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Enrique Hernández-Garcı́a, Sergio Ruiz-Carmona and Norma A. Valdez-Cruz et al.

Computational Design of Inhibitors Targeting the Catalytic Subunit of Escherichia coli FOF1-ATP
Synthase
Reprinted from: Antibiotics 2022, 11, 557, doi:10.3390/antibiotics11050557 . . . . . . . . . . . . . . 55

Maylin Romero, Yovani Marrero-Ponce, Hortensia Rodrı́guez, Guillermin Agüero-Chapin,
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Preface to ”Computational Approaches in Discovery

& Design of Antimicrobial Peptides”

Antimicrobial resistance continues to be a pressing concern in the field of medicine,

especially during the COVID-19 pandemic, where microbial infections were frequently observed as

side-complications. To combat antibiotic-resistant pathogens, there has been a renewed interest in the

use of antimicrobial peptides (AMPs). The naturally occurring AMPs have shown great promise in

the search for new antibiotics. To this end, various computational approaches have been developed to

assist in the search for and design of new AMPs. These computational methods range from classical

homology-based and machine-learning prediction algorithms to complex similarity networks and

evolutionary algorithms that use models of sequence evolution. Moreover, the improvement of

high-throughput screening techniques in the discovery of AMPs from biological samples has also

led to the evolution of computational approaches that aid in this biodiscovery process. This reprint is

aimed at disclosing original research and review papers on in silico approaches used for the rational

discovery and design of AMPs, addressed to the problem of antimicrobial resistance. The reprinted

content will serve as a reference for researchers dedicated to peptide drug development.

Agostinho Antunes, Guillermin Agüero-Chapin, and Yovani Marrero-Ponce

Editors
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A 2022 Update on Computational Approaches to the Discovery
and Design of Antimicrobial Peptides
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4450-208 Porto, Portugal

2 Department of Biology, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
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Robles y vía Interoceánica, Quito 170157, Pichincha, Ecuador
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Ensenada (CICESE), Ensenada 22860, Baja California, Mexico

* Correspondence: gchapin@ciimar.up.pt (G.A.-C.); ymarrero@usfq.edu.ec (Y.M.-P.)

The antimicrobial resistance process has been accelerated by the over-prescription and
misuse of antibiotics. The World Health Organization (WHO) has listed it as one of the top
10 global public health threats. This worrisome situation has encouraged the search for new
classes of antimicrobial agents, leveraging the ability of antimicrobial peptides (AMPs) to
overcome resistance, mainly due to their versatile mode of action and multifunctionalities.
However, the discovery of promising AMPs with relevant biological activities is a real
challenge, considering the great structural diversity of the AMP class and their under-
representation in terms of non-bioactive peptides. Consequently, several databases and
computational approaches have been developed for over two decades to assist in the long
development process of peptide-based drugs.

This Special Issue, entitled “Computational Approaches to the Discovery & Design of
Antimicrobial Peptides,” is mainly dedicated to state-of-the-art in silico approaches ap-
plied to the discovery and design of AMPs for therapeutic purposes. In this sense,
Agüero-Chapin et al. published a comprehensive review article on emerging in silico ap-
proaches to the search for/design of bioactive peptides, from new machine learning (ML)
algorithms to other non-conventional methodologies, such as complex networks and algo-
rithms simulating peptide sequence evolution. New considerations incorporated into the
biodiscovery workflow for unravelling AMPs from omics data were also analyzed [1].

Aligning with the previously mentioned review, Ruiz-Blanco et al. developed a new
machine learning (ML)-based classifier for the detection of antibacterial peptides (ABPs)
and their putative targets, including multi-drug-resistant (MDR) bacterial strains. The ML
model was implemented in a web server called “ABP-Finder”, which is one of the most state-
of-the-art ABP predictors, with a proven high precision when detecting a promising peptide
hit against P. aeruginosa during the screening of large databases such as the human urine
peptidome [2]. The revision also comprised non-conventional methodologies applied to the
field of AMPs. For example, García-Hernández et al. repurposed ROSE (Random Model of
Sequence Evolution), an algorithm simulating sequence evolution, to generate diversity-
oriented libraries of peptides as one of the steps for the de novo design/optimization of
antibacterial peptides (ABPs) by inhibiting the E. coli FoF1-ATP synthase [3].

On the other hand, Marrero-Ponce et al. applied network science to study the chemical
space of tumor-homing peptides (THPs) by using alignment-free similarity networks and
centrality measures to identify the most relevant and non-redundant THPs within the
network. Such THPs, representing the original TH chemical space, were considered as
references for multi-query similarity searches that apply a group fusion (MAX-SIM rule)
model. The resulting multi-query similarity searching models outperformed state-of-the-art
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predictors in the detection of THPs in benchmark datasets. This approach also served to
search for THP leads and to discover TH motifs [4].

Related to the previously discussed on the new considerations and tools incorporated
into the workflow for AMP biodiscovery [1], Birol et al. developed rAMPage, a scalable
bioinformatics tool for identifying AMP sequences from RNA sequencing (RNA-seq)
datasets. rAMPage was extensively evaluated on publicly available RNA-seq datasets
from amphibian and insect species. It identified 1137 putative AMPs, of which 1024
were considered novel by homology criteria. From these, 21 peptides were tested for
antimicrobial susceptibility against two bacteria species, E. coli and S. aureus, and 7 showed
high activity. Thus, rAMPage can be integrated into the workflow for AMP biodiscovery to
accelerate the process of antimicrobial drug development [5].

Although transcriptomic and proteomic analyses can streamline the biodiscovery work-
flow of AMPs by focusing on gene coding and protein expression, such high-throughput
screening can be performed at the genomic level to unravel both encoded and cryptic
AMPs. Hancock et al. proposed profile hidden Markov models to screen the genomes
of four crocodilian species for identifying encoded cathelicidin sequences. Cathelicidins
are one of the largest family of host defense peptides, showing a broad-spectrum activity
against planktonic bacteria and some biofilm, as well as other beneficial features such as
anti-inflammatory properties. Eighteen novel cathelicidin sequences were identified and
subsequently synthetized and evaluated in vitro against planktonic and biofilm bacteria.
Among the cathelicidins which displayed a broad-spectrum antimicrobial and antibiofilm
activity against a range of antibiotic-resistant bacteria, As-CATH8 was highlighted because
of its similar profile to the last-resort antibiotics vancomycin and polymyxin B [6]. An alter-
native method of searching for AMPs at the genomic level involves the in silico detection of
corresponding biosynthetic gene clusters (BGCs). Ashraf et al. sequenced the genome of the
Streptomyces sp. isolate BR123 and used the online antiSMASH (antibiotics & Secondary
Metabolite Analysis Shell) platform to analyze the resulting assembled regions. Multiple
BGCs were detected that were involved in the production of antimicrobial, antiparasitic,
and anticancer compounds [7].

Two additional review papers were published in this Special Issue. Rivera-Fernández et al.
examined the experimental effects of various bioactive peptides on Apicomplexan parasites,
which are responsible for a range of dangerous diseases, such as toxoplasmosis, cryptosporid-
iosis, and malaria. They also discussed some biological and metabolomic generalities of the
parasites to explain the mechanisms of action of the peptides on the Apicomplexan targets [8].
The other review paper was written by Prof. Juretić, which emphasizes the importance of
designing multi-functional peptides that can reach intracellular targets in order to develop
more effective peptide drugs. The review ranked known and novel peptides based on their
predicted low toxicity to mammalian cells and broad-spectrum activity. The 20 most promising
candidates that exhibited optimized cell-penetrating, antimicrobial, anticancer, anti-viral, anti-
fungal, and anti-inflammatory activities were identified. These peptides also have the ability to
form an amphipathic structure upon contact with membranes or nucleic acids [9].

Prof. Juretić’s work also mentioned the urgent need to develop antifungal compounds
that target intracellular molecules as a strategy to combat multidrug-resistant (MDR)
pathogens such as Cryptococcus neoformans, which pose a threat to immunocompromised
patients. Consequently, the study by Souza et al. designed and tested anticryptococcal
AMPs and provided further information on their mechanism of action against C. neoformans
using computational and experimental analyses [10].

Author Contributions: All authors wrote and reviewed the manuscript. All authors have read and
agreed to the published version of the manuscript.

Funding: This work was financially supported by national funds through FCT—Foundation for
Science and Technology of Portugal within the scope of UIDB/04423/2020 and UIDP/04423/2020
and by the USFQ Collaboration Grant (Project ID16911).

Conflicts of Interest: The authors declare no conflict of interest.
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Abstract: In the last two decades many reports have addressed the application of artificial intelli-
gence (AI) in the search and design of antimicrobial peptides (AMPs). AI has been represented by
machine learning (ML) algorithms that use sequence-based features for the discovery of new peptidic
scaffolds with promising biological activity. From AI perspective, evolutionary algorithms have
been also applied to the rational generation of peptide libraries aimed at the optimization/design of
AMPs. However, the literature has scarcely dedicated to other emerging non-conventional in silico
approaches for the search/design of such bioactive peptides. Thus, the first motivation here is to bring
up some non-standard peptide features that have been used to build classical ML predictive models.
Secondly, it is valuable to highlight emerging ML algorithms and alternative computational tools to
predict/design AMPs as well as to explore their chemical space. Another point worthy of mention is
the recent application of evolutionary algorithms that actually simulate sequence evolution to both
the generation of diversity-oriented peptide libraries and the optimization of hit peptides. Last but
not least, included here some new considerations in proteogenomic analyses currently incorporated
into the computational workflow for unravelling AMPs in natural sources.

Keywords: artificial intelligence; machine learning; AMPs; evolutionary algorithms; molecular
descriptors; complex networks; proteogenomics

1. Introduction

The rise of resistance to antimicrobial agents evidenced in the last decades have
caused excess healthcare costs worldwide [1]. The microbial natural resistance process,
moved by evolutionary events, has been accelerated by the over-prescription and misuse of
antibiotics [2]. This worrying situation has encouraged the search of new antibiotics from
antimicrobial peptides (AMPs) with the ability to overcome resistance, mainly given by
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their versatile mode of action [3].Indeed, AMPs are not only considered for the development
of antibiotics to treat multi-resistant bacterial strains [4,5], but also they are promising for
the developing of antitumoral [6], antiviral [7], antifungal agents [8] and so on.

The discovery of peptides with relevant biological activities is a real challenge consid-
ering the great diversity of AMPs in terms of origin, structure, mode of action, activity, and,
on the other hand by considering the overabundance of natural-occurring non-bioactive
peptides [8]. Thus, several AMP databases with associated machine learning (ML)-based
classifiers have been developed for over one decade, in order to assist wet-lab researchers
in the long development process of peptide-based drugs [9]. AMP databases such as
DAMPD [10], CAMPR3 [11], LAMP [12], DRAMP [13], ADAM [14], DBAASP [15] have in-
corporated ML predictors trained with alignment-free (AF) protein features such as amino
acid (aa) and pseudo-aa composition, structural features, word frequency-based features,
physicochemical aa properties with influence on the AMP activity, and some others [16,17]
(Table 1). Figure 1 illustrates how databases and ML algorithms have been integrated to
assist the discovery/design of AMPs for the developing of peptide drugs.

Figure 1. Workflow illustrating peptide drug discovery. The strategy involves the screening of query
peptides from either natural or synthetic sources by applying ML models trained with the information
stored in AMP databases. ML algorithms also assist the optimization/design step of lead peptides by
means of a fitness/selection criterion [18,19].

The prediction tools built up with Support Vector Machine (SVM) and Random Forest
(RF) based classifiers have been widely applied, but hardly considered the natural imbal-
ance between the AMPs and non-AMPs [18]. On the other hand, emerging ML techniques
such as Deep-Learning Neural Networks [18–21] and those based on the Rough Set The-
ory [22,23] have been applied to improve certain classification pitfalls like the quality in the
learning phase and the classification boundaries between AMPs and non-AMPs, respec-
tively. Although most of the classical predictive tools have focused on if a query peptide
is an AMP or not, without targeting a specific biological activity among the reported for
the AMPs [24], the current tendency is to address a hierarchical multi-level classification
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by downstream considering the specific biological activities of the AMPs as labels e.g., the
antibacterial, antifungal, antiviral and antitumoral among others.

The most popular hierarchical multi-label classifiers, also listed in Table 1, are the
following: (i) the iAMP-2L, a two-level classifier trained with Chou’s pseudo amino acid
composition (PseACC) [25], aimed at identifying AMPs and their five functional types [26],
(ii) the iAMPpred predictor that combines compositional, physicochemical, and structural
features into Chou’s general PseACC for training a SVM multi-classifier [16], (iii) the
MLAMP, a RF-based classifier built up with a non-classical PseACC sequence formulation
incorporating a Grey Model that firstly discriminates AMP from non-AMPs, and then
subclassify their biological activities into antibacterial, anti-cancer, antifungal, antiviral,
and anti-HIV [27], (iv) the Antimicrobial Activity Predictor (AMAP) [28], a hierarchical
multi-label classifier targeting 14 biological activities that is built up with SVM and XGboost
tree [29] algorithms trained with amino acid composition (ACC) features, (v) the AMPfun
webserver containing RF-based models that firstly classify AMPs and non-AMPs and after-
wards address the prediction of AMPs functional activities including their possible target
types [30], and more recently, the (vi) AMPDiscover [31] and the (vii) ABPFinder webservers
(https://protdcal.zmb.uni-due.de/ABP-Finder/index.php; accessed on 7 March 2022) con-
taining hierarchical RF-based classifiers built up with protein descriptors from the ProtDCal
software [32] to firstly detect AMPs and antibacterial peptides (ABPs), respectively. While
the AMPDiscover uses several downstream RF models to predict AMPs specific functions
(antibacterial, antifungal, antiparasitic and antiviral), the ABP-Finder sub-classifies ABPs
according to the Gram staining type of the potential targets (Gram-positive, Gram-negative
bacteria, or broad-spectrum peptides with expected activity against both types of bacteria)
by using a multi-classifier. The high success classification rates of both tools stems from
considering the StarPep database [33] which is probably the most comprehensive curated
repository of AMPs so far, and from performing an applicability domain (AD) analysis for
the proposed ML models [31]. Both, AMPDiscover and ABP-Finder defined ADs for their
corresponding RF-based models, however, AMPDiscover perform a rigours AD analysis at
applying a consensus-based decision from five different approaches [31].

Despite the great number of reported ML-based tools for AMPs prediction, only few
ones have considered the lack of balance among either the specific activities of AMPs
or among their putative targets, as well as the AD of their corresponding models. The
imbalance among AMPs and non-AMPs as well as the existing one among AMP activities
was addressed by applying the synthetic minority over-sampling technique (SMOTE)
during the IAMPE and MLAMP building [27,34] while the ABP-Finder addressed the
imbalance among the bacterial target types of the ABPs (Gram+, Gram- and Gram+/-
bacteria) by training a RF multi-classifier with a cost matrix weighting the different types
of misclassified cases according to the imbalance ratio between the two classes (https:
//protdcal.zmb.uni-due.de/ABP-Finder/index.php; accessed on 7 March 2022).

On the other side, artificial intelligence (AI)-derived approaches like evolutionary algo-
rithms have been applied to optimize lead candidates retrieved from the high-throughput
screening in drug discovery. Evolutionary algorithms are inspired on several evolutionary
events occurring in nature; they generally start with a small population of peptides identi-
fied as putative leads due to its relevant biological activities. The optimization is carried
out by the generation of offspring peptides from these initial peptides by applying several
operators simulating natural evolutionary process like cross-over and mutation operators,
a parent and survival selection algorithms [40,41]. A parent selection algorithm is firstly
applied on the initial peptide population to select the best parent peptides for the offspring
generation. The survival aims at selecting a subset of good individuals (new population)
from the generated offspring peptides. Then, the new peptide population will be iteratively
subjected to the parent selection algorithm, evolutionary operators and the survival selec-
tion until finding an offspring peptide meeting a termination condition (selection criteria
in Figure 2). The selection criteria can be represented by a fitness function which can be
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a ML model scoring peptide bioactivity. This selection process may be accompanied to
experimental evaluations against the desired biological activities [42] (Figure 2).

Table 1. Summary of the most relevant ML approaches, from the classical to the emerging ones, for
assisting the discovery of bioactive peptides from AMPs.

Classical AMP Prediction Tools

Integrated to
Database

ML Algorithm Peptide features Implementation Ref.

CAMPR3
RF, SVM,
ANN, DA

AAC, net charge,
hydrophobicity http://www.camp3.bicnirrh.res.in/prediction.php [11]

DRAMP 3.0 ANN, SVM, RF Secondary structure features http://shicrazy.pythonanywhere.com/ [13]

ADAM SVM AAC http://bioinformatics.cs.ntou.edu.tw/adam/tool.html [14]

DBAASPv3.0
Threshold
value-based
discrimination

Physicochemical properties
acconuting for the
interaction with membrane

https://dbaasp.org/tools?page=general-prediction [15]

Independent
Tools

ClasssAMP * RF, SVM Sequence-based features http://www.bicnirrh.res.in/classamp/predict.php [35]

iAMPpred * SVM
compositional,
physicochemical, and
structural features

http://cabgrid.res.in:8080/amppred/server.php [16]

iAMP-2L ** k-NN PseAAC http://www.jci-bioinfo.cn/iAMP-2L [25]

AmPEP RF Sequence-based features https://cbbio.online/software/AmPEP/ [36]

amPEPpy RF Global protein sequence
descriptors https://github.com/tlawrence3/amPEPpy [37]

AMPScannerv1 ** RF Physicochemical features https://www.dveltri.com/ascan/v1/index.html [38]

AMPfun ** RF

AAC-based features,
physicochemical features
and word frequency-based
features

http://fdblab.csie.ncu.edu.tw/AMPfun/index.html [30]

AMAP ** SVM and
XGboost tree AAC-based features http://amap.pythonanywhere.com/ [28]

Emerging AMP prediction tools

MLAMP ** RF Non-classical PSeAAC http://www.jci-bioinfo.cn/MLAMP [27]

IAMPE RF, k-NN, SVM,
XGboost NMR-based features http://cbb1.ut.ac.ir/AMPClassifier/Index [34]

AMPDiscover ** RF/DNN Non-classical protein
features (ProtDCal) https://biocom-ampdiscover.cicese.mx/ [31,39]

ABP-Finder ** RF Non-classical protein
features (ProtDCal) https://protdcal.zmb.uni-due.de/ABP-Finder/index.php [Unpub]

AMPScannerv2 DNN AA alphabet https://www.dveltri.com/ascan/v2/ascan.html [19]

ACP-DL DNN Binary profile feature and
K-mer sparce matrix https://github.com/haichengyi/ACP-DL (Standalone) [20]

xDeep-AcPEP * DNN
Physicochemical,
biochemical, evolutionary
and positional

https://app.cbbio.online/acpep/home [21]

Methods listed in Table 1 are currently active (Accessed on 7 March 2022) * Multi-label classifiers allowing the
prediction of specific biological activities (antibacterial, antifungal, antiviral, antitumoral and others) from AMPs
** Hierarchical multi-label classifiers addressing firstly AMPs detection and in the second level their specific
biological activities. ACC: amino acid composition, ANN: artificial neural networks, DA: discriminant analysis,
DNN: deep neural networks, k-NN: k- nearest neighbours, NMR: nuclear magnetic resonance, PseAAC: pseudo
amino acid composition, RF: random forest, SVM: support vector machine.
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Figure 2. Workflow illustrating the main steps of evolutionary and genetic algorithms. Both ap-
proaches are very similar, in fact the use of evolutionary and genetic terms have been interchangeable.
Genetic algorithms particularly use a fixed-length binary array to represent peptides as genes into a
chromosome-like structure.

The genetic algorithm is the most popular technique among the evolutionary ap-
proaches where the peptides with promising biological properties (initial solution) are
encoded as binary strings into chromosome-like structures, called genotypes. The opti-
mization process is performed by evolving each chromosome toward optimized solutions
by iteratively applying genetic recombination (crossover) operators and survival fitness
functions that is somehow similar to the parent selection mechanism [40,42–44]. Optimized
solutions in the case of peptides consist in generating structural entities with optimized
biological properties e.g., peptides showing a trade-off among their pharmaceutical potency,
solubility, haemolytic and toxicity properties [42] (Figure 2).

Despite AI-derived approaches have been largely applied to the rational search and
design of bioactive peptides; most of them are represented by classical ML and evolutionary
algorithms that frequently also use canonical sequence-based features as peptide descriptors
and therefore have been documented in literature [18,45,46]. However, there is a growing
number of emerging computational approaches effectively applied to the search/design of
bioactive peptides that are comprehensively revisited here (Table 1).

Most of the non-standard approaches are represented by classical ML algorithms
which are either trained with non-conventional peptide features [31] or combined with
sequence alignment methods [47]. In addition to the singularity of these predictors; pre-
processing steps managing the natural imbalance between bioactive and inactive peptides
have been hardly applied to the AMPs predictions [27,34] as well as no big data solutions
have been implemented yet to address scalability problems. As mentioned before, other less-
known ML algorithms in the field of protein/peptide science like those based on the Rough
Sets Theory (RST) are being currently intended for peptide classification/design [22,48].
Moreover, a non-conventional methodology that analyses the known chemical space of
bioactive peptides by similarity networks was developed to identify the most relevant ones
for each specific biological activity [33]. Such representative peptides were recently used
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in multi-query similarity searches against the StarPep database to repurpose AMPs for
specific activities such as antiparasitic and tumour homing [49,50].

By other side, evolutionary algorithms that simulate sequence evolution have been
recently applied to design/optimize peptides having a pharmaceutical activity [51,52]. Last
but not least, computational tools used in proteogenomic analyses are being modified for
uncovering cryptic peptides with biological activities in natural sources [53,54]. From now
on we go deeper into these emerging approaches in peptide search and design

2. Non-Classical Peptide Features for Bioactivity Prediction

2.1. Peptide Features Inspired in Molecular Descriptors Used in Cheminformatics

There is a set of chemoinformatics-derived peptide features considered as “non-
conventional” because of its in-house development; however, have been successfully ap-
plied in the recognition of bioactive peptides by ML-based classifiers [31,55–58]. The defini-
tion of these peptide/protein features is generally inspired on the mathematical formalisms
applied to the calculation of molecular descriptors for small organic molecules [59,60],
which have been traditionally used to Quantitative-Structure-Activity Relationship (QSAR)
studies for drug design/search. Most of them are classified as topological descriptors since
they consider the connectivity either between adjacent amino acids (aas) or between aa
groups by using both algebraic and statistic invariants [32,61,62].

Those based on algebraic forms express protein/peptide structural topology through
the definition of connectivity or adjacency matrices. The elements of these matrices (nij or eij)
reflect topological relationships between the aas or aa groups, they are equal to 1 if i and j are
adjacent otherwise take the value of 0. Topological indices (TIs) are estimated by applying
several algorithms on the connectivity/adjacency matrix. The most common algorithms
for the TIs calculation involve the powers of the topological matrix, the multiplication of a
property vector by the topological matrix and the multiplication of vector-matrix-vector
(Figure 3). Many of the most popular TIs within the cheminformatic have been defined by
these algebraic formalisms, such as the Winner index (W) [63], the Randić invariant (χ) [64],
Broto–Moreau autocorrelation (ATSd) [65], the Balaban index (J) [66], and the spectral
moments introduced by Estrada [59]. Thus, many of them were reformulated to describe
the spatial topology of aa sequences at different structural levels, e.g., linear sequences (1D),
pseudo-secondary structure (2D) and the 3D-dimensional space [61,62] (Figure 3).

Figure 3. Workflow for the calculation of topological indices from several representation types of the
cyclopentapeptide [CPFVC] with promising antiviral activity against the hantavirus cardiopulmonary
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syndrome [67]. Each peptide representation defines a singular topological matrix (TM) encoding
structural features at different degrees. In addition to the several ways to represent the topology of a
peptide (linear, circular, 2D-Cartesian), several algebraic formalisms/operators can be applied on
the TM to calculate different topological indices (TIs) types. n represents the nodes in the peptidic
representations (linear, circular, and Cartesian) as well as in their corresponding TMs, which may
contain some elements in red font (e.g., n4 and 1) to highlight differences in structural encoding
from the cyclopentapeptide. N indicates the number of rows and columns of matrices involved in
TI calculation.

On the other hand, there is another set of topological descriptors that also comes
from the chemoinformatic field that have been applied to the identification and design
of AMPs [31,52,56,58]. They are not formulated by using algebraic forms but rather they
rely on descriptive statistics as invariant operators on the aa properties either along the
sequence or the 3D protein structure. In this case, the 1D or 3D topology is encoded by the
application of classic cheminformatics algorithms that consider the neighborhood such as
autocorrelation [65], Kier-Hall’s electro-topological state [68], Ivanshiuc-Balaban [69], and
Gravitational-like operators [70].

2.1.1. Topological Indices from Algebraic Forms

Among the TIs defined for small molecules, the spectral moments formalism probably
is one of the most extended to characterize proteins and peptides structures [61,62,71,72].
The spectral moments may encode peptide structures through the definition of their corre-
sponding topological matrixes and the application of the trace operator on the k-th power
of such matrixes (Figure 3).

A sort of stochastic spectral moments applied to the electronic or charge delocalization
of the aas within the peptide backbone and the entropy involved on such delocalization,
were applied to model the bitter tasting threshold of dipeptides by linear discriminant
and regression analyses [57]. These non-standard peptide features provided accuracies
higher than 83% in the detection of bitter taste, and the regression models could explain the
experimental variance of the bitter tasting threshold in more than 80%. It was shown the
non-standard peptide descriptors correlate with the bitter taste as good as or even better
than other well-known peptide features like the z-scale [73].

The spectral moments have been also applied to characterize bacteriocins. Bacte-
riocins are peptidic toxins produced and exported by bacteria as a defense mechanism
to kill or inhibit the grow of other strains but the producer. The bacteriocins are very
attractive for the development of new antibiotics and anticancer agents, however their
high structural diversity represents a challenge for alignment-based predictive tools. Since
the hydrophobicity and basicity of bacteriocins are relevant for their antibacterial activity,
Agüero-Chapin et al. introduced the 2D-Hydrophobicity and Polarity (2D-HP) maps to
pseudo-fold bacteriocin protein sequences in order to derive a set of spectral moments en-
coding information beyond the linear sequence [74] (Figure 4). These TIs are implemented
in the Topological Indices to Biopolymers (TI2BioP) software [75] and were useful to build
an AF model based on Linear Discriminant Analysis with a higher sensitivity (66.7%) than
the attained by InterProScan (60.2%). In addition, they could detect cryptic bacteriocins,
ignored by alignment methods [74].
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Figure 4. Different structural representations for the channel-forming domain of Colicin E1 (pdb
2I88). A—Primary structure, B—Pseudo secondary Cartesian map of hydrophobicity (H) and polarity
(P) (2D Cartesian (HP) map), C—Three-dimensional structure. The 2D Cartesian protein map is an
arbitrary bidimensional arrangement (pseudo-folding) of the protein/peptide sequences bearing
higher-order useful patterns than contained in linear sequences.

2.1.2. Topological Indices from Descriptive Statistics

The cheminformatic-derived protein descriptors that have been widely applied to
the prediction and design of bioactive peptides were developed and implemented by
Ruiz-Blanco et al. in the ProtDCal software [32]. ProtDCal provides a great diversity of
protein/peptide descriptors thanks to its divide-and-conquer methodology that considers
both the aa properties and those estimated for groups, which can be modified by the
neighbourhood through the application of classic previously-mentioned chemoinformatics
algorithms. The modified properties of the aas or their resulting groups are later aggregated
using statistical operators to estimate local or global descriptors either at sequence or 3D
structural level. Although a more detailed description of ProtDCal’s protein descriptors can
be found in [32], the Figure 5 shows an schematic representation of the protein descriptor
generation process of ProtDCal. The diversity of ProtDCal’s protein descriptors represented
by different families stems from combinatorically applying different aa properties, the ways
to consider the vicinity to the target aa by several operators, the criteria used to group the
aas as well as the invariant operator used for aggregating aa properties within the same
array (Figure 5).

ProtDCal’s descriptors have been involved in the discovery of antibacterial peptides by
developing a non-conventional multi-target QSAR models [56]. Despite the AMPs selected
for training were evaluated against multiple targets (Gram-positive bacterial strains), they
could be integrated in the same model by modifying their ProtDCal’s descriptors through
the Box-Jenkins moving average operator. This operator allows modifying the sequence-
based descriptors by subtracting the corresponding mean of the descriptors of all AMPs
assayed against the same Gram-positive bacterial strain. This is a way to particularize a
sequence-based descriptor by incorporating information about the experimental conditions
or biological assays. With this kind of descriptors, the multi-target cheminformatic model
displayed percentages of correct classification higher than 90.0% in both training and
prediction (test) sets [56].
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Figure 5. Schematic representation of ProtDCal’s descriptors calculation. 1D and 3D protein fea-
tures implies the application of vicinity operators to modify amino acid (aa) properties while 0D
features estimation go straightforward to group the original aa properties according to several
grouping criteria.

Similarly, the same authors also applied the Box-Jenkins moving average operator to
develop non-conventional multi-task QSAR models able to predict simultaneously antibac-
terial activity and toxicity [58]. This time, the continuous response variables measured on
AMPs such as minimum inhibitory concentration (MIC), cytotoxic concentration at 50%
(CC50), and haemolytic concentration at 50% (HC50) were transformed in a binary variable
labelled as (1) referred to high antibacterial activity/low cytotoxicity, and (−1) assigned
to low antibacterial activity/high cytotoxicity. The ProtDCal’s descriptors that usually
encodes only peptide features were modified by the Box-Jenkins moving average operator
in order to consider the variability implying the evaluation of the antimicrobial activity
and toxicity on different biological systems. Thus, a multi-task QSAR model displayed
an accuracy higher than 96% for classifying/predicting peptides was built by using LDA
discriminant [58].

ProtDCal’s descriptors have also been involved in the design of new peptides that
inhibit the E. coli ATP synthase, as putative antibiotics [52,76]. ProtDCal’s descriptors,
implemented in PPI-Detect [77], were applied to predict interactions between peptides and
the main subunits of E. coli’s (Ec) and human’s (Hs) F1Fo-ATP synthase. Those peptide
with a maximum and a minimum interaction likelihood with EcF1Fo and HsF1Fo were
selected for in vitro assays. An overall of three peptides resulted attractive for further
optimization steps in the design of new antibiotics [52,76].

More recently, ProtDCal’s protein descriptors were successfully applied to improve
the prediction performance of the existing alignment-free models by using the largest ex-
perimentally validated non-redundant peptide dataset reported to date, the StarPepDB [78],
together with Random Forest (RF) classifiers [31]. Pinacho-Castellanos at al. not only
built RF-based models for identifying AMPs, but also addressed the main biological ac-
tivities reported for them (antibacterial, antifungal, antiparasitic, and antiviral) as end-
points. The specific functions of AMPs were either directly predicted or by a hierarchi-
cal classification that first consider the antimicrobial activity. RF-based models, devel-
oped with ProtDCal’s descriptors aimed to predict specific activities of AMPs, showed
a higher effectivity and reliability than 13 freely available prediction tools. The best re-
ported models were implemented in the AMPDiscover tool [31], publicly available at
https://biocom-ampdiscover.cicese.mx/ (accessed on 7 March 2022). Ruiz-Blanco et al.
also applied successfully ProtDCal’s descriptors to predict antibacterial peptides by using
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RF-based models trained with StarPepDB instances and, in a second step they are predicted
on what bacterial targets according to their Gram-staining classification could be active by
using a multi-classifier. These two RF-based models were implemented in the web server
ABP-Finder: https://protdcal.zmb.uni-due.de/ABP-Finder/ (accessed on 7 March 2022)
which is freely available but unpublished yet.

2.2. Integration of Peptide Features from Heterogenous Sources

Considering previous experiences in protein functional classification where protein
features from heterogeneous sources have been integrated to improve classification rates;
we wonder if this strategy has been applied to peptide classification? In this sense, the
integration/combination of alignment-based (AB) and alignment-free (AF) protein features
in machine learning models have been evaluated for such purpose. For example, Galpert
et al. improved orthologs classification at the twilight zone (<30% of identity) by combining
AB and AF protein similarity measures in supervised big data classifiers [79]. It has also
been shown that the integration of AB and AF methods gives the best exploration of highly
diverse protein classes, such as the nonribosomal peptide synthases (NRPS) represented by
their A-domains [80]. Other examples of feature integration methods for remote homology
detection can be found in [81], and the one of Borozan’s et al. [82], based on weighted
aggregation which is a very inclusive approach avoiding the loss of information.

Regarding AMPs classification improvements by integrating AB and AF peptide
features, an algorithm applying AB measures and the SVM algorithm trained with AF
pairwise measures was published for increasing AMPs prediction sensitivity [47]. The
algorithm consists in two stages. Firstly, AMPs are identified by Basic Local Alignment
Search Tool (BLAST) scores, and those peptides that cannot be unequivocally identified
by pairwise alignments were inputted in an SVM-based classifier built with AF pairwise
similarity scores. The AF similarity scores were estimated with the Lempel–Ziv’s com-
plexity algorithm [83]. The integrative algorithm achieved higher sensitivity performance
for AMPs prediction than the prediction tools implemented within the first version of
CAMPR3 database [11] and the integrated method proposed by Wang et al. [84]. Wang
and colleagues had previously proposed a similar algorithmic workflow where BLAST is
used to firstly classify a query peptide against a training set made up by 870 AMPs and
8661 non-AMPs. Classification label is transferred to the query peptide from the matching
with highest similarity score. Query peptides that did not match with any within the
training set were encoded by protein features like ACC and PseACC and the aas by five of
their physicochemical and biochemical properties. As the number of generated features
were relatively high, a rigorous feature selection step was performed by applying both the
Maximum Relevance, Minimum Redundancy (mRMR) method [85] and the Incremental
Feature Selection method [86] before building a Nearest Neighbour (NN)-based predictor.
The NN algorithm assign the label AMP or non-AMP to a query peptide according to the
class of the nearest neighbour.

Despite the efforts for integrating AB and AF features in a classification peptide system;
they have actually been combined through their corresponding algorithms and have not
been included in the same model or function. In this sense, AB and AF similarity scores
could be combined to build an unique classifier for AMP prediction, as Galpert et al. did it
for ortholog detection [79].

2.3. NMR-Based Features for Peptides

In 2020, the IAMPE webserver (http://cbb1.ut.ac.ir/; accesed on 17 March 2022) was
released for an accurate prediction of AMPs by using classical ML-based classifiers trained
with both conventional and 13CNMR-based features. The non-conventional 13CNMR-based
features for peptides were defined from the quantitative NMR spectra for 13C isotope of
the naturally-occurring aas. Firstly, 13CNMR-based features for each aa were calculated
using 13CNMR spectra signals. Secondly the aas were grouped according to their 13CNMR-
based features by applying Fuzzy c-means clustering algorithm. The resulting aa clusters
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were used to extract feature vectors along the peptide sequences according to classical
“composition”, “transition” and “distribution” patterns. Despite the new information pro-
vided by such non-conventional peptide descriptors, authors suggested their combination
with physicochemical features to yield higher accuracy for the prediction of active AMP
sequences [34].

3. Breakthroughs of ML Algorithms in the AMP Prediction

3.1. Data Imbalance and Multi-Label Classification in the Prediction of AMPs—New
Algorithm Approaches

As mentioned in the Introduction, data imbalance is an issue to tackle in the classifi-
cation of potential peptide sequences. Here, we collected some other reported solutions
combining two-level classifiers with imbalance management in both, the first level binary
AMP/non-AMP problem, and the second level multi-label functional type problem. For
example, the authors of MAMP-Pred [87] proposed two alternative imbalance management
methods: (i) under-sampling of the non-AMP class, and (ii) weighting sequences according
to the imbalance ratio; the second one being eligible after the experiment process. Then,
they used pruned sets and label combinations, considering label correlations, to transform
the RF binary classification. For the classification assessment, the Matthew’s correlation
coefficient was selected for the first level, and the multi-label metrics: Exact-Match Ratio
(EMR), Hamming-Loss (H-Loss), Accuracy (Acc), Precision (Precision, Recall), Ranking-
Loss (RL), Log-Loss, One-error (OE), F1-Measure (F1-Mic, F1-Mac), for the second level.
As they assessed, MAMP-Pred outperformed iAMP-2L (proposed in 2013 as a two-level
multi-label classifier) because of the feature extraction process involved ACC and its eight
physicochemical selected properties, besides the classification process.

Another example of imbalance management can be found in [88] where the authors
tried to identify peptides with dedicated anti-CoV antimicrobial function on an imbalanced
dataset with relatively insufficient positive data. They used NearMiss under-sampling and
balanced RF to build the classification model, and the sensitivity, specificity and geometric
mean for the unbiased evaluation.

Ensemble learning has also been used to cope with class imbalance in the binary
AMP/non-AMP prediction tool Ensemble-AMPPred [89]. The prediction model based
on ensemble methods (RF, max probability voting, majority voting, adaptive boosting, or
extreme gradient boosting) was combined with feature extraction (vectors of 517 numerical
descriptors representing peptide sequences), feature engineering (hybrid feature generation
by the fusion of various selected features using a logistic regression model) and feature selec-
tion to improve classification accuracy after the application of a balancing clustering-based
proportionate stratified random sampling that selected peptide sequences representing the
positive and negative data. Thus, representative sequences selected from each cluster were
used as training data, while the other remaining sequences, as testing data.

A recent report in [90] presents a multi-label framework HMD-AMP to hierarchically
annotate peptide sequences into AMP/non-AMP, and then, into eleven functional classes
that can be small and extremely imbalanced classes. The classification framework includes
an embedding layer of protein sequences, a protein language encoder, a feature transformer
and a hierarchical deep forest model. An ablation study and a reduced feature test demon-
strate the effectiveness of the framework based on the detailed structural information of
AMPs to improve the accuracy of the prediction model and to manage data imbalance
problem. At each function prediction level, the model demonstrates a cascade forest struc-
ture where each cascade level is an ensemble of decision tree forests, and different types of
forests are included to make the model diverse. It’s worth noting that deep forest does not
rely on backpropagation, so it is suitable for training data with either imbalance labels or
small sample sizes, hence preventing the model from overfitting.

15



Antibiotics 2022, 11, 936

3.2. Deep-Learning in the Recognition of AMPs

The lack of samples in the positive class, as well as, the ambiguity in the negative
class are key issues concerning deep learning models in AMP prediction as stated in
review [91]. The starting point for knowledge discovery in this rough scenario is the correct
representation of raw data. Precisely, deep learning provides a solution to the human
expert dependence problem of featurization, which is known as representation learning;
but also allows the application of some widely-used features in peptide machine learning
by means of unsupervised embeddings (pretrained representations that can be fine-tuned
with specific downstream supervised tasks), learned embeddings (usually one-hot or one-
letter encoding on the amino-acid level, producing a dimension-reduced dense vector for
subsequent layers), or engineered features (physicochemical or evolution-based properties).

In generative approaches for AMP discovery, recently reviewed in [92], the reliance on
expertise-engineered features may limit the generation of candidates qualitatively distinct
from known AMPs, or the limited number of known structures of the annotated peptides
may reduce the effectiveness of structured-based models [93]. On the contrary, those
attribute-controlled models based on recurrent neural networks, variational autoencoders,
adversarial autoencoders, generative adversarial networks may encourage novelty of
designed sequences. That is the case of the specific bidirectional conditional generative
adversarial network developed in AMPGAN v2 [94] that learns data driven priors through
generator-discriminator dynamics and controls generation using conditioning variables.
Thus, a learned encoder mapping data samples into the latent space of the generator
implements the bidirectional component that aids iterative manipulation of novel, diverse,
and application-tailored candidate peptides.

The diversity target in generative models has been also tackled with a semi-supervised
learning approach combined with a variational autoencoder (VAE) that can simultaneously
learn from the large unlabelled peptide sequence databases and a limited number of labelled
sequences as in PepCVAE [95]. In this case, a controlled generative model is learned from
large unlabelled peptide database for the encoder and decoder losses, together with a much
smaller labelled dataset (peptides with reported antimicrobial annotation) for the classifier
loss, that is, using a large unlabelled corpus to capture the distribution with VAE, and a
small labelled corpus to learn a certain controlling attribute code.

Also with VAE generation, the report in [96] used the Giant Repository of AMP
Activity (GRAMPA) [97] to apply an improved automated semi-supervised approach based
on stochastic long short-term memory (LSTM) encoder-decoder networks for generating
promising new sequences and an experimental investigation, resulting in low minimal
inhibitory concentration (MIC) AMPs against Escherichia coli, Staphylococcus aureus, and
Pseudomonas aeruginosa. In this approach, the decoding from the same point in the latent
space may result in a different peptide being generated and is dependent on the random
seed set prior to running. Thus, the VAE is trained on a curated AMP dataset followed
by the development of a regression model for activity prediction and the subsequent
development of the latent space. Then, new AMP sequences are identified from the latent
space (by sampling) and, subsequently, the AMPs are produced and characterized with
their corresponding MIC values. This method produces peptides with similar MICs as the
input reference peptides, but with novel sequences not found in the training set; at the
same time, without imposing thresholds on peptide characteristics or otherwise biasing
output post-sequence generation. As a result, a list of newly generated active peptides
includes non-canonical AMPs of low helicity and low net charge.

An alternative data augmentation method is presented in [98] to improve the recog-
nition of neurotoxic peptides via a convolutional neural network model. Novel potential
neurotoxic peptides were discovered from the best performed model in a simulation
dataset among the transcriptome of an endemic spider of South Korea, Callobius koreanus
(C. koreanus). The BLAST-based augmentation method was intended to improve the gener-
alization property of the model.
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Specifically, for candidate short peptide generation, the authors in [99] combined LSTM
generation and bidirectional LSTM classification to design short novel AMP sequences with
potential antibacterial activity against E. coli. The models were trained using sequences
with proven low MICs and tuned with Bayesian hyperparameter optimization.

Some other deep learning methods are reviewed in [100] as a promising approach to
meet short-length peptides requirements [101] where they combine deep convolutional
neural network with reduced aa composition comprising clustered aas on the basis of
evolutionary information, substitution score, hydrophobicity, and contact potential energy.
As a result, a short peptide of 20 aa was selected by Deep-AmPEP30 from sequences
extracted from the gut commensal fungus C. glabrata genome and experimentally validated
to have antibacterial activities similar to ampicillin.

In a recent review [39], the authors presented some reasons to select ML approaches
over deep learning ones in AMP prediction and design, when a fair balance is required
among high accuracy and generalization capability, interpretability and low computational
cost. However, some improvements like parameter tuning or model hybridization may
lead to more robust deep learning classifiers in this field.

3.3. Rough Sets Theory in the Classification of AMPs

As an example of model hybridization, the authors in [48] presented a codon-based
genetic algorithm combined with rough set theory methods to find a peptide active against
S. epidermidis. Their rough set theory method provided explicit boundaries between physic-
ochemical properties that active sequences possess and inactive sequences do not possess.
Since this method produced explicit decision components, they could test sequences con-
taining multiple components. They were inspired in their previous publication [22] where
they tried to reduce false discovery rate with a rough set-based classification method gener-
ating similarity rule set boundaries between active and non-active peptides based on their
physicochemical properties.

Another example of the rough set theory application can be found in [102] where
they implemented a rough set classification framework together with a Rough Set Quick
Reduct and Rough Set Relative Reduct based on an improved Harmony Search algorithm
to classifyAnti-HIV-1 peptides. Specifically, they hybridized a rough set-based feature
selection technique, with population-based meta-heuristic algorithms (Particle Swarm Opti-
mization), to classify the peptide sequences and solve dimensionality problems. Besides, a
fuzzy set classification framework [23] was also intended to cope with limited and severely
skewed high-dimensional space for short (<30 aa) AMP activity prediction.

4. Other Methodologies Than Classical ML for Identifying and Modelling AMPs

4.1. Homology-Based Prediction and Modelling of AMPs

The most popular approaches in addition to classical machine learning algorithms
for the identification of AMPs in databases are local alignments which are represented
by BLAST and FASTA tools [103,104]. Although local alignments have been successfully
applied by using iterative rounds and filters such as the presence of signal peptides, aa
patterns and gene vicinity during AMP searches [105–107], they can fail in identifying
some AMP sequences [55], if compared to pattern-matching searches [107,108]. There are
two main ways for searching for sequences by patterns: hidden markov models (profile-
HMM) [109] or regular expressions (REGEX) [110]. Both the REGEX and profile-HMM
methodologies work similarly for the identification of AMPs. Firstly, a set of homologous
sequences are aligned and the multiple sequence alignment (MSA) is inputted to a specific
program such as Pratt [111] or HMMER [112] for the identification of REGEX patterns or
profile-HMM, respectively. Currently, instead of building REGEX patterns and profile-
HMMs, they are available for many protein families at the Prosite [113] and Pfam [114]
databases where a query sequence/peptide can be identified. The pattern/profile-based
searches for AMPs can be complemented with the identification of signal peptides and
other structural filters. In fact, improved versions of databases have incorporated MSA,
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profiles-HMM and molecular modelling for AMPs detection [11,115,116]. Even so, when a
query peptide could be high-scored against profile-HMMs from different peptide families,
it is advisable to use a prediction tool combining different protein signature recognition
methods such as InterProScan [117].

As we previously mentioned, the molecular modelling complements AMPs pattern-
based searches by confirming expected three-dimensional (3D) structural features char-
acterizing them. The 3D structure can be also integrated into homology-based searches
to identify homologous sequences sharing low identity but retaining a great structural
conservation. Such structural similarities have enabled the detection of AMPs in databases
with higher accuracy [9]. When the structures of peptides are not experimentally elucidated,
two modelling techniques are suggested: homology-based and ab initio modelling. The
homology-based modelling uses the structure experimentally-determined from available
homologous as template to infer the 3D structure of novel peptides, but rather using
structural than sequence similarities, especially if the query and template are remote homol-
ogous [118]. By contrast, the ab initio method is used to predict the structures of peptides
with yet unknown homologs. The prediction of the 3D protein structure starts from scratch
requiring an energy model describing the main factors that contribute to the stability of the
folding process and an efficient method for the conformational space exploration of the
peptide chain [119]. However, homology-based approaches are more suitable for peptides
when homologs are identified. In fact, the second release of BACTIBASE [115] incorporated
the MODELLER program [120], as a tool for the 3D structure prediction of query peptides
by homology to known bacteriocins [115]. Besides, the incorporation of 3D structure pre-
diction tools to AMP databases provide another filter for an accurate identification of query
AMPs, the 3D structure can be used for scoring peptide-cellular target interactions which is
a crucial step for the in-silico design of novel AMPs [121].

Especially, since classical ML algorithms were recently reviewed in [18], we have
addressed here, traditional homology-based approaches applied to the search and the
modelling of AMPs, and will describe next, the most singular algorithms.

4.2. Emerging ML-Independent Methodologies for AMP Prediction/Design

In this section, we will address other emerging methodologies regardless of ML
approaches and classical homology-based approaches for AMP discovery. Firstly, we
want to highlight the AMPA webserver (http://tcoffee.crg.cat/apps/ampa, accessed on
7 March 2022), developed to detect antimicrobial stretches within the protein sequences.
The antimicrobial regions detected in proteins can serve as new templates for AMP design,
especially those uncovered within proteins no related with the defense function. AMPA
algorithm does not depend on homology-based searches since it estimates an antimicrobial
index (AI) to each aa, derived from half-maximal inhibitory concentration (IC50) values in
high-throughput screening experiments, encoding the propensity of each aa to be present
in an AMP sequence. As low IC50 values correspond to high activity, aas with low AIs
are more likely to be part of an AMP. By applying a sliding-windows analysis along the
protein sequence, AMPA generates an antimicrobial profile based on the AIs. Those regions
scored below certain threshold are considered putative antimicrobial domains [122]. The
singularity of this approach is that it doesn’t either rely on building machine learning
models or similarity searches against AMP databases. However, potentially conserved
antimicrobial regions can be checked in conjunction with the T-coffee alignment tool [123].

