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Preface to “Numerical and Evolutionary Optimization

2021”

This volume was inspired by the 9th International Workshop on Numerical and Evolutionary

Optimization (NEO 2021) held—due to the COVID-19 pandemic—as an online-only event from 8 to

10 September 2021. Solving scientific and engineering problems from the real world has always been

a challenge, and the complexity of these tasks has only increased in recent years as more sources

of data and information are continuously developed. That is why the development of powerful

search and optimization techniques is of great importance. Two well-established fields focus on this

duty; they are (i) traditional numerical optimization techniques and (ii) bio-inspired metaheuristic

methods. Both general approaches have unique strengths and weaknesses, allowing researchers to

solve some challenging problems but still failing in others. The goal of the NEO workshop series is

to gather people from both fields to discuss, compare, and merge these complementary perspectives.

Collaborative work allows researchers to maximize strengths and to minimize the weaknesses of both

paradigms. NEO also intends to help researchers in these fields to understand and tackle real-world

problems like pattern recognition, routing, energy, lines of production, prediction, modeling, among

others.

This volume consists of 11 chapters that we will shortly summarize in the following. The order

of the chapters is organized chronologically by the publication of the respective research papers in

Mathematical and Computational Applications (MCA).

In Chapter 1, Dell’Amico and Magnani consider a pallet loading problem subject to stability

requirements for which they propose a novel two phase metaheuristic approach. Computational

experiments on real-life instances are used to assess the effectiveness of the algorithm.

In Chapter 2, Arcolezi et al. use machine learning techniques to predict the ambulances’ response

times (ART) of emergency medical services (EMS). Geo-indistinguishability was applied to sanitize

each emergency location data. As shown in the results, the sanitization of the location data and the

perturbation of its associated features (e.g., city, distance) had no considerable impact on predicting

ARTs.

In Chapter 3, Pérez-Rodrı́guez proposes a new hybrid estimation of distribution algorithm

(EDA) designed to tackle the quay crane scheduling problem (QCSP). The resulting hybrid algorithm

uses a distance based ranking model together with the moth-flame algorithm. Numerical results

indicate that this new approach yields better performance, or at least equal in effectiveness, than the

so-called pure EDAs.

In Chapter 4, Pury proposes a new indicator to determine when emergency medical services

(EMS) might reach a critical condition, when all service providers are busy and unable to respond to

a new request. Such a scenario is crucial for EMS providers to take appropriate steps to avoid such a

condition, with potentially life altering results. The usefulness of the proposed indicator is validated

using simulations, with promising results that demonstrate its applicability in real-life scenarios.

In Chapter 5, Enrı́quez Zárate et al. study the problem of erosion in wind turbine blades,

an important real-world issue regarding the efficiency and health of eolic energy generation.

Determining the impact and presence of erosion, especially at the tip of the blades, is critical for

proper maintenance and fault diagnosis. The work is based on the QBlade simulator to perform

aerodynamic analysis and apply machine learning to predict and quantify the amount of erosion on

different parts of the blade tip. The contribution is also unique because of the use of AutoML for the

first time in this domain.

In Chapter 6, Cerrada et al. also study fault diagnosis in mechanical systems with AutoML,

ix



focusing on gearboxes that are widely used in industrial systems. Their work studies how different

AutoML systems perform in generating machine learning pipelines to detect the severity level

of different types of faults in these systems. It is shown that AutoML is competitive to the

state-of-the-art, and the authors also analyze how AutoML performs feature selection in this domain,

showing that different AutoML systems tend to converge towards very similar feature subsets.

In Chapter 7, Esqueda-Elizondo et al. present a methodology based on electroencephalographic

(EEG) signals for attention measurement of a 13-year-old boy diagnosed with autism spectrum

disorder (ASD). The authors claim that these findings allow to develop better learning scenarios

according to the person’s needs with ASD, and further, that it allows to obtain quantifiable

information on their progress to reinforce the perception of the teacher or therapist.

In Chapter 8, Carmona-Arroyo et al. propose a grouping genetic algorithm (GGA) to deal

with decomposition of the decision variables in order to efficiently tackle large-scale optimization

problems. Although the cooperative co-evolution approach is widely used to deal with unconstrained

optimization problems, there are few works related to constrained problems. The authors present

results on 18 constrained functions with up to 1000 decision variables. These results indicate that

a GGA is an appropriate tool to optimize the variable decomposition for large-scale constrained

optimization problems, outperforming the decomposition obtained by a state-of-the-art genetic

algorithm.

In Chapter 9, Contreras-Luján et al. consider several machine learning (ML) models in order to

improve the diagnosis of deep venous thrombosis (DVT). In particular, the authors focus on their

implementation on an edge device for the development of instruments that are smart, portable,

reliable, and cost-effective. It is shown on data taken from literature that, compared to traditional

methods, the best ML classifiers are effective at predicting DVT in an early and efficient manner.

In Chapter 10, Jain et al. consider ANFIS-Type methods in simulation of systems in marine

environments. More precisely, the authors compare various artificial intelligence algorithms along

with multivariate regression models to find the best fit model emulating effluent discharge and to

determine the model with the least computational time. Tt is found that ANFIS-PSO performs better

compared to the other considered models.

Finally, in Chapter 11, Pintér et al. address the problem to compute the conjectured sequence

of largest small n-polygons. To this end, the authors develop high-precision numerical solution

estimates of the maximal areas. Results are shown for n up to 1000, with demonstrably high precision.

We warmly thank all participants at NEO 2021 as well as all authors who submitted a work to

this special issue. We hope that this book can be a contemporary reference regarding the field of

numerical evolutionary optimization and its exciting applications.

Marcela Quiroz-Castellanos, Luis Gerardo de la Fraga, Adriana Lara, Leonardo Trujillo, and

Oliver Schütze

Editors
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Abstract: We consider the distributor’s pallet loading problem where a set of different boxes are
packed on the smallest number of pallets by satisfying a given set of constraints. In particular, we
refer to a real-life environment where each pallet is loaded with a set of layers made of boxes, and
both a stability constraint and a compression constraint must be respected. The stability requirement
imposes the following: (a) to load at level k + 1 a layer with total area (i.e., the sum of the bottom
faces’ area of the boxes present in the layer) not exceeding α times the area of the layer of level k
(where α ≥ 1), and (b) to limit with a given threshold the difference between the highest and the
lowest box of a layer. The compression constraint defines the maximum weight that each layer k can
sustain; hence, the total weight of the layers loaded over k must not exceed that value. Some stability
and compression constraints are considered in other works, but to our knowledge, none are defined
as faced in a real-life problem. We present a matheuristic approach which works in two phases. In
the first, a number of layers are defined using classical 2D bin packing algorithms, applied to a smart
selection of boxes. In the second phase, the layers are packed on the minimum number of pallets
by means of a specialized MILP model solved with Gurobi. Computational experiments on real-life
instances are used to assess the effectiveness of the algorithm.

Keywords: distributor’s pallet loading problem; heuristics; bin packing; real-life instances

1. Introduction

The distributor’s pallet loading problem (DPLP) is a topic of wide interest for operational
research and companies that deal with logistics, transport, and storage, in addition to
production that leads to small and medium-sized packaging.

The problem is to find the optimal loading of parallelepiped-shaped boxes, not nec-
essarily with the same sizes, on the fewest possible number of pallets, with predefined
dimensions and weight limit. We consider the special case where the loading of each pallet
is done by adding layers of boxes, one on top of the other. This case is very frequent in
real-life applications.

Achieving the goal of minimizing the number of pallets built in an acceptable time
means significantly reducing the costs due to the transport and storage of materials.

In practical problems, we have to deal with not only sizes but weights and the capacity
of boxes to sustain other boxes. In this paper, we consider the following properties, which
induce specific constraints:

• stability: that is, the property of a layer to sustain other layers, possibly with a
larger area;

• weight limit: the sum of the weights of all boxes loaded on a pallet, which must not
be greater than a certain limit given by the company;

• compression limit: capacity of a layer of boxes to support the weight of the boxes
above it.

DPLP is strongly NP-hard, since it is a generalization of the bin packing problem (BPP) [1–6].
In the BPP we are given N items, each characterized by a weight, and an infinite number
of bins of a given capacity. The problem is to load all the items in the minimum number

Math. Comput. Appl. 2021, 26, 53. https://doi.org/10.3390/mca26030053 https://www.mdpi.com/journal/mca
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of bins by respecting the capacity constraint. It is easy to see that the DPLP can model
the BPP by disregarding all constraints but the one referring to the total weight of a pallet
(bin capacity).

Since the 1960s, researchers and companies have deeply investigated the problem of
cutting-stock, which is very similar to the BPP. In fact, in the cutting-stock problem, it is
necessary to find a way to cut pieces of material, not necessarily with the same shapes and
sizes, minimizing waste [7,8].

For a classification of some types of packing problems, refer to [9,10]; in [11], a
review of the possible constraints most commonly used for packing and cargo problems
is presented.

The DPLP is a generalization of the manufacturer’s pallet loading problem (MPLP) [12,13],
which deals with the same objective function but loads identical boxes on pallets.

For discussions of problems with constraints deriving from real applications, similar
to the one in this paper, we refer to [14–21]. In particular, Ancora et al. [14] works with
a hybrid genetic strategy; in [15–18], the authors use, respectively, heuristics, greedy
approach, the genetic and differential evolution algorithm, and the branch and bound way
to solve the DPLP; Gzara et al. [19] exploits a layer-based column generation; and Ancora
et al. [14] works with a hybrid genetic strategy.

From a mathematical-modelling point of view, there is not much research that deals
with the packing problem nor with real constraints (weight limit, compression, and stacka-
bility) as seen in this treatise. Nonetheless, the problem of 3D packing is usually dealt with
by creating 2D layers, subsequently stacked on top of each other.

For a variant of this problem, the so-called container loading problem, which differs in
the fact that, in general, constraints limiting the possibilities of layers overlapping are not
explicit, we refer to [20–29]. (ILP strategy [23], GRASP method [20,24,25], heuristic way [27],
heuristic-genetic algorithm [28], heuristics and MILP method [26], layer-based greedy
strategy [21]).

We present in this paper a two-step algorithm to solve the pallet construction problem,
basing our tests on real commercial orders from a logistics company using automated robots
for creating and managing pallets. For similar work we refer to [30], which introduces
visibility and contiguity constraints.

2. Materials and Methods

We are given a set B of 3D boxes partitioned into types associated with boxes of
identical size, weight, and compression index. More specifically, let I denote the set of box
types, and let ni denote the number of identical boxes of type i ∈ I (with ∑i∈I ni = |B|).
Each box of type i has width wi ∈ Z∗

+, depth di ∈ Z∗
+, and height hi ∈ Z∗

+. Given a box
j ∈ B, we will denote with i(j) the type of box j. We are also given an arbitrarily large set
P of identical pallets. Each pallet has a two-dimensional loading surface of width W ∈ Z∗

+

and depth D ∈ Z∗
+, which can be used to load boxes up to a maximum height H ∈ Z∗

+. We
assume that wi ≤ W, di ≤ D, hi ≤ H, for each i ∈ I . Moreover, each box of type i has a
weight pi and a compression index ci that will be used to define the maximum weight the box
can support.

The problem requires assigning all the boxes to the pallets by restricting the loading to
layered solutions. A feasible packing of boxes on a pallet can be decomposed into subsets
of boxes each defining a layer, and the layers are loaded one over the other. More formally,
a layer is a subset of boxes which can rotate 90 degrees on their support surface whose basis
can be packed into a W × D rectangle.

Let us define as L the set of all the possible types of layers we could build with boxes
B. Observe that L has exponentially many elements, so we will adopt algorithms that
only consider a subset of these layers. A layer l ∈ L is given by the set of boxes assigned
to it, say Bl , and by a specific 2D packing of these boxes (more precisely, of the basis of
the boxes), whose total width must not exceed W, and whose total depth must not exceed

2
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D. Let Hl = maxj∈Bl
hi(j) denote the height of the layer, and let Al = ∑j∈Bl

hi(j)di(j) denote
the total area of the layer.

A layer built with boxes of the same height produces a planar surface (possibly with
some holes), on which we can load another layer. However, the practical experience of the
company has shown that it is not strictly necessary that the bottom layer has a perfectly
planar upper surface to be used as support for another layer: it is enough that this surface is
not too wavy. This can be translated into a simple requirement, imposing that the difference
in height of its boxes is small enough. More precisely, given a layer l, we impose

|hi − hj| ≤ Δh ∀i, j ∈ Bl , (1)

in which parameter Δh defines the maximum height difference allowed between two boxes
of a layer. We say that a layer for which (1) holds satisfies the stackability constraint. We
will consider this as a unique exception to the last layer of a pallet (top layer): since no
other layer will be loaded on the top one, the restriction on the difference of heights does
not have to be considered.

Another constraint for feasible loading of one layer over another regards the ratio of
the total areas of the boxes in the layer. It is obvious that if we load a layer with a large area
on a layer with a very small area, there is an issue with the stability of the overlying layer.
The stability constraint, defined by the inequality

Al ≥ αAm, (2)

requires loading layer m immediately over layer l, where α ≥ 1 is a given parameter.
To each layer l, an overall compression factor is also associated:

Cl =

{
minj∈Bl

ci(j)Al if l satisfies (1)
0 otherwise

(3)

giving the maximum total weight the layer can support. We will call this requirement
the compression constraint (see [14,18,19,21] for other studies that consider this constraint
in a similar way). Note that giving a zero compression factor to layers not satisfying (1)
implies that these layers can be only packed as the top layer of a pallet.

Resuming the above descriptions, the aim of the DPLP that we face is to load all boxes
into the minimum number of pallets by ensuring that the following constraints are satisfied:

c1. Numerosity constraint: all boxes in B must be packed;
c2. Height constraint: the sum of the heights Hl of all layers loaded on a pallet must not

exceed H;
c3. Stackability constraint: each layer, except the top one of each pallet, must be composed

by boxes satisfying (1);
c4. Stability constraint: each pair of layers m, l, with m loaded immediately over l, must

satisfy (2);
c5. Compression constraint: the total weight of all boxes in the layers loaded over a layer

l cannot exceed the compression factor Cl .

2.1. Creating 2D Layers

For the creation of the layers’ set L, we again use a two-step method. In the first
step, we partition the boxes into families of boxes with the procedure CREATEFAMILIES,
which takes as input the number of families f in which we want to divide the set of box
types and returns a partition I (1), . . . , I ( f ), where each family I (i) contains box types
whose heights differentiate at most by (1 + γ)Δh, and γ is a randomly selected small value.
Therefore, we say that a family almost satisfies requirement c3 (see (1)). In the second step,
we apply to these families 2D packing methods from the literature to create the layers.

Our algorithm BUILDLAYERS of Algorithm 1 uses procedure CREATEFAMILIES (see
Algorithm 2) and a set of heuristic algorithms 2D-H1, . . . , 2D-Hamax .

3
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Algorithm 1: Algorithm for creating the layers.
Algorithm BUILDLAYERS()
input: boxes B and their types I , pallets’ sizes
1. Sort the box types in I by non decreasing heights (i.e., h1 ≤ h2 ≤ . . . ,≤ h|I |)
2. L = ∅;
3. for f = fmin to fmax do
4. (I (1), . . . , I ( f )) = CREATEFAMILIES( f );
5. for i = 1 to f do
6. for a = 1 to amax do
7. pack the boxes in I (i) with heuristic 2D-Ha giving layers L
8. L = L ∪ L;
9. endfor
10. endfor
11. endfor
return L

Algorithm 2: Procedure for creating the box types families.
Procedure CREATEFAMILIES(number of families f )
1. Let n = |I |
2. Choose randomly γ ∈ [0, 3; 0, 5]
3. for j = 1, . . . , f do let ν(j) = RANDOM ((j − 1)�n/ f 	, min(j�n/ f 	, |I |))
4. I (1) = {1, . . . , ı} with ı = arg max{hi ≤ hν(1) +

1
2 (1 + γ)Δh}

5. for j = 2 to f − 1 do

6. I (j) = {ı, . . . , ı} with ı = arg min{hi ≥ hν(j) − 1
2 (1 + γ)Δh}

ı = arg max{hi ≤ hν(j) +
1
2 (1 + γ)Δh}

7. endfor
8. I ( f ) = {ı, . . . , n} with ı = arg min{hi ≥ hν(|I |) − 1

2 (1 + γ)Δh}
9. for j = 1 to f − 1 do
10. if I (j) ∩I (j + 1) �= ∅ then
11. I (j + 1) = I (j + 1) \I (j)
12. endif
13. endfor
14. foreach i ∈ I do
15. if i /∈ ∪ f

j=1I (j) then

16. assign i to the set with nearest pivot height
17. endif
18. endfor
return(I (1), . . . , I ( f ))

The loop ’for’ at line 3 of algorithm BUILDLAYERS calls CREATEFAMILIES a few times
with different values of the partition’s number, f , to create different families. At each family,
the 2D packing heuristics 2D-H1, . . . , 2D-Hamax are applied in turn, which produces layers
that are added to the layer set L. Note that due to the ‘almost’ satisfaction of requirement
c3, set L will contain both layers satisfying (1) or not.

Procedure CREATEFAMILIES starts by dividing the interval of the box types into f
subinterval of identical length, except the last one, which could have, in some cases, fewer
elements than the other subinterval, and selects a pivot box type index ν(i) from each
subinterval i (with i ∈ {1, . . . , f }). Each family I (i) is defined as the set of box types with
absolute height difference from hν(i) not exceeding 1

2 (1 + γ)Δh. Given this first selection of
box types, the possible intersections are then removed, and the box types not inserted into
any subset, if any, are assigned to the set with closest pivot height.

The need to insert the random parameter γ and to choose the random pivot derives
from the fact that we want to create slightly different families at each iteration. By doing so,
we provide the possibility of creating different layers at each iteration, keeping the families
unchanged for most of the elements (because γ is small).
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For the same reason, in our experiments, we used some 2D packing methods from [31],
named the maximal rectangle and skyline algorithms.

In particular, the maximal rectangle algorithm works by storing a list of free rectangles,
which represent the free area of the layer. Every time a rectangle is placed in a layer
(if possible, otherwise a new one is opened), the list of free rectangles of that layer is
updated, adding 2 rectangles that form an L-shaped region as shown in Figure 1.

Figure 1. Free Rectangles.

Any overlaps between free rectangles or degenerate free rectangles are eliminated
each time the list of free rectangles is updated.

The skyline structure is the same as that of the envelope in [32]: a list containing the
high edges of the already packed rectangles is updated every time a new rectangle is placed
in the current layer (if possible, otherwise a new one is opened). Due to the simplicity of the
structure at the base of the skyline, it is easy to memorize the areas that would otherwise
no longer be used during packing (any holes in the packing); let us call these areas waste
map. Before looking for new locations for the new rectangles, we try to place them on the
waste map.

For both structures, we used different approaches for choosing where to place
the rectangles:

• MaxRectBL: maximal rectangle with bottom-left strategy (place each rectangle in
the position where the y-coordinate of the top side of the rectangle is the smallest,
and if there are several such valid positions, pick the one that has the smallest x-
coordinate value);

• MaxRectBLR: maximal rectangle with bottom-left strategy and rotation allowed;
• MaxRectBssfR: maximal rectangles best short side fit strategy chooses to pack the

current rectangle into the free rectangle, which minimizes the differences between the
dimensions of the rectangle and the free one;

• SkylineBlWm: skyline with bottom-left and waste map strategy;
• SkylineBlWmR: skyline with bottom-left and waste map strategy with rotation allowed;
• SkylineMwfWm: skyline with min waste fit with low profile heuristic, minimizing the

area wasted below the rectangle; at the same time, it tries to keep the height minimal;
• SkylineMwfWmR: skyline with min waste fit with low profile heuristic and rotation al-

lowed.

2.2. A Mathematical Model for Loading Layers

In this section, we present a mathematical model for the optimal loading of layers in
the minimum number of pallets.

We represent the layers’ types obtained in the first phase by a |I | × |L| matrix A
where ail denotes the number of boxes of type i packed in layer l.

We will use two sets of binary variables. Variable yp will take value 1 if the pallet
p ∈ P is used, and zero otherwise. Variable xlpk will have value 1 if layer l is stacked on
pallet p at level k, and 0 otherwise.

Parameter κ = �H/mini∈I hi
 denotes the maximum number of layers that can be
loaded on any pallet.
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Finally, we calculate the weight of each layer as the sum of the weights of the items
present on each one:

Pl = ∑
i∈I

ail pi

Then, the mathematical model for stacking on pallets is as follows:

min ∑
p∈P

yp (4)

κ

∑
k=1

∑
p∈P

∑
l∈L

ail xlpk = ni i ∈ I (5)

κ

∑
k=1

∑
l∈L

Hl xlpk ≤ Hyp p ∈ P (6)

κ

∑
k=1

∑
l∈L

Pl xlpk ≤ Pyp p ∈ P (7)

xlpk + xmp(k+1) ≤ 1 l, m ∈ L, : Al ≥ αAm, p ∈ P

k ∈ {1, . . . , κ − 1} (8)
κ

∑
h=k+1

∑
�∈L

x�phP� ≤ Cl + M(1 − xlpk) l ∈ L, p ∈ P , k ∈ {1, . . . , κ − 1} (9)

∑
l∈L

xlpk ≤ 1 p ∈ P , k ∈ {1, . . . , κ} (10)

∑
l∈L

(xlpk − xlp(k−1)) ≤ 0 k ∈ {2, . . . , κ}, p ∈ P (11)

yp ≤ yp−1 p ∈ {2, . . . , |P |} (12)

yp ∈ {0, 1} p ∈ P (13)

xlpk ∈ {0, 1} l ∈ L, p ∈ P , k ∈ {1, . . . , κ} (14)

The objective function (4) minimizes the number of pallets used. Constraint (5)
requires that each box is packed once on the pallet, thus implementing requirement c1.
Constraints (6) implement requirement c2 by imposing that the sum of the heights of
the layers on each pallet does not exceed the available height H. Constraints (7) require
that the sum of the weights of the boxes on each pallet do not exceed P, where P is the
maximum weight that can be loaded on each pallet. The stability requirement c4 is satisfied
by constraints (8), while the compression requirement c5 is guaranteed by (9) (M being, as
usual, a very large positive number). Note that requirement c3 is satisfied by definition (3)
for all layers with Cl > 0, while when Cl = 0, constraints (9) impose that the layer be packed
as the top one of a pallet.

To conclude, the model constraints (10), (11), and (12) respectively impose the follow-
ing: (a) to load at most one layer per level, (b) to load a level k only if level k − 1 has been
loaded, and (c) to use a pallet p only if pallet p − 1 has been used. The definition of the
domains of the variables follows.

3. Results

All experiments have been conducted on a PC with Intel Core i7-10510U CPU 2.30 GHz,
16 GB RAM, and Windows 10 Operating System. The algorithms have been implemented
in Python 3.8 and run using PyCharm 2021.1.2.

We solved the MILP model with Gurobi 9.1.1. We considered a set of five instances from
real orders within the corresponding company manual solutions. For each instance, we set
the time limit to 120 min for the Gurobi solver, running the algorithm five times, using all
variants of the skyline and maximal rectangle algorithms we presented in Section 2.1.
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For all instances, the pallet dimensions were set to 1650, 1200, and 800 for height,
width, and length, respectively. The maximum weight P loadable on every pallet was set
to 4000, and the Δh was set to 20 for every layer in L. Finally, α in (2) was set to 1.1.

In the following Tables 1–7, we show some experimental results, all based on real
commercial orders of a logistics company.

Table 1. Instance details.

Instance N° Items N° Items Type Tot. Weight Min. Compr. Max. Height Min. Height

A 332 53 2967.58 87.5 305 150
B 136 22 1564.56 87.5 305 150
C 349 70 3272.756 87.5 305 150
D 669 68 6901.96 87.5 305 150
E 83 14 464.83 75 265 150

Table 2. First run for all instances.

Instance |L| Best Bound Best Solution Comp. Solution Time (min)

A 139 5 6 7 120
B 65 3 3 4 3
C 180 7 8 8 120
D 220 11 12 13 120
E 34 1 1 2 2

Table 3. Second run for all instances.

Instance |L| Best Bound Best Solution Comp. Solution Time (min)

A 141 5 6 7 120
B 68 3 3 4 4
C 174 7 9 8 120
D 228 11 12 13 120
E 34 1 1 2 2

Table 4. Third run for all instances.

Instance |L| Best Bound Best Solution Comp. Solution Time (min)

A 136 5 6 7 120
B 67 3 3 4 3
C 178 7 8 8 120
D 222 11 12 13 120
E 32 1 1 2 2

Table 5. Fourth run for all instances.

Instance |L| Best Bound Best Solution Comp. Solution Time (min)

A 132 5 7 7 120
B 66 3 3 4 3
C 174 7 8 8 120
D 229 11 12 13 120
E 33 1 1 2 2

Table 6. Fifth run for all instances.

Instance |L| Best Bound Best Solution Comp. Solution Time (min)

A 137 5 6 7 120
B 64 3 3 4 3
C 174 7 8 8 120
D 231 11 12 13 120
E 32 1 1 2 2
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Table 7. Average of computational results.

Instance |L| Best Bound Best Solution Comp. Solution Time (min)

A 137 5 6 7 120
B 66 3 3 4 3
C 176 7 8 8 120
D 226 11 12 13 120
E 33 1 1 2 2

We ran the algorithm BUILDLAYERS F times, where F = fmax − fmin + 1, as the
creation of the layers based on families is partially randomized. In particular, we set
fmin = 2 and fmax = |H|, where H is the set of different heights of boxes which are present
in the commercial order. The use of multiple layerization methods, multiple division into
families, and partial randomization allows for the creation of different layers that can
expand the pool of layers (see Figure 2 for our results). It is possible that by adding some
layers to L, even if they are slightly different from each other, the general solution to the
problem is greatly improved. The algorithm always improves the manual solutions, on
average. In very few cases (2 out of 25), the proposed solution equals the manual one, but
never exceeds it (see Figure 3).

The time columns refer to the time required by Gurobi to solve the problem. Small
commercial orders (Instances B and E) are processed in a short time, as few layers are
created, making the minimum convergence of the palletizing model fast. On the other
hand, orders that have many boxes and many box types (Instances A, C, and D) require
more computing time, often reaching the time limit.

These computing times are compatible with the practical management of large orders
when loading can be planned early. From the computational point of view, the most
onerous process is represented by the resolution of the palletization model. In fact, even
for the largest orders, the filling of the layers’ pool ends in a maximum of 5 min.

Figure 2. Layer for every run, for every instance.
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Figure 3. Pallets for every run, for every instance, with company results.

For the sake of privacy required by the company, we are not able to publish the
complete database we used for the experiments.

We want to highlight that this algorithm has some advantages: it solves a real problem
with constraints deriving from real experiences; it is possible to obtain substantial modifi-
cations: for example, changing the algorithm that solves the 2D layer creation problem or
varying the γ hyperparameter of the families’ creation. It can be sped up by dividing into
fewer families or by using fewer 2D packing algorithms.

We are confident that in the future, with experiments on more orders and with changes
to the hyperparameters, this algorithm can achieve even more satisfactory results than
those obtained in this paper.
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Abstract: Emergency medical services (EMS) provide crucial emergency assistance and ambulatory
services. One key measurement of EMS’s quality of service is their ambulances’ response time (ART),
which generally refers to the period between EMS notification and the moment an ambulance arrives
on the scene. Due to many victims requiring care within adequate time (e.g., cardiac arrest), improv-
ing ARTs is vital. This paper proposes to predict ARTs using machine-learning (ML) techniques,
which could be used as a decision-support system by EMS to allow a dynamic selection of ambulance
dispatch centers. However, one well-known predictor of ART is the location of the emergency (e.g.,
if it is urban or rural areas), which is sensitive data because it can reveal who received care and for
which reason. Thus, we considered the ‘input perturbation’ setting in the privacy-preserving ML
literature, which allows EMS to sanitize each location data independently and, hence, ML models
are trained only with sanitized data. In this paper, geo-indistinguishability was applied to sanitize
each emergency location data, which is a state-of-the-art formal notion based on differential privacy.
To validate our proposals, we used retrospective data of an EMS in France, namely Departmental
Fire and Rescue Service of Doubs, and publicly available data (e.g., weather and traffic data). As
shown in the results, the sanitization of location data and the perturbation of its associated features
(e.g., city, distance) had no considerable impact on predicting ARTs. With these findings, EMSs may
prefer using and/or sharing sanitized datasets to avoid possible data leakages, membership inference
attacks, or data reconstructions, for example.

Keywords: emergency medical services; emergency medicine; decision-support system; pre-hospital
emergency care; ambulance response time; machine learning; geo-indistinguishability; differential
privacy; privacy-preserving machine learning; input perturbation

1. Introduction

Ambulance response time (ART) is a key component for evaluating pre-hospital
emergency medical services (EMS) operations. ART refers to the period between the EMS
notification and the moment an ambulance arrives at the emergency scene [1,2], and it
is normally divided into two periods: the pre-travel delay, from the notification to the
ambulance dispatch, and the travel time, from the ambulance dispatch to arrival on-scene.
In many urgent situations (e.g., cardiovascular emergencies, trauma, or respiratory distress),
the victims need first-aid treatment within adequate time to increase survival rate [1–6]
and, hence, improving ART is vital.

In many parts of the world, such as France, fire departments are responsible for
many critical situations, including fires, hazards, severe storms, floods, as well as non-
urgent and urgent EMS calls (e.g., traffic accidents, drowning). In this paper, we analyzed
EMS operations of the Departmental Fire and Rescue Service of Doubs (SDIS 25), which
has 71 centers currently deployed across the Doubs region in France to attend to its
population. As noticed in [7,8], the SDIS 25 and fire departments in general, have been
facing a continuous increase in the number of interventions over the years, which may
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have adverse consequences on ARTs. For instance, the pre-travel delay directly affects
ARTs if there is a lack of human and material resources when a call is received. This means,
if there is a lack of firefighters, ambulances, or both, ART may be higher than allowed and,
hence, a breakdown in the SDIS 25 service occurs [9]. This inability to assist within the
time limits impacts negatively both EMS and victims because the safety of a certain area or
population will be at risk. Thus, there is a need for an intelligent ART prediction system,
which can assist SDIS 25 (and EMS, in general) in the dispatching of ambulances.

Indeed, predicting ART is useful for many reasons. First, it can help in choosing the
best center to provide the ambulance. At present, for SDIS 25, each city in the department
is associated with an ordered list of centers with the needed engine to respond, so that the
first centers are the most likely to provide a rapid and adequate response. This structure
is mainly defined by the administrative policies of the organization, which considers,
for example, the operational load (number of interventions) that the city represents, and
according to this, the necessary armament that its nearest center should have, as well
as the shortest distances and times between the centers and the cities. However, this
structure varies very little over time, for example, when there is a creation or territorial
modification of a city. Although it takes into account the actual travel distance (considering
street structures, highways, etc.), it does not take into account the real-time state of road
traffic, weather conditions, etc. Predicting ART would therefore make it possible to move
from static center scheduling to dynamic scheduling. It would also make it possible to
estimate the pre-travel delay partially and to see in advance whether, at a given moment, a
center is at risk of running out of ambulances. In other words, it enables the anticipation
of breakdowns and the redeployment of resources. Lastly, in the long term, it can be an
element of a simulator to determine the evolution of response time and breakdowns during
the creation or relocation of a center, the modification of resources by the center, etc.

One important factor of ART is the location of the intervention [2,3,10–12], e.g., in dense
urban areas, the distance may be short, but the travel time may be longer due to traffic
congestion. On the other hand, travel distance and travel time may be longer for rural areas.
In other words, the location information is of great importance for the prediction of travel
time and, naturally, ART [10,12]. However, the location of an emergency is also regarded
as sensitive data because it can reveal who received care and for which reason. For example,
by knowing that one intervention took place in front of the house of a debilitated person,
attackers with auxiliary information may accurately infer that this person received care
and (mis)use this information for their own good. Indeed, location privacy is an emerging
and active research topic in the literature [13–15] as publicly exposing users’ location
raises major privacy issues. A common way to achieve location privacy is by applying a
location obfuscation mechanism. In [15], the authors proposed geo-indistinguishability (GI),
which is based on the state-of-the-art differential privacy (DP) [16] model, to protect the
location privacy of users. GI has received considerable attention due to its effectiveness
and simplicity of implementation (e.g., Location Guard [17]).

In this paper, we propose to sanitize, independently, each emergency location data
with GI before training any ML techniques to predict ARTs to protect the ML model against,
e.g., membership inference attacks and data reconstruction attacks [18,19]. In our context,
besides the own location, with the exact coordinates of both SDIS 25 centers and the emer-
gency scenes, one can retrieve important features such as the distance and estimated travel
time. However, if the location is sanitized via GI, many other explanatory variables (e.g.,
distance, travel time, city) would be ’perturbed’ too. In the privacy-preserving ML litera-
ture, training ML models with sanitized data is common practice [7,20–25], which is also
known as input perturbation [26]. In contrast to objective [27] and gradient [28] perturbation
settings, input perturbation is the easiest method to apply, and it is independent of any ML
and post-processing techniques. We also remark that input perturbation is in accordance
with real-world applications where EMS would only use and/or share sanitized data with
third parties to train and develop ML-based decision-support systems.

To summarize, this paper proposes the following contributions:
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• Recognize the most influential variables when building accurate ML-based models to
predict ART. This would allow other EMS to collect these variables and recreate our
methodology or develop their own taking into account their policies.

• Evaluate the effectiveness of several values of ε (i.e., the privacy budget) to sanitize
emergency location data with GI and train ML-based models to predict ART. To the au-
thor’s knowledge, this is the first work to assess the impact of geo-indistinguishability
on sanitizing the location of emergency scenes when training the ML model for such an
important task. Although predicting ART is a means to allow EMS to save more lives,
we notice that it is also possible to do so while preserving the victims’ location privacy.

Outline: The remainder of this paper is organized as follows. In Section 2, we
describe the material and methods used in this work, i.e., the geo-indistinguishability
privacy model, the data presentation (context, collection, and analysis), the sanitization of
emergency scenes with GI, the ML models, and the experimental setup. In Section 3, we
present the results of our experiments and our discussion. Lastly, in Section 4, we present
the concluding remarks and future directions.

2. Materials and Methods

In this section, we revise the geo-indistinguishability privacy model (Section 2.1), we
provide a description of the processing of interventions by SDIS 25 (Section 2.2), the data
collection process (Section 2.3), the analysis of SDIS 25 ARTs (Section 2.4), the GI-based
sanitization of emergency location data (Section 2.5), the ML models used for predicting
ARTs (Section 2.6), and the experimental setup (Section 2.7).

2.1. Geo-Indistinguishability

Differential privacy [16] has been accepted as the de facto standard for data privacy.
DP was developed in the area of statistical databases, but it is now applied to several fields.
Furthermore, DP has also been extended to a local model (a.k.a. LDP [26]) in which users
sanitize their data before sending it to the server. Although DP is well-suited to the case of
trusted curators, with LDP, users do not need to trust the curator.

Geo-indistinguishability [15] is based on a generalization of DP developed in [29] and
has been proposed for preserving location privacy without the need for a trusted curator
(e.g., a malicious location-based service – LBSs). A mechanism satisfies ε-GI if for any two
locations x1 and x2 within a radius r, the output y of them is (ε, r)-geo-indistinguishable if
we have:

Pr(y|x1)

Pr(y|x2)
≤ eεr, ∀r > 0, ∀y, ∀x1, x2 : d(x1, x2) ≤ r.

Intuitively, this means that for any point x2 within a radius r from x1, GI forces the
corresponding distributions to be at most l = εr distant. In other words, the level of
distinguishability l increases with r, e.g., an attacker can distinguish that the user is in Paris
rather than London but can hardly (controlled by ε) determine the user’s exact location.
Although both GI and DP use the notation of ε to refer to the privacy budget, they cannot
be compared directly because ε in GI contains the unit of measurement (e.g., meters).

On the continuous plane (as we consider in this paper), an intuitive polar Laplace
mechanism has been proposed in [15] to achieve GI, which is briefly described in the
following. Rather than reporting the user’s true location x ∈ R2, we report a point y ∈ R2

generated randomly according to Dε(y) = ε2

2π e−εd2(x,y). Algorithm 1 shows the pseudocode
of the polar Laplace mechanism in the continuous plane. More specifically, the noise is
drawn by first transforming the true location x to polar coordinates. Then, the angle θ is
drawn randomly between [0, 2π) (line 3), and the distance r is drawn from C−1

ε (p) (line 5),
which is calculated using the negative branch W−1 of the Lambert W function. Finally, the
generated distance and angle are added to the original location.
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Algorithm 1 Polar Laplace mechanism in continuous plane [15]

1: Input: ε > 0, real location x ∈ R2.
2: Output: sanitized location y ∈ R2.
3: Draw θ uniformly in [0, 2π)
4: Draw p uniformly in [0, 1)
5: Set r = C−1

ε (p) = − 1
ε

(
W−1

(
p−1

e

)
+ 1

)
6: Return: y = x + 〈r cos (θ), r sin (θ)〉

2.2. Process Flow Description

The Departmental Fire and Rescue Service of Doubs currently has 71 centers deployed
throughout the region of Doubs, France, serving a population of around 540,000 people. The
focus of this paper is on interventions with victims that were further transported to hospitals.
In these interventions, there was a need for an emergency and victim assistance vehicle (a.k.a.
Véhicule de Secours et d’Assistance aux Victimes - VSAV). VSAVs are equipped with
adequate material and personnel for first-aid treatment in urgent situations. In this paper,
we interchangeably use the term ’ambulance’ when referring to VSAV.

The process of an intervention is briefly described in the following. First, an emergency
call is received and treated by an operator. Next, the adequate crew/engine is notified (i.e.,
the starting date—SDate). Once the sufficient armament is gathered, the ambulance goes
to the emergency scene. Upon arriving on-scene, the crew uses a mechanical system to
report their arrival (i.e., the arrival date—ADate). We focus on the ART period, which is
calculated as: ART = ADate − SDate.

The operation process to decide the adequate SDIS 25 center to attend the intervention
depends on the exact location of the intervention. As stated previously, there is a city, a
district, and a zone that jointly define a list of priority centers, which are responsible for the
call. The reason for such a list is because a single center may not have sufficient resources
at time SDate to attend an intervention. In this case, if the first center of the list does not
have sufficient resources, another center(s) would be in charge of the call. Additionally,
many situations may generate several victims (e.g., traffic accidents, floods). In these cases,
a single intervention can require more than one ambulance, which can come from different
centers depending on the availability of resources. This means different ARTs for the same
intervention and, therefore, we focus on each ambulance in our analysis and predictions.

In addition, although in some countries the reason of the emergency may require a
recommended ART [30], for SDIS 25, ART depends on the Zone as detailed in [9]. There
are three zones: Z1 refers to urban areas, Z2 refers to semi-urban areas, and Z3 refers to
rural ones. Therefore, SDIS 25 ambulances should arrive on-scene with ART ≤ 10 minutes
(min) on Z1 and with ART ≤ 25 min on Z2 and Z3, i.e., including the pre-travel delay
(gathering armament) and travel time. If these time limits are not reached, a breakdown in
SDIS 25 services is generated [9]. The victim state may also be impacted negatively with
high ARTs [1,5]. Lastly, SDIS 25 may also help other EMS outside the Doubs region, and in
this case, there is no pre-defined ART limit by SDIS 25.

2.3. Data Collection

We used retrospective data of EMS operations recorded by SDIS 25. All interventions
with victim that were attended by SDIS 25 centers with a VSAV and further transported to
hospitals were eligible for inclusion. These data covered the period of January 2006 to June
2020. The main attributes of these data are described in the following:

• ID is a unique identifier for each intervention;
• SDate is the “Starting Date” of the intervention, which represents the time SDIS 25

took charge of the intervention after processing the call;
• ADate is the “Arrival Date” of an ambulance on the emergency scene;
• Center is the SDIS 25 center from which the ambulance left;
• Location is the precise location (latitude, longitude) of the intervention;

14



Math. Comput. Appl. 2021, 26, 56

• Zone is either urban (Z1), semi-urban (Z2), or rural (Z3);
• City is the municipality where the intervention took place. A city may have zero or

more Districts.

Each ambulance represents one sample, i.e., a single intervention may have received
one or more ambulances. The ART variable was calculated as ART = ADate − SDate. We
excluded outlying observations with ART of less than 1 min and with ART of more than 45
min, which represented less than 1.4% of the original number of samples.

Using SDate, we have added temporal information such as: year, month, day, weekday,
hour, and categorical indicators to denote holidays, end/start of the month, and end/start
of the year. Moreover, with the exact coordinates from both Center and emergency’s Location,
we calculated the great-circle distance (https://en.wikipedia.org/wiki/Great-circle_dista
nce) to add as a feature, which is the shortest distance between two points on the surface
of a sphere. We used the great-circle distance since it is faster to be calculated than the
Geodesic distance and more accurate than the Euclidean distance. Moreover, we have
added the number of interventions in the past hour and the number of active interventions
in the current hour. As also remarked in the literature [3,10], the number of interventions
on previous hours might impact ART. In addition, external data that may affect ART were
gathered from the following sources:

• Bison-Futé [31] provides prediction of traffic level for the Doubs region as indicators
ranging from 1 (regular flow) to 4 (extremely difficult flow) per day. We added these
indicators according to SDate;

• Météo-France [32] supplies historical weather information such as precipitation, tem-
perature, wind speed, and gust speed. We added weather data per hour according
to SDate;

• OSRM API [33] gives the driving distance on the fastest route and its travel time
duration. This way, with the coordinates from both Center and emergency’s Location,
we added these two features, i.e., estimated travel time in minutes and driving distance
in kilometers (km), for each ambulance.

2.4. Data Analysis

After removing outlying observations, the dataset at our disposal has 186,130 dis-
patched ambulances from SDIS 25 centers that attended 182,700 EMS interventions. The
frequency on the number of dispatched ambulances per zone is 39.62% (Z1), 33.38% (Z2),
26.71% (Z3), and 0.29% (outside the Doubs region), respectively. Figure 1 illustrates the
distribution of our variable of interest, namely ART, via three histograms with bins of 1 min
for each zone within the Doubs region. One can notice that the ART distributions follow a
typical right-skewed distribution also observed in other works/countries [3,34,35]. The
mean and standard deviation (std) values for zones Z1, Z2, and Z3 are 8.79 ± 5.66 min,
11.43 ± 6.15 min, and 15.38 ± 6.41 min, respectively. SDIS 25 had about 79.52% of the time
ART ≤ 10 min on zone Z1, and had about 95.76% and 92.50% of the time ART ≤ 25 min
on zones Z2 and Z3, respectively.

Figure 1. Distribution of the ART variable for zones Z1, Z2, and Z3, respectively.
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Figure 2 illustrates the total number of dispatched ambulances per hour (left-hand
plot) and the cumulative ART in hours per day of the week and hour in the day (right-hand
plot). One can notice that the total number of dispatched ambulances is notably related
to the hour in the day, i.e., there were more interventions in working periods rather than
between 0 h to 6 h. This behavior is also noticed in the works [12,35]. Moreover, as one
can notice with the right-hand plot of Figure 2, from 8 h in the morning on, the cumulative
ART starts to increase and remains high up to 19 h when it starts to decrease. Although this
high cumulative ART can be linked with the high hourly demand, ambulances dispatched
during working periods are also more likely to traffic congestion and, naturally, to undergo
through longer travel time. Secondly, due to the number of interventions in a given hour,
SDIS 25 centers may have taken more time to dispatch ambulances if their resources were in
use in other incidents. A slightly different profile can be seen on weekends, with noticeable
higher cumulative ARTs in the late night (0–6 h) and during some hours of the day too.

Figure 2. Histogram of the total number of dispatched ambulances per hour in the day (left-hand

plot) and cumulative ART in hours per day of the week and hour in the day (right-hand plot).

Summary statistics per year and per zone are shown in Table 1. The metrics in this
table includes the total number of dispatched ambulances (Nb. Amb.), and descriptive
statistics such as mean and standard deviation (std) values for the ART variable. We
recall that for 2020, these statistics are up to June 2020 only. As also noticed in [7,8], the
number of interventions increases throughout the years. The year 2010 presented high
values in comparison with all other years, e.g., for Z1, the average ART was above the
10 min recommendation.

2.5. Preserving Emergency Location Privacy with Geo-Indistinguishability

To preserve the privacy of each emergency scene, we apply the polar Laplace mecha-
nism in Algorithm 1 to the Location attribute of each intervention. This means, even if our
dataset is per ambulance dispatch (i.e., 186,130 ambulances), we used the same sanitized
value per intervention (i.e., 182,700 unique interventions). Although in [15] the authors
propose two further steps to Algorithm 1, i.e., discretization and truncation, both steps can
be neglected in our context. This is, first, because SDIS 25 may also help other EMS outside
the Doubs region as we discussed in Section 2.2, and second, we assume that any location
in the continuous plane can be an emergency scene. Although reporting an approximate
location in the middle of a river may not have much sense in LBSs, in an emergency dataset
with approximate locations, this may indicate an urgency for someone who drowned in
the river, for example.

We used five different levels for the privacy budget ε = l/r, where l is the privacy
level we want within a radius r. Table 2 exhibits the five different levels of privacy.
For the sake of illustration, Figure 3 exhibits three maps of the Doubs region with the
points of original location (left-hand plot), ε = 0.005493-GI location (middle plot), and
ε = 0.002747-GI location (right-hand plot). As one can notice, with an intermediate privacy
level (l = ln (3), r = 400), locations are more spread throughout the map while with a
lower privacy level (l = ln (3), r = 200), locations approximate the real clusters.
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Table 1. Mean and std values for the ART variable and the total number of dispatched ambulances
(Nb. Amb.) per year in zones Z1, Z2, and Z3, respectively. For 2020, we only consider cases of the
first semester.

Year
Z1 Z2 Z3

Nb. Amb. Mean Std Nb. Amb. Mean Std Nb. Amb. Mean Std

2006 197 9.23 4.41 367 11.25 5.50 354 14.27 5.40

2007 236 7.39 3.05 671 10.79 5.04 595 14.35 5.52

2008 799 8.69 6.04 1055 11.19 5.32 911 14.53 6.02

2009 1363 8.76 6.05 2087 11.08 5.67 1872 14.94 6.46

2010 2643 10.08 7.23 2797 12.48 6.85 2483 16.01 7.22

2011 5971 8.26 5.61 4276 11.24 6.13 3295 14.50 6.25

2012 6078 8.66 5.89 4661 11.18 6.39 3602 14.86 6.24

2013 6780 8.82 5.72 5048 11.03 6.11 3972 15.07 6.30

2014 6847 8.37 5.23 5481 10.80 5.86 4240 14.91 6.34

2015 7226 8.46 5.50 5596 10.86 5.78 4643 15.02 6.12

2016 7510 8.50 5.35 6179 11.19 5.92 4861 15.32 6.35

2017 8650 8.76 5.32 7251 11.49 6.01 5523 15.51 6.36

2018 9051 8.90 5.46 7641 11.64 6.11 5956 15.59 6.23

2019 7030 9.42 6.02 6238 12.29 6.66 5016 16.60 6.88

2020 3397 9.73 5.87 2843 12.59 6.56 2449 16.46 6.44

With the new Location values of each intervention, we also reassigned the city, the
district, and the zone when applicable. In addition, we recalculated the following features
associated with it: the great-circle distance, the estimated driving distance, and estimated
travel time. The latter two features were recalculated with OSRM API, which only considers
roads, i.e., if the obfuscated location is in the middle of a farm, the closest route estimates
the driving distance and travel time until the closest road. We also highlight that if the
new coordinates of the emergency scene indicate a location closer to another SDIS 25
center, even in real life, it would not imply that this center took charge of the intervention.
Therefore, the center attribute was not ‘perturbed’.

Table 2. Values of ε = l/r for sanitizing emergency location data with GI.

ε = l/r l r (m)

0.005493 ln (3) 200

0.002747 ln (3) 400

0.001155 ln (2) 600

0.000866 ln (2) 800

0.000693 ln (2) 1000

To show the impact of the noise added to the Location attribute, Table 3 exhibits the
percentage of time that categorical attributes (zone, city, and district) were ‘perturbed’ (i.e.,
reassigned); the mean and std values of the great-circle distance attribute and its correlation
with the ART variable (Corr. ART). In Table 3, we report the mean(std) values since we
repeated our experiments with 10 different seeds (i.e., DP algorithms are randomized).
Although we did not include the estimated driving distance and estimated travel time
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from OSRM API in this analysis, in preliminary tests, we noticed that these two features
follow a similar pattern as the great-circle distance attribute.

Figure 3. Emergency locations and SDIS 25 centers throughout the Doubs region: original data
(left-hand plot), ε = 0.005493-GI data (middle plot), and ε = 0.002747-GI data (right-hand plot).

From Table 3, one can notice that many features are perturbed due to sanitization
of emergency’s location with GI. With high levels of ε (i.e., less private), the city and
the zone suffer low ‘perturbation’. On the other hand, district is reassigned many times
as it is geographically smaller than the others. When ε = 0.000866, the city is already
reassigned more than 50% of the time and the district about 75% of the time. Moreover,
one can notice that the mean and std values of the great-circle distance increase as the
ε parameter decreases (i.e., more private). Because ε = l/r, making l smaller and/or r
higher, the stricter ε becomes, and therefore more noise is added to the original locations.
Moreover, the correlation between the great-circle distance with the ART variable decreases
proportionally as ε becomes smaller.

Table 3. Percentage of perturbation for categorical attributes (city, zone, and district) according to ε and statistical properties
(mean and std values and correlation with ART) of the original and GI-based datasets for the great-circle distance attribute.
Mean(std) values are reported since we repeated our experiments with 10 different seeds.

Data
Zone City District Great-circle Dist. (km)

‘Perturbation’ (%) Mean std Corr. ART

Original - - - 3.44 3.72 0.369

ε = 0.005493 5.20 (0.05) 7.68 (0.06) 25.8 (0.05) 3.48 (1 × 10−3) 3.72 (7 × 10−4) 0.367 (2 × 10−4)

ε = 0.002747 11.3 (0.05) 17.6 (0.10) 41.5 (0.12) 3.57 (1 × 10−3) 3.72 (1 × 10−3) 0.362 (2 × 10−4)

ε = 0.001155 28.1 (0.06) 42.3 (0.10) 66.2 (0.09) 4.03 (3 × 10−3) 3.74 (3 × 10−3) 0.335 (5 × 10−4)

ε = 0.000866 35.5 (0.10) 52.4 (0.11) 74.0 (0.11) 4.38 (3 × 10−3) 3.81 (4 × 10−3) 0.313 (1 × 10−3)

ε = 0.000693 41.4 (0.12) 60.3 (0.09) 79.4 (0.05) 4.77 (6 × 10−3) 3.92 (5 × 10−3) 0.288 (1 × 10−3)

2.6. Machine-Learning Models

Four state-of-the-art ML techniques have been used in our experiments, to predict
the scalar ART outcome in a regression framework. More precisely, we compared the
performance of two state-of-the-art ML techniques based on decision trees, which are
known for their high performance (and speed) with tabular data; a traditional and well-
known neural network, and a classical statistical method that can perform both variable
selection and regularization. These methods are briefly described in the following:
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• Extreme Gradient Boosting (XGBoost) [36] is a decision-tree-based ensemble ML
algorithm that produces a forecast model based on an ensemble of weak forecast
models (decision trees). XGBoost uses a novel regularization approach over standard
gradient boosting machines, which significantly decreases model’s complexity. The
system is optimized by a quick parallel tree construction and adapted to be fault-
tolerant under distributed environments.

