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Advancements in medical imaging modalities have resulted in increasing the importance and

demand of pediatric radiology. This reprint showcases various examples of advanced research in

pediatric radiology and nuclear medicine. These include the use of medical imaging modalities

such as computed tomography, general radiography, magnetic resonance imaging, positron emission

tomography, single-photon emission computed tomography, and ultrasound for diagnosis, as well

as the performance of artificial intelligence (AI) in computer-aided detection and diagnosis in the

pediatric population. The radiation dose issue of pediatric radiological examinations and emerging

AI technology for dose reduction, as well as the use of three-dimensional printing based on medical

images for pediatric surgical planning, healthcare professional education, and patient–clinician

communication are also covered.
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Artificial Intelligence for Radiation Dose Optimization in
Pediatric Radiology: A Systematic Review
Curtise K. C. Ng 1,2
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curtise.ng@curtin.edu.au or curtise_ng@yahoo.com.hk; Tel.: +61-8-9266-7314; Fax: +61-8-9266-2377

2 Curtin Health Innovation Research Institute (CHIRI), Faculty of Health Sciences, Curtin University,
GPO Box U1987, Perth, WA 6845, Australia

Abstract: Radiation dose optimization is particularly important in pediatric radiology, as children
are more susceptible to potential harmful effects of ionizing radiation. However, only one narrative
review about artificial intelligence (AI) for dose optimization in pediatric computed tomography (CT)
has been published yet. The purpose of this systematic review is to answer the question “What are
the AI techniques and architectures introduced in pediatric radiology for dose optimization, their
specific application areas, and performances?” Literature search with use of electronic databases was
conducted on 3 June 2022. Sixteen articles that met selection criteria were included. The included
studies showed deep convolutional neural network (CNN) was the most common AI technique
and architecture used for dose optimization in pediatric radiology. All but three included studies
evaluated AI performance in dose optimization of abdomen, chest, head, neck, and pelvis CT;
CT angiography; and dual-energy CT through deep learning image reconstruction. Most studies
demonstrated that AI could reduce radiation dose by 36–70% without losing diagnostic information.
Despite the dominance of commercially available AI models based on deep CNN with promising
outcomes, homegrown models could provide comparable performances. Future exploration of AI
value for dose optimization in pediatric radiology is necessary due to small sample sizes and narrow
scopes (only three modalities, CT, positron emission tomography/magnetic resonance imaging and
mobile radiography, and not all examination types covered) of existing studies.

Keywords: as low as reasonably achievable; computed tomography; convolutional neural network;
deep learning; dose reduction; generative adversarial network; image processing; machine learning;
medical imaging; noise

1. Introduction

Radiology is an indispensable part of modern healthcare. However, most of the medi-
cal imaging modalities, such as computed tomography (CT), positron emission tomography
(PET), and general radiography, use ionizing radiation for image production [1–16]. Al-
though the radiation dose involved in these imaging modalities is low (<100 mSv), and their
real risk is unclear, some epidemiologic and biologic studies have demonstrated that these
radiological examinations can cause cancers [17–23]. Hence, “as low as reasonably achiev-
able” (ALARA) has become the fundamental principle of radiology practice [17,24,25].
International Commission on Radiological Protection (ICRP) has introduced the diagnostic
reference levels (DRLs) initiative for radiological departments to identify examinations
with radiation doses exceeding their corresponding DRLs and trigger the radiation dose-
optimization process [26–32]. As the radiation used in radiological examinations is the
source of signal, a reduction of the radiation amount results in a decrease of signal strength
and an increase of image noise. Traditionally, the dose-optimization process involves the
manipulation of a range of exposure/scan parameters and identification of parameters that
deliver the lowest radiation dose but still producing images able to meet minimal diagnostic
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requirements [33–36]. Since the introduction of digital medical imaging, image processing
has played an important role in the radiation dose optimization [37–39]. However, typical
image processing techniques are unable to overcome the tradeoff between image noise
and spatial resolution [9–12]. For the last few years, artificial intelligence (AI) has been
introduced into radiology for radiation dose optimization. Studies have demonstrated
its ability in pushing the limit, i.e., able to further reduce the radiation dose but without
sacrificing image quality, such as noise and spatial resolution [1,6,9–12,15,16].

The dose optimization is particularly important for pediatric patients because they
have longer life and more rapid cell proliferation, leading to two to three times more
susceptibility to the potential harmful effects of ionizing radiation than the adult counter-
part [17,33,36,40]. Nonetheless, dose optimization in pediatric radiology is challenging, as
there is a greater variation of body size and composition within and across age groups [4,33].
Despite being an important and challenging topic area, apparently, only one narrative re-
view article on this area has been published yet, and it is about deep learning (a subset of AI)
image reconstruction (DLIR) for dose optimization in pediatric CT [17]. Hence, it is timely
to conduct a systematic review about the use of AI for dose optimization in pediatric radi-
ology. The purpose of this article is to systematically review published original studies to
answer the question “What are the AI techniques and architectures introduced in pediatric
radiology for dose optimization, their specific application areas, and performances?”

2. Materials and Methods

This systematic review on the AI for radiation dose optimization in pediatric radi-
ology was conducted as per the PRISMA guidelines and patient/problem, intervention,
comparison, and outcome (PICO) model [41,42]. This involved literature search, article
selection, and data extraction and synthesis.

2.1. Literature Search

The literature search with use of electronic scholarly publication databases, including
Google Scholar, PubMed/Medline, ScienceDirect, Scopus, and Web of Science was conducted on
3 June 2022 to identify articles about the AI for dose optimization in pediatric radiology
published between 2017 and 2022. The search statement used was (“Artificial Intelligence”
OR “Machine Learning” OR “Deep Learning”) AND (“Dose Optimization” OR “Dose
Reduction”) AND (“Pediatric” OR “Children”) AND (“Radiology” OR “Medical Imaging”).
The keywords used in the search were based on the review focus. The year range was
determined based on a narrative review about current and future applications of AI in
radiology, which showed the use of AI for dose optimization in radiology not evident
before 2017 [43].

2.2. Article Selection

A reviewer with more than 20 years of experience in conducting literature review
was involved in the article selection process [44]. Only peer-reviewed original research
articles that were written in English and focused on the use of AI for dose optimization in
pediatric radiology were included. Grey literature, conference abstracts, editorials, review,
perspective, opinion, commentary, and non-peer-reviewed (e.g., those published via the
arXiv research-sharing platform, etc.) articles were excluded because of the following
reasons: Well-established methodological guidelines were not available for proper selection
of grey literature. Conference abstracts could not provide complete study information.
Only secondary information was presented in editorials, review, perspective, opinion,
and commentary articles. Non-peer-reviewed articles might provide unsubstantiated
information [45,46].

Figure 1 illustrates details of the article selection process [41]. A three-stage screening
process through assessing (1) article titles, (2) abstracts, and (3) full texts against the selection
criteria was employed after duplicate article removal from results of the database search.
Every non-duplicate article within the search results was retained until its exclusion could
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be decided. Lists of references of the included papers were reviewed for additional, relevant
article identification [46].
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Figure 1. PRISMA flow diagram for systematic review of artificial intelligence for radiation dose
optimization in pediatric radiology.

2.3. Data Extraction and Synthesis

A data extraction form (Table 1) was developed based on a recent systematic review
on the use of AI in radiology [45]. The data, including names and countries of authors,
publication years, clinical domains (radiology/nuclear medicine), AI techniques (such
as machine learning and deep learning (DL)), model architectures (e.g., convolutional
neural network (CNN), generative adversarial network (GAN), etc.), specific application
areas (i.e., examination types and approaches that AI was used to achieve dose optimiza-
tion), imaging modalities, details of AI model development (i.e., whether homegrown or
commercially available model and arrangement of model training and testing), AI model
evaluation approach (e.g., phantom study, clinical study, etc.), and key findings of AI model
performance in dose optimization (including figures of dose reduction and diagnostic
values and subjective and objective image assessment scores), were extracted from each
included paper. To facilitate comparison of the AI model performance, percentage of dose
reduction (if not reported) was synthesized based on the available absolute dose figures.
When multiple image-quality-related figures were reported in a study, the most clinically
relevant figures were presented. Diagnostic values were considered the most clinically
relevant performance figures, while the objective image assessment scores were determined
least relevant [47,48]. Quality assessment scores were determined for all included articles
based on the quality assessment tool for studies with diverse designs (QATSDD) and ex-
pressed as percentages [49]. Less than 50%, 50–70%, and greater than 70% were considered
low, moderate, and high study quality, respectively [46].
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3. Results

Sixteen articles met the selection criteria and were included in this review. Table 1
shows these study characteristics [1–16]. All but one article were published in the last two
years, representing that the AI for dose optimization in pediatric radiology has only just
become popular [1,2,4–16]. Nearly all (14) studies were determined high quality [1,4–16],
and the lower quality ones were “pure” phantom studies [2,3]. All studies used the DL
technique [1–16] and were conducted by 12 groups of researchers from USA (n = 8) [1,8–14],
People’s Republic of China (n = 6) [8–12,16], Republic of Korea (n = 5) [2,3,5,7,15], Germany
(n = 2) [4,14], and Japan (n = 1) [6]. Only two studies were about nuclear medicine
(whole-body PET/magnetic resonance imaging (MRI)) [13,14]. For the 14 radiology-related
studies [1–12,15,16], all except one were related to CT, covering body parts such as the
abdomen (n = 10) [1–8,15,16], chest (n = 8) [1,4,8–11,15,16], head (n = 1) [12], neck (n = 1) [8],
and pelvis (n = 1) [1], and four focused on CT angiography [8–11] as well as one on dual-
energy CT (DECT) [5]. Thirteen studies (81.3%) used commercially available AI models for
dose optimization (TrueFidelity, General Electric Healthcare (GE): n = 7 [8–12,15,16]; AiCE,
Canon Medical Systems: n = 3 [1,2,6]; ClariCT.AI, ClariPI: n = 1 [5]; SimGrid, Samsung
Electronics Co., Ltd.: n = 1 [4]; SubtlePET 1.3, Subtle Medical: n = 1 [13]). Ten studies (62.5%)
employed DLIR for CT dose optimization as a result of the dominance of GE TrueFidelity
and Canon AiCE with the CNN architecture [1,2,6,8–12,15,16]. Hence, the CNN was the
most popular (87.5%) AI architecture among the included studies [1,2,4–6,8–16].

Clinical evaluation of the AI model performance was conducted in all but two stud-
ies [1,4–16], and the use of phantom for an additional evaluation was also noted in three
(21.4%) of the clinical studies [6,15,16]. Collectively, these clinical studies covered pedi-
atric patients aged from 0 to 18 years [1,4–16]. All except one study recruited less than
100 patients for the model evaluation [1,5–16]. The only exception had 134 patients [4].
A retrospective approach was employed in about two-thirds (9 out of 14) of the clinical
studies [1,4–9,12,15]. About 70% of (11) included studies reported absolute dose figures
and/or dose reduction percentages. The performance of dose reduction of the AI models
with acceptable image quality ranged from 11% to 95% [1,2,5–7,10–14,16]. More than half
(6) of these studies reported that their AI models were able to achieve dose reductions
between 36% and 70% [1,6,7,10,13,16] although three other studies showed dose reductions
between 85% and 95% [2,12,14], and another two showed 11–20% dose reductions [5,11].
For the two most popular commercial AI models, GE TrueFidelity and Canon AiCE, great
variations of their dose reduction performances, namely 11–85% and 52–95%, were noted,
respectively [1,2,6,10–12,16].

4. Discussion

The findings of this systematic review on the AI for radiation dose optimization in
pediatric radiology are consistent with several recent narrative reviews about the use of AI
in radiology [17,43,51]. For the narrative review about the current and future applications
of AI in radiology published in 2018 [43], only one study regarding low-dose CT denoising
published in 2017 was cited [52]. However, recently, more studies about the use of AI
for dose optimization have been published, resulting in a narrative review about the
AI for dose optimization in pediatric CT available in 2021 [17]. This demonstrates that
the use of AI for dose optimization in pediatric radiology has attracted the attention of
the profession recently. That narrative review indicated the DLIR allowed 30–80% dose
reduction in pediatric CT but was still able to produce images with diagnostic quality. This
systematic review with inclusion of more studies about dose optimization in pediatric CT
and covering other imaging modalities shows that the majority of the AI models were able
to reduce the radiation dose by 36–70% [1,6,7,10,13,16]. Nonetheless, three studies included
in this systematic review demonstrated that the use of AI could achieve further radiation
dose reduction (up to 95%) [2,12,14]. Apparently, the large variation of dose reduction
performances is due to the retrospective nature of many included studies [1,4–9,12,15],
which did not allow further manipulation of examination/scan parameters to obtain ultra-
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low-dose images for evaluating whether the AI models could restore the quality of these
ultra-low-dose images to close to the original [9]. Although there is a greater flexibility for
phantom studies to manipulate the examination/scan parameters without any ethical and
radiation dose concerns, enabling further exploration of the potential of these AI models,
their evaluation outcomes tend to be less clinically relevant [47,48]. For example, Jeon
et al. [2] reported that Canon AiCE was able to reduce the CT dose by 95% with the contrast-
to-noise ratio values of the DLIR phantom images similar to those reconstructed by filtered
back projection, but it is unclear whether these findings could be translated into clinical
practice exactly. Nonetheless, Wang et al.’s [14] clinical prospective study showed that
their homegrown AI denoising model developed through transfer learning with the use
of 17 standard-dose PET simulated 6.25% ultra-low-dose PET, and MRI training datasets
were able to reduce the radiation dose by 93.8% for the whole-body PET examinations with
adequate diagnostic accuracy. This implies that it is feasible to use the AI denoising to
achieve about 90% dose reduction in the clinical practice although all included studies had
small sample sizes and/or number of training datasets [1,4–16], which is a common issue
of AI studies in radiology due to limited availability of medical images [53]. Nevertheless,
through the use of transfer learning (i.e., retraining an existing AI model using a smaller
number of datasets with or without modification of its architecture) to develop an AI model
for performing a similar task, such a model could provide a dose-optimization performance
comparable to commercially available models (e.g., Canon AiCE, GE TrueFidelity, etc.)
trained with more datasets [2,12,14,43].

It is within expectation that all but two studies used the AI models with the deep CNN
architecture because the CNN architecture emerged in 1980s, and hence, it has been widely
used in radiology, with satisfactory performances well-demonstrated [1,2,4–6,8–16,37].
However, one included study published in 2022 employed the more recent and advanced
DL architecture: GAN, which was designed in 2014 [7,51]. According to a narrative review
about the use of GAN in radiology published in 2021 [51], the CNN-based denoising models
could cause CT images having a plastic-like appearance, which is similar to those produced
by iterative reconstruction due to over-smoothing. In contrast, the GAN is a more complex
architecture with a generator and a discriminator, which requires simultaneous training of
these two, increasing the complexity of model development [37]. Nonetheless, the GAN-
based denoising models are able to preserve texture details and hence produce images with
quality matching standard images [51]. The GAN-based dose-optimization study included
in this systematic review also demonstrated similar findings that their readers were unable
to differentiate between the standard-dose and GAN-processed images although only
36.6% dose reduction was achieved in their study [7]. Another non-CNN-based dose-
optimization study included in this review employed the Gaussian mixture model (GMM)
architecture [3]. The use of GMM for medical image denoising was reported before the
emergence of GAN [54]. However, it is not widely adopted in radiology, and its clinical
performance in pediatric radiology dose optimization remains unclear [3,17,43,51].

This paper is the first systematic review on the AI for radiation dose optimization in
pediatric radiology covering the imaging modalities of CT, PET/MRI, and mobile radiogra-
phy and hence advancing the previous narrative review on the AI for dose optimization
in pediatric CT published in 2021 [17]. Although it is well-known that radiation dose
burden is a significant issue in pediatric CT [1–11,15,16], the dose involved in a PET scan
is comparable to that of a CT examination [14]. Furthermore, general radiography is the
most common radiological examination type for pediatric patients despite being a low-
dose modality [36]. Nonetheless, as per the ALARA principle, the value of AI for dose
optimization in other modalities that use ionizing radiation for pediatric examinations
should be explored in the future [17,24,25]. Moreover, given the relatively narrow focus
and small sample size of the included studies, future studies on this topic area for CT, PET,
and general radiography need to have greater scale and wider scope [1,4–16]. Besides,
further exploration of the use of GAN for dose optimization appears warranted [7,51].
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This systematic review has two major limitations. Article selection, data extraction,
and synthesis were performed by a single author, albeit one with more than 20 years of
experience in conducting literature reviews. According to a recent methodological system-
atic review [44], this is an appropriate arrangement provided that the single reviewer is
experienced. Additionally, through adherence to the PRISMA guidelines and the use of the
data extraction form (Table 1) devised based on the recent systematic review on AI in radi-
ology and QATSDD, the potential bias should be addressed to certain extent [41,45,46,49].
In addition, only articles written in English and published within last five years were
included, potentially affecting comprehensiveness of this systematic review. Nevertheless,
this review still has a wider coverage than the previous narrative review on the AI for dose
optimization in pediatric CT [17].

5. Conclusions

This systematic review shows that the deep CNN was the most common AI technique
and architecture used for radiation dose optimization in pediatric radiology. All but three
included studies evaluated the AI performance in dose optimization of abdomen, chest, head,
neck, and pelvis CT; CT angiography; and DECT through DLIR. The majority of studies
demonstrated that the AI could reduce radiation dose by 36–70% without losing diagnostic
information. Despite the dominance of commercially available AI models based on the
deep CNN, the homegrown models, including the one with the more recent and advanced
architecture, i.e., GAN, could provide comparable performances. Future exploration of the
value of AI for dose optimization in pediatric radiology is necessary, as the sample sizes of the
included studies appear small, and only three imaging modalities, namely CT, PET/MRI, and
mobile radiography, rather than all examination types were covered.
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Abstract: Artificial intelligence (AI)-based computer-aided detection and diagnosis (CAD) is an
important research area in radiology. However, only two narrative reviews about general uses of
AI in pediatric radiology and AI-based CAD in pediatric chest imaging have been published yet.
The purpose of this systematic review is to investigate the AI-based CAD applications in pediatric
radiology, their diagnostic performances and methods for their performance evaluation. A literature
search with the use of electronic databases was conducted on 11 January 2023. Twenty-three articles
that met the selection criteria were included. This review shows that the AI-based CAD could be
applied in pediatric brain, respiratory, musculoskeletal, urologic and cardiac imaging, and especially
for pneumonia detection. Most of the studies (93.3%, 14/15; 77.8%, 14/18; 73.3%, 11/15; 80.0%, 8/10;
66.6%, 2/3; 84.2%, 16/19; 80.0%, 8/10) reported model performances of at least 0.83 (area under
receiver operating characteristic curve), 0.84 (sensitivity), 0.80 (specificity), 0.89 (positive predictive
value), 0.63 (negative predictive value), 0.87 (accuracy), and 0.82 (F1 score), respectively. However,
a range of methodological weaknesses (especially a lack of model external validation) are found in
the included studies. In the future, more AI-based CAD studies in pediatric radiology with robust
methodology should be conducted for convincing clinical centers to adopt CAD and realizing its
benefits in a wider context.

Keywords: children; confusion matrix; convolutional neural network; deep learning; diagnostic
accuracy; disease identification; image interpretation; machine learning; medical imaging; pneumonia

1. Introduction

Artificial intelligence (AI) is an active research area in radiology [1–4]. However, the
investigation of use of AI for computer-aided detection and diagnosis (CAD) in radiology
started in 1955. Any CAD systems are AI applications and can be subdivided into two
types: computer-aided detection (CADe) and computer-aided diagnosis (CADx) [5–7].
The former focuses on the automatic detection of anomalies (e.g., tumor, etc.) on medical
images, while the latter is capable of automatically characterizing anomaly types such as
benign and malignant [7]. Since the 1980s, more researchers have become interested in the
CAD system development due to availabilities of digital medical imaging and powerful
computers. The first CAD system approved by The United States of America Food and
Drug Administration was commercially available in 1998 for breast cancer detection [6].

Early AI-based CAD systems in radiology were entirely rule based, and their algo-
rithms could not improve automatically. In contrast, machine learning (ML)-based and
deep learning (DL)-based CAD systems can automatically improve their performances
through training, and hence, they have become dominant. DL is a subset of ML, and its
models have more layers than those of ML. The DL algorithms are capable of modeling
high-level abstractions in medical images without predetermined inputs [5,8,9].
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A recent systematic review has shown that the DL-based CAD systems in radiology
have been developed for a range of areas including breast, cardiovascular, gastrointestinal,
hepatological, neurological, respiratory, rheumatic, thyroid and urologic diseases, and
trauma. The performances of these CAD systems matched expert readers’ capabilities
(pooled sensitivity and specificity: 87.0% vs. 86.4% and 92.5% vs. 90.5%), respectively [10].
Apparently, the current AI-based CAD systems might help to address radiologist shortage
problems [9–11]. Nevertheless, various systematic reviews have criticized that the diag-
nostic performance figures reported in many AI-based CAD studies were not trustworthy
because of their methodological weaknesses [10,12,13].

Pediatric radiology is a subset of radiology [14–17]. The aforementioned systematic
review findings may not be applicable to the pediatric radiology [10,12,13,16,17]. For
example, the AI-based CAD systems for breast and prostate cancer detections seem not
relevant to children [10,12,13,17]. Although the AI-based CAD is an important topic area
in radiology [10,12,13], apparently, only two narrative reviews about various uses of AI
in pediatric radiology (e.g., examination booking, image acquisition and post-processing,
CAD, etc.) [17] and AI-based CAD in pediatric chest imaging have been published to
date [16]. Hence, it is timely to conduct a systematic review about the diagnostic perfor-
mance of AI-based CAD in pediatric radiology. The purpose of this article is to system-
atically review the original studies to answer the question: “What are the AI-based CAD
applications in pediatric radiology, their diagnostic performances and methods for their
performance evaluation?”

2. Materials and Methods

This systematic review of the diagnostic performance of the AI-based CAD in pediatric
radiology was conducted as per the preferred reporting items for systematic reviews and
meta-analyses (PRISMA) guidelines and patient/population, intervention, comparison,
and outcome model. This involved a literature search, article selection, and data extraction
and synthesis [10,12–14,18].

2.1. Literature Search

The literature search with the use of electronic scholarly publication databases, in-
cluding EBSCOhost/Cumulative Index of Nursing and Allied Health Literature Ultimate,
Ovid/Embase, PubMed/Medline, ScienceDirect, Scopus, SpringerLink, Web of Science,
and Wiley Online Library was conducted on 11 January 2023 to identify articles investigat-
ing the diagnostic performance of the AI-based CAD in the pediatric radiology with no
publication year restriction [12,19,20]. The search statement used was (“Artificial Intelli-
gence” OR “Machine Learning” OR “Deep Learning”) AND (“Computer-Aided Diagnosis”
OR “Computer-Aided Detection”) AND (“Pediatric” OR “Children”) AND (“Radiology”
OR “Medical Imaging”). The keywords used in the search were based on the review
focus and systematic reviews on the diagnostic performance of the AI-based CAD in
radiology [19–23].

2.2. Article Selection

A reviewer with more than 20 years of experience in conducting literature reviews
was involved in the article selection process [14,24]. Only peer-reviewed original research
articles that were written in English and focused on the AI-based CAD in pediatric radi-
ology with the diagnostic accuracy measures were included. Gray literature, conference
proceedings, editorials, review, perspective, opinion, commentary, and non-peer-reviewed
(e.g., those published via the arXiv research-sharing platform, etc.) articles were excluded
because this systematic review focused on the diagnostic performance of the AI-based CAD
in the pediatric radiology and appraisal of the associated methodology reported in the
refereed original articles. Papers mainly about image segmentation or clinical prediction
instead of disease identification or classification were also excluded [12].
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Figure 1 illustrates the details of the article selection process. A three-stage screening
process through assessing (1) article titles, (2) abstracts, and (3) full texts against the selection
criteria was employed after duplicate article removal from the results of the database search.
Every non-duplicate article within the search results was retained until its exclusion could
be decided [14,25,26].
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tection and diagnosis in pediatric radiology. CINAHL, Cumulative Index of Nursing and Allied
Health Literature.

2.3. Data Extraction and Synthesis

Two data extraction forms (Tables 1 and 2) were developed based on a recent sys-
tematic review on the diagnostic performance of AI-based CAD in radiology [12]. The
data, including author name and country, publication year, imaging modality, diagnosis,

15
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diagnostic performance of AI-based CAD system (area under receiver operating char-
acteristic curve (AUC), sensitivity, specificity, positive predictive value (PPV), negative
predictive value (NPV), accuracy and F1 score), AI type (such as ML and DL) and model
(e.g., support vector machine, convolutional neural network (CNN), etc.) for developing
the CAD system, study design (either prospective or retrospective), source (such as pub-
lic dataset by Guangzhou Women and Children’s Medical Center, China) and size (e.g.,
5858 images, etc.) of dataset for testing the CAD system, patient/population (such as
1–5-year-old children), any sample size calculation, model internal validation type (e.g.,
10-fold cross-validation, etc.), any model external validation (i.e., any model testing with
use of dataset not involved in internal validation and acquired from different setting),
reference standard for ground truth establishment (such as histology and expert consensus),
any model performance comparison with clinician and model commercial availability were
extracted from each included paper. When diagnostic performance findings were reported
for multiple AI-based CAD models in a study, only the values of the best performing model
were presented [27]. Meta-analysis was not conducted because this systematic review
covered a range of imaging modalities and pathologies, and hence, high study hetero-
geneity was expected, affecting its usefulness [12,13,28]. The Revised Quality Assessment
of Diagnostic Accuracy Studies (QUADAS-2) tool was used to assess the quality of all
included studies [9,12,13,19,23,27,29].

3. Results

Twenty-three articles met the selection criteria and were included in this review [30–52].
Table 1 shows their AI-based CAD application areas in the pediatric radiology and the diag-
nostic performances. These studies covered brain (n = 9) [30–38], respiratory (n = 9) [42–50],
musculoskeletal (n = 2) [40,41], urologic (n = 2) [51,52] and cardiac imaging (n = 1) [39]. The
commonest AI-based CAD application area (30.4%, 7/23) was pediatric pneumonia [43,45–50].
No study reported all seven diagnostic accuracy measures [30–52]. Most commonly, the papers
(30.4%, 7/23) reported four metrics [30,32,35,42,44,45,52]. Accuracy (n = 19) and sensitivity
(n = 18) were the two most frequently used evaluation metrics [30–39,41–52]. One study only
used one measure, AUC [40]. Most of the articles (93.3%, 14/15; 77.8%, 14/18; 73.3%, 11/15;
80.0%, 8/10; 66.6%, 2/3; 84.2%, 16/19; 80.0%, 8/10) reported AI-based CAD model performances
of at least 0.83 (AUC), 0.84 (sensitivity), 0.80 (specificity), 0.89 (PPV), 0.63 (NPV), 0.87 (accuracy),
and 0.82 (F1 score), respectively. The ranges of the reported performance values were 0.698–0.999
(AUC), 0.420–0.987 (sensitivity), 0.585–1.000 (specificity), 0.600–1.000 (PPV), 0.260–0.971 (NPV),
0.643–0.986 (accuracy), and 0.626–0.983 (F1 score) [30–52]. For the seven studies about AI-based
CAD for pneumonia, their model performances were at least 0.850 (AUC), 0.760 (sensitivity),
0.800 (specificity), 0.891 (PPV), 0.905 (accuracy) and 0.903 (F1 score).
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Table 2 presents the included study characteristics. Overall, 18 out of 23 (78.3%) stud-
ies were published in the last three years [30–32,34,37–43,45–51]. Most of them (72.7%,
16/22) developed the DL-based CAD systems [31,34,36,37,39–43,45,46,48–52]. Of these
16 DL-based systems, 75% (n = 12) used the CNN model [34,37,39–43,46,48–51]. Mag-
netic resonance imaging (MRI) (n = 9) [30–38] and X-ray (n = 8) [42,43,45–50] were most
frequently used by the AI-based CAD models for the brain and respiratory disease di-
agnoses, respectively. The majority of studies (69.6%, 16/23) collected the datasets ret-
rospectively [31,33,34,36,38–40,42–46,48–50,52]. Of these 16 retrospective studies, about
one-third (n = 11) relied on the public datasets [31,34,36,38,42,43,45,46,48–50]; most of
them (n = 7) used the chest X-ray dataset consisting of 1741 normal and 4346 pneumonia
images of 6087 1–5-year-old children collected from the Guangzhou Women and Chil-
dren’s Medical Center, China [42,43,45,46,48–50]. No study calculated the sample size
for the data collection [30–52]. Most of the studies (60.9%, 14/23) collected less than
233 cases [30–41,44,52], and about one-third (n = 7) collected data of less than 87 patients
for testing their systems [30,32,34,35,37,40,44]. Hence, for the model internal validation,
more than half of the studies (n = 13) used the cross-validation to address the small test
set issue [30,33–40,47,50–52]. However, all but one did not conduct the external vali-
dation [30–43,45–52]. The only exception conducted external validation for a commer-
cial AI-based CAD system evaluation [44]. Less than one-fifth of the included studies
(n = 4) used the consensus diagnosis as the reference standard (ground truth) for the model
training and performance evaluation [33,42,44,47], and one-quarter (n = 6) did not report
the reference standard [31,43,45,46,48,49]. Only about one-fifth (n = 5) compared their
model performances with those of clinicians [33,34,40,44,47], and most of these (60%, 3/5)
were the studies using the consensus diagnosis as the reference standard [33,44,47].

Figure 2 shows the quality assessment summary of all (23) studies based on the QUADAS-2
tool. Only around one-third of the studies had a low risk of bias [34–38,41,44,52] and concern
regarding applicability for the patient selection category [30,34–38,41,44,52]. The low risk of bias
of the reference standard was only noted in about half of them [32–38,40,42,47,50,52].
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4. Discussion

This article is the first systematic review on the diagnostic performance of the AI-
based CAD in the pediatric radiology covering the brain [30–38], respiratory [42–50],
musculoskeletal [40,41], urologic [51,52] and cardiac imaging [39]. Hence, it advances the
previous two narrative reviews about various uses of AI in the pediatric radiology [17]
and the AI-based CAD in the pediatric chest imaging [16] published in 2021 and 2022,
respectively. Most of the included studies reported AI-based CAD model performances
of at least 0.83 (AUC), 0.84 (sensitivity), 0.80 (specificity), 0.89 (PPV), 0.63 (NPV), 0.87
(accuracy), and 0.82 (F1 score) [30–52]. However, the diagnostic performances of these CAD
systems appeared a bit lower than those reported in the systematic review of the AI-based
CAD in the radiology (pooled sensitivity and specificity: 0.87 and 0.93, respectively) [10]. In
addition, the pediatric pneumonia was the only disease that was investigated by more than
two studies [43,45–50]. Although these studies reported that their CAD performances for
the pneumonia diagnosis were at least 0.850 (AUC), 0.760 (sensitivity), 0.800 (specificity),
0.891 (PPV), 0.905 (accuracy) and 0.903 (F1 score), which would be sufficient to support less
experienced pediatric radiologists in image interpretation, all but one were the retrospective
studies and relied on the chest X-ray dataset consisting of 1741 normal and 4346 pneumonia
images of 6087 1–5-year-old children collected from the Guangzhou Women and Children’s
Medical Center, China [13,43–50]. It is noted that the use of the public dataset could facilitate
AI-based CAD model performance comparison with other similar studies [43]. On the other
hand, this approach would affect the model generalization ability (i.e., unable to maintain
the performance when applying to different settings), causing the model to be unfit for real
clinical situations [10,46]. Although techniques such as the cross-validation can be used
to improve the AI-based CAD model generalization ability [37], only one of these studies
used the cross-validation approach [50], while half of them did not report the internal
validation type [43,45,49]. In addition, some ground truths given in the public datasets
might be inaccurate, indicating potential reference standard issues [10,42]. These studies
did not calculate the required sample size; perform the external validation; and compare
their model performances with radiologists, but they are essential for the demonstration of
the trustworthiness of study findings [43,45,46,48–50]. As per Table 2, the aforementioned
methodological issues were also common for other included studies. These issues are
found in many studies about the AI-based CAD in the radiology as well [10,12,13].

Table 2 reveals that the DL and its model, CNN, were commonly used for the devel-
opment of the AI-based CAD systems in the pediatric radiology similar to the situation
in the radiology [13]. According to the recent narrative review about the AI-based CAD
in the pediatric chest imaging published in 2022, 144 Conformité Européenne-marked
AI-based CAD systems for brain (35%), respiratory, (27%), musculoskeletal (11%), breast
(11%), other (7%), abdominal (6%) and cardiac (4%) imaging were commercially available
in the radiology [16]. The proportions of these systems are comparable to the findings of
this systematic review that the brain, respiratory and musculoskeletal imaging were the
three most popular application areas of the AI-based CAD in the pediatric radiology and
the cardiac imaging was the least (Table 1). However, except for Helm et al.’s retrospective
study about the detection of pediatric pulmonary nodules in 29 3–18-year-old patients
with the use of the AI-based CAD system developed for adults [44], no commercial system
was involved in the included studies (Table 2) [30–43,45–52]. Helm et al.’s study [44] was
the only one that performed the external validation of the CAD system with the reference
standard established by the consensus of six radiologists, and one of the few compared
the CAD performance with the clinicians. However, that study only used four evaluation
measures: sensitivity (0.42), specificity (1.00), PPV (1.00) and NPV (0.26), and the other
metrics commonly used in more clinically focused studies, AUC and accuracy, were not
reported [10,12,44,53]. This highlights that even for a more clinically focused AI-based
CAD study in the pediatric radiology with the better design, the common methodological
weaknesses such as the retrospective data collection with limited information of patient
characteristics reported and cases included, and no sample size calculation, were still
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prevalent (Table 2) [44,54,55]. Hence, these explain the findings in Figure 2 that the concern
regarding applicability was found in the patient selection, and the risk of bias was noted in
both patient selection and reference standard categories, although similar results were also
reported in the systematic reviews of the AI-based CAD in the radiology [10,12].

Apparently, the AI-based CAD in the pediatric radiology is less developed when
compared to its adult counterpart. For example, not many studies were published before
2020 [33,35,36,44,52,56–76], and the studies mainly focused on the MRI and X-ray and par-
ticular patient cohorts [30–52] (Table 2). Although Schalekamp et al.’s [16] narrative review
published in 2022 suggested the use of the AI-based CAD designed for the adult population
in children, Helm et al.’s [44] study demonstrated that this approach yielded low sensitivity
(0.42) and NPV (0.26) in detecting pediatric pulmonary nodules because of the smaller
nodule sizes in children. Hence, AI-based CAD systems specifically designed/finetuned
for the pediatric radiology by researchers and/or commercial companies seem necessary in
the future. In addition, for further research, more robust study designs that can address
the aforementioned methodological issues (especially the lack of the external validation)
are essential for providing trustworthy findings to convince clinical centers to adopt the
AI-based CAD in the pediatric radiology. In this way, the potential benefits of the CAD
could be realized in a wider context [5,10,12,13].