On the other hand, complex networks have been applied to explore the chemical
space of AMPs aimed to discover structural entities with promising biological activi-
ties that also could serve as template for peptide drugs design/optimization. In this
sense, Marrero-Ponce et al. were the pioneers on this topic by publishing a seminal of
related works [33,78,124]. Firstly, Marrero-Ponce et al. analyzed both the diversity among
25 AMP databases and the showed within each one. The study revealed some AMP
databases contained common sequences showing certain overlapping degree. After re-
moving duplicates among AMP databases, a representative set of 16 990 non-redundant
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AMPs was collected, which probably was the most comprehensive and exhaustively cu-
rated AMP dataset at that moment [124]. This relevant dataset was further enriched and
structured in a graph database called StarPepDB (http://mobiosd-hub.com/starpep/;
accessed on 17 March 2022) integrating 45 120 unique peptide sequences from 42 AMPs
databases (Figure 6), with their metadata (origin organisms, function, biological target,
source database, chemical modifications, cross-referenced entries to UniProt, PDB and
PubMed) [78].

Figure 6. Chronological listing of AMP databases used in StarPep Database (StarPepDB) compilation.
After collecting web pages from a large variety of bioactive peptide databases (see Table 1 in Ref. [78]),
their contents were integrated into a graph database that holds total of 71.310 nodes and 348.505
relationships. In this graph structure, there are 45.120 nodes representing peptides (unique sequences)
and the rest of the nodes are connected to peptides for the describing metadata.

StarPepDB has a star-like network architecture where a central node represents the
peptide sequence and is connected to neighbour nodes labelled with the metadata. The
edges depict a relational and unidirectional connection of the central node by a using
a set of selection criteria “produced by”, “assessed against”, “related to”, “compiled in”
with its corresponding metadata nodes such as the origin, target, function and database,
respectively. Peptide nodes besides the sequence also contain peptide’s ID and length,
while the metadata nodes have the ‘name’ property and relationships have the ‘db-ref’
property (referred as source database) [78]. Finally, different network topologies can be
visualized by applying filtering criteria on StarPepDB. For example, it is possible to display
a network of those peptides (central nodes) “related to” (edges) function “antibacterial”
(metadata node) and “compiled in” (edges) the ADP database (metadata node).

Thus, the StarPepDB structure together with the StarPep toolbox allows building
customized networks and their visualization. The visual and analytics exploration of the
network by extracting some centralities measures (e.g., weighted degree or harmonic cen-
tralities) allows identifying the most relevant bioactive peptides in the network (Figure 7).
Furthermore, peptide subsets can be either retrieved from the graph database by sequence
identity searches or by applying filtering criteria such as peptide length, sequence mo-
tifs/patterns, physicochemical properties, and other metadata.

More recently, the same research group encoded each peptide sequence with a set of
molecular descriptors bearing non-redundant structural information to set alignment-free
(AF) pairwise similarity/distance relationships among the peptide nodes of the network
by using a general pipeline as show in Figure 7. The resulting chemical space represented
by these AF similarity networks are explored by visual inspection in combination with
clustering and network science techniques [49,50].

Here, we show the chemical space network (CSN) of 174 non-redundant Anti-Biofilm
Peptides (ABPs) (Figure 8) by applying the StarPep Toolbox flowchart represented above.
Networks become more interpretable through visual inspection if having a community
structure. Note that communities of ABPs may represent some biologically relevant regions
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from the chemical space where bioactive compounds reside. Hence, we have explored the
CSNs by varying the similarity threshold until a well-defined community structure emerged.
In this way, a final CSN has been analyzed by adjusting the similarity threshold to 0.65, at
network density of 0.0068, achieving 20 ABP outliers (singletons) with atypical or unique
sequences (Figure 8). Also, for each peptide discovered to be a relevant node, additional
information (metadata) is available in Supplementary Materials (File S1, SI1-A and B).

 

Figure 7. StarPep Toolbox flowchart. A flow diagram guiding the automatic construction and visual
graph mining of similarity networks (see Figure 1 in Ref. [33]). Networks can be clustered, and
communities are optimized using the Louvain method [125]. Moreover, the centrality of each node
can be particularly measured by harmonic, community hub-bridge, betweenness, and weighted
degree. Centrality is crucial to perform scaffold extractions because peptides are ranked according to
their centrality score, and then redundant sequences are removed, prioritizing the most central. Thus,
scaffold extractions depend on the type of centrality applied.

 

Figure 8. Visualizing the similarity network (Chemical Space Network, CSN) of a set of 174 non-
redundant Anti-Biofilm Peptides (ABP_98% identity) at threshold t = 0.65 and density = 0.068, using
the (A) three main PCAs as coordinated of each ABPs, and (B) Fruchtermann Reingold layout
algorithm. Node colour represents the community (e.g., the biggest communities represented by
cluster 3, 10 and 12 are in blue, purple and green colours, respectively), and node size symbolizes
the centrality values. There are 20 ABP outliers (singletons). This figure has been created using the
software starPep toolbox (version 0.8), available at http://mobiosd-hub.com/starpep; accessed on
17 March 2022.
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Once a community structure is found, we rank nodes in decreasing order according
to the community Harmonic centrality measure for retaining the top-k of the ranked list.
Particularly, the top 10 exposes densely connected groups of nodes like cliques, which are
defined to be complete subgraphs. These related sequences may be forming families in the
chemical space of ABPs. These central peptides within each local leading community are
given in SI1-B, and they may be representing sequence fragments or naturally occurring
peptides that could be identified as starting structures for lead discovery. For instance, the
peptide starpep_00000, starpep_05561, starpep_00361 are the most central nodes of the CSN
(all in cluster 10). ABPs starpep_03668, starpep_04267, starpep_00004 and starpep_07895,
starpep_12531, starpep_012529 are more central inside Communities 3 and 12, respectively
(Figure 8 and SI1-C).

As can be observed in Table in SI1-C, some neighbor nodes within the communities
may be representing a family of similar ABPs. Another example of closely related sequences
can be seen in the 3 members of the Cluster 3 (see all ABPs in Community 3 in SI1-B). The
peptides inside this cluster have the same length of 12 aas. So, it is expected that there are
many ABPs with similar centrality values in the CSN, and it is advisable to extract some
non-redundant ABPs from communities than just selecting the highest-ranked ones. To
clearly extract central but non-redundant ABPs from each cluster (scaffold extraction, see
Figure 7), we sort ABPs according to the decreasing order of their harmonic values. Then,
the redundant sequences are removed at a given % of sequence identity. We have used an
identity cutoff of > 35% to consider that a particular sequence is related to already-selected
central ABPs and, as a consequence, removed from the CSN. Finally, the non-redundant
44 ABPs were ranked according to their decreasing values of Harmonic measure. The
sorted list is given in SI1-D, and the top ranked peptides are those having relatively small
similarity paths to all other nodes in the CSN.

This workflow allows the extraction of the most representative nodes/peptides de-
scribing the biologically-active chemical space (SI1-D). This representative subset can be
used for multi-query similarity searches against peptide databases to retrieve all possi-
ble hits (Figure 9). The multi-query similarity search consists in using both the most
central/representative nodes of the network communities and also the so-called single-
tons (isolated peptide nodes) as references/queries to retrieve the most similar peptides
from databases by using local alignments. The best matches against the reference/query
chemical space are determined by the maximum fusion rule by firstly ranking-down the
similarity scores, to retrieve the best match between a query peptide and a target database
and afterwards the best similarity scores are ranked for all reference peptides. Some studies
have demonstrated that fusion by similarity scores and the maximum fusion rule are the
best parameters for these models [126,127].

The integrated collection of 45 120 bioactive peptides registered in StarPepDB (http:
//mobiosd-hub.com/starpep/; accessed on 17 March 2022), that probably is the largest
and most diverse bioactive peptide database to date, can be used for the discovering
of central peptide nodes targeting an specific biological activity in the Chemical Space
Networks (CSNs) and for taking advantage of them in multi-query similarity searches [33].
In this sense, Marrero-Ponce et al. explored different similarity networks of antiparasitic
peptides (APPs) from StarPepDB to identify the most relevant and non-redundant APPs,
that were later used as queries in similarity-based searches to identify potential APPs among
non-labelled peptides as such in the StarPepDB. The proposed multi-query similarity
search strategy outperformed state-of-the-art machine learning models aimed at APPs
prediction like the AMPDiscover (https://biocom-ampdiscover.cicese.mx; accessed on
17 March 2022) and the AMPFun (http://fdblab.csie.ncu.edu.tw/AMPfun/index.html;
accessed on 17 March 2022) webservers [30,31]. The methodology will also permit the
design of new APPs by using the motifs found among the repurposed APPs [49]. More
recently, a similar workflow using CSNs was applied to identify the most relevant tumor-
homing peptides (THPs) within the StarPepDB. Such THPs were considered as queries
(Qs) for multi-query similarity searches that apply a group fusion (MAX-SIM rule) model.
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The resulting similarity searching models outperformed state-of-the-art tools for THPs
detection, and the best one was applied to repurpose AMPs from the StarPepDB as THPs.
Novel THP leads were identified as well as new motifs accounting for their TH activity [50].

 

Figure 9. Schematic representation of the group fusion and similarity searching processes. Qi is a i
peptide from a query/reference dataset, n is the number of peptides contained in a query dataset, S is
identity coefficient between M and Q obtained by local alignment with Smith-Waterman algorithm,
m is the number of peptides included in the target dataset. The similarity threshold is related to the
percentage of identity.

5. Models of Sequence Evolution for the Design and Optimization of
Bioactive Peptides

Several in silico computational approaches inspired in molecular evolution events
have been applied to the design and optimization of a peptide with a promising biological
activity, known in medicinal chemistry as a “leading compound”. These algorithms are
aimed to produce offspring peptides from a parent (hit peptide) until the “desired property”
is meet according to selection criteria conducted either by ML prediction models or by
biological assays (Figure 2). The offspring generation process can be iterated until reaching
optimized peptidic scaffolds showing a trade-off between desirable/undesirable activi-
ties. The simulation process for generating offspring have evolved from inducing random
mutations within the peptide sequence until guiding such aa substitutions under directed
evolution concepts [41,128,129]. Although, algorithms inducing random mutations are
commonly applied to generate sequence diversity in the peptide library, they could render
unpredictable results that should be carefully analysed with selection algorithms. By con-
trast, computational algorithms inspired on directed mutagenesis have focused the design
and optimization of “leading peptides” by guiding the generation of peptide offspring
incorporating secondary structure features that influence positively on the antimicrobial
activity such as amphipathic helices, kinked amphipathic helices, and other structures
aimed to interact with lipid membranes [130].

Schneider et al. were the pioneers to apply simulated molecular evolution (SME)
algorithms as a strategy for a rational peptide design by coupling the in silico generation
of peptidases cleavage sites of 12 residues long to a selection mechanism represented by
trained ANN [131,132]. The design was oriented to this region by generating offspring
from a 12-residue sequence/peptide (parent sequence) which was iteratively mutated until
meeting the best ANN quality classification metrics, used as a selection criterion of the de-
sign. The offspring sequence simulation was performed by introducing random mutations
according to Gaussian-distributed probability values around the parent sequence. The
mutation degree (small or large) is then conditioned by the estimation of position-specific
mutability and the selected aa distance matrix [131,132]. As the position-specific mutability
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is averaged resulting the same for every position in the sequence; the aa mutation degree is
determined by the aa substitution/scoring matrix type such the Grantham matrix [133],
the Myata matrix [134], and the Risler matrix [135].

This SME approach was later applied by the same group to the optimization of
anticancer peptides (ACP) aimed at improving their membranolytic activity and cell-type
selectivity [51,136]. In [51], a known α-helical ACP served as the parent sequence for the
generation of the offspring (ACP-derivatives). So that the generated offspring peptides
retained similarity with the initial structural/property space and thus enabling a systematic
optimization; the mutation function was controlled. This time the SME approach was
accompanied with experimental measurements as a selection criteria or fitness objective
within the optimization scheme. They used the half-effective concentration (EC50) on the
breast cancer cell line MCF7 and the secondary structure preferences by circular dichroism
(CD) spectroscopy as experimental filters. A similar SME protocol was applied in [136]
to optimize the cell-type selectivity of the highest-scored candidate toward non-cancer
cells and human erythrocytes. This candidate termed AmphiArc2 peptide resulted from
the screening of virtual libraries generated by more advanced algorithms incorporating
secondary structures features (alpha and amphipathic helices) that influence positively on
the membranolytic action [130]. AmphiArc2 was selected as a parent sequence in the SME
algorithm in which the mutated sequences (offspring) are generated from it. The offspring
was scored according to a fitness function, defined by the anticancer activity and selectivity
with respect to non-transformed cells. The best offspring was selected as a parent for the
following optimization iteration [136].

Although the SME approach and the generation of oriented libraries toward certain
secondary structures, relevant for the interaction with lipid membranes, have represented
a step forward in the design and optimization pipeline of AMPs and ACPs [130,136], there
still room for improving the simulation of molecular evolution of the offspring peptides. In
this sense, algorithms that traditionally have been used for simulating sequence evolution
in the field of molecular phylogenetics were recently applied to provide more rationality to
the peptide library generation [52]. These algorithms were initially developed to evaluate
the accuracy of MSA and phylogenetic reconstruction tools by generating sets of related
simulated protein sequences from known phylogenies. The most representative ones are:
ROSE (Random Model of Sequence Evolution) [137], SIMPROT (Simulation Protein Evolu-
tion) [138], and INDELible (Insertions and Deletions Simulator) [139]. In general, they are
controlled by several evolutionary parameters such as tree topology, evolutionary distance
matrices, mutation rate, insertion and deletion probabilities to simulate the evolution of
offspring from a parent sequence. Ruiz-Blanco et al. incorporated the ROSE algorithm into
the de novo design pipeline of peptide inhibitors of E. coli ATP synthase [52,76]. As parent
peptides, both the natural inhibitor (IF1) of the mitochondrial ATP synthase and fragments
of interfaces involved in protein—protein interactions between subunits of E. coli ATP syn-
thase, were selected to generate peptide libraries. The residue conservation degree on these
parent peptides was identified by MSAs within each class. A consensus parent peptide with
its corresponding conservation scoring profile was estimated so different mutation rates to
each position in the sequence could be assigned. This mutation probability vector together
with a user-defined phylogenetic tree with a known topology and branch lengths guided
the probabilistic function performing mutations, insertion and deletions on the parent
peptide [52,76]. On the other hand, the sequence diversity of the offspring peptides in the
library can be controlled by calibrating ROSE parameters against the pairwise identity [81].
A predefined binary phylogenetic tree with 1023 nodes and depth 9 implemented in ROSE
was used in [52,76] for the generation of diversity-oriented libraries. The Figure 10 shows a
schematic description of the ROSE algorithm.

Peptide libraries were screened by the PPI-Detect [77], an SVM-based model that
predicts peptide interactions with both domains of the E. coli and human ATP synthases.
As selection criterion, the high-scored interacting peptides with the E. coli ATP synthase
but showing low values with the human’s were subsequently evaluated by in vitro inhi-
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bition tests. At applying advanced SME algorithms involving more evolutionary mod-
els/parameters like ROSE makes easier subsequently screening steps to find lead peptides
at high success rate.

Figure 10. The binary mutation guide tree used by ROSE to mutate the parent/root peptide. The
binary tree topology is determined by the number of nodes (1023), depth (9) and average distance
(dav = 5–20 PAMs). Peptide library may be selected either from internal or terminal nodes of the
tree. The identity percentage of the offspring peptides respect to the parent/root peptide is coloured-
illustrated. Red colour means closely-related peptides to the parent while blue colour represents
those distantly-related ones.

6. Considerations in the Workflow for the High-Throughput Discovering of
Bioactive Peptides

6.1. Brief Comparisons between High-Throughput (HT) and Classical Methods

The classical approach for discovery of bioactive peptides has changed from analysing
biological extracts/fluids to perform a wide-genomics and proteomics search. In this sense
both next-generation sequencing (NGS) technologies and mass spectrometry (MS)–based
proteomics combined with bioinformatic tools have provided suitable approaches for
the large-scale identification of bioactive peptides outperforming the classical methods.
These last ones usually include a purification step combined with bio-guided assays,
which require higher amount of biomass from the subject organism. Although they can
determine the biological activity of bioactive compounds relatively at high accuracy, are
time-consuming and the yield of bioactive compounds is low as well as the coverage of
the chemical space [140]. On the contrary, the HT analyses can be performed with around
1 cm3 or 0.5–1 g of fresh or preserved tissues, for genomic/transcriptomic or proteomic
purposes, respectively [53,141,142]. Generally, the HT methods allow covering the whole
picture for potential bioactive compounds much faster. Despite HT methods usually
require of powerful computational resources, both NGS and MS-based proteomics are
becoming cheaper and their corresponding workflows are continuously optimized within
the discovery process as well, resulting in a long-term sustainable approach [143,144].
Moreover, HT OMICs technologies yield a big amount of free public data, allowing the
decentralization of the knowledge for the biodiscovery process.

Hence, the integration of OMICs approaches is more recommendable than the classical
ones at the early stage of bioactive peptide discovery. However, bioassays-guided methods
are still valid and complementary at advanced phases of the research [140,145].
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6.2. Optimized Workflow for the Large-Scale AMPs Discovery from
Profiled/Unexplored Organisms

Despite the advances in the discovery of bioactive peptides, improved protocols are
still needed to increase the accuracy in both their large-scale identification and functional
characterization, which is a major challenge, nowadays. Figure 11 illustrates the overall
steps for the HT bioactive peptide discovery from model and unexplored organisms.

In order to analyze OMICs data released by NGS and MS-based HT proteomics,
several computational/bioinformatic tools and platforms have been developed. Among
them, for the de novo genome/transcriptome assembly we can mention, i.e., MIRA [146],
Spades [147], CAP3 [148], OASES [149] and the Trinity package [150] including the de novo
assembler and the TransDecoder for ORFs prediction (https://github.com/TransDecoder/
TransDecoder/releases; accessed on 17 March 2022). Other ALL-IN-ONE licensed software
like the toolbox CLC Genomic Workbench (CLC Bio-Qiagen, Aarhus, Denmark) [151] and
OMICsBox (BioBam Bioinformatics, Valencia, Spain) [152], have integrated several tools for
the complete workflow, including the de novo assemblers, custom/online/cloud functional
annotation options with Blast+ [153], eggNOG [154], KEGG [155], providing as well as a
set of functional analyses and statistical tests (i.e., Gene Ontology, deferential expression
analyses and enrichment).

Among the NGS analyses, the RNA-seq has gained relevance because it can explore the
coding regions of the genome by assembling, annotating and comparing expression profiles
of the resulting transcripts [141,156]. Since elucidating the transcriptome demands lower
computational cost than whole genome, and also provide useful information, its number
has increasingly growth in databases. In this sense, transcriptomes from the same or related
species are translated, usually with the TransDecoder or Six-Frame Translations Tool (S-FTT)
(https://github.com/iracooke/protk; accessed on 17 March 2022), then annotated, and
thus considered as reference database for improving protein identification in proteomics
analyses from a target organism [157]. These are the grounds of proteogenomic analyses
where genomic, transcriptomic and proteomic data are combined to assist the discovery
of peptides from MS–based proteomic data, especially if they are not present in protein
databases such as UniprotKB and other related ones (i.e, Swiss-Prot, TrEMBL and UniRef),
the protein section of NCBI, Mendeley and ProteomExchange consortium [158]. On the
other hand, the proteomic data can also be used to confirm gene expression [159].

Figure 11. Optimized workflow for the high-throughput (HT) AMPs discovery from profiled and/or
unexplored organisms. The figure summarizes the main phases in the AMPs discovery using genomic,
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transcriptomic and proteomic data from profiled or underexplored organisms. The figure depicts the
pipeline for de novo HT discovery from un(der)explored organisms using OMICs approaches (shown
in the top-left panel), and from nucleotide and proteomic information available at public databases
(top-right). Genomic information publicly available at NCBI (Genome database https://www.ncbi.
nlm.nih.gov/genome/; accessed on 17 March 2022) and transcripts encoding protein sequences under
100 aa length provided by the Transcriptome Shotgun Assembly (TSA) database (https://www.ncbi.
nlm.nih.gov/genbank/tsa/; accessed on 17 March 2022), can be screened with the computational
tool ampir for fast genome-wide prediction of AMPs [160]. Likewise, the remaining transcripts
encoding peptides sequences ranging 5-100 aas length, usually discarded in transcriptomic analyses,
can be translated with the six-frame translations tool (S-FTT) [157,161] after ORFs prediction with the
TransDecoder. Considering bioactive peptides include animal toxins which are usually rich in cysteine,
the aa sequences obtained with S-FFT can be either analyzed by the Proteomic toolkit (https://github.
com/iracooke/protk; accessed on 17 March 2022) to identify cysteine-rich regions to discover novel
Short Secreted Cysteine Rich (SSCRs) peptides, or by the Machine Learning (ML) tool ToxClassifier,
that enables a simple and consistent discrimination of toxins from non-toxin sequences [162]. In
addition, new tools like the pypgatk package [163] can recover a significant number of cryptic
peptides of biomedical interest from pseudogenes, long non-coding RNAs (lncRNAs) and other
non-canonical coding transcripts produced by alternative splicing. These filtering tools can be applied
together CD-HIT [164] to screen nucleotide databases before custom and non-redundant peptide
databases building for proteogenomic analyses or HT annotation. Finally, the StarPepDB with
its associated tools [33] may have several roles within the presented workflow by providing non-
redundant bioactive databases and also at reducing custom peptide databases with the identification
of the most relevant peptides for proteogenomic analyses. Moreover, bioactive peptides detected in
HT screening can be classified and clustered with StarPep in different categories according to their
biomedical potential (e.g., AMPs, antitumor, antibacterial, antiparasitic, etc.).

In general, the overall proteomic approach for the discovery of bioactive peptides
includes the following steps: (i) protein digestion, (ii) peptide separation, (iii) peptide
fragmentation and MS spectra acquisition, (iv) peptide identification using MS spectra
database by similarity searches or by de novo sequencing. In this sense, steps (i) and
(ii) are addressed by several sample preparation protocols which selection determine
the best yields/results. Specifically, for bioactive peptide discovery, it is advisable the
solid-phase-enhanced sample-preparation (SP3) protocol [165] since it reaches a wider
coverage of peptides than the filter-aided sample preparation (FASP) [166]; moreover, is
less complicated and faster than the in-solution digestion (ISD) [167].

Besides to protocol improvements in sample processing [161], there have been ad-
vances in the peptide identification step by applying several computational strategies
that have also refined their bioactivity prediction [159]. In addition to use transcriptomic
data to increase peptide detection accuracy, the inclusion of custom databases is being
applied to characterize the part of the proteome that remains unannotated. In this sense,
composite databases have been explored for a deeper proteomic characterization of the
salivary glands from Octupus vulgaris looking for revealing underexplored bioactive pep-
tides/toxins from previous studies [54,157,161]. The composite database comprised data
from the UniProtKB, built from de novo transcriptome assembly of Anterior (ASGs) and
Posterior Salivary Glands (PSGs), combined with those retrieved from all transcriptomes
available from the cephalopods’ PSGs. In addition, a comprehensive non-redundant AMPs
database [124] was also included to provide additional insights about bioactive compounds
such as putative AMPs [54]. In a previous work the same AMP subset was also considered
as custom database to characterize the Ascidian tunic proteome by shotgun proteomics [53].
The computational analysis of the raw data implied searches against the Uniprot database
(Bacteria and Metazoan section) and the AMP database. The Ascidian tunic revealed
the presence of AMPs from both eukaryotes and prokaryotes and the “Biosynthesis of
antibiotics” pathway was among the most significant ones, which support this tissue as an
interesting reservoir of bioactive peptides/toxins and its role on the interactions Ascidians
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and their associated organisms. The AMP subset integrated in these previous analyses
was published by Aguilera-Mendoza and probably was the most comprehensive and non-
redundant AMP database reported so far [124], that later was updated in the StarPepDB
(http://mobiosd-hub.com/starpep/; accessed on 17 March 2022) [78], as mentioned above.

Other important handicaps in the workflow of proteogenomic analysis are the False
Discover Rate generated at analysing large protein/peptide databases [168–170] and the
probable loss of information represented by small size transcripts encoding protein frag-
ments < 100 aas that could be discarded by the TransDecoder [54,157,161], the tool dedicated
to identify candidate coding regions within transcripts generated by de novo RNA-Seq, and
such small-sized fragments could account for bioactive peptides. In order to perform a
wider proteome analysis looking for uncovered AMPs and peptide toxins in the PSGs of
O. vulgaris, contigs discarded in previous proteogenomic analyses (<100 aas) were trans-
lated with the S-FTT and then included in the protein database [54]. To optimize further
proteogenomic analyses (i.e., time of analyses, FDR), or peptide annotation, sequences
redundancy should be reduced with the CD-HIT [164] since the S-FTT generates many
peptides sharing high similarities that could affect the overall peptide identification when
increasing the FDR [170].

Other filters within the computational pipeline to process proteomic data have been
applied to refine the search of peptide toxins against both canonical and custom databases.
For example, the search can be framed against those toxins/peptides having signal peptides,
responsible for their transport and secretion. Signal peptides have shown to contain
common features across all life kingdoms [171]. In addition, cysteine-rich secretory proteins
(CRISPs), small toxins (<100 aas) commonly found within the secretions of animal venoms,
can be extracted from protein databases, to enrich reference databases for increasing
proteomic toxin peptides detection [172]. Besides, the custom protein/peptide database
can also be screened with ML-based tools e.g., ToxClassifier, that enables simple and
consistent discrimination of toxins from non-toxin sequences [162], allowing the discovery
of novel toxin-like bioactive peptides. Moreover, the fast genome-wide prediction of AMPs,
using the ampir R package [160] can be used in the pipeline to retrieve novel peptides with
antimicrobial signatures from public nucleotide databases, de novo transcriptomes/genomes
assemblies, or as a filtering step before using S-FTT. More recently, new tools for the creation
of proteogenomic databases considering the translation of pseudogenes, long non-coding
RNAs (lncRNAs) and other non-canonical coding transcripts produced by alternative
splicing, have allowed the identification of a significant number of cryptic peptides that
may show interesting biological activities [163].

7. Concluding Remarks

Protein features inspired on molecular descriptors from chemoinformatics have emerged
as successful predictors for AMPs activities. Particularly, ProtDCal’s descriptors have been
recently incorporated in two RF-based webservers (AMPDiscover and ABPFinder) tar-
geting AMPs predictions as well as their specific activities and putative bacterial targets.
Moreover, ProtDCal’s descriptors have been involved in the design of antibiotic peptides
by predicting their interaction to druggable targets from E. coli.

Among the recent ML approaches, undoubtedly DNNs have been the algorithm of
choice for AMPs prediction in emerging tools. However, recently it has been shown that
deep learning models’ performance in AMP prediction is comparable to the one of classical
ML algorithms being their use mostly advisable when the performance gains justify the
associated computational cost.

Currently, the network science implemented in StarPep is being applied as one of the
top emerging approaches, regardless of ML, to assist the search and design of bioactive
peptides through the identification of lead peptides within the known chemical space.
On the other hand, methodologies that simulate sequence evolution in the phylogenetics
field have been repurposed to assist the optimization of such peptide leads by generating
diversity-oriented libraries which are strictly controlled by evolutionary parameters.
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New considerations in analysing genomic, transcriptomic and proteomic data for
AMPs discovery from either profiled or underexplored organisms are being also applied.
Several filtering steps have been proposed to reduce the FDR in AMPs detection when
custom databases are included, but at the same time, to encompass the highest number and
diversity of peptides as possible.

8. Future Research Directions

Despite a great diversity of peptide features (classical and non-classical) that has been
used in AMPs prediction/design, most of those features are sequences- or property- based;
however, the 3D structural information of AMPs has not been deeply exploited for such
aims [173–175]. Although experimental determinate 3D structures of AMPs are used in
minor proportion than their sequences, the 3D structure prediction tools are becoming
more accessible and less computational demanding when considering new advances in
both software and computer architectures [176,177]. These facts will ease the gradually
inclusion of 3D structural features in the prediction models.

Another alternative for the inclusion of higher structural information in AMPs encod-
ing is the use of artificial representations, which have been commonly used in comparative
analyses of DNA and proteins and in QSAR-type modelling [81]. The integration of peptide
features from heterogeneous sources e.g., from pairwise alignments and peptide sequences
into the same classifier could be another outlook for improving the classification rates of
AMPs. The main problem is to figure out a framework to integrate them (the resulting
features, not the source methodologies) into ML models training. As a clue for future
research directions, the alignment- based and -free similarity measures were successfully
integrated for training bigdata ML-based classifiers for orthologs detection [79]. Bigdata
solutions applied to the prediction/optimization of AMPs have not been explored yet in
spite of the fact that the number of AMPs has grown in databases as well as the number of
features/descriptors that can be derived from them. Bigdata platforms could be applied
when performing virtual screening of millions of peptides, especially if they are described
with computationally demanding structural descriptors. As previously mentioned, it
would be advisable that future ML models for the AMP prediction could consider the
natural imbalance ratio between AMPs and non-AMPs as well as the existing one among
the AMPs activities. Moreover, the prediction of AMPs activities should be addressed
with fuzzy-based models since they generally show overlapping activities which are not
evenly-distributed within the AMP population [23]. Therefore, the resulting predictions
for AMPs activities may be scored with probability values and not only treated as a binary
value. On the other hand, for peptide leads optimization, the offspring generation step is
crucial for the overall process. This step generally is carried out by evolutionary algorithms
that introduce structural diversity among child peptides somewhat randomly. Although
these AI-based algorithms have been continuously evolving to guide such diversity in
order to gain optimization efficiency; there is still room for improvements in this direction.
Thus, the algorithms commonly used in phylogenetics for simulating sequence evolution
could provide more rationality to the generation of offspring peptides since they have been
designed with more evolutionary parameters that can be strictly controlled [52,76].

Finally, StarPep is probably the most promising methodology regardless of ML ap-
proaches, that has been reported so far. The complex network theory implemented in this
tool has provided a different outlook to address several steps in peptide drug discovery
process. StarPep bears particular analysis tools that have not previously reported for pep-
tides, such as (i) the chemical space analysis of AMP databases by similarity networks,
(ii) the identification of the most representative and non-redundant subset of AMPs from
the original chemical space, (iii) the mapping of unlabelled peptide datasets on similarity
networks built with the representative AMPs (iv) the multi-query similarity searches using
representative peptides against target databases. Consequently, StarPep is becoming in
a competing tool to the existing ML-based methods since it has being giving clues of
improved classification rates [49,50], and because of its great potentialities for the identifica-
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tion and optimization of new peptide leads from either in silico generated peptide libraries
or released data by the Omics techniques (Figure 11).

The effort of StarPepDB developers to gather all AMP databases in a non-redundant
database [124] has shown a direct impact for the AMPs prediction tools [31]. However, the
annotation quality for the reported AMPs must still be improved as well as the information
on their biological or molecular targets. It is urgent that AMPs activity evaluations can be
harmonized under the same protocols to construct more reliable benchmark datasets for
the accuracy sake of the computational analysis tools. The diverse computational methods
available for AMPs discovery are a powerful tool for the accurate design of peptide drugs.
The growing availability of 3D structural descriptors and scoring functions will allow
developing more effective in silico peptide drug design technologies. The assembling
of ML methods with peptide-protein docking and molecular dynamics seems to be an
effective alternative as well [178]. If all these aspects were considered for the computational-
assisted search/design of peptide drugs, the next-generation of AMP leads will be more
valuable for developing therapeutic agents to face challenging health problems such as
cancer, infectious diseases and more recently, COVID-19.
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Abstract: Multi-drug resistance in bacteria is a major health problem worldwide. To overcome
this issue, new approaches allowing for the identification and development of antibacterial agents
are urgently needed. Peptides, due to their binding specificity and low expected side effects, are
promising candidates for a new generation of antibiotics. For over two decades, a large diversity of
antimicrobial peptides (AMPs) has been discovered and annotated in public databases. The AMP
family encompasses nearly 20 biological functions, thus representing a potentially valuable resource
for data mining analyses. Nonetheless, despite the availability of machine learning-based approaches
focused on AMPs, these tools lack evidence of successful application for AMPs’ discovery, and
many are not designed to predict a specific function for putative AMPs, such as antibacterial activity.
Consequently, among the apparent variety of data mining methods to screen peptide sequences
for antibacterial activity, only few tools can deal with such task consistently, although with limited
precision and generally no information about the possible targets. Here, we addressed this gap by
introducing a tool specifically designed to identify antibacterial peptides (ABPs) with an estimation
of which type of bacteria is susceptible to the action of these peptides, according to their response
to the Gram-staining assay. Our tool is freely available via a web server named ABP-Finder. This
new method ranks within the top state-of-the-art ABP predictors, particularly in terms of precision.
Importantly, we showed the successful application of ABP-Finder for the screening of a large peptide
library from the human urine peptidome and the identification of an antibacterial peptide.

Keywords: antibacterial peptide; machine learning; AMPs database; StarPep; Gram staining-based
target; peptide library screening; human peptidome

1. Introduction

Antibiotic resistance is a life-threatening health problem worldwide, and one of the
main causes of death in developing countries [1,2]. The potential capability of peptides
to overcome resistance [3] has motivated the development of new antibiotics from an-
timicrobial peptides (AMPs) to combat multi-drug resistant pathogens and the threats of
Gram-negative infections [4,5].

AMPs are oligopeptides produced by a great variety of organisms, from prokaryotes to
eukaryotes, including humans. Due to their various functions, AMPs are considered a part
of the innate immune system of higher eukaryotes. The structural diversity of AMPs allows
them to display a broad range of antimicrobial activity against pathogenic agents, including
viruses, Gram-positive and Gram-negative bacteria, as well as fungi. Besides, the bacterial
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selectivity of AMPs over eukaryotic cells and their different action modes make peptides
excellent antibiotic candidates [3,4,6]. A widespread mechanism of antibacterial peptides
(ABPs) is the destabilization and destruction of bacterial membranes. However, these
peptides can also interfere with intracellular processes such as nucleic acid and protein
synthesis, enzymatic modulation, and protein degradation [7–9], which is an advantage
over traditional antibiotics [3,10].

Most AMPs are naturally occurring peptides that represent promising candidates for
optimization in advanced steps of the drug design process [11]. AMP-based drugs have
been clinically approved to treat both topical and systemic infections. For instance, polymyx-
ins and gramicidin S were formulated for the prevention of topical infections caused by
Pseudomonas aeruginosa and Acinetobacter baumannii. Colistin, a polymyxin derivative, is
currently used for the systemic treatment of lung infections, especially those caused by
Pseudomonas aeruginosa [12]. Due to its problematic resistance profile, Pseudomonas aerugi-
nosa is often difficult to treat by antibiotics [13]. However, it can be targeted by a variety of
different AMPs [13–15] that may be further developed into innovative therapeutics.

The specificity of peptides toward certain targets is usually highlighted as an im-
portant benefit for therapeutic intervention. Nonetheless, a downside of this feature is
the associated challenge for the drug design process, given that small structural modi-
fications can significantly influence both the activity and pharmacokinetic properties of
the peptides. Consequently, optimizing the precision of tools for the screening of large
datasets of peptides is of utmost relevance to improve efficiency at the early steps of drug
design processes.

For over a decade, growth in the publicly available data of AMPs has been witnessed,
with the subsequent development of several machine learning (ML)-based predictors in-
tegrated with AMP databases such as DAMP [16], APD3 [17], CAMP [18], CAMPR3 [19],
LAMP [20], DRAMP [21], ADAM [22], and DBAASP [23]. However, most of these predic-
tion tools only discriminate between AMPs and non-AMPs. This is a highly ambiguous
outcome given the broad scope of antimicrobial activity, which typically refers to more than
20 biological functions, such as the annotations in APD3 [17].

A group of predictors addressed this issue by applying a hierarchical classification
scheme where first the peptides are classified as AMPs or not, and the positive cases are
then sub-divided into a couple of classes based on selected AMP functions (e.g., antibac-
terial, antiviral, and antifungal peptides). Examples of such predictors, which include
the antibacterial function are AntiBP2 [24], ClassAMP [25], MLAMP [26], iAMPpred [27],
AMAP [28], AMP Scanner [29,30], and AMPDiscover [31]. However, of them, only AMP
Scanner vr.1 predicts a type of bacterial target (E. coli or S. aureus) for the identified ABP [29].

In this context, we implemented a two-level predictor focused on antibacterial pep-
tides (ABPs), named ABP-Finder, whose inner classifier estimates the Gram staining type
of the putative targets. This tool leverages random forest (RF) classifiers trained with
peptide data extracted from StarPep, the largest up to date public database of AMPs [32].
ABP-Finder categorizes ABPs and non-ABPs in the first classification level. Subsequently,
the peptides identified as ABPs are sub-classified according to the Gram staining type of
the potential targets i.e., exclusively Gram-positive, exclusively Gram-negative bacteria, or
broad-spectrum peptides with expected activity against both types of bacteria. The ABPs
used to develop this predictor show activity against at least one of nine representative
bacterial targets (see Dataset section), among which are species with known multi-drug
resistance such as Acinetobacter baumannii, Enterococcus faecium, Klebsiella pneumonia, Pseu-
domonas aeruginosa, and Staphylococcus aureus. With ABP-Finder, we weigh precision as
the main performance feature of the prediction. In this way, we boost the efficiency of the
screening step at the early stages of the drug design process aiming at the development
of peptide-based antibiotics. Remarkably, we prove the efficacy of ABP-Finder for such
screenings with the identification of a peptide from the human urine peptidome, displaying
antimicrobial activity against Pseudomonas aeruginosa.

38



Antibiotics 2022, 11, 1708

2. Materials and Methods

2.1. Data Collection and Pre-Processing

The models developed in this study were derived from the StarPep database [32,33].
This resource, as described by the authors, is a non-redundant compendium from 40
publicly available data sources, which encompasses annotations of more than 20 functions
in approximately 45,000 AMPs, with nearly 8000 entries labelled as antibacterial peptides.

Before describing the construction of our training and test sets, we point out a short-
coming of several AMP-based predictors found in the literature [16–22], whose models
do not obey the first principle dictated by the Organisation for Economic Co-operation
and Development (OECD) to build reliable Quantitative Structure–Activity Relationship
(QSAR)/ML-based models [34] (https://doi.org/10.1787/9789264085442-en (accessed on
16 November 2022)). This principle is stated as “a defined endpoint”. Commonly, AMPs are
annotated as such regardless of the target, mechanism, source, the method used to study
the activity, to name some characteristics. The lack of such detailed information makes
the discrimination between AMPs and non-AMPs a largely ambiguous endpoint for data
analysis. In consequence, several criteria must be introduced to better define the modelled
data and thus bring reliability to the predicted outcome. Notably, the most recent AMP
predictors [24–29,31] have designed their modeling approaches to break down the AMP
annotation into three classes (typically antibacterial, antifungal, and antiviral peptides).
This strategy is a suitable approach to fulfil the need for a defined endpoint.

Our work focused on the identification of ABPs. To this end, we extracted peptides
from the StarPep database ranging between 5 and 50 residues, and whose composition
contains only the 20 standard amino acids. To further refine the selection of ABPs, we
only extracted those peptides annotated as active against at least one of the following
targets: Acinetobacter baumannii, Bacillus subtilis, Enterococcus faecium, Escherichia coli, Kleb-
siella pneumonia, Listeria monocytogenes, Pseudomonas aeruginosa, Streptococcus agalactiae, and
Staphylococcus aureus. In this way, we discarded entries that are annotated as ABPs without
information of their targets, and those exclusively reported with activity against underrepre-
sented targets in the entire database. The selected species cover a set of both Gram-positive
and Gram-negative bacteria and are examples of relevant targets for therapeutic appli-
cations. The peptides labeled as non-ABP for our learning process are not annotated as
antibacterial, against any target, in StarPep, but with a different function such as antifungal
or anticancer, among others. This approach clearly carries the risk of mislabeling non-ABP
in our dataset, due to insufficient annotation of the peptide in the original source. The
pseudo-negative cases in the training data lead to a more stringent prediction of positive
cases, and consequently lower false-positive rate and higher precision. The downside is
the expected lower recall as the true positives can be also diminished. Nonetheless, the
favourable precision is aligned with our stated goal of boosting the precision of the classifier
instead of its recall or a combined metric such as accuracy or AUC.

Hence, we extracted a total of 22,707 peptides to design our training and testing
schemes. This collection was partitioned into four datasets: training, development, vali-
dation, and test sets. The two first are intended for the learning process, while the others
are meant for testing the models with hold-out data. The development (Dev) set was used
to monitor the generalization of the models built during the optimization of the hyper-
parameters in the learning algorithm. Usually, the terms development and validation set
are applied indistinctively to a dataset used for the above-mentioned purpose. In this work,
we made a distinction between these nomenclatures and reserved the term validation for
a hold-out set, i.e., peptides that are not used in any step of the learning process. The
difference between the validation and the strict test set is that we built the validation set in
a way that its peptides share high similarity (≥90% identity) with at least one peptide in
the training set (excluding identical matches). In turn, the test set was built in a way that its
peptides share less than 90% identity among them, and with any peptide in the training
data. Consequently, the test set comprises non-redundant peptides that are also not closely
represented in our training. Challenging a peptide predictor in both scenarios, one that

39



Antibiotics 2022, 11, 1708

closely resembles the training conditions (without strict superposition), and another more
distant setup, is important to assess the biasing effect on the generalization of the model
due to the characteristics of the training data.

Finally, a production dataset was generated by combining the training and the devel-
opment sets. The purpose of this set is to perform a final re-training of the model with
an augmented dataset, while keeping the selection of descriptors and configuration of
hyper-parameters as optimized with the training and development sets. Figure 1 depicts
the workflow followed to obtain the four datasets.

Figure 1. Workflow for the preparation of the datasets. The peptides extracted from StarPep were
clustered with CD-Hit and subsequently distributed among the four sets used for training and testing
the predictor. The final panel of the pipeline contains information about the number of peptides in
every subset as well as their classification according to StarPep.

Together with the peptide sequences and their classification as ABP or non-ABP, we
also extracted, from StarPep, the information about the Gram staining type of their known
targets. Accordingly, we further categorized the ABPs into three activity classes: exclusively
against Gram-positive targets (Gram+), exclusively against Gram-negative targets (Gram-),
and broad-spectrum peptides. The four datasets resulting from the previous splitting were
also used to train and assess the secondary classifier based on the Gram staining type of the
targets. For this purpose, the non-ABP peptides were removed from such datasets. Table 1
summarizes the number of peptides per type of Gram staining class in the four datasets.

Table 1. Number of peptides per type of Gram staining class in the training, development, validation,
and test datasets.

Gram+ Gram− Broad Spectrum

Training 351 478 4983
Development 52 105 911
Validation 37 82 546
Test 27 38 315

2.2. Performance Measures

In this section, we summarize the formulations of the performance measures used to
assess the different models described here. The measures are sensitivity (Sn), precision (Pr),
accuracy (Acc), F1 score, and the Mathew Correlation Coefficient (MCC) [35]. All of them
are formulated in terms of the elements of a binary confusion matrix: true positives (TP),
true negatives (TN), false positives (FP), and false negatives (FN).
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Sn =
TP

TP + FN

Pr =
TP

TP + FP

Acc =
TP + TN

TP + TN + FP + FN

F1 = 2
Sn ∗ Pr
Sn + Pr

=
TP

TP + 1
2 (FP + FN)

MCC =
TP ∗ TN − FP ∗ FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)

Besides, we define an ad-hoc measure named Fitness–Robustness Score (FRS) that is
specifically used as a scoring function to tune the values of the hyper-parameters of the
learning technique.

FRS =

(
RT + RCV + RD

3

)2
− (RT − RCV)

2 − (RT − RD)
2

The FRS is a quality measure that provides a consolidated value for the performance of
a particular model considering its goodness-of-fit, generalization, and robustness. The first
term corresponds to the average performance in the following assessments: re-substitution
(RT, fitting the training data), 10-fold cross-validation (RCV, within the training data),
and generalization (RD, using the development set). The other two terms weigh the
robustness of the model by measuring the deviations from the performance in training
samples when the model is evaluated in hold-out data (cross-validation and development
set). We formulated this ad-hoc measure as a function of another base quality measure,
labelled as R, which should be evaluated in the different assessment schemes. For this
study, we selected the MCC as the base measure to evaluate our fitness-robustness score. In
the case of the multi-classifier trained to distinguish between the Gram staining classes, the
average MCC value among the three classes was used as the base measure. The average
was weighted according to the number of peptides in each class.

The FRS, when computed as a function of the MCC, has an optimum maximum value
of one. We leveraged this score to identify optimum values for the hyper-parameters of the
random forest [36] algorithm used to develop our models.

2.3. Machine Learning Approach and Software

The classifiers developed in this work were random forest (RF) [36] predictors, based
on the implementation of this technique in the WEKA environment [37]. RF belongs to the
family of ensemble methods [38] with base classifiers formed by decision trees. Recently, RF
has been compared with deep learning approaches showing comparable performance for
modeling AMP datasets [39]. There, the authors conclude that no definitive evidence was
found to support using deep-learning approaches for this problem, knowing the increased
algorithmic complexity and computational cost of these methods.

Within RF, all the trees provide a prediction for every instance entering the forest,
and the unified outcome is obtained as the majority vote among all the predictions. The
hyper-parameters optimized during the learning process were the number of trees, the
maximum number of descriptors used to build a tree (these descriptors are taken at the
beginning of the training process from the global pool of attributes), and the maximum
depth of the trees. In addition, the minimum number of instances in the final leaves of the
trees was fixed to 10 in the case of the main classifier (ABPnon-ABP), and to five for the
multi-classifier (Gram+/Gram−/broad spectrum).

The peptide descriptors fed to the learning algorithm were computed with the ProtDCal-
Suite [40] using the configuration files enclosed in the Supplementary Material. The Prot-
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DCal module [41] is intended for the calculation of general-purpose and alignment-free
descriptors of amino acid sequences and protein structures. These features are descriptive
statistics (such as the variance, average, maximum, minimum, percentiles, etc.) of the
distribution of amino acid properties (such as hydrophobicity, isoelectric point, molar
weight, among others), in multiple groups of residues extracted from a given protein or
peptide. The program possesses additional procedures that modify the intrinsic properties
of a residue according to its vicinity in the sequence, thus adding connectivity informa-
tion in the descriptors. The features derived from ProtDCal have been used by us and
other authors to develop machine-learning-based predictors of posttranslational modifi-
cations [42,43], protein–protein interaction [44], enzyme-like amino acid sequences [45],
residues critical for protein functions [46], and antibacterial peptides [47,48], although with
smaller databases. The project files enclosed in the Supplementary Material contain the
setup used to compute all the descriptors employed in this work.

2.4. Web Servers Available for ABPs Predictions

In this section, we briefly describe the most relevant state-of-the-art ABP predictors
that are available via web server tools. ClassAMP was among the first methods that broke
down the AMP family thus allowing the prediction of ABPs specifically [25]. This tool
was trained with peptides from the CAMP database [18] and used RF and support vector
machine (SVM) [49] algorithms to identify antibacterial, antifungal, and antiviral peptides.

MLAMP, a multi-label classifier of AMPs was developed using a variant of Chou’s
pseudo amino acid composition (PseACC) features [50] to build an RF-based classifier that
firstly distinguishes AMP from non-AMPs, and then subdivides the biological activity into
antibacterial, anticancer, antifungal, antiviral, and anti-HIV [26].

Similarly, the iAMPpred predictor combines compositional, physicochemical, and
structural features into Chou’s general PseACC as input variables for an SVM multi-
classifier [27]. This work reunited peptides from the databases CAMPR3 [19], APD3 [17],
and AntiBP2 [24]. The multi-classifier uses three categories in the outcome variable: an-
tibacterial, antifungal, and antiviral peptides [27].

The Antimicrobial Activity Predictor (AMAP) [28], with a hierarchical multi-label
classification scheme, was trained with AMPs annotated with 14 biological activities in
the APD3 database and a designed subset of non-AMP. The models used amino acid
composition features to feed SVM and XGboost tree [51] algorithms.