• Light Gradient Boosted Machine (LGBM) [37] is a novel gradient boosting frame-
work, which implemented a leaf-wise strategy. This strategy significantly reduces
computational speed and resource consumption in comparison to other decision-tree-
based algorithms.

• Multilayer Perceptron (MLP) is an artificial neural network of the feedforward type [38].
These algorithms are based on the interconnection of several units (neurons) to trans-
mit signals, which are normally structured into three or more layers, input, hidden(s),
and output. We used the Keras library [39] to implement our deep learning models.

• Least Absolute Shrinkage and Selection Operator (LASSO), a method of contracting
the coefficients of the regression, whose ability to select a subset of variables is due
to the nature of the constraint on the coefficients. Originally proposed by Tibshi-
rani [40] for models using the standard least squares estimator, it has been extended
to many statistical models such as generalized linear models, etc. We used the LASSO
implementation from the Scikit-learn library [41].

2.7. Experiments

All algorithms were implemented in Python 3.8.8. To run our codes, we used a
machine with Intel (R) Core (TM) i7-10750 CPU @ 2.60 GHz, 16 GB RAM, and a GPU with
1920 cores and 6 GB of RAM using Windows 10. Because in Table 3 there are low variations
(i.e., small std values) on all features that depend on the sanitized location, we ran our
experimental validation only once. In our experiments, each sample corresponds to one
ambulance dispatch, in which we included temporal features (e.g., hour, day), weather data
(e.g., pressure, temperature), traffic data, the emergency’s location (latitude and longitude
in radians), and computable features (e.g., distance, travel time). The scalar target variable
is the ART in minutes, which is the time measured from the EMS notification to the
ambulance’s arrival on-scene. All numerical features (e.g., temperature) were standardized
using the StandardScaler function from the Scikit-Learn library. Categorical features (e.g.,
center, zone, hour) were encoded using mean encoding, i.e., the mean value of the ART
variable with respect to each feature. The target variable, namely ART, was kept in its
original format (minutes) since no remarkable improvement was achieved with scaling.

Our experimentation considers the scenario in which EMS would perform both the
sanitization of the dataset and the development of ML models. In this case, the objective is
to have all ML models to be trained with ε-GI data to prevent, for example, membership
inference attacks and data reconstruction attacks [18,19]. This also means that ML models
will be trained with sanitized data and the testing set will use original data, as it would
be if EMS deployed a decision-support system in real life. On the one hand, this would
prevent having in real-life a sanitized location that would compromise the EMS response
time. On the other hand, each time the model is re-fitted (or retrained), the new known data
should also be sanitized with ε-GI. A different scenario could consider that both training
and testing sets are sanitized, which corresponds to the case where EMS published the data
openly or transmitted it to an untrusted party. This latter scenario was out of the scope of
this paper and, thus, is left as future work.

With these elements in mind, we divided our dataset into training (years 2006–2019)
and testing (six months of 2020) sets to evaluate our models. Thus, five models per ML
technique (i.e., XGBoost, LGBM, MLP, and LASSO) were built to predict ART on each
month of 2020 using the sanitized (training) datasets with different levels of ε-GI location
data (cf. Table 2). All models were trained continuously, i.e., at the end of each month,
the new known data were added to the training set after sanitization with ε-GI. Lastly, all
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models were tested with original data. In addition, for comparison, we also trained and
evaluated one additional model per ML technique with original data. In this paper, the
models were evaluated using the following regression metrics:

• Root mean squared error (RMSE) measures the square root average of the squares of

the errors and is calculated as: RMSE = 1
n

√
∑n

i=1(yi − ŷi)
2;

• Mean absolute error (MAE) measures the averaged absolute difference between real
and predicted values and is calculated as: MAE = 1

n ∑n
i=1 |yi − ŷi|;

• Mean absolute percentage error (MAPE) measures how far the model’s predictions
are off from their corresponding outputs on average and is calculated as: MAPE =
1
n ∑n

i=1

∣∣∣ yi−ŷi
yi

∣∣∣ · 100%;

• Coefficient of determination (R2) measures the proportion of the variance in the
dependent variable that is predictable from the independent variable(s). An R2 = 1
would indicate a model that fully captures the variation in ARTs;

in which yi is the real output, ŷi is the predicted output, and n is the total number of
samples, for i ∈ [1, n]. Results for each metric were calculated using data from the 6 months
evaluation period. The RMSE metric was also used during the hyperparameters tuning
process via Bayesian optimization (BO). To this end, we used the HYPEROPT library [42]
with 100 iterations for each model. Table A1 in Appendix A displays the range of each
hyperparameter used in the BO, as well as the final configuration used to train and test
the models.

3. Results and Discussion

In this section, we present the results of our experimental validation (Section 3.1) and
a general discussion (Section 3.2) including related work and limitations.

3.1. Privacy-Preserving ART Prediction

Figure 4 illustrates the impact of the level of GI for each ML model to predict ART
according to each metric. As one can notice in this figure, for XGBoost, LGBM, and
LASSO, there were minor differences between training models with original location data
or sanitized ones. On the other hand, models trained with MLP performed poorly with
GI-based data. In addition, by analyzing models trained with original data, while the
smaller RMSE for LASSO is about 5.65, for more complex ML-based models, RMSE is
less than 5.6, achieving 5.54 with XGBoost and LGBM. In comparison with the results
of existing literature, lower R2 scores and similar RMSE and MAE results were achieved
in [11] to predict ART while using original location data only. With more details, Table A2
in Appendix A numerically exhibits the results from Figure 4.

Indeed, among the four tested models, LGBM and XGBoost achieve similar metric
results while favoring the LGBM model. Thus, Figure 5 illustrates the BO iterative process
for LGBM models trained with original and sanitized data according to the RMSE metric
(left-hand plot); and ART prediction results for 50 dispatched ambulances in 2020 out of
8709 ones (right-hand plot) with an LGBM model trained with original data (Pred: original)
and with two LGBM models trained sanitized data, i.e., with ε = 0.005493 (low privacy
level) and with ε = 0.000693 (high privacy level).

As one can notice in the left-hand plot of Figure 5, once data are sanitized with
different levels of ε-GI, the hyperparameters optimization via BO is also perturbed. This
way, local minimums were achieved in different steps of the BO (i.e., the last marker per
curve indicates the local minimum). For instance, even though ε = 0.002747 is stricter
than ε = 0.005493, results were still better for the former since, in the last steps of BO,
three better local minimums were found. Moreover, prospective predictions were achieved
with either original or sanitized data. For instance, in the right-hand plot of Figure 5,
even for the high peak-value of ART around 40 min, LGBM’s prediction achieved some
reasonable estimation. Although several features were perturbed due to the sanitization of
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the emergency scene (e.g., city, zone, etc.), the models could still achieve similar predictions
as the model trained with original location data.

Figure 4. Impact of the level of ε-geo-indistinguishability for each ML model to predict ART according
to each metric.

Figure 5. The left-hand plot illustrates the hyperparameters tuning process via Bayesian optimization
with 100 iterations for LGBM models trained with original data and sanitized ones. The right-hand
plot illustrates the prediction of ARTs with LGBM models trained with original data and with
sanitized ones.

Furthermore, in terms of training time, for both original and sanitized datasets, the
LASSO method was the fastest to fit our data. On the other hand, MLP models took the
longest time to execute than all other methods. Between both decision-tree methods, LGBM
models were faster than XGBoost ones. Lastly, the importance of the features, taking into
account LASSO coefficients and decision trees’ importance scores were: averaged ART
per categorical features (e.g., center, city, hour); OSRM API-based features (i.e., estimated
driving distance and estimated travel time); the great-circle distance between the center and
the emergency scene; the number of interventions in the previous hour, and the number of
interventions still active. Immediately thereafter, it appeared the weather data, which were
added as “real-time” features, i.e., using the date of the intervention to retrieve the features.
Penultimate, the traffic data, which are indicators provided by [31] at the beginning of each
year and, which might have shown more influence if they had been retrieved in real time.
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Finally, it appeared some temporal variables such as weekend indicators, start/end of the
month, and the day of the year.

3.2. Discussion

The medical literature has mainly focused attention on the analysis of ART [3,34,43]
and its association with trauma [2,30] and cardiac arrest [1,4,6], for example. To re-
duce ART, some works propose reallocation of ambulances [5,44], operation demand
forecasting [5,7,8,22,45], travel time prediction [12], simulation models [35,46], and EMS re-
sponse time predictions [11,12]. The work in [11] propose a real-time system for predicting
ARTs for the San Francisco fire department, which closely relates to this paper. The authors
processed about 4.5 million EMS calls using original location data to predict ART using
four ML models, namely linear regression, linear regression with elastic net regularization,
decision-tree regression, and random forest. However, no privacy-preserving experiment
was performed because the main objective of their paper was proposing a scalable, ML-
based, and real-time system for predicting ART. Besides, we also included weather data
that the authors in [11] did not consider in their system, which could help to recognize
high ARTs due to bad weather conditions, for example.

Currently, many private and public organizations collect and analyze data about
their associates, customers, and patients. Because most of these data are personal and
confidential (e.g., location), there is a need for privacy-preserving techniques for processing
and using these data. Location privacy is an emergency research topic [13,14] due to
the ubiquity of LBSs. Within our context, using and/or sharing the exact location of an
emergency raises many privacy issues. For instance, the Seattle Fire Department [47]
displays live EMS response information with the precise location and reason for the
incident. Although the intention of some fire departments [11,47] is laudable, there are
many ways for (mis)using this information, which can jeopardize users’ privacy. Even if
the intervention’s reason could be an indicator of the call urgency, we did not consider this
sensitive attribute in our data analysis nor privacy-preserving prediction models. This is
because, for SDIS 25, the ARTs limits are defined by the zone [9]. Additionally, we also
did not include the victims’ personal data (e.g., gender, age) in our predictions or analysis
since, during the calls, the operator may not acquire such information, e.g., when a third
party activates the SDIS 25 for unidentified victims. This way, we focused our attention on
the location privacy of each intervention.

To address location privacy, the authors in [15] proposed the concept of GI, which
is based on a generalization [29] of the state-of-the-art DP [16] model. As highlighted
in [15], attackers in LSBs may have side information about the user’s reported location,
e.g., knowing that the user is probably visiting the Eiffel Tower instead of swimming in
the Seine river. However, this does not apply in our context because someone may have
drowned, and EMS had to intervene. Similarly, even for the dataset with intermediate
(and high) privacy in which locations are spread out in the Doubs region (cf. map with
0.005493-GI location in Figure 3), someone may have been lost in the forest and EMS
would have to interfere. For these reasons, using (or sharing datasets with) approximate
emergency locations (e.g., sanitized with GI) is a prospective direction since many locations
are possible emergency scenes. Indeed, we are not interested in hiding the emergency’s
location completely since some approximate information is required to retrieve other
features (e.g., city, zone, estimated distance) to use for predicting ART.

Moreover, learning and extracting meaningful patterns from data, e.g., through ML,
play a key role in advancing and understanding several behaviors. However, on the one
hand, storing and/or sharing original personal data with trusted curators may still lead to
data breaches [48] and/or misuse of data, which compromises users’ privacy. On the other
hand, training ML models with original data can also leak private information. For instance,
in [18] the authors evaluate how some models can memorize sensitive information from
the training data, and in [19], the authors investigate how ML models are susceptible to
membership inference attacks. To address these problems, some works [7,20–25,49] propose
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to train ML models with sanitized data, which is also known as input perturbation [26] in
the privacy-preserving ML literature.

Input perturbation-based ML and GI are linked directly with local DP [26] in which
each sample is sanitized independently, either by the user during the data collection process
or by the trusted curator, which aims to preserve privacy of each data sample. This way,
data are protected from data leakage and are more difficult to reconstruct, for example.
In [23,49], the authors investigate how input perturbation through applying controlled
Gaussian noise on data samples can guarantee (ε, δ)-DP on the final ML model. This
means, since ML models are trained with perturbed data, there is a perturbation on the
gradient and on the final parameters of the model too.

In this paper, rather than Gaussian noise, the emergency scenes were sanitized with
Algorithm 1, i.e., adding two-dimensional Laplacian noise centered at the exact user
location x ∈ R2. In addition, this sanitization also perturbs other associated and calculated
features such as: city, district, zone (e.g., urban or not), great-circle distance, estimated
driving distance, and estimated travel time (cf. Table 3). As well as the optimization of
hyperparameters, i.e., once data are differentially private, one can apply any function on
it and, therefore, we also noticed perturbation on the BO procedure. Yet, as shown in
the results, prospective ART predictions were achieved with either original or sanitized
data. Furthermore, even with a high level of sanitization (ε = 0.000693) there was a good
privacy-utility trade-off. According to [50], if the mean absolute percentage error (i.e.,
MAPE) is greater than 20% and less than 50%, the forecast is reasonable, which is the
results we have in this paper with MAPE around 30%.

Lastly, some limitations of this work are described in the following. We analyzed
ARTs using the data and operation procedures of only one EMS in France, namely SDIS
25. Although it may represent a sufficient number of samples, other public and private
organizations are also responsible for EMS calls, e.g., the SAMU (Urgent Medical Aid
Service in English) analyzed in [46]. Moreover, there is the possibility of human error when
using the mechanical system to report (i.e., record) the arrival on-scene time “ADate”. For
instance, the crew may have forgotten to record status on arrival and may have registered
later, or conversely, where the crew may have accidentally recorded before arriving at the
location. Additionally, it is noteworthy to mention that the arrival on-scene does not mean
arriving at the victim’s side, e.g., in some cases the real location of a victim is at the n-th
stage of a building as investigated in [43].

4. Conclusions

In the event of an acute medical event such as a respiratory crisis or cardio-respiratory
arrest, the time an ambulance takes to arrive on-scene has a direct impact on the quality of
service provided. Ambulance response time is a fundamental indicator of the effectiveness
of EMS systems [1,2,4–6,30]. For this reason, an intelligent decision-support system is
necessary to help minimize overall EMS response times. The present work first analyzes
historical records of ARTs to find correlations between their extracted features and explain
the trends through the 15 years of collected data. Then, we sought to predict the response
time that each center equipped with ambulances had to an event, but not only that, because
we also consider that the ML models could be subject to attacks, which would compromise
the victims’ privacy. Therefore, the joint work aimed to evaluate the effectiveness of
predicting ARTs with ML models trained over sanitized location data with different levels
of ε-geo-indistinguishability. As shown in the results, the sanitization of location data
and the perturbation of its associated features (e.g., city, distance) had no considerable
impact on predicting ART. With these findings, EMS may prefer using and/or sharing
sanitized datasets to avoid possible data leakages, membership inference attacks, or data
reconstructions, for example.

For future work, we aim to extend the analysis and predictions to different operation
times such as the pre-travel delay (i.e., gathering personnel and ambulances) and travel
times (e.g., from the center to the emergency scene, from the emergency scene to hospitals),
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while respecting users’ privacy. In addition, new variables will be added such as the
number of dispatched ambulances registered in a previous or current time, and the number
of ambulances and firefighters available in each center at a given time, given that while
there are few resources available, ART may be longer. Indeed, the aim is to build an
intelligent system capable of predicting ARTs while respecting victims’ privacy. This way,
this system would allow reinforcing SDIS 25 centers with the necessary firefighters to attend
incidents faster; to create a new center according to the concurrence and high average ARTs
for a given area; as well as to convert a static resource deployment plan into a dynamic one,
which would be based on the selection of the center with shorter response times taking
into account the community the emergency took place, traffic and weather conditions, and
so on. Lastly, we would like to evaluate, in practice, the trade-off between such an ART
prediction decision-support system with the victims’ privacy, on using ε-GI location data.
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The following abbreviations are used in this manuscript:

ART Ambulance response time
BO Bayesian optimization
DP Differential privacy
EMS Emergency medical services
GI Geo-Indistinguishability
LASSO Least Absolute Shrinkage and Selection Operator
LBSs Location-based services
LDP Local differential privacy
LGBM Light Gradient Boosted Machine
MLP Multilayer Perceptron
MAE Mean absolute error
MAPE Mean absolute percentage error
RMSE Root mean squared error
SDIS 25 Departmental Fire and Rescue Service of Doubs
XGBoost Extreme Gradient Boosting
Z1 Zone urban
Z2 Zone semi-urban
Z3 Zone rural
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Appendix A. Complementary Results

Table A1. Search space for hyperparameters by ML model and the best configuration obtained for predicting ARTs
per dataset.

Model Search Space
Best Configuration per Dataset

Original ε = 0.005493 ε = 0.002747 ε = 0.001155 ε = 0.000866 ε = 0.000693

XGBoost

max_depth: [1, 10] 9 9 6 6 9 9
n_estimators: [50, 500] 465 465 130 235 465 465

learning_rate: [0.001, 0.5] 0.0265 0.0265 0.0858 0.0486 0.0265 0.0265
min_child_weight: [1, 10] 5 5 7 7 5 5

max_delta_step: [1, 11] 4 4 3 4 4 4
gamma: [0.5, 5] 3 3 0 2 3 3

subsample: [0.5, 1] 0.8 0.8 1 1 0.8 0.8
colsample_bytree: [0.5, 1] 0.5 0.5 0.5 0.5 0.5 0.5

alpha: [0, 5] 2 2 1 2 2 2

LGBM

max_depth: [1, 10] 7 8 10 8 8 6
n_estimators: [50, 500] 355 326 477 250 80 441

learning_rate: [1 × 10−4, 0.5] 0.0188 0.0098 0.0164 0.0285 0.0586 0.0300
subsample: [0.5, 1] 0.54066 0.5228 0.6138 0.6699 0.6732 0.5812

colsample_bytree: [0.5, 1] 0.5160 0.5575 0.5204 0.6870 0.5507 0.5451
num_leaves: [31, 400] 400 192 245 398 132 95

reg_alpha: [0, 5] 4 0 5 0 1 4

MLP

Dense layers: [1, 7] 7 3 4 6 6 6
Number of neurons: [28, 213] 210 212 212 29 212 29

Batch size: [32, 168] 140 80 48 82 70 44
Learning rate: [1 × 10−5, 0.01] 0.00265 0.00124 0.0099 0.0099 0.0094 0.0077

Optimizer: Adam Adam Adam Adam Adam Adam Adam
Epochs: 100 100 100 100 100 100 100

Early stopping: 10 10 10 10 10 10 10

LASSO alpha: [0.01, 2] 0.0205 0.0307 0.0105 0.0100 0.0112 0.0107

Table A2. Metrics results for each ML model trained with original data and sanitized ones.

Data Metric XGBoost LGBM MLP LASSO

Original

RMSE 5.5398 5.5427 5.5916 5.6511

MAE 3.4286 3.3880 3.5623 3.4760

MAPE 30.114 29.476 31.867 30.260

R2 0.3412 0.3405 0.3289 0.3145

ε = 0.005493

RMSE 5.5547 5.5544 5.6401 5.6596

MAE 3.4515 3.3915 3.5773 3.4960

MAPE 30.432 29.628 32.307 30.571

R2 0.3377 0.3378 0.3172 0.3124

ε = 0.002747

RMSE 5.5617 5.5536 5.6959 5.6636

MAE 3.4430 3.4628 3.6357 3.4991

MAPE 30.364 30.688 32.687 30.606

R2 0.3360 0.3379 0.3036 0.3115

ε = 0.001155

RMSE 5.5788 5.5867 5.8184 5.6671

MAE 3.4803 3.4991 3.8550 3.5094

MAPE 31.097 31.327 35.704 30.835

R2 0.3319 0.3300 0.2733 0.3106

ε = 0.000866

RMSE 5.5892 5.5885 5.8575 5.6716

MAE 3.5033 3.4702 3.8736 3.5134

MAPE 31.515 30.964 35.810 30.907

R2 0.3295 0.3296 0.2635 0.3095

ε = 0.000693

RMSE 5.5962 5.5978 6.0463 5.6717

MAE 3.5119 3.5087 3.9704 3.5171

MAPE 31.638 31.543 36.122 31.007

R2 0.3278 0.3274 0.2153 0.3095
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Abstract: The aim of the quay crane scheduling problem (QCSP) is to identify the best sequence
of discharging and loading operations for a set of quay cranes. This problem is solved with a
new hybrid estimation of distribution algorithm (EDA). The approach is proposed to tackle the
drawbacks of the EDAs, i.e., the lack of diversity of solutions and poor ability of exploitation. The
hybridization approach, used in this investigation, uses a distance based ranking model and the
moth-flame algorithm. The distance based ranking model is in charge of modelling the solution
space distribution, through an exponential function, by measuring the distance between solutions;
meanwhile, the heuristic moth-flame determines who would be the offspring, with a spiral function
that identifies the new locations for the new solutions. Based on the results, the proposed scheme,
called QCEDA, works to enhance the performance of those other EDAs that use complex probability
models. The dispersion results of the QCEDA scheme are less than the other algorithms used in
the comparison section. This means that the solutions found by the QCEDA are more concentrated
around the best value than other algorithms, i.e., the average of the solutions of the QCEDA converges
better than other approaches to the best found value. Finally, as a conclusion, the hybrid EDAs have
a better performance, or equal in effectiveness, than the so called pure EDAs.

Keywords: estimation of distribution algorithm; Mallows model; moth-flame algorithm; job shop
scheduling problem; quay crane scheduling problem

1. Introduction

1.1. Recent Research on Seaport Operations

Approximately 90% of products that are globally commercialized are transported
by sea, and in one decade, the average capacity of cargo ships has doubled, with ports
being the ones that allow the execution of exchanges. Seaports facilitate trading and make
logistics costs more competitive. They allow the transportation of products without several
checkpoints, making the process and the supply chain more efficient.

The geographic location of each seaport, combined with the quantity of active seaports,
provides significant advantages in this industry for any economy.

Seaports are geographical areas and economic units of the specific place where the
terminals may be found, the terminals are operating units of a seaport, which are actively
able to provide modal interchange and seaport services.

The connectivity among seaports must be constantly improved to facilitate the move-
ment of products by sea or land, and, within this connectivity, intermodal schemes must be
defined to establish, for example, the transportation of products by rail or carrier.

The International Seaport System has been constantly modernized with a vision to
improve logistics and multimodal connectivity, where the projects regarding seaport, road
and rail infrastructures are more integrated in order to respond to the increasing demand
of national and international trade. Currently, the capacity of seaports has been increased
by millions of tons per year.

As was previously mentioned, seaports have been, are and shall be, a great entry gate
to the different continents of the world. Supported by the great advantage of having access
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to the oceans, countries have an extensive growth potential regarding foreign trade; it is
only a matter of continuously improving governmental management and support.

One of the greatest challenges of trading by sea is the existence of the international
market, countries have reached the maximum uses of their seaports, the demand for
infrastructure and comprehensive logistic service offered at lower costs is still increasing.

Additionally, trained staff are required to put into operation the resources acquired in
an efficient and safe manner. Another significant challenge is environmental protection,
for example, in the Caribbean Sea, a Mesoamerican Reef System was designed, which is a
sensitive area for navigating and preventing pollution from ships.

There is still a gap to consider: cabotage routes must be reinforced and transport routes
must be developed; however, maritime transport is encouraged every year, the develop-
ment of the industry is increasing and governments are considering it as a significant matter.

Therefore, the role of international transportation, maritime shipping, and marine
container terminals in the economic development of numerous countries has been widely
studied using different approaches. Seaport problems continue to be attracted to develop-
ing new optimization techniques. Recently, important contributions have been published
in order to improve the performance of seaport operations. A representative example is
the study of [1]. This study details a tailored global optimization algorithm for deploying,
scheduling, and sequencing heterogeneous vessels in a container liner shipping route. The
key advantage is that the weekly dependent shipping demand is considered to incorporate
fluctuations in the planning horizon. In addition, the authors consider the distinct fuel
efficiencies, cost structures of the ships, and capacities. These conditions determine the
number of containers transported, the bunker fuel consumption, and the operating cost
of a shipping route. A mixed integer-programming model minimizes the total cost by
considering, from a set of candidate ships, the optimal ships. In addition, the proposed
model integrates the sequences, schedules, and sailing speeds of the shipping route.

Ref. [2] is a seaport study that considers emergent ship arrivals for building berth
schedules. The authors propose an optimization procedure to schedule ships by reducing
disturbances in the service and maximizing the number of emergent ships served. A case
study illustrates the aforementioned optimization procedure. The proposed procedure
provides key concerns to decision makers dealing with the berth scheduling issues of
emergent ship arrivals.

Ref. [3] attends to real world situations, such as water depth and tide conditions, in
seaport operations. An enriched particle swarm optimization procedure is depicted to
solve the continuous berth allocation, quay crane assignment and quay crane scheduling
problems. The authors incorporate, in the solution, safety operations between quay cranes.
Their results are compared with the results of the exact solution and the basic particle
swarm optimization procedure.

Ref. [4] concerns the increase in seaport operations in the last thirty years, and argues
that berth scheduling can improve the throughput of marine container terminals. The
authors detail an innovative evolutionary algorithm to minimize handling costs, waiting
costs, and the late departure costs of the vessels that are to be served at a marine container
terminal. The scheme of the authors relies on an augmented self adaptive parameter control
strategy, which changes algorithmic parameters throughout the search process.

Another important example is the research of [5]. The author develops a novel memetic
algorithm to help the marine container terminal operators to build proper schedules, and
to tackle congestion issues caused by the increasing number of large size vessels. Although
this study does not account for uncertainty in vessel arrivals, the proposed algorithm
serves as an efficient planning tool for marine container terminal operators and assists with
efficient the berth scheduling.

1.2. The Quay Crane Scheduling Problem

Based on the preliminary review, it is clear that the performance of seaport operations,
for the international supply chain, continues to be highly important. Solving problems,
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such as the quay crane scheduling problem (QCSP), a combinatorial problem, contributes
to improving the efficiency of any seaport. The QCSP is selected in this research due to its
complex nature.

Quay cranes are very important resources at container terminals. They are used to
load containers onto, and discharge containers from vessels at, the quayside of terminals.
Quay cranes along the same berth operate on a common set of rails.

Jobs represent container unloading/loading work, and arise at specific locations along
the quayside. The collection of jobs may represent work for a single ship, or multiple ships.

Normally, an optimization formulation for the QCSP considers reducing the makespan,
i.e., the total completion time. Any proposed solution should consider scheduling opera-
tions restrictions, such as

- A minimum distance being left between quay cranes to avoid boom collision.
- Each quay crane should work when it will not be busy.
- Like a traditional shop environment, precedence between operations may exist.

A mathematical formulation considers

• pi the processing time of task i.
• rk the release time of quay crane k.
• tij the travel time of a quay crane from the bay position of task i to the bay position of

task j.
• M a sufficient large constant.
• Ω a set of all tasks.
• Φ a set of ordered pairs of tasks between which there is a precedence relationship.
• xijk = 1 if task j immediately follows task i on quay crane k; 0, otherwise. Tasks 0 and

T will be considered the initial and final states of each quay crane, respectively. Thus,
when task j is the first task of quay crane k, x0jk = 1. In addition, when task j is the
last of quay crane k, xjTk = 1.

• Qk the completion time of quay crane k.
• Ci the completion time of task i.
• Cmax makespan.

Therefore, the QCSP can be formulated as follows

Minimize ∑i Ci
Ω

(1)

subject to
Ci ≤ Cmax ∀k = 1, . . . , K (2)

∑j∈Ω x0jk = 1 ∀k = 1, . . . , K (3)

∑i∈Ω xjTk = 1 ∀k = 1, . . . , K (4)

∑k ∑i∈Ω xijk = 1 ∀j ∈ Ω (5)

Ci + tij + pj − Cj ≤ M
(

1 − xijk

)
∀i, j ∈ Ω, ∀k = 1, . . . , K (6)

Ci + pj ≤ Cj ∀i, j ∈ Φ (7)

Cj + tjTk + Qk ≤ M
(

1 − xjTk

)
∀i ∈ Ω, ∀k = 1, . . . , K (8)

rk + Cj + t0jk + pj ≤ M
(

1 − x0jk

)
∀i ∈ Ω, ∀k = 1, . . . , K (9)

xijk = 0 or 1 ∀i, j ∈ Ω, ∀k = 1, . . . , K (10)

Qk, Ci ≥ 0 ∀i ∈ Ω, ∀k = 1, . . . , K (11)

The objective function (1) minimizes the average waiting time. Constraint (2) deter-
mines the makespan, which corresponds to the completion time of all tasks. Constraints (3)
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and (4) define the first and the last tasks for each quay crane, respectively. Constraint (5)
ensures that every task must be completed by exactly one crane. Constraints (6) and (7)
determine the completion time for each task. Constraint (8) defines the completion time of
each quay crane. Constraint (9) ensures that the first task of a crane is not started before
the crane is ready. Finally, (10) and (11) define the domains of the decision variables.

The objective of our study is to identify the best schedule to minimize the quays’
overall average waiting time. The methodology used in this research details how a solution
can be built by two decisions, i.e., operation scheduling and crane assignment.

1.3. Solving Combinatorial Problems through Evolutionary Algorithms

In a wide set of studies, evolutionary algorithms have been proposed to offer useful
solutions for high scale optimization problems. The solutions are required in different engi-
neering fields. Particularly, evolutionary algorithms are competitive in the combinatorial
optimization field. Some relevant studies of evolutionary algorithms can be appreciated
in the research of [6], for job shop operations and process integration. The authors use
and apply the concept of interaction between different species to tackle the problem. This
interaction is not considered in any traditional genetic algorithm. The study of [7] is rep-
resentative of the evolutionary algorithms family for tackling job shop problems. In this
applied case, an ant colony optimisation based approach is proposed to address flexible
job shop scheduling with routing flexibility and setup times problems. Recent publications
are found in [8]. This research group employs a genetic algorithm with the Pareto front
technique. The approach is applied on a mail-order pharmacy system. Ref. [9] utilizes a
bee colony method with the Pareto front technique for solving the single machine group-
scheduling problem with sequence dependent setup times. Ref. [10] uses an enriched
discrete particle swarm optimization method to solve a flexible job shop scheduling prob-
lem. Ref. [11] detail a bat based approach to tackle a dual flexible job shop scheduling
problem. Moreover, recently, the use of hybrid evolutionary algorithms is remarkable.
The aim is to offer more efficient methods, or better solutions, to those previously found.
The work of [12] falls into this category for solving the vehicle routing problem. The
author employs a genetic algorithm and local search. The research of [13] also utilizes a
genetic technique with a variable neighborhood descent method to address flexible job
shop scheduling problems. The study of [14] integrates a genetic algorithm with a neural
network to improve container-loading sequences in seaports. The practical implementation
of their algorithm is confirmed by using a simulation in the research. The work of [15]
uses a genetic technique with a minimum cost flow network model to solve a dispatching
problem for vehicles in a transshipment hub scenario. Their experiments show that the
proposal is more effective than a neighborhood search algorithm. The research of [16]
details an efficient parameter free greedy randomized adaptive search method, plus a
variable neighborhood descent technique, to tackle a school bus routing problem with bus
stop selection. The study of [17] proposes a genetic technique with a tabu search to address
more than 200 flexible job shop scheduling open problems. Following the previous review,
we can appreciate that there exist different types of evolutionary algorithms for solving
different combinatorial problems.

1.4. Estimation of Distribution Algorithms

This article focuses on the use of estimation of distribution algorithms (EDAs) as
a section of the classification of evolutionary algorithms. There exists a vast literature
about EDAs. Studies, such as [18], designed for solving permutation flowshop scheduling
problems. The research of [19] contributes guidelines for developing effective EDAs for
single machine scheduling problems. Furthermore, the work of [20] proposes an EDA for
solving lot-streaming flowshop problems with setup times. These investigations are robust
in the solution of combinatorial problems using EDAs.

When using EDAs, as with other evolutionary algorithms, the main task is to produce
a population of solutions through some generations. However, with EDAs, a probability
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model, i.e., a distribution, is built based on a set of solutions to the problem, to produce
new solutions. Traditionally, the performance of EDAs lies in how efficient the probability
distribution is. The probability distribution is built using the members of the population to
obtain better solutions. It has been widely documented, in papers such as [21,22], that the
probability model should consider the structure of a problem with more precision. The aim
of EDAs is to consider high order interactions between the variables of the problem. Thus,
complex probability models are employed to improve the efficiency of EDAs. Nonetheless,
one of the drawback of EDAs is the lack of the diversity of the solutions and the poor
ability of exploitation [22]. There is more than one way to counter the drawbacks of EDAs.
Nevertheless, most studies suggest hybridization. In the literature review section, some of
the studies are listed.

In this paper, we can visualize the importance of the effective estimation of the solution
space distribution to build a competitive EDA. In addition, if we analyze the results shown
in the corresponding results and comparison section, we are going to reach the conclusion
that the hybridization of EDAs with other methods should practically always be considered
in the design and development of such algorithms. According to the results of this research,
hybridization is not only a reason for publication, it also avoids the necessity of requiring
building complex probability models. If this occurs, the algorithm could be difficult
to understand.

The main reason for performing this research was to determine what is most useful, i.e.,
the development of complex probability models or the hybridization of the EDA with other
methods to obtain the same or better solutions. Most published articles, related to EDAs
and to solve optimization problems, have a lack of diversity in the process of the generation
of solutions. The aforementioned drawback can be tackled through the hybridization of an
EDA and other methods. However, there exists a wide field of development to determine
which methods are more suitable to obtain the better performance of an EDA. This research
aims to use bioinspired techniques to help to reduce the deficiencies of an EDA. In addition,
it is preferable that the methods used, in the hybridization process, should contain some
well defined math expressions. This helps to understand how the solutions are generated.
Therefore, the aim is to use new methods and to establish the search process of explicitly
new solutions.

The hybridization approach used for this investigation considers a distance based
ranking model coupled with a moth-flame algorithm, a novel nature inspired heuristic
paradigm [23]. Therefore, the QCSP is solved by the proposed approach in order to show
how hybridization helps to enhance the performance of the EDA. Distance based ranking
models appear sparingly in the literature to tackle the drawback of the EDAs. There are few
papers available about it. For example, Ref. [24] introduces an EDA based on a distance
based ranking model for the flowshop scheduling problem. The distance based ranking
model is used as a probability model in the permutations field.

1.5. The Proposed Hybrid Approach, a Brief Explanation

In this research, the members of the population are considered as rankings. Table 1
shows a ranking of five items or elements as an example.

Table 1. A ranking example.

Rank 1st 2nd 3rd 4th 5th

Element Π B α ∞ μ

In this sense, the members of the population are permutations of elements. A ranking
defines a solution for the problem to solve. Table 2 depicts some rankings as flowshop-
scheduling solutions, where each item represents a job, and then a processing sequence is
executed according to each ranking.

33



Math. Comput. Appl. 2021, 26, 64

Table 2. Rankings for the flowshop as an example.

Processing Sequence 1st 2nd 3rd 4th 5th

Rank 1 J5 J3 J1 J4 J2
Rank 2 J5 J1 J4 J3 J2
Rank 3 J3 J1 J2 J4 J5

Then, a distance metric is computed between rankings, by the algebra of permuta-
tions. After that, a distribution probability is built, i.e., an exponential distribution. The
aforementioned exponential distribution occupies, as an input parameter, the distance
between each of the permutations and a reference permutation. A known distance based
ranking model is the model of [25]. In general terms, it concerns assigning a probability
to each permutation that declines exponentially based on its distance from a reference
permutation. It is then said that such a permutation is more (or less) likely to be chosen as
a good solution, according to the [25]’s model. Figure 1 illustrates such a distribution, with
five rankings.

 
Figure 1. Exponential distribution using a distance between rankings.

However, [25]’s model is not able to generate offspring by itself. The reason is because
there can be many permutations with the same distance to the reference permutation. This
causes confusion regarding which permutation is the offspring. It is solved by the factor-
ization (decomposition) of the distance previously obtained. The factorization is computed
by a procedure called GMD (the Generalized Mallows Model), proposed by [26,27]. Such
authors propose how to factorize in n − 1 elements, the distance between two rankings
where n is the size of the rankings. With that factorization, it is possible to obtain the
offspring. Table 3 details such factorization.

Table 3. Factorization of the distance between rankings.

Rankings Reference Ranking Distance
Factorization Based on
Fligner & Verducci [26]

4, 2, 5, 3, 1
1, 2, 3, 4, 5

7 [3, 1, 2, 1]
5, 4, 1, 2, 3 7 [4, 3, 0, 0]
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Then, such factorization (decomposition) serves as input parameter in the moth-flame
heuristic to generate new offspring. Based on the results obtained in this study, it is more
efficient to produce new and better offspring through such hybridization. The novelty of
this study is to show how this hybridization is better than the direct use of a distance based
ranking model.

Roughly, the factorization (decomposition) obtained in the previous step is used to
determine where a moth is located in the solution space. That is, the decomposition of
the distance between rankings (permutations) is seen as a moth’s location coordinate in
the feasible space of solutions. Figure 2 shows such factorized rankings, and the moths´
location coordinates.

Figure 2. Relation between factorized rankings and the moths’ location coordinates.

A moth is a search agent that moves in a feasible space, whereas a flame is located at the
best position obtained so far [23]. A spiral-flying path, using a defined mathematical model,
of moths around flames is the way to execute the movement of the moths to new locations.
Thus, the GMD is in charge of modelling the solution space distribution; meanwhile the
heuristic moth-flame is in charge of determining who would be the offspring. That is how
this proposed algorithm works to enhance the results obtained from those algorithms that
use complex probability models.

The rest of the paper is organized as follows. Section 2 reviews the literature of EDAs
and different approaches to tackle the problem. Section 3 presents the inspiration of this
work and proposes the quay crane estimation of distribution algorithm, with the Mallows
model and a moth-flame structure, called QCEDA. The experimental setup and results are
provided in Section 4. Section 5 concludes the work and suggests several directions for
future studies.

2. Literature Review

It is of particular interest to present current research of the use of EDAs to solve com-
binatorial problems. Thus, the first part of the literature review is focused in that direction.

2.1. Complex Problems, Complex Probability Models

An important direction in the development of EDAs focuses on building complex
probability models. Such models consider high order interactions between the variables of a
problem. The challenge, in this group of EDAs, is how well such interactions are estimated
and how to produce better results. We can start with the case where there exists no interaction
between variables. Algorithms such as the univariate marginal distribution algorithm
(UMDA), detailed in [28], fall into this category. If there exists interaction between a pair of
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variables, an algorithm with a good performance is the mutual information maximization
for input clustering (MIMIC), presented in [29]. If we try to model high order interactions
between variables, probability models become more complex to understand and compute.
Moreover, a large number of solutions might be required to estimate, in the best way, such
interactions. Some important algorithms in this category are the combining optimizers
with mutual information trees (COMIT), published by [30], and the Bayesian optimization
algorithm (BOA) proposed by [31]; to mention these as the most frequent and cited.

The development of EDAs, which considers high order interactions between variables,
does not finish here. Conversely, different combinations of complex probability models
have been used for solving combinatorial problems, such as in [32]. The authors compute
more than one complex model to address a flexible job shop scheduling problem.

Ref. [33] offer a clear revision of the use of the complex models used in EDAs to
solve combinatorial problems. In such a revision, we can appreciate that the complex-
ity of the probability model there exists when we estimate higher order interactions
between variables.

2.2. The Hybridization Approach

As discussed in the introduction section, hybridization is an efficient way to counter
the weakness of EDAs. Practically, hybrid EDAs include some improvement components.
The support method used to improve the performance of EDAs differs between authors,
but the most common are heuristics or other evolutionary algorithms. Some studies that
use hybrid evolutionary algorithms to solve optimization problems are found in [34]. The
author presents a hybrid genetic algorithm coupled with a gravitational search algorithm,
called the GA-GSA algorithm, to optimize the metrics of a real industrial case, employing
uncertain data. The application of the proposed algorithm can save manpower, budget,
and time, and improve the metrics of the company. In addition, Ref. [35] presents a hybrid
technique. It uses a particle based swarm method and a genetic algorithm, named PSO-GA,
to tackle the constrained optimization problems. The particle based swarm method focuses
on enhancing the solution vector, while the genetic technique is employed to modify the
offspring. Furthermore, Ref. [36] proposes a hybrid gravitational search algorithm coupled
with a genetic algorithm, labeled as the GSA-GA algorithm. The aforementioned algorithm
is developed to solve nonlinear optimization problems, and it includes mixed variables.
Similarly, each solution is generated through a gravitational search approach, and then
each offspring is updated by the genetic technique.

Other studies try to integrate the concept of hybridization between evolutionary
algorithms and EDAs. The most representative studies are found in [37]. The authors
present a hybrid algorithm through genetics and the estimation of distribution algorithms.
A key point is taking advantages from both procedures. The authors apply the hybrid
EDA for solving synthetic optimizations problems and two real world cases. Ref. [38] uses
an EDA with a 2-opt local search, in a hybridization phase, for addressing a quadratic
assignment problem. Ref. [39] considers a permutation flowshop scheduling problem
using a particle swarm optimization method with an EDA. Ref. [22] confronts a flexible
job shop scheduling problem through the hybridization of an EDA and a local search
approach to improve the exploitation process of the EDA. Ref. [40] proposes an EDA to
tackle a stochastic resource constrained project-scheduling problem. The hybridization
phase uses a permutation based local search. Ref. [41] presents a fuzzy logic based hybrid
EDA for addressing distributed permutation flowshop scheduling problems with machine
breakdown. The hybridization phase uses genetic variation operators to create offspring.
The articles mentioned above are current and representative of this group of hybrid EDAs.

2.3. Distance Based Ranking Models

Another approach for the development of EDAs is to search and use already defined
probability models for the permutations field. These models should be able to adapt them-
selves to the structure of the representation of the members of the population. The main
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goal is to model the solution space from another perspective. Examples include the EDAs
proposed by [24], for a flowshop scheduling problem; Ref. [42], detailing the school bus
routing problem with bus stop selection; Ref. [43], depicting a flexible job shop scheduling
problem with process plan flexibility; and [44], illustrating the vehicle routing problem with
time windows. For the aforementioned papers, an interaction estimation between variables
is not required. A distance based ranking model is preferable; specifically, the GMD.

2.4. Quay Crane Scheduling, Recent Literature

Ref. [45] offers an exact and computationally fast solution technique to solve the QCSP.
The technique combines a partitioning heuristic with a branch and price algorithm. Finally,
a traveling salesman formulation is utilized to minimize crane repositioning movements.

Ref. [46] describes a mathematical model for the QCSP. The authors tackle the non-
crossing constraints by addressing the structure of workload assignments. The proposed
mathematical formulation is based on the logic based Benders decomposition.

Ref. [47] finds a compact mathematical formulation of the unidirectional cluster based
quay crane scheduling problem that can be easily solved by a standard optimization solver.

Ref. [48] presents a revised optimization model for the scheduling of quay cranes
and proposes a heuristic solution procedure. The authors propose a branch and bound
algorithm, which searches a subset of above average quality schedules; meanwhile, the
heuristic considers the impact of crane interference.

Ref. [49] details a genetic algorithm that it is built through a novel workload balancing
heuristic, and the loading conditions of different quay cranes during the reassignment
of task to quay crane are considered. The idea is modelled as a fuzzy logic controller to
guide the mutation rate and mutation mechanism of the genetic algorithm. As a result,
the proposed algorithm does not require any predefined mutation rate. Meanwhile, the
genetic algorithm can more adequately reassign tasks to quay cranes according to the quay
cranes’ loading conditions throughout the evolution.

Ref. [50] improves the efficiency of a genetic algorithm by (1) using an initial solution
based on a heuristics rule, (2) using a new approach for defining chromosomes (i.e., solution
representation) to reduce the number of decision variables, and (3) using new procedures
for calculating tighter lower and upper bounds for the decision variables.

Ref. [51] tackles the issue of the interference among cranes by a modified genetic
algorithm to deal with the QCSP.

Ref. [52] develops a two quay-crane schedule with noninterference constraints for
the port container terminal of Narvik. First, a mathematical formulation of the prob-
lem is provided, and, then, a genetic algorithm approach is developed to obtain near
optimal solutions.

It is clear, from this review, that the QCSP has been studied intensively in a recent
stream of research. In addition, based on the current research, it is important to handle
the correct treatment of crane interference constraints. In addition, there is still a gap to
improve the performance of EDAs, and the hybridization approach continues to be a useful
way to enhance EDAs. In addition, from the exposed review, it is of interest to know how
much better hybrid EDAs can be, than other pure EDAs and recent algorithms.

The contributions of this article are

- To propose a hybrid EDA, not only a reason for publication, this also avoids the
necessity of requiring building complex probability models.

- To determine what is most useful, i.e., the development of complex probability
models or the hybridization of an EDA with other methods to obtain the same or
better solutions.

- As a reason for doing this research, there exists a wide field of development to
determine which methods are more suitable to obtain the better performance of
an EDA.

- The research motivation is to show how bioinspired techniques help to reduce the
deficiencies of an EDA.
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- Based on the results obtained in this study, it is more efficient to produce new and
better offspring through such hybridization.

3. The QCEDA Approach

This section may be divided by subheadings. It should provide a concise and precise
description of the experimental results, their interpretation, as well as the experimental
conclusions that can be drawn.

3.1. Initial Population

A representation of solutions to the QCSP is detailed through the processing sequence
of containers on the available quay cranes and the establishment of containers for the
quay cranes.

For the processing sequence of containers, a first vector is proposed, i.e., the containers
sequence vector. It has a length that equals the number of containers moving through the
quay cranes. Thus, any vector of this type is simply a sequence of n containers.

An example is depicted in Table 4, with five containers indexed from 1 to 5.

Table 4. A task sequence vector example.

Ranking 1st 2nd 3rd 4th 5th

Task(container) 3 1 4 2 5

Where container number three should be executed (moved) at the beginning, after that,
container number one, container number four, and so on. Each element in the containers
sequence vector shown above might be in any place on the representation, or as any
permutation based solution, i.e., as any ranking.

As in other EDAs, the aforementioned representation is suitable for using in the
set of combinatorial problems used in the comparison section. With this representation,
for the solution vectors, the GMD can be directly applied in the distance-based ranking
model phase. The initial population contains 1000 members. Each member has a length, n,
where n is the number of elements in the permutation, i.e., containers. All this is in each
generation. The number of members is a fixed parameter.

For the assignment of containers, a second vector is built, i.e., the quay crane assign-
ment vector. It also has a length that equals the number of containers. Every element
represents the selected quay crane for every container. An example is depicted in Table 5.

Table 5. A quay crane assignment vector.

Ranking 1st 2nd 3rd 4th 5th

Quay crane 2 2 1 1 3

The first container, based on the containers sequence vector shown in Table 4 and
labeled with (3), is moved by the crane labeled with the number two, according to the crane
assignment solution vector. The second container, labeled with (1), is moved by the same
crane, the third container, labeled with (4), is moved by the crane labeled with the number
one, and so on.

3.2. Fitness

The average waiting time that is required to move all the tasks (containers) is the fitness
for the QCSP in this research. The fitness is computed for each member of the population.
Once the completion time for each task is obtained, all the times are accumulated and
divided by the number of tasks to obtain the average waiting time, i.e., the fitness.

To ensure compliance with the quay crane constraints for each crane and avoid any
collision between cranes, the Delmia-Quest® simulation language is preferred in this
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research. Delmia-Quest® avoids any collisions between cranes in each simulation run.
A controller establishes the order of movements, in each simulation run, to satisfy the
aforementioned constraints. Using the Delmia-Quest® simulation language, the main
constraints related to the cranes are satisfied. Furthermore, considering Delmia-Quest®,
the fitness is obtained directly from the simulation model and the QCEDA is in charge of
modelling the solution space distribution.

For each solution, the corresponding values are obtained from the simulation model,
built on Delmia Quest®. The main details of the simulation model are outlined below

- A crane system is used to move containers through the ship.
- The crane system is multidirectional.
- Different cranes can service any container according to a predefined sequence.
- Containers can receive service from different cranes based on the predefined sequence.
- The movement of containers is only possible by cranes.

With all these features, the simulation model is able to integrate operation times and
workflows. Finally, the fitness is used by the QCEDA to obtain the best solution at the end
of execution.

3.3. Probability Model for the Quay Crane Assignment Vectors

A matrix, q, is built to describe the probability model for the quay crane assignment
vectors. That is, each qi value in the matrix mentioned details the number of times the quay
crane, i, is elected with a container. Again, the vectors depicted below are utilized to create
a probability matrix, q, for the first position in the sequences, i.e., qi. In this example, six
vectors (as a population), with a length that equals five containers, are shown in Table 6.

Table 6. Quay crane assignment vectors.

Ranking 1st 2nd 3rd 4th 5th

V1 2 2 1 1 3
V2 3 2 1 1 1
V3 1 2 2 2 1
V4 3 1 3 3 2
V5 2 2 1 2 2
V6 2 3 2 3 3

q1 matrix
Quay crane p(X1 = x)

1 1/6
2 3/6
3 2/6

New quay crane assignment vectors are constructed as follows: in each position on
the new individual, the quay crane i is elected by the cumulative probability of qi. Each qi
cumulative value considers the opportunity of the quay crane, i, be elected for the place, j,
in the offspring.

Firstly, a random value should be generated in every place on the offspring. Then,
every random value is interpolated in the cumulative probability of qi, to identify which
quay crane should be selected. Figure 3 depicts an illustration of this process.

Therefore, the offspring, i.e., the new quay crane assignment vectors, are sampled
according the cumulative probability of qi.
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Figure 3. Sampling example.

3.4. Probability Model for the Task Sequence Vectors
3.4.1. The Distance Based Ranking Model Phase

• Central ranking computing

With all members of the population, i.e., the task sequence vectors, the central (refer-
ence) permutation is computed. The central permutation is a parameter inside of the GMD
process. In this research, the procedure based on [53] is used to compute the reference
permutation. Firstly, the mean for each position, considering the members of the popu-
lation, is computed. Secondly, the smallest mean, from the all the positions, is identified
and the smallest element of the reference permutation is assigned in the smallest mean
position, identified previously. This continues when the second smallest mean, from all
the positions, is identified and the second smallest element of the reference permutation is
assigned in the second smallest mean position identified previously, and so on until the
procedure finishes. This procedure is widely used to define a consensus of the all rankings.
Figure 4 presents a simple example with seven vectors of length five, the corresponding
means and the result, i.e., the central permutation.

Figure 4. Central ranking computing example.

With the consensus ranking (central permutation), it is possible to compute the dis-
tance between each member of the population and the consensus ranking. The procedure
defined by [26,27] compute the distance. Firstly, the composition (product) between the
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inverse of each permutation and the consensus ranking should be computed. Figure 5
details an example of the composition mentioned between two vectors with length four.

Figure 5. Composition between permutations.

For further details, the reader is referred to the algebra of permutations literature.
With the composition previously detailed, it is possible to decompose in n − 1 items, i.e., to
factorize such composition (see Figure 6).

 

Figure 6. Factorization of the distance between permutations.

3.4.2. The Moth-Flame Phase

• Initialization of moths in the feasible space

The factorization obtained in the previous step now represent coordinates where a
moth is located in an initial search phase. Then, there are M members, i.e., M solution
vectors, in the initial population and M moths for the moth-flame phase. Figure 7 shows
an allocation of a moth. Based on this idea, the members of the population each contain
n elements, and the moth-flame phase uses n − 1 elements for each moth. Therefore, the
search space is stablished in dimension Rn−1.