This systematic review has two major limitations. The article selection, data extraction,
and synthesis were performed by a single author, albeit one with more than 20 years of
experience in conducting the literature reviews [14]. According to a recent methodological
systematic review, this is an appropriate arrangement provided that the single reviewer
is experienced [14,24,77–79]. Additionally, through adherence to the PRISMA guidelines
and the use of the data extraction forms (Tables 1 and 2) devised based on the recent
systematic review on the diagnostic performance of the AI-based CAD in the radiology and
the QUADAS-2 tool, the potential bias should be addressed to a certain extent [12,14,26,29].
In addition, only articles in English identified via databases were included, potentially
affecting the comprehensiveness of this systematic review [9,21,26,27,80]. Nevertheless,
this review still has a wider coverage about the AI-based CAD in the pediatric radiology
than the previous two narrative reviews [16,17].

5. Conclusions

This systematic review shows that the AI-based CAD for the pediatric radiology could
be applied in the brain, respiratory, musculoskeletal, urologic and cardiac imaging. Most
of the studies (93.3%, 14/15; 77.8%, 14/18; 73.3%, 11/15; 80.0%, 8/10; 66.6%, 2/3; 84.2%,
16/19; 80.0%, 8/10) reported AI-based CAD model performances of at least 0.83 (AUC),
0.84 (sensitivity), 0.80 (specificity), 0.89 (PPV), 0.63 (NPV), 0.87 (accuracy), and 0.82 (F1
score), respectively. The pediatric pneumonia was the most common pathology covered
in the included studies. They reported that their CAD performances for pneumonia
diagnosis were at least 0.850 (AUC), 0.760 (sensitivity), 0.800 (specificity), 0.891 (PPV),
0.905 (accuracy) and 0.903 (F1 score). Although these diagnostic performances appear
sufficient to support the less experienced pediatric radiologists in the image interpretation,
a range of methodological weaknesses such as the retrospective data collection, no sample
size calculation, overreliance on public dataset, small test set size, limited patient cohort
coverage, use of diagnostic accuracy measures and cross-validation, lack of model external
validation and model performance comparison with clinicians, and risk of bias of reference
standard are found in the included studies. Hence, their AI-based CAD systems might
be unfit for the real clinical situations due to a lack of generalization ability. In the future,
more AI-based CAD systems specifically designed/fine-tuned for a wider range of imaging
modalities and pathologies in the pediatric radiology should be developed. In addition,
more robust study designs should be used in further research to address the aforementioned
methodological issues for providing the trustworthy findings to convince the clinical centers
to adopt the AI-based CAD in the pediatric radiology. In this way, the potential benefits of
the CAD could be realized in a wider context.
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Abstract: This study aimed to systematically review the literature to synthesise and summarise the
evidence surrounding the efficacy of artificial intelligence (AI) in classifying paediatric pneumonia
on chest radiographs (CXRs). Following the initial search of studies that matched the pre-set criteria,
their data were extracted using a data extraction tool, and the included studies were assessed via
critical appraisal tools and risk of bias. Results were accumulated, and outcome measures analysed
included sensitivity, specificity, accuracy, and area under the curve (AUC). Five studies met the
inclusion criteria. The highest sensitivity was by an ensemble AI algorithm (96.3%). DenseNet201
obtained the highest level of specificity and accuracy (94%, 95%). The most outstanding AUC value
was achieved by the VGG16 algorithm (96.2%). Some of the AI models achieved close to 100%
diagnostic accuracy. To assess the efficacy of AI in a clinical setting, these AI models should be
compared to that of radiologists. The included and evaluated AI algorithms showed promising
results. These algorithms can potentially ease and speed up diagnosis once the studies are replicated
and their performances are assessed in clinical settings, potentially saving millions of lives.

Keywords: artificial intelligence (AI); deep learning (DL); paediatric pneumonia; chest radiograph;
computer-aided detection (CAD)

1. Introduction

Pneumonia is one of the leading causes of global mortality and morbidity [1] and
the leading cause of death among children under five years of age [2]. The chest X-ray
(CXR) is the primary diagnostic tool in both the detection and diagnosis of paediatric
pneumonia [1] due to the unspecific and subjective signs and symptoms of the infection [3],
while sputum cultures are often extremely difficult to ascertain [4]. A lack of expert
radiologists, particularly in resource-constrained countries, where paediatric pneumonia is
endemic with shockingly high mortality rates [5], might have significantly contributed to
the high mortality rates.

Pneumonia, as a whole, often manifests on a chest radiograph as areas of increased
opacity [6]. Bacterial and viral pneumonia, the two most common aetiologies, have different
appearances on CXRs and have different treatment regimes [7]. Bacterial pneumonia often
manifests as a lobar and focal consolidation, whereas viral pneumonia can present as an
interstitial pattern. Although the different appearances on CXRs, interpretation of the
aetiologies on CXR varies amongst physicians [3] as the opacification presented is often
variable and irregular [8].

There are roughly two billion CXRs performed in the United States annually [9], with
approximately two million of these being on paediatric patients [10]. The accumulation
of imaging data and the increasing complexity of medical history pose new challenges in
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modern medicine but also open up new opportunities in implementing artificial intelligence
(AI) for effective detection and diagnosis [3].

AI is defined, by the father of AI, Marvin Minsky, as “the science of making machines
do things that would require intelligence if done by men” [11]. Machine learning (ML) and
deep learning (DL) are both under the umbrella of AI. In ML, the system identifies patterns
by learning from data and makes decisions with minimal programming and human inter-
ventions [12,13]. On the other hand, DL involves multiple processing layers, with individual
layers extracting a large number of features from unstructured data before progressing to the
next layer [14]. Higher levels typically represent more abstract concepts [15] and can give a
more comprehensive depiction or decision after passing through the entire network [14].

Computer-aided detection (CAD) was first introduced between 1963–1973 [16–21],
and utilised in facets of radiology, predominantly the identification of lung, colorectal,
breast, and prostate cancer, over the past 20 years [22–33]. CAD is trained in a regimental
fashion and can only be improved by inputting more data, while AI has the autonomous
learning element in which explicit programming and human instructions are not necessary
for its improvement [34].

AI interpretation of medical images can also potentially be utilised in low- to middle-
income countries, where the availability of radiologists is limited. Currently, interpretations
rely on teleradiology [35], though it is not flawless. Cross-border teleradiology, in particular,
is challenging due to liability in case of malpractice, healthcare professional registration
restrictions, data protection, quality of the reporting, healthcare system, and cultural
differences [36]. This is where AI can potentially come in to make the diagnostic and
treatment pathway of patients smoother, especially in these developing nations [35].

Recent studies exhibited that AI algorithms outperformed radiologists in the detection
of skin cancer [37], diabetic retinopathy [38], and haemorrhage identification [39], probably
owing to the recent AI model advancement [40] and widening availability of electronic
health record, providing more training materials. The winner of the Turning Prize said in
2016, “We should stop training radiologists now. It’s just completely obvious that within
five years, DL is going to do better than radiologists” [41].

These successes have sparked interest in the automated diagnosis of paediatric pneu-
monia in CXRs, reflected by the increased number of studies regarding the diagnostic
accuracy of AI for paediatric pneumonia over the last number of years. When being asked
about AI’s role in diagnosing pneumonia, Andrew Ng, the co-founder and head of Google
Brain, went further—“radiologists should be worried about their jobs” [42]. A recent
study by Kermany et al. [43] showed that a customised AI model demonstrated a good
level of classification of paediatric pneumonia on CXR. By systematically reviewing the
current literature regarding AI and paediatric pneumonia, the current gap in literature may
be filled and potentially result in a dramatic improvement of accuracy and efficiency in
differentiating bacterial and viral pneumonia in paediatric CXRs in a clinical setting [44].

2. Materials and Methods
2.1. Literature Search Strategy

A comprehensive search of the literature was conducted in accordance with the
Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guide-
lines [45] in February 2021. A number of pre-determined keywords were pooled for this
systematic search, and subsequent medical subject headings (MeSH terms) were gener-
ated. The MeSH terms used for this systematic search include: (‘artificial intelligence’ OR
‘deep learning’ OR ‘CNN’ OR ‘convolutional neural network’ OR ‘deep residual network’),
(‘paediatric pneumonia’ OR ‘pediatric pneumonia’ OR ‘child* pneumonia’), ‘classification’,
(‘chest xray’ OR ‘chest x ray’ OR ‘chest x-ray’ OR ‘CXR’ OR ‘chest radiograph’). The pre-
determined MeSH terms were then linked using Boolean operators specific to each database
(PubMed, Science Direct, Embase, ProQuest, and Scopus) to retrieve all relevant articles
evaluating the diagnostic efficacy of AI models in the classification of paediatric pneumonia
in CXRs. These databases were chosen as opposed to others due to their scientific reliability
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and coverage. Google Scholar and the reference lists of relevant studies were also screened
to ensure as much grey literature was captured as possible. In addition to these criteria,
only peer-reviewed articles published in English were included in this review.

2.2. Study Selection and Eligibility Criteria

The initial selection involved screening the paper title and abstract. After gathering
all of the potential papers, a full-text assessment was undertaken. Studies were included
if they met the following inclusion criteria: only original cross-sectional studies, cohort
or case-control studies, randomised control trials (RCTs), or diagnostic accuracy studies
in the format of either journal articles, dissertations, conference proceedings, or grey lit-
erature, disseminated between 2015–2021, were included. In addition, the paper must
analyse/evaluate the AI performances on the classification of pneumonia aetiology (bacte-
rial or viral) using CXR test datasets of children under the age of 16 years in acute healthcare
settings. These studies should also evaluate the AI performance using at least three of the
following parameters: accuracy, sensitivity, specificity, and area under the curve (AUC).
Studies which did not meet one of the inclusion criteria, or inaccessible full-text articles,
were excluded.

2.3. Data Extraction

Data extraction was performed on included studies using the amended version of
the Cochrane ‘Data collection form for Intervention Reviews for RCTs and Non-RCTS—
Template’ [46]. A general overview of the data extracted is as follows: general information
(report title, study ID, date form completed, etc.), study eligibility, characteristics of study
(the aim of the study, design, etc.), participants (description of images from dataset, setting,
age, etc.), AI model (AI type, mode, detail, etc.), outcomes (sensitivity, specificity, accuracy,
AUC), and other information (key conclusions, future work, etc.). Each data extraction
form was reviewed by two independent reviewers, and any discrepancies were resolved
by consensus. The original data extraction form applied to each included study can be
obtained from the author on request.

2.4. Quality Assessment and Risk of Bias

A quality assessment of each included study was examined using the Critical Appraisal
Skills Programme (CASP) Diagnostic Study Checklist, which focuses on the result validity,
measuring parameters and transparency, and generalisability [47]. A risk of bias (ROB)
assessment was also completed for each included study. The tool utilised for the ROB was
adjusted from Hung et al.’s QUADAS-2 tool, whose systematic review investigated the use
and performance of AI applications in the maxillofacial and dental radiology [48]. This
adapted ROB consists of four key domains: patient selection, index test, reference standard,
and study flow and timing with regard to both applicability and general ROB. Each domain
was assessed using a three-point scale, low (green), high (red), or unclear (yellow), to reflect
the level of bias concerns accordingly. All CASP and ROB checklists were reviewed by
two independent reviewers, and any discrepancies were resolved by consensus.

3. Results
3.1. Study Selection

A total of 114 papers were identified following the initial systematic search from
the six databases previously mentioned, combined with subsequent manual searches of
reference lists based on the relevance of their title to the research question. After the
removal of duplicates, 82 papers were considered for abstract screening, and 24 out of
82 were considered suitable and underwent full-text assessment. Of these 24 papers,
19 did not meet the required inclusion criteria due to a broad spectrum of reasons, such
as the study did not classify pneumonia subtypes, the study did not include the desired
(number of) outcome measures, and the dataset used was inapplicable. Five papers were
included at last. The PRISMA flowchart exhibiting the study eligibility and selection
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process is presented in Figure 1. The two independent reviewers agreed with the initial
search and study selection/eligibility process, with no discrepancies found.
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Figure 1. A PRISMA flow chart illustrating the filtering and gathering of eligible studies.

3.2. Study Quality Assessment

The quality assessment of each included study can be seen in Figure 2. All five papers
were considered as having a “low” risk of concern in the workflow, and both reference
standard domains. Gu et al.’s study [44] was regarded as a “high” risk in the subject
selection domain because the authors omitted CXRs without the condition of interest. In
the index test domain, Rajaraman et al.’s [5] and Karthikeyan’s studies [49] were graded
as “unclear”, while Ferreira et al.’s study [50] was considered a “high” risk, in the same
domain due to the fact that the performance of the AI model was not evaluated by an
independent testing dataset that was excluded in the development of the AI model. Since
the QUADAS-2 tool allows a study to contain one element ascertaining a high risk of bias
without being eliminated [48], none of the selected studies were eliminated at this stage.
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Figure 2. A risk of bias table of the five included studies from the adapted version of the QUADAS-2
ROB tool with a three-point scale indicating low, high and unclear concern [5,44,49–51].

3.3. Study Characteristics

Table 1 presents the characteristics of the included papers. All included papers utilised
the same public dataset obtained from Guangzhou Women and Children’s Medical Centre;
however, each paper varied regarding the number of images used for training, testing and
validation sets. All studies, apart from Gu et al.’s study [44], included ‘normal’ radiographs,
as well as bacterial and viral pneumonia, labelled radiographs in their dataset. There were
some similarities and overlaps with regard to pre-processing methods employed, though
none of the studies utilised precisely the same pre-processing strategy.
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3.4. Diagnostic Accuracy of AI Algorithms in Distinguishing Viral Pneumonia from
Bacterial Pneumonia

Table 2 presents the diagnostic accuracy measures (sensitivity, specificity, accuracy,
and AUC) of each AI algorithm employed in respective papers. The ensemble set created
achieved the highest sensitivity value of 96.3% [50] across all artificial algorithms exam-
ined (95% confidence intervals is not stated in the article). The DenseNet201 algorithm
described by Karthikeyan reigned supreme with regard to both specificity and accuracy
value obtaining 94% and 95%, respectively [49]. The AUC value closest to 1 was achieved
by the VGG16 architecture (AUC = 0.9536) [5]. The baseline image, as well as the cropped
ROI, scored 0.962 [5].

Table 2. The diagnostic accuracy of each AI algorithm employed in its respective paper in terms of
sensitivity, specificity, accuracy, and AUC (area under the curve). The highest value for each outcome
measure is highlighted in bold. ± indicates the standard deviations.

Author, Year Algorithm Sensitivity Specificity Accuracy AUC

Gu et al.,
2018 [44] AlexNet (DCNN ONLY) 0.6322 ± 0.0023 0.7072 ± 0.0023 0.7360 ± 0.0023 0.7384 ± 0.0023

GLCM Features 0.6378 ± 0.0058 0.8980 ± 0.0062 0.7060 ± 0.0672 0.7060
Wavelet Features 0.5612 ± 0.0065 0.8779 ± 0.0205 0.6769 ± 0.0100 0.6769

HOG Features 0.5714 ± 0.0617 0.8651 ± 0.0664 0.7511 ± 0.0127 0.6930
All Handcrafted Features 0.6213 ± 0.0482 0.8848 ± 0.0387 0.7640 ± 0.0330 0.7200 ± 0.0060

Fused Features (DCNN + all
handcrafted features) 0.5567 ± 0.0379 0.9267 ± 0.0301 0.7692 ± 0.0122 0.8234 ± 0.0014

Ferreira et al.,
2020 [50] VGG16 and Baseline Set Not Stated Not Stated Not Stated 0.85

VGG16 and Set A Not Stated Not Stated Not Stated 0.88
VGG16 and Set B Not Stated Not Stated Not Stated 0.83

VGG16 and Set C (ensemble set) 0.963 0.851 0.921 0.91
Inception V3 architecture 0.886 0.909 0.907 0.940

Sousa et al.,
2019 [51] ‘Best generated model’ 0.913 0.696 0.831 0.831

Inception V3 architecture 0.886 0.909 0.907 0.940
Rajaraman et al.,

2018 [5] Sequential CNN—Baseline Not specified 0.838 0.928 0.954

Residual CNN—Baseline Not specified 0.784 0.897 0.921
Inception CNN—Baseline Not specified 0.714 0.854 0.901

Customised VGG16—Baseline Not specified 0.860 0.936 0.962
Sequential CNN—Cropped Not specified 0.838 0.928 0.956
Residual CNN—Cropped Not specified 0.798 0.908 0.933
Inception CNN—Cropped Not specified 0.730 0.872 0.919

Customised VGG16—Cropped Not specified 0.860 0.936 0.962
Karthikeyan,

2020 [49] AlexNet 0.94 0.845 0.90 0.89

ResNet18 0.92 0.82 0.87 0.87
DenseNet201 0.96 0.94 0.95 0.952
SqueezeNet 0.905 0.75 0.83 0.83

4. Discussion

CXR is routinely performed around the world to diagnose both subsets of pneumonia
in paediatric patients [5]. Due to the complexity of lung diseases, the diagnosis of pneu-
monia on chest radiographs heavily relies on the eyes of a veteran radiologist. Therefore,
there is a huge potential for AI algorithms to assist and further improve detection. This
study aims to combine the results of all published literature focused on the classification of
sub-types of paediatric pneumonia on chest X-rays using deep learning algorithms.

In this study, the efficacy of respective AI models in the classification of paediatric
pneumonia on chest radiographs was evaluated by assessing accuracy, sensitivity, speci-
ficity, and AUC. Regarding diagnostic accuracy and specificity, the deep learning algorithm,
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the DenseNet201 model utilised by Karthikeyan’s study, performed far superiorly to the
rest, yielding results of 95% and 94%, respectively [49]. AUCs measure the ability of a
test (the individual algorithm in this case) to distinguish the presence or absence of a
specific pathology [52] and take sensitivity and specificity into consideration. Thus, AUC
can indicate how well a classifier is performing. The AI model, the customised VGG16
employed by Rajaraman et al. [5], achieved 96.2% in AUC for both of the baseline image sets
(i.e., the original chest radiographs produced and cropped images), raising the question as
to whether or not images that are cropped (just include the ROI) aid/improve AI models
in the classification of paediatric pneumonia, or if it is simply one particular model be-
ing superior in performance to another. For example, both cropped and baseline images
assessed by the customised VGG16 model achieved the same AUC result. However, the
original VGG16 model utilised by Ferreira et al. [50] achieved an AUC of 85% with baseline
images and 88% AUC with cropped images. Future studies should consider comparing
cropped and uncropped images directly to make a definitive verdict. It would be unwise
to conclude that AI models that are trained with the cropped ROI prior to testing with
the dataset learn relevant feature representations toward classifying the task of interest
without considering the probability of overfitting, reducing the generalisability of the
results. In addition, cropping images before training involves more computational power
and manpower.

When compared to the adapted Inception V3 architecture model employed by
Kermany et al. [43], all four of the aforementioned outcome measures achieved greater
results than the said platform in differentiating bacterial pneumonia from viral pneumonia
on paediatric chest X-rays.

All five studies selected for this systematic review utilised the dataset obtained from
Guangzhou Women and Children’s Medical Centre, China. The selection of said dataset
by all five groups of authors immediately excluded participation bias and allowed each
AI model to be accurately compared. The included radiographs by Rajaraman et al. also
included ‘noisy images’ to reduce bias and improve the model generalisation [5]. All
authors also developed AI models with multi-level architectures, which, unlike the study
by Kermany et al., avoided limited prediction accuracy. However, using the same dataset
from Guangzhou place the studies’ generalisability, as well as the algorithms’ abilities in
detecting pneumonia using noisy images since only one study included noisy images, into
question. On the other hand, the upper age limit in Gu et al.’s study was 9.7 years old,
diminishing its comparability to other studies included in this review.

At present, there is no sufficient guidance in critically appraising machine learning
prediction models. Thus, one of the limitations of this study is that the information in this
review may not be able to be combined or pooled together with other systematic reviews
on the same subject matter and compare the data and information directly.

In order to improve and generalise results achieved by AI models in the classification
of pneumonia on paediatric CXRs, further datasets should be developed worldwide. This
is because pneumonia caused by different bacteria/viruses has different radiographical
appearances [53], while the prevalence of different risk factors and types of paediatric pneu-
monia varies in different countries [54,55]. An algorithm that can effectively detect/rule
out pneumonia and its ability to identify pneumonia aetiology can be the single best tool
to be employed in the effort of reducing global paediatric pneumonia mortality. This is
particularly crucial for resource-restrained countries with limited radiographic reporting
capacity. The said datasets should include a variety of normal paediatric CXRs, as well
as CXRs that belonged to those who had clinically confirmed having bacterial or viral
pneumonia. Diagnosis should be confirmed by seasoned radiologists and other diagnostic
test results, such as sputum cultures. This would improve the generalisation of AI models
used to classify aetiologies. Finally, a major barrier impeding the translation of these results
to a clinical setting is the comparison of said results to reporting clinicians’ reports. Each
of the included articles in this study assessed AI algorithms against one another rather
than comparing outcome measures to that of consultant radiologists, and this would be
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a great research question for future investigations. One study assessed the performance
of an AI model to that of a number of radiologists in the classification of viral versus
bacterial pneumonia in paediatric chest X-rays [56]. However, this study only assessed
the differentiation of the two pneumonic aetiologies and not normal vs. pneumonic, so
none of these algorithms could replace human radiologic interpretation currently [56]. In
order for AI to translate into the clinical setting, future studies should compare different AI
algorithms in differentiating normal versus bacterial versus viral pneumonia from that of
human radiologists. AI algorithms are normally trained on one specific modality and on a
specific pathology, while human radiologists have a basic and fundamental knowledge of
all modalities and common pathologies then often specialise in one, sometimes multiple,
organ systems.

There are only a few commercially available AI product that is capable of interpreting
both chest and appendicular musculoskeletal X-ray images at the time of writing. This
algorithm can detect seven different pathologies (fracture, pleural effusion, lung opacifi-
cation, joint effusion, lung nodules, pneumothorax, and joint dislocation). A recent study
which compared this AI algorithm’s ability to human radiologists showed that the al-
gorithm failed to pass the Fellowship of Royal College of Radiologists Rapid Reporting
examinations [57]. This exam is normally taken between radiology speciality training years
four and five in the UK [58].

This review has limitations. The age range used in these studies varied, making direct
comparisons between the AI algorithms difficult. Secondly, only five studies are included in
this review. Although all five studies used the same dataset from Guangzhou, the fact that
some studies included noisy images and others included cropped images made it impossible
to compare the algorithms on par with each other, let alone with other algorithms that
are trained with a different dataset. Finally, the number of images that these algorithms
were trained and validated on were small, compared to some of the commercially available
algorithms [59–65] and some algorithms that are at the research stage [66].

Since the accuracy for all algorithms is so high, the amount of data is limited. Concerns
about overfitting arise, which commonly occur due to the small training dataset [67,68].
Overfitting is a phenomenon where the algorithm fits in all the noises within the dataset,
and the algorithm memorises all the peculiarities, finding the pattern best fit to the training
data but not the general prediction trend, which is the goal of training [69]. Overfitted AI
models are only applicable to the training dataset, but not the unseen dataset, losing the
generalisability of the prediction [70–72]. Going forward, these algorithms should be further
scrutinised. If overfitting did occur during training, the problem would need to be addressed
in further studies before using these algorithms in clinical practice. Overfitting is an innate
problem in using AI in radiology. First, there is no set threshold for a “sufficient” amount of
data [70]. The more images and data fed into the algorithm for training, the less likely for
overfitting to happen [49,73,74]. However, a large number of images can be very difficult to
obtain in medicine due to confidentiality issues. Even if these data protection hurdles are
overcome, the financial cost of acquiring medical images or data can be substantial [75,76].
Adding sub-optimal images into the training set, such as rotated or images with artefacts,
can minimise the chance of overfitting [77,78] while increasing the overall image counts in
the training set [78,79] can also mimic the situations in clinical practice.

This review gave the radiology community an insight into how AI can help us to
reduce paediatric pneumothorax mortality rate and pose a potential solution to replace or
to add on top of the current teleradiology system, especially in low- to middle-income or
rural areas. This review took the essential step in starting the conversation in considering
how radiology can utilise AI to improve workflow, but indeed, this is a start of a very long
journey of research before AI can be used clinically. In this context, AI has the potential to
assist in the classification of the aetiologies of pneumonia and, therefore, greatly increase
treatment rates, potentially saving lives. The future landscape and the scope of practice of
the radiology workforce are both going towards an exciting trajectory. “In the Age of the
Algorithm, humans have never been more important” [80].
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5. Conclusions

A number of the AI models achieved high accuracy in differentiating paediatric pneumo-
nia. This showed potential in the automated classification of paediatric pneumonia on CXRs.
Future studies should involve the comparison of AI models to that of a radiologist. Future
research should focus on advancing the use of AI in identifying paediatric pneumonia in a
clinical environment by including more sub-optimal images to ensure AI can correctly and
accurately identify paediatric pneumonia in different circumstances and situations.
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35. Frija, G.; Blažić, I.; Frush, D.P.; Hierath, M.; Kawooya, M.; Donoso-Bach, L.; Brkljačić, B. How to improve access to medical
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Abstract: INTRODUCTION: The SARS-CoV-19 (COVID-19) pandemic has become a global problem
but has affected the paediatric population less so than in adults. The clinical picture in paediatrics
can be different to adults but nonetheless both groups have been subject to frequent imaging. The
overall aim of this study was to comprehensively summarise the findings of the available literature
describing the chest radiograph (CXR) findings of paediatric patients with confirmed COVID-19. The
COVID-19 landscape is rapidly changing, new information is being constantly brought to light, it is
therefore important to appraise clinicians and the wider scientific community on the radiographic
features of COVID-19 in children. METHODS: Four databases, which included, PubMed; Medline;
CINAHL; ScienceDirect were searched from the 30 November 2020 to the 5 March 2021. The
review was conducted using the “Preferred Reporting Items for Systematic Reviews and Meta-
Analysis, PRISMA” guidelines. Studies were included for (1) publications with full text available,
(2) patients with confirmed COVID-19 diagnoses, (3) CXR imaging features of COVID-19 were
reported, (4) the age of patients was 0–18 years, (5) studies were limited to human subjects and (6) a
language restriction of English was placed on the search. Quality assessment of included articles used
the National of Health Quality Assessment Tool for Case Series Studies. RESULTS: Eight studies met
our criteria for inclusion in the review. All eight studies documented the number of CXRs obtained,
along with the number of abnormal CXRs. Seven out of the eight studies noted greater than 50%
of the CXRs taken were abnormal. Opacification was the number one feature that was recorded
in all eight studies, followed by pleural effusion which was seen in six studies. Consolidation and
peri-bronchial thickening features were both evident in four studies. Opacification was sub-divided
into common types of opacities i.e., consolidation, ground glass opacities, interstitial, alveolar and
hazy. Consolidation was reported in half of the studies followed by ground glass opacities and
interstitial opacities which was seen in three out of the eight studies. CONCLUSION: This systematic
review provides insight into the common COVID-19 features that are seen on CXRs in paediatric
patients. Opacification was the most common feature reported, with consolidation, ground glass and
interstitial opacities the top three opacifications seen. Peri-bronchial thickening is reported. in the
paediatric population but this differs from the adult population and was not reported as a common
radiographic finding typically seen in adults. ADVANCES IN KNOWLEDGE: This systematic review
highlights the CXR appearances of paediatric patients with confirmed SARS-CoV-19, to gain insight
into the disease pathophysiology and provide a comprehensive summary of the features for clinicians
aiding optimal management.

Keywords: child; paediatric; infant; adolescent; chest X-ray; CXR; chest radiography; COVID-19;
SARS-CoV-2; coronavirus

1. Introduction

In Wuhan China, in December 2019, a group of patients presented with fever, cough,
and pneumonia of an unknown source. Initial investigations found that this illness was
the result of a novel coronavirus (SARS-CoV-2). The SARS-CoV-2 ‘coronavirus’ more
commonly known as ‘COVID-19’, rapidly spread across the globe and led to COVID-19
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being declared as a worldwide pandemic in March 2020. On the 20 May 2021, according
to World Health Organisation (WHO), there had been 164,409,804 confirmed cases and
3,409,220 deaths [1].

Many published studies stated that the individuals most frequently affected during the
Pandemic were adults over 60 years of age, there has also been many COVID-19 cases seen
in paediatrics, including infants, children and young adults. In 2021, the WHO, stated that
children and young adults would face many challenges based on their phase of life and from
both the COVID-19 disease and the measures created to contain the disease [1]. Children
and young people typically comprise only 1–2% of cases of COVID-19 worldwide [2].
COVID-19 has appeared to have a minimal effect on children, with reports of only a low
number of symptomatic and severe cases compared to adults [3,4]. In the majority children
will be symptomatic for only a few of days and symptoms will resolve naturally. Although
children tend to have milder symptoms, like all humans they can be agents for transmission
and are therefore important to identify promptly.

The early detection and treatment of individuals affected by COVID-19 is critical. Lung
imaging plays an important role and to date the most frequently used imaging modalities
are chest radiography (CXR) and computed tomography (CT) [5]. CT has become extremely
valuable in the screening, diagnosis and aftercare of patients with COVID-19 and provides
medical practitioners with important diagnostic information. Radiological studies are
less frequently requested in children due to the overall lower rates of infection [6] and
the generally milder nature of the disease. COVID-19 features on imaging appear to
be changeable with age and there are possible distinct features in infants, children and
adolescents. Appearances of COVID-19 on lung imaging in adults have been previously
documented in the literature, but by comparison documentation of the lung disease patterns
of COVID-19 in a paediatric population remains less clear [7]. Paediatric clinicians also face
additional challenges when attempting to differentiate early stages of COVID-19 infection
from other types of viral lower respiratory tract infections. In addition, a small number of
COVID-19 positive children will go on to develop Paediatric Inflammatory Multisystem
Syndrome (PIMS). PIMS can present with a range of symptoms and evaluation in severe
cases may include imaging.

Although, imaging is commonly used in the management of adults with COVID-19,
radiology is likely not to be routinely required in paediatric cases, especially if the child
is asymptomatic [4]. A child is more sensitive to radiation exposure; therefore, routine
use of CT is not recommended, which makes a distinct difference in their radiological
work-up in contrast to adults [8]. Also, the American College of Radiology [9] does not
recommend medical imaging examinations as a formal method of COVID-19 diagnosis,
and confirmation of COVID-19 by PCR testing is key even if the radiological appearances
are highly suggestive of COVID-19 [6].

Referral for imaging is part of the management plan for clinicians [5]. It is vitally
important that clinicians of all specialties recognise the appearances of COVID-19 on
radiographic images, especially when the clinicians are suspecting something other than
COVID-19.

The overall aim of this study was to undertake a comprehensive evaluation of the
findings of published literature which have described the CXR features in children with
confirmed COVID-19. To achieve the aim, the research team undertook a systematic
review of the published literature across different databases to identify (1) the number of
children with normal chest radiography, (2) the incidence of different radiographic (CXR)
abnormalities reported in PCR-confirmed paediatric SARS-CoV-2 cases. Considering the
low number of children which will require imaging it is important to provide up to date
information regarding the appearances of COVID-19 on chest radiography. This in turn
will help improve knowledge of COVID-19 and improve diagnosis and management.
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2. Materials and Methods
2.1. Search Strategy

An extensive electronic search was conducted in the following databases PubMed,
MEDLINE, ScienceDirect and CINAHL. All procedures in the review were executed in
accordance with the “Preferred Reporting Items for Systematic reviews and Meta-Analyses,
PRISMA,” [10] guidelines (Figure 1). A methodological search of literature was undertaken
from the 30 November 2020 to the 5 March 2021. An initial search of the literature was
performed on 17 February 2021 and a second ‘repeat’ search was run on 5 March 2021.
As this continues to be an ever-evolving field there is a rapid number of studies being
published every day. The above systematic search was reviewed by a second researcher to
ensure transparency throughout the searching process.
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2.2. Inclusion and Exclusion Criteria

Studies were selected for potential inclusion based on full text analysis of the title,
abstract and keywords. Criteria for inclusion included all studies which described or
investigated chest radiography findings of COVID-19 confirmed infections in children.
Studies were eligible for inclusion if (1) publications were available in full text, (2) contained
patients who had confirmed COVID-19 diagnoses, (3) CXR imaging features of COVID-19
were included in the publication, (4) the age of patients was between 0–18 years, (5) studies
were limited only to humans and (6) articles had to have been published in English.

Studies were excluded if they were (1) letters, theses, books, editorials or posters,
(2) studies on the adult population, (3) any studies reporting on a mixed paediatric/adult
cohort and specifically where imaging results for the paediatric cohort could not be ex-
tracted, (4) lack of clinical data presented, (5) no PCR-confirmation of COVID-19 infection
and (6) duplicate studies.
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2.3. Risk of Bias

Quality assessment of the included literature was determined using the National
Institutes of Health (NIH) Quality Assessment Tool for Case Series Studies [11], from this
general quality ratings were categorized as poor, fair, or good (Table 1). Two reviewers inde-
pendently graded the quality of the selected articles. Any disagreements between reviewers
were resolved through discussion, and if necessary, a third reviewer was introduced to
make the final decision.

Table 1. Summary of the quality ratings, according to the National Institute of Health (NIH) Quality
Assessment Tool for Case Studies, of the included studies.

Article: Bayramoglu
et al. [6]

Biko
et al. [12]

Blumfield
et al. [13]

Caro-
Dominguez

et al. [14]

Hameed
et al. [15] Lu et al. [16]

Oterino
Serrano et al.

[8]

Palabiyik
et al. [4]

Q1: Was the study
question or objective
clearly stated?

YES YES YES YES YES YES YES YES

Q2: Was the study
population clearly and
fully described,
including a case
definition?

YES YES YES YES YES YES YES YES

Q3: Were the cases
consecutive? YES YES NR NR NR NR NR NR

Q4: Were the subjects
comparable? NO NO NO NO NO NO NO NO

Q5: Was the
intervention (i.e.,
imaging modality)
clearly described?

YES YES YES YES NO YES YES YES

Q6: Were the outcome
measures clearly
defined, valid, reliable,
and implemented
consistently across all
study participants?