The introduction of the AMP-Scanner webserver represented a significant improve-
ment with respect to other predictors. AMP-Scanner vr.1 consists of two RF classifiers,
trained with peptides selected from multiple sources [18,52,53]. The first output of the
classifier is the identification of ABPs. The second is a classifier trained to distinguish
between peptides with Gram-positive or Gram-negative targets, using data of S. aureus and
E. coli as reference targets. The authors refer that peptides predicted with scores within the
range [0.4–0.6] for both classes should be considered as active against both types of targets
(broad-spectrum peptides) [29]. On the other hand, AMP-Scanner vr.2 is based on a Deep
Neural Networks (DNN) classifier fed with ABP data only, obtained from the updated
version of the ADP3 database [19,30].

Very recently, AMPDiscover [31] was developed by mining AMP data from StarPep [33].
AMPDiscover encompasses several binary (active/non-active) predictors of functions such
as antibacterial, antiviral, antifungal, and antiparasitic peptides. The authors analyzed the
performance of RF to model the antibacterial peptides data, which agrees with our choice
of this learning scheme for our models.

2.5. Experimental Determination of Antibacterial Activity

Two batches of chemically synthetized peptides from different providers (KE Biochem
and the U-PEP facility at Ulm University) were used to assess antimicrobial effects. An-
tibacterial activity was evaluated by agar diffusion as previously described [54]. Bacteria
were cultured in liquid broth at 37 ◦C overnight, pelleted by centrifugation, and washed in
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10 mM sodium phosphate buffer. Following resuspension, optical density was determined
at 600 nm and 2 × 107 bacteria were seeded into a Petri dish in 1% agarose. After cooling
at 4 ◦C for 30 min, 3–5 mm holes were placed into the 1% agarose. Peptides adjusted to
the desired concentration in 10 μL of buffer were filled into the agar-holes. Following
incubation at 37 ◦C in ambient air for 3 h, plates were overlaid with 1% agarose, tryptic soy
solved in 10 mM phosphate buffer. Inhibition zones in cm were determined after 16–18 h in-
cubation time at 37 ◦C in 5% CO2. LL37 at a concentration of 100 μg/mL served as positive
control. Antimicrobial activity was tested on the following bacterial strains: Bacillus subtilis,
Streptococcus agalactiae ATCC 12403, Staphylococcus aureus MRSA ATCC 43300, Klebsiella
pneumoniae Extended Spectrum β-Lactamase (ESBL) ATCC 700603, Pseudomonas aeruginosa
(ATCC 27853) and Listeria monocytogenes (ATCC BAA-679/EGD-e).

3. Results and Discussion

Below, we summarize the characteristics of the ML-based models developed in this
work, as well as their performance relative to the available state-of-the-art ABP predictors.
We also introduce a web server, ABP-Finder, which permits the free and user-friendly
screening of large peptide libraries. Finally, we present the application of ABP-Finder for
the screening of peptides obtained from the human urine peptide. Notably, ABP-Finder
permitted to screen and propose a reduced set of eight ABP candidates out of an initial
pool of 4696 peptides. From them, one active hit was experimentally validated with activity
against Pseudomonas aeruginosa.

3.1. Modeling Antibacterial Peptide Data

Feature selection: The feature selection process comprises three steps. (i) First, the
Information Gain (IG) [55,56] of all the descriptors was calculated with WEKA, retaining
only those descriptors whose IG is >5% of the information content of the class variable. This
procedure reduced an initial set of 11,298 descriptors to 2746, whose information contents
are the most closely related to our end point variable. (ii) Secondly, the redundancy in this
subset of features was removed, by clustering the descriptors using a quality-threshold-
based [57] clustering algorithm, which employs the Spearman correlation coefficient [58]
as the similarity measure to group the descriptors. A correlation cut-off of 0.9 was used
to form the clusters. The outcome of these steps is thus a non-redundant and smaller
dataset that contains only the central attributes of the formed clusters. This step rendered
1242 attributes. (iii) Given the still large set of features, a last selection step was used by
employing the Wrapper Evaluator and the Classifier Subset Evaluators of WEKA coupled
with a genetic search algorithm [59]. The Wrapper Evaluator used five-fold cross-validation
on the training data to assess the models obtained from diverse subsets of descriptors.
Such models were built with an RF whose number of trees was limited to 15. Next, the
Classifier Subset Evaluator used the performance with the development set to identify the
most suitable pool of descriptors to train the RF. For both evaluators, the F1 measure was
used to score all the assessed subsets of attributes. The genetic search employed to explore
the space of all possible combinations of attributes was configured with 20 chromosomes
(subsets of attributes) per population, 500 generations, and probabilities of cross-over and
mutation of 0.6 and 0.1 respectively. The optimal subset resulting from these selection
steps comprised 281 descriptors. A project file type IDL (Individual Descriptor Labels)
is enclosed in the Supplementary Material; this project file can be uploaded directly to
ProtDCal-Suite to compute the selected 281 descriptors in new peptide datasets.

Tuning hyperparameters: The hyperparameters of the RF were explored using a grid
search according to ranges and binning schemes summarized in the top-left panel of
Figure 2. The ad hoc FRS function was used to determine the optimum combination of
hyperparameters’ values, which was obtained with 75 trees each one built from a pool of
40 descriptors and a maximum depth of 14 splits. Such combinations of values rendered
the maximum FRS at 0.517.
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Figure 2. Tuning scheme of the RF’s hyperparameters. The top-left panel summarizes the boundaries
and binning of the grid search with the three hyper-parameters. This panel also shows the optimum
value found for the FRS function and the values of the hyper-parameters in the corresponding
solution. The remaining panels show surfaces plotted as heat maps keeping one of the hyper-
parameters fixed at its optimum value. The dark regions indicate the best solutions. The optimum
regions are highlighted with a dashed circle. The plots highlight that the most critical parameter is
the depth of the trees, while high-scored models can be obtained with almost any value of the other
hyper-parameters; solutions with a depth below 10 are poorly scored.

3.2. Modeling Data of Gram-Staining Types

This model was trained with the same set of 281 descriptors obtained from the feature
selection procedure to discriminate between ABPs and non-ABPs. The training, devel-
opment, validation, and test sets used for this model were obtained from the splitting
described in the Methods section, by removing the non-ABP present in these datasets. The
ABPs were then subdivided according to the Gram-staining type of their known targets.

Due to the imbalance in the number of instances from each class, the cost-sensitive RF
multi-classifier was trained by applying a cost matrix in the training process with distinct
weights for the different types of misclassified cases. The cost matrix takes the form shown
in Figure 3.

Figure 3. Cost matrix applied during the training process of the multi-classifier based on the Gram-
staining types of the targets.

The multi-class classifier was built with a cost-sensitive learning scheme, which aims
to balance the effective error between pairs of classes considering their different prevalence
in the training data. The costs were defined as the inverse ratio of the imbalance between
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the two classes involved in the matrix element, i.e., given the imbalance between Gram+
and broad-spectrum (BS) peptides in the training data is [1:14.197], then the cost of a Gram+
peptide classified as BS was fixed at 14.197 and the cost of a BS peptide classified as Gram+
remained at 1. This approach diminishes the trend towards BS predictions that originates
due to the highest representation of this class in the training data.

The costs affect the training process by re-weighting the training samples in the
calculation of the different misclassification errors during the training. No re-weighting is
applied to the instances in the test datasets.

Tuning hyperparameters: Analogous to the previous model, the hyper-parameters of the
RF were explored using a grid search with the ranges and binning schemes summarized in
the top-left panel of Figure 4. The FRS function rendered a maximum value for a solution
with 35 trees, 20 descriptors per tree, and a maximum depth of 7 splits. Such combinations
of values rendered the maximum FRS at 0.185. The lower value of the optimum FRS value,
compared with the ABP/non-ABP model, indicates the larger difficulty of discriminating
between the three classes of Gram-staining types. Such difficulty is a natural consequence
of the overlap between the classes, given that the peptides in the broad-spectrum category
should gather intrinsic features of the other two classes.

Figure 4. Tuning scheme of the RF’s hyper-parameters. The top-left panel summarizes the boundaries
and binning of the grid search with the three hyper-parameters. This panel also shows the optimum
value found for the FRS function and the hyper-parameters’ values of the corresponding solution.
The remaining panels show surfaces plotted as heat maps keeping one of the hyper-parameters
fixed at its optimum value. The dark regions indicate the best solutions. The optimum regions are
highlighted with a dashed circle. As in the exploration for the model ABPs/non-ABPs, the plots show
that the most critical parameter is the depth of the trees. Nonetheless, the opposite trend is observed
because high-scored models are only obtained with low (<8) depth values. The smaller size of the
dataset for this model, as compared with the previous one, leads to the occurrence of overfitting
when deep trees are trained.

3.3. Applicability Domain

Following the regulatory principles for QSAR models established by the OECD, we
discuss the applicability domain (AD) of our models. Both of our models were built using
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peptides with lengths between 5 and 50 residues and containing exclusively the 20 standard
amino acids. Thus, these length and composition boundaries constitute soft limits of our
applicability domain. A quantitative approach for the AD is provided via the range of the
descriptors’ values in the training or production dataset. In the Supplementary Material,
we provide the minimum and maximum values of the descriptors in these datasets. As
part of the implementation of these predictors, we automatically evaluate whether any new
peptide is found within these ranges or not. If any of the descriptor values of a new peptide
falls outside the training ranges, this peptide is labelled as an outlier and the corresponding
information is given in the outcome of the program.

3.4. Performance of ABP-Finder in the Context of the State-of-the-Art

Predictors of antibacterial peptides: We compare the performance of our models to five
ML-based ABP predictors by employing the hold-out validation and test sets, respectively
(Tables 2 and 3). In addition, we employ an external test set originally used by Veltri
et al. [30] to assess the performance of AMP-Scanner vr2 (Table 4). We present the perfor-
mance of our models obtained with the training data only, and with the production dataset.
Additionally, we show the performance of our tool considering only those instances that
are within the AD of our models.

Table 2. Comparison with external predictors in the validation set. The values in bold denote the
best performance for a given measure.

Webserver Algorithm Pr. Sn. Acc.

ClassAMP SVM 0.46 0.33 0.59
MLAMP RF 0.48 0.82 0.59
iAMPred SVM 0.48 0.90 0.58
AMPScanner_v1 # RF 0.50 0.98 0.61
AMPScanner_v2 * DNN 0.48 0.97 0.58
AMPDiscover RF 0.50 0.99 0.61

ABP-Finder (Training) RF 0.72 0.95 0.84
ABP-Finder (Training, AD) RF 0.70 0.95 0.83
ABP-Finder (Production) RF 0.75 0.95 0.85
ABP-Finder (Production, AD) RF 0.75 0.95 0.85

AD: only instances within our applicability domain are considered as valid predictions. # AMPScanner_v1 only
considers peptides ≥ 10 AA for the predictions. * The method was updated on 20.02.2020.

Table 3. Comparison with external predictors in the test set. The values in bold denote the best
performance for a given measure.

Webserver Algorithm Pr. Sn. Acc.

ClassAMP SVM 0.34 0.41 0.61
MLAMP RF 0.38 0.77 0.59
iAMPred SVM 0.36 0.81 0.56
AMPScanner vr.1 # RF 0.50 0.80 0.68
AMPScanner vr.2 * DNN 0.37 0.84 0.57
AMPDiscover RF 0.42 0.94 0.62

ABP-Finder (Training) RF 0.77 0.68 0.86
ABP-Finder (Training, AD) RF 0.78 0.67 0.86
ABP-Finder (Production) RF 0.80 0.71 0.87
ABP-Finder (Production, AD) RF 0.80 0.70 0.87

AD: only instances within our applicability domain are considered valid predictions. # AMPScanner_v1 only
considers peptides ≥ 10 AA for the predictions. * The method was updated on 20 February 2020.
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Table 4. Comparison with external predictors in the test set built by Veltri et al. [30]. Redundant
instances with our training set were removed. The values in bold denote the best performance for a
given measure.

Webserver Algorithm Pr. Sn. Acc.

ClassAMP SVM 0.36 0.27 0.66
MLAMP RF 0.51 0.65 0.72
iAMPred SVM 0.74 0.90 0.88
AMPScanner vr.1 # RF 0.64 0.77 0.81
AMPScanner vr.2 * DNN 0.82 0.89 0.91
AMPDiscover RF 0.83 0.84 0.91

ABP-Finder (Training) RF 0.83 0.43 0.81
ABP-Finder (Training, AD) RF 0.83 0.51 0.86
ABP-Finder (Production) RF 0.84 0.48 0.83
ABP-Finder (Production, AD) RF 0.84 0.57 0.86

AD: only instances within our applicability domain are considered valid predictions. # AMPScanner_v1 only
considers peptides ≥ 10 AA for the prediction. * Performance based on the model from the original training in
Veltri et al. [30], where the cases in this test set are held out of the training process.

Tables 2 and 3 show that our models achieved the best precision and global accuracy
in the test and validation sets. Particularly, the precision was significantly higher with
ABP-Finder with respect to the other methods. This is a key feature to be leveraged when
filtering large peptide libraries because the main aim during the screenings for new hits is
to avoid false-positive predictions.

We also challenged our models with an external test set designed by Veltri et al. [30]
(Table 4) to further assess the robustness of our predictions. This dataset is qualitatively
different from our test set since it is not derived from the StarPep database as all our data,
and therefore it was not subjected to any of the curation procedures carried out by the
StarPep’s developers.

These comparisons confirm that our RF-based models render the most precise pre-
dictions, although the sensitivity (and consequently the global accuracy) decays in this
case compared with other ABP predictors. Nevertheless, we note the importance of a low
false-positive rate in virtual screening analyses, which highlights the higher practical value
of our predictors.

Predictors of Gram-staining types: Our antibacterial predictor was designed to provide
an estimation of against which type of bacteria are the peptides active. Therefore, we tested
how our multi-classifier performs for the Gram+, Gram−, and Broad-Spectrum classes
compared to AMP-Scanner vr.1. Tables 5 and 6 summarize the comparison with respect to
precision and sensitivity of our models and AMP-Scanner vr.1 on the validation and test
sets, respectively. The performance measures were computed for the three classes (Gram+,
Gram−, and Broad Spectrum).

Table 5. Comparison of ABP-Finder with AMP-Scanner_v1 in the discrimination between Gram-staining
classes within the validation set. The values in bold denote the best performance for a given measure.

Method Gram+ Gram− Broad Spectrum

Pr Sn Pr Sn Pr Sn

AMPScanner vr.1 # 0.04 0.19 0.16 0.42 0.81 0.27

ABP-Finder (Training *) 0.63 0.73 0.91 0.38 0.90 0.97
ABP-Finder (Production *) 0.62 0.70 0.85 0.48 0.91 0.96

AD: only instances within our applicability domain are considered valid predictions. # AMPScanner_v1 only
considers peptides ≥ 10 AA for the predictions. * There are no instances outside the AD of the model.
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Table 6. Comparison of ABP-Finder with AMP-Scanner_v1 in the discrimination between Gram-
staining classes within the test set. The values in bold denote the best performance for a given
measure.

Method Gram+ Gram− Broad Spectrum

Pr Sn Pr Sn Pr Sn

AMPScanner vr.1 # 0.08 0.42 0.13 0.33 0.88 0.23

ABP-Finder (Training) 0.44 0.41 0.90 0.24 0.87 0.96
ABP-Finder (Training, AD) 0.44 0.39 0.90 0.24 0.87 0.96
ABP-Finder (Production) 0.44 0.41 0.82 0.24 0.88 0.96
ABP-Finder (Production, AD) 0.44 0.39 0.82 0.24 0.88 0.96

# AMPScanner_v1 only considers peptides ≥ 10 AA for the predictions.

Our models largely outperformed AMP-Scanner vr.1, particularly in terms of precision
when detecting the specific types of Gram-staining types (Gram+ and Gram−). Regarding
the prediction of broad-spectrum peptides, both methodologies delivered the same pre-
cision. However, in this case we greatly surpassed the sensitivity of AMP-Scanner vr.1,
thus making more accurate predictions overall. Notably, our multi-classifier showed the
best performance for the three classes of Gram-staining types, thus providing a valuable
complement to the identification of antibacterial peptides.

The comparison with the state-of-the-art tools showed that, together with ABP-Finder,
the top-ranked methods in our tests were iAMPred, AMP-Scanner vr2, and AMPDiscover.
These approaches were thus confirmed as suitable tools for ABP identification. Nonetheless,
ABP-Finder outperformed these predictors, particularly in terms of precision. Importantly,
as a distinctive feature, we complement our outcome with an estimation of the Gram-
staining type of the putative targets, which can be further pinned down to specific bacterial
species by considering that our models were trained with data from nine representative
targets (see Dataset section). Furthermore, unlike previously published tools [24–30],
we provide an estimation of our applicability domain, which delivers reliability to the
predicted outcome.

3.5. ABP-Finder Web Server

Our emphasis in the application of regulatory principles to the development of ML-
based predictors relies on our commitment to offer a freely accessible and well-maintained
tool to reliably screen peptide libraries. To this end, we implemented our models in a user-
friendly web server named ABP-Finder (https://protdcal.zmb.uni-due.de/ABP-Finder/
(accessed on 16 November 2022)). This tool allows screening seamlessly thousands of
peptides with a single submission job. The ABP-Finder server delivers for each entry
a prediction of the antibacterial function, as well as whether each specific peptide is or
not within the AD of our models. ABP predictions are also accompanied by a Gram-
staining-based estimation of the putative targets of the antibacterial peptides. Furthermore,
the web server offers the functionality of screening regions within a long amino acid
sequence to identify promising antibacterial fragments. This application of ABP-Finder’s
models was recently leveraged by us for the identification of antibacterial motifs within
β2-microglobulin [60].

3.6. Virtual Screening of the Human Urine Peptidome

In this section, we describe the successful application of ABP-Finder to screen a peptide
library obtained from the human urine peptidome. The library contains 4696 endogenous
peptide fragments, detected in the Core Facility Functional Peptidomics at the University
Hospital in Ulm, Germany. The peptide library was screened for antibacterial activity
following the workflow depicted in Figure 5.
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Figure 5. Schematic representation of the virtual screening process carried out on a library of peptides
from the human urine peptidome.

ABP-Finder was used to score the original 4696 peptides of the library, obtaining
43 candidates with a probability score larger than 0.6, and within the applicability domain
of the model. Subsequently, Blastp [61] was used to cross-align these peptides with known
ABPs of our training samples. From there, we excluded two hits that showed 100%
identity and coverage in the alignment with previously reported ABPs and therefore
did not have value as newly identified peptides. Afterward, we clustered the peptide
sequences using CD-Hit [62] with a cut-off of 90% of identity, and minimum coverage of
the shortest sequence in the alignment of 90%. From this analysis, eleven clusters were
obtained, from which we extracted the shortest sequence as representative of each cluster.
Three polyproline peptides, containing none or only one residue other than proline were
finally discarded because we considered them unsuitable as candidates for possible lead
compounds due to synthetic unfeasibility and the highly homogenous character of their
sequences. The final eight candidates (Table 7) were experimentally evaluated using an
agar diffusion assay, leading to one active hit, Urine-3462, against Pseudomonas aeruginosa.

Table 7. The resulting eight ABP candidates from the virtual human urine peptidome screening and
some of its global sequence descriptors. Global peptide descriptors were calculated using the Peptide
Design and Analysis Under Galaxy (PDAUG) package [63].

Peptide Sequence Length pI Total Charge # Global
Hydrophobicity *

GRAVY Index &

U2162 KKVLGAFSDGLAHLDNLKGT 20 10.42 1.09 0.08 −0.12
U687 DKTNVKAAWGKVGAHAGEYGAE 22 9.53 0.10 0.01 −0.73
U4507 WLKEGVLGLVHEF 13 7.70 −0.90 0.39 0.52
U3462 RVDPVNFKLLSHCLLVT 17 10.03 1.03 0.18 0.67
U2125 KAVGKVIPELNGKLTGM 17 10.99 1.99 0.15 0.12
U1930 IAGVGAEILNVAKGIRSF 18 11.40 0.99 0.35 0.92
U1982 IFVKTLTGKTI 11 13.0 1.99 0.32 0.86
U2273 KVVAGVANALAHK 13 13.0 2.09 0.24 0.67

# Total Molecular Charge given at pH = 7. * Eisenberg scale. & GRAVY (Grand Average of Hydropathy) is
calculated as the sum of hydropathy values of all the amino acids, divided by the number of residues in the
sequence [64]. Positive GRAVY values indicate hydrophobic; negative values mean hydrophilic.
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3.7. Experimental Evaluation of the Reduced Set of Peptides from the Human Urine Peptidome

To test the antimicrobial potential of the eight candidate peptides identified with
ABP-Finder, a radial diffusion assay was carried out, allowing the sensitive detection of
antibacterial activity. Activity was determined against various Gram-positive and Gram-
negative bacteria species, including Bacillus subtilis, Streptococcus agalactiae, Staphylococcus
aureus (MRSA), Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae (ESBL). While
the peptide Urine-3462 was active against Pseudomonas aeruginosa, no relevant antibacte-
rial activity could be detected at concentrations of 100 μg/mL and 1 mg/mL of the other
peptides. Urine-3462 exhibited a dose-dependent growth of inhibition of Pseudomonas aerug-
inosa, comparable to the inhibitory activity observed for the well described antimicrobial
peptide LL37 [54,65], which served as a positive control (Figure 6).

Figure 6. A radial diffusion assay indicated that the peptide Urine-3462 is active against the Pseu-
domonas aeruginosa strain ATCC 27853. Inhibition zones are quantified in cm. The mean values and
standard deviations of six independent experiments are shown. LL37 at 100 μg/mL was used as
positive control (see Table S3 for exact values).

4. Conclusions

Antibacterial peptides are promising candidates for a new generation of antibiotics
designed to address the challenging problem of drug resistance in bacteria. With ABP-
Finder we provide a tool that delivers top-ranked predictions as established by several
comparisons with prominent examples of the state-of-the-art ABP predictors. Remarkably,
ABP-Finder produces the most precise predictions in validation tests with known data.
Furthermore, unlike other tools of the state-of-the-art that were used for comparison in this
work, we present a successful application of the method in a real-life scenario dealing with
the massive screening of unlabeled peptides from the human urine peptidome.

We implemented this RF-based predictor in the user-friendly and freely accessible
web server ABP-Finder, which was also leveraged in the identification of the new ABP hit
from a large library of peptides derived from the human peptidome.

In this way, the combination of in silico screening and experiments confirmed the
applicability of ABP-Finder as a screening tool for the early steps of the design of peptide-
based antibiotics. To the best of our knowledge, no other publicly available ABP predictor
has delivered a similar study leading to the successful identification of an active hit from
tens of thousands of unlabeled peptides. Further developments of our predictor will include
its combination with target-specific models. This will allow improving the design of broad-
spectrum candidates, as well as to orient the selection of targets in massive screenings of
bioactive peptides.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/antibiotics11121708/s1, The Supporting Information is available
free of charge and includes the project files containing the setup used to compute all the descriptors
employed in this work, and the AD of the datasets.
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Abstract: With the uncontrolled growth of multidrug-resistant bacteria, there is an urgent need
to search for new therapeutic targets, to develop drugs with novel modes of bactericidal action.
FoF1-ATP synthase plays a crucial role in bacterial bioenergetic processes, and it has emerged
as an attractive antimicrobial target, validated by the pharmaceutical approval of an inhibitor to
treat multidrug-resistant tuberculosis. In this work, we aimed to design, through two types of in
silico strategies, new allosteric inhibitors of the ATP synthase, by targeting the catalytic β subunit,
a centerpiece in communication between rotor subunits and catalytic sites, to drive the rotary
mechanism. As a model system, we used the F1 sector of Escherichia coli, a bacterium included in
the priority list of multidrug-resistant pathogens. Drug-like molecules and an IF1-derived peptide,
designed through molecular dynamics simulations and sequence mining approaches, respectively,
exhibited in vitro micromolar inhibitor potency against F1. An analysis of bacterial and Mammalia
sequences of the key structural helix-turn-turn motif of the C-terminal domain of the β subunit
revealed highly and moderately conserved positions that could be exploited for the development
of new species-specific allosteric inhibitors. To our knowledge, these inhibitors are the first binders
computationally designed against the catalytic subunit of FOF1-ATP synthase.

Keywords: FOF1-ATP synthase; allosteric inhibition; structure-based drug design; evolutionary and
PPI algorithms; peptide design
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1. Introduction

At the end of the last century, there were already alarming signs of a growing health
crisis because of the emergence of antimicrobial resistance (AMR) [1], which, if left unat-
tended, would cause worldwide mass fatalities and colossal financial burden [2,3]. As it was
feared, the decline in investment in the development of novel antibiotics has aggravated
this crisis, reflected in the decrease in newly approved antibiotics, although a slight change
in this trend was recently reported [4]. AMR microorganisms have developed effective
antibiotic evasion mechanisms [5]. The need to circumvent those mechanisms prompts the
search for novel pharmacological targets [4]. Bacterial bioenergetic pathways have recently
unveiled a new Achilles heel to combat AMR [6], as evidenced by bedaquiline, the first
approved anti-tuberculosis drug in 40 years, which targets Mycobacterium tuberculosis ATP
synthase [7]. Furthermore, mounting evidence supports that blocking the catalytic activity
of this enzyme sensitizes AMR facultative anaerobic microorganisms (v. gr., Staphylococcus
aureus and Escherichia coli) to the action of other antimicrobial agents [8–10]. Therefore,
ATP synthase appears as a momentous pharmacological target to broaden the battlefront
against the pathogens of major concern.

ATP synthase is a sophisticated molecular motor, with an efficiency of ~100% [11],
made up of two functionally coupled subcomplexes: a membrane embedded proton chan-
nel, FO, and a soluble catalytic subcomplex, F1. Together, FO and F1 harvest electrochemical
gradient potential energy to produce rotational energy that is eventually converted into
chemical energy as a phosphodiester bond [12,13]. The enzyme also catalyzes, with high ef-
ficiency, the hydrolysis of ATP, being able to restore the proton gradient under physiological
demand (v.gr., to generate membrane potential in bacteria under anaerobic conditions) [14].
The minimal architecture of this enzyme is found in bacteria (Figure 1), composed of eight
types of subunits, with FO:ab2c10-17 and F1:α3β3γδε stoichiometries [12,15]. Proton translo-
cation (or sodium ions, in some species) drives the rotation of the transmembrane ring of
c subunits relative to the a subunit. This rotation drives the torque of the asymmetric γ

subunit, which is partially embedded in the catalytic α3β3 ring. α3β3 is stabilized against
rotation by the stator stalk, composed of δ, b, and a subunits in bacteria [16], and by a
larger number of different subunits in mitochondria [17]. ATP synthase operates under a
mechanism dubbed as the binding change mechanism [18]. Each of the three catalytic sites,
composed mainly of residues of the β subunit and some of the α subunit, transits through
three alternating affinity states, corresponding to three different conformational states.
According to the nucleotide occupancy exhibited in the first experimental F1 structure
from Bos taurus (BsF1) [19], these states are usually termed as βE (empty binding site),
βTP (ATP bound), and βDP (ADP bound). When the enzyme acts as a hydrolase, in an
alternate progression, each β subunit goes in the order βE→βTP→βDP, as the catalytic cycle
progresses. The conformational changes in the β subunits are coupled to the formation and
breakdown of contacts with the asymmetric α-helices of the γ subunit and the adjacent
α subunits. In this rotary mechanism, the helix-turn-helix (HTH) motif of the β-subunit
C-terminal domain (βCterm) plays a central role in the communication with the other
subunits and has been described as a pushrod, pushed by the γ subunit (or which sets the
γ subunit in motion in the hydrolysis direction) [20,21]. βCterm is in an open conformation
in βE, with minimal intercatenary interactions. After 120◦ rotation of the γ subunit, driven
by ATP binding, βCterm transits into a closed conformation in βTP, contacting to the γ

subunit and one of the adjacent α subunits (αTP). A further 120◦ γ-subunit rotation leads to
βDP, a conformation very similar to βTP, except for tighter packing of its βCterm against the
γ subunit and the adjacent α subunit (αDP). ATP hydrolysis and ADP release occur within
0◦→~90◦ and ~90◦→120◦ rotation substeps in the βTP→βDP and βDP→βE transitions,
respectively [13]. In the self-inhibited conformation of the Escherichia coli’s F1 (EcF1), the β

subunits β2 and β3 exhibit βE- and βTP-like conformations, respectively, while β1 adopts a
half-closed conformation because of a steric hindrance of the C-terminal domain of the ε

subunit in an extended conformation (Figure 1) [16,22].
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Figure 1. Schematic representation of the 3D structure of E. coli FOF1-ATP synthase, showing the
binding sites of allosteric inhibitors that interact with the C-terminal domain of the β subunit.
Inhibitors whose 3D structure in complex with the enzyme has been experimentally solved were
docked by alignment on the cryoEM structure of the E. coli enzyme in an inhibited conformation
by the ε subunit (PDB ID 6oqr [16]). HTH motifs of β1 and β2 are in black ribbons. The F1 and
FO subcomplexes are composed of the α3β3γδε and ab2c10 subunits, respectively. The endogenous
inhibitory ε (PDB ID 6oqr [16]), ζ (PDB ID 5dn6 [23]) and IF1 (PDB ID 1ohh [24]) subunits are
shown in ribbons. The exogenous inhibitors aurovertin B (PDB ID 1cow [25]) and the glycomacrolide
apoptolidin A (PDB ID 7md3 [26]) are shown in spheres. Here, also shown is the position of the
anti-tuberculosis drug bedaquiline (PDB ID 7jg8 [27]), which occupies sites equivalent to those of
oligomycin in the c ring. Nucleotides are shown in sticks. Inset: Alignment of the HTH motifs of
the three β subunits observed in the self-inhibited structure of EcF1 [16,22]. In this conformation,
the ε subunit hampers the closing of one β subunit, adopting a half-closed conformation (β1). A
β1-like conformation is also observed in the complexes with the glycomacrolides apoptolidin A and
ammocidin A [26].
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A wealth of exogenous and endogenous ATP synthase inhibitors has been described [28,29].
Structural studies have identified several binding sites along the ATP synthase architecture
for these inhibitors, revealing the existence of a diversity of allosteric mechanisms to inhibit
the enzyme (Figure 1). Many of these inhibitors bind to sites involving βCterm. The eukary-
otic inhibitor IF1 [30], and the prokaryotic ε and ζ subunits insert an α-helix motif into a
pocket formed by the α3β3 ring and the γ subunit, near the C-terminal domains of αDP and
βDP, thus, stopping rotational catalysis and preventing wasteful ATP consumption [31–33].
Recently, the binding site of a family of glycomacrolide inhibitors was identified, in a region
involving the HTH motif of a β1-like subunit [26]. In addition, aurovertins, antibiotics
produced by the fungus Calcarisporium arbuscula, target equivalent sites in the bovine
βE and βTP subunits between βCterm and the nucleotide binding domain [25]. Taken
together, the existence of these non-orthosteric inhibitors indicates that βCterm is a suitable
target for the development of allosteric pharmacological modulators. Because of a less
stringent evolutionary pressure, allosteric sites tend to be less conserved than catalytic
sites [34–36]. This aspect is relevant to design specific ATP synthase inhibitors, since some
regions of the active site of this enzyme are highly conserved across P-loop NTPases [37,38].
Furthermore, allosteric inhibitors do not compete with the substrate, so they do not re-
quire reaching an extremely high binding potency to exert an effective pharmacological
action [39]. Target-based allosteric inhibitor design on ATP synthase has been limited.
GaMF1 [40] and epigallocatechin gallate [41] are a notable exception. These compounds,
which inhibit mycobacterial ATP synthase by binding to γ and ε subunits, respectively,
have been obtained through pharmacophoric-restraints filtered docking studies.

Given the crucial role played by the βCterm in driving the rotational mechanism
of FOF1-ATP synthase, in this work, we set out to design, through two types of in silico
strategies, new allosteric inhibitors, by targeting the HTH motif of the Escherichia coli F1
(EcF1), a bacterium included in the ESKAPEE (Enterococcus faecium, Staphylococcus aureus,
Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp, and
Escherichia coli) list of the most threatening AMR microbes [42]. The underlying idea was
that the engineered binders, by interfering with the conformational transitions of this motif,
will exert an allosteric effect, leading to the blocking of the enzyme’s rotation. On the one
hand, through a molecular dynamics (MD) simulation approach with solvent mixtures
(MDmix), we identified solvent sites (SS) on the HTH motif that helped guide the high-
throughput virtual screening (HTVS) of drug-like molecules [43,44]. The best hits were
further filtered using the dynamic undocking method (DUck), an orthogonal technique that
evaluates the work developed upon pulling the ligand out from the binding site [45]. Using
a new in silico strategy, guided by evolutionary and machine learning-based methods [46],
we derived peptides from IF1, based on the observation that the residues that bind this
inhibitor in BsF1 are highly conserved in EcF1. Both approaches led to the identification of
drug-like and peptide hits that inhibited the hydrolytic activity of EcF1 with micromolar
potency. Remarkably, given the different nature of the identified hits and the distinct
modeling approaches, we proved the feasibility of the in silico design of ATPase inhibitors,
targeting the catalytic subunit. These molecules could serve as leading scaffolds for the
development of novel drugs to combat AMR bacterial strains.

2. Results

2.1. Structure-Based Design of Small Organic Inhibitors

For the design of drug-like molecules, based on the structure of ATP synthase, we
performed MD simulations using the crystallographic structure of EcF1, self-inhibited by
the ε subunit and MgADP (Figure 1, PDB ID 3oaa), a distinctive conformational state
of the enzyme in bacteria and chloroplasts [16,22]. In this structure, β2 and β3 show
conformations very close to bovine βE and βTP, respectively. In contrast, β1 adopts an
intermediate conformation, since the ε subunit impedes the total closure of βCterm (Figure 1
inset), a mechanism hypothesized to prevent the enzyme from falling to a low-energy state,
inhibited by MgADP [47]. To sample the conformational space neighboring, the crystal
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structure of EcF1, unrestrained 20-ns simulations were performed. Judging by the time
evolution of the RMSD (Figure 2A), the HTH of β1 converged to the same conformation in
all solvent and pure water replicas, except for one trajectory in ethanol, in which a slightly
more open conformation of the DELSEED motif was observed (Figure 2B). The analysis of
this trajectory revealed the well-defined presence (ΔGSS ≤ −1 kcal/mol) of a solvent site
cluster, in an area close to the DELSEED region and intermediate between the two HTH
helices. The cluster was composed of a site for the hydroxyl’s oxygen (SSOH) and three sites
for the methyl carbon (SSCT) of ethanol (Figure 2C). The carbonyl group of G378 stabilized
the unique SSOH, while the side chains of R366, Y367, I373, V389, and A393 were involved in
the stabilization of the SSCT. Consistently, the four solvent sites were closely reproduced in
three MD replicas, in which harmonic constraints (k = 0.5 kcal/molÅ2) were imposed on
the heavy atoms of the protein to keep the HTH in open conformation (data not shown).
Therefore, this open conformation of HTH, which was also significantly, albeit to a lesser
degree, populated in pure water replicas, was apparently stabilized by the organic solvent.

Figure 2. HTH dynamics and solvent sites determined from MD simulations. (A) RMSD was
calculated using backbone atoms of the β1 HTH motif. Values from three MD simulations in
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pure water (blue colors) and three in water-ethanol mixture (red colors) are shown. (B) Average
conformations of the HTH motif calculated over the last 10 ns of simulation. The open conformation
obtained in one trajectory in a solvent mixture is shown in orange, while a closed conformation
from one of the replicas in pure water is shown in blue. The DELSEED motif is in lighter color. The
starting crystal conformation is in gray (PDB ID 3oaa, [22]). (C) Solvent sites for ethanol’s methyl
(gray spheres) and hydroxyl (blue sphere) groups determined from one trajectory in ethanol/water
mixture. One of the ligands (Compd-5) obtained in this work by HTVS (vide infra) is shown in sticks,
forming a hydrogen bond with the carbonyl group of G378. The DELSEED motif is in pink.

The four solvent sites observed in β1 were used as pharmacophoric restraints to guide
HTVS of ~8 × 106 molecules from eight different commercial chemical libraries, using the
rDock software [44]. After removing molecules with very similar chemical structures by
visual inspection, the 100 top-ranked molecules, ordered according to the docking score,
were additionally filtered using steering dynamics, with the DUck method [45]. The work
required (WQB) to move away the hydrogen donor atom of the docked molecule to 5 Å
(quasi-bound state) from the carbonyl group of G378 was determined, discarding those
molecules with WQB < 6 kcal/mol. As a result, 27 potential ligands were selected and
purchased (Table S1). The inhibitory potency of these compounds was assayed against
purified EcF1, using the malachite green method. As shown in Table 1, five compounds
displayed significant inhibition of ATPase activity at 100 μM of inhibitor concentration.
Measurements performed using the NADH-linked ATP regeneration system yielded similar
inhibition values. According to the Chemaxon solubility predictor server [48], the five
compounds are soluble in the micromolar range (Table 1). It is also worth mentioning
that, according to the MOE software, the five hit molecules are not pan-assay interference
compounds (PAINS). Only compound 18 and 26 contained a PAINS warning.

Table 1. Summary of the final active compounds designed against the HTH motif structure of EcF1.

Structure a ΔGrDock
b

(kcal/mol)

WQB
c

(kcal/mol)
ΔGPB

d

(kcal/mol)

Residual ATPase
Activity (%) e logS f

Compd-5 −6.0 8.7 −29 43 ± 6 (50 ± 5%) −4.7

Compd-7

S

O

NH

O
N

O

N

O −5.5 6.0 −30 64 ± 12 (70 ± 10%) −5.1

Compd-14

 
ON

NN
NH

O

O
−4.5 6.7 −25 75 ± 8 (73 ± 2%) −5.3

Compd-15
NH

O

O
N

NH N −4.3 6.0 −24 67 ± 5 (ND) −4.9

Compd-19

 

S
O

O
NH

N N
N O

N

−4.0 6.0 −29 77 ± 7 (70 ± 10%) −2.8

a NH atoms that established hydrogen bonds with the G378 backbone oxygen are in blue. b rDock score, a
weighted sum of intermolecular, ligand intramolecular, site intramolecular and pharmacophoric restraints [44].

60



Antibiotics 2022, 11, 557

c Work needed to separate the ligand’s atom forming a hydrogen bond with the protein to a 5 Å distance,
calculated with DUck [45]. d Molecular mechanics Poisson–Boltzmann surface area (MM-PBSA) calculated free
energy [49,50]. e Residual ATPase activity of EcF1 determined by the malachite method (and the ATP regenerating
system, values in parentheses), incubated with 100 μM of the indicated compound, in a 50 mM Tris-SO4 buffer
solution with 1% DMSO (pH 8.0), 25 ◦C. Data represent the average ± standard deviation of at least 3 independent
experiments. ND, not determined. f Predicted aqueous solubility determined with the Chemaxon solubility
predictor server.

To further characterize the inhibitory effect of Compd-5, the ligand that exhibited the
most potent activity, dose-response measurements were performed (Figure 3). Nonlinear
analysis of the data, using the Hill equation, yielded an IC50 value of 62 ± 5 μM and a
Hill coefficient of 0.86 ± 0.02, suggesting that there is no cooperativity between the three
β subunits. The fitting showed a residual enzyme activity of 9 ± 1% under saturation
conditions, showing that Compd-5 nearly acts as a dead-end inhibitor.

Figure 3. Dose-response plot of the inhibitory effect of Compd-5 on EcF1. Residual ATPase activity
was measured using compound concentrations in the 1.25–150 μM range, in a 100 mM Tris-SO4

buffer solution with 1% DMSO (pH 8.0), 25 ◦C. The Hill equation was fitted to the experimental data,
obtaining IC50 = 62 ± 5 μM, h = 0.86 ± 0.02, vr = 9 ± 1%. Data shown represent the average ± standard
deviation of 3 independent experiments.

All the active compounds had an NH group, serving as a hydrogen donor to the
G378 carbonyl moiety. As an example, the predicted binding pose of Compd-5 is shown in
Figure 2C. It is worth mentioning that Compd-5, Compd-14 and Compd-19 all come from
the same family, being the only compounds in the tested set with the 4-(6-phenylpyridazin-
3-yl)morpholine substructure (Simplified Molecular Input Line Entry System, SMILES,
“[NH]c1cc(-c2nnc(N3CCOCC3)cc2)ccc1”). The binding energy (ΔGPB) of the positive in-
hibitors was computed on the corresponding docked poses, using the molecular mechanics
Poisson–Boltzmann surface area (MM-PBSA) method [49,50] and compared against the
rDock scores (ΔGrDock) in Table 1. Clearly, there is a better correlation of the degree of
experimental inhibition with the energies calculated with rDock (r2 = 0.77) than with
the MM-PBSA method (r2 = 0.12), which highlights the good performance of the HTVS
method [43]. Finally, we computationally explored the possibility that the engineered in-
hibitors could also bind to the HTH motif of the other two β subunits. The pose of Compd-5
in β1 was used to dock the ligand on the other two subunits to perform unrestrained MD
simulations. Like β1, β3 kept the inhibitor bound for up to 50 ns in two replicas, a suitable
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time to consider the interaction as stable [51]. In contrast, the compound was consistently
released from β2 within the first nanoseconds of simulation (Figure S1).

2.2. De Novo Design of Peptide Inhibitors of EcF1 Targeting the βCterm

In a previous report, we introduced a de novo design method of EcF1 peptide in-
hibitors [46]. The new inhibitors were designed in silico from the interfaces connecting
FOF1-ATP synthase subunits, thus, proving the suitability of these scaffolds for the gen-
eration of a new family of inhibitors. Peptide libraries were built by applying simulated
molecular evolution approaches, represented by the ROSE (random model of sequence
evolution) algorithm [52], and later screened using PPI-Detect, a protein–protein interaction
predictor [53], to score the binding likelihood of the peptides and EcF1. This new in silico
strategy, guided by evolutionary and machine-learning-based methods, allowed widening
and exploring the relevant structural space from natural peptide fragments to generate
novel protein binders [46]. Here, we leveraged this approach for the de novo design of
EcF1 peptide inhibitors, specifically targeting the βCterm. The fourteen IF1 sequences
registered in the UniProt database [54], ranging from 42 to 50 aa length, were aligned to
identify conserved regions. Two conserved regions were identified in the multiple sequence
alignment (MSA), resulting in two consensus regions that were considered root or parent
peptides (Figure 4).

Figure 4. Multiple Sequence Alignment (MSA) performed with Multiple Alignment using Fast
Fourier Transform, MAFFT, [55] for IF1 inhibitors deposited in the UniProt database. Consensus
regions are identified at >40% of identity threshold at each position of the MSA. The resulting
consensus regions are framed in a rectangular box. From them two root peptides were estimated
IF1 sources: A3RKNL5, zebrafish. A8XZB0, Caenorhabditis briggsae. F7BK26, western clawed frog.
O35143, mouse. O44441, Caenorhabditis elegans. 074523, fission yeast. P01096, bovine. P01097,
baker’s yeast. P09940, torula yeast. P37209, Caenorhabditis elegans. Q03344, rat. Q1LYB06, zebrafish.
Q29307, pig. Q9UII2, human. Jalview ver: 2.11.1.4 was used to visualize the MSA and determine
the consensus.

ROSE operates by introducing stochastic point mutations into the root amino acid
sequence, which is guided by a binary phylogenetic tree and a mutability vector, represent-
ing the conservation degree of each position in the sequence. Both the root peptide and
the mutability vector are obtained by multiple sequence alignment of the selected set of
peptides, carried out with Multiple Alignment, using Fast Fourier Transform, MAFFT, [55]
(Table S2). The obtained library was then screened using PPI-Detect, which classifies and
ranks the peptides as putative binders of the targeted site [46,53]. This strategy allowed
us the rational exploration of the sequence space around the selected templates. From
the root peptides, 385 unique mutants were generated. These peptides have a minimum
identity, relative to their root sequence, of 70 %. Using PPI-Detect [53], these candidates
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were screened based on their interaction likelihood with the subunit β of EcF1 and the
human sector (HsF1). Selected candidates had to meet the following criteria: (a) Peptides
with maximum interaction likelihood with HsF1 below 0.5. (b) Peptides with maximum
interaction likelihood with EcF1 above 0.5. (c) The difference between the interaction proba-
bilities with E. coli and human enzymes is at least 0.1. After applying these selection criteria,
three peptides were filtered out (Table 2). Surprisingly, the selected peptides showed the
highest interaction score and score difference with the central domain of the β subunit
(‘smart00382’ domain), while a score value of ~0.32 was obtained for the HTH motifs of
both EcF1 and HsF1.

Table 2. Interaction scores and chemical–physical properties of the selected peptide candidates.

Peptide Sequence Score a (EcF1) Score a (HsF1) Charge (pI) b GRAVY b

Pept1-IF1 GSIREAGGTHAFGKRESAEEERYFR 0.512 0.402 0 (6.78) −1.292

Pept2-IF1 GSIREAGGTDGFGKREAAEEEKYGR 0.561 0.420 −1 (5.11) −1.392

Pept3-IF1 GSVREAGGTGAFGKRESAEEERYFR 0.580 0.479 0 (6.34) −1.192
a The domain ‘smart00382’ was mapped on the β subunits of EcF1 and HsF1 using the NCBI tool CD-Search [56]
to identify conserved domains. The extracted fragments of the subunits were used to compute the interaction
scores with the peptides. b Values calculated with ProtParam [57].

The negative GRAVY index evidences the polar features of these peptides and their
potentially good solubility. From them, the candidate termed as Pept1-IF1 was selected for
synthesis because of its neutral charge and isoelectric point value, close to 7.0. This pep-
tide (sequence: Ac-GSIREAGGTHAFGKRESAEEERYFR-NH2) showed inhibitory activity
against EcF1, with IC50 = 155 ± 14 μM, h = 1.1 ± 0.1, and vr = −1 ± 3% (Figure 5).

Figure 5. Dose-response plot of the inhibitory effect of Pept-IF1 on EcF1. Residual ATPase activity
was measured using peptide concentration in the 1.25–150 μM range, in a 100 mM Tris-SO4 buffer
solution with 1% DMSO (pH 8.0), 25 ◦C. The Hill equation was fitted to the experimental data,
obtaining IC50 = 155 ± 14 μM, h = 1.1 ± 0.1, vr = −1 ± 3%. Data represent the average ± standard
deviation of 3 independent experiments.

2.3. Sequence Conservation of the HTH Motif in Bacteria

Given the observed inhibition results and the functional relevance of the HTH motif,
we set out to explore the sequence conservation of this motif in bacterial species. From
the UniProt database, 23,125 b-subunit sequences, from all bacterial FOF1-ATP synthases,
were retrieved [54]. The dataset was aligned to generate sequence logos of the HTH
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motif [58,59]. As previously observed in less comprehensive sequence analysis [60,61], the
HTH motif is significantly conserved among bacteria (Figure 6), and even more conserved
among Mammalia (Figure S2). The HTH motif comprises the α-helix 1 (H1: R351-I376),
the turn (T: L377-S383), and the α-helix 2 (H2: E384-R399) segments (E. coli numbering).
The 380DELSEED386 motif is within the C-terminal and N-terminal regions of T and H2,
respectively. The most conserved regions encompass the central region D370-K387 (or
HTH tip, which besides the DELSEED, also includes the largely conserved 372DIIAILG378

segment), the C-terminal segment 392RARKI396, plus some scattered, mostly hydrophobic
residues, in H1 and H2. An analysis of the experimental 3D structures of F1 reveals that,
with few exceptions, the most conserved residues in the HTH motif also form interactions
with highly conserved residues, located either in the same subunit (mostly in the HTH motif
itself) or in the adjacent α, β, or γ subunits (Figure S3). Further, 18 out of 45 residues of the
HTH motif show significant variability. The most variable segment is in H1, while the most
conserved is in T. Importantly, the binding site of the compounds, designed herein, includes
portions of the conserved DIIAIL and DELSEED segments, as well as some moderately
conserved residues. In particular, the Bacilli class shows the most contrasting differences
regarding the human enzyme (Figure S4), a characteristic that could be exploitable to
optimize molecules capable of selectively recognizing pathogens of this taxonomic group,
and that do not bind to the human enzyme.