• Fitness of the moths

In this study, the fitness, obtained for each individual, is the same fitness for every
moth in the moth-flame phase.

• Moths sorting

The population of moths is sorted in descending order, according to the fitness.

• Flames amount computing

The equation published in the work of [23] is used to determine the number of flames
in each generation. The equation is below

number of flames = round
(

N − l · N − 1
T

)
(12)
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where l is the current generation, N is the maximum number of flames, and T expresses
the maximum number of generations. The number of flames gradually decreases when
Equation (12) is implemented. This permits the right exploration and exploitation of
solutions [23]. Figure 8 shows how the number of flames gradually decreases when the
number of generations increases.

Figure 7. A moth allocation in the space.

 

Figure 8. Flames amount computing.

• Flames setting

The coordinates of the moths, already sorted, are considered to determine the locations
of the flames. Table 7 shows an example in R3, with three flames and nine moths.

• Flames’ fitness setting

The fitness for the flames is initialized with the fitness of the corresponding moth.

• Moth-flame assignment

Before generating offspring, i.e., the movements of the moths in the search space, each
moth should move only with respect to a specific flame. That is, each moth should be
assigned to a specific flame in each generation. Table 8 depicts an example in R3, with three
flames and nine moths.
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Table 7. Flames allocation example.

Flames Flame Coordinates Sorted Moths Moth Coordinates

1 (0, 0, 1) 1 (0, 0, 1) *
2 (3, 1, 0) 2 (3, 1, 0) *
3 (2, 1, 2) 3 (2, 1, 2) *

4 (0, 1, 0)
5 (1, 1, 1)
6 (3, 0, 0)
7 (2, 2, 0)
8 (2, 3, 0)
9 (1, 0, 0)

* the best moths.

Table 8. Moth-flame assignment example.

Moths Flame

1 1
2 1
3 1
4 2
5 2
6 2
7 3
8 3
9 3

• Moth movement

Each moth achieves a new location in the search space by the logarithmic function
defined in [23].

Spiral function = Di · ebt · cos(2πt)+Fj (13)

where Di indicates the distance between the i-th moth and the j-th flame, i.e., Di =
∣∣Mi − Fj

∣∣,
b is a value that depicts the shape of the function, t is a random value between [–1, 1].
Figure 9 depicts an example, in R2, for a moth after computation of the spiral movement.

Figure 9. An example of the use the spiral function.

3.4.3. Offspring Computing

The new locations of the moths are used as the representation of the distance between
permutations. That is, now the new coordinates of the moths represent the decomposition
(factorization) of the distance between permutations. That is how, in this research, both
approaches hybridize to improve the performance of the proposed algorithm.
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The way that the distances between permutations return to the original dimension,
i.e., n, is used in the algorithm of [54]. Through some steps, explained with an example
below, the research of these authors offers the possibility of finding the permutation that
corresponds to each offspring.

Pseudocode 1. [54]’s Procedure Example

n ← number of positions (permutation length)
Let a sample moth location vector V = (2, 0, 1)
therefore n := 4
insert n in 0 → Inverse permutation vector = (4 , __, __, __)
for j:=n − 1 to 1
insert j := 3 in V3·1 → Inverse permutation vector = (4, 3, __, __,)
insert j := 2 in V2·0 → Inverse permutation vector = (2, 4, 3, __,)
insert j := 1 in V1·2 → Inverse permutation vector = (2, 4, 1, 3 )

According to the sample moth location vector shown above, the corresponding inverse
permutation vector is (2, 4, 1, 3). Finally, each permutation vector is obtained by inverting
and composing the consensus ranking. An inverse permutation exists when every number
and the number of the place that it occupies are exchanged. Thus, the inverse of the inverse
permutation vector is (3, 1, 4, 2). If we take as the central ranking (1, 2, 3, 4) as example,
then, the composition of the previous result with the central ranking is (3, 1, 4, 2) as the
final vector.

3.5. Replacement

The offspring should be evaluated to obtain their fitness. Finally, the replacement
process used in this study is a binary tournament between the parents and the offspring.

All the stages of the proposed algorithm have been defined. The loop is performed
going back to step–quay crane matrix computing. In addition, the central ranking should
be updated with the new population after the replacement process. All of this is within
a number of the generations. In this research, 100 generations were used. This is a fixed
parameter. Then, the QCEDA framework is provided below

Pseudocode 2. QCEDA Framework

D0 ← Generate M individuals
t := 1
Do

FitDt−1 ← Evaluate individuals (fitness)
qt−1 ← q matrix computing from Dt−1
Dqt ← Sampling from qt−1
σ0 ← Central ranking computing from Dt−1
Kt−1 ← Distance computing from Dt−1 and σ0
Mt−1 ← Set moths from Kt−1
FitMt−1 ← Set fitness from FitDt−1
Mt−1 ← Sorting moths
f ← Flames computing
Ft−1 ← Set flames from Mt−1
FitFt−1 ← Set fitness from FitMt−1
Mt ← Moth movement computing (genotype)
Dst ← Offspring computing from Mt
FitDt ← Evaluate individuals from Dst and Dqt
Dt ← Replacement by binary tournament
t := t + 1

Until (stopping criterion is met)

Additionally, a flow chart is detailed in Figure 10 to illustrate the overall process.
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Start 

Generate initial population 

Evaluate population (get fitness) 

Quay crane matrix computing 

Sampling from the Quay crane matrix 

Central ranking computing 

Distance computing 

Moths setting 

Moths' fitness setting 

Moths sorting 

Flames computing 

Flames setting 

Flames' fitness setting 

Moths movement computing 

Offspring computing 

Evaluate offspring (get fitness) 

Replacement 

Stopping criterion 
is met? 

Yes 

Output: the best solution 

No 

Figure 10. The core of the QCEDA approach.
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4. Results and Comparison

4.1. Comparison with Standard Benchmarking Datasets

The set of instances of [55] are utilized in the comparison between different EDAs.
The input data (instances) were already generated by [55], and these instances are available
online. Ninety instances were used in the comparison. The comparison mentioned helps to
determine the importance of hybridization for the performance of the proposed EDA. All
the details of the instances are depicted below.

Basics of the Input Data

Headings present general information, such as
The safety margin between the quay cranes is two ship bays
The travel time of a QC between two adjacent bays is one

The body of the instance includes
The number of containers (tasks)
The starting position of each quay crane
The problem number
For each task

The location of the task,
The type of the task, i.e., deck or hold
The time required to perform the task
The type of operation, i.e., loading or discharging

All the trails were performed in a Lenovo™ ideapad 330, AMD A9-9425 Radeon R5,
3.10 GHz, 8 GB of RAM, Windows® 10 for 64 bits. C++ language is preferred to make all
the comparisons. A total of 30 trials were run for all the dataset. The relative percentage
increase (RPI) details how to compare the performance of the algorithms. This is the metric
used for comparison in this research.

RPI(c i) = (c i − c+)/c+ (14)

where ci is the average wait time executed in the ith replication, and c+ is the best average
wait time found for each instance used in this study. The reason to utilize the RPI is to
compare two quantities while taking into account the “sizes” of the things being compared.
The comparison is expressed as a ratio and is a unitless number. By multiplying these
ratios by 100, they can be expressed as percentages [56].

The performance of the QCEDA, through the experimental results, is presented in
Table 9. The results of the QCEDA scheme are concentrated between [0, 0.03], over the best
result found for all the instances. Therefore, the QCEDA is an outstanding technique to
address the quay crane scheduling problem.

Table 9. Performance of the QCEDA using [55]’s instances.

Intervals

Layouts Trials [0, 0.03) [0.03, 0.06) [0.06, or more)
90 2700 1933 713 54

71% 26% 3%

4.2. Comparison with Pure EDAs

The EDAs considered in the comparison are the MIMIC, the COMIT and the BOA.
These EDAs are considered as pure EDAs. These EDAs utilize complex probability mod-
els and their performance is based on such models. Finally, the QCEDA, the proposed
approach, is a hybrid EDA.

The experimental results distribution, for each interval, is shown in Table 10. The
QCEDA results are comparatively concentrated, in the range of [0, 0.03], whereas the other
algorithms results are concentrated in the range of [0.06, or more].
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Table 10. Distribution of the results between pure EDAs and the QCEDA approach.

Intervals

Algorithms [0, 0.03) [0.03, 0.06) [0.06, or more)
MIMIC 0 0 2700
COMIT 0 0 2700

BOA 0 0 2700
QCEDA for the QCSP 1933 713 54

Figure 11 indicates the results obtained by the algorithms for the QCSP. Through box
and whisper charts, the dispersion of the values obtained, for the RPI, is appreciated. As
the complexity of the probability model increases in the pure EDAs, the results improve.
However, the QCEDA scheme outperforms all the previous results. The dispersion results
of the QCEDA scheme is less than the other algorithms after all the trails were run, i.e., no
matter how many times we run the instances, the performance of the QCEDA achieved the
best value more times than the other algorithms. This means that the solutions found by the
QCEDA are more concentrated around the best value than those by the other algorithms.

 

Figure 11. Comparative results for the QCSP.

4.3. Comparison with Multi-Objective Algorithms

The QCEDA is evaluated against other multi-objective algorithms to enhance its
novelty. Two benchmark algorithms are used in the comparative, the algorithm from [57],
named NSGA, and from [58], named NSGA-II. These algorithms are well known in the
literature related to the multi-objective approach. The code of these algorithms is available
in the Kanpur genetic algorithms laboratory web. For the multi-objective approach, two
antagonistic objectives are analyzed: the average waiting time and the makespan. This
means that both fitnesses are computed for each solution. The objectives were utilized as
input parameters for finding the area obtained from the nondominated solutions, located
in the first layer of the Pareto-front, i.e., the best Pareto-front from each algorithm. This is
the new dependent variable for the experiment. All the details are depicted below.
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The Best Pareto-Front Process

Generate initial population
t :=1
Do
For each member of population

Get the average waiting time
Get the makespan

Identify the nondominated solutions from the initial population
Compute the area from the nondominated solutions from the initial population
Continue with the rest of the QCEDA steps to get offspring
For each offspring

Get the average waiting time
Get the makespan

Identify the nondominated solutions from the offspring
Compute the area from the nondominated solutions from the offspring
Save the best Pareto-front area between parents and offspring
t :=t + 1
Until (stopping criterion is met)

Then, the RPI is adapted to use the same Equation (14), where c∗ is the best area
found by any of the algorithm configurations, and ci is the area obtained from the best
Pareto-front obtained in the i-th replication by a given algorithm configuration.

Although the probability model, the GMD proposed, has been competitive for find-
ing suitable offspring, the best Pareto-front contributes to enhance the results when the
nondominated solutions are coupled with the GMD process.

The experimental results distribution is depicted in Table 11. From the table, it is
possible to identify that the overall results of the QCEDA approach are competitive. Based
on the results, the QCEDA approach can efficiently find the closest solutions to the best
solution, 2008 times in the first interval, whereas the other algorithms results are far from
this amount.

Table 11. Distribution of the results between multi-objective algorithms and the QCEDA approach.

Intervals

Algorithms [0, 0.03) [0.03, 0.06) [0.06, or more)
NSGA 160 21 3029

NSGA-II 159 25 3026
QCEDA for the QCSP 2008 791 411
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In addition, the Pareto-fronts obtained from each algorithm are shown at the bottom
of the Table 11, for the instance k13.

Figure 12 includes the performances of the NSGA, the NSGA-II, and the QCEDA
schemes. The QCEDA is efficient to find the best solutions. The dispersion of the QCEDA
is almost the same as the other algorithms. However, the solutions found by the QCEDA
are more concentrated around the best value than other algorithms, i.e., the average of the
solutions of the QCEDA converge better than other approaches to the best-found value.

 

Figure 12. Performance of the multi-objective algorithms.

4.4. Comparison with Recent Algorithms

Four current schemes are used against the QCEDA. The [51] algorithm, the [50]
algorithm, the [52] algorithm, and the [49] algorithm. The author has implemented all the
recent evolutionary algorithms used in the comparison section. The implementation was
made by following the indications of the respective papers, and the objective function is
the same for all the comparison process, i.e., the average waiting time.

The experimental results distribution is detailed in Table 12. From the table, it is
possible to identify that the overall results of the QCEDA scheme is, again, competitive.
According to the results, the QCEDA algorithm can efficiently find the closest solutions
to the optimal, more times in the range of [0, 0.03], than any another algorithm used in
the comparison.

Although there are no optimal results reported in the literature regarding the average
waiting time, it is possible to show the optimality gap for the makespan. These results are
provided in the bottom of the Table 12 for the all instances used in the comparison.

Figure 13 depicts the results of the algorithms. All the results were outperformed by
the QCEDA. Again, the dispersion of the QCEDA is less than other algorithms (between
0.01 and 0.05); this means that the solutions found by the QCEDA are more concentrated
around the best value than other algorithms, i.e., the average of solutions of the QCEDA
converges better than other approaches to the best found value. Furthermore, based on
the results, it is possible to justify the proposal of a hybrid EDA, not only as a reason for
publication; it also avoids the necessity of requiring building complex probability models.
In addition, results help to determine what is most useful, i.e., the development of complex
probability models or the hybridization of an EDA with other methods to obtain the same
or better solutions. This justifies the reason for performing this research; there exists a wide
field of development to determine which methods are more suitable to obtain the better
performance of an EDA. Based on the results obtained in this study, it is more efficient to
produce new and better offspring through such hybridization.
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Table 12. Distribution of the results between recent algorithms and the QCEDA approach.

Intervals

Algorithms [0, 0.03) [0.03, 0.06) [0.06, or more)
Chung & Choy [51] 0 0 2700
Kaveshgar et al. [50] 0 0 2700

Wang et al. [52] 0 0 2700
Chung & Chan [49] 0 0 2700

QCEDA for the QCSP 155 55 2490

Optimality Gap

Chung & Choy [51] Kaveshgar et al. [50] Wang et al. [52] Chung & Chan [49] QCEDA for the
QCSP

2.73% 2.68% 2.76% 2.63% 2.48%

Figure 13. Comparative results.

4.5. Computational Cost Results

Finally, Figure 14 details the computational cost results of the QCEDA scheme. As we
can see, it is competitive with the other algorithms used in the comparison.

Figure 14. Computational cost results.
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4.6. Convergence Patterns

Figure 15 presents the convergence patterns of the QCEDA scheme.

Figure 15. Convergence patterns.

5. Discussion, Conclusions and Future Research

The contributions of this article are

- To propose a hybrid EDA, not only a reason for publication; this also avoids the
necessity of requiring building complex probability models.

- To determine what is most useful, i.e., the development of complex probability models
or the hybridization of an EDA with other methods to obtain the same or better
solutions.

- As a reason for doing this research, there exists a wide field of development to
determine which methods are more suitable to obtain a better performance of the
EDA.

- The research motivation is to show how the bioinspired techniques help to reduce the
deficiencies of an EDA.

- Based on the results obtained in this study, it is more efficient to produce new and
better offspring through such hybridization.

Based on the results detailed above, it is possible to conclude that the hybrid EDAs
have a better performance, or equal in effectiveness, than the pure EDAs. It can be
established that, for combinatorial problems, the estimation of the high order interactions
can be omitted if developing a competitive algorithm is the objective. The proposed
hybridization, with the Mallows—Moth-flame approach, is more useful to obtain the same
or better solutions. The dispersion results of the QCEDA scheme is always less than the
other algorithms used in the comparison section. This means that the solutions found
by the QCEDA are more concentrated around the best value than other algorithms, i.e.,
the average of the solutions of the QCEDA converge better to the best found value than
other approaches.

Furthermore, based on the results, a viable alternative to build better hybrid EDAs
is to use already defined probability models for the permutations field. In this research,
the proposed model is able to adapt itself to the structure of the representation of the
members of the population. The main goal is achieved, i.e., to model the solution space
from another perspective. The Mallows distribution falls in this approach, but there could
be more distributions for this purpose.
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Disadvantages of the proposed scheme

- The main disadvantage of the proposed QCEDA is to learn and program different
procedures to obtain the distance, and factorization of distance, between solutions
using a permutation based representation.

- Only the nondominated solutions located in the first layer of the Pareto-front are
used in this research to make comparisons between algorithms. Other metrics
should be considered in order to show the weaknesses and/or drawbacks of the
proposed scheme.

As future research.

- New and more comparisons should be considered, using the QCEDA, in future work.
- Other combinatorial problems should be considered.
- In addition, a substitution for the Mallows distribution and/or to hybridize with other

methods, should be considered to enhance the proposed scheme.
- Furthermore, diversity mechanisms should be considered to improve the proposed scheme.
- Finally, the application of the proposed scheme should consider the solution of real

world problems in future work.
- The QCEDA should attend to more and different restrictions.
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Abstract: Providing uninterrupted response service is of paramount importance for emergency
medical services, regardless of the operating scenario. Thus, reliable estimates of the time to the
critical condition, under which there will be no available servers to respond to the next incoming
call, become very useful measures of the system’s performance. In this contribution, we develop
a key performance indicator by providing an explicit formula for the average time to the shortage
condition. Our analytical expression for this average time is a function of the number of parallel
servers and the inter-arrival and service times. We assume exponential distributions of times in
our analytical expression, but for evaluating the mean first-passage time to the critical condition
under more realistic scenarios, we validate our result through exhaustive simulations with lognormal
service time distributions. For this task, we have implemented a simulator in R. Our results indicate
that our analytical formula is an acceptable approximation under any situation of practical interest.
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1. Introduction

The problem of assigning resources to respond to a stochastic demand is a ubiqui-
tous topic in operational research. The trade-off between service quality and operational
efficiency is a crucial aspect of the Emergency Medical Services (EMS), where the lives
of patients depend on the timeliness of care. Thus, the development of Key Performance
Indicators (KPIs) to objectively quantify the performance across the operational, clinical
and financial departments is a current demand of an industry that is becoming increasingly
data-driven. KPIs are the basic tools for planners, and the nature of each KPI selects a
particular feature of the system and determines its data gathering strategy.

Among the most intuitive and used operational KPIs in EMS are the successive times
involved in the service cycle: call reception, patient triage, dispatch, ambulance turnout,
travel from the base to the emergency site, paramedic care, eventual transfer of the patient
to a hospital and return of the ambulance to its base. Response time (the interval between
the reception of an emergency call and the arrival of a paramedic at the scene of the event)
is a common operational metric of EMS, and it is considered a good indication of the
quality offered by the service [1]. One reason for its popularity as a KPI resides in the
fact that it is directly quantifiable and easily understood by the public and policy makers.
Additionally, the EMS industry has the goal of providing care within eight minutes for
cardiac arrest [2] and major trauma [3]. However, there is evidence that exceeding that
response time criterion does not affect patient survival after a traumatic impact injury [4,5].
Moreover, solutions that only focus on shortening the response time are cost prohibitive
and put the safety of patients, attendant crew and the public at risk [6]. A rational approach
to the ambulance business process should simultaneously consider multiple metrics and
operational trade-off between administrator-oriented and patient-centered KPIs [7].

One of the most important aspects of emergency medical management is avoiding
the oversaturation of the system. Therefore, in this work, we consider the First-Passage
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Time (FPT) [8] to the critical condition, under which there will be not available servers to
respond to the next incoming call. Criticality prediction is of special interest for the quality
of the medical service (response time off-target) as well as for the financial management
of the service, given that, as we will see, the critical condition strongly depends on the
number L of ambulances simultaneously in service and because queueing a call may
involve transferring it to another EMS. Any system operating under fixed conditions with
a given number of servers and a First-Come First-Served (FCFS) discipline is a discrete
one-dimensional stochastic process over the occupation states of servers. Therefore, the
first-passage time to the state of oversaturation, in which there are no available servers,
is finite. The question is how long is that time. Thus, the mean first-passage time (MFPT)
becomes a relevant key performance indicator for the operational condition in EMS.

In urban emergency services logistics, there are two distinct fields: capacity planning
and location analysis. Both fields are interrelated in the districting problem or how the
region should be partitioned into areas of primary responsibility (districts) [9,10]. Here,
MFPT can be applied to an operational subarea or district, preferably intended to be
independently served by a subset of ambulances (intradistrict dispatches). In this case,
MFPT gives us the average time to request an ambulance from another operational zone
to answer the next emergency call when the primary equipment is busy (interdistrict
dispatches). MFPT can also be a useful KPI in the decision-making process of emergency
departments [11,12], where MFPT provides the average time to a shortage of intensive
therapy beds when the FCFS discipline is used after the patient’s triage.

Queueing theory has been widely applied in health care in the last 70 years [13].
Since Larson’s seminal article [9], quite a few queueing models have been developed to
incorporate the intrinsic probabilistic nature of urban EMS derived from the Poisson nature
of the call arrival process and the variability in service times. Multiple queueing systems
have been developed that respond with different emphasis on the KPIs selected in each
case. In this contribution, we use a birth–death process to properly analyse the dependence
of MFPT on the number of servers and the rest of the system’s operational parameters. The
birth–death process is basic to queueing models involving exponential inter-arrival and
service time distributions. In the Kendall–Lee notation, we have M/M/L/FCFS/∞/∞ [8].
Thus, our analytical model is based only on two average times: TC, the mean inter-arrival
time, and TS, the mean service time of a single server, that is, the time it takes for an
ambulance to complete a trip from the instant a call is assigned until the release of this server.
Several analytical results are well known in operational research under that assumption [8].

However, experimental evidence from an emergency service indicates that service time
distributions are well fitted by lognormal distributions [12,14–16]. Hence, our objective is
also to numerically evaluate the deviation between analytical and simulated results for
MFPT. Thus, we present an R-simulator for a system of L servers in parallel with general
distributions for inter-arrival and service times and FCFS discipline: GI/G/L/FCFS [8].
This tool allows the user to calculate the key performance indicators of direct interest
in the industry beyond the known analytical results, which are limited to exponential
distributions. Particularly, we show our work on Mean First-Passage Time (MFPT) to
system critical condition.

In this way, the motivation of our work is two-fold. On the one hand, we provide
an explicit analytical expression for the MFPT to the critical condition, and, on the other
hand, under more realistic conditions, we analyse the validity of our assumptions through
exhaustive simulations. In Section 2, we provide our analytical expression for MFPT and
explore the generic nature of the method, postponing detailed mathematical derivations
to the appendices. Additionally, in that section, we describe the simulation framework
for experimentation. Section 3 deals with the numerical results, and last, in Section 4, we
discuss the importance of our contribution.
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2. Model and Simulator

In this section, we develop an analytical closed-form solution for the MFPT and
present a simulation framework based on discrete events.

2.1. Markov Chain Model for Servers in Parallel

We consider a stochastic continuous-time birth–death process [8] that describes the
time evolution of the occupation state of a set of L servers in parallel. Changes in the state
of the Markov chain imply the release of a server or putting one into action (if at least one
is available). The state with occupation n corresponds to n received calls not completely
served yet. Thus, when n = 0, all the servers are free, and there are neither trips in process
nor calls in queue. For 0 < n ≤ L, there are no waiting calls, and n servers are in course
of action. In an equivalent way, we can say that n calls are simultaneously being served.
Particularly, when n = L, the system is saturated, that is, all servers are occupied. Even
though there is not any call in the waiting queue, all servers have been assigned to calls,
and consequently, there are not any servers available to process the next eventual incoming
call. For n > L, the system is oversaturated, and there are n − L calls in the waiting queue.
At any time, the system can change its state of occupation between its nearest neighbours.
Therefore, we denote the transition rate from the state n to n + 1 by ω+

n , whereas the
transition rate toward the lower occupation state (n → n − 1) is ω−

n . We assume that the
time between calls is an exponential random variable with the mean number of calls per
unit time λ = 1/TC. On the other hand, the service time is also an exponential variable
with the rate or mean number of services per unit time and per server μ = 1/TS. Thus,
random call arrival times and service times consumed in each trip are generated from
continuous time distributions. TC and TS are the average inter-arrival and service time,
respectively. In our particular problem with L servers, the transition probabilities rates of
the birth–death process are defined by [17]

ω+
n = λ ∀n ,

ω−
n =

{
n μ for n ≤ L ,
L μ for n ≥ L .

(1)

In this manner, ω+
n results constant and only ω−

n depends on the state of the system. Then,
all the experimental information needed to characterize our theoretical model are the
average times TC and TS.

For fixed values of TC and TS, the Markov process always reaches the state L + 1, that
is, the critical condition in which the incoming call could not be served. Therefore, we
focus our interest in the first-passage time (FPT) to the state L + 1. That is the time needed
by the system to reach the critical situation (first call is derived to the waiting queue) given
an initial state without queue (0 ≤ n ≤ L). Following previous experience [18], the MFPT,
T(n), from the initial state n = 0, . . . , L, can be written as

T(0) = TC

(
L + 1 +

L−1

∑
k=0

γ−k

k!

L

∑
i=k+1

i! γi

)
,

T(1) = T(0)− TC ,

T(n) = T(0)− TC

(
n +

n−2

∑
k=0

γ−k

k!

n−1

∑
i=k+1

i! γi

)
for 2 ≤ n ≤ L ,

(2)

where the parameter γ = μ/λ = TC/TS is the inverse of Erlang’s rate [8]. The derivation
and mathematical details of Equation (2) are worked out in Ref. [18] and Appendix A. In
this way, knowing γ and TC, the expressions of Equation (2) can be numerically evaluated
in a very direct way.

The average involved at this stage is over realizations of the stochastic process. Under
actual operating conditions, where the dispatcher knows the system stress in real-time,
Equation (2) makes it possible to predict the MFPT to respond accordingly. However, if we
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want to predict the MFPT under prospective stress conditions, we request for a quantity
independent of the initial state in order to define a performance measure. Therefore, we
need an average over n = 0, . . . , L. For this purpose, we define

< T >=
L

∑
n=0

P(n) T(n) , (3)

where P(n) is the probability of residence in the state n. To perform this calculation, we
need to know the conditional probability of being at state n at time t given the initial state
m, P(n|m)(t). In order to simplify the problem, we propose to calculate P(n) in the steady
state regime, which is independent of the initial condition [8]: P(n) = limt→∞ P(n|m)(t).
Moreover, given that we are interested in the FPT to the critical condition (first jump to state
L + 1), we will approximate P(n) by working with the finite Markov chain with reflecting
boundaries at sites 0 and L. It is important to note that the steady state probabilities of the
finite chain are approximately the same as the residence probabilities of our unbounded
chain, since in the lapse before FPT there are no calls in the queue. Under these assumptions,
we obtain

P(n) =
1
S

γ−n

n!
, for 0 ≤ n ≤ L , (4)

where S is given by the normalization condition, S =
L

∑
n=0

γ−n

n!
. The mathematical deriva-

tion of these expressions is relegated to the Appendix B. The truncated Poisson distribution
given in Equation (4) is known as the Erlang B-formula, and it has been proven that this
equilibrium distribution of the number of occupied servers is independent of the form
of the service time distribution [19]. Moreover, the Erlang B-formula is also valid for
heterogeneous servers, provided however, that all servers have equal mean service times
TS [20].

Equation (3) plus Equations (2) and (4) provide us with a closed form expression for
calculating the MFPT averaged on initial states.

2.2. Simulation Framework

To compare and analyse the prediction of Equations (2) and (4) with realistic situations,
we have developed a flexible discrete-event simulator (DES) [21] with a process-oriented
approach that implements several features inherent to EMS management.

The architecture of our simulator is outlined in Figure 1. The input parameters config-
ure the statistical distributions and set the number of servers (L). The proposed simulator
consists of three main modules. The first module, called simserveRs, is the simulator
kernel. Each thread of the simulation is triggered with a new call arrival. Using a pseudo-
random number generator (RNG), it draws a call time, summing an exponential random
value to the time of the previous call, and compares it with the release times of busy servers.
Then, the kernel iteratively puts the older calls in the queue in service, whereas the release
times are less than the last call time (FCFS discipline) [22]. Afterward, if there are no
available servers, the incoming call is derived to the waiting queue; otherwise, the call is
dispatched to a server, picking it at random among the free ones. At last, simserveRs as-
signs a service time drawn from the desired distribution. Thus, at each event, the simulation
engine updates the system state composed by the servers and the queue.

The module simcritical launches simserveRs with the wanted initial condition and
stops the execution when the first call is derived to the queue. Then, the average given
by Equation (3) is calculated, and the aggregation over simulations is performed. The last
module reckons the MFPT from each initial condition using the analytical expressions
given by Equation (2).
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Figure 1. Architecture scheme of the discrete-event simulator.

The software is implemented in R, and it is available as open source (see details in
Ref. [23]). The simulator can be simply adapted to incorporate most of the features of an
actual EMS operator, such as disaggregating the service time into its components (e.g.,
preparation of ambulance at base, transit time, attention time and transit time to hospital)
and implementing dispatching policies with distance or traffic time criteria. Additionally,
the extensions of the simulator to any kind of distributions for inter-arrival times (e.g.,
Erlang) and service times (e.g., gamma or lognormal) are direct. Our simulator was
developed in the second half of 2017 for a project related to process optimization in EMS
management. The comparison between our simulation outputs and the historical data
from an EMS operator showed a satisfactory statistical agreement in several operating
scenarios. Over time, several generic DES frameworks for queueing systems have been
developed, which deliver such functionalities and implement more efficient methods (see
Ref. [24] and references therein). However, for the practical reason of evaluating the results
of Section 2.1, the open source version of our simulator becomes an appropriate tool.

3. Results

In Figure 2, we show the non-linear behaviour of < T > as a function of TC and TS
and its strong dependence on L, as they are derived from Equations (2)–(4).
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Figure 2. Average MFPT as function of TC and TS for three values of L.

The non-linear nature of < T > is given by the powers of γ in Equation (2) and
implies a sensitive dependence of the time to the critical condition on its variables. Thus,
on the scale of the figure, variations in the order of one minute in TC or TS may represent
variations of tens to thousands of minutes in < T >. The value of L determines the number
of terms in Equations (2) and (3). Therefore, adding or removing a server, with the same
values of TC and TS, can make a substantial change in the value of the average MFPT, as
can be seen in Figure 2. The sensitivity of our problem on its parameters is very difficult to
grasp intuitively and to predict from past experiences in practice.

The main reason for using the birth and death queueing model (M/M/L) is the fact
that we can derive the closed-form result given in Section 2. However, the analytical
prediction of any performance measure needs to be contrasted with numerical outputs
from more realistic scenarios. As an illustration, we take values of inter-arrival and
service times measured by the EMS Sistema de Urgencias del Rosafe (URG) [25] in Córdoba,
Argentina. URG is one of several private EMS operators in a city of about 1.39 million
inhabitants. In 2016, URG operated a fleet of nine ambulances that were usually stationed
in predefined parking spots scattered throughout the metropolitan zone. The operating
scenario distinguishes several daily time bands within which the mean values TC and TS
are relatively constant, although these, in turn, show seasonal changes throughout the year.

In Figure 3, we show histograms of real data corresponding to 2568 calls received
by URG between May 1 and October 31, 2016, late evening (20:00 to 23:00 h). In this
time period, we found good stationary statistics in the data, and no critical condition was
reported in which there were no ambulances available to serve a call. The service time
value measures the time elapsed from dispatch until the ambulance is released. Very low
service times correspond to situations that were quickly resolved at scenes close to the
ambulance base, whereas the distribution tail involves complex cases with the transfer of
the patient to a hospital.
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Figure 3. Histograms of real data corresponding to 2568 calls: (a) inter-arrival times; (b) service times.
Solid lines are the best fits: (a) exponential; (b) lognormal. The insets show the fitting parameters.

From the figure, we can see that the inter-arrival times fit perfectly with an exponential
distribution (TC = 12.85 min, goodness-of-fit tests: Kolmogorov–Smirnov p-value = 0.73,
Cramer–von Mises p-value = 0.75), but the best fit for service times is with a lognormal
distribution (TS = 44.1 min, goodness-of-fit tests: Kolmogorov–Smirnov p-value = 0.017,
Cramer–von Mises p-value = 0.052). Thus, in this case, it is apparent that the main
limitation of our analytical model is the assumption that the distribution of service times
is exponential.

The input traffic to a call centre is a nonstationary Poisson process [7,14,26]. However,
the arrival rate function λ(t) is roughly constant over periods of a few hours [11,14,16,27].
Lognormal distributions for service times have already been reported in the
literature [12,14–16]. The fact that the distribution of the sum of a few independent, but
not necessarily identical, lognormal random variables could be approximated by a log-
normal distribution [28] may explain the experimental findings when we only use two
fitting parameters.

In Table 1, we show a comparison between analytical results given by Equation (2)
and simulated MFPT from each initial state of a system with seven servers to the critical
condition. The simulations were performed using the fitted distributions in Figure 3 and
also using an exponential distribution for service times with a mean value equal to that of
the fitted distribution in the right panel.
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Table 1. Comparison among analytic and simulated values of MFPT (in minutes) for a system with
seven servers. The simulated values are reported with its standard error for 10,000 simulations.
In both cases, the mean service time is TS = 44.1 min, whereas, in the first case, the probability
distribution of service time is exponential, and in the second case, it is lognormal with meanlog = 3.6867
and sdlog = 0.4465. The percentage errors are that of the simulated values with respect to the
analytical predictions.

TC = 5 min

Initial Exponential Lognormal
State Analytic Simulated ε% Simulated ε%

0 67.6 67.2 ± 0.4 0.6 49.8 ± 0.3 35.7
1 62.6 62.2 ± 0.4 0.5 44.8 ± 0.3 39.7
2 57.1 56.7 ± 0.4 0.7 39.8 ± 0.3 43.5
3 50.8 50.5 ± 0.4 0.6 34.7 ± 0.3 46.4
4 43.7 43.4 ± 0.4 0.7 29.4 ± 0.2 48.6
5 35.4 35.1 ± 0.3 0.9 23.7 ± 0.2 49.4
6 25.8 25.4 ± 0.3 1.6 17.1 ± 0.2 50.9
7 14.2 14.1 ± 0.2 0.7 9.3 ± 0.2 52.7

TC = 10 min

Initial Exponential Lognormal
State Analytic Simulated ε% Simulated ε%

0 315.2 310.9 ± 2.5 1.4 244.2 ± 2.1 29.1
1 305.2 300.7 ± 2.5 1.5 234.2 ± 2.1 30.3
2 292.9 288.4 ± 2.5 1.6 223.9 ± 2.1 30.8
3 277.3 272.7 ± 2.5 1.7 212.0 ± 2.1 30.8
4 256.7 252.3 ± 2.5 1.7 197.7 ± 2.1 29.8
5 228.1 224.3 ± 2.5 1.7 176.9 ± 2.0 28.9
6 185.6 182.1 ± 2.4 1.9 145.6 ± 2.0 27.5
7 117.7 115.2 ± 2.0 2.2 92.1 ± 1.7 27.8

TC = 15 min

Initial Exponential Lognormal
State Analytic Simulated ε% Simulated ε%

0 1378.4 1380 ± 13 0.1 1201 ± 12 14.8
1 1363.4 1365 ± 13 0.1 1186 ± 12 15.0
2 1343.3 1345 ± 13 0.1 1169 ± 12 14.9
3 1314.6 1317 ± 13 0.2 1147 ± 12 14.6
4 1270.4 1272 ± 13 0.1 1114 ± 12 14.0
5 1195.1 1198 ± 13 0.2 1056 ± 12 13.2
6 1052.2 1058 ± 12 0.5 937 ± 12 12.3
7 745.4 751 ± 12 0.7 670 ± 11 11.3

The analytical predictions agree perfectly with the simulations for the exponentially
distributed service times in all cases. For the lognormal distribution of service times, the
deviations between the prediction and simulation are about 50% in the worst situations.
However, these cases are of little practical interest. Given a fixed number of servers, low
values of TC imply very low MFPT values that are incompatible with EMS response times,
while situations with very high values of MFPT are often related with idle infrastructure,
which are also avoided in practice.

In order to study the differences in the values of FPT under different service time
distributions, in Figure 4, we superimpose two histograms of simulated values for a system
with seven servers. Both cases correspond to an initial condition with four occupied servers
and the same exponential inter-arrival time distribution, but we use two different service
time distributions with the same mean value. The FPT distribution with exponential
service times is broader than the lognormal counterpart. Therefore, the MFPT under these
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conditions is shorter for the lognormal service time distribution (also see entry for initial
state equal to 4 in Table 1).

Figure 4. Histograms of FPT to a critical condition based on 5000 simulations from an initial state
with 4 of 7 servers occupied. We compare two service time distributions with the same value of TS:
exponential (parameter = 1/TS) and lognormal (meanlog = 3.6867 and sdlog = 0.4465).

Now, we investigate what happens with the residence probabilities in the long time
limit. The analytical result given by the Erlang formula has been proven for systems
without queue or M/G/L blocking systems [19,20]. That is, if every server is busy when a
call arrives, the call is lost; however, it is instructive to analyse the situation of a system
with queue. The probability of residence in the queue, P(n > L), is equivalent to the
probability absorbed in the site L + 1 of the Markov chain. From Equation (A11), we can
see that the probabilities in Equation (4) are the renormalized residence probabilities of a
system with a queue in the interval [0, L]. To find out if this is also the case for lognormal
service time distributions, we run our simulator 107 min in order to visit each state several
times. In the first column of Table 2, we show the analytic result of Equations (A11)–(A13)
and compare this prediction with the simulated values using four different service time
distributions: an exponential and three different lognormal service time distributions—all
of these with the same value TS = 44.1 min (TC = 10 min in all cases). The value sdlog =
0.25 corresponds to the almost symmetric case of the lognormal distribution, and sdlog = 1
corresponds to the more asymmetric situation (see Figure 6b). The exponential distribution
is the case completely asymmetric, where the distribution does not have a maximum value.
For comparison, we also introduce the middle value sdlog= 0.625.
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Table 2. Comparison among analytic and simulated long-run probabilities of residence in each state of
a system with seven servers, where q denotes the state with queued calls. All simulations correspond
with a simulated running time of 1× 107 min. In all cases, TC = 10 min and TS = 44.1 min, but the pa-
rameters in of the lognormal distributions are given by the pairs (meanlog, sdlog): (a) (3.75521, 0.25),
(b) (3.59115, 0.625) and (c) (3.28646, 1.0). See Figure 6b.

State Analytic Exponential Lognorm (a) lognorm (b) lognorm (c)

0 0.012 0.011 0.011 0.011 0.012
1 0.051 0.050 0.049 0.050 0.052
2 0.112 0.112 0.109 0.111 0.113
3 0.165 0.165 0.164 0.164 0.165
4 0.182 0.182 0.184 0.182 0.181
5 0.160 0.160 0.167 0.163 0.158
6 0.118 0.118 0.127 0.122 0.115
7 0.074 0.074 0.085 0.081 0.075
q 0.126 0.127 0.104 0.114 0.130

The difference among analytical and simulated values are less than 5% in all states
with the exception of the queue. The analysed case with queue is a worse situation than the
finite chain with both reflecting ends, used in the derivation of Equation (4), because of the
probability of residence in the queue may be greater than the saturated state. Therefore, we
find it is valid to use the analytic result of Equation (4) for taking the average in Equation (3)
and also in the simulation of MFPT with lognormal service time distributions in a system
with queue.

In Figure 5, we show the plots of MFPT averaged over the initial conditions, < T >,
as a function of the mean inter-arrival time TC using the probabilities given by Equation (4).
We have sketched a characteristic situation for the service time, and we considered several
numbers of servers L = 5, . . . , 9. The curves clearly show the non-linear behaviour of
< T > and allow us to evaluate the quality of the fit for the simulated situations achieved
with our analytical expression.

Figure 5. Analytic (red) and simulated (blue) average MFPT with (a) exponential and (b) lognormal
distributed service times (meanlog = 3.6867 and sdlog = 0.4465). In both cases, TS = 44.1 min.
Simulated values for each value of TC correspond to an average based on 1000 executions.

Again, in the left panel, we find excellent agreement among the analytical predictions
and the simulations for exponentially distributed service times. In contrast, in the right
panel, for lognormal distributed service times, we see that the analytical curves always run
over the corresponding simulation. This fact has just been seen in Figure 4, where the FPT
distribution has a longer tail in the case of service times distributed exponentially with
respect to lognormal service times. Thus, the mean value of the FPT distribution (MFPT)
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is higher for exponential service times. Therefore, the analytic model underestimates the
number of necessary servers under a given stress condition. Drawing a horizontal line in
Figure 5b, when we move in the direction of increasing demand (that is, lowering TC), we
first cross the blue (simulated) curves in all the considered cases. This is an important fact
to keep in mind if we want to use the analytical model to find the best number of servers
in a particular operational scenario. However, the discrepancies observed between the
simulations and the closed form expression for the average MFPT are not significant enough
to cause a considerable effect in the estimation of the optimal number of servers, given the
separation among the curves for different values of L. Thus, for example, from Figure 5b,
we can see that to obtain an average MFPT of 6 hs, given TC = 14 min, six servers are
needed, whereas for TC = 10 , eight servers are needed under the same service conditions.

We also analyse the effect of asymmetry in the service time distribution on average
MFPT. For this purpose, we simulate the average MFPT for a whole family of service
time distribution with fixed TS but changing the parameter sdlog in the interval [0.25, 1],
where the minimum value corresponds to the almost symmetric case and the maximum
corresponds to the more asymmetric situation. The average MFPT as a function of the
sdlog parameter is shown in Figure 6.

Figure 6. (a) Analytic (red) and simulated (blue) average MFPT with lognormal distributed ser-
vice times with fixed TS = 44.1 min (sdlog ∈ [0.25, 1] and meanlog = ln(TS) − sdlog2/2) and
TC = 10 min. Simulated points for each value of sdlog are averages based on 1000 runs. (b) Sketches
of lognormal densities corresponding to the extreme values (black and blue) and to the middle value
(red) of sdlog in panel (a).

In all cases, the analytical prediction gives an acceptable approximation for the simu-
lated data.

Finally, in the left panel of Figure 7, we plot the probability that one or more servers
are available at the instant of a emergency call, P(n < L) [27], as a function of the time
between calls for a fixed mean service time. We are using Equation (4) for the calculation
of this probability. In the right panel, we plot the average MFPT as a function of this
availability probability for the same values of TC given in the left panel. We can observe a
very strong sensitivity of the average MFPT to the availability probability for high values
of system availability. Thus, only controlling the availability of the system is not enough
to assure a long enough time to the critical condition. A dispatcher observing a high
availability probability value might conclude that the system is running unreasonably
idle; however, the time to critical condition may be shorter than the expectation. More
interesting, however, is that the function < T > vs. P(n < L) is practically independent of
the number of servers.
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Figure 7. (a) The probability of one or more servers are free vs TC. (b) Average MFPT as a function of
the probability of servers’ availability for TC ∈ [8, 15]min. In both panels, TS = 44.1 min.

4. Concluding Remarks

MFPT is a useful KPI that allows estimating the running operative lapse of a system,
under a given stress condition, before a service disruption. In this work, we have presented
a closed-form expression to calculate the MFPT for a system of servers in parallel, and we
also provide a simulation framework for the MFPT. Our formula, based on a birth–death
process, only uses the average time between demands and the average service time. Our
results make it possible to predict the MFPT given the stress of the system at a particular
moment or to analyse the servers shortage time under generic operating conditions by
averaging over the initial states of the system. The main limitation of our results, as is
often with analytical exact results in queueing theory, is the assumption of an exponential
distribution for service times. The impact of this limiting assumption is confronted with
results of simulations using more realistic service distributions. Our results indicate that our
analytical formula is an acceptable approximation under practical situations. Interesting
potential future work may be to consider the implementation of accurate approximations
for the M/G/L problem [29] to the MFPT calculation. In addition, our simulation scheme
allows us to evaluate the MFPT in any GI/G/L/FCFS server configuration.
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Appendix A. MFPT

For a birth–death process with asymmetric and site-dependent transition probabilities
(w+

k �= w−
k ), the analytical expression for the MFPT with a reflecting boundary condition at

origin and an absorbing one at L + 1 is given by
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(A1)

For details and derivation of Equation (A1), see Section 6 in Ref. [18]. In our model with
L servers, using Equation (1) and the parameter γ defined in the text, we can recast the
products in Equation (A1) as
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∏
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Thus, we can also recast the sums in Equation (A1) as
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and
n−2

∑
k=0

1
w+

k

n−1

∑
i=k+1

i

∏
j=k+1

w−
j

w+
j

=
1
λ

n−2

∑
k=0

γ−k

k!

n−1

∑
i=k+1

i! γi . (A4)

Replacing the last expression in Equation (A1), we obtain in a direct manner Equation (2)
in Section 2.1.

Appendix B. Steady State

Following Ref. [8], we can construct the steady state for the problem of a Markov chain
with a reflecting boundary condition at the origin. In the long-run, the time-independent
probability of residence at state n, πn, must satisfy

ω−
1 π1 − ω+

0 π0 = 0 ,

ω−
n+1 πn+1 + ω+

n−1 πn−1 − (ω+
n + ω−

n )πn = 0 , for n ≥ 1 .
(A5)

Thus, we can prove by induction that
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n−1 . . . ω+
0

ω−
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1
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n

∏
j=1

ω+
j−1
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j

π0 , for n ≥ 1 . (A6)

From the normalization condition,
∞

∑
n=0

πn = 1, results π0 = 1/Sπ , where

Sπ = 1 +
∞

∑
n=1

n

∏
j=1

ω+
j−1

ω−
j

. (A7)

The existence of the steady state is then determined by the convergence of the series in
Equation (A7).
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For the model given by Equation (1), the products in Equation (A6) and (A7) can be
written as,
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(A8)

Substituting Equation (A8) into Equation (A7), we obtain

Sπ =
L

∑
n=0

γ−n

n!
+

LL

L!

∞

∑
n=L+1

(L γ)−n . (A9)

The convergence of the series in the last expression only occurs if L γ > 1. In this case,

∞

∑
n=L+1

(L γ)−n =
(L γ)−L

L γ − 1
. (A10)

Substituting Equations (A8)–(A10) into Equation (A6), we obtain

πn =
1

Sπ

⎧⎪⎪⎨
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γ−n

n!
, for 0 ≤ n ≤ L ,

LL

L!
(L γ)−n , for n ≥ L ,
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where

Sπ =
L

∑
n=0

γ−n

n!
+

γ−L

L! (Lγ − 1)
. (A12)

In this manner, the long-term probability of having the system with calls in the waiting queue
results in

πq =
∞

∑
n=L+1

πn =
γ−L

Sπ L! (Lγ − 1)
. (A13)

The last expression is also is known as Erlang C-formula.
We now consider the case of a finite Markov chain with reflecting boundaries at the

origin and at site L. The time-independent probabilities of residence, P(n), in the each state
n satisfy Equation (A5) but are supplemented with the additional reflecting condition at L,

ω−
1 P(1)− ω+

0 P(0) = 0 ,

ω−
n+1 P(n + 1) + ω+

n−1 P(n − 1)− (ω+
n + ω−

n ) P(n) = 0 , for n ≥ 1 ,

ω+
L−1 P(L − 1)− ω−

L P(L) = 0 .

(A14)

Following the above procedure, we find the first line of Equation (A8) again, which directly
leads to Equation (4) in Section 2.1, where S is the normalization on the interval [0, L].
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Abstract: This paper studies erosion at the tip of wind turbine blades by considering aerodynamic
analysis, modal analysis and predictive machine learning modeling. Erosion can be caused by several
factors and can affect different parts of the blade, reducing its dynamic performance and useful life.
The ability to detect and quantify erosion on a blade is an important predictive maintenance task for
wind turbines that can have broad repercussions in terms of avoiding serious damage, improving
power efficiency and reducing downtimes. This study considers both sides of the leading edge of
the blade (top and bottom), evaluating the mechanical imbalance caused by the material loss that
induces variations of the power coefficient resulting in a loss in efficiency. The QBlade software is
used in our analysis and load calculations are preformed by using blade element momentum theory.
Numerical results show the performance of a blade based on the relationship between mechanical
damage and aerodynamic behavior, which are then validated on a physical model. Moreover, two
machine learning (ML) problems are posed to automatically detect the location of erosion (top of the
edge, bottom or both) and to determine erosion levels (from 8% to 18%) present in the blade. The
first problem is solved using classification models, while the second is solved using ML regression,
achieving accurate results. ML pipelines are automatically designed by using an AutoML system with
little human intervention, achieving highly accurate results. This work makes several contributions
by developing ML models to both detect the presence and location of erosion on a blade, estimating
its level and applying AutoML for the first time in this domain.

Keywords: wind energy; wind turbine blades; erosion; modal analysis; aerodynamic analysis;
AutoML

1. Introduction

Wind energy offers an important supply of electricity without pollution problems
presented by conventional forms of energy. There is a global interest for the development
and use of alternative energy sources, including geothermal, photovoltaic, hydroelectric,
tidal wave, biomass and others [1]. Unlike other technologies, wind farms have a very low
impact on their environment, which has resulted in increased use worldwide, with some
countries obtaining as much as 20 percent of their energy from the wind [2].

Wind turbines can be categorized, for example, based on their rotation axis, which
can be vertical or horizontal [3]. Horizontal axis turbines are the most common and can be
classified according to the rotation of the rotor with respect to the tower. These machines
are composed of a foundation, a tower, a rotor, nacelle with power train and the blades.
The blades are one of the most important components, if not the most, since they are in
charge of collecting the energy from the wind, converting the linear movement of the wind
into a rotary movement of the rotor. This energy is transmitted to the hub, from the hub it
proceeds to a mechanical transmission system and from there it proceeds to the generator
that transforms it into electrical energy.
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Blades can suffer different types of failures due to a variety of phenomena [4], such
as the following: bending, twisting, cracks and erosion. Detecting these types of faults,
particularly at early stages, is important for avoiding catastrophic failures, reducing down
times and taking corrective actions in a timely manner [5]. In particular, automatically
detecting erosion at the leading edge of the blade tip presents a challenge because it is
not trivial to properly measure erosion without direct access to the blade [4]. Typically,
fault detection in wind turbine blades has been carried out by visual means (https://
energy.sandia.gov/programs/renewable-energy/wind-power/, accessed on 29 December
2021), but it is also possible to use different sensor schemes implemented via a SCADA
system [5,6]. Afterward, these data can be analyzed by computational models, such as
those derived by means of machine learning (ML), which have been found to be of great
utility in the detection of damages in a variety of complex scenarios [7–9]. One approach of
note, for example, is the use of sound to detect such damage [10]. Moreover, to implement
ML methods, sufficient data are required to model blades with and without erosion;
however, extracting these data from the field or in controlled scenarios can be a complex
task to perform [11]; thus, one possible alternative is to exploit simulation software such as
QBlade [12].

The goal of this work is two fold. First, it presents a detailed analysis of the effects
that erosion has on wind turbine blades, considering modal and numerical analysis, with
respect to the physical stress caused by erosion on the blades and the power-generating
capacity of a wind turbine. Second, this work presents a methodology to construct ML
models that can detect the presence and location of erosion in a blade and measure the
amount of erosion as well. The paper makes two important contributions. First, we show
for the first time that AutoML can be successfully applied in this problem domain, which
has not been considered before for this problem. Second, we show that it is possible to
detect the presence of erosion on the blade, determine its location and predict the amount
of damage caused by erosion.

The remainder of this paper is organized as follows. Section 2 presents wind turbine
blades and the aerodynamic, modal and numerical analysis of the blades studied in this
work. Section 3 deals with the detection of erosion with ML methods, including an overview
of related works and our experimental approach and results. Finally, conclusions and future
work are presented in Section 4.