YES YES YES YES NO YES YES YES

Q7: Was the length of
follow-up adequate? NA NA NA NA NA NA NA NA

Q8: Were the statistical
methods
well-described?

YES YES NO NO NO NR YES YES

Q9: Were the results
well-described? YES YES YES YES YES YES YES YES

Quality Rating:
Reviewer 1 GOOD GOOD FAIR FAIR FAIR FAIR GOOD GOOD

Quality Rating:
Reviewer 2 GOOD GOOD FAIR FAIR FAIR FAIR GOOD GOOD

NA—not applicable; NR—not reported.

2.4. Data Extraction

Data extraction was performed independently by the primary reviewer using a data ex-
traction tool adapted from the Cochrane Collaboration [17]. This form has been developed
by adopting and customizing the “Data collection form for intervention review-RCT’s and
non-RCT’s” of the Cochrane Collaboration. All information was collected and transcribed
onto an Excel spreadsheet. Data that was inserted into the Excel spreadsheet was then
reviewed separately by the second reviewer. As previously stated, if any disagreements
arose, they were resolved by discussion, and if necessary via a third reviewer.

3. Results
3.1. Selection of Articles

Following the initial search, a total of 45 papers were identified from the four databases
previously mentioned. After removing 25 duplicates, a total of 20 publications were
included for the screening process. Manual screening of the title and abstract of these
20 papers resulted in 11 papers being included for the full-text review. From the full-text
review, a total of eight papers met the inclusion criteria and were included in this systematic
review. The PRISMA flowchart representing the search results is illustrated in Figure 1.
The two independent reviewers agreed with the study selection and no discrepancies were
found during the research process
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3.2. Methodological Quality

The quality assessment resulted in four of the articles receiving an overall scoring of
“good”, with the remaining four receiving a score of “fair”. Further details on the method-
ological quality assessment of the included studies is presented in Table 1. Improvements
in the reporting of the statistical analysis of the studies included would have increased the
quality grading of the four ‘fair’ rated studies.

Table 2 provides a summary of the key features of the studies included. All eight
included studies were retrospective in enrolment. The enrolment period for the studies
commenced between January 2020 and April 2020 and was completed between February
2020 and May 2020. The country of origin varied in six out of eight studies and were
predominantly in the US, China and Europe. Six out of the eight studies were conducted in
a single centre and the other two studies were multi-centre. The mechanism of selection
of the participants was consecutive for two studies, the remaining studies (n = 6) failed to
describe the selection mechanism.

Table 2. Summary of studies characteristics.

Article: Bayramoglu
et al. [6]

Biko
et al. [12]

Blumfield
et al. [13]

Caro-
Dominguez

et al. [14]

Hameed
et al. [15] Lu et al. [16]

Oterino
Serrano
et al. [8]

Palabiyik
et al. [4]

Patient
enrolment: Retrospective Retrospective Retrospective Retrospective Retrospective Retrospective Retrospective Retrospective

Country : Istanbul Philadelphia
New York

(Bronx)

The
Netherlands

European
Society of
Paediatric
Radiology

London China Spain Istanbul

Enrolment
beginning: 10 March 2020 17 March 2020 25 February

2020 12 March 2020 14 April 2020 22 January
2020 13 March 2020 11 March 2020

Enrolment
ending: 31 May 2020 21 May 2020 1 May 2020 8 April 2020 9 May 2020 9 February

2020 6 April 2020 20 April 2020

Type of Study: Single Centre Multi Centre Single Centre Multi-centre Single Centre Single Centre Single Centre Single Centre
Consecutive/

Random
selection:

Consecutive Consecutive Not Reported Not Reported Not Reported Not Reported Not Reported Not Reported

Table 3 presents the patient demographics from the eight selected papers. The number
of children studied in each of the papers varied greatly and not every child required CXR.
In total, there were 762 children included in this systematic review of which 367 required
a CXR, (209/367 [57%] were abnormal). All reports considered both male and female
patients, but the median age of all patients varied but was still within the inclusion criteria
of 0–18 years. All eight papers documented that all patients received a positive PCR
test, but it is unclear which of these had a diagnosis of COVID-19 on CXR or with PCR
testing. Seven out of eight studies stated the number of patients that were symptomatic or
asymptomatic. But only three of the papers stated whether their patients had comorbidities
(n = 166) before contracting coronavirus. It would be important to be aware of comorbidities
as the related radiological appearances could be misread or misdiagnosed as COVID-19.
Finally, all eight papers did document the number of normal CXR (n = 158) that were
obtained, and they also stated the number of abnormal CXRs (n = 209), but the eight papers
did not document specific details with regards to the sensitivity or the specificity of the
CXR against PCR testing.

Table 3. Summary of patient demographics.

Article: Bayramoglu
et al. [6] Biko et al. [12] Blumfield

et al. [13]

Caro-
Dominguez

et al. [14]

Hameed
et al. [15] Lu et al. [16]

Oterino
Serrano et al.

[8]

Palabiyik
et al. [4]

Number of
patients

diagnosed
with

COVID-19

74 313 19 91 35 9 44 177

Number of
patients

requiring CXR
69 51 19 81 35 9 44 59
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Table 3. Cont.

Article: Bayramoglu
et al. [6] Biko et al. [12] Blumfield

et al. [13]

Caro-
Dominguez

et al. [14]

Hameed
et al. [15] Lu et al. [16]

Oterino
Serrano et al.

[8]

Palabiyik
et al. [4]

Total number
(median age,

years)
Male: 36 (11) 164 (6.6) 10 (8) 49 (6.1) 27 (11) 5 (7.8) 29 (6.6) 34 (9)

Female: 38 (12) 149 (9.4) 9 (8) 42 (6.1) 8 (11) 4 (7.8) 15 (6.6) 25 (9)
Symptomatic

NR
92 19 85 35 8 44 59

Asymptomatic 221 6 1
Comorbidities: 0 41(74.5%) 12 (63.2%) 30 (33%) NR 0 (0%) NR NR

Number of
Normal CXR: 56 (81.1%) 34 (66.6%) 1 (5.2%) 10 (12.3%) 16 (45.7%) 5 (55.6%) 4 (9%) 32 (54.2%)

Number of
Abnormal

CXR:
13 (18.8%) 17 (33.3%) 18 (94.8%) 71 (87.7%) 19 (54.3%) 4 (44.4%) 40 (90.9%) 27 (45.8%)

Received PCR
Test: YES YES YES YES YES YES YES YES

Sensitivity: NR NR NR NR NR NR NR NR
Specificity: NR NR NR NR NR NR NR NR

3.3. Chest Radiography Appearances of COVID-19 in Children:

The CXR COVID-19 appearances from the eight papers are shown in Table 4 below.
Opacification was present in all eight studies, followed by pleural effusion which was
present in six studies. Consolidation and peri-bronchial thickening features was found
in four out of the eight studies. Less common features such as cardiomegaly, congestive
heart failure, ARDS, pneumothorax, atelectasis, and mediastinal widening were present
in one—two studies. The location of the features was documented in two out of the eight
papers, with one study seeing 4% unilateral and 4% bilateral and the other study seeing
25% unilateral and 20% bilateral. Distribution of the features was documented in seven
studies, six of the these showed that the distribution is predominantly in the perihilar or
central regions of the lungs.

Table 4. Summary of chest radiographic features.

Article: Bayramoglu
et al. [6] Biko et al. [12] Blumfield

et al. [13]

Caro-
Dominguez

et al. [14]

Hameed
et al. [15] Lu et al. [16]

Oterino
Serrano et al.

[8]

Palabiyik
et al. [4]

Consolidation: 13 (68.4%) 28.3 (35%) 5 (14.2%) 8 (18.1%)
Opacifications: 6 (8.6%) 30 (58.8%) 15 (78.9%) 28.4 (35%) 11 (31.4%) 4 (44.4%) 32 (72.7%) 27 (45.8%)
Peri bronchial
Thickening: 7 (10.1%) 47 (58%) 12 (34.3%) 38 (86.3%)

Pleural
effusion: 1 (1.4%) 5 (9.8%) 4 (21%) 6 (7.4%) 4 (11.4%) 4 (9.1%)

Cardiomegaly: 7 (36.8%)
Congestive

heart failure: 7 (36.8%)

ARDS: 2 (10.5%)
Pneumothorax: 2 (2.4%)

Atelectasis: 2 (2.4%) 7 (20%)
Mediastinal
widening: 2 (4.5%)

Location of
Features: NR NR NR NR NR NR

Unilateral: 3 (4.4%) 15 (25.4%)
Bilateral: 3 (4.4%) 12 (20.3%)

Distribution of
features: NR

Perihilar
(central): 3 (4.4%) 2 (6.6%) 11 (73.3%) 11 (31.4%) 4 (44.4%) 17 (38.6%)

Peripheral: 3 (4.4%) 3 (10%) 1 (6.6%) 5 (11.4%) 31 (22%)
Diffused: 14 (46.6%) 5 (33.3%) 37 (84%) 16 (27.1%)

Lower lobes: 9 (60%)
Scattered: 3 (10%)

Not
well-defined: 2 (6.6%)

Table 5 sets out the common COVID-19 features. All eight studies reported opacifi-
cations. This was sub-divided into common types of opacities i.e., consolidation, ground
glass opacities, interstitial, alveolar and hazy. Consolidation was the most common and
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was evident in half of the studies, followed by both glass opacities and interstitial opacities
was seen in three out of the eight studies.

Table 5. Summary of common COVID-19 features.

Article: Bayramoglu
et al. [6] Biko et al. [12] Blumfield

et al. [13]

Caro-
Dominguez

et al. [14]

Hameed
et al. [15] Lu et al. [16]

Oterino
Serrano
et al. [8]

Palabiyik
et al. [4]

Peri-bronchial
Thickening:

7
(10.1%)

47
(58%)

12
(34.3%)

Opacities: 5
(7.2%)

30
(58.8%)

15
(78.9%)

56
(70.4%)

16
(45.7%)

4
(44.4%)

40
(90.9%)

27
(45.8%)

Ground Glass
Opacities

ü
5 (7.2%)

ü
15

(18.9%)

ü
22

(50.0%)

Interstitial ü
16 (31.4%)

ü
6

(31.6%)

ü
12

(15.1%)

Alveolar ü
14 (27.4%)

Consolidation
ü
13

(68.4%)

ü
28

(35.2%)

ü
5

(14.3%

ü
8

(18.2%)

Hazy ü
8 (42.1%)

4. Discussion

This review of the literature utilizing a systematic methodology has provided a com-
prehensive evaluation of the published literature to date which have considered the CXR
features of COVID-19 in children. This systematic review includes children from new-borns
to adulthood (18 years old), with positive PCR testing confirming a COVID-19 infection.

The study enrolment on all eight studies, was retrospective which introduces a lower
risk of bias to this systematic review. But all studies examined were at the initial stages of the
pandemic between January–May 2020 and covered a short time of between 0.5–2.5 months.
The limited number of publications available for inclusion and supports the initial findings
that there are only a few studies carried out on the use of CXR and its related imaging
appearances of COVID-19 in children in contrast to those available for adults.

It is important to note that not all children that test positive will require or should
undergo a CXR or CT examination. In the systematic review, all eight studies stated the
number of children that tested positive and the number of children that required CXR. In
two of the eight studies less than half of the children required CXR whereas six out of the
eight studies noted that greater than half or all the children required CXR. However, due to
the lack of information regarding the severity of the symptoms and clinical status of the
children (comorbidities), it is difficult to determine the justification for the high percentage
of children requiring CXR.

Seven out of the eight studies documented whether the child was symptomatic
or asymptomatic with six of these reporting that the children were symptomatic, only
Biko et al. [12] reported that most of the children included in their study were asymp-
tomatic. Given the lack of detailed information, it is difficult to determine whether and if
so why asymptomatic paediatric patients underwent CXR.

Six case studies showed that where children required imaging, CXR was the preferred
method. This is in line with a number of case studies and guidelines [9,11] where it has
been cited that in paediatric patients, it is vital to use the lowest radiation doses possible
for a diagnosis which would be in accordance with the ALARA principle. However, it
should also be noted that imaging should only be undertaken in specific circumstances if
symptoms worsen or are persistent.

Of the eight studies reviewed, only five studies stated their patients’ comorbidity status.
Three studies reported comorbidities in their patients whereas two studies [6,16] reported
no comorbidities with any of their patients. Of the studies that reported comorbidities,
Biko et al. [12] and Blumfield et al. [13] highlighted that more than half of their patients
had comorbidities before acquiring a COVID-19 infection, whereas the study by Caro-
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Dominquez et al. [14] reported a third of their patients had comorbidities before becoming
infected. The type of comorbidity a patient may have prior to contracting COVID-19
may dictate the clinical presentation of the patient, which in turn could influence the
radiological appearances on their CXR and may lead to misinterpretation or misdiagnoses
of COVID-19. Given the potential for misdiagnosis, it is important that neither CXR nor
chest CT is used to screen for COVID-19 or as a first-line of investigation to diagnose
symptomatic COVID-19 [6]. However, in children presenting with moderate or severe
symptoms and those with underlying risk factors, it has been reported that CXR can be
useful in establishing an imaging baseline as well as assessing for alternative diagnosis [8].

Overall, seven out of the eight studies noted greater than 50% of the CXRs taken were
abnormal however the lack of information regarding the severity of the symptoms makes it
problematic when determining the reason behind the high numbers of abnormal CXRs.

In this review, all eight studies had one common clinical finding, which was the pres-
ence of opacifications. Both peri-bronchial thickening and pleural effusion were reported
in six out of the eight studies, where consolidation was reported in four out of the eight
studies. Finally, there were a number of infrequent features reported in paediatric patients
including: atelectasis which was reported in two studies and cardiomegaly, congestive
heart failure, ARDS, pneumothorax and mediastinal widening which were reported in one
study each.

Study reviewers further assessed features that may be specific to COVID-19: including
peri-bronchial thickening, ground glass opacities, consolidation [6] as well assessing CXRs
for the distribution and type of pulmonary opacities, i.e., interstitial, hazy and consoli-
dation [13]. All eight studies reported opacities on their CXRs, these opacities included
consolidation. This is similar to adults where the most common radiographic features are
airspace opacities, which are most commonly described as consolidation and less commonly
as ground glass opacities [15,16]. Peri-bronchial thickening was a feature in three out of the
eight studies in this review. This contrasts to the common radiographic findings for adults
where peri-bronchial thickening was uncommon and nonspecific for COVID-19 [6,14].

5. Limitations

Firstly, only a small number of case studies were included in this systematic review.
Furthermore, some of these studies were limited in terms of sample size. This could
have potentially introduced bias. Secondly, the review was limited to publications written
in English.

All the studies examined were carried out during the initial months of the pandemic,
when there were many unknowns. It is possible that more recent studies on COVID-19
may provide additional findings. It would have been useful if imaging appearances could
have been correlated against the time of presentation/day of hospitalization. It is highly
probable that the time since the onset of infection would influence the frequency and
severity of the imaging findings. This would, therefore, affect the results of this systematic
review and readers should consider this context when interpreting our findings. Further
sub-analysis of data could also be introduced, and this could consider the coronavirus strain
togetherwith differences in the sex and age of the child and the presence of comorbidities.

Lastly, the reviewer noted a lack of detailed data and information regarding the
patients’ ages, symptoms, including symptom severity. In the absence of this information,
the reviewer was unable to compare potential features associated with certain age groups
specific and include symptoms that the patients presented with. Furthermore, the reviewer
was not able to understand and develop patterns between the number of patients who
were positive for a COVID-19 infection and who had abnormal CXRs and the linkage of
this with the chest radiographic features and common COVID-19 features.

6. Conclusions

This systematic review provides a detailed evaluation of the currently available lit-
erature on the CXR appearances of COVID-19 in paediatrics. This review demonstrated
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seven studies where greater than 50% of their cohort had abnormal CXRs. Opacification
was the number one feature reported in the studies, with consolidation, ground glass and
interstitial opacities the main opacifications reported. Peri-bronchial thickening is one
radiographic finding seen in the paediatric population but this is not typically seen in
adults. Given the time elapsed since the first reported COVID-19 case there will be further
experiences and data on the effects on children. Work is needed to identify any specific
patient characteristics that may influence disease severity and progression, such factors
may include sex, age and existing comorbidities.
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Abstract: Pediatric neck infections and their complications, such as abscesses extending to deep neck
compartments, are potentially life-threatening acute conditions. Medical imaging aims to verify
abscesses and their extensions and exclude other complications. Magnetic resonance imaging (MRI)
has proven to be a useful and highly accurate imaging method in acute neck infections in children.
Children and adults differ in terms of the types of acute infections and the anatomy and function of
the neck. This pictorial review summarizes typical findings in pediatric patients with neck infections
and discusses some difficulties related to image interpretation.

Keywords: magnetic resonance imaging; infection; neck; emergency medicine; pediatric

1. Introduction

Most conventional neck infections can be managed conservatively. However, deep
neck infections possess a high risk for serious complications, such as abscess formation,
mediastinitis, airway compromise, and venous thrombosis due to the infection spreading
along the fascial planes and potential face and neck spaces. These complications are
potentially lethal [1]. In children, prompt surgical treatment may be necessary, including
cervical incision, intraoral incision, immediate tonsillectomy, or rarely, dental extraction [2].
Large abscesses and a younger age seem to predict surgical intervention [3,4].

Pediatric acute neck infections arise from common infections originating in the ears,
nose, or throat and have the potential to disseminate to the deep neck spaces through
direct continuity or lymphatic drainage to the lymph nodes [5]. When adequate cultivation
procedures are utilized, anaerobic bacteria can be identified from most abscesses. Untreated
abscesses can spontaneously rupture into the pharynx, resulting in fatal aspiration [6].
Neck swelling can initially be imaged with ultrasound, which has a high resolution for
superficial structures. The main indication for cross-sectional imaging (as elaborated below)
is the suspicion of a surgically drainable abscess in deep neck spaces for which ultrasound
is insufficient.

In clinical practice, these infections have typically been imaged with contrast-enhanced
computed tomography (CECT) [7,8], which has limited ability to differentiate abscess from
lymphadenitis, cellulitis, and pathological masses [7] or to predict surgical drainage [9]. Of
late, magnetic resonance imaging (MRI) has been acknowledged as a feasible and highly
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accurate primary imaging method in the emergency setting in both the general popula-
tion [10] and specifically in children [11]. The apparent advantages of MRI over CECT
are its superior diagnostic accuracy [12] and lack of ionizing radiation. The distribution
of deep neck infections and MRI findings differ between adults and children [11]. These
differences are partly due to the varying proportional distribution and function of lymph
nodes in different age groups [13]. Due to these differences, the interpretation of pediatric
neck MRI studies requires specific knowledge and attention.

The purpose of the current pictorial review is to present typical neck infection MRI
findings in children, including the most useful edema patterns and typical abscesses, and
underline the potential caveats and complications associated with deep neck infections. We
focus on the soft tissue of the neck above and below the hyoid bone. Pediatric non-traumatic
emergencies of the orbits, nose, and ear have recently been covered elsewhere [14].

2. MRI Protocol and Practical Performance

We utilized the Philips Ingenia 3 Tesla scanner (Philips Healthcare, Best,
The Netherlands). Our routine neck infection protocol comprises seven sequences and
lasts approximately 30 min [15]. We use the same sequences for adults and children. The
sequences are T2 Dixon (axial and coronal planes), T1 SE (axial), DWI (axial), and contrast-
enhanced T1 Dixon sequences (axial, coronal, and sagittal) (Table 1). A gadolinium-based
contrast agent (Dotarem®; Guerbet, Villepinte, France) is routinely used. T2-weighted imag-
ing is useful in assessing the anatomy: fat and water have a bright signal, lymphoid tissue
has an intermediate signal, muscles have a low signal, and cortical bone has no signal. Spe-
cific edema patterns can be appreciated as bright areas in the fat-suppressed, T2-weighted
images. We prefer the Dixon method for fat suppression because it reliably yields homoge-
nous images even with large fields of view. The T1-weighted axial sequence is used to
reference post-contrast Dixon sequences and to detect bone marrow fat obliteration in odon-
togenic neck infections. Pre-contrast T1-weighted sequences are also useful in assessing
postoperative hematomas and chronic fluid collections, which may have a high T1 signal
intensity. Together with diffusion-weighted imaging (DWI), contrast-enhanced sequences
are used for diagnosing and characterizing abscesses. These sequences are important for
assessing cystic masses, tumors, and necrotic lymph nodes [15]. The careful assessment
of potential lymph node pathology is critical, especially in children. The DWI sequence is
produced using standard echo-planar imaging (EPI) with a b-value of 1000 s/mm2. In the
context of neck infections, the DWI serves two functions. First, it is used for demonstrating
or excluding diffusion restriction related to purulence in abscesses, and second, it is used
for detecting lymphoid tissue in tonsils and lymph nodes. Our MRI protocol is consistent
with the protocol suggested by a recent multicenter international consensus paper [16].

MRI has been proven feasible in pediatric patients with suspected neck infections [11].
In our previous validation cohort of 45 children, 16 (36%) were sedated with spontaneous
breathing, and only 3 patients (7%) required general anesthesia [11]. The risk of ionizing
radiation for CT and the potential adverse effects associated with sedation/anesthesia for
MRI are frequently discussed in the literature [17]. Further, related to feasibility, MRI scan-
ning can cause fear and anxiety in children which needs to be recognized and minimized.
Potentially useful methods for mitigating anxiety include ambient surroundings, colors,
music, and other audiovisual pastimes, a “scan buddy”, and a mini-sized toy scanner [18].

Table 1. Practical approach to routine neck infection MRI protocol.

Phenomenon Sequence Findings Suggestions Notices

Soft tissue edema
T2 Dixon (water)

post-contrast T1W
Dixon (water)

Abnormal high signal

Radiologic evidence of an
infection; specific edema
patterns suggest a more
severe course of disease.

All kinds of
inflammation
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Table 1. Cont.

Phenomenon Sequence Findings Suggestions Notices

Abscess

T1 SE
T2 Dixon (water)

DWI
post-contrast T1 Dixon

(water)

Non-enhancing
collection with low

ADC values enclosed in
abnormally enhancing

soft tissue edema.

Detection of an abscess
usually requires operative

consideration and exact
abscess location, and

extensions are useful in
operative planning.

Abscesses may have an
intermediate T2 signal
content; blood products
and/or postoperative
status may complicate

abscess assessment;
necrotic lymph nodes
may be misinterpreted

as suppurative
lymphadenitis.

Bone marrow
edema

T1 SE
T2 Dixon (water)

post-contrast T1 Dixon
(water)

Low signal in T1 and
high signal in T2 Dixon

(water) and
post-contrast T1 Dixon.

Bone marrow edema may
confirm odontogenic origin

and point to the affected
tooth.

Recent dental
operations cause
similar reactive

findings; MRI artifacts
may complicate

assessment.

Complications Whole protocol

Abscess extending to
multiple deep neck
spaces, mediastinis,

venous thrombosis, and
airway compromise.

Detection of potentially
life-threatening conditions.

Magnetic resonance
angiography (MRA) or
CECT may be needed

to diagnose venous
thrombosis; defining

airway compromise is
difficult.

Cystic masses and
potential

neoplasms
Whole protocol

Identification of cystic
component vs.

neoplastic tissue, both
with or without signs

of infection.

Relevant differential
diagnostics; exclusion of

findings requiring
immediate interventions.

Differential diagnosis
may be limited and

needs clinical
correlation; biopsy may

be required.

Image quality can be deteriorated by artifacts induced by patient motion or metallic
foreign bodies, but the proportion of non-diagnostic MRI scans is low (about 1%) even
in the acute setting [10]. Especially in pediatric patients, the dental hardware related to
orthodontics can easily complicate the assessment of the DWI, hampering radiological
diagnostics if odontogenic infections are suspected. Luckily, odontogenic infections are
rare in small children [11].

3. Anatomical Considerations, MRI Terminology, and Edema Patters
3.1. Neck Anatomy and Key Areas of Scrutiny

The normal anatomy of the pediatric oropharynx is presented in Figure 1. MRI
accurately demonstrates lymphoid tissue in the tonsils, which may be quite prominent in
small children and teenagers. The differences between children and adults in proportional
neck anatomy and disease processes also create the framework for image findings and
interpretation [11]. These include the differing distribution of lymph nodes in the neck, as
nodes located in the retropharyngeal space tend to be affected by the infectious processes
more often in children than in adults [10,11]. The lymph nodes are normally larger in
children than in adults as lymph nodes can undergo atrophy and diminish in physical
activity [13] (Figures 2 and 3). No new lymph nodes develop with age. Children’s lymph
nodes, both in the retropharyngeal space and laterally, are challenged by antigen exposure
and presentation for the first time in these individuals’ lives, and when the nodes encounter
a new antigen, they can become enlarged. In adult life, when challenged with a specific
antigen, the immunological memory generates an antibody without the need for a new
recognition response [13].
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Figure 1. Normal MRI anatomy of the oropharynx in a 12-year-old. Axial T2-weighted (A), fat-

suppressed T2-weighted (B), and coronal T2-weighted (C) images and an ADC map (D) 

demonstrate the palatine tonsils (white asterisk) bounded laterally by the superior constrictor 

muscle (arrows) and posteriorly by the palatopharyngeus muscle (dotted arrows). 

 

Figure 2. Normal level II lymph nodes in a 2-year-old on axial T2-weighted (A), fat-suppressed T2-

weighted (B), and diffusion trace (C) images (arrows). 

Figure 1. Normal MRI anatomy of the oropharynx in a 12-year-old. Axial T2-weighted (A), fat-
suppressed T2-weighted (B), and coronal T2-weighted (C) images and an ADC map (D) demonstrate
the palatine tonsils (white asterisk) bounded laterally by the superior constrictor muscle (arrows)
and posteriorly by the palatopharyngeus muscle (dotted arrows).
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Figure 2. Normal level II lymph nodes in a 2-year-old on axial T2-weighted (A), fat-suppressed
T2-weighted (B), and diffusion trace (C) images (arrows).

Viral or bacterial infections are the most common causes of acute lymphadenopathy in
children [19]. The lymph nodes in viral cervical lymphadenitis are often soft, small, bilateral,
mobile, and non-tender, whereas in bacterial-associated lymphadenitis, the nodes are
usually unilateral, tender, and of acute onset. In non-viral cases, an empiric oral antibiotic
is often prescribed as early as possible [20]. Large, reddened, and worsening lymph nodes
may require hospitalization for parenteral antibiotics and occasionally surgical removal.
Cervical lymphadenitis caused by nontuberculous mycobacteria is relatively common in
children and may require surgical intervention; however, treatment strategies vary between
countries and institutions [21–23].
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Figure 3. Normal lateral retropharyngeal lymph nodes (of Rouvière) in a 2-year-old on axial (A), coro-
nal (B), and sagittal (C) T2-weighted images and axial (D), coronal (E), and sagittal (F) fat-suppressed
T2-weighted images (arrows).

As lateral lymphadenitis is common in children, the careful analysis of the lymph
nodes is essential in looking for suppurative lymphadenitis (intranodal abscess) which
may require surgery or drainage [11]. Children also tend to have more retropharyngeal
deep neck infections than adults; thus, scrutinizing the retropharyngeal space anatomy and
disease processes is necessary [11]. In children, severe deep neck infections may spread
caudally into the mediastinum. We encourage extending at least one axial pre-contrast T2-
weighted Dixon sequence and one axial post-contrast T1-weighted Dixon sequence down to
the level of lung hilum in order to determine or exclude disease processes such as anterior
or posterior mediastinal edema, pleural fluid collections, and mediastinal abscesses.

The thymus can often be seen in children as a homogenous mass with smooth margins
in the upper mediastinum (Figure 4) and should not be mistaken for pathology. The
superior part of the thymus often extends cranially, immediately below the left thyroid
gland. Another normal structure that is usually easily visible in children on fat-suppressed
T2-weighted images is the thoracic duct (Figure 5).
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Figure 4. Normal thymus in the upper mediastinum in a 2-year-old on axial (A), coronal (B),
and sagittal (C) T2-weighted images, and axial (D), coronal (E), and sagittal (F) fat-suppressed
T2-weighted images (arrows).
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Figure 5. Normal thoracic duct (arrows) in a 15-year-old on three consecutive axial fat-suppressed
T2-weighted images (A–C, superior to inferior) and a coronal fat-suppressed T2-weighted image (D).

3.2. Terminology of Pathology

In MRI, we define infection as (1) an abnormal, high signal indicating edema in fat-
suppressed T2-weighted sequences or (2) a high signal in fat-suppressed post-contrast
T1-weighted sequences indicating pathological tissue enhancement. Abscess MRI criteria
include an abnormal isointense or hyperintense collection on T2-weighted sequences with
low ADC values and no central enhancement, as well as enhancement surrounding this
collection on T1-weighted Dixon post-contrast sequences [15]. In diagnosing abscesses, all
sequences should be carefully scrutinized together because lesions that have a low ADC
value may be interpreted as either suppurative fluid or solid tissue with high cellularity,
depending on the pattern upon contrast enhancement.

3.3. Edema Patterns

Reactive, non-suppurative soft tissue edema is common in acute neck infections [15].
While areas of soft tissue edema do not necessarily contain abscesses or other targets for
surgically treatable fluid collections, they indicate the severity of the infection [15].

In children, two of the most useful edema patterns are retropharyngeal edema (RPE)
(Figure 6), and mediastinal edema (ME) (Figure 7). RPE is seen in about half of the patients
with acute neck infections [24–26]. The retropharyngeal space is bordered by the buccopha-
ryngeal fascia and the superior constrictor muscle anteriorly and the prevertebral fascia
posteriorly. The alar fascia further divides this compartment into the “true” retropharyn-
geal space anteriorly and the “danger space” posteriorly. The distinction between the true
retropharyngeal space and the so-called “danger space” cannot be made on radiological
grounds; thus, the term “retropharyngeal” is radiologically sufficiently adequate to denote
both anatomical entities. RPE is as common in children as in adults and is a significant
predictor of the need for treatment in the intensive care unit (ICU) [26].

ME is seen in about one-quarter of patients with acute neck infections and can be
divided into two categories: anterior and posterior. Anterior ME is commonly a continuum
of edema from the visceral and/or anterior cervical spaces, whereas posterior ME is a
continuation of RPE caudally. Similar to RPE, ME is encountered as often in children as in
adults and is a significant predictor of the length of hospital stay [26].
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Figure 6. Reactive, non-suppurative edema (arrows) in the retropharyngeal space (RPE) in a
3-year-old child with lateral lymphadenitis. Images are axial fat-suppressed T2-weighted (A), fat-
suppressed post-contrast axial (B), and sagittal (C) T1-weighted and an ADC map (D). The high
signal in the ADC maps confirms that this non-enhancing fluid collection is not purulent but reactive.
Surgical drainage is not required.
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Figure 7. Reactive, non-suppurative edema in the mediastinum (ME) in a 3-year-old child with lateral
lymphadenitis on an axial fat-suppressed T2-weighted image (arrow) at the level of the first thoracic
vertebra (asterisk).

4. Typical Pediatric Deep Neck Infections
4.1. Tonsillitis, Peritonsillar Abscesses, and Parapharyngeal Abscesses

Tonsillitis (pharyngotonsillitis) is a common oropharyngeal infection. In our previous
validation cohort, these types of infections were proportionally less common in children

61



Children 2023, 10, 967

than in adults [11]. MRI findings in tonsillitis include edema and the post-contrast en-
hancement of the palatine tonsils and surrounding oropharyngeal mucosa. Due to high
cellularity, the tonsils display innately restricted diffusion (Figure 1). Post-contrast imaging
sequences are beneficial in distinguishing intrinsic diffusion restriction from peritonsillar
abscesses (PTA) that exhibit pathological diffusion restriction [15]. PTAs form in the oropha-
ryngeal mucosal space, the potential space between the tonsillar capsule and the superior
constrictor muscles [27] (Figure 8) and are the most common type of abscess found in many
cohorts [28]. They are usually treated without imaging, and conservative treatment with
antibiotics is sufficient. As local incision and drainage are usually not applicable due to
lack of cooperation, immediate tonsillectomy in general anesthesia is a good treatment
option. However, if a complicated course of illness is suspected, such as parapharyngeal
swelling or an unsuccessful local incision in older children, patients may benefit from MRI
from which the true extension of the PTA and possible complications can be determined.
PTAs are frequently located superiorly or caudally from the craniocaudal midpoint and
may thus be unreachable if simple ambulatory needle drainage is attempted. PTAs may
be bilateral, and this can result in airway compromise. If the abscess breaches through
the superior constrictor muscle and the buccopharyngeal fascia laterally, it may reach the
parapharyngeal space [27] (Figure 9). Large parapharyngeal abscesses are likely to require
surgical drainage or at least close surveillance [29].
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Figure 9. Parapharyngeal space abscess (arrows) in a 15-year-old teenager. Images are axial fat-

suppressed T2-weighted (A) and fat-suppressed post-contrast axial T1-weighted (B) images, an 
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Figure 8. A peritonsillar abscess (PTA) (asterisk) in a 10-year-old on axial T2-weighted (A) and fat-
suppressed post-contrast T1-weighted images (B), an ADC map (C), and a coronal post-contrast T1-
weighted image (D). The abscess can be seen confined in the pharyngeal mucosal space, surrounded
by the edematous superior constrictor muscle (arrows).
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Figure 9. Parapharyngeal space abscess (arrows) in a 15-year-old teenager. Images are axial fat-
suppressed T2-weighted (A) and fat-suppressed post-contrast axial T1-weighted (B) images, an ADC
map (C), and a coronal post-contrast T1-weighted image (D). Notice that the abscess extends laterally,
far beyond the border of the superior constrictor muscle. In image (D), the abscess can be seen
extending caudally in the submandibular space, which communicates freely with the parapharyngeal
space superiorly. Note that the abscess extends laterally beyond the internal carotid artery. Purulence
was found during surgery, and Fusobacterium necrophorum was found in the pus culture.

