused a
minor decrease of the working performance.

Table 3. Results of the ablation study.

Model
Rest14 Lap14 Rest15 Rest16

Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1

KDGCN w/o aspect-related select 84.11 77.02 76.96 73.14 80.10 66.48 89.61 70.94
KDGCN w/o syntax aware module 78.13 68.34 72.88 68.13 77.49 52.19 87.66 66.74

KDGCN w/o knowleage enhancement 83.13 76.01 76.49 72.38 81.55 58.71 89.61 72.01
KDGCN w/o semantic learning module 83.22 75.35 76.33 73.27 79.89 60.87 89.28 71.96

KDGCN 84.91 78.48 79.00 75.03 82.10 67.13 90.74 73.46
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Figure 4. Results of the ablation study. Different columns show the performance of different models
on different datasets.

4.6. Attention Visualization

To investigate the effectiveness of the knowledge enhancement, we visualized the
attention matrix. In our model, the semantics enhancement is carried out by using the
commonsense from SenticNet. The connection between the aspect and its opinion word is
established and enhanced. The syntax-based GCN also removes the irrelevant information
by encoding the syntax dependency tree. Cases are presented to demonstrate the attention
weight distribution. In the first line of Figure 5 , the attentive weights are assigned based
on a basic multi-head attention mechanism. One can easily see that the minor attention was
given to the opinion word ‘excellent’ of the aspect ‘food’. Likewise, the attention weight
of ‘food’ toward ‘excellent’ was also weakened. With the integration of commonsense
knowledge, the relationships of both ‘food’ and ‘excellent’ to the context word ‘meal’ were
established. That is, the ‘food-meal’ edge and the ‘excellent-meal’ edge can be constructed
by using a top-k selection. As a result, the sentiment information of ‘excellent’ can be
aggregated on the aspect word ‘food’ with the encoding of GCN. Besides, the syntactic-
based GCN, which deals with the syntactic relation among words, also facilitates the
determination of aspect sentiment polarity.

Similarly, from the two figures in the second line, we can see that the aspect word
‘waiter’ established a direct connection with the opinion word ‘helpful’ after knowledge
enhancement. Additionally, from the two figures in the last line, the aspect word ‘sauce’

and the opinion word ‘flavorful’ are connected through the path ‘sauce-dough-flavorful’

after knowledge enhancement, so that the sentiment polarity of the aspect words can be
better predicted after the subsequent network structure.
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Figure 5. An illustration on knowledge-enhancement. (a) Basic attention matrix of the sentence.
(b) Knowledge-enhanced attention matrix of the sentence. The red words are aspect words, the blue
words are opinion words and the black bold words are aspect-expansion words.
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5. Discussion

Through a series of experiments, we can see that our KDGCN performs well on
the ABSA task. Specifically, in the main experiment part (Section 4.4), the accuracy and
F1-score of our model on the four datasets are generally higher than baselines, especially
compared with SK-GCN [14], which also uses SenticNet for knowledge enhancement;
our improvement was 2–5%. In the ablation study, we removed the semantic learning
module, the syntax aware module and so on, which proves that semantics and syntax are
both important for ABSA tasks. In addition, after removing the knowledge enhancement
module, the model performance also decreased significantly on the four datasets, indicating
that our knowledge enhancement facilitates ABSA tasks.

Moreover, we also found the limitations of our model. Take DMGCN [11] and the
use of the glove encoder as an example—KDGCN’s improvement on Lap14 was not as big
as that on rest14 (0.52% and 0.93%, respectively). This may be because most of the Lap14
datasets are proper nouns (such as Windows 7 and Microsoft), and they do not have obvious
emotional clues. Different from it, most of the words in Rest14 are daily words, so the
sentiment information is rich and can be further enhanced through SenticNet. In order to
obtain more semantic information and deeper connections, large-scale knowledge graphs
can be introduced into the ABSA task in future work.

6. Conclusions

In this work, we propose a knowledge-enhanced dual-channel graph convolutional
network to deal with the ABSA tasks. A semantic-based GCN and a syntactic-based
GCN are devised to encode both the sentence semantics and the syntax. On the one
hand, the external commonsense knowledge is introduced to enhance the semantics, based
on which more attention is assigned to the aspect and its relevant words. On the other
hand, the syntactic-based GCN processing on the syntax dependency tree further filters
the low-dependency words. We demonstrate the effectiveness of our method on four
benchmark datasets, obtaining state-of-the-art results on both accuracy and macro-F1.
Comparing with the baseline models, the proposed method is the best alternative that
produces results considerably better than the widely-applied approaches in ABSA. In the
ablation experiment, we tested the contribution of each module to the model and verified
that our innovation is effective. In addition, we also carried out a case analysis to further
intuitively demonstrate the role of knowledge enhancement in promoting our task.

However, SenticNet is a small-scale knowledge base with shallow and limited se-
mantics, which limits the performance of the model. Therefore, future work can consider
exploring the use of a larger scale knowledge graph (such as Wikipedia) to enhance the
knowledge of ABSA tasks, which can provide more clues to predict the sentiment polarity
of the aspect.
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Abstract: In this paper, we propose an unsupervised anomaly detection method based on the Au-
toencoder with Long Short-Term Memory (LSTM-Autoencoder) network and Generative Adversarial
Network (GAN) to detect anomalies in industrial control system (ICS) using cyber–physical fusion
features. This method improves the recall of anomaly detection and overcomes the challenges of
unbalanced datasets and insufficient labeled samples in ICS. As a first step, additional network
features are extracted and fused with physical features to create a cyber–physical dataset. Following
this, the model is trained using normal data to ensure that it can properly reconstruct the normal data.
In the testing phase, samples with unknown labels are used as inputs to the model. The model will
output an anomaly score for each sample, and whether a sample is anomalous depends on whether
the anomaly score exceeds the threshold. Whether using supervised or unsupervised algorithms,
experimentation has shown that (1) cyber–physical fusion features can significantly improve the
performance of anomaly detection algorithms; (2) the proposed method outperforms several other
unsupervised anomaly detection methods in terms of accuracy, recall, and F1 score; (3) the proposed
method can detect the majority of anomalous events with a low false negative rate.

Keywords: deep learning; anomaly detection; cyber–physical; industrial control systems

MSC: 68T09

1. Introduction

In recent years, cyberattacks have caused significant damage to industrial production
and national infrastructure [1]; the Stuxnet virus swept the global industry in 2010 and
was able to carry out targeted attacks on infrastructure, with Iran suffering the most
severe effects [2]. In 2015, a malicious program called BlackEnergy affected multiple
substations in the Ukrainian power sector [3]. Many Ukrainian government agencies and
companies were attacked by the ransomware NotPetya in 2017, which ultimately caused
havoc worldwide [4]. A serious disaster can also result from the failure of hardware or
software within an ICS as well as threats from the Internet. Globally, ICS security incidents
occur frequently.

In order to secure ICS, anomaly detection is a promising approach [5]. It is usually
physical faults or network attacks that cause anomalous events to occur in ICS. Sensors,
actuators, pipelines, and other industrial equipment may malfunction due to physical
faults. A network attack refers to an attack on a communication channel, host, or process
control system, such as a man-in-the-middle attack (MITM), a denial of service (DoS), or a
scanning attack. The purpose of industrial sensors is to collect status information (referred
to in this paper as physical information) about the various industrial equipment in the
system and to reflect the physical processes that take place within it. Physical faults have
an impact on the physical operation of the system, but not on its network traffic. This
results in physical faults not being detected by anomaly detection methods based solely
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on network traffic. The physical processes of a system may not necessarily be affected by
some network attacks. Consequently, algorithms that detect anomalies based solely on
physical information are not able to detect these attacks. The use of anomaly detection
algorithms that are based solely on physical information cannot detect network attacks
in a timely manner, since most network attacks against ICS do not immediately cause
the system to enter an abnormal state. Our conclusion is that taking into account both
network traffic information and physical information is an effective way to improve the
detection performance for anomaly detection algorithms that are used in industrial control
systems [6], which has tended to be ignored in past studies.

In the past decade, artificial intelligence (AI) has been rapidly developed and applied
in various fields [7–10]. A number of AI-based approaches have emerged in ICS security,
which can be categorized as supervised and unsupervised algorithms as a result of the
success of AI in traditional IT security [11]. In the past, many anomaly detection algorithms
based on supervised algorithms have been proposed. Although the industrial Internet
continues to develop, attacks from the Internet are emerging in new ways, and supervised
algorithms have a limited ability to detect unknown attacks, making them increasingly
unsuitable for ICS security. As ICS datasets have significant imbalances and abnormal
data are much smaller than normal data, coupled with a lack of sufficient labeled samples,
supervised algorithms are no longer suitable for application in ICS security problems. The
limitations of supervised learning can be overcome by unsupervised algorithms such as
One-Class SVM (OCSVM) [12] and isolation forests [13].

Autoencoder is an unsupervised algorithm that contains an encoder and a decoder [14].
The input X is mapped by the encoder to the latent variable Z, and subsequently Z is
mapped by the decoder to the reconstruction R. The deviation between the input X and the
reconstruction R is called reconstruction error. For autoencoder-based anomaly detection,
the reconstruction error is used to calculate an anomaly score. Detecting anomalies can
be accomplished using autoencoders trained using only normal data. When training a
model, it is assumed that the model will only learn how to reconstruct for normal samples.
During the testing phase, the model may not be able to reconstruct the anomaly sample
well, so the anomaly sample will produce a higher reconstruction error compared to the
reconstruction error of the normal sample. In some cases, small anomalies can lead to small
reconstruction errors, making it difficult to detect small anomalies. Generative adversarial
networks (GANs) may be used to identify small anomalies and amplify reconstruction
errors [15]. Autoencoders and GANs are both unsupervised artificial neural networks, with
the difference being that GANs include an adversarial game mechanism [16]. The goal
of training the generator is to generate data that are as realistic as possible and thus fool
the discriminator (i.e., maximizing the likelihood that the discriminator will be incorrect).
As well as a generator, the GAN contains a discriminator. When training a discriminator,
the objective is to minimize its own error probability, i.e., to be able to distinguish with
high accuracy whether the data are real or generated. Due to the time series nature
of ICS data, individual samples cannot be considered independently. Compared with
ordinary autoencoders, LSTM-based autoencoders [17] have more powerful capability in
reconstructing time series data.

In light of the above issues, the main contributions of this paper include the following:

• Based on the latest public ICS dataset, a method for extracting system network features
is designed for ICS, and the original physical features are fused with additionally
extracted network features to create a cyber–physical dataset with fusion features.

• A model is proposed for unsupervised anomaly detection for ICS based on LSTM-
Autoencoder and GAN, which is evaluated using the cyber–physical dataset. In terms
of precision, recall, and F1-score, the model outperforms several other methods.

• Both supervised and unsupervised algorithms are used to investigate the effects of
additional extracted network features on anomaly detection results. As a result of the
experiments performed in this paper, it has been found that the features extracted
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from the network can significantly improve the performance of the anomaly detec-
tion algorithm.

Acquiring data from industrial sensors is an inherent function of ICS, and ICS network
traffic data can be collected by listening to communication channels. It is feasible to collect
both network data and physical data, and then extract the cyber–physical fusion features.
The massive amount of data generated during the normal operation of the ICS is sufficient
to train the unsupervised model. Without significantly changing the components of the ICS,
the models need to be trained only once to detect anomalies, including various novel attack
methods. It is undeniable that the components of an ICS are fixed for a long time, and the
network topology is not easily changed. Therefore, the unsupervised anomaly detection
model using the cyber–physical fusion features proposed in this paper can help industrial
control systems cope with various cyber and physical threats, attacks, and challenges in a
cost-effective and profitable manner.

In the remainder of this paper, the following sections are presented: Section 2 discusses
related work in the area of anomaly detection of ICS; Section 3 describes the dataset used
in this paper; Section 4 describes the method proposed in this paper; Section 5 describes
the experimental setup and presents the experimental results and analysis; and Section 6
concludes with our future plans.

2. Related Work

It is necessary to detect anomalies in ICS in order to ensure its security. Studies
conducted in the past can be categorized according to their use of physical information or
network traffic, depending on the features selected.

(1) Studies using physical information. Industrial sensors collect physical data such as
water level, temperature, and humidity. Ahmed et al. [18] use the hardware character-
istics of the sensor and the physical characteristics of the process to create a unique
fingerprint for each sensor. In normal operation, noise-based fingerprints are created
and can be used to detect attacks by comparing the differences between the noise
pattern and the fingerprint pattern. According to Lin et al. [19], timed automata can
be used to learn the laws that govern the change of sensor value. Furthermore, sensor
and actuator dependencies are analyzed using a Bayesian network. The method is
capable of detecting anomalies and locating the abnormal sensor or actuator. Indus-
trial sensor data can be analyzed based on their time and frequency characteristics.
In their study, Nguyen et al. [20] developed a method for detecting outliers in time-
frequency data using continuous wavelet transforms. The authors of Zhao et al. [21]
proposed a correlation-based method for detecting anomalies using sensor data and
the correlations between them. Compared with only using sensor data, their method
achieved higher accuracy.

(2) Studies using network traffic. Since ICS networks are more stable than IT networks,
abnormal network traffic usually indicates that the system is being attacked. Network
traffic-based anomaly detection methods can be further divided into packet-based
detection, flow-based detection, and session-based detection [22]. To detect abnormal
behavior in ICS, Song et al. [23] extracted the behavioral sequence data from Modbus
traffic to model the system’s normal behavior, and compared the actual behavioral
data with the model’s predictions. Lee et al. [24] proposed AE-CGAN (autoencoder-
conditional GAN) to oversample rare classes on the basis of the GAN model. It is
able to achieve more accurate performance metrics in the case of significant imbalance
between normal and abnormal traffic. Benaddi et al. [25] used Distributional Rein-
forcement Learning (DRL) and GAN to help distributional RL-based IDS enhance the
detection of minority network attacks and improve the efficiency and robustness of
anomaly detection systems in the Industrial Internet of Things (IIoT). By extracting the
temporal characteristics of the original traffic in the SCADA system, Kalech et al. [26]
proposed a method for detecting network anomalies based on temporal pattern recog-
nition. In order to detect abnormal behavior, Hidden Markov models and artificial
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neural networks are used. A multi-level anomaly detection scheme combining LSTMs
and Bloom filters was proposed by Feng et al. [27] in order to detect malicious traffic
in SCADA datasets. An algorithm for detecting anomalous traffic was proposed by
Zhang et al. [28]. A grayscale image was created by converting the ICS traffic feature
values into grayscale images, and then the model was trained with the resulting
grayscale images, which improved the accuracy of anomaly detection.

According to another perspective, past research can also be divided into supervised
and unsupervised research. The use of supervised machine learning has been demon-
strated in some studies [29,30] as a means of detecting anomalous events or attacks. In
spite of good results, the system was only able to detect known attacks and not unknown
or zero-day attacks. ICS datasets are also often imbalanced, i.e., the anomalous samples are
much smaller than the normal samples, which limits the performance of the supervised
algorithm. Unsupervised or semi-supervised algorithms have been used in other studies
to overcome the limitations of supervised algorithms. According to Kravchik et al. [31],
their algorithm was able to detect 31 out of 36 network attacks using a one-dimensional
CNN-based semi-supervised algorithm. Chang et al. [32] reported that an anomaly detec-
tion framework based on k-means and convolutional autoencoders achieved an F1-score of
0.9373 for water storage tank datasets. An autoencoder-based anomaly detection model was
proposed by Audibert et al. [33], which used the reconstruction error as the loss function
during the training phase and as the anomaly score during the testing phase. An anomaly
is determined when the sample’s anomaly score exceeds a predetermined threshold. Using
an adaptive update strategy based on WGAN-GP, Lu et al. [34] proposed an improved gen-
erative adversarial network that produces fake anomaly samples, improving the accuracy
of anomaly detection. Li et al.’s [35] GAN-based semi-supervised method, MAD-GAN,
utilizes both LSTMs as generators and discriminators to capture the temporal correlation
between time series distributions and potential interactions between variables, and it can
detect anomalies effectively.

Anomaly detection algorithms are designed based on the selection of appropriate
features. In order to detect anomalies in ICS, it is not enough to rely solely on physical
information, but it is also necessary to consider network information. However, there are
some limitations to the above methods due to the dataset. It was found that the datasets
they selected had the following problems: (1) the dataset was not acquired in an ICS
environment; (2) the dataset was nonpublic; (3) the dataset was outdated; and (4) the
dataset was either restricted to physical process data or to network traffic. The authors
in [36] compared the classification performance achieved by the algorithm when only
using network features with that achieved by the algorithm when using physical network
features, demonstrating that the fusion of physical and network information contributes
to improved classification accuracy. The experiment was conducted on four supervised
machine learning algorithms, but unsupervised algorithms were not considered.

Due to the above deficiencies, the following improvements have been made in this paper.

• In terms of the dataset, the latest ICS public dataset WDT [37] is utilized, which
provides data on physical processes and their corresponding network traffic.

• When extracting features, we take into account the physical information and network
traffic of ICS.

• Both supervised and unsupervised algorithms are used in the evaluation of perfor-
mance to determine whether cyber–physical features contribute to the improvement
of anomaly detection.

• An unsupervised anomaly detection model based on LSTM-Autoencoder and GAN is
proposed, which solves the problem of low recall in past anomaly detection models,
and is suitable for the ICS field that does not have sufficient labeled samples.

3. Dataset Description

During the normal operation of the Water Distribution Testbed as well as in the event
of network attacks or physical faults, the dataset used in this study was compiled from four
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acquisitions. In Table 1, each acquisition is represented as a sub-dataset. During the first
acquisition, eight network attacks or physical failures were conducted, resulting in eight
scenarios. In a similar manner, the second and third acquisitions yielded thirteen and seven
scenarios, respectively. As of the time of the fourth acquisition, the system was functioning
normally, without any network attacks or physical faults. In total, physical faults included
two water leaks and six sensors and pumps breakdowns, and network attacks included
eight man-in-the-middle (MITM) attacks, five denial of service (DoS) attacks, and seven
scanning attacks. Figure 1 shows the number and proportion of samples divided into
normal and malicious for each acquisition.

Table 1. Data acquisition and description.

Acquisitions
Description

(Scenario Number: 1.1–1.8, 2.1–2.13, 3.1–3.7)

First
(Attack 1)

phy_att_1.csv, attack_1.pcap
5 MITM attack scenarios. (1.1, 1.3, 1.5, 1.7, 1.8)

3 physical fault scenarios. (1.2, 1.4, 1.6)

Second
(Attack 2)

phy_att_2.csv, attack_2.pcap
7 scan attack scenarios. (2.1, 2.2, 2.3, 2.4, 2.7, 2.9, 2.11)

3 Dos attack scenarios. (2.5, 2.10, 2.13)
2 physical fault scenarios. (2.6, 2.8)

1 MITM attack scenarios. (2.12)

Third
(Attack 3)

phy_att_3.csv, attack_3.pcap
3 physical fault scenarios. (3.1, 3.3, 3.4)

2 Dos attack scenarios. (3.2, 3.5)
2 MITM attack scenarios. (3.6, 3.7)

Fourth
(Normal)

phy_normal.csv, normal.pcap
No attack.

Figure 1. Number and proportion of samples divided into normal and malicious.

This dataset provides both the physical process data and the corresponding raw
network traffic. The physical process data describe the information for the 40 physical
statuses of the system in every second, such as whether the pump is turned on and the
pressure sensor value of the water tank. In addition, the dataset also provides some network
features extracted from raw network traffic data, such as the IP and MAC addresses of
packets. For more detailed information on this dataset, please refer to [37].

4. Methodology

Firstly, we describe how to extract additional network features and fuse them with
the original physical features. Then we formulate the problem, and finally we describe our
proposed anomaly detection model in more detail.

4.1. Extraction and Fusion of Additional Network Features

The physical information collected by industrial sensors alone is not capable of detect-
ing abnormal behavior in time owing to the widespread adoption of traditional information
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technology in ICS, and the damage caused by cyberattacks has a hysteresis. It is there-
fore important to take into account both physical information and network traffic when
extracting features for anomaly detection.

The original physical process datasets have a sampling interval of one second, while
the number of samples collected per second in the original network datasets is over 1000.
By re-extracting the network features from the original network traffic according to the
specifics of the ICS network, we can fuse the physical and network features together and
summarize the situation every second. To enhance the performance of anomaly detection,
22 additional features were extracted from the original dataset. In Table 2, you will find a
list of the new features that have been added.

Table 2. Additional extracted features.

No. Features Description

1 pkt_num Number of all types of packets
2 icmp_pkt_num Number of ICMP packets
3 arp_pkt_num Number of ARP packets
4 tcp_pkt_num Number of TCP packets
5 mb_q_num Number of MODBUS request packets
6 mb_r_num Number of MODBUS response packets
7 avg_pkt_size Average packet byte size
8 avg_payload_size Average packet payload byte size
9 mb_q_avg Average MODBUS request packet payload byte size
10 mb_r_avg Average MODBUS response packet payload byte size
11 illegal_mac Illegal MAC address appears
12 illegal_ip Illegal IP address appears
13 fc1_pkt_num Number of Modbus packets with function code 1
14 fc3_pkt_num Number of Modbus packets with function code 3
15 fc5_pkt_num Number of Modbus packets with function code 5
16 fc6_pkt_num Number of Modbus packets with function code 6
17 fin_flag_num Number of packets with FIN in the TCP flag
18 syn_flag_num Number of packets with SYN in the TCP flag
19 rst_flag_num Number of packets with RST in the TCP flag
20 psh_flag_num Number of packets with PSH in the TCP flag
21 ack_flag_num Number of packets with ACK in the TCP flag
22 stage Stage of the current moment in a process cycle

In addition, a feature named stage is added, which describes the stage of the current
moment in the process cycle, and its value range is (0,1]. Taking the fourth acquisition as an
example, there are a total of 3423 sampling points, including 12 complete process cycles. As
shown in Figure 2, in each process cycle, the water level of Tank_1 gradually increases from
0 to the maximum value, and then gradually decreases to 0 and maintains for a period of
time. Correspondingly, the value of stage is gradually increased from 0 to 1 and maintained
for a period of time.

The architecture of additional feature extraction and fusion is shown in Figure 3. For
each row (sample) in the original physical dataset, its sampling time is time t (e.g., 09/04/2021
11:30:55). All packets with time t are aggregated from the network traffic corresponding to
this physical dataset, and the features described in Table 2 are extracted from those packets.
Subsequently, the newly extracted features are fused with the original physical features to
form a cyber–physical dataset. Some incomplete data were deleted, which were mainly
concentrated in the first and last part of the dataset. The reason for the incomplete data is
that when the original physical dataset is acquired, the corresponding original network
dataset has not yet been acquired or the acquisition has been completed. The information
of the finally formed cyber–physical dataset is shown in Table 3.
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Figure 2. Changes of stage value and Tank_1 water level during process cycle.

Figure 3. Additional network feature extraction and fusion architecture.

Table 3. Cyber–physical dataset after feature fusion.

Dataset Number of Samples and Features

net_phy_att_1.csv (2409, 62)
net_phy_att_2.csv (2092, 62)
net_phy_att_3.csv (1248, 62)
net_phy_norm.csv (3421, 62)

Total samples 9170

4.2. Problem Formulation

In this paper, a dataset with sample number T is considered a multivariate time series
TS of length T. xt is a vector consisting of all physical features and network features at time
t, and the number of features is m.

TS = {x1, x2, . . . , xT}(xt ∈ Rm, 1 ≤ t ≤ T) (1)

In order to make better use of the correlation between observations at the current
moment and previous observations, a time window Wt is defined. For each observation,
its correlation with the previous K observations is considered. Therefore, the original time
series TS can be transformed into a time window series W.

W = {W1, W2, . . . , WT}(Wt = {xt−K+1, . . . , xt−1, xt} ∈ RK∗m, 1 ≤ t ≤ T) (2)
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Use the time window series W as the input to the model instead of the raw time
series TS. Before conversion to a time window series, each observation xt in the TS was
normalized by

TSj =
{

xj
1, xj

2, . . . , xj
T

}(
xj

t =
xj

t − min
(
TSj)

ε + max
(
TSj

)
− min

(
TSj

) , 1 ≤ j ≤ m, 1 ≤ t ≤ T

)
(3)

where ε is a very small number in order to prevent zero-division.