2. Wind Turbine Blades

During regular operation of a wind turbine blade, air mixed with sand and water
droplets will cause severe erosion, which can produce a loss of fatigue resistance of the
blade’s surface and cause heavy damage to the blade material, resulting in a loss in
electrical potential [13]. Before analyzing the effect of erosion on a wind turbine blade, we
first consider the aerodynamic and structural response of the blade caused by erosion.

2.1. Aerodynamic Analysis

Generally, a wind turbine blade is divided in three sections: tip, mid span and root
(see Figure 1). These sections are exposed to potential structural damage during normal
operation, such as cracks, wrinkles, delamination, debonding and erosion. In particular,
this paper is focused on the erosion problem around to the leading edge of the blades. This
section presents an analysis of erosion on the blades, identifying the negative effects that
erosion has on the power-generating capacity based on power coefficient Cp as well as the
power generated by the wind turbine PG.
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Figure 1. Sections of a wind turbine blade.

In order to analyze erosion in a wind turbine blade it is necessary to identify the
development of several dynamic parameters, such as the drag coefficient CD, lift coefficient
CL and frequency ωn. For aerodynamic analysis, this study uses the Theory of Momentum
(TM), Blade Element Momentum (BEM), Geometry of Blade (GB) and the evaluation of the
performance of the wind rotor, considering a case study of a 1 Kw Wind Turbine Generator
(WTG). In order to obtain a design as close to the optimum as possible, several aerodynamic
surfaces were evaluated to identify suitable conditions of aerodynamic lift based on the
pressure gradient of aerodynamics airfoils. The design parameters of the blade and the
technical specification of the WTG are provided in Table 1.

Table 1. Design parameters of the 1 Kw WTG.

Parameter Value Variables Units

Rated power 1000 Pnom W
Number of blades 3 B [-]
Rated speed 8 unom m/s
Speed of rotation 295.63 Ω rpm
Gearbox efficiency 0.95 ηgearbox [-]
Generator efficiency 0.95 ηgen [-]
Wind density 1.185 ρ kg/m3

Dynamic Viscosity 1.78 × 10−5 μ Pa×s

For this design, we consider a power coefficient Cp = 0.40 based on the Betz limit [14],
which allows calculating the length (theoretical) of the blade, which results in R = 1.628 [m],
and the relationship between the speed and the blade tip in nominal conditions resulting
in a value of λnom ≈ 8. In order to obtain the Reynolds number of the blade, we separate
the blade into three sections. We consider an average airfoil in every section of the blade,
resulting in the following Reynolds’ numbers. For the root section, the average chord was
0.14 m and Reynolds was 147,000; the average chord of the body is 0.10 m and Reynolds
was 198,000, while the average chord of the tip is 0.023 m and Reynolds was 78,000. Finally,
BEM parameters used to simulate the blade design were obtained using the method of the
Viterna extrapolation [15], which include the following: aspect ratio of 10, lift coefficient
adjustment of 0.7 and the number of elements is seven.

Subsequently, from the previous parameters, it is necessary to evaluate several aerody-
namics airfoils from databases such as NACA, NREL and WORTMANN. In this work, we
evaluated 49 airfoils using the open source QBlade software with the goal of selecting the
best and most stable design. The chosen airfoils were FX 63-137 and E216 based on their lift
CL and drag CD coefficients, both of which influence power coefficient Cp of the turbine.

The designed blade, considering the position of the selected airfoils, chords, spin
and Reynolds numbers calculated using QBlade, is show in Figure 2a. The evaluation of
aerodynamic performance of the blade using QBlade was carried out using the following
parameters: 1 kW of power, an input speed of 3 m/s, cutting speed of 15 m/s, rotor speed
of 296 rpm and a density of 1.185 kg/m3. In particular, the work considers the wind
conditions of La Ventosa, Oaxaca, Mexico in the Isthmus of Tehuantepec for the simulations,
because this geographical zone is located between the Pacific Ocean and the Gulf of Mexico,
which is a perfect location for a wind farm [16]. The wind farms are placed near the Pacific
Ocean, within a range of 20 and 60 km. In this zone, wind conditions are considered as
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good (class 4) and excellent (class 7). With a wind speed of 8 m/s, the power generated
was 1.38 kW, and the power coefficient was Cp = 0.4197 with a simulation of 1.4 s.

(a) (b) (c)

Figure 2. (a) Wind turbine blade design. (b) Area of erosion damage. (c) Blue line represents the
clean Airfoil FX 63_137, while the dark line is the eroded blade considering case BI1.

2.2. Modal Analysis

Structural analysis characterizes the behavior of the blade in the presence of erosion.
In particular, this section presents vibration analysis using simulated erosion in the leading
edge of the blade tip to compare a clean model with an eroded blade. The material, or mass,
loss is expected to cause a variation in the vibration response of the blade, which directly
affects the wind rotor and other subsystems of the turbine, such as the gearbox, main shaft
and the generator due to the coupling between them. Furthermore, structural analysis is
carried out to analyze the response frequency of the blade through modal analysis using
a finite element software. This is performed by considering both a clean blade and an
eroded version. For structural analysis, the mechanical and physical proprieties of the
blade materials are described in Table 2b. Furthermore, dynamic analysis is also necessary
in order to obtain natural frequencies and modal shapes of the blade, which was carried
out using the following mesh parameters: quadratic order element, uniform size function,
medium center of relevance, fast transition, low smoothness, 732 elements and 1768 nodes.

Simulated erosion was carried out with QBlade considering the tip of the blade, which
should effect drag and lift coefficients, as well as the power coefficient and the electric
power generated by the turbine. Erosion analysis consist of modifying the geometry of the
blade to represent damage on the surface of the tip. The damage due to erosion reduces the
original mass of the blade, which is represented in terms of a percentage in profile reduction,
as shown in Figure 2b. For this analysis, three different depths of erosion were considered
for the bottom edge of the profile, denoted as percentages by BI1 = 10%, BI2 = 18% and
BI3 = 25%. In each case, these percentages represents a reduction in profile coordinates
relative to the clean blade. This is shown in Figure 2c, where the black line represents the
clean profile, and the blue line represents the eroded profile for the BI1 case.

Modal analysis is performed to evaluate the effects of different levels of erosion on the
mechanical structure of the blade through their frequency response. The complete results
are summarized in Table 3, where four modal frequencies are evaluated for each case of
erosion depth compared with the numerical response of the clean blade.
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Table 2. (a) Wind turbine blade design. (b) Blades properties.

(a)

Position Airfoil Chord

0 Circular Airfoil 0.07
0.077 Circular Airfoil 0.07
0.077 Circular Airfoil 0.07
0.228 E216 0.14
0.46 E216 0.12
0.693 E216 0.11
0.926 E216 0.1
1.158 FX 63-137 0.08
1.391 FX 63-137 0.06

1.6323 FX 63-137 0.023

(b)

Property Value Units

Density 2000 (Kg/m3)
Orthotropic elasticity
Young’s Module in x 50,000 MPa
Young’s Module in y 8000 MPa
Young’s Module in z 8000 MPa

Poisson’s ratio xy 0.3 -
Poisson’s ratio yz 0.4 -
Poisson’s ratio xz 0.3 -

Stiffness module xy 5000 MPa
Stiffness module yz 3846.2 MPa
Stiffness module xz 5000 MPa

Table 3. Comparative analysis of modal frequencies of the eroded and the clean blades.

Mode BI1 BI2 BI3 Clean

(Hz)

1 3.8954 3.2521 3.9509 3.9887
2 15.631 12.874 14.903 14.317
3 23.60 22.268 23.411 22.469
4 42.867 35.699 38.514 38.207

2.3. Numerical Analysis

The drag and lift coefficients, respectively, CD and CL, are compared for the three
levels of erosion and the clean blade in Figure 3a. The change in the original design of the
blade causes a variation in the power coefficient CP and the electric power generated PG.

In order to complete analysis, the lift coefficient CL is compared with respect to the
leading edge of the blade, which is denoted by α using QBlade, as shown in Figure 3b.
Parameter α represents the angle of inclination of the blade with respect to the direction of
the wind force. This angle can change in a range between −20 to 20 degrees. In this study,
the simulation tests were carried out considering α with values of 10 and 20 degrees. For
the three erosion cases considered here, BI1, BI2 and BI3, α = 10 degrees. Figure 3b shows
the behavior of CL relative to our three erosion levels. The percentage of erosion on the
leading edge of the blade impacts its aerodynamic response, particularly the lift and drag
coefficients (CL) and (CD). Figure 3a,b show both coefficients reducing their performance
when erosion is increased, this considering a particular angle of attack of 10 degrees. The
power coefficient (Cp) of the wind rotor is affected by the presence of erosion as well,
minimizing the electricity production potential (PG), shown in Figure 3c,d.
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(a) (b)

(c) (d)

Figure 3. (a) Relationship between the drag coefficient (CD) and the lift coefficient (CL). (b) Lift
coefficient CL Vs angle of attack α. (c) Power coefficient Cp for BI1 and the clean wind turbine blade.
(d) Power output PG for BI1 and the clean blade.

Table 4 presents comparative results of the drag coefficient Cd and the lift coefficient
Cl for the three levels of erosion, with respect to the clean blade. Both coefficients are
reduced when the depth of the damage is increased on the surface of the blade, affecting
aerodynamic performance.

Table 4. Comparison of the leading edge in three different erosion’s depth for the drag coefficient Cd
and the lift coefficient Cl . Last two columns show the percentage difference relative to the clean blade
(Cd(%) and Cl(%)).

Blade α Cd Cl Cd(%) Cl(%)

Clean 10 0.036 1.66 - -
BI1 10 0.036 1.64 0% 1.3%
BI2 10 0.03 1.46 16.7% 13%
BI3 10 0.028 1.44 22.3% 14%

Finally, the behavior of the power coefficient CP considering BI1 is shown in Figure 3c,
where the blue line represents the clean blade and the red line represents the eroded blade.
It is possible to observe the variation of CP, which decreases to CP = 0.39, while CP = 0.41
for the clean blade. The power output generated PG is also affected by erosion, which
decreases to around PG = 1.30 kW with respect to PG = 1.36 kW for the clean blade, as
shown in Figure 3d.

2.4. Experimental Modal Analysis

In order to validate our simulated model of erosion, the following tests were carried out
using a physical model. The blade was manufactured with a mixture of fiberglass, catalyst
and resin. To cause the different levels of erosion on the leading edge of the blade, a Dremel
tool was used, which uses a disc to gently sand and abrade the area of interest. Finally, to
measure the percentage of erosion, a Vernier was used, measuring depth and thickness
at the worn area. The experimental test of the blade was carried out in the Laboratory
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of Vibration of the Department of Mechatronics Division in the CINVESTAV–IPN. To
evaluate the levels of erosion discussed in the numerical results, it was necessary the
use an electromagnetic shaker model ET-139 (manufactured by Labworks©) to excite the
blade, which is mounted over a mechanical rail supported by a mechanism of ball bearing
that allows limited horizontal displacement. The electromagnetic shaker is controlled
via a linear power amplifier (manufactured by Labworks©) model PA-138. The response
in terms of acceleration and force applied by the electromagnetic shaker to the blade is
monitored by using an impedance head placed at the stinger of the shaker connected via a
cable to the data acquisition system (manufactured by Klister LabAmp©). The frequency
response of the system is fed back using accelerometers model 8640A (manufactured by
Klister©) mounted at the tip section of the blade. The data acquisition system is connected
via USB to an external graphical interface implemented in MATLAB/Simulink©for the
analysis of experimental data captured with a Sensoray©card. A comparative study of the
experimental and Finite Element Method (FEM) response (simulation) of a wind turbine
blade of 1 Kw of electrical power of the first three vibration modes is summarized Table 5.
Results indicate that our simulated model behaves consistently with the real-world tests.
The variations in the frequency response of the blade is due to the loss of material on the
leading edge of the tip section, which can compromise the stability and balance of the wind
rotor.

Table 5. Modal analysis of the simulated (FEM) and physical (experimental) blade under different
erosion conditions; values given in Hz.

Mode FEM Experimental

Level of Erosion BI1

1 3.89 3.45
2 15.6 14.6
3 23.6 29.3

Level of Erosion BI2

1 3.25 3.5
2 12.8 14.9
3 22.2 29.2

Level of Erosion BI3

1 3.95 3.49
2 14.9 14.8
3 23.4 29.0

3. Erosion Detection with Machine Learning

This section deals with the automatic detection of erosion in wind turbine blades. The
goal is to detect where erosion has occurred using a classification model, considering the
three different cases of where erosion can appear on the blade tip: on the bottom edge, the
top edge or both. Moreover, we predict, using regression models, the amount of erosion
on the blade. Both tasks are posed as supervised learning problems and solved using ML
algorithms by performing feature extraction on the power and vibration response of the
blade through QBlade simulation. However, before presenting our proposal, we briefly
survey related works in this domain.

3.1. Related Work

Several works have applied ML towards the detection of different types of problems
in wind turbines. For instance, static and dynamic regression models have previously been
used to detect failures in wind turbines based on vibration analysis [5]. Another example
is [17], which presents an approach to predict when preventive maintenance should be
performed, focusing on the remaining useful life of a wind turbine before a failure occurs
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and diagnosing the type of failure. The proposal involves low implementation costs
because it is based solely on information collected from the very common SCADA system.
A recent example also includes forecasting of wind speed assessment using satellite data
and ML [18], specifically a neural network.

In [11], the authors classify the occurrence of different types of failures in blades, using
a piezoelectric accelerometer to measure the vibration of the blade. That work considered
five types of damage to the top of the leading edge of the blades, namely bending, cracks,
looseness, pitch, twist and erosion. To classify the signals time-domain, feature extraction
is performed on the vibration signals, focusing on different types of summary statistics. In
a more recent study by the same authors [19], they also use vibration signals, histogram
features and ML to monitor the condition of wind turbine blades, in this case using lazy
classifiers.

ML has also been applied to maintenance management of blades in [20]. The work is
based on the detection of delamination, a common structural problem that can generate
large costs. Continuous monitoring of turbines is the focus of [21], using real data from
a SCADA system to predict damage to the structure and blades of wind turbines. The
authors present two models for this: the first is the use of multilayer neural network, and
the second is adaptive networks with a fuzzy inference system. The proposal is to monitor
the power curve signal, achieving good precision. Sound analysis, a unique approach, has
also been used for fault detection, extracting descriptive feature of acoustic waves and
detecting damage using common ML methods [10]. A related work can be found in [22],
where ML is used to estimate turbine energy yield losses due to erosion on the leading
edge of the blade.

In general, few works deal specifically with erosion, and those that do not focus on a
detailed analysis of this type of failure.

3.2. Data Set

The dataset was generated with QBlade and the procedure outlined in Section 2.2. A
total of 100 blades were simulated for each type of erosion of the blade tip (bottom edge,
top edge or both), producing a dataset with 300 samples, similar to [11]. This work assumes
that all blades used in a real-world setting will have a certain amount of erosion in at least
one of the edges of the tip. Therefore, we do not consider the case in which the blade is
completely clean. It must be stated that, while we are relying on simulated data, it has been
shown that simulated results of wind turbine blade performance are reliable predictors of
on site behavior [22,23].

In order to simulate an eroded blade, each of the contour points of the blade profile
was perturbed, adding displacements within the range of 8% to 18%. The same seven
contour points on the tip of the blade were modified to model different levels of erosion.
Half of the samples were generated using uniform grid sampling, while the other half
of samples were generated with random values within the specified range. For example,
for the lower edge cases, 8% of erosion was removed from the Y-axis coordinate value;
subsequently, the percentage of erosion increased by 0.2% up to 18% to generate 50 samples.
For the remaining 50 samples, the amount of erosion was determined randomly by using a
uniform distribution U[8, 18]. Random samples were used to simulate a rugged surface on
the blade, which can be caused by random events such as contact with insects or large sand
particles. Our approach is justified since roughness on a blade is often simulated with a
random surface [24,25].

Each blade was simulated with QBlade using the settings in Section 2.1. The accelera-
tion response at the blade tip was obtained, using the QFEM tool for structural design and
modal analysis of each blade. The NREL FAST tool [26] was used to carry out analysis of
the dynamic response of wind turbines. The vibration of the acceleration signal at the tip
of the blade is selected as output. The simulation parameters are as follows: time step of
0.1, 3 blades, a rotor speed of 296 rpm and air density of 1.225 k/m3. The wind fields are
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specified in Table 6 by mostly using the same simulation values used to determine power
output. The difference is simulation time and air density.

Table 6. Wind field and wind simulation parameters.

Windfield Parameter Value

Time (s) 60
Timesteps 100
Point per direction 20

Simulation Parameter Value

Rotor Radius (m) 30
Hub Height (m) 60
Mean Wind Speed (m/s) 13
Measurement Height (m) 10
Turbulence Intesity (%) 10
Roughness Length (m) 1.00 × 10−2

3.3. Feature Extraction

After obtaining the samples of both power and acceleration for the different blades,
we proceeded to perform feature extraction. For this work, feature detection was carried
out in the time domain given the success of such measures in similar work [11] and in the
analysis of other complex signals [27,28].

Let ξ(t) ∈ RT denote the vector containing a time series from a single signal, and T
denotes the number of samples in ξ. A feature of ξ(t) is denoted by x, while the matrix
X = [x1, .., xF] contains all features from all samples, xi is the vector of a single feature, and
F is the total number of features extracted.

The feature extracted from the signals include six statistical descriptors, namely mean,
median, maximum, minimum, sum, standard deviation, variance and kurtosis. Moreover,
we also extract the following:

• Power: Pξ = 1
T Σ∞−∞|ξ(t)|2;

• First difference: δξ = 1
T−1 ΣT−1

t−1 |ξ(t + 1)− ξ(t)|;
• Normalized first difference: δ̄ξ =

δξ

σξ
;

• Second difference: γξ = 1
T−2 ΣT−2

t−1 |ξ(t + 2)− ξ(t)|;
• Normalized second difference: γ̄ξ =

γξ

σξ
.

Power Pξ measures the strength of the signal or the energy consumed per unit of time.
The first and second differences show the changes of a signal in time. The normalized first
difference is also known as the Normalized Length Density and is used to quantify the
self-similarities contained in a signal. Additionally, we also extract what is referred to as
Hjorth features [29]. These include the following: Activity, Mobility and Complexity. The
Activity feature represents the variance of the signal and is computed by the following.

Aξ =
ΣT

t=1(ξ(t)− μξ)
2

T
.

The Mobility feature is defined by the standard deviation of the slope of the EEG signal
using as reference the standard deviation of the amplitude expressed as the following ratio
by time unit.

Mξ =

√
var(ξ̇(t))
var(ξ(t))

.

79



Math. Comput. Appl. 2022, 27, 5

The Complexity feature measures the signal’s variation using a smooth curve as
reference provided by the following.

Cξ =
M(ξ̇(t))
M(ξ(t))

.

Another time domain feature is the Non-Stationary Index (NSI) [30]. Signal ξ is
divided into segments, and their respective μi is computed. NSI is defined as the standard
deviation of the segments’ μi. When NSI is high, the signal is considered to be “less
stationary.”

The last feature includes Higher Order Crossings (HOC) [31]. The feature describes
the oscillatory nature of signal counting the number of sign changes over multiple variants
of the signal. A total of 10 distinct featur HOC features were extracted.

In total, this work considers 27 time domain features to characterize the signals of
interest extracted from the wind turbine blade.

Classification and Regression Problems

The above feature extraction process produces a total of 27 time domain features for
each signal. These features are used to pose three classifications by using the following:
(1) the features from the power signal; and (2) adding the features from the acceleration
signal. An ML model will learn to use these features to determine what edge of the blade is
affected by erosion.

Moreover, the same feature set will be used to generate a regression model to estimate
the exact amount of erosion. In this scenario, the objective is to predict the level of erosion,
which ranges from 8 to 18 percent. In this case, the location of the erosion (top, bottom or
both) is not taken into account, and the percentage of erosion is the target of the learning
process.

3.4. Auto Machine Learning with H2O-DAI

AutoML is an approach for automating the design, tuning, implementation and
evaluation of complete ML pipelines. The goal is to simplify the manner in which ML
models are tested and evaluated such that the process by which the models are generated
provide a comprehensive evaluation of the best possible approach to solve a given problem.
In this proposal, we use H2O-DAI, which stands for H2O Driverless AI, which offers a
very simple user interface and a comprehensive set of tools to perform AutoML [32]. For
instance, it makes a choice from a set of state-of-the-art models, such as XGBoost [33],
Generalized Linear Models [34] and Deep Learning [35].

There are basically four tuning hyperparameters that are used to configure the AutoML
process of H2O-DAI; these include the following. Accuracy refers to the amount of effort to
find the best possible pipeline in the range (1–10); it is set to 7 in these experiments. Time
controls the duration of the search process, it is set to 2 in our experiments. Interpretability
controls the amount of feature engineering performed by the AutoML system. In this case,
since a diverse set of features is already being used, it is set to 8. Moreover, to evaluate
performance, 6-fold cross validation was used. All experiments were carried out on an
IBMP Power 8 Server for High-Performance Computing with two Power 8 processors and
two NVIDIA Tesla P100 GPUs.

3.4.1. Classification Results

Summary of the results are presented as an average confusion matrix based on the
classification achieved on the testing folds of the cross validation process. Results are
shown in Table 7 when using the power output for feature extraction, where class labels are
shown as Bottom, Top and Both for each of the three types of erosion. Other noteworthy
classifier performance scores include (given as the average ± standard deviation over all
the testing folds) the following: Area Under the Receiver Operating Characteristic Curve of
0.99 ± 0.001 and an F1-Score of 0.98 ± 0.008.
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Table 7. Average confusion matrix using the power signal for feature extraction.

Bottom Top Both Error

Bottom 99% 1% 0 1%
Top 0 100% 0 0
Both 0 1% 99% 1%

H2O DAI converged to an XGBoost model for classification [36], using a total of seven
input features, four of which are raw features from the 27 time domain features and three
automatically engineered features. In particular, for this version of the problem, H2O DAI
focused on statistical features, such as the variance, mean and median, but it also used the
power feature.

Extending the feature set, incorporating the features computed on the acceleration
signal produced optimal results, as shown in the confusion matrix of Table 8. In this case,
H2O DAI also converged to an XGBoost model, using a total of 10 input features, including
five automatically engineered features. It is notable that all of the features used in this case
are features extracted from the acceleration signal, including the first differential, the NSI
and the power features.

Table 8. Average confusion matrix using both the power signal and the acceleration signal for feature
extraction.

Bottom Top Both Error

Bottom 100% 0 0 0%
Top 0 100% 0 0
Both 0 0 100% 0

3.4.2. Regression Results

The same configuration of H2O DAI is used, which was reported above for classifica-
tion, with the exception that the scoring function is the root mean squared error (RMSE).
Results are presented in Table 9, showing the average performance on the test sets of
the 6-fold cross validation. H2O DAI was applied on three groups of features: power
signal, acceleration signal and both, showing the mean absolute error (MAE), coefficient
of determination R2 and the root mean square percentage error loss (RMSPE). In all cases,
H2O DAI converged to a Light Gradient Boosting Machine (Light GBM) [37]. Results show
that using both signals for feature extraction produced a highly accurate model in terms of
both R2 and RMSPE.

Table 9. Regression results for H2O DAI estimating the percentage of erosion showing the average
and standard deviation.

Power Acceleration Both

MAE 0.002 (0.0007) 0.001 (0.0007) 0.0009 (0.0001)
R2 0.98 (0.008) 0.98 (0.012) 0.99 (.0004)
RMSPE 2.8 (0.4) 1.9 (1.14) 0.97(0.14)

4. Concluding Remarks

This study presents an in-depth analysis of the aerodynamic and modal response of
an eroded wind turbine blade. Efficiently and effectively detecting erosion on a blade can
have substantial impacts in preventative and timely maintenance of wind turbines. Results
show that it is possible to accurately determine where the erosion is present on the blade
(top edge, bottom edge or both) and to estimate the level of erosion (between 8 and 18
percent). This is accomplished by analyzing the power signal of the wind turbine and the
vibrations of the blade tip. A large set of time domain features was extracted, and the
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modeling process is carried out by using an AutoML system, namely H2o DAI. As such,
this study represents the first contribution that tackles both the detection, localization and
estimation of erosion level on the leading edge of a blade using ML. Moreover, this work is
the first to apply AutoML in this domain. The process of designing the ML pipeline was
carried out in an automatic fashion, without hampering performance and requiring very
little human intervention in the design process. This could motivate further collaborative
and multidisciplinary research between applied ML and wind energy maintenance and
production.

The results presented in this work are consistent with those reported by [11,19], with
the slight performance difference probably due to working with simulated data in our case,
which is nonetheless a good predictor of real-world performance, as shown by [22,23] and
partially validated by our experiments with a physical model.

Among both signals that were analyzed, the accelerometer readings seem to be more
informative relative to the power signal, based both on the classification (erosion detection)
and regression (erosion level estimation) problems, with small but consistent differences.
Moreover, the best performance was achieved when both signals are used for feature
extraction. It should be possible to use both models to automatically detect the presence
and level of erosion in a properly instrumented wind turbine blade. Future work will focus
on applying the same experimental procedure in a fully working prototype: first in a wind
tunnel and then in the field.
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Abstract: Gearboxes are widely used in industrial processes as mechanical power transmission
systems. Then, gearbox failures can affect other parts of the system and produce economic loss.
The early detection of the possible failure modes and their severity assessment in such devices is
an important field of research. Data-driven approaches usually require an exhaustive development
of pipelines including models’ parameter optimization and feature selection. This paper takes
advantage of the recent Auto Machine Learning (AutoML) tools to propose proper feature and model
selection for three failure modes under different severity levels: broken tooth, pitting and crack.
The performance of 64 statistical condition indicators (SCI) extracted from vibration signals under
the three failure modes were analyzed by two AutoML systems, namely the H2O Driverless AI
platform and TPOT, both of which include feature engineering and feature selection mechanisms.
In both cases, the systems converged to different types of decision tree methods, with ensembles of
XGBoost models preferred by H2O while TPOT generated different types of stacked models. The
models produced by both systems achieved very high, and practically equivalent, performances
on all problems. Both AutoML systems converged to pipelines that focus on very similar subsets
of features across all problems, indicating that several problems in this domain can be solved by a
rather small set of 10 common features, with accuracy up to 90%. This latter result is important in the
research of useful feature selection for gearbox fault diagnosis.

Keywords: AutoML; feature selection; fault severity assessment; gearboxes; XGBoost classifiers

1. Introduction

Gearboxes are crucial devices in industrial processes, as they play an important role
in power transmission. Then, fault detection and diagnosis in such devices are attracting
growing interest in researches, with focus on fault severity assessment. In particular, when
a fault is starting, the first stages of the failure mode are not easy to detect, in most cases,
and the incipient fault is not advised until reaching severe stages that can cause damages to
other devices, decrease the performance of the process, and produce economical losses [1,2].

Vibration signal is one of the most informative signals commonly used to determine
the health condition of rotating machines [3]. Once a vibration signal is available, data-
driven approaches can offer signal processing techniques to tackle the problem of fault
detection and diagnosis by identifying certain signal characteristics in time, frequency or
time-frequency domains, as proposed in [4] for gearboxes.

Particularly, gearboxes exhibit nonlinear and chaotic behavior [5], and these character-
istics are enhanced in the presence of faults [6–8]. Then, the identification of informative
characteristics in the vibration signal produced by faulty conditions is not easy to ac-
complish in gearboxes by using standard signal processing, and usually requires expert
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knowledge. Additionally, previous studies have visually shown that the vibration signal
behavior is non-monotonic to the fault severity increment in helical gearboxes [9,10]; that
is, the signal amplitude does not increase with the fault. Under this scenario, Machine
Learning (ML) approaches can address properly the task of fault detection and diagno-
sis. Moreover, signal processing permits different characterization of the vibration signal
useful for the application of ML-based approaches providing high-performance solutions,
commonly being the supervised fault classification.

ML-based classifiers using the k-nearest neighbor method (KNN) [11–14], artificial
neural networks (ANN) [15–18] and support vector machines (SVM) [19–23], are frequently
developed to propose fault classification models. Random Forest (RF) and Decision Trees
(DT) are also reported as fault classifiers for gearboxes because of their powerful perfor-
mance in cases where only a few samples are available and high dimensional feature
spaces [24–28].

The performance of a conventional ML-based fault classification model is highly
dependent on the input feature quality, avoiding the well-known curse of dimensionality,
and the selection of the best classification model. Particularly, feature selection is a stage
that must be carefully accomplished after features extraction is performed on the vibration
signal. Statistical condition indicators (SCI) serve as features extracted from the vibration
signal in the time domain, some of them being closely related to the vibration analysis
such as the root-mean-square, standard deviation, kurtosis, skewness, among others [29].
Other features are related to the biomedical field to analyze surface electromyography
signals [30,31]. The availability of a large set of features makes both feature selection or the
mining for new features a process that is not easily generalized.

Although the recent applications of Deep Learning (DL) models to fuse the stages
of feature extraction and selection are being widely reported [9,32–38], the selection of
fault-related features like SCI extracted from the raw vibration signal is still a field of
interest, mainly due to the easy understanding of such SCI. Moreover, the necessity of
developing the whole ML pipeline, including not only feature engineering and selection
but also classification model selection, hyperparameter optimization and validation, is
currently a challenge in ML system development, called Automated Machine Learning
(AutoML) [39,40].

According to the case study and the related dataset, for example, fault classification of
gearboxes under different failure mode severity or multi-fault scenarios, where different
failure modes are combined, the ML-based approach requires the development of a new
pipeline for each scenario, that is, feature engineering and model adjustment. In most cases,
this process requires exhaustive training plans, including greedy searching on feature and
parameter spaces which demands computational efforts and optimization algorithms to
obtain a proper classification model as mentioned previously. This is why, the development
of ML pipelines automatically is nowadays highly required in practical problems associated
to high dimensional feature spaces and complex model requirements. The evaluation of
the different computational tools providing this support is well received by the ML-based
engineering applications community in helping to choose the proper model.

To face the automated development of ML pipelines systematically, this paper presents
the application of two AutoML systems for fault severity classification, with evaluation
and comparison from an empirical perspective. Particularly, the paper is focused on the
feature selection stage, including feature engineering over SCI extracted from vibration
signals related to the fault severity of three failure modes in gears, which are pitting, crack
and broken tooth. In the following, SCI are named statistical features or features. The
application of AutoML in the field of Prognosis and Health Management (PHM) is a more
difficult challenge as the industrial equipment, particularly rotating machines, usually work
under complex and time varying conditions of load and speed. Then, new contributions in
this field are required.

The goal is the comparison of the informative capability between the original statistical
features, through the performance evaluation of the ML classifiers proposed by the AutoML
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systems. The experimental framework uses the software tools H2O Driverless AI which
is equipped with evolutionary algorithms to perform feature engineering and selection,
and TPOT, which also uses an evolutionary search to build tree-based ML pipelines. Both
tools are relatively simple and straightforward to use, offering basic and intuitive con-
figurations for generating different types of pipelines using state-of-the-art techniques
and implementations.

Results of the evaluation and comparison between H2O DAI and TPOT show that
both platforms select common features regardless of the selected model. For some failure
modes, TPOT reduces the feature space but increase it in others. Moreover, accuracy
when using the whole feature space, without feature selection, remains very close for the
pipelines created by both platforms. Regarding H2O DAI, the informative capability of ten
time-domain vibration signal-related statistical features is highlighted, which are enough
to obtain proper classification performance.

Moreover, not only are the best features identified for each failure mode, but a common
set of features reports proper performance to classify all the failure modes. This is an
important contribution in the field of fault severity classification in gearboxes, for which
the search for a common set of features for several failure modes in the same machine are
still under research.

The rest of the paper is organized as follows. Section 2 presents the background
about the AutoML as an emerging area in ML, and the description of the failure modes in
gearboxes under study in this paper. Section 3 discusses the previous works regarding the
feature analysis for fault severity assessment in gearboxes by using vibration signals mainly,
and recent applications of AutoML on this domain. Section 4 describes the test bed of the
different cases study, the collection of the data set for each case and the corpus generations.
Section 5 details the experimental framework and results by using the AutoML software
H2O Driverless AI. Section 6 is devoted to the discussion, and finally Section 7 summarizes
and concludes the paper.

2. Background

This paper presents an analysis of the applicability of AutoML in the automatic
diagnosis of faults in rotating machinery, namely industrial gearboxes. Therefore, this
section is intended to provide an overview of both domains, with the former covered in
Section 2.1 and the latter discussed in Section 2.2.

2.1. Overview of AutoML

ML is everywhere now, with successful applications in diverse domains such as
automatic programming [41] and the prediction of complex chemical processes [42], and the
list of examples grows every day. This success, however, has created the need to simplify
and accelerate the development of problem-specific ML deployments. Among the different
strategies being taken, two paradigms are particularly promising: Transfer Learning [43–45]
and AutoML [39,40,46–51]. The former entails using a model generated on a source task to
solve a target task, simplifying learning on the target and making it more efficient. The latter,
on the other hand, employs a search process to discover large model architectures [49–51]
or to automatically derive complete ML pipelines [46–48]. Moreover, recent techniques are
even hybridizing both methods for the construction of Deep Learning models [52].

While Transfer Learning opens up a wide range of possibilities in the domain of
interest of the present work, such questions are left for future research. The focus of
this paper is on AutoML. To understand AutoML, it is first necessary to review what a
ML pipeline consists of. While different problems might require slight variations of the
general case, a typical ML pipeline includes: (1) Feature Engineering; (2) Feature Selection;
(3) Model/Algorithm selection; (4) Hyper-parameter optimization; and, finally, (5) Training
and Evaluation [39,40]. In fact, some AutoML systems even facilitate model deployment
for real-world use [48]. Each of the stages in a ML pipeline is a research area in and of itself,
characterized by large combinatorial search spaces and highly complex and non-linear
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interactions. However, in general, it is not possible to determine the optimal approach for
each stage based on the description or data of a particular ML task, much less the optimal
configuration of a complete pipeline.

The general goal of AutoML is to simplify the design process of a ML pipeline,
by automatically determining how to instantiate a ML pipeline based on a problem’s
training data and a user-defined objective or scoring function. A general ML pipeline is
presented in Figure 1, highlighting the elements that are usually addressed by an AutoML
system. One of the most widely used variants of AutoML is Neural Architecture Search
(NAS), which deals with the automated design of neural networks with a search process.
While NAS has a long history [53,54], it has recently had a resurgence thanks to the intrinsic
difficulty of developing Deep Neural Networks manually [49–51]. However, NAS is very
specific to Deep Networks, focusing primarily on the Model/Algorithm selection part of
the ML pipeline. The most ambitious version of AutoML are systems that cover most of the
elements of the ML pipeline. Such systems work under the assumption that it is necessary
to consider the interactions of all the stages in a ML pipeline; that is, an optimal pipeline
will exhibit synergy among most, if not all, of the stages. To do so, it is necessary to solve a
complex optimization problem, which requires performing a search within all possible ML
pipelines. Given the complexity of such a search space, this type of AutoML systems often
employ heuristic or meta-heuristic algorithms, such as Evolutionary Algorithms (EAs) [55].

RAW SIGNALS BASIC FEATURE 
EXTRACTION

FEATURE 
ENGINEERING

FEATURE 
SELECTION

ALGORITHM 
SELECTION

HP OPTIMIZATIONTRAINING AND 
EVALUATION

BASIC ML
PIPELINE

AutoML

Figure 1. General ML pipeline and focus of an AutoML system.

Two such AutoML systems are TPOT [47] and H2O Driverless AI [48], with the former
being an open-source academic software and the latter a commercial product specifically
designed for industrial use (Driverless AI by H2O also offers academic versions of the
software). TPOT is built on top of Scikit-learn [56], and while H2O is not, both share
many of the underlying ML algorithms. TPOT uses genetic programming (GP), a form
of EA, such that ML pipelines are coded using variable size tree structures. GP is the
main search procedure in TPOT, indeed it can be seen as a basic GP system with a highly
specialized primitive set and search space [55]. H2O Driverless AI, on the other hand,
also uses EAs to perform Feature Engineering and Feature Selection, a task for which EAs
are known to produce good results in difficult ML problems [45]. However, it employs a
wider variety of mechanisms to generate the final pipeline, including Bayesian optimization
for hyperparameter tuning and a large set of predefined engineered features from which
the system can extend a problems feature space. In this work, we evaluate both systems
to perform our experimental evaluation of AutoML because of their general simplicity
and straightforward usage, where the user only needs to set very basic and intuitive
configurations. Such is the goal of an AutoML system, to simplify the design process of a
ML pipeline. Finally, it is important to highlight that the goal of this work is not specifically
to compare the systems, even though their relative performances are contrasted. Our
approach is to leverage the information produced by the ML pipelines produced by each
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system to better understand the feature selection problem in the domain of fault diagnosis
in gearboxes, helped by this kind of AutoML systems.

2.2. Faults in Gearboxes

A gear is a toothed wheel usually attached to a rotating shaft. In a gear train, the teeth
of one gear engage the teeth on the other gear. Gears and gear trains are important
mechanical power transmission devices in industrial applications to produce speed and
torque conversions from a rotating power source to another device. Gearboxes may work
under constant or varying operation conditions of load and speed. According to the
assembly of gear wheels, gear trains can be classified as a simple gear train, compound
gear train, reverted gear train and planetary gear train [57]. In this work, the experimental
test bed is a simple gear train assembled as a one-stage spur gearbox, with a number of
teeth, Z1 and Z2, as shown in Figure 2.

Figure 2. One stage gearbox.

In heavy machinery, complex multistage gearboxes are used and the interaction of
the gearbox elements with the working environment can drive the gears to faults that may
cause significant economic losses. For that reason, fault diagnosis in gears has been the
subject of intensive research [57].

One of the most dangerous damages in gears is the crack at the tooth root, that is
caused because of significant changes in tooth stiffness [58]. A physical simulation of a man-
made crack is shown in Figure 3a, where a different length and depth of crack throughout
the base of the tooth were implemented. Tooth pitting is another common failure mode of
a gearbox, which can appear at several levels according to pitted areas: slight micro pitting,
macro pitting, macro pitting over 50%–100% of the gear tooth surface, and macro pitting
over all the gear tooth surface [59]. Tooth pits can be simulated like circles of different
diameter, depth and several number of holes over the tooth surface. A physical simulation
of man-made pitting is shown in Figure 3b, where pits with different diameter and depth
were implemented. Finally, another important research topic is the analysis of the effect
of a broken tooth on the gearbox vibration, which is caused by an excessive impact load
or unstable load. Under this fault, the size of the contact surface between the meshing
teeth is decreased. In addition, the tooth becomes shorter and the contact length along
the in volute profile of the damaged tooth is also decreased [60]. A physical simulation of
the man-made broken tooth is shown in Figure 3c, where a different percentage of tooth
loss was implemented. The simulated physical failure modes were implemented at the
Vibrations Laboratory of the Universidad Politécnica Salesiana (UPS-Ecuador), and they
are used in this work for generating the dataset of vibration signals.
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(a) (b)

(c)

Figure 3. Details of the simulated faults for the three case studies. (a) Schemes and photography of
crack levels. (b) Schemes and photography of pitting levels. (c) Schemes and photography of broken
tooth levels.

3. Previous Work

Fault severity assessment in gears by using ML has been widely reported. This
section is devoted to approaches using feature extraction by calculating statistical features,
and focused on the problem of feature selection, and also recent approaches using artificial
features extracted from DL models.

In [12], the identification of five different gear crack levels is performed by using
features obtained from Wavelet Packet Decomposition (WPD). The first set of features is
composed by 620 statistical features calculated from the wavelet coefficients at different
levels, which are then reduced to seven significant principal components. KNN is used as
a classifier and compared to other statistical models such as linear discriminant analysis,
quadratic discriminant analysis, classification and regression trees, and naive Bayes classi-
fier. Another approach to crack fault level identification is discussed in [13] by considering
25 features extracted from the time and frequency domains. A two-stage feature selection
and weighting technique via Euclidean distance evaluation is proposed to select sensitive
features and to weigh the selected features according to their sensitivity to each fault level.
The Weighted K-Nearest Neighbor (WKNN) classifier is adopted to identify three gear
crack levels under different loads and motor speeds.
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Four different crack levels are detected in [61] by using statistical features and decision
trees (DT). Similar work using DT and ARMA feature extraction from the vibration signals
is presented in [62]. Ordinal rough approximation operators based on fuzzy covering and
feature selection algorithms for ordinal classification are proposed in [63] for gear crack
level identification. Finally, a DL approach using a Long Short-Term Memory (LSTM) based
recurrent neural network is discussed in [64], to detect tooth crack growth at different
stages, where the vibration signal is the input to the LSTM network. The LSTM prediction
error is used as a measure of fault severity.

The detection of localized pitting damages in a worm gearbox by a vibration visual-
ization method and ANNs is presented in [18]. Twelve statistical features are calculated
from vibration signals in time and frequency domains for multi-class recognition, where
each class is related to a severity level. In [29], a pitting severity assessment is tackled with
supervised learning using an SVM-based ranking model that learns the ordinal information
contained in the dataset. Thirty-four statistical features were calculated from vibration
signals in the time and frequency domain, among others specifically designed for gearbox
damage diagnosis. Three levels of damage were estimated. The approach in [65] uses
Stacked Auto Encoders (SAE) for unsupervised feature extraction, feature reduction based
on QR decomposition is then applied on the feature matrix provided by the SAE to obtain
low dimensional data feeding an unsupervised K-means clustering.

Fault severity in broken tooth is also tackled by different approaches. The approach
in [9] introduces Stacked Convolutional Autoencoders (SCAE) together with a Deep Con-
volutional Neural Network (DCNN) as a method for unsupervised hierarchical feature
extraction for fault severity assessment in a helical gearbox. In that proposal, statistical
features are not extracted, but the artificial ones are provided by the DCNN after training
with initialization parameters given by an SCAE. These features feed a multilayer percep-
tron for classification. Another approach is provided in [38], where artificial features are
provided by a CNN. The spectrogram of the vibration signal is used as the input to the
CNN, the output of the last convolutional layer is connected to one softmax layer and
finally, these outputs feed an SVM-based decision layer. An approach based on fuzzy
transition is developed in [10] to predict the broken tooth severity in helical gearboxes.
This is accomplished by two steps: a set of statistical features extracted from the vibrations
signal are uses as input for a static fuzzy model to compute the weights of fuzzy transitions
(WFT), and then a dynamic equation using WFT predicts the next degradation state of the
rotating device. All the previous works focus on the same dataset related to ten severity
damages of broken tooth in helical gearboxes.

Research on AutoML arises as a way to face the challenge of automating the Combined
Algorithm Selection and Hyper-parameter tuning, called CASH by [66], and recent appli-
cations can be found. The review in [67] tackles the use of AutoML for developing smart
devices to obtain auto generated embedded code ready to test and execute. An Automated
Hyperparameter Search-Based Deep Learning Model for Highway Traffic Prediction is
performed by AutoML in [68]. In the field of process monitoring, ref. [69] uses AutoML to
optimize the parameters of a soft-sensor for monitoring the lysine fermentation process.
The authors in [70] propose in the future research that the AutoML approach could be used
for parameter optimization of a Variational Auto Encoder for nonlinear process monitoring.

However, ML-based fault diagnosis has just started to be analyzed under this approach
with only a few works in the field of fault diagnosis for rotating machines. In [71] an
approach using the Google DeepMind Team method called Neural Architecture Search
(NAS) with reinforcement learning is proposed, as an AutoML tool for the automated
search of a multiscale cascade CNN applied to the fault diagnosis of the gearbox data set of
the PHM 2009 Data Challenge. In particular, two problems were addressed: fault detection
and fault severity classification. Inspired by the NAS method, in [72] a neural network
architecture automatic search method based on reinforcement learning is applied to rolling
bearing fault diagnosis for two cases studies: the Case Western Reserve University (CWRU)
bearing dataset and the locomotive bearing data set. Inspired by AutoML approaches,
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a self-optimizing module is proposed in [73] to dynamically adjust the knowledge base
selection and parameter setting for training an Extreme Learning Machine based on physical
knowledge. The self-optimizing module was applied on the CWRU bearing dataset.

4. Case Study

This section introduces the test bed and the experimental plan to acquire the database
of vibration signals from three gearbox failure modes: pitting, crack and broken tooth.
Next, details of the dataset are provided.

4.1. Experimental System and Data Acquisition

The real test bed available at the Universidad Politécnica Salesiana is shown in Figure 4,
where realistic conditions of load and speed can be configured. The test bed is composed by
a one stage gearbox (a) with spur gears, an induction motor (b) Siemens 1LA7 096-6YA60
2Hp 1200 rpm under variable speed controlled by a variable-frequency driver (c), and a
magnetic brake system (d) for manual load control (e) via belt transmission (f). The four
accelerometers (g) are IMI Sensor 603C01, 100 mV/g, placed in a vertical manner. The data
acquisition cards (h) are National Instrument NI 9234 and cDAQ-9188, including anti-
aliasing filtering with a sample frequency of 50 KS/s and, finally, the laptop with signal
acquisition software (i) developed in Labview and Matlab.

Figure 4. Test bed under realistic conditions.

The spur gears in the gearbox are made from steel E410, with a center distance of
90 mm, the ratio Z1/Z2 of the teeth number is 32/48, the module is 2.25 and the pressure
angle is 20◦. The vibration signals were collected with all four accelerometers, but this
work only analyses the vibration signals collected from the accelerometer (A1) placed over
Z1 in a vertical manner, as shown in Figure 5. The accelerometer (A1) provides the most
informative vibration signal because it is close to the motor [74].

Three failure modes are considered, namely pitting, crack and broken tooth, each one
configured on the gear Z1, as detailed in Table 1. For pitting, the severity level is related
to the number of holes, their diameter and depth. For cracks, the severity level is related
to the depth, width and length of the crack throughout the tooth. The broken tooth was
implemented as a percentage of transverse breakage on the tooth. Vibrations signals were
collected for nine severity levels for each failure mode, where P1 labels the Normal (N)
or healthy state, and P2 to P9 label each fault severity level. An example of the vibration
signals in the time domain of each failure mode in normal conditions, severity levels P2
and P9, is presented in Figure 6. These figures show the change of the vibration amplitude,
but this change is not monotonic regarding the severity level. Details about these failure
modes are given in Section 2.2.
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Figure 5. Schematic experimental setup.

(a) Broken Tooth, P1 vs P5 (b) Broken Tooth, P1 vs P9

(c) Crack, P1 vs P5 (d) Crack, P1 vs P9

(e) Pitting, P1 vs P5 (f) Pitting, P1 vs P9

Figure 6. Samples of a vibration signal for simulated faults for the three case studies.
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Table 1. Severity level characteristics of the three failure modes.

Label
Severity Level Severity Level Severity Level

Pitting Crack Broken Tooth

P1 N N N

P2

Holes: 2 Depth: 1 mm

12.5%Diameter: 1 mm Width: 1 mm
Depth: 1 mm Length: 4 mm

4.1% 4.9%

P3

Holes: 2 Depth: 1mm

25.0%Diameter: 1.5 mm Width: 1 mm
Depth: 1.5 mm Length: 8 mm

7.3% 9.8%

P4

Holes: 4 Depth: 1 mm

37.5%Diameter: 1.5 mm Width: 1 mm
Depth: 1.5 mm Length: 10 mm

14.7% 12.3%

P5

Holes: 4 Depth: 1mm

50.0%Diameter: 2 mm Width: 1 mm
Depth: 2 mm Length: 12 mm

23.1% 14.7%

P6

Holes: 6 Depth: 1 mm

62.5%Diameter: 2 mm Width: 1 mm
Depth: 2 mm Length: 16 mm

34.6% 19.7%

P7

Holes: 6 Depth: 1 mm

62.5%Diameter: 2.5 mm Width: 1 mm
Depth: 2.5 mm Length: 20 mm

49.91% 25%

P8

Holes: 8 Depth: 2 mm

87.5%Diameter: 2.5 mm Width: 1.5 mm
Depth: 2.5 mm Length: along the tooth

66.5% 50.0%

P9

Holes: irregular Depth: 4 mm

100%Diameter: irregular Width: 1.5 mm
Depth: 2.5 mm Length: along the tooth

83.1% 100%

4.2. Dataset

The dataset of vibration signals were collected under the following conditions:

• The time length of each example is 10 s. Then, the signal is composed by 500,000 sam-
ples, according to the sample frequency of the DAQ card;

• The motor rotates at constant speeds of 180 rpm, 720 rpm and 960 rpm;
• The constant load was configured for no-load (0 N m), and loads generated with

constant voltage application on the magnetic brake on 5 VDC (1.44 Nm) and 10 VDC
(3.84 Nm);

• Each example configured under different speed and load were repeated 15 times.

Therefore, each severity level is composed by 135 examples and the whole dataset
considering nine severity levels has 1215 examples. After that, 64 statistical features over
the time domain of the vibration signal were extracted for each example to build the corpus
matrix. The time domain offers a suitable condition indicator with easy interpretability.
Some statistical features are mean, variance, standard deviation, kurtosis, skewness, energy,
absolute mean, crest factor, norm entropy, Shannon entropy, sure entropy, among others.
Detailed definitions of each condition indicator can be found in [29–31]. Then, the corpus
is a 1215 × 64 matrix.
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5. Experiments and Results

This section presents our general methodology to evaluate both the AutoML tools
used in this paper, and the implementation details and the main findings. The methodology
is presented in Figure 7, where processes (rounded squares), inputs and outputs (squares)
are stated. In all of the work presented, it is important to always consider that there are
three specific case studies that are analyzed, namely pitting, crack and broken tooth, each of
the gearbox faults studied in this paper. The section is divided into two main subsections,
each one devoted to one of the AutoML systems considered in this work.

Figure 7. Methodological Framework.

5.1. AutoML with H2O Driverless AI

The experimental approach presented in this paper is focused on characterizing the
performance of AutoML in each case study. This is done by analyzing H2O performance at
different levels. First, we focus on basic generalization or testing performance, the most
common approach towards evaluating ML solutions. Second, we evaluate the incidence of
the Feature Engineering process on AutoML performance. It is widely understood that Fea-
ture Engineering is essential to obtain optimal performance with many ML algorithms [45].
Third, we evaluate the Feature Selection performed by AutoML, by analyzing the estimated
feature importance provided by H2O and evaluating the impact that these features have on
predictive accuracy. Finally, we will qualitatively compare in Section 6 the performance of
the obtained AutoML results with those previously published in this domain The goal is to
illustrate the differences and similarities of the AutoML pipelines relative to the standard
development of ML pipelines.