Figure 6. Conservation of the HTH motif in bacteria. Residue numbering in the up and down
rows corresponds to the E. coli and human sequences, respectively. Multiple sequence alignment of
23,125 entries was performed with Clustal Omega [59]. Logos were generated using the Weblogo3
server [58]. Consensus, E. coli (Ec) and human (Hs) sequences are shown in the x-axis for comparison.
Human residues identical to E. coli residues are shown with asterisks. The Conserv row corresponds
to a conservation scale ranging from 0 (null conservation) to 10 (= +, complete conservation of
physicochemical properties of the amino acid group) as defined in [62]. Residues within 5 Å of
Compd-5 are highlighted in yellow.

3. Discussion

Although the declining trend of newly approved antibiotics has recently reversed,
infections caused by AMR bacteria are still an alarming threat to global public health [4].
Interfering bioenergetic pathways is an emerging strategy to combat pathogens [6]. Indeed,
pharmacological-approved bedaquiline has attested that ATP synthase inhibition can be
successfully harnessed to target aerobic organisms, such as M. tuberculosis [63]. In addition,
AMR facultative anaerobes, including the ESKAPEE pathogens S. aureus and E. coli, lose
resistance towards antibiotics upon ATP synthase inhibition [64,65]. Given the major role
played by βCterm in inter-subunit communication, orchestrating the rotary mechanism
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of ATP synthase, we strived to design molecules capable of selectively targeting the HTH
motif. Inspired by the effect that endogenous regulatory subunits [66–68], and some peptide
venoms [69] and other exogenous inhibitors [26] have on the F1 subcomplex, the underlying
idea was that by interfering with the conformational changes that the HTH motif undergoes,
an inhibitory effect on the enzymatic activity can be achieved. To do this, we used two
widely different in silico design strategies, one based on target 3D structure [70] and the
other on peptide sequence data mining [46], obtaining organic molecules and an IF1-
derived peptide, whose inhibitory potencies against EcF1 were in the micromolar range,
comparable to those of known natural inhibitors, such as polyphenols and venom peptides,
among others [28,29,71].

It has been shown, for an increasing number of proteins, that solvent site clusters map
both orthosteric and allosteric sites [43,72]. Thus, besides identifying critical interaction
points with substrates or natural ligands, MDmix-determined solvent sites have proved
valuable as pharmacophoric restraints in HTVS [44,73], improving the rate of true-positive
hits and the discovery of new kinds of inhibitors and binding probes [74,75]. Furthermore,
by relying exclusively on the interactions determined by the force field and the kinetic
energy of the atoms in the system, MDmix unbiasedly maps entire protein surfaces, opening
a window of opportunity to identify potential allosteric sites that may be difficult to
detect experimentally or by knowledge-based potential methods [76,77]. In this work, MD-
determined solvent sites were used to guide the docking of drug-like molecules on the HTH
motif. The best-ranked hits obtained from our HTVS were further filtered by steering MD,
a technique that has been used to develop new kinds of inhibitors against HSP90 [45] and
several oncogenic tyrosine-kinases [78]. The combined use of these orthogonal approaches
that evaluate equilibrium- and trajectory-derived energies, respectively, allowed us to
identify and experimentally validate novel inhibitors of EcF1.

The five inhibitory compounds (Table 1) showed a nitrogen atom that hydrogen
bonded to, the carbonyl oxygen of the completely conserved G378 at the beginning of the
HTH turn. In addition, hydrophobic contacts were established with H1 and H2 residues.
Taken together, Compd-5, Compd-14 and Compd-19, the three 4-(6-phenylpyridazin-3-
yl)morpholine-containing compounds, suggest the amide/sulfonamide position is amenable
to a broad range of substituents and could be used to increase potency and modulate physic-
ochemical properties. It is worth mentioning that Compd-5, our most potent inhibitor, is
a relatively small molecule (MW = 378.2 Da), providing the opportunity to add chemical
groups to it, to obtain more potent molecules. To our knowledge, no other activity for
this compound has been reported so far [79]. Compd-7, our second-best inhibitor, with an
overall different chemical structure, has a dimethylmorpholine moiety and, like Compd-14,
a methoxyphenyl group. Compd-19 has no morpholine moiety, and the nitrogen with
which it would hydrogen bond to, G378, is within a hydroxypyrimidine. To our knowledge,
these are the first reported inhibitors designed to bind to a site formed within the HTH
motif of the ATP-synthase β subunit.

In a previous report, we introduced a de novo design method of EcF1 peptide in-
hibitors [46]. The new inhibitors were designed in silico from the interfaces connecting
FOF1-ATP synthase subunits, through a combination of simulated molecular evolution [52]
and protein–protein interaction prediction [53] algorithms. The in vitro inhibitory capacity
of the designed peptides proved the suitability of these scaffolds and the strategy for the
generation of new inhibitor families. In this work, we derived new peptide sequences
from known IF1 sequences. In contrast to the root IF1 peptides, which are incapable of
inhibition of bacterial F1 ATPase [24,80], Pept-IF1 inhibited EcF1 with micromolar potency.
However, to verify whether Pept-IF1 exhibits species discrimination and to determine its
actual binding site on the β subunit, further experimental characterization is needed.

Antibiotics require tuned selectivity to achieve reliable discrimination between the
pathogen target and the human or animal ortholog. Bedaquiline was initially proposed as
a specific antibiotic for some species of the Mycobacterium genus. However, recent evidence
has shown that the human enzyme is also susceptible to this antibiotic [81]. In addition, the
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c subunit, the binding target of bedaquiline, shows a low conservation among bacterial ATP
synthases (e.g., mean identity of 33 ± 9 vs. 62 ± 8% of β subunits). Thus, unsurprisingly,
bacteria can also evade this antibiotic, through mutations in the c-subunit-encoding uncE
gene [82]. In contrast to the bedaquiline-binding site (mean identity 39 ± 20% in all
bacteria), the HTH motif encompasses highly conserved sequence segments intercalated
with variable positions (mean identity 69 ± 10% among bacteria). Furthermore, many
of the HTH-conserved residues establish inter/intracatenary contacts with other highly
conserved residues (Figure S3). Therefore, the HTH motif may offer a suitable target for
allosteric drug discovery [83], as recently epitomized by the design of allosteric inhibitors
against bacterial and viral enzymes, using conserved residues as binding anchors [84,85].

Site-directed mutagenic studies have unveiled that the rotary mechanism withstands
severe changes in the HTH sequence [20,61,86–92]. Indeed, this rotational robustness is
rooted in the fact that the γ-less α3β3 subcomplex, although in a largely decreased way,
exhibits catalysis and alternating conformational changes [93], while isolated α and β

subunits also undergo nucleotide-induced rearrangements that resemble those observed in
the F1 subcomplex [21,94]. Bacillus PS3 enzymes, with deletions of up to 9 or 13 residues in
HTH, keep catalytic activity in the synthesis or hydrolysis direction, respectively [20,61,90].
These results, together with point mutations in the HTH tip, led to the proposal that “ . . . the
physical length, rather than residue-specific interactions, of helix-1 is important for torque
generation” [20], while the high conservation of some residues is due to the interaction
that they establish with the regulatory subunits of the enzyme [88]. However, it has been
repeatedly observed that in vitro mutations of the HTH sequence led to modifications
of highly variable magnitude in the catalytic activity of the enzyme. The effects of these
perturbations on oxidative phosphorylation and other ATP synthase-coupled processes
on metabolic homeostasis have been scarcely studied [95,96]. Although it remains to be
validated whether the inhibition of ATP synthase through molecules that bind the HTH
motif is a feasible route for the development of new antibiotics, the most relevant finding
of our study is the possibility of computationally predicting and validating novel sites of
allosteric modulation, as biological evolution has repeatedly proved, with multiple sites for
endogenous and exogenous inhibitors of this enzyme. This opens the door to the search for
new pharmacological strategies, not only to attack infectious agents, but also to develop
ATP synthase pharmacological modulators in metabolic and cellular contexts, where this
enzyme plays a relevant role in the progression and establishment of pathologies [97,98].

4. Materials and Methods

4.1. Molecular Dynamics Simulations

MD trajectories were performed with the AMBER 14 suite using the FF99SB force
field [99]. All simulations were carried out using the crystal structure of EcF1 (PDB ID
3oaa [22]). Modeling of protein missing atoms, N- and C-termini capping, and protonation
at pH 7.4 were carried out with the Molecular Operating Environment (MOE, [100]). Using
AMBER’s tLeap, the protein was placed in a truncated octahedral box spanning 18.0 Å
further from the solute in each direction and solvated using a preequilibrated box of solvent
containing pure water or 20% v/v ethanol/water. TIP3P water model was used. The
system was first geometrically optimized (5000 cycles) to adjust the solvent orientation
and eliminate local clashes, using the steepest descent algorithm. Initial velocities were
assigned to get a 150 K distribution. The temperature was slowly raised to 300 K in
0.8 ns keeping the volume constant. The system was further equilibrated for one ns at
300 K in the NPT ensemble. The production was run in the NPT ensemble, using periodic
boundary conditions. Temperature and pressure control were achieved using the Langevin
thermostat and Berendsen barostat, respectively. Long-range electrostatic interactions
were accounted for using the particle-mesh Ewald summation method as implemented
in the PMEMD module of the AMBER suite, with a cut-off value of 9.0 Å to split direct
electrostatics and Ewald summation [101,102]. The SHAKE algorithm was enabled and the
integration timestep was 2fs. Running scripts were set up with the help of the pyMDMix
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software [43,103]. Trajectory analysis was performed with CPPTRAJ [104] and Chimera
UCSF v14.1 [105]. Trajectories were run in triplicate. All the structure drawings were
generated with ChimeraX [106].

4.2. Identification of Solvent Sites, Guided Docking, and Dynamic Undocking

Solvent sites were determined using the MDmix method as described elsewhere [43].
After trajectories were aligned, density maps for probe atoms were obtained by building a
static mesh of grids over the entire simulation box and counting appearance of probe atoms
in each grid during the trajectory. The observed appearance was converted into binding free
energy (ΔGSS) applying the Boltzmann relationship, considering the observed probe atom
distribution with an expected distribution in bulk solvent at 1.0 M. Solvent sites were filtered
imposing an energy threshold of –1 kcal/mol. Compound libraries from Specs, Asinex,
Enamine, Vitas M, ChemBridge, Key Organics, Princeton Biomolecular Research, and Life
Chemicals, with a total of ~8 × 106 molecules, were docked using rDock [44]. Solvent sites
were used as pharmacophores to filter compound libraries. A penalty score that increased
proportionally to the square of the distance to the required solvent sites was applied when
the distance was larger than 2 Å. Best ranked ligands were further filtered using steered
molecular dynamics (SMD) simulations using the dynamic undocking method DUck as
described elsewhere [45]. A total of 100 SMD simulations yielding 50 ns per ligand were
run, imposing harmonic restraints with a force constant of 1.0 kcal/molÅ2 on all receptor
non-hydrogen atoms to preserve the protein conformation. Compounds were filtered out
according to the work (ΔGQB) needed to separate the ligand’s atom forming a hydrogen
bond with the β-subunit G378 carbonyl oxygen to a 5.0 Å distance, using a cutoff value of
6.0 kcal/mol. A workflow illustrating the process from the identification of solvent sites to
dynamic undocking has been published elsewhere [78].

4.3. Engineering Peptide Inhibitors via Evolutionary and Protein–Protein Interaction Algorithms

IF1-based peptide inhibitors were derived as recently described elsewhere [46]. IF1
sequences retrieved from the UniProt database [54] were used to estimate consensus
sequences that served as the root peptide to generate offspring candidates (peptide library)
by applying simulated molecular evolution approaches, represented by the ROSE (random
model of sequence evolution) algorithm [52] (Figure 7). The structural diversity generated
by ROSE is guided by evolutionary parameters, which were tuned to develop a diversity-
oriented sampling around the root sequence. The library was subsequently screened using
PPI-Detect, a protein–protein interaction predictor [53,107], to score the binding likelihood
of the peptides and EcF1.

4.4. Protein Production and Purification

Unless stated otherwise, all the chemicals were from FORMEDIUM (Norfolk, UK).
EcF1 was recombinantly expressed in E. coli strain DK8 using the pBWU13.4 plasmid
containing the unc operon [108]. Briefly, E. coli membranes carrying EcF1 were first washed
in the presence of protease inhibitors 6-aminohexanoic acid and p-aminobenzamidine,
and finally in the presence of the former to solubilize the enzyme. The subcomplex was
then purified by ion exchange and size exclusion chromatography using Whatman DE52
Cellulose and Sephacryl S-300 resin columns. Protein concentrations were determined
using the Pierce BCA Protein Assay Kit (Thermo-Fisher, Waltham, MA, USA).
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Figure 7. In silico design of a diversity-oriented peptide library. (A) Workflow illustrating the
application of ROSE algorithm (https://bibiserv.cebitec.uni-bielefeld.de/rose, accessed on 12 March
2019). Root peptides and their corresponding mutation vectors are the input data. Besides the
mutation vectors, ROSE also uses a binary tree to guide the stochastic point mutations on the root
peptides. The binary tree topology is determined by the number of nodes (1023), depth (9) and
average distance (dav = 5–20 PAMs). ROSE was calibrated to keep a minimum identity of ~70% of
the generated peptides with the corresponding root sequence. The obtained library was composed of
385 unique peptides. (B) Heatmap showing the identity matrix among the generated peptides. Two
blocks are distinguished, which corresponds to the root peptides selected from different fragments
of IF1.

4.5. ATPase Activity Assays

The malachite green assay was used to determine ATPase activities as previously de-
scribed [109]. All compounds were assayed in a concentration range spanning 0.05–150 μM,
incubated with 10 nM (0.5 pmol) EcF1 (50 mM Tris-SO4 pH 8.0, 1% DMSO) for 1 h at 30 ◦C
in a total volume of 30 μL in 96-well microplates. Reactions were started by adding 20 μL
1 mM MgATP, incubated at 25 ◦C for 2 min and then stopped with 200 μL of 3.28 M H2SO4
and 15 mM (NH4)Mo7O24 solution. Absorbance was read at 610 nm using a microplate
reader (Biotek). The ATP regenerating system [110] was also used to determine ATPase
activities. Experiments were carried out in a 50 mM KCl, 3 mM MgCl2, 1.5 mM phospho-
enolpyruvate, 300 mM NADH, 50 mM Tris pH 8.0, buffered solution incubating 3 U of
rabbit pyruvate kinase (Merck Inc., Kenilworth, NJ, USA), 4.2 U of rabbit lactic dehydro-
genase (Merck Inc.), 5.2 nM EcF1 with 100 μM of assayed compounds, for 1 h at 30 ◦C
in 120 mL per well in 96-well microplates. Reactions were started by adding 30 mL of a
50 mM KCl, 3 mM MgCl2, 1.5 mM phosphoenolpyruvate, 300 mM NADH, 50 mM Tris
pH 8.0 solution, including 1 mM ATP. ATPase activity was monitored through absorbance
changes at 340 nm for 2 min in a microplate reader (Biotek, Winooski, VT, USA).

The concentration of inhibitor required to achieve a 50% reduction in enzymatic
activity, IC50, was obtained using the Hill equation:

vi
v0

=
[Inh]h

IC50h + [Inh]h
+ vr

where v0 and vi are the initial catalytic velocities in absence and in presence of a given
concentration of the inhibitor molecule, [Inh], h is the Hill coefficient and vr is the residual
velocity under saturation conditions by the inhibitor.

4.6. Sequence Analysis of the HTH Motif

ATP synthase b subunits sequences from bacteria and Mammalia taxa were retrieved
from the UniProt database [54]. Jalview2 [111] was used to curate the database, excluding
redundant sequences (identity < 100%), yielding 23,125 and 142 sequences for bacteria and
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Mammalia groups, respectively. The curated database was used to generate a multiple
sequence alignment with Clustal Omega [59]. Sequence logos of the HTH motif were
generated using the Weblogo3 server [58]. Very similar logo results were obtained for both
taxonomic groups using a redundancy sequence identity cutoff of <98% or <99%.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/antibiotics11050557/s1, Table S1: Docked organic molecules
on the HTH with best scores according to rDock and DUck methods; Table S2: Root peptides and
mutation vectors for each peptide inhibitor family (IF1 and Heterogeneous Set); Figure S1: Distance
between the carbonyl oxygen of G378 and the amino nitrogen of Compd-5 as a function of time.
Figure S2: Conservation of the HTH motif in Mammalia class. Figure S3: Conserved contacts between
residues of the HTH motif and neighboring subunits [112]. Figure S4: Conservation of the HTH motif
in Bacilli class. [58,59,62,112] are cited in Supplementary Materials.
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Abstract: Peptide-based drugs are promising anticancer candidates due to their biocompatibility and
low toxicity. In particular, tumor-homing peptides (THPs) have the ability to bind specifically to
cancer cell receptors and tumor vasculature. Despite their potential to develop antitumor drugs, there
are few available prediction tools to assist the discovery of new THPs. Two webservers based on
machine learning models are currently active, the TumorHPD and the THPep, and more recently the
SCMTHP. Herein, a novel method based on network science and similarity searching implemented
in the starPep toolbox is presented for THP discovery. The approach leverages from exploring
the structural space of THPs with Chemical Space Networks (CSNs) and from applying centrality
measures to identify the most relevant and non-redundant THP sequences within the CSN. Such THPs
were considered as queries (Qs) for multi-query similarity searches that apply a group fusion (MAX-
SIM rule) model. The resulting multi-query similarity searching models (SSMs) were validated with
three benchmarking datasets of THPs/non-THPs. The predictions achieved accuracies that ranged
from 92.64 to 99.18% and Matthews Correlation Coefficients between 0.894–0.98, outperforming state-
of-the-art predictors. The best model was applied to repurpose AMPs from the starPep database as
THPs, which were subsequently optimized for the TH activity. Finally, 54 promising THP leads were
discovered, and their sequences were analyzed to encounter novel motifs. These results demonstrate
the potential of CSNs and multi-query similarity searching for the rapid and accurate identification
of THPs.

Keywords: cancer; tumor-homing peptide; in silico drug discovery; complex network; chemical
space network; centrality measure; similarity searching; group fusion; motif discovery; starPep
toolbox software

1. Introduction

Cancer is a group of diseases developed in different cell and tissue types, and cor-
responds to the second leading cause of death globally [1]. It is based on the abnormal
growth of cells due to an inherited genetic mutation or induced by the environment [2].
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Despite novel therapy development for cancer treatment, improving chemotherapeutic
drugs’ specificity towards cancer cells remains a challenge [2,3]. Additionally, cancer cells
are generating multi-drug resistance (MDR) [4]. Consequently, in the pharmaceutical in-
dustry, there is a need to develop new anticancer agents with a different mode of action to
tackle the current drug resistance of cancer cells without being cytotoxic to healthy ones [2].
To fill this gap, peptides have emerged as a potential therapeutic alternative against cancer.
From 2015 to 2019, 15 peptides or peptide-containing molecules were approved by the FDA
as drugs, demonstrating the growing interest of the scientific community [5].

Peptides have different biochemical and therapeutic properties than small molecules
and proteins, making them attractive to the pharmaceutical and biotechnological indus-
try [6,7]. Being smaller than proteins allows peptides to penetrate tissues more easily,
have low cost, more accessible synthesis, and do not require folding to be biologically
active [8]. In contrast to small molecules, they have a higher specificity and efficacy due to
representing the smallest functional part of a protein [9]. Moreover, they are not supposed
to interact with the immune system, are biocompatible, have tunable bioactivity, and have
low cytotoxicity due to their degradation products being amino acids [10–14]. Hence,
peptide-based drugs open a new door to an improved cancer diagnosis and treatment.

Tumor blood and lymphatic vasculature differ molecularly and morphologically from
normal lymphatic and blood vessels [15]. Tumor-homing peptides (THPs) take advantage
of this peculiarity. Thus, they are widely investigated as drug carriers and for imaging
purposes on oncology treatments and diagnosis [16]. The first-generation of THPs have
RGD (Arg-Gly-Asp) and NGR (Asn-Gly-Arg) motifs. RGD peptides have the characteristic
of selectively binding to α integrins expressed in vascular endothelial cells of the tumor and
metastatic tumor cells, and NGR to aminopeptidase N (APN) receptors [17,18]. Although,
there are neither non-RGD nor NGR peptides that home tumor blood vasculature and
cancer cells by interactions with other receptors, such as the endothelial growth factor
receptor (EGFR) [19–23].

THPs are discovered by using in vitro and ex vivo/in vivo phage display technology,
which is time-consuming, expensive, and may not translate to humans due to differences
between the animal models and humans [24–26]. For these reasons, bioinformatics tools
such as databases and webservers are being employed for the accurate prediction of novel
THPs [26–28]. In this way, short sets of the most promising THPs become the candidates
for posterior experimental verification.

To date, the databases available for experimentally validated THPs are TumorHoPe
(includes 744 THPs) [27] and starPepDB (includes 659 THPs) [29], and the available TH ac-
tivity predictors are TumorHPD (https://webs.iiitd.edu.in/raghava/tumorhpd) (accessed
on 1 May 2021) [26], THPep (http://codes.bio/thpep) (accessed on 1 May 2021) [28], and
SCMTHP (SCMTHP (pmlabstack.pythonanywhere.com) (accessed on 5 January 2022) [30].
TumorHPD uses the supervised ML method Support Vector Machine (SVM) as a classifier
with three features: amino acid composition, dipeptide composition, and binary profile
patterns, achieving 86.56% as the highest accuracy [26]. The second ML method, THPep,
has a Random Forest (RF) classifier with three features: amino acid composition, dipeptide
composition, and pseudo amino acid composition, resulting in 90.13% of maximum overall
accuracy [28]. However, the datasets used for training and testing both ML models contain
peptides with highly similar sequences. On the other hand, SCMTHP is the most recently
reported method based on the scoring card method (SCM) [30]. It determines the propen-
sity scores for the amino acids’ and dipeptides’ composition accounting for THP sequences
and applies a threshold value to discriminate between THP and non-THPs. Nonetheless,
the performance of SCMTHP is similar to ML-based predictors, achieving a maximum
accuracy of 82.7%.

Recently, Marrero-Ponce et al. published a new software named starPep toolbox
(http://mobiosd-hub.com/starpep/) (accessed on 2 February 2021), which is aimed to
perform network analyses on the integrated graph database called starPepDB, which
include the most comprehensive and non-redundant database of antimicrobial peptides
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(AMPs) [29,31]. Here, we propose an alternative methodology to identify potential THPs
by combining network science with multi-query similarity searching against the AMPs of
starPepDB. We used the starPep toolbox software as the main bioinformatics tool and the
Chemical Space Network (CSN) to represent the chemical space of peptides as a coordinate-
free system. To the best of our knowledge, there are no reported studies where data mining
and screening is supported by network science to discover peptides for pharmaceutical
purposes [29]. Firstly, we built models of representative and non-redundant THPs using
centrality analysis and supervised retrospective similarity searching to perform the TH
activity prediction. The outstanding model, named THP1, predicted the TH activity of three
benchmarking datasets of THPs/non-THPs achieving accuracies between 92.64–99.18% and
Matthews Correlation Coefficient (MCC) between 0.894–0.98, demonstrating the feasibility
of this new methodology. Then, we performed a hierarchical screening for drug repurposing
using network-based algorithms implemented in the starPep toolbox, the best model THP1,
local alignments, and webservers to predict relevant activities related to the TH. Their
TH activity was optimized by generating random libraries, where the peptide undergoes
amino acid’s stochastic substitutions at different positions. Finally, a set of 54 potential
THPs from AMPs was proposed, where common motifs were identified.

2. Materials and Methods

The overall workflow of this report, shown in Figure 1, was based on two steps:
(i) generation/selection of the model of representative THPs from starPepDB in starPep
toolbox, and (ii) prediction of potential new THPs from AMPs. In the first step, some models
of representative THPs from starPepDB were built using different centrality measures to
rank the nodes and extract the representative and less similar sequences by applying local
alignment. Then, the best multi-query similarity searching model (SSM) was selected by
the classification performance and its ability to correctly retrieve THPs from benchmark
THPs databases by using group fusion (MAX-SIM rule) similarity searching.

Figure 1. General overview of the experimental procedure.

In the second step, the model was used to perform similarity searching to repurpose
AMPs as THPs from starPepDB, and their TH activity was optimized using the TumorHPD
server. Additionally, sequence motifs were found from the set of potential THPs using
multiple sequence alignments [32–35], alignment-free methods [36], and PROSITE server
(https://www.genome.jp/tools/motif) (accessed on 15 July 2021).

2.1. StarPep Toolbox Software

The starPep toolbox uses FASTA files as inputs and includes the starPepDB. Peptides
are represented as nodes connected by an edge if they have any relationship. It can perform
querying, filtering, visualization of networks, scaffold extractions, single or multiple queries
similarity searching, and analysis of peptides by graph networks [29,31].

77



Antibiotics 2022, 11, 401

Networks can be built based on the metadata of peptides or based on the pairwise
similarity measures calculated for their respective sequence. In metadata networks, nodes
are connected by a specific parameter in common, such as origin; the target against which
they are assessed; functionality; the database where they come from; the cross-reference; N-
terminus; C-terminus; or amino acid composition. In similarity networks, peptides are cod-
ified by descriptors, such as length, net charge, isoelectric point, molecular weight, Boman
index, indices based on aggregation operators, hydrophobic moment, average hydrophilic-
ity, hydrophobic periodicity, aliphatic index, and instability index [29,31,37]. Moreover,
networks are visualized using different layouts, such as Fruchterman–Reingold [38].

Networks can be clustered, and communities are optimized using the Louvain method [39].
Moreover, the centrality of each node can be particularly measured by harmonic, com-
munity hub-bridge, betweenness, and weighted degree. Centrality is crucial to perform
scaffold extractions because peptides are ranked according to their centrality score, and then
redundant sequences are removed, prioritizing the most central. Thus, scaffold extractions
depend on the type of centrality applied.

On the other hand, similarity searching, which is the basis of this study, is performed
using a set of queries against a target dataset, where different percentages of identity (or
similarity thresholds) can be applied. An identity score is a number between 0–1, and it
is calculated using the Smith–Waterman local alignment with BLOSUM 62 substitution
matrix [40]. Multiple queries similarity searching works using the group fusion model
explained in the following section.

2.2. Model Selection

The dataset of reported THPs was extracted from starPepDB in the starPep toolbox.
All 45120 peptides contained in starPepDB were filtered by the “Tumor Homing” query in
the metadata function, where 659 entries were obtained (SI1-A).

2.2.1. Network Analysis
Similarity Threshold Analysis

Network analysis of peptides was performed by building the CSN of 659 THPs in
the starPep toolbox. To choose the appropriate similarity threshold to build the network
of THPs, CSNs were built by varying in 0.05 the cut-off value from 0.10 to 0.90 (17 CSNs
in total). Some metrics were retrieved from each CSN using the starPep toolbox, such as
density, number of communities, modularity, and number of singletons.

By default, when CSN was built, nodes with higher than 98% of similarity were
removed using the local alignment Smith–Waterman algorithm. The similarity metric
used to establish the pairwise similarity relationships between nodes was the min–max
normalized Euclidean distance. Then, a centrality was calculated and those nodes with
0 as vertex degree were identified as outliers and then removed, leaving the giant (or
connected) components of the CSN, i.e., subgraph where all nodes are connected. In this
case, community hub-bridge centrality was calculated. However, any centrality measure
could have been calculated since singletons always have zero centrality. After that, the
network was clustered and the modularity optimized using the modularity optimization
algorithm based on the Louvain method [39].

The network was saved as a Graph ML file to be opened in Gephi [41] for subsequent
calculation of ACC. Finally, density, modularity, and ACC as a function of similarity
threshold were graphed in Origin to decide what similarity threshold is the best.

Network Characterization

CSN of the giant components derived from the application of the best similarity
threshold was characterized by the number of nodes, edges, outliers, density, number of
communities, and modularity. These parameters were obtained from starPep toolbox while
ACC, diameter (larger shortest path), average path length, and a total of triangles were
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drawn from Gephi. These parameters allow knowing the topology and structural patterns
of the CSN.

For network visualization, Force Atlas 2 was used as a layout algorithm where colors
represent different clusters, and node size means how central the node is according to the
community hub-bridge centrality. Network visualization aims to obtain an aesthetically
pleasing and understandable graph where nodes are not overlapped.

On the other hand, CSN of outliers was built with a cut-off of 0.30 to procure an
appropriate density; then, it was clustered. Moreover, a subsequent scaffold extraction was
applied based on hub-bridge centrality, and on 30% identity from local alignment.

The network of outliers was characterized according to the number of nodes, edges,
communities, density, modularity, average degree, ACC, diameter obtained before scaffold
extraction, and the number of nodes and edges obtained after scaffold extraction. For
network visualization, Fruchterman–Reingold was used as a layout algorithm; colors
represent different clusters while node size displays how central it is according to hub-
bridge measure.

2.2.2. Centrality Analysis

The most influential nodes were used to find the new potential THPs, and centrality
is the crucial parameter that provides this information. Thus, the four available centrality
types in the starPep toolbox (weighted degree, community hub-bridge, betweenness, and
harmonic) were calculated and normalized using the min–max method. Then, redundant
peptides were removed by applying the scaffold extraction procedure that is described
as follows: peptides were ranked based on the scores obtained after centrality calculation
and we used 30% similarity cut-off of local identity from the Smith–Waterman algorithm
to retrieve sets of sequences with a maximum of 30% similarity [40]. Subsequently, nodes
with 10% lower centrality than the most central node were removed in each metric. The
sets obtained after applying this process were named as 30 + 10%.

On the other hand, harmonic and weighted degree were calculated and normalized,
and redundant peptides were removed by applying the scaffold extraction procedure using
four different similarity cut-offs of local identity: 30, 40, 50, and 60%.

2.2.3. Similarity Searching Model for THPs Prediction

This study’s proposed method for discovering potential THPs was based on similarity
searching. For that reason, multiple query similarity searching models (SSMs) composed of
several queries representing the most important and less redundant nodes of CSN and a
similarity threshold were tested against datasets that contain well-known THPs/non-THPs
through similarity searching. The recoveries from the similarity searching were statistically
evaluated to select the best model for identifying potential THPs within the AMPs.

Query Datasets (Reference Sequences)

The retrieved sets after applying scaffold extractions at each centrality measure; the
two sets of outliers; combinations of outliers with sets obtained from centrality-based
scaffold extractions; and combinations between sets obtained from scaffold extractions
performed using different centrality metrics were used as queries (Qs). In total, we tested
22 sets of Qs, where twelve sets resulted from the application of the scaffold extraction
procedures as well as two sets of outliers, and eight sets resulted from the combination
between sets.

Target Databases

Three training datasets that consider well-known THPs and randomly generated
non-THPs [42] were used as the target or calibration for the recovery. THPep, TumorHPD,
and SCMTHP employed these datasets for training their methods [26,30,42].

• Main dataset: 651 experimentally validated THPs and 651 random non-THPs (SI1-B).
They were collected from TumorHoPe [27] and the literature [26].
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• Small dataset: 469 experimentally validated THPs and 469 random non-THPs (SI1-C).
They are peptides derived from the Main dataset with 4 to 10 aa residues.

• Main90 dataset: 176 THPs and 443 non-THPs (SI1-D). They are peptides from the Main
dataset with equal or lower than 90% of sequence similarity.

• Main and Small datasets were retrieved from Ref. [26], while Main90 from Ref. [27].

Group fusion

Group fusion is based on the variation in the query (reference peptide), but keeping
constant the identity measure [43]. Each peptide’s identity score is calculated from the
target dataset varying the Qs. The fusion group’s algorithm associates a fused score to each
target peptide, i.e., the maximum similarity (MAX-SIM) scores from all resulting identity
scores against the Qs. Therefore, considering peptide S from the target dataset, reference
peptide Q from the Qs, the identity score I(S,Q), and the MAX-SIM score obtained, the
algorithm assigns I(S,Q) as the fused score to peptide S. The local identities were calculated
with the Smith–Waterman, and is a number between 0–1, with 1 being the maximum
identity. The procedure is illustrated in Figure 2.

Figure 2. Schematic representation of the group fusion and similarity searching processes. Q is a
peptide from a query dataset, n is the number of peptides contained in a query dataset, S is a peptide
from the target dataset (Main, Small, or Main90 dataset), m is the number of peptides included in the
target dataset (1302, 938, or 619, respectively). The similarity threshold is related to the percentage
of identity.

Retrospective Similarity Searching

Main Dataset was imported to starPep toolbox. The similarity searching was per-
formed using the “Multiple query sequences” option of the software and the Qs obtained
from 30 + 10% similarity cut-offs of local alignment and outliers. The group fusion is
applied by default during the similarity searching, and results were ranked according to
the fused score (MAX-SIM value). Subsequently, seven different percentages of identity
(similarity thresholds), 30, 40, 50, 60, 70, 80, and 90%, were tested, where peptides with
identities equal to or higher than the applied threshold were retrieved as predicted THPs.
Figure 2 illustrates how the similarity searching works.

The rescued nodes, i.e., predicted THPs, were statistically evaluated to validate the
prediction. Thus, it is possible to identify the two centrality measures and percentages of
sequence identity with the best performance.

Then, similarity searching was performed using only the sets of the best two centrality
measures as Qs: harmonic and weighted degree, and 30, 40, 50, 60, and 70% of identity.
In Small and Main90 datasets, only the sets of harmonic and weighted degrees were
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used as Qs, applying 40, 50, and 60% of identity for recovery. In total, 98 different SSMs
were evaluated.

2.2.4. Statistical Analysis

The ability of the SSMs to predict THPs was validated by the measurement of their
accuracy (Ac), kappa (κ), sensitivity (Sn), specificity (Sp), the precision of positives and
negatives (Ppos and Pneg, respectively), MCC, and false accept rate (FAR%) using the
following formulas.

Ac =
TP + TN

TP + TN + FP + FN
, (1)

κ =
Po − Pc
1 − Pc

, (2)

Sn =
TP

TP + FN
, (3)

Sp =
TN

TN + FP
, (4)

Ppos =
TP

TP + FP
, (5)

Pneg =
TN

TN + FN
, (6)

MCC =
TP × TN − FP × FN√

(TP + FP)× (TP + FN)× (TN + FP)× (TN + FN)
, (7)

FAR% =
FP

FP + TN
× 100 , (8)

where, TP is the number of true positives, TN is the number of true negatives, FP is the
number of false positives, FN is the number of false negatives, Po is the relative observed
agreement between the observers equal to the Ac, and Pc is the expected chance agreement
calculated by the formula Pc = (TP+FP)×(TP+FN)+(FN+TN)×(FP+TN)

(TP+TN+FP+FN)2 .

Finally, the best 9 SSMs were compared and ranked using the Friedman test-based
analysis performed in KEEL [44]. The Friedman test identified the best model based on the
statistical metrics previously shown [45]. Moreover, it allowed us to compare the models
and determine if their difference was statistically significant and not due to chance. The
confusion or classification matrix of the best model was constructed. The best models were
compared with reported ML models used for THP prediction, TumorHPD, and THPep,
using the same three calibration datasets.

2.3. Identification of Potential THPs
2.3.1. Hierarchical Screening

Drug repurposing is an alternative methodology widely applied to discover drugs
because it reduces approval time for their clinical use [46,47]. Thus, firstly, we repurposed
AMPs from starPepDB as THPs.

1. Pipeline Prospective Screening. First, AMPs without reported TH activity and toxicity
with a sequence length between 3 and 25 residues were filtered from the chemical
space of starPepDB. Secondly, the “Scaffold extraction” option removed AMPs with
higher than 95% sequence similarity by local alignment. Thirdly, multiple query
similarity searching was performed using the best SSM (THP1), obtained in the
previous section, to explore the chemical space of non-THPs, non-toxic, and non-
redundant peptides with a length of 3–25 aa, using 60% as similarity threshold. In the
recovered set, peptides with a similarity score of 1 were removed.

2. Activity Prediction. Peptides with reported tumor-homing activity in the literature
were removed since the main objective of this study was to identify novel THPs. Then,
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theoretical activities of virtual hits were predicted using webservers TumorHPD [26],
THPep [28], AntiCP [48], CellPPD [49], ToxinPred [50], and HemoPI [51], to corrobo-
rate their potential as THPs and prioritize those that do not harm healthy cells. The
activities of interest were tumor homing, anticancer, cell-penetrating, toxicity, and
hemolysis. The SVM thresholds used were 0.30 in servers TumorHPD, AntiCP, and
CellPPD, and 0 in server ToxinPred.

3. Redundancy Reduction by Network Analysis. CSN of hits was built, clustered, and the
modularity was optimized using the Louvain method in the starPep toolbox. Then,
harmonic and weighted degree centralities were calculated to perform a scaffold
extraction using a 60% identity as the threshold.

4. Visual Mining. The neighborhood of well-known THPs of each potential THP was
visualized using the starPep toolbox. CSN of 659 THPs in starPepDB was built
using 0.60 as cut-off, clustered, and optimized modularity. Hits obtained in the
previous step after scaffold extraction were embedded into the CSN of 659 THPs
to study the neighborhood of each peptide. Hence, the 3 nearest neighbors from
659 THPs directly attached to each hit were visualized. If 2 peptides shared the same
2 or 3-nearest neighbors, one of them was prioritized, choosing the one with better
predicted activities.

2.3.2. Tumor-Homing Activity Optimization

Lead hits detected from hierarchical virtual screening were AMPs from starPepDB with
a natural or designed activity different from tumor homing. That is the reason why their
tumor-homing action should be enhanced. Lead hits were optimized by punctual amino
acid mutations using the “Designing of Tumor Homing Peptides” module of TumorHPD
(https://webs.iiitd.edu.in/raghava/tumorhpd/peptide.php) (accessed on 10 September
2021), and the procedure is shown in Figure 3. Both lead and mutated sequences were
shortened into fragments of 5, 10, and 15 residues in length using the same server.

Figure 3. Procedure to optimize tumor-homing activity of lead hits.

The optimized sequences showing a higher tumor-homing activity score than parent hits
were analyzed by CSN in the starPep toolbox using 0.60 as the similarity threshold to build
the network. In addition, tumor homing, toxicity, hemolytic, anticancer, and cell penetrability
were predicted using servers listed below: THPep (http://codes.bio/thpep), TumorHPD
(https://webs.iiitd.edu.in/raghava/tumorhpd) (accessed on 25 September 2021), AntiCP
(https://webs.iiitd.edu.in/raghava/anticp2) (accessed on 25 September 2021), CellPPD (https:
//webs.iiitd.edu.in/raghava/cppsite1) (accessed on 25 September 2021), ToxinPred https:
//webs.iiitd.edu.in/raghava/toxinpred (accessed on 25 September 2021), and HemoPI https:
//webs.iiitd.edu.in/raghava/hemopi (accessed on 25 September 2021). Redundant sequences
with higher than 50% similarity were removed by scaffold extraction.

The optimized sequences and parent hits were merged, and the corresponding CSN
was built using 0.50 of cut-off and clustered. Next, harmonic centrality was calculated.
Each cluster was analyzed separately to prioritize the most central, potent, non-toxic, and
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non-hemolytic lead THPs. Finally, the heat map and histogram of pairwise sequence
identity of lead compounds were constructed to explore their structural diversity.

2.3.3. Motif Discovery
Multiple Sequence Alignments

As the resulting potential THPs were hard-to-align sequences because of their short
length and variability, they were grouped into seven clusters according to the neighbor-
hood in the CSN. Given that two peptides underrepresented clusters 1 and 5, they were
fused in a cluster labeled 1–5. Thus, peptide clusters (2–4, 1–5, and singletons) were
aligned independently using multiple sequence alignments (MSA), publicly available at
https://www.ebi.ac.uk/Tools/msa/ (accessed on 28 September 2021). Four different MSA
algorithms were applied with their default parameters to determine consensus motifs
within each cluster: (1) Clustal-Omega v 1.2.4 [32], (2) MAFFT (Multiple Alignment us-
ing Fast Fourier Transform) v7.487 with the iterative refinement FFT-NS-i option [33],
(3) MUSCLE (Multiple Sequence Comparison by Log-Expectation) v3.8 [34], and T-Coffee
(Tree-based Consistency Objective Function for Alignment Evaluation) v1.83 [35].

The resulting MSAs were employed to extract the conserved motifs by considering the
consensus sequences estimation from the programs Jalview v2.11.1.4 [52], EMBOSS Cons
v6.6.0 (https://www.ebi.ac.uk/Tools/msa/emboss_cons/) (accessed on 28 September
2021), and Seq2Logov2.1 (http://www.cbs.dtu.dk/biotools/Seq2Logo/) (accessed on 28
September 2021) [53].

Alignment-Free Method

Peptides were analyzed in STREME [36] (Sensitive, Thorough, Rapid, Enriched Motif
Elicitation) to discover fixed-length patterns (ungapped motifs) that were enriched with
respect to a control set generated by shuffling input peptides [52]. The analyses were
performed via its webserver (https://meme-suite.org/meme/tools/streme) (accessed on
28 September 2021), by considering both total peptides and by each cluster. The motif
width was set between 3–5 amino acids length. STREME applies a statistical test at p-value
threshold = 0.05 to determine the enrichment of motifs in the input peptides compared to
the control set.

Motif Search in PROSITE

Peptides were queried by the Motif Search tool (https://www.genome.jp/tools/
motif/) (accessed on 28 September 2021) and integrated into the GenomeNet Suite (https:
//www.genome.jp/) (accessed on 28 September 2021). PROSITE Pattern and PROSITE
Profile libraries were only considered for the motif search.

3. Results and Discussion

3.1. Model Selection
3.1.1. Network Analysis
Similarity Threshold Analysis

Out of the set of 659 THPs retrieved from starPepDB, 627 peptides (SI1-A-I) were fil-
tered with lower than 98% similarity by local alignment. The adequate similarity threshold
was chosen before building CSN with the 627 peptides. This step is non-trivial since it
is the parameter that defines the topology and network features [54]. Hence, the appro-
priate cut-off for building the CSN was determined based on the variability of network
parameters such as density, modularity, ACC, and singletons at different cut-off similarity
values. Graphml files corresponding to the 17 CSNs are available at SI2. Table S1 shows the
obtained parameters at each cut-off.

The graph of density, modularity, and ACC as a function of the similarity threshold is
shown in Figure 4. The density is lower at a higher similarity threshold. ACC follows the
same pattern until the 0.65 similarity threshold. By contrast, modularity increases as the
similarity threshold increases, while the clustering is optimized.
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Figure 4. Density, modularity, and average clustering coefficient (ACC) as a function of similarity
threshold of 627 THPs CSN.

A well-defined network needs a compromise among the density, modularity, and ACC
parameters, but also accounts for the number of outlier nodes because they are atypical
peptides with particular properties. Networks with very low density display too many
outliers (see Table S1), while networks with very high density show a massive connection.
In both cases, information is lost and interpretation becomes difficult. According to the
literature, the best density percentages are generally around 1% or 2.5% because they
generate high modularity but allow an adequate understanding of the network [54]. As
modularity indicates the existence of community structures, the ideal value must show an
equilibrium between a non-clustered network and an artificially clustered network due to
the high modularity value. In this sense, the selected similarity threshold was 0.60, where
CSN shows the best trade-off among network parameters and connectivity: 2.3% of density,
0.47 of modularity, 0.428 of ACC, and 99 outliers (15.8% of overall nodes). Therefore, the
giant components of the network were 528 nodes (SI1-A-II).

Network Characterization

Some parameters such as density, number of clusters, modularity, average degree,
ACC, and diameter were calculated and shown in Table 1 to get an overview on the giant
component and outliers of the CSNs, which are represented in Figures 5 and 6, respectively.

Table 1. Global network properties of CSN of 528 nodes and outliers.

Set * Nodes Edges Density Clusters Modularity
Average
Degree

ACC Diameter
Nodes

after Sc. **
Edges

after Sc. **

THPs 528 4452 0.023 10 0.47 16.864 0.428 8 - -
Outliers 99 2691 0.891 3 0.13 54.364 0.733 3 34 384

* Density, number of clusters, and modularity were calculated in the starPep toolbox, while average degree, ACC,
and diameter were calculated in Gephi. ** Sc.: Scaffold extraction.
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Figure 5. CSN of giant component conformed by 528 THPs retrieved from starPepDB. Node color
represents the community (cluster), and node size symbolizes the centrality values.

  
(A) (B) 

Figure 6. CSN of (A) 99 outliers with a density of 0.30 and (B) 34 remaining outliers resulting from
30% similarity extraction scaffold. Layout: Fruchterman–Reingold.

Additionally, the degree of distribution of the giant components is shown in Figure 7. It
gives some information about the structure of the CSN. In this case, the distribution degree
is concentrated in the nodes with low vertex degrees. However, it has a tail associated with
the nodes with higher vertex degrees in a lower proportion. The nodes with higher degrees
correspond to the most central nodes, which, as can be corroborated in Figure 5, are in
the minority.
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Figure 7. Degree distribution of the 528 giant components, where k is the vertex degree.

Outliers are relevant THPs because they present characteristics regarding 528 nodes
that make up the giant component; so, they are unique or atypical sequences. CSN of
the 99 singletons (SI1-E) was built using 0.30 of similarity threshold (Figure 6a). Then,
sequences with higher similarity than 30% by local alignment were removed based on
hub-bridge centrality ranking, where 34 outliers (SI1-E-I) with unique sequences were
obtained (Figure 6b).

3.1.2. Centrality Analysis and Similarity Searching

Centrality is the crucial parameter to build the model that will be proposed to identify
THPs. It allows the identification of the most influential sequences of the giant components.
SI3 (Excel file) shows the normalized centrality measurements of 528 THPs. On the other
hand, outliers are nodes with unique properties that enrich the influential sequences
model. Therefore, both sets from centrality measurements and sets of outliers represent
the chemical space of THPs and will be used as queries to perform the similarity searching
against the target datasets. In total, 98 different SSMs were generated based on 22 query
sets (FASTA files available at SI4) and similarity thresholds between 0.3 and 0.9.

The predictions and performance of the 98 SSMs are shown in SI5 and SI6-A, respec-
tively, where active and inactive labels indicate predicted THPs and non-THPs, respectively.
In general, it is observed that the performance of query datasets followed the following
tendency of relevance: weighted degree > harmonic > hub-bridge > betweenness > sin-
gletons (outliers). However, the combination of query datasets from different centrality
types overperforms the sets selected with only one centrality measure. The addition of
the outliers set improved the performance of the combination sets since it generates the
complete representation of the chemical space of THPs. Moreover, better performance was
obtained using 40, 50, and 60% identity in the similarity searching.

The performance of the best nine SSMs to predict activity in Main, Small, and Main90
datasets are shown in Table 2, Table 3, and Table 4, respectively, where H is the set obtained
when harmonic centrality was calculated, W is the set obtained when the weighted degree
was calculated, and sing is the set of 99 outliers.
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Table 2. Statistical analysis for the performance of the best 9 SSMs on the target Main dataset.

Query Set * Nodes % Id Ac
Correct
Class

Incorrect
Class

κ Sn Sp Ppos Pneg

H + sing 467 40 0.933 1215 87 0.866 0.877 0.989 0.988 0.89
50 0.935 1218 84 0.871 0.877 0.994 0.993 0.89
60 0.935 1218 84 0.871 0.874 0.997 0.996 0.888

W + sing 469 40 0.934 1216 86 0.868 0.879 0.989 0.988 0.891
50 0.936 1219 83 0.873 0.879 0.994 0.993 0.891
60 0.937 1220 82 0.874 0.877 0.997 0.997 0.89

H + W + sing 479 40 0.942 1226 76 0.883 0.894 0.989 0.988 0.903
50 0.944 1229 73 0.888 0.894 0.994 0.993 0.904
60 0.945 1230 72 0.889 0.892 0.997 0.997 0.903

* H is the set obtained when harmonic centrality was calculated, W is the set obtained when the weighted degree
was calculated, and sing is the set of 99 outliers.

Table 3. Statistical analysis for the performance of the best 9 SSMs on the target Small dataset.