4.2. Retropharyngeal Abscesses and Suppurative Lymphadenitis

Retropharyngeal infections tend to occur in young children [30]. In our previous
validation cohort, all but one of the patients under the age of seven had a primary neck
infection located in the retropharyngeal space or the lymph nodes; conversely, no patients
aged 8–17 years had retropharyngeal infections [11]. Upon close inspection, most retropha-
ryngeal infections actually represent suppurative lymphadenitis. They typically originate
from the lateral retropharyngeal lymph nodes of Rouvière (Figures 10 and 11) but can
rarely originate from the midline nodes (Figure 12). Quite often, the lateral retropharyn-
geal nodal abscess extends laterally into the post-styloid parapharyngeal space (carotid
space)—these two spaces communicate freely (Figures 10 and 11). A “true” retropharyn-
geal abscess between the fascial planes also exists but is less commonly encountered [11]
(Figure 13). In addition to suppurative lymphadenitis in the retropharyngeal space, lymph
nodes containing purulence are found more laterally and superficially in the neck [11].
Lateral lymphadenitis may be diagnosed well with ultrasound. In these cases, MRI may
be useful to confirm purulence (intranodal abscess formation) with DWI and to exclude
any deep extension of abscesses. Ultrasound has been found to be an equally sensitive and
specific method compared to CT in lateral neck abscesses in children [31]. Smaller children
with Staphylococcus aureus infections tend to present with lateral lymphadenitis with large
infectious mass-like lesions accompanied by widespread soft tissue edema, and careful
assessment of both DWI and fat-saturated post-contrast T1-weighted sequences is crucial
(Figure 14). Large abscesses and those not responding to medical treatment may require
surgery, preferably via a transoral route, if the abscess does not extend lateral to the carotid
arteries [32,33] (Figures 9–11).
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Figure 10. Suppurative lymphadenitis in the lateral retropharyngeal space in a 3-year-old child on 

axial T2-weighted (A) and fat-suppressed post-contrast T1-weighted images (B), an ADC map (C), 

and a sagittal post-contrast T1-weighted image (D). A large abscess (arrows) is posterior to the 

Figure 10. Suppurative lymphadenitis in the lateral retropharyngeal space in a 3-year-old child
on axial T2-weighted (A) and fat-suppressed post-contrast T1-weighted images (B), an ADC map
(C), and a sagittal post-contrast T1-weighted image (D). A large abscess (arrows) is posterior to
the superior constrictor muscle (dashed arrows), confirming retropharyngeal location, and extends
laterally to the post-styloid parapharyngeal (carotid) space. A normal retropharyngeal lymph node
can be seen on the right side (dotted arrows). The abscess extends laterally slightly beyond the
internal carotid artery. Purulence was found during surgery, and Streptococcus pyogenes was identified
in the pus culture.
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Figure 11. Suppurative lymphadenitis in the lateral retropharyngeal space in another 3-year-old child
on axial T2-weighted (A) and fat-suppressed post-contrast T1-weighted images (B), an ADC map (C),
and a sagittal fat-suppressed post-contrast T1-weighted image (D). A large abscess (arrows) extends
laterally to the post-styloid parapharyngeal (carotid) space. Note that the abscess does not extend
laterally beyond the internal carotid artery. Purulence was found during surgery, and Streptococcus
mitis was identified in the pus culture.
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Figure 13. True retropharyngeal abscess in a 10-month-old infant on axial fat-suppressed T2-

weighted (A) and fat-suppressed post-contrast axial T1-weighted (B) images, an ADC map (C), and 

a sagittal post-contrast T1-weighted image (D). A linear-shaped abscess (arrows) can be seen 

between the fasciae. Low ADC values (C) suggest purulence and not simply reactive edema. 

Figure 12. Suppurative lymphadenitis in the midline retropharyngeal space in another 3-year-
old child on axial T2-weighted (A) and fat-suppressed post-contrast T1-weighted images (B),
an ADC map (C), and a sagittal fat-suppressed post-contrast T1-weighted image (D). A large abscess
(arrows) extends laterally to the post-styloid parapharyngeal (carotid) space. Purulence was found
during transoral surgery.
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Figure 13. True retropharyngeal abscess in a 10-month-old infant on axial fat-suppressed T2-weighted
(A) and fat-suppressed post-contrast axial T1-weighted (B) images, an ADC map (C), and a sagittal
post-contrast T1-weighted image (D). A linear-shaped abscess (arrows) can be seen between the
fasciae. Low ADC values (C) suggest purulence and not simply reactive edema.
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4.3. Oral Cavity 

Teeth are the most common cause of infection in the oral cavity. Luckily, they are rare 

in children [11] but may be encountered in teenagers with tooth infections. In children 

with primary teeth and thus many unerupted permanent teeth, clinical diagnosis and 

exploration may be complicated because of honeycombed anatomy, especially of the 

mandible. Odontogenic neck infections can be accurately described using MRI [15]. The 

typical locations for odontogenic abscesses are the sublingual and submandibular spaces 

(Figure 15). In our clinical practice, we do not use the historical term “Ludwig’s angina” 

because it is vague and does not capture actionable imaging outcomes: etiology and 

surgically drainable abscesses. 

Figure 14. Lateral suppurative lymphadenitis in three infants less than 1 year of age (A–L). Images
are axial fat-suppressed T2-weighted (A,E,I), post-contrast T1-weighted (B,F,J), ADC maps (C,G,K),
and sagittal fat-suppressed T1-weighted (D,H,L). Note the large masses with surrounding edema
and non-enhancing areas with low ADC values, which are indicative of intranodal abscesses (arrows).
All patients underwent surgical drainage, and Staphylococcus aureus was found in the pus cultures.

4.3. Oral Cavity

Teeth are the most common cause of infection in the oral cavity. Luckily, they are rare
in children [11] but may be encountered in teenagers with tooth infections. In children
with primary teeth and thus many unerupted permanent teeth, clinical diagnosis and
exploration may be complicated because of honeycombed anatomy, especially of the
mandible. Odontogenic neck infections can be accurately described using MRI [15]. The
typical locations for odontogenic abscesses are the sublingual and submandibular spaces
(Figure 15). In our clinical practice, we do not use the historical term “Ludwig’s angina”
because it is vague and does not capture actionable imaging outcomes: etiology and
surgically drainable abscesses.
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Figure 15. Odontogenic subperiosteal abscess (arrows) in the submandibular space following root
canal treatment in a 15-year-old teenager. Images are axial fat-suppressed T2-weighted (A) and
fat-suppressed post-contrast (B) images, an ACD map (C), and coronal post-contrast T1-weighted
(D). An abscess is in the submandibular space, inferior to the edematous mylohyoid muscle (dotted
arrows).

4.4. Sialadenitis

Infections of the salivary glands (sialadenitis) in children may be bacterial or viral [34].
In acute sialadenitis, MRI demonstrates a swollen salivary gland with edematous sur-
roundings (Figures 16 and 17). Abscesses can be identified using DWI and post-contrast
T1-weighted images. In obstructive sialadenitis, sialoliths may be seen as foci of the signal
void [15].
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Figure 16. Acute parotitis of the left parotid gland (arrows) in a 16-year-old teenager. Images are axial
(A) and coronal (C) fat-suppressed T2-weighted images and axial (B) and coronal (D) post-contrast
T1-weighted images. The left parotid gland is swollen, edematous, and enhancing. No abscesses are
seen. Note the slightly enlarged level II lymph nodes on the coronal images (dotted arrows).
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Figure 17. Acute sialadenitis of the right submandibular salivary gland (arrows) in a 13-year-old
teenager. Images are axial (A) and coronal (C) fat-suppressed T2-weighted images and axial (B) and
coronal (D) post-contrast T1-weighted images. The submandibular gland is swollen, edematous, and
enhancing, but no abscesses exist. Note the considerable surrounding edema and enhancement in the
adjacent soft tissues (dotted arrows).

5. Challenging MRI Findings and Pitfalls
5.1. Lymphadenitis with Purulence vs. Necrosis

In early lymphadenitis, the lymph node may be necrotic but not yet abscessed. It
may be difficult to differentiate between a non-enhancing lymph node with restricted
diffusion (a low ADC because of purulence, indicating intranodal abscess) and a lymph
node with delayed enhancement accompanied by restricted diffusion (a low ADC because
of high cellularity of lymphoid tissue, indicating necrotic or near-necrotic lymphadenitis)
(Figure 18). Indeed, necrotic lymph nodes may enhance slower than normal nodes, and the
enhancement may not be noticed if later scans (about 10 min after contrast administration)
are not carefully scrutinized. Therefore, necrosis and slow enhancement may be confused
for non-enhancement in early scans.
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image (B) (arrows). The ADC demonstrates restricted diffusion (D) (arrow). The finding was 
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5.2. Cystic Masses 

Cystic masses, such as branchial cleft cysts, thyroglossal duct cysts, and vascular 

malformations, comprise the majority of congenital neck masses in children [35]. Some 

cystic lesions, such as lymphatic malformations, can grow rapidly during an acute neck 

infection. In general, the secondary infection of a cystic mass is suggested by a thick 

enhancement of the cyst wall and edema of the surrounding soft tissues (Figures 19–21). 

ADC maps from DWI are useful in detecting or ruling out purulence of the cyst fluid 
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Figure 18. Necrotic lymphadenitis misinterpreted as suppurative lymphadenitis in a 15-year-old
adolescent. Lymphadenitis is suggested on the axial fat-suppressed T2-weighted image (A) and
poor enhancement on the post-contrast T1-weighted image (C) compared with the pre-contrast
image (B) (arrows). The ADC demonstrates restricted diffusion (D) (arrow). The finding was
initially misinterpreted as suppurative lymphadenitis (intranodal abscess formation); however, in
post-contrast images taken at later time points, some delayed enhancement is seen (E,F) (arrows),
ruling out suppuration. Consequent surgery found necrosis but no purulence. Image adapted from
Ref. [15] under the Creative Commons Attribution License (CC BY 4.0).

5.2. Cystic Masses

Cystic masses, such as branchial cleft cysts, thyroglossal duct cysts, and vascular
malformations, comprise the majority of congenital neck masses in children [35]. Some
cystic lesions, such as lymphatic malformations, can grow rapidly during an acute neck
infection. In general, the secondary infection of a cystic mass is suggested by a thick
enhancement of the cyst wall and edema of the surrounding soft tissues (Figures 19–21).
ADC maps from DWI are useful in detecting or ruling out purulence of the cyst fluid
(Figures 20 and 21).
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suggests an acute infection; unfortunately, the ADC map was non-diagnostic in this case because of 

artifacts. The patient was managed medically in the acute phase. 

 
Figure 20. A large cystic mass (arrows) anteromedial to the sternocleidomastoid muscle in an 8-

year-old child. Images are axial T2-weighted (A) and fat-suppressed post-contrast axial T1-weighted 

(B) images, an ADC map (C), and a coronal T2-weighted image (D). Acute enlargement and thick 

rim enhancement suggest an acute infection, but the ADC values are high, suggesting no purulence 

in the cyst. The patient was managed conservatively, and the cyst disappeared completely during 

Figure 19. Second branchial cleft cyst (histologically confirmed) (arrows) in an 11-month-old infant on
axial T2-weighted (A) and fat-suppressed post-contrast T1-weighted (B); and sagittal fat-suppressed
T2-weighted (C), and post-contrast T1-weighted images (D). The thick rim enhancement suggests an
acute infection; unfortunately, the ADC map was non-diagnostic in this case because of artifacts. The
patient was managed medically in the acute phase.
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Figure 20. A large cystic mass (arrows) anteromedial to the sternocleidomastoid muscle in an 8-

year-old child. Images are axial T2-weighted (A) and fat-suppressed post-contrast axial T1-weighted 
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Figure 20. A large cystic mass (arrows) anteromedial to the sternocleidomastoid muscle in an 8-
year-old child. Images are axial T2-weighted (A) and fat-suppressed post-contrast axial T1-weighted
(B) images, an ADC map (C), and a coronal T2-weighted image (D). Acute enlargement and thick rim
enhancement suggest an acute infection, but the ADC values are high, suggesting no purulence in the
cyst. The patient was managed conservatively, and the cyst disappeared completely during follow-up,
so no histopathological proof was obtained. The cyst extended caudally into the mediastinum (D),
which is unlikely for a second branchial cleft cyst, suggesting the possibility of a thymic cyst, although
these are rare and more commonly found on the left side.
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The patient was later successfully treated with sclerotherapy. 

5.3. Artifacts 

Gas can be difficult to detect from MRI because the signal void may not be easily 

distinguished from other areas of low signal [15]. All sequences should be carefully 

evaluated for a complete and consistent signal void (Figure 22). Metallic braces can cause 

a significant signal loss in the oral cavity in children and teenagers (Figure 22). 

Figure 21. Lymphatic malformation with secondary infection in a 15-year-old teenager on axial
T2-weighted (A) and fat-suppressed post-contrast axial T1-weighted (B) images, an ADC map (C),
and a coronal T2-weighted image (D) (arrows). The coronal image (D) confirms the typical location
in the submandibular space. Widespread edema of the surrounding soft tissues (dotted arrow in (A))
suggests an acute infection, but ADC values are high, suggesting no purulence in the malformation.
The patient was later successfully treated with sclerotherapy.
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5.3. Artifacts

Gas can be difficult to detect from MRI because the signal void may not be easily
distinguished from other areas of low signal [15]. All sequences should be carefully
evaluated for a complete and consistent signal void (Figure 22). Metallic braces can cause a
significant signal loss in the oral cavity in children and teenagers (Figure 22).
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Figure 22. Neck pain and swelling after tonsillectomy in an 11-year-old child. Gas is shown as areas 

of signal void (arrows) in all sequences in the left parapharyngeal and submandibular spaces. 
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A mediastinal extension is related to a more severe course of illness in both children 

and adults [15] (Figure 23). The infection usually extends caudally from a primary neck 

infection site via the retropharyngeal route [11]. In order to screen for mediastinal disease, 

at least fat-saturated T2-weighted and post-contrast T1-weighted sequences in the axial 

plane should be extended to the upper mediastinum. If the whole mediastinum is to be 

imaged, the MRI protocol needs to be adjusted accordingly because of potential motion 

and susceptibility artifacts. Sometimes, a CT study is performed to confirm mediastinal 

findings (Figure 23). 

Figure 22. Neck pain and swelling after tonsillectomy in an 11-year-old child. Gas is shown as areas
of signal void (arrows) in all sequences in the left parapharyngeal and submandibular spaces. Images
are axial T2-weighted (A), pre-contrast T1-weighted (B), post-contrast T1-weighted (C) images, and
a coronal post-contrast T1-weighted image (D). The anterior signal void (asterisk) is an artifact
due to braces.

6. Complications
6.1. Mediastinitis

A mediastinal extension is related to a more severe course of illness in both children
and adults [15] (Figure 23). The infection usually extends caudally from a primary neck
infection site via the retropharyngeal route [11]. In order to screen for mediastinal disease,
at least fat-saturated T2-weighted and post-contrast T1-weighted sequences in the axial
plane should be extended to the upper mediastinum. If the whole mediastinum is to be
imaged, the MRI protocol needs to be adjusted accordingly because of potential motion
and susceptibility artifacts. Sometimes, a CT study is performed to confirm mediastinal
findings (Figure 23).

MRI findings of mediastinal extension include anterior or posterior edema and/or
abscess formation and pleural fluid accumulation (Figure 23). Minor edema findings are
likely reactive (Figure 7) and should not be diagnosed as actual evidence of infection spread.
On the contrary, extensive edema and especially abscess formation warrants acute clinical
assessment for operative treatment and intensive care [15].
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Figure 23. Descending mediastinitis in a 9-year-old child with widespread abscesses originating from
the throat. The mediastinum was originally imaged with MRI; axial fat-suppressed T2-weighted
(A) and post-contrast T1-weighted images (B); and a coronal post-contrast T1-weighted image (C).
Imaging was consequently supplanted with CECT (D). Images show a mediastinal abscess (arrows)
and pleural effusions (dotted arrows). The patient underwent surgery, and Streptococcus pyogenes was
found in the pus cultures.

6.2. Venous Thrombosis

When venous thrombosis in the context of deep neck infection is diagnosed, the
eponym Lemierre’s syndrome has historically been used. With internal jugular vein throm-
bophlebitis, this syndrome also encompasses bacteremia (typically Fusobacterium
necrophorum) secondary to current oropharyngeal infection, resulting in septic emboli
[36,37]. Lemierre’s syndrome has been associated with multiorgan failure and increased
mortality risk [36] and thus requires prompt action. Luckily, this state is rare, but a moder-
ate increase in incidence has been noticed in the past decades [38]. The syndrome does not
always appear in its classical form, and a variant course of illness has been described [39].

Diagnosing thrombophlebitis is not always simple in MRI, as the thrombus may not
be separable from a flow void in T1-weighted sequences (Figure 24). The lack of a flow
void can also be indicative, and post-contrast sequences must be closely evaluated. In this
context, MR angiography or a CECT of the head, neck, and thorax are alternative strategies
to MRI to exclude possible complications, such as intracranial venous sinus thrombosis.
Compared to CECT, the MRI scanning of multiple body parts is time-consuming, but MRI
is more accurate in evaluating intracranial and epidural pathology in this setting.Children 2023, 10, x FOR PEER REVIEW 21 of 23 

 

 

 

Figure 24. Thrombosed internal jugular vein (arrows) related to Lemierre’s syndrome in a 15-year-
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void is seen on the T2-weighted images (A,C), whereas the hypointense thrombus is difficult to 

separate from the flow void on the T1-weighted image (B). Fusobacterium necrophorum was found in 

blood cultures. Image partially adapted from Ref. [15] under the Creative Commons Attribution 

License (CC BY 4.0). 
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Figure 24. Thrombosed internal jugular vein (arrows) related to Lemierre’s syndrome in a 15-year-old
adolescent with a throat infection and septicemia, demonstrated on axial fat-suppressed T2-weighted
(A) and post-contrast T1-weighted (B) images, and a coronal T2-weighted image (C). Excluding
thrombosis may be challenging on standard MRI sequences. In this case, the lack of flow void is seen
on the T2-weighted images (A,C), whereas the hypointense thrombus is difficult to separate from
the flow void on the T1-weighted image (B). Fusobacterium necrophorum was found in blood cultures.
Image partially adapted from Ref. [15] under the Creative Commons Attribution License (CC BY 4.0).
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7. Conclusions

Emergency MRI has been proven to be a feasible imaging method in children with
acute deep neck infections. MRI has superior diagnostic accuracy compared to CECT,
encouraging more widespread use, especially in younger individuals. The differences
between children and adults in anatomic proportions and the distribution of infectious
diseases in the neck result in distinctive MRI findings. The subtleties in MRI findings of
pediatric deep neck infections require careful assessment and knowledge.

To summarize the MRI findings: all acute neck infections cause varying degrees of
edema, which is characterized as an abnormally high T2 signal on fat-suppressed images
and enhancement shown as a high signal in fat-suppressed post-contrast T1-weighted
sequences. For example, edema and post-contrast enhancement of the palatine tonsils and
surrounding oropharyngeal mucosa are typical MRI findings in tonsillitis. Abscesses, such
as those in peritonsillar, parapharyngeal, and retropharyngeal spaces, exhibit peripheral
enhancement and a central, non-enhancing collection of pus, which can be effectively
visualized with DWI as low ADC values. The location or extension of the abscess through
various anatomical structures (e.g., parapharyngeal abscess extending from the peritonsillar
space lateral to the superior constrictor muscle) can then be used for proper classification.
Careful examination of all MRI sequences is important to avoid various pitfalls. For
example, necrotic lymph nodes may be difficult to distinguish from purulent lymphadenitis.
Early scans may confuse necrosis and delayed enhancement for non-enhancement, and
both can show low ADC values, indicating high cellularity or purulence.
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Abstract: Shear wave elastography (SWE) is a non-invasive imaging technique used to quantify the
elasticity/stiffness of any tissue. There are normative SWE studies on tonsils in healthy children in the
literature. The purpose of this study is to analyze the palatine tonsils in children with acute tonsillitis
using ultrasound and SWE. In this prospective study, pediatric patients aged 4–18 years diagnosed
with acute tonsillitis and healthy children were included. Those with antibiotic use, chronic tonsillitis,
adenoid hypertrophy, and having chronic disease, immunodeficiency, and autoimmune disease,
or any rheumatological disease were excluded. The volume and elasticity of palatine tonsil were
measured via ultrasound and SWE. The study included 81 (46 female, 35 male) acute tonsillitis
patients, and 63 (38 female, 25 male) healthy children between the ages of 4 and 18. Elasticity (kPa)
values of tonsils were found significantly higher in the tonsillitis group (SWE-R: 25.39 ± 4.64, SWE-L:
25.01 ± 4.17) compared to the normal group (SWE-R: 9.71 ± 2.37, SWE-L: 9.39 ± 2.19) (p < 0.001). In
the tonsillitis group, a significant positive correlation was found between tonsil volume and elasticity
(r: 0.774, p: 0.002). In conclusion, in pediatric patients with acute tonsillitis, higher kPa values were
obtained with SWE in the palatine tonsils.

Keywords: acute tonsillitis; shear wave elastography; stiffness; children; ultrasonography; pediatric

1. Introduction

Palatine tonsils are lymphoepithelial tissues that are part of the mucosal immune
system, and in the lateral oropharyngeal wall, they lie within the tonsillar fossa, which is
bounded anteriorly and posteriorly by the mucosal arches containing the palatoglossus
and palatopharyngeus muscles, respectively [1]. The palatine tonsil contains 10–30 tubular
branched crypts that extend through the entire thickness of the organ and expand the
surface of the tonsils [2]. They are located in a strategic area where the respiratory and di-
gestive tracts meet to provide continuous lymphoid stimulation. They perform a significant
function in the protection against foreign infections because of their locations [3].

Palatine tonsils grow rapidly in the first years of life due to their immunological func-
tion. Although the exact growth mechanism is unknown, it is thought to occur when exter-
nal antigen presentation triggers/catalyzes lymphoid hyperplasia and tonsil parenchyma
enlargement. Tonsil size is most prominent in childhood and is directly linked to bacterial
load and the amount of B and T lymphocytes. Later, depending on age, tonsillar involution
can be seen [2].

Tonsillitis occurs if the proliferation of pathogens in the lymphoid tissue exceeds
the protective power of activated lymphoid and immunoglobulin-producing cells [2].
Acute tonsillitis is an acute inflammatory condition that affects the tonsillar tissues of the
oropharynx and is most common in school-aged children. It affects nearly all children at
least once in their lives. Infection typically starts as a superficial infection and can only
progress through peritonsillar cellulitis to the endpoint of a potentially life-threatening
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peritonsillar abscess [4]. Due to the possibility for airway obstruction, acute tonsillar
enlargement is especially important [5]. It is critical to recognize and treat acute tonsillitis
because of the complications that might emerge in untreated individuals.

The evaluation of tonsillitis for most patients involves a physical examination, risk
classification using scoring systems, and consideration of fast antigen testing or throat
culture. However, it is important to begin with a complete history and physical exam
before conducting any evaluation. This data can then be used to calculate a Centor Score,
which takes into account the presence of a fever, tonsillar enlargement, and/or exudates,
tender cervical lymphadenopathy, and the absence of a cough. Each finding is worth one
point, but the criterion has been updated to include an age adjustment: patients aged 3 to
15 years receive an extra point, while patients aged 45 and older have one point deducted
from their score [6,7].

Patients with a score of 0 to 1 generally do not require further testing or antibiotics.
For those with a score of 2 to 3 points, rapid strep testing and throat culture are possible
options. However, clinicians should consider testing and prescribing empiric antibiotics for
patients with scores of 4 or above. Throat culture can be used alone or in combination with
fast antigen testing to screen for Group A Beta-hemolytic Streptococcus. It is worth noting
that although the fast antigen test is specific (88% to 100%), it is not very sensitive (61% to
95%), which means false negatives are possible [8].

In cases of complex illnesses, such as patients with unstable vital signs, a toxic ap-
pearance, difficulty swallowing or tolerating oral intake, or trismus, a more thorough
evaluation may be necessary. This may include neck imaging and laboratory testing, such
as a complete blood count and basic metabolic panel to check renal function [9].

A lateral neck X-ray is a cheap and easily accessible diagnostic tool that holds clinical
value for tonsil and neck soft tissue evaluation. It can be used as a first-line investigation to
assess whether there is an increase in the width of the soft tissues in front of the vertebrae,
and it may also detect the presence of gas or an air-fluid level [10,11]. Additionally, for
more detailed evaluation, magnetic resonance imaging (MRI) and computed tomography
(CT) are commonly used methods to radiologically evaluate pathologies related to the
palatine tonsil. However, these imaging methods have some disadvantages, including high
costs, the necessity for sedation in children, and exposure to ionizing radiation. Recently,
ultrasound (US) has been increasingly used to diagnose peritonsillar infections and to
evaluate tonsils’ morphological and volumetric changes [12–14].

Shear wave elastography (SWE) is a non-invasive imaging technique used to quantify
the elasticity/stiffness of any tissue. SWE is a useful technique, particularly for children,
due to its low operator dependence, ease of use, and reproducibility [15]. The literature
includes SWE studies of different organs, such as the liver [16], testis [17], breast [18],
thymus [19], parotid [20], kidney, and spleen [21] in children and adolescents. In the
palatine tonsils, the literature includes studies showing normal values with SWE in healthy
children and adolescents [14,22]. However, to our knowledge, there are no reports in the
literature of a SWE study evaluating tissue elasticity/stiffness in cases of acute tonsillitis. In
this respect, our study is the first to examine SWE values in patients with acute tonsillitis.

The purpose of this study is to use US and SWE to analyze the palatine tonsils in
children with acute tonsillitis, examine the effect of tonsillar infection on tissue stiffness,
and compare to the normal population.

2. Materials and Methods

Ethics committee approval was obtained from the hospital’s local ethics committee
for this prospective study (ethics committee no: E-457297017-3902100.137). In addition,
informed consent was obtained from the parents before the transcervical US and SWE
examinations. Data for the study were collected between January 2021 and April 2022.
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2.1. Patient Selection

Tonsillitis group: Pediatric patients between the ages of 4 and 18 who were diagnosed
with acute tonsillitis and volunteered to participate in the study were included in the
tonsillitis group. We selected patients with acute tonsillitis from our hospital’s pediatric
outpatient clinic, family physician, or pediatric emergency department, and all patients
were examined at the same state university hospital. There was no private service or a paid
inspection. The diagnosis of acute tonsillitis was primarily based on the patient’s medical
history and physical examination findings. During a physical exam, a clinician decided to
diagnose acute tonsillitis by examining the throat for signs of inflammation, such as redness,
swelling, and the presence of pus or white spots on the tonsils and enlarged lymph nodes.

Healthy control group: Healthy child participants without active disease and between
the ages of 4 and 18 were included. Healthy individuals without any known disease or
signs of infection or fever during the examination were included in the control group.

The exclusion criteria were determined as follows: Being younger than 4 years old or
older than 18 years old, having a history of tonsillectomy, having started antibiotic treatment
before or using antibiotics for an existing disease, having any chronic disease, having
known adenoid/tonsillar hypertrophy, having peritonsillar abscess and collection, having
immunodeficiency or cancer, and having an autoimmune disease or any rheumatological
disease that may affect the tonsils. In addition, patients with recurrent acute tonsillitis and
chronic tonsillitis characterized by persistent inflammation and infection of the tonsils were
excluded from the study.

As a result, bilateral tonsils of 81 patients in the tonsillitis group and 63 patients in the
healthy control group were evaluated.

The patients’ age, sex, BMI, height, and weight were all recorded in order to look for
possible correlations between these parameters and tonsil dimensions, volumes, and SWE
stiffness values (kPa).

2.2. Ultrasound and Shear Wave Elastography Assessment

The tonsil US examination was conducted with the patient lying down in the supine
position, with their head tilted back slightly. The patient’s neck was in extension and
their head was turned towards the side being examined. After applying a clear gel to the
patient’s neck over the area where the tonsils are located, then ultrasound examination
started using high-frequency linear-array transducers (L12-3, 3–12 MHz).

First the submandibular gland was discovered, then the palatine tonsil was visualized
as a well-circumscribed hypoechoic structure just deep within the submandibular gland.
Longitudinal and transverse plane imaging was performed according to the extension of
the tonsil. During the ultrasound, the practitioner sometimes asked the patient to swallow
to observe the movement of the tonsils. The diameters of both the right and left tonsils
were measured in the anteroposterior, transverse, and longitudinal planes (Figure 1).

The volume of tonsils was automatically calculated using the US machine utilizing
three simple measurements. Tonsil elastography measurements were determined automat-
ically by the SWE feature of the machine (Figure 2). It was important to avoid applying
pressure to the probe and to keep the practitioner’s hand stable throughout ultrasono-
graphic imaging. Elasticity values were measured in kilopascals (kPa). Elasticity values of
the lesions were measured three times using three different ROIs of 1 cm2 from the different
areas by the same observer, and the average of these measurements was recorded as the
final data. The US and SWE examinations were conducted by a radiologist with ten years
of experience.

On the day of presentation to the outpatient clinic, patients underwent US and SWE
examinations without having to wait for a separate appointment. After the patients were
examined in the outpatient clinic, they were directed to the radiology department for
imaging. The majority of patients sought medical attention within the first 2–3 days of
symptom onset when their symptoms were most severe. Chronic cases and recurrent acute
cases were excluded from the study with as much care as possible.
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Figure 2. Shear wave elastography (SWE) evaluation of the palatine tonsil (A,B): Asterisk: Sub-
mandibular gland, Arrows: Palatine tonsil).

2.3. Statistical Analysis

Data analysis was performed using the SPSS software for social sciences (version 20)
for Windows (IBM SPSS Inc., Chicago, IL, USA). To determine if the data had a normal
distribution, the Kolmogorov–Smirnov test was utilized. Mean and standard deviation
were used to present numerical variables with a normal distribution, while variables with
a non-normal distribution were reported as medians with minimum and maximum values.
Categorical variables were reported using numbers and percentages. Fisher’s chi-square
test was used to compare the percentages of sexes between the normal and acute tonsillitis
groups. Tonsil elasticity and volume parameters were compared between groups using
the Mann–Whitney U and Student’s t tests, and compared based on gender using the
Mann–Whitney U test. The Wilcoxon test was utilized to compare the parameters on the
right and left sides. To explore potential relationships between tonsil elasticity and age,
height, and weight values, Spearman correlation analysis was utilized. Logistic regression
analysis was used to examine potential relationships between tonsil elasticity and sex. A
two-tailed value of p < 0.05 was considered statistically significant.

3. Results

In the study, 144 (84 females, 60 males) participants aged 4–18 years were included. Of
these, 81 (46 females, 35 males) were in the tonsillitis group and 63 (38 females, 25 males)
were in the control group. The age and sex data of the tonsillitis group and the control
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group are shown in detail in Table 1. In terms of mean age and sex, there was no significant
difference between the tonsillitis and control groups (p > 0.05) (Table 1).

Table 1. Age and sex distribution of the participants.

Tonsillitis Group
(n = 81)

Control Group
(n = 63) p Value

Age * (year) (Mean ± SD) 10.9 ± 2.8 11.5 ± 3.2 0.442
Sex ** (Female/Male), n(%) 46(57)/35(43) 38(60)/25(40) 0.748

* Student’s t test, ** Fisher’s Chi-square test, SD: Standard deviation.

The mean kPa values obtained from the right and left palatine tonsils by SWE and the
mean volume values of the right and left palatine tonsils are shown in detail in Table 2.
Accordingly, in the comparisons made separately for the right and left tonsils, kPa values
were found to be significantly higher in the tonsillitis group compared to the control group
(p < 0.001, for the right and left tonsils). The volume measurements obtained for the right
and left tonsils were statistically significantly higher in the tonsillitis group compared to
the control group (p = 0.026, p = 0.021 for the right and left tonsils, respectively) (Table 2).

Table 2. Data in the tonsillitis and healthy control groups, and comparison between groups.

Tonsillitis Group
(n = 81)

Control Group
(n = 63) p Value

SWE-R * (kPa) (Mean ± SD) 25.39 ± 4.64 9.71 ± 2.37 <0.001
SWE-L * (kPa) (Mean ± SD) 25.01 ± 4.17 9.39 ± 2.19 <0.001

Volume-R * (mm3) (Mean ± SD) 2.90 ± 0.63 1.71 ± 1.20 0.026
Volume-L * (mm3) (Mean ± SD) 2.97 ± 0.51 1.69 ± 0.80 0.021

* Student’s t test, SWE: Shear Wave Elastography, kPa: Kilopascal, SD: Standard Deviation.

In the correlation analyses performed separately in the tonsillitis group, control group
and total study group, no significant statistical correlation was found between the elasticity
(kPa) with sex, height, weight, body mass index (BMI), and tonsil volume (p > 0.05) (Table 3).
In the tonsillitis group, a statistically significant positive correlation was found between
tonsil volume and elasticity (Table 3).

Table 3. Correlation analyses between elasticity and sex, weight, height, body mass index (BMI),
tonsil volume (r = correlation coefficient; p = statistical significance).

Tonsillitis Group
(n = 81)

Control Group
(n = 63)

Total Study Group
(n = 144)

r p r p r p

Sex/Elasticity * 0.452 0.163 0.313 0.396 0.423 0.260
Weight/Elasticity ** 0.834 0.402 0.532 0.590 0.317 0.428
Height/Elasticity ** 0.253 0.725 0.454 0.534 0.135 0.615

BMI/Elasticity ** 0.345 0.243 0.318 0.712 0.192 0.533
Tonsil

Volume/Elasticity **
0.774 0.002 0.160 0.663 0.065 0.618

* Logistic regression test, ** Spearman correlation test, BMI: Body Mass Index.

4. Discussion

In our study, we aimed to investigate the changes in elasticity and volume in acute
tonsillitis by comparing palatine tonsil volume and SWE measurements with normal values
in acute tonsillitis, which is one of the common pathologies in the pediatric patient group.
For this, we applied SWE for quantitative evaluation immediately after the gray scale
examination. According to the results of our study, a significant increase was found in
tissue stiffness and tissue volume in the palatine tonsil compared to the normal group in
pediatric patients with acute tonsillitis.
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Ultrasonography is not typically the primary imaging modality used for assessing
tonsils. However, given the limitations of CT and MRI, ultrasound can be a useful sup-
plementary tool. In addition to being simple, noninvasive, and affordable, ultrasound
can also be performed at the patient’s bedside. Moreover, previous studies have shown
that ultrasound is a helpful tool for evaluating tonsils and that volume measurements
obtained through ultrasound are consistent with actual values [23–25]. As a matter of fact,
Asimakopoulos et al. [26] found that US is a suitable objective method for determining
tonsil volume in pediatric patients. There is an inherent existence of some form of signal-
dependent noise in ultrasound imaging systems. Speckle noise is inherently present in
ultrasound images. Its inherent presence occurs during the image acquisition phase. This
noise can make it difficult to identify structures and can also degrade the image quality.
Despeckling is an important preprocessing step in ultrasound imaging and can improve the
accuracy of diagnosis and treatment planning. Despeckling techniques are used to reduce
or eliminate this noise while preserving the underlying information. Much research has
been completed in this field to remove speckle noise while preserving medical information
in the image. The ultrasound devices which were used in the current study have this
technology, so that we can acquire clear US and SWE images, and a successful sonographic
imaging and study [27–30].