5.1.1. System Configuration

H2O Driverless AI (DAI) offers an elementary user interface and control settings. In
this work, we are using the version 1.6.5 of DAI, running on an IBM Power 8 HPC server,
with two CPUs and 160 CPU cores, 512 GB RAM and two NVIDIA Tesla P100 GPUs with
16 GB RAM each. There are basically four elements that need to be configured by the user
to perform the AutoML process, these are (We do not cover the complete setup process,
only the most relevant aspects for our study; for a detailed description please see [48] and
visit the online documentation):

1. Accuracy [1–10]: This setting controls the amount of search effort performed by the
AutoML process to produce the most accurate pipeline possible, controlling the scope
of the EA and the manner in which ensemble models are constructed. In all of our
experiments, we set this to the highest value of 10;

2. Time [1–10]: This setting controls the duration of the search process and allows for
early stopping using heuristics when it is set to low values. In all of our experiments,
we set this to the highest value of 10;
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3. Interpretability [1–10]: Guaranteeing that learned models are interpretable is one of
the main open challenges in ML [75], which can be effected, for example, by model
size [76]. DAI works under the assumption that model interpretability can be im-
proved if the features used by the model are understandable to the domain expert,
and if the relative number of features is kept as low as possible. This setting controls
several factors, including the use of filtering features selection on the raw features,
and, more importantly for our study, the amount of Feature Engineering methods
used. In this work, we evaluate two extreme conditions for this setting, for each case
study we perform two experiments, using a value of 1 and 10. A value of 10 filters
out co-linear and uninformative feature, while also limiting the AutoML process to
only use the original raw features of the problem data. On the other hand, the lower
value uses all of the raw features and constructs a large set of new features using a
variety of Feature Engineering methods;

4. Scoring: Depending on the type of problem, regression or classification, DAI offers a
large variety of scoring functions that are to be optimized by the underlying search
performed by the AutoML system, such as Classification Accuracy or Log-Loss for
classification. In this work, we choose the Area Under the Receiver Operating Charac-
teristic Curve (AUC), where optimal performance is achieved with a value of 1, and 0
otherwise. Since all case studies are multi-class problems, this measure is computed
as a micro-average of the ROC curves for each class [77].

All of the other DAI settings are left to their default values, of which one in particular
merits further explanation. As mentioned before, one of the tasks that an AutoML algo-
rithm must determine is the ML model or algorithm to use for a given dataset. DAI offers
the following options: XGBoost, Generalized Linear Models, LightGBM, Follow the Regu-
larized Leader and RuleFIt Models. After initial exploratory experiments, we observed that
under all our experimental conditions, and for each case study, DAI always chose XGBoost
as the learning algorithm. Therefore, XGBoost is only considered in all the experiments
reported below. XGBoost is an implementation of gradient boosted decision trees, that is
highly efficient, particularly on GPU-enabled systems [78]. It is widely considered to be a
state-of-the-art algorithm, that consistently outperforms most other techniques on a wide
variety of domains. Finally, DAI does not only consider single models, but also attempts
to build ensembles of several models, an approach that often outperforms single model
approaches [79]. The ensemble of XGBoost models are linearly combined to produce the
final output.

5.1.2. Evaluation of AutoML Pipelines

Given the three case studies (Pitting, Crack and Broken Tooth), and the two experi-
mental configurations (Interpretability set to 1 and Interpretability set to 10), we have a
total of six sets of experimental results. DAI performs 3-fold cross validation to compute
the performance scores, and presents averages of performing this process 3 times. Table 2
summarizes the results for each experiment, focusing on the following performance met-
rics: Classification Accuracy, AUC, F1 Measure and Log-Loss, all of which are standard
measures in the ML literature. These measures are given as averages over all test folds in
the cross validation process, and the standard deviation is given in parentheses. The next
two columns present the details on model size, given by the number of features used and
the number of components in the final ensemble (In some cases the number of components
in the final ensemble was larger than what we report in Table 2, but some models had a
zero weight, so they were omitted from the final result). It is worthwhile to mention, once
again, that while size is not equivalent to complexity or interpretability, in practice it often
sufficiently commensurate to be used as a useful approximation [76]. The final column
specifies the amount of computation time required for each experiment (in hours).
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Table 2. Summary of experimental results for each problem (BT = Broken Tooth, Interpret = In-
terpretability and Acc = Accuracy). Testing performance is shown as averages and the standard
deviation in parentheses. Model Size is given for the final ML pipeline found.

Configuration Testing Performance Model Size

Problem Interpret. Acc. AUC F1 Log-Loss Features Ensemble Time

Pitting 1 0.99(0.0025) 0.99(0.0002) 0.97(0.0116) 0.09(0.0185) 177 4 19
Pitting 10 0.99(0.0021) 0.99(0.0005) 0.96(0.0009) 0.12(0.0253) 27 1 8.5
Crack 1 0.99(0.0023) 0.99(0.0001) 0.98(0.0106) 0.08(0.0176) 131 4 18.5
Crack 10 0.99(0.0015) 0.99(0.0002) 0.98(0.0007) 0.08(0.0197) 25 2 14.8

BT 1 0.98(0.0027) 0.99(0.0003) 0.95(0.0124) 0.17(0.0161) 1019 3 19.5
BT 10 0.98(0.0040) 0.99(0.0002) 0.94(0.0180) 0.17(0.0556) 15 2 14.7

There are some notable results in Table 2. First, in terms of generalization performance,
all of the ML pipelines produce very strong results. Second, the Interpretability setting
does not seem to have a significant effect on performance, with almost identical results for
both settings. Third, this setting does affect the number of features used and the running
time of the experiments. It is clear that using an Interpretability setting of 1 does increase
the number of features, in some cases quite drastically (Broken Tooth in particular), but it
does not generate a similar performance increase. This phenomenon is well studied in the
EA literature, and it is known as bloat [76]. While widely studied, and a variety of methods
used to control it, it is obviously not addressed in this state-of-the-art AutoML system.

5.1.3. Analysis of Feature Importance

While feature engineering did not lead to substantial improvements in classification
accuracy, however, the AutoML feature importance estimation and feature selection process
are also evaluated. Table 3 presents a summary of the feature importance scores assigned
by DAI to each of the features used in this study, which are given in the range of [0, 1], when
setting Interpretability = 10. Features that are assigned a value below 0.003 are not used
by the ML pipeline found in a particular problem, and those features with such a value in
all three pipelines are omitted from the table. Notice that the number of features that meet
these criteria for each problem is well below the total number of available features: 26 for
pitting, 15 for Broken Tooth and 24 for crack.

Moreover, features that were used in the pipeline of all three problems (feature im-
portance values greater than 0.003 in all pipelines) are highlighted in gray (nine features),
these are: x1, x6, x7, x8 ,x27, x35 x41, x54, and x61. Features that are only used in at least two
of the pipelines are in light gray (12 features), and features that are used once are in white
(12 features). The final column of Table 3 presents the average Feature Importance score
assigned by DAI to each feature, considering the score from the pipeline obtained from
each problem. These results show that there is substantial agreement in which features are
informative in this domain, irrespective of the specific type of fault.

Taking into consideration the results in Table 2, there are several observations that
can be made regarding feature importance and the DAI results that did employ Feature
Engineering (Interpretability = 1). These results show that feature engineering produces
a larger set of informative features, compared to the original set of features. For instance,
we can focus on the top 50 features determined by DAI, and analyze them based on their
feature importance value to characterize their statistical distribution, as summarized in
Table 4 (Note that for the experiments with Interpretability = 10 some features (in some
cases most) did not achieve a feature importance value greater than 0.003, and were thus
omitted from the analysis in Table 3. However, since DAI does not provide the feature
importance value for these features, it was considered to be equal to 0.003 for this analysis).
These results clearly show that the feature engineering process did produce a larger set
of informative features, compared to the original set of raw features. We can also analyze
the type of features used by DAI when setting Interpretability = 1, as summarized in
Table 5, again focusing on the top 50 features for each problem. The table summarizes the
percentage of features generated by different Feature Engineering heuristics; these are:
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• Original: The original features in the dataset;
• Cluster Distance (CD): Uses a subset of features to cluster the samples, and uses the

distance to a specific cluster as a new feature;
• Cluster Target Encoding (CTE): Also cluster the data, but computes the average value

of the target feature of each cluster as a new feature;
• Interaction: Uses feature interactions as new features, based on simple arithmetic

operations, namely addition, subtraction, division, and multiplication;
• Truncated SVD (TSVD): This heuristic trains a truncated SVD model on a subset of the

original features, and uses the components of the SVD matrix as new features for the
problem.

Table 3. Feature importance computed by DAI on each problem, for each of the features used in this
study. Features not on this list had a zero value in all three problems. Dark gray rows indicate that a
feature was used in all three problems, light gray in two, and white in at least one.

Feature Pitting Crack Broken Tooth Average

x1 1 1 1 1
x5 0.07 0 0 0.02
x6 0.92 0.63 0.93 0.88
x7 0.52 0.77 0.20 0.49
x8 0.50 0.71 0.90 0.70
x9 0 0.14 0.57 0.23
x10 0.06 0 0 0.02
x11 0 0.64 0 0.02
x12 0.05 0.18 0 0.07
x13 0.51 0 0.61 0.37
x15 0.17 0.65 0 0.27
x16 0.14 0 0 0.04
x17 0.09 0 0 0.03
x19 0.51 0.38 0 0.29
x20 0.52 0.18 0 0.23
x21 0.11 0.30 0 0.13
x22 0.05 0 0.97 0.34
x24 0.25 0 0 0.08
x26 0 0.44 0 0.14
x27 0.63 0.70 0.52 0.61
x28 0.06 0.72 0 0.26
x30 0 0 0.49 0.16
x33 0 0 0.20 0.06
x35 0.27 0.16 0.65 0.36
x39 0.05 0.19 0 0.08
x41 0.52 0.65 0.94 0.70
x42 0.27 0.19 0 0.09
x45 0 0.62 0 0.20
x54 0.24 0.56 0.19 0.33
x58 0.05 0 0.55 0.20
x61 0.39 0.68 0.22 0.43
x62 0 0.18 0 0.06
x63 0 0.15 0 0.05
x64 0.05 0.77 0 0.27

It appears that the original features and the CD and Interaction heuristics produce most
of the informative features used by the DAI models. However, as shown in Table 2, these
features did not lead to increased performance in the studied problem instances. Suggesting,
once again, that these transformations are, in fact, reducing model interpretability without
notably improving model accuracy.
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Table 4. Feature importance values for the top 50 features found for each problem by DAI.

Configuration Feature Importance

Problem Interpret. Min Max Median Mean Std

Pitting 1 0.149 1 0.212 0.259 0.152
Pitting 10 0.114 1 0.183 0.233 0.147
Crack 1 0.281 1 0.414 0.462 0.180
Crack 10 0.003 1 0.052 0.166 0.248

BT 1 0.003 1 0.003 0.182 0.319
BT 10 0.003 1 0.062 0.237 0.301

Table 5. Percentage of types of features used by DAI on each problem, based on the 50 features with
the highest feature importance scores.

Problem Original CD CTE Interaction TSVD

Pitting 48% 32% 0% 18% 2%
Broken Tooth 32% 30% 0% 36% 2%

Crack 8% 52% 4% 36% 0%

5.1.4. Feature Importance and Classification Performance

To better understand how classification performance depends on the number of
features used, two experiments were carried out. In both, an XGBoost classifier was
evaluated on each problem using an increasing number of features, starting with the
feature with the highest Feature Importance value and progressively adding the next
highest and so on. In the first experiment, independent feature importance lists were used,
as given by the DAI pipeline for each problem. For the second experiment, a common
feature importance list was implemented, using the average importance value for each
feature among the three problems. The values are presented in the Average column in
Table 3.

This analysis allows us to characterize how the least important features impact classifi-
cation accuracy. In these experiments, an 80%/20% training/testing split was carried out.
Training was carried out using a Grid Search over hyperparameter space and 10-fold cross
validation. Hyperparameter optimization considered the following hyperparameters and
search ranges:

• Number of estimators (nest): The number of weak-learners used by the XGBoost
classifier. The search range is {50, 100, 150, 200};

• Learning rate (lr): Size of each bootstrapping step, and it is critical to prevent overfit-
ting. The search range is {0.01, 0.1, 0.2, 0.3};

• Max Depth (dmax): Maximum depth of each weak-learner, which is represented as a
decision tree. The search range is [3, 10];

• Feature Subsampling (SS): Represents the fraction of features that are subsampled by
a particular learner. The search range is [0.1, 0.2];

• Gamma (γ): A regularization term that controls when a leaf is split in a weak-learner
decision tree. The search range is {0, 0.1, 0.2}.

For the first experiment, the feature importance values for each problem are listed in
Table 3. The results on the training and test set, for each number of features, are summarized
in the first column of Figure 8, which shows the classification accuracy for each problem.
What it is clear is that the highest accuracy is reached by all methods with 10 to 16 features,
which is significant since it is less than the number of features used by the DAI pipelines
from the Pitting and Crack problems. This suggest that further feature selection, at least
in these two cases, can be beneficial. It is also important to note that this experiment is
using a single XGBoost classifier, instead of the ensembles suggested by the DAI pipeline,
but performance is nonetheless comparable. The second column of Figure 8 shows the
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optimal hyperparameter values found on each problem for each number of total features
used, each one normalized to the range [0, 1].

(a) Pitting: Accuracy (b) Pitting: HP

(c) Crack: Accuracy (d) Crack: HP

(e) Broken Tooth: Accuracy (f) Broken Tooth: HP

Figure 8. Plots show the impact of total features used by XGBoost classifier for each problem using
individual feature lists. The left column (a,c,e) shows the impact on classification accuracy and the
right column (b,d,f) shows the impact on hyperparameter optimization with Grid Search.

In the second experiment, as stated above, features were added using a common list
of features based on the average feature importance values. Results are summarized in
Figure 9 and several observations are pertinent when compared with the results in Figure 8.
First, it is clear that performance does not decrease when using a common set of features,
suggesting that the same set of features can be used to solve all three classification tasks.
Second, hyperparameter optimization behaves very similar, across all problems and in
both experimental setups. When using a few features, a large learning rate and deep trees
are preferable, while more estimators, shallower trees and a smaller learning rate is better
when using more features.
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(a) Pitting: Accuracy (b) Pitting: HP

(c) Crack: Accuracy (d) Crack: HP

(e) Broken Tooth: Accuracy (f) Broken Tooth: HP

Figure 9. Plots show the impact of total features used by XGBoost classifier for each problem using a
common feature list based on average feature importance. The left column (a,c,e) shows the impact on
classification accuracy and the right column (b,d,f) shows the impact on hyperparameter optimization
with Grid Search.

5.2. AutoML with TPOT

TPOT incorporates several similar basic elements as H2O does, which are feature
transformation, feature engineering, feature selection, parameter optimization and model-
ing. However, it takes a different approach to do so, using a form of evolutionary search
called Genetic Programming [47], and building on top of the well-known ML library Scikit-
learn [56]. TPOT basically uses four types of pipeline elements, namely preprocessors,
decomposition operators, feature selection and modeling. Preprocessors include various
types of scaling techniques for input data, as well as basic feature engineering methods
based on polynomial expansions of the input features. Decomposition operators include
different forms of PCA, while feature selection techniques include recursive feature elimina-
tion (RFE) or filtering techniques such as SelectFwe, which is based on the family wise error
of each feature [56]. For classification problems, modeling techniques include KNN, linear
SVM, logistic regression, Gradient Boosting, Extra Tree classifiers and XGBoost, to name
a few.
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TPOT is configured to maximize classification accuracy as well as to minimize model
complexity (given by the size of the pipeline). Since these two objectives can be potentially
in conflict, TPOT employs a multi objective criteria to guide the search for the best ML
pipeline for a given problem.

While TPOT does not include such a rich set of explicit feature engineering methods,
it achieves the same type of results by employing stacking of models. In summary, stacking
allows TOT to concatenate the output of several models in such a way that all the outputs
from a particular model can be used as additional features to train another model which is
further downstream in the pipeline. For instance, a Gradient Boosting model will produce
m probabilistic outputs for each sample, where m is the number of classes; that is, the
probability that a particular sample belongs to each class. This output vector can be
concatenated with the original input features to form an extended feature set for another
ML model.

5.2.1. TPOT Configuration and Results

The same datasets and cross validation procedure was used with TPOT as was done
with H2O. However, the configuration of the system is notably different, with the underly-
ing Genetic Programming algorithm requiring a set of specific hyperparameters to perform
the run. For the presented experiments, we used the same configuration suggested in [47].
The average cross validation testing performance (accuracy) on each problem was: 0.99
for pitting, 0.98 for crack and 0.96 for Broken Tooth. Comparing these results with those
presented in Table 2 shows that overall, the performance of the ML pipelines produced by
both AutoML systems are quite similar. However, given the different approaches towards
ML pipeline generation, the pipelines generated by TPOT are more heterogeneous than
those produced by H2O.

TPOT Pitting Pipeline

For this problem, TPOT produced the most complex pipeline, which consisted of:

• First, an RFE feature selection step that reduced the feature space to hold the number
of original features;

• A filtering of the features using SelectFwe, which left a total of 27 original features. It
is of note that the number of features used in this pipeline is the same as those used
by H2O on the same problem (see Table 2 for Pitting with Interpretability set to 10);

• Feature transformation by PCA, followed by a robust scaling;
• Finally, modeling was carried out by the Extra Tree classifier with 100 base learners.

TPOT Crack Pipeline

For this problem, TPOT produced the following pipeline:

• The pipeline stacked two models in this pipeline. The first model is a Multilayer
Perceptron (MLP) with a learning rate of 1 and 100 hidden neurons;

• The outputs from the MLP were concatenated with the original feature set and used
to train the second model, a Gradient Boosting classifier with learning rate 0.5, max
depth of 7, minimum sample split of 19 and 100 base learners.

TPOT Broken Tooth Pipeline

For this problem, TPOT produced the following pipeline:

• The pipeline stacked two models in this pipeline. The first model is a Gradient
Boosting classifier with learning rate 0.5, max depth of 4, minimum sample split of 10
and 100 base learners;

• The second model is a linear SVM classifier, with a squared hinge loss function, and L1
regularization.
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It is noticeable that, unlike H2O, TPOT does not converge to XGBoost models, but does
use a decision tree-based model in all three pipelines. Moreover, TPOT reduces the feature
space on pitting, but increases the feature space with stacking on the other two problems.

5.2.2. Analysis of Feature Selection and Feature Importance

Unlike H2O, TPOT does not generate an explicit feature ranking or feature importance
score, a notable and useful feature of the former method. However, it is possible to analyze
the pipelines produced in each problem, and determine the relative feature importance
assigned by the TPOT pipelines. In the following analysis, we will compare the feature
selection and feature importance values produced by the TPOT pipelines relative to the
results obtained by the H2O pipelines when using Interpretability = 10. In particular,
we focus on the set of common features, those chosen in all three problems by the H2O
pipelines; these are the following nine features from Table 3: x1, x6, x7, x8 ,x27, x35 x41, x54,
and x61.

For the Pitting problem, there are two feature selection operators applied to the original
data. After this filtering process, a total of 27 features were used to perform the classification.
Relative to the common set of features found by H2O, seven of the nine features (77%) are
also used by the TPOT pipeline in this problem, with the only exceptions being x8 and x27 .

For the Crack problem, we can obtain a feature importance score from the Gradient
Boosting classifier. It is important to remember that the Gradient Boosting classifier used
a combination of synthetic features generated by the MLP and the original raw features.
Based on this, we can rank the top 25 features used by the Gradient Boosting classifier,
the same number of features used by the H2O pipeline. This ranking shows that all the
top-ranked features are from the original feature set, without any of the synthetic features
generated by the MLP. Moreover, among the top 25 features, the 9 common features from
H2O are included (77%), with the only exceptions being x35 and x61.

Finally, we can perform the same analysis for the BT problem, considering the top 15
features (based once again on the H2O results). In this case, we use the relative feature
importance produced by both stacked models on the original feature set, namely the
Gradient Boosting and linear SVC. In this case, the overlap with the common features
produced by H2O is 8 out of 9 (88%), with the only exception x27.

These results show that, overall, both AutoML pipelines converge to a very similar
set of features for all problems, clearly indicating which features are more relevant in
this domain.

6. Discussion

The previous section shows the proper performance of the original time-domain
condition indicators for fault severity classification with the model obtained by the AutoML
systems. The results are compared to alternative ones obtained by the authors when
the best set of features and classification model is obtained by manually adjusting the
classification parameters and taking the individual ranking provided by the feature ranking
algorithm [80,81].

In [80], the same dataset of the pitting damage was analyzed for vibration signals and
a subset of 24 time-domain condition indicators. Feature selection was conducted by using
Chi-square-based ranking and a KNN classifier. Results show that 6 features can provide
over 95% of accuracy and 12 features offer over 96%.

The method proposed in [81] was adopted to perform feature selection by using relief-
based feature ranking and tested on a RF classifier, with the same dataset used in this work.
Results are show in Table 6 and Figure 10.
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Table 6. Accuracy by using RF-based classifier and feature ranking with RelieF.

Number of Features Pitting Broken Tooth Crack

1 0.32 0.29 0.32
2 0.56 0.52 0.55
3 0.80 0.80 0.82
4 0.88 0.89 0.93
5 0.92 0.91 0.94
6 0.92 0.93 0.95
7 0.93 0.93 0.96
8 0.92 0.94 0.97
9 0.94 0.95 0.97

10 0.93 0.96 0.96
11 0.94 0.97 0.97
12 0.95 0.97 0.97
13 0.96 0.97 0.97
14 0.96 0.97 0.97
15 0.96 0.96 0.97
16 0.96 0.96 0.97
17 0.97 0.96 0.97
18 0.96 0.97 0.97
19 0.97 0.97 0.97
20 0.97 0.97 0.96

Figure 10. Accuracy trend by using RF based classifier and feature ranking with RelieF.

Results in Table 6 show that, for all the three failures modes, the accuracy remains
above 97% with more than 13 features. By comparing to Figure 8, this trend is similar,
and the accuracy is around 96% for pitting, 98% for crack, and 95% for Broken Tooth,
when test examples are used. By comparing to Figure 9, when common features are used,
the average accuracy over 98% is attained for pitting, 96% for crack and 97% for Broken
tooth, by using over 13 features and test examples.

These results are similar for feature selection and classification using AutoML. The ag-
gregate value of using AutoML is that the search is guided by an optimization problem,
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simplifying the underlying design process of the ML pipeline. However, at least on the
tested problems, the overall performance of the resulting pipeline is not substantially differ-
ent from those achieved by the standard pipeline design approach. On the other hand, given
the simplified approach to ML development, this work was able to show that the same
set of features can be used to solve three different fault diagnosis problems in gearboxes,
which was previously unknown and not reported by other works in our knowledge.

7. Summary and Conclusions

This paper presents the application of two AutoML systems, H2O DAI and TPOT,
for obtaining fault severity ML pipelines for spur gears under three different failures modes
at different severity levels. The case study in this work is for fault severity assessment
in gearboxes, treated as classification problems for three failure modes: pitting, crack
and broken tooth. Fault severity assessment in gearboxes is not a trivial problem, as the
gearboxes are mechanical systems with high non-linear and chaotic behaviors that usually
work under changes in load and speed.

The use of AutoML to solve fault detection in gearboxes has not been previously
reported in the literature, making this work the first to show the power of this approach to
generate optimized ML models for this problem. Both AutoML systems are easy to use
and provide both optimization modules and feature engineering modules (H2O explicitly,
while TPOT mainly does this implicitly), which simplifies the design process of specialized
ML pipelines.

The results and main conclusions in this paper are summarized in two ways. Regard-
ing the general results of using AutoML in this domain:

• The setting of H2O DAI in the process of feature engineering is more explicit for the
user. This is particularly useful when testing the creation of new features;

• Results of the evaluation and comparison between H2O DAI and TPOT show that
both platforms select common features, regardless of the selected model by each
platform. The size of the feature space used by each system varies, and neither of
them is consistently more or less efficient in this regard;

• Classification accuracy when using all the features, without feature selection, remains
very close for both systems, over 96%;

• The accuracy achieved by AutoML can be increased relative to a hand-tuned classifi-
cation model, particularly by adjusting the feature selection technique.

Regarding the feature analysis of the generated AutoML pipelines, we can state the
following:

• Time-domain statistical features are highly informative. This is verified by the fact that
the feature engineering methods provided by the AutoML platforms do not substan-
tially increase the classification accuracy of the ML pipelines. This particularity was
identified because of the use of AutoML, and this discovery reduces the requirements
of computing other complex features beyond the informative ones;

• Classification accuracy over 90% is obtained with 10 features, and over 95% with more
than 13 features, for each failure mode, when problem-specific features are selected
based on the relative feature importance. The use of AutoML permitted to set the
proper number of features, and this directly improves the generalization capability of
the ML model for fault diagnosis;

• Common features for all three failures modes can be selected based on average values
of feature importance across all problems. These common features are highly informa-
tive as they achieve a classification accuracy over 96%. Moreover, the common set of
features are ranked as highly informative for all problems by both AutoML systems.
The analysis and use of the same set of features for all three failure modes has not
been previously reported in the literature;

• The accuracy of the classifiers obtained by AutoML are highly competitive with the
state-of-the-art in this domain, reaching 96% of accuracy and even 99% in some failure

105



Math. Comput. Appl. 2022, 27, 6

modes. For comparison, accuracy by manual design of ML pipelines has been reported
of up to 97% on the same datasets. This result verifies the power of the pipelines
created from AutoML.

Future works can be focused on testing other AutoML platforms, like Neural Archi-
tecture Search (NAS) developed by Google DeepMind Team, to evaluate neural network
architectures or a Bayesian approach, such as Auto-Sklearn [82], for the case study pre-
sented in this work.
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Abstract: Autism Spectrum Disorder (ASD) is a neurodevelopmental life condition characterized by
problems with social interaction, low verbal and non-verbal communication skills, and repetitive
and restricted behavior. People with ASD usually have variable attention levels because they have
hypersensitivity and large amounts of environmental information are a problem for them. Attention
is a process that occurs at the cognitive level and allows us to orient ourselves towards relevant
stimuli, ignoring those that are not, and act accordingly. This paper presents a methodology based on
electroencephalographic (EEG) signals for attention measurement in a 13-year-old boy diagnosed with
ASD. The EEG signals are acquired with an Epoc+ Brain–Computer Interface (BCI) via the Emotiv Pro
platform while developing several learning activities and using Matlab 2019a for signal processing.
For this article, we propose to use electrodes F3, F4, P7, and P8. Then, we calculate the band power
spectrum density to detect the Theta Relative Power (TRP), Alpha Relative Power (ARP), Beta Relative
Power (BRP), Theta–Beta Ratio (TBR), Theta–Alpha Ratio (TAR), and Theta/(Alpha+Beta), which are
features related to attention detection and neurofeedback. We train and evaluate several machine
learning (ML) models with these features. In this study, the multi-layer perceptron neural network
model (MLP-NN) has the best performance, with an AUC of 0.9299, Cohen’s Kappa coefficient of
0.8597, Matthews correlation coefficient of 0.8602, and Hamming loss of 0.0701. These findings make
it possible to develop better learning scenarios according to the person’s needs with ASD. Moreover,
it makes it possible to obtain quantifiable information on their progress to reinforce the perception of
the teacher or therapist.

Keywords: autism; attention; ASD; learning activities; EEG; BCI; features; artificial intelligence;
machine learning

1. Introduction

Scientists have always been captivated by the brain, and cognitive processes are also
the most intriguing for most people. A fundamental part of these cognitive processes is the
attention process. To obtain knowledge, first, the attention process is needed. Attention is a
cognitive process that enables selecting, focusing on, and sustained information process-
ing [1]. The object of attention can either be an environmental stimulus actively processed
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by sensory systems or associative information and response alternatives generated by the
ongoing cognitive activity. This allows us to orient ourselves towards relevant stimuli,
ignoring those not, and act accordingly. Moreover, it is the basis of learning, and it is neces-
sary to have it, in order to begin the learning process. There have been many measuring
techniques, such as using the response times or the number of clicks given while using par-
ticular software, the eye contact time measured from videos, Magnetic Resonance Imaging
(MRI) or functional Magnetic Resonance Imaging (fMRI) studies, among other techniques.
Autism Spectrum Disorder (ASD) is a neurodevelopmental life condition characterized
by problems with social interaction, low verbal and non-verbal communication skills, and
repetitive and restricted behavior [2,3]. People with ASD usually have variable attention
levels because they have hypersensitivity and large amounts of environmental information
are a problem for them.

There are many methods for measuring attention reported in the literature, such as
eye-tracking/gaze [4,5], fMRI [6,7], using a program [8], biofeedback [9], and electroen-
cephalographic (EEG) signals [10–12], among others. The last one delivers great advantages
over other neuroimaging techniques due to its high temporal resolution [13], neurodevel-
opmental diagnosis accuracy [14], cognitive-related bioelectrical data [15], low cost [16],
and non-invasive application methods [17]. The authors [8] show how the attention of
49 children with ASD and a group of 51 typical children is measured using a mindfulness-
based program (MBP); in other words, this is a computerized attention test. This MBP
software measures the accuracy and reaction times, but they did not directly measure.
Another way to measure attention is by analyzing the facial expressions or measuring the
timing of eye contact from video recordings. The study [5] shows a measuring technique
based on the analysis of video recordings of 1756 toddlers from 12 to 72 months with ASD
while watching selected short videos on an iPhone or an iPad. Their facial expressions are
video-recorded and analyzed as they watch the videos. Reference [18] presents a study
about the concentration measurement of a children group while interacting with an NAO
robot and their teacher. In this case, the eye contact time was measured by analyzing the
video recordings of the sessions obtained with two cameras at the posterior.

The study [19] shows an approach to the joint analysis of EEG and eye-tracking for
children’s ASD evaluation. First, the synchronization measures, information entropy, and
time-frequency features of the multi-channel EEG are derived. Then, a random forest
is applied to the eye-tracking recordings of the same subjects to single out the most sig-
nificant features. A convolutional graph network (GCN) model naturally fuses the two
groups of features to differentiate the children with ASD from the typically developed
(TD) subjects. Reference [20] uses EEG activity (raw EEG and alpha power) to provide a
time-resolved index of attentional orienting towards salient stimuli that either matched or
did not match target-defining properties. In all of the references presented above, the use of
feature extraction techniques helps to obtain information from the signals acquired. These
feature extraction techniques can help us to obtain useful or descriptive information while
eliminating or reducing redundant or unnecessary information, noise, or artifacts. Once the
feature extraction stage has finished, the classification can quantify the signals. This paper
also shows the feature extraction and the classification algorithms most frequently used.

Nowadays, intelligent systems that incorporate artificial intelligence (AI) frequently
rely on machine learning (ML) [21,22]. ML is a term that refers to a system’s ability to
learn from problem-specific training data in order to automate the process of developing
analytical models and completing associated tasks [23,24]. Deep learning (DL) is a paradigm
in machine learning that is based on the use of artificial neural networks [25,26]. Commonly,
the use of ML algorithms is centered in the diagnosis or detection of ASD, as is presented
in [20]. The authors in [27] used EEG and eye-tracking features to identify children with
ASD. In [28], the authors used deep convolutional architectures to detect ASD. Other
studies [29] reported statistical features for ASD classification. In reference [30], they used
an ML and a DL process for diagnosing ASD from time-frequency spectrogram images of
EEG. The authors in [31] reported that it is possible to evaluate mental stress using DL and
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EEG records. There are also studies such as [32], where they used the free artifact signal of
two electrodes to detect ASD. In [33], they used a hybrid light-weighted feature extractor
from signal to spectrogram images.

Recent studies have a focus on the relationship between human and machine behavior,
based on the premise that diverse social and psychological backgrounds correspond in
practice with different modalities of human–computer interaction [34]. In general, EEG
feature extraction techniques have offered strong clinical consistency since the beginning
of their use for assessing and diagnosing different cognitive and neurological domains
in ASD [35], learning difficulties [36], and attention [37]. It is widely accepted that AI
techniques are helpful for automatic diagnosis and rehabilitation procedures in ASD cases.
For example, in [38], a review of DL methods focusing on neuroimaging-based approaches
is presented. Furthermore, the authors report a review of studies based on DL networks
for diagnosing ASD and the challenges in automatized detection and ASD rehabilitation.
Nowadays, there are some DL applications for brain disease diagnoses, such as the ones
presented in [39] , which presents a review of automated multiple sclerosis (MS) detection
methods based on MRI. They notice that the most used architectures for MS detection
are convolutional neural networks (CNNs), autoencoders (AEs), generative adversarial
networks (GANs), and CNN-RNN models. Schizophrenia (Sz) is another brain disease
detected with DL methods using EEG signal processing [40]. The authors compare their
results with the traditional AI methods, such as support vector machine (SVM), k-nearest
neighbors, decision tree, naïve Bayes, random forest, extremely randomized trees, and
bagging. The DL models used are long short-term memories (LSTMs), one-dimensional
convolutional networks (1D-CNNs), and 1D-CNN-LSTMs. Convolutional neural networks
and LSTMs perform best, cross-validated with a k-fold of 5. Moreover, epileptic seizures
are detectable by using EEG signal processing; for example, in [41], the authors present a
novel diagnostic procedure that uses fuzzy theory and DL techniques. They propose an
adaptive neuro-fuzzy inference system (ANFIS) with a breeding swarm optimization (BS)
method. These ANFIS-BS methods present accuracy of 99.74 % in a two-class classification
task. Appendix A summarizes in Tables A1 and A2 the state of the art and shows a
comparison with the proposed method, considering the dataset, data source, preprocessing,
methods/algorithm, main findings, and applications.

The research questions that motivate this paper are: (1) What brain regions activate on
average when attention increases? At what levels? Depending on the type of activity to
be developed? (2) Can the level of the attention span of a person with Autism Spectrum
Disorder be quantified as a feature using time-frequency analysis methods? (3) Is there a
relationship between the increment in the power of electroencephalographic signals and
attention span in a child with Autism Spectrum Disorder?

In this paper, the hypothesis is that measuring and quantifying the brain’s electrical
activity (power spectrum density) makes it possible to assess the level of attention when
performing various cognitive activities and interacting with different software or systems.
Therefore, this article aims to detect when an ASD user has high attention levels while devel-
oping learning activities based on the EEG signals acquired by an Epoc+ Brain–Computer
Interface (BCI). The novelty of this paper is the use of ML algorithms to classify the “Atten-
tion” and “No Attention” states of an ASD user. This research presents a new methodology
based on EEG signals and ML algorithms for classifying the attention of a 13-year-old
boy with ASD. This research formulates a method for processing electroencephalographic
signals to determine attention lapses in people with ASD, tested by performing various
learning activities and interacting with computer programs.

The rest of this paper is organized as follows. Section 2 presents the materials and the
proposed methodology. Section 3 shows the findings of this paper. Section 4 presents the
discussion. Finally, Section 5 summarizes our conclusions.
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2. Materials and Methods

The approval of this research by the Ethics Committee and Research for Pre-Graduates
and Post-Graduates of the Facultad de Ingeniería y Negocios Guadalupe Victoria de la
Universidad Autónoma de Baja California was obtained on 8 October 2020, with the
POSG/020-1-04 register. The EEG signals were acquired with an Epoc+ Brain–Computer
Interface (BCI) [42,43] via the Emotiv Pro platform while the ASD user developed several
learning activities, and data were processed with Matlab 2019a and Emotiv Pro software
using the Student Version.

Figure 1 depicts the electrode location (left) and the Emotiv Epoc+ headset (right).
According to the coherence analysis in attention [44,45], the selected electrodes were F3, F4,
P7, and P8.

The proposed methodology and the simulations were performed on a personal com-
puter with the following specifications: Intel(R) Core i5-8250U CPU @ 1.60 GHz, 1800 Mhz,
4 Cores, 8 Logical Processors, and 8 GB in RAM.
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T7 T8

CMS DRL

P7 P8

O1 O2

P3 P4
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FP1 FP2

Figure 1. Electrode location (left side) of the Epoc+ headset (right side) of the Emotiv Inc., taken
from Emotiv website https://emotiv.gitbook.io/epoc-user-manual/, accessed on 29 December 2021.

The signal was sampled at 2048 Hz, filtered with a dual-notch filter at 50 Hz and 60 Hz
and a low-pass filter at 64 Hz, and then downsampled to 128 Hz for transmission. It was
necessary to multiply the signal by 0.51 μ to convert it to a voltage.

The proposed data acquisition process is as follows:

Step 1. Place the headset with the electrodes hydrated on the test subject.
Step 2. Start the video recording and the EEG data acquisition.
Step 3. Give the worksheet to the test subject and the instructions.
Step 4. Let the test subject start the activity, and give him additional instructions if neces-

sary, as in a regular school session.
Step 5. When the activity is over, stop video recording and data acquisition.

Figure 2 shows the EEG acquisition process and how the boy worked with the activity
sheets using the Epoc+ headset.
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Figure 2. Data acquisition process with the Emotiv Epoc+. The EEG recordings start once the
localization of the headset is correct, and the signal quality, and the electrode contacts are verified and
in green level. Pictures are from http://imagentv.uabc.mx/videos/electro-encefalograf%C3%ADas-
y-autismo-uabc-no-se-detiene-imago, accessed on 29 December 2021.

2.1. Activity Sheets

Figures 3 and 4 depict examples of other activity sheets provided by the child’s
teachers, according to his knowledge and abilities. Figure 3 shows an activity sheet about
reading, following instructions, and drawing. Figure 4 is a counting animal activity sheet.
The school for children with ASD Eduke (https://www.facebook.com/EDUKE-123602
824381330, accessed on 29 December 2021), located in Tijuana, Baja California, México,
provided all the activity sheets used in this research.

Figure 3. Example of reading, following instructions, and drawing activity sheet. This activity
requires the child to read and follow instructions. The activity sheets are from https://familiaycole.
com/, accessed on 29 December 2021.
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Figure 4. Example of counting animals activity sheet. This activity requires the child to identify,
classify, count the animals, and write the number in the white square. The activity sheets are from
https://www.actividadesdeinfantilyprimaria.com/, accessed on 29 December 2021.

2.2. Signal Processing Procedure

Figure 5 depicts the block diagram of the procedure used for signal processing. The
first step is preprocessing the EEG signal, and then the power spectrum density of signals
is calculated and separated into bands. Next, we obtain the features presented in Table 1
and validate them. With these features, we train the machine learning algorithms. In the
next section, we give more information about these steps.

EEG
preprocessing

Band power
separation Feature extraction

Feature validationMachine learning  
training

Attention
classification

Figure 5. Block diagram of the proposed method. The first stage is signal preprocessing, after the
band power separation, and then the feature extraction stage. Next is the feature validation process,
the machine learning training stage, and finally, the attention quantification result.
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2.2.1. Preprocessing of EEG Signal

The Emotiv software gives the recordings in a .csv file with integer numbers. It is
necessary to convert the EEG signal acquired by the Epoc+ to its voltage equivalent by
multiplying it by the factor 0.51 × 10−6.

2.2.2. Band Power Separation

In EEG signal processing, it is common to separate the power spectrum density into
the following bands: Delta (1–4 Hz), Theta (4–8 Hz), Alpha (8–12 Hz), Beta (12–30 Hz),
and Ram (or Gamma) (30–50 Hz), depicted in Figure 6. These band powers [46] are the
basis for calculating relative powers and ratios in the feature extraction stage. The Emotiv
software gives the power of each band, except for the Delta band, and it gives the Beta
band separated into Low Beta and High Beta powers [47]. For this research, we add both
Beta band powers.

Figure 6. Band power separation example, Welch power spectral density estimate (illustrative figure).

The Emotiv software uses two-second windows to calculate the power spectrum
density in absolute values, with units μV2/Hz, and then separates it into bands. The
two-second window involves 256 samples [47,48].

Figure 7 shows an example of band power separation. For this paper, we use the
electrodes F3, P7, F4, and P8 because they show high coherence in attention tasks [44,45].

Figure 7. Band power separation example from F4 electrode. (a) Theta band power, (b) Alpha band
power, (c) Beta band power, (d) Total band power.

117



Math. Comput. Appl. 2022, 27, 21

2.2.3. Feature Extraction

To detect the Theta–Beta Ratio (TBR) and the Theta–Alpha Ratio (TAR), it is necessary
first to calculate the band power spectrum density (PSD) of the EEG signal in two-second
windows and for each channel or electrode. It is common to use the TBR features in attention
detection and neurofeedback and the Theta Relative Power Beta and Theta/(Alpha + Beta),
known as TBAR [48].

Table 1 presents the features calculated and their equations [48]. The next step is to use
these features to train several machine learning models and evaluate their performance.

Table 1. Feature equations for attention detection.

Feature Equation

Theta Relative Power TRP = θ
T

Alpha Relative Power ARP = α
T

Beta Relative Power BRP =
β
T

Theta–Beta Ratio TBR = θ
β

Theta–Alpha Ratio TAR = θ
α

Theta
Alpha + Beta TBAR= θ

β+α

T = θ + α + β is the total power [48].

Figure 8 depicts the Theta, Alpha, and Beta relative powers (R.P.) obtained for the
F4 electrode using the equations presented in Table 1. These R.P. values change with
the time and function of the activity performance. Figure 9 shows the Theta–Beta Ratio,
Theta–Alpha Ratio, and Theta/(Alpha–Beta Ratio) for the same F4 electrode.

Figure 8. Example of relative powers obtained from F4 electrode. (a) F4 Theta relative power, (b) F4
Alpha relative power, and (c) F4 Beta relative power.
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Figure 9. Example of ratios obtained from F4 electrode. (a) Theta–Beta Ratio, (b) Theta–Alpha Ratio,
(c) Theta/(Alpha–Beta Ratio).

2.2.4. Dataset Preparation

The dataset consists of 24 features, 6 features for each electrode, with four electrodes
(F3, F4, P7, and P8) and two classes: “Attention” and “No Attention”. The dataset has
33,936 samples; it has 16,968 samples for each class to conserve balance. Figure A1 from
Appendix B shows a fragment of the created dataset with 24 features acquired through
the processing of EEG signals when the user is performing didactic activities and paying
attention and when he is not paying attention to his learning process.

The Supplementary Materials dataset included six different Attention activities (count-
ing, forming words, completing words, looking for differences between two figures, reading
text, and answering simple questions from the reading), taken in 6 different moments. There
are also No Attention samples recorded in non-learning activities such as watching cartoons,
echolalia, doing nothing, and just sitting awake, trying to be as relaxed as possible.

2.2.5. Machine Learning Algorithm Training

In this paper, we chose eight ML algorithms to evaluate the classification of attention
through the EEG signals of an ASD user. The chosen ML algorithms were naive Bayes
(N.B.), stochastic gradient descent (SGD), decision trees (D.T.), support vector machine
(SVM)-RBF, k-nearest neighbors (KNN), multi-layer perceptron neural network (MLP-
NN), random forest (R.F.), and extra trees (E.T.). These ML models are part of the Scikit
Learn library [49]. Figure 10 shows the flowchart to perform the training test of the ML
algorithms. First, it is necessary to import the libraries or toolboxes required, such as Scikit
Learn, Pandas, and Seaborn. Then, the features dataset is loaded; subsequently, separating
the input data (features) from the output data is necessary. Next, we randomly divide the
dataset, 80% for training and 20% for tests. Then, the data are scaled between 0 and 1 to
obtain optimized results. Then, the machine learning model is trained. Then, we perform
the scoring of the ML model, i.e., using the confusion matrix and performance metrics to
evaluate the ML models.
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Figure 10. Flowchart for training and testing of ML algorithms.

3. Results

To evaluate the ML models, we rely on the metrics of the Scikit Learn library [49].
The metrics used to evaluate the scoring of the ML models are the confusion matrix (true
positives, true negatives, false positives, false negatives), accuracy, F1 score, precision,
sensitivity/recall, and specificity.

Table 2 shows the scoring parameters obtained for the ML models tested in this paper.
The first four parameters correspond to the results of the confusion matrix. Naive Bayes
with an accuracy of 0.7628, SGD with 0.8619, decision tree with 0.8697, SVM-RBF with
0.8940, KNN with 0.8968, MLP-NN with 0.9298, random forest with 0.9291, and finally extra
trees with an accuracy of 0.9270. Therefore, the extra trees model has the best accuracy score.

Regarding the F1 score parameter, it is observable that naive Bayes, SGD, decision
trees, and SVM-RBF obtained a score lower than 0.90. Meanwhile, the KNN, MLP-NN,
random forest, and extra trees models obtained a score greater than 0.90, with extra trees
achieving the highest score. Regarding the specificity/precision, we observed that the
naive Bayes model was the lowest, while the extra trees and MLP-NN models were the
highest, with 0.8896 and 0.9155, respectively. Regarding the sensitivity/recall score, all the
models obtained a result greater than 0.90, except decision trees with 0.8720, and the extra
trees model achieved the best result with 0.9738.

Table 3 shows the performance metrics obtained for each ML model. The metrics used
to evaluate the performance of the ML models were the Area Under the Curve (AUC),
the Cohen’s Kappa coefficient, Hamming loss, and the Matthews correlation coefficient.
Regarding the AUC metric, we notice that the naive Bayes, stochastic gradient descent, and
decision trees models are the lowest, with 0.7642, 0.8624, and 0.8697, while the support
vector machine (SVM)-RBF, KNN, extra trees, MLP-NN, and random forest (R.F.) models
are the ones that obtained the best AUC, with 0.8944, 0.8972, 0.9274, 0.9299, and 0.9294,
respectively, with the MLP-NN model obtaining a better AUC. This measure compares
labelings by different human annotators, not a classifier versus ground truth, regarding
Cohen’s Kappa coefficient. The Kappa score is a number between −1 and 1. Scores
above 0.8 indicate good agreement; zero or lower means no agreement (practically random
labels). We observe that the naive Bayes, stochastic gradient descent, decision trees, support
vector machine (SVM)-RBF, and KNN models obtained a Kappa coefficient less than
0.80 but greater than zero. However, the extra trees, MLP-NN, and random forest (R.F.)
models obtained Kappa coefficients of 0.8542, 0.8597, and 0.8583, respectively, which
are more significant than 0.80. Therefore, it means that these ML models have good
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agreement. We notice that the model MLP-NN is the one that obtained the highest Cohen’s
Kappa coefficient.

Table 2. Scoring parameters of the ML algorithms evaluated in this study.

Machine-Learning Algorithm

Scoring Parameters
Naive
Bayes

SGD
Decision

Trees
(SVM)-

RBF
KNN MLP-NN

Random
Forest (RF)

Extra
Trees

True positive 1984 2720 2967 2874 2892 3126 3039 3013

True negative 3194 3131 2937 3195 3196 3186 3268 3280

False positive 1436 700 453 546 528 294 381 407

False negative 174 237 431 173 172 182 100 88

Accuracy 0.7628 0.8619 0.8697 0.8940 0.8968 0.9298 0.9291 0.9270

F1 Score 0.7986 0.8698 0.8691 0.8988 0.9012 0.9304 0.9314 0.9278

Specificity/Precision 0.6898 0.8172 0.8663 0.8540 0.8582 0.9155 0.8955 0.8896

Sensitivity/Recall 0.9483 0.9296 0.8720 0.9486 0.9489 0.9459 0.9703 0.9738

Table 3. Performance metrics of the eight ML algorithms evaluated in this study.

Performance Metrics

Machine Learning
Algorithm

AUC
Cohen’s Kappa

Coefficient
Hamming Loss

Matthews
Correlation
Coefficient

Naive Bayes 0.7642 0.5269 0.2371 0.5674

Stochastic Gradient
Descent 0.8624 0.7241 0.1380 0.7310

Decision Trees 0.8697 0.7395 0.1302 0.7395

Support Vector
Machine (SVM)-RBF 0.8944 0.7883 0.1059 0.7931

KNN 0.8972 0.7939 0.1031 0.7983

Extra Trees 0.9274 0.8542 0.0729 0.8580

MLP-NN 0.9299 0.8597 0.0701 0.8602

Random Forest (RF) 0.9294 0.8583 0.0708 0.8613

Regarding the Hamming loss, this Hamming loss should be zero; that is, the closer it
is to zero, the model tends to be perfect or ideal. In this case, the extra trees, MLP-NN, and
random forest (R.F.) models have the lowest Hamming loss. The MLP-NN model has the
lowest Hamming loss, with 0.0701. We use in machine learning the Matthews correlation
coefficient (MCC) or phi coefficient as a measure of the quality of binary (two-class) clas-
sifications, introduced by biochemist Brian W. Matthews [50]. In this case, the three best
models are extra trees, MLP-NN, and random forest (R.F.), with 0.8580, 0.8602, and 0.8613,
respectively, with random forest being the best (R.F.).

Figure 11 depicts the ROC curve of the top five ML models trained for attention
classification using EEG data. The ROC curve shows the trade-off between sensitivity (TPR)
and specificity (1-FPR). Classifiers that give curves closer to the top-left corner indicate
better performance. The closer the curve comes to the 45-degree diagonal of the ROC space,
the less accurate the test is. The SVM-RBF and KNN models are closer to the 45-degree
diagonal, resulting in less accuracy. On the other hand, the random forest, extra trees,
and MLP-NN models are closest to the upper left. Therefore, they are the ones with the
best performance.
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Figure 11. The receiver operating characteristic curve (ROC) of the top five ML models trained for
attention classification using EEG data.

Figure 12 depicts the training time of the eight ML models tested in this study. The
N.B., SGD, KNN, and D.T. models have the shortest training time. However, according to
the results shown in Tables 2 and 3, they have the lowest performance metrics. In contrast,
the SVM-RBF, R.F., and MLP-NN models have a longer training time of 17.01, 21.14, and
73.10 s, with the MLP-NN model having a longer training time. However, the model
also has better performance metrics, as shown in Tables 2 and 3. Therefore, the classifier
designer must conduct a cost–benefit analysis in terms of accuracy and processing time. In
most cases, programmers prefer better accuracy, sacrificing training time since this process
(training) is only done once and only uses the trained model. For this reason, in this study,
it would be more convenient to choose the MLP-NN model.

Figure 12. Training time of the eight ML models evaluated in this study.

4. Discussion

In this research, we observed that the power spectrum density (PSD) is helpful for
attention detection, as proposed in the hypothesis. The features based on band PSD, such
as Relative Theta Power (RTP), Relative Alpha Power (RAP), Relative Beta Power (RBP),
Theta–Beta Ratio (TBR), Theta–Alpha Ratio (TAR), and the TBAR are good features for
attention classification. With these features, the multi-layer perceptron neural network
model (MLP-NN) achieved the best performance, with an AUC of 0.9299, Cohen’s Kappa
coefficient of 0.8597, Matthews correlation coefficient of 0.8602, and Hamming loss of
0.0701. Nevertheless, MLP-NN requires a longer training time of up to 73.1 s. However,
the results presented in Tables 2 and 3 and Figures 11 and 12 show that the random forest
and extra trees models have good performance metrics and a training time of 21.14 and
2.21, respectively. Therefore, the classifier designer must perform a cost–benefit analysis
in terms of accuracy and processing time. In most cases, designers prefer better accuracy,
sacrificing training time since this process (training) is only performed once, and then only
the trained model is used. For this reason, in this study, it would be more convenient to
choose the MLP-NN model.
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Furthermore, feature extraction improves the acquisition of relevant information for
accuracy for diagnosis and has been widely applied to different neuropsychological and
neurophysiological fields [51]; the type of waveforms and definition of the morphology of
EEG patterns increases the amount of available information for clinical decision making
from brain dysfunction [52] to cognitive impairment [53]. Particular interest has been
historically directed to the frontal areas in attention measurement, as they correspond
to the brain regions responsible for activity direction and orientation. Classification of
features may help to describe cortical connectivity, particularly for attentional deficits
associated with frontal theta in children [36]. Other research refers to frontal bilateral theta
waves in resting EEG in children with learning difficulties and an association with bilateral
synchronous frontal theta waves [37], which closely relates to techniques for brain activity
description in this study.

Limitations of the Study

One of the limitations of this research is that a BCI is required. The ASD user should
not have much hair. The BCI must be pleasant and tolerated by them. Moreover, the
electrodes must be kept hydrated with saline solution. It also depends on the battery life of
the BCI. The emotional state of the ASD user is essential because good measurements will
not be obtained if altered. Activities should be done in a scenario with learning conditions
without distractions, such as a classroom.