4.3. Proposed Model

The proposed model consists of three modules: an encoder network LE using LSTM,
and two decoder networks LD1 and LD2 using LSTM. As can be seen from Figure 4, these
three modules constitute two LSTM-Autoencoders LAE1 and LAE2 that share the encoder
network. The hyperparameters of the model are shown in Table 4. The training of the
model consists of two phases.

 

Figure 4. Proposed model architecture. The proposed model consists of three modules: an encoder
network LE, and two decoder networks LD1 and LD2.

Table 4. Model hyperparameters.

Module Hyperparameter Value

LSTM encoder
Layer of LSTM 1

Input size and hidden size for each layer of LSTM (62, 128)
Dropout 0.2

LSTM decoder1
and

LSTM decoder2

Layer of LSTM 1
Input size and hidden size for each layer of LSTM (62, 128)

Dropout 0.2
Layer of Dense 1

Size of each layer of the Dense (128, 62)
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4.3.1. Phase 1—Input Reconstruction

The goal of this phase is to train LAE1 and LAE2 to reconstruct the input. LSTM-
Autoencoder can reconstruct each time window Wt = {x1, . . . , xK−1, xK}. The time window
Wt is used as the input of the model, and the encoder network LE will output the hidden
variable hK ∈ Rn (n is the number of cells in the LSTM hidden layer). Then, the two
decoder networks will output the reconstructions of Wt (O1 and O2) according to hK and
xK in reverse order, where xK is the last of Wt. Use L2-norm to define the reconstruction
loss for each decoder:

O1 = LAE1(Wt), O2 = LAE2(Wt) (4)

Loss1 = ||Wt −O1||2, Loss2 =||Wt −O2||2 (5)

4.3.2. Phase 2—Adversarial Training

In the second phase, LAE1 and LAE2 are trained adversarially. Put reconstruction O1
as input to LAE2 again and output reconstruction O3. The purpose of training LAE2 is to
hope that it can distinguish whether O3 is the real data or a reconstruction of the output
of LAE1. Conversely, LAE1 is trained to fool LAE2, that is, making LAE2 unable to judge
whether O3 is the real data. The training objective is:

O3 = LAE2(LAE1(Wt)) (6)

min
LAE1

max
LAE2

||Wt −O3||2 (7)

Therefore, the goal of LAE1 is to minimize the distance between O3 and Wt, and the
goal of LAE2 is to maximize this distance, and the loss is defined as follows:

Loss1 = +||Wt −O3||2, Loss2 = −||Wt −O3||2 (8)

Then, the evolutionary loss function is used to combine the losses of the two phases as
the total loss for each LAE.

Loss1 =
1
n
||Wt −O1||2 + (1− 1

n
)||Wt −O3||2 (9)

Loss2 =
1
n
||Wt −O2||2 − (1− 1

n
)||Wt −O3||2 (10)

where n denotes the number of training iterations. The training process of the model can
be seen in Figure 5a. Now define the anomaly score:

AnomalyScore =
1
2
||Wt −O1||2 +

1
2
||Wt −O3||2 (11)

After the training is completed, the model is used to calculate the anomaly scores for
each time window in the normal dataset, and then a threshold is determined based on the
distribution of the anomaly scores. During the testing phase, shown in Figure 5b, for each
unseen time window, the trained model will output its anomaly score. When the anomaly
score of a time window is higher than the threshold, the model judges it as an anomaly.
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Figure 5. Proposed model training and testing flow chart. (a) Training flow chart; (b) testing
flow chart.

5. Experiments and Results Analysis

5.1. Experiment Environment and Metrics

The experiments were performed using the following hardware and software plat-
forms: Intel(R) Core (TM) i5-12400 CPU, Windows 10 Professional (64 bits), NVIDIA
GeForce GTX 1650 Super, NVIDIA CUDA 11.1, Python 3.7.13, Pytorch 1.8.2, Python Scikit-
learn library 1.0.2.

The proposed model is evaluated using recall, precision, F1-score, and accuracy. TP, TN,
FP, and FN represent true positive, true negative, false positive, and false negative, respectively.

Recall =
TP

TP + FN
(12)

Precision =
TP

TP + FP
(13)

F1− score = 2× Recall × Precision
Recall + Precision

(14)

Accuracy =
TP + TN

TP + FP + FN + TN
(15)

5.2. Dataset

The dataset needs to be divided differently for supervised and unsupervised algorithms.
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5.2.1. Dataset for Supervised Algorithms

In this paper, the datasets are organized chronologically, with each cyberattack or
physical fault lasting for a period of time, corresponding to multiple consecutive samples.
When the dataset is shuffled and then divided, some samples from an abnormal event will
be placed in the training set, and the remainder will be placed in the testing set. As a result,
the model is able to achieve a higher accuracy on the testing set, but this is an illusion [36].
As a result, all samples will be either divided into training sets or testing sets, depending
on the scenario. Divide 85% of the normal data into the training set and the rest into the
testing set. For the anomaly scenarios, scenario 1.1–1.6, 2.1–2.7, 3.1–3.3 are divided into the
training set and the rest are divided into the testing set. Use min–max to normalize the
data, and the information of the dataset is shown in Table 5.

Table 5. Dataset information for supervised algorithms.

Label Training Set Testing Set

Normal 5848 1864
Physical fault 426 385

MITM 358 126
DoS 67 89
Scan 5 2
Total 6704 2466

5.2.2. Dataset for Unsupervised Algorithms

The fourth acquisition (no anomalies) is used as the training set to train the model. The
other three acquisitions (with anomalies) were used as testing sets to evaluate the model.

5.3. Experiments of Using Supervised Algorithms

Three supervised machine learning algorithms were used for training and testing:
random forest (RF), support vector machine (SVM), and naïve Bayes (NB). Use Random-
ForestClassifier, SVC, and GaussianNB in the Python Scikit-learn library to implement the
above algorithm, and the hyperparameters for all of the above algorithms are generated by
Python Scikit-learn library 1.0.2 defaulted.

The experimental results are shown in Table 6. All three algorithms achieve poor
performance when only using physical features. The best performance is achieved by RF,
but its F1 score is only 0.28. When using cyber–physical features, the performance achieved
by all three algorithms is greatly improved, with F1 scores exceeding 0.87. The results show
that the additionally extracted network features can significantly improve the anomaly
detection performance of the supervised algorithm.

Table 6. Performance of three supervised machine learning algorithms.

Algorithm
Physical Features Cyber–Physical Features

F1 P R A F1 P R A

RF 0.257 0.754 0.155 0.777 0.907 1.000 0.831 0.958
SVM 0.126 0.764 0.068 0.763 0.895 1.000 0.809 0.953
NB 0.196 0.276 0.151 0.690 0.878 0.982 0.795 0.945

5.4. Experiments of Unsupervised Algorithms
5.4.1. Performance of the Proposed Model

Consider two situations, one using only physical features and another using cyber–
physical features. Table 7 shows the performance achieved by the proposed model in the
above two situations. In addition, the anomaly scores of the three test sets obtained by the
model in the above two situations are shown in Figures 6 and 7, respectively. Cyberattacks
and physical faults are marked in red and blue, respectively, in the figure.
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Table 7. Performance of the proposed model.

Acquisition
Physical Features Cyber–Physical Features

F1 P R A F1 P R A

Attack 1 0.574 0.574 0.574 0.657 0.827 0.827 0.826 0.860
Attack 2 0.292 0.293 0.292 0.730 0.646 0.646 0.645 0.865
Attack 3 0.029 0.143 0.016 0.667 0.692 0.957 0.542 0.851

Sum 0.425 0.479 0.382 0.686 0.758 0.800 0.720 0.860

Figure 6. Anomaly scores for the proposed model (using only physical features).

When using only physical features, the model performed poorly on all test sets.
Conversely, when combining additionally extracted network features, the performance is
greatly improved on each test set. We believe that the reason for the poor results obtained
by physical features alone is that there are some network attacks that do not affect the
physical state of the system too much, so the model fails to detect these network attacks.
For the network attack scenario, the anomaly score given by the model for anomalous time
points is significantly higher than that for non-anomalous time points, indicating that the
model can easily detect network attack events. For physical fault scenarios, the anomaly
scores given to anomalous time points are not very significant, but are sufficient to detect
most physical fault events.
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Figure 7. Anomaly scores for the proposed model (using cyber–physical features).

Due to the continuous increase in the degree of impact of an attack or fault on the
system, it may not cause immediate damage to the system at the beginning, resulting in
false negatives. Furthermore, it may still take some time for the attacked system to return to
normal after the attack has ended, which may result in false positives. An example would
be Scenario 1.6, which simulates the rise of the water level in Tank 3 as a result of a leak in
the pipeline. A graph of the water level in Tank 3 over time is shown in Figure 8a. Figure 8b
shows the corresponding anomaly scores, as well as the time period during which the
fault occurred (scenario 1.6). While the water level rose initially, it was consistent with
the normal rise in the tank’s level. In this period, the anomaly score does not exceed the
threshold, and the model considers it to be a normal period. Persistent faults cause the
water level to exceed the normal level and continue to rise. As a result, the anomaly score
for this period gradually increases and exceeds the threshold. Upon the resolution of the
fault, the water level begins to decline, which is reflected in the anomaly score as well.
Nevertheless, the water level remains above the normal level for a period of time after
the faults have been resolved, so the anomaly score remains above the threshold, and the
model still considers the system to be abnormal.

Figure 9a shows the changes of the water levels of Tank 1 and Tank 5 over time, and
Figure 9b shows the corresponding anomaly scores. The time periods of the three fault
scenarios are marked by red, green, and blue, respectively. Scenario 3.1 simulates a fault
that pauses the transfer of water from Tank 1 to Tank 5. Scenario 3.3 simulates a fault
by closing the Tank 5 outlet valve, thus achieving a slowdown in the flow of water from
Tank 5. Scenario 3.4 simulates a fault that suspends the transfer of water from the reservoir
to Tank 1. None of the above three faults caused the water level to exceed the normal level,
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so none of the anomaly scores exceeded the threshold and the model considered the system
to be in a normal state.

Figure 8. Scenario 1.6. (a) Water level in Tank 3; (b) anomaly score.

Figure 9. Scenario 3.1, 3.3, 3.4. (a) Water level in Tank 3 and Tank 5; (b) anomaly score.

5.4.2. Comparison with Other Unsupervised Algorithms

This section compares the performance of OCSVM [12], Isolation Forest (iForest) [13],
USAD [33], and the proposed model. This paper implements USAD based on the author’s
GitHub repository. Both One-Class SVM and Isolation Forest are provided by the Python
Scikit-learn library and use default parameters.

As can be seen in Table 8, the proposed model outperforms several other algorithms.
OCSVM and iForest achieved a high recall rate, but too many false positives resulted in
a low F1 score. Compared with the first two algorithms, the F1 score of USAD has been
greatly improved, but the recall rate is lower. Low recall means that there are more false
negatives, meaning that the model does not effectively detect anomalies, which is fatal for
anomaly detection systems. As shown in Figure 10, USAD is able to detect most network
attacks, but it is almost incapable of detecting physical faults. In contrast, the proposed
model can detect most physical faults. The experimental results show that for the ICS
anomaly detection task, the model proposed in this paper can achieve better performance.
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Table 8. Performance comparison of the proposed model with other methods.

Methods F1 P R A

OC-SVM 0.489 0.324 0.999 0.364
iForest 0.484 0.341 0.834 0.458
USAD 0.622 0.632 0.613 0.774

Proposed model 0.758 0.800 0.720 0.860

 

Figure 10. Anomaly scores for USAD (using network and physical features).

5.5. Ablation Experiments

The LSTM autoencoder in the proposed model is replaced by the standard autoencoder,
BiLSTM autoencoder, and GRU autoencoder, and their hyperparameters are shown in
Table 9. We removed the adversarial training phase from the proposed model, which
is hereafter referred to as the proposed model with no adversarial training. The same
training settings were set for the above models: the batch size is 32, the window size is
3, the optimizer is Adam, the learning rate is 0.001, the max epoch is 100, and the initial
parameters are generated by Pytorch-1.8.2 defaulted.
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Table 9. Three autoencoder hyperparameters.

Category Hyperparameter Value

Standard
autoencoder

Encoder

Layer of Dense 2
Size of the Dense

(W means window size)
(62 × W, 128)

(128, 64)
Dropout, Activation function 0.1, ReLu

Decoder

Layer of Dense 2
Size of the Dense

(W means window size)
(64, 128)

(128, 62 × W)
Dropout, Activation function 0.1, ReLu

BiLSTM
autoencoder

Encoder

Layer of BiLSTM 1
Input size and hidden size for each

layer of BiLSTM (62, 128)

Dropout 0.2
Layer of BiLSTM 1

Decoder

Input size and hidden size for each
layer of BiLSTM (62, 128)

Dropout 0.2
Layer of Dense 1

Size of each layer of the Dense (128, 62)

GRU
autoencoder

Encoder

Layer of GRU 1
Input size and hidden size for each

layer of GRU (62, 128)

Dropout 0.2
Layer of GRU 1

Decoder

Input size and hidden size for each
layer of GRU (62, 128)

Dropout 0.2
Layer of Dense 1

Size of each layer of the Dense (128, 62)

5.6. Discussion

As shown in Table 6, with the addition of network features, the accuracies of RF,
SVM, and NB improved from 0.777, 0.763, and 0.690 to 0.958, 0.953, and 0.945, respectively,
and the F1 score, precision, recall, and accuracies of the proposed model improved from
0.425, 0.479, 0.382, and 0.686 to 0.758, 0.800, 0.720, and 0.860, respectively. This is due
to the existence of some network attacks, such as scanning attacks, which only generate
some anomalous network traffic data, but do not have a substantial impact on the physical
conduct of the system. Therefore, the fusion of network traffic data and physical sensor
data definitely helps to improve the anomaly detection capability.

Compared with other unsupervised algorithms, the unsupervised anomaly detection
model proposed in this paper has better performance. As shown in Table 8, the USAD
model achieves a recall of only 0.613 when using cyber–physical fusion features, while the
proposed model can improve the recall to 0.720, with a performance improvement of about
17.5%. As can be seen from Figures 7 and 10, the USAD model gives anomaly scores for
normal and abnormal data that are not very different in general, which means that it does
not reconstruct normal data perfectly and therefore cannot clearly distinguish between
normal and abnormal samples. In contrast, the proposed model gives a large difference
in the abnormal scores for normal and abnormal data, which indicates that the model can
detect abnormalities well.

Table 10 depicts the performance of the standard autoencoder, BiLSTM autoencoder,
GRU autoencoder, the proposed model (LSTM autoencoder), and the proposed model
with no adversarial training, and Figure 11 shows the time they need to consume for one
training. It can be seen that the standard autoencoder achieves the fastest training speed as
well as the highest recall rate, but its precision and F1 scores are the lowest. This means that
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the model identifies numerous normal data as abnormal. The BiLSTM autoencoder took
more time to train, but the improvement in performance was marginal. The time cost of
training the GRU autoencoder is slightly lower than the time cost of training the proposed
model, but the performance of the GRU autoencoder is much worse than the proposed
model. It achieves a recall of 0.618, while the proposed model achieves a recall of 0.72,
which we believe is worth the small time cost to obtain such a significant improvement.
As shown in Figure 12, the model is able to reduce the loss earlier and with smaller loss
values when adversarial training is performed. Furthermore, when adversarial training
is removed, the recall decreases from 0.72 to 0.652, which is sufficient to demonstrate that
adversarial training based on generative adversarial networks is indeed able to identify
small anomalies by amplifying the reconstruction error.

Figure 11. Training time for proposed model and other models.

Figure 12. Loss with adversarial training and without adversarial training.
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Table 10. Performance comparison of LSTM autoencoder with others.

Category F1 P R A

Standard autoencoder 0.568 0.414 0.903 0.581
BiLSTM autoencoder 0.767 0.843 0.703 0.870

GRU autoencoder 0.729 0.888 0.618 0.860
LSTM autoencoder
(proposed model) 0.758 0.800 0.720 0.860

Proposed model with no
adversarial training 0.730 0.828 0.652 0.853

6. Conclusions

Given the special characteristics of ICS networks, we designed a method to extract
network features. Based on the latest publicly available ICS dataset, the network features
are extracted using the previously mentioned method, and then an ICS cyber–physical
dataset is created. The anomaly detection algorithm obtained by training with this fused
feature has better performance. In addition, we propose an unsupervised anomaly detection
method based on LSTM-Autoencoder and GAN. The results of the ablation experiments
show that using LSTM as an autoencoder is the optimal choice, and adversarial training
based on GAN can also help the model to detect more anomalies.

This paper uses a dataset acquired in ICS using only the Modbus TCP protocol, but
other protocols such as S7 and EtherNet/IP exist in the global industry. Our future work
will investigate a more effective and compatible method for detecting ICS anomalies based
on a more comprehensive dataset.
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Abstract: The large-margin technique has served as the foundation of several successful theoretical
and empirical results in multi-label image classification. However, most large-margin techniques
are only suitable to shallow multi-label models with preset feature representations and a few large-
margin techniques of neural networks only enforce margins at the output layer, which are not well
suitable for deep networks. Based on the large-margin technique, a deep large-margin rank loss
function suitable for any network structure is proposed, which is able to impose a margin on any
chosen set of layers of a deep network, allows choosing any �p norm (p ≥ 1) on the metric measuring
the margin between labels and is applicable to any network architecture. Although the complete
computation of deep large-margin rank loss function has the O(C2) time complexity, where C denotes
the size of the label set, which would cause scalability issues when C is large, a negative sampling
technique was proposed to make the loss function scale linearly to C. Experimental results on two
large-scale datasets, VOC2007 and MS-COCO, show that the deep large-margin ranking function
improves the robustness of the model in multi-label image classification tasks while enhancing the
model’s anti-noise performance.

Keywords: image classification; large-margin technique; deep neural network; robustness; anti-noise
performance

MSC: 68T01

1. Introduction

Multi-label image classification (MLiC) aims to predict a set of visual concepts present
in an image, which is one of the most important problems in computer vision. It can be
widely applied to numerous real-world applications, such as scene recognition [1,2] or
medical diagnosis [3,4]. In contrast with single-class or multi-class image classification,
which only allows each image associated with a unique class label from a set of disjoint
class labels, MLiC allows the images to be associated with more than one class label. MLiC
is thus more general and realistic than the other tasks and such a generality makes it more
difficult than them.

To cope with this task, one approach is called problem transformation, which trans-
forms the multi-label learning problem into several binary classification problems or multi-
class classification problems. Representative algorithms include binary relevance [5] and
random k-labelsets [6]. Another approach is called algorithm adaptation, which adapts pop-
ular learning techniques to deal with multi-label data directly. Representative algorithms
include ML-kNN [7] and Rank-SVM [8]. Conventionally, most of them use handcrafted
features for image classification, such as SIFT [9], histogram of oriented gradients [10] and
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local binary patterns [11]. Inefficient feature representation may limit the performance of
traditional methods in multi-label image classification tasks.

Motivated by the success of deep neural networks, some approaches combine deep
representation learning and multi-label learning into an end-to-end trainable system. By
dividing the original multi-label classification problem into multiple independent binary
classification tasks, convolution neural network (CNN) can be applied naturally. However,
this kind of method ignores label correlations, which has promoted research into deep
learning methods to capture and explore label correlations. RNN-CNN [12] and ML-
GCN [13] are two typical representatives of this kind of method. Some new approaches
tend to explore label correlations, ref. [14] designed the label correlation term defined on
some anchor data, and ref. [15] proposed a novel framework with local feature selection
and local label correlation.

For simplicity, most deep MLiC classifiers adopt binary cross-entropy (BCE) loss
function for training. Training such a deep multi-label image classifier requires collecting
clean multi-label annotations for a large number of images, which is costly or even impossi-
ble in real-world applications. Therefore, even slight label perturbations may reduce the
performance of traditional deep MLiC classifiers. The large-margin technique, maximiz-
ing the distance of each training point to a decision boundary, can effectively solve this
problem [16]. Specifically, if the classifier reaches the boundary of γ, that is, the decision
boundary is at least γ away from all training images, then any input perturbation less than
γ will not flip the predicted label. For deep MLiC classifiers, the conventional definition
of the margin is based on output values. However, the input margin is often of more
practical interest. For example, a large-margin in the input space implies immunity to input
perturbations. However, the margin in the input space is computationally intractable for
deep MLiC classifiers.

To address the aforementioned issues, a novel deep large-margin rank loss function
(DlmRl) for MLiC task is proposed. By treating the activations at each intermediate layer
of the deep MLiC classifier as an intermediate representation of the image, DlmRl is
able to impose a margin on any chosen set of layers of a deep network. The margin
between labels can be measured by choosing any �p norm (p ≥ 1), which applies to any
network architecture and provides more practicability. Although the complete computation
of DlmRl has the O(C2) time complexity, where C denotes the size of the label set, we
propose the negative sampling technique to make our loss function scale linearly to C.
Experimental results on VOC2007 and MS-COCO show the effectiveness of our approach.
Our contributions are three-fold:

(1) In this paper, a novel deep large-margin ranking loss for multi-label image classifi-
cation tasks is designed, which can be applied between any layers of the deep network, the
implementation of which is more flexible and compatible, thus enhancing the universality
of the deep network;

(2) The proposed method quantifies the interval by an arbitrary �p norm (p ≥ 1)
to achieve a measurable margin. The metric enhances the controllability of the labels,
improves the confidence of the label data, and therefore strengthens the comprehensibility
and trustworthiness of the deep network.

(3) We propose a negative sampling technique applied to the large-margin loss in
multi-label image classification tasks. This negative sampling technique greatly reduces
the complexity of operations and therefore improves the performance of DlmRl operations.

2. Related Works

2.1. Multi-Label Image Classification

Deep convolutional neural networks have made great progress on the MLiC task.
Some works embed label dependencies with the deep model to improve the accuracy of
MLiC. A popular method is to use recurrent neural networks (RNNs) [17] or long short-
term memory (LSTM) [18] to model the label dependencies. However, its performance
depends on the label order. Recent works use graph neural networks (GNNs) to explicitly
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model label dependencies. For example, the works [13,19,20] utilized GNN to propagate
the dependencies to learn inter-dependent classifiers.

Some works mainly focus on learning deep attentional representations for each label
by treating an image as multiple images sampled from different regions. For example,
ref. [21] introduced a max pooling layer that hypothesizes the possible location of the label
in an image. Ref. [22] research on capturing the proximity and geometric structure of
k-nearest neighbors. Ref. [23] combined the global average pooling with class activation
maps to enable the localization ability of CNN. Ref. [24] proposed a new activation function
to output the sparse probabilities of each label. Ref. [25] generated class-specific features for
every category by proposing a simple spatial attention score. Ref. [26] unite similarity-based
learning and generalized linear models to achieve the best of both worlds.

Recent works exploit the label noise property of the multi-label problem. For example,
ref. [27] proposed a robust logistic loss function to train CNNs from user-provided tags.
Ref. [28] exploited the potential connections between noisy labels and feature contents
to identify the noisy labels. Ref. [29] proposed a curriculum learning strategy to predict
missing labels. Ref. [30] proposed a loss function that measures the smoothness of labels
and features of images on the data manifold to handle training data with noise labels.
Although good performance has been achieved, these methods all add specific noisy-label-
processing terms to the traditional multi-label loss function, e.g., BCE with logits loss
(bce) [31]. In this paper, we aim to propose a plug and play loss, which performs well on
MLiC tasks and is also robust to label noise.

2.2. Large-Margin Classification

The large-margin technique plays a key role in many machine learning algorithms.
Traditional large-margin algorithms are designed for shallow models and have good
interpretability. Support vector machine (SVM) [32] is a well-known large-margin technique,
which tries to separate the training examples of different classes with a maximized margin.
The margin provides good support to the generalization performance of SVM and has also
been extended to interpret the good generalization of many other learning algorithms, such
as AdaBoost [33].

In the context of deep neural networks, the large-margin technique has also shown
potential performance. Ref. [34] encouraged large-margin solutions of cross-entropy loss
by additional terms, however, these terms encourage margins only at the output layer of a
deep neural network. Ref. [35] demonstrated that deep networks can attain a max-margin
solution by their proposed regularizer, however, the regularizer may not be robust to the
deviation of data. Ref. [16] formulated a loss function that directly maximizes the margin at
any layer, including input, hidden and output layers. Its formulation is general to margin
definitions in different distance metrics (e.g., �1, �2, and �∞ norms), and thus is relatively
robust to data disturbances. Inspired by this large-margin loss formulation, we proposed a
large-margin rank loss for the MLiC task, which inherits the good properties, and shows
the effectiveness on three large-scale MLiC datasets.