Query Set * Nodes % Id Ac
Correct
Class

Incorrect
Class

κ Sn Sp Ppos Pneg

H + sing 467 40 0.917 860 78 0.834 0.838 0.996 0.995 0.86
50 0.916 859 79 0.832 0.836 0.996 0.995 0.858
60 0.914 857 81 0.827 0.832 0.996 0.995 0.855

W + sing 469 40 0.92 863 75 0.84 0.844 0.996 0.995 0.865
50 0.92 863 75 0.84 0.844 0.996 0.995 0.865
60 0.919 862 76 0.838 0.842 0.996 0.995 0.863

H + W + sing 479 40 0.928 870 68 0.855 0.859 0.996 0.995 0.876
50 0.928 870 68 0.855 0.859 0.996 0.995 0.876
60 0.926 869 69 0.853 0.857 0.996 0.995 0.875

* H is the set obtained when harmonic centrality was calculated, W is the set obtained when the weighted degree
was calculated, and sing is the set of 99 outliers.

Table 4. Statistical analysis for the performance of the best 9 SSMs on the target Main90 dataset.

Query Set * Nodes % Id Ac
Correct
Class

Incorrect
Class

κ Sn Sp Ppos Pneg

H + sing 467 40 0.985 600 9 0.964 0.983 0.986 0.966 0.993
50 0.99 603 6 0.976 0.983 0.993 0.983 0.993
60 0.992 604 5 0.98 0.983 0.995 0.989 0.993

W + sing 469 40 0.98 597 12 0.952 0.966 0.986 0.966 0.986
50 0.984 599 10 0.96 0.966 0.991 0.977 0.986
60 0.987 601 8 0.968 0.966 0.995 0.988 0.986

H + W + sing 479 40 0.985 600 9 0.964 0.983 0.986 0.966 0.993
50 0.989 602 7 0.972 0.983 0.991 0.977 0.993
60 0.992 604 5 0.98 0.983 0.995 0.989 0.993

* H is the set obtained when harmonic centrality was calculated, W is the set obtained when the weighted degree
was calculated, and sing is the set of 99 outliers.

It can be noticed that the best statistics were achieved using the query composed of the
union of harmonic and weighted degree, both using 60% similarity cut-off of local alignment
during scaffold extraction, and the 99 outliers sets, comprising in total 479 query sequences.
Moreover, 60% was the best percentage of identity where there was a compromise for all
statistical parameters. All statistical parameters showed values higher than 0.88.

The best nine SSMs were compared and ranked using the Friedman test by comparing
multiple statistical metrics from each SSM on the three target datasets (details in SI6-B).
The best SSM was the set CSN-TH-0.60Sc-479-H+W+s-0.6-583 (479Q_0.6), named THP1,
showing excellent statistical metrics (>0.85) for the model (shown in Tables 2–4). It is
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composed of the union of nodes with an identity lower than 60% from the global centrality
harmonic with those obtained from applying weighted degree and the set of 99 outliers
(479 nodes). The best percentage of identity used to search similarity was 60%. The
confusion matrices of THP1 are shown in SI6-C. It can be seen that the prediction of the
model was not at random as the MCC was much greater than zero [55].

Finally, the Friedman test of the THP1 versus the reported models used in TumorHPD [26]
and THPep [28] servers revealed there is a significant difference between the models, being
that the performance of the similarity searching methodology is superior (details in SI6-
C and SI6-D). Figure 8 shows the ranking scores from the test, where THP1 is the first
ranked method. Finally, Table 5 compares between the model on the three benchmarking
datasets. The MCC of predictions using THP1 improved by an average of 28.76% over
ML-based models.

Figure 8. Ranking scores obtained in the Friedman Test. Friedman statistic (distributed according to
chi-square with 2 degrees of freedom): 11.166667. P-value computed by Friedman Test: 0.00376.

Table 5. Comparison between the best SSM THP1 and the state-of-the-art ML model to predict
tumor-homing activity of benchmarking datasets.

Dataset Method Ac (%) Sn (%) Sp (%) MCC

Main

TumorHPD 86.56 80.63 89.71 0.7
THPep 86.1 87.07 85.18 0.72
THP1 94.47 89.25 99.66 0.894

Small

TumorHPD 81.88 73.13 90.92 0.65
THPep 83.37 81.24 85.81 0.67
THP1 92.64 85.71 99.5 0.861

Main90

TumorHPD 89.66 83.64 80.68 0.74
THPep 90.8 91.8 87.97 0.77
THP1 99.18 98.3 99.54 0.98

3.2. Identification of Potential THPs
3.2.1. Hierarchical Screening

Starting from the 45120 AMPs contained in starPepDB, and after applying the previ-
ously explained filters and performing the similarity searching, 43 lead hits were retrieved
(SI7-A). Figure 9 shows the step-by-step hierarchical virtual screening. Until today, these
repurposed sequences have not reported any tumor-homing activity.
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Figure 9. Hierarchical virtual screening for repurposing of peptides from starPepDB.

3.2.2. Tumor-Homing Activity Optimization

A library of 180 sequences (SI7-B) was obtained from the optimization of 43 hits in
TumorHPD. They have a higher TH score, lower toxicity, and hemolytic activity than the
originals. Mutations enriched the sequences with W and C residues. Mainly G and V
residues from the originals were mutated to W, while R and K were to C. Studies report
the presence of W contributes positively to the intracellular translocation of peptides [56].
Additionally, it was reported that W enhances the stability of peptides in serum and
salt [57].

Forty-one peptides from the library were prioritized by studying their CSN, where 50%
scaffold extraction by local alignment was accomplished. The sequences were clustered
and ranked according to the global harmonic centrality to perform the scaffold extraction.
Only the most central sequences with a similarity among them lower than 50% were kept.
Forty-one sequences have higher predicted TH activity by TumorHPD than the original
peptides, with scores between 0.39 and 1.92. Furthermore, they are anticancer and have
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less toxicity and hemolytic activity. 12 out of 41 sequences come from fragments of original
sequences of 5, 10, and 15 lengths; 15 resulted from four punctual mutations from the
originals; and 14 from fragments of mutated sequences of 5, 10, and 15 lengths. Two out of
forty-one peptides, CNGRCGGKLA and WCAMS, are part of reported THPs, validating
the novel methodology to discover potential THPs. CNGRCGGKLA is the N-end of the
CNGRCGGKLAKLAKKLAKLAK peptide containing the NGR TH motif and a disulfide
bridge that gives stability. CNGRCGGKLAKLAKKLAKLAK binds to CD13 of tumor cells
acting as ACP and THP [58]. At the same time, WCAMS is the C-end of the KLWCAMS
peptide that homes mouse B16B15b melanoma [59].

We selected the most promising 13 sequences from the 43 lead hits and these were
combined with the 41 optimized hits. In total, we proposed 54 peptides (SET 1, FASTA
file in SI7-C) with a diverse molecular structure, low toxicity, and hemolytic activity, with
most of them also showing potential anticancer activity (SI7-D). Among the 54 lead hits,
only one sequence has the well-known NGR motif. Therefore, SET 1 is composed of new
structural entities within the known structural space of the THPs.

The sequence diversity of SET 1 was evaluated using all vs. all global alignment where
pairwise sequence identities were explored. As shown in Figure 10, the 54 lead hits present
a structure singularity sharing pairwise identities with 30%.

Figure 10. (A) Heat map and (B) histogram of pairwise sequence identity of SET 1 (54 lead compounds).
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3.2.3. Motif Discovery

As a consequence of the structural diversity of SET 1, the discovery of motifs ac-
counting for the TH activity is not a straightforward task. In this sense, sensitive multiple
sequence alignment (MSA) tools and alignment-free (AF) approaches (e.g., STREME) were
applied to unravel new TH motifs.

The resulting 54 lead THPs were mapped onto CSN space to identify putative commu-
nities and make possible the application of MSA algorithms for motif identification. These
networks communities were considered clusters containing related peptides. Finally, six
clusters were conformed with 14, 10, 8, 4, 10, and 8 members, respectively (SI7-E). The last
cluster grouped the singletons (peptides identified as atypical in the CSN).

Clustal-Omega [32], MAFFT [33], MUSCLE [34], and T-Coffee [35], which are MSA
algorithms developed after the classical ClustalW, were applied, so that they can deal with
hard-to-align sequences shown in each cluster, and thus to detect any conserved signature
or motif. Since each MSA has implemented a different algorithm to improve alignment
quality, their consideration for the estimation of consensus regions helped us identify TH
motifs by using the Jalview, EMBOSS Cons and Seq2Logo programs (SI8). As the EMBOSS
Cons, gives a more legible output, only displaying high scored amino acids/positions
(capital letters), less scored but positive residues (lower-case letters), and non-consensus
positions (x), were selected as the primary source to set consensus/conserved regions. The
non-consensus positions were estimated using default parameters by visual inspection of
the corresponding positions in the Jalview program [52] and the Seq2Logo [53]. Table 6
depicts the consensus motifs, unraveled by each MSA algorithm.

Table 6. Discovered motifs by Multiple Sequence Alignment (MSA).

No Motif EMBOSS Consensus Cluster Cluster Size Frequency * MSA Method

1 wwW
wwW

2 14 1/(1)
CLUSTALW-O

xxW MAFFT

2 C[fl][rg][vl]rW CxxxrW
3 10 0/(0)

MAFFT

3 C[gpi][gs]cR CxxxR MUSCLE

4 [rkl]GLC

RGlc

4 8 0/(0)

CLUSTALW-O

kGLC MAFFT

xGLc MUSCLE

5 c[wp]kG
cwkG

1+5 4
0/(0)
0/(0)
0/(1)

CLUSTALW-O
MUSCLE

cxkG T-Coffee

6 Not Found Non-consensus 6 10 0/(0)

CLUSTALW-O
MUSCLE
MAFFT
T-Coffee

7 l[rp][cw]c lxxc Singletons 8 0/(0) MUSCLE

* Taken from TumorHoPe (outside parenthesis), and starPepDB (inside parenthesis).

None of the motifs found by MSA have been reported as TH motifs (Table 6). However,
one of the motifs from No. 3 CxxxR, CGGCR, contains the CXXC motif, which is the active
site of thioredoxin (Trx), a relevant protein in mammalian cells that acts as an antioxidant
and participates in programmed cell death inhibition and cell growth, commonly used
as a target for cancer treatments [60,61]. Moreover, CWKG (No. 5) is contained in a
nanoscale molecular platform used as a drug delivery system in chemotherapy to enhance
the conjugation of mitomycin C to the carrier [62].

On the other hand, the AF approach STREME was used to find unaligned patterns
ranging from 3–5 aa length within the overall 54 peptides and each peptide cluster. STREME
has been recently reported as the most accurate and sensitive algorithm among its com-
peting state-of-the-art partners [36]. Unlike previous algorithms [63–65], STREME uses a
position weight matrix (PWM) to count position matches efficiently for a motif candidate
against a Markov model built up from shuffling the same input set (control sequences).
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Table 7 displays the enriched motifs, discriminating the 54 lead peptides against the control
sequences. The same search was also performed by considering each cluster content. Motifs
appearing in more than 20% of the query sequences are listed according to their statistical
significance (score).

Table 7. Discovered Motifs by STREME.

No Motif Cluster Cluster Size
Matches in

Positive Seqs.
Matches in

Control Seqs.
Sites (%) Score Frequency *

1 WRP

2 14

7 1 50 1.6 × 10−2 5/(5)

2 WVL 5 1 35.7 8.2 × 10−2 0/(0)

3 WS[YR] 3 0 21.4 1.1 × 10−1 1/(1)Y

4 WWWM 3 0 21.4 1.1 × 10−1 0/(0)

5 CFRV

3 10

3 0 30 1.1 × 10−1 1/(1)

6 HWK 2 0 20 2.4 × 10−1 0/(0)

7 PRW 2 0 20 2.4 × 10−1 3/(3)

8 CN[WG]

4 8

3 0 37.5 1.0 × 10−1 34/(32)G

9 WARG 3 0 37.5 1.0 × 10−1 0/(0)

10 GIC 2 0 25.0 2.3 × 10−1 5/(4)

11 WKG 1-5 4 3 1 75.0 2.4 × 10−1 0/(0)

12 KNKHK
6 10

3 0 30.0 1.1 × 10−1 0/(0)

13 PSHL 3 0 30.0 1.1 × 10−1 0/(0)

14 LRLRI
Singletons 8

2 0 25.0 2.3 × 10−1 1/(1)

15 CC[CQ] 3 1 37.5 2.8 × 10−1 0/(0)

16 LSP
All

sequences 54

11 1 20.4 3.4 × 10−3 3/(3)

17 WSYG 7 0 13.0 8.2 × 10−3 0/(0)

18 WRPW 5 0 9.3 3.2 × 10−2 2/(2)

* Taken from TumorHoPe (outside parenthesis), and starPepDB (inside parenthesis).

One of the motifs discovered by STREME had been reported as tumor-homing, WRP
interacting with VEGF-C [66,67]. Other found motifs have been reported but not as TH,
such as WRPW, PRW, WKG, and PSHL. WRPW is the binding site of the 7 Enhancer of
split E(spl) basic helix–loop–helix (bHLH) protein and the hairy protein to the corepressor
protein Groucho-TLE via WD40 domain [68]. PRW is part of a biocatalyst, which is
conjugated to a lipid by an ester or amide bond [69]. WKG is a ribosomally synthesized
and post-translationally modified peptide [70] and PSHL is a tetrapeptide that affects HIV-1
protease (PR) [71].

Lastly, 54 lead THPs were queried against PROSITE’s pattern and profile databases
using the search engine Motif Search of the GenomeNet suite [72]. Only two query peptides,
which are shown in Table 8, had significant matches with motifs found in gonadotropin-
releasing hormones (GnRH) and bombesin-like peptides.

Table 8. Motifs found in PROSITE.

No Motif Found Hit Peptide Accession Match with Signature Related Seqs. Frequency *

1 QHWSYGLRPG starPep_07237 PS00473 Q[HY][FYW]Sx(4)PG
Gonadotropin-

releasing
hormones

67 1/(1)QHWSY

2 WARGHFM starPep_10020 PS00257 WAxG[SH][LF]M Bombesin-like
peptides 36 0/(0)

* Taken from TumorHoPe (outside parenthesis), and starPepDB (inside parenthesis).
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These two peptide signatures and their receptors are involved in neuroendocrine
signaling pathways associated with physiological states and tumors. GnRH is the hypotha-
lamic decapeptide that plays a crucial role controlling women’s reproductive cycle. GnRH
binds to specific receptors on the pituitary gonadotrophic cells, but it also is expressed in
other reproductive organs, e.g., ovaries, and tumors derived from the ovaries. It has been
shown GnRH is involved in ovarian cancer regulation proliferation and metastasis either
by the indirect signaling pathway or direct interaction with the GnRH receptors placed at
the surface of ovarian cancer cells [73].

Bombesin-like peptides were initially discovered from frog skin, where they are
secreted from cutaneous glands as a means of communication and defense. They were later
found to be widely distributed in mammalian neural and endocrine cells represented by the
neuromedin B (NMB) and the gastrin-releasing peptide (GRP), respectively. Bombesin-like
peptide receptors are G-protein-coupled and have seven membrane-spanning domains,
so they are involved in signal transduction pathways [74]. Growing evidence shows that
bombesin-like peptides and receptors play essential roles in physiological conditions and
diseases. An abnormal expression of bombesin receptors has been observed in several
types of tumors, which has motivated the development of more specific and safer bombesin
derivatives for tumor diagnosis and therapy [75].

The motif search by using different approaches may render a diversity of outcomes.
However, some hits shared by different search approaches can support the reliability
of the findings. For example, one motif found by the PROSITE search, WSY, was also
encountered by STREME, an algorithm that works regardless of database and sequence
similarity. Some of the motifs estimated by MSA algorithms were also identified by the
AF approach STREME, such as WWW and WKG. All motifs were searched against TH
databases, TumorHoPe, and starPepDB to discriminate the possible new signatures from
the existing ones. New motifs appear at very low frequency within THPs (last column of
Table 6–8), except CNG found by STREME, which appears 34 times in TumorHoPe and 32
in starPepDB. However, CNG has not been reported as a TH motif.

4. Conclusions

In this study, a novel methodology based on network science and similarity searching
was introduced to explore the chemical space of THPs and discover potential THPs from
known AMPs. Statistically, the strategy’s performance transcended current supervised
ML approaches used in THP predictions, demonstrating the potential of this approach.
Hence, in silico predictions using the model based on representative THPs, in conjunction
with TumorHPD and THPep servers, gave a high reliability to discover potential THPs. As
a result, 54 lead compounds were repurposed as potential from AMPs. In the set, novel
motifs with promising tumor-homing activity were proposed.

The good performance of the methodology for predicting peptide activity based on
similarity searching and network science suggests its application for the prediction of
other endpoints in peptides, e.g., antibacterial activity, toxicity, hemolytic, or anticancer.
Our models and pipeline are freely available through the starPep toolbox software at
http://mobiosd-hub.com/starpep (accessed on 2 February 2021).
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Abstract: Antibiotic resistance is a global health crisis increasing in prevalence every day. To combat
this crisis, alternative antimicrobial therapeutics are urgently needed. Antimicrobial peptides (AMPs),
a family of short defense proteins, are produced naturally by all organisms and hold great potential as
effective alternatives to small molecule antibiotics. Here, we present rAMPage, a scalable bioinformat-
ics discovery platform for identifying AMP sequences from RNA sequencing (RNA-seq) datasets. In
our study, we demonstrate the utility and scalability of rAMPage, running it on 84 publicly available
RNA-seq datasets from 75 amphibian and insect species—species known to have rich AMP reper-
toires. Across these datasets, we identified 1137 putative AMPs, 1024 of which were deemed novel
by a homology search in cataloged AMPs in public databases. We selected 21 peptide sequences
from this set for antimicrobial susceptibility testing against Escherichia coli and Staphylococcus aureus
and observed that seven of them have high antimicrobial activity. Our study illustrates how in silico
methods such as rAMPage can enable the fast and efficient discovery of novel antimicrobial peptides
as an effective first step in the strenuous process of antimicrobial drug development.

Keywords: antimicrobial peptide; AMP discovery; genome mining; antimicrobial resistance

1. Introduction

Due in large part to the overuse and misuse of antibiotics, the prevalence of multidrug-
resistant bacteria is rapidly growing at a rate that cannot be matched by antibiotic discovery
efforts [1]. As a consequence, the world is currently in an arms race and is at the cusp of a
post-antibiotic era [1]. The slow pace of new antibiotic drug discovery, development, and
regulation, combined with the accelerated emergence of resistance to existing antibiotics
creates what is referred to as the “discovery void” [2]. This gap between discovery and
emergence of resistance highlights an urgency to develop new antimicrobial therapeutics.
One such alternative is formulations based on the antimicrobial peptides (AMPs) [3].

AMPs are short amphipathic host defense peptides that are produced in all multicel-
lular organisms as part of the innate immune system [3]. Many AMPs operate through
nonspecific mechanisms [4], such as direct electrostatic interactions with the cell membrane
and immunomodulation [3], allowing for a broad spectrum of efficacy against bacteria [5],
viruses [6], and fungi [7]. Furthermore, pathogens develop a slower rate of resistance to
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AMPs compared to conventional antibiotics [8]. It is these qualities that position AMPs as
attractive alternatives to conventional antibiotics [9].

AMPs are often produced as precursor peptides within cells that consist of an N-
terminal signal peptide, followed by an acidic pro-sequence, and a C-terminal basic bioac-
tive mature peptide sequence [3]. The acidic pro-sequence neutralizes the basic mature
peptide to keep the AMP in its inactive form and the signal peptide and acidic pro-sequence
together are referred to as the prepro domain [3]. AMPs are then activated by proteolytic
cleavage of the prepro sequence and the release of the mature peptide [3]. While the signal
peptide is often highly conserved, the acidic pro-sequence and mature AMP can be quite
variable [10]. However, there is evidence that the prepro sequence can vary across different
organisms [3] and even within organisms [11].

Past research has shown that amphibians, such as the American bullfrog Rana [Litho-
bates] catesbeiana, possess a rich diversity of AMPs due to their aquatic and terrestrial
life cycle, where the species encounter a wide spectrum of pathogens in these two envi-
ronments [11]. In amphibians, AMPs such as ranatuerin are secreted at the skin surface
upon pathogen exposure and can also stimulate an adaptive immune response [12]. In
contrast, insects lack a sophisticated adaptive immune system and yet are highly tolerant
to bacterial infection [13,14]. This may be due to the production of AMPs by the innate
immune system [14]. In insects, AMPs are found in venom or salivary gland secretions.
For example, melittin, a 26 amino acid (AA) peptide is the main component of honeybee
venom [13]. While there are many known amphibian AMPs, there are far fewer known
insect AMPs. Amphibian AMPs have their own designated database of 1923 peptides in
the Database of Anuran Defense Peptides (DADP) [15]. Additionally, they also comprise
34% (1128 sequences) of the curated Antimicrobial Peptide Database 3 (APD3) [16]. Insect
AMPs, however, only contribute 10% (325 sequences) in APD3, despite being the next
largest non-mammalian classification. Better characterization of these AMP arsenals holds
great potential in aiding the discovery of novel AMPs.

Because most AMPs under therapeutic investigation are derived from naturally occur-
ring AMPs in various organisms [2], effective methods to discover natural AMPs would
expand the number of potential candidates. Current wet lab screening protocols consist
of extraction, isolation, and purification of AMPs through laborious methods such as the
collection of skin secretions followed by liquid chromatography and sequence identification
using mass spectrometry [17–21]. However, these protocols are costly, time-consuming, and
expertise intensive. To resolve this, a scalable, rapid, high throughput in silico methodology
built on genomics technologies and able to mine RNA sequencing (RNA-seq) datasets,
would greatly aid in the discovery of AMPs funneling into drug development and enhance-
ment processes. There are in silico AMP discovery methodologies presented in earlier
studies [22–26], most of which start with processed data such as assembled genomic or
protein sequences. Additionally, there are several state-of-the-art tools that perform AMP
prediction [27]. Because AMP precursor genes have conserved sequence characteristics,
these properties can be leveraged for filtering, and their inferred mature products can be
classified as an AMP or not using machine learning methods. With the current unprece-
dented expansion of data generation and large amounts of sequencing data available in
public repositories [28], there exists a rich untapped resource for AMP discovery.

To help fill the antibiotic discovery void, we offer rAMPage: Rapid Antimicrobial
Peptide Annotation and Gene Estimation, a homology-based AMP discovery pipeline to
mine for putative AMP sequences in publicly available genomic resources. To classify AMP
sequences, rAMPage employs AMPlify [27], an attentive deep learning model. Currently,
existing AMP databases, (e.g., APD3, DADP) contain less than 4000 validated nonredun-
dant AMP sequences in total. In comparison, we have found over 1000 putative mature
AMPs in the present study, with the potential to discover thousands more. Realizing the full
potential of such pipelines would require the synthesis and validation of AMP candidates.
Herein, we report our results on a select list of 21 peptides we detected using rAMPage.
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2. Results

2.1. Identification of Putative AMPs

Using rAMPage, we assembled ~53 million transcripts from 84 RNA-seq datasets
derived from the transcriptomes of 38 amphibian (33 frogs, five toads; anurans) and
37 hymenopteran insect (eight ants, five bees, 24 wasps) species and flagged 203,758 candi-
date peptide sequences to be classified (Figure 1). To select a list of high-confidence putative
AMPs, we collapsed duplicates from multiple samples and applied three filters: AMPlify
prediction score, peptide charge, and peptide length to obtain 1137 peptide sequences. Of
these, 795 originate from amphibians, and 342 from insects. Running rAMPage on all
84 datasets took one week, with all datasets (comprising < 1 billion reads) taking less than
24 h (see Supplementary Materials Figure S1 for details on the computational platform and
resource usage statistics).

Figure 1. Statistics and attrition as the sequencing data are processed by the rAMPage AMP discovery
pipeline. rAMPage processes RNA-seq datasets from raw reads to transcripts to putative AMPs. In
this case, a putative AMP is defined as a sequence with an AMPlify score ≥10 for amphibians or ≥ 7
for insects, a length ≤ 30 AA, and a charge ≥ 2. Datasets with a reference transcriptome used during
assembly are indicated with an asterisk. The total number of putative AMPs (n = 1478, including
341 duplicates) are shown in purple, discovered from a total of ~53 million assembled transcripts.

For each sequence, AMPlify [27] reports a prediction score s from 0 to 80, where s is a
log-transformation of the AMPlify probability score p

s = −10 log10(1 − p), (1)

and 80 represents the highest confidence.
We note that the training data set for the AMPlify model had an over-representation

of AMPs from amphibian species [27]; hence, it is biased towards assigning higher scores
for amphibian AMPs. To compensate, we have applied separate score cut-offs for the two
groups: 10 for amphibians and 7 for insects. Since the majority of AMPs are positively
charged, a net charge threshold of ≥+ 2 was applied. As for length, we filtered for se-
quences that are ≤30 AA, because shorter peptides are more cost-effective to synthesize
for downstream validation studies. Figure S2 shows that the length filter used is the most
restrictive filter of the three, with only 4.28% and 1.45% of the sequences for amphibians
and insects, respectively, meeting this criterion.

Score, charge, length distributions, and AA compositions of the 1137 putative AMPs
are characterized in Figures S1 and S4. From this set, 21 AMPs were selected for synthesis
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and validation, using three prioritization strategies: “Species Count”, “Insect Peptide”, and
“AMPlify Score” (see Section 4). The peptides have been named after the species they were
discovered from (Table S1), then numbered in order using their AMPlify scores.

2.2. Antimicrobial Susceptibility Testing (AST) Results

A total of 21 of the 1137 putative AMPs (Table S2) were synthesized (Genscript Biotech,
Piscataway, NJ, USA) and tested for their antimicrobial activity against Escherichia coli
ATCC 25922 and Staphylococcus aureus ATCC 29213 in a minimum of three independent
experiments (see Figure S5 for a full set of experimental results). In these antimicrobial
susceptibility tests, AMP activity was assessed using two metrics: minimum inhibitory and
bactericidal concentrations (MIC and MBC, respectively). Lower MIC and MBC values
are desirable as they indicate that lower AMP concentrations are sufficient for inhibitory
or bactericidal activity, respectively. AMP toxicity was measured by HC50 hemolytic
concentration values—the concentration required to lyse ≥ 50% of porcine red blood cells.
In contrast to MIC/MBC assays, it is desirable to have higher HC50 values. All 21 putative
AMPs exhibited minimal to no hemolytic activity with HC50 values of 64 μg/mL or higher.

Of these 21 putative AMPs, three displayed moderate activity (MIC and MBC in the
range 8–16 μg/mL) and four displayed high activity (≤4 μg/mL) against E. coli and/or
S. aureus, all with minimal hemolytic activity, as shown in Figure 2. The characteristics of
these seven sequences are described in Table 1. All seven AMPs with moderate to high
antimicrobial activity have AMPlify scores greater than 25.

Figure 2. Antimicrobial susceptibility and hemolysis test results of seven moderately and highly
active putative AMPs. AMPs were tested for their bioactivity against E. coli and S. aureus to determine
minimum inhibitory and bactericidal concentrations (MIC and MBC, respectively). AMPs were also
tested for their hemolytic activity using pig red blood cells to determine hemolytic concentration
(HC50) values. Moderate activity (MIC and MBC in the range of 8–16 μg/mL) and high activity
(≤4 μg/mL) thresholds indicated by the dashed lines. AMPs are ordered by increasing MIC values
against E. coli ATCC 25922.
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Table 1. Characteristics of putative AMP sequences with moderate to high in vitro bioactivity against
E. coli or S. aureus. Each sequence is separated into the prepro sequence and the predicted mature
peptide sequence. Conserved proteolytic cleavage sites are underlined in the prepro sequences.

Prepro-Sequence

Putative Mature Peptide

Sequence Length Charge AMPlify
Score

MIC
(μg/mL) * Peptide

IDE. coli † S. aureus †

MFTMKKSLLVLFFLGI-
VSLSLCEEERNADED-

DGEMTEEVKR

GILDTLKQLGKAAVQG-
LLSKAACKLAKTC 29 4 80.0 2–4 4–8 AmMa1

LGIVSLSLCQEERSA-
DDEEGEVIEEEVKR

GFMDTAKNVAKNV-
AVTLLYNLKCKITKAC 29 4 69.2 4 64 OdMa12

MFTMKKSLLFFFLG-
TIALSLCEEERGAD-

EEENGGEITDEEVKR

GLLLDTVKGAAKNVA-
GILLNKLKCKVTGDC 30 3 61.8 8 16–32 PeNi10

MFTMKKSLLLVFFLG-
TIALSLCEEERGAD-
DDNGGEITDEEIKR

GILTDTLKGAAKNVAGVL-
LDKLKCKITGGC 30 3 61.8 8–16 32–128 PeNi11

MFTLRKSLLLLFFLGM-
VSLSLCEQERDAD-
EDEGEVTEEVKR

GLWTTIKEGVKNFS-
VGVLDKIRCKITGGC 29 3 67.5 4–8 16–64 PeNi14

MKLLALVLVLSCVV-
AYTTARKRGQYWPT-

NTKIFTTPYRFRREAD-
QGSIVANLKNTPQLPFD-

DNENLRLVLFDNDPTVDLG-
EDDKEIPGPQSQPNALSNN-
LHLIDENDYFSSYTSQPGT-
YRSFPRNFGTSGRYRWRR-

EAGGHVEPRLRFDAETQRG-
NSFFTDFADLQRRANGRGI-

EPTVSATAGIRFR-
QEADQINPLAVRRERR

SWLSKSVKKLVNKKNY-
TRLEKLAKKKLFNE 30 8 25.5 1–2 >128 TeRu4

IFLVGCKLFGNFIL-
QRMQLLLALADAVA

KIKIPWGKVKDF-
LVGGMKAVGKK 23 6 45.0 1–4 2–8 TeBi1

* MIC: Minimum inhibitory concentration. † Escherichia coli ATCC 25922; Staphylococcus aureus ATCC 29213.

2.3. Novelty of Discovered AMPs

To assess if the putative AMPs discovered using rAMPage are novel, a BLASTp [29]
(basic local alignment search tool) protein search was performed using the 1137 sequences
that met our selection criteria. Of these, 1024 sequences are reported as novel, provid-
ing no antimicrobial characterization or exact match (sequence identity = 100%; query
coverage = 100%) within the NCBI non-redundant protein database [29]. The novelty anal-
ysis results for the seven moderately to highly active AMPs are presented in Table 2. Four of
the queried putative AMPs (AmMa1, OdMa12, PeNi10, and PeNi14) are novel in sequence,
aligning with high sequence identity (≥90%) to existing NCBI annotations [29]. Two pu-
tative AMPs (PeNi11 and TeBi1) are known and published AMPs, aligning with 100%
sequence identity of the precursor protein and across the prepro and mature regions. One
putative AMP (TeRu4) aligns with high sequence identity to an uncharacterized protein in
the NCBI non-redundant protein database.
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Table 2. Comparison of sequence identities (%) of the discovered AMPs with their best-known AMP
blastp matches to the NCBI non-redundant (nr) protein database over the entire sequence (precursor),
prepro or mature sequences.

Peptide ID Source Organism Highest Scoring Blastp
Match

Sequence Identity (%)

Precursor Prepro Mature

AmMa1 Amolops mantzorum
Palustrin-2GN3
(ADM34231.1)

[Amolops granulosus]
97 100 93

OdMa12 Odorrana margaretae
Odorranain-F2
(ABG76517.1)

[Odorrana grahami]
98 100 97

PeNi10

Leptobrachium boringii
Polypedates megacephalus
Pelophylax nigromaculatus

Rhacophorus dennysi
Rhacophorus omeimontis

Pelophylaxin-1
(Q2WCN8.1)

[Pelophylax fukienensis]
Ranatuerin-2N
(AEM68233.1) *

[Pelophylax nigromaculatus]

82

98

86

97

77

100

PeNi11

Leptobrachium boringii
Polypedates megacephalus
Pelophylax nigromaculatus

Rhacophorus dennysi
Rhacophorus omeimontis

Pelophylaxin-1
(Q2WCN8.1)

[Pelophylax fukienensis]
100 100 100

PeNi14

Bufo gargarizans
Polypedates megacephalus
Pelophylax nigromaculatus
Rhacophorus omeimontis

Palustrin-2HB1
(AIU998997.1)

[Pelophylax hubeiensis]
90 93 86

TeRu4 Temnothorax rugatulus

Uncharacterized protein
(XP_024884948.1)

[Temnothorax curvispinosus]
Uncharacterized protein

(TGZ47385.1) *
[Temnothorax longispinosus]

94

91

93

90

97

97

TeBi1 Tetramorium bicarinatum
M-myrmicitoxin(01)-Tb1a

(W8GNV3.1)
[Tetramorium bicarinatum]

100 - 100

* Highest scoring blastp match when query sequence consists of only the mature sequence instead of the whole
precursor. -: no significant alignment.

AmMa1, derived from the Mouping sucker frog, A. mantzorum, aligned with 97%
sequence identity to Palustrin-2GN3 [30] from a species of the same genus, A. granulosus,
differing only by two AA in the mature region (Figure S3a). Similarly, OdMa12, found in
the green odorous frog, O. margaretae, aligned with 98% sequence identity to odorranain-
F2 [31] from a species of the same genus, O. grahami, differing only by one AA in the mature
region (Figure S3b). While these two sequences (AmMa1 and OdMa2) are very similar to
known sequences, we have additionally discovered each of them in a different species of
the same genus.

PeNi10 was detected in the dark-spotted frog P. nigromaculatus, and aligned with 82%
identity to pelophylaxin-1 [32] from a species of the same genus, P. fukienensis (Figure S3c).
We also identified PeNi10 in four other species of frogs: L. boringii, P. megacephalus, R. dennysi,
R. omeimontis (Figure S4a). Although the PeNi10 precursor aligns best to pelophylaxin-1,
the mature region aligns with complete sequence identity to ranatuerin-2N (unpublished).

PeNi14, also derived from the dark-spotted frog, P. nigromaculatus, aligned with 90%
sequence identity to palustrin-2HB1 [33] from a species of the same genus, P. hubeiensis
(Figure S6d). PeNi14 was also detected in three other species of frogs: B. gargarizans,
P. megacephalus, R. omeimontis (Figure S7b).
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Originating from the dark-spotted frog, P. nigromaculatus, PeNi11 aligned with 100%
sequence identity to pelophylaxin-1 [32] from a species of the same genus, P. fukienensis,
meaning it is identical to a known AMP precursor (Figure S6e). However, in addition
to P. nigromaculatus, we also detected PeNi11 in four other species of frogs: L. boringii,
P. megacephalus, R. dennysi, R. omeimontis (Figure S7c).

Found in the venom of tramp ant, T. bicarinatum, TeBi1 aligned with 100% sequence
identity with bicarinalin [34,35] of the same species (Figure S6f). In the case of TeBi1, its
precursor was partial on the 5′ end, accounting for no alignments in the prepro sequence.

TeRu4, discovered in the brain of the small myrmicine ant, T. rugatulus, aligned with
100% sequence identity to an uncharacterized protein [36] from a species of the same genus,
T. longispinosus (Figure S6g). While TeRu4 is not a novel protein, it is a novel mature AMP
as it has not been previously characterized to have antimicrobial properties.

Additional annotation of the seven bioactive peptides (five amphibians, two insects)
can be found in Table S3. The underrepresentation of insect AMPs in the literature, com-
pared to amphibians, is further demonstrated here; while the amphibian peptides have
been annotated with “frog antimicrobial peptide” domains in both InterProScan [37] and
Pfam [38], the insect sequences have no protein family annotations. Figure S8 illustrates
the sequence identity between AMPs identified by rAMPage and known AMPs for am-
phibian and insect AMPs. Although the majority of putative AMPs from rAMPage were
novel sequences, previously reported AMP sequences were also identified and are a good
demonstration and internal validation of the robustness of this methodology.

3. Discussion

Using rAMPage, we analyzed 84 RNA-seq datasets of 38 amphibian and 37 insect
species to discover 1137 putative AMPs, 1024 of which are novel. In the present study
we report our validation results on 21 putative AMPs, with over 1000 additional peptide
sequences left to investigate. This list is by no means exhaustive; adjusting the described
filtering parameters may yield thousands more discoveries (Table S4). Further, the rAMPage
pipeline can be readily used on other transcriptome sequencing datasets, though this might
call for modifications in experimental designs. For instance, in the case of bacterial RNA-seq
datasets with reduced post-transcriptional polyadenylation, RNA-seq data from rRNA
depleted libraries would be recommended as input for the pipeline, as opposed to data
from poly(A) enriched libraries [39,40].

While the sensitivity (proportion of reference AMPs captured by the three putative
AMP filters) of rAMPage is <50% (Table S5 and Figure S9) with the default filtering thresh-
olds, the filters are implemented to select for high confidence predictions that are also easier
and more cost-effective to synthesize for validation. However, as more putative AMPs are
discovered and the number of reference AMPs increase in public databases, the rAMPage
filters can be adjusted accordingly to report more novel AMPs.

Although rAMPage captures most putative AMPs in their complete mature form, their
associated precursor sequences may be incomplete, as shown using multiple sequence
alignments with Clustal Omega v1.2.4 [41] (Figure S7). However, most partial transcripts
are missing sequence on the 5′ end. Therefore, while the AMP precursors may be partial,
the mature AMPs at the C-termini are more likely to be complete, thereby still detectable
by rAMPage.

Because progress is rapid in bioinformatics, rAMPage is designed to be flexible as new
technologies are developed. The pipeline is implemented as a Makefile with each step as
a separate target, making the pipeline modular and providing analysis checkpoints. The
tools for each step can be substituted with newer/improved tools if needed. Similarly, the
pipeline is versatile and can be adapted for other sequencing technologies, for instance by
assembling RNA/cDNA long reads from Pacific Biosciences of California (Menlo Park, CA,
USA) or Oxford Nanopore Technologies Ltd. (Oxford, UK) instruments.

Recently, our group released AMPlify and compared its performance to other state-of-
the-art tools for AMP prediction [27]. Other machine learning methods included iAMP-
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pred [42], iAMP-2L [43], AMP Scanner Vr. 2 [44], with AMPlify outperforming all previ-
ously described AMP prediction tools in metrics of accuracy, sensitivity, and specificity [27].
For this reason, rAMPage employs AMPlify as its AMP prediction step, and will continue
to until it is surpassed in performance. Machine learning in AMP discovery is a dynamic
study, ranging from AMP sequence prediction and structure classification to de novo AMP
sequence generation and design [45–47]. While there are existing methods to mine protein
databases [48,49], rAMPage is an all-in-one tool to mine next-generation sequencing data
directly from reads to AMP prediction.

While rAMPage can find a substantial number of putative AMPs, its main limitation
lies in the fact that it uses homology-based sequence selection and machine learning-based
sequence classification steps. These two steps are limited by the quantity and quality of
data currently available for training the tools. The homology-based step of rAMPage would
be less sensitive when there are more divergent signal sequences in the precursor genes.
Similarly, the sequence classification engine in the pipeline, AMPlify, may be biased by
known (and limited) classes of AMPs in the databases. However, this limitation is not
restricted to only AMPlify, but all approaches dependent on AMP databases for training
data sets [48–50].

Despite these limitations, which are expected to resolve over time as curated AMP se-
quence databases grow, a sizeable number (>1000 from 84 RNA-seq datasets) of AMPs were
reported by the pipeline with the filters described herein. In the tested set of 21 peptides,
seven demonstrated antimicrobial activity against a defined set of bacteria in vitro and 15
did not. We note that AST experiments can assess activity against the tested pathogens but
cannot rule in or out an activity against other targets. Further, AMPs have multiple modes
of action, and the AST protocol used in our study only validates direct action and does not
test the putative immunomodulatory effects of these peptides, for instance. Of the seven
active putative AMPs, three were moderately active, and all three are expressed in multiple
amphibian species, potentially signaling the evolutionary significance of these AMPs.

An AMP of particular interest in the present study is TeRu4, due to its novelty and
specificity in bioactivity. The precursor sequence of TeRu4 is 234 AA long, indicating that
TeRu4 may be a multi-functional protein, such as a histone whose subsequence includes
antimicrobial properties [51]. Additionally, TeRu4 showed a 36.84% sequence similarity to
the spaetzle protein from the fruit fly Drosophila melanogaster, a protein in the insect Toll
pathway, which triggers AMP production [52]. TeRu4 is also the most specific of the active
putative AMPs we tested. While all the other active peptides tested are active against both
E. coli and S. aureus, TeRu4 is active only against E. coli, a Gram-negative bacterium. This
specificity may indicate a unique mechanism of action.

Despite the great promise of discovering putative AMPs with rAMPage, AMP-based
drug development still faces some biological challenges, such as peptide stability and
bacterial resistance. AMPs in their mature form are considered more unstable and more
easily degraded by proteases. While synthesizing precursors for testing would increase
stability, doing so would drive up the cost of synthesis using conventional synthetic
chemistry methods. Although resistance to AMPs emerges at a slower rate compared
to resistance to antibiotics, bacteria may develop resistance to AMPs through surface
remodeling, modulation of AMP gene expression, proteolytic degradation, trapping, efflux
pumps, and biofilms [4,53–55]. To combat specific mechanisms of resistance, targeted
AMP discovery methods are being developed. A method to discover AMPs with anti-
biofilm activity is described in a preprint [26], and a curated 3D structural and functional
repository of AMPs relevant to biofilm studies called B-AMP was recently published [26].
Finding solutions to these and other challenges in developing AMPs as replacements for
conventional small molecule antibiotics is an active field of research [56–58].

4. Materials and Methods

rAMPage is an AMP discovery pipeline that takes short RNA-seq reads as input, and
outputs candidate putative AMPs for wet lab validation. Since it is a homology-based
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method to select a list of candidates for classification, a set of reference AMPs is required.
Here, we describe how input datasets and reference AMPs are collated, as well as each step
of rAMPage.

4.1. Collating Input RNA-Seq Datasets

The RNA-seq reads from 38 amphibian and 37 insect species were downloaded from
the Sequence Read Archive (SRA) [59] using fasterq-dump v2.10.5 (http://ncbi.github.io/
sra-tools/, accessed on 4 November 2019) from the NCBI SRA Tool Kit. Analyzing RNA-
seq (transcriptomic) reads enables the discovery of expressed putative AMPs. Because
some RNA-seq experiments were conducted with multiple tissues or treatments, there are
75 species in total, but 84 datasets are shown in Tables S6 and S7.

4.2. Collating Reference AMP Datasets

A set of 3306 AMP sequences were collated from two high-quality AMP databases:
the Database of Anuran Defense Peptides (DADP; http://split4.pmfst.hr/dadp/, accessed
on 6 December 2018) [15] and the Antimicrobial Peptide Database 3 (APD3; https://aps.
unmc.edu, accessed on 14 September 2020) [16]. These databases are highly curated, where
sequences have been validated for efficacy. To complement this list, 3835 precursor and
mature AMP sequences of amphibian and insect origin were downloaded from the NCBI
non-redundant (nr) protein database [29]. These sequences are less curated, including
partial sequences and sequences with only in silico prediction, etc., accounting for the
difference between numbers from DADP/APD3 and NCBI in Table S8.

4.3. rAMPage Pipeline

rAMPage is implemented as a Makefile and written in bash, Python3, and R. It is
publicly available on GitHub (https://github.com/bcgsc/rAMPage, v1.0 accessed on 14
February 2021). The pipeline was tested for the dependencies listed in Tables S9 and S10,
and is highly customizable, with its major parameter options listed in Table S4. Command
and parameters for each step can be found in Table S11. A flowchart of the rAMPage
pipeline is shown in Figure 3.

Because the datasets used for rAMPage originate from publicly available genomic
resources and we have no control over the experimental design or protocols used, we
performed rigorous quality control. The RNA-seq reads were trimmed to remove adapter
sequences using fastp v0.20.0 [60], which does not require the adapter sequences to be
known, and instead infers adapter sequences from sequence overlaps between reads. This
is particularly convenient when dealing with multiple datasets that possibly have different
sequencing protocols.

To assemble the RNA-seq reads into transcripts we used RNA-Bloom v1.3.1 [61], a de
novo transcriptome assembler that works with single and paired-end reads. RNA-Bloom is
able to assemble transcriptomes without a reference but also allows for reference-guided
assembly if a reference is available. It also allows for multi-sample pooling, where, for
instance, reads describing multiple tissues from the same individual or different treat-
ments for the same species are assembled together while retaining the tissues or treatment
specificity of assembled transcripts.
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Figure 3. rAMPage workflow. The rAMPage pipeline and downstream selection of putative AMPs
for validation.

We note that the transcripts with a smaller number of reads have less reconstruction
evidence; thus, assembled sequences with lower measured expression levels may be
enriched for misassemblies. To exclude such sequences from downstream analysis, we
used Salmon v1.3.0 [62] to quantify assembled transcript expression levels, and filtered out
transcripts with less than 1 TPM (transcripts per million) expression.

To obtain translated peptide sequences from the transcripts, TransDecoder v5.5.0 [63]
was used to conduct an in silico six-frame open reading frame (ORF) translation, and ORFs
that are at least 50 AA were selected for downstream analysis. In the case of nesting ORFs,
the longest ORF was chosen.

To select putative AMP precursors from this vast pool of assembled and translated
sequences, we conducted a homology search against our curated reference AMP dataset
(Table S8) using HMMER v3.3.1 [64] and assigned an Expect (E) value to every sequence.
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The E-value describes the number of hits expected by chance when searching a database of
a particular size [65]. Sequences that share a certain degree of identity, with E-values of less
than 10−5, were selected as putative AMP precursors.

These putative precursor (or partial precursor) sequences were then cleaved in silico
using ProP v1.0c [66] to obtain putative mature AMP sequences, to be further classified.
However, cleavage prediction tools only predict where the cleavage occurs, not what each
resulting cleaved peptide represents, and the AMP precursor organization shows inter-
and intra-species variability [13,67,68]. While amphibian AMPs are typically cleaved at
a lysine–arginine (KR) motif and their precursor structure follows a conserved structure
(prepro sequence containing acidic AA residues and a mature bioactive AMP) [67], insect
AMPs are typically cleaved at an RXXR motif (two arginine residues surrounding two
optional AA) and the precursor structure is not always conserved [68]. Insect AMPs are
more variable in structure [13], increasing the difficulty in identifying the putative mature
peptide. This difficulty is especially present in precursor structures with multiple acidic
regions (UniProtKB P54684.1) or multiple bioactive regions (UniProtKB P35581.1). In such
multi-peptide precursors, it is unclear whether each bioactive region is its own isoform
or part of a larger mature peptide. To account for this and to possibly discover novel but
perhaps not naturally occurring putative AMPs, cleaved peptides were also recombined
in a manner similar to alternative splicing (Figure S10). In this procedure, the order and
orientation of the cleaved peptides were maintained, and cleaved peptides that originally
share cleavage sites were not recombined, with a maximum of three cleaved peptides
within recombination. This recombination feature can be turned off in rAMPage’s options.

The collected candidate peptide sequences were classified with AMPlify v1.0.3 [27] as
AMP or non-AMP sequences. When given a sequence, AMPlify calculates a score between
0 to 80, with the score ≈ 3.0103 corresponding to the classification probability cutoff of 50%
through Equation (1).

To facilitate AMP synthesis for the validation experiments, we filtered the putative
AMPs by length and charge, in addition to the AMPlify score. A maximum length of
30 AA was imposed to control the cost of peptide synthesis and to reduce the number
of spurious hits from recombined sequences. A minimum charge of +2 was imposed
as a proxy to assess the effectiveness of an AMP, as past evidence indicates that more
positively charged AMPs show higher activity, especially when their mechanism of action
is membrane disruption [69]. Because AMPlify was trained on mostly amphibian AMPs,
different score thresholds were imposed for amphibian (≥10) and insect (≥7) datasets to
compensate for the dearth of insect training AMPs.