5. Conclusions

In this paper, a methodology for the classification of attention by EEG signals of an
ASD user was presented. The EEG data acquisition was performed while the ASD user
performed some didactic learning activities. In addition, our dataset was created for the
post-processing of the information and training of the ML algorithms. To create the dataset,
it was necessary to perform preprocessing, filtering, and feature extraction. The proposed
features can be used to train and evaluate several ML models to classify attention using
EEG signals.

On the other hand, with these findings, therapists, teachers, and psychologists can
develop better learning scenarios according to the cognitive needs of ASD users. In addi-
tion, diagnosis accuracy can be improved by acquiring individual EEG features, which
provide relevant information for differential clinical neurodevelopmental symptomatology
classification. Furthermore, with the proposed methodology, one can obtain quantifiable
information about the performance of ML models when an ASD user performs didac-
tic/learning activities, the above with the purpose of reinforcing the perception of the
teacher or therapist.

The future work will involve implementing the proposed method on a real-time
embedded system—for example, a stand-alone version using an edge device, novel deep
learning methods, and internet of things (IoT). It is possible to explore the feasibility of a
mobile-based platform that links with a BCI, instead of a computer. Furthermore, future
replication of this methodology is needed to approach a broad spectrum of attention
processes and standard estimation.
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Abstract: Several real optimization problems are very difficult, and their optimal solutions cannot
be found with a traditional method. Moreover, for some of these problems, the large number of
decision variables is a major contributing factor to their complexity; they are known as Large-Scale
Optimization Problems, and various strategies have been proposed to deal with them. One of the
most popular tools is called Cooperative Co-Evolution, which works through a decomposition of the
decision variables into smaller subproblems or variables subgroups, which are optimized separately
and cooperate to finally create a complete solution of the original problem. This kind of decomposition
can be handled as a combinatorial optimization problem where we want to group variables that
interact with each other. In this work, we propose a Grouping Genetic Algorithm to optimize
the variable decomposition by reducing their interaction. Although the Cooperative Co-Evolution
approach is widely used to deal with unconstrained optimization problems, there are few works
related to constrained problems. Therefore, our experiments were performed on a test benchmark
of 18 constrained functions under 100, 500, and 1000 variables. The results obtained indicate that
a Grouping Genetic Algorithm is an appropriate tool to optimize the variable decomposition for
Large-Scale Constrained Optimization Problems, outperforming the decomposition obtained by a
state-of-the-art genetic algorithm.

Keywords: Grouping Genetic Algorithm; variable decomposition; Large-Scale Constrained Opti-
mization

1. Introduction

A constrained numerical optimization problem is defined by finding the vector x ∈ RD

that minimizes the objective function Obj(x) subject to inequality gj(x) and equality hk(x)
constraints [1]. This is described by Equation (1).

minimize Obj(x)

subject to

gj(x) ≤ 0, j = 1, . . . , q

hk(x) = 0, k = 1, . . . , r.

(1)

where q and r represent the number of inequality and equality constraints, respectively,
x = (x1, . . . , xD), and the search space S is defined by the lower limits l and upper limits u
(li ≤ xi ≤ ui), while the feasible region is defined as the subset of solutions that satisfy the
constraints of the problem F ⊂ S.

To handle the constrained problem, the constraint violation sum cvs [2], is calculated
by Equation (2).

cvs(x) =
q

∑
j

max(0, gj(x)) +
r

∑
k

max(0, |hk(x)| − ε) (2)
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where |hk(x)| − ε is the transformation of equality constraints into inequality constraints
|hk(x)| − ε ≤ 0 with ε = 1 × 10−4.

According to the specialized literature [3,4], a Large-Scale Optimization Problem
consists of 100 or more variables, while benchmark functions for sessions and competitions
on the field include thousands of decision variables. Algorithms that solve Large-Scale
Optimization Problems are usually affected by the curse of dimensionality; i.e., these
problems are more complex to solve when the number of decision variables increases.
One of the best-known approaches to deal with these problems is the one proposed by
Potter and De Jong called Cooperative Co-Evolution (CC) [5], which is based on the divide-
and-conquer strategy. This CC approach works in three stages: (1) first, the problem
is decomposed into subcomponents of less dimension and complexity; then, (2) each
subproblem is optimized separately; and finally, (3) the solutions of each subproblem
cooperate to create the solution of the original problem.

Although many of the approaches to solve Large-Scale Optimization Problems have
implemented the CC approach, the first problem that arises is to find the adequate decom-
position of the subgroups since the interaction among the variables must be taken into
account to divide the problem. In other words, if two or more variables interact with each
other, they must remain in the same subcomponent, just as the variables that do not interact
with others must be part of subcomponents with just one variable. The decomposition of
the subgroups can be evaluated considering definitions of problem separability and partial
separability, as explained in Section 3.2. If the interacting variables are not grouped into the
same subgroup, CC tends to find a solution that is not the optimum of the original problem
but a local optimum introduced by an incorrect problem decomposition [6].

Several strategies have been proposed in the literature to deal with the problem of
creating an adequate decision variable decomposition, ranging from random approaches
to strategies that study the interaction among variables to optimize this decomposition.
When the original problem is decomposed into subproblems, we aim for the interaction
between them to be at minimum. For this reason, we can work with the decomposition
through optimization strategies, where the objective is to group variables that interact with
each other in the same subcomponent.

One of the first works related to the optimization of the variable decomposition for
Large-Scale Constrained Problems was proposed by Aguilar-Justo et al. [7], who presented
a Genetic Algorithm (GA) to handle the interaction minimization in the subcomponents.
This GA and its operators, such as crossover and mutation, work under an integer ge-
netic encoding, which is one of the most popular ways of representing a solution as a
chromosome in this type of algorithm.

In this work, we resort to a Grouping Genetic Algorithm (GGA) to solve the decompo-
sition problem, since these algorithms have proven to be some of the best when it comes
to combinatorial optimization problems where the optimization of elements in groups is
involved [8]. This proposal aims to show the benefits of using a GGA and its group-based
representation, for the creation of subcomponents, compared against a genetic algorithm.
In addition, to the best of the authors’ knowledge, our proposal is the first GGA approach
to handle decomposition in Large-Scale Constrained Optimization Problems.

We chose similar main operators and parameters to the genetic algorithm proposed by
Aguilar-Justo et al. [7] in order to evaluate the impact of the representation schemes for
the decomposition problem and to make a fair comparison of the performance.

Both algorithms were evaluated on a set of 18 test functions proposed by Sayed et al. [3],
which are problems with 1, 2, and 3 constraints with 100, 500, and 1000 variables, re-
spectively. Experimental results show that the proposed GGA obtains a suitable variable
decomposition when compared against the GA of Aguilar-Justo et al. [7] for variable
decomposition in Large-Scale Constrained Optimization Problems, especially where the
separation is more complicated, such as in non-separable problems.

The work continues as follows: in the next section, we show related work regarding
Decomposition Methods and Grouping Genetic Algorithms. In Section 3, we show our
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proposed GGA and describe each of its components in detail. Section 4 contains the
experiments and results of our algorithm compared to a genetic algorithm and a brief
analysis of the performance of the GGA. Finally, in Section 5, we describe the conclusions
and future work corresponding to our research.

2. Related Works

2.1. Decomposition Methods

According to Ma et al. [6], several variable grouping strategies have been proposed in
the specialized literature for variable decomposition to deal with Large-Scale Unconstrained
Optimization Problems. They classify them into the next classes: static variable grouping,
random variable grouping, variable grouping based on interaction learning, variable
grouping based on domain knowledge, overlap and hierarchical variable grouping, and
finally, some hybrids of them. In the next paragraphs, we describe the works related to
each class.

Static variable grouping methods do not rely on any intelligent procedure to create the
variable decomposition. Instead, they preliminarily decompose the decision vector into a
set of low-dimensional subcomponents and fix the variable grouping during the process of
optimization. Among the works that perform static grouping of variables are the works of
Potter and De Jong [5] and Liu et al. [9], which show good performance with fully separable
problems. For non-separable problems, Van den Bergh and Engelbrecht [10] propose a
static sequential decomposition. However, the decomposition process is dependent on
an adequate number of subcomponents that must be adequate from the beginning of the
strategy, and the static decomposition process has poor performance in many problems.

For that reason, several authors proposed random variable grouping strategies, such
as the case of Yang et al. [11], who present random decomposition with a fixed number
of subcomponents. Moreover, the same authors propose in [12] a random decomposi-
tion with a dynamic number of subcomponents. Omidvar et al. [13,14] improve these
random strategies by integrating the probability of interaction between variables in the
grouping technique.

In addition, if an algorithm can learn the structure of the problem and decompose it,
the difficulty in solving the problem can be significantly reduced (variable grouping based on
interaction learning). Many approaches have been proposed to detect variable interactions,
and we can subdivide them into those based on perturbation, statistical models, distribu-
tion models, approximate models, and linkage adaptation. For example, in some cases, the
interaction is captured by perturbing the decision variables and measuring the change in
fitness caused by the perturbations, like in the work of Xu et al. [15]. Furthermore, Dif-
ferential Grouping (DG) and Differential Grouping version 2 from Odmivar et al. [16,17],
respectively, are based on perturbation as well, which are among the most popular decom-
position algorithms and have been highly studied, which has led to various improvements,
such as recursive decomposition [18–21]. Moreover, Delta Grouping [14] is classified as a
decomposition method based on statistical models, where all variables and the objective
functions are considered as random variables. Statistical analyses of variables or objective
functions are performed first, and then the variables are grouped. In a distribution model,
the set of promising solutions is first used to estimate the variable distributions and vari-
able interactions, and then it is taken to generate new candidate solutions, based on the
learned variable distributions and variable interactions: such is the case of Estimation of
Distribution Algorithm (EDA), as is the case with the work of Sopov [22], where a genetic
algorithm is combined with an EDA for collecting statistical data based on the past search
experience to provide the problem decomposition by fixing genes in chromosomes, as well
as other representatives of such methods [23,24]. As an example of an approximate model,
the fitness evaluation of a Large-Scale Continuous Optimization Problem is converted to
the evaluation of a simpler, partially separable problem in [25]. Linkage adaption methods
use specially designed evolution operators, representations, and mechanisms to divide
variables into groups [26].
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When it comes to overlap and hierarchy variable grouping, which are usually interspersed
in the decision vector, more elaborate strategies have to be used; Goh et al. [27,28] suggested
assigning each variable to several subcomponents, each of which contains more than one
variable, and the subcomponents compete with each other to represent shared variables.
Furthermore, Strasser et al. [29] introduce some overlapping grouping strategies, including
random overlapping grouping, neighbor overlapping grouping, centered overlapping
grouping, and more.

Regarding the variable grouping based on domain knowledge, before CC is implemented
to solve specific real-world problems, domain knowledge can be harnessed to reduce
the complexity of the problems. The conflicting probability of two flights was used by
Guan et al. [30] to learn the variable interaction in solving the flight conflicting avoidance
problem, which is one of several examples of real optimization problems where domain
knowledge can be a good tool.

All the works mentioned above focus on unconstrained problems. One of the first
decomposition methods for solving Large-Scale Constrained Optimization Problems is
an extension of the work of Sayed et al. [25]; this new version is known as the Variable
Interaction Identification Technique for Constrained Problems (VIIC) [3]. This method can
find the interaction between variables in problems of 100, 500, and 1000 dimensions with
inequality constraints. Sayed et al. proposed to measure each decomposition of variables
by minimizing the absolute difference between the full evaluation and the sum of each
evaluated subgroup based on the definition of the separability and partial separability
of a function. The approach was tested at a new benchmark and compared to Random
Grouping (RG), and the results showed that VIIC outperformed RG. Later, Aguilar-Justo
and Mezura-Montes [31] improved the performance of the VIIC to achieve adequate
decomposition for a fixed number of subgroups. They transformed the constrained problem
into an unconstrained problem and used a neighborhood heuristic to guide the search
by their proposed decomposition and then optimize it (called VIICN). After that, they
proposed an improvement to their work where the principles of VIIC and VIICN are used
to build a genetic algorithm that performs a dynamic decomposition which they called
DVIIC, without establishing a fixed number of subcomponents [7]. Recently, Vakhnin and
Sopov [32] proposed a method based on CC that increases the size of groups of variables at
the decomposition stage (called iCC), working with a fixed number of subcomponents.

Intending to improve the existing methods for the decomposition of variables, we
propose a genetic algorithm with a genetic encoding based on groups, better known as
the Grouping Genetic Algorithm, to optimize the variables decomposition. Experimental
results demonstrate the benefits of using a group-based encoding scheme for this problem
and its advantages over the genetic algorithm with an integer-based encoding scheme
(DVIIC [7]).

2.2. Grouping Genetic Algorithms

As we have mentioned before, the variable decomposition problem is an optimization
problem because we search for the best decomposition, in the sense of the variable inter-
action; that is, given a set X = x1, x2, . . . , xD of D variables, we want to decompose said
set into m disjoint groups, so that the variables within each group do not interact with the
variables of the other groups. Therefore, we see our problem as a grouping problem.

According to the literature [8], grouping problems are a type of combinatorial opti-
mization problem where a set X of D items is usually partitioned into a collection of m
mutually disjoint subsets (groups) Gj, so that X = ∪m

j=1Gj, and Gj ∩ Gk = ∅, j �= k. In this
way, an algorithm designed to solve a grouping problem seeks the best possible distribution
of the D items of the set X in m different groups (1 ≤ m ≤ D), such that each item is exactly
in one group.

Kashan et al. [33] organized the grouping problems in three categories, using as criteria
the number of groups, the type of groups, and the dependence on the order of the groups.
First, using the number of groups as the criterion, grouping problems can be classified
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as either constants or variables. In this sense, if the number of groups required is known,
the problem is constant. On the other hand, if the number of groups is unknown, the
problem is variable. Second, these problems can be divided into identical and non-identical
groups, considering the characteristics of their groups. In this classification, if the quality
of a solution is modified by exchanging all the items of two groups, that problem belongs
to the non-identical grouping class. Otherwise, the problem is part of the identical category.
Finally, grouping problems are called order-dependent when the solution quality depends
on the groups’ order. Consequently, grouping problems without this dependency belong
to the not order-dependent class. Thus, we can say that the decomposition problem is a
variable, identical, and not order-dependent grouping problem.

Grouping problems are very difficult to solve. Most of them are NP-hard, which
implies there is no algorithm capable of finding an optimal solution for every instance
in polynomial time [34]. There are several NP-hard grouping problems, such as the Bin
Packing Problem, Job Shop Scheduling Problem, etc. Ramos-Figueroa et al. [8] studied in
their work the strategies that work with most problems like the ones mentioned before.
They concluded that the best and the most popular strategies to solve such problems are
the Grouping Genetic Algorithms or GGAs.

The GGA was designed in 1992 by Falkenauer [35] and is an extension to the traditional
GA with the difference of using a group-based solutions representation scheme and varia-
tion operators working together with such solution encoding. Ramos-Figueroa et al. [36]
remark that the encoding of a grouping problem solution into a chromosome is a key issue
for obtaining good GGA performance; the authors also comment on the importance of
integrating crossover and mutation operators adapted to work at the group level. They
present a survey of different variation operators designed to work with GGAs that use
different types of encoding, as well as their advantages to solve grouping problems.

The state-of-the-art [8] indicates that some of the best results when solving NP-hard
grouping problems have been obtained by GGAs that combine grouping encoding schemes
and special operators adapted to work with these genetic encodings. Moreover, GGAs
have been highly studied for grouping problems that have similarities with the variable
decomposition problem, which is also due to the exploration and exploitation of the search
space that is given by the nature of the elements of evolutionary algorithms [37]. In this
work, we propose, to the best of the authors’ knowledge, the first GGA for the variable de-
composition problem in Large-Scale Constrained Optimization Problems. A comparative
study is conducted to evaluate the performance of our Grouping Genetic Algorithm versus
the genetic algorithm DVIIC [7] on the decomposition of variables for Large-Scale Con-
strained Optimization Problems. To promote a fair comparison, we implement similar
operators and equivalent parameter settings. The experiments were carried out using
18 test functions each with 100, 500, and 1000 variables. The obtained results allow us to
validate the advantages of the group-based encoding over the integer-based encoding.

3. A Grouping Genetic Algorithm for the Variable Decomposition Problem

The variable decomposition problem can be classified as a grouping problem. We seek
to optimize the separation into groups of the decision variables of the Large-Scale Problem;
that is, to create the best partition of the decision variables into a collection of m mutually
disjoint groups so that the variables belonging to each group have no interaction with the
variables of another group.

To study the importance of the solution encoding in a genetic algorithm to solve the vari-
able decomposition problem, we decided to develop a GGA with operators and parameters
with similar features to the genetic algorithm DVIIC (proposed by Aguilar-Justo et al. [7]) so
that the comparison is as fair as possible. The main difference between the two algorithms
is the genetic encoding. The proposal of Aguilar-Justo et al. [7] includes an integer-based
representation, where a chromosome has a fixed length that is equal to the number of
variables, and each gene represents a variable and indicates the group where the variable is
set. On the other hand, our GGA includes a group-based representation, where a chromo-
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some can have a variable length, equal to the number of subcomponents, and each gene
represents a subcomponent and indicates the variables that belong to this subset.

In Algorithm 1, we show the general steps of the GGA proposed in this work. The
precise details are shown in the following subsections. The process begins by generating an
initial population P of pop_size individuals created by the population initialization strategy
(Line 1). After that, each of the individuals in the population is evaluated, and the best
solution for the population is obtained (Line 2). Then, we iterate through a max_gen number
of generations or until we find a value equal to zero in the decomposition evaluation. Within
this cycle, the individuals to be crossed will be selected, and the offspring will be created
through the grouping crossover operator (Lines 4–5). Similarly, the population is updated
by the mutation of some individuals in the population (Lines 6–7). Finally, the population
is evaluated again to update the population and the best global solution found so far
(Lines 8–9).

Algorithm 1: Grouping Genetic Algorithm for variable decomposition algorithm.

1 Generate an initial population P
2 Evaluate population and save best_solution
3 while generation ≤ max_gen and grpsdi f f �= 0 do

4 Select n pairs of individuals for crossover
5 Apply grouping crossover operator
6 Select n individuals for mutation
7 Apply grouping mutation operator
8 Evaluate offspring and update best_solution
9 Apply replacement strategy of the population

10 Return best_solution

In the following subsections, we detail the components and operators of our GGA.

3.1. Genetic Encoding

One of the most important decisions to make while implementing a genetic algorithm
is to decide the representation to use to represent the solutions. It has been observed that
improper representation can lead to poor performance of the GA. Our GGA works with
group-based representation, which is the main characteristic of the GGAs.

Each individual in the population is represented by the groups of variables. Figure 1
shows an example of an individual that represents a problem with 10 variables num-
bered from 0 to 9 randomly assigned to four subcomponents or groups. The groups
of variables (genes) according to this individual are the following: grps1 = {x3, x6, x8},
grps2 = {x1, x2, x7}, grps3 = {x0, x4}, and grps4 = {x5, x9}. Note that the number V of
variables in each subcomponent is variable and can be between 1 and D; in addition, the
number of subcomponents m is between 1 and D.

Figure 1. Group-based chromosome, where each gene represents a subcomponent (set of variables).

3.2. Decomposition Evaluation

Each individual is evaluated to determine its fitness and to discover which one is the
best within the population.

Sayed et al. [3] proposed a decomposition evaluation inspired by the definitions of
problem separability [38] and partial separability [39]. The definition of problem separa-
bility states that a fully separable problem that has D variables can be written in the form
of a linear combination of subproblems of the decision variables, where the evaluation
of the complete problem, F(x), is the same as the aggregation of the evaluation of the
subproblems, f (xi), which means F(x) = ∑D

i=1 f (xi). Additionally, a partially separable
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problem is defined as one which has D variables and that can be decomposed into m
subproblems, where the summation of all subproblems equals the solution of the complete
problem F(x) such that F(x) = ∑m

k=1 fk(xv), v = [1 + V × (k − 1), V × k], where m is the
number of subproblems and V is the number of variables in the k-th subproblem. Sayed
et al. proposed to measure each decomposition of variables by minimizing the absolute
difference between the full evaluation and the sum of each evaluated subgroup.

Algorithm 2 shows the decomposition evaluation procedure. First (in Line 1), we
obtain f itallc1

and f itallc2
through the evaluations of Equations (3) and (4), where all the

variables take the constant value c1 and c2, respectively. After that, both evaluations are
added and multiplied by the number of subgroups in the problem (m) to obtain f itallc1c2

,
and then we initialize f itgrpsc1c2

as 0 (Lines 2–3). Afterwards, we start a loop from k = 1
to the number of subgroups m in the individual (Lines 4–10), Within this loop, we create
two arrangements of D variables in which each variable belonging to group k takes the
value c1, while the remaining variables take the value c2 to evaluate this arrangement and
obtain f itgrpsk,c1

. On the other hand, to obtain f itgrpsk,c2
, the variables in the k-th group

take the value of c2, and the remaining ones take the value of c1 (Lines 5–8) according
to Equations (5) and (6). After that, we calculate f itgrpsk,c1c2

as the sum of the previously
calculated f itgrpsk,c1

and f itgrpsk,c2
(Line 9). Thus, to end the loop, we update f itgrpsc1c2

as
the sum of f itgrpsc1c2

and f itgrpsk,c1c2
. Finally, we obtain the evaluation of the decomposition

by calculating the absolute difference grpsdi f f shown in Line 11.

Algorithm 2: Decomposition evaluation.
Input: m, and c1 > 0, c2 > 0 random numbers
Output: grpsdi f f

1 Evaluate f itallc1
and f itallc2

according to Equations (3) and (4)
2 Calculate f itallc1c2

= m × [ f itallc1
+ f itallc2

]

3 f itgrpsc1c2
= 0

4 for k = 1 to m do

5 Create arrangement xk,c1 according to Equation (5)
6 Calculate f itgrpsk,c1

= Obj(xk,c1) + cvs(xk,c1)

7 Create arrangement xk,c2 according to Equation (6)
8 Calculate f itgrpsk,c2

= Obj(xk,c2) + cvs(xk,c2)

9 Calculate f itgrpsk,c1c2
= f itgrpsk,c1

+ f itgrpsk,c2

10 Update f itgrpsc1c2
= f itgrpsc1c2

+ f itgrpsk,c1c2

11 Calculate grpsdi f f = | f itallc1c2
− f itgrpsc1c2

|

f itallc1
= Obj(x) + cvs(x), xi = c1, ∀i ∈ [1, D] (3)

f itallc2
= Obj(x) + cvs(x), xi = c2, ∀i ∈ [1, D] (4)

xk,c1 =

{
c1 ∀xi ∈ grpsk
c2 otherwise

(5)

xk,c2 =

{
c2 ∀xi ∈ grpsk
c1 otherwise

(6)

To clarify the decomposition evaluation procedure, we present an example below. Let
Obj(x) + cvs(x) = f (x) = x1x2 + x3x4 be the problem to decompose, and according to the
arrangement decomposition given by grps1 = {x1}, grps2 = {x2, x4}, and grps3 = {x3},
we have m = 3. Suppose c1 = 1 and c2 = 2. In the first step, we calculate f itallc1

and f itallc2
.

According to Equations (3) and (4),

f itallc1
= f (xi = c1) = 1 ∗ 1 + 1 ∗ 1 = 2
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f itallc2
= f (xi = c2) = 2 ∗ 2 + 2 ∗ 2 = 8

Then, continuing with step 2,

f itallc1c2
= m × [ f itallc1

+ f itallc2
] = 3 × [2 + 8] = 30

In step 3, we initialize f itgrpsc1c2
= 0. Then, we start the for loop. At this point in the

process, we have to create arrangement xk,c1 according to Equation (5) in step 5 and evaluate
it in step 6. Similarly, the process is performed for c2 in steps 7 and 8. To calculate f itgrpsk,c1
the variables of the k-th group will be evaluated in c1, and the rest in c2; for k = 1, the
group is grps1 = {x1}, so x1 = 1 and x2, x3, x4 = 2. A similar calculation is performed with
f itgrpsk,c2

, but evaluating the variables of the k-th group in c2 and the rest in c1. Therefore,
following the steps into the loop,

For k = 1, grps1 = {x1}:

f itgrpsk,c1
= fgrpsk,c1

= 1 ∗ 2 + 2 ∗ 2 = 6

f itgrpsk,c2
= fgrpsk,c2

= 2 ∗ 1 + 1 ∗ 1 = 3

f itgrpsk,c1c2
= f itgrpsk,c1

+ f itgrpsk,c2
= 6 + 3 = 9

f itgrpsc1c2
= f itgrpsc1c2

+ f itgrpsk,c1c2
= 0 + 9 = 9

For k = 2, grps2 = {x2, x4}:

f itgrpsk,c1
= fgrpsk,c1

= 2 ∗ 1 + 2 ∗ 1 = 4

f itgrpsk,c2
= fgrpsk,c2

= 1 ∗ 2 + 1 ∗ 2 = 4

f itgrpsk,c1c2
= f itgrpsk,c1

+ f itgrpsk,c2
= 4 + 4 = 8

f itgrpsc1c2
= f itgrpsc1c2

+ f itgrpsk,c1c2
= 9 + 8 = 17

For k = 3, grps3 = {x3}:

f itgrpsk,c1
= fgrpsk,c1

= 2 ∗ 2 + 1 ∗ 2 = 6

f itgrpsk,c2
= fgrpsk,c2

= 1 ∗ 1 + 2 ∗ 1 = 3

f itgrpsk,c1c2
= f itgrpsk,c1

+ f itgrpsk,c2
= 6 + 3 = 9

f itgrpsc1c2
= f itgrpsc1c2

+ f itgrpsk,c1c2
= 17 + 9 = 26

Finally,
grpsdi f f = | f itallc1c2

− f itgrpsc1c2
| = |30 − 26| = 4

The purpose of the problem decomposition is to create the best decomposition; that is,
to create independent subcomponents, as well as to minimize the difference grpsdi f f . There-
fore, we have adopted a similar evaluation to the one proposed by Aguilar-Justo et al. [7],
which is defined next: to maximize the number of subproblems, the grpsdi f f is updated as
follows: (1) if the number of subgroups is one, then the grpsdi f f takes an extreme greater
value; (2) if the grpsdi f f is zero, this means that the decomposition is perfect, and it is
rewarded by subtracting the number of subgroups (m) of the individual; (3) in another
case, the grpsdi f f value does not change. Since the use of the previous evaluation function
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benefits a decomposition with a high number of subcomponents, in some cases, a complete
decomposition (as many groups as numbers of variables) would be presented as optimal
when in reality it is not the case. For this reason, a modification in the evaluation function
is necessary (avoiding the benefit to a high number of groups). Therefore, the evaluation
function has been modified in our algorithm. This change is summarized in Equation (7).

grpsdi f f =

{
in f inite if m = 1
grpsdi f f otherwise (7)

3.3. Population Initialization

The initial population in most GGAs is generally generated by obtaining random
partitions of the elements to group. In our GGA, to create a new chromosome, a random
number between 1 and the dimension of the problem (D) is generated—i.e., m ∈ [1, D]—
which represents the number of subcomponents m, and then each variable is randomly
assigned to one of these groups. First, we ensure that each group contains at least one
variable, and this is done by shuffling the variables and assigning the first m of them to
each group. After that, the remaining variables are randomly assigned to one of the created
groups. This is done because in the genetic algorithm DVIIC [7], a random number is
chosen to determine the number of groups, and each variable is randomly assigned to a
group (under the integer-based representation).

3.4. Grouping Crossover Operator

After choosing the individuals that are subject to the crossover operator, each pair of
these individuals, called parents, will create two new individuals (offspring) through a
mating strategy. There are several crossover operators for GGAs; however, for comparison
purposes, we have chosen the two-point crossover operator that is analogous to the one
used in the genetic algorithm DVIIC [7]. This operator works as follows: two crossing
points (a and b) between 1 and the number of genes in the individual minus one (m − 1) are
selected randomly to define the crossing section of both parents (P1 and P2). In this way, the
first child (C1) is generated with a copy of P1, injecting and replacing the groups between the
crossing points (a and b) of P2. Next, the groups copied from P1 with duplicated items are
identified, removing the groups and releasing the remaining variables (missing variables),
among which are also those elements that were lost when eliminating the groups from the
crossing section and were not in the inserted groups. It is important to note that the injected
groups remain intact. Finally, the missing variables are re-inserted into a random number
of new groups (between 1 and the number of missing variables) to form the complete
individual. The second child (C2) is generated with the same process but changing the role
of the parents.

In Figure 2, we can see an example of crossover for two individuals with 10 variables.
The crossing points a and b are marked in step (1); then, in step (2), the section between
a and b of parent P1 is inserted and replaced in the other parent (P2) and vice versa. In
step (3), we have the free variables that result from the groups eliminated for having
repeated variables, such as, in the first child, the free element 8 that was in the group with
3 and 6, which were repeated elements, and the elements 2 and 4 that were lost variables
(elements). Finally, in step (4), we have the offspring with the free elements re-inserted.
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Figure 2. Two-point crossover operator.

3.5. Grouping Mutation Operator

The mutation operator used in the genetic algorithm DVIIC [7] is called uniform
mutation, in which once an individual is selected to mutate, one of its genes is randomly
selected and is changed from the group to which it belongs. Therefore, to take a similar
operator, we have chosen to implement the group-oriented elimination mutation operator
for GGAs. This operator works by eliminating a random group of the individual. Later,
the deleted elements are re-inserted by adding a random number of groups between 1 and
the number of free variables, with the variables randomly assigned to them (similar to
how an individual is created). Figure 3 shows an example of the elimination operator. In
step (1), the group marked in gray is the eliminated one; then, their elements pass to the
free group of elements shown in step (2). Finally, the elements are re-inserted in step (3)
with the aforementioned strategy.

Figure 3. Elimination operator.

3.6. Selection and Replacement Strategies

In a Genetic Algorithm, we have to select the members of the population that will be
candidates for crossover and mutation. A selection scheme decides which individuals are
allowed to pass on their genes to the next generation, either through cloning, crossover,
or mutation. Generally, selection schemes from the literature can be classified into three
classes: proportional selection, tournament selection, and ranking selection. Usually, the
selection is according to the relative fitness using the best or random individuals [40,41].

Several strategies have been proposed for the parent selection (individuals for crossover).
In our GGA, we use a selection scheme similar to that included in the genetic algorithm
DVIIC [7], and we carry out a shuffling of the population; for each pair of parents, a random
number between 0 and 1 is created. This number determines if the pair of individuals is
subject to crossover. That is, the crossover of both individuals is applied when the number
is less than or equal to pc.

In the same way, the selection of individuals to mutate has been studied, and there are
various selection techniques for mutation. In this case, the selection method for mutation
is similar to the selection method of the genetic algorithm DVIIC [7]. Given a mutation
probability pm, for each individual in the population, a random number between 0 and 1 is
generated, and when this number is less or equal than pm, the individual will be mutated.

In addition to the selection scheme, there must also be a criterion under which the
population will be replaced in each generation. Generally, the replacement strategies can

140



Math. Comput. Appl. 2022, 27, 23

be split into three classes: age-based, fitness-based, and random-based (deleting the oldest,
worst, or random individuals, respectively) [42]. Similar to the strategy of the genetic
algorithm DVIIC [7], in our GGA, after crossover, the offspring replace the parents, and
after the mutation, the mutated individuals replace the original ones. Elitism is adopted to
always maintain the best solution of the population, replacing the worst individual of the
new population.

4. Experiments and Results

In order to study the benefits of using a group-based against an integer encoding in a
genetic algorithm, we compared our proposal with the decomposition strategy proposed
by Aguilar-Justo et al. [31]. Therefore, we chose the same set of test functions the authors
used. It is the first set for Large-Scale Constrained Optimization Problems and it was
proposed by Sayed et al. in 2015 [3]. This test set has different separability complexity
degrees, which are described in Table 1. It can be tested over three numbers of variables
(100, 500, and 1000). These 18 functions were created by combining 6 objective functions
with 1, 2, or 3 constraints. The 6 objective functions are based on 2 problems in the literature
that have been used, for example, in the CEC 2008 benchmark problems [4], which are the
Rosenbrock’s function, which is multimodal and nonseparable, and the Sphere function,
which is unimodal and separable. In addition, in Table 2, we can see the components of
these 18 test functions; that is, the objective function and the constraints that make up each
function. The details of the mathematical expression of each function can be consulted in
the work of Sayed et al. [3].

Table 1. Characteristics of the objective functions and constraints.

Description

Obj1 Completely separable

Obj2 Partially nonseparable

Obj3 Partially nonseparable

Obj4 Partially nonseparable and overlapping variables

Obj5 Spliced nonseparable and overlapping variables

Obj6 Spliced nonseparable and overlapping variables

g1 Separable groups of 5 variables

g2 Nonseparable groups of 3 variables

g3 Spliced nonseparable pairs

We have compared the results of our GGA against the Dynamical Variable Interaction
Identification Technique for Constrained Problems (DVIIC), in which Aguilar et al. [7]
proposed a genetic algorithm for the decomposition of the 18 test functions. We computed
25 independent runs per each benchmark function, in 3 different numbers of variables (100,
500, and 1000). The parameters of our algorithm were set similarly as in the DVIIC work,
to compare under equal conditions and perform the same number of function evaluations.
These are as follows:

• Population size of 100 individuals;
• Crossover probability pc = 0.9;
• Mutation probability pm = 0.1;
• 10,000 function evaluations—i.e., 100 generations.

Such a configuration implies that the same number of evaluations is carried out by having
100 individuals in each generation for 100 generations, which is equal to 10,000 evaluations.
These experiments were conducted on an Intel(R) Core(TM) i5 CPU with 2.50 GHz, Python 3.4,
and Microsoft Windows 10.
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In the following tables, we show the results of the execution of our proposed GGA
and the genetic algorithm DVIIC. Both were executed for each of the 18 functions, 25 times
in each dimension. Furthermore, each of the tables shows the results of the Wilcoxon Rank
Sum test for each of the functions (column W). A checkmark (�) means that there are
significant differences in favor of the GGA; in addition, an equality symbol (=) represents
there are no significant differences between both algorithms.

Table 2. Components of the 18 test functions.

Function Objective g1 g2 g3

F1 ×
F2 Obj1 × ×
F3 × × ×
F4 ×
F5 Obj2 × ×
F6 × × ×
F7 ×
F8 Obj3 × ×
F9 × × ×
F10 ×
F11 Obj4 × ×
F12 × × ×
F13 ×
F14 Obj5 × ×
F15 × × ×
F16 ×
F17 Obj6 × ×
F18 × × ×

First, Table 3 contains the results according to the evaluation of the best individual for
the 25 runs in the 18 functions under 100 variables. The best, median, and the standard
deviation registered of the evaluation function (grpsdi f f ) value are shown. We can observe
that the GGA improves the decomposition evaluation function value in all of the cases
compared to DVIIC. As we can see, unlike DVIIC, the GGA reaches the value of 0 in the
best result in most cases. Furthermore, the median and standard deviation values obtained
by the GGA are smaller in all cases. Such values equal to zero indicate that our algorithm
found the best value for the evaluation function (grpsdi f f = 0) in the 25 runs for functions
1 to 12. Finally, the Wilcoxon Rank Sum Test reveals that there are significant differences in
favor of the GGA in all cases.

Second, Table 4 shows the results of our algorithm to solve the same 18 functions,
now with 500 variables. The GGA obtained the smallest values in most cases for the best,
median, and standard deviation when compared against DVIIC. In a similar way as in
Table 3, the standard deviation and median values equal to zero indicate that our algorithm
found the best value for the evaluation function (grpsdi f f = 0) in the 25 runs for functions 1
to 12. Moreover, in the other test functions, the best, median, and standard deviation values
are smaller when compared to DVIIC. On the other hand, the Wilcoxon Rank Sum test
shows that there are no significant differences between the two algorithms in function 1 and
shows significant differences in favor of the GGA in the remaining 17 functions. According
to this test, in functions 2 to 18, the Wilcoxon Rank Sum test rejects the hypothesis that the
DVIIC approach is as effective as the proposed GGA approach, and F1 is trivial to solve by
the two algorithms.
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Table 3. Statistical results in dimension 100. Best results shown in boldface.

GGA DVIIC

D = 100 Best Median Std Best Median Std W

F1 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 2.18 × 10−11 2.96 × 10−11 �
F2 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 2.35 × 104 1.20 × 104 �
F3 0.00 × 100 0.00 × 100 0.00 × 100 1.38 × 105 1.38 × 105 6.77 × 104 �
F4 0.00 × 100 0.00 × 100 0.00 × 100 4.29 × 104 8.57 × 104 1.69 × 104 �
F5 0.00 × 100 0.00 × 100 0.00 × 100 1.27 × 104 1.78 × 104 2.48 × 103 �
F6 0.00 × 100 0.00 × 100 0.00 × 100 8.97 × 105 1.44 × 106 2.36 × 105 �
F7 0.00 × 100 0.00 × 100 0.00 × 100 2.51 × 105 1.01 × 106 2.62 × 105 �
F8 0.00 × 100 0.00 × 100 0.00 × 100 6.70 × 105 8.38 × 105 9.84 × 104 �
F9 0.00 × 100 0.00 × 100 0.00 × 100 2.13 × 103 3.20 × 103 3.58 × 102 �
F10 0.00 × 100 0.00 × 100 0.00 × 100 5.36 × 105 1.07 × 106 2.05 × 105 �
F11 0.00 × 100 0.00 × 100 0.00 × 100 4.12 × 102 5.84 × 102 9.04 × 101 �
F12 0.00 × 100 0.00 × 100 0.00 × 100 9.28 × 103 1.76 × 104 3.20 × 103 �
F13 0.00 × 100 0.00 × 100 2.31 × 104 6.31 × 105 1.09 × 106 1.08 × 105 �
F14 0.00 × 100 0.00 × 100 5.35 × 102 1.55 × 107 1.93 × 107 1.72 × 106 �
F15 4.66 × 10−10 4.66 × 10−10 2.60 × 102 5.42 × 106 8.72 × 106 9.33 × 105 �
F16 1.79 × 104 5.38 × 104 1.72 × 104 4.93 × 105 6.81 × 105 7.26 × 104 �
F17 1.07 × 105 4.28 × 105 9.52 × 104 4.83 × 105 6.99 × 105 8.07 × 104 �
F18 1.63 × 105 4.88 × 105 1.40 × 105 1.80 × 106 2.62 × 106 2.94 × 105 �

Table 4. Statistical results in dimension 500. Best results shown in boldface.

GGA DVIIC

D = 500 Best Median Std Best Median Std W

F1 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 =

F2 0.00 × 100 0.00 × 100 0.00 × 100 4.66 × 10−10 4.43 × 104 1.16 × 104 �
F3 0.00 × 100 0.00 × 100 0.00 × 100 3.59 × 104 7.19 × 104 1.23 × 104 �
F4 0.00 × 100 0.00 × 100 0.00 × 100 1.17 × 106 1.24 × 106 2.98 × 104 �
F5 0.00 × 100 0.00 × 100 0.00 × 100 7.20 × 106 8.73 × 106 5.68 × 105 �
F6 0.00 × 100 0.00 × 100 0.00 × 100 3.34 × 106 4.12 × 106 2.09 × 105 �
F7 0.00 × 100 0.00 × 100 0.00 × 100 5.19 × 104 1.13 × 105 1.94 × 104 �
F8 0.00 × 100 0.00 × 100 0.00 × 100 8.79 × 105 9.75 × 105 4.19 × 104 �
F9 0.00 × 100 0.00 × 100 0.00 × 100 5.58 × 104 1.67 × 105 3.46 × 104 �
F10 0.00 × 100 0.00 × 100 0.00 × 100 9.69 × 106 1.19 × 107 5.03 × 105 �
F11 0.00 × 100 0.00 × 100 0.00 × 100 1.95 × 106 2.58 × 106 1.80 × 105 �
F12 0.00 × 100 0.00 × 100 0.00 × 100 3.50 × 106 3.84 × 106 1.10 × 105 �
F13 0.00 × 100 0.00 × 100 2.56 × 104 9.61 × 105 1.26 × 106 7.07 × 104 �
F14 0.00 × 100 0.00 × 100 6.86 × 104 9.10 × 105 1.35 × 106 1.08 × 105 �
F15 0.00 × 100 5.96 × 10−8 1.27 × 105 7.97 × 106 9.88 × 106 4.48 × 105 �
F16 8.13 × 102 3.25 × 103 7.04 × 102 1.38 × 107 1.69 × 107 7.77 × 105 �
F17 7.96 × 104 1.59 × 105 1.75 × 104 2.26 × 107 2.43 × 107 1.48 × 107 �
F18 3.83 × 105 7.66 × 105 1.46 × 105 2.78 × 107 3.63 × 107 2.05 × 106 �
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Finally, Table 5 contains the results for the 18 functions with both algorithms imple-
mented on 1000 variables. In this experiment, we observed that, in a similar way to the
experiment with 500 variables, our GGA obtained the smallest best, median, and standard
deviation values in most cases. On the other hand, the behavior of the median and standard
deviation values allows us to see that we obtained the zero value in the 25 independent
runs for the first 12 functions. Moreover, the Wilcoxon Rank Sum test results show that
there are no significant differences between the two algorithms in function 1 and indicate
significant differences in favor of the GGA in the remaining 17 functions. In a similar
way as in the results with 500 variables, the Wilcoxon Rank Sum test determines that F1
is a trivial case and rejects the hypothesis that the DVIIC approach is as effective as the
proposed GGA approach for the other 17 remaining functions.

Table 5. Statistical results in dimension 1000. Best results shown in boldface.

GGA DVIIC

D = 1000 Best Median Std Best Median Std W

F1 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 =

F2 0.00 × 100 0.00 × 100 0.00 × 100 4.18 × 103 1.25 × 104 5.39 × 103 �
F3 0.00 × 100 0.00 × 100 0.00 × 100 2.42 × 102 2.90 × 102 1.98 × 101 �
F4 0.00 × 100 0.00 × 100 0.00 × 100 3.93 × 106 4.86 × 106 2.33 × 105 �
F5 0.00 × 100 0.00 × 100 0.00 × 100 1.33 × 106 1.73 × 106 1.19 × 105 �
F6 0.00 × 100 0.00 × 100 0.00 × 100 1.05 × 106 1.36 × 106 7.85 × 104 �
F7 0.00 × 100 0.00 × 100 0.00 × 100 1.10 × 106 1.61 × 106 1.28 × 105 �
F8 0.00 × 100 0.00 × 100 0.00 × 100 4.16 × 106 4.91 × 106 1.82 × 105 �
F9 0.00 × 100 0.00 × 100 0.00 × 100 4.56 × 106 4.92 × 106 1.09 × 105 �
F10 0.00 × 100 0.00 × 100 0.00 × 100 2.16 × 106 2.47 × 106 8.18 × 104 �
F11 0.00 × 100 0.00 × 100 0.00 × 100 1.99 × 105 2.13 × 105 4.33 × 103 �
F12 0.00 × 100 0.00 × 100 0.00 × 100 2.93 × 105 3.18 × 105 8.43 × 103 �
F13 0.00 × 100 0.00 × 100 3.51 × 104 3.36 × 107 3.98 × 107 1.49 × 106 �
F14 0.00 × 100 0.00 × 100 5.49 × 103 4.60 × 107 1.76 × 108 6.74 × 107 �
F15 0.00 × 100 0.00 × 100 2.00 × 105 1.02 × 105 3.49 × 107 1.55 × 107 �
F16 4.07 × 105 8.15 × 105 1.27 × 105 7.71 × 107 8.72 × 107 2.37 × 106 �
F17 4.32 × 104 8.63 × 104 2.52 × 104 7.71 × 106 1.15 × 107 1.05 × 106 �
F18 4.20 × 105 8.41 × 105 1.20 × 105 3.03 × 107 4.39 × 107 3.07 × 106 �

Given the previous tables, we observe that our algorithm presents better performance
than DVIIC, obtaining better grpsdi f f values in all cases (in comparison with the mentioned
algorithm). An interesting behavior is observed in these experiments; it seems to be more
difficult for our algorithm to find the minimum decomposition evaluation in the 18 test
functions as the dimension decreases. Zero best, median, and standard deviation values of
the 25 independent runs indicate a stable behavior of our algorithm in each execution of
the first 12 functions of the benchmark (in the three experiments). However, these values
increase with the complexity of the functions, and in the end, functions 16, 17, and 18 do
not reach the minimum in any of the experiments.

Analyzing the Performance of the GGA

Due to the behavior observed in the previous experiments, a detailed study of the
algorithm is necessary to improve it in future work. For this reason, we decided to make a
brief study of the convergence of our algorithm.

In order to understand the on-line behavior of our algorithm, we carried out some
plots of the GGA convergence for the most difficult functions of the benchmark. Figure 4
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shows the convergence in functions F16, F17, and F18 through 100 generations for three
dimension values.

(a) 100D-F16 (b) 100D-F17 (c) 100D-F18

(d) 500D-F16 (e) 500D-F17 (f) 500D-F18

(g) 1000D-F16 (h) 1000D-F17 (i) 1000D-F18

Figure 4. Convergence plots of 100 generations for functions F16, F17, and F18 with 100, 500, and
1000 variables.

Three convergence behaviors are shown in each of the graphs within Figure 4. First,
we shown the convergence of the worst individual in the population—that is, the indi-
vidual with the highest decomposition evaluation value (red color). After that, we show
the behavior across the 100 generations of the average decomposition evaluation of the
100 individuals in the population (green color). Finally, we show the convergence across
the 100 generations of the best individual in the population in terms of their decomposition
evaluation value (blue color).

Figure 4a–c shows the convergence in the experiment with 100 variables from one of
the 25 GGA runs. We can observe similar behavior in the three functions, with decompo-
sition evaluation values below 4.0 × 107 in all three cases (best, worst, and average). It is
important to note that the behavior of the best individual presents an early convergence in
the three functions and how the decomposition evaluation of the worst individuals remains
stable over the generations.
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Regarding the convergence of the functions with 500 variables (Figure 4d–f), we can
observe that function F18 shows the highest values of the decomposition evaluation for
the three values (best, worst, and average), unlike the other functions. Similar to those
functions with 100 variables, we see that this value does not converge to zero in any of the
cases, and the best individual has a quick convergence. We can also induce, according to
the graphs, that several individuals of the population do not converge in the neighborhood
of the best solution.

In the case of the functions evaluated with 1000 variables (Figure 4g–i), we see a fast
convergence of the best individual in the population. As in the previous graphs, the value
of the decomposition evaluation in the worst individual has a continuous behavior, without
converging to zero during the 100 generations, and the best value has a quick convergence.

The above discussed best, worst, and average values’ convergence behaviors in the
functions with spliced nonseparable and overlapping variables suggest that the included
strategies in the GGA do not appear to lead to better solutions. We can see from the
plots in Figure 4 that not the entire population converges to the neighborhood of the best
solution, due to the low selective pressure of the selection and replacement strategies.
We also observe that the GGA produces good solutions in the early stages but leads to
the premature convergence of the best individual. This behavior can be related to the
crossover and mutation operators that promoted the creation of new groups, which does
not seem to be a suitable strategy for nonseparable functions. All these observations
indicate that, although our algorithm performs well, it can still be further improved by
analyzing its components.

5. Conclusions and Future Work

In this paper, we have proposed a Grouping Genetic Algorithm (GGA) to deal with
the decomposition of variables in Large-Scale Constrained Optimization Problems to create
subproblems of the original problem and thus reduce the dimension. To evaluate the
impact of the representation scheme on the performance of a genetic algorithm, our GGA
was designed in a similar way to a state-of-the-art genetic algorithm that works with the
decomposition of variables and which includes an integer-based representation. The main
difference between the two algorithms was the genetic encoding. The experiments were
carried out in a benchmark of 18 functions with different complexity characteristics, and
these functions were tested in 100, 500, and 1000 dimensions.

The obtained results confirm that the use of a group-based genetic encoding allows our
GGA to obtain good and robust decompositions on test functions with different features
and separability complexity degrees, outperforming in all the benchmark functions the
results obtained by a genetic algorithm with an integer-based encoding.

We are aware that there are still test functions with spliced nonseparable and over-
lapping variables that show a high degree of difficulty; for these functions, the included
strategies in the GGA do not appear to lead to better solutions. However, the GGA pre-
sented in this work does not include the state-of-the-art grouping genetic operators.

Future work will consist of studying the parameters of the GGA as well as the effect
of each of the methods used in the crossover and mutation operators to identify the best
strategies that work together with the grouping encoding scheme and the features of the
functions. Furthermore, it is necessary to implement an efficient reproduction technique
with a balance in selective pressure and population diversity to avoid the premature
convergence of the best individuals and increase the algorithm’s performance.

The introduction of a new decomposition method opens up an interesting range of
possibilities for future research. Currently, we are working on including our GGA in
the decomposition step of two Cooperative Co-Evolution methods that include different
strategies for the optimization and cooperation of the subcomponents, with the respective
feasibility and computational complexity analysis.
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Finally, although the set of test functions analyzed in this work is varied concerning
the characteristics of the functions, we would explore the proposal in other Large-Scale
Constrained Optimization benchmarks.
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Abstract: Deep venous thrombosis (DVT) is a disease that must be diagnosed quickly, as it can trigger
the death of patients. Nowadays, one can find different ways to determine it, including clinical
scoring, D-dimer, ultrasonography, etc. Recently, scientists have focused efforts on using machine
learning (ML) and neural networks for disease diagnosis, progressively increasing the accuracy
and efficacy. Patients with suspected DVT have no apparent symptoms. Using pattern recognition
techniques, aiding good timely diagnosis, as well as well-trained ML models help to make good
decisions and validation. The aim of this paper is to propose several ML models for a more efficient
and reliable DVT diagnosis through its implementation on an edge device for the development of
instruments that are smart, portable, reliable, and cost-effective. The dataset was obtained from a
state-of-the-art article. It is divided into 85% for training and cross-validation and 15% for testing. The
input data in this study are the Wells criteria, the patient’s age, and the patient’s gender. The output
data correspond to the patient’s diagnosis. This study includes the evaluation of several classifiers
such as Decision Trees (DT), Extra Trees (ET), K-Nearest Neighbor (KNN), Multi-Layer Perceptron
Neural Network (MLP-NN), Random Forest (RF), and Support Vector Machine (SVM). Finally, the
implementation of these ML models on a high-performance embedded system is proposed to develop
an intelligent system for early DVT diagnosis. It is reliable, portable, open source, and low cost. The
performance of different ML algorithms was evaluated, where KNN achieved the highest accuracy of
90.4% and specificity of 80.66% implemented on personal computer (PC) and Raspberry Pi 4 (RPi4).
The accuracy of all trained models on PC and Raspberry Pi 4 is greater than 85%, while the area
under the curve (AUC) values are between 0.81 and 0.86. In conclusion, as compared to traditional
methods, the best ML classifiers are effective at predicting DVT in an early and efficient manner.