3. Method

3.1. Notations

The goal of MLiC task is to find all labels of an image. Suppose we have N training
images I1, . . . , IN , as well as observe their label vectors {yi}N

i=1, where yk = [yk
1, . . . , yk

C] ∈
Y ⊆ {−1, 1}C, C denotes the number of labels. For a given image Ik and label c, yk

c =
1(resp.− 1) indicates the presence (resp. absence) of the label c in image k. Let Pk and Nk
denote the positive labels and the negative labels in yk.

3.2. Large-Margin Ranking Loss

The above tasks can be converted to solve optimization problems to learn deep predic-
tion models f (I; θ) ∈ RC with parameter θ by solving an optimization problem [36].
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min
θ

1
N

N

∑
k=1

l
(

f (Ik; θ), yk
)
+R(θ) (1)

where l
(

f (Ik; θ), yk
)

is a loss function and R(θ) is a regularization term. Let f i
c denote the

prediction score of a deep network for classifying the image i to label c.
Multi-label pairwise ranking loss aims to produce a label vector for image Ik, whose

values for positive labels Pk are greater than those for the negative labels Nk, i.e., fu(Ik) >
fv(Ik), ∀u ∈ Pk, vs. ∈ Nk,

lrank = ∑
v∈Nk

∑
u∈Pk

max(0, α + fv(Ik)− fu(Ik)) (2)

where α is a hyper-parameter that determines the margin, commonly set to 1 [31].
Although pair-wise ranking loss has achieved state-of-the-art results on various bench-

marks of MLiC, it only encourages margins at the output layer of a deep neural network.
We propose that the input margin is more robust to input perturbations and is thus often of
more practical interest.

Specifically, a model of MLiC with a margin of δ is robust to perturbations Ik + δ,
where sign( fv(Ik)− fu(Ik)) = sign( fv(Ik + δ)− fu(Ik + δ)), for ∀u ∈ Pk, vs. ∈ Nk. sign(·)
is a sign function, in mathematics and computer operations, which takes the sign (positive
or negative) of a number. For instance, the example shown in Figure 1 expresses the goal of
our task.
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Figure 1. As shown in the above figure, the left side represents the prediction value of image (Ik)
obtained through the prediction model, and the right side represents the predicted value of the image
with perturbations (Ik + δ) obtained through the prediction model. The positive labels in the clean
image include: umbrella, rain coat, car and person; negative labels include trunk and sunglasses. We
hope that our model is robust to perturbations Ik + δ. For example, the car is the positive label in the
real predicted value. After the perturbations are added, the predicted value of the car is still higher
than that of negative labels.

To this end, a deep large-margin ranking loss for MLiC, i.e., DLmRl, is proposed,
which is able to impose a margin on any chosen set of layers of a deep network, allowing
to choose any �p norm (p ≥ 1) on the metric measuring the margin between labels and is
applicable to any network architecture. We define the ranking boundary between any pair
of labels {u, v}, where u ∈ Pk, v ∈ Nk, as

D{u,v} �
{

Ik | f k
u = f k

v

}
(3)

Under this definition, the distance of an image Ik to the ranking threshold is defined
as the smallest displacement of the point that results in a score tie:

d f ,Ik ,{u,v} � min
δ

‖δ‖p

s.t. fu(Ik + δ) = fv(Ik + δ)
(4)

The exact computation of d is intractable when f s are nonlinear, ref. [16] presented an
approximation to d by linearizing f with respect to δ around δ = 0.
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d̃ f ,Ik ,{u,v} � min
δ

‖δ‖p

s.t. f k
u +

〈
δ,∇Ik f k

u

〉
= f k

v +
〈

δ,∇Ik f k
v

〉 (5)

According to [16], this problem then has the following closed form solution:

d̃ f ,Ik ,{u,v} =

∣∣∣ f k
u − f k

v

∣∣∣∥∥∇Ik f k
u −∇Ik f k

v
∥∥

q
(6)

where ‖ · ‖q is the dual-norm of ‖ · ‖p. Specifically, if distances are measured with respect
to l1, l2, or l∞ norm, their dual norms will, respectively, be l∞, l2, or l1 norm.

We start with a triple set (Ik, u, v) and penalize the displacement of Ik to satisfy the
margin constraint for f k

u > f k
v . This implies using the following loss function:

max
{

0, γ + d f ,k,{u,v}sign
(

f k
v − f k

u

)}
(7)

where the sign(·) adjusts the polarity of the distance. The intuition is that, if the constraint
f k
u > f k

v is already satisfied, then we only want to ensure it has distance γ from the ranking
threshold, and penalize proportional to the distance d f ,k,{u,v} it falls short, so the penalty
is max{0, γ − d}. However, if it is not satisfied, we also want to penalize the label for not
being correctly ranked. Hence, the penalty includes the distance Ik which needs to travel to
reach the ranking threshold as well as another γ distance to travel on the correct side of the
ranking threshold to attain the γ margin. Therefore, the penalty becomes max{0, γ + d}.
For image Ik, we aggregate individual losses arising from each u ∈ Pk and v ∈ Nk to obtain
the DlmRl formulation, i.e.,

�DlmRl = ∑
u∈Pk ,v∈Nk

max
{

0, γ + d f ,k,{u,v}sign
(

f k
v − f k

u

)}
(8)

Plugging (6) into (8), the loss function becomes:

∑
u∈Pk ,v∈Nk

max

⎧⎨⎩0, γ +

∣∣∣ f k
u − f k

v

∣∣∣sign
(

f k
v − f k

u

)
∥∥∇Ik f k

u −∇Ik f k
v
∥∥

q

⎫⎬⎭ (9)

This further simplifies into the following loss formulation:

∑
u∈Pk ,v∈Nk

max

{
0, γ +

f k
v − f k

u∥∥∇Ik f k
u −∇Ik f k

v
∥∥

q

}
(10)

In deep networks, the activations at each intermediate layer could be interpreted as
some intermediate representation of the data. To force the entire representation and ranking
thresholds to maintain a large-margin, the loss formulation can be defined based on any
intermediate representation and the ultimate ranking thresholds.

Thus, the loss formulation (10) can impose a margin on any chosen set of layers of a
deep network (including input and hidden layers) by replacing the input with its interme-
diate representations. It can be adapted as below to incorporate intermediate margins:

∑
u∈Pk ,v∈Nk

max

{
0, γ +

f k
v − f k

u
ε +

∥∥∇hl
f k
u −∇hl

f k
v
∥∥

q

}
(11)

where hl denotes the output of the lth layer (h0 = I), γl is the margin enforced for its
corresponding representation, and ε is used to prevent numerical problems.

3.3. Negative Sampling

The complete calculation of the loss involves P× N pairwise comparisons, thus having
the O(C2) time complexity. This can cause scalability issues when C is large. To make the
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loss scale linearly to C, we sample at most t pairs from the Cartesian product. Denoting
this by φ(Ik; t) ⊆ Pk ⊗ Nk, the DlmRl loss formulation becomes

∑
φ(Ik ;t)

max

{
0, γ +

f k
v − f k

u
ε +

∥∥∇hl
f k
u −∇hl

f k
v
∥∥

q

}
(12)

We set t = 100 by default, which achieves a better performance in most cases.

4. Discussion

We evaluate our method on the VOC2007 [37] and the MS-COCO [38] datasets. For
each dataset, we use the standard training/test sets. To evaluate the performances, we show
the results for the mean average precision (MAP) [39] and the instance-centric mean average
precision (MiAP), which are standard multi-label classification metrics. We compare our
DlmRl loss against different loss functions in three scenarios: (a) full-image labels, where
only a subset of the images are labeled, but the labeled images have the annotations for all
the categories; (b) partial labels [29], where all the images are used but a subset of images
only have one positive label; (c) noisy labels [40], where the categories of all images are
labeled but some labels are wrong. The experiments are carried out on a single NVIDIA
V100 GPU.

4.1. Implementation Details and Baselines

All the deep models used in our experiments are implemented in PyTorch. ResNet-101
is employed as our classification network, whose weights were pretrained in ImageNet
for single-label image classification as the initialization and fine-tune the weights of all
layers. Note that we prefer a suitable CNN to more advanced frameworks to focus on
the advantages of DlmRl rather than to show state-of-the-art results. We use a stochastic
gradient descent (SGD) optimizer for model training with an initial learning rate of 0.1.
When the validation loss stops decreasing for 5 epochs, the learning rate delays to one tenth.
We stop training when the learning rate drops to 0.0001, which takes less than 20 epochs in
most cases.

Since our loss function can be used in a variety of multi-label scenarios, only the
traditional classical loss function without complex regularization terms as a comparison
method is fair to us. In the experiments, we compare our Dlrml loss against two classic
loss formulations, i.e., BCE with Logits Loss (bce) [31] and MultiLabel SoftMargin Loss
(slm) [41], whose formulations are shown below:

�bce = −
C

∑
c

yk
c log σ

(
ŷk

c

)
+
(

1− yk
c

)
log
(

1− σ
(

ŷk
c

))
(13)

and

�slm = −∑
c

yk
c log

(
(1 + exp(ŷk

c))
−1
)
+ (1− yk

c) log

(
exp(−ŷk

c)

(1 + exp(−ŷk
c))

)
(14)

4.2. Results on VOC2007 Dataset

VOC2007 is a widely used multi-label image classification dataset. It has 9963 images
and 20 classes, in which the training set has 5011 images and the test set has 4952 images.

Full labels: We randomly sample a subset of the standard training set for training.
The proportion is between 10% (10% of training images are used) and 100% (all training
images are used). The results of ResNet-101 using different loss functions are shown in
Figures 2 and 3, from which we can see: (1) as the number of training samples increases,
the performance of all models improves gradually; (2) Our method performs slightly worse
than the bce method when only 10% of the training data are available, but this can be
viewed as the cost of learning more robust feature representations. As the training data
increase, the performance of the DlmRl method is able to maintain the highest level, which
is due to the fact that the margin plays a lesser role when the amount of data is small than

476



Mathematics 2022, 10, 4584

when the amount of data is large, illustrating that our method can effectively improve
accuracy when dealing with large-scale data, as it can impose the margin in a large amount
of data, which is more advantageous compared to other methods in dealing with large
amount of data.

Figure 2. The figure shows the MAP score (%) of three different loss methods on VOC2007 with full
labels. The orange line indicates the accuracy rate using BCE with Logits Loss (bce): the red line
indicates the accuracy rate using MultiLabel SoftMargin Loss (slm); and the blue line indicates the
accuracy rate using our DlmRl.

Figure 3. The figure shows the MiAP score (%) of three different loss methods on VOC2007 with
full labels. The orange line indicates the accuracy rate using BCE with Logits Loss (bce); the red line
indicates the accuracy rate using MultiLabel SoftMargin Loss (slm); and the blue line indicates the
accuracy rate using our DlmRl.

Partial labels: We generate an extreme partial dataset by keeping only one positive
label per image. The simulation copes with extreme single-label datasets in reality, e.g.,
ImageNet. If the image has more than one positive label, we randomly select one positive
label among the positive labels and switch the other positive labels to negative labels. The
proportion of partial images in the standard training set is between 10% (10% of training
images only have one positive label) and 90% (90% of the training images only have one
positive label). The performances of different loss functions on the partial dataset are
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shown in Figures 4 and 5, from which we can see that: (i) As the proportion of partial
training samples increases, the performance of all loss functions degrade gradually. (ii) The
performance of bce loss function drops the fastest and the performance degradation of our
loss function is the slowest. (iii) When the fraction exceeds 30%, the performance of our
loss function is consistently better than other loss functions. This shows that our DlmRl
can cope with extreme datasets very well. In a dataset with almost all single labels, our
method has an extremely good performance compared to other methods, which shows
that DlmRl has excellent robustness in dealing with datasets with sparse labels. Due to the
good robustness of DlmRl to extreme datasets, it is possible to only label the main items of
the images when labeling them realistically.

Figure 4. The figure shows the MAP score (%) of three different loss methods on VOC2007 with
partial labels. The orange line indicates the accuracy rate using BCE with Logits Loss (bce): the red
line indicates the accuracy rate using MultiLabel SoftMargin Loss (slm); and the blue line indicates
the accuracy rate using our DlmRl.

Figure 5. The figure shows the MiAP score (%) of three different loss methods on VOC2007 with
partial labels. The orange line indicates the accuracy rate using BCE with Logits Loss (bce): the red
line indicates the accuracy rate using MultiLabel SoftMargin Loss (slm); and the blue line indicates
the accuracy rate using our DlmRl.
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Noisy labels: In this experiment, we randomly choose, for each training image,
whether to flip its positive/negative label to the other label. The fraction of such flipped
labels range from 5% to 20% in increments of 5%. An increment of 5% means that the 5%
of labels are wrong during training, while 95% of other labels are clean. The performance
of different loss functions on the partial dataset are shown in Table 1, Compared with bce,
we observe a substantial improvement in the MAP of 1.98%, 5.07%, 7.41% and 9.85% for
the 5%, 10%, 15% and 20% ratio of noisy labels, respectively. from which we can see that:
(i) Under all noise ratios, DlmRl is consistently more robust than other methods. (ii) As the
noise ratio increases, the performance of DlmRl only slightly decreases. (iii) As the noise
ratio increases, the performance of slm degrades the fastest, which reveals the limitation of
the traditional large-margin technique.

Table 1. MAP and MiAP score (%) of different methods on VOC2007.

Methods Noisy Ratio 5% Noisy Ratio 10% Noisy Ratio 15% Noisy Ratio 20%

bce (MAP) [31] 88.79 85.50 82.83 80.05
slm (MAP) [41] 88.70 85.48 83.13 79.96
DlmRl (MAP) 90.77 90.57 90.24 89.90

bce (MiAP) [31] 94.74 93.28 91.69 89.82
slm (MiAP) [41] 94.70 93.19 91.68 89.94
DlmRl (MiAP) 95.96 95.68 95.00 94.77

4.3. Results on MS-COCO Dataset

MS-COCO Microsoft is widely used for segmentation, classification, detection and
captioning. We use COCO-2014 in our experiments, which has 82,081 training images
and 40,137 validation images and 80 object classes. Due to the large scale of this dataset,
we conduct only one experiment for each of the three labeled scenarios, i.e., full label,
partial label and noisy label. The ratios in the full, partial and noisy label scenarios are
randomly set to 10%, 10% and 5%, respectively. From Table 2, we can see that DlmRl can
achieve comparable performance against its counterparts on the full labels scenario, but
significantly better performance than them on the partial and noisy label scenarios.

Table 2. MAP and MiAP score (%) of different methods on MS-COCO.

Methods Training Ratio 10% Particle Ratio 10% Noisy Ratio 5%

bce (MAP) [31] 65.53 74.16 75.90
slm (MAP) [41] 65.29 74.21 75.87
DlmRl (MAP) 65.25 74.83 75.99

bce (MiAP) [31] 84.12 87.00 88.11
slm (MiAP) [41] 84.05 87.10 88.03
DlmRl (MiAP) 84.12 87.68 88.15

4.4. Ablation Study

In this subsection, we conduct experiments to study the effect of different hyper-
parameters or components of our loss function on the VOC2007 dataset. To discuss the
effect of one hyper-parameter, we conduct experiments on its different values, but keep
other hyper-parameters or components fixed.

Figures 6 and 7 show the effect of γ with values in {101, 102, 103, 104}. The penalty
includes the distance that Ik needs to travel to reach the ranking threshold as well as another
γ distance to travel on the correct side of the ranking threshold to attain the γ margin.
As can be seen, the performance of different values is very similar, so the classification
performance is not very sensitive to γ.
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Figure 6. The figure shows the effect of γ on the MAP score using our DlmRl.

Figure 7. The figure shows the effect of γ on the MiAP score using our DlmRl.

Figures 8 and 9 show the effect of ε with values in {10−1, 10−2, . . . , 10−6}. As can be
seen, a small value of ε is very important. When the value is small enough, the classification
performance will only change slightly. The ε is used to prevent numerical problems. This
experimental result is reasonable. When the value of ε is too small, the maximum margin
represented by Formula (12) will be too large, and when it exceeds a certain range, the
effect of our DlmRl will not be displayed.

The architecture of ResNet-101 consists of four blocks from bottom to up, i.e., Block1,
Block2, Block3 and Block4, as well as two fully connected layers. To analyze the effect of
imposing a margin on different hidden neural network layers, we conduct experiments
on the four different blocks of ResNet-101, respectively. Figures 10 and 11 show the
experimental results. As can be seen, it achieves the best MAP score and MiAP score by
imposing a margin on Block4.

Figures 12 and 13 show the effect of q with values in {1, 2, ∞}. As can be seen, the
classification performance is sensitive to this parameter and q = ∞ is the best.
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Figure 8. The figure shows the effect of ε on the MAP score using our DlmRl.

Figure 9. The figure shows the effect of ε on the MiAP score using our DlmRl.

Figure 10. The figure shows the effect of imposing a margin on different blocks on the MAP score
using our DlmRl.
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Figure 11. The figure shows the effect of imposing a margin on different blocks on the MiAP score
using our DlmRl.

Figure 12. The figure shows the effect of q on the MAP score using our DlmRl.

Figure 13. The figure shows the effect of q about MiAP score which using our DlmRl.
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According to the above analysis, in the experiments described previously, we set
γ = 103, ε = 10−6, q = ∞ and impose large margin on Block4 of ResNet-101 by default.

5. Conclusions

In this paper, we have proposed a novel loss, i.e., DlmRl, for a MLiC task. It is a plug
and play loss, and is thus applicable to any network architecture. In contrast to a traditional
large margin, the ranking loss encourages only margins at the output layer of a deep neural
network, so the proposed loss formulation imposes a margin on any chosen set of layers of a
deep network and allows choosing any �p norm (p ≥ 1) on the metric measuring the margin
between labels— showing a far more flexible and compatible implementation. We design a
negative sampling technique to make it more computationally efficient, thus addressing the
scalability issues brought by full computation. Experiments on the VOC2007 dataset and
the COCO dataset have verified that our DlmRl is better than other methods by applying
a margin to the input layer, and our computational efficiency has been greatly improved
thanks to the introduction of negative sampling technology. Extensive experiments show
that our loss formulation is more robust than traditional loss formulations of MLiC.
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Abstract: The purpose of cross-domain sentiment classification (CDSC) is to fully utilize the rich
labeled data in the source domain to help the target domain perform sentiment classification even
when labeled data are insufficient. Most of the existing methods focus on obtaining domain transfer-
able semantic information but ignore syntactic information. The performance of BERT may decrease
because of domain transfer, and traditional word embeddings, such as word2vec, cannot obtain
contextualized word vectors. Therefore, achieving the best results in CDSC is difficult when only
BERT or word2vec is used. In this paper, we propose a Dual-word Embedding Model Considering
Syntactic Information for Cross-domain Sentiment Classification. Specifically, we obtain dual-word
embeddings using BERT and word2vec. After performing BERT embedding, we pay closer attention
to semantic information, mainly using self-attention and TextCNN. After word2vec word embedding
is obtained, the graph attention network is used to extract the syntactic information of the docu-
ment, and the attention mechanism is used to focus on the important aspects. Experiments on two
real-world datasets show that our model outperforms other strong baselines.

Keywords: cross-domain sentiment classification; word embedding; GAT

MSC: 68T50

1. Introduction

Sentiment classification is an important task in natural language processing, and
it can help people make better decisions in daily life [1,2]. Over the past few decades,
many machine learning methods have been introduced for classification tasks, such as
logistic regression, collaborative representation, support vector machines, and neural
networks [3–7]. With the development of the internet, a large number of user comments
and other texts containing sentiment have been generated from different domains. However,
the classical sentiment classification methods require that the training and testing data
come from the same domain [8,9]. In addition, the training of deep networks relies on
a large amount of labeled data, but texts in many domains lack sufficient labeled data.
Cross-domain sentiment classification (CDSC) is a promising direction that can make full
use of the rich labeled data in the source domain to assist the target domain with the lack
of labeled data for sentiment classification.

Traditional word-level vector representations, such as word2vec [10], glove [11],
and fastText [12], can use a single vector to represent all possible meanings of a word.
This method results in providing the same representation for words that express different
sentiment polarities in various domains. In recent years, pre-trained language models,
such as ELMO [13] and BERT [14], have been widely used in natural language processing
(NLP) tasks because they can obtain contextualized word embedding. Notably, BERT
has achieved state-of-the-art results on many NLP tasks because of its strong language
understanding capabilities. In cross-lingual tasks, multilingual BERT (mBERT) can share
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part of its representation space between languages [15]. In addition, the mBERT language
model has the ability to transfer syntactic knowledge cross-lingually, and can embed the de-
pendency parse tree of sentences cross-lingually [16]. This shows that Bert parse trees have
a strong ability to perform different tasks. However, some problems occur with directly
fine-tuning BERT in CDSC tasks [17]. One of the pre-training tasks of BERT is to randomly
MASK off 15% of the words, and when the words are filled back, various domains may
fill back different words. In addition, because no labeled data exist in the target domain,
fine-tuning only by the labeled data in the source domain reduces the performance because
of different training and test distributions. Therefore, using BERT or word2vec only to
obtain word vector embeddings in CDSC is insufficient. On the other hand, many current
models aim to learn transferable semantic information in CDSC to predict the sentiment
polarity of the target domain. However, in addition to semantic information, syntactic
information is equally important. Therefore, extracting transferable syntactic information
is important for CDSC tasks to better help target domain sentiment classification.

To solve the above problems, we propose a dual-word embedding model considering
syntactic information for CDSC. The model performs dual-word embedding through BERT
and word2vec to obtain rich word embedding information. Different from most previous
models that only consider semantic information, we adopt dual-channel to obtain transfer-
able semantic information and syntactic information. Semantic information is obtained by
self-attention and TextCNN. Syntactic information is obtained through the graph attention
network so that the aspects in the sentence can obtain syntactic information [18]. Then,
the attention mechanism is used to pay attention to important aspects so that the syntactic
information of aspects can play a role. Finally, domain-invariant features are obtained
through adversarial training. The contributions of our study can be summarized as follows:

• A CDSC method is proposed using BERT and word2vec to obtain dual-word embeddings;
• Dual-channel feature extraction and adversarial training to obtain transferable seman-

tic and syntactic information;
• Extensive experiments are conducted on two real-world datasets, and experimental

results show that our model achieves better results compared to other strong baselines.

2. Related Work

2.1. CDSC

CDSC aims to utilize the source domain with rich labeled data to help sentiment clas-
sification in the target domain without labeled data. The traditional CDSC method needs to
manually select pivots. Blitzer et al. [19] proposed the structural correspondence learning
(SCL) method. The most frequently used words in both domains are good predictors of
source domain labels, so they select the set of pivot features that appear most frequently
in both the source and target domains. Pan et al. [20] proposed spectral feature alignment
(SFA) for CDSC. They want to associate the source domain with the target domain by
aligning pivots with non-pivots. However, manually obtaining domain-invariant features
through these traditional methods is a time-consuming and expensive process. With the
rise of neural networks in recent years, many scholars have explored the application of deep
learning in CDSC tasks. Among them, the domain adversarial neural network (DANN) [21]
is explored to learn domain-invariant features in the min-max game between the domain
classifier and the feature extractor through adversarial training. Li et al. [22] proposed a
hierarchical attention transfer network (HATN) that can automatically capture pivots and
non-pivots through hierarchical attention and auxiliary tasks. Zhang et al. [23] designed an
interactive attention transfer network (IATN) that applies interactive attention to CDSC,
considering the influence of aspects in sentences. Yang et al. [24] proposed a dual-channel
mutual learning domain adaptive model. In recent years, BERT has been gradually ap-
plied to CDSC because of the advantages of the BERT pre-training model. Du et al. [17]
designed a domain-aware BERT (BERT-DAAT) to apply BERT to unsupervised CDSC
tasks. Du et al. [25] designed a Wasserstein-based transfer network (WTN) to obtain rich
domain-invariant features. Fu et al. [26] paid closer attention to the intra-domain structure,
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and they proposed domain adaptation with a contractible difference strategy. The success-
ful application of the attention mechanism improves classification accuracy substantially.
However, it is difficult to obtain syntactic information using attention. In this paper, we
consider adding a graph attention network to obtain transferable syntactic information.