To annotate the final set of filtered putative AMPs, ENTAP v0.10.7, Eukaryotic Non-
Model Transcriptome Annotation Pipeline [70], were used, along with UniProtKB (release
2020_06, accessed on 15 December 2020) [71], RefSeq (release 203, accessed on 15 December
2020) [72], and NCBI non-redundant (nr) (v5, accessed on 12 December 2020) [29] protein
databases. For AMPs that ENTAP failed to annotate, InterProScan 5 v5.30-69.0 [37] was run
separately to annotate protein families, functions, and domains. Exonerate v2.4.0 [73] was
used to align the filtered putative AMPs against the reference AMPs to assess how many
of the labeled AMPs were already known AMPs. Finally, SABLE v4.0 [74] was optionally
used to predict secondary structures of the filtered putative AMPs, for visualization.

4.4. Selecting Filtered Putative AMPs for Validation

To select peptides to validate from the filtered putative AMPs, we ranked their se-
quences using AMPlify and chose peptides based upon three selection criteria (Figure 3):
“Species Count” (n = 7), “Insect Peptide” (n = 12), or “AMPlify Score” (n = 2), for a final total
of 21 AMPs (Table S2). The sequences were first clustered using CD-HIT [75] v4.8.1 with a
sequence similarity cutoff of 100%. We chose the longest sequence for each of these clusters,
removing duplicate and subsumed sequences to obtain a non-redundant sequence set.

In the first selection strategy of “Species Count”, sequences that were present in more
than two species were chosen. In the “Insect Peptide” strategy, to balance the training bias
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of AMPlify towards AMPs of amphibian origin, we specifically selected insect-originating
sequences using a reduced AMPlify score cutoff of >20. In the “AMPlify Score” strategy,
the two highest-scoring peptides (AMPlify score = 80.0, 69.9) with the highest charge (+4)
were chosen for validation.

4.5. Antimicrobial Susceptibility Testing (AST)

Twenty-one putative AMP sequences identified using the rAMPage pipeline were vali-
dated through a minimum of three AST experiments performed independently on separate
days. In these tests, the AMP activity was assessed using two metrics: minimum inhibitory
concentration and minimum bactericidal concentration (MIC and MBC, respectively). MIC
and MBC values were determined using procedures outlined by the Clinical and Laboratory
Standards Institute (CLSI), with the recommended adaptations for the testing of cationic
AMPs described previously [76]. “Wild-type” strains of Escherichia coli (E. coli 25922) and
Staphylococcus aureus (S. aureus 29213) were purchased from the American Type Culture
Collection (ATCC; Manassas, VA, USA) and were used for screening of antimicrobial ac-
tivity. Briefly, putative AMPs were synthesized by Genscript (Piscataway, NJ, USA) and
received in lyophilized format. These peptides were suspended using ultrapure water (Life
Technologies, Grand Island, NY, USA; Invitrogen cat# 10977-015), and an 11 μL two-fold
serial dilution of 1280 to 2.5 μg/mL was prepared in duplicate rows in a 96-well microtiter
plate, before being combined with 100 μL standardized bacterial inoculum yielding a final
duplicate testing range of 128 to 0.25 μg/mL. The bacterial inoculum was prepared using
colonies isolated on non-selective agar and combined with Mueller Hinton Broth. This
suspension was measured and adjusted to achieve an optical density of 0.08–0.1, equivalent
to a 0.5 McFarland standard (1–2 × 108 cfu/mL). The inoculum was then diluted to a target
concentration of 5 ± 3 × 105 cfu/mL; total viable counts from the final inoculum were
routinely performed to confirm the target bacterial density was achieved. MIC values were
reported at the concentrations in which no visible growth was detected following 20–24-h
incubation at 37 ◦C. The MIC and adjacent wells were plated onto non-selective agar;
the concentration in which killed 99.9% of the inoculum following additional overnight
incubation was determined to be the MBC.

4.6. Hemolysis Experiments

The twenty-one putative AMPs were evaluated for toxicity using three independent
hemolysis experiments performed on separate days. Whole blood from healthy donor pigs
was purchased from Lampire Biological Laboratories (Pipersville, PA, USA). Red blood
cells (RBCs) were washed and isolated by centrifugation, using Roswell Park Memorial
Institute medium (RPMI) (Life Technologies, Grand Island, NY, USA; Gibco cat# 11835-030).
Lyophilized AMPs were suspended and serially diluted from 128–1 μg/mL using RPMI
in a 96-well plate, before being combined with 100 μL of a 1% RBC solution. Following a
minimum 30 min incubation at 37 ◦C, plates were centrifuged and 1

2 volume from each
supernatant was transferred to a new 96-well plate. The absorbance of these wells was
measured at 415 nm. To quantify hemolytic activity and determine the AMP concentration
that kills 50% of the RBCs (HC50), absorbance readings from wells containing RBCs treated
with 11 μL of a 2% Triton-X100 solution or RPMI (AMP solvent-only) were used to define
100% and 0% hemolysis, respectively. All centrifugation steps were performed at 500× g
for five minutes in an Allegra-6R centrifuge (Beckman Coulter, CA, USA).
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5. Conclusions

rAMPage is a bioinformatics pipeline for high throughput identification of putative
AMPs in RNA-seq datasets. It fills a current void in the AMP discovery process, bridging
the gap between in silico and in vitro methods. The pipeline has the potential to accelerate
the discovery of novel antibiotics, with the possibility to enrich existing AMP sequence
repositories. The easy-to-run pipeline design with various checkpoints and the low compu-
tational resources required to run rAMPage increase its accessibility to users. By executing
rAMPage on publicly available amphibian and insect transcriptome sequencing data, we
have identified over 1000 putative AMPs. Of those, we performed functional tests on
twenty-one putative AMPs and demonstrated that seven have moderate to high activity
against E. coli ATCC 25922 and/or S. aureus ATCC 29213. As the number of tested peptides
increases, the wet lab validation results can feed back into rAMPage by augmenting the
reference AMP datasets, helping refine the underlying homology and machine learning ap-
proaches. We expect rAMPage to have broad utility in the discovery of novel antimicrobials
from a wide variety of transcriptome sequencing datasets.

6. Patents

Patent applications pending on the reported novel peptides.
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Abstract: Host defense peptides (HDPs) represent an alternative way to address the emergence of
antibiotic resistance. Crocodylians are interesting species for the study of these molecules because
of their potent immune system, which confers high resistance to infection. Profile hidden Markov
models were used to screen the genomes of four crocodylian species for encoded cathelicidins and
eighteen novel sequences were identified. Synthetic cathelicidins showed broad spectrum antimi-
crobial and antibiofilm activity against several clinically important antibiotic-resistant bacteria. In
particular, the As-CATH8 cathelicidin showed potent in vitro activity profiles similar to the last-resort
antibiotics vancomycin and polymyxin B. In addition, As-CATH8 demonstrated rapid killing of
planktonic and biofilm cells, which correlated with its ability to cause cytoplasmic membrane depo-
larization and permeabilization as well as binding to DNA. As-CATH8 displayed greater antibiofilm
activity than the human cathelicidin LL-37 against methicillin-resistant Staphylococcus aureus in
a human organoid model of biofilm skin infection. Furthermore, As-CATH8 demonstrated strong
antibacterial effects in a murine abscess model of high-density bacterial infections against clinical
isolates of S. aureus and Acinetobacter baumannii, two of the most common bacterial species caus-
ing skin infections globally. Overall, this work expands the repertoire of cathelicidin peptides
known in crocodylians, including one with considerable therapeutic promise for treating common
skin infections.

Keywords: cathelicidins; antimicrobial peptides; LL-37; biofilms; abscess model; skin model; reptiles

1. Introduction

The rise of antibiotic resistance in bacterial pathogens across all drug classes poses
a serious global public health issue. Recent data showed that, in 2019, antimicrobial
resistance directly caused 1.27 million deaths and was associated with 4.9 million deaths
worldwide [1]. Furthermore, human health issues, such as the severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) global pandemic, have recently aggravated this
problem [2].

Especially concerning are bacteria of the ESKAPE group (Enterococcus faecium, Staphy-
lococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, En-
terobacter sp.) [3]. These recalcitrant pathogens have been classified by the World Health
Organization (WHO) as priorities for the development of new treatments, given their high
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levels of resistance to almost all common antibiotics and their substantial impact on human
health worldwide [3,4]. Perhaps underappreciated is the fact that many of these ESKAPE
bacteria can form biofilms, bacterial communities that are responsible for over 65% of bacte-
rial infections in the clinics and are more resistant to conventional antibiotic treatments and
many host immune responses [5,6]. Consequently, biofilm infections often become persis-
tent and must be dealt with by surgical debridement [6]. Therefore, to adequately address
infections due to ESKAPE pathogens, it is essential to identify antimicrobial compounds
with activity against both the planktonic and biofilm growth state.

Host defense peptides (HDPs) have been described as an alternative to conventional
antibiotics [7,8]. HDPs have broad-spectrum activity against free-swimming (planktonic)
bacteria and in some instances biofilms, multitarget mechanisms of action that ensure
a lower propensity to induce resistance, and additional assets such as anti-inflammatory
properties [9,10]. Cathelicidins are one of the largest families of HDPs in vertebrates and
can be recognized by their conserved pre-pro domains despite a broad diversity of mature
sequences and structures [7]. They are multifunctional peptides with great potential for
the development of new therapeutic agents, and several cathelicidins, or their derivatives,
have been evaluated in clinical trials, including the human cathelicidin LL-37 [11].

Crocodylians (crocodiles, alligators, caimans, gavials and false gavials) possess
a robust immune system [12,13] that allows them to deal with environmental microor-
ganisms, as well as potential pathogens that are found in their natural microbiota [14,15].
These include several bacterial species that are pathogenic to humans and belong to the
ESKAPE group [14–17]. Thus, crocodylian cathelicidins (crocCATHs) constitute a potential
source of natural HDPs that might prove useful as novel anti-infectives.

Six crocCATHs have been previously identified in the Chinese alligator (Alligator sinen-
sis) [18] and one was predicted from the American alligator (Alligator mississippiensis) [19].
Most of these peptides displayed moderate broad spectrum antimicrobial activity, as well as
immunomodulatory properties [18,20,21]. However, the peptide sequences were identified
based on either putative functional genome annotation or by BLAST search in combination
with expression analysis at transcriptional level. Although these methodologies made it
possible to identify novel sequences in these two species, a comprehensive analysis of
cathelicidin sequences encoded in several different crocodylian species is lacking. Further-
more, the antibiofilm activities of crocodylian cathelicidins have been poorly characterized,
despite the clinical relevance of biofilm infections in humans.

Profile hidden Markov models (HMMs) of multiple sequence alignments are complex
statistical models that capture position-specific information about the likelihood of particu-
lar residues and the frequency of insertions/deletions in each position of the alignment [22].
They have shown higher accuracy for the detection of remote homologs compared to other
methods, such as BLAST [23]. Using a strategy based on profile HMMs, we identified
novel crocCATHs in A. mississippiensis, A. sinensis, Crocodylus porosus and Gavialis gangeticus
and subsequently synthesized four of these. Synthetic crocCATHs demonstrated broad-
spectrum in vitro antimicrobial and antibiofilm activities against several bacterial strains,
including clinical isolates of ESKAPE pathogens. In addition, we characterized the an-
tibiofilm properties of these crocCATHs in a human skin organoid model and investigated
the in vivo anti-infective activity of As-CATH8, the most potent peptide here identified.

2. Results

2.1. Bioinformatic Screen of Crocodylian Genomes Identified 18 Novel crocCATHs

Analysis of crocodylian genomes using profile hidden Markov models (HMMs) from
an alignment of 140 vertebrate (reptiles, birds and mammals) cathelicidins led to the
identification of 18 novel cathelicidin sequences (Supplementary Table S1 and Figure S1).
Overall, six sequences were identified in A. mississippiensis, two in A. sinensis, four in
C. porosus and another six in G. gangeticus. Due to the somewhat low quality of the current
genome assemblies, particular identified sequences were missing parts of their N-terminal
domain (especially the signal peptide region) and were reported as partial (Supplementary
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Table S2). Nevertheless, they did contain most of the cathelin domain—including the
four well-conserved cysteines (Supplementary Figure S1)—as well as a mature peptide
region, and were therefore considered new cathelicidins. Furthermore, according to the
NCBI BLASTp tool, most of the new peptide sequences (including the signal peptide
and cathelin domain regions) shared high identity with complete cathelicidin sequences
from crocodylians (>78%) and other reptiles (>46%). Our work also identified
five A. mississippiensis sequences with 100% identity with crocCATHs labeled as predicted
in the NCBI nucleotide and protein databases.

Novel cathelicidins were named according to their orthology with the previously
described As-CATH1–6 sequences from A. sinensis [18]. Phylogenetic analysis, including
sequences from reptiles, birds and mammals, indicated that the crocCATHs grouped into
seven well-defined clusters (Figure 1). Interestingly, cluster 4 appeared more distant from
most crocCATHs and was grouped together with some snake and turtle sequences, which
might indicate that this is the most ancient cluster in the family. Our analysis success-
fully identified orthologous sequences in most crocodylian clusters. Nevertheless, some
cathelicidin sequences were identified with less well-defined orthology relationships (e.g.,
Am-CATH11 and Cp-CATH10). Moreover, our analysis identified a completely new cluster
(cluster 7 in Figure 1) composed of sequences from three crocodylian species, with more
distant relationships with Am-CATH8 and As-CATH8. Interestingly, As-CATH7 and As-
CATH8 partially overlapped in the same region of the A. sinensis genome (Supplementary
Table S2).

2.2. Mature crocCATHs Displayed Characteristic Properties of α-Helical Cathelicidins

To further study some of the identified crocCATHs, four sequences were selected for
chemical synthesis. The sequences As-CATH7 and Gg-CATH7 were selected from the novel
cluster 7, whereas the sequence As-CATH8 was selected due to its partial overlap with
As-CATH7. The fourth peptide was chosen based on previous studies demonstrating that
A. sinensis cathelicidin (As-CATH5) has broad-spectrum in vitro antimicrobial activity and
is effective against bacterial infections in several in vivo models [18,20,24]. Consequently,
the orthologous sequence Gg-CATH5 from G. gangeticus was chosen.

The region corresponding to the mature peptide of the selected crocCATHs was
manually predicted, as previously described for the As-CATH1–6 sequences [18]. Most of
the predicted mature sequences started after a valine residue (Supplementary Table S1),
likely part of an elastase cleavage site, located at a residue within positions 138–140 in
the multiple sequence alignment (Supplementary Figure S1). The exceptions were the
sequences Cp-CATH3 from C. porosus and Gg-CATH4 from G. gangeticus, which contained
an isoleucine and an aspartic acid, respectively. In this case, mature peptides were predicted
based on inferred cleavage sites in orthologous cathelicidins from other crocodylian species.

The physicochemical properties of the chosen mature peptides are shown in Table 1.
In general, the synthetic crocCATHs were short peptides (20–24 amino acids), with net
positive charge (from 3.76 to 4.76) and variable hydrophobicity (from −0.39 to 0.06). Gg-
CATH7 displayed the lowest net positive charge, whereas As-CATH8 showed the highest
total hydrophobicity index. Notably, all crocodylian peptides displayed somewhat lower
net charge and higher hydrophobicity when compared to the human cathelicidin LL-37.

The crocCATHs were structurally characterized using computational tools and circular
dichroism spectroscopy. Since the human cathelicidin LL-37 has been extensively charac-
terized as being α-helical [25], it was not included in this analysis. Structural modeling
suggested that all four crocCATHs adopted an α-helix conformation (Figure 2A) with
an asymmetric distribution of charged and hydrophobic residues on both sides of the helix
(Figure 2B), suggesting amphipathicity. Calculation of the mean hydrophobic moments,
a numerical estimate of the amphipathicity of a peptide structure [26], indicated differences
among the peptides in terms of the magnitude and direction of this vector (Table 1 and
Figure 2B). Overall, Gg-CATH5 was the most amphipathic sequence of all crocCATHs,
although it showed lower values than those estimated for LL-37 (Table 1).
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Figure 1. Phylogenetic analysis of crocCATH sequences. The tree was generated using the maximum
likelihood criterion implemented in the RaxML program. The analysis included the full-length
crocodylian amino acid sequences, as well as sequences from other reptilian, avian and mammalian
species. Newly identified crocCATH sequences are displayed in bold. The amphibian cathelicidins
Bg-CATH and Ol-CATH2 were used as outgroups to root the tree. Branch numbers indicate statis-
tical support as percent after 1000 bootstrap replicates. The seven identified crocodylian clusters
are indicated in the figure, which were named according to the previously described A. sinensis
cathelicidins [18]. The alligator cathelicidin AM-36 [19] was renamed here as Am-CATH4. NCBI
accession numbers of all cathelicidin sequences can be found in Supplementary Tables S1 and S3.
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Table 1. Physicochemical properties of synthetic croCATHs and human LL-37. Properties were
calculated using the Peptides and modlAMP packages in R and Python, respectively.

Name Sequence Length MW Charge HI HM

As-CATH7 KRVNWRKVGRNTALGASYVLSFLG 24 2693 4.76 −0.15 0.25

As-CATH8 KRVNWAKVGRTALKLLPYIFG 21 2431 4.76 0.06 0.29

Gg-CATH5 TRRKWWKKVLNGAIKIAPYILD 22 2670 4.76 −0.39 0.40

Gg-CATH7 KRVNWRKVGLGASYVMSWLG 20 2308 3.76 −0.11 0.23

LL-37 LLGDFFRKSKEKIGKEFKRIVQRIKDFLRNLVPRTES 37 4493 5.76 −0.72 0.56

As: A. sinensis, Gg: G. gangeticus. Length: number of amino acid residues; MW: theoretical molecular weight in
daltons, rounded values; charge: net charge according to the Bjellqvist; HI: hydrophobicity index according to the
Kyte–Doolittle scale scale; HM: mean hydrophobic moment (amphipathicity), numerical values of the vectors
shown in the wheel representations in Figure 2.

 

Figure 2. Structural analysis of the synthetic crocCATHs. (A) Three-dimensional structures were
modeled using the AlphaFold algorithm and visualized in Chimera X. (B) Helical wheel represen-
tations were generated using the Python package modlAMP. Residues with positive and negative
charges are highlighted in orange and green, respectively, whereas the remaining amino acids in the
sequence (largely hydrophobic) are shown in black. The orientation of the vector mean hydrophobic
moment (amphipathicity) for each sequence is displayed in the center of the wheel. The length of
the arrow is proportional to the numerical values shown in Table 1. (C) Circular dichroism spectra
of crocCATHs were obtained in sodium phosphate buffer (aqua), as well as in the presence of SDS
(grey) and DPC (black) micelles. The results are shown as mean residual ellipticity (MRE).
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Circular dichroism spectroscopy studies showed that the synthetic crocCATHs exhib-
ited a largely disordered structure in sodium phosphate buffer (Figure 2C), characterized
by low ellipticity above 210 nm and the presence of negative bands near 195 nm in the
spectrum [27]. In the presence of dodecyl phosphocholine (DPC, a neutral membrane
mimic), all the crocCATHs acquired a helical conformation, as revealed by minima in
the ellipticity profile at around 208–210 nm and 222–225 nm (Figure 2C) [27], with some
variance from ideal spectra indicating the potential contributions from other structural
configurations. Similar spectra were observed in sodium dodecyl sulfate (SDS, an anionic
membrane mimic). While cathelicidins can be very diverse in structure [7], crocCATHs
displayed similar structural properties to other α-helical members of the cathelicidin family
in reptiles, birds and mammals [28–30].

2.3. As-CATH8 and Gg-CATH5 Exhibited Broad In Vitro Activities against Planktonic and
Biofilm Bacteria

The antibacterial activity of the synthetic crocCATHs was evaluated against several
medically important pathogens, including those from the ESKAPE group. These peptides
showed broad antimicrobial activity against Gram-positive and Gram-negative pathogenic
bacteria (Table 2), with the exception of E. faecium. In general, minimum inhibitory con-
centrations (MICs) ranged from 0.25 to 4 μM (~0.6–10 μg/mL). Overall, As-CATH8 and
Gg-CATH5 were the most active peptides and showed potency similar to the last-resort
antibiotics polymyxin B and vancomycin against Gram-negative and Gram-positive bac-
teria, respectively, but with activity profiles that overlapped for both types of bacteria.
Interestingly, Proteus vulgaris was considerably (>8-fold) more susceptible to the catheli-
cidin peptides As-CATH8 and Gg-CATH5 than to polymyxin B. In addition, these peptides
showed better activity than the human cathelicidin LL-37 against Escherichia coli and
Salmonella Typhimurium, with for example, MIC values (in μg/mL) that were 8–16-fold
higher than As-CATH8 against both strains (Supplementary Table S4).

Table 2. Antimicrobial activity of the crocCATHs. The MIC values of the synthetic peptides were
determined in a microdilution assay in MHB. The antibiotic vancomycin was used against Gram-
positive S. aureus and E. faecium whereas polymyxin B was employed against the remaining Gram-
negative strains. Values in μg/mL can be found in Supplementary Table S4.

Bacteria
MIC in μM

As-CATH7 As-CATH8 Gg-CATH5 Gg-CATH7 Polymyxin B Vancomycin

E. cloacae 0.5 0.5 0.5 2 0.5 n.d.

S. aureus 4 0.5 1 16 n.d. 0.5

K. pneumoniae 1 0.5 0.5 4 0.5 n.d.

A. baumannii 0.25 0.25 0.5 1 0.5 n.d.

P. aeruginosa 4 1 1 8 0.5 n.d.

E. faecium >64 >64 >64 64 n.d. >64

E. coli 2 1 4 4 0.5 n.d.

S. Typhimurium 2 1 0.5 4 1 n.d.

P. vulgaris >64 4 8 >64 >64 n.d.

n.d.: not determined.

The inhibitory activity of the crocCATHs against bacterial biofilms was determined
using a microtiter assay against six of these species. The antibiofilm activities showed
similar trends to those observed in the MIC assays, although, generally speaking, higher
concentrations were required to observe an effect. As-CATH8 was the most active peptide
with minimal biofilm inhibitory concentrations (MBIC95 in the range of 1–4 μM) against

120



Antibiotics 2022, 11, 1603

five of six species (except P. aeruginosa), while Gg-CATH5 had good activity against four of
the six species (Table 3 and Supplementary Figure S2).

Table 3. Biofilm inhibitory activity of the crocCATHs. The MBIC95 values of the synthetic peptides
were determined by a microdilution assay using crystal violet to stain the adhered bacterial biomass.
MBIC95 was defined as the minimal peptide concentration capable of inhibiting mean biofilm growth
by at least 95% compared to the untreated control. Values in μg/mL can be found in Supplementary
Table S5.

Bacteria
MBIC95 in μM

As-CATH7 As-CATH8 Gg-CATH5 Gg-CATH7

E. cloacae 32 4 4 16

S. aureus 4 1 1 4

A. baumannii 1 0.5 0.5 1

P. aeruginosa >64 64 32 >64

E. coli 32 1 32 32

S. Typhimurium 1 1 1 4

The cytotoxicity towards human cells was also investigated and compare to the human
cathelicidin LL-37. Lactate dehydrogenase (LDH) release assays showed that As-CATH8
and Gg-CATH5 were moderately cytotoxic against human bronchial epithelial (HBE) cells
and peripheral blood mononuclear cells (PBMCs) (Supplementary Figure S3), at the highest
concentrations tested (5 and 10 μM). This effect was similar to that observed for the natural
human cathelicidin LL-37, which has been used in a phase 1 human clinical trial [31]. In
contrast, the crocodylian peptides As-CATH7 and Gg-CATH7 showed low cytotoxicity
against both cell types, comparable to the immunomodulatory peptide IDR-1018 used
as control.

2.4. As-CATH8 and Gg-CATH5 Completely Eradicated S. aureus Biofilms in a Human Organoid
Skin Model

Synthetic crocCATHs were tested in a more complex system; namely, a human skin
organoid model where bacteria grow as biofilms. In this model, no peptide-induced
cytotoxic effects were observed according to LDH release assays and histology studies. In
contrast to mono-layer cell models, the skin organoid model demonstrates fully stratified
epidermal skin layers, which strongly resemble the morphology and permeability of human
skin [32]. Therefore, it is arguably a more relevant model to assess the biological activities
of antimicrobial molecules under in vivo-like conditions. Since most crocCATHs had good
in vitro activity against S. aureus, we tested this organism in the skin model.

The results obtained in the skin-biofilm infection model highlighted the antibiofilm
activity of As-CATH8 and Gg-CATH5 cathelicidins (Figure 3A). Treatment with 200 μg
of these peptides completely eradicated S. aureus biofilms after 24 h. This effect was sig-
nificant for both peptides when compared to the negative control and was superior to
the human cathelicidin LL-37, which showed low and insignificant biofilm eradication
activity (3-fold; p > 0.05) in this assay. As-CATH7 and Gg-CATH7 had greater antibiofilm
activity than LL-37 (4877-fold and 425-fold reductions, respectively) but failed to elim-
inate bacterial biofilms in most replicates. These results supported As-CATH8 and Gg-
CATH5 as the peptides with the highest direct antibiofilm activity of the crocCATHs in this
in vivo-like model.

2.5. As-CATH8 Showed a Strong Anti-Infective Effect in a Murine Abscess Model

The antibacterial capacities of As-CATH8 and Gg-CATH5 were further evaluated in
the murine skin infection/abscess model. Mice were inoculated with clinical isolates of
S. aureus and A. baumannii, two frequent causes of human skin infections [8]. Subcutaneous
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administration of the crocCATHs or LL-37 alone (15 mg/kg) into uninfected animals
showed no evidence of tissue damage or peptide precipitation at the site of injection.
Therefore, the peptides were considered non-toxic at the doses used.

 

Figure 3. Anti-infective capacity of As-CATH8 and LL-37 in a human skin organoid (A) and a murine
abscess (B) model. (A) The ability of crocCATHs to eradicate pre-formed S. aureus biofilms was
evaluated in a human skin air–liquid interface organoid model. Biofilms were treated with 200 μg
of each peptide or with distilled water as a negative control and bacteria were recovered after 24 h.
Results are presented as geometric mean per treatment (horizontal bars) of at least four independent
biological replicates (dots). Data were statistically analyzed using the Kruskal–Wallis test followed
by Dunn’s post hoc test with the Benjamini–Hochberg correction. (B) The anti-infective activity of
cathelicidin peptides was assessed in a murine abscess model against S. aureus and A. baumannii.
Mice were inoculated with each bacterium for 1 h and then treated intra abscess with 15 mg/kg of
peptides or distilled water as a negative control. The area of dermonecrosis and bacterial load in
the abscesses was quantified after three days. Results corresponding to the abscess area are shown
as box plots and were statistically analyzed using the Kruskal–Wallis test followed by Dunn’s post
hoc test with the Benjamini–Hochberg correction. CFU results are shown as geometric mean per
treatment (horizontal bars) and were statistically analyzed using ANOVA followed by the Tukey’s
post hoc test. Each mouse is represented by individual data points in the abscess experiments.
In all the plots, asterisks represent statistically significant differences (* = p < 0.05, ** = p < 0.01,
*** = p < 0.001). Detection limits of the bacterial enumeration assays are shown as dashed lines.
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In this high-density infection model, Gg-CATH5 showed only weak activity against
S. aureus. In contrast, As-CATH8 showed a stronger antibacterial effect and was able to sub-
stantially decrease the area of dermonecrosis formed above the abscess with both pathogens
(Figure 3B). Dermonecrosis is a skin pathology where the skin cells are killed, leaving
a visible lesion (the abscess) [33]. The reductions in the S. aureus area of dermonecrosis
(19-fold) and bacterial burden (42-fold) observed for As-CATH8 were significant when com-
pared to the negative control (distilled water) and LL-37. For the A. baumannii infections,
treatment with As-CATH8 also reduced both the area of dermonecrosis (61-fold) and the
bacterial load (632-fold) when compared to untreated mice (Figure 3B). More importantly,
complete eradication of A. baumannii was observed in the majority (62%) of mice treated
with As-CATH8. Treatment with LL-37 significantly decreased the area of dermonecrosis
(ninefold) formed by A. baumannii but relatively moderately impacted bacterial recovery in
most animals (48-fold).

2.6. As-CATH8 Was More Bactericidal and Killed Faster Than Antibiotics

To further study the antimicrobial activity of As-CATH8, time–kill curves were plotted
for planktonic S. aureus and A. baumannii cells and biofilms (Figure 4A). When compared to
vancomycin or polymyxin B, As-CATH8 at its MIC was faster in killing planktonic cells
from both bacterial species. Specifically, the crocodylian peptide showed a time-dependent
effect on S. aureus CFU counts and significantly reduced bacterial survival within 0.5 h
of treatment. Furthermore, As-CATH8 was more effective than vancomycin against this
bacterium at all time points. While complete killing of planktonic A. baumannii by As-
CATH8 was seen as soon as 0.5 h after treatment, it took polymyxin B up to 20 h to achieve
the same effect.

Biofilm eradication experiments showed similar trends (Figure 4A). In this case, As-
CATH8 at 64-fold the MIC nearly eradicated S. aureus biofilms within 2 h, while vancomycin
showed only a modest effect at that time point. However, vancomycin did show potent
activity against S. aureus biofilms after 20 h of treatment. As-CATH8 acted rapidly against
A. baumannii and was able to completely eradicate bacterial biofilms within 1 h of treatment.
Notably, polymyxin B showed strong overall activity against this bacterium, although
complete eradication was observed only at the 20 h time point.

2.7. Potential Role of Interaction with Bacterial Membranes and DNA in the Antibacterial Activity
of As-CATH8

To elucidate possible bacterial targets important for the antimicrobial activity of As-
CATH8, its effect on bacterial membranes was investigated. Membrane depolarization was
assessed using the membrane potential-sensitive dye DiSC3(5) (3,3′-dipropylthiadicarbocya-
nine iodide) [34,35]. This hydrophobic dye with a caged cationic interior can concentrate in
bacterial cytoplasmic membranes according to the magnitude of the membrane potential
(which is oriented toward the negatively charged interior). A high concentration in the
membrane leads to self-quenching of DiSC3(5) fluorescence, while depolarization of the
bacterial membrane promotes the collapse of the membrane potential, the release of this dye
and the subsequent increase of its fluorescence emission [35,36]. In addition, cytoplasmic
membrane permeability was investigated using propidium iodide (PI). PI is a commonly
used dye that becomes fluorescent when it binds to the DNA. However, it is membrane-
impermeant and can only enter cells if cytoplasmic membranes are damaged [36].

The effect of several concentrations of As-CATH8 on S. aureus and A. baumannii mem-
branes was compared to that of vancomycin and polymyxin B after 1 h treatment (Figure 4B).
The membrane-permeabilizing wasp peptide mastoparan [37,38] served as a positive con-
trol. While almost no effect was observed for vancomycin and polymyxin B, consistent
with a mechanism of action independent of the disruption of the cytoplasmic bacterial
membrane [39,40], As-CATH8 showed a concentration-dependent effect on membrane
depolarization (DiSC3(5) fluorescence) and permeabilization (PI fluorescence) against both
bacteria (Figure 4B). This effect was particularly noticeable at concentrations above the MIC
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of As-CATH8 for S. aureus (0.5 μM) and A. baumannii (0.25 μM), and it was similar to that
observed for mastoparan at high peptide concentrations. As-CATH8 was also able to per-
meabilize S. aureus membranes at concentrations below its MIC (even 16-fold lower). In this
case, the PI signal reached the maximal intensity at lower concentrations when compared to
A. baumannii, for which DiSC3(5) and PI signals reached their highest fluorescence values at
2–8 μM As-CATH8 (8- to 32-fold the MIC). Interestingly, maximum values of depolarization
or permeabilization did not always lead to notable bacterial killing by As-CATH8, since
a 1000-fold reduction in CFU counts was only observed at concentrations higher than 1 μM
against S. aureus and 8 μM against A. baumannii (Figure 4B and Supplementary Figure S4).
This suggested that other targets beside the cytoplasmic membrane might be relevant for
the mode of action of As-CATH8.

 

Figure 4. Bacterial killing rate, membrane depolarization and permeabilization and DNA bind-
ing capacity of As-CATH8. (A) Killing of planktonic S. aureus and A. baumannii cells at the MIC
in MHB media. Antibiofilm activity was assessed in 10% TSB supplemented with 0.1% glucose
at 64-fold MIC. CFU data are displayed as geometric mean ×/geometric standard deviation.
(B) Cytoplasmic membrane depolarization and permeabilization were assessed after 1 h treatment
of planktonic cells using DiSC3(5) and PI, respectively. Membrane-permeabilizing wasp peptide
mastoparan was used as a positive control. Shown are fluorescence readings (mean ± standard error
in arbitrary units). Perpendicular lines represent the minimal peptide concentration leading to at
least 1000-fold CFU reduction compared to the untreated control (see also Supplementary Figure S4).
(C) Gel electrophoretic mobility shift assay demonstrating the DNA binding capacity of As-CATH8,
employing the linearized plasmid pET28a at 2-fold decreasing peptide:plasmid weight ratios (see
Supplementary Figure S5 for an uncropped image). Peptidic antibiotics vancomycin (active against
S. aureus) and polymyxin B (active against A. baumannii) were used as comparisons. Letters denote
statistically significant differences (p < 0.05) between As-CATH8 and water (a), As-CATH8 and an-
tibiotics (b), As-CATH8 and mastoparan (c), antibiotics and water (d) or antibiotics and Mastoparan
(e) according to the Kruskal–Wallis test followed by Dunn’s post hoc test with the Benjamini–
Hochberg p-value correction. All experiments were performed at least three times independently.
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Therefore, the DNA binding capacity of As-CATH8 was evaluated in a gel elec-
trophoretic mobility shift assay [41] using the linearized plasmid pET28a (Figure 4C). The
peptidic antibiotics vancomycin and polymyxin B showed no and weak capacities for
binding to DNA, respectively. In contrast, As-CATH8 was able to affect DNA migration
at peptide:plasmid ratios exceeding 0.63:1. This suggested that, when As-CATH8 enters
the cells, it could interact with nucleic acids to affect cellular processes, such as replication,
transcription, and translation.

3. Discussion

Skin and soft tissue infections (SSTIs) are among the most prevalent bacterial diseases
in humans and constitute one of the main precursors of severe sepsis [8]. Furthermore, they
pose a significant financial burden on the healthcare system [6]. S. aureus has been identified
among the most frequent bacteria isolated from SSTIs worldwide, whereas Gram-negative
ESKAPE bacteria, such as A. baumnannii, are more frequently associated with chronic or
postoperative wounds [8]. Treatment of biofilm-associated SSTIs, which usually exhibit
higher antibiotic resistance, is particularly difficult [5]. More efficacious treatments are
therefore desperately needed. In this context, HDPs have shown promising results for the
treatment of this type of infections [8].

Bioinformatic strategies have enabled new possibilities for the identification of HDPs in
lesser-studied species, such as crocodylians [42]. Previously, HMMs have been successfully
used to explore cathelicidin peptides in several vertebrate species [43,44]. Using a similar
strategy, 18 cathelicidins were identified in four crocodylian species (i.e., A. mississippiensis,
A. sinensis, C. porosus and G. gangeticus), which showed broad and potent antimicrobial
activity against most ESKAPE pathogens and P. vulgaris. In particular, As-CATH8, the
most active crocodylian peptide, showed similar MIC values to the last-resort antibiotic
vancomycin and polymyxin B (Table 2). It also impaired biofilm formation in all bacterial
strains tested (Table 3). Additionally, As-CATH8 was generally faster than both antibiotics
at killing S. aureus and A. baumannii planktonic cells and pre-formed biofilms (Figure 4A),
highlighting the advantages of As-CATH8 compared to vancomycin and polymyxin B in
treating infections and limiting the development of bacterial resistance.

It is well-known that HDPs can interact with multiple extracellular and intracellular
targets to exert their antimicrobial and antibiofilm effects [9,11]. Experiments using fluo-
rescent probes showed that As-CATH8 was able to depolarize and permeabilize S. aureus
and A. baumannii membranes (Figure 4B). Although it seems likely that compromising the
integrity of the membrane is a key component of the killing mechanism of As-CATH8,
this may not always be a fatal event and additional or alternative activities might also
play a significant role. Two main elements support this idea: first, maximum values of
depolarization (DiSC3(5) fluorescence) and permeabilization (PI fluorescence) did not al-
ways lead to a notable reduction in CFU counts (Supplementary Figure S4), suggesting
that bacteria can recover to some extent from this perturbation, as discussed previously for
cationic peptides [45]. Second, at concentrations near the MIC, As-CATH8 showed only
modest effects on the membranes, while peptide internalization and intracellular signaling
may still have occurred at these concentrations. Interaction with bacterial DNA has been
shown to be important for the antimicrobial mechanism of several vertebrate cathelicidins,
including LL-37 [46–48]. This interaction can potentially interfere with several bacterial
processes, such as replication and transcription, and usually leads to bacterial death [47,49].
In this study, As-CATH8 displayed stronger DNA binding capacity than vancomycin
or polymyxin B, even at peptide ratios equivalent to the MIC against most pathogens
(0.8–6.3 μg/mL). Differences in DNA binding affinity between As-CATH8 and antibiotics
cannot only be attributed to differences in net charge, since polymyxin B (+5) [50] and
As-CATH8 (+4.76) have similar positive charges. In contrast, vancomycin was the least
charged of all the molecules (net charge +1) [51] and this could explain the lack of affinity
observed for vancomycin to the negatively charged pET28a plasmid (Figure 4C). Taken
together, we propose that As-CATH8 kills pathogens through both membrane disruption
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and alternative mechanisms of action, possibly through interaction with DNA, as suggested
for other reptilian cathelicidins [47].

In line with observations for LL-37, cytotoxicity experiments showed that As-CATH8
and Gg-CATH5 were moderately toxic towards HBE cells and PBMCs, whereas As-CATH7
and Gg-CATH7 showed negligible effects. In this regard, other crocodylian cathelicidins
have also demonstrated relatively high in vitro cytotoxicity against some cell lines, albeit
at higher concentrations than those used here [18]. Although further investigation of
their cytotoxic properties is warranted before crocCATHs can be used systemically to treat
bacterial infections, it is important to note that in more complex systems, such as the human
skin organoid and murine abscess models, no appreciable cytotoxicity was observed upon
treatment with As-CATH8 or Gg-CATH5. These results therefore reaffirmed the known
limitations of cell lines for assessing peptide cytotoxicity [52] and emphasize the importance
of physiologically relevant environments for examining the biological activity of HDPs.

The in vivo anti-infective capacity of As-CATH8 was evaluated in a high-density
murine bacterial abscess model. This high-density infection model is difficult to treat with
conventional antibiotics but peptides have shown some success. Under these conditions,
As-CATH8 decreased the area of dermonecrosis and bacterial load (Figure 3B) in abscesses
formed by both S. aureus and A. baumannii and overall was more effective than the human
cathelicidin LL-37. In particular, A. baumannii was quite sensitive to treatment with As-
CATH8, which caused a reduction of at least 4-fold in bacterial load in most mice (Figure 3B).
These results aligned with previous studies that have shown the therapeutic potential of
crocCATHs against bacterial infections. For example, the cathelicidin peptides As-CATH2,
As-CATH3 and As-CATH5 from A. sinensis demonstrated anti-infective properties against
E. coli and S. aureus in a murine peritonitis model [18], while the protective capacity of
As-CATH4 and As-CATH5 against bacterial infections was also revealed using invertebrate
models [21]. Interestingly, Gg-CATH5, the G. gangeticus novel ortholog of the As-CATH5
peptide from A. sinensis [18], did not show significant anti-infective capacity as As-CATH8
in the abscess model against S. aureus, despite showing similar activity in other assays,
including the skin organoid model. Studies involving reptile cathelicidins have suggested
that the immunomodulatory activity of these molecules plays an important role in their
activity in vivo [18,53,54]. Therefore, the evaluation of As-CATH8 in other animal models
that allow the characterization of its immunomodulatory effects at non-toxic concentrations
could provide more information about its optimal biological targets.

Overall, this work expands the repertoire of cathelicidins known in crocodylians and
highlights the potential of bioinformatic tools to screen reptilian species that are attractive
for the identification of natural HDPs. Moreover, we identified the As-CATH8 peptide,
which has substantial therapeutic promise for treatment of S. aureus and A. baumannii skin
infections, two of the most prevalent bacterial species causing SSTIs worldwide.

4. Material and Methods

4.1. Identification of Cathelicidin Sequences Using HMMs

To identify novel crocCATHs, the versions ASM28112v4 (assembly accession num-
ber: GCA_000281125.4) for A. mississippiensis, ASM45574v1 (assembly accession num-
ber: GCA_000455745.1) for A. sinensis [55], CroPor_comp1 (assembly accession num-
ber: GCA_001723895.1) for C. porosus and GavGan_comp1 (assembly accession number:
GCA_001723915.1) for G. gangeticus were downloaded from NCBI. The initial versions of
the genome assemblies generated by St John et al. [56] were also employed.

An automated workflow was established using Snakemake version 5.3.0 [57]. First,
profile HMMs were generated using HMMER3 version 3.21 (http://hmmer.org/, accessed
on 20 July 2018) from a multiple sequence alignment comprising 140 cathelicidin amino
acid sequences of different vertebrate species (reptiles, birds and mammals), retrieved from
publicly available sequence databases.

Multiple sequence alignment was performed using MAFFT version 7.310 [58] employ-
ing the iterative method with refinement (L-INS-i) and manually curated using the program
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AliView version 1.26 [59]. Six open reading frames for each version of the genomes were
searched for the generated profile HMMs. Matched regions were extracted and expanded
5 kbp upstream and downstream. Expanded regions were then aligned to the initial amino
acid sequences using the Exonerate software version 2.4 [60] to obtain the best exon/intron
prediction for each crocodylian sequence. These steps were repeated until no new se-
quences were found, each time starting from a new alignment comprising all crocodylian
sequences identified in the previous iterations.

The signal peptide domains in the identified crocCATH sequences were predicted by
the SignalP 5.0 server [61]. The prediction of the mature peptide regions was based on
information from previously published reptilian cathelicidins [18,62]. Neutrophil elastase
was assumed to be the enzyme responsible for processing the mature crocodylian peptides,
as suggested for other vertebrate cathelicidins [63–65].

4.2. Phylogenetic Analysis of the Cathelicidin Sequences

Phylogenetic analysis of the identified crocCATH sequences was performed with
RaxML (Randomized Axelerated Maximum Likelihood) software version 8.2.12 [66] using
the maximum likelihood criterion. Full-length cathelicidin sequences from various reptilian,
avian and mammalian species were also included. The amphibian Ol-CATH2 sequences
from Odorrana livida (NCBI accession number: AXR75914) and Bg-CATH from Bufo gar-
garizans (NCBI accession number: ANV28414) were used as outgroups to root the tree. The
VT + G4 model was adopted as the best amino acid substitution model in accordance with
the Aikaike’s and Bayesian information criteria implemented in ModelTest-NG software
version 0.1.6 [67]. Rapid analysis with 1000 bootstrap replicates and determination of the
highest-scoring maximum likelihood tree was performed in the same run in RaxML. The
resulting phylogenetic tree was edited using treeio version 1.18.1 [68] and visualized with
ggtree version 3.2.1 [69] in R version 4.2.1 [70] and RStudio version 2022.2.0.443 [71].

4.3. Prediction of Physicochemical and Structural Characteristics of Mature crocCATHs

Physicochemical properties of mature cathelicidins including length, net charge and
hydrophobicity index were predicted with the Peptides package version 2.4.4 [72] in RStu-
dio. Net charge was estimated using the Bjellqvist scale [73], assuming an environmental
pH = 7.0. This pKa scale is based on the polypeptide migration in an immobilized pH
gradient. In addition, the hydrophobicity index was calculated using the Kyte–Doolittle
scale, which is based on an amalgam of experimental observations derived from the litera-
ture [74]. Both the Bjellqvist and the Kyte–Doolittle scales are implemented in extensively
used bioinformatic software, such as the ProtParam tool from the ExPASy server [75]. The
mean hydrophobic moment was estimated with the modlAMP package version 4.3.0 [76]
in Python version 3.9.6, employing an angle of 100◦, which is recommended for α-helical
structures [26]. Wheel representations of the distribution of hydrophobic and charged
residues of the crocCATHs were also generated using the same package.

Three-dimensional models of the crocCATH mature peptides were obtained using
a freely available and slightly simplified version of the AlphaFold algorithm version 2.0 [77],
which was implemented in Google colab [78]. The structures were visualized in Chimera X
version 1.2.5 [79].

4.4. Peptides, Reagents and Culture Media

The amino acid sequences of the synthetic crocCATH peptides and the human catheli-
cidin LL-37 are shown in Table 1. Crocodylian peptides were chemically synthesized by
Genscript (Piscataway, NJ, USA), whereas the LL-37 and the innate defense regulator pep-
tide 1018 (VRLIVAVRIWRR-NH2) [80] were purchased from CPC Scientific Inc. (Sunnyvale,
CA, USA). The wasp venom-derived peptide mastoparan (INLKALAALAKKIL-NH2, also
named mastoparan-L) [37,81] was acquired from Peptide 2.0 Inc. (Chantilly, VA, USA) All
synthetic peptides were obtained with purity higher than 95%.
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Peptide stocks were prepared in sterile endotoxin-free water (Baxter, Classic Health,
Edmonton, AB, Canada) and adjusted to the desired concentration (usually 2 or 2.5 mM),
which was estimated by absorbance at 280 nm in a Nanodrop ND-1000 (ThermoFisher
Scientific, Waltham, MA, USA). Concentration values were corrected using the theoretical
extinction coefficients of each peptide estimated with the ProtParam tool (https://web.
expasy.org/protparam/, accessed on 30 July 2019) from the ExPASy server. Since LL-37 and
mastoparan do not contain aromatic residues that absorb at 280 nm, their concentrations
were estimated by weight, assuming the lyophilizates contained 70% peptide mass.

The antibiotics polymyxin B and vancomycin were obtained from MilliporeSigma
(Burlington, MA, USA) and were resuspended in water to the desired stock concentrations.
The DiSC3(5) dye was obtained from MilliporeSigma (Burlington, MA, USA) and the PI
dye was from ThermoFisher Scientific (Waltham, MA, USA). Working aliquots of DiSC3(5)
were prepared in 100% DMSO, kept at −20 ◦C and freeze-thawed no more than three times.

The bacterial culture media Luria-Bertani (LB) broth, brain heart infusion (BHI), tryptic
soy broth (TSB), Todd Hewitt broth (THB) and Mueller Hinton broth (MHB) were obtained
from ThermoFisher Scientific (Waltham, MA, USA).

All other culture media and supplements used in the human skin organoid model
were purchased from MilliporeSigma (Burlington, MA, USA).

4.5. Determination of the Secondary Structure of Synthetic Cathelicidins

Circular dichroism experiments were carried out using a JASCO J-815 spectropolarime-
ter (Jasco, Easton, MD, USA) at room temperature as previously described [82]. All samples
were prepared in 25 mM sodium phosphate buffer (pH 7.4) at a final peptide concentration
of 100 μM. Spectra were obtained in buffer solution and in the presence of 10 mM sodium
dodecyl sulfate (SDS) and 7.5 mM dodecyl phosphocholine (DPC) micelles.

Spectra were corrected by subtracting the buffer background and data were ana-
lyzed as mean residual ellipticity values and plotted in RStudio. Final spectra represent
an average of three scans.

4.6. Bacterial Strains and Culture Conditions

The following bacterial pathogens were used in this study: S. enterica subsp. enterica
serovar Typhimurium ATCC 14028, E. coli O157:H7 [83], the clinical isolates S. aureus
SAP0017 [84] and USA300 LAC [85], E. faecium #1-1 [85], A. baumannii Ab5075 [85] and
E. cloacae 218R1 [85], as well as P. aeruginosa PAO1 [34], P. vulgaris HSC7200-T2 (Hancock
Lab strain collection) and K. pneumoniae KPLN49 [85].

Overnight cultures were grown in LB at 37 ◦C with shaking at 250 rpm, except for
E. faecium, which was grown in BHI medium.