Keywords: DVT; early diagnosis; artificial intelligence; machine-learning; smart system; embedded
system; edge computing; edge device

1. Introduction

Deep venous thrombosis (DVT) is a disorder in which blood clots form within the
veins, obstructing the flow of blood through the circulatory system, and it affects people
of all ages [1]. The cause of the disease is unknown; however, it is thought to be caused
by a combination of variables, including genetic factors. Genetic factors are also thought
to have a role in the diagnosis of the disorder. In the field of engineering, there are two
major challenges: patients suspected of DVT have no visible symptoms, and failing to
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diagnose it could be fatal; without symptoms, the first test (D-dimer blood) is useless; and
the use of ultrasound has high certainty but comes at a high cost and necessitates the use
of many instruments [2,3]. DVT is a disease that must be recognized as soon as possible
because the implications might be fatal for the patient. Several scientists have created
various techniques and methods to diagnose the problem over the years, beginning in the
1970s with the development of ultrasonography [4], which marked a breakthrough in the
timely diagnosis of clots in the lower limbs of the human body. Philip Wells, a renowned
scientist, has stated on numerous occasions that technology, which has been revolutionized
exponentially in recent years, will support the future in the early diagnosis of diseases.
This, combined with new trends in the work of computer equipment, will enable great
advances in science and human health.

Venous thromboembolism (VTE), the third most common vascular illness worldwide,
is a complex condition impacted by various genetic and non-genetic risk factors [5]. The
pathogenesis of VTE includes Virchow’s triad, which provides for hypercoagulability,
reduced blood flow or stasis, and damage to blood vessels due to disease or injury [6]; they
are blood clots that can occur if the patient’s blood flow changes or slows down somewhere
in their body [7], putting the patient’s life and health at risk. The annual incidence is 1 to
3 people per 1000 people. The prevalence of this condition varies with age. It can cause
DVT or pulmonary embolism (PE) in some cases [1,8–10]; thrombosis can also develop in
other veins such as the liver, cerebral sinus, retina, and mesenteric veins. Approximately
one-third of VTE patients develop a PE, while two-thirds exclusively have DVT [11].

The Primary Care Unit (PCU) is the backbone of any health care system. The record
of previous epidemics demonstrates the critical significance of PCU and necessitates PCU
specialists’ engagement in procedural decision making [12]. The PCU serves as the entry
point to the Health System (HS), which is described as the primary level of health care.
The “Health Unit Clinics” (Health Units that constitute Primary Health Care) are defined
by their commitment to health promotion and protection, disease prevention, diagnosis,
treatment, rehabilitation, harm reduction, and health maintenance on an individual and
collective level, to provide comprehensive care that has a positive impact on the health
status of communities [13]. They provide primary care services across the board, including
the evaluation and diagnosis of acute illnesses and ongoing treatment for patients with
chronic conditions [14].

Nowadays, numerous ways to determine the condition are available, such as statis-
tical analysis and clinician scoring [15], D-dimer blood tests [16], infrared imaging [17],
ultrasonography, and even the application of deep machine learning and Neural Networks
(NN) [11,18]. Many countries, including the United States, Italy, the United Kingdom,
Germany, and Canada, have pioneered artificial intelligence (AI) work in the diagnosis and
prediction of DVT, with the percentage of accuracy and effectiveness steadily increasing
over time as algorithms become more and more optimal and more data can be obtained
from real cases. However, progress has been made in the development of NN in terms of
debugging codes and developing new algorithms, but they have not been implemented
outside of a computer. It should be noted that other types of prediction and analysis have
very good effectiveness and accuracy, but the analysis is very expensive due to the difficulty
of repeatability and reliability, since most diagnoses require two or more types of analysis.

On the other hand, it is well known that ultrasound is the standard test for the
diagnosis of DVT and that it is one of the most accurate, and recently, they are also using
ML techniques for the diagnosis of DVT [19]. However, the accuracy of the examinations
improves with experience and the training that a sonographer gains in their working life, so
the percentage is not always the same and is not very high at first [20,21]. Although there is
research [22] that strives to combine Deep Learning (DL) and magnetic resonance imaging,
with promising outcomes. Recently, it has been shown that the use of artificial neural
network analysis can improve risk stratification of patients presenting with suspected DVT,
the authors showed that an NN is able to diagnose DVT without the use of ultrasound,
with a low false negative rate [23]. A new ML model was developed for the efficient, less
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intrusive, and reliable diagnosis of DVT. This is based on pattern recognition techniques
that help with rapid diagnosis as well as well-trained machine learning models that help
with decision making and validating whether or not someone is suffering from this ailment.

In recent years, the field of data science has been pioneered in the development of
hardware and software for the application of Artificial Neural Networks (ANNs) in clinical
analysis, which can be useful for the diagnosis of DVT and other diseases in general, for
example, the use of ML models such as Decision Trees, Support Vector Machine (SVM),
and Neural Networks [24–26]. Nowadays, there are alternative methods of DVT diagnosis,
some of which use AI. For example, in [6], ML models for venous thromboembolism (VTE)
risk assessment in China are compared to the Padua model, with the Random Forest (RF)
model having a higher specificity and sensitivity than the Padua model. The authors in [27]
reported an automatic diagnosis model by using effective ML to predict the important risk
factors of VTE collecting patient data of the medical ward at King Chulalongkorn Memorial
Hospital from Thailand. Other efforts are being dedicated for the prediction of VTE with
ML techniques in young and middle-aged inpatients; for example, [28] develop VTE risk
classifiers using models based on multi-kernel learning and random optimization [29].
However, a drawback is that these systems are expensive, big, heavy, and have moderate
energy consumption.

On the other hand, edge computing can minimize the reaction time, increase the
data processing capacity, ensure data security (since it is closer to end-users, it provides
greater privacy) [30], be easy to design, and be cheap [31]. It has excellent application
value and features such as high reliability, superior energy savings [32], low latency, and
high real-time processing, increasing the overall data quality and utilization performance
under the premise of efficient processing [33]. Accordingly, one can take advantage of
edge devices such as Raspberry Pi 4 (RPi4), which are very useful for solving real-world
problems across various fields of application [34–39]. In this paper, the well-known RPi4
is used as the edge-computing device to develop the ML models and to evaluate their
performance in diagnosing DVT. The cost–benefit of a clinical pre-examination based on
ML is noted in the research [7], reducing the expenses of medical units and labor acquired
using the standard method. The authors of [40] describe the development of a device for
the treatment of DVT that uses Bluetooth communication with a mobile app and sensors
within the system to collect data for statistical analysis.

The ML algorithms have advanced in the early diagnosis of DVT and other applica-
tions [41–43], moving from binary Decision Trees developed by the team of [44] to more
sophisticated algorithms that integrate image analysis by AI [18] and are also very com-
plex in that they go into up to 68 variables to give a final verdict of this disease [45]. In
some investigations with very big datasets, the predictors have an area under the receiver
operating characteristic (AU-ROC) of 0.83 to 0.85 [46].

For the reasons stated above, the goal of this research is to propose several ML models
that are trained by using a dataset of patients with the condition. It is collected from
the state of the art [10] to have good judgment and clinical analysis to determine the
diagnosis of DVT in a patient with the symptomatology of the condition, with the purpose
of having a timely response and thus saving many lifes. In this research, the well-known
Raspberry Pi 4 (RPi4) is employed as the edge-computing device to develop ML models
and assess their performance in diagnosing DVT. This is to facilitate the development of
smart, portable, reliable, and cost-effective instrumentation. All of this is possible thanks
to pattern recognition algorithms that provide accurate diagnoses and well-trained ML
algorithms that determine whether or not a patient has the condition. The assumption
is that ML algorithms will outperform today’s standard approaches as a means of early
diagnosis for diagnostic aid in the health sector and primary care.

The paper is organized as follows. Section 2 presents the materials and methods
used to develop the ML models. In Section 3, the scoring and performance metrics of
every ML model are shown; furthermore, the usage scenario is described, and the perfor-
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mance comparison of PC and RPi4. Finally, in Section 4, the conclusions and future work
are summarized.

2. Materials and Methods

2.1. Machine Learning Algorithm Training

In this paper, we propose six ML algorithms to evaluate the occurrence of DVT in a
patient: Decision Trees (DT), K-Nearest Neighbors (KNN), Support Vector Machine (SVM),
Random Forest (RF), Multi-Layer Perceptron Neural Network (MLP-NN), and Extra Trees
(ET). All of these ML models may be found in the Scikit Learn library [47,48]. The Scikit
Learn library is built on top of NumPy, and it can be used for any kind of project. It has a
lot of tools that can be used for both the pre- and post-processing of data. The flow chart
for performing the ML algorithm training and testing is shown in Figure 1. First, it imports
the appropriate libraries or toolboxes, such as Scikit Learn, Pandas, and Seaborn. Next, the
features dataset is loaded, and the input data (features) and output data must be separated.
Then, the dataset is randomly divided, with 85% used for training and cross-validation, and
the remaining 15% used for testing. Next, the data are scaled between 0 and 1 to produce
optimum results. Then, the ML algorithms is trained. Next, the ML model is scored, i.e.,
the confusion matrix and performance metrics are used to evaluate the ML models.

In this paper, a PC and RPi4 are used to train the ML models for DVT diagnosis, with
the goal of testing their performance on both hardware and confirming that the RPi4’s
scoring parameters and performance metrics are equally as trustworthy as those on a PC.
Table 1 compares the RPi4’s primary technical specifications to those of a PC. While the
hardware of the PC (laptop) obviously outperforms that of the RPi4, it is vital to prove
experimentally that the results produced with the RPi4 are competitive to those obtained
with a PC. Additionally, it is observed that the RPi4 is significantly less expensive than
a PC, which would significantly lower manufacturing costs in a process of large-scale
production of intelligent devices, for example, in the manufacture of hundreds or millions
of smart instruments.

Table 1. RPi4 versus PC technical specifications comparison.

Hardware Raspberry Pi 4 PC (Laptop)

Central Processing
Unit (CPU)

Broadcom BCM2711
Quad Core 1.5 GHz

AMD Ryzen 7
4800H 2.9 GHz

Graphics Processing
Unit (GPU)

Video Core VI
500 MHz

Nvidia GeForce
GTX 1660ti

Random Access
Memory (RAM) 4 GB DDR4 8 GB DDR4

Networking WiFi, Ethernet, Bluetooth WiFi, Ethernet, Bluetooth

Storage 32 GB SD-Card 512 GB SSD

Operating system Raspbian Windows 10

Operating Voltage 5 V 19.5 V

Energy consumption 3–7 Wh 200 Wh

Weight 46 g 2.37 Kg

Cost (USD) $55.00 $1599.00

The dataset for this study was compiled from the following sources [10]. Since these
data had been used previously, and only 59 real cases from a public hospital had been
obtained, a data augmentation algorithm was devised. They are used to construct a dataset
of 10,000 synthetic examples, which will be used for later training, validation, and testing as
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well as validation of the proposed ML models. The following process was used, as shown
in Figure 1, and it will be detailed in depth in each stage below.

Figure 1. Proposed methodology for early diagnosis of DVT.

Data augmentation is a technique that is frequently used in machine learning to
enhance the size of the dataset utilized in the learning process [10] . It entails producing
new instances from the original data set while maintaining the data’s pattern. It is mostly
used in medical contexts to augment the image collection for image-based diagnosis; see,
for example [49–52]. In this paper, Algorithm (1) reported in [10] was used. It performs
the data augmentation to generate each case that will comprise the set of synthetic data
for training and validation of the proposed ML models. Therefore, the first task to be
performed is to calculate the percentage of positive and negative cases that are present
for each type of risk probability of the occurrence of DVT in addition to the percentage
for which each of the factors of the Wells Score was observed in the real cases to which
we had access. To calculate the percentage of suspected cases of DVT in each type of risk
proposed by Wells, historical data was taken, where it is mentioned that of all the cases
observed, 19% were diagnosed as DVT, while the remaining 81% had a different diagnosis.
Furthermore, it is mentioned that in the cases detected as Low Risk, only 5% of the cases
were diagnosed as positive for DVT, while 17% were diagnosed in Medium Risk, and 53%
were diagnosed as High Risk.

The Wells Criteria, as shown in Table 2, are used to train the ML algorithms for the
prediction of DVT, in which the trained models are expected to perform well in order to
reach a high accuracy in the prediction of this condition.
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Table 2. Wells criteria for predicting deep vein thrombosis (DVT), taken from [10,53–55].

Clinical Feature Score

Lower extremity paralysis, paresis, or recent cast immobilization 1

Deep vein thrombosis has previously been observed 1

Active cancer (patients who are undergoing cancer therapy or who have been diagnosed
with cancer within the last 6 months) 1

Pitting edema limited to the affected leg 1

Recently hospitalized for three or more days, or recently had major surgery
Anesthesia is required for a total of 12 weeks 1

Tenderness in a specific area of the deep venous system’s distribution 1

Skinny veins on each sides (non-varicose) 1

The whole leg is swollen 1

Calf enlarged by at least 3 cm in comparison to the asymptomatic
(ten centimeters below the tibial tuberosity) 1

Deep vein thrombosis is the most probable diagnosis; however, other possibilities exist. −2

When a patient has symptoms in both legs, the leg with the most severe symptoms is utilized.

2.2. Pre-Processing Data

Two criteria are taken into account that are not covered by the Wells rubric. The first
is age, which is measured in numbers ranging from 1 to 9, each of which corresponds to
one of the age groups listed in Table 3 [10]. The second factor is gender, which is assigned
a value of 0 to males and 1 to females. They are being offered as a way to help patients
with suspected DVT better stratify their risk, just as it is managed in [23], so that the data
collected may be pre-processed and ML can detect the illness without difficulty. Since the
input data are binary, that is, they are regarded as 1 (for positive comorbidity) or 0 (for
negative comorbidity), working with them in a computer system is simple, as most media
handle binary values, with the age range being the main distinction, as weighted in Table 3.

Table 3. Age factor pre-processing, taken from [10].

Age (Years Old) Life Stage Numerical Value

85–120 Advanced old age 9

70–84 Intermediate old age 8

60–69 Initial old age 7

50–59 Mature adults 6

40–49 Average adults 5

21–39 Young adults 4

13–20 Youth 3

6–12 Middle childhood 2

0–5 Childhood 1

The dataset is in Comma Separated Values (CSV) format in American Standard Code
for Information Interchange (ASCII), so that it can be processed more easily in the Python
environment, as well as in management so that it can be saved and extracted quickly. The
data from the Excel file is fed into the software on the computer, using the Jupyter Notebook
platform with Python, with each header referring to the DVT comorbidity in each of the
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columns. After that, using the Seaborn pairplot command, plots are generated between all
of the data so that each of the values may be discriminated. It is required to normalize the
values of 1–9 to values between 0 and 1 for good NN training.

Equation (1) is used to normalize the data in the age column so that this factor is not
the most determinant or the one with the most weight within the ML model used. In this
way, all the values of each clinical characteristic will be kept between 0 and 1 except for the
age, which will be a floating value, and the others being integers.

NormAge =
Age − MinAge

MaxAge − MinAge
(1)

A data description is created to note specific properties of each column of information
as well as the primary statistics of the values in the constructed dataset. We noted that the
data is in a huge imbalance as a result of this, as it contains 7562 negative genuine cases
and 2438 positive real cases.

The train test split function divides the dataset into 85% for training and 15% for
validation, where the 11 input factors are considered clinical characteristics of the Wells
criteria (cancer, immobilization, surgery, pain, leg swelling, ankle swelling, edema, superficial
veins, and previously diagnosed DVT) and the factors of age and gender, respectively, and the
output will result in the DVT diagnosis.

The K-fold cross-validation (with K = 5) is used to evaluate the performance of the
ML models and perform a comparative analysis to select the model that best fits the DVT
classification problem [56].

An early-stopping function has been constructed so that if there is no change of 0.01 in
accuracy after 5 epochs, the model’s training is truncated and ended, so that the training
does not take too long and the percentage of accuracy of the ML model employed during
training does not vary much.

2.3. Hyperparameters of the ML Models

The use of an NN with table properties was first suggested during the creation of
neural networks. It has an input layer with 11 predictors (cancer, immobility, surgery,
pain, leg swelling, ankle swelling, edema, superficial veins, and previously diagnosed
DVT). There is no magic formula for selecting the optimum number of hidden layers and
neurons. However, some thumb rules are available for calculating the number of hidden
layers and neurons. A rough approximation can be obtained by the geometric pyramid rule
proposed by [57,58]. In this case, four hidden layers (32–64–32–16) were found for the best
performance metrics, and an output layer with the DVT diagnosis is proposed, as shown in
Table 4. Since the computer is binary, it is suggested that the number of neurons per layer
be multiples of 2N for optimal processing time, where N is an integer, and the number
of neurons in the first hidden layer should be greater than the number of inputs, being
multiples of 2N , ascending in each hidden layer until a maximum of 2N is reached and
then descending with multiples of 2N until the last hidden layer has a number of neurons
slightly greater than the number of input neurons.

Table 4. Proposed sequential model (NN) for DVT diagnosis.

Input Layer with 11 Predictors Hidden Layer Output Layer

Gender, age, cancer, surgery, immobilization,
tenderness, leg swollen, calf swollen, edema,
superficial veins, previous DVT

32–64–32–16 DVT diagnosis

An input layer of 11 neurons, four hidden layers of 32, 64, 32, and 16 neurons, and
an output layer representing the diagnostic result make up this ANN model. The input
layer’s activation function is a relu function, while the hidden layers’ activation function
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is tanh, the learning rates of the classifier are defined as constant equal to 0.001, the max
iteration number is 400, and with Adam as the optimizer.

The same ANN model is also trained on a Raspberry Pi 4 due to hardware limitations,
and the hyperparameters of the classifiers are the same as the PC, only the results are
slightly different and are discussed on Section 3. Furthermore, it is suggested that ML
models be used in DVT diagnosis to compare each of the models, including SVM, KNN,
DT, ET, and RF classifiers. The hyperparameters dealt with by the SVM classifier are as
follows: a random state of 42, a C parameter of 1.0, a “linear” classifier kernel, a degree of 3,
a gamma “scale”, and a random state of 3. The hyperparameters for the KNN classifier are
as follows: the number of neighbors is set to 50, the weights are set to “distance”, and the
algorithm is set to “ball tree”.

The Decision Tree classifier criteria used is “entropy”, the splitter is “random”, the
minimum sample divisors is 2, the minimum leaf samples are given by 1, the maximum features
are given by “auto”, the max features are 80, and there is a random state of 42.

The Extra Trees classifier is employed with a random state of 42 and many estimators
of 200. The criterion utilized is “gini”, the minimum sample divisors is 2, the minimum leaf
samples is 1, the maximum of features is “auto”, and the max features are given by 80.

Finally, the RF classifier has several estimators in 480, with “gini” as the criterion, 2 as
the minimum sample divisors, 1 as the minimum number of leaf samples, “auto” as the maximum
number of features, true Bootstrap, and 42 as the random state. All these hyperparameters are
shown in the Table 5 for every simulation in this paper.

Table 5. Hyperparameters of ML models.

Hyperparameter SVM KNN
Decision

Tree
Extra
Trees

Random
Forest

C 1.0 N/A N/A N/A N/A

Kernel “linear” N/A N/A N/A N/A

Degree 3 N/A N/A N/A N/A

Gamma “scale” N/A N/A N/A N/A

Random State 42 42 42 42 42

N Neighbors N/A 50 N/A N/A N/A

Weights N/A “Distance” N/A N/A N/A

Algorithm SVM “Ball tree” DT ET RF

Criterion N/A N/A “Entropy” “gini” “gini”

Splitter N/A N/A “Random” N/A N/A

Min Samples Split N/A N/A 2 2 2

Min Samples Leaf N/A N/A 1 1 1

Max Features N/A N/A “auto” “auto” “auto”

Max Depth N/A N/A 80 80 N/A

N Estimators N/A N/A N/A 200 480

Bootstrap N/A N/A N/A N/A True

To improve the performance of each classifier, the hyperparameters must be optimized.
This can be accomplished using the GridSearchCV tool, which implements the standard
estimator API. By “fitting” it to a dataset, all possible combinations of parameter values are
evaluated, and only the best combination is kept. The chosen parameters maximize the
score of the missing data unless an explicit score is given, in which case it is utilized instead
of the default parameters for scoring [47,48]. The following classifiers have modified hyper-
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parameters: the Random Forest and Extra Trees classifiers (Number of Estimators, Criterion,
Max Features), the KNN classifier (Number of Neighbors, Weights, and Algorithm), the
Decision Tree classifier (Criterion, Splitter, Max Features, and Max Depth), and the SVM
classifier (C, Kernel, Degree (when using rbf, poly, and sigmoid)). They were distinct in
each of them regarding the different possibilities dealt with. The optimization procedure
is based on the “GridSearch” (GS) algorithm, which methodically calculates all possible
combinations of hyperparameters. The main disadvantage is that it needs a significant
amount of time and calculation [59].

The hardware used for the development of these experiments has the following
specifications: AMD Ryzen 7 2.9 GHz CPU, 8 GB 3200 MHz DDR4 RAM, NVIDIA GeForce
GTX 1660 Ti 6000 MB GPU, a Windows 10 operating system, and Python software with
Anaconda 3. Similarly, a Raspberry Pi 4 SBC with the following specs: CPU 1.5 GHz
Broadcom BXM2711, RAM 4GB 3200 MHz DDR4, Raspbian OS, and Python software
with Thonny IDE was used to study the behavior of the ML in various contexts and
system architectures. The following libraries utilized in this paper: Seaborn, which aids
in statistical data visualization within Python; Pandas, which is a library to perform data
analysis; NumPy, the platform’s data manipulation library; and Matplotlib, which is
Python’s animated and interactive static visualization library. Scikit-Learn was used to
create the ML models as well as custom neural networks.

3. Results

A two-class classification confusion matrix is developed to track the progress of the ML
model trained, allowing the metrics to be validated and the process to be more dependable
within the rubric by separating it into negative and positive DVT classifications, respectively.

Each of them is kept with the true diagnosis and the diagnosis predicted by the ML
algorithm; the first is True Negative (TN), in which both the true diagnosis and the ML
prediction are negative, and the second is False Negative (FN), in which the ML diagnosis
is negative but the true diagnosis is positive for DVT. Another level of the confusion matrix
is the False Positive (FP) criterion, which occurs when the algorithm diagnoses DVT as
positive when the actual diagnosis is negative, and finally, the True Positive (TP) criterion,
which occurs when the actual diagnosis is positive for the condition and the ML model
prediction is positive, resulting in a True Positive (TP), as shown in Table 6.

Table 6. Confusion matrix of two-class classification, taken from [10,60].

Predicted Diagnostic

True Diagnostic Negative DVT Positive DVT

Negative DVT True Negative False Positive

Positive DVT False Negative True Positive

For each ML model trained, the values of Accuracy, F1 Score, Precision, Recall, Speci-
ficity, and the area under the curve (AUC) are acquired and printed using sklearn metrics,
the acquisition of Accuracy, Precision, Recall, and the ROC curve was accomplished in
the case of the Multi-Layer Perceptron NN (MLP-NN), and the Accuracy (2), F1 score (3),
Specificity (4), and Recall (5) values are calculated using the following equations taken
from [24,61].

Accuracy =
True Positive + True Negative

True Positive + False Positive + True Negative + False Positive
(2)

F1 − Score = 2 · Precision · Recall
Precision + Recall

(3)

Specificity/Precision =
True Negative

False Positive + True Negative
(4)
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Sensitivity/Recall =
True Positive

False Negative + True Positive
(5)

These actions are carried out for both PC and Raspberry Pi 4 metrics acquisition.
Table 7 shows each of the scoring parameters gathered by each ML model (SVM, KNN,
Decision Tree, Extra Trees, Random Forest), the ANN Multi-Layer Perceptron (MLP) model
was also registered in the same way; each one includes the metrics (Accuracy, F1 Score,
Precision/Specificity, and Recall/Sensitivity) as well as the values that each of the boxes
of the two-class confusion matrix (True Positive, True Negative, False Positive and False
Negative) gave, allowing you to see how these findings are obtained.

Table 7. Scoring parameters of the ML algorithms evaluated in this study using 15% of the separated
data for testing.

Machine Learning Algorithm on PC

Scoring
Parameters

SVM
Decision

Trees
Extra
Trees

RF MLP-NN KNN

True Positive 265 262 268 274 274 292

True Negative 1017 1061 1060 1064 1067 1064

False Positive 117 73 74 70 67 70

False Negative 101 104 98 92 92 74

Accuracy 0.8546 0.8820 0.8853 0.8920 0.8940 0.9040

F1 Score 0.7085 0.7475 0.7570 0.7718 0.7751 0.8021

Specificity/Precision 0.6937 0.7820 0.7836 0.7965 0.8035 0.8066

Sensitivity/Recall 0.7240 0.7158 0.7322 0.7486 0.7486 0.7978

Machine Learning Algorithm on RPi 4

Scoring
Parameters

SVM
Decision

Trees
Extra
Trees

RF MLP-NN KNN

True Positive 265 262 268 274 274 292

True Negative 1017 1061 1060 1064 1067 1064

False Positive 117 73 74 70 67 70

False Negative 101 104 98 92 92 74

Accuracy 0.8546 0.8820 0.8853 0.8920 0.8940 0.9040

F1 Score 0.7085 0.7475 0.7570 0.7718 0.7751 0.8021

Specificity/Precision 0.6937 0.7820 0.7836 0.7965 0.8035 0.8066

Sensitivity/Recall 0.7240 0.7158 0.7322 0.7486 0.7486 0.7978

In terms of prediction model validation, there are two basic approaches utilized as
selection criteria for a prediction model: (i) The hold-out model and (ii) the K-fold cross
validation model. Both have the feature of utilizing a subset of the dataset for training
and keeping a portion for validation. The K-fold cross-validation is a method that is
utilized as a selection criterion for a prediction/classification model [56]. Essentially, it
entails using a subset of the dataset to construct the model and leaving another portion
of the dataset to validate it. The K-fold cross-validation procedure runs K times and
averages the classification results for each interaction. As shown in Figure 2, it entails
partitioning the dataset into k segments and selecting a different section to test the model
K times. In contrast, the remaining K-1 elements are used to train the ML model [10,56].
The average values computed in the loop are the performance metrics supplied by K-fold
cross-validation. This method is computationally expensive, but it does not waste a lot of
data (unlike setting an arbitrary validation set), which is a big plus in applications such as
inverse inference when the number of samples is small [47,48].
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Figure 2. Scheme of the K-fold cross-validation for the proposed ML models, inspired from [47,48].

Table 8 shows the average results of K-fold cross-validation corresponding to each
ML model. In this study, we use K = 5 folds, and this assisted in validating all the scoring
parameters of each ML model. The Accuracy, F1 score, Precision, Recall, and ROC-AUC
were the metrics that could be achieved through this cross-validation; the ML model that
had the best overall performance was the KNN, with the best scoring parameters, followed
by RF in second place. Later, we found the Extra Trees model, in fourth place is MLP-NN,
in fifth place are the Decision Trees, and last but not least is the SVM classifier.

Table 8. Average results of K-fold cross-validation with K = 5 of the ML models trained on PC.

ML Model
K-Fold Cross-Validation with K = 5

Accuracy F1 Score Specificity/Precision Sensitivity/Recall ROC-AUC

SVM 0.8468 0.6906 0.6804 0.7012 0.8589

Decision Trees 0.8677 0.7154 0.7528 0.6819 0.7562

Extra Trees 0.8710 0.7248 0.7552 0.6969 0.8831

RF 0.8744 0.7347 0.7576 0.7133 0.8830

MLP-NN 0.8632 0.7107 0.7347 0.6887 0.7924

KNN 0.8823 0.7586 0.7586 0.7586 0.8906

Regarding the final evaluation (testing), Tables 7 and 9 show the the outcomes of
performance metrics when the ML models were tested with 15% of the dataset that was
randomly split from the original dataset; i.e., this 15% of the data was kept separate from
the dataset used for training; therefore, they had influence neither during training nor in
cross-validation. As indicated in Table 7, the best ML model for this issue using PC is
KNN, which has the greatest metrics. MLP-NN is second, Random Forest (RF) is third,
Extra Trees is fourth, Decision Trees is fifth, and lastly, we have the SVM model that is sixth.
Within these rubrics, the accuracy values of the ML models are very good, ranging from
85.4% (SVM) to 90.4% (KNN), as well as the specificity of the model, which is somewhat
deplorable in the case of the SVM, being the lowest with 69.37 %, but the others far exceed it,
with the KNN classifier reaching 80.66%. It also possessed a superior comparative response
to the angiologist physician metrics of 73.82% in accuracy and a specificity of 71.43% [10],
proving to be a better technique to detect DVT.

Despite its restricted technology, the Raspberry Pi 4 achieves good results, attaining
the same metrics as the PC with no differences, demonstrating the strength of the Syste-
mOnChip (SoC), which is ideal for moving this type of diagnosis to smart devices. Despite
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the embedded system’s limited computational capability, excellent metrics for a portable
intelligent system are attained, outperforming the Wells technique in a typical approach.

Receiver Operating Characteristic (ROC) curves can be generated using the afore-
mentioned data, which indicate how well the model can distinguish between two objects.
They are key metrics for assessing an ML model’s performance. Furthermore, they are
employed in binary classification issues, i.e., problems with two distinct output classes.
The connection between the model’s True Positive Rate (TPR) and False Positive Rate (FPR)
is depicted by the ROC curve.

Both the ROC curve on PC and the ROC curve on Raspberry Pi 4 have a similar
response; the KNN model has a larger area under the curve, making it more visually
appealing, which is complemented by the scoring metrics mentioned in Table 7, which is
followed by the Random Forest (RF) classifier, as shown in Figure 3.

Similarly, it is possible to obtain PR curves (Precision–Recall curves), which are a
useful measure for observing prediction success when classes are highly disequilibrated
or unbalanced. In information retrieval, precision is a measure of the relevance of the
results, whereas recall is a measure of the number of truly relevant results that are returned.
The PR curve depicts the trade-off between Precision and Recall at various levels. A high
area under the curve indicates both High Recall and High Precision, with High Precision
corresponding to a low False Positive Rate and high Recall corresponding to a low False
Negative Rate. High scores in both cases show that the classifier is delivering accurate
(High Precision) results as well as the bulk of positive outcomes (High Recall).

Figure 4 shows that the PR curves of the Raspberry Pi 4 and PC are similar; the KNN
classifier has a better PR curve over all classifiers in both cases, having a larger area under
the curve covered within the graph, making it one of the best classifiers, followed by the
Extra Trees classifier.

(a) (b)

Figure 3. ROC curves. (a) ROC curve on PC, and (b) ROC curve on Raspberry Pi 4.

(a) (b)

Figure 4. PR curves. (a) PR curve on PC, and (b) PR curve on Raspberry Pi 4.

The next step is to obtain the performance metrics to evaluate the ML models; we rely
on the metrics of the Scikit learn library. The performance metrics are the Area Under the
Curve (AUC) using the trapezoidal method, the Cohen’s Kappa coefficient, Hamming Loss,
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and Matthew’s correlation coefficient, all of which are achieved on a PC and a Raspberry Pi
4 correspondingly, which are listed in Table 9.

According to Table 9, the KNN classifier is the best binary ML classifier for PC in
terms of performance metrics, followed by Random Forest (RF) in second, the Extra Trees
classifier in third, MLP-NN model in fourth, Decision Trees classifier in fifth, and last but
not least, the SVM classifier. The system’s measurements show an AUC ranging from
81.04% with the SVM model to 86.80% with the KNN classifier. The Hamming Loss is
another metric that goes from SVM at 14.53% to the best with a lower percentage, the KNN
model at 9.60%.

Table 9. Performance metrics of the six ML algorithms evaluated in this study using 15% of the
separated data for testing.

Performance Metrics on PC

Machine Learning
Algorithm

ROC-AUC PR-AUC
Cohen’s
Kappa

Coefficient

Hamming
Loss

Matthew’s
Correlation
Coeficient

SVM 0.8104 0.6960 0.6118 0.1453 0.6120

Decision Trees 0.8257 0.6432 0.6707 0.1180 0.6718

Extra Trees 0.8334 0.8461 0.6821 0.1146 0.6828

Random Forest (RF) 0.8434 0.8283 0.7011 0.1080 0.7017

MLP-NN 0.8447 0.7102 0.7058 0.1060 0.7066

KNN 0.8680 0.8619 0.7388 0.0960 0.7388

Performance Metrics on RPi 4

Machine Learning
Algorithm

ROC-AUC PR-AUC
Cohen’s
Kappa

Coefficient

Hamming
Loss

Matthew’s
Correlation
Coeficient

SVM 0.8104 0.6954 0.6118 0.1453 0.6120

Decision Trees 0.8257 0.6432 0.6707 0.1180 0.6718

Extra Trees 0.8334 0.8461 0.6821 0.1146 0.6828

Random Forest (RF) 0.8434 0.8283 0.7011 0.1080 0.7017

MLP-NN 0.8447 0.7102 0.7058 0.1060 0.7066

KNN 0.8680 0.8619 0.7388 0.0960 0.7388

For its part, the Raspberry Pi 4 achieved good results, which are identical in theory
to those acquired by the PC, when all of the parameters involved in each of the classi-
fiers, during training, and determining the performance metrics and score were taken
into account.

The average time of each of the proposed classifiers to be used within this problem
was obtained both on PC and Raspberry Pi 4. Figure 5 shows the average time of ten
training runs of each model with their respective characteristics, both on the computer and
on the SoC, to analyze the cost–benefit of each of the proposed classifiers to be used within
this problem. Due to factors of processing power operations, it turns out to be faster than
the Raspberry Pi 4, with the Decision Trees model being the fastest, followed closely by
the KNN, and further behind the Extra Trees, all with a training time of less than a second,
then the SVM, before reaching 2 s, the RF classifier, and finally, the MLP-NN being the
slowest of all with a time greater than 30 s. The training on the Raspberry Pi 4 takes two to
five times longer due to the embedded system’s processing limitations, with times of 0.02 s
in Decision Trees, 0.1 s in KNN models, 2.81 s in Extra Trees, 3.12 s in SVM, 6.89 s in RF
models, and finally 175.85 s in RF models.
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Figure 5. ML algorithms training time.

Usage Scenario

These ML models could be implemented on an embedded system such as the Rasp-
berry Pi 4 (RPi4) to develop a DVT diagnostic smart system. This could be integrated with a
color sensor (RGB), heart rate (BPM), and temperature (ºC), as well as a user interface (GUI)
that may include some questions according to the Wells criteria. Furthermore, the physician
can acquire the raw Wells criteria for each patient to be diagnosed with this proposed sys-
tem. The smart system will have a trained ML model into which the selected patient’s data
will be entered, and it will provide a diagnosis prediction for the patient’s condition. The
prospective apparatus proposed by this research can be shown in Figure 6. As discussed
before and shown in Table 1, the RPi4 is less expensive than a PC, which would result in
significant cost savings associated with the large-scale production of intelligent devices,
such as the manufacture of hundreds or millions of smart instruments.

(a) (b)

Figure 6. Suggested usage scenario. (a) Block diagram of proposed system and (b) proposed
system outline.
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4. Conclusions

Multiple ML classifiers were assessed for the prediction of DVT in the lower limbs
according to Wells criteria. They were subjected to different score and performance metrics
to assist with identifying the dependability of each one. The results of each of the created
models were subjected to cross-validation. The experimental results show that the KNN
model is the best in terms of performance and score metrics (higher accuracy (90.40%),
higher specificity (80.66%), ROC-AUC (86.80%), and PR-AUC (86.16%)), but it is second in
terms of execution time (0.01904 s) followed by the MLP-NN model, which is the slowest
in terms of execution time (30.08 s), but gives us the second best accuracy (89.40%). The
KNN classifier, on the other hand, among the models trained on the Raspberry Pi 4, has the
same score and performance metrics as on the PC; the main difference is in the execution
time, as it takes 0. 0951 s to train the model, making it the second in this category; however,
in real terms, it is possible to wait a little longer for a portable result, and in second place is
the MLP-NN classifier, with an execution time of 175.8485 s, making it the slowest. The
accuracy of all trained models on PC and Raspberry Pi 4 is greater than 85%, while the AUC
values are between 81 and 86%. In conclusion, as compared to traditional methods, the best
ML classifiers were effective at predicting DVT diagnosis in a timely and efficient manner.
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Abstract: ANFIS-type algorithms have been used in various modeling and simulation problems.
With the help of algorithms with more accuracy and adaptability, it is possible to obtain better real-life
emulating models. A critical environmental problem is the discharge of saline industrial effluents
in the form of buoyant jets into water bodies. Given the potentially harmful effects of the discharge
effluents from desalination plants on the marine environment and the coastal ecosystem, minimizing
such an effect is crucial. Hence, it is important to design the outfall system properly to reduce these
impacts. To the best of the authors’ knowledge, a study that formulates the effluent discharge to
find an optimum numerical model under the conditions considered here using AI methods has
not been completed before. In this study, submerged discharges, specifically, negatively buoyant
jets are modeled. The objective of this study is to compare various artificial intelligence algorithms
along with multivariate regression models to find the best fit model emulating effluent discharge
and determine the model with less computational time. This is achieved by training and testing the
Adaptive Neuro-Fuzzy Inference System (ANFIS), ANFIS-Genetic Algorithm (GA), ANFIS-Particle
Swarm Optimization (PSO) and ANFIS-Firefly Algorithm (FFA) models with input parameters, which
are obtained by using the realizable k-ε turbulence model, and simulated parameters, which are
obtained after modeling the turbulent jet using the OpenFOAM simulation platform. A comparison
of the realizable k-ε turbulence model outputs and AI algorithms’ outputs is conducted in this study.
Statistical parameters such as least error, coefficient of determination (R2), Mean Absolute Error
(MAE), and Average Absolute Deviation (AED) are measured to evaluate the performance of the
models. In this work, it is found that ANFIS-PSO performs better compared to the other four models
and the multivariate regression model. It is shown that this model provides better R2, MAE, and
AED, however, the non-hybrid ANFIS model provides reasonably acceptable results with lower
computational costs. The results of the study demonstrate an error of 6.908% as the best-case scenario
in the AI models.

Keywords: OpenFOAM; CFD; ANFIS; ANFIS (GA); ANFIS (PSO); ANFIS (FFA)

1. Introduction

Due to the increase in population growth and groundwater depletion, the demand for
fresh and potable water has led to rising growth in desalination plants, especially in arid
and semi-arid regions such as the Persian Gulf, Red Sea, and the Gulf of Oman [1]. It has
also been estimated that the percentage of water shortage will increase by 60% by the year
2025 [2]. Hence, since about 97.5% of the total volume of the hydrosphere is contained in
seas and oceans [3], desalination plants are the most viable solution for today’s drinking
water problems, however, these plants cause many negative impacts. The effluent from
desalination plants, called ‘brine’, is discharged into the seawater and contains concentrated
salt, which is almost double the salinity of the receiving water and ends up adding this
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salinity to the seawater [1]. Along with this, if a desalination plant is using a multistage
flash (MSF) technique, then the brine could also raise turbidity and temperature (Bleninger
and Jirka, 2008) [4]. This concentrated brine stream can deteriorate chemical, physical, and
biological attributes of the receiving water. Hence, the effect of brine is majorly evident on
the environment, especially on flora and fauna. Therefore, many countries like the USA
and Europe have made strict regulations for effluent standards [4].

To meet the existing regulations, a diffuser can be placed at the end of the outfall
system to dilute the concentrated brine—since in the absence of dilution—brine plume
extends its vicinity and will be harmful to the ecosystem [1]. It has also been reported
that the discharge of brine using inclined dense jets has been in use since the 1970s, in
which dilution and geometry are the major parameters to be considered [5]. Dilution of
brine occurs in two steps: (a) Primary dilution, which appears in the near field due to
density difference, between the seawater and effluent as well as due to momentum flux
and geometry of the outfall; and (b) Natural dilution in the far-field, due to diffusion and
mixing [6]. The impact can generally be seen in the range of 300 m from the point of
discharge, which is generally the near-field region [2]. Hence, it is important to focus on the
near-field region to design the outfall system for greater dilution [7]. Since effluent density
varies from the ambient water, which makes the jet rise or fall, when the dense effluent is
discharged upwards it is called the negatively buoyant jet. As the jet moves upwards its
momentum decreases, which then returns towards the bottom due to its high density after
attaining the maximum height. When the effluent’s density is lower than the receiving
water, and it is discharged downwards, a penetration depth is attained by the jet and the
effluent is therefore made to rise, this is known as a positively buoyant jet [8,9].

Extensive studies have been conducted on negatively buoyant jets. Marti et al.
(2010) [7] conducted research, in which an angle of 60 degrees was selected with three
different Froude number regimes (one-third, two-thirds, and full-flow capacity) and it was
found that the Froude numbers below 20 were giving higher dilution than the predicted
extrapolation. Zhang et al. (2016) [10] did the numerical investigation for inclined dense jets
at a 45◦ angle and for the study, a large eddy simulation (LES) method was applied along
with a Smagorinsky and Dynamic Smagorinsky sub-grid scale (SGS). Later, numerical
results including jet trajectory, geometry, and dilution were cross-validated with the experi-
mental results and it was found that LES was able to regenerate the outputs satisfactorily.
Shao and Law (2010) [11] studied the behavior of dense jet for angles of 30◦ and 45◦ with
different densiometric Froude numbers. For the measurement of velocity and concentration,
combined Particle Image Velocimetry (PIV) and Planar Laser-Induced Fluorescence (PLIF)
were applied. Velocity and concentration profiles were used to find the mixing and diluting
parameters as well. It was found that return point dilution, the horizontal distance of
return point, terminal height, centerline peak location, and its dilution were correlated to
the Froude number. Oliver et al. (2008) [12] investigated the k-ε turbulence model in the
standard fluid dynamics package (CFX) and took two approaches, which included, one
with the standard form of the model, and another with a calibrated model achieved by
adjusting the Schmidt number. After comparing numerical data, experimental data, along
with the data obtained from the studies of previous integral models, concluded that the k-ε
model was providing better prediction for the trajectory data, except the data for the inte-
grated dilution at the centerline as they were over-predicting the density gradient, which
resulted in the under-estimation of the dilution. Palomar et al. (2012) [13] investigated the
performances of CORMIX, VISUAL PLUMES, and VISJET models for the inclined dense
studies and obtained some significant differences in the dilution prediction. Kikkert et al.
(2007) [14] investigated the behavior of negatively buoyant jets with angles ranging from
0◦ to 75◦ and Froude numbers ranging from 14 to 99. The results showed good predictions
for the outer spread and the maximum height of the outer edge. However, the inner spread
was under-estimated and the minimum dilution prediction was conservative. Along with
this, previous studies conducted with CorJet and VisJet models were compared with this
study, and it was found that these numerical models had under-predicted the horizontal
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and vertical locations of maximum jet height. Furthermore, CorJet and VisJet were not
accurate enough for an integrated dilution prediction compared to analytical solutions and
the data obtained in a study by Kikkert et al. (2007) [14]. Jirka (2008) [15] performed a study
with smaller angles, such as 30◦ and 45◦, based on laboratory experiments and numerical
modeling using the CorJet model. It was found that the lower angle resulted in higher
dilution when the bottom slope was taken into consideration, as it provided better offshore
transport of the mixed effluent. Kheirkhah Gildeh et al. (2015) [16] performed numerical
modeling with 30◦ and 45◦ inclined dense jets. Five CFD models including LRR, RNG k-ε,
Realizable k-ε, non-linear k-ε, and Launder Gibson were applied, and it was concluded
that LRR and realizable k-ε turbulence models resulted in better predictions for mixing and
dilution characteristics.

With the development of computing systems in recent years, the application of com-
bined Fuzzy and AI methods has been increasing in engineering problems. Neshat et al.
(2012) [17] used ANFIS models for the optimization of concrete mix designs. They found
that the ANFIS model can be better than traditional fuzzy systems and non-fuzzy systems.
In a study by Nadia et al. (2020) [18], ANFIS was applied for the prediction of the position
of the sun in single- and dual-axis solar tracking systems in an attempt to optimize their
performance. The results showed a clear advantage of ANFIS over traditional fuzzy meth-
ods with high prediction rates and low error values. Heydary et al. (2021) [19] adopted a
combined Fuzzy GMDH (i.e., Group Method of Data Handling) Neural Network and Grey
Wolf Optimization (GWO) Algorithm to predict the power produced by wind turbines
with consideration of supervisory control and data acquisition (SCADA) data. They first
applied a combination of K-means and density-based Local Outliers methods (hybrid
K-means-LOF) to remove data outliers and the Empirical Mode Decomposition (EMD)
method for the decomposition of SCADA data, and then used the GMDH method to predict
the future power generation of wind turbines. They found that the performance of a hybrid
EMD-FGMDH-GWO can lead to high accuracy, regardless of the time step applied.

Apart from conventional Computational Fluid Dynamics (CFD) and experimental
measurements, soft computing methods could be applied to minimize the computational
time for the simulation and investment of money on expensive laboratory equipment.
Pourtousi et al. (2015) [20] investigated the combination of the CFD and ANFIS methods
for the simulation of bubble column hydrodynamics. Previous experimental data were
used to validate the CFD model and later these data were used to train the ANFIS model.
It was concluded that ANFIS was a promising method for predicting the outputs of bubble
column hydrodynamics. Taghavifar et al. (2015) [21] worked on the assessment of heat
accumulation in a hydrogen engine, in which the experimental data were compared with
the data obtained after CFD modeling to determine the accuracy between the two. Later,
the CFD data were fed an ANFIS code to train the model and it was concluded that the
ANFIS model with a Triangular membership function had given the highest R-squared (R2)
and lowest root mean squared error (RMSE) value out of other membership functions, and
ANFIS was confirmed to be more accurate and simpler than CFD technique in the study.
Rezakazemi et al. (2017) [22] evaluated three models, namely ANFIS, ANFIS-PSO, and
ANFIS-GA, to determine the performance of hydrogen mixed membranes, in which input
parameters such as feed pressure and Nano filter contents were used to evaluate the output
parameter (hydrogen gas selectivity). The criteria for investigation of the better model
were R2 and RMSE values and ANFIS-PSO had given better predictability. Amirkhani et al.
(2015) [23] studied the performance of ANN and ANFIS models to estimate the inlet air
velocity of the chimney. Three days of experimental data were used to train the models and
it was found that the ANFIS model’s results were closer to the experimental results as its R2

was higher than ANN. Bonakdari and Zaji (2018) [24] worked on the modified triangular
side weir, in which they simulated its discharge coefficient. They studied three different
methods of ANFIS, namely ANFIS-GA, ANFIS-PSO, and ANFIS-DE, with combinations of
eight different input variables and it was found that ANFIS-DE performed better as it had
given lowest the RMSE value compared to ANFIS-GA and ANFIS-PSO. Shabanian et al.
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(2017) [25] studied the ANFIS model with eight types of membership functions to predict
the hydrogen yield of the jet fuel and efficiency of conversion for a non-catalytic filtration
combustion reactor. Later, an imperialist competitive algorithm (ICA) was applied to get
the optimized results for the hydrogen yield, which was found to be an efficient algorithm
for the combustion process optimization. Apart from a soft computing method, multi-gene
genetic programming (MCGP) is also a new approach to predict the output, as shown in
the study conducted by Yan and Mohammadian (2019) [26], where MCGP turned out to be
a promising method for the prediction of vertical buoyant jets.

Currently, there is a gap in the application of AI methods in the context of inclined
dense jets, which are among the most efficient mixing methods. In particular, to the
best of the authors’ knowledge, no previous study has used an ANFIS model and its
variants for negatively buoyant jets with an inclination. Such a method can bridge the
gap between AI methods and the simulation of inclined dense jets and can potentially
simulate these problems more efficiently than CFD methods. The aim of the current study
is to consider the application of new AI methods and the generation of data for the testing
and training of these models to find the optimum solutions. The main contribution of
this project is to apply new AI methods to simulate and predict the dilution of inclined
dense jets in the near-field zone. The proposed approach, as shown in this paper, can
accurately and efficiently simulate these jets and contribute towards mitigating the negative
environmental impacts of such jets. The discharged effluents can create irreversible damage
to the marine environment and aquatic life if the outfall systems are not designed properly.
The improper design of the system can also leave toxic contaminants in the coastal area.
Hence, it is important to design proper outfall systems with efficient mixing. Furthermore,
if the concentration of the effluents is determined before their discharge, then it would be
helpful in the implementation of the solutions. The salinity of the discharged effluents can
either be predicted by experimental or numerical methods, however, to avoid the cost of
experimental equipment and save computational time, artificial intelligence techniques
can be implemented in the coastal study. The aim of this research is to investigate the
application and performance of a soft computing method with ANFIS, ANFIS-GA, ANFIS-
PSO, ANFIS-FFA algorithms for negatively buoyant jets to predict the dilution and mixing
characteristics. This is the first study on this topic. Negatively buoyant jets are considered
for a wide range of Froude numbers, i.e., 5, 10, 12.5, 15, 17.5, 20, 22.5, 25, 27.5, 30, 32.5, 35,
37.5, 40, 50 and 60 with angles ranging from 20 degrees to 72.5 degrees using realizable k-ε
model turbulence model in the OpenFOAM platform [27,28].

2. Materials and Methods

2.1. Dimensional Analysis and Numerical Model

As can be seen in Figure 1, negatively buoyant jets are discharged at an angle Θ and
velocity Uo, the density of the ambient water is represented by ρa, and density of the jet is
represented by ρo. It can be observed that ρo > ρa, which makes the jet rise. The diameter
of the jet is denoted by D. The terminal height is represented by yt, which hits the surface
at coordinate xi while the coordinates of peak centerline are represented by xm and ym with
peak salinity as Sm. Furthermore, jet concentration is represented by Co. The return point of
the jet is represented by xr and the return salinity value is Sr. For the dimensional analysis
a densiometric Froude number is used, which is denoted by the following equation:

Frd =
UO√
g′0D

(1)

g′0 =

(
Δρ0

ρa

)
(2)

where Δρo = (ρo − ρa) and g0
′ is the reduced gravitational acceleration.
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Figure 1. Configuration for Negatively Buoyant Jet (Reprinted with permission from Ref. [16].
Copyright 2022 Springer Nature).

The centerline peak salinity is a function of the Froude number and angle, which can
be represented by the following equation:

Sm

Frd
= f (Frd, θ) (3)

For numerical modeling, the following equations were used by Kheirkhah Gildeh et al.
(2015) [16]:

• Continuity Equation:

∂u
∂x

+
∂v
∂y

+
∂w
∂z

= 0 (4)

• Momentum Equations:

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

+ w
∂u
∂z

= −1
ρ

∂P
∂x

+
∂

∂x

(
veff

(
∂u
∂x

))
+

∂

∂y

(
veff

(
∂u
∂y

))
+

∂

∂z

(
veff

(
∂u
∂z

))
(5)

∂v
∂t

+ u
∂v
∂x

+ v
∂v
∂y

+ w
∂v
∂z

= −1
ρ

∂P
∂y

+
∂

∂x

(
veff

(
∂v
∂x

))
+

∂

∂y

(
veff

(
∂v
∂y

))
+

∂

∂z

(
veff

(
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∂z
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− g

ρ − ρo

ρ
(6)

∂w
∂t

+ u
∂w
∂x

+ v
∂w
∂y

+ w
∂w
∂z

= −1
ρ

∂P
∂z

+
∂
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(
veff

(
∂w
∂x

))
+

∂

∂y

(
veff

(
∂w
∂y

))
+

∂

∂z

(
veff

(
∂w
∂z

))
(7)

where veff denotes the effective kinematic viscosity, ρ is the fluid density, ρo is the reference
fluid density and P represents the fluid pressure. Furthermore, the velocity components in
x, y, and z directions are represented by u, v, and w.