2.2. Graph Attention Work

Graph neural networks have received extensive attention from scholars in recent years
because these networks allow the use of deep learning frameworks on graph structure
data [27–30]. At present, many mature neural network models can work on regular network
structures. Since the graph convolutional neural network (GCN) [31] was proposed as a
deep convolutional learning paradigm for graph structure data, it has filled the gap in the de-
velopment of deep learning for processing such data. To capture the dependencies between
discontinuous and long-distance words in a document, Vashishth et al. [32] used GCN to
characterize the dependency tree for each sentence in the document. However, the im-
portance of each node in the graph should be different, and a graph convolutional neural
network cannot deal with this situation. Therefore, some researchers have introduced
the idea of attention mechanism into the graph convolutional neural network. Veličković
proposed [33] graph attention network (GAT), which mainly improves GCN by using
the attention mechanism to aggregate the characteristics of discriminated neighbor nodes.
Therefore, compared with GCN, GAT can better handle dynamic graphs. Huang et al. [18]
used GAT to establish dependencies between words. Although it is common to use GCN
or GAT to obtain syntactic information in single-domain tasks, few people extract syntactic
information in CDSC tasks.

2.3. Word Embedding

Word vector representations transform words in natural language into a form that the
computer can recognize and understand [34]. We can obtain word vector representations
by using word embedding methods, such as word2vec and glove. Nguyen et al. [35]
applied a word2vec embedding model to construct a semantic vector for the plot content
of each movie. Wang et al. [36] trained their personality classification model on a shared
potential feature space by predictive text embedding. Naderalvojoud [37] et al. proposed
two methods to create sentiment-aware word embeddings, improving on the pre-trained
word embedding of the word2vec and gloVe models.

In recent years, BERT has received a lot of attention because it can learn contextualized
word representations. BERT is a bidirectional variant of the multilayer transformer, which
further integrates bidirectional representations. Jawahar et al. [38] revealed elements of the
English language structure learned by BERT. They also demonstrated that BERT captures
phrase-level information at the low layers, syntactic features at the intermediate layers,
and semantic features at the high layers. In addition, the information at lower layers is
diluted at higher layers. In this paper, we combine word2vec and BERT to obtain rich word
vector information. In addition, in order to prevent the low-layer information from being
diluted at the high-layer, we use the weighted sum of all layer information of BERT as the
input vector.

3. Methodology

In this section, we introduce the framework of DWE in technical detail. First, we
describe the problem and provide a model structure. Then, the training strategy is detailed.

3.1. Problem Definition

In the task of CDSC, we are given two domains, Ds and Dt, which denote a source
domain and a target domain, respectively. A set of labeled data {Xs, Ys} is used in Ds,
where {Xs, Ys} =

{
xs

i , ys
i
}Ns

i=1 presents Ns labeled samples in Ds. We also have a set of

unlabeled data {Xt} in Dt, where {Xt} =
{

xt
i
}Nt

i=1 presents Nt unlabeled samples in Dt.
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The goal of the CDSC task is to utilize the source domain with rich labeled data to assist
the target domain lacking labeled data for sentiment classification.

3.2. Model Structure

As shown in Figure 1, DWE mainly contains three parts: feature extraction module,
domain discriminator, and sentiment classifier. The feature extraction module uses dual
channels to obtain semantic information and syntactic information. The domain discrimina-
tor obtains domain-invariant features. The sentiment classifier uses the softmax activation
function to obtain the probability of the sentiment label.

…

…
…

…
…

…
…

…

Figure 1. Model architecture.

3.3. Feature Extraction

To get rich word embedding information, we use BERT and word2vec to obtain dual
word embedding. After obtaining different word embeddings, a dual channel is formed to
extract transferable semantic information and syntactic information.

3.3.1. Bert Semantic Channel

In this channel, we mainly extract semantic information. We first use BERT to obtain
word vectors. To prevent the loss of some information, unlike in the general final hidden
state using the BERT structure, we apply an approach similar to that by Du et al. [25], using
the weighted sum of all hidden states as the input vector. We define the nth hidden state
of the mth layer as hm

n . We suppose that a document contains S sentences with k words,
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and wi is the ith word of the input document. wi is tokenized to q BPE (byte pair encoding)
tokens wi =

{
b1

i , b2
i , . . . , . . . , bn

i
}

. The word vector obtained by BERT can be defined as

eB
i =

L

∑
m=1

αm · ∑
q
n=1 hm

n
q

(1)

where αm and L are the weight coefficients of layer m and the number of hidden state
layers of BERT, respectively. BiGRU is the variant of BiLSTM, which has the ability to learn
long-term dependencies. We can use BiGRU to build sequential information about words
or sentences. Thus, we then input the word vector into BiGRU to obtain the hidden states

hB
i = BiGRU

(
eB

i

)
(2)

Different words in a sentence have different effects on sentence sentiment because these
words express different semantic information. The attention mechanism can pay attention
to the words that play an important role in sentence sentiment according to attention
coefficient. In this paper, we use self-attention to calculate word-to-word associations in
sentences, which can focus on words that have a stronger impact on sentence sentiment.
Attention scores were calculated as follows:

gB
i = tanh

(
W ∗ hB

i + b
)

(3)

where W and b represent the learnable weight matrix and bias in the network, respectively.
Furthermore, we normalized the attention scores by using the softmax activation

function to generate the attention coefficients αB
i for each word

αB
i =

exp
(

gB
i
)

∑n
i=1 exp

(
gB

i
) (4)

The attention coefficient is combined with the hidden state obtained by BiGRU to
obtain the sentence vector sB

sB =
k

∑
j=1

αB
j · hB

j (5)

where · indicates the element-wise product. After obtaining sentence vectors, TextCNN [39]
is used to further extract important semantic information that mainly includes convolution
layer and pooling layer. First, we input the sentence vector to the convolution layer and the
convolution operation involves the filter wcnn

cB = F
(

wcnn ◦ sB + bcnn

)
(6)

where ◦ represents the convolution operation, bcnn is the bias term, and F is a nonlinear
function such as Relu. Then, max pooling is performed to retain important features. Finally,
dropout prevents overfitting to obtain the sentence representation of the semantic channel.
The relevant formulas are the following:

cB
p = Maxpooling

(
cB
)

(7)

dB = dropout
(

cB
p

)
(8)

3.3.2. Word2vec Syntax Channel

In this channel, we first use word2vec to obtain the word vector representation

ew
i = word2vec(wi) (9)
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Then, input the word vector into BiGRU to extract the sentence representation. The hid-
den output of BiGRU can be expressed as follows:

hw
i = BiGRU(ew

i ) (10)

To obtain syntactic information, the syntax dependency tree of the given sentence
is built in advance, and then the tree structure is converted into a graph structure in
which each node represents a word. Given a dependency graph with N nodes, the node
representation is computed by aggregating the hidden states of the neighborhood. After l
layers of GAT, the last layer outputs the syntactic representation. The output of the ith node
at layer l is defined as gl

i , and g0
i indicates the initial node status, g0

i = hw
i . The node update

process is as follows:
el

ij = leakyRelu
(

αlT
(

Wl
ggl

i‖Wl
ggl

j

))
(11)

αl
ij =

exp
(

el
ij

)
∑k∈N(k) el

ik
(12)

gl+1
i = σ

⎛⎝ ∑
j∈N(i)

αl
ijW

l
ggl

i

⎞⎠ (13)

where Wl
g and αlT

are trainable weight matrices and weight vectors, respectively. ‖ repre-
sents vector concatenation. el

ij is the raw attention score between the ith and jth nodes. N(i)

is the set of all adjacent nodes. αl
ij is the normalized attention weight. σ denotes a Relu

activation function. For simplicity, we can write such feature propagation process as

gl+1
i = GAT

(
gl

i , A, θl

)
(14)

where A is the graph adjacent matrix and θl is the set of parameters at layer l. Finally,
we input the syntactic representation into BiGRU and Attention. BiGRU can build the
long-term dependencies of sentences in a document. Attention mechanism can make the
syntactic information of important aspects in syntactic representation play a more critical
role. Thus, we obtain the final representation of the syntactic channel:

Hw
i = BiGRU(gw

i ) (15)

αw
i =

exp
(
tanh

(
WwHw

i + bw
))

∑n
i=1 exp

(
tanh

(
Ww Hw

i + bw
)) (16)

dw =
k

∑
j=1

αw
j · Hw

j (17)

where αw
i , · , Ww and bw represent the attention weight, the element-wise product, the learn-

able weight matrix, and bias in the network, respectively.

3.3.3. Final Document Representation

The final document representation is obtained by concatenating the document repre-
sentation of the two channels as follows:

d =
[
dB, dw

]
(18)
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3.4. Sentiment Classifier

The ultimate goal of our task is to predict sentiment labels. In this module, we use the
softmax activation function to obtain the sentiment prediction label for the document

y = so f tmax
(
Wyd + by

)
(19)

where Wy and by represent the learnable weight matrix and bias, respectively.

3.5. Domain Discriminator

The purpose of the domain discriminator (D) is to enable the feature extractor (FE) to
learn domain-invariant representations. We consider using adversarial training. The do-
main discriminator tries to find out which domain the document vector comes from, while
the feature extractor aims to deceive the domain discriminator so that it cannot distinguish
which domain the document comes from and achieve the purpose of domain information
transfer. The domain discriminator regards the document representation obtained by the
feature extractor as input and outputs the probability that the document comes from the
source domain. If a document belongs to the source domain, we set ri = 1. For the target
domain, we set ri = 0. To better solve this problem, we introduce a gradient reversal layer
(GRL) that can reverse the gradient direction during training. We can treat the gradient
reversal layer as a pseudo function G(x). Through the domain discriminator, we can obtain
domain-invariant features. Formally, the domain discriminator performs a min-max game
to optimize the parameters ΘFE and ΘD as follows:

d̃ = G(d) (20)

y′d = so f tmax
(
Wdd̃ + bd

)
(21)

ΘFE, ΘD = argmax
ΘFE

min
ΘD

Ldom (22)

Ldom = −
(
ri Iny′d + (1− ri)In(1− y′d)

)
(23)

where Ldom, ΘFE, and ΘD represent the domain loss, parameters of the feature extractor,
and parameters of the domain discriminator, respectively.

3.6. Training Strategy

We apply the cross-entropy loss function to the sentiment classifier to obtain the
sentiment classification loss

Lsen = −
(
y′ Iny + (1− y′)In(1− y)

)
(24)

where y′ represents the ground truth of the sentiment label. Furthermore, we obtain our
total loss function

Ltotal = Lsen + Ldom + ρLreg (25)

Lreg = λ‖θ‖2 (26)

where Lreg, ρ, λ, θ represents the L2 regularization term which can avoid overfitting, reg-
ularization parameter, hyperparameters, and all parameters in the network, respectively.
The regularization term can automatically weaken unimportant feature variables, auto-
matically extract important feature variables from many feature variables, and reduce the
magnitude of feature variables.

4. Experiment

4.1. Datasets

To verify the effectiveness of the proposed model, we used two datasets which are
obtained from Amazon product reviews. Dataset 1 has been widely used in CDSC tasks.
It contains reviews from four different domains: Books (B), DVDs (D), Electronics (E),
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and Kitchen (K). A total of 2000 labeled data are in each domain, consisting of 1000 positive
reviews and 1000 negative reviews. We selected 800 positive and 800 negative reviews in
the source domain as the training data; 1600 in the target domain for domain classification;
and the remaining 200 positive reviews and 200 negative reviews in the target domain as
the test data. Table 1 records the details of Dataset 1.

Dataset 2, constructed by He et al. [40], contains data for three sentiment labels, namely,
positive, neutral, and negative, so this dataset is more convincing. Dataset 2 also contains
data from four domains: Book (BK), Beauty (BT), Music (M), and Electronics (E). Each
domain has two types of data: Set 1 and Set 2. Set 1 is balanced, with 2000 data for each
sentiment label, while Set 2 is unbalanced. For Dataset 2, we choose processing similar to
that used by Du et al. [25], using balanced Set 1 as the training data of the source domain,
and using unbalanced data Set 2 as the training data of the target domain. We selected 1200
reviews from the training set of the source domain as the development set. The balanced
data Set 1 from the target domain is used as the test set. Table 2 presents an overview of
the datasets.

Table 1. Statistics of Dataset 1.

Domain Positive Negative Vocabulary

Books 1000 1000 26,278
DVD 1000 1000 26,940

Electronics 1000 1000 13,256
Kitchen 1000 1000 11,187

Table 2. Statistics of Dataset 2.

Domain Positive Negative Neutral

Book
Set1 2000 2000 2000

Set2 4824 513 663

Beauty
Set1 2000 2000 2000

Set2 4709 616 675

Music
Set1 2000 2000 2000

Set2 4441 785 774

Electronics
Set1 2000 2000 2000

Set2 4817 694 489

4.2. Experiment Setup

In the experiment, we use the common word2vec and BERT to obtain dual-word em-
bedding. First, we use 300-dimensional word2vec vectors as one of the word embeddings,
which are trained on 100 billion words from Google News. Then, we fine-tune it during the
training. We use uniform distribution U (−0.25,0.25) to randomly initialize words outside
the vocabulary. In addition, we use BERT with 12 layers, 768 hidden units, 12 self-attention
heads, and 110 million parameters as another word embedding. The dimension of the
attention vector is set to 200. The dimension of the feature representation in each field
and the maximum word number of every review are set to 200. The weight matrix in the
network is randomly initialized from the uniform distribution U (−0.01,0.01). The dropout
rate is 0.5 to prevent overfitting. The number of GAT layers is set to 3, and Adam algorithm
is used as the optimizer.

4.3. Experimental Results

Following previous studies, we apply the accuracy rate as the evaluation standard.
The accuracy rate is the percentage of correctly classified data in the total data. The best
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results are highlighted in bold. We compare the proposed model DWE with some classic
baselines as follows:

• DANN [21]: The model is trained using the domain adversarial network approach,
including GRL for domain obfuscation;

• AuxNN [41]: The model uses auxiliary tasks for CDSC;
• AMN [42]: The model is based on memory network and the adversarial training

method to obtain domain-invariant features;
• DAS [40]: It uses feature adaptation and semi-supervised learning to improve classi-

fiers while minimizing domain divergence;
• HATN [22]: The hierarchical attention network is used for CDSC, and pivots and

non-pivots features are extracted to assist classification tasks;
• IATN [23]: Interactive attention mechanism is used to connect sentences with impor-

tant aspects;
• WTN [25]: A Wasserstein-based transfer network is used to obtain domain-invariant fea-

tures;
• PTASM [43]: The attention-sharing mechanism and parameter transferring method

are used for CDSC;
• DWE w/o BERT: The BERT word embedding is removed from our proposed model;
• DWE w/o word2vec: The word2vec word embedding is removed from our pro-

posed model.

Table 3 records the classification accuracy of different models on Dataset 1. The results
show that our proposed model DWE achieves the best performance on 11 cross-domain
pairs. Our model outperforms DANN by 12.24%, AMN by 9.64%, DAS by 9.44%, HATN
by 6.74%, IATN by 5.64%, WTN by 1.14%, and PTASM by 0.44% on average. DAS uses
entropy minimization and self-integration methods to refine its classifier, which improves
the experimental results compared with DANN and AMN. The addition of attention has
greatly improved HATN and IATN compared with DAS, reflecting the effectiveness of
the attention mechanism. Both WTN and PTASM have applied BERT to CDSC, which has
been greatly improved compared with previous methods. WTN is based on Wasserstein
distance as a domain discrepancy learning module, while PTASM uses an attention transfer
mechanism and hierarchical attention to improve target domain classification. Different
from previous methods, our proposed model uses dual-word embedding to make up for the
deficiency of single word embedding. Our model also considers both transferable semantic
information and syntactic information, which may be the reason for the improvement of
our model.

Table 3. Classification accuracy of various models on Dataset 1.

S → T DANN AMN DAS HATN IATN WTN PTASM DWE

B → D 0.8330 0.8450 0.8390 0.8590 0.8680 0.9090 0.9012 0.9150
B → K 0.7920 0.8090 0.8220 0.8470 0.8590 0.8840 0.9060 0.9100
B → E 0.7730 0.8030 0.8120 0.8490 0.8650 0.8960 0.9010 0.9075

D → B 0.8050 0.8360 0.8190 0.8600 0.8700 0.9080 0.8990 0.9125
D → E 0.7980 0.8050 0.8160 0.8510 0.8690 0.9150 0.9110 0.9150
D → K 0.8080 0.8160 0.8140 0.8580 0.8580 0.8910 0.9080 0.9100

K → B 0.7490 0.8010 0.8020 0.8260 0.8470 0.9160 0.9210 0.9250
K → E 0.8320 0.8540 0.8590 0.8640 0.8760 0.9190 0.9190 0.9200
K → D 0.7680 0.8120 0.8150 0.8400 0.8440 0.8890 0.9140 0.9150

E → K 0.8380 0.8580 0.8490 0.8760 0.8870 0.9320 0.9170 0.9300
E → B 0.7350 0.7740 0.7970 0.8060 0.8180 0.9010 0.9140 0.9175
E → D 0.7790 0.8170 0.8020 0.8380 0.8410 0.8920 0.9070 0.9075

Average 0.7930 0.8190 0.8210 0.8480 0.8590 0.9040 0.9110 0.9154
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Furthermore, we also compare our proposed model DWE with other baseline models
on Dataset 2 and conduct ablation experiments simultaneously.

Table 4 records the classification accuracy on Dataset 2. We can see that our model
DWE has the best performance among all cross-domain pairs. Our model outperforms
AuxNN by 9.5%, DAS by 6.5%, and WTN by 3.8% on average, which demonstrates the
effectiveness of our proposed model. On the other hand, after removing BERT word
embedding and word2vec word embedding, the average performance decreases by 8.9%
and 1.9%, respectively, which demonstrates the validation of the proposed dual-word
embedding. The possible reason is that the single word embedding causes the model to
lose part of the information, especially after removing the BERT word embedding, where a
large amount of context-related information is lost.

Table 4. Classification accuracy of various models on Dataset 2.

S → T AuxNN DAS WTN
DWE w/o

BERT
DWE w/o
word2vec

DWE

BK → BT 0.478 0.547 0.576 0.5160 0.558 0.588
BK → E 0.482 0.539 0.579 0.504 0.559 0.587
BK → M 0.488 0.535 0.582 0.551 0.587 0.603

BT → BK 0.585 0.633 0.640 0.550 0.643 0.655
BT → E 0.591 0.598 0.631 0.571 0.650 0.654
BT → M 0.536 0.560 0.576 0.534 0.600 0.615

M → BK 0.582 0.608 0.623 0.591 0.686 0.692
M → BT 0.469 0.497 0.545 0.499 0.588 0.595
M → E 0.494 0.529 0.545 0.485 0.583 0.603

E → BK 0.577 0.552 0.588 0.570 0.579 0.646
E → BT 0.544 0.560 0.590 0.544 0.644 0.654
E → M 0.523 0.554 0.561 0.505 0.577 0.592

Average 0.529 0.559 0.586 0.535 0.605 0.624

4.4. Case Study

To demonstrate the role of the proposed DWE model, we selected a piece of data from
BK as our case analysis and compared it with WTN when BT was the source domain and
BK was the target domain. Figure 2 shows the attention weights of the DWE and WTN for
the sample. The darker the color, the higher the attention weight.

Figure 2. Case Study of Book Domain.

Figure 2 shows that the WTN model focuses more on “alot” and “love,” while our
proposed DWE model focuses more on the most important sentiment word “profound”.

494



Mathematics 2022, 10, 4704

The main reason may be that the syntactic module we added allows “profound” and “book”
to establish a syntactic connection, thereby focusing on the more important sentiment word.

4.5. Visualization of Feature Representation

In this section, we visualize the data in two cross-domain pairs, namely, M → BK and
BT → E in Dataset 2. Figure 3 shows the feature representation of M as the source domain
and BK as the target domain. Figure 4 shows the feature representation of BT as the source
domain and E as the target domain.

Figure 3. Visualization of feature representation on M → BK.

Figure 4. Visualization of feature representation on BT → E.

Figures 3 and 4 show that the sample features of two different domains are aligned.
No obvious boundary exists between the two domains, and distinguishing between them
is difficult. This condition shows that the two domains can share the learned feature
representation, and the information from the source domain can be transferred to the
target domain.
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5. Conclusions

In this paper, we proposed a dual-word embedding model considering syntactic
information for CDSC. The dual-word embedding is obtained through BERT and word2vec;
then, the transferable syntactic information and semantic information are obtained by
combining dual channel and adversarial training. Experiments showed that our model
achieved better results on two real-world datasets. In future work, we will apply the model
to cross-domain aspect-based sentiment analysis.
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Abstract: The proliferation of hate speech on the Internet is harmful to the psychological health of
individuals and society. Thus, establishing and supporting the development of hate speech detection
and deploying evasion techniques is a vital task. However, existing hate speech detection methods
tend to ignore the sentiment features of target sentences and have difficulty identifying some implicit
types of hate speech. The performance of hate speech detection can be significantly improved by
gathering more sentiment features from various sources. In the use of external sentiment information,
the key information of the sentences cannot be ignored. Thus, this paper proposes a keyword-
enhanced multiexperts framework. To begin, the multi-expert module of multi-task learning is
utilized to share parameters and thereby introduce sentiment information. In addition, the critical
features of the sentences are highlighted by contrastive learning. This model focuses on both the key
information of the sentence and the external sentiment information. The final experimental results on
three public datasets demonstrate the effectiveness of the proposed model.

Keywords: hate speech detection; contrastive learning; multi-task learning

MSC: 18C50

1. Introduction

With the widespread use of social media and mobile internet platforms, the increasing
speed of online speech and the freedom to publish it have led to the malicious prevalence
of hate speech. Exposure to such language may cause negative effects on the mental health
of victims [1], which may lead to severe social problems. To prevent further negative effects,
authorities need to intervene in detecting hate speech online. Thus, the rapid and accurate
automatic detection of hate speech has become a popular topic of research in the field of
natural language processing. Hate speech detection has gained attention in recent years.

Figure 1 shows an example in which the first sentence contains the hate term fucking
aids which is an obvious form of offensive hate speech, while the second sentence without
obvious hate words or semantics is a positive sentence.

Figure 1. An example sentence from the Ruddit dataset. The offensive score ranges between −1
(maximally supportive) and 1 (maximally offensive).

An approach to hate speech detection using deep learning has been the focus of most
of the research in recent years [2–5]. However, previous research disregarded the sentiment
features of target detection sentences and only used pre-trained models or deeper neural
networks to obtain semantic features. Wang, C. [6] showed that the semantics of hate
speech bear a strong tendency toward negative sentiment. To overcome this problem,
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recent studies have proposed the use of multi-task learning (MTL), which improves the
performance of hate speech detection by using sentiment information [7]. Transfer learning
is the process of transferring generalizable knowledge gained from training data to the
target task. MTL is a type of transfer learning that involves learning several related tasks
simultaneously, allowing these tasks to share information during the learning process, and
utilizing the correlation between various tasks to enhance the model’s performance and
generalization capacity on each task. Kapil, P. [8] proposed a deep MTL framework to
exploit useful information from several related classification tasks to perform hate speech
detection; this framework uses a hard parameter-sharing approach that is prone to negative
transfer. Zhou, X. [9] used multiple feature extraction units to share multi-task parameters
so that the model can perform sentiment knowledge sharing. Then, gated networks were
used to fuse features for hate speech detection. This model employed a soft parameter
sharing method by dividing a single expert into multiple experts, thereby mitigating the
negative transfer problem caused by hard parameters.

Although hate speech detection has achieved good performance in recent years, the
following problems remain: (1) The latest multi-task framework used in hate speech
detection is soft parameter sharing [9], where all experts share all tasks, but the tasks of
hate speech detection and sentiment analysis have both positive and negative correlations.
Positive correlations are parameter relationships that are beneficial to the fit of the primary
task, and conversely, negative correlations are not beneficial. If the negative correlation
parameters between tasks are not separated, some noise occurs as part of the tasks, which
leads to negative transfer. Moreover, when using multiple experts, the simple gated
networks cannot effectively fuse and filter the different information because the experts
have abundant information from different tasks. (2) Current work lacks the ability to
extract critical information (e.g., keywords) from sentences [5]. It cannot effectively identify
different types of hate words, such as profanities, nor identify the association between
certain identity terms and offensive statements. Certain identity terms (especially those
involving minority groups) appear mainly in texts that are offensive [10], such as the
sentence “This is also the reason that so many of Obama’s policies are being overturned/undone,
it’s just because the Black Guy did them.” has no conspicuous hate words, but rather racial
discrimination through the identity term Black.