Shear wave elastography is a new method used to test tissue stiffness in a variety
of tissues and organs, most notably the liver, breast, and thyroid [31,32]. SWE has been
increasingly used in recent years to noninvasively identify normal and malignant cervical
lymph nodes, usually by measuring lymph node stiffness [32,33]. Unlike other imaging
techniques, it has been stated in the literature that SWE is noninvasive, inexpensive,
convenient and reproducible, and that it can be performed in real time to monitor the
stiffness of tissues [33].

In the literature, there are studies that evaluate the measurement of tonsil volume
using ultrasound and evaluate normal kPa values of the palatine tonsils with elastography.
In the first published study by Asumakopoulos et al. [26], they compared tonsil volume
measured by ultrasound with the actual volume obtained from tonsillectomy in 52 tonsils
from 26 children with adenotonsillar hypertrophy, aged 2–6 years. The study found that
the mean tonsil volume measured by ultrasound was 3.6–3.9 mL, which was similar to the
actual volume. In a study comparing obesity and hepatosteatosis with tonsillar volume,
Ozturk et al. [34] found mean tonsillar volumes ranging between 3.18 mL and 4.45 mL
in 97 children with a mean age of 13–14. In another study by Ozturk et al. [35], the mean
tonsil volumes were found to be 2.03 mL in the chronic tonsillitis group and 5.36 mL in the
obstructive sleep apnea syndrome (OSAS) group among 67 pediatric patients with a mean
age of 10 years. Aydin et al. [36] conducted a normative study on 274 healthy children with
a mean age of 7 years and found a mean tonsil volume of 1.5 mL. Mengi et al. [37] in their
study of 85 patients with recurrent tonsillitis and OSAS, of which 50 were children with a
mean age of 5.7 years, found the mean actual and ultrasound volumes in children as 3.5 mL
and 3.67 mL, respectively. In our study, we found the mean tonsil volume as 2.90–2.97 mL
in the acute tonsillitis group with a mean age of 10.9 years, and 1.69–1.71 mL in the healthy
control group. When compared to studies in the literature that included adenotonsillar
hypertrophy cases and OSAS patients, the tonsillar volume results of our study were lower.
This may be because we excluded cases of tonsillar hypertrophy, recurrent tonsillitis, and
chronic tonsillitis from our study. Tonsil volume measurements in normal healthy children
in the literature and the measurements in our healthy control group were similar. The
palatine tonsil volume in the tonsillitis group was found to be higher compared to the
healthy control group in our study. These data demonstrate an increase in tonsil volume
in cases of acute inflammation, suggesting that ultrasonography can detect this. As far as
we are aware, there are two study [14,22] in the English literature that examine the normal
elasticity values (kPa) of palatine tonsils using SWE, with similar results to ours.

Our study focused on the evaluation with SWE in patients with acute tonsillitis of the
palatine tonsil. In our investigation, the mean elasticity values in the tonsillitis group were
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found to be statistically significantly higher when compared to the healthy control group.
Our study provides first and preliminary findings regarding the SWE elasticity values of
tonsillitis; hence, we cannot compare our findings to those of earlier research. However, we
can compare it with the studies in the literature on several infective-inflammatory disorders.
Accordingly, similar to our study, Qin Qin et al. [33] reported an increase in SWE values in
acute bacterial cervical lymphadenitis. Lee JM et al. [38], in their study on Kikuchi patients,
diagnosed with the acoustic radiation force impulse (ARFI) elastography method, found an
increase in ARFI elastography values in Kikuchi patients and reactive hyperplasic lymph
nodes compared to normal lymph nodes, similar to our study. Yoǧurtçuoǧlu et al. [39]
found significantly higher mean elastography values than normal healthy kidneys in their
ARFI study in patients with acute glomerulonephritis. According to our study and the
findings in the literature, we conclude that there is an increase in the elasticity values of the
tissues and tension and stiffening in the tissues in cases of infection-inflammation. This
could be related to the fact that inflammatory cell infiltration and tissue liquefaction [40]
in the palatine tonsil cause a significantly increased tension in the palatine tonsil in acute
tonsillitis, resulting in high kPa values.

Studies in the literature have indicated that they evaluate shear wave flexibility in
the hardest region of the lymph nodes due to the substantial regional variation in the
distribution of lymphatic vessels in the SWE examination of the lymph nodes [41,42]. In our
study, we performed measurements from solid areas while avoiding cryptic areas during
SWE measurements in tonsils with increased volume. Similar to the literature, we think
that tonsil flexibility can be evaluated more accurately in tonsils without heterogeneous
internal structure.

Kamel et al. [43], in their study evaluating thyroid gland elasticity in pediatric patients
with autoimmune thyroid disease, found thyroid SWE values to be significantly higher in
children with autoimmune thyroiditis compared to healthy children due to parenchymal
stiffness caused by lymphocytic infiltration and interstitial fibrosis. In the literature, a
proportionally higher increase in tissue stiffness values has been found in autoimmune thy-
roiditis. However, when we look at our results, there is a moderate increase in proportion.
One reason for this may be that fibrosis is not expected due to the pathophysiology of acute
tonsillitis [5]. In addition, it is known that SWE may weaken while passing through the
tissues due to its technical nature, and because the palatine tonsils are located relatively
deeper than the thyroid tissue and lymph nodes, the push pulse may also weaken while
passing through the tissues [44]. To compare the changes in the acute and chronic phases,
there is a need for prospective longitudinal studies comparing acute tonsillitis and chronic
tonsillitis and tonsillar hypertrophy patients in terms of tissue stiffness values.

Our study had some limitations. One of the limitations is the relatively small patient
population. Therefore, the results may not be representative of the general population.
Larger sample groups and multicenter studies are needed. Another limitation of our study
is that patients with tonsillitis were not differentiated between viral or bacterial tonsillitis.
Additional studies are needed to determine whether there will be a difference in SWE
values in viral or bacterial tonsillitis. The major concern with US examinations is the high
operator dependency variability, especially for quantitative SWE measurements. Another
limitation is that the sonographic measurements were performed by only one physician.
We opted to do so because extended examination times and reexamination were causing
heightened discomfort and agitation among pediatric patients. Due to this situation, we
were unable to assess the reproducibility of our measurements, and additional studies
involving large patient groups and multiple practitioners are required to investigate the
reproducibility of these measurements. Although this is a limitation of our study, the fact
that all measurements were taken by a single physician ensured standardization between
measurements in our study. Furthermore, although we determined cases with chronic
tonsillitis and recurrent tonsillitis as exclusion criteria during patient selection, it was
difficult to provide this strictly. It is challenging to assert that all patients are nonrecurrent
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and that this is the initial sickness. As a result, it is possible that we were unable to
completely eliminate fibrotic changes during some tonsil evaluations.

5. Conclusions

The results of our study show that pediatric patients with acute tonsillitis exhibit higher
kPa values in the palatine tonsils compared to the normal population, indicating increased
stiffness. Additionally, we observed an increase in tonsil volume in acute tonsillitis. To
the best of our knowledge, this is the first study to use SWE among patients with acute
tonsillitis, and further prospective studies with larger populations are necessary to confirm
these findings.
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Abstract: The practices for determining brain death are based on clinical criteria and vary immensely
across countries. Cerebral angiography and perfusion scintigraphy are the most commonly used
ancillary imaging tests for brain death confirmation in children; however, they both share similar
shortcomings. Hence, contrast-enhanced ultrasound (CEUS) as a relatively inexpensive, easily
accessible, and easy-to-perform technique has been proposed as an ancillary imaging test for brain
death confirmation. CEUS has established itself as a favourable and widely used diagnostic imaging
method in many different areas, but its application in delineating brain pathologies still necessities
further validation. Herein, we present a case report of a 1-year-old polytraumatised patient in whom
CEUS was applied as an ancillary imaging test for confirmation of brain death. As CEUS has not been
validated as an ancillary test for brain death confirmation, the diagnosis was additionally confirmed
with cerebral perfusion scintigraphy.

Keywords: contrast-enhanced ultrasound; head ultrasound; brain death; infants; ancillary test

1. Introduction

Brain death is characterised by the complete and irreversible loss of brain functions,
defined by the cessation of cortical and brainstem activities. The clinical criteria for the di-
agnosis in children were set in 1987, then updated in 2011 [1]. For the confirmation of brain
death, the clinician must identify the underlying causes and determine their irreversibility.
Conditions such as intoxication, hypotension, hypothermia, and metabolic/electrolyte dis-
orders that could affect the neurologic examination have to be corrected before making the
diagnosis. There is no global consensus regarding confirmatory tests [2]. The confirmation
is typically made by verifying three criteria: unconsciousness, the absence of brainstem
reflexes, and the apnoea test. As the latest is normally more difficult to implement in
infants and can potentially cause harm in circulatory unstable patients, there is a variety of
ancillary imaging tests that can assist in making the diagnosis [3].

The gold standard as an ancillary imaging test is cerebral angiography, as it confirms
the cessation of cerebral circulatory blood flow. Nonetheless, this technique has several
shortcomings: it is cumbersome, not always readily available, and potentially harmful, as
it can exacerbate patients’ hemodynamics. Cerebral angiography, along with radionuclide
scanning, remain the most used ancillary imaging tests in infants. They both, however,
require trained professionals to interpret the results and can be challenging to perform
in a patient who needs to be transported from an intensive care unit [4]. An additional
imaging test to confirm cerebral circulatory arrest is Doppler ultrasonography (US). With
Doppler US, the blood flow through intracranial and extracranial arteries can be evalu-
ated. This method can be performed at the bedside, is cost-efficient, and poses less risk
than angiography. The major setback of this technique can be transmission problems, as
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inadequate penetration of US beams through the temporal bone in some subjects does not
always allow a reliable evaluation of intracranial vessels [5,6].

Contrast-enhanced ultrasound (CEUS) is a relatively new technique with emerging
application potential that is performed with a US scanner and requires the administration
of US contrast agents. US contrast agents are extremely safe, with no cardio-, hepato-, or
nephrotoxic effects and with a low incidence of side effects [7]. The most widely utilised
contrast agents are made up of inert gas microbubbles that are stabilised by protein or lipid
shells, with a size smaller than the red blood cells. In response to the exposition to the
US beam, the microbubbles resonate—that is, enlarge and shrink—and, with that, send
nonlinear signals back to the transducer. Intravenously administered US contrast agents
remain confined within the blood pool without diffusion into the interstitial space, including
in the setting of intracranial imaging. The US scanner detects circulating microbubbles as
strong echoes moving within the vessels in real-time, providing micro- and macrovascular
information used to assess vascular perfusion of the whole brain [8,9]. Therefore, CEUS
allows better visualisation of the cerebral vasculature in comparison to Doppler US and the
evaluation of cerebral perfusion [7,10,11]. Studies in adult populations have shown that
the rate of nonconclusive Doppler US examinations for determining cerebral circulatory
arrest significantly reduces if CEUS is performed [6,12]. Herein, we present a case of
a 1-year-old polytraumatised patient in whom CEUS was used as an ancillary imaging test
for confirmation of brain death.

2. Case Report

A 1-year-old girl, involved in a traffic collision, was found asystolic with dilatated
and nonreactive pupils. The paramedics immediately initiated cardiopulmonary resuscita-
tion, and the patient was transferred to the nearest hospital. At arrival, the girl was still
unconscious and asystolic. After 20 min, cardiac action was re-established. On physical
examination, numerous wounds and contusions were found on the patient’s head, and
bleeds from the nose and ears were observed. Additional contusions were noted on the
trunk and extremities. The girl did not react to painful stimuli and had a Glasgow coma
scale assessment score of 3. A complete blood count showed low haemoglobin (80 g/L)
with elevated serum lactate levels (14 mmol/L). Whole-body computed tomography (CT)
was performed forthwith. A head CT disclosed several fractures of the frontal and occipital
bones, bilateral subarachnoid haemorrhage in the frontal region, and massive haemorrhage
in the right maxillary sinus. No changes were noted in the cervical spine. CT of the chest
and abdomen showed multiple contusions of the lungs and haematomas in the medi-
astinum and right inguinal region. For the treatment of severe hypotension (45/35 mmHg),
the patient received blood transfusions, norepinephrine, and dopamine. The patient was
transferred to a tertiary hospital centre. As intracranial hypertension (ICP = 40 mmHg)
was persisting, treatment with mannitol and analgosedation was initiated. Therapeutic
hypothermia was not induced due to the presence of coagulopathy. A follow-up CT scan
of the head was performed approximately 12 h after the accident and showed marked
cerebral oedema with completely displaced ventricles. The subarachnoid haemorrhage was
more extensive, and pronounced transtentorial herniation through the foramen magnum
was noted. CT brain angiography disclosed absent blood flow within the cerebral arteries
(Figure 1). The patient’s condition continuously deteriorated despite intensive treatment.
Due to the poor prognosis, it was decided that further treatment was not feasible, and
formal tests to confirm brain death were conducted.
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Figure 1. Axial 3-mm-slab maximum intensity projection of the brain computed tomography angiography (CTA) of the 1-year-old 

infant. The CTA images (a,b) demonstrate absent contrast opacification of the intracranial arteries. Note the normal opacification of 

the extracranial arteries (arrows). 

 

CEUS was performed as an ancillary imaging test for the confirmation of brain death. 

Before the examination, the details of the examination and the risks for the patient were 

explained to the child’s guardian. Written informed consent was obtained from the child’s 

guardian to perform the brain CEUS scan. The examination was performed by a paediatric 

radiologist with 2 years of subspecialty experience in paediatric brain imaging and 4 years 

of experience in performing CEUS examinations. For the examination, a Mindray M9 ul-

trasound scanner with a 1.4-5.1 MHz convex ultrasound transducer was used (Mindray, 

Shenzhen, China). SonoVue (Bracco, Milan, Italy) was used as the contrast agent. The an-

terior fontanelle was used as the acoustic window to scan the brain in the coronal and 

sagittal planes. Firstly, pre-contrast grey-scale imaging was performed to optimise the im-

age. After that, a contrast-specific imaging mode and a low dynamic mechanical index 

(MI) of 0.06–0.07 was used for the scanning during the CEUS examination. To enable the 

simultaneous attachment of the US contrast agent and saline to the line, to avoid any de-

lays in flushing the line with a saline flush, a three-way stopcock was connected to the 

existing peripheral intravenous line. At the start of the examination, 0.3 mL of US contrast 

agent, followed by a saline flush, was intravenously applied through a peripheral line. 
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Figure 1. Axial 3-mm-slab maximum intensity projection of the brain computed tomography angiog-
raphy (CTA) of the 1-year-old infant. The CTA images (a,b) demonstrate absent contrast opacification
of the intracranial arteries. Note the normal opacification of the extracranial arteries (arrows).

CEUS was performed as an ancillary imaging test for the confirmation of brain death.
Before the examination, the details of the examination and the risks for the patient were
explained to the child’s guardian. Written informed consent was obtained from the child’s
guardian to perform the brain CEUS scan. The examination was performed by a paediatric
radiologist with 2 years of subspecialty experience in paediatric brain imaging and 4 years
of experience in performing CEUS examinations. For the examination, a Mindray M9
ultrasound scanner with a 1.4–5.1 MHz convex ultrasound transducer was used (Mindray,
Shenzhen, China). SonoVue (Bracco, Milan, Italy) was used as the contrast agent. The
anterior fontanelle was used as the acoustic window to scan the brain in the coronal and
sagittal planes. Firstly, pre-contrast grey-scale imaging was performed to optimise the
image. After that, a contrast-specific imaging mode and a low dynamic mechanical index
(MI) of 0.06–0.07 was used for the scanning during the CEUS examination. To enable the
simultaneous attachment of the US contrast agent and saline to the line, to avoid any delays
in flushing the line with a saline flush, a three-way stopcock was connected to the existing
peripheral intravenous line. At the start of the examination, 0.3 mL of US contrast agent,
followed by a saline flush, was intravenously applied through a peripheral line. Only one
bolus of US contrast agent was administered during the examination. For the first 60 s after
the contrast administration, a continuous cine clip was obtained in the coronal plane at the
level of the third ventricle, including the frontal horns of the lateral ventricles and heads
of the caudate nuclei bilaterally. After that, intermittent images were obtained during the
next 10 min in order to assess brain perfusion and avoid excessive contrast microbubble
destruction from continuous imaging. The CEUS examination showed enhancement of
the extracranial vessels and a lack of enhancement of the intracranial vessels (Figure 2).
Only a scant amount of contrast microbubbles was observed within the left middle cerebral
artery and pericallosal artery during the examination (Figure 3). After 10 min, we observed
complete microbubble clearance and finished with the examination. The brain CEUS
examination was performed in a paediatric intensive care unit at the bedside, and the
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whole procedure, including preparation, lasted approximately 15 min. No adverse effects
were observed after the intravenous application of US contrast agent.
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Figure 2. Midcoronal contrast-enhanced ultrasound images of a 1-year-old infant’s brain obtained
(a) 10 s and (b) 69 s after the contrast administration. Both images demonstrate a lack of enhancement
of the intracranial vasculature and no brain perfusion. (c) Normal CEUS brain scan in another infant
is shown as a comparison.

Children 2022, 9, x FOR PEER REVIEW 4 of 7 
 

 

   
(a) (b) (c) 

Figure 2. Midcoronal contrast-enhanced ultrasound images of a 1-year-old infant’s brain obtained 

(a) 10 s and (b) 69 s after the contrast administration. Both images demonstrate a lack of enhance-

ment of the intracranial vasculature and no brain perfusion. (c) Normal CEUS brain scan in another 

infant is shown as a comparison. 

 

Figure 3. Sagittal contrast-enhanced ultrasound image of a 1-year-old infant’s brain obtained 101 s 

after contrast administration. The image demonstrates a scant amount of contrast microbubbles 

within the pericallosal artery and its branch (arrows) and no brain perfusion. 

After the US examination, cerebral perfusion scintigraphy was performed as a widely 

accepted ancillary imaging test for brain death confirmation. The perfusion scintigraphy 

showed no accumulation of the radionuclides in the brain or the brainstem (Figure 4).  

 

Figure 4. Radionuclide brain scan in the 1-year-old infant. Brain scintigraphy shows the absence of 

cerebral perfusion in supratentorial and infratentorial areas consistent with the diagnosis of brain 

death. 

 

Figure 3. Sagittal contrast-enhanced ultrasound image of a 1-year-old infant’s brain obtained 101 s
after contrast administration. The image demonstrates a scant amount of contrast microbubbles
within the pericallosal artery and its branch (arrows) and no brain perfusion.

After the US examination, cerebral perfusion scintigraphy was performed as a widely
accepted ancillary imaging test for brain death confirmation. The perfusion scintigraphy
showed no accumulation of the radionuclides in the brain or the brainstem (Figure 4).
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Figure 4. Radionuclide brain scan in the 1-year-old infant. Brain scintigraphy shows the absence
of cerebral perfusion in supratentorial and infratentorial areas consistent with the diagnosis of
brain death.

3. Discussion

We presented a case of a polytraumatised infant with foraminal herniation of the cere-
bellar tonsils in whom CEUS was employed as an ancillary imaging test for the confirmation
of brain death. As CEUS is not a validated ancillary test for brain death conformation, the
diagnosis was additionally confirmed with cerebral perfusion scintigraphy.

In recent years, CEUS has established itself as a beneficial and widely used diagnostic
imaging method in many different areas, such as echocardiography, for the evaluation
of vesicoureteral reflux and characterisation of liver neoplasms [10]. Due to a lack of
clinical reports and safety studies, the use of CEUS for the assessment of brain pathology
in children is, for now, still considered off-label [11,13]. Nevertheless, there has been
an increasing number of reports on the use of CEUS in children for the assessment of
hypoxic-ischemic injury, acute ischemic stroke, brain tumours, paediatric neurovascular
diseases, epilepsy, and the confirmation of brain death [5,11,14,15]. These reports validate
CEUS as a great method for the evaluation of the brain in children, especially the brain
vasculature and vascular pathologic processes. We found only one report where CEUS was
used as an ancillary imaging test for the confirmation of brain death in an infant. In this
report by Hwang et al., the neonate passed away before they could confirm brain death
with a formal radiologic evaluation. Therefore, in their case, the CEUS findings could not
be compared to a validated imaging method [5]. In the case we presented, the absence of
brain perfusion was confirmed by perfusion scintigraphy.

CEUS allows the observation of organ perfusion over a longer period of time, which
makes it a great tool for the evaluation of organ perfusion. It takes up to 15 min for the
contrast microbubbles to be metabolised and disappear from the vessels [16,17]. In our
case, we observed the brain for 10 min. During this time, we did not observe any constant
flow through any of the intracranial arteries. However, during the observation period,
a scant of contrast microbubbles were observed within the left middle cerebral artery and
pericallosal artery for a few seconds. It is important to note that, although we observed
scant contrast microbubbles within the intracranial arteries, the perfusion scintigraphy
showed no accumulation of the radionuclides in the brain. Therefore, we can assume that
scant microbubbles within the intracranial arteries can be a finding on CEUS during the test
for brain death confirmation and that this finding does not exclude a brain death diagnosis.
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However, as this was the first such examination that we performed and no other similar
reports exist in the literature, we cannot make any final conclusions. In the aforementioned
case by Hwang et al., they reported “near absent perfusion of the intracranial vessels”,
which is similar to our case [5]. Further research will be needed to better delineate the
extent and context of scant microbubbles within intracranial arteries for this kind of test.

The safety profile of US contrast agents has been documented in numerous studies in
adult and paediatric populations. The US contrast is considered safe, with a comparable
or lower risk of adverse events to the MRI contrast agents and almost 70-times lower risk
compared to the iodinated CT contrast agents. Furthermore, it can be used in the case
of impaired renal function, as it is not nephrotoxic [7]. An additional advantage of this
technique is also that the administration of the US contrast agent can be repeated within the
same setting if, for any reason, an examination fails or the results are not entirely clear after
the first bolus. There is still limited data on the contrast safety in the paediatric population,
with individual reports and questionnaire-based surveys reporting mild transitory adverse
effects such as skin reactions, hypoventilation, altered taste, light-headedness, and transient
tinnitus [18,19]. Nonetheless, in general, the US contrast is considered to have a favourable
safety profile [20]. In our case, no adverse effects after intravenous application of the US
contrast agent were observed.

In the adult population, the transcranial Doppler US is considered one of the main
ancillary tests for the confirmation of brain death [21]. For the transcranial Doppler US, the
thin temporal bone near the zygomatic arch bilaterally is usually used as the acoustic win-
dow (i.e., transtemporal window), although the suboccipital acoustic window can also be
used. If a diastolic retrograde blood flow, systolic spikes, or completely absent blood flow in
the main intracranial arteries are observed, this confirms the cerebral circulatory arrest [22].
Nevertheless, the transtemporal window does not always allow good visualisation of the
intracranial arteries. Welschehold et al. recently demonstrated that transcranial Doppler
US was not always feasible in approximately a quarter of their adult subjects [6]. Several
researchers turned to CEUS with the transcranial Doppler US technique to achieve a better
visualisation of intracranial arteries. These studies performed on the adult population
show that the rate of nonconclusive transcranial Doppler US examinations for determining
cerebral circulatory arrest significantly reduces if the US contrast agent is applied [6,12].

In our opinion, CEUS is approaching the ideal ancillary test for the confirmation of
brain death in infants. The open anterior fontanelle in infants serves as an ideal acoustic
window for the assessment of brain vasculature, much better than the transtemporal
window in the adult population [5,8,17,23]. CEUS is also relatively inexpensive, easily
accessible, safe, and available at the bedside, with the results not susceptible to sedative
medications [4]. Nevertheless, further validation is still required before CEUS can be
employed as an adjunct to other ancillary tests. Such a validation of the method would be
valuable, as there is still a paucity of data regarding additional ancillary imaging tests for
a brain death diagnosis in children, and only a scarce number of them have been validated
in the paediatric population [24].

4. Conclusions

We presented a case of an infant in whom CEUS was employed as an ancillary imaging
test for the confirmation of brain death. The case demonstrated CEUS as a reliable, rapid,
non-invasive, easy-to-perform at the bedside, and feasible technique that could serve as
an ancillary imaging test for brain death confirmation in infants. Further comparative
studies on larger cohorts are required to confirm its potential.
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Abstract: The early diagnosis of biliary atresia (BA) in cholestatic infants is critical to the success of
the treatment. Intraoperative cholangiography (IOC), an invasive imaging technique, is the current
strategy for the diagnosis of BA. Ultrasonography has advanced over recent years and emerging
techniques such as shear wave elastography (SWE) have the potential to improve BA diagnosis. This
review sought to evaluate the diagnostic efficacy of advanced ultrasonography techniques in the
diagnosis of BA. Six databases (CINAHL, Medline, PubMed, Google Scholar, Web of Science (core
collection), and Embase) were searched for studies assessing the diagnostic performance of advanced
ultrasonography techniques in differentiating BA from non-BA causes of infantile cholestasis. The
meta-analysis was performed using Meta-DiSc 1.4 and Comprehensive Meta-analysis v3 software.
Quality Assessment of Diagnostic Accuracy Studies tool version 2 (QUADAS-2) assessed the risk
of bias. Fifteen studies consisting of 2185 patients (BA = 1105; non-BA = 1080) met the inclusion
criteria. SWE was the only advanced ultrasonography technique reported and had a good pooled
diagnostic performance (sensitivity = 83%; specificity = 77%; AUC = 0.896). Liver stiffness indicators
were significantly higher in BA compared to non-BA patients (p < 0.000). SWE could be a useful tool
in differentiating BA from non-BA causes of infantile cholestasis. Future studies to assess the utility
of other advanced ultrasonography techniques are recommended.

Keywords: biliary atresia; ultrasonography; diagnostic accuracy; intraoperative cholangiography
(IOC); diagnostic performance; elastography

1. Introduction

Biliary atresia (BA) is a congenital, inflammatory, destructive cholangiopathy affecting
infancy and is characterised by progressive fibrosis and obliteration of both the intrahepatic
and extrahepatic bile ducts [1,2]. The continued obliteration of the bile ducts and failure
to restore biliary drainage is reported to progress to cholestasis, hepatic fibrosis, cirrhosis,
end-stage liver failure, and, eventually, death if no liver transplantation is performed [3,4].
Clinically, infants with BA present with cholestatic jaundice, pale stool and dark urine that
goes beyond the neonatal period [5]. The worldwide incidence of BA is reported to vary
across the geographic plain, ranging from 1.5 per 10,000 live births in Taiwan [6] to 1 per
18,400 live births in France [7], with high incidence in East Asian countries such as China
and Japan [8]. Despite BA being an uncommon disease, it is associated with high morbidity
and mortality if undiagnosed and if treatment is delayed.

The Kasai portoenterostomy (KPE) is the primary treatment option for biliary atresia [2],
to which success of the KPE procedure minimises the need for liver transplantation up
to adulthood [4]. The success of KPE is, however, age-dependent, with a 2-month age
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at KPE being observed to result in high biliary recanalization and stabilization success
rates of (80%) [1] and jaundice disappearance [9,10]. To mitigate the detrimental effects
of poor prognosis arising from delayed age at KPE and misdiagnosis that may prompt
unwarranted KPE, there is a need for an early and accurate differential diagnosis of BA.

Biliary atresia is diagnosed using several methods at present, including, but not limited
to, clinical history, liver biopsy, medical imaging techniques such as intraoperative cholan-
giography (IOC), endoscopic retrograde cholangiography (ERC), and ultrasonography [10].
According to Chen et al. [11], IOC is the current strategy for the accurate diagnosis of BA.
However, it is invasive and less accessible and could lead to considerable morbidity. Ultra-
sonography is a non-invasive, non-ionising, reliable, readily available, and cost-effective
imaging modality [12], which is used as a screening and diagnostic tool for paediatric
cholestasis evaluation to exclude biliary atresia [13]. Although there are no ultrasouno-
graphic features that are definitive of the diagnosis of BA, the triangular cord sign, gall-
bladder length, gallbladder morphologic characteristics, absence of gallbladder, and the
presence of hepatic subcapsular flow are among some of the traditional signs consistent
with BA diagnosis at ultrasound [14,15]. Ultrasonography imaging techniques have ad-
vanced in recent years, with several emerging techniques such as elastography, three and
four-dimension (3D/4D) ultrasound, contrast-enhanced ultrasound (CEUS), and artificial
intelligence that enable improved structural, hemodynamic, and functional evaluations
of various organs [16]. The clinical utility of these advanced ultrasonography techniques
is reported in various conditions and patient groups. Three-dimensional ultrasound was
demonstrated to be comparable to magnetic resonance urography in the assessment of renal
parenchymal volume [17], whereas, in obstetrics [18], prostate, and breast imaging 3D ul-
trasound becomes part of routine practice in adult imaging with undebated diagnostic and
patient management benefits [19]. The application of 3D ultrasound in neonatal ventricular
volume assessment is also promising [20]. CEUS utilises intravascular microbubble agents
to delineate perfusion abnormalities that are linked to different pathological conditions,
such as tumors and brain ischemia, among others, for which conventional ultrasound is
limited [21].

Despite the demonstration of the clinical performance of the recent advanced ultra-
sonography techniques in various subjects and conditions, their efficacy in the diagnosis
of biliary atresia is, however, understudied. This systematic review and meta-analysis
are, therefore, aimed at evaluating the efficacy of the recent technological advances in
medical ultrasonography in the diagnosis of infantile biliary atresia. It is hypothesised that
the current available evidence demonstrates the clinical utility of the recently developed
ultrasonography imaging techniques for the diagnosis of infantile biliary atresia.

2. Materials and Methods

The study involved searching the following six electronic databases; Cumulative Index
to Nursing and Allied Health Literature (CINAHL Complete via EbscoHost), Medline,
PubMed, Google Scholar, Web of Science (core collection), and Embase. The Hong Kong
Polytechnic University online library was used to access these databases, with the last
search performed on the 11 October 2022. The study followed the Preferred Reporting
Items for Systematic Review and Meta-analysis (PRISMA) 2020 guidelines, as informed by
Page et al. [22].

2.1. Search Strategy

The search strategy adopted involved searching the databases for the four con-
cepts derived from the PICO framework structured research question, where p (study
population) = infants with biliary atresia; I (intervention) = ultrasonography imaging tech-
nique that includes advanced ultrasonography techniques such as shear wave elastography,
artificial intelligence, and grayscale ultrasonography mode; C (comparison) = liver biopsy
representing the gold standard by which the accuracy level was compared, or cholangiog-
raphy; O (outcome) = indicators of diagnostic performance (diagnostic accuracy, sensitivity,
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and specificity). The concepts were searched using (1.) MeSH descriptors in Medline and
Pubmed, Emtree terms in Embase and CINAHL subject headings, and (2.) keywords and
their related terms (synonyms, hyponyms). The reference section of the selected articles
was also searched for relevant studies. The boolean operator “OR” was used to search
within each PICO element concept (MeSH or Emtree terms) and the related entry terms or
synonyms, whereas “AND” was utilised to search the concepts of the three PICO frame-
work elements (population, intervention, and outcome). The database search strings are
shown in Table S1.

2.2. Inclusion and Exclusion Criteria

The studies included in the systematic review and meta-analysis were (1.) peer-
reviewed studies involving humans and published in the English language from inception
to 11 October 2022, (2.) studies assessing the diagnostic accuracy of advanced ultrasonog-
raphy techniques such as shear wave elastography (SWE) in the differential diagnosis of
biliary atresia from other causes of infantile cholestasis, (3.) studies assessing the diag-
nostic accuracy of algorithms combining the advanced ultrasonographic features such as
shear wave velocity (SWV) with traditional diagnostic features from grayscale and color
Doppler ultrasound such as the triangular cord sign, (4.) studies in which the measures
of diagnostic performance are represented by the following diagnostic performance mea-
sures: overall accuracy, sensitivity, specificity, likelihood ratio, positive predictive values,
negative predictive value and the area under the receiver operating curve (AUCROC) [23],
(5.) studies in which parental consent and institutional ethical approval were obtained prior
to data collection.

Exclusion criteria are studies with (1.) no gold standard used to compare diagnostic
accuracy such as liver biopsy and surgical confirmation, (2.) inadequate information on
study-population characteristics such as age and gender, (3.) inadequate information on
the diagnostic performance outcome measures, (4.) conference proceedings, posters, case
reports, reviews, editorial letters or commentaries, (5.) diagnostic accuracy measures of
other imaging modalities and not ultrasonography, and (6.) non-English.

2.3. Data Extraction

Two reviewers, SG and NC, independently screened the title and abstract of the studies
from the search strategy to exclude irrelevant articles and performed a full-text evaluation
to check for eligible articles that were included in the systematic review and meta-analysis,
whilst the third reviewer, MY, was responsible for resolving any disagreements. The data
extraction form based on the PRISMA 2020 guidelines [22] was used to extract data on the
authors, date of publication, study methodology (information for the assessment of the
risk of bias, study settings, subject’s characteristics, ultrasonography features assessed, the
gold standard against which the index test was compared), and the measures of diagnostic
accuracy among other items from the eligible studies. The random effects model was used
to determine the sensitivity and specificity of each ultrasound characteristic.

2.4. Quality Assessment

The Quality Assessment of Diagnostic Accuracy Studies tool version 2 (QUADAS-2)
was utilised to assess the risk of bias and the methodological quality. The risk of bias and
applicability concerns in the eligible studies were assessed on the following four domains,
mainly, the (1.) selection of the patients, (2.) index test (3.) reference standard and (4.) flow
and timing. The risk of bias and applicability in these domains were categorised into high,
low or unclear, and meta-analysis was performed in studies that exhibited a low risk of
bias in the assessed four domains.

2.5. Statistical Analysis

The Comprehensive Meta-Analysis Software version 3.3.070 was used for the com-
parison of the liver stiffness measurements between BA and non-BA patients through
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computing the effect size and confidence intervals for both individual studies and meta-
analyses. These were displayed in the forest plots. Inconsistences in the studies were
assessed using the I-square value and Chi-squared statistics (Q) tests, together with the
qualitative assessment of the forest plots, whereas publication bias was assessed using the
same software and depicted as a Funnel plot of inverse standard error by standardized dif-
ference in means. The effect size was expressed as the standardised mean difference (SMD)
for the two continuous liver stiffness measures of (SWV and SWE kPa) between the BA and
non-BA patients using a random effect model based on the mean, standard deviation and
sample size. Hozo et al. Hozo, Djulbegovic [24]’s formula was used to convert the median
and interquartile range (IQR) values to the respective means and standard deviations (SD)
for studies in which the outcome measure was reported as median and IQR values. The
Meta-DiSc (version 1.4, the Unit of Clinical Biostatistics team of the Ramón y Cajal Hospital
in Madrid (Spain) was used to perform the pooling of the sensitivity, specificity and other
diagnostic performance measures, utilising the incorporated DerSimonian-Laird random
effect model.