4.7. Antimicrobial Activity and Biofilm Inhibition Assays

The antimicrobial activity of the crocCATHs was evaluated with the broth microdilu-
tion method as described previously [86]. MIC was defined as the first peptide or antibiotic
concentration without visible bacterial growth. Reported values are the statistical mode of
at least three independent experiments.

Bacterial biofilm inhibition assays were performed using a microtiter assay as de-
scribed by Haney et al. [87]. For E. cloacae, E. coli, P. aeruginosa and S. Typhimurium, assays
were performed using BM2 minimal medium (62 mM potassium phosphate, 7 mM ammo-
nium sulfate, 0.5 mM magnesium sulfate, pH 7.0) supplemented with 0.4% glucose (w/v).
Antibiofilm activity against A. baumannii and S. aureus SAP0017 was evaluated in 10% TSB
(v/v) media supplemented with 0.1% glucose (w/v), whereas 10% THB (v/v) medium was
employed for P. vulgaris.

Data from at least three independent experiments were analyzed as the percentage of
biofilm mass compared to the untreated control. After crystal violet staining, MBIC95 was
then calculated for each peptide, defined as the minimal peptide concentration capable of
inhibiting mean biofilm growth by at least 95% compared to the untreated control [87].
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4.8. Cell Lines and Peripheral Blood Mononuclear Cells (PBMCs)

Immortalized human bronchial epithelial (HBE) cells (16HBE14o-) were used for
in vitro cytotoxicity experiments as described elsewhere [52,88].

The human N/TERT keratinocyte cells used in the skin model experiments were
provided by Dr. Peter Nibbering (Leiden University Medical Center, The Netherlands) and
cultured as detailed by Wu et al. [32].

Human PBMCs were isolated from human blood following the ethics protocols of the
University of British Columbia, Canada. Consent was obtained from healthy volunteers
before blood donation. Isolation and treatment of unstimulated PBMC was performed as
previously described [80].

4.9. Lactate Dehydrogenase (LDH) Release Assays

Peptide-induced cytotoxicity was assessed by measuring the extracellular activity
of the LDH enzyme using the Cytotoxicity Detection Kit (MilliporeSigma, Burlington,
MA, USA) as previously described [80,88]. The percentage of LDH release relative to the
untreated (negative) and Triton X-100 (positive, 100% cytotoxicity) control was assessed for
at least three biological replicates and recorded as percent cytotoxicity.

4.10. Skin Model Experiments

The human N/TERT epidermal skin models were established as previously pub-
lished [32]. Briefly, models were cultured in 12-well plates seeded with N/TERT ker-
atinocyte cells at a density of 3 × 105 cells/insert in DermaLife K Keratinocyte complete
medium supplemented with LifeFactors (Lifeline Cell Technology, Oceanside, CA, USA).
Skin models were cultured at the air–liquid interface for 10 days at 37 ◦C with 7.3% CO2
before being used in experiments.

To investigate the antibiofilm capacity of the cathelicidin peptides, 5 μL (~106 CFU) of
S. aureus SAP0017 grown to mid-log phase was applied to the center of the N/TERT skin
and plates were incubated for 24 h. Skin biofilms were then treated with 30 μL (200 μg)
of each crocodylian peptide or the human LL-37 as a comparison. Sterile distilled water
was used as a negative control. After 24 h of treatment, skin samples were excised from the
culture inserts, sonicated for 5 min in sterile PBS and vortexed for 30 s. Bacterial counts
were determined by serial dilution and plating on LB agar. The detection limit of the assay
was 10 CFU/skin.

4.11. Bacterial Abscess Formation and Peptide Treatment

The animals used in this study were female CD-1 mice purchased from Charles River
Laboratories Inc. (Wilmington, MA, USA), 5–7 weeks old and weighing 25 ± 5 g at the
time of the experiment. Mice were housed in cohorts of 4–5 littermates exposed to the same
pathogen. Standard animal husbandry protocols were employed.

The in vivo activity of As-CATH8 was examined in a subcutaneous abscess infec-
tion model as previously described [33] using S. aureus USA300 LAC and A. baumannii.
Fifty microliters of the bacterial culture were injected subcutaneously into the shaved left
dorsum of mice at an inoculum density of 5–15 × 107 CFU. One hour later, abscesses were
treated with either 15 mg/kg As-CATH8 or LL-37 or sterile endotoxin-free water (Baxter,
Classic Health, Edmonton, AB, Canada) as a negative control. Daily clinical grading of the
animals was recorded post-treatment for 72 h; mice were then euthanized by exposure to
CO2 followed by cervical dislocation. Visible dermonecrosis was measured using a caliper
and abscesses were harvested in PBS and homogenized using a Mini-Beadbeater (BioSpec
Products, Bartlesville, OK, USA). Bacterial counts were determined by serial dilution and
plating on LB agar. Two or three independent experiments were performed, each containing
2–4 biological replicates. The detection limit of this model was 100 CFU/abscess.
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4.12. Planktonic and Biofilm-Killing Assays

The bactericidal activity of As-CATH8 and antibiotics was evaluated against plank-
tonic S. aureus SAP0017 and A. baumannii cells under similar conditions to those used
in the antimicrobial assays. Bacteria were grown overnight in LB media and diluted to
~5 × 105 CFU/mL in MHB. Bacterial cultures (1 mL) were treated with As-CATH8 or
antibiotics (vancomycin for S. aureus or polymyxin B for A. baumannii) at the MIC and tubes
were incubated at 37 ◦C with gentle shaking. Samples were taken at 0, 0.5, 1, 2 and 20 h
after treatment and CFU counts determined by serial dilution and plating on LB agar.

Biofilm-killing assays were set up like the biofilm inhibition assays previously de-
scribed. After forming the biofilms for 24 h in 10% TSB (v/v) supplemented with
0.1% glucose (w/v), S. aureus SAP0017 and A. baumannii biofilms were treated with As-
CATH8 or antibiotics (vancomycin or polymyxin B) at 64 × MIC. Plates were incubated at
37 ◦C and bacterial biomass was scraped out of the wells with cotton swabs at 0, 0.5, 1, 2
and 20 h after treatment. Cotton tips were placed in 1 mL of LB and sonicated for 5 min,
and bacterial numbers were determined by serial dilution and plating on LB agar.

4.13. Membrane Depolarization and Permeabilization Assays

The cytoplasmic membrane depolarization and permeabilization activities of As-
CATH8 compared to those of antibiotics (vancomycin or polymyxin B) were assessed
against S. aureus SAP0017 and A. baumannii using the membrane-potential sensitive dye
DiSC3(5) and the cell viability dye PI [36]. The membrane-permeabilizing peptide
mastoparan [37] was included as a positive control and water served as a negative (un-
treated) control.

An end-point assay was performed as suggested by Boix-Lemonche et al. [89] with
several modifications. Briefly, after growth in LB, mid-log phase bacteria were centrifuged
and washed twice with 5 mM HEPES buffer supplemented with 20 mM glucose (HEPES-
Gluc). Cell density was adjusted to ~107 CFU/mL in (HEPES-Gluc) supplemented with
0.1 M KCl. A fraction (10 mL) of the culture was treated with 0.8 μM DiSC3(5) and incubated
for 1 h at 23 ◦C protected from the light. Another 10 mL were then treated with 3.5 μM
PI and incubated under the same conditions for 15 min. After incubation, 190 μL/well of
the cultures were added to black opaque 96-well plates (Corning Inc.) and pre-treatment
fluorescence was monitored every 2 min for a total of 10 min using a Synergy H1 Hybrid
Multi-Mode Reader (BioTek, Winooski, VT, USA). The excitation and emission wavelengths
were the following: for DiSC3(5), 305 nm excitation and 617 nm emission; for PI, 622 nm
excitation and 700 nm emission. The digital gain was adjusted to 150/255 for DiSC3(5)
and 110/255 for PI. After assessing that fluorescence values remained stable, bacteria
were treated with 10 μL/well of peptide, antibiotic or water. Fluorescence was quantified
1 h after treatment under the same conditions and represented as a function of peptide
concentration, subtracting the background of untreated cells.

To assess bacterial survival after treatment, supernatants from the fluorescence as-
says were serial diluted and plated for CFU enumeration. Since neither DiSC3(5) nor
PI affected bacterial growth or treatment susceptibility under our experimental condi-
tions, supernatants from wells with the same treatment but different dyes were pooled
together. Recovered bacterial counts (CFU/mL) were represented as a function of
peptide concentration.

4.14. Agarose Gel Electrophoretic Mobility Shift Assay

To investigate the DNA binding capacity of As-CATH8, vancomycin and polymyxin
B, an agarose gel electrophoretic mobility shift assay was performed as previously de-
scribed [41]. Briefly, overnight cultures of E. coli BL21 Star cells harboring the pET28a
plasmid were grown in LB supplemented with kanamycin (30 μg/mL). The pET28a plas-
mid was purified using the QIAprep Spin Miniprep Kit (QIAGEN Inc., Hilden, Germany)
and linearized with the SmaI endonuclease (Thermofisher Scientific, Waltham, MA, USA).
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Linear pET28a was purified from an agarose gel using the QIAquick Gel Extraction Kit
(QIAGEN Inc., Hilden, Germany).

Twofold decreasing amounts of As-CATH8 or antibiotics were incubated for 1 h at
room temperature with 100 ng of linear pET28a in 10 μL of binding buffer (5% glycerol,
10 mM Tris-HCl pH 8.0, 1 mM EDTA, 1 mM DTT, 20 mM KCl and 50 μg/mL BSA). After
this, 2 μL of 6× DNA Loading Dye (Thermofisher Scientific, Waltham, MA, USA) was
added and the mixture was loaded onto a 1% agarose gel in TAE buffer containing SYBR
Safe (Thermofisher Scientific, Waltham, MA, USA). The gel was run at 100 V for 1 h and
the GeneRuler 1 kb DNA ladder (Thermofisher Scientific, Waltham, MA, USA) was used as
a molecular weight marker. Finally, the gel was imaged on a ChemiDoc Touch Imaging
System (BioRad Laboratories, Montreal, QC, Canada).

4.15. Statistical Analysis

Statistical processing was performed in RStudio using the R packages DescTools
version 0.99.44 and rstatix version 0.7.0 [90]. Data normality was assessed using visual
methods (Q-Q and density plots), as well as with the Shapiro–Wilk statistical test. Homo-
geneity of variance was analyzed using residual plots and Levene’s statistical test. The
parametric ANOVA test was used for comparison between groups, followed by Tukey’s
post hoc test. The Kruskal–Wallis test was used as a non-parametric method, followed by
Dunn’s multiple comparison test with the Benjamini–Hochberg p-value correction. In all
cases, p-values < 0.05 were considered statistically significant.
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Abstract: Actinomycetes, most notably the genus Streptomyces, have great importance due to their role
in the discovery of new natural products, especially for finding antimicrobial secondary metabolites
that are useful in the medicinal science and biotechnology industries. In the current study, a genome-
based evaluation of Streptomyces sp. isolate BR123 was analyzed to determine its biosynthetic
potential, based on its in vitro antimicrobial activity against a broad range of microbial pathogens,
including gram-positive and gram-negative bacteria and fungi. A draft genome sequence of 8.15 Mb
of Streptomyces sp. isolate BR123 was attained, containing a GC content of 72.63% and 8103 protein
coding genes. Many antimicrobial, antiparasitic, and anticancerous compounds were detected by
the presence of multiple biosynthetic gene clusters, which was predicted by in silico analysis. A
novel metabolite with a molecular mass of 1271.7773 in positive ion mode was detected through
a high-performance liquid chromatography linked with mass spectrometry (HPLC-MS) analysis.
In addition, another compound, meridamycin, was also identified through a HPLC-MS analysis.
The current study reveals the biosynthetic potential of Streptomyces sp. isolate BR123, with respect
to the synthesis of bioactive secondary metabolites through genomic and spectrometric analysis.
Moreover, the comparative genome study compared the isolate BR123 with other Streptomyces strains,
which may expand the knowledge concerning the mechanism involved in novel antimicrobial
metabolite synthesis.

Keywords: Streptomyces; secondary metabolites; genome; biosynthetic gene clusters; high-performance
liquid chromatography (HPLC); mass spectrometry

1. Introduction

The growing resistance of pathogenic microorganisms to antimicrobial agents has
become a global problem [1]. There is a dire need to discover newer antibiotics and
techniques that can overcome this problem [2,3]. In the development of new therapeutical
agents, natural products play a vital role. More than 2200 biologically active compounds
have been isolated from naturally abundant microorganisms [4,5]. Many novel antibiotics
were discovered from soil bacteria as well as from marine habitats.

Actinomycetes are a group of aerobic, gram-positive, sporulating, and filamentous
bacteria that have aerial and substrate mycelium, with the ability to produce many bioac-
tive secondary metabolites [6]. Among the class Actinobacteria, the genus Streptomyces,
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primarily found in the soil and aquatic habitats, has gained much attention because of
its role in the production of novel antimicrobial metabolites. More than 7630 bioactive
compounds have been reported to be only produced by this genus [7]. These bioactive
compounds are the result of an unprecedented genetic potential through biosynthetic gene
clusters (BGCs), which are harbored in their genomes and contain genes arranged in close
vicinity. The BGCs are under the control of a sophisticated regulatory network and the
laboratory conditions used [8]. Hence, the same species isolated from different habitats
can have different sets of biosynthetic gene clusters, which may be lost or gained when a
particular strain is transferred to a new environment [9]. Biosynthetic gene clusters (BGCs)
have been classified into two main pathways based on their products, i.e., nonribosomal
peptide synthetases (NRPSs) and polyketide synthases (PKSs), for the biosynthesis of
potent secondary metabolites. Polyketide synthases (PKSs) are further divided into PKS-I
and PKS-II gene clusters, where the diversity evolution of PKSs can be achieved by using
fragments of genes PKS-I ketosynthase and PKS-II KSα domains. Conversely, NRPSs are
produced by nonribosomal peptide synthase (NRPS) gene clusters and to achieve their
diversity evolution, their adenylation (AD) domains are used. Both the NRPS and PKS
products are comprised of remarkably long genes (>5 kb) that encode multi-modular en-
zymes with repetitive domain structures. In addition, other well-known classes of BGCs
are terpenoids, saccharides and lanthipeptides [10,11].

The conventional approach to discovering antibiotics from Streptomyces is through
the bioactivity-based identification of a compound, using mass spectrometry and nuclear
magnetic resonance (NMR) analyses [12]. However, the genome-based approaches have
divulged that most of the BGCs are not expressed under certain laboratory conditions,
proposing that the capability of Streptomyces to produce secondary compounds has been
underestimated [13,14]. On average, each Streptomyces has the potential to produce more
than 30 secondary metabolites, meaning that they are a valuable source of natural product
discovery [15]. The genomic data of over 1141 strains of Streptomyces are deposited and
available in the GenBank database. In this study, we conducted a detailed analysis of
Streptomyces sp. BR123, which was isolated from the rhizosphere of a sunflower plant.
The analysis was based on its in vitro antimicrobial activities in relation to the whole
genome sequencing data and a general comparison with other reported strains of the
genus Streptomyces.

2. Materials and Methods

2.1. Isolation and Cultivation Conditions of Streptomyces sp. BR123

Soil samples were collected from the rhizosphere of sunflower plants located in various
agricultural fields of Faisalabad, Pakistan for the purpose of isolating Streptomyces colonies.
From each sample, 1 g of dried soil was added into 9 mL of double distilled autoclaved
water and mixed well. The diluted aliquots (0.1 mL), 10−1, 10−2, 10−3, 10−4, and 10−5

were spread into petri plates containing a starch casein agar (SCA) medium, composed of:
soluble starch 10.0 g, KNO3 2.0 g, casein 0.3 g, K2HPO4 2.0 g, NaCl 2.0 g, MgSO4·7H2O
0.05 g, FeSO4·7H2O 0.01 g, CaCO3 0.02, agar 20 g, and distilled water 1 L [16]. The pH of
the medium was adjusted to be 7.0–7.2. The medium was supplemented with an antifungal
solution of cycloheximide (100 μg/mL) to inhibit fungus growth, and plates were incubated
at 30 ◦C for 5–7 days. Colonies that showed hard texture and filamentous mycelium when
observed under a phase contrast microscope were picked and purified by using an agar
streak method [17]. The purified stock cultures were preserved in glycerol (40% v/v) at
−80 ◦C. Moreover, Streptomyces sp. BR123 was cultivated in a starch casein broth at 30 ◦C,
rotated at 180 rpm for 7 days for later analysis.

2.2. Sequencing and Assembly of the Genome

To perform the genome-based comparative analysis, the biosynthetic potential of
Streptomyces isolate BR123 was investigated at the level of draft genome sequence. The
biomass of the isolate BR123 was separated from the liquid culture and grown for 72 h
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at 30 ◦C in casein-starch-peptone-yeast extract-malt extract (CSPY-ME) broth with the
composition (in g/L): K2HPO4 0.5, starch 10, casein 3, yeast extract 1, malt extract 10, and
peptone 1. The broth’s final pH was 7.2. Genomic DNA of high quality was obtained
through the bead method and quantification was performed by a high-sensitivity (HS)
assay of Quant-iT double-stranded DNA (dsDNA) (ThermoFisher Scientific, Waltham, MA,
USA). The genomic DNA was sequenced at MicrobesNG using the Nextera XT Library
Preparation Kit (Illumina, San Diego, CA, USA). For the generation and quantification
of the Illumina library, the KAPA Biosystems Library Quantification Kit was used. The
genomic data were deposited at the National Centre for Biotechnology Information (NCBI)
under the accession number PRJNA643667. Trimmomatic 0.30 was used to compile raw
reads, with a quality cutoff of Q15 [18].

2.3. Annotation of Genome and Bioinformatics Analysis

For the annotation of the genome, Rapid Annotation using Subsystem Technology
(RAST) version 2.0 was used [19]. For the assembly of matrices, PGAP (Prokaryotic
Genome Annotation Pipeline) v4.2 from the NCBI was used. The predictions of gene
clusters with the potential to produce secondary metabolites were analyzed by using the
online antiSMASH (antibiotics & Secondary Metabolite Analysis Shell) bacterial version,
accessed on 22 April 2022.

2.4. Amplification of NRPS and PKS Genes by PCR

The PKS-I, PKS-II, and NRPS genes were amplified using the following primer sets,
K1F (5′-TSAAGTCSAACATCCGBCA-3′)/M6R (5′-CGCAGGTTSCSGTACCAG TA-3′) [20],
KSα (5′-TSGCSTGCTTGGAYGCSATC-3′)/KSβ (5′-TGGAANCCGCCGAABCCGCT-3′),
and A3F (5′-GCSTACSYSATSTACACSTCSGG-3′)/A7R (5′-SASGTCVCCSGTSGCGTA S-
3′). The reaction for NRPS and PKS genes was made with the final volume of 50 μL
containing 1.5 μL of extracted genomic DNA, 1 μL of each primer (10 pmol), 21.5 μL of
nuclease-free water, and 25 μL of dream taq (PCR master mix). The amplification process
was performed in Analytik Jena Flex Thermal cycler block assembly 96 G, according to
the following specified conditions for each primer: 5 minutes at 95 ◦C for denaturation
and 35 cycles of 30 seconds at 95 ◦C; 2 minutes at 57 ◦C, 63 ◦C, and 59.7 ◦C for K1F/M6R,
KSα/KSβ, and A3F/A7R, respectively; 4 minutes at 72 ◦C; and 10 minutes at 72 ◦C. Gel
electrophoresis was used to analyze the PCR products using 1% agarose gel final stained
with ethidium bromide and the end product was purified with the help of GeneJET PCR
Purification Kit K0721 (Thermo scientific/Vilnius, Lithuania).

2.5. Assessment of Antimicrobial Potential

The isolate BR123 was checked for antimicrobial potential through the agar-well
diffusion method [21] against 2 gram-positive bacteria (Staphylococcus aureus and Bacillus
subitilis), 4 gram-negative bacteria (Salmonella typhi, Xanthomonas oryzae, Escherichia coli and
Pseudomonas aeruginosa), and 4 fungi (Aspergillus flavus, Aspergillus niger, Fusarium solani
and Fusarium oxysporum) by using 7 different media (Supplementary Table S1). Plates were
overlaid with the test culture and wells were filled with the supernatant of BR123. These
plates were incubated for 24 h at 30 ◦C in case of bacteria and for 5–7 days in the case of
fungal for the examination of clear zones formation.

2.6. Analysis of Metabolites through HPLC-MS from Streptomyces sp. BR123
2.6.1. Sample Preparation

Streptomyces sp. BR123 was pre-cultivated in a starch casein (SC) broth (pH 7.2). After
cultivating for 4 days in a rotary shaker at 180 rpm and 28 ◦C, 5 mL of the culture was used
to inoculate 1 L of casein-starch-peptone-yeast extract-malt extract (CSPY-ME) broth in a
2.8 L flask [17]. Twice extraction of the entire culture was performed with an equal volume
of ethyl acetate (EtOAc) by adjusting the pH of the broth to 3.5. To obtain solid material,
the ethyl acetate extract was concentrated in a rotary evaporator.
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2.6.2. Analysis of Metabolites

Low resolution electrospray ionization source mass spectra were recorded using a
UHPLC focused Thermo Scientific Dionex UltiMate 3000 auto-sampler (Dionex, Thermo
Fisher Scientific, Freiburg, Germany), coupled with a TSQ Quantum Access MAX diode
array detector (DAD, Thermo Fisher Scientific, Germany). The diode array detector allows
for the relative qualification of non-volatile components. Using a mobile phase of water
(A) and acetonitrile (B) both containing 0.5% acetic acid, the separation of compounds was
performed on a C18 HPLC column (Waters, 3.5 m, 4.6 100 mm). The gradient started by
washing for the following durations and concentrations: 0.5 min in 95% A; 19.5 min in 5%
A; 23.5 min in 5% A; 24 min in 95% A; 27 min in 95% A; followed by a final washing in
95% A and 5% B solution for 5 min. The column was re-equilibrated. The method lasted a
total of 27 min. The flow rate was 0.5 mL/min, column temperature was 30 ± 10 ◦C, and
pressure was adjusted from 5 × 102 to 4 × 104 kPa. Further analysis of the compounds
was determined using high resolution Bruker MaXis II Q-TOF (Bruker, Warwick, UK) mass
spectrometer coupled with a Dionex 3000RS UHPLC (Bruker, Warwick, UK). The analysis
was performed by keeping a mass range of 50–3000 m/z and using a mobile phase of water
(A) and acetonitrile (B), both containing 0.1% formic acid. Separation was again performed
by C18 HPLC column. The gradient for the high resolution started from 5% to 100% in
25 min, keeping a flow rate of 0.2 mL/min. The column was washed and re-equilibrated.
Mass spectra were recorded in both negative and positive modes and Xcalibur version 4.3
was used for the data analysis.

2.7. Comparative Genome Analysis

The complete 16S rRNA sequence data from the genome of all strains were retrieved
from TrueBacTMIDBeta [19]. Alignment of the extracted 16S rRNA sequences was achieved
through the ClustalW tool available in MEGA Software version 7 [22] and the phylogenetic
tree was constructed using the neighbor-joining method with a bootstrap value of 1000.
Additionally, the whole genome phylogeny was determined by using the online available
version of KBase software. The average nucleotide identity scores were calculated using
the FastANI algorithm [23].

2.8. Accession Number of Genome Sequence

The genome sequence of Streptomyces sp. BR123 has been submitted to GenBank under
the bio project number PRJNA643667, genome sequencing project number JACBGN000000000,
and SRA number SRR12527047. Moreover, the 16S rRNA gene sequence has been submitted
to GenBank under the accession number MT799988.

3. Results and Discussion

3.1. General Genomic Characteristics and Phylogenetic Analysis of Streptomyces sp. BR123

A genomic sequence with a total stretch of 8,158,025 bp was obtained, and the length
of the shortest contig at value N50 was observed to be 22,797 (Figure 1).

An average GC content of 72.63% was observed in the isolate BR123, which is close
to that of previously reported Streptomyces strains [24–26]. A total of 8103 protein coding
sequences (CDS), 281 pseudo genes, 8 rRNA genes, and 68 tRNA genes were predicted
through Rapid Annotation using Subsystem Technology (RAST) [27,28]. Table 1 provides
the genomic characteristics of Streptomyces sp. BR123 in comparison to certain other
available genomes of Streptomyces strains.
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Figure 1. Circular map of the Streptomyces isolate BR123 genome, retrieved from PATRIC version 3.6.9.
Description of each circle is given from outside in: CDS on the forward strand, CDS on the reverse
strand, RNA genes, CDS with homology to known antimicrobial resistance genes, CDS with homology
to known virulence factors, GC content, and GC skew.

Table 1. General genomic features of Streptomyces sp. isolate BR123 and other species used
in this study.

Strain
Bio-Project
Accession

Size (Mbps) No. of Contigs % G + C CDS tRNA rRNA

Streptomyces sp.
isolate BR123 PRJNA643667 8.16 723 72.63 8103 68 8

Streptomyces globosus
LZH-48 PRJNA428275 7.54 - 73.62 6524 71 3

Streptomyces katrae
NRRL ISP-5550 PRJNA238534 8.05 1874 72.69 7305 56 2

Streptomyces virginiae
NRRL ISP-5094 PRJNA238534 8.32 133 72.4 7245 74 13

Streptomyces clavuligerus
F1D7 PRJNA679926 7.59 - 72.5 6122 65 18

Streptomyces diastaticus
NBRC 15402 PRJDB6184 7.85 32 72.7 - 75 8

Streptomyces bacillaris
ATCC 15855 PRJNA471017 7.89 - 72.0 6746 65 18

Streptomyces cyaneofuscatus
SID 10855 PRJNA603111 7.88 52 71.6 6755 66 12

Streptomyces griseus
NBRC 13350 PRJDA20085 8.55 - 72.2 7087 67 18

Streptomyces lavendulae
YAKB-15 PRJNA526603 7.77 100 72.2 7009 70 21

The taxonomic position of the Streptomyces sp. BR123 was determined within the genus
Streptomyces (Supplementary Figure S2). Additional confirmation of this was performed
by a genome-based phylogenetic analysis of the isolate BR123 in comparison with other
Streptomyces strains [29,30]. Streptomyces sp. BR123 was closely branched with three other
Streptomyces species and most closely branched with Streptomyces globosus (Figure 2).
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Figure 2. Whole genome-based tree of Streptomyces isolate BR123 with other Streptomyces strains,
inferred using Kbase.

The relationship with other species was verified by average nucleotide identity (ANI)
scores, based on a previously used strategy [31,32]. The ANI value between Streptomyces sp.
BR123 and Streptomyces globosus was found to be the maximum (87.3066) compared to the
other Streptomyces species (Table 2) and the alignment between the two strains was strong
(Figure 3).

 

Figure 3. Genome alignment between Streptomyces isolate BR123 and Streptomyces globosus. Alignment
was performed using the online KBase tool with default parameters. Synteny regions are represented
by red lines, whereas breaks in synteny are the blank regions. Genome sizes are marked in the
horizontal panels and conserved regions are linked.
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Table 2. Average nucleotide identity (ANI) between all Streptomyces species used in this study.

Query Reference ANI Estimate Matches Total

Streptomyces lavendulae subsp. lavendulae Streptomyces sp. isolate BR123 81.6134 1070 2300
Streptomyces sp. isolate BR123 Streptomyces lavendulae subsp. lavendulae 81.673 1050 2391
Streptomyces sp. isolate BR123 Streptomyces virginiae 86.0723 1576 2391

Streptomyces virginiae Streptomyces sp. isolate BR123 86.0802 1554 2721
Streptomyces globosus Streptomyces sp. isolate BR123 87.1686 1630 2510

Streptomyces sp. isolate BR123 Streptomyces globosus 87.3066 1626 2391
Streptomyces sp. isolate BR123 Streptomyces katrae 87.1854 1671 2391

Streptomyces katrae Streptomyces sp. isolate BR123 87.2335 1635 2813

3.2. Annotation and Assembly of Genome Sequence

Automatic annotation performed by using the RAST server yielded 8038 features
related to the protein coding genes. A total of 333 subsystems were identified using RAST
genome analysis, which represented: the amino acid and derivative metabolism (448 ORFs);
cofactors, vitamins, prosthetic groups, pigments (194 ORFs); and protein metabolism
(236 ORFs). Ninety four open reading frames (ORFs) were involved in DNA metabolism,
whereas 15 ORFs were found to code for secondary metabolites (Figure 4).

Figure 4. An overview of the subsystems for the genome of Streptomyces isolate BR123.

3.3. Biosynthetic Secondary Metabolite Gene Clusters of Streptomyces sp. BR123

About 70–80% of the total bioactive metabolites discovered so far relate to the genus
Streptomyces [33]. Consequently, similar types of antimicrobial metabolites were found to
be produced by Streptomyces strains, isolated from different environments [34]. Due to this
de-duplication, rare actinobacteria have been targeted for the search of novel antimicrobial
compounds [35]. The exploration of a genome-based biosynthetic potential of new isolates
may be useful for finding novel compounds. In this study, a total of 44 clusters were identi-
fied in this strain, responsible for the production of secondary metabolites. This included
4 types of NRPS (nonribosomal peptide synthetase), 9 types of PKS (polyketide synthase),
and 7 types of hybrid biosynthetic gene clusters. The hybrids featured melanin-terpene,
lanthipeptide-3-NRPS, NRPS-transAT-PKS, T1 PKS-NRPS-like, T3 PKS-guanidinotides-
RiPP-like, T1 PKS-NAPAA, and RRE-containing-thiopeptide. Most of the gene clusters
detected in the isolate BR123 were related to polyketide biosynthesis. Out of the 44 biosyn-
thetic gene clusters, 33 clusters represented differing percentages of resemblance with
known BGCs, whereas 11 exhibited no similarity with known homologous gene clusters.
The latter clusters were considered as orphan biosynthetic gene clusters [36] (Table 3).
Particularly, the NRPS, NRPS-like, hybrid gene clusters, and majority of the peptide buty-
rolactone shared resemblance with antibacterial compounds, while most polyketides and
other gene clusters shared similarity with anticancer and pigmented compounds. However,
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low degree of similarity was observed in most cases, suggesting the occurrence of possibly
novel biosynthetic gene clusters [37,38].

Table 3. List of putative secondary metabolites producing biosynthetic gene clusters as predicted
by antiSMASH.

Cluster
Size
(bp)

Most Similar Known
Biosynthetic Gene Cluster

MIBG BGC-ID

Siderophores:
3 11,590 - -

56 6349 - -
226 8264 Desferrioxamin B (100%) BGC0000941
261 8036 Ficellomycin (7%) BGC0001593
279 6963 Ficellomycin (7%) BGC0001593

Terpenes:
9 16,885 - -

11 21,676 Hopene (61%) BGC0000663
16 21,086 - -
19 13,165 - -
24 25,408 Isorenieratene (63%) BGC0001227
69 13,506 Ebelactone (5%) BGC0001580

PKS:
2 (Type I) 103,249 Concanamycin A (21%) BGC0000040
4 (Type I) 46,281 Clifednamide A (30%) BGC0001553

94 (Type I) 23,404 Tetrocarcin A (8%) BGC0000162
129 (Type I) 19,401 - -
320(Type I) 7593 - -
350(Type I) 6899 - -
58 (Type II) 34,290 Granaticin (16%) BGC0000227
89 (Type III) 24,296 Alkylresorcinol (100%) BGC0000282
338 (Type III) 7187 Flaviolin (75%) BGC0000902

NRPS:
104 23,007 Lactonamycin (5%) BGC0000238
271 9618 Griseoviridin/Fijimycin A (8%) BGC0000459
239 11,133 - -
401 5437 Virginiamycin S1 (11%) BGC0001116

Peptides:
59 (Lanthipeptide class II) 13,149 - -

76 (Lanthipeptide class I) 23,247 Chejuenolide A/Chejuenolide
B (7%) BGC0001543

Butyrolactones:
100 6302 Griseoviridin/Fijimycin A (8%) BGC0000459

NRPS/PKS-like:
221 (NRPS-like) 12,004 Lipstatin (14%) BGC0000382
429 (NRPS-like) 4493 Glycinocin A (4%) BGC0000379
243 (PKS-like) 10,893 Virginiamycin S1 (33%) BGC0001116

Hybrids:
3 (Melanin, terpene) 33,435 Melanin (40%) BGC0000909

29 (Lanthipeptide-3, NRPS) 43,146 Azicemicin (8%) BGC0000202
46 (NRPS, transAT-PKS) 36,866 Virgimiamycin S1 (55%) BGC0001116

62 (Type I PKS, NRPS-like) 29,119 Monensin (26%) BGC0000100
98 (Type III PKS,

guanidinotides, RiPP-like) 23,202 Pheganomycin (52%) BGC0001148

149 (Type I PKS, NAPAA)
433 (RRE-containing,

thiopeptide) 17,747 Mediomycin A (34%) BGC0001661

4312 Lactazol (33%) BGC0000606

The core structure of 15 clusters was predicted, which include 4 NRPS, 1 NRPS-
like, 5 type I PKS, 1 PKS-like and 4 hybrid gene clusters. Moreover, a putative class II
of lanthipeptide with a core peptide was also predicted (Supplementary File S1). Out
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of these clusters, 1 NRPS, 2 type-1 PKS, and the lanthipeptides were the orphan BGCs
in Streptomyces sp. BR123 predicted by antiSMASH. The class II lanthipeptides are pro-
duced by the lanthionine synthase C (LanC) family protein that is present in cluster 59.
Moreover, in the LanC enzyme of lanthipeptide class II, di-dehydroalanine (Dha) and
di-dehydrobutyrine (Dhb) were well conserved.

Besides the core biosynthetic genes in Streptomyces isolate BR123, there were 10 clusters
(clusters 9, 19, 24, 29, 40, 62, 89, 149, 183, 221) with transcription regulation and 8 clusters
(clusters 11, 53, 76, 98, 157, 239, 279, 338) with transport genes, and there 7 clusters observed
(clusters 3, 4, 16, 46, 59, 100, 104) with both transcription regulation and transport genes.

3.4. Detection of NRPS and PKS Genes in Streptomyces sp. BR123

The amplification and detection of NRPS and PKS genes via PCR further confirmed
their presence in this Streptomyces strain (Supplementary Figure S3). Streptomyces sp.
BR123 was also found to be active against a broad range of pathogenic microorganisms,
including gram-positive and gram-negative bacteria and fungi. However, the activity
was based on the media supplements used, and the maximum activity observed in the
enrichment medium CSPY-ME resulted in the formation of the largest zone of inhibitions
against some of the fungal and all of the tested bacterial strains. The maximum inhibitory
effect was observed against Bacillus subtilis, showing a zone of inhibition with a diameter
of 24.1 ± 0.12, followed by E. coli (23.5 ± 0.10) and Aspergillus niger (20.2 ± 0.08). No
significant activities were observed in the ISP1 and ISP4 media (Supplementary Table S1),
and the zone of inhibition in the ISP3 medium was only observed in Aspergillus niger
(13.4 ± 0.05). Such a variation in activity could be due to different growth proportion in
a minimal medium. Inhibition causes a greater effect in a minimal medium compared to
a complex medium, where the medium’s ingredients may compensate for the inhibitory
effect of the product formation [39].

3.5. Production of Secondary Metabolites by Streptomyces sp. BR123

The production of various metabolites were verified through HPLC-MS [40–42]. A
compound detected in the UV spectrum, with absorption maxima at 219 nm, 288 nm, and
369 nm, and a mass spectrum at positive ion mode with m/z ratio of 822.22 was identified
as meridamycin, with a molecular mass of 821.5 (Figure 5).

Figure 5. Characteristics of meridamycin, a metabolite observed from isolate BR123, calculated using
HPLC-MS analysis. (a) The UV-visible spectrum; (b) the positive ion mass spectrum; and (c) the
structural formula.

Meridamycin is a macrocyclic polyketide which possesses non-immunosuppressive,
neuroprotective activity by acting on dopaminergic receptors and has been found to be
suitable for the treatment of neurological diseases [43]. A small number of studies have
reported the production of this compound from the genus Streptomyces during the last few
years [43,44], and evidence on the presence of the biosynthetic pathway of this compound
in Streptomyces sp. DSM 4137 has been published [44]. Moreover, various therapeutically
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important metabolites analogous to meridamycin have also been previously identified [45].
Another compound with absorbance maxima at 221 nm, 333 nm, and 351 nm and a
molecular mass of 1271 at positive ion mode (Figure 6) was also observed. Upon library
screening, it was observed to not correspond with any known compound, thus further
characterization is required. The compound analysis of Streptomyces sp. BR123 indicated
the potential of this strain as a candidate for the production of novel secondary metabolites.

Figure 6. Characteristics of unidentified metabolite from the Streptomyces isolate BR123 based on
(a) UV spectrum; (b) HPLC-MS analysis.

4. Conclusions

Due to the development of multi-drug resistance (MDR) by emerging pathogens
against the available antibiotics, there is a dire need to find new sources of antibiotics.
The genus Streptomyces has massively contributed to the field of medicine through the
synthesis of antibacterial, antifungal, antiparasitic, and anticancerous compounds. In the
current study, we explored an indigenously isolated potent bioactive Streptomyces strain,
and added another draft genome sequence to the rising number of Streptomyces sequences
in the repository. Moreover, a few already known compounds in addition to some new
and uncharacterized compounds were also detected using the HPLC-MS technique. This
genome insight study of Streptomyces sp. BR123 and the information about the biosynthetic
clusters of some uncharacterized natural compounds may prove to be a valuable addition
to prior knowledge, assisting in the search for novel compounds as well as providing the
much-needed structural diversity required for a new generation of antibiotics designed for
pathogens with MDR.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/antibiotics11081057/s1, Figure S1: A plot representing the number
of contigs of the Streptomyces sp. BR123 genome with the GC percentage in a certain range; Figure S2:
The phylogenetic tree of Streptomyces isolate BR123 and other Streptomyces species based on 16S rRNA
sequences; Figure S3: PCR-based identification of NRPS and PKS genes in isolate BR123. (a) NRPS
(b) PKS-I (c) PKS-II; File S1: Biosynthetic gene clusters predicted by antiSMASH and their core
structures; Table S1: Antimicrobial activity of Streptomyces strain BR123 in different growth media.
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Abstract: Apicomplexan parasites are the causal agents of different medically important diseases,
such as toxoplasmosis, cryptosporidiosis, and malaria. Toxoplasmosis is considered a neglected
parasitosis, even though it can cause severe cerebral complications and death in immunocompromised
patients, including children and pregnant women. Drugs against Toxoplasma gondii, the etiological
agent of toxoplasmosis, are highly toxic and lack efficacy in eradicating tissue cysts, promoting the
establishment of latent infection and acute relapsing disease. Cryptosporidiosis has been recognized
as the most frequent waterborne parasitosis in US outbreaks; anti-cryptosporidium drug discovery
still faces a major obstacle: drugs that can act on the epicellular parasite. Severe malaria is most
commonly caused by the progression of infection with Plasmodium falciparum. In recent years, great
progress has been made in the field of antimalarial drugs and vaccines, although the resistance
of P. falciparum to artemisinin has recently gained a foothold in Africa. As seen, the search for
new drugs against these parasites remains a challenge. Peptide-based drugs seem to be attractive
alternative therapeutic agents recently recognized by the pharmaceutical industry, as they can kill
different infectious agents and modulate the immune response. A review of the experimental effects
of bioactive peptides on these parasites follows, along with comments. In addition, some biological
and metabolomic generalities of the parasites are reviewed to elucidate peptide mechanisms of action
on Apicomplexan targets.

Keywords: Apicomplexan; bioactive peptides; toxoplasmosis; cryptosporidiosis; malaria

1. Introduction

Parasitism is a biological interaction present in nature. Some parasites can cause a
severe clinical picture, and others can even cause host death. Millions of people are infected
by parasites worldwide, mainly in lower- and middle-income countries. Among the most
important human parasites are single-cell protozoan organisms, which are divided into
different phyla [1,2]. The protozoan phylum Apicomplexa is a large group of intracellular
alveolates; its name is derived from the complex of organelles located at the apical end
that allow them to survive in the host cell. Apicomplexan parasites cause important in-
fectious diseases in humans, including malaria, toxoplasmosis, and cryptosporidiosis [3].
Some intestinal coccidian infections and toxoplasmosis are considered by the World Health
Organization (WHO), neglecting parasitosis; therefore, they are not a priority for phar-
maceuticals to invest in the research of new compounds for their control, and malaria is
one of the most dangerous infections that caused approximately 627,000 human deaths in
2020 [4]. Anti-Toxoplasma drugs are highly toxic and ineffective in destroying tissue cysts,
and cryptosporidiosis treatments are partially effective mostly in immunocompromised
patients. Despite antimalarial drug research on the development of novel treatments, the
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emergence of strains resistant to first-line drugs is increasing; therefore, new alternatives
are necessary [5,6]. Based on this background, a search for active molecules is needed.
Drug development against these parasites has been approached from different perspec-
tives, including in silico models, hybrid compound design, bio-guided studies in natural
products, and even the use of combined therapies with known antibiotic drugs [7].

An interesting emerging category of active molecules is antimicrobial peptides (AMPs),
which are attractive alternative therapeutic agents. Peptides are a diverse group of proteins
of 10–100 amino acid residues. They have amphipathic structures, contain up to 50%
hydrophobic residues, and possess a net positive charge of +2 to +9 [8]. AMPs are found
naturally in tissues and cells from multicellular organisms and play a crucial role in the
innate immune response to protect themselves since these organisms do not develop an
adaptive immune system such as vertebrates. The interest in these compounds is due to
their biochemical features that can interfere with ion channels and structural components
of the cell membrane [9,10]. The first AMP was identified in mid-1990 from Drosophila
melanogaster; at the time of this writing, at least 5000 AMPs have been reported [11,12].

The applications of AMPs are still under constant investigation, and in the last decade,
their interesting antibacterial drug resistance, anticancer, anti-inflammatory, immunomod-
ulatory, and antiparasitic activities have been reported [13–15]. However, the clinical
application of AMPs has been limited due to the toxicity and stability of these molecules
and other drawbacks, such as high production costs compared to conventional antibiotics.
Although there are no commercial AMP products to date, we cannot ignore the great
potential of AMPs. These molecules offer great alternatives due to their results in in vitro
models [16,17].

In this review, we provide an in-depth overview of the main Apicomplexan human
parasites and AMPs with antiparasitic activity, as well as their mechanisms of action.

1.1. Toxoplasmosis

This parasitic infection is caused by Toxoplasma gondii, an obligate intracellular dis-
tributed worldwide that infects a wide range of homothermic animals, including hu-
mans [18,19]. It is recognized as the main public health problem in human and veterinary
medicine and is one of the five neglected parasitic infections cited by the WHO. T. gondii
sexual reproduction involves species from the Felidae family, including domestic cats [20].
T. gondii affect approximately one-third of the human population, and climate change is
increasing its prevalence of infection [21,22]. Epidemiological studies worldwide revealed
that the prevalence in pregnant women is approximately 1.1% and could be related to
cultural habits, such as eating undercooked meat (one of the main risk factors for T. gondii
infection), especially of pork, lamb, or venison [23–25]. Humans can also be infected by
eating raw shellfish (like oysters, clams, and mussels), by accidental ingestion of oocysts in
contaminated soil, or by congenital transmission [25].

The toxoplasmosis incubation period is 10 to 14 days, and 90% of cases are asymp-
tomatic. In symptomatic individuals, lymphadenitis, lymphadenopathy, fever, sore throat,
headache, and myalgia have been reported [26]. The presence of hepatosplenomegaly,
pulmonary or cardiac symptoms, conjunctivitis, and skin rash were recorded. Clinical
manifestations are generally self-limited within 3–4 weeks. In immunocompetent individu-
als, neurological symptoms rarely occur; in some exceptional cases, moderate cognitive
impairment has been reported [26]. In immunocompromised people with toxoplasmosis,
parasites have a predilection for immune privilege sites, and extensive cell lesions are
present, which can lead to encephalitis, retinochoroiditis, pericarditis, interstitial pneu-
monia, and Guillain-Barre syndrome. Encephalitis is an important clinical manifestation,
especially in patients with AIDS, and congenital infections can lead to death [27].

In the biological life cycle of T. gondii, four parasitic forms are involved: tachyzoites,
bradyzoites, tissue cysts, and oocysts. Definitive hosts ingest prey infected with tissue
cysts, mainly in the skeletal muscle or brain. Due to digestive action, the bradyzoites
contained in the tissue cysts invade the enterocytes and, through schizogony replication,
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differentiate into macro- and microgametes. Subsequently, fertilization takes place, which
gives rise to a zygote. This zygote transforms into an immature, noninfectious oocyst
that is released into the environment along with the host’s feces. The noninfecting oocyst
sporulates and becomes infective, and contaminates water, soil, and food in favorable
environmental conditions. Intermediate hosts (i.e., warm-blooded animals, including
humans) become infected through the consumption of water and food contaminated with
sporulated oocysts or raw or undercooked meat with tissue cysts. Oocysts and tissue
cysts release sporozoites and bradyzoites, respectively, and differentiate into tachyzoites
within the intestinal epithelium. After replication, the tachyzoites exit the cell, destroying
it, and the infection spreads to neighboring cells. The immune response will eliminate
most parasites; those that are not removed will become bradyzoites and will form tissue
cysts that can remain in the host’s organs and tissues throughout life (chronic infection). In
immunocompromised individuals, bradyzoites differentiate back to tachyzoites, causing
severe or fatal acute disseminated infection [18,28,29] (Figure 1).

Figure 1. Active invasion of T. gondii. In Apicomplexan, three types of secretory organelles are
observed: micronemes, rhoptries, and dense granules, carrying characteristic proteins. Attachment to
host cell membrane via micronemes (MIC) proteins (1). Invasion and moving junction development
by secretion of proteins from rhoptries neck (RON) and rhoptires (ROP) (2,3). Internalization via se-
cretion of RON/AMA proteins (4). Parasitophorous vacuole development via granule dense proteins
(GRA) (5). Proliferation and tachyzoite asexual replication (6). Increases immune response, intercon-
version to bradyzoite, and tissue cyst formation (7). Decreases immune response, interconversion
to bradyzoites-tachyzoites, and dissemination of the parasite (8). Tachyzoites cause acute infection,
leading to severe toxoplasmosis. While several drugs are available against tachyzoites, there is no
treatment against tissue cysts, which are responsible for chronic infection. An ideal anti-Toxoplasma
drug should be effective against both stages and prevent interconversion. Protein targeting secretory
organelles is a matter of interest. Created with BioRender.com under license to publish by Anacleto SJ.

A combination of dihydrofolate reductase inhibitors such as pyrimethamine and
trimethoprim, and dihydropteroate synthetase inhibitors (sulfonamides) are currently used
as the first-choice treatment for toxoplasmosis; nevertheless, drug-resistant strains have
been reported. It is worth mentioning that in the last decade, more than 50 resistant strains
were identified and have developed resistance mainly to sulfonamides [30,31]. In addition
to this, the presence of adverse effects and the fact that treatments are only effective in the
acute phase of infection, turn out necessary to have new alternatives to treatment that are
safe, effective, affordable, and active against the tissue cysts. For this reason, the recent
emergence of AMPs offers wide potential for the discovery of new anti-Toxoplasma drugs.
In Figure 2, drugs that have been tested against Toxoplasma are described.
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Figure 2. T. gondii tachyzoite drug targets. Rop, rohptry. Gra, dense granule. Mic micronemes. Api,
apicoplast. C, cytoplasm. Cem, cell membrane. Rib, ribosome. Nuc, nucleus. Mi, mitochondrion.
Created with BioRender.com under license to publish by Anacleto SJ.

1.2. Cryptosporidiosis

Cryptosporidium spp. is an important public health problem currently recognized as
the main cause of diarrhea in humans and farm animals, causing significant morbidity and
mortality worldwide, mainly in children. Approximately 40 species have been described
in the Cryptosporidium genus. Two species are the most common, Cryptosporidium hominis
and C. parvum, both of which can infect humans. C. parvum also infects cattle [32,33]. In
low-income countries, 54% of children have had diarrhea associated with cryptosporid-
iosis. Children and immunocompromised patients are the most vulnerable groups to
Cryptosporidium infections. It is estimated that two million children die worldwide annually,
and 7 million cases are associated with morbidity in Asian and African populations [34]. In
the last seventeen years, the incidence of Cryptosporidium infection in HIV-positive patients
has increased up to 41.3% in Russia [35].