To solve the aforementioned problems, we propose the following approaches. (1) For

the first problem, we are inspired by the recent progressive layered extraction (PLE)
model [11] and gated network research [12]. We divide feature extraction units (e.g., expert
modules) into a shared part and task-specific parts. This approach strengthens the inde-
pendent features of the tasks themselves and better reduces the negative transfer caused
by weakly correlated task-sharing parameters. Moreover, we design a feature-filtering
gate that can better fuse and filter the information of multiple expert modules. (2) To

solve the second problem, we propose a solution inspired by a recent contrastive learning
model [13]. Our model applies contrastive learning to English hate speech detection by
using a swearing dictionary and an identity term dictionary to construct positive and
negative examples. This result allows the model to be more sensitive to the critical words
so that it can learn the association between various types of hate words or identity term
words and offensive statements. In summary, the contributions of our study are as follows:

• To better examine the interaction between hate and sentiment information, we propose
an MTL model that is more suitable for hate speech detection, which uses shared
experts and task-specific experts to extract features, and finally employs feature-
filtering gates to fuse features.

• Given the lack of use of important word information in previous work, we introduce
contrastive learning to the pre-trained model to enable our model to better identify
keywords in text.

• Experimental results on three baseline datasets demonstrate that our model is effective
in hate speech detection.
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2. Related Work

Recently, researchers have widely studied automatic hate speech detection. In this
section, we review related work on deep-learning-based methods for hate speech detection,
especially MTL-based methods, as well as related work on contrastive learning.

Recently, deep-learning-based approaches have achieved considerable success in hate
speech detection. Ref. [14] proposed a transformed word embedding model (TWEM),
which balances high performance while achieving a simple structure. Ref. [3] proposed a
deep neural network structure (combining CNN and GRU) as a feature extractor to learn
the semantic features of hate speech. Ref. [4] built a large-scale dataset using hate speech
and its reactions and used the pre-trained language model GPT-2 to detect hate speech.
Ref. [5] created the first English Reddit comment dataset with fine-grained, real-valued
scores and used the pre-trained model HateBERT to detect hate speech. Clearly, deep
learning models can extract underlying semantic features of text, which provide the most
direct clues to detect hate speech.

Transfer learning can bring more useful information to hate speech detection, and
common transfer learning methods include multi-task learning and knowledge distilla-
tion [15]. Knowledge distillation aims at knowledge transfer through a wide network
(teachers) to a small network (students). Multi-task learning aims at training multiple
related tasks and sharing information between tasks at the same time. In recent years, some
results have been achieved in the field of hate speech detection using multi-task learning [7].
Ref. [16] proposed a theoretical framework for hate speech type detection that includes
fuzzy multi-task learning. Ref. [17] proposed an MTL approach based on the pre-trained
model BERT for hate speech detection. Ref. [8] proposed a deep MTL framework to
improve the performance of hate speech detection by exploiting useful information from
multiple related classification tasks. Ref. [9] proposed a hate speech detection framework
based on sentiment knowledge sharing. The preceding studies show that MTL can exploit
the relevance between sentiment analysis tasks and hate speech detection tasks, which
improves model performance and generalization in hate speech detection.

In addition, some optimization algorithms [18,19] have recently been proposed to
obtain better classification results and semantic representations, and contrastive learning is
one of them. Contrastive learning aims to learn effective representations by pulling semanti-
cally similar sentences together and pushing dissimilar sentences apart [20]. Several recent
approaches use contrastive objectives to obtain different views from data augmentation
or different copies of the model [21–24]. For example, [24] proposed ConSERT, a Con-
trastive Framework for Self-Supervised SEntence Representation Transfer, which employs
contrastive learning to fine-tune BERT in an unsupervised manner. SimCSE [25] uses the
simplest idea of applying only the standard dropout as noise to obtain different outputs of
the same sentence, thereby forming positive instances. We propose the use of contrastive
learning for hate speech detection, which increases the sensitivity of the model to key
information of the sentence and improves the performance of the task.

3. Methodology

In this section, our model keyword-enhanced multi-expert framework for hate speech
detection (KMT) is presented. This model exploits critical information of the sentence and
external sentiment information to improve hate speech detection.

The general architecture of KMT is shown in Figure 2. The framework consists of
four modules: (1) Textual input module. The bottom of the figure shows the textual input
module, where the pre-trained model BERT or HateBERT is used to encode the input
sentences and generate contextually and semantically integrated input vector x; (2) Multi-

task learning module. The top left of the figure shows the multi-task learning module,
where we use the multi-task learning framework to interact sentiment information and hate
information, and learn the shared features and task-specific features to assist hate speech
detection using sentiment information; (3) Feature-filtering module. Gate of the figure is
the feature-filtering module, which is used to filter and fuse the features outputted by expert
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modules to select the important information of sentiment and hate speech; (4) Contrastive

learning module. The top right of the figure shows the contrastive learning module, which
extracts critical information within the sentences to improve the sensitivity of the model to
sentence keywords. Finally, the MTL and contrastive learning modules are jointly trained.

Figure 2. The overall architecture of our proposed Keyword-enhanced Multi-expert Framework for
Hate Speech Detection (KMT).

Given the input text s = {w1, w2, . . . , wn}, n is the length of the text s. We feed the
sequence [CLS]s[SEP] to the BERT or HateBERT encoder in the Textual input module to
obtain the input vector x with contextual information. Subsequently, x is taken as input to
both multi-task learning module and contrastive learning module. In multi-task learning,
the hate information and sentiment information in x are interacted by shared expert and
task-specific expert modules, the features are then fused and filtered using a feature-filtering
gate, and finally the hate speech detection is performed using the tower containing the
classification layer. In the contrastive learning module, positive and negative examples are
generated by masking x. Subsequently, the model is enabled to focus on key information in
the sentences by bringing x closer to positive examples and away from negative examples.
More details of each module are shown as follows.

3.1. Multi-Task Learning Module

Due to the diversity of language, insulting meanings in many sentences are implicit,
causing difficulty in determining whether a sentence is offensive or not. For example, the
sentence “These guys are all a bunch of pigs.” does not contain an explicitly hateful word, but
the sentence still constitutes hate speech. Although the word pig is neutral, most people
associate it with foolishness and clumsiness. Thus, likening guys with pigs is demeaning to
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the former. The secret to effectively judging sentences is grasping emotional common sense.
The sentence “He’s a fucking good player.” contains the obvious hate word fucking. However,
in this case, fucking is merely an adverb of level used to indicate excitement; hence, the
sentence does not constitute hate speech. From the preceding two examples, we can see
that although hate speech tends to contain hate words, achieving better results in detecting
it by using only the hate information of the sentence itself is difficult. To introduce external
sentiment information, we combine the generic sentiment dataset and then interact the
information from the sentiment dataset and the hate dataset using the MTL approach,
which improves the performance of hate speech detection.

In MTL frameworks, the problem of overfitting is fundamentally reduced due to
extensive use of the shared experts layer structure. However, the effectiveness of the
framework may be affected by the seesaw phenomenon and negative migration problem
because of the differences between tasks and data distribution [11]. Thus, we use the PLE
framework structure [11]. As shown in Figure 2, the model is divided between task-specific
tower structures at the top and expert modules at the bottom. The number of Experts in
each expert module is the hyperparameter to be tuned. Each expert module comprises
numerous sub-networks known as Experts. The shared experts in PLE are responsible
for extracting shared features, while the task-specific experts extract task-specific features.
Each tower network extracts information from the shared experts and its own task-specific
experts. Our expert modules and tower networks consist of feed-forward neural networks.
Specifically, when the model performs gradient backpropagation, it changes the parameters
in the expert modules. As the output of the task-specific expert modules is only passed to
the tower of their own tasks, their parameters are only affected by their own task gradients.
By contrast, the shared expert modules have parameters that are affected by the mixed
gradients of all tasks because the output is passed to the towers of all tasks.

In the MTL module, features are extracted using the shared experts ET
s and the task

k′s specific experts ET
k . Then, the extracted features are concatenated to form Sk(x) as

Equations (1)–(3):
ET

k =
[

ET
(k,1), ET

(k,2), · · · , ET
(k,mk)

]
(1)

ET
s =

[
ET
(s,1), ET

(s,2), · · · , ET
(s,ms)

]
(2)

Sk(x) =
[

ET
k , ET

S

]T
(3)

where x is the input vector, ms and mk are the number of sub-networks in the shared
experts ET

s and task k′s specific experts ET
k , ET

(k,mk)
and ET

(s,ms)
are the sub-networks in

task k′s specific experts and shared experts, respectively. The features Sk(x) of the shared
experts and task k′s specific experts are selectively fused through a feature-filtering gate
(Gate). The filtered features of task k are formulated as Equation (4):

Gk(x) = Gate
(

x, Sk(x)
)

(4)

Lastly, the task k prediction using the tower network is:

Ok(x) = f k
(

Gk(x)
)

(5)

where f k(·) stands for the task k′s tower network, which consists of feed-forward neural
networks as Equation (5).

3.2. Feature-Filtering Module

The multiple expert setting in MTL enables better interaction of affective and hate
information, but because multiple experts have a large amount of information, a structure
is needed for selective fusion. Thus, we are inspired by the research on gating modules [12]
to design a feature-filtering module that not only better fuses the information between
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experts but also reduces the noise. As shown in Figure 2, the input vector x is used as a
selector to obtain useful information on the selected vector (e.g., the output Sk(x) of the
experts) as follows Equations (6)–(9):

gk(x) = Wk
g x (6)

parallel: pk(x) =
Sk(x) · x

x · x
x (7)

orthogonal: ok(x) = Sk(x)− pk(x) (8)

Gk(x) = concat
(

gk(x)ok(x),
(

1− gk(x)
)

pk(x)
)

(9)

where Wk
g ∈ R(mk+ms)d is a parameter matrix, d is the dimension of the input vector, and

gk(x) is the weight vector for task k obtained by a linear transformation. Sk(x) is decom-
posed into an orthogonal component and a parallel component. The parallel component
pk(x) is a projection of Sk(x) onto x, which contains part of the information of x. On the
contrary, ok(x) is orthogonal to x, and therefore contains new information. Specifically, if x
is the hate speech input, pk(x) is the part of Sk(x) that contains hate speech information,
and ok(x) is the part of Sk(x) that contains sentiment information, then Gk(x) represents
the fusion of these two components. gk(x) is used to regulate the composition of both
components to obtain the optimal fusion.

3.3. Contrastive Learning Module

As the pre-trained model lacks the ability to grasp critical word information from sen-
tences, it cannot effectively distinguish between different types of hate words and cannot
identify the relationship between certain identity terms and offensive statements. Currently,
contrastive learning demonstrates excellent ability in acquiring and distinguishing crucial
knowledge by focusing on positive examples and comparing negative examples, which
has resulted in considerable advances in many tasks. Our goal is to make our model more
sensitive to the essential words within a body of text. To this end, we use a contrastive
learning module to focus on the positive examples while pushing the negative ones away,
allowing the model to more effectively distinguish between important and minor infor-
mation. To create a positive example xp, we mask each non-key token representation in
the input vector x as a constant vector m ∈ Rd where this constant is equal to 1e-6. This
method allows the sentence to combine key information and eliminate unimportant words.
To obtain the negative example xn, we simultaneously employ a similar method to mask
the key token representation in x as m.

Thereafter, we model x, xp, and xn separately using the feed-forward neural networks
with the following formulation Equations (10)–(12):

c = f (x) (10)

cp = f (xp) (11)

cn = f (xn) (12)

where f (·) denotes the feed-forward neural networks. We then compute the cosine similar-
ity of the positive and negative examples as follows Equation (13):

sim
(

c1, c2
)
=

cT
1 c2

‖c1‖ · ‖c2‖
(13)
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where sim
(
c1, c2) denotes as sim(c, cp) and sim(c, cn). We follow the contrast module

training objectives developed by [26] as Equation (14):

lcon = −
K

∑
k=1

N

∑
i=1

log
e

sim(ci ,cp)
τ

∑N
j=1

(
e

sim(cj ,c
p)

τ + e
sim(cj ,c

n)
τ

) (14)

where N is the length of a sentence, K is the batch size, and τ is a temperature hyperparam-
eter that is set to 1 in our model.

3.4. Loss Function

In the training process, we jointly train the objectives of the multi-task learning module
and the contrastive learning module. Our training aims to minimize the following total
loss functions as Equation (15):

loss =
n

∑
i=1

λi li + λlcon (15)

where n represents the number of tasks, li is the loss function of each task in the MTL
module, and λ and λi are hyperparameters.

4. Experiments

4.1. Datasets

In our experiments, we employed two sentiment datasets and three public hate speech
datasets. Table 1 displays the statistics of the datasets.

Ruddit [5] It is the first English Reddit comment dataset with fine-grained, real-valued
scores ranging between −1 (maximum support) and 1 (maximum offense).

OffensEval 2019 (Offen) [27] This dataset was published in the evaluation exercise
for SemEval 2019: Task 6. The dataset contains a total of 14,100 tweets. It is divided into a
training set with 13,240 tweets and a test set with 860 tweets. There are 4400 tweets marked
as offensive in the training and 240 in the test.

AbusEval (Abuse) [28] To obtain this dataset, the researchers added a layer of abusive
language annotation to OffensEval 2019. The dataset is the same size as OffensEval 2019,
as well as being divided into a training set of 13,240 texts and a test set of 860 texts.

Reddit Sentiment Analysis (RSA) (https://www.kaggle.com/datasets/cosmos98/twi

tter-and-reddit-sentimental-analysis-dataset [November 2022]) This dataset was pro-
duced as a result of a university study using PySpark to conduct sentiment analysis
across multiple social media networks. The dataset also includes a sentimental label and
approximately 37,000 comments. Since this dataset is an auxiliary dataset for training the
multi-task learning module, we only use the training set.

Tweet Sentiment Analysis (TSA) (https://www.kaggle.com/datasets/dv1453/twitter

-sentiment-analysis-analytics-vidya [November 2022]) This is a tweet sentiment dataset
from Kaggle 2018. This dataset contains more positive tweets and less negative tweets.
This dataset also uses only the training set.

We used Pearson correlation (Pear) and mean square error (MSE) as evaluation met-
rics for the Ruddit dataset and Macro F1 (F1) as evaluation metrics for the Offen and
Abuse datasets.
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Table 1. Statistics of three experimental datasets.

Dataset Total Classes

Ruddit 5828 Score 0–1 (2514)
Score −1–0 (3442)

Offen 14,100 hate (4640)
non-hate (9460)

Abuse 14,100
exp-hate (2129)
imp-hate (798)

non-hate (11,173)

RSA 37,249
neutral (13,142)
negative (8277)
positive (15,830)

TSA 31,962 negative (2242)
positive (29,720)

4.2. Training Details

We use the five-fold cross-validation approach to evaluate the performance of our
model on all three datasets. Referring to [5], we separated the original dataset into five
equal parts, using one copy for testing and used the remaining data for training. To prevent
the problem of data imbalance in multi-task learning, we use the WeightedRandomSampler
approach to sample the data according to the weights. In our experiments, in the MTL
module, the number of subnetworks in share expert is 2, and the number of sub-networks
in the task-specific expert is also 2. Each expert has one layer of dropout, which is 0.1. The
dropout used in the tower network is also 0.1. For the contrastive learning module, the
temperature parameter τ is set to 1. The optimizer is Adam, the learning rate is 2 × 10−5,
and the batch size is 16.

4.3. Comparison with Baselines

We compare our model (KMT) with a number of reliable baselines. The following is a
brief description of the models:

BERT [29] This pre-trained model is mainly used to capture sentence features for the
detection of hate speech.

HateBERT [30] It is a BERT variant that has been specially trained to recognize hate
speech in English. The big dataset RAL-E, which contains Reddit comments from com-
munities that have been banned because of their hateful or offensive speech, was used to
train HateBERT. In the three popular datasets OffensEval 2019 [27], AbusEval [28], and
HatEval [31], HateBERT significantly outperforms the BERT model.

KMT It is our proposed hate speech detection model based on sentence critical infor-
mation and external sentiment information.

The comparison of the entire performance of KMT is shown in Table 2. From the
results in this table, the following conclusions can be drawn:

(1) The performance of HateBERT is much better than that of BERT in the three datasets.
In particular, the performance is significantly improved on the Abuse dataset, which
indicates that HateBERT can better capture the semantic relationships between words
in hate speech and better perform hate speech detection.

(2) Our proposed model KMT obtained good performance on all three datasets. Com-
pared with the current best performing model, the Pearson correlation of KMT in-
creases by 0.006 on the Ruddit dataset, the F1 value of KMT improves greatly by nearly
0.028 on the Abuse dataset. These results illustrate the effectiveness of our method.
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Table 2. Comparative results of KMT and existing methods. Superscript * indicates data obtained
from the literature. The best results for each model are shown in boldface.

Models
Ruddit (Regression) Abuse (3 Class) Offen (2 Class)

Pear ↑ MSE ↓ F1 ↑ F1 ↑
BERT * [5,30] 0.873 ± 0.005 0.027 ± 0.001 0.727 ± 0.008 0.803 ± 0.006

HateBERT * [5,30] 0.886 ± 0.005 0.025 ± 0.001 0.765 ± 0.006 0.809 ± 0.008

KMT (BERT) 0.8764 ± 0.007 0.027 ± 0.0007 0.7882 ± 0.01 0.8028 ± 0.02

KMT (HateBERT) 0.8921 ± 0.006 0.0231 ± 0.001 0.7929 ± 0.01 0.8064 ± 0.01

4.4. Ablation Experiments

We analyze the effect of different modules on the performance of our model. The
results are shown in Table 3, where w/o cl indicates the ablation experiment for contrastive
learning; w/o s indicates that the MTL module is removed and the sentiment dataset is not
used as input to the model; and w/o gate indicates that the feature-filtering gate module is
replaced with simple feed-forward neural network and a softmax layer.

According to the results in Table 3, we find that:

(1) When the contrastive learning module is removed, the performance of the model
on the two datasets decreases the most, indicating that the swear words and certain
identity terms in the sentences are highly correlated with hate speech. The results
show that the contrastive learning module can improve the sensitivity of the model to
keywords and thus improve the performance of hate detection effectively.

(2) When the MTL module is removed, the performance of the model on the three datasets
also decreases, indicating that adding sentiment information can effectively assist the
detection of hate speech.

(3) When the feature-filtering module is replaced with the basic gating network, the
performance also decreases slightly, indicating that our proposed feature-filtering
gates can better achieve the fusion of various expert information and reduce the
influence of noise.

(4) KMT outperforms other models, which directly demonstrates the importance and
effectiveness of sentence critical information and external sentiment information for
hate speech detection.

Table 3. Results of ablation experiments. The best results for each model are shown in boldface.

Models
Ruddit (Regression) Abuse (3 Class) Offen (2 Class)

Pear ↑ MSE ↓ F1 ↑ F1 ↑
KMT w/o cl 0.8879 ± 0.005 0.0246 ± 0.0005 0.7827 ± 0.02 0.7995 ± 0.024
KMT w/o s 0.8907 ± 0.004 0.0234 ± 0.0008 0.7846 ± 0.02 0.7957 ± 0.019

KMT w/o gate 0.8892 ± 0.004 0.0249 ± 0.001 0.7886 ± 0.02 0.8035 ± 0.02
KMT 0.8921 ± 0.006 0.0231 ± 0.001 0.7929 ± 0.01 0.8064 ± 0.01

4.5. Effect of Number of Experts

Each expert module in the multi-task module consists of multiple sub-networks called
Experts. To investigate the effect of the number of respective Experts (e.g., ET

s and ET
k ) in

the shared expert module and task-specific expert module on the performance, we use
1 to 4 Experts on the Ruddit dataset to evaluate our model. As shown in Figure 3, the
model performs best when the shared expert module has two Experts and the task-specific
expert module has two Experts, which justifies the number of experts we choose in the
experimental setup. In addition, the performance of the model is worse when the number
of Experts in the shared expert module is three or four. This result indicates that having a
larger number of parameters does not improve the performance of the model because too
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many parameters may cause the model to be more difficult to train and an extremely large
number of Experts may cause redundant information.

Figure 3. Pear mean value of model with different number of Experts, where the darker color
indicates a higher Pear value.

4.6. Effect of Extraction Network Layer Number

Extraction networks are in the multi-tasking module, and each network consists of
the expert modules and the feature-filtering module (Gate) in Figure 2, which is mainly
used to extract features. To investigate the effect of the number of extraction network layers
on performance, we test the effects of one-layer and two-layer extraction networks on our
model on the Ruddit dataset. According to experience, the number of training parameters
increases with the depth of the network structure. As the results shown in Table 4, the
model performs better when the extraction network is one layer. As the depth of the
extraction network increases, the model performance decreases because when the model
is highly complex, it causes overfitting that the model becomes unstable. Furthermore,
we also compare the overall running time of the two models, performed at the 3090 GPU
setting, as shown in Figure 4. The results illustrate that the overall performance of the
model is improved when the one-layer extraction network is used, besides, the number of
parameters is also reduced due to the reduction in the number of network layers, which
improves the efficiency of the model.

Table 4. Effect of number of extraction network layers

Models
Ruddit (Regression)

Pear ↑ MSE ↓
1 layer 0.8921 ± 0.006 0.0231 ± 0.001
2 layers 0.8731 ± 0.007 0.0283 ± 0.001
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Figure 4. Runtime comparison.

5. Conclusions and Future Work

In this work, we propose a keyword-enhanced multi-expert framework for hate speech
detection. This model can leverage both the external sentiment information and critical
information of the sentence itself. Moreover, this model mainly uses a shared expert
module to share certain parameters of multiple tasks. Through this approach, the model
can more effectively share sentiment information and then fuse features by employing
a feature-filtering gate to detect hate speech. We use contrastive learning for keyword
enhancement, which enables the model to better identify critical information in sentences.
Experiments show that our model, keyword-enhanced multi-expert framework, performs
better on three datasets. Finally, detailed analysis further demonstrates the effectiveness
of our model and the contribution of each module. In future work, we will explore the
portability and generalization of the model and conduct portability experiments across
datasets. Meanwhile, based on this work, we consider adding image information for
multimodal hate detection.
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Abstract: Nowadays, millions of patients suffer from physical disabilities, including lower-limb
disabilities. Researchers have adopted a variety of physical therapies based on the lower-limb
exoskeleton, in which it is difficult to adjust equipment parameters in a timely fashion. Therefore,
intelligent control methods, for example, deep reinforcement learning (DRL), have been used to
control the medical equipment used in human gait adjustment. In this study, based on the key-value
attention mechanism, we reconstructed the agent’s observations by capturing the self-dependent
feature information for decision-making in regard to each state sampled from the replay buffer.
Moreover, based on Softmax Deep Double Deterministic policy gradients (SD3), a novel DRL-based
framework, key-value attention-based SD3 (AT_SD3), has been proposed for gait adjustment. We
demonstrated the effectiveness of our proposed framework in gait adjustment by comparing different
gait trajectories, including the desired trajectory and the adjusted trajectory. The results showed
that the simulated trajectories were closer to the desired trajectory, both in their shapes and values.
Furthermore, by comparing the results of our experiments with those of other state-of-the-art methods,
the results proved that our proposed framework exhibited better performance.

Keywords: deep reinforcement learning; attention mechanism; state reconstruction; gait adjustment

MSC: 03D80; 68Q30

1. Introduction

Regaining the ability to walk is a primary goal of recovery for stroke patients. How-
ever, patients often experience restrictions on their daily communication and freedom
of movement. Therefore, gait rehabilitation is urgently needed for these patients [1]. In
the fields of gait rehabilitation and walking assistance, most lower-limb exoskeletons are
developed for assisting paraplegic patients with disabilities of both of their legs. Through
gait rehabilitation, we can achieve the goal of helping patients with mobility disorders in
the rehabilitation of their musculoskeletal strength, motor control, and gait.

In traditional rehabilitation therapies, intensive labor is involved, and physical thera-
pists have to provide patients with highly repetitive training that is usually inefficient and
time-consuming [2]. The inherent shortcomings of these therapies include their failure to
autonomously adapt to the user’s changing needs, as well as the lack of sensory feedback
that they provide to the user regarding the states of the limb and of the device. Compared
to traditional physical therapies, exoskeleton-assisted rehabilitation has the advantages
of reducing the work of therapists, and it is more convenient to use for quantitatively
assessing the patient’s level of recovery by measuring force and movement patterns [3].
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To date, studies on exoskeleton control methods have achieved remarkable results.
Mendoza-Crespo, Rafael et al. [4] developed and presented a method to acquire and
saliently analyze subject-specific gait data, with the subject donning a passive lower-
limb exoskeleton. In [5], a trajectory tracking controller based on the boundary layer
augmented sliding control (BASMC) law was implemented to guide the subject’s limbs
along physiological gait trajectories. However, patients are normally trained to passively
follow a predefined gait reference trajectory and their initiatives or motivations are usually
not considered in the abovementioned methods. Therefore, adaptive control techniques
and deep reinforcement learning (DRL)-based control methods have been proposed. DRL
can potentially be used for exoskeleton control, and a predefined gait trajectory is not
required. More importantly, interaction between the exoskeleton of the lower extremity
and the patient during rehabilitation can be achieved. Thus, in this study, we focused on
the control of a lower-limb exoskeleton using DRL.