3. Results
3.1. Literature Search

The initial database search strategy retrieved a total of 1060 records, as follows:
Pubmed (n = 384), Embase (n = 247), CINAHL-Medline (n = 195), Web of Science (n = 34)
and Google Scholar (n = 200) as shown in Figure 1. A total of 542 duplicates were identified
and removed, and the remaining 518 records underwent a title and abstract screening.
The title and abstract screening process excluded a total of 412 articles based on several
reasons with the majority of the studies being excluded for utilising imaging modalities
other than ultrasonography for the diagnosis of BA. These imaging modalities included
magnetic resonance imaging, scintigraphy, computed tomography angiography, and en-
doscopic retrograde cholangiopancreatography [25–27]. Studies involved non-imaging
diagnostic tests, such as the duodenal tube test [28,29], anti-smooth muscle antibodies and
liver enzymes biomarkers [30,31] were also excluded. A total of thirteen systematic reviews
and meta-analysis studies were excluded as they did not meet the publication criteria of
original research articles, with some studies reporting the wrong population and index
items. These studies consisted of five meta-analyses [32–36], and eight combined systematic
reviews and meta-analyses [37–44]. Three of the meta-analysis focused on summarising
the evidence on the diagnostic performance of various conventional ultrasound parameters
for the diagnosis of biliary atresia [33–35]. In addition, Sun et al. [36] systematic review and
meta-analysis was excluded, as it focused on evaluating the utility of hepatic subcapsular
flow using conventional color doppler ultrasonography techniques, whereas, in the study
of Guo et al. [32], meta-analysis was excluded as it assessed the diagnostic accuracy of
acoustic radiation impulse force in the staging of hepatic fibrosis, not in the diagnosis of BA.
Despite assessing the diagnostic performance of shear-wave elastography in differentiating
BA from non-BA cases of jaundice, two studies [45,46] were excluded as the full-text articles
were not available.

The remaining 106 studies underwent full-text article review and a total of 52 studies
were excluded as they did not assess the diagnostic accuracy of advanced ultrasound
imaging techniques but focused on the conventional grayscale ultrasound and Doppler
techniques, where parameters such as gallbladder abnormalities, triangular cord sign, and
the presence or absence of hepatic subcapsular flow on color Doppler ultrasound were
assessed as predictor variables in the diagnosis of BA. A total of eight studies that were
excluded during the full article review, which assessed the diagnostic performance of the
advanced ultrasonography technique of SWE, not for the preoperative diagnosis of BA
but the preoperative diagnosis of hepatic fibrosis in children with BA [47–54], whereas
one study assessed the preoperative diagnostic accuracy of 2D SWE for liver cirrhosis in
BA patients [55]. The other excluded studies focused on the diagnosis of liver fibrosis
among post-operative BA children using elastography techniques [54], whereas two studies

98



Children 2022, 9, 1676

were excluded due to wrong outcomes as they evaluated the accuracy of the elastography
techniques in the diagnosis of liver fibrosis, and this was for participants outside the speci-
fied age-range of the present study, which focused on infants below 1 year of age [56,57].
A study by Zhou et al. [58] that utilized an ensembled deep learning model, which was
reported to surpass human expertise in the diagnosis of BA, was, however, excluded
from the study, as the model was based on conventional sonographic gallbladder images.
Two studies were excluded as they assessed the diagnostic utility of the contrast-enhanced
ultrasound technique in percutaneous ultrasound-guided cholecysto-cholangiography
among infants with BA [59,60].
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Figure 1. Study selection process (flow chart diagram).

Finally, a total of fifteen studies published in peer-reviewed journals, up to the 11
October 2022, met the eligibility criteria, in which the advanced ultrasonography technique
of elastography was used for the diagnosis of BA among infants presenting with cholestasis
(Figure 1).

3.2. Study Characteristics

The fifteen included studies were mainly single center, and consisted of twelve prospec-
tive cohort study designs [11,61–71], and four retrospective designs [11,72–74]. One study
consisted of both prospective and retrospective study designs [11]. The total number of
patients from the included studies was 2185, of which 50.6% of the patients were diag-
nosed with BA (n = 1105) whilst 49.4% were non-BA (n = 1080) patients. The main patient
characteristics are presented in Table 1 and Figure 2.
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Table 1. Main patient characteristics of the included studies.

Author(s),
Year Ref Country Type of

Patient

Patients (n) Age (Days)

Total
(n = 2185) BA (n = 1105) Non-BA

(n = 1080) Overall Age BA Non-BA

Liu et al.
(2021) [61] China Infants with

Cholestasis 59 26 33 NA
a 72.5 ± 29.0
(30–127)

a 81.3 ± 35.2
(25–141)

Boo et al.
(2021) [62] Taiwan Cholestatic

infants 61 15 46 NA
a 45 (13–121);
b 30 (22–63)

b 35.5
(24–51.3)

Chen et al.
(2020) [11] China Cholestatic

infants
495
(R 308; P 187)

293
(R 186; P 107)

202
(R 122; P 80)

a 52.4 ± 19.5
aR 55.2 (19.7)
aP 51.0 (18.8)

aR 51.9 (18.8)
aP 45.8 (26.8)

Duan et al.
(2019) [63] China Cholestatic

hepatitis 138 51 87 NA c 43 (5–88) days c 30 (5–90)

Wu et al.
(2018) [64] Taiwan Cholestatic

infants 48 15 33
a 45.87
(9–87)

b 45 (34.5–60.5) b 40 (27–56)

Dillman et al.
(2019) [65] USA Neonatal

cholestasis 41 13 28 b 37 (24–52)

Leschied
et al. (2015) [66] USA Infantile

liver disease 11 6 5
a 107
(42–336)

a 79 (range
42–196)

a 140
(56–336)

Liu et al.
(2022) [72] China Infantile

cholestasis 156 83 73
b 36 days
(25–41) NA NA

Sandberg
et al. (2021) [67] China Cholestatic

jaundice 318 212 106 NA
a 59.7 ± 18.8
(20–114)

a 65.7 ± 25.6
(9–186)

Shen et al.
(2020) [73] China Cholestatic

jaundice 282 135 147 NA a 59 ± 18.8 a 70 ± 20.4

Wang et al.
(2016) [68] China Cholestatic

hepatitis 55 38 17 NA (16–140) a 42 a 50

Zhou et al.
(2017) [69] China Cholestatic

infants 172 97 75 NA
a 65.3 ± 20.5
(26–134)

a 62.4 ± 22.0
(2–140)

Zhou et al.
(2022) [70] China Cholestatic

infants 35 22 13 NA b 61 (45–75) b 69 (50–87)

Wang et al.
(2021) [75] China Cholestatic

infants
294
(T 150; V 144)

89
(T 150; V 144)

205
(T 150; V 144)

a 42.94
(4–67)

bT 46 (33–54)
bV 50 (33–57)

bT 47 (33–54)
bV 44 (33–57)

Hanquinet
et al. (2015) [74] Switzerland Cholestatic

infants 20 10 10 52.1 ± 29.2 NA NA

BA—Biliary atresia; Non-BA—No Biliary atresia; NA—not available; a mean Age ± standard deviations, with
ranges in parentheses; b median age, with interquartile range (IQR) in parentheses; c median age with range
in parentheses; R Patients from retrospective study; p Patients from prospective study; aR mean age in the
retrospective group; aP mean age in the prospective group; T Patients from the training cohort; V Patients from the
validation cohort; bT median age training group; bV median age validation group.
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Figure 2. Frequency distribution of participants in the fifteen included studies [11,61–74].
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Elastography ultrasound was the only advanced ultrasonography technique utilised
in the included studies. The two indicators of liver stiffness measurements were shear
wave velocity (SWV) (m/s) and the hepatic Young’s modulus (SWE kPa). The detailed
individual study characteristics are shown in Table 2.

Table 2. Main study characteristics of the included studies.

Author(s), Year. Ref Study Design Type of Ultrasoumd Machine Ultrasound
Technique Reference Standard Ultrasound

Parameter

Liu et al. (2021) [61]
Prospective
single center
cohort

Siemens Acuson OXANA2 (Siemens
Healthcare, Erlangen, Germany) with
a 3–5.5 MHz 6C1 convex transducer
probe and a 4–9 MHz 9L4 linear
array probe.

VTQ and VTIQ Surgical exploration mean VTQ &
VTIQ SWV

Boo et al. (2021) [62] prospective
cohort study

TE (FibroScan 502 Touch; Echosens,
Paris, France), S1 probe (5 MHz) TE IOC, surgical Median TE kPa

Chen et al. (2020) [11]

Prospective and
retrospective
analysis single
center

Siemens Acuson S2000 (Siemens
Medical Solutions) with a 4- to 9-MHz
linear transducer.

VTQ IOC and
Intraoperative biopsy median VTQ SWV

Duan et al. (2019) [63] Prospective,
single center.

TUS-Aplio 500 scanner (Toshiba
Medical Systems, Tokyo, Japan).14L5
linear array probe (10 MHz)

VTIQ KPE and liver biopsy Mean VTIQ kPa

Wu et al. (2018) [64] Prospective,
single center

TE (Fibroscan 502 Touch; Echosens,
Paris, France) S1 probe (5 MHz) TE IOC and liver biopsies Median (kPa)

Dillman et al.
(2019) [65]

Prospective,
multi-center
study.

Acuson S2000 or S3000 (Siemens
Healthcare, Erlangen, Germany); 9L4
linear transducer probe

VTIQ and VTQ Not specified Median VTQ and
VTIQ SWV

Leschied et al.
(2015) [66] Single-center

retrospective

Acuson S3000 US system/ 9L4
transducer (Siemens Medical Solutions
USA, Malvern, PA)

VTQ and VTIQ liver biopsy andIOC 1. mean VTQ and
VTIQ

Liu et al. (2022) [72]
single-center
retrospective
study

Aixplorer ultrasound system
(SuperSonic Imagine SA,
Aix-en-Provence, France) with an
L15-4 linear probe

VTIQ IOC and Biopsy

Sandberg et al.
(2021) [67] prospective

cohort (Siemens), with C6 and L9 transducers, VTQ & VTIQ 2
transducers & 2 ROI biopsy Median SWV

Shen et al. (2020) [73] retrospective

Aixplorer ultrasound
system(SuperSonic Imagine SA,
Aix-en-Provence, France),
and L15–4 linear probe.

VTIQ Kasai surgery mean SWE kPa

Wang et al. (2016) [68] Single-center
case control

Aixplorer ultrasound system
(SuperSonic Imagine SA,
Aix-en-Provence, France), an L15-4
linear probe.

VTIQ Kasai surgery mean SWE kPa

Zhou et al. (2017) [69]
Single-center
prospective
cohort study

AixPlorer scanner (Supersonic
Imagine, Paris, France) with a(1 to
6 MHz curvilinear transducer and 4 to
15 MHz linear array transducer 2.A
linear array transducer (SL15-4)

VTIQ surgical exploration,
IOC and liver biopsy Median kPA

Zhou et al. (2022) [70]
Single-center
prospective
cohort study

Aixplorer scanner (SuperSonic
Imagine, Aix-en-Provence, France),
linear array transducer SL15-4 (5 to
14 MHz). Toshiba T-SWE used
Aplio500 (Canon Medical System,
Otawara, Tochigi, Japan), a linear array
transducer 14-L5 (5 to 14 MHz)

S-SWE and T-SWE surgical exploration,
IOC and liver biopsy mean SWE kPa

Wang et al. (2021) [75]
Single-center
prospective
analysis

1. Aixplorer US system (SuperSonic
Imagine, Aix-en-Provence, France),
with linear probe.
2. HI VISION Ascendus (Hitachi
Medical Systems, Japan) equipped
with a 5–13 MHz
linear-array transducer

VTIQ (2D SWE)
training and
validation groups

IOC Mean SWEkPa

Hanquinet et al.
(2015) [74] retrospective

Acuson® S2000 or S3000 US machine
(Siemens Healthcare, Erlangen,
Germany) a linear 9-MHz probe

VTQ IOC & Liver biopsy mean VTQ SWV

ROI—region of interest; IOC—Intraoperative cholangiography; VTQ—vital touch tissue quantification (point shear
wave elastography); VTIQ—virtual touch tissue imaging quantification (2D-SWE); TE—transient elastography.
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3.3. Diagnostic Performance of Shear Wave Elastography

The liver stiffness measurements (LSM) between BA and non-BA patients in the
fifteen studies are shown in Table 3. A total of twenty-seven analyses were made and are
depicted in Figure 3. Eight of the studies performed repeated analyses as they utilised
different shear wave elastography modes, or categorised patients into different age groups.
Among the twenty-seven analyses, fifteen were carried out in studies measuring the SWE
kPa (Figure 4) whilst the remaining twelve analyses were performed for those studies in
which the SWV was the outcome measure (Figure 5). The results from these analyses are
presented below; first, for studies measuring the individual SWE parameters (SWE kPa
and SWV) and, lastly, for all the studies to evaluate the diagnostic performance of the SWE
ultrasonography technique.

Table 3. Liver stiffness measurements (LSM) values among patients with and without BA.

Author(s), Year Ref
Elastography
Technique

Hepatic Young’s Modulus (kPA) SWV(m/s)
Main Finding

BA Non BA BA Non BA

Liu et al. (2021) [61] VTIQ NA NA a 2.43 ± 0.29 a 1.52 ± 0.29 VTQ and VTIQ can help distinguish BA from non-BA; VTIQ has
higher sensitivity and specificity than VTQ

[61] VTQ NA NA a 2.36 ± 0.36) a 1.30 ± 0.28

Boo et al. (2021)

[62] (≤30) TE
b 8.4 (6.8–16.8)
ab 10.1 (2.9)

b 4.2 (3.3–5.4)
ab 4.3 (0.64)

Statistically significant difference between BA and non-BA TE values.
A cutoff LSM > 7.7 kPa had high diagnostic accuracy for BA in all age
groups, except for the group of 91–180 days of age.

[62] (31–60) TE
b 10 (5.5–13)
ab 9.63 (2.15)

b 5.4 (3.8–6.2)
ab 5.2 (0.72)

[62] (61–90) TE
b 19.4 (19.1–19.7)
ab 19.4 (0.27)

b 5.5 (4.5–6.1)
ab 5.4 (0.51)

[62] (91–180) TE
b 40.8 (26–55.5)
ab 40.78 (8.52)

b 3.8 (3.2–8.8)
ab 4.9 (1.65)

Chen et al. (2020) [11] VTQ a 1.77 (0.39) a 1.30 (0.29) Mean SWV is significantly
higher in BA than in other causes of cholestasis, p< 0.001.

Duan et al. (2019)
[63] T-SWE-VTQ a 17.59 ± 5.65 a 9.84 ± 1.49 Both SWE and grayscale ultrasound have good performance in

diagnosing BA. SWE increases the diagnostic specificity when
combined with grayscale ultrasound.[63] T-SWE VTIQ) a 17.94 ± 6.44 a 9.91 ± 2.00

Wu et al. (2018) [64] TE

b 10.50
(8.50–20.90)
ab 12.6 (3.61)

b 4.60 (3.90–6.00)
ab 4.78 (0.64)

LSM assessment during the workup of cholestatic infants may
facilitate the diagnosis of BA.

Dillman et al. (2019)

[65] 2DSWE VTIQ
b 2.08 (1.90–2.50)
ab 2.14 (0.27)

b 1.49 (1.34–1.80)
ab 1.53 (0.24)

SWV were significantly different between BA and non-BA subjects,
p = 0.0001
SWE showed better diagnostic performance for distinguishing BA
from non-BA causes of neonatal cholestasis, p = 0.0014.[65] Point SWE VTQ

b 1.95 (1.48–2.42)
ab 1.95 (0.34)

b 1.21 (1.12–1.51)
ab 1.26 (0.23)

Leschied et al. (2015)

[66] VTQ
a 2.08 ± 0.17
(1.90–2.30)

a 1.28 ± 0.13
(1.09–1.44) A significant difference between the VTQ mean SWV of the BA and

non-BA groups, p< 0.0001. The mean color pixel values were
significantly different between BA and non-BA subjects, p < 0.0001.[66] VTIQ

a 3.14 ± 0.73
(2.24–4.40)

a 1.61 ± 0.23
(1.34–1.87)

Liu et al. (2022) [72] S-SWE

b 9.37
(7.30–11.45)
ab 9.37 (1.22)

b 6.50 (5.95–7.65)
ab 6.65 (0.53)

LSM measurement by SWE & Serum GGT level showed the best
performances for differentiating BA fromNon BA LSM diagnostic
value increased with age, and AUC = 0.91 in patients of (30–45) versus
0.74 in 1 (5–30) days old, p < 0.01.

Sandberg et al. (2021)

[67] C6 VTQ 2.5
b 1.9 (1.6–2.3)
ab 1.93 (0.29)

b 1.59 (1.3–1.7)
ab 1.55 (0.23)

SWE had significantly better performance in differentiating BA from
non-BA cases when compared to grayscale ultrasound.

[67] C6 VTQ 3.5
b 1.9 (1.6–2.3)
ab 1.93 (0.29)

b 1.4 (1.3–1.7)
ab 1.45 (0.2)

[67] L9 VTQ
b 2.1 (1.7–2.4)
ab 2.08 (0.29)

b 1.5 (1.3–1.9)
ab 1.55 (0.27)

[67] L9 VTIQ
b 2.2 (1.9–2.5)
ab 2.2 (2.7)

b 1.8 (1.6–2.1)
ab 1.83 (0.25)

Shen et al. (2020) [73] 2D S-SWE a 12 (6.0) a 8.1 (3.3) Parallel testing of GGT and LSM in infants < 90 days decreases the
rate of BA misdiagnosis, p < 0.001.

Wang et al. (2016) [68] 2D S-SWE a 20.46 ± 10.19 a 6.29 ± 0.99 Mean SWE values were significantly higher in BA than non-BA
hepatitis syndrome and control groups, p< 0.01.

Zhou et al. (2017) [66] 2D S-SWE
b 12.6 (10.6–18.8)
ab 13.65 (2.39)

b 9.6 (7.5–11.7)
ab 9.6 (1.23)

Diagnostic performance of LSM values in identifying BA was lower
than that of grayscale ultrasound, p < 0.001. S-SWE was comparable
to T-SWE (AUC 0.895 vs. 0.822, p = 0.071) in diagnosing BA. T-SWE
had good performances in the diagnosis of BA and the assessment of
liver fibrosis compared with S-SWE, p < 0.002.

Zhou et al. (2022) [70] 2D S-SWE a 14.0 (11.1–20.0) a 8.2 (7.1–9.7)

[70] 2D T-SWE a 11.0 (9.1–13.5) a 8.5 (6.5–9.2)

Wang et al. (2021)

[75] 2D S-SWE (TC)
b 9.9 (8.4–14.3)
ab 10.63 (1.7)

b 6.6 (5.7–7.5)
ab 6.6 (0.56) Age (p = 0.009), gallbladder morphology (p = 0.001) and hepatic

elasticity (p < 0.001) are independent predictive factors to differentiate
between BA and other causes of cholestasis.[75] 2D S-SWE (VC)

b 11.1 (8.7–12.8)
ab 10.93 (1.2)

b 6.3 (5.3–7.7)
ab 6.4 (0.72)
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Table 3. Cont.

Author(s), Year Ref
Elastography
Technique

Hepatic Young’s Modulus (kPA) SWV(m/s) Main Finding

BA Non BA BA Non BA

Hanquinet et al. (2015) [74] VTQ a 2.2 (0.4) a 1.7 (0.6) Significance difference between BA and non-BA SWV, p = 0.049

a mean values (SD); b median values (IQR); ab calculated mean from median values using formulae by
Hozo et al. [24]; SWV—shear wave velocity; KPA—hepatic Young’s modulus; 2D S-SWE—2 dimensional super-
sonic shearwave elastography; 2D T-SWE—2 dimensional Toshiba shearwave elastography; VTQ—vital touch tis-
sue quantification (point shear wave elastography); VTIQ—virtual touch tissue imaging quantification (2D-SWE);
TE—transient elastography; LSM—liver stiffness measurement; TC—Training cohort; VC—Validation cohort.
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Figure 3. A comparison of the liver stiffness value between the patients with and without BA for all
the studies (KPa and SWV) [11,61–74].
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Figure 4. A comparison of the liver stiffness parameter (kPa) between BA and non-BA patients
[62,63,67–72].
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Table 7. Diagnostic performance indicators for each study.  

Author (s)  Ref 
Elastography 

Technique 

Cutoff 

Value 
Sen (%) Spec (%) 

PPV 

(%) 

NPV 

(%) 
AUC  DA  BA(n) 

Non‐

BA(n) 
TP  TN  FP  FN 

Liu et al., 

(2021) 

[61]  VTIQ  1.92  95.5  78.9  NA  NA  0.92  NA  26  33  24.83  26.04  6.96  1.17 

[61]  VTQ  1.77  90.9  68  NA  NA  0.89  NA  26  33  23.63  22.44  10.56  2.37 

Chen et al., 

(2020) 
[11]  VTQ  1.35  98.7  91.4  94  98.1  0.98  93.6  293  202  289.1  184.63  17.37  3.809 

Dillman et al., 

(2019) 

[65]  2DSWE VTIQ  1.84  92.3  78.6  66.7  95.7  0.89  NA  13  28  12  22.01  6  1.00 

[65]  Point SWE VTQ  1.53  76.9  78.6  62.5  88  0.81  NA  13  28  9.99  22.01  5.99  3.003 

Leschied et 

al., (2015) 

[66]  Mean SWV VTQ NA  NA  NA  NA  NA  NA  NA  6  5  NA  NA  NA  NA 

[66]  Mean SWV VTIQ NA  NA  NA  NA  NA  NA  NA  6  5  NA  NA  NA  NA 

Sandberg et 

al., (2021) 

[67]  C6 VTQ 2.5  1.5  78  64  NA  NA  0.8  NA  212  106  165.36  67.84  38.16  46.64 

[67]  C6 VTQ 3.5  1.6  74  72  NA  NA  0.8  NA  212  106  156.88  76.32  29.68  55.12 

[67]  L9 VTQ  1.6  80  64  NA  NA  0.8  NA  212  106  169.6  67.84  38.16  42.4 

[67]  L9 VTIQ  2  71  67  NA  NA  0.7  NA  212  106  150.52  71.02  34.98  61.48 

Boo et al., 

(2021) 

[62]  (91–180) TE  8.8  100  100  100  100  100  100  2  3  2  3  0  0 

[62]  (≤30) TE  7.7  NA  NA  100  90.9  NA  92.9  8  20  NA  NA  NA  NA 

[62]  (31–60) TE  7.7  NA  NA  100  94.7  NA  95.3  3  18  NA  NA  NA  NA 

[62]  (61–90) TE  7.7  NA  NA  100  100  NA  100  2  5  NA  NA  NA  NA 

[62]  (91–180)TE  7.7  NA  NA  66.7  100  NA  80  2  3  NA  NA  NA  NA 

Duan et al., 

(2019) 

[63]  T‐SWE‐VTQ‐f  12.35  84.3  89.7  82.7  90.7  0.937  87.7  33  29  27.82  26.013  2.987  5.181 

[63]  T‐SWE VTIQ‐M  12.35  66.7  100  100  83.6  0.833  87.7  18  58  12.0  58  0  5.99 

Wu et al., 

(2018) 
[64]  TE  7.7  80  97  NA  NA  85.3  NA  15  33  12  32.01  0.99  3 

Liu et al., 

(2022) 
[72]  S‐SWE  7.1  81.3  69.86  NA  NA  0.82  NA  83  73  68.00  50.9978  22.02  14.9981 

Figure 5. A comparison of the liver stiffness parameter (SWV) between BA and non-BA patients
[11,61,65–67,74].
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3.3.1. Diagnostic Performance of the Hepatic Young Modulus (SWE KPa)

Nine of the included studies assessed the diagnostic efficacy of the liver stiffness indi-
cator, the hepatic Young’s modulus of elasticity (SWE kPa) in the assessment of cholestatic
infants for the differential diagnosis of BA [62–64,68–73]. A total of four studies reported
the liver stiffness measurements as mean SWE kPa [63,68,70,73], whilst five studies re-
ported the SWE kPa median values [62,64,69,71,72] (Table 3). The difference in the median
SWE kPa values between the BA and non-BA groups was statistically significant in all the
studies utilizing the median SWE kPa values, with higher values observed in the BA group.
Statistically significant findings (p < 0.01) were also observed between the mean SWE kPa
values of BA and non-BA patients [63,68,73]. The cut-off point for the diagnosis of BA
differed between the studies that used the mean SWE kPa values, and the reported cut-off
values of the three studies were 12.35, 8.68, and 9.5 kPa, respectively [63,68,73]. The hepatic
SWE kPa performance in the differential diagnosis of BA from cholestatic hepatic disease
was reported to outperform that of conventional ultrasound parameters [63,75] with AUC
values of 0.89 (95% CI: 0.829–0.935, p < 0.001 versus 0.748 (95% CI: 0.670–0.815, p < 0.001) in
Wang et al. [75]. Contrary to these findings, one study observed that the diagnostic accu-
racy of SWE kPa does not surpass that of conventional grayscale ultrasound (AUC = 0.790
versus 0.893, respectively) [69]. The differentiating ability of SWE liver stiffness is reported
to increase with the patient’s age (days) at diagnosis [72,73]. Liu et al. [72], reported an
AUC of 0.91 in the (30–45) versus an AUC of 0.74 in the (15–30), whereas Shen et al. [73]
noted an AUC of 0.905 in the (91–120) versus AUC of 0.761 in the less than 60 days age
group. Similarly, Zhou et al. [69] observed that the diagnostic performance of SWE kPa in
patients of less than 60 days of age (AUC = 0.694, 95% CI: 0.579–0.793) was lower than that
in patients of greater than 60 days of age (AUC = 0.779, 95% CI: 0.682–0.858). However,
contrary to the above findings, only one study by Boo et al. [62] observed a lower diagnostic
accuracy of 80% in older patients compared to the diagnostic accuracies of 92.9%, 95.2%,
and 100% in the younger age groups (<30, 31–60 and 61–90) days, respectively. The results
from the present meta-analysis showed statistically significant differences in liver stiffness
SWE kPa values, with higher values observed in BA patients compared to the non-BA
cholestatic patients.

The pooled statistics showed an overall effect size, indicated by the SMD, of 3.018 kPa
with, 95% CI of 2.256–3.779 (p < 0.0001) (Figure 4). Shear wave elastography kPa demon-
strated good discriminatory abilities between BA and non-BA patients. The observed
pooled diagnostic performance was: sensitivity = 0.83 (95% CI: 0.80–0.86); specificity = 0.80
(95% CI: 0.77–0.82); AUC = 0.9066; DOR = 26.92 (95% CI: 13.34–54.34) (Figure 6a,b,c and
d, respectively).
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0 0.2 0.4 0.6 0.8 1
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Duan et al. (2019) 0.84    (0.67 - 0.95)
Duan et al. (2019) 0.67    (0.41 - 0.87)
Wu et al. (2018)           0.80    (0.52 - 0.96)
Liu et al. (2022)   0.82    (0.72 - 0.90)
Shen et al. (2020)   0.73    (0.65 - 0.81)
Wang et al. (2016) 0.97    (0.86 - 1.00)
Zhou et al. (2017) 0.81    (0.72 - 0.89)
Zhou et al. (2022)  0.77    (0.55 - 0.92)
Zhou et al. (2022) 0.86    (0.65 - 0.97)
Wang et al. (2021) 0.88    (0.79 - 0.94)
Wang et al. (2021) 0.96    (0.89 - 0.99)

Sensitivity (95% CI)

Pooled Sensitivity = 0.83 (0.80 to 0.86)
Chi-square = 35.27; df =  11 (p = 0.0002)
Inconsistency (I-square) = 68.8 %

Figure 6. Cont.
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Figure 6. (a): Sensitivity forest plot for studies using SWE (kPa). (b): Specificity forest plot for studies
using SWE (kPa). (c): Summary receiver operating characteristic curve for studies using SWE (kPa).
(d): Forest plot showing overall diagnostic odds ratio for studies using SWE (kPa) [62–64,68–73].
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3.3.2. Diagnostic Performance of Shear Wave Velocity (SWV in m/s)

Six studies demonstrated the clinical utility of shear wave velocity (SWV) in dis-
criminating BA from other causes of infantile cholestasis [11,61,65–67,74]. Four of these
studies [11,61,65,67] reported the sensitivity, specificity, and diagnostic accuracy (AUC)
of the SWV elastography modes (VTQ and VTIQ), whereas two studies [66,74] reported
only the p-values indicating statistically significant differences between the mean SWV
of BA and non-BA patients, with no information on the other diagnostic performance
measures. Contrary to the findings of Liu et al. [61], in which a higher diagnostic accu-
racy value of 0.918 (95% CI: 0.834–1), was observed in the mean SWV of the VTIQ modes
(cut-off SWV = 1.92 m/s). Sandberg et al. [67] reported a moderate diagnostic accuracy
value of 0.7 (95% CI: 0.7–0.8) at a median cut-off SWV of 2.0 m/s. A three-color risk
stratification model was developed in which five variables, including an SWV greater
than 1.35 m/s, had a high accuracy in discriminating BA infants from non-BA infants
(AUC= 0.983, sensitivity = 98.7% and specificity = 91.4%) [11]. Regardless of whether the
mean SWV [11,61,66,74] or median SWV values [65,67] was used, all six studies reported
that the SWV of the liver in the BA group was significantly higher than that in the non-BA
(Table 3).

Biliary atresia patients exhibited significantly higher liver stiffness values as indicated
by the SWV compared to non-BA patients (p < 0.0001). The pooled effect size (SMD) and
95% confidence intervals were 1.99 and (95% CI:1.487 to 2.494), respectively (Figure 5).
The studies however showed high inconsistencies, I2 = 94.378. The pooled diagnostic
performance for these studies was: sensitivity = 0.82 (95% CI: 0.80–0.84); specificity = 0.75
(95% CI: 0.72–0.78); AUC = 0.71; DOR = 18.22 (95% CI: 7.78–45.04) as shown in Figure 7a,b,c
and d, respectively.
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formance  for  these studies was: sensitivity = 0.82  (95% CI: 0.80–0.84); specificity = 0.75 

(95% CI: 0.72–0.78); AUC = 0.71; DOR = 18.22 (95% CI: 7.78–45.04) as shown in Figure 4a,b,c 

and d, respectively. 

 
(a) 

 
(b) 

 

Sensitivity
0 0.2 0.4 0.6 0.8 1

Liu et al. (2021) 0.96    (0.79 - 1.00)
Liu et al. (2021) 0.91    (0.73 - 0.99)
Chen et al. (2020)       0.99    (0.97 - 1.00)
Dillman et al. (2019)      0.92    (0.64 - 1.00)
Dillman et al. (2019)    0.77    (0.46 - 0.95)
Sandberg et al. (2021) 0.78    (0.72 - 0.83)
Sandberg et al. (2021) 0.74    (0.68 - 0.80)
Sandberg et al. (2021) 0.80    (0.74 - 0.85)
Sandberg et al. (2021) 0.71    (0.64 - 0.77)

Sensitivity (95% CI)

Pooled Sensitivity = 0.82 (0.80 to 0.84)
Chi-square = 120.83; df =  8 (p = 0.0000)
Inconsistency (I-square) = 93.4 %

Specificity
0 0.2 0.4 0.6 0.8 1

Liu et al. (2021) 0.79    (0.61 - 0.91)
Liu et al. (2021) 0.68    (0.50 - 0.83)
Chen et al. (2020)       0.91    (0.87 - 0.95)
Dillman et al. (2019)      0.79    (0.59 - 0.92)
Dillman et al. (2019)    0.79    (0.59 - 0.92)
Sandberg et al. (2021) 0.64    (0.54 - 0.73)
Sandberg et al. (2021) 0.72    (0.62 - 0.80)
Sandberg et al. (2021) 0.64    (0.54 - 0.73)
Sandberg et al. (2021) 0.67    (0.57 - 0.76)

Specificity (95% CI)

Pooled Specificity = 0.75 (0.72 to 0.78)
Chi-square = 53.95; df =  8 (p = 0.0000)
Inconsistency (I-square) = 85.2 %

Figure 7. Cont.
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high discriminative power in the diagnosis of BA. The overall SMD and 95% confidence 

intervals of all the studies evaluating the diagnostic performance of BA were 2.516 and 

(2.084 to 2.947), respectively, p < 0.001. The studies showed considerable heterogeneity, I2 

value of 95.079%(Table 4). The pooled diagnostic performance was as follows: sensitivity 

= 0.83 (95% CI: 0.81–0.84); specificity = 0.77 (95% CI: 0.75–0.79); AUC = 0.896; DOR = 22.87 

(95% CI: 13.16–39.75) as shown in Figure 5a, b, c and d, respectively. 

Figure 7. (a): Sensitivity forest plot for studies using shear wave velocity. (b): Specificity forest plot
for studies using shear wave velocity. (c): Summary receiver-operating characteristic curve for studies
using shear wave velocity. (d): Forest plot showing overall diagnostic odds ratio for studies using
shear wave velocity. [11,61,65,67].

3.3.3. Diagnostic Performance of the Combined Studies

The statistical analysis of the combined studies showed that BA patients had higher
liver stiffness values compared to non-BA patients. Shear-wave elastography showed high
discriminative power in the diagnosis of BA. The overall SMD and 95% confidence intervals
of all the studies evaluating the diagnostic performance of BA were 2.516 and (2.084 to
2.947), respectively, p < 0.001. The studies showed considerable heterogeneity, I2 value of
95.079% (Figure 3). The pooled diagnostic performance was as follows: sensitivity = 0.83
(95% CI: 0.81–0.84); specificity = 0.77 (95% CI: 0.75–0.79); AUC = 0.896; DOR = 22.87 (95%
CI: 13.16–39.75) as shown in Figure 8a, b, c and d, respectively.
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Figure 5. (a): Sensitivity forest plots for all included studies. (b): Specificity forest plots for all in‐

cluded studies.  (c): Summary receiver operating characteristic curve  for all  included studies.  (d): 

Forest plot showing overall diagnostic odds ratio for all included studies.[11,61–65,67–73]. 

Table 3. Liver stiffness measurements (LSM) values among patients with and without BA. 