• Concentration Equation:

∂C
∂t

+ u
∂C
∂x

+ v
∂C
∂y

+ w
∂C
∂z

= D
(

∂2C
∂x2 +

∂2C
∂y2 +

∂2C
∂z2

)
(8)

where D is the diffusion coefficient and C denotes the concentration, which in this paper is
salinity. For inlet, boundary conditions for velocity in x, y, and z directions are defined as
u = U0 * cos ( ), v = U0 * sin ( ) and w = 0. While concentration C = C0 and Temperature
T = T0 [16].

Initial conditions were assumed as follows: Zero velocity (stagnant) condition was
assumed for the flow and the initial concentration of salt was assumed to be zero in the
reservoir. As for boundary conditions, a wall function was used for the turbulent quantities
at the bottom and a zero-velocity condition (no-slip) was used for the velocity at the bottom
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wall. Zero shear stress was applied to the top surface and sidewalls, and we developed
the condition as assumed for the inlet jet and the values of turbulent quantities such as
turbulent kinetic energy and dissipations, which we set according to fully developed pipe
flow. The exit of the reservoir was modeled by a zero-gradient condition.

2.2. Data

The data generated from the numerical modeling using the realizable k-ε model in
the OpenFOAM platform is used in this part, to train and test the ANFIS and hybrid
models. For the soft computing method, two input variables, Froude numbers ranging
from 5 to 60 and jet angles ranging from 20 degrees to 72.5, were employed. The aim is
to investigate input and output combinations (Table 1) to evaluate the performance of
ANFIS, ANFIS-GA, ANFIS-PSO, ANFIS-FFA, and Multivariate regression models. In the
present study, the programming language MATLAB is used to design ANFIS [29–31], and
the three hybrid models, ANFIS-GA [32,33], ANFIS-PSO [33,34], and, ANFIS-FFA [35–37].
These models are built on the fundamentals of training and testing, which can be seen in
Figure 2. The data are divided into two portions of 70% and 30% for training and model
validation, respectively, and various error estimates such as RMSE, R2, etc., are measured
for evaluation of the model’s accuracy.

Table 1. Input-Output combinations.

Combinations Input 1 Input 2 Output

1 Froude number Angle Sm

2 Froude number Angle Sr

3 Froude number Angle x

4 Froude number Angle xr

Figure 2. Training data and Test.

2.3. Adaptive Neuro-Fuzzy Inference System (ANFIS)

Adaptive Neuro-Fuzzy Inference System is an artificial intelligence method, applied
to solve nonlinear problems. The architecture for ANFIS containing two inputs, one output,
f, and five layers is illustrated in Figure 3. In the architecture, the Sugeno model with Fuzzy
IF-THEN rules is employed. The rules R1 and R2 are shown below:

• R1:

If x1 = U1 and x2 = V1 (9)

Then f1 = s1x1 + t1x2 + r1 (10)
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• R2:

If x1 = U2 and x2 = V2 (11)

Then f2 = s2x1 + t2x2 + r2 (12)

where U1, U2 and V1, V2 are the membership functions for inputs x1 and x2, while s1, s2, t1,
t2, r1, and r2 are the adjustable parameters determined during the training process.

Figure 3. ANFIS structure.

The first layer is the input layer, in which input variables are transferred to the next
layer and it is formed by the membership functions of the input variables.

O1,i = μUi (x1), i = 1, 2 (13)

O1,i = μVi(x2), i = 1, 2 (14)

The degree of membership functions is represented by μUi and μVi for the fuzzy sets
Ui and Vi, respectively.

In layer two, each node is fixed and non-adaptive, when each node input values are
multiplied by each other, weights (wi) are obtained.

O2i = wi = μUi(x1) ∗ μVi(x2), i = 1, 2 (15)

The third layer, which is non-adaptive in nature, is called the rule layer. In this layer,
the weight function is normalized as follows:

O3i = w∗
i =

wi

∑i wi
(16)

The fourth layer, which is the layer where defuzzification takes place and the output
of the previous layer, is combined with the Sugeno fuzzy rule’s function. However, nodes
in this layer are adaptive and contain a node function:

O4i = w∗
i fi = w∗

i (six1 + tix2 + ri) (17)
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At layer five, which is the last layer and is called the output layer, the single node
will calculate the overall output and will be the summation of all the inputs from the
previous layers.

O5i = ∑
i

w∗
i fi =

∑i wi fi

∑i wi
(18)

2.4. Genetic Algorithm (GA)

Genetic Algorithm [32] is the heuristic search algorithm, which can be classed as
an evolutionary algorithm (EA) and is based on the concept of natural selection and
genetics, where the idea of inheritance, selection, cross-over, and mutation are applied.
It is commonly used in various domains such as manufacturing, engineering, science,
etc. [38]. Evolutionary algorithms such as GA are applied in conjugation with ANFIS to
enhance the accuracy of the method by finding optimal solutions and lowering errors. The
genetic algorithm (GA) starts the process of optimization with a random initial population
(Figure 4). In GA, a population is a set of individuals, which are present in the workspace.
Each individual has a set of parameters (variables), which are called genes, and are joined
together to form a chromosome (solution), which could be mutated and altered. These
solutions could either be presented in the form of binary coding, i.e., zeros and ones, or in
other encoding forms. The criteria for determining the suitability of individuals are set by
an evaluation through fitness function as the population is initialized through randomly
generated individuals, hence, it is an iterative process [38]. The best suitable individual
with a higher fitness value will be chosen from the population to create the new generation
and the solutions of this new generation will be used for the next iteration in the same
algorithm. The algorithm will be terminated when the produced generations reach the
maximum limit, or a satisfactory fitness level is achieved [38]. In this paper, the GA code
has been run in MATLAB software and the ANFIS model has been trained to find the
mean salinity Sm, mean coordinates xm and ym, return salinity Sr and return coordinates xr
and yr.

2.5. Particle Swarm Optimization (PSO)

PSO begins with random particles in the search space, which looks for optimal solu-
tions, and each particle is associated with a fitness value, which is evaluated by a fitness
function. Each particle is influenced by its best achieved individual position and the best
position achieved among the group, and for every iteration, the updating of each particle
takes place by these two best values. In every iteration particles choose new velocities
based on their current velocity and the two mentioned best values. The new velocity and
new position can be evaluated by the following equations [24]:

vi[t + 1] = wvi[t] + c1r1

(
xPbest[t]− xi[t]

)
+ c2r2

(
xGbest[t]− xi[t]

)
(19)

xi[t + 1] = xi[t] + vi[t + 1] (20)

where, xi and vi are the position and velocity vector for particle i and xPbest and xGbest are
the best individual position and best position achieved in the group, respectively. c1 and c2
are the personal learning and global learning coefficients, respectively, and r1 and r2 are the
random coefficients. Furthermore, w represents the inertia weight. The PSO algorithm can
be seen in Figure 5.
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Figure 4. GA Flowchart.
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Figure 5. PSO Flowchart.

2.6. Firefly Algorithm (FFA)

The firefly algorithm (FFA) is built on the idea of a relationship between light and
fireflies [35]. Based on this relationship, the attractiveness value is directly proportional to
the luminosity, hence, it can be calculated by following equations [35,36]:

I = Ioe−γr2
(21)

w(r) = w0e−γr2
(22)

where w(r) denotes the attractiveness at distance r from the firefly, and I represents the light
intensity. Io and w0 are the light intensity and attractiveness at distance r = 0 and γ is the
coefficient of light absorption [35,36].

The distance between the fireflies i and j is represented by r, and can be calculated
from the following equation [35,36]:

rij =‖ xi + xj ‖=
√√√√ d

∑
k=1

(xi,k − xj,k ) (23)

where xi and xj are the locations of fireflies. As fireflies are attracted to one another,
the movement for a firefly from one position to another is represented by the following
equation [35]:

Δxi = β0e−γr2(
xj − xi

)
+ αεi (24)

where α denotes the randomization coefficient and εi represents the random number vector.
Furthermore, α varies from 0 and 1. β0e−γr2

is the attraction term [36]. Figure 6 illustrates
the FFA Flowchart.
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Figure 6. FFA Flowchart.

In this paper, the ANFIS model was integrated with the FFA in order to determine the
mean salinity Sm, mean coordinates xm and ym, return salinity Sr and return coordinates xr
and yr. By a trial-and-error method, the values of light absorption coefficient (γ), attraction
coefficient base (β0), and movement coefficient (α) are taken as 0.1, 4, and 0.3, respectively.

2.7. Multivariate Linear Regression Model (MLR)

Multivariate regression analysis is widely used to find a linear relationship between
the dependent and multiple independent variables. The data collected from numerical
modeling are non-linear, however, to determine the closeness of data with the linearity,
multivariate regression analysis has been conducted using Microsoft excel add-ins, which
helped to create a model based on least square methods [39]. The generalized equation for
MLR can be expressed in the following way [40,41]:

Y = βo + β1X1 + β2X2 (25)
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where, X1 and X2, are the independent variables, which are also called predictor variables.
Y is the dependent variable also known as the response variable and n is the number of
variables [41].

For multivariate regression, data collected from numerical modeling were divided
into training and test data. The equation obtained for the training data set after a regression
analysis has been used to generate the predicted test output. The statistical parameters to
evaluate the multivariate regression model are the same as the ones used for the ANFIS
and hybrid models. The equations mentioned in the statistical parameters section are used
for the calculation of the values for regression analysis.

3. Statistical Analysis

To determine the accuracy of ANFIS, ANFIS-GA, ANFIS-PSO, ANFIS-FFA, and mul-
tivariate regression models as discussed, statistical parameters of all the models are com-
pared, the statistical parameters taken into consideration are coefficient of determination
(R2), root mean squared error (RMSE), mean absolute error (MAE), and average absolute
deviation (δ%), i.e., error of the model in percentage [24]. The mentioned parameters can
be measured by the following equations:

RMSE =

√
∑N

i=1 (Oi − Pi)
2

N
(26)

R2 = 1 − ∑N
i=1 (Oi − Pi)

2

∑N
i=1 (Oi − Om)2 (27)

MAE =
1
N

N

∑
i=1

| Oi − Pi | (28)

δ% =
∑N

i=1 | Oi − Pi |
∑N

i=1 Oi
∗ 100 (29)

where Pi is the predicted value obtained after training the models, Oi is the observed value
obtained after numerical modeling on OpenFOAM, Om is the mean of observed value and
N is the number of samples.

4. Results

Overall, 352 data points are obtained from numerical modeling for each of the Sm, Sr,
x, xr, and y outputs. The data are divided into two sections, training data and test data,
where training data contain 272 of the total data and test data contain 80 of the total data
test data. For the models, two input variables, i.e., the Froude number and the angle are
chosen to obtain one output. The targeted outputs are S, Sr, xm, ym, xr. Hence, five sets
with different outputs are prepared for all the models, as shown in Table 1.

4.1. Performance Evaluation for Peak Salinity

The performance of ANFIS-type models and the Multivariate regression model for
peak salinity (Sm) is determined in this section.

4.1.1. ANFIS-Type Models

It can be observed from Table 2 that all the models’ RMSE values for training and
test data are almost the same, which means none of them are trapped in over-fitting.
Furthermore, in Figure 7a–h, targets and outputs coincide reasonably with each other,
which confirms the accuracy of the data for the ANFIS and hybrid models. From Table 2, it
can be observed that out of all the models, ANFIS-PSO is giving the highest R2, and the
lowest RMSE, MAE, and δ%, which are 0.984, 0.589, 0.357, and 5.889% for the test data,
making it the most accurate of all.
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Table 2. Models’ performance evaluation for Sm.

Model Output
Training Database Test Database

R2 RMSE MAE δ% R2 RMSE MAE δ%

ANFIS Sm 0.9505 0.959 0.726 12.160 0.964 0.890 0.709 11.680

ANFIS-GA Sm 0.947 1.019 0.834 13.974 0.935 1.187 0.866 14.249

ANFIS-PSO Sm 0.985 0.547 0.336 5.631 0.984 0.589 0.357 5.889

ANFIS-FFA Sm 0.979 0.643 0.409 6.866 0.975 0.739 0.447 7.367

Multi-variate
Regression Sm 0.594 2.909 2.118 35.482 0.582 3.009 2.245 36.948

4.1.2. Multi-Variate Regression Model

The equation obtained after training the regression model for salinity (Sm) is shown below:

Sm = 13.4212 − (0.23703 ∗ Fr)− (0.01983∗Angle) (30)

The Sm equation was used to predict the test outputs and it can be seen from Table 2
that in the regression model there is no over-fitted data as the training and test data sets are
showing almost similar statistical parameters, however, overall the regression model had
the lowest R2 value and highest RMSE, MAE and δ %, i.e., in both training and test sets
as compared to other models, which made regression model incompatible for predicting
peak salinity.

4.2. Performance Evaluation for Return Salinity

The performance of ANFIS-type models and the Multivariate regression model for
return salinity (Sr) is determined in this section.

4.2.1. ANFIS-Type Models

Table 3 shows the statistical results for Sr and it can be observed that test data for
ANFIS-GA, ANFIS-PSO, and ANFIS-FFA are showing almost the same R2 value, i.e., 0.976,
0.973, and 0.975, yet the lowest RMSE was observed in ANFIS-GA, i.e., 0.471. Hence,
the ANFIS-GA model can be considered suitable for predicting the return salinity value.
Furthermore, the δ% and MAE are also not high for this model. Notably, the RMSE and
R2 values of the test sets are mainly considered in this thesis work for determining the
suitable model.

The graphs in Figure 8a–h shows that targets and outputs are following the same
pattern, which again shows that models are properly trained for output Sr.

4.2.2. Multi-Variate Regression Model

The equation obtained after training the regression model for return salinity (Sr) is
shown below:

Sr = 7.601744 − (0.12495 ∗ Fr)− (0.02693 ∗ Angle) (31)

It can be observed from Table 3 that the parameters for training and test data are
almost the same, however, the regression model’s performance compared to other models
is very poor, as it has the lowest R2 value, i.e., 0.441 and highest RMSE, MAE values, i.e.,
2.265 and 1.429 in the test set, respectively, which shows the model accuracy to predict
the data is very low and its test outputs are not near to the outputs obtained from the
numerical model.
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Figure 7. For output Sm, ANFIS Model (a) targets and outputs, RMSE, MSE values and frequency vs.
errors graphs for train data set (b) targets and outputs, RMSE, MSE values and frequency vs. errors
graphs for test data set. ANFIS-GA: (c) targets and outputs, RMSE, MSE values and frequency vs.
errors graphs for train data set (d) targets and outputs, RMSE, MSE values, and frequency vs. errors
graphs for test data set. ANFIS-PSO: (e) targets and outputs, RMSE, MSE values and frequency vs.
errors for train data set (f) targets and outputs, RMSE, MSE values, and frequency vs. errors for test
data set. ANFIS-FFA: (g) targets and outputs, RMSE, MSE values and frequency vs. errors for train
data set (h) targets and outputs, RMSE, MSE values, and frequency vs. errors for test data set.
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Table 3. Models’ performance evaluation for output Sr.

Model Output
Training Database Test Database

R2 RMSE MAE δ% R2 RMSE MAE δ%

ANFIS Sr 0.893 0.923 0.691 23.870 0.909 0.914 0.684 23.028

ANFIS-GA Sr 0.967 0.510 0.376 12.981 0.976 0.471 0.350 11.803

ANFIS-PSO Sr 0.958 0.579 0.404 13.946 0.973 0.503 0.395 13.304

ANFIS-FFA Sr 0.958 0.573 0.369 12.755 0.975 0.481 0.336 11.331

Multi-variate
Regression Sr 0.455 2.147 1.394 48.104 0.441 2.265 1.429 48.077

4.3. Performance Evaluation for Peak Coordinate

The performance of ANFIS-type models and Multivariate regression models for peak
coordinate (xm) is determined in this section.

4.3.1. ANFIS-Type Models

From Table 4, it can be observed that the statistical parameters for output xm, are
showing good accuracy between training and test, which shows none of the models are
over-fitted. The models are trained properly, which can be seen from Figure 9a–h. Even
though the percentage deviation for ANFIS-FFA’s test data is the smallest out of all the
models, the statistical parameters of ANFIS-PSO’s training data are better when compared
to its test data, which makes the model more reliable. Furthermore, the test sets for ANFIS-
GA and ANFIS-FFA have the highest R2, i.e., 0.987, 0.987 with RMSE values, 0.018 and
0.016, respectively. However, considering the RMSE and R2 values of the test set, it can be
seen that ANFIS-FFA is efficient in determining the output xm as it has the highest R2 and
lowest RMSE, though it also has the lowest MAE and δ%.

Table 4. Models’ performance evaluation for output xm.

Model Output
Training Database Test Database

R2 RMSE MAE δ% R2 RMSE MAE δ%

ANFIS xm 0.985 0.018 0.013 5.409 0.983 0.018 0.013 5.433

ANFIS-GA xm 0.981 0.020 0.015 6.251 0.987 0.018 0.014 5.736

ANFIS-PSO xm 0.989 0.015 0.011 4.637 0.976 0.021 0.016 6.250

ANFIS-FFA xm 0.987 0.017 0.012 5.011 0.987 0.016 0.011 4.650

Multi-Variate
Regression xm 0.899 0.058 0.043 17.707 0.892 0.047 0.036 14.348
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Figure 8. For output Sr, ANFIS Model (a) targets and outputs, RMSE, MSE values and frequency vs.
errors graphs for train data set (b) targets and outputs, RMSE, MSE values and frequency vs. errors
graphs for test data set. ANFIS-GA: (c) targets and outputs, RMSE, MSE values and frequency vs.
errors graphs for train data set (d) targets and outputs, RMSE, MSE values, and frequency vs. errors
graphs for test data set. ANFIS-PSO: (e) targets and outputs, RMSE, MSE values and frequency vs.
errors for train data set (f) targets and outputs, RMSE, MSE values, and frequency vs. errors for test
data set. ANFIS-FFA: (g) targets and outputs, RMSE, MSE values and frequency vs. errors for train
data set (h) targets and outputs, RMSE, MSE values, and frequency vs. errors for test data set.
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Figure 9. For output xm, ANFIS Model (a) targets and outputs, RMSE, MSE values and frequency vs.
errors graphs for train data set (b) targets and outputs, RMSE, MSE values and frequency vs. errors
graphs for test data set. ANFIS-GA: (c) targets and outputs, RMSE, MSE values and frequency vs.
errors graphs for train data set (d) targets and outputs, RMSE, MSE values, and frequency vs. errors
graphs for test data set. ANFIS-PSO: (e) targets and outputs, RMSE, MSE values and frequency vs.
errors for train data set (f) targets and outputs, RMSE, MSE values, and frequency vs. errors for test
data set. ANFIS-FFA: (g) targets and outputs, RMSE, MSE values and frequency vs. errors for train
data set (h) targets and outputs, RMSE, MSE values, and frequency vs. errors for test data set.
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4.3.2. Multi-Variate Regression Model

To predict, the test output x, the following equation was obtained from the regression
analysis of the training set:

xm = 0.261093 + (0.00818 ∗ Fr)− (0.00515∗Angle) (32)

Table 4 shows that although the performance of the regression model was satisfactory,
it had the lowest R2 value and highest RMSE, MAE, and δ% in the test set compared to the
other models’ test sets, which show that the predicted outputs from MLR are not close to
the observed numerical outputs. The statistical parameters for the multivariate regression
model are calculated by Equations (26)–(29).

4.4. Performance Evaluation for Return Coordinate in x Direction

The performance of ANFIS-type models and the Multivariate regression model for the
return coordinate in the x-direction (xr) is determined in this section.

4.4.1. ANFIS-Type Models

For output xr, Table 5 shows all the models’ test data are close in performance to
the training data; in fact, the statistical parameters of the training sets are slightly higher
than the test sets, which again shows that models are not over-fitted, and they have good
predictability, which can be seen in Figure 10a–h. Out of all the models, ANFIS-PSO had
given better results as its test set had a higher R2 value i.e., 0.985, and lower RMSE, MAE,
and δ % i.e., 0.032, 0.021, and 4.639% in the test data, respectively.

Table 5. Performance Evaluation for all the models for output xr.

Model Output
Training Database Test Database

R2 RMSE MAE δ% R2 RMSE MAE δ%

ANFIS xr 0.989 0.028 0.021 4.745 0.981 0.035 0.024 5.119

ANFIS-GA xr 0.966 0.051 0.039 8.827 0.953 0.056 0.041 8.832

ANFIS-PSO xr 0.993 0.022 0.016 3.634 0.985 0.032 0.021 4.639

ANFIS-FFA xr 0.986 0.031 0.023 5.258 0.980 0.035 0.026 5.717

Multi-variate
Regression xr 0.917 0.099 0.076 17.297 0.904 0.079 0.065 13.933

4.4.2. Multi-Variate Regression Model

For output xr, the multivariate regression model showed quite good results with R2 as
0.9044, and RMSE, MAE values as 0.079 and 0.065, respectively. The percentage deviation
between the observed and predicted test output was 13.93%. The equation used for the
predicted output was:

xr = 0.399753 + (0.015318 ∗ Fr)− (0.00804 ∗ Angle) (33)

4.5. Performance Evaluation for Peak Coordinate in y Direction

The performance of ANFIS-type models and the Multivariate regression model for the
peak coordinate in the y-direction (ym) is determined in this section.
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Figure 10. For output xr, ANFIS Model (a) targets and outputs, RMSE, MSE values and frequency vs.
errors graphs for train data set (b) targets and outputs, RMSE, MSE values and frequency vs. errors
graphs for test data set. ANFIS-GA: (c) targets and outputs, RMSE, MSE values and frequency vs.
errors graphs for train data set (d) targets and outputs, RMSE, MSE values, and frequency vs. errors
graphs for test data set. ANFIS-PSO: (e) targets and outputs, RMSE, MSE values and frequency vs.
errors for train data set (f) targets and outputs, RMSE, MSE values, and frequency vs. errors for test
data set. ANFIS-FFA: (g) targets and outputs, RMSE, MSE values and frequency vs. errors for train
data set (h) targets and outputs, RMSE, MSE values, and frequency vs. errors for test data set.
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4.5.1. ANFIS-Type Models

From Table 6 it can be seen that the percentage deviations for both the data sets in
ANFIS-GA are 6.093% and 7.472%, which are higher than all the ANFIS-type models.
However, ANFIS, ANFIS-PSO, and ANFIS-FFA had given similar R2 values, i.e., 0.989,
0.986, 0.986, respectively, for their test data sets, which are highest in the test data for all
the models. Also, their test sets R2 value is comparable to their respective training set,
which shows the models are trained properly. Along with this, the RMSE values for ANFIS,
ANFIS-PSO, ANFIS-FFA are 0.013, 0.014, 0.014, respectively, with the same MAE value of
0.010. Hence, they can be considered for the prediction of ym. Figure 11a–h shows that
models are not over-fitted as targets and outputs coincide with each other.

Table 6. Models’ performance evaluation for output ym.

Model Output
Training Database Test Database

R2 RMSE MAE δ% R2 RMSE MAE δ%

ANFIS ym 0.985 0.014 0.010 5.014 0.989 0.013 0.010 5.157

ANFIS-GA ym 0.979 0.017 0.012 6.093 0.979 0.019 0.014 7.472

ANFIS-PSO ym 0.990 0.011 0.008 3.900 0.986 0.014 0.010 5.285

ANFIS-FFA ym 0.981 0.016 0.011 5.4363 0.986 0.014 0.010 5.475

Multivariate
Regression ym 0.855 0.040 0.030 15.016 0.846 0.049 0.038 19.735

4.5.2. Multivariate Regression

The equation obtained after the regression analysis on the training set to obtain the
predicted test outputs is:

ym = −0.13746 + (0.007027 ∗ Fr) + (0.003153∗Angle) (34)

It can be deduced from Table 6 that training and test sets show good similarity with
each other, which proves that the data is not over-fitted and that statistical parameters’
values are lower as compared to ANFIS and hybrid ANFIS models. The gap between
the predicted test output and observed test output is visible by the percentage deviation
of 19.735%.
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Figure 11. As in Figure 9 for ym. ANFIS Model (a) targets and outputs, RMSE, MSE values and
frequency vs. errors graphs for train data set (b) targets and outputs, RMSE, MSE values and
frequency vs. errors graphs for test data set. ANFIS-GA: (c) targets and outputs, RMSE, MSE values
and frequency vs. errors graphs for train data set (d) targets and outputs, RMSE, MSE values, and
frequency vs. errors graphs for test data set. ANFIS-PSO: (e) targets and outputs, RMSE, MSE values
and frequency vs. errors for train data set (f) targets and outputs, RMSE, MSE values, and frequency
vs. errors for test data set. ANFIS-FFA: (g) targets and outputs, RMSE, MSE values and frequency vs.
errors for train data set (h) targets and outputs, RMSE, MSE values, and frequency vs. errors for test
data set.

5. Discussion

In this paper, the ANFIS model was incorporated with three different algorithms,
namely, the Genetic Algorithm, Particle Swarm Optimization, and Firefly Algorithm. Also,
to check the linearity of the data, a multivariate linear regression (MLR) was conducted.
It was found that the coefficient of determination was too low for MLR, and root mean
squared error (RMSE) was too high compared to ANFIS and hybrid ANFIS models. Four
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statistical indices were measured to determine the efficient model, and they were the
coefficient of determination, root mean squared error, mean absolute error, and percentage
deviation. Furthermore, to determine the reliable model, the statistical indices of the test
set were compared for all the models. It could be seen that, for all the ANFIS-type models,
over-fitting was not observed, which showed the models were trained well.

For different outputs, different models showed accuracy. Hence, to evaluate the overall
model performance, the average of all the statistical parameters needs to be calculated. It
could be seen from Table 7 that ANFIS-PSO and ANFIS-FFA generated the same value
for R2, i.e., 0.980. Also, the RMSE values of these models are lower than the rest of the
models, i.e., 0.231 and 0.257, respectively. It could also be seen that the training data of
ANFIS-PSO is better compared to ANFIS-FFA as the training set of ANFIS-PSO’s R2 value
was 0.983. The model, which showed the poor performance, was MLR as it had the lowest
R2 value, i.e., 0.733, and highest RMSE value, i.e., 1.090. The present study will be helpful
in coastal research worldwide it is one of the first studies on artificial intelligence models
in negatively buoyant jets for predicting effluent discharges in less computational time as
the computational fluid dynamic model had taken approximately three and half days for
simulation compared to the ANFIS-type models, which had taken ten to fifteen minutes.

Table 7. Overall performance evaluation for all the test data outputs.

Model
Training Set Test Set

R2 RMSE MAE δ% R2 RMSE MAE δ%

ANFIS 0.960 0.388 0.292 10.239 0.965 0.374 0.288 10.083

ANFIS-GA 0.968 0.323 0.255 9.625 0.966 0.350 0.257 9.618

ANFIS-PSO 0.983 0.234 0.155 6.349 0.980 0.231 0.159 7.073

ANFIS-FFA 0.978 0.256 0.164 7.065 0.980 0.257 0.166 6.908

Multivariate
Regression 0.744 1.051 0.732 26.721 0.733 1.090 0.762 26.608

Additionally, as AI techniques are widely used in the majority of sectors worldwide, it
would be interesting to see their implementation in coastal studies. Most of the previous
studies have been conducted using computational fluid dynamics models, and this is
one of the first studies to have implemented artificial intelligence models in negatively
buoyant jets. The study is also an extension of the Kheirkhah Gildeh et al. (2015) [16]
study and it can be seen that the ANFIS-type models have performed as well as the CFD
model, with less computational time. Although, as mentioned earlier, the present study
is one of the first studies using AI models in coastal systems, there are some studies
conducted on different coastal topics such as the Bonakdari and Zaji (2018) [24] study on
the side weir discharge coefficient, which was modeled using ANFIS-type models. Yan and
Mohammadian (2019) [26] studied the Multi-Gene Genetic Programming (MGGP) method
for vertical buoyant jets to determine dilution properties. The approach, MGGP in this
study, was efficient and accurate, hence, it can also be used to examine the present study
on negatively buoyant jets for future work. Furthermore, in future work, several different
algorithms such as Differential Evolution (DE), Ant Colony (ACO), Cuckoo Optimization
Algorithm (COA) could also be merged with ANFIS to broaden the area of negatively
buoyant jet study.

Furthermore, parameters such as temperature, sloping bed, density current, rosette
diffuser, effects of stratification on various types of discharges with or without current,
effects of secondary flow, various types of jets under wave effect, or current effect can also
be considered. Other statistical parameters such as Scatter Index, BIAS, Nash, VAF can also
be checked for performance evaluation. Along with this, positive and negative jets can be
examined for crossflow using various AI methods such as ANFIS type procedures.
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As the errors and performance results in Table 7 show, hybrid models such as ANFIS-
PSO and ANFIS-FFA, in comparison with ANFIS, present lower error estimates and overall,
more accurate solutions. However, the hybrid models have a higher computational cost.
Therefore, the application of these models depends on the desired accuracy and the avail-
ability of computing systems. In other words, there is no single answer as to which model
is to be selected.

It should be noted that this project did not attempt to train the model and validate it
using real-time data, which is the subject of a subsequent study, in order to extend the use
of the model to more practical applications.

6. Conclusions

ANFIS model alone and different hybrid models such as ANFIS-GA, ANFIS-PSO,
and ANFIS-FFA along with multivariate regression were investigated for the prediction
of industrial outfall discharges. In this paper, negatively buoyant jets are focused. Proper
outfall design is one of the important factors to mitigate the environmental effects of
effluent discharge from desalination plants. With prior knowledge of effluents’ discharge
characteristics, it is easier to implement proper solutions. Though most of the studies have
been conducted using experimental and numerical methods, in this study, the ANFIS type
models are examined for lesser computational time and to avoid the cost of an experimental
setup. The results showed that ANFIS and hybrid models were trained properly, which
could be seen from targets and output graphs in Figures 2–11 as they almost coincided
with each other. However, the results showed that the multi-variate regression model
was not successful in interpreting the relationship between independent and dependent
variables, especially due to the non-linearity of the data. Hence, ANFIS and hybrid models
are suitable choices to predict the dilution characteristics of outfall discharges. To determine
the efficient model to predict all the outputs mentioned in the previous section, it can be
deduced from Table 7, which is generated by averaging all the outputs that ANFIS-PSO
has the highest R2 value, lowest RMSE, and lowest MAE. The other model which showed
the same R2 value to ANFIS-PSO is ANFIS-FFA, however, its RMSE value and MAE value
are 0.257 and 0.166, respectively, which are a little higher than ANFIS-PSO. Furthermore,
the difference observed between ANFIS-PSO and ANFIS-FFA was in their computational
time, which was more for ANFIS-FFA at around 3.5 h compared to ANFIS-PSO, which was
10–15 min. Although, the computational time for all the ANFIS-type models was much less
compared to the CFD model, which was approximately around 3.5 days. Overall, these two
models, ANFIS-FFA and ANFIS-PAO, can be considered suitable for predicting the effluent
discharge, although ANFIS-PSO would be preferable when one considers computational
cost as a deciding factor.

The results presented in Table 7 demonstrate that hybrid models (especially ANFIS-
PSO and ANFIS-FSA) overall, provide better results with lower errors than ANFIS. How-
ever, if one is looking for a quicker answer, ANFIS alone provides results within an
acceptable margin of error and can be used.

The use of real-time data for training and validation of the model can be examined in
a future study to enhance the practical applicability of the model.
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Abstract: LSP(n), the largest small polygon with n vertices, is a polygon with a unit diameter
that has a maximal of area A(n). It is known that for all odd values n ≥ 3, LSP(n) is a regular
n-polygon; however, this statement is not valid even for values of n. Finding the polygon LSP(n)
and A(n) for even values n ≥ 6 has been a long-standing challenge. In this work, we developed
high-precision numerical solution estimates of A(n) for even values n ≥ 4, using the Mathematica
model development environment and the IPOPT local nonlinear optimization solver engine. First, we
present a revised (tightened) LSP model that greatly assists in the efficient numerical solution of the
model-class considered. This is followed by results for an illustrative sequence of even values of n, up
to n ≤ 1000. Most of the earlier research addressed special cases up to n ≤ 20, while others obtained
numerical optimization results for a range of values from 6 ≤ n ≤ 100. The results obtained were
used to provide regression model-based estimates of the optimal area sequence {A(n)}, for even
values n of interest, thereby essentially solving the LSP model-class numerically, with demonstrably
high precision.

Keywords: nonlinear programming; largest small polygons (LSP); {LSP(n)} model-class; optimal area
sequence {A(n)}; revised LSP model; mathematica model development environment; IPOPT solver
engine; numerical optimization results and regression model for estimating {A(n)}

1. Introduction

The diameter of a convex planar polygon is defined as the length of its longest diagonal.
The largest small polygon (LSP) with n vertices is defined as a polygon of a unit diameter
that has a maximal area. For a given integer n ≥ 3, we refer to this polygon as LSP(n)
with a corresponding area A(n). To illustrate, Figure 1 shows visual representations of our
conjectured maximal area LSP(6) and LSP(18).

Nearly a century ago, Reinhardt (1922) [1] proved that for all odd values n ≥ 3, LSP(n)
is the regular n-polygon; perhaps surprisingly, the corresponding statement is not valid for
even values of n. For brevity, here we only refer to the discussion of the low-dimensional
cases studied elsewhere. Specifically, Graham (1975) [2] presented an exact solution of
the hexagon; Audet et al. 2002 [3] presented the first numerical solutions of the octagon,
followed by the exact optimal axially symmetric octagon in Audet et al. (2021) [4]; Henrion
and Messine (2013) [5] provided numerical guarantees of global optimality and successfully
found the largest small polygons for n = 10 and n = 12. Mossinghoff (2006) [6] presented
some related theoretical background, confirmed earlier best-known results, and gave
additional numerical estimates through n = 20. In more recent studies, Bingane (2020) [7]
gave near-optimal numerical estimates of A(n) with up to n = 128, and Pintér (2021) [8]
gave globally optimized numerical estimates of A(n) for all even values 6 ≤ n ≤ 80, both
studies share comparative references to earlier works. These works—and several others
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cited by both Bingane (2020) [7] and Pintér (2021) [8]—clearly indicate the limitations and
varying performance level of the modeling and optimization software packages used earlier.

Figure 1. Our conjectured largest small polygons LSP(6) and LSP(18).

Here we present the results of a numerical optimization study aimed at finding con-
jectured LSP(n) configurations and corresponding values A(n), for a substantial selection
of even values covering the range of 4 ≤ n ≤ 1000. We propose a revised (tightened) LSP
model, then solve model instances using the Mathematica model development platform
with the callable IPOPT nonlinear optimization solver. Based on the results obtained, we
also developed a regression model to estimate {A(n)} for all of the even values of n. Since,
for large n, the actual calculated optimum estimates A(n) already closely approximate the
theoretical limit of A(∞) = π/4, our numerical study enables high-precision estimates
covering the LSP model-class.

2. Revised LSP Optimization Model

For unambiguity, we consider all LSP(n) instances for even n ≥ 4 with a fixed position
corresponding to the appropriate variants of the instances shown in Figure 1. Following the
standard assumptions also postulated by others, each even n-polygon considered here is
symmetrical with respect to the diagonal that connects its lowest positioned vertex placed
at the origin with its highest vertex. We refer to this configuration as the standard model: it
has been used in all topical works referenced by Pintér (2021) [8].

The standard LSP model uses polar coordinates to describe the LSP(n): the vertex i is
positioned at the polar radius ri and at angle θi. For unambiguity, we postulate that the
vertices i = 1, . . . , n − 1 are arranged according to increasing angles θi. Placing the last
vertex at the origin, we set rn = 0, θn = π: recall Figure 1 that shows examples of such a
configuration. The corresponding standard LSP optimization model is presented next.

Maximize total area of the n-polygon:

maxA(n) =
1
2

n−1

∑
i=1

riri+1 sin(θi+1 − θi). (1)

Prescribed upper bound for the pairwise distance between vertices i and j:

r2
i + r2

j − 2rirj cos
(
θi − θj

) ≤ 1, for 1 ≤ i ≤ n − 2, i + 1 ≤ j ≤ n − 1. (2)

Vertex angle ordering relations:

θi+1 − θi ≥ 0, for 1 ≤ i ≤ n − 2. (3)
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Decision variable bounds, and the two fixed variable settings:

0 ≤ θi ≤ π and 0 ≤ ri ≤ 1, for 1 ≤ i ≤ n − 1; rn = 0, θn = π. (4)

Based on the structure of the LSP configurations found in all of the earlier studies,
next we revise this standard model, by adding the relations shown below.

(i) We postulate bounds on the angle differences, for even n:

θi+1 − θi ≥ π

n
, for 1 ≤ i ≤ n − 2, (5)

θn/2 =
π

2
. (6)

(ii) We postulate the symmetry of the LSP configuration to be found, for even n:

rn/2+i−1 = rn/2−i+1, for 2 ≤ i ≤ n
2

, (7)

θn/2+i−1 = π − θn/2−i+1, for 2 ≤ i ≤ n
2

. (8)

To illustrate these added constraints, we refer again to Figure 1; further examples will
be presented later on. Our preliminary experimentation demonstrated that the symmetry
postulates (7)–(8) for even n, despite reducing the number of decision variables, were
not useful within our numerical optimization study. However, the bound postulates on
the angle differences were useful by effectively tightening the LSP model. As it turns
out, the new constraints are essential to guarantee the performance of the local solver
IPOPT in numerically solving the global optimization problem (1)–(4), with the added
considerations (5)–(6) for even n.

Observe the potential numerical challenge implied by the nonconvex objective function (1)
and constraints (2): the number of these constraints increases quadratically as a function of
n. While the standard LSP(n) model instances have a unique globally optimal solution, the
number of local optima increases with n. Many of the local optima are close in quality to the
(numerically estimated, hence only approximately known) global optimum. These features
make the {LSP(n)} problem-class hard to solve, similarly to many other of the object
configuration design and packing problems arising e.g., in computational mathematics,
physics, chemistry, biology, as well as across a range of engineering applications.

3. Numerical Results for Even Values 4 ≤ n ≤ 1000

The study summarized here was conducted on a laptop PC with the following specifi-
cations: Intel Core i7-7700 CPU @ 3.6 GHz (x-64 processor), 16.0 GB RAM, running under
the Windows 10 Pro (64-bit) operating system.

To formulate directly scalable LSP model versions, we use the Mathematica model
development environment (Wolfram Research, 2022a [9]). To handle these models numer-
ically, we use the IPOPT local nonlinear optimization solver engine (Wächter and Laird,
2022 [10]) linked to Mathematica (Wolfram Research, 2022b [11]). The result analysis and
visualization was also conducted in Mathematica.

Since IPOPT is a local scope solver, it requires an initial solution “guess:” hence, it
greatly benefits from a good choice of that estimate. Considering the postulated structure
of the LSP configurations to be found, for a given n our initial angle settings are chosen
as θi = i(π/n), for 1 ≤ i ≤ n, together with the initial polar radius settings ri = 1 for
1 ≤ i ≤ n − 1; rn = 0

The numerical results obtained by using Mathematica and IPOPT are summarized
below. Detailed LSP(n) configurations (listing all decision variable values found and all
constraints) can be optionally reported by our Mathematica code. All of the optimization
results, with related analysis and visualization, are directly cited from the corresponding
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Mathematica (notebook) documents: thereby, our study is completely reproducible. The
Mathematica notebook is available upon request from the authors.

Table 1 summarizes our results for the selected even values of 4 ≤ n ≤ 1000. Since
the solution times become rather substantial as n increases, we report results only for a
representative selection of even values; however, in principle we could handle all instances
of LSP(n), provably at least up to n ≤ 1000. For example (see Table 1), the runtime for
n = 10 is only 0.06 s; for n = 100 it is still just 9.44 s; but for n = 1000 it becomes 5417.51 s.
We did not conduct systematic tests to find the largest possible numerical instance that we
could handle using Mathematica with IPOPT, noting that all of the modeling systems and
optimization engines have their limitations, also depending on the hardware platform and
other circumstances.

Table 1. Mathematica-IPOPT numerical results for a selection of even values of n.

n Decision Variables Constraints Runtime (Seconds) Objective Function Maximum Violation

4 6 5 0.03 0.500000 9.9636 × 10−9

6 10 14 0.03 0.674981 † 9.9432 × 10−9

8 14 27 0.05 0.726868 † 9.9236 × 10−9

10 18 44 0.06 0.749137 † 9.9046 × 10−9

12 22 65 0.08 0.760730 † 9.8855 × 10−9

14 26 90 0.11 0.767531 † 9.8663 × 10−9

16 30 119 0.15 0.771861 † 9.8472 × 10−9

18 34 152 0.17 0.774788 † 9.8296 × 10−9

20 38 189 0.23 0.776859 † 9.8101 × 10−9

24 46 275 0.32 0.779524 † 9.7801 × 10−9

28 54 377 0.45 0.781111 † 9.7647 × 10−9

32 62 495 0.68 0.782133 † 9.8456 × 10−9

36 70 629 0.82 0.782828 † 9.6522 × 10−9

40 78 779 1.05 0.783323 † 9.6132 × 10−9

44 86 945 1.34 0.783687 † 9.5741 × 10−9

48 94 1127 1.53 0.783964 † 9.5352 × 10−9

52 102 1325 1.85 0.784178 † 9.4967 × 10−9

56 110 1539 3.04 0.784252 * 9.6754 × 10−9

60 118 1769 3.34 0.784408 * 9.6548 × 10−9

70 138 2414 3.92 0.784729 † 9.3199 × 10−9

80 158 3159 4.98 0.784886 † 9.2227 × 10−9

90 178 4004 7.59 0.784994 † 9.1242 × 10−9

100 198 4949 9.44 0.785072 † 9.0264 × 10−9

110 218 5994 11.18 0.785129 † 8.9291 × 10−9

120 238 7139 14.21 0.785172 † 8.8306 × 10−9

130 258 8384 17.52 0.785205 8.7330 × 10−9

140 278 9729 21.39 0.785232 8.7013 × 10−9

150 298 11,174 25.11 0.785254 8.8048 × 10−9

160 318 12,719 29.16 0.785271 8.4389 × 10−9

180 358 16,109 52.43 0.785298 8.2424 × 10−9

200 398 19,899 51.31 0.785317 8.0460 × 10−9

220 438 24,089 64.43 0.785331 7.8491 × 10−9

240 478 28,679 81.60 0.785342 7.6515 × 10−9

260 518 33,669 97.73 0.785350 7.6285 × 10−9

280 558 39,059 118.77 0.785357 7.2925 × 10−9

300 598 44,849 142.19 0.785362 7.0879 × 10−9

320 638 51,039 170.00 0.785367 6.8695 × 10−9

340 678 57,629 202.27 0.785370 6.6526 × 10−9

360 718 64,619 235.11 0.785373 6.4506 × 10−9

380 758 72,009 269.55 0.785376 6.2473 × 10−9

400 798 79,799 316.30 0.785378 6.0432 × 10−9

420 838 87,989 363.92 0.785380 5.8990 × 10−9

440 878 96,579 393.75 0.785381 5.6483 × 10−9
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Table 1. Cont.

n Decision Variables Constraints Runtime (Seconds) Objective Function Maximum Violation

460 918 105,569 464.32 0.785383 5.4201 × 10−9

480 958 114,959 514.01 0.785384 5.2503 × 10−9

500 998 124,749 577.96 0.785385 5.0971 × 10−9

550 1098 150,974 739.51 0.785387 4.4905 × 10−9

600 1198 179,699 948.26 0.785389 4.0205 × 10−9

650 1298 210,924 1228.83 0.785391 3.4442 × 10−9

700 1398 244,649 1460.31 0.785392 2.9080 × 10−9

750 1498 280,874 1857.58 0.785392 2.3883 × 10−9

800 1598 319,599 2342.02 0.785393 1.8715 × 10−9

850 1698 360,824 3177.43 0.785394 1.3518 × 10−9

900 1798 404,549 3846.06 0.785394 8.2861 × 10−10

950 1898 450,774 3721.68 0.785395 * 3.0161 × 10−10

1000 1998 499,499 5417.51 0.785395 * 0.0000 × 100

* Instances for which A(n) ≤ An*. † Instances 6 ≤ n ≤ 120 for which A(n) ≥ An* as reported in Bingane (2020) [7].

The legend used is self-explanatory, “Maximum violation” refers to the maximal
constraint violation at the numerical optimal solution. One can verify the linear increase
in the number of decision variables and the rapid quadratic increase in the number of
constraints as a function of n (recall the LSP model). The model instance for n = 1000 has
almost two thousand decision variables and nearly half a million constraints.

For even n ≥ 6, it was shown in Mossinghoff (2006) [6] and Bingane (2022) [12] that the
best known general lower bound is given by the diameter graph of an optimal n-polygon
that has a cycle of length n− 1 plus one additional edge from the remaining vertex. As such,

A(n) > An =
n − 1

2

(
sin

π

n − 1
− tan

π

2n − 2

)
+ sin

π

2n − 2
− 1

2
sin

π

n − 1
. (9)

Our results satisfy this general lower bound except for A(56), A(60), A(950), and
A(1000). See Table 1. Indeed, equation (9) provides a very good general lower bound and
it could be used as an additional constraint in the LSP optimization model. We note that
Mossinghoff (2006) [6] and Bingane (2022) [12] obtained better asymptotic lower bounds
by explicit instance constructions, which are not generally applicable as equation (9). In
Table 1, we also indicate the instances 6 ≤ n ≤ 120 for which A(n) ≥ A∗

n (the optimal
values of the maximal area problem for even n) as reported in Bingane (2020) [7].

Although Table 1 shows the optimized A(n) values with only six digits after the deci-
mal point, the reported precision in our detailed numerical tests (within Mathematica) is set
to ten digits after the decimal point. To illustrate, our estimate for A(1000) approximately
equals 0.7853949284. Using such higher precision is in line with the required constraint
satisfaction level, all in the order of 10−9 as shown in the table. The preset 10-digit precision
also supports the in-depth comparisons with results obtained earlier. Specifically, our
results are in close agreement with or surpass all of the best numerical results reported
earlier, including Mossinghoff (2006) [6], Bingane (2020) [7], and Pintér (2021) [8], with
reported comparisons to all earlier topical works known to us. Our modeling and opti-
mization approach enables solving LSP(n) instances for significantly higher values of n
than previously achieved by other researchers using a variety of modeling platforms and
solver engines.

Figures 2 and 3 display the solutions found for a selection of even sequences of n,
showing all of the pairwise vertex connections. As expected, the configurations found
quickly approach the circle, as n increases.

Figure 4 summarizes the difference between the area A(n) of the optimized polygon
and π/4 as a function of n, on a loglog-plot scale. Our calculations reveal a small, but
non-negligible difference: the numerically estimated slope of the plot for an even number
of sides is approximately −2.04618.
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Figure 2. Conjectured largest small polygons LSP(n) for n = 6, 8, 10, 12, 14, 16, 18, 20.

       

       

Figure 3. Conjectured largest small polygons LSP(n) for n = 30, 40, 50, 60, 70, 80, 90, 100.

Figure 4. Difference between the area A(n) of the optimized polygon and π/4, for selected even
values 4 ≤ n ≤ 150.
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We conclude the presentation of numerical results by emphasizing that the tightened
LSP model offers advantages over the standard model. Specifically, IPOPT performs well
on the tightened model, but it exhibits inferior performance on the standard model for
values 6 ≤ n ≤ 80, as observed by Pintér (2021) [8]. Figure 5 illustrates the superior
IPOPT performance on tightened LSP model-instances up to n = 300, when compared to
Figure 6 (standard LSP model with the same fixed starting solution as used in the tightened
model) and Figure 7 (standard LSP model with n random starting solutions). In the latter
case, the solver runtimes also become longer; therefore, we conducted experiments only
up to n = 100.

 
Figure 5. IPOPT performance on tightened LSP model-instances up to n = 300. Difference between
the area A(n) of the optimized polygon and π/4.

 
Figure 6. IPOPT performance on standard LSP model-instances, with the proposed starting solution,
up to n = 300. Difference between the area A(n) of the optimized polygon and π/4.
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Figure 7. IPOPT performance on standard LSP model-instances, with random starting solutions up
to n = 100. Difference between the area A(n) of the optimized polygon and π/4.

4. LSP(n) Regression Model for Even n

As it is known, and illustrated by Figures 2 and 3, for large n the optimal LSP(n)
configuration approaches the circle with unit diameter; hence the corresponding area limit
is A(∞) = π/4 ∼ 0.7853981634. Comparing this limit value to our optimum estimate
obtained for A(1000) ∼ 0.7853949284, the ratio A(1000)/(π/4) approximately equals
0.9999958811. Hence, our A(1000) estimate already leads to a fairly close approximation of
the limit value.

Based on this observation and using our numerical results, we developed the following
regression model for even values of n.

A(n) ∼ π

4
− 5π3

48n2 − 3.530190
(

1
n3

)
− 2.391836

(
1
n4

)
− 19.489487

(
1
n5

)
. (10)

This regression model follows the form outlined in Foster and Szabo (2007) [13] and
we received p-values (observed significance levels) well below 0.000001 for all coefficients.
This finding indicates that we have very strong statistical evidence suggesting that the
regression coefficients are all different from zero. Figure 8 depicts the predicted results
using model (10).

 

Figure 8. The nonlinear regression model (10) predicting A(n) shown for even 4 ≤ n ≤ 1000.
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Since the two sequences closely overlap, the preceding figure depicting observed vs.
predicted A(n) results become more useful when we zoom in and reduce the ranges
considerably. In Figure 9, we display observed vs. predicted A(n) results for 24 ≤ n ≤ 100
and 0.779 ≤ A(n) ≤ 0.785. The observed vs. predicted sequences appear visually different
from each other only with high levels of magnification.

 

Figure 9. Zooming in: observed vs. predicted A(n) results applying the regression model (10) for
even 24 ≤ n ≤ 100.

The regression model (10) can be used to directly estimate the selected values from the
entire sequence {A(n)}, including larger values of n which have not been studied earlier
and may be out of the range of current optimization solver capabilities. For example,

A(2000) ∼ 0.7853973555, A(10000) ∼ 0.7853981311.

It is instructive to compare these estimates to A(∞) = π/4 ∼ 0.7853981634. Earlier
numerical examples, with a different regression model based on results for even 6 ≤ n ≤ 80,
are presented in Pintér (2021) [8].

5. Conclusions

Our study addresses the problem of numerically finding the sequence of the largest
small n-polygons LSP(n) with a unit diameter and maximal area of A(n), in principle
aiming for all of the even values of n ≥ 4. This long-standing mathematical “puzzle”
leads to an interesting class of nonlinear (global) optimization problems. We proposed a
tightened LSP model and demonstrated its numerical advantages compared to the standard
model. Using the Mathematica modeling environment with the IPOPT solver option, and
our new initial solution estimate, we can find numerical solutions efficiently for a range of
even values of n, up to n ≤ 1000. Our results compare well to all the best results reported
earlier for significantly lower values of n. We also propose a regression model that enables
the direct estimation of the optimal area sequence {A(n)}, for even values of n.

The LSP problem-class is one of those entertaining “puzzles” that can be described
in a few words yet lead to surprisingly hard theoretical and numerical challenges. There-
fore, this model-class—similarly to many other scientifically important configuration design
models—can also be used in software benchmarking tests. We think that such problems serve
as a significant addendum to the collection of (well-frequented, and often much simpler)
unconstrained or box-constrained test problems. For further examples of increasingly hard-to-
solve object configuration models, we refer to some of our studies: consult, e.g., Castillo et al.
(2008) [14], Pintér et al. (2017) [15], Kampas et al. (2019) [16], Kampas et al. (2020) [17].
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