2. Novelty and Contribution of the Study

In this study, in order to achieve the goal of gait rehabilitation and walking assistance,
we simulated an exoskeleton based on the lower-limb musculoskeletal model used in the
2019 NeurIPS “Learning to Move–Walk Around” challenge.

Firstly, we adopted the Markov decision process (MDP) to model the gait adjustment
problem, which provided an intelligent policy for the control of the exoskeleton. Secondly,
in order to solve the curse of dimensionality caused by the complexity of the musculoskele-
tal model, we proposed a DRL-based framework named AT_SD3, which incorporated
key-value attention-based state reconstruction and Softmax Deep Double Deterministic
policy gradients (SD3). Based on the key-value attention mechanism, we presented a
novel state reconstruction framework, in which all sampled sates are used in order to be
fused proportionally with the initial observations, which enables the model to extract the
self-dependent feature information of each sampled state to reconstruct an effective and in-
terpretive state. Then, the DRL agent can select a better action in accordance with the same
policy. Moreover, we used the autoencoder to extract features from the reconstructed state
to solve the curse of dimensionality. Finally, we compared gait trajectories, including the
desired trajectory, the unadjusted trajectory obtained in previous works, and the adjusted
trajectory obtained in this work. The results showed that the adjusted trajectory was closer
to the desired trajectory, in terms of its shape and value, than the unadjusted trajectory, and
the performance of our proposed framework was better than that of other state-of-the-art
DRL algorithms.

The related code and dataset are available at https://github.com/li0516/opensim-rl.
git (accessed on 17 November 2022).

3. Related Works

3.1. Adaptive Control Techniques

Adaptive control techniques utilize dynamics models for both the user and the ex-
oskeleton. Fatai Sado proposed a control strategy that integrated a dual unscented Kalman
Filter (DUKF) for trajectory generation/the prediction of the spatio-temporal features of
human walking and used an impedance-cum-supervisory controller to enable the exoskele-
ton to follow this trajectory in order to synchronize human walking [6]. In order to improve
the control performance, the authors introduced a linear quadratic regulator with integral
action (LQRi) and an unknown input observer (UIO) to compensate for disturbances [7].
In [8], an adaptive oscillator method named the amplitude omega adaptive iscillator
(AωAO), comprising both low-level classifiers (to detect activities) and high-level classifiers
to detect transitions between activities, was proposed to provide bilateral hip assistance for
human locomotion. Sado, F. et al. [9] proposed a exoskeleton controller, with the design of
a low-level linear quadratic gaussian (LQG) torque controller, a middle-level user-input
torque estimator based on the use of a dual extended Kalman filter (EKF), and a novel
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high-level supervisory algorithm for the detection of movement and the synchronization
of the exoskeleton with the user.

3.2. DRL-Based Control Methods

As one of learning-based control methods, Deep Reinforcement Learning (DRL), has
been used in lower limb exoskeletons control. A human–robot interactive control, designed
with Sigmoid function and the reinforcement learning algorithm, was proposed to govern
the assistance provided by a lower limb exoskeleton robot to patients in the gait rehabil-
itation training [10]. In [11], Zhang, Y. et al. proposed a reinforcement-learning-based
impedance controller, which actively reshapes the stiffness of the force-field to the sub-
ject’s performance. In [12], an optimal adaptive compliance control was proposed for a
Robotic walk assist device, where the reinforcement-learning-based strategy is a completely
dynamic-model-free scheme, and this scheme employed joint position and velocity feed-
back as well as sensed joint torque (applied by user during walk) for compliance control.
In [13], Rose, L. et al. presented for the first time an end-to-end model-free deep reinforce-
ment learning method for an exoskeleton that can learn to follow a desired gait pattern,
while considering a user’s existing gait pattern and being robust to their perturbations and
interactions. Oghogho, Martin et al. [14] employed the Twin Delayed Deep Deterministic
Policy Gradient (TD3) method for rapid learning of the appropriate controller’s gain values
and delivering personalized assistive torques by the exoskeleton to different joints to assist
the wearer in a weight handling task. In [15], Kumar, V.C.V. et al. took the Proximal Policy
Optimization (PPO) to develop a human locomotion policy which can imitates the human
walking reference motion. Based on all these achievements above, DRL-based control is
inherently both adaptive and optimal, which can adapt to uncertainty and unforeseen
changes in the robot dynamics [12].

Previous studies have shown that DRL is effective in the lower limb exoskeleton
control. Moreover, with the concept of strengthening the discrimination among all the
similar classes using the specific weights [16], in this paper, we propose a DRL-based
framework, which incorporates a novel DRL algorithm SD3 and the key-value attention
mechanism. Compared with the previous DRL methods, our framework can deal with the
curse of dimensionality caused by the musculoskeletal model with high degree of freedom.
From this perpective, our framework can greatly improve the performance of the DRL
algrithm when a reinforcement learning (RL) agent observes a high dimensional state,
and more importantly, experimental results show that our proposed framework has the
state-of-art performance for the gait adjustment.

4. Preliminaries

4.1. Reinforcement Learning

We usually model the reinforcement learning problem as a MDP. A MDP is a quintuple
(S, A, R, P, γ), where S is the state space, A is the action space, R is the reward function, P is
the transition probability distribution and γ is the discount factor. At time step t, the agent
selects and executes an action at ∈ A according to the policy π, which maps from the state
s to the probability of an action a. Then, the environment moves to a new state st+1 ∈ S,
where st+1 is determined from the transition probability P(st+1|st, at). Simultaneously, the
agent receives the immediate reward rt+1 ∼ R(st, at). The dynamic diagram of the agent
interaction with the environment is shown in Figure 1.

In RL, we aim to find an optimal policy which maximizes the return Gt = ∑∞
k=0 γkrt+k+1.

To achieve this, we evaluate the policy π by estimating the value function, including state-
value function Vπ and action-value function Qπ . Here, the state-value function Vπ is the
expected return Gt when starting in state s and following policy π thereafter:

Vπ(s) = Eπ [Gt | st = s], (1)

513



Mathematics 2023, 11, 178

where the Eπ [·] denotes the expected value of the return Gt given that the agent follows
policy π. The action-value function, also called Q-value, Qπ(s, a), represents the expected
return Gt after taking an action a in state s and thereafter following policy π:

Qπ(s, a) = Eπ [Gt | st = s, at = a]. (2)

Figure 1. The interaction between the agent and the environment in RL.

Thereafter, the optimal policy π∗ can be obtained by maximizing the state-value
function or the action-value function, denoted V∗ and Q∗, respectively. These two functions
can be defined as follows:

V∗(s) = max
π

Vπ(s), (3)

Q∗(s, a) = max
π

Qπ(s, a) = E
[

Rt+1 + γ max
a

Q∗(st+1, a) | st = s, at = a
]
. (4)

4.2. Softmax Deep Double Deterministic Policy Gradients

DDPG algorithm is often used to solve continuous control problems [17,18]. However,
one of the dominant concerns for DDPG is that it suffers from the overestimation problem
caused by selecting an action with highest action-value estimates according to the critic
network [19]. To reduce the adverse impact of the overestimation, double estimators
were proposed for the critic in TD3 [20]. Nevertheless, another problem is the large
underestimation bias caused by direct adoption of taking minimum estimation of action-
value from the two critics in TD3 [21].

To tackle this problem, Pan, L. [19] proposed a method, called SD3, which combines the
softmax operator with the estimation of the action-value based on double critic estimators.
In SD3, double actor networks and critic networks are built to select multiple actions and
evaluate the corresponding action-values, respectively. To be specific, alternative actions
will be selected via different actor networks, and then the minimum action-value can be
obtained by calculating and comparing the action value functions of the corresponding
actions evaluated by two critic networks:

Q̂i=1,2
(
s′, a′

)
= min

(
Qi=1

(
s′, a′; θ−i=1

)
, Qi=2

(
s′, a′; θ−i=2

))
. (5)

Thereafter, the minimum Q-value will be induced by the softmax operator in expec-
tation by the importance sampling, and the specific definition of the softmax Q-value is
as follows:

softmaxβ

(
Q
(
s′, ·; θ−

))
=

Eâ′∼p

[
exp(βQ(s′ ,â′ ;θ−))Q(s′ ,â′ ;θ−)

p(â′)

]
Eâ′∼p

[
exp(βQ(s′ ,â′ ;θ−))

p(â′)

] , (6)

where β is the parameter of the softmax operator, and the implication of p(â′) is the
probability density function of the Gaussian distribution for the importance sampling. The
Eâ′∼p[·] denotes the expected value of a random variable given that â′ are sampled from
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the Gaussian distribution p(â′). And â′ is the action with additional noises for exploration,
which are sampled from the Gaussian distribution p(â′). Finally, the softmax Q-value can
be obtained to calculate the target value:

y = r + γ(1− d) softmaxβ

(
Q
(
s′, ·; θ−

))
. (7)

4.3. Key-Value Attention Mechanism

Attention mechanism [22] in neural networks is introduced to focus on the information
which is critical to the current task among the numerous input information. Therefore,
the attention mechanism is often used to solve the problem of information overload and
improve the efficiency and accuracy of task processing.

However, it is not suitable for some specific problems. So, Vaswani, A. et al. [22]
introduced the key-value attention mechanism, which uses the format of a key-value
pair to represent input information. The key is used to calculate the attention distribu-
tion αi, and the value is used to calculate aggregate information. As shown in Figure 2,
(K, V) = [(k1, v1), . . . , (kn, vn)] is used to represent N sets of the input information and the
vector q is used to represent the query vector for a given task. Then, the attention function
can be defined as follows:

att(X, q) =
N

∑
i=1

αixi =
N

∑
i=1

exp(s(ki, q))
∑j exp(s(ki, q))

vi, (8)

where s is the attention evaluation function, and xi is equal to vi which is used to represent
the value of N sets of the input information. Finally, a weighted average of the input
information vi, the final output a , can be achieved according to the distribution αi, which
is computed based on the function s.

Figure 2. The key-value attention mechanism.

4.4. Parameter Space Noise for Exploration

Traditional RL methods increase exploration by adding noise, for example the Gaus-
sian noise, to the output of the actor network. That is to say, the noise added to the actor
network is independent of the state st, in other words, state-independent exploration.
Hence, even for the same state st, a different action at will be certainly achieved and even
sometimes it has nothing to do with st.
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Therefore, Fortunato, Meire et al. [23] and Plappert, Matthias et al. [24] proposed to
add noise to the agent’s parameters. They sampled from a set of policies by adding the
noise sampled from the Gaussian noise to the current policy π(st), and in this case, the
same action at = π̂(st) can be achieved every time the same state st is taken as the input to
the actor network.

5. Problem Modeling

In the previous work, we conducted gait simulation experiments with DRL algorithms
based on the lower limb musculoskeletal model. The experimental results show that DRL
algorithm is effective in gait simulation. However, sometimes during the simulation, there
will be abnormal gait. In this paper, we adopt MDP to model the gait adjustment problem
based on the musculoskeletal model.

5.1. The Lower Limb Musculoskeletal Model

In our work, the simulated environment used for the gait adjustment, named osim-
rl, used in 2019 NeurIPS “Learning to Move–Walk Around” challenge, incorporates the
lower limb musculoskeletal model and DRL to provide the accurate human movement
simulation. The lower limb musculoskeletal model built in OpenSim has 8 internal degrees
of freedom (4 per leg) and is actuated by 22 muscles (11 per leg). During the simulation,
muscles are driven by muscle activations (the control signals that muscles produce power),
and then states of the musculoskeletal model including joint angles, body location and
ground reaction forces will be returned. The lower limb musculoskeletal model is shown
in Figure 3. More detailed environment description can be found at the page: http://osim-
rl.kidzinski.com/docs/nips2019/environment/ (accessed on 17 November 2022).

Figure 3. The lower limb musculoskeletal model.

5.2. MDP Modeling
5.2.1. State Space

The observation of the DRL agent consists of two parts: a target velocity map T and
a body state S. Firstly, as shown in Figure 4, the target velocity map T is represented
as a randomly generated target velocity matrix, which is a 2-dimensional target velocity
vector, consisting of the target position and the current position of the model. Then, a target
velocity vector can be achieved based on these positions. Secondly, the body state S is
expressed by a 97-dimensional vector which consists of the pelvis state, ground reaction
forces, joint angles and states of lower limb muscles. To be specific, the varibles of state
space is listed in Table 1.
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Figure 4. The target velocity map.

Table 1. State space.

Symbols Description

Body state S

Sp pelvis state
Sg ground reaction forces
Sj joint angles
Sm muscle states

Target velocity map T Tg target velocity (global)
Tb target velocity (body)

5.2.2. Action Space

The action space [0, 1]22 represents muscle activations of 22 muscles. Muscles responds
to these activations and generate forces, and then the model will act accordingly, for
example, moving forward. At the same time, states of the model change accordingly.

5.2.3. Reward Function

The DRL agent will obtain a reward J(π). The specific definition is as follows:

J(π) = Rb + Rg, (9)

where Rb and Rg refer to the reward for the initial gait simulation and the gait adjustment
according to the desired trajectory. To be specific, Rb ensures that a basis human gait can be
obtained based on the musculoskeletal. However, during the simulation, deformed gaits
sometimes appeared. So Rg is designed to make up for the gait defects, which is reflected
in the deviation between the simulated angle and the desired angle of each joint of the
lower limb.

Firstly, the specific definition of Rb is as follows:

Rb = Malive + Mstep, (10)

where Malive and Mstep refer to the model remaining standing as long as possible and
moving with minimal forces according to the target velocity map, respectively. Here, Malive
and Mstep are defined as follows:

Malive = ∑
i

malive, (11)

Mstep = ∑
stepi

(
wstepmstep − wvelcvel − we f f ce f f

)
. (12)

In Equation (11), malive refers to the unit time of “model survival”. In addition, in
Equation (12), on the one hand, mstep is stepping reward which represents the total elapsed
time-steps of “model survival” in simulation. cvel and ce f f are the velocity and effort costs,
respectively. On the other hand, wstep, wvel and we f f are weights for the stepping reward,
velocity and effort costs. Another point needed to note is that wstep is used to avoid getting
higher reward by making small steps in human gait simulation.
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Secondly, Rg is designed based on the changes of the real-time angle of each joint
relative to the desired trajectory, for example, approaching or even exceeding in each
episode. The specific definition is as Equation (13):

Rg =
n

∑
i=0

(
whrih + wkrik + waria

)
, (13)

where ri and wi are the reward for each of the three joints in the lower limb and the
corresponding weight, respectively. The reward ri for timestep i is defined as follows:

ri = wFF(qi) + wGG(qi), (14)

where wF and wG are the weights for the reward F(qi) and the penalty G(qi), respec-
tively. Here, on one hand, the function F(qi), representing the reward for the tendency
approaching the desired trajectory, is defined based on the Gaussian function:

F(qi) =
1

σ
√

2π
e−

1
2

(
d−μ

σ

)2

, (15)

where μ and σ represent the mean and the SD of the desired joint angle, respectively. In
addition, d, the absolute value of the difference between the real-time angle qi and the
desired joint angle qdi

is defined as follows:

d = |qi − qdi
|. (16)

On the other hand, the function G(qi), representing the penalty for exceeding the
desired trajectory, is defined as Equation (17).

G(qi) = −M(ymax)− M(ymin), (17)

where M(·) is defined as follows:

M(y) =

{
0 y ≤ 0
y y > 0

, (18)

and
ymax = qi − qmax, (19)

ymin = qmin − qi, (20)

where qmax and qmin are the maximum and the minimum joint angle, respectively.

6. Methodology

6.1. Overall Framework

As depicted in Figure 5, the overall framework for gait adjustment consists of two
parts: state reconstruct and SD3. First of all, the simulated environment initialization.
Secondly, we reconstruct the initial observation via extracting features from existing states
based on the attention mechanism, where the states are sampled in pairs with actions from
the replay buffer randomly.

In the second part, the reconstructed state is taken as the input of SD3. Then, the
actor network selects an action ai according to the observation where i refers to the serial
number of the action corresponding to different actor networks, and following, the critic
network evaluates the value of the state action pair Q(s, ai). Moreover, the final action
a depends on the result of comparing action-values which are evaluated by two critic
networks. It is worth noting that, we add noise directly to the actor network parameters
for a state-dependent exploration, which ensures a dependency between the sampled state
and the corresponding selected action.
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Figure 5. The overall framework for gait adjustment.

6.2. Key-Value Attention-Based State Reconstruction

In this work, the initial observation is a 339-dimensional state which consists of a
97-dimensional body state and a 242-dimensional target velocity map. Therefore, the RL
agent cannot extract effective information easily, and then choose better actions due to too
much redundant information in this high-dimensional observation. Moreover, in RL, the
observed state s and the selected action a of an RL agent often plays a significant role for
the training of RL algorithms, and the information in each state usually play an important
role in the choice of the action. For example, in the case of the same policy and different
states, RL agent takes different actions without active exploration. As shown in Figure 6,
the actions taken to reach s3, s4 are shown by arrows. Although s1 and s2 are very close in
space, they are functionally different, and these states contain necessary self-dependent
feature information for the agent to perform the corresponding action. In other words,
the self-dependent feature information in a state, for example s1, is different from shared
information that exists in all states, and necessary for decision making, for example a1,
which differs to the action a2. In our work, the musculoskeletal model moves accoring to
the target velocity map, if the musculoskeletal model moves to the target position, and then
a new target position will be randomly generated. Immediately, the RL agent will make a
new action, for example turning right, to move towards another target position. Therefore,
in this case, we refer to the specific information contained in the state that signals that the
musculoskeletal model has reached the target position as the self-dependent information,
which makes the agent makes a specific action.

Figure 6. The choice of different actions under the same policy and different states.
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The attention mechanism is introduced to focus on the information which is critical to
the current task among the input information. Therefore, on one hand, based on the key-
value attention mechanism, we try to reconstruct the current observation via capturing self-
dependent feature information in each sampled state. To be specific, firstly, we randomly
sample n sets of state action pairs (s1, a1), (s2, a2), . . . , (sn, an) from the replay buffer. Here,
the role of the sampled state action pairs (si, ai) in our proposed framework is equal to
(ki, vi) in the key-value attention mechanism. The state si and the action ai are used to
calculate the attention distribution and aggregate information, respectively. Moreover, we
take the state-dependent exploration for the dependency between the sampled state si and
the sampled action ai. In other words, in the case of the same policy, the selected action
is only related to the state inputted to the policy. Secondly, considering the advantage of
the critic network in dealing with continuous action spaces, for example the simulated
environment in our work, the critic network is usually used to approximate action-value
function [25], so we take the critic network as the attention evaluation function. Thus, we
calculate the action-value qi of the above sampled actions with the critic network which
takes the current observation and each sampled action ai as input.

Based on the above method, a series of action-value qi for the sampled actions can
be achieved, which will serve as a basis for distinguishing the corresponding sampled
state and reconstructing the initial observation. Thus, next to this operation, Softmax is
used to normalize the corresponding action-value qi, where the normalized action-value wi
represents the proportion of the sampled state in the reconstructed state. Significantly, the
computed proportion wi can be seen as the attention distribution αi in key-value attention
mechanism. Then, based on the attention distribution wi, the sampled states si will be
fused with the initial observation proportionally. In a word, the self-dependent feature
information in each sampled state corresponding to the sampled action with higher action-
value qi will account for a larger proportion in reconstructed state. It is worth noting that,
the way we perform feature fusion is element-wise addition. Based on this approach, the
reconstructed state is influenced by the agent’s action, and accordingly the state contains
the information necessary to the action. Thus, the RL agent can select the corresponding
action based on the information.

On the other hand, notably, autoencoder [26] is a kind of unsupervised neural network,
and the goal of dimensionality reduction can be achieved by adjusting the number of
hidden layers in both modules including the encoder and the decoder. Therefore, we use
autoencoders to overcome the curse of dimensionality caused by the high-dimensional
musculoskeletal model. The specific process is depicted as Figure 7.

Figure 7. State reconstruction.
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6.3. AT_SD3 for Gait Adjustment

Algorithm 1 presents the pseudocode of AT_SD3 for the gait adjustment.

Algorithm 1: AT_SD3 for the gait adjustment.

1 Initialize the simulated musculoskeletal model environment
2 Initialise critic networks α1,α2 and actor networks β1,β2 with random parameters

θ1,θ2,φ1,φ2
3 Initialise target networks θ−1 ← θ1, θ−2 ← θ2, φ−1 ← φ1, φ−2 ← φ2
4 Initialise replay buffer B
5 Add noise to the actor network β1, β2
6 for t = 1 to T do

7 Observe the environmental state s (including the musculoskeletal state S and
the target velocity map T)

8 if t >10000 then

9 n state-action pairs (s1, a1), (s2, a2), . . . , (sn, an) from the replay buffer B
10 Calculate the action value qi of the sampled action ai and the current

observation with the critic network
11 Get the attention distribution wi by normalizing the Q-value (q1, q2, . . . , qn)

with Softmax operation
12 Get state s′ through fusing sampled state si according to the wi
13 Fuse the current observation s and the s′ to get reconstructed state
14 Based on the reconstructed state s′′, use auto-encoder to extract state

features ϕ(s′′)
15 Store transition tuple (ϕ(s′′),a, J,s,d) in B

16 else if t <10000 then

17 Execute an action a referring to the muscle activations
18 Observe reward J using Equation (12), new state s and done flag d
19 Store transition tuple (s, a, J, s, d) in B

20 for i = 1, 2 do

21 Sample a batch of N transitions from B
22 Sample K noises ε ∼ N(0, σ̄)
23 Add the additional noises to the action a
24 Compute the action value using Equation (5)
25 Compute the target value using Equation (7)
26 Update actor networks using 1/N ∑s

[
∇aαi(s, a | θi)∇φi β(s | φi)

]
27 Update critic networks using 1/N ∑s(yi − αi(s, a | θi))

2

28 Update target networks using
θ−i ← τθi + (1− τ)θ−i ,φ−i ← τφi + (1− τ)φ−i

7. Experiment Analysis

7.1. Experiment Preparation
7.1.1. Dataset

To validate the effectiveness of the kinematic and ground reaction forces obtained
via the simulation based on DRL algorithms, we compare the simulated data with the
experimental data in a public dataset [27], where more details of the experiment refer
to Section 7.2.2. The dataset contains a single-source, readily accessible repository of
comprehensive gait data for a large group of children walking at a wide variety of speeds
including very slow (below average speed), slow, free, fast and very fast (above average
speed). Specifically, there are seven kinds of gait data: joint rotations, ground reaction
forces, joint moments, joint power, EMG (electromyographic), cycle events and an ANOVA
table with results for selected parameters in this dataset.

521



Mathematics 2023, 11, 178

7.1.2. Evaluation Metrics

In order to compare the similarity between the experimental gait data and the simu-
lated gait data, two evaluation metrics are adopted in this paper, namely mean absolute
error (MAE), root mean square error (RMSE). These two metrics are defined as follows:

MAE = 1/m
m

∑
i=1

∣∣yi − y′i
∣∣, (21)

RMSE =

√
1/m

m

∑
i=1

(
yi − y′i

)2, (22)

where m denotes the total number of gait data, yi and y
′
i represent the simulated and

experimental data of the i − th sample, respectively.

7.1.3. Parameter Settings

The hyperparameters of all methods are summarized in Table 2. It can be observed
that two hidden layers are used, and the number of neurons in each hidden layer are
128 and 64, respectively. Considering the high-dimensional environment, we set the
replay buffer size to 5 × 106 and the batch size is 256. Regarding the learning rate, TD3,
AT_SD3, SD3, SD3_AE and PPO methods are all set to 0.0001, while DDPG method is
set to 0.01. In addition, the hyperparameters, related to the noise added to the actor
network, are also listed in Table 1. Note that all parameters are obtained through extensive
numerical experiments.