Author(s), 

Year  
Ref 

Elastography 

Technique 

Hepatic Young’s Modulus (kPA)  SWV(m/s) 
Main Finding 

BA  Non BA  BA  Non BA 

Liu et al., 

(2021) 

[61]  VTIQ  NA  NA  a 2.43 ± 0.29  a 1.52 ± 0.29  VTQ and VTIQ can help distinguish BA 

from non‐BA; VTIQ has higher sensitiv‐

ity and specificity than VTQ 
[61]  VTQ  NA  NA  a 2.36 ± 0.36)  a 1.30 ± 0.28 

Boo et al., 

(2021) 

[62]  (≤30) TE 
b 8.4 (6.8–16.8) 
ab 10.1(2.9) 

b 4.2(3.3–5.4) 
ab 4.3(0.64) 

   

Statistically significant difference be‐

tween BA and non‐BA TE values. 

A cutoff LSM > 7.7 kPa had high diagnos‐

tic accuracy for BA in all age groups, ex‐

cept for the group of 91–180 days of age. 

[62]  (31–60) TE 
b 10(5.5–13) 
ab 9.63(2.15) 

b 5.4(3.8–6.2) 

ab 5.2(0.72) 
   

[62]  (61–90) TE 
b 19.4(19.1–19.7) 
ab 19.4(0.27) 

b 5.5(4.5–6.1) 

ab 5.4(0.51) 
   

[62]  (91–180) TE 
b 40.8(26–55.5) 

ab 40.78(8.52) 

b 3.8(3.2–8.8) 

ab 4.9(1.65) 
   

Chen et al., 

(2020) 
[11]  VTQ      a 1.77(0.39)  a 1.30 (0.29) 

Mean SWV is significantly 

higher in BA than in other causes of cho‐

lestasis, p< 0.001. 

Duan et al., 

(2019) 

[63]  T‐SWE‐VTQ  a 17.59 ± 5.65  a 9.84 ± 1.49      Both SWE and grayscale ultrasound have 

good performance in diagnosing BA. 

SWE increases the diagnostic specificity 

when combined with grayscale ultra‐

sound. 

[63]  T‐SWE VTIQ)  a 17.94 ± 6.44  a 9.91 ± 2.00     

Wu et al., 

(2018) 
[64]  TE 

b 10.50(8.50–20.90) 
ab 12.6(3.61) 

b 4.60(3.90–6.00) 

ab 4.78(0.64) 
   

LSM assessment during the workup of 

cholestatic infants may facilitate the diag‐

nosis of BA. 

Dillman et 

al., (2019) 

[65]  2DSWE VTIQ     
b 2.08(1.90–2.50) 
ab 2.14(0.27) 

b 1.49 (1.34–

1.80) 
ab 1.53(0.24) 

SWV were significantly different be‐

tween BA and non‐BA subjects, p = 

0.0001 

SWE showed better diagnostic perfor‐

mance for distinguishing BA from non‐

BA causes of neonatal cholestasis, p = 

0.0014. 

[65] 
Point SWE 

VTQ 
   

b 1.95(1.48–2.42) 
ab 1.95(0.34) 

b 1.21(1.12–1.51) 
ab 1.26(0.23) 

Leschied et 

al., (2015) 

[66]  VTQ     
a 2.08 ± 0.17 

(1.90–2.30) 

a 1.28 ± 0.13 

(1.09–1.44) 
A significant difference between the VTQ 

mean SWV of the BA and non‐BA 

groups, p< 0.0001. The mean color pixel [66]  VTIQ     
a 3.14 ± 0.73 

(2.24–4.40) 

a 1.61 ± 0.23 

(1.34–1.87) 

Figure 8. (a): Sensitivity forest plots for all included studies. (b): Specificity forest plots for all
included studies. (c): Summary receiver operating characteristic curve for all included studies.
(d): Forest plot showing overall diagnostic odds ratio for all included studies [11,61–65,67–73].

The pooled standardised mean difference of the six studies that evaluated the differen-
tiating ability of SWV was 1.990 (95% CI: 1.487–2.494); however, considerable heterogeneity
was observed in these studies, I2 value of 94.378%, and, hence, a random effect model was
adopted. A total of 11 out of the 12 analyses showed statistically significant differences be-
tween BA and non-BA patients’ liver stiffness measures (SWV), whereas only one analysis
from Sandberg et al. [67], utilising the L9 probe and the VTIQ mode, had an insignificant
result (p = 0.160) and was seen to reach the line of no effect (Figures 3 and 5). The extracted
data on the diagnostic performance indicators for the evaluated studies is shown in Table 4.

Table 4. Diagnostic performance indicators for each study.

Author (s) Ref Elastography
Technique

Cutoff
Value

Sen
(%)

Spec
(%)

PPV
(%)

NPV
(%) AUC DA BA(n) Non-

BA(n) TP TN FP FN

Liu et al. (2021) [61] VTIQ 1.92 95.5 78.9 NA NA 0.92 NA 26 33 24.83 26.04 6.96 1.17

[61] VTQ 1.77 90.9 68 NA NA 0.89 NA 26 33 23.63 22.44 10.56 2.37

Chen et al. (2020) [11] VTQ 1.35 98.7 91.4 94 98.1 0.98 93.6 293 202 289.1 184.63 17.37 3.809

Dillman et al.
(2019)

[65] 2DSWE VTIQ 1.84 92.3 78.6 66.7 95.7 0.89 NA 13 28 12 22.01 6 1.00

[65] Point SWE VTQ 1.53 76.9 78.6 62.5 88 0.81 NA 13 28 9.99 22.01 5.99 3.003

Leschied et al.
(2015)

[66] Mean SWV
VTQ NA NA NA NA NA NA NA 6 5 NA NA NA NA

[66] Mean SWV
VTIQ NA NA NA NA NA NA NA 6 5 NA NA NA NA

Sandberg et al.
(2021)

[67] C6 VTQ 2.5 1.5 78 64 NA NA 0.8 NA 212 106 165.36 67.84 38.16 46.64

[67] C6 VTQ 3.5 1.6 74 72 NA NA 0.8 NA 212 106 156.88 76.32 29.68 55.12

[67] L9 VTQ 1.6 80 64 NA NA 0.8 NA 212 106 169.6 67.84 38.16 42.4

[67] L9 VTIQ 2 71 67 NA NA 0.7 NA 212 106 150.52 71.02 34.98 61.48

Boo et al. (2021)

[62] (91–180) TE 8.8 100 100 100 100 100 100 2 3 2 3 0 0

[62] (≤30) TE 7.7 NA NA 100 90.9 NA 92.9 8 20 NA NA NA NA

[62] (31–60) TE 7.7 NA NA 100 94.7 NA 95.3 3 18 NA NA NA NA

[62] (61–90) TE 7.7 NA NA 100 100 NA 100 2 5 NA NA NA NA

[62] (91–180) TE 7.7 NA NA 66.7 100 NA 80 2 3 NA NA NA NA

Duan et al. (2019) [63] T-SWE-VTQ-f 12.35 84.3 89.7 82.7 90.7 0.937 87.7 33 29 27.82 26.013 2.987 5.181

[63] T-SWE VTIQ-M 12.35 66.7 100 100 83.6 0.833 87.7 18 58 12.0 58 0 5.99
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Table 4. Cont.

Author (s) Ref Elastography
Technique

Cutoff
Value

Sen
(%)

Spec
(%)

PPV
(%)

NPV
(%) AUC DA BA(n) Non-

BA(n) TP TN FP FN

Wu et al. (2018) [64] TE 7.7 80 97 NA NA 85.3 NA 15 33 12 32.01 0.99 3

Liu et al. (2022) [72] S-SWE 7.1 81.3 69.86 NA NA 0.82 NA 83 73 68.00 50.9978 22.02 14.9981

Shen et al. (2020) [73] 2D S-SWE 9.5 73.3 70.1 69.2 74.1 0.771 NA 135 147 98.96 103.047 43.95 36.045

Wang et al. (2016) [68] 2DS-SWE 9.5 97.4 100 100 96.9 0.997 NA 38 17 37.01 17 0 0.988

Zhou et al. (2017) [69] 2DS-SWE 10.2 81.4 66.7 76 73.5 0.79 NA 97 75 78.96 50.025 24.975 18.042

Zhou et al. (2022) [70] 2DS-SWE 10.2 77.3 84.6 89.5 68.8 0.895 80 22 13 17.0 10.998 2.002 4.994

[70] 2D T-SWE 8.7 86.4 76.9 86.4 76.9 0.822 82.9 22 13 19.0 9.997 3.003 2.992

Wang et al. (2021) [75] 2D S-SWE-TV 7.81 87.6 78.5 63.9 93.6 0.888 81.3 89 205 77.964 160.925 44.075 11.036

[75] 2D S-SWE-N 7.81 95.5 83.4 71.4 97.7 0.94 87.1 89 205 85 171 34. 4.00

Hanquinet et al.
(2015) [74] VTQ NA NA NA NA NA NA NA 10 10 NA NA NA NA

NA—not available; Sen—sensitivity; Spec—specificity; PPV—positive predictive value; NPV—negative predictive
value; DA—diagnostic accuracy AUC—area under receiver-operating curve; CI—confidence interval, 95% CI
in parenthesis; mean values (TV—training + validation; N—normogram; TP—true positive; TN—true negative;
FP—false positive; FN—false negative) were calculated based on the given data on sensitivity, specificity and the
number of patients in each of the two groups (BA and non-BA groups) using Baratloo et al [76] formulae.

3.4. Studies Methodological Quality Assessment by the QUADAS Tool

The methodological quality of the studies was generally high, with the majority of
studies exhibiting a low patient selection bias, as the consecutive selection of the participants
was conducted in all studies except three [61,65,74] in which non-consecutive patient
selection was used and unclear in each study, respectively (Table 5). In all the eligible
studies, a case–control design was avoided. The inclusion–exclusion criteria were clear in
all the studies, with low concerns of the selected patients not matching the review question
that is focused on the diagnostic efficacy of advanced ultrasonography techniques for the
diagnosis of biliary atresia among cholestatic infants. The reference tests were undertaken
by different teams, who were blinded to the index test in all the studies; however, different
reference standards were used, which could be a source of inhomogeneities. Despite the
absence of an inter/intra-observer variability analysis among the two physicians who
undertook the liver stiffness measurements for the index test in one study [73], the risk of
bias in conducting the index test was deemed low, as the two physicians were reported
to have more than five years of experience in abdominal ultrasonography. The reference
standard was, however, not specified in one study [65]. The applicability concerns in
the three domains of patient selection, index test, and reference standard were low in
the majority of studies, except for two studies [69,70], in which three different reference
standards (surgical exploration, intraoperative cholangiography under laparoscopy, or liver
biopsy) were used to confirm the diagnosis of BA. The study flow timing in Liu et al. [72]
was unclear; hence, it could have introduced bias as the time between the index test and
reference test is not specified in the study.

The funnel plot in Figure 9, showed an asymmetrical distribution of the studies effects
size, with the bottom of the plot showing a higher concentration of small studies only on
one side of the mean effect size, demonstrating the small-study effects phenomena.
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4. Discussion 

The early and accurate diagnosis of BA, to rule out other causes of infantile choles‐

tasis, is important for better prognostic outcomes. The current strategy for the differential 

diagnosis of BA from non‐BA causes of infantile cholestasis involves invasive procedures 

such as intraoperative cholangiography [11]. The need for non‐invasive accurate diagnos‐

tic tests, therefore, cannot be overemphasised. Ultrasonography is a non‐invasive imaging 

technique and has seen several advances in its technology over recent years that have the 

potential to improve the differentiation of BA from non‐BA causes of cholestasis in infants 

[16]. Systematic reviews of the diagnostic performance of conventional grayscale ultra‐

sound techniques have been reported [42,36]. To the best of our knowledge, this is the first 

study to summarise the available evidence on the diagnostic performance of advanced 

ultrasonography techniques in the differential diagnosis of BA from other causes of infan‐

tile cholestasis. 

The  study  results  showed  that only one advanced ultrasound  imaging  technique, 

shear wave elastography, was studied, to assess its diagnostic performance for the pre‐

operative diagnosis of BA (Table 2). There are no studies assessing the diagnostic efficacy 

of other recent ultrasonography advances, such as microvascular imaging and contrast‐

enhanced ultrasound, that met the inclusion criteria. The two studies related to microvas‐
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Figure 9. Funnel plot of precision (inverse standard error) by standardised difference in means
assessing bias.

Table 5. QUADAS tool studies methodological quality assessment results (risk of bias and applicabil-
ity concerns).

Aurthor(S), Year Ref
Risk Of Bias Applicability Concerns

Patient
Selection Index Test Reference

Standard
Flow and
Timing

Patient
Selection Index Test Reference

Standard

Liu et al. (2021) [61] Unclear Low Low Low Low Low Low

Boo et al. (2021) [62] Low Low Low Low Low Low Low

Chen et al. (2020) [11] Low Low Low Low Low Low Low

Duan et al. (2019) [63] Low Low Low Low Low Low Low

Wu et al. (2018) [64] Low Low Low Low Low Low Low

Dillman et al. (2019) [65] High Low Unclear Low Low Low Unclear

Leschied et al. (2015) [66] Low Low Low Low Low Low Low

Liu et al. (2022) [72] Low Low Low Unclear Low Low Low

Sandberg et al. (2021) [67] Low Low Low Low Low Low Low

Shen et al. (2020) [73] Low Low Low Low Low Low Low

Wang et al. (2016) [68] Low Low Low Low Low Low Low

Zhou et al. (2017) [69] Low Low Low Low Low Low High

Zhou et al. (2022) [70] Low Low Low Low Low Low High

Wang et al. (2021) [75] Low Low Low Low Low Low Low

Hanquinet et al. (2015) [74] Unclear Low Low Low Low Low Low

Low = Low Risk; High = High Risk; Unclear = Unclear Risk.

3.5. Publication Bias Assessment

The possibility of publication bias was assessed using the funnel plot shown in
Figure 9.

4. Discussion

The early and accurate diagnosis of BA, to rule out other causes of infantile cholestasis,
is important for better prognostic outcomes. The current strategy for the differential
diagnosis of BA from non-BA causes of infantile cholestasis involves invasive procedures
such as intraoperative cholangiography [11]. The need for non-invasive accurate diagnostic
tests, therefore, cannot be overemphasised. Ultrasonography is a non-invasive imaging
technique and has seen several advances in its technology over recent years that have
the potential to improve the differentiation of BA from non-BA causes of cholestasis in
infants [16]. Systematic reviews of the diagnostic performance of conventional grayscale

112



Children 2022, 9, 1676

ultrasound techniques have been reported [36,42]. To the best of our knowledge, this
is the first study to summarise the available evidence on the diagnostic performance of
advanced ultrasonography techniques in the differential diagnosis of BA from other causes
of infantile cholestasis.

The study results showed that only one advanced ultrasound imaging technique, shear
wave elastography, was studied, to assess its diagnostic performance for the preoperative
diagnosis of BA (Table 2). There are no studies assessing the diagnostic efficacy of other
recent ultrasonography advances, such as microvascular imaging and contrast-enhanced
ultrasound, that met the inclusion criteria. The two studies related to microvascular
imaging technique in this review, however, were excluded from the analysis after a full
article review, as they evaluated the clinical utility of MVI in a post-KPE procedure in BA
patients and not for the preoperative diagnosis of BA [77]. The ability of MVI to detect
capsular flows that conventional color Doppler could not among the BA group in the study
by Lee et al. [77] is an indicator of its possible diagnostic utility among preoperative BA
patients. It is, therefore, prudent to have studies assessing the diagnostic accuracy of MVI
for the preoperative diagnosis of BA.

The significantly higher liver stiffness values observed in BA patients in comparison to
non-BA patients; (overall SMD, 95% confidence intervals and p values) of (2.578, (2.136–3.02)
and p < 0.0001), respectively (Figure 3), is an indicator that the shear wave elastography-
based liver stiffness measurement can facilitate the differentiation of BA from other causes
of infantile cholestasis. The technique involving an L9 probe in the VTIQ mode was
assessed in only one study [67], and exhibited poor discriminatory ability (p = 0.16); hence,
more studies are required to evaluate the clinical utility of this technique in discriminating
BA from non BA cholestatic infants before concluding its relevance for clinical use. The
effect size was higher in studies in which SWE (kPa) was the outcome measure, with an
overall SMD of 3.08 in SWE kPa studies versus 2.078 for SWV studies.

The current study observed a good diagnostic performance of SWE with the pooled
sensitivity of 0.83 (95% CI: 0.81–0.84), specificity of 0.77 (95% CI: 0.75–0.79), AUC of 0.896,
and DOR of 22.87 (95% CI: 13.16–39.75) (Figure 8a–d). These findings are in agreement with
those from a recent meta-analysis by Wagner et al. [40], which evaluated the diagnostic
performance of SWE in which high diagnostic accuracy was reported (AUC = 0.91) versus
the current study’s AUC of 0.896. The results from the meta-analysis demonstrated that
ultrasound-based liver stiffness assessment could be a valuable imaging marker for the
diagnosis of infantile biliary atresia. It is, however, imperative to note that, despite the
current study reporting SWE to have good diagnostic accuracy, the diagnostic performance
of SWE does not exceed that of conventional grayscale ultrasound parameters, as reported
from pooled studies in a meta-analysis by Yoon et al. [42], where the overall diagnostic
accuracy (AUC = 0.97) for conventional grayscale parameters was higher than that for SWE
reported in the current study (AUC = 0.896). The results from the systematic review showed
that combining SWE and grayscale ultrasound yields a better diagnostic specificity [63],
and similar findings were echoed by Wang et al. [71], who concluded that, despite the
hepatic Young’s modulus being an independent predictor of BA, the incorporation of the
gallbladder structural features and age into a nomogram realized a better performance
than the individual features. The subgroup analysis observed notable excellent diagnostic
accuracy in studies utilising the hepatic Young’s modulus compared to those reporting
shear wave velocity: AUC was 0.906 versus 0.71, respectively. The systematic review
demonstrated that the diagnostic performance of SWE increased with age and this can
pose a potential clinical challenge in the utility of SWE for the early diagnosis of BA in
young patients, which is key to obtaining good prognostic outcomes, as suggested by
Napolitano [1].

It is imperative to note that the methodological approaches in the included studies
were varied, as different machines, scanning protocols, reference index, and outcome mea-
sures were utilized (Table 2). Six of the studies used the Aixplorer ultrasound system (Super-
Sonic Imagine SA, Aix-en-Provence, France) [69,70,72,73,75], five studies used the Acuson
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S2000 or S3000 unit (Siemens Healthcare, Erlangen, Germany) [11,61,65–67], and two stud-
ies used the TUS-Aplio 500 scanner (Toshiba Medical Systems, Tokyo, Japan) [63,70]. The
FibroScan 502 Touch (Echosens, Paris, France), in conjunction with a 5 MHz probe, was
used in two studies [62,64]. Moreover, the measurement outcomes were reported differ-
ently in the studies, with some studies reporting mean values and others reporting median
values (Table 3). These differences could account for the heterogeneities observed in the
current study I2 = 87.2%, chi square = 156.46%, p < 0.0001 (Figure 8a). In one of the studies,
different diagnostic performances were reported across different SWE modes (VTIQ and
VTQ), probes, and scanning regions of interest (ROI) [67]. The liver stiffness measures
were also not uniformly reported, as these were reported either as mean or median values.
Hence, to facilitate the meta-analysis, the median values were converted to the mean values
using established formula [24]. The current study findings point toward the need for future
standardization of SWE protocols for the diagnosis of BA, which will allow for an accurate
pooling of the studies of diagnostic performance.

The bias assessment is represented by the funnel plot in Figure 9. The concentration of
low-precision studies shown at the base of the plot is an indicator that there are more small
studies reported in comparison to large-sample-size studies. The observed funnel plot
asymmetry is indicative of the small-study effect phenomena, in which all of the evaluated
low-precision studies are observed to concentrate only on the positive side of the mean
effect size. These findings could suggest the presence of publication bias, although they
do not rightly imply that publication bias was present [78–80] as funnel plot asymmetry
may be due to other causes, including but not limited to, between-study heterogeneity and
chance [80].

5. Limitations of the Study

The study, however, is limited, as only a few studies with a small number of patients
met the inclusion criteria, which could restrict the generalizability of the study results. It
should be noted that the included studies were mainly limited to the Asian and American
population, further limiting the external validity of the results to other populations. The
possibility of publication bias is another limitation of this study, as this could lead to
an overestimated observed mean effect size. The evaluated studies utilised different
reference standards and there were inconsistencies in outcome reporting, with some studies
reporting mean values, whereas others reported median values, which could be a source of
inhomogeneities.

6. Conclusions

The results from the current systematic review and meta-analysis have demonstrated
that shear wave elastography has a good diagnostic performance and could, therefore,
be a useful complementary tool to other diagnostic methods in differentiating BA from
non-BA causes of infantile cholestasis. Liver stiffness indicators were significantly higher
in BA patients compared to non-BA patients. Future studies assessing the utility of other
advanced ultrasonography techniques are recommended.
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Abstract: Children with congenital heart disease are exposed to repeated medical imaging throughout
their lifetime. Although the imaging contributes to their care and treatment, exposure to ionising
radiation is known to increase one’s lifetime attributable risk of malignancy. A systematic search
of multiple databases was performed. Inclusion and exclusion criteria were applied to all relevant
papers and seven were deemed acceptable for quality assessment and risk of bias assessment. The
cumulative effective dose (CED) varied widely across the patient cohorts, ranging from 0.96 mSv to
53.5 mSv. However, it was evident across many of the included studies that a significant number of
patients were exposed to a CED >20 mSv, the current annual occupational exposure limit. Many factors
affected the dose which patients received, including age and clinical demographics. The imaging modality
which contributed the most radiation dose to patients was cardiology interventional procedures. Paediatric
patients with congenital heart disease are at an increased risk of receiving an elevated cumulative radiation
dose across their lifetime. Further research should focus on identifying risk factors for receiving higher
radiation doses, keeping track of doses, and dose optimisation where possible.

Keywords: cumulative; radiation dose; medical imaging; congenital heart disease

1. Introduction

Congenital heart disease is a defect in the structure of the heart or the great ves-
sels, which is present at birth and occurs in approximately 1% of births per year in the
United States [1]. Many of the diagnostic and interventional tools used to investigate and
treat congenital heart disease involve the use of medical ionising radiation. The main
concern with these procedures is the potential increase in the lifetime attributable risk of
radiation-induced malignancy [2]. Patients with congenital heart disease are often exposed
to relatively high doses of ionising radiation from medical sources from a very young age,
often even from birth [3]. Malignancy due to ionising radiation poses a particular risk to
children due to their rapidly dividing cells and longer life span in which the radiation can
potentially cause damage [4]. Awareness of radiation safety and its possible long-term
effects is suboptimal among many doctors, including paediatricians [5,6].

Lifetime cumulative radiation dose and the associated risk of developing cancer is a
poorly understood subject. Much of our current understanding of the effects of radiation is
based on atomic bomb survivors [2] or studies based on large single doses of radiation of
>100 mSv [7]. Recent evidence would suggest that a high cumulative dose does carry an
increased risk of developing cancer [8]. However, it remains unclear if this risk is the same
as receiving the equivalent amount of radiation in one dose. Notably, according to the linear
no-threshold (LNT) hypothesis, any dose, irrelevant of size, carries an inherent risk [9,10].
Therefore, the cumulative exposure burden to children with congenital heart disease calls
for better understanding and awareness so that those involved in their care can make more
informed decisions and, where possible, use a dose as low as reasonably acceptable.
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The importance of understanding the risks associated with repeated exposure to
ionising radiation, particularly in childhood, is emphasised by epidemiological studies.
Researchers analysed the data of 11 million Australians to assess the malignancy risk in
children and adolescents by analysing cancer incidence rates in those who had a CT more
than one year before diagnosis compared to a group unexposed to CT imaging prior to
malignancy diagnosis. They highlighted an elevated risk with an absolute excess incidence
of 9.38 per 100,000 person-years at risk [11]. It must, however, be recognised that many of
these types of studies have limitations, such as the dose estimation methods (which may
over/underestimate risks), and the eventual lifetime risk of cancer is difficult to estimate
due to the time limits of the studies (which may minimise risks).

The Alliance for Radiation in Paediatric Imaging has recognised the importance of
monitoring low-dose ionising radiation in the “Image Gently” campaign to improve safe
and effective imaging care for children worldwide. Image Gently advocates methods to
reduce unnecessary ionising radiation by sharing best practices of imaging protocols for
children and using alternative imaging that avoids ionising radiation. They have also
created informational and advocacy information for each ionising radiation modality [12].
More recently, in 2017, a document from the Image Gently Alliance highlighted the rel-
atively high cumulative lifetime burden of ionising radiation in children with complex
congenital and acquired heart disease (CAHD) from the multiple imaging studies and
procedures over their lifetime [3]. In this document, they emphasised the need to achieve
high-quality studies with the lowest achievable radiation dose and to standardise dose
metrics across imaging modalities to encourage comparative effectiveness studies across
the spectrum of CAHD in children.

Many efforts have been made so far to reduce the radiation dose to CHD patients [13–15],
including an interesting study by Patel et al. [16], which implemented several system-based
interventions in the congenital cardiac catheterisation lab to reduce radiation exposure to
paediatric CHD patients, including the utilisation of lower fluoroscopy and digital angiog-
raphy doses, increasing staff and physician awareness, focusing on tighter collimation,
and changing the default fluoroscopy and DA doses to lower settings [17]. Studies like
these demonstrate the potential change that is possible on a broader scale to reduce radi-
ation dose, ultimately lowering the cumulative radiation burden that CHD patients are
exposed to.

The concepts of justification and the ‘As Low as Reasonably Achievable’ (ALARA)
principle are imperative in medical imaging, especially regarding patients repeatedly
exposed to radiation. A study assessing the rate of patients receiving high cumulative doses
over 100 mSv highlighted an incidence of 0.21% over five years across 35 countries [18].
An up-to-date systematic review must be undertaken to establish the CED that this cohort
of patients is receiving in a wide variety of settings, in addition to the modalities utilised
and conditions that put these patients at a higher risk of receiving a higher cumulative
radiation dose. This study aims to systematically review published data regarding the
cumulative exposure from medical sources of ionising radiation in paediatric patients with
CHD. We aim to provide the medical imaging community with a better understanding of
dose estimation, cumulative dose, and risk factors for CHD patients who may be exposed to
higher/repeated radiation. This will allow future practice to be improved and further work
to be done surrounding the monitoring and reducing the cumulative dose of these patients.

2. Materials and Methods

The systematic review was performed in accordance with the pre-specified protocol, which
was registered on PROSPERO, the prospective international register of systematic reviews.

2.1. Search Strategy

A comprehensive search of the current literature was performed in accordance with
the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guide-
lines [19]. PubMed, Science Direct, Scopus, and Embase were searched. The ‘year pub-
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lished’ filter was applied for each database to only capture studies published between
1 January 2010 and 1 March 2023. Several pre-determined keywords were pooled for the
systematic search and subsequent MeSH terms were generated. The MeSH terms used
were “cumulative effective dose”, “cumulative dose”, “cumulative exposure”, “cumula-
tive radiation dose”, “cumulative medical radiation exposure”, “CHD”, “congenital heart
disease”, “pediatric”, “paediatric”, “child”, and “children”. The MeSH terms were then
combined according to the specifications of each database using link words such as “AND”,
“OR”, and “NOT”.

2.2. Data Synthesis

An initial screen of the literature was performed using the titles and abstracts of
all articles that had been identified. Only articles that contained data from cumulative
radiation dose in a follow-up period of one year minimum for children aged ≤ 18 years
were included for a full-text review. Meta-analysis and review articles were excluded. For
each study, reviewers applied inclusion/exclusion criteria as outlined below:

Clinical trials and observational studies were published between 2010 and 2020 in the
English language.

(1) Only studies involving a minimum of 20 paediatric patients.
(2) Only studies involving the monitoring of cumulative radiation dose over at least one year.
(3) Only studies involving the monitoring of cumulative radiation dose from medical

sources (both interventional and diagnostic) as opposed to other sources.
(4) Only studies where the patients had some form of congenital heart disease and/or

had several cardiac interventional/diagnostic procedures carried out.
(5) Only studies where the outcome measures included the cumulative radiation dose of

included patients.
(6) Only original cross-sectional studies, case-control studies, cohort studies, or ran-

domised control trials.

Quality assessment was carried out using the STROBE quality assessment tool [20],
and a risk of bias was applied to all included studies [21].

3. Results
3.1. Study Selection and Quality Assessment

The systematic search revealed 296 papers from PubMed/Science Direct, 66 from
SCOPUS, and 61 from EMBASE. Hand-searching reference lists also found six further
studies from other papers. After removing the duplicates, 337 titles and/or abstracts
were assessed for relevance, and this resulted in 26 papers which were relevant to this
review question. The full text of these 20 articles was reviewed, and inclusion/exclusion
criteria were applied. Two reviewers (ES and EF) carried out this step to reduce bias. Any
discrepancies at this stage were discussed, and updates were made where necessary. Seven
of these 20 papers were agreed upon to be eligible for inclusion in this systematic review
(Figure 1) (Supplementary Table S1).

Qualitative analysis was applied to these seven papers using the STROBE quality
assessment tool by two independent reviewers (ES and EF). According to STROBE, all
seven studies reached an acceptable level of quality. Certain limitations were identified
outside of STROBE that included potential unrecorded radiation doses for investigations
performed outside the facility of the study. The sample size for each paper was spread
across an extensive range. Some papers had a low sample size (McDonnel et al. sampled
31 patients), with some cohorts followed for a relatively short time (Ait-Ali et al. [22] followed
patients for one year). These factors need to be taken into consideration when interpreting the
results. The level of homogeneity across these studies also proved to be a challenge, with several
papers presenting their outcomes differently. Also, we assessed papers performed across a
range of modalities that these papers collected data, which allowed us to understand the overall
picture of the cumulative radiation dose of CHD patients from all their medical imaging.
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Figure 1. PRISMA flow diagram.

3.2. Data Extraction

A risk of bias assessment (Figure 2) was performed using questions designed to review
cohort studies developed by the Clarity Group at McMaster University [21]. The overall
risk of bias across all seven studies was relatively low. Due to the nature of the assessment
of exposure and the variation of estimation techniques across the studies, there was likely
a degree of information bias across all seven studies. It is also important to note that the
exposure assessment may represent some bias since the patients were only followed in a
single centre except for Ait-Ali et al. [22]. Assessment of confidence in the outcome was high
across all papers but may be slightly lower in Ait-Ali et al., since the lifetime radiological
exposure was derived from patient records. This may cause an underestimation in the
calculation of the cumulative radiation dose.

Table 1 summarises the cumulative radiation exposure of included studies, the study
type, the number of patients, the x-ray procedures recorded, and the effective dose estima-
tion method. The contribution of different imaging modalities to the cumulative recorded
radiation dose is recorded (Supplementary Table S2).
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Table 1. Summary of included studies and cumulative effective radiation.

Author (Year) Study Type Number of
Participants

Age of
Participants,

Years

Radiation
Source

Overall
Cumulative

Effective
Dose (mSv)

1 Participants
Cumulative

Effective Dose
>20 mSv

Ait-Ali (2010) [22] Prospective
cohort 59 2.8 (mean) All ionising

radiation 7.7 (median) 0/59

Jones (2017) [23] Retrospective
cohort 117 0–17 (range) Interventional

procedures 16.5 (median) 14/117

Ubeda (2019) [24]
Prospective/
retrospective

cohort
1521 2–8 (range) Interventional

procedures

8.7 (>four
procedures)

(mean)
0/1521

McDonnell
(2014) [25]

Retrospective
cohort 31

13.6 (median
at heart

transplant)

All ionising
radiation 53.5 (mean) Unknown

Glatz (2014) [26] Retrospective
cohort 4132 0.3 (mean) All ionising

radiation 0.96 (median) 218/4132

Downing (2015) [27] Retrospective
cohort 38

2 Birth-Fontan
closure

All ionising
radiation 25.7 (mean) 2.9

Johnson (2014) [28] Retrospective
cohort 337

0.24 (median
at heart

transplant)

All ionising
radiation 2.67 (median) 94/337

1 20 mSv used as it is the current limit on effective dose for occupational exposure. 2 Fontan completion is a procedure
to re-route the systemic deoxygenated blood from the venous circulation into the pulmonary vasculature.

4. Discussion

The seven included papers [22–28] utilised CED to measure ionising radiation expo-
sure. CED is the total dose resulting from repeated exposures to ionising radiation from all
radiologic studies [29]. Translating the relatively low levels of medical ionising radiation
these patients receive into mutagenic effects is difficult due to sparse data, as most of our
understanding of cancer risks stems from data on atomic bomb survivors [8]. Although
the elevated risk associated with a single large radiation dose is known, the effects of
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recurrent smaller exposures are not well defined. However, the linear no-threshold model
(whereby the risk of cancer increases linearly with the increase in radiation dose with no
lower radiation dose limit) is widely accepted and provides the best description of the
relationship between ionising radiation dose received and the risk of stochastic effects. Over
85% of infants born with modern or complex heart disease live to adulthood, with medical
imaging involving ionising radiation playing a significant role in their diagnosis, treatment,
and survival [30]. A large population-based study by Mathews et al. [11] suggested that
each sievert of effective dose from CT scans can be attributed to 0.125 excess cancers in an
average follow-up of 9.5 years. Therefore, it is more imperative than ever to assess and
manage the doses being administered to these patients, following ALARA principles.

Unsurprisingly, diagnostic and interventional cardiac catheterisation represented the
most significant percentage of cumulative effective dose across all seven included studies.
In a previous study, the median exposure was reduced by 30% for all cases by employing
institution-specific quality improvement intervention techniques [31]. Conversely, radio-
graphs represented the lowest contribution to cumulative exposure across all studies where
it was recorded. Although CT was only recorded in two papers, it represented a small
percentage of examinations in both cases whilst contributing a large proportion of the
overall radiation dose. CT is frequently used in diagnosing and treating CHD [32] and
is a significant contributor to CED. Therefore, further studies should focus on reducing
CED in CHD patients. Substantial efforts have been made to manage the radiation dose
for paediatric cardiac CT via the Image Gently ‘Have-a-Heart’ campaign [33]. They found
that understanding CT technical parameters and how to apply them to children of various
sizes and heart rates is necessary to optimise image quality at the lowest possible radiation
dose. A CT dose management program should be implemented to ensure regulatory com-
pliance and to optimise ionising radiation use in patients exposed to long-term cumulative
radiation due to their high risk of repeated and elevated exposure. Currently, the limit on
effective dose for occupational exposure is 20 mSv, according to the ‘Radiological Protection
Act 1991- Ionising Radiation Regulation S.I No. 30 2019’ [34]. It is, therefore, even more
crucial that we consistently monitor and assess every single dose of ionising radiation and
whether it can be reduced or avoided altogether.