Table 2. Hyperparameters of TD3 [14], DDPG [13], SD3, SD3_AE, PPO [15] and AT_SD3.

Method Parameters Results

Shared hyperparameters

Batch size 256
Critic network 256 →128→64→1
Actor network 256 →128→64→22

Optimizer Adam
Replay buffer size 5 ×106

Discount factor 0.99
Target update rate 0.01

SD3

Learning rate 0.0001
TAU 0.005

Policy noise 0.2
Sample size 50
Noise clip 0.5

Beta 0.05
Importance sampling 0

PPO Learning rate 0.0001
Iteration 8

AT_SD3

Learning rate 0.0001
Encoder 256→128→64→32→16→3
Decoder 3→16→32→64→100

Initial standard deviation (SD) 1.55
Desired action SD 0.001

Adaptation coefficient 1.05
DDPG Learning rate 0.01

TD3 Learning rate 0.0001
TAU 0.005

SD3_AE Encoder 256→128→64→32→16→3
Decoder 3→16→32→64→100

Learning rate 0.0001
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7.2. Results and Analysis
7.2.1. Algorithm Performance

In order to verify the effectiveness of AT_SD3 in the respect of gait adjustment based
on the musculoskeletal model, we compare it with other state-of-the-art DRL algorithms,
including TD3 [14], DDPG [13], PPO [15], SD3_AE and SD3, on the gait adjustment problem.
The result is shown in Figure 8.

Figure 8. Performance of AT_SD3 and other state-of-the-art DRL algorithms.

Figure 8 shows the performance of AT_SD3 and other state-of-the-art DRL algorithms
for the gait adjustment, where the horizontal axis represents the number of episodes and the
vertical axis is the average reward. In this figure, each curve indicates the average reward
for the gait adjustment using different DRL algorithms over a total of 12,000 episodes.
The shaded area represents the SD varying from the mean value of the three independent
experiments with same hyperparameters.

It can be noted that, on the one hand, the performance of AT_SD3 outperforms other
traditional DRL algorithms after a certain number of episodes, including DDPG, PPO, TD3
and a novel DRL algorithm SD3. On the other hand, the performance of PPO keeps stable
throughout the simulation, and the performance of DDPG is always poor compared to other
algorithms, which may result from the limited algorithmic power in dealing with the curse
of dimensionality in DRL. On the contrary, TD3, with more complex network structure,
has better performance than PPO and DDPG. In our work, the current observation is a
339-dimensional musculoskeletal state, which may lead to this phenomenon. So, we
introduce SD3 into our work to deal with the difficulty of gait adjustment caused by this
problem. Due to the complexity of network structure, SD3 has a relative advantage over
other RL algorithms in dealing with ‘the curse of dimensionality’. However, as can be seen
from Figure 8, after a certain number of episodes, the performance of SD3 keeps stable
gradually but the rewards are relatively low. Therefore, an attention mechanism-based
framework for gait adjustment is proposed. Based on the reward difference between
AT_SD3 and other algorithms observed in Figure 8, we can conclude that AT_SD3 is more
efficient than other traditional algorithms for the gait adjustment. Moreover, we provide an
ablation experiment, named SD3_AE, to prove the effectiveness of our proposed framework.
To be specific, we combine SD3 with the autoencoder for the gait adjustment. As can be seen
in Figure 8, the performance of SD3_AE is better than SD3 due to the advantage of feature
extraction and solving the curse of dimensionality. More importantly, by comparing the
performance of AT_SD3 and SD3_AE, we can conclude that state reconstruction through
the key-value attention mechanism is effective in gait adjustment. Through the above
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groups of comparative experiments, the experimental result demonstrates the effectiveness
of fusing the self-dependent feature information necessary for decision making in each
sampled state with the current observation.

7.2.2. Gait Adjustment

We compare different gait trajectories including the unadjusted trajectory obtained
in previous work, the adjusted trajectory obtained in this work and the desired trajectory
obtained in [27].

a. Unadjusted Trajectory and Desired Trajectory
Figure 9 shows the gait trajectories for different joints, including the ankle flex-

ion/extension, the knee flexion/extension, the hip adduction/abduction and the hip
flexion/extension corresponding to sub-figure (a) to (d), respectively, where the horizontal
axis represents the gait cycle and the vertical axis represents different gait trajectories. In
each sub-figure, red curve indicates the desired trajectory and another curve represents the
unadjusted trajectory obtained by the human gait simulation in previous work. In terms of
RMSE and MSE, Table 3 shows these similarity metrics between the desired trajectory and
the unadjusted trajectory simulated in previous work.

(a) Gait trajectories for the ankle flexion/extension (b) Gait trajectories for the knee flexion/extension

(c) Gait trajectories for the hip adduction/abduction (d) Gait trajectories for the hip flexion/extension

Figure 9. The simulated kinematics compared to the experimental data in [27].

As can be seen from Figure 9, the unadjusted trajectory for different joints obtained in
previous work are similar in shape to the desired trajectory, which is the mean kinematics
calculated from the maximum and minimum value of the kinematics. However, as shown
in Table 3 and Figure 9, there is a deviation between the unadjusted trajectory and the
desired trajectory, which result from the randomness of the gait simulated by the algorithms
in previous work. As can be seen from Table 3, these two kinds of metrics obtained in
previous work are no more than 2.64 SD and no less than 1.22 SD.
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Table 3. Metrics between desired trajectory and the unadjusted trajectory.

Metrics
Hip

Ad/Abduction
Hip

Flex/Extension
Knee Ankle

RMSE 1.66 2.64 1.58 2.13
MAE 1.22 2.19 1.32 1.74

b. Adjusted Trajectory and Desired Trajectory
Figure 10 shows the trajectories for different joints, including the ankle flexion/extension,

the knee flexion/extension, the hip adduction/abduction and the hip flexion/extension
corresponding to sub-figure (a) to (d), respectively, where the horizontal axis represents
the gait cycle and the vertical axis represents the gait trajectory for different joints. In
each sub-figure, red curve indicates the desired trajectory and another curve represents
the adjusted trajectory obtained in this work. Table 4 summarizes the similarity metrics
between the desired trajectory and the adjusted trajectory obtained in this work, in terms
of RMSE and MSE.

(a) Gait trajectories for the ankle flexion/extension (b) Gait trajectories for the knee flexion/extension

(c) Gait trajectories for the hip adduction/abduction (d) Gait trajectories of the hip flexion/extension

Figure 10. Desired trajectory and the adjusted trajectory based on the simulated lower limb exoskeleton.

Table 4. Metrics between desired trajectory and the adjusted trajectory.

Metrics
Hip

Ad/Abduction
Hip

Flex/Extension
Knee Ankle

RMSE 0.32 0.18 0.14 0.28
MAE 0.23 0.1 0.1 0.22

As can be found from Figure 10, the gait trajectories for different joints obtained
in this work are almost consistent with the desired trajectory in shape and value. This
phenomenon demonstrates the effectiveness of gait adjustment with the simulated lower
limb exoskeleton, which is modeled as a MDP problem in this work. However, in sub-
figure (c), the adjusted trajectory for the hip adduction/abduction deviate from the desired
trajectory in part of the gait cycle, which may result from the randomness. As can be found
from Table 3, these metrics are no more than 0.32 SD which is much lower the figures in
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Table 4, and these figures also demonstrate the effectiveness of the gait adjustment with the
simulated exoskeleton.

8. Conclusions and Future Work

In order to verify the effect of gait rehabilitation for patients with mobility disorders,
one available approach is to adjust gait without using physical equipment, where the
musculoskeletal model is used in 2019 NeurIPS “Learning to Move–Walk Around” chal-
lenge. In this paper, we adopt MDP to model the gait adjustment problem. Moreover,
based on DRL algorithms and the attention mechanism, a framework named AT_SD3
for the gait adjustment is proposed. Taking advantages of the attention mechanism, the
self-dependent feature information for decision making in the sampled states generated by
the agent’s actions can be captured, with which we can reconstruct the initial observation
with more interpretive information. Considering the high dimension of RL state and the
advantage of autoencoder, the autoencoder is applied to solve the problem of ‘the curse of
dimensionality’. To investigate the performance of the proposed framework, the proposed
framework and other traditional DRL algorithms are applied to the gait adjustment. The
comparison results suggest that the performance of the proposed framework is superior
to other traditional RL algorithms. Moreover, we compare different trajectories, including
the unadjusted trajectory and adjusted trajectory obtained in previous work and in this
paper, respectively, and comparative results suggest the trajectories simulated by using our
proposed framework are closer to the desired trajectory in both shape and value, which
outperforms the related previous work. In terms of the evaluation metrics of MAE and
RMSE, results show the trajectories obtained in this paper are more accurate than those
obtained in previous work.

As for the future work, the way to extract the information in each sampled state that is
critical to the selected action is still worth studying. Moreover, we will purchase an actual
lower limb exoskeleton to verify the effectiveness of the proposed exoskeleton control
framework. Therefore, in the process of controlling the actual lower limb exoskeleton, the
adjustment of exoskeleton parameters and the RL modeling for the exoskeleton control are
worth studying.
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The following abbreviations are used in this manuscript:

RL Reinforcement Learning
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DDPG Deep Deterministic policy gradients
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TD3 Twin Delayed Deep Deterministic policy gradient
PPO Proximal Policy Optimization
SD Standard Deviation
MAE Mean Absolute Error
RMSE Root Mean Square Error
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Abstract: Knowledge graph (KG) embedding for predicting missing relation facts in incomplete
knowledge graphs (KGs) has been widely explored. In addition to the benchmark triple structural
information such as head entities, tail entities, and the relations between them, there is a large amount
of uncertain and temporal information, which is difficult to be exploited in KG embeddings, and
there are some embedding models specifically for uncertain KGs and temporal KGs. However, these
models either only utilize uncertain information or only temporal information, without integrating
both kinds of information into the underlying model that utilizes triple structural information. In this
paper, we propose an embedding model for uncertain temporal KGs called the confidence score, time,
and ranking information embedded jointly model (CTRIEJ), which aims to preserve the uncertainty,
temporal and structural information of relation facts in the embedding space. To further enhance the
precision of the CTRIEJ model, we also introduce a self-adversarial negative sampling technique to
generate negative samples. We use the embedding vectors obtained from our model to complete the
missing relation facts and predict their corresponding confidence scores. Experiments are conducted
on an uncertain temporal KG extracted from Wikidata via three tasks, i.e., confidence prediction,
link prediction, and relation fact classification. The CTRIEJ model shows effectiveness in capturing
uncertain and temporal knowledge by achieving promising results, and it consistently outperforms
baselines on the three downstream experimental tasks.

Keywords: uncertain temporal knowledge graph; temporal knowledge graph; knowledge graph
embedding; confidence score

MSC: 68T07; 68T30

1. Introduction

KGs, which store various relation facts in the real world, are extensively applied in
downstream tasks such as natural language processing [1], information retrieval [2], and
knowledge question answering [3]. A relation fact (or triple) is composited of two entities
(as nodes) and the relation that connects them (as the edge), which can be described as
(h, r, t) or (s, p, o) [4]. Although KGs contain millions of such triples, it is known to suffer
from incompleteness. This issue gives rise to the task of KG completion, which entails
predicting the information missing in KGs. KG embedding, also known as knowledge
representation learning, has become the mainstream method for KB completion by building
the distributed representations (or vector embeddings) of entities and relations [5].

Specifically, KG embedding represents a symbolic triple (h, r, t) as low-dimensional,
dense real-valued vectors (h, r, t), each corresponding to the head entity, relation, and tail
entity, respectively. Various embedding methods are currently emerging, mainly including
translation-distance-based and semantic-matching-based models. TransE [6] is an original
model based on translation distance and is known for its effectiveness and simplicity. In
the TransE model, the sum of the head entity vector h and its relation vector r is close to its
tail entity vector t for each relation fact, i.e., h + r ≈ t. TransE can effectively capture the
structural and semantic information of the KG, but it cannot handle complex relations. To
solve this problem, researchers have proposed multifarious models [7–9]. In addition, there
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are many embedding models based on semantic matching [10–12], which have achieved a
high accuracy in link prediction tasks.

The above research methods are all reasoning on deterministic and static KGs without
considering the uncertain and temporal information of triples, which leads to some key
issues. The first is how to embed the uncertain KG. Uncertain KGs, such as Concept-
Net [13] and NELL [14], associate each relation fact with a confidence score representing
the likelihood of that fact to be true. During the construction of a KG, many automated
methods generate noise and conflict, resulting in a certain degree of uncertainty for each
triple. Embedding such uncertain knowledge can critically capture the uncertain nature
of reality and provide more precise reasoning. The second is to learn information about
the temporal dynamics of the relation facts in KGs. Most relation facts in KGs change over
time, for example, the fact Claudio Raineri, coach, Chelsea is only true from 2000 to 2004,
and ignoring such temporal information may lead to ambiguity and misunderstanding.
The temporal information of relation facts also carries essential causal patterns that can
assist the link prediction. To sum up, embedding the uncertain and temporal characteristics
of relation facts can help KGs to perform better reasoning.

For the uncertainty of triples, uncertain KG embedding (UKGE) [15] calculates a score
function based on the DistMult model and considers a probabilistic soft logic to generate
confidence scores for unseen relation facts, but it does not fully exploit the structural infor-
mation in the KG. Structural and uncertain knowledge embedding (SUKE) [16] employs an
evaluator and a confidence generator to embed the confidence scores and structural infor-
mation simultaneously, but the evaluator and the confidence generator are not combined
into a unified framework, which means that the entity and relation vectors generated by
the two components are not shared. Chen et al. [17] abandoned the probabilistic soft logic
to generate extra training samples and leveraged a pool-based semisupervised learning
model PASSLEAF to generate confidence scores for unseen relation facts. This model could
partially solve the false-negative problem caused by random negative sampling, but it
only considered the knowledge confidence and ignored the rich information contained
in the graph structure. For embedding temporal information in KGs, a significant num-
ber of temporal KG representation learning models have recently emerged. The models
TTransE [18] and HyTE [19] learned the distinct representations on each snapshot, and
ATiSE [20] simplified the evolution of a temporal KG as a diachronic entity representation.
Lately, most of the models apply neural networks to characterize the structural information
and temporal evolution of KGs [21–23]. However, none of the aforementioned studies
exploit both uncertainty and temporal information. Chekol et al. [24] explored Markov
logic networks and probabilistic soft logic for reasoning on uncertain temporal KGs without
utilizing embedding-based approaches and obtained a high computational complexity and
low efficiency.

In response to the above issues, we propose the confidence score, time, and ranking
information embedded jointly model CTRIEJ for the uncertain temporal KG embedding,
which integrates the uncertainty, temporal information, and structural information into
a unified framework. The CTRIEJ model first utilizes the sequence model to incorporate
temporal information into the embedding of relations and then applies the sum of two loss
functions as the objective function for training, one is the square loss function representing
the confidence prediction, and the other is the pairwise ranking loss function representing
structural information. When evaluating the model on multiple downstream tasks, we still
employ the score function based on semantic matching for the confidence prediction and
relation fact classification, and we design a score function based on translation distance
and semantic matching to predict missing relation facts in the uncertain temporal KG. In
addition, we adopt a self-adversarial negative sampling technique to train the model.

The main contributions of this paper can be summarized as follows:

• We leverage a GRU-based sequence model to incorporate temporal information into
the embedding of the relation sequence and tie in two score functions on account
of semantic matching and translation distance simultaneously to characterize the
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confidence information and structure information for the uncertain temporal KG in a
unified framework.

• We exploit multiple score functions to simultaneously infer the existence of relation
facts and the confidence scores of existing facts. We further adopt a self-adversarial
negative sampling technique, which utilizes the embedding of current entities and
relations to generate negative samples.

• We evaluate our model on the Wikidata dataset wikidata_5k on three typical tasks: confi-
dence prediction, link prediction, and relation fact classification. The results demonstrate
that the performance of the CTRIEJ model is better than other benchmarks.

The rest of the paper is organized as follows. We introduce the definition of uncertain
temporal KGs and then review related work in Section 2. In the following two Sections, we
propose our CTRIEJ model and conduct related experiments. Finally, we draw a conclusion
in Section 5.

2. Related Work

As far as we know, there is currently no embedding learning method for the uncer-
tain temporal KG, so we introduce the related work from three aspects: deterministic KG
embedding models, temporal KG embedding models, and uncertain KG embedding mod-
els. For the sake of understanding, we first define the relevant problems of the uncertain
temporal KG.

2.1. Problem Definition

The relevant definitions of the uncertain temporal KG are given as follows.

Definition 1. Temporal knowledge graph: A temporal KG can be denoted by G = (E, R, Q), where
E and R represent the set of entities and relations, respectively, and Q represents the set of temporal
relation facts. Each relation fact (h, r, t) in the graph has a valid time [Ts, Te], which denotes the
closed interval from Ts to Te, with Ts ≤ Te and Ts, Te ∈ T, i.e., f = (h, r, t, [Ts, Te]). We refer to f
as a temporal fact.

For a temporal KG G, its snapshot at time T is the graph (the nontemporal KG):
G(T) = {(h, r, t)|(h, r, t, [T, T]) ∈ G}.

Definition 2. Uncertain temporal knowledge graph: An uncertain temporal KG consists of tem-
poral relation facts with confidence scores that typically model the inherent uncertainty. We can
represent a fact as u =

(
f , s f

)
, where f = (h, r, t, [Ts, Te]) is a temporal relation fact, and

s f ∈ R[0,1] is a real-valued weight assigned to f .

Example 1. Uncertain temporal knowledge graph: the following uncertain temporal KG represents
sport’s personality Claudio Raineri’s career [24]:

1. (Claudio Raineri, bdate,1951) 1.0;
2. (Claudio Raineri, playsFor, Palermo, [1984, 1986]) 0.5;
3. (Claudio Raineri, coach, Napoli, [2001, 2003]) 0.6;
4. (Claudio Raineri, coach, Chelsea, [2000, 2004]) 0.9;
5. (Claudio Raineri, coach, Leicester, [2015, 2016]) 0.7.

Definition 3. Uncertain temporal knowledge graph embedding: Given an uncertain temporal
KG, the embedding can be expressed as a mapping function f : h → h ∈ RdE , r → r ∈ RdR ,
t → t ∈ RdE , Ttoken → Ttoken ∈ RdT , where h, r, and t are the vector representations of the head
entity, relation, and tail entity, respectively, Ttoken is the vector representation of the temporal token,
which is described in detail in Section 4.2, dE, dR, and dT represent the dimension of the entity vector,
relation vector, and temporal token vector, respectively. In this model, we make dE = dR = dT = d.
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2.2. Deterministic Knowledge Graph Embeddings

The deterministic KG contains a series of triples (h, r, t), where h, t ∈ E, r ∈ R. The
deterministic KG can be regarded as an uncertain KG with triples whose confidence scores
are all one. At present, the deterministic KG embedding models can be mainly divided into
three categories: tensor-decomposition-based models, translation-based distance models,
and neural-network-based models.

Structured embedding (SE) [25] is one of the earlier knowledge representation methods.
For a relation fact, SE projects the head and the tail entity vector into a relation vector
space through its two matrices and then calculates the distance between the two projection
vectors in this space. This distance reflects the semantic relevance of the two entities under
the relation, and the smaller their distance is, the more likely it is that the fact triple is
established. In addition, the semantic matching energy model (SME) [26] defines several
projection matrices and utilizes bilinear functions to describe the internal relationship
between entities and relations. Bilinear functions are also utilized in the latent factor
model (LFM) [27], which proposes to employ a relation-based bilinear transformation to
characterize the second-order relationship between entities and relations. The DistMult
model [11] also explores a simplified form of latent factor, which sets the relation matrix
as a diagonal matrix. Based on the LFM, the neural tensor network (NTN) [28] model
further employs the bilinear transformation of the relation to characterize the relationship
between entities and relations. In addition, some researchers have proposed to apply
matrix factorization for knowledge representation learning, and the RESACL model [10]
is the representative method in this regard. The basic idea of RESACL is similar to the
aforementioned LFM, and the difference lies in that RESACL optimizes all positions in the
tensor, including the position with a value of zero, while the LFM only optimizes the triples
that exist in the KG.

Bordes et al. were inspired by the translation invariance of the semantic and syntactic
relationship in the word vector space and proposed the TransE model [6], which treated the
relation in the KG as a translation vector between the head and tail entity. Compared with
previous models, TransE has fewer parameters and a low computational complexity, and it
can directly establish complex semantic connections between entities and relations. Bordes
et al. conducted evaluation tasks such as link prediction on the WordNet and Freebase data
sets, and experimental results showed that the performance of TransE was significantly
improved, especially on large-scale sparse KGs. However, TransE has difficulty handling
one-to-many, many-to-one, and many-to-many relations. To overcome the shortcomings of
TransE, TransH [7] introduces a relation hyperplane, which is based on the idea of allowing
an entity to have different vector representations in different relation triples. By employing
a relation-specific hyperplane, the TransH model distinguishes different roles of the same
entity in different triplets. The TransR [8] model also allows entities and relations to be in
different dimensional representation spaces and then maps both to the same dimension by
exploring the relational-related transformation space. There are many variants based on
TransE, including TransM [29], TransF [30], TransA [9], etc., and most of these algorithms
were introduced to further solve the defects of TransE and improve the expressive ability
of the model. There are not only translation transformations in the representation space,
but also rotation transformations. The RotatE [31] model represents the relation in the
KG as a rotation operation in complex space based on Euler’s formula. Through such a
design, RotatE can express symmetric and antisymmetric relations, reciprocal relations,
and compositional relations contemporarily, which was not available in previous models.

According to a variety of neural networks, knowledge embedding models of neural
networks can generally be divided into five categories: linear/bilinear neural networks,
convolutional neural networks (CNNs) [32–34], recurrent neural networks (RNNs) [35–37],
graph neural networks (GNNs) [38–41], and generative adversarial networks (GANs) [42].
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2.3. Temporal Knowledge Graph Embeddings

Current research in KG embedding focuses on static KGs, where relation facts do
not change over time, such as the TransE model, TransH model, RESCAL model, etc.,
mentioned above. However, KGs are usually dynamic in practical applications, where facts
evolve over time and are only valid for a specific period. Previous static KG embedding
models completely ignore temporal information, which makes these methods unable to
work in practical scenarios. Therefore, a significant number of temporal KG embedding
models have emerged.

Know-Evolve [21] updates the embedding representation of entities subject to tem-
poral changes by building an RNN on top of the static KG representation. TTransE [18]
utilizes time information to constrain triples and models the time-predicate sequence for
inference. TA-TransE and TA-DistMult [22] utilize the temporal information to constrain
relation representations and construct temporal relation representations for each knowl-
edge instance with a digital-level long short-term memory (LSTM) model. ATiSE [20] fully
mines the impact of time on the evolution of entities, not only including the impact of
past time but also mining the impact of future time on entities through the trend, cycle,
and randomness of time series. RE-NET [23] converts time into a sequence of events
with temporal information, constructs RNN-based encoding of entities in the sequence to
capture the influence of their historical information, and finally leverages a relation-aware
GCN to aggregate information about the entities within the same time. Chang2vec [43]
splits the temporal KGs into multiple static KGs on each snapshot and employs metapath
encoding for each KG to recompute the entity representation of nodes that have changed
and update their embedding. CyGNet [44] exploits the historical information in KGs by
designing a special replication module, while the generation module is designed to predict
the knowledge that appears for the first time. xERTE [45] combines low-dimensional static
vectors and temporal functions for the embedding representation of entities, not only to
represent long-term properties of entities that do not change over time and the character-
istics of change affected by time but the model can also visualize the paths interpretably
for inference. RE-GCN [46] learns the evolutional representations of entities and relations
at each timestamp by modeling the KG sequence recurrently and also incorporates the
static properties of entities (such as entity types) via a static graph constraint component to
obtain better entity representations.

Most of the above approaches make use of the temporal and structural information in
the KG, but all assume that the triples are deterministic, and neither of them considers the
confidence score of each relation fact.

2.4. Uncertain Knowledge Graph Embeddings

Some open KGs with uncertain information, such as NELL, ConceptNet, etc., add a
confidence score to each triple to describe the uncertainty of this relation fact. Different KGs
have different strategies for calculating confidence scores. The confidence level is obtained
through the frequency of crowdsourcing annotations in ConceptNet [13], while NELL
calculates the confidence value with probabilistic semantics by the EM algorithm [14].