There are many ways in which dose reduction can be achieved. These are generally
classified as justification, optimisation, and dose limitation. iRefer guidelines [35] and the
European Society of Radiology iGuide [36] tools can aid clinician decision-making for the
justification of the use of medical imaging with suggestions for decisions including informa-
tion related to radiation reduction and cost efficiency. Appropriate use of ionising radiation
is essential in minimising the cumulative radiation dose to CHD paediatric patients. Op-
timisation strategies across different imaging modalities are possible. For example, in
cardiac CT, the lowest practical radiation dose which can achieve acceptable image quality
should be used. The use of ECG-gated tube current modulation for functional imaging, can
greatly reduce dose [3]. In nuclear cardiology, using advanced hardware (e.g., PET, CZT) or
software technology to reduce administered activity can also aid in dose optimisation [3].
The introduction of iterative algorithms in CT reconstruction offers promise of further
reduction in the radiation dose to CHD patients. The second way of reducing dose can be
by using alternative modalities which do not use ionising radiation, such as ultrasound or
magnetic resonance imaging. Echocardiography is the first-line imaging technique used for
CHD, as it is capable of providing excellent depiction of intracardiac and valvular anatomy,
cardiac function, and hemodynamic [29]. Dose reduction can also be implemented with
the help of diagnostic reference levels (DRLs). There is currently limited data in Ireland for
DRLs for paediatric catheterisation. However, Eurosafe Imaging has provided a document
on European DRLs for paediatric imaging that can assist dose optimisation [37].

A limitation of this review is that all studies assessing CED in CHD were included
(both diagnostic and therapeutic). Some studies derived the cumulative effective dose
from solely cardiac procedures as opposed to from all imaging modalities [27,28], which
may represent an underestimation. This increased the heterogenicity between the studies,
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as such a meta-analysis could not be performed and increased difficulties in comparing
the studies. A multi-centre study is required to gain a more accurate estimation of CED,
with a separate investigation of radiation from diagnostic and interventional procedures
(and overall CED), which should be aided by a state-wide dose estimation programme. A
strength of this study was that the risk of bias within the review was kept as low as possible
with two reviewers carrying out the search strategy, quality assessment, data extraction,
and risk of bias assessment.

For patients with chronic conditions like CHD, it is evident that further multi-centre
studies, involving larger patient cohorts and longer follow-up, are required to better
understand the true estimate of CED accrued across their lifetime. Implementation of
dose reduction measures should be applied more rigorously by those involved in their
care to reduce unnecessary radiation and ultimately reduce their chance of developing a
radiation-induced cancer.

5. Conclusions

It has long been accepted that children are at a higher risk than adults for radiation-
induced cancer. This review has demonstrated that the radiation burden from medical
imaging is elevated in paediatric patients with congenital heart disease, with radiation from
diagnostic and interventional cardiac catheterisation representing the greatest cumulative
dose. Overall, the importance of following ALARA principles is vital. Efforts on dose
optimisation, limiting radiation exposure, and the use of alternative modalities without
ionising radiation where possible are crucial to minimise lifetime CED in this cohort.

Supplementary Materials: The following supporting information can be downloaded at: https:
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Abstract: Three-dimensional (3D) printing technology has become increasingly used in the medical
field, with reports demonstrating its superior advantages in both educational and clinical value
when compared with standard image visualizations or current diagnostic approaches. Patient-
specific or personalized 3D printed models serve as a valuable tool in cardiovascular disease because
of the difficulty associated with comprehending cardiovascular anatomy and pathology on 2D
flat screens. Additionally, the added value of using 3D-printed models is especially apparent in
congenital heart disease (CHD), due to its wide spectrum of anomalies and its complexity. This review
provides an overview of 3D-printed models in pediatric CHD, with a focus on educational value for
medical students or graduates, clinical applications such as pre-operative planning and simulation of
congenital heart surgical procedures, and communication between physicians and patients/parents of
patients and between colleagues in the diagnosis and treatment of CHD. Limitations and perspectives
on future research directions for the application of 3D printing technology into pediatric cardiology
practice are highlighted.

Keywords: three-dimensional printing; congenital heart disease; children; model; personalized
medicine; application

1. Introduction

Three-dimensional (3D) printing technology is being increasingly used in the medical
field, with studies documenting its application in a range of areas, from its original applica-
tion in maxillofacial and orthopedic surgery to cardiovascular disease [1–12]. Extensive
research has proved the usefulness and established the clinical value of 3D-printed models
in maxillofacial surgery and orthopedics. Meanwhile, the investigation of 3D-printed mod-
els for use in cardiovascular disease is an emerging but rapidly growing area with research
that has confirmed its great potential in this domain. High-quality 3D-printed models
derived from cardiac images such as computed tomography (CT), magnetic resonance
imaging (MRI) and echocardiography are highly accurate in replicating normal cardiac
anatomy and pathology, thus serving as a valuable and complementary tool to current
image visualizations in the diagnostic assessment of cardiovascular disease [13–35].

Of various cardiovascular abnormalities, congenital heart disease (CHD) represents
a very challenging area due to the complexity of the congenital anomalies, the broad
spectrum of conditions and the high variability between individuals. In the pediatric
sub-specialization, a basic understanding of common CHD is necessary and plays an
important role in clinical decision making and patient management. However, the standard
visualization techniques, including cardiac CT, MRI and echocardiography, are limited in
their ability to convert 2D images into a 3D object on a flat screen and so do not allow full
comprehension of complex intracardiac anatomy and defects [19,36]. To overcome these
limitations, 3D-printed physical models demonstrate superior advantages and strengths
over the current image visualizations by providing realistic 3D representations of the spatial
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relationships between these cardiac structures and abnormal changes that are difficult to
acquire on traditional 2D and 3D image reconstructions. In addition to its enhancement
in understanding complex anatomy, 3D-printed heart models serve as a valuable tool
to guide surgical planning, to train junior or inexperienced pediatric residents, and to
educate healthcare professionals or parents of patients [13–26,28–35]. This review aims to
provide a summary of the current applications of 3D-printed models in pediatric CHD,
and highlights limitations and future research directions about 3D printing in pediatric
cardiology practice. The reason we focus on pediatric CHD is due to the increased use of
3D printing technology in CHD, in particular in the field of pediatric CHD where the rarity
of pathology and the smaller size of the patients present challenges for clinicians in the
diagnosis and management of CHD conditions. Three-dimensional-printed heart models
with the unique advantage of an improved demonstration of complex cardiac defects at
high fidelity could overcome these challenges. It is expected that this comprehensive review
of the current literature on 3D printing in pediatric CHD will provide readers with a useful
resource about the clinical value and applications of 3D-printed models in pediatric CHD.

2. Generation of 3D-Printed Heart Models

The steps from processing the original 2D digital imaging and communications in
medicine (DICOM) images to 3D volume data, and from there to the segmentation of
the image is well explained in the literature, and usually involves semi-automatic along
with manual editing processes. Figure 1 shows a flow chart representing the creation of
a 3D-printed heart model from an example of cardiac CT images. In general, to ensure
the quality of the 3D-printed model, high resolution imaging data comprises an essential
component in the production of an accurate 3D-printed model. Cardiac CT is the most
commonly used modality in 3D printing due to its high spatial resolution, although cardiac
MRI and echocardiography are also used in some studies when printing CHD models [37].
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Figure 1. Steps to generate 3D printed heart models. CTA-computed tomography angiography,
CMR-cardiac magnetic resonance. Reprinted with permission under the open access from Sun
et al. [7].

Mimics is the most commonly used commercial software tool in image post-processing
of 3D datasets for 3D printing, while 3D Slicer is an open-source tool commonly used
for segmentation of volumetric data for 3D printing. Usually, hollow heart models are
generated to show both outside and inside views of cardiac anatomy and pathology as
shown in Figure 2, while blood pool models can also be printed to accurately demonstrate
the spatial relationships between cardiac structures [38] as shown in Figure 3.
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Figure 2. Three-dimensional-printed heart model of a case with Tetralogy of Fallot (ToF). (A): The
model was printed in one piece. (B): The model was printed in two halves (with the same material,
Agilus30, but different colors) showing the internal cardiac chambers and vascular abnormalities.
Arrows indicate the pulmonary artery stenosis. AO—aorta (overriding aorta); PA—pulmonary artery;
RV—right ventricle.
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Figure 3. Three-dimensional printing of the blood pool and myocardium (showing inside views of
cardiac structures at different angles) models for eight typical CHD cases (a–h). (a1–h1) are blood
pool models, while (a2–h2) are myocardium models showing internal cardiac structures. Case 1:
congenital corrected transposition of the great arteries. Case 2: double outlet right ventricle. Case
3: Williams syndrome. Case 4: coronary artery fistula. Case 5: Tetralogy of Fallot. Case 6: patent
ductus arteriosus. Case 7: coarctation of the aorta. Case 8: ventricular septal defect. Reprinted with
permission under the open access from Liang et al. [38].
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3. Accuracy of 3D-Printed Heart Models Derived from Imaging Modalities

Three-dimensional-printed models must accurately replicate anatomical details with
high accuracy so that the models can be reliably used for different purposes. Current
research has shown a very small difference between 3D-printed models and original source
imaging data, whether they are acquired with CT, echocardiography, MRI or rotational
angiography. Table 1 summarizes the findings of dimensional measurements between a
3D-printed model and the original source images based on the current literature [39–45]. It
is noted that the mean difference in dimensional measurements between 3D-printed models
and original images is less than 0.5 mm indicating the high accuracy of the 3D models, with
excellent correlations between different observers and measurement approaches.

Table 1. Accuracy of 3D-printed heart model in comparison with original source images according to
the current literature. Modified from Lee et al. [39].

Studies No. of 3D-Printed
Models Comparisons Mean Difference (mm) Analysis Method

Lee et al. [39] 3

3D model vs. original CT
3D model vs. CT of 3D model

3D model vs. STL files
Original CT images vs. STL files

0.21 ± 0.37 mm
−0.11 ± 0.47 mm

0.1 ± 0.28/
0.17 ± 0.48 mm

0.12 ± 0.23/
0.12 ± 0.25 mm

Pearson’s correlation/
Bland–Altman plot

Valverde et al. [40]
40 (20 selected for

accuracy
comparison)

3D model vs. both CT and MRI
3D model vs. original CT

3D model vs. original MRI

0.27 ± 0.73 mm
−0.16 ± 0.85 mm
−0.30 ± 0.67 mm

Bland–Altman plot

Olejník et al. [41] 8
CT images vs. STL 0.19 ± 0.38 mm Bland–Altman plot

3D model vs. in vivo 0.13 ± 0.26 mm

Olivieri et al. [42] 9 3D model vs. echo 0.4 ± 0.9 mm
Pearson’s

correlation/
Bland–Altman plot

Lau et al. [43] 1 3D model vs. CT 0.23 mm Pearson’s correlation

Mowers et al. [44] 5
2D echo vs. digital 3D 0 mm Pearson’s correlation/

Bland–Altman plot2D echo vs. 3D model 0.3 mm

Parimi et al. [45] 5 3D model vs. rotational
angiography

No significant difference between 3D
models and biplane angiography

measurements (p = 0.14)

Pearson’s correlation/
Bland–Altman plot

DICOM—digital imaging and communications in medicine, CT—computed tomography, MRI—magnetic reso-
nance imaging, STL—standard tessellation language.

4. Three-Dimensional-Printing Materials for Printing Patient-Specific Models

While commonly used 3D printers including fused deposition modelling (FDM),
stereolithography (SLA), polyjet and selective laser sintering (SLS) are the most well known
printers in the literature. Printing materials play an important role in determining the final
printed models that are most appropriate to serve the purpose of different applications.
The models can be printed with rigid materials (such as polylactic acid, rigid resin and rigid
photopolymer (VeroClear)) as shown in many early studies [37], however, for printing heart
or vascular models, soft and elastic materials with tissue properties similar to normal heart
or vascular tissues are more important for the production of realistic heart models. Elastic
materials include thermoplastic polyurethane (TPU), Tango materials such as TangoPlus,
TangoGray, and Agilus A30 and Visiject CE-NT, and show great promise in printing CHD
models. This is especially important when using 3D-printed models to simulate cardiac
surgery or interventional cardiac procedures, as operators need to acquire similar tactile
experience when performing simulation procedures on realistic 3D printed models [37].
Figure 4 is an example of a 3D-printed aorta model using Visijet CE-NT A30 material, a
material which is soft and elastic and has the same tissue properties as cardiovascular
tissues [46].
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Figure 4. Three-dimensional-printed type B aortic dissection model for simulation of endovascular
aortic repair of type B aortic dissection. The printing material was Visijet CE-NT A30. An aortic stent
graft was placed into the true lumen of the 3D-printed model (A) with axial (B) and caudal views (C)
showing the proximal aortic arch and vessels. Reprinted with permission under the open access from
Wu et al. [46].

The cost of the printing materials is a key factor that could hinder the widespread use of
3D printing in clinical practice. It has been reported that the use of low-cost printed models
is feasible and accurate for the determination of CHD cases [19,47,48]. A recent study
has further confirmed the accuracy and clinical value of using low-cost 3D printed CHD
models [49]. Lau et al. selected a CHD case of double outlet right ventricle (DORV) with
models printed using low-cost TPU 95A (AUD $50) and high-cost TangoPlus (AUD $300),
respectively. Both materials are flexible, although the TPU material is not as flexible as
TangoPlus. Contrast-enhanced CT scans were performed on these 3D-printed models
and measurements were conducted at 10 different anatomical locations to compare the
model’s accuracy to that of the original CT images (Figure 5). Their results show a strong
correlation between measurements from both 3D-printed models and original CT images.
Further, these two models were ranked with the same scores by clinicians, wherein both the
authors of the study and then the clinicians perceiving the same clinical value or efficacy.
Gomez-Ciritza et al. reported the same findings based on their seven-year experience of
using low-cost 3D-printed heart models [21]. The authors produced 138 models based on
cardiac CT or MRI images in patients with CHD with the mean cost of each model being
85 euro. These 3D-printed heart models were used in different applications from surgical
planning of CHD and interventional procedures to education and communication with
patients, colleagues and relatives.

133



Children 2023, 10, 319
Children 2023, 9, x FOR PEER REVIEW 7 of 28 
 

 

   

(A) (B) 

 

(C) 

Figure 5. Three-dimensional-printed CHD models with the use of different materials for comparison
of model accuracy. (A): Three-dimensional CT volume rendering of the 3D-printed models showing
similar anatomical details. (B): Two-dimensional axial CT views of the 3D printed models. (C): Inside
view of cardiac chambers and aortic structures on both models. The white model is printed with TPU,
while the yellow model is printed with TangoPlus. Arrows refer to the subaortic ventricular septal
defect.
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The specific purpose of the 3D-printed CHD models determines the selection of appro-
priate printing materials. For example, if 3D-printed models are used for the educational
purpose of learning cardiac anatomy and pathology, rigid or relatively soft and low-cost
materials are acceptable. If the 3D-printed models are primarily used for pre-surgical plan-
ning or simulation of complex cardiac procedures, soft and elastic materials (or high-cost
materials) with tissue properties similar to normal cardiovascular tissues are necessary to
allow users to gain learning experience on the 3D models prior to operating on patients.

5. Educational and Clinical Value of 3D-Printed Heart Models in CHD

Three-dimensional-printed models are useful in medical and clinical education as the
3D-printed personalized models demonstrate superior advantages over current image vi-
sualization tools for the enhancement of students and medical graduates’ understanding of
the complex 3D cardiac anatomy and pathology. Of the current applications of 3D printing
in cardiovascular disease, 3D-printed CHD models represent the most common application
in medical education according to the current literature [37,50–53]. Studies have provided
strong evidence in support of the use of 3D-printed models in CHD education, both for
medical students, medical graduates (pediatric residents) and healthcare professionals.

Table 2 summarizes representative studies reporting the educational and clinical
value of 3D-printed models in pediatric CHD. These studies have shown that 3D-printed
heart models significantly enhance medical students, pediatric residents, clinicians and
pediatric cardiac nurses’ knowledge in learning normal cardiac anatomy and CHD
(Figure 6) [25,26,28–31,33–35,38,54,55]. Three-dimensional-printed CHD models were rated
highly in terms of their accuracy and satisfaction scores by the study or experimental
groups when compared with the control groups, and this is particularly obvious when
assessing the complex CHD in comparison with simple CHD [34]. In their recent report,
Lau and Sun did not show significant improvements in knowledge retention among second
and third year medical students when 3D-printed CHD models were compared with the
current teaching methods using DICOM images and digital 3D heart models, although
slightly higher scores were achieved in the 3D printing group (Figure 7) [25].
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during VR visualization, while AR is different from VR with virtual objects overlaying on 

the real world. MR extends the ability of VR and AR by allowing the user to interact with 

combined virtual and real objects (such as 3D-printed physical models) [56–60]. Figure 8 
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AR. 

Figure 7. Boxplot showing the scores (out of 20) of quizzes one and two in 3D printing and control
groups for 3DPHM-3D printed heart model. Reprinted with permission under the open access from
Lau and Sun [25].

Another innovative tool in CHD education is the use of either virtual reality (VR),
augmented reality (AR) or mixed reality (MR) as an alternative to 3D-printed models in
education and pre-surgical planning of CHD. A user is immersed in a virtual environment
during VR visualization, while AR is different from VR with virtual objects overlaying on
the real world. MR extends the ability of VR and AR by allowing the user to interact with
combined virtual and real objects (such as 3D-printed physical models) [56–60]. Figure 8
shows the workflow of these visualization technologies including 3D printing, VR and AR.
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VR, AR and MR can be used for education, planning and simulation of CHD surgical
procedures. In their recent review, Barteit et al. analyzed 27 studies with applications of AR
and MR mainly in surgery planning (48%) and anatomy learning (15%) [61]. Lau et al. also
reported the similar value of VR as opposed to 3D printing for CHD medical education
through the assessment of four selected CHD cases by 29 participants [30]. VR was ranked
as the most useful tool in these two areas when compared with 3D-printed models, though
no significant differences were found between these two modalities. More than 70% of
participants indicated that VR and 3D-printed models offered additional benefits over
conventional image visualizations. In their randomized controlled trial (RCT), Patel et al.,
compared VR with desktop 2D views of CHD cases, with 24 and 27 participants allocated
to each group, respectively [58]. Participants’ impressions of CHD education with the aid
of VR was 29% higher than the desktop group (p = 0.01). This study shows that VR may
increase learner’s engagement in understanding CHD.

Factors that could limit the use of 3D printing technology on a daily basis include
image post-processing and segmentation time, as well as printing cost issues, hence, VR
could be a potential alternative to 3D printing in medical education for CHD, and this has
been confirmed by Raimondil and colleagues [62]. Investigators compared 3D printing, 3D
PDF and VR in three cases of CHD and asked a senior pediatric cardiac surgeon to assess
the performance of these three modalities in visualizing anatomical structures. The median
post-processing time to generate VR models was only 5 min which is significantly shorter
than the 8 h for 3D models (3D printing and 3D PDF) (Figure 9). Their study shows the
feasibility of generating VR views directly from the raw imaging data without undergoing
any preliminary segmentation process. This could be a promising technique for routine
clinical application where 3D printing facilities are not available.
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6. 3D-Printed Models in CHD: Clinical Applications

Clinical value of 3D-printed models in CHD has been confirmed by a number of
studies which are most commonly based on single center experiences or some case
reports [21,23,39,63–83]. The clinical applications comprise three main areas, including
pre-surgical planning of congenital heart surgery, simulation or training of congenital heart
surgery procedures, and enhancing physician–patient or between colleagues’ communica-
tion through use of personalized 3D-printed heart models.
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6.1. Pre-Surgical Planning of CHD Surgery

Table 3 summarizes the current literature regarding the use of 3D-printed models in
the surgical treatment of pediatric patients with CHD. These studies showed that the use of
3D-printed heart CHD models assisted pre-surgical planning, with up to 50% of surgical
decisions changed by 3D-printed models according to a multi-center study [40]. Similarly, a
number of studies reporting their single center experience with inclusion of either small or
large number of cases also confirmed the usefulness of 3D-printed heart models in guiding
surgical procedures in the management of pediatric CHD [21,23,63–67]. Two studies by
Gomez-Ciriza and Ryan et al. presented their seven- and three-year experiences with more
than 100 3D heart models printed in their clinical practices [21,65]. Gomez-Ciriza and
colleagues reported similar findings to Valverde et al. [40], in which about 48% of surgical
planning was modified with aid of 3D-printed heart models (Figure 10) [21]. In contrast,
based on a three-year experience, Ryan et al. did not show significant differences between
3D-printed models (79 models of different CHD types) and standard of care in surgical
planning of CHD [65].
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6.2. Hands-on Surgical Training for Congenital Heart Surgery Procedures and Medical Education

Congenital heart surgery is a technically challenging field of in pediatrics because
of the wide variation of CHD, the rarity of each pathology and the smaller size of the
patients. These technical challenges place strong demands for the development of ap-
propriate training programs for surgical trainees to acquire technical skills comparable
to experienced surgeons. Three-dimensional-printed heart models with high fidelity for
replicating complex anatomy serve as a valuable simulation-based training program for
surgical trainees to develop their technical skills prior to performing operations on patients.
The hands-on surgical training (HOST) course enables participants to perform surgical
procedures on 3D-printed models [68–70,84]. In their recent review, Hussein et al. analyzed
five studies, with three of these using 3D-printed models for the simulation of congenital
heart surgery [68,84–86]. These studies supported the idea of using 3D-printed models to
prepare surgeons for the simulation of various congenital heart surgery procedures with
efficacy.

Table 4 is a summary of studies documenting single center experience of how 3D-
printed heart models have been used as a HOST course for congenital heart surgery and
medical education [68,85–90]. In addition to successfully simulating congenital heart
surgery procedures and achieving high satisfaction scores from the participants who ac-
quired the technical skills, 3D-printed models are also useful for simulating interventional
cardiac procedures (Figures 11 and 12) [21,88]. The education of medical students and
clinicians is another area that has proved the potential value of incorporating 3D-printed
models into medical curricula and clinical practice, through HOST courses [84,88,89]. Hon
et al. have reported the value of HOST courses for preparing preclinical medical students
to work as surgical assistants, as well as consultant cardiac surgeons when performing con-
genital heart surgery simulations on 3D-printed models [89]. Their results show that early
exposure and incorporation of HOST simulation into medical curricula could stimulate the
interest of medical students in pursuing highly specialized fields such as congenital heart
surgery (Figure 13). Similar findings have been reported by Olivieri et al., who recruited 70
participants for training sessions involving the performance of congenital heart simulation
procedures [90]. Three-dimensional-printed models were assessed to be more useful than
standard hands-off (8.4 out of 10) training instruments, and served as reliable simulation
training tools for congenital cardiac intensive care clinics and enhanced interdisciplinary
team communication.
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medical education [68,85–90]. In addition to successfully simulating congenital heart sur-

gery procedures and achieving high satisfaction scores from the participants who ac-
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et al. have reported the value of HOST courses for preparing preclinical medical students 

to work as surgical assistants, as well as consultant cardiac surgeons when performing 

congenital heart surgery simulations on 3D-printed models [89]. Their results show that 
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genital heart surgery (Figure 13). Similar findings have been reported by Olivieri et al., 
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be more useful than standard hands-off (8.4 out of 10) training instruments, and served as 

reliable simulation training tools for congenital cardiac intensive care clinics and en-

hanced interdisciplinary team communication. 

 

Figure 11. Catheterization applications. Left image shows the fluid inlets and outlets to superior 

and inferior vena cava and aortic arch/branches, respectively. Interventional planning with 3D-

printed model (up right) and real intervention in the patient (down right). Reprinted with permis-

sion under the open access from Gomez-Ciriza et al. [21]. 

Figure 11. Catheterization applications. Left image shows the fluid inlets and outlets to superior and
inferior vena cava and aortic arch/branches, respectively. Interventional planning with 3D-printed
model (up right) and real intervention in the patient (down right). Reprinted with permission under
the open access from Gomez-Ciriza et al. [21].
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Figure 12. Fluoroscopic visualization of balloon dilatation of valvular stenosis with use of a 3D-

printed heart model. (A) Balloon dilatation for treatment of a valvular aortic stenosis (AS). (B) Bal-

loon dilatation for treatment of a valvular pulmonary stenosis (PS). Reprinted with permission un-

der the open access from Brunner et al. [87]. 

 

Figure 13. Example of simulation of Tetralogy of Fallot repair on a 3D-printed heart model. Re-

printed with permission under the open access from Hon et al. [89]. 

Figure 12. Fluoroscopic visualization of balloon dilatation of valvular stenosis with use of a 3D-
printed heart model. (A) Balloon dilatation for treatment of a valvular aortic stenosis (AS). (B) Balloon
dilatation for treatment of a valvular pulmonary stenosis (PS). Reprinted with permission under the
open access from Brunner et al. [88].
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Figure 13. Example of simulation of Tetralogy of Fallot repair on a 3D-printed heart model. Re-

printed with permission under the open access from Hon et al. [89]. 
Figure 13. Example of simulation of Tetralogy of Fallot repair on a 3D-printed heart model. Reprinted
with permission under the open access from Hon et al. [89].

6.3. Improving Physician–Patient Communication/Facilitating Communication with Colleagues

Physician–patient communication plays an important role in the clinical setting with
patients’ compliance and satisfaction with physicians having an impact on clinical out-
comes [91]. Visual aids are commonly used in clinical practice for physicians to explain
information to patients regarding the disease condition and treatment options [92]. How-
ever, conventional approaches of using 2D diagrams make it difficult for patients to imagine
a 3D structure, and this is particularly challenging in CHD as patient and family tend to not
possess adequate knowledge and understanding of complex heart anatomy or congenital
defects. Three-dimensional-printed models have overcome this limitation by presenting a
physically touchable model to the patient with improved understanding of both anatomy
and pathology, thus enhancing communication between a physician and their patient and
between a physician and their colleagues.

A number of studies have reported the value of using 3D-printed models in improving
physician–patient communication. In their recent review, Traynor et al. analyzed 19 studies
about the use of 3D printing technology in patient communication [93]. Of these studies,
seven documented findings on cardiology and cardiovascular surgery [43,50,64,94–97], of
which four studies were conducted by the same research group [94–97]. Results of these
studies confirm that 3D-printed models helped communication with patients/parents and
with colleagues (Figure 14), with a significant improvement in knowledge or understanding
of the CHD condition, and overall satisfaction. This was confirmed by a recent study
comparing 3D-printed heart models with MR in CHD [98]. The 3D-printed heart models
were ranked as the best modality by 90% of participants (30 out of 34 physicians surveyed)
and the most preferred communication tool with patients when compared with original
DICOM and MR (p < 0.01).
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Figure 14. Survey responses show that 3D-printed models were most useful in improving commu-

nication with colleagues. Reprinted with permission under the open access from Illmann et al. [50]. 

Deng and colleagues conducted a RCT to study the clinical value of 3D-printed heart 

models in surgical consent for CHD repair [99]. Guardians of 40 patients with elective 

Figure 14. Survey responses show that 3D-printed models were most useful in improving communi-
cation with colleagues. Reprinted with permission under the open access from Illmann et al. [50].

Deng and colleagues conducted a RCT to study the clinical value of 3D-printed heart
models in surgical consent for CHD repair [99]. Guardians of 40 patients with elective
perimembranous ventricular septal defect (VSD) repair were invited to participate in the
study with 20 allocated to the control and study groups, respectively. The control group
received information about VSD condition and surgical indications as well as potential
complications with the aid of the current approach using 2D charts, while the study group
received the same information but using a 3D-printed model of the heart with VSD to assist
explanation of these details. Results show significant improvements in their understanding
of the VSD anatomy and the surgical procedures and potential complications (p = 0.02 for
all of them) in the study group when compared with the control group, although there
was no significant difference in overall ratings of the consent process (p = 0.09). This study
represents the first RCT that quantifies the benefits of 3D-printed models in surgical consent,
although further research with inclusion of other types of CHD conditions is needed.

7. Limitations, Challenges and Future Directions

In recent years, we have observed significant progress in the use of 3D printing
technology in cardiovascular disease, with studies reporting its educational and clinical
value in CHD (either educational approaches, or diagnostic methods based on 2D/3D
image visualizations and standard training programs). The current evidence has proved
that 3D-printed models are highly reliable and accurate in replicating cardiac anatomy and
pathology (Table 1). Three-dimensional-printed models can be used as a beneficial tool in
treating both adults and children with CHD [50,100]. However, the widespread application
of 3D printing technology in pediatric cardiology practice is still hindered to a large extent
by some limitations and barriers which need to be considered.

First, access to 3D printing facilities is limited, according to a recent international
survey [50]. Illmann et al. surveyed 71 pediatric cardiologists from five continents seek-
ing their opinions on the use of 3D-printed heart models in treating CHD patients and
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their access to 3D printing technology in their clinical practices. They noticed significant
differences in access to 3D printing technology depending on the geographic location of
the respondent, with pediatric cardiologists from the USA having more than five-times
more access to 3D printing technology than their Canadian colleagues (p = 0.004). Financial
barriers and preference for standard imaging modalities contribute as main reasons for
limited access to 3D printing technology.

The cost of printing materials is another factor that limits its application in many
practices. While low-cost 3D-printed models are acceptable for most of the educational
and clinical applications [21,49], high-cost 3D-printed models are necessary for the HOST
course because of the necessity to print heart models with very soft and flexible materials
which enable the participants to develop tactile experience while simulating congenital
heart surgery procedures. Agilus30 from Stratasys is currently the preferred material for
3D-printed heart models suitable for CHD surgery simulations (Table 4), but high cost is
the main obstacle. Hussein et al. pointed out that 3D-printed model costs per trainee per
year up can be as much as US$7500 when adopting the HOST program into congenital
heart surgery curriculum [85]. Therefore, further cost reductions are necessary before the
use of 3D-printed heart models as a training/simulation tool becomes a reality on a large
scale in the near future.

Second, despite significant improvements in 3D printing technology over the last
decades, the turnaround time could take several hours or even longer, including steps
from initial image post-processing to printing and cleaning of the physical models. This
could delay the patient treatment, especially when 3D-printed models are used for pre-
surgical planning purposes. When 3D printing facilities are not accessible due to financial
barriers, selection of VR or MR could be an alternative to 3D printing technology as
these 3D innovative tools provide the same, or improved, advantages in terms of 3D
visualization for the more efficient comprehension of CHD as opposed to 3D-printed
models [30,61,98]. In their recent study, Lau et al. compared 3D-printed heart models
with MR and original DICOM images in two selected pediatric CHD scenarios (ASD and
VSD) with the clinical value of these modalities assessed by 34 cardiac specialists and
physicians [98]. Their results show that MR was scored as the best modality in most of
the clinical applications. This study further proves the potential value of using MR in
pediatric cardiology practice when dealing with patients with CHD. Currently, it costs
around AUD $600 and AUD $5500 to purchase an Oculus Quest 2 and Microsoft HoloLens
for VR and MR demonstrations, respectively. Given the costs associated with 3D printers
(including equipment setup, lab space to host the printers and technical support, etc.),
printing materials and post-processing steps involved, VR and MR could be a cost-effective
alternative to 3D printing technology in medical applications. Future studies are needed
to compare the costs of VR/MR (multiple consoles are required for different users) and
3D-printed models (3D models can be handled by multiple students/users at the same
time) in these applications.

Third, the majority of the current studies is based on case series or relatively small
sample sizes (Tables 2–4), while robust studies such as RCT or multi-center studies are
lacking. This could be due to several reasons, including the fact that 3D printing in pediatric
cardiology is an emerging area with more evidence needed to prove its educational and
clinical value in pediatric CHD before it is widely accepted. As highlighted previously,
limited access to 3D printing facilities or financial barriers could explain the fact that most
of the studies are case reports or case series. Further, follow-up studies are scarce, hence
future studies need to focus on investigations of patient outcomes (mid- to long-term), on
the way that 3D-printed models contribute to patient management and on whether it is a
cost-effective approach when compared with the current or standard methods in pediatric
cardiology practice.

Recent developments in 3D printing technology have made it possible to print biocom-
patible materials, cells and cardiovascular constructs into 3D tissues so that it now plays
an important role in the treatment of pediatric congenital heart defects [101–104]. Three-
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dimensional bioprinting offers the potential to develop 3D cardiovascular tissue/organ
structures with optimized microenvironments that include cellular morphologies and struc-
tures, with research evidence showing the capability of printing complex cardiovascular tis-
sue constructs such as vascular grafts, myocardium and heart valves (Figure 15) [105–107].
With the use of 3D bioprinting technology, it is feasible to print a full-size model of the
human heart [108,109]. Although these 3D-printed heart chambers had chamber-like con-
tractile function and physiological features, they did not contain all of the main cardiac
structures, such as endothelial cells and fibroblasts. Thus, it is still not clinically feasible to
directly translate 3D-printed cardiovascular tissues to patient therapy. Further technologi-
cal advancements in 3D bioprinting could overcome these limitations and challenges and
there is no doubt that 3D bioprinting represents an exciting future in treating congenital
heart disease and other anomalies.
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In summary, 3D printing technology as an exciting and rapidly evolving field has
revolutionized our current practice in the diagnosis and management of pediatric patients
with CHD. Use of 3D-printed models has augmented the traditional visualization tools
when diagnosing and assessing CHD conditions. Research from the current literature
has shown that patient-specific 3D printed models serve as a valuable educational tool
in learning anatomy and congenital heart defects. Three-dimensional-printed models are
of great value in assisting surgical planning and simulation of congenital heart surgery
procedures, thus greatly improving surgical care and patient management. Through the
use of a hands-on surgical training program, 3D-printed personalized models significantly
enhance surgical trainees’ skills and confidence in performing complex cardiac operations.
This has a significant clinical impact since successful simulation of congenital heart surgical
procedures will result in high operation success rates with lower risks or complications
when performing on patients, and thus improving patient outcomes. Three-dimensional-
printed models can be used as a more effective tool than the images or diagrams that
are currently used during physicians’ communication with patients or with colleagues
when dealing with pediatric CHD. To achieve the goal of implementing 3D printing
technology into pediatric cardiology practice, a close collaboration between stakeholders
and researchers is essential. This ensures that their knowledge and skills in the development
of 3D-printed models are fully utilized and maximized to assist the delivery of personalized
medicine, thus contributing to an optimized diagnostic strategy and clinical decision-
making in pediatric patients with CHD.
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