Compared with the deterministic KG, the uncertain KG has additional triple confi-
dence information. Recently, some research has been conducted on the representation
and inference of uncertain KGs from different perspectives. GTransE [47] aims to improve
the robustness of the representation model in learning noisy data. Specifically, it uses the
confidence scores of triples to dynamically adjust intervals in the pairwise ranking loss,
so that the higher confidence triples have larger intervals between positive and negative
examples, thus making the model more focused on learning higher confidence triples.

UKGE [15] first proposed the task of learning the representation of uncertain KGs
and embedding the structural information and confidence information at the same time.
Specifically, it calculates the mean square error (MSE) Loss to fit the confidence scores of
triples based on the energy function of DistMult. In this way, the confidence information
is embedded into the distance of entities and relations, and we can employ the energy
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function of the triple to predict its confidence score. In addition, UKGE also introduces logic
rules as prior knowledge, employs PSL probabilistic soft logic to reason about unseen facts,
and applies them as training data to train to embed, thereby preserving the constraints of
the rules into the embedding representation.

SUKE [16] still applies the DistMult model as an energy function and explores different
logistic functions to transform the energy score into a structural information function and
a confidence prediction function. The model consists of two parts: an evaluator and a
confidence generator. For unseen triples, the evaluator learns the structural information
and uncertain information to evaluate their plausibility and obtains a candidate set. The
confidence generator then predicts corresponding confidence scores by learning the un-
certain information of triples in the candidate set. However, the embedding vectors of
entities and relations generated by the two components are independent of each other,
which means that twice as much storage and computational space needs to be allocated.

PASSLEAF [17] argued that if we set the confidence scores of all observed triples to
zero, it would cause a false-negative problem. In an uncertain KG, in addition to visible
triples with confidence scores, there are more unseen triples that may also have a variety of
confidence scores. The model leveraged semi-supervised learning and a sample pool to
generate training samples in order to consider confidence scores of unseen triples. Moreover,
multiple types of score functions were compared in the experiments of the model.

3. Confidence, Time, and Ranking Information Embedded Jointly

3.1. The Framework Overview

In this section, we propose the CTRIEJ model, which can simultaneously infer the
missing relation facts and predict their confidence scores. The overall framework of the
model is shown in Figure 1. It consists of three main components: a time-aware embedding
model that incorporates time embedding in the relation embedding, a confidence prediction
model that characterizes the uncertain information, and a pairwise ranking loss model
that represents the structural information. In Section 4.2, a gate recurrent unit (GRU) is
employed to process the sequence of the relation and time to obtain the relation embedding
incorporating time. In Section 4.3, we describe in detail two functions based on semantic
matching and translation distance, which characterize the uncertain information and
structural information in the uncertain temporal KG, respectively. Finally, we combine the
loss functions of the two components to form a joint embedding model and adopt a self-
adversarial negative sampling technique to generate negative samples, which sample the
negative triples according to the current embedding vectors. The details are in Section 4.4.
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Figure 1. The overall framework of the CTRIEJ model.

3.2. GRU for Time-Aware Embedding Sequences

Contrary to all previous approaches, we encode sequences of temporal tokens with a
GRU. A GRU is a neural network architecture particularly suited for modeling sequential
data. Given an uncertain temporal KG where some triples are augmented with temporal
information, we can decompose a given timestamp into a sequence consisting of some of
the following temporal tokens.

As shown in Figure 2, the month and the day are represented by numbers 0 to 9.
In addition to these numbers, the year has an extra “-”, which is used at the beginning
to indicate BC. The year usually consists of 4 digits, the month consists of 2 digits to
characterize January to December, and the number of days consists of 2 digits to rep-
resent one day in a month. Hence, temporal tokens have a vocabulary size of 31. A
complete timestamp should contain a start time Ts and an end time Te, which we combine
as the sequence of temporal tokens. Moreover, for each triple, we refer to the concatena-
tion of the relation and its sequence of temporal tokens as the relation sequence rseq =(

r, Ts1y , Ts2y , Ts3y , Ts4y , Ts1m , Ts2m , Ts1d , Ts2d , Te1y , Te2y , Te3y , Te4y , Te1m , Te2m , Te1d , Te2d

)
with length

17, where the suffixes y, m, and d indicate whether the digit corresponds to the year, month,
or day information. Now, an uncertain temporal KG can be represented as a set of quadru-
ples of the form

(
h, rseq, t, s

)
, where the sequence of relation rseq includes the temporal
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information. These relation token sequences are used as input to a GRU. The equations
defining a GRU are as follows:

Γu = σ(Wu · [cn−1, xn]) + bu
Γr = σ(W r · [cn−1, xn]) + br
cn = Γu ∗ (tanh(Wc[Γr ∗ cn−1, xn]) + bc) + (1− Γu) ∗ cn−1

(1)

where n = 1, 2, · · · , 17, Γu and Γr are update and reset gates, respectively, c is the hidden
state, σ(·) is an activation function, and xn ∈ Rd is the embedding of the nth element of the
relation token sequence rseq.

Each token of the input sequence rseq first gets its corresponding d-dimensional em-
bedding by a random initialization, and the resulting embedding sequence is used as the
input to the GRU. The relational sequence embedding is the last hidden state representation
of the GRU, that is rseq = c17. Now that we have the relational sequence embedding, which
characterizes temporal information, in the next section, we combine it with the head and
tail entity embedding in varied loss functions.

0 1 2 3 4 5 6 7 8 90 1 2 3 4 5 6 7 8 9

year

0 1 2 3 4 5 6 7 8 9

year

0 1 2 3 4 5 6 7 8 90 1 2 3 4 5 6 7 8 9

month

0 1 2 3 4 5 6 7 8 9

month

0 1 2 3 4 5 6 7 8 90 1 2 3 4 5 6 7 8 9

day

0 1 2 3 4 5 6 7 8 9

day

Figure 2. The temporal tokens.

3.3. Incorporating Uncertain Information and Structural Information

We leverage two score functions based on semantic matching and translation distance,
namely, S

(
h, rseq, t

)
unce and S

(
h, rseq, t

)
rank, and the corresponding loss function consists

of two segments Lunce and Lrank, where Lunce characterizes the confidence prediction and
Lrank models the graph structure information. The first component of the score function
S
(
h, rseq, t

)
unce can be employed to predict the confidence scores of triples, and the second

one S
(
h, rseq, t

)
rank is mainly designed to complete the missing relation facts. The MSE

loss function in UKGE treats the semantic-matching-based DistMult model as its energy
score function, which shows satisfactory performance, and therefore, our CTRIEJ model
preserves the representation of uncertainty information through the MSE loss function.
Specifically, we first obtain the energy function based on DistMult:

f = rseq · (h ◦ t) (2)

where h and t represent the head and tail entity embedding of the triple, rseq denotes
the relation sequence embedding obtained by the GRU in the previous step, ◦ is the
elementwise product, and · is the inner product. Then, we still leverage two different
conversion functions [15] to transform energy scores into confidence scores in the range of
0 and 1:

S
(
h, rseq, t

)logi
unce =

1
1 + e−(w f+b)

(3)

S
(
h, rseq, t

)rect
unce = min(max(w f + b, 0), 1) (4)
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where w is a weight, b is a bias, and rseq is the sequence of relation tokens with time

mentioned in the previous section. S
(
h, rseq, t

)logi
unce denotes the confidence score function

transformed using the logistic function, and S
(
h, rseq, t

)rect
unce denotes the confidence score

function transformed using the bounded rectifier.
The MSE loss function containing positive samples Dpos and negative samples Dneg is

as follows:
Lunce =

∣∣S(h, rseq, t
)

unce − s
∣∣2 + ∣∣∣S(h

′
, r

′
seq, t

′)
unce

∣∣∣2 (5)

where
(
h, rseq, t

)
∈ Dpos is an observed fact in the data set, s is its confidence score,(

h
′
, r

′
seq, t

′) ∈ Dneg is a corresponding negative sample through random negative sampling,

and the function S(·)unce can be either S(·)logi
unce or S(·)rect

unce.
Then, the structural loss of the KG that employs the energy function based on TransE

is calculated:
S
(
h, rseq, t

)
rank = −d

(
h, rseq, t

)
= −

∥∥h + rseq − t
∥∥

l1/l2
(6)

where ‖·‖l1/l2 represents the l1 or l2 norm. The smaller the value of the distance function
d
(
h, rseq, t

)
, the more likely the triple exists.

Following the TransE model, we can acquire a margin-based pairwise ranking loss
function. Since the confidence level of each triplet is varied, we employ the confidence
score as the weight of the ranking loss for each sample to obtain the following loss function:

Lrank = s · max
(

γ − S
(
h, rseq, t

)
rank + S

(
h
′
, rseq

′
, t

′)
rank

, 0
)

(7)

where γ > 0 represents a margin hyperparameter. This allows us to focus more on learning
those triples with higher confidence scores and cut down on the contribution of those
triples with lower confidence scores. To validate the generality of our proposed framework,
relatively primitive score functions are employed in both segments above. We can further
explore higher performance score functions based on semantic matching and translation
distance for integration into our framework in future work.

3.4. Joint Loss Function

Negative sampling has been shown to be quite effective for learning KG embeddings.
The commonly applied uniform negative sampling produces poor-quality negative samples
and does not contribute much to the training of the model. Utilizing GAN to generate
negative samples can effectively improve the efficiency of negative sampling, but it can also
enhance the complexity of the model. To improve the quality of negative sampling without
introducing additional model parameters, we leverage the idea of the self-adversarial
negative sampling technique proposed in the RoTATE model [29] to our proposed model
by figuring the scores of negative samples on the ground of the current entity and relation
embeddings. The higher the scores, the higher the weights of the negative samples, so that
the contribution of high-quality negative samples to the model can be raised.

In calculating the MSE loss function, we first utilize uniform negative sampling for
a visible triplet

(
h, rseq, t

)
to randomly generate n negative samples, and then we assign

varied weights to negative samples based on the score function of the current entity and
relation embeddings:

wunce

((
h
′
i, r

′
seqi

, t
′
i

)∣∣(h, rseq, t
))

=
exp S

(
h
′
i, r

′
seqi

, t
′
i

)
unce

n
∑

j=1
exp S

(
h′

j, r′seqj
, t′j
)

unce

(8)

where i = 1, 2, · · · , n, and wunce

((
h
′
i, r

′
seqi

, t
′
i

)∣∣(h, rseq, t
))

represents the weight of the ith

negative sample when computing the MSE loss of the triple
(
h, rseq, t

)
. In this way, we

acquire the MSE loss function with the self-adversarial negative sampling technique.
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Lunce =
∣∣S(h, rseq, t

)
unce − s

∣∣2 +
n

∑
i=1

wunce

((
h
′
i, r

′
seqi

, t
′
i

)∣∣(h, rseq, t
))

·
∣∣∣S(h

′
i, r

′
seqi

, t
′
i

)
unce

∣∣∣2 (9)

Similarly, when computing the pairwise ranking loss function, we also employ this
technique to assign different weights to negative samples and obtain the final ranking
loss function.

wrank

((
h
′
i, r

′
seqi

, t
′
i

)∣∣(h, rseq, t
))

=
exp S

(
h
′
i, r

′
seqi

, t
′
i

)
rank

n
∑

j=1
exp S

(
h′

j, r′seqj
, t′j
)

rank

=
exp−d

(
h
′
i, r

′
seqi

, t
′
i

)
n
∑

j=1
exp−d

(
h′

j, r′seqj
, t′j
) (10)

Lrank = s · max

(
γ − S

(
h, rseq, t

)
rank +

n

∑
i=1

wrank

((
h
′
i, r

′
seqi

, t
′
i

)∣∣(h, rseq, t
))

· S
(

h
′
i, r

′
seqi

, t
′
i

)
rank

, 0

)
(11)

Combining Equations (9) and (11), we get the final joint loss function with the self-
adversarial negative sampling.

Ljoint = Lunce + Lrank
‖h‖2 ≤ 1, ‖r‖2 ≤ 1, ‖t‖2 ≤ 1

(12)

We employ two different computational models for scoring S(h, r, t)unce, referring to
the variant using Equation (3) as CTRIEJlogi and the variant using Equation (4) as CTRIEJrect.

4. Experiments

Our proposed model was evaluated on three tasks: confidence prediction, link pre-
diction, and relation fact classification. Obtaining the confidence scores of existing facts
is the goal of confidence prediction, that is, for a given relation fact, with the head and
tail entity, relation, and time, the corresponding confidence score should be predicted.
The link prediction task aims to forecast the missing relation facts, e.g., given the head
entity, relation, and its corresponding time, the missing tail entity should be predicted.
Relation fact classification is a binary classification problem. We classified relation facts
in wikidata_5k into strong and weak relation facts according to a given threshold τ, and
the facts with confidence scores above the threshold were considered strong relation facts,
otherwise, they were weak relation facts.

4.1. Datasets

At present, universal uncertain temporal datasets are not available. We applied
the datasets extracted from Wikidata mentioned in [24]. Wikidata contains structured
temporal information obtained from various sources using open information extraction
(OIE). Ref. [24] obtained over 6.3 million temporal facts from Wikidata with confidence
scores for various relations including plays for (>4 million facts), educated at (>6K), member
of (>23K), occupation (>4.5K), spouse (>20K), and so on. Several of the extracted datasets
are similar in composition, so we chose only one of them, named wikidata_5k.

Data preprocessing. We first performed preprocessing operations on this dataset. The
initial confidence scores in wikidata_5k range from 1 to 10, where 96.4% are less than or
equal to 5.0 in the dataset. For normalization, we first bounded the confidence scores to
s ∈ [1.0, 5.0], and then applied the min-max normalization on s to map them into [0.0, 1.0].
After data preprocessing, the wikidata_5k dataset contained 2233 entities, 6 relations, and
4818 uncertain temporal relation facts with a mean confidence score of 0.269 and a variance
of 0.225.

4.2. Experimental Setup

We divided the dataset into 85% for training, 7% for validation, and 8% for testing.
To test if our model could correctly interpret negative links, we added the same number
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of negative links as existing relation facts into the test set. We used the Adam optimizer
for training and the grid search method to select optimal parameters in the following
set: the embedding dimension d ∈ {64, 128, 256, 512} of entities, relations, and time; the
training batch size b ∈ {128, 256, 512, 1024}; the learning rate lr ∈ {0.001, 0.005, 0.01}; and
the margin value γ ∈ {1, 2, 10} in the ranking loss. We used the L2-norm when computing
the translation distance. Through experiments, we concluded that in the wikidata_5k
dataset, the best parameters for CTRIEJlogi were {d = 512; b = 256; lr = 0.001; γ = 2}, and
the best parameters for CTRIEJrect were {d = 128; b = 256; lr = 0.001; γ = 2}. We evaluated
the results of all models on the ground of setting the best parameters for each experiment.

4.3. Baselines

We considered three types of baselines in our comparison, which included the deter-
ministic KG embedding models TransE [6] and DistMult [11], the uncertain KG embedding
models UKGErect and UKGElogi [15], and the temporal KG embedding models TA-TransE
and TA-DistMult [22].

• The deterministic KG embedding models: We chose TransE and DistMult for de-
terministic KG embedding models because these models have demonstrated a high
performance. In wikidata_5k, we chose the high-confidence temporal relation facts
from KGs for training and set a confidence score threshold τ to distinguish the high-
confidence temporal relation facts from the low-confidence ones. These models were
only applied in the link prediction and relation fact classification tasks since they could
not predict confidence scores. We used the same grid search method to choose the best
hyperparameters and the same optimizer for training. The best parameters of TransE
were {d = 128; b = 256; lr = 0.001; γ = 2}, and the best parameters of DistMult were
{d = 128; b = 256; lr = 0.001}.

• The uncertain KG embedding models: UKGE was the first model for embedding
uncertain KGs, and it contains two variants, UKGElogi and UKGErect. The hyperpa-
rameter search method and optimizer were the same as above. In wikidata_5k, the
best parameters of UKGElogi were {d = 128; b = 512; lr = 0.001; γ = 2}, and the best
parameters of UKGErect were {d = 64; b = 256; lr = 0.001; γ = 2}.

• The temporal KG embedding models: To incorporate temporal information, TA-
TransE and TA-DistMult utilize the LSTM to learn time-aware representations of
relation types which can be used in conjunction with the existing deterministic
KG embedding methods. Likewise, these models are only suitable for link predic-
tion and relation fact classification tasks. The best parameters of TA-TransE were
{d = 128; b = 256; lr = 0.001; γ = 2}, and the best parameters of TA-DistMult were
{d = 128; b = 256; lr = 0.001}.

4.4. Confidence Prediction

Evaluation metrics: The goal of confidence prediction is to obtain corresponding
confidence scores of the existing relation facts. We acquired the confidence score for each
relation fact through Equation (3) or Equation (4) and used the MSE and mean absolute
error (MAE) as evaluation metrics for good or bad prediction. The smaller the MSE and
MAE, the more accurate the prediction and the better the model performance.

Experimental results: The confidence prediction results are shown in Table 1. The
deterministic KG representation learning model could not predict the confidence score, so
we only employed the uncertain KG embedding model UKGE as the benchmark model.
In general, on the wikidata_5k dataset, both of our variant models outperformed the
corresponding UKGE variants, and CTRIEJrect performed best on both MSE and MAE.
Compared with the best-performing benchmark model UKGErect, CTRIEJrect reduced the
MSE by approximately 13.8% and the MAE by approximately 19.6%. Our proposed model
outperformed UKGE on the task of confidence prediction, showing that incorporating
temporal and structural information into the model could help more accurately predict
confidence scores for relation facts.
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Table 1. MSE and MAE of relation fact confidence prediction (×10−2).

Dataset wikidata_5k

Metrics MSE MAE
UKGElogi 5.39 17.54
UKGErect 4.63 15.28
CTRIEJlogi 4.38 12.35
CTRIEJrect 3.99 12.28

4.5. Link Prediction

Evaluation metrics: The link prediction is a typical KG embedding evaluation task,
i.e., predicting the missing head or tail entities based on known entities and their relations,
or sometimes it means predicting the corresponding relations based on known head entities
and tail entities. In the experiments of this paper, we forecast the missing tail entities
through the known head entities, relations, corresponding temporal information, and
uncertainty information. We obtained the plausibility ranking of each candidate tail entity
via computing the score function, and then we calculated the evaluation metrics Hit@K and
the average rank. Among them, Hit@K denoted the proportion of candidate tail entities
ranked in the top K where the correct tail entities existed, and the average rank was the
average of the ranking values for the correct tail entities. Since the confidence score of each
triple varied, we followed the PASSLEAF model [17] to linearly weight Hit@K and the
average rank to obtain WH@K and WMR as follows:

WH@K =

∑
(h,rseq ,t,s)∈TK

s

∑
(h,rseq ,t,s)∈T

s
(13)

WMR =

∑
(h,rseq ,t,s)∈T

s · rank(h,rseq ,t)

∑
(h,rseq ,t,s)∈T

s
(14)

where T represents the test dataset, TK represents the top K data in the test set, and
rank(h,rseq ,t) represents the ranking value of the triplet

(
h, rseq, t

)
. We utilized the sum of

the energy function through a translation distance and the confidence prediction function
through semantic matching as the score function to rank the candidate tail entities. When
computing WH@K and WMR with the test set, candidate tail entities may exist in both the
training set and validation set, and they cannot be considered wrong. Hence, we removed
the candidate tail entities that occurred in the training set and validation set to acquire the
filtered WH@K and WMR. The larger the WH@K and the smaller the WMR, the better
the model performance. For WH@K, we conducted experiments for K = 2 and K = 10,
respectively.

Experimental results: The results of WMR, WH@2, and WH@10 are reported in
Table 2. It can be seen that the CTRIEJ models generally outperformed the benchmark
model, CTRIEJlogi performed best on WMR, and CTRIEJrect performed best on WH@2 and
WH@10. The deterministic KG embedding models TransE and DistMult did not perform as
well as our proposed model because they did not consider the temporal information and
confidence scores. UKGE performed poorly also because it only considered the confidence
scores and did not leverage the temporal information and the structural information. TA-
TransE and TA-DistMult only embedded temporal information, so the performance was
not as good as that of our proposed model. Overall, for the task of link prediction, our
model performed the best, followed by the deterministic KG embedding models and the
temporal KG embedding models, and finally the UKGE model, which also showed the
importance of temporal information and structural information to the model. In this paper,
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we employed the sum of the energy function based on translation distance and confidence
prediction function as the evaluation function, and we can explore better function fusion
methods to rank the triples in the future.

Table 2. Tail entity prediction.

Dataset wikidata_5k

Metrics WMR WH@2 WH@10
TransE 23.46 41.47% 78.32%

DistMult 25.82 47.68% 90.65%
UKGElogi 177.69 15.42% 17.90%
UKGErect 36.76 48.22% 85.51%

TA-TransE 21.37 49.64% 79.19%
TA-DistMult 18.41 41.70% 85.68%

CTRIEJlogi 13.51 42.74% 88.87%
CTRIEJrect 15.41 51.57% 92.77%

4.6. Relation Fact Classification

Evaluation metrics: We set the confidence score threshold τ = 0.3 to classify the
strong and weak relations for uncertain temporal relation facts. Under this setting, 36.03%
of the relation facts in wikidata_5k were considered strong relations. By fitting a function
between the predicted confidence scores in the training set and their relation categories, we
obtained a binary classification model that was applied to classify relation facts in the test
set. We used the F-1 score and accuracy to evaluate how well the models classified.

Experimental results: The results are shown in Table 3. Overall, our two variant
models outperformed the baseline models. From the perspective of F-1 scores, the results
of the baseline models did not have much difference, and our two variant models greatly
improved the evaluation results. Among them, CTRIEJrect had the best result, which was
nearly 29.6% higher than the best-performing baseline model TA-TransE. In terms of accu-
racies, our model slightly outperformed the baseline models, with CTRIEJlogi performing
the best, outperforming the best-performing baseline model DistMult by 2.1%. In conclu-
sion, since our model embedded confidence scores, temporal information, and structural
information simultaneously, the performance was better than that of the deterministic KG
embedding models, the UKGE model, and the temporal KG embedding models.

Table 3. F-1 scores (%) and accuracies (%) of relation fact classification.

Dataset wikidata_5k

Metrics F-1 Accu
TransE 18.1 74.2

DistMult 20.8 77.8
UKGElogi 19.6 75.6
UKGErect 20.1 77.5

TA-TransE 27.4 75.6
TA-DistMult 25.6 75.4

CTRIEJlogi 31.7 79.4
CTRIEJrect 35.5 75.9

4.7. Ablation Study

To verify the effect of incorporating temporal and structural information, and adopting
the self-adversarial negative sampling method in our model, we took the variant CTRIEJlogi
as an example and proposed its three simplified versions, called CTRIEJt−, CTRIEJs−,
CTRIEJn−. In CTRIEJt−, we only kept the head entity, tail entity, relation, and corresponding
confidence score of each relation fact and removed their time information. In CTRIEJs−,
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we reserved the MSE loss function for confidence prediction and removed the ranking
loss function characterizing structural information. In CTRIEJn−, we utilized a uniform
negative sampling method to obtain negative samples.

We experimentally tested the four evaluation indicators of MSE, MAE, F-1 score, and
accuracy on these three models, and the results are shown in Table 4. It can be seen that
the three simplified versions did not perform as well as the source model CTRIEJlogi, thus
verifying the effectiveness of our proposed model.

Table 4. MSE (×10−2), MAE (×10−2), F-1 score (%), and accuracy (%).

Dataset wikidata_5k

Metrics MSE MAE F-1 Accu
CTRIEJlogi 4.38 12.35 31.7 79.4
CTRIEJt− 4.59 13.49 20.8 78.4
CTRIEJs− 4.42 13.19 18.4 78.2
CTRIEJn− 4.51 13.43 23.5 78.0

5. Conclusions and Future Work

In this paper, we proposed an embedding model, the CTRIEJ model, for uncertain
temporal KGs. The model leveraged a GRU-based sequence model to incorporate temporal
information into the embedding of relation sequences and then tied in semantic-matching-
based and translation-distance-based energy functions to integrate the confidence scores
and structure information of KGs into a unified framework. Moreover, a self-adversarial
negative sampling technique was adopted to generate negative samples for training our
model. The CTRIEJ model outperformed other benchmarks in three downstream tasks:
confidence prediction, link prediction, and relation fact classification. In future work, we
will investigate how to integrate better-performing embedding models into our framework
and how to better utilize these score functions for evaluating downstream tasks. In addition,
predicting the relation facts and the corresponding confidence scores that exist at future
moments in uncertain temporal KGs is another topic worth investigating.
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