Cryptosporidium incubation period takes a week after the ingestion of infective oocysts.
The clinical manifestations include diarrhea, fever, nausea, vomiting, abdominal pain,
general malaise, and malnutrition. Chronic diarrhea in HIV patients is recognized as a
classical clinical manifestation, and severe dehydration, weight loss, and malnutrition that
can lead to death have been observed [36,37].

There are different parasitic stages in the life cycle of Cryptosporidium spp.: oocysts,
sporozoites, trophozoites, and merozoites. The oocyst is the infective stage and can be
consumed in contaminated water or food. Four sporozoites are contained inside each
oocyst and are released by digestive processes in the intestinal epithelium. A schizogonic
division takes place, resulting in the production of eight merozoites (type I merozoites),
which reinvade new cells, and after a period of intracellular growth (type II merozoite),
merozoites differentiate into micro and macrogametocytes that lead to fertilization and
zygote formation. Mature zygotes develop into infective thin or thick-walled oocysts that
are released from enterocytes. Infective thin-walled oocysts are broken in the intestine and
lead to reinfections, while infective thick-walled oocysts are released into the environment
through feces, contaminating water, soil, and food [38–41] (Figure 3).
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Figure 3. Cryptosporidium spp. development in the host cell. Anti-cryptosporidial drug development
challenges a major problem: the discovery of systemic drugs that can reach epicellular parasites
(preventing schizogonic reproduction); and the absorption by patients undergoing diarrhea. Created
with BioRender.com under license to publish by Anacleto SJ.

Only nitazoxanide has demonstrated efficacy in human cryptosporidiosis. A number
of new targets have been identified for chemotherapy, and progress has been made in
developing drugs for these targets (Figure 4).

Figure 4. Cryptosporidium drug targets. Cryptosporodium lacks many drug targets present in other
Apicomplexans because of a simplified metabolism and the absence of de novo nutrient synthetic
pathways. Mic micronemes. Rop, rohptry. Gra, dense ganule. Apc, apical complex. C, cytoplasm.
Ami, amylopectin granules. Cem, cell membrane. Rib, ribosome. Nuc, nucleus. Mi, mitochondrion.
Created with BioRender.com under license to publish by Anacleto SJ.

1.3. Malaria

Malaria is a parasitic disease considered a major public health problem because it
causes a great number of morbidity and mortality cases, mostly in tropical and subtropical
zones worldwide. In 2020, 241 million malaria cases were reported, and 627,000 deaths
occurred, which represented a substantial increase compared to what was reported in
2019 [42]. Malaria is caused by Plasmodium parasites, which are intracellular Parasites
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transmitted mainly by the bite of female mosquitoes of the genus Anopheles. There are more
than 120 Plasmodium species capable of infecting mammals, birds, and reptiles; nevertheless,
only five species can infect humans, P. malariae, P. falciparum, P. knowlesi, P. ovale, and P.
vivax [43,44].

In humans, parasites replicate asexually, while sexual reproduction takes place in
Anopheles mosquitoes. Sporozoites injected by the Anopheles mosquito while feeding, reach
the liver through the bloodstream and invade hepatocytes forming merozoites [45]. In the
liver, P. ovale and P. vivax sporozoites can convert into hypnozoites, which are dormant
forms that can relapse months or years later [44]. After liver parasite replication, merozoites
are released into the bloodstream, and the intraerythrocytic cycle begins, in which rings,
trophozoites, schizonts, merozoites, and gametocytes are developed [43]. Gametocytes are
ingested by Anopheles mosquitos, and the cycle begins again. In the midgut of the mosquito,
gametocytes develop a zygote, then a mobile ookinete capable of traversing the intestinal
wall and forming an oocyst that, when mature, will develop sporozoites that will be
released to invade the salivary glands [46,47]. During the intraerythrocytic cycle (Figure 5),
the clinical features observed include high fever, chills, headache, myalgias, arthralgias,
nausea, vomiting, and diarrhea [48,49]. P. falciparum infections can cause complicated
malaria as a consequence of the cytoadherence phenomenon in which infected erythrocytes
adhere to the vascular endothelium of different organs, causing cerebral malaria, acute
respiratory distress syndrome, acute renal failure, anemia, thrombocytopenia, and placental
malaria [48]. The intensity of clinical manifestation during complicated malaria varies
according to age and the intensity of transmission, and if not treated promptly, mortality is
high [40].

Figure 5. Plasmodium spp. intraerythrocytic cycle. Most antimalarial drugs target the asexual
erythrocytic stages (rings, throphozoites, and schyzonts).

Multiple antimalarial drugs are used, including chloroquine, mefloquine, pyrimethamine,
primaquine, and artemisinin derivatives [49] (Figure 6). Unfortunately, it is estimated that
malaria morbidity and mortality have increased since 2020 due to the convergence of mul-
tiple factors, such as COVID-19 and Ebola outbreaks, natural disasters, and drug resistance,
mainly to chloroquine and recently to artemisinin derivatives [44]. Malaria parasites have
developed immune evasion strategies. Therefore, it is essential to find new alternatives for
malaria control [42,44,50].
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Figure 6. Plasmodium spp. drug targets. Antimalarial drugs such as aryl amino alcohol (chloroquine,
mefloquine, primaquine), antifolate compounds (pyrimethamine), and artemisinin derivatives (arte-
sunate, artemether) target the asexual erythrocytic stages of the parasite. Mic micronemes. Rop,
rohptry. Gra, dense ganule. Api, apicoplast. Dva, digestive vacuole. Nuc, nucleus. Rib, ribosome. Mi,
mitochondrion. C, cytoplasm. Cem, cell membrane. Created with BioRender.com under license to
publish by Anacleto SJ.

2. Antimicrobial Peptide Classification

The need to categorize everything that is known has facilitated the management of
information in different settings, and chemical structures also have their own classification
according to the functional groups present in their chemical structures. However, peptides
are made up of a series of amino acids that are present in different functional groups
depending on their biological activities. According to various authors, AMPs can be cate-
gorized according to different features, such as their charges (cationic, anionic), biological
activities (antibacterial, antifungal, antiprotozoal, etc.), mechanisms of action, and even
the source from which they were isolated (either from natural sources or synthetically)
(Figure 7). A general form of classification is based on their physicochemical characteristics,
which can be divided into four main groups: (1) α-helices, (2) β-pleated sheets, (3) those
with mixed structures, and (4) those with atypical conformations [51–53]. The α helical
structure is characterized by coiling on itself through peptide bonds and creating a type of
tube. This conformation, in addition to providing amphipathic characteristics, allows it
to be easily inserted into the cell membrane, creating channels [54]. β-pleated sheets are
structures that fold back on themselves through N-H bonds of amino acids that conform
by forming hydrogen bonds with the C=O groups of the opposite amino acids. Mixed
structures can be present, within the same chain of amino acids, of the two conformations,
both helical and β-pleated sheets. Finally, the atypical structures present forms that do not
correspond to those mentioned above [55–57].
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Figure 7. Antimicrobial peptides classification and interaction.

3. Mechanisms of Interaction by AMPs

Currently, research on AMPs has constantly been increasing, together with new re-
search techniques such as bio-guided studies, in silico analysis, and synthesis, offering a
broad number of peptides that have been described and evaluated in different biological
models and clinical phases. To date, according to the Database of the Antimicrobial Activity
and Structure of Peptides, 19,398 have been described, 82.5% of which are synthetic, and
the rest have been isolated by natural sources, such as animals (75%), bacteria (12%), plants
(9%) and fungi (4%) [58]. The knowledge of their mechanisms of action is continually in-
creasing. It is noted that several peptides active against Apicomplexa parasites act directly
on components of the cell membrane and extracellular components and the mechanism of
surface membranes, mainly because AMPS are cationic and amphipathic molecules [59].
Most AMPs interfere with the correct functioning of the cytoplasmic membrane. With
the progress in the discovery of AMPs and the elucidation of their mechanisms of action,
researchers managed to understand different pathways by which they interact in both the
host and host cells. Once the AMPs enter the cell, they can interact with components of the
cytoplasm, altering the electrochemical balance as well as inhibiting metabolic processes es-
sential for the survival of the parasite, altering cellular homeostasis and essential processes
for cell replication [60].

AMPs’ mechanisms of action have been categorized into two main groups: those that
exert a direct effect on killing cells and those that modulate the immune response. The
first group is subdivided into two subgroups, those that kill directly by permeabilizing
the cell membrane due to hydrophobic and electrostatic interactions of the peptides, and
the second group, those peptides that kill by affecting the internal components of the cell
acting as metabolic inhibitors [60–63].

4. Peptides Active against Apicomplexan Parasites

4.1. Toxoplasma gondii

Regarding AMPs that can modulate the immune response, it has been shown in vivo
that HPRP-A1/A2 (amphipathic α-helical peptide) treatment induced a Th1/Tc1 response
and elicited proinflammatory cytokines in mice infected with T. gondii; it is the only peptide
with this type of mechanism of action in the parasite. These peptides affect the viability of
tachyzoites at low concentrations; in addition, their activities against gram-negative and
gram-positive bacteria and some pathogenic fungi have been reported [64]. A group of
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peptides that weaken the cell membrane, CA (2–8) M (1–18), lycosin-I, XYP1, XYP2, XYP3,
longicin and longicin P4, have been tested in in vitro models against T. gondii. Lycosin-I
was the most active, with an IC50 of 10 μM. However, other effects on the integrity of the
tachyzoites were reported, such as the aggregation of the parasites induced by longicin P4,
which in an in vivo model has managed to prolong the survival of mice for up to 11 days
compared to the control [64–70].

Venoms from invertebrates such as spiders, scorpions, amphibians, and some reptiles
are composed of different peptides, which in turn act mainly as modulators of ion channels
and have been widely investigated in the pharmacological field for different diseases such
as cancer and AIDS [71]. Some of these toxins have been evaluated against Toxoplasma [71];
however, peptides responsible for this activity have not been identified, although it is worth
continuing with this research to identify the active peptides and elucidate their mechanisms
of action. It should be noted that of the venoms and secretions evaluated, those obtained
from the spiders Ornitoctonus huwena and Chilobrachys jingzhao were active against T. gondii
tachyzoites at 3 μg/mL and increased the survival rate in vivo. There is only one study
reporting peptide efficacy against T. gondii tissue cysts. The venom of the scorpion Tityus
serrulatus was evaluated, and the Pep 1 peptide decreased the number of cerebral tissue
cysts in infected mice, although its mechanism of action is still unknown [72–74].

Peptides with interesting biological activities have also been detected in marine organ-
isms, as is the case of the conotoxin isolated from Conus californicus that affected tachyzoites
in concentrations from 10 nM; of all the peptides investigated, it showed the highest
activity [75].

Synthetic peptides represent an important component of known peptides to date,
many of which have been identified from natural sources. Of the five synthetic peptides
evaluated, Ac2-26 identified in human cells was able to reduce the parasite load from a
concentration of 5 μM. (Table 1) [76].

Table 1. AMPs with in vitro anti-Toxoplasma activity on tachyzoites.

AMP Name Type Source
Evaluated

Concentrations
Cytotoxicity

Activity and
Possible

Mechanism of
Action

IC50

Frog skin secretion
[71] ND

Phyllomedusa
distincta [Amphibia]

Corythomanti
greening [Amphibia]

25 μg/mL and
22 μg/mL

respectively

None in human
Fibroblasts Inhibits invasion ND

CA (2–8)
M(1–18) [65]

Cecropin/
melittin hybrid

peptide
Synthetic 5 μM None in human

fibroblasts

Reduces viability
Membrane

lytic activity
ND

Ac2-26 peptide
mimetic of Annexin

A1 [76]
Human peptide Synthetic 5 μM ND Decreases

proliferation rate ND

Lycosin-I [68] Linear peptide Lycosa singoriensis
[Arachnida] 20 μM

Cytotoxic at
34.69 μM
in human
fibroblasts

Invasion
and proliferation

inhibition.
Cell membrane

alteration

28 and 10.08 μM for
intracellular and

extracellular
tachyzoites,
respectively

Longicin [69] Cationic
Haemaphysalis

longicornis
[Arachnida]

50 μM ND

Reduces
proliferation. Cell

membrane
disruption

ND

ND [72] Venoms
Ornitoctonus huwena
Chilobrachys jingzhao

[Arachnida]
12.5 μg/mL Cytotoxic to

Hella cells
Proliferation and

invasion reduction ND

XYP1 [67] Cationic synthesized 2.5–40 μM
Low cytotoxicity at

20 μM in
human fibroblasts

Inhibition of
viability, invasion,
and proliferation.

Damage to
membrane

associated proteins
(HSP29)

38.79 μM

157



Antibiotics 2022, 11, 1658

Table 1. Cont.

AMP Name Type Source
Evaluated

Concentrations
Cytotoxicity

Activity and
Possible

Mechanism of
Action

IC50

cal14.1a [75] Conotoxin
Conus

californicus
[Gastropoda]

10–50 μM
Not detected up

to 50 μM in
Hep-2 cells

Affects viability
and

replication by
disrupting cell

membrane

ND

ND [73] Venom
Hemiscorpius

Lepturus
[Arachnida]

50 μg/mL
CC50 72.46

μg/mL (Vero
cells)

Reduces viability
and

invasion.
Probably

damaging ion
channels and

enzymatic
activity

39.06 μg/mL

Killer peptide
(KP) [77] Decapeptide Synthetic 25–200 μg/mL

Nontoxic to Vero
cells.

Genotoxic
effects were

reported

Reduces invasion
and proliferation.

Maybe
triggers an

apoptosis like cell
death

ND

Longicin P4 [70] ND
Haemaphysalis

Longicornis
[Arachnida]

50 μM Nontoxic up to
25 μM

Reduces
proliferation.

Induces
aggregation and

affects membrane
integrity

ND

HPRP-A1/A2
[64]

Cationic
peptide Synthetic 10–40 μg/mL

Nontoxic in
peritoneal

macrophages.

Reduces viability,
adhesion, and

invasion
ND

Sub6-B, Pep1,
Pep2a and Pep2b

[74]

Venom
fractions

Tityus
serrulatus

[Arachnida]
100 μg/mL

Nontoxic in
peritoneal

macrophages

Reduces invasion
and replication.

Disruption of cell
membrane

ND

ND: Not Determined.

4.2. Cryptosporidum spp.

AMPs that have been active in in vivo and in vitro evaluations against specific par-
asitic states of Cryptosporidium spp. are summarized in Table 2. Although human cryp-
tosporidiosis is mainly caused by two species, Cryptosporidium hominis and Cryptosporidium
parvum, AMP investigations against this parasite have specifically used C. parvum in both
its sporozoite and oocyst forms and through evaluations in cell cultures and in vivo. The
use of the meront phase has also been reported to determine the parasite load in these
investigations. Approximately 16 cationic peptides have been tested to determine their
anti-Cryptosporidium activity; three of them have been evaluated in more than one trial with
similar results, and even combined treatments have been carried out to improve activity, as
in the case of indolicidin, ranalexin, and magainin II. However, these combinations cannot
be effectively compared because the pharmacological parameters of IC50 are not reported,
and even in most of these evaluations, only 1 to 3 different concentrations up to 50 mM
were evaluated. Evaluating these AMPs at different concentrations to determine their IC50
values, as well as their average cytotoxicity is of great importance to continue their research.
Those with the best activity were the Buforin II and Magainin II peptides, which affected
approximately 99.8% of the parasites in vitro at a concentration of 10 μg/mL [78–85].
However, the coupling of the peptide octarginine and the antibiotic nitazoxanide showed
excellent results, lowering the IC50 value to 2.9 nM compared to the IC50 of nitozoanide
alone, which was 197 nM. Of all the peptides evaluated, this combination showed the best
results [86].
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In in vivo experiments, peptides, such as glucagon-like peptides, in a treatment of
50 μg/kg of weight in calves infected with C. parvum, managed to reduce the symptoms
of the infection, and eliminate the release of oocysts in the feces. Other peptides that
act by regulating the immune response, SA35, and SA40, were isolated from C. parvum.
These peptides were tested in mice infected and immunized with 5 μg of each peptide.
Evaluations of the parasite load generate specific IgA antibodies and reductions of up to
96% of all intestinal forms of the parasite (Table 2) [87,88]. To date, the efficacies of none
of these peptides have been demonstrated in clinical trials. However, it should not be
ignored the biological activities that they present in low concentrations, and the synergistic
effects that some reported peptides exert in combination with commercial antibiotics. The
search for new alternatives for the treatment of cryptosporidiosis should focus on not only
AMPs but also their combination with other active molecules, with the goal of attacking
the parasite by different mechanisms of action.

Table 2. Synthetic AMPs with in vitro anti-Cryptosporidium activity.

AMP Name Type
Evaluated

Concentrations
Cytotoxicity

Activity and Possible Mechanisms of
Action

Buforin II [85] α-Helical 20 μM None in
A549 cells.

Reduces sporozoites viability.
Cell membrane Disruption

Ranalexin [84] Cationic 64 μg/mL Non in
A549 cells.

Sporozoites growth suppression.
Cell membrane Disruption

Ranalexin,
Magainin II.

Indolicidin [82]

Cationic, helix
and

tridecapeptide
50 mM Non in

A549 cells

Sporozoites growth suppression.
Cell membrane damage by synergic

effect between peptide and
lipophilic antibiotics

Shiva-10 [89] Lytic peptide 10 μM ND Reduces sporozoite viability.
Membrane lytic effect

Cecropin P1,
magainin II,

ranalexin, and
indolicidin [83]

Cationic
peptides 50 μM ND

Reduction in the proliferation of schizonts.
Inhibition of

Na/H and Na/Ca2 exchanges in the cell
membrane

KFFKFFKFF and
IKFLKFLKFL [81]

Cationic
peptides 100 μg/mL ND Reduction in the viability of

sporozoites. Cell membrane disruption

SMAP-29,
BMAP-28, PG-1,

Bac-7 [80]

Helical
peptides 100 μg/mL ND

Strong cytotoxic effect on sporozoites.
Alterations in the glycoprotein of the apical

complex

Indolicidin,
Magainin II,

Ranalexin [79]

Cathionic
peptides 50 μM ND Reduction in merozoites proliferation

Octaarginine-6-
FAM-Nitazoanide
combination [86]

Cathionic
peptides 197 nM

No cytotoxic
effects in human

ileocecal
adenocarcinoma

cells

Reduction in trophozoites
and meronts replication

Lactoferrin B,
cathelicidin LL3,

indolicidin,
βdefens1in,

ß defensin 2. [90]

Cathionic peptides 10 μg/mL

Low cytotoxic
effect in
human

colorectal
adenocarcinoma

cells

Inhibition of
sporozoites

attachment and
invasion.

Transmembrane pore
formation

Buforin II,
Magainin II,

Lasalocid. [78]
Cathionic peptides 10 μg/mL ND

Reduction in oocysts
infectivity. Membrane

disruption

ND: Not determined. IC50 values were not established.
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4.3. Peptides Active against Plasmodium spp.

Peptides against Plasmodium have multiple mechanisms of action that cause decreases
in parasitemia (Table 3), and one of the predominant mechanisms is the interaction of
peptides with enzymes causing their inhibition and, consequently damage to the metabolic
pathways in which they participate. For example, for the maintenance and processing
of genetic material, peptides can inhibit the enzyme purine nucleoside phosphorylase of
P. falciparum, and the enzyme dihydrofolate reductase-thymidylate synthase, resulting in
the death of the parasite [91,92]. Another example of enzyme inhibition occurs during
the erythrocyte cycle, during the digestion of hemoglobin in the digestive vacuole for
protein biosynthesis and heme crystallization, a process that is catalyzed by enzymes such
as falcispainins that, if their function is inhibited, the parasite cannot obtain the amino
acids necessary for protein synthesis and therefore would die; this strategy is used by
certain peptides, such as CYS-IHL and CYS-cIHL, that are capable of inhibiting these
enzymes [93,94].

Table 3. AMPs with in vitro anti-Malarial activity.

AMP Name Type Source
Evaluated

Concentration
Cytotoxicity

Activity and Possible
Mechanisms of Action

IC50

Pep1 BM [91] ND Synthetic 20 μL ND
Inhibition of purine

nucleoside phosphorylase
in P. falciparum rings

16.14 μg/mL

JR21 [92] ND Synthetic 10 μM ND

Dihydrofolate reductase-
thymidylate synthase

inhibition in P. falciparum
rings

3.87 μM

CYS-IHL [94] Linear Synthetic 69.91 μM Noncytotoxic in human
liver carcinoma cell.

Hemoglobinase activity
inhibition in late P.

falciparum Trophozoites
27.55 μM

Kakeromamide B
[95] Cyclic

Moorea
producens

[Cyanobacteria]
11 μM Noncytotoxic in HEK293T

and HepG2 cells

Reduction in proliferation
of P. falciparum sexual

blood-stages and P. berghei
liver-stage. High affinity to

actin, sortilin and
subunit A of

glutamyl-tRNA
amide transferase

8.9 μM

[Gly]1-Pol-CP-
NH2
[96]

ND
Synthetic

derived from
Pol-CP-NH2

6.25 μM

Cytotoxic in
human mammary

adenocarcinoma, Hep G2,
SHSY-5Y, and SK-mel-147

Cell membrane disruption
in P. falciparum sporozoites ND

Crotamine [97,98] Cationic Crotalusdurissusterrificus
[Lepidosauria] 20 μM

No hemolytic activity in
human

erythrocytes

Peptide–membrane
interactions and H+

homeostasis disruption in
P. falciparum asexual blood

stages

1.87 μM

(L-cyclohexyl
alanin-D-

arginine) 3 [99]
ND Synthetic 59.16 ng/mL

No cytotoxic
effects in human
erythrocytes and

leukocytes

Chromatin compaction
and

mitochondrial membrane
disruption in P. falciparum

asexual blood stages

8.94 ng/mL

rR8-JR21 [92] ND Synthetic 13.22 ND

Dihydrofolate
reductase-thymidylate
synthase inhibition in P.

falciparum ring stages

1.53 μM

LZ1 [100] Linear peptide
Synthetic
derived

fromcathelicidin-BF

25 μM and
4 mg/kg ND

Blockade of ATP
production by selective
inhibition of pyruvate

kinase activity in P.
falciparum blood stages.

3.045 μM

Mtk-1 y Mtk-2
[101] Rich in proline Drosophila melanogaster

[Insecta] 50 μM
Hemolytic

activity in pig and mouse
(CD1) erythrocytes

Cell membrane disruption
in P. falciparum asexual

blood stages
ND

Stomoxyn [101] ND Lucilia sericata
[Insecta] 50 μM

Hemolytic
activity in

highest
concentrations in pig and
mouse (CD1) erythrocytes

Cell membrane disruption
in P. falciparum asexual

blood stages
ND
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Table 3. Cont.

AMP Name Type Source
Evaluated
Concentra-

tion
Cytotoxicity

Activity and Possible
Mechanisms of Action

IC50

CecA y CecB
[101]

Linear
cations

Galleria mellonella
[Insecta] 50 μM

Hemolytic
activity in

highest
concentrations in pig

and mouse (CD1)
erythrocytes

Cell membrane
disruption in P.

falciparum asexual blood
stages.

ND

[Arg]3-VmCT1-
NH2,

[Arg]7-VmCT1-
NH2
[102]

Synthetic 5 μM/L

Lower Cytotoxic effects
in MCF-7 human breast
epithelial cells, CC50 20

and 18 μM/L

Cell membrane
disruption in P.

gallinaceum sporozoites

0.57,
0.51 μM/L

VmCT1-NH2
[102]

Vaejovis
mexicanus [Arachnida] 5 μM/L

CC50 8.3 μM/L in
MCF-7 human breast

epithelial cells

Cell membrane
disruption in P.

gallinaceum sporozoites
0.49 μM/L

ND: not determined.

Peptide–membrane interactions and H+ homeostasis disruption in P. falciparum asex-
ual blood stages

Other targets of peptides are proteins and membranes, which, if damaged, can modify
the morphology of the parasite; however, not all peptides have parasiticidal effect, and
some only stop the development of Plasmodium spp., which is reflected in the slowed
kinetics of the life cycle [92,94–98].

In addition to reducing parasitemia, some peptides are capable of modifying the
immune response in the host by reducing the overproduction of proinflammatory cytokines
and, as a consequence, modulating damage to organs that are severely affected, such as the
liver [99].

Nevertheless, more information is needed to elucidate the mechanisms of action of
antimicrobial peptides against Plasmodium spp.

5. Concluding Remarks and Future Research Directions

Antimicrobial peptides have been described in many species, including fungi, plants,
insects, and humans (allowing access to an endless number of possible peptides with
diverse biological activities), and are currently presented as a therapeutic solution to control
different pathogenic microorganisms. Microorganisms that cause diseases in humans are
constantly evolving, which represents a challenge in the pursuit of effective treatments
against these pathogens. Some characteristics that make peptides attractive as potential
drugs are that they have been evolving for almost the same amount of time as the species
that produce them, and their effects on the control of microorganisms are very remarkable.
Some peptides are being used in experimental phases, and others are already marketed,
e.g., peptides against fungal agents such as Candida albicans, Cryptococcus neoformans, and
Fusarium oxysporum. Some peptides have been developed for topical application against
human papilloma virus, and others have been developed against protozoa and nematodes,
gram-negative bacteria, tumors, and as neuroprotectors.

Endogenous bioactive peptides can be produced in different cell types, such as neural
cells, immune cells, or glands, while exogenous peptides can be obtained from nutrients,
insects, nematodes, or marine organisms. Cecropin is one of the most explored insect
peptides that can destroy cell membranes and inhibit proline uptake.

Unlike other parasites, Apicomplexans have complex life cycles comprised of different
stages characterized by rapid replication, which enables adaptation to drug treatment.
The Apicomplexa invasion process involves secretory organelles housing proteins that
allow host-cell entrance and the development of an intracellular compartment in which
the parasites reproduce asexually. As intracellular organisms, their nutritional needs rely
on biosynthetic pathways or salvaging metabolites from their host [103]. Apicomplexa
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drug targets include calcium-dependent protein kinases, mitochondrial electron trans-
port chain, proteins secretion pathways, type II fatty acid synthesis, DNA synthesis and
replication, and, DNA expression, among others [104]. Most of the peptides reviewed in
this text produce the disruption of parasite cell membranes, in contrast to conventional
chemotherapeutic drugs, which act on precise targets such as DNA or specific enzymes.
Nonetheless, plasma membrane disruption, produces fast depolarization triggering protein
and DNA/RNA inhibition synthesis, which can lead to parasite death. Some peptides are
rich in amino acids, such as tryptophan and lysine, that might have an effect on anionic
biological membranes, producing pores, which allow peptides to distribute into internal
membranes and organelles [64].

Unlike Apicomplexan, hemoflagellate protozoa, such as Trypanosoma and Leishmania,
have less complex life cycles. Various research groups have been dedicated to the discovery
and structural elucidation of novel peptides against these parasites since the early 90s.
Extracellular forms (promastigote and trypomastigote) are the most common stages used
for the screening of peptides’ activity [105]. The antiprotozoal activity is supposed to
occur by membrane disruption, apoptosis, or by immunomodulatory responses. In vivo
assessments are considerably underexplored, due to their rapid degradation by endogenous
proteases [105]. It seems that peptide-based antiprotozoal drug development, presents
several challenges related to the complex life cycles. Therefore, computational models and
tools for the prediction of peptide activity are urgently needed. However, peptides have
some advantages over traditional drugs, such as slower emergence of resistance [106].

There are some issues to consider while scaling up peptide design. Peptides have
various limitations that could hinder their anti-Apicomplexa therapeutic use. They have
unfavorable plasma stability, are unable to cross the cell membrane to target intracellu-
lar targets, degrade easily, and have poor penetration of the intestinal mucosa; thus, it
can be assumed that they are not good candidates to treat intracellular parasites. [107].
Nonetheless, the results obtained so far show that they can be a good alternative to control
these parasites. It must be taken into consideration, that novel peptides must easily reach
intracellular targets with little or no toxicity to mammalian cells. To improve these disad-
vantages, encapsulation into a micro- or nanoparticle, can be achieved, as well as in silico
sequence-based prediction of cell-penetrating and toxicity. Penetratin-like peptides bind to
glycosaminoglycans at the cell surface. Natural DNA-binding peptides can be the source
for designing cell-penetrating peptides, such as those rich in lysine, or arginine [107].

Although there are currently some pharmacological alternatives for the control of
Apicomplexan parasites, these are sometimes inefficient, especially due to resistance mecha-
nisms and severe side effects, and they do not act against all parasite stages and sometimes
restrict access to some intracellular locations. Based upon the abovementioned results,
it seems that synthetic peptides, as well as those derived from natural sources, could
be promising alternatives for the treatment of infectious diseases. It is necessary to de-
velop new anti-Apicomplexan compounds combining drug research pathways, such as
in silico rational drug design and bio-guided natural substance studies, to identify new
molecules that might be able to act directly in the parasites or indirectly by activating the
host immune system.

As reported in the literature, peptides show a broad antimicrobial spectrum; therefore,
it would be recommended to explore their synergistic ability in combination with those
drugs in which resistance is reported, their capacity to decrease or increase the adverse
effects of currently used drugs, and their distribution in the parasite and in the host
cell. Genetic engineering or chemical modification of these peptides to improve their
functional properties would also be recommended. There is a high potential for the use of
antimicrobial peptides, and more research in this field can lead to promising results that
can have considerable effects on the control of human Apicomplexan parasites.

Author Contributions: Conceptualization: N.R.-F.; investigation: J.A.-S. and B.C.-T.; resources:
T.d.J.L.-P. and M.R.-L.; writing—original draft preparation: all authors; writing—review and editing:

162



Antibiotics 2022, 11, 1658

all authors; visualization: all authors; supervision: all authors; project administration: N.R.-F.; funding
acquisition: N.R.-F. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Dirección General de Asuntos del Personal Académico
(DGAPA) Programa de Apoyo a Proyectos de Investigación e Innovación Tecnológica (PAIIT)-
Universidad Nacional Autónoma de México (UNAM) proyect IN200721.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Cummings, R.D.; Hokke, C.H.; Haslam, S.M. Parasitic infections. In Essentials of Glycobiology, 4th ed.; Spring Harbor Laboratory
Press: Cold Spring Harbor, NY, USA, 2022.

2. Memariani, H.; Memariani, M. Melittin as a promising anti-protozoan peptide: Current knowledge and future prospects. AMB
Express 2021, 11, 69. [CrossRef] [PubMed]

3. Harding, C.R.; Frischknecht, F. The Riveting Cellular Structures of Apicomplexan Parasites. Trends Parasitol. 2020, 36, 979–991.
[CrossRef] [PubMed]

4. Chan, K.; Tusting, L.S.; Bottomley, C.; Saito, K.; Djouaka, R.; Lines, J. Malaria transmission and prevalence in rice-growing versus
non-rice-growing villages in Africa: A systematic review and meta-analysis. Lancet Planet. Health 2022, 6, e257–e269. [CrossRef]

5. Shammaa, A.M.; Powell, T.G.; Benmerzouga, I. Adverse outcomes associated with the treatment of Toxoplasma infections. Sci. Rep.
2021, 11, 1035. [CrossRef] [PubMed]

6. Gargala, G. Drug treatment and novel drug target against Cryptosporidium. Parasite 2008, 15, 275–281. [CrossRef]
7. Alven, S.; Aderibigbe, B. Combination Therapy Strategies for the Treatment of Malaria. Molecules 2019, 24, 3601. [CrossRef]
8. Zhu, Y.; Hao, W.; Wang, X.; Ouyang, J.; Deng, X.; Yu, H.; Wang, Y. Antimicrobial peptides, conventional antibiotics, and their

synergistic utility for the treatment of drug-resistant infections. Med. Res. Rev. 2022, 42, 1377–1422. [CrossRef]
9. Erdem Büyükkiraz, M.; Kesmen, Z. Antimicrobial peptides (AMPs): A promising class of antimicrobial compounds. J. Appl.

Microbiol. 2022, 132, 1573–1596. [CrossRef]
10. Mahlapuu, M.; Håkansson, J.; Ringstad, L.; Björn, C. Antimicrobial peptides: An emerging category of therapeutic agents. Front.

Cell. Infect. 2016, 6, 194. [CrossRef]
11. Cardoso, P.; Glossop, H.; Meikle, T.G.; Aburto-Medina, A.; Conn, C.E.; Sarojini, V.; Valery, C. Molecular engineering of

antimicrobial peptides: Microbial targets, peptide motifs and translation opportunities. Biophys. Rev. 2021, 13, 35–69. [CrossRef]
12. Lemaitre, B.; Nicolas, E.; Michaut, L.; Reichhart, J.-M.; Hoffmann, J.A. The Dorsoventral Regulatory Gene Cassette spät-

zle/Toll/cactus Controls the Potent Antifungal Response in Drosophila Adults. Cell 1996, 86, 973–983. [CrossRef]
13. Kardani, K.; Bolhassani, A. Antimicrobial/anticancer peptides: Bioactive molecules and therapeutic agents. Immunotherapy 2021,

13, 669–684. [CrossRef]
14. Guryanova, S.V.; Ovchinnikova, T.V. Immunomodulatory and allergenic properties of antimicrobial peptides. Int. J. Mol. Sci.

2022, 23, 2499. [CrossRef]
15. Nogrado, K.; Adisakwattana, P.; Reamtong, O. Antimicrobial peptides: On future antiprotozoal and anthelminthic applications.

Acta. Trop. 2022, 235, 106665. [CrossRef] [PubMed]
16. Fry, D.E. Antimicrobial peptides. Surg. Infect. 2018, 19, 804–811. [CrossRef] [PubMed]
17. Zhang, C.; Yang, M. Antimicrobial Peptides: From Design to Clinical Application. Antibiotics 2022, 11, 349. [CrossRef] [PubMed]
18. Aguirre, A.A.; Longcore, T.; Barbieri, M.; Dabritz, H.; Hill, D.; Klein, P.N.; Lepczyk, C.; Lilly, E.L.; McLeod, R.; Milcarsky, J.; et al.

The One Health Approach to Toxoplasmosis: Epidemiology, Control, and Prevention Strategies. Ecohealth 2019, 16, 378–390.
[CrossRef] [PubMed]

19. Cossu, G.; Preti, A.; Gyppaz, D.; Gureje, O.; Carta, M.G. Association between toxoplasmosis and bipolar disorder: A systematic
review and meta-analysis. J. Psychiatr. Res. 2022, 153, 284–291. [CrossRef]

20. Hajimohammadi, B.; Ahmadian, S.; Firoozi, Z.; Askari, M.; Mohammadi, M.; Eslami, G.; Askari, V.; Loni, E.; Barzegar-Bafrouei,
R.; Boozhmehrani, M.J. A Meta-Analysis of the Prevalence of Toxoplasmosis in Livestock and Poultry Worldwide. EcoHealth 2022,
19, 55–74. [CrossRef]

21. De Barros, R.A.M.; Torrecilhas, A.C.; Marciano, M.A.M.; Mazuz, M.L.; Pereira-Chioccola, V.L.; Fux, B. Toxoplasmosis in Human
and Animals Around the World. Diagnosis and Perspectives in the One Health Approach. Acta Trop. 2022, 231, 106432. [CrossRef]

22. Molan, A.; Nosaka, K.; Hunter, M.; Wang, W. Global status of Toxoplasma gondii infection: Systematic review and prevalence
snapshots. Trop. Biomed. 2019, 36, 898–925. [PubMed]

23. Robinson, E.; de Valk, H.; Villena, I.; Le Strat, Y.; Tourdjman, M. National perinatal survey demonstrates a decreasing seropreva-
lence of Toxoplasma gondii infection among pregnant women in France, 1995 to 2016: Impact for screening policy. Eurosurveillance
2021, 26, 1900710. [CrossRef] [PubMed]

163



Antibiotics 2022, 11, 1658

24. Rostami, A.; Riahi, S.M.; Contopoulos-Ioannidis, D.G.; Gamble, H.R.; Fakhri, Y.; Shiadeh, M.N.; Foroutan, M.; Behniafar, H.;
Taghipour, A.; Maldonado, Y.A.; et al. Acute Toxoplasma infection in pregnant women worldwide: A systematic review and
meta-analysis. PLoS Negl. Trop. Dis. 2019, 13, e0007807. [CrossRef] [PubMed]

25. López-Fabal, F.; Gómez-Garcés, J.L. Marcadores serológicos de gestantes españolas e inmigrantes en un área del sur de Madrid
durante el periodo 2007–2010. Rev. Esp. Quimioter. 2013, 26, 108–111. [PubMed]

26. Dubey, J.P. Outbreaks of clinical toxoplasmosis in humans: Five decades of personal experience, perspectives and lessons learned.
Parasites Vectors 2021, 14, 263. [CrossRef]

27. McLeod, R.; Cohen, W.; Dovgin, S.; Finkelstein, L.; Boyer, K.M. Human toxoplasma infection. In Toxoplasma Gondii; Elsevier:
Amsterdam, The Netherlands, 2020; pp. 117–227.

28. Attias, M.; Teixeira, D.E.; Benchimol, M.; Vommaro, R.C.; Crepaldi, P.H.; De Souza, W. The life-cycle of Toxoplasma gondii reviewed
using animations. Parasites Vectors 2020, 13, 588. [CrossRef]

29. Dubey, J.P. The history and life cycle of Toxoplasma gondii. In Toxoplasma Gondii; Elsevier: Amsterdam, The Netherlands, 2020;
pp. 1–19.

30. Montazeri, M.; Mehrzadi, S.; Sharif, M.; Sarvi, S.; Tanzifi, A.; Aghayan, S.A.; Daryani, A. Drug Resistance in Toxoplasma gondii.
Front. Microbiol. 2018, 9, 2587. [CrossRef]

31. Dunay Ildiko, R.; Gajurel, K.; Dhakal, R.; Liesenfeld, O.; Montoya Jose, G. Treatment of Toxoplasmosis: Historical Perspective,
Animal Models, and Current Clinical Practice. Clin. Microbiol. Rev. 2018, 31, e00057-17. [CrossRef]

32. Adkins, P.R.F. Cryptosporidiosis. Vet. Clin. N. Am. Food Anim. 2022, 38, 121–131. [CrossRef]
33. Feng, Y.; Ryan, U.M.; Xiao, L. Genetic Diversity and Population Structure of Cryptosporidium. Trends Parasitol. 2018, 34, 997–1011.

[CrossRef]
34. Korpe, P.S.; Valencia, C.; Haque, R.; Mahfuz, M.; McGrath, M.; Houpt, E.; Kosek, M.; McCormick, B.J.J.; Penataro Yori, P.; Babji, S.;

et al. Epidemiology and Risk Factors for Cryptosporidiosis in Children From 8 Low-income Sites: Results From the MAL-ED
Study. Clin. Infect. Dis. 2018, 67, 1660–1669. [CrossRef] [PubMed]

35. Ahmadpour, E.; Safarpour, H.; Xiao, L.; Zarean, M.; Hatam-Nahavandi, K.; Barac, A.; Picot, S.; Rahimi, M.T.; Rubino, S.; Mahami-
Oskouei, M.; et al. Cryptosporidiosis in HIV-positive patients and related risk factors: A systematic review and meta-analysis.
Parasite 2020, 27, 27. [CrossRef] [PubMed]

36. Ryan, U.; Hill, K.; Deere, D. Review of generic screening level assumptions for quantitative microbial risk assessment (QMRA)
for estimating public health risks from Australian drinking water sources contaminated with Cryptosporidium by recreational
activities. Water. Res. 2022, 220, 118659. [CrossRef] [PubMed]

37. Urrea-Quezada, A.; González-Díaz, M.; Villegas-Gómez, I.; Durazo, M.; Hernández, J.; Xiao, L.; Valenzuela, O. Clinical manifesta-
tions of cryptosporidiosis and identification of a new Cryptosporidium subtype in patients from Sonora, Mexico. J. Pediatr. Infect.
Dis. 2018, 37, e136–e138. [CrossRef] [PubMed]

38. Guérin, A.; Striepen, B. The Biology of the Intestinal Intracellular Parasite Cryptosporidium. Cell Host Microbe 2020, 28, 509–515.
[CrossRef]

39. English, E.D.; Guérin, A.; Tandel, J.; Striepen, B. Live imaging of the Cryptosporidium parvum life cycle reveals direct development
of male and female gametes from type I meronts. PLoS Biol. 2022, 20, e3001604. [CrossRef]

40. Tandel, J.; English, E.D.; Sateriale, A.; Gullicksrud, J.A.; Beiting, D.P.; Sullivan, M.C.; Pinkston, B.; Striepen, B. Life cycle
progression and sexual development of the Apicomplexan parasite Cryptosporidium parvum. Nat. Microbiol. 2019, 4, 2226–2236.
[CrossRef]

41. Borowski, H.; Thompson, R.C.A.; Armstrong, T.; Clode, P.L. Morphological characterization of Cryptosporidium parvum life-cycle
stages in an in vitro model system. Parasitology 2010, 137, 13–26. [CrossRef]

42. WHO. World Malaria Report 2021. Available online: https://www.who.int/publications/i/item/9789240040496 (accessed on 26
September 2022).

43. Su, X.-z.; Lane, K.D.; Xia, L.; Sá, J.M.; Wellems, T.E. Plasmodium Genomics and Genetics: New Insights into Malaria Pathogenesis,
Drug Resistance, Epidemiology, and Evolution. Clin. Microbiol. Rev. 2019, 32, e00019-19. [CrossRef]

44. Ashley, E.A.; Pyae Phyo, A.; Woodrow, C.J. Malaria. Lancet 2018, 391, 1608–1621. [CrossRef]
45. Sinnis, P.; Zavala, F. The skin: Where malaria infection and the host immune response begin. Semin. Immunopathol. 2012, 34,

787–792. [CrossRef] [PubMed]
46. Drahansky, M. Liveness Detection in Biometrics. Available online: https://www.intechopen.com/chapters/17746 (accessed on

26 September 2022).
47. Abugri, J.; Ayariga, J.; Sunwiale, S.S.; Wezena, C.A.; Gyamfi, J.A.; Adu-Frimpong, M.; Agongo, G.; Dongdem, J.T.; Abugri, D.;

Dinko, B. Targeting the Plasmodium falciparum proteome and organelles for potential antimalarial drug candidates. Heliyon 2022,
8, e10390. [CrossRef] [PubMed]

48. Trampuz, A.; Jereb, M.; Muzlovic, I.; Prabhu, R.M. Clinical review: Severe malaria. Crit. Care Med. 2003, 7, 315. [CrossRef]
49. Schofield, L.; Grau, G.E. Immunological processes in malaria pathogenesis. Nat. Rev. Immunol. 2005, 5, 722–735. [CrossRef]
50. Siddiqui, F.A.; Liang, X.; Cui, L. Plasmodium falciparum resistance to ACTs: Emergence, mechanisms, and outlook. Int. J. Parasitol.

Drugs Drug Resist. 2021, 16, 102–118. [CrossRef]
51. Hernández-Aristizábal, Antimicrobial Peptides with Antibacterial Activity against Vancomycin-Resistant Staphylococcus aureus

Strains: Classification, Structures, and Mechanisms of Action. Int. J. Mol. Sci. 2021, 22, 7927. [CrossRef] [PubMed]

164



Antibiotics 2022, 11, 1658

52. Luong, H.X.; Thanh, T.T.; Tran, T.H. Antimicrobial peptides—Advances in development of therapeutic applications. Life Sci. 2020,
260, 118407. [CrossRef]

53. Lima, A.M.; Azevedo, M.I.G.; Sousa, L.M.; Oliveira, N.S.; Andrade, C.R.; Freitas, C.D.T.; Souza, P.F.N. Plant antimicrobial peptides:
An overview about classification, toxicity and clinical applications. Int. J. Biol. Macromol. 2022, 214, 10–21. [CrossRef]

54. Böhmová, E.; Machová, D.; Pechar, M.; Pola, R.; Venclíková, K.; Janoušková, O.; Etrych, T. Cell-Penetrating peptides: A useful
tool for the delivery of various cargoes into cells. Physiol. Res. 2018, 67, S267–S279. [CrossRef]

55. Huan, Y.; Kong, Q.; Mou, H.; Yi, H. Antimicrobial peptides: Classification, design, application and research progress in multiple
fields. Front. Microbiol. 2020, 11, 2559. [CrossRef]

56. Lee, H.-T.; Lee, C.-C.; Yang, J.-R.; Lai, J.Z.C.; Chang, K.Y. A large-scale structural classification of antimicrobial peptides. Biomed.
Res. Int. 2015, 2015, 475062. [CrossRef] [PubMed]

57. Hafeez, A.; Jiant, X.; Bergen, P.; Zhu, Y. Antimicrobial Peptides: An Update on Classifications and Databases. Int. J. Mol. Sci. 2021,
22, 11691. [CrossRef] [PubMed]

58. Pirtskhalava, M.; Amstrong, A.A.; Grigolava, M.; Chubinidze, M.; Alimbarashvili, E.; Vishnepolsky, B.; Gabrielian, A.; Rosenthal,
A.; Hurt, D.E.; Tartakovsky, M. DBAASP v3: Database of antimicrobial/cytotoxic activity and structure of peptides as a resource
for development of new therapeutics. Nucleic Acids Res. 2021, 49, D288–D297. [CrossRef] [PubMed]

59. Straub, K.W.; Cheng, S.J.; Sohn, C.S.; Bradley, P.J. Novel components of the Apicomplexan moving junction reveal conserved and
coccidia-restricted elements. Cell. Microbiol. 2009, 11, 590–603. [CrossRef]

60. Sabiá Júnior, E.F.; Menezes, L.F.S.; de Araújo, I.F.S.; Schwartz, E.F. Natural occurrence in venomous arthropods of antimicrobial
peptides active against protozoan parasites. Toxins 2019, 11, 563. [CrossRef]

61. Brogden, K.A. Antimicrobial peptides: Pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbiol. 2005, 3, 238–250.
[CrossRef]

62. Kumar, P.; Kizhakkedathu, J.; Straus, S. Antimicrobial Peptides: Diversity, Mechanism of Action and Strategies to Improve the
Activity and Biocompatibility In Vivo. Biomolecules 2018, 8, 4. [CrossRef]

63. Raheem, N.; Straus, S.K. Mechanisms of action for antimicrobial peptides with antibacterial and antibiofilm functions. Front.
Microbiol. 2019, 10, 2866. [CrossRef]

64. Liu, R.; Ni, Y.; Song, J.; Xu, Z.; Qiu, J.; Wang, L.; Zhu, Y.; Huang, Y.; Ji, M.; Chen, Y. Research on the effect and mechanism of
antimicrobial peptides HPRP-A1/A2 work against Toxoplasma gondii infection. Parasite Immunol. 2019, 41, e12619. [CrossRef]

65. Seeber, F. An enzyme-release assay for the assessment of the lytic activities of complement or antimicrobial peptides on
extracellular Toxoplasma gondii. J. Microbiol. Methods 2000, 39, 189–196. [CrossRef]

66. Shin, I.S.; Seo, C.S.; Lee, M.Y.; Ha, H.K.; Huh, J.I.; Shin, H.K. In vitro and in vivo evaluation of the genotoxicity of Gumiganghwal-
tang, a traditional herbal prescription. J. Ethnopharmacol. 2012, 141, 350–356. [CrossRef] [PubMed]

67. Liu, Y.; Tang, Y.; Tang, X.; Wu, M.; Hou, S.; Liu, X.; Li, J.; Deng, M.; Huang, S.; Jiang, L. Anti-Toxoplasma gondii Effects of a Novel
Spider Peptide XYP1 In Vitro and In Vivo. Biomedicines 2021, 9, 934. [CrossRef] [PubMed]

68. Tang, Y.; Hou, S.; Li, X.; Wu, M.; Ma, B.; Wang, Z.; Jiang, J.; Deng, M.; Duan, Z.; Tang, X.; et al. Anti-Parasitic effect on Toxoplasma
gondii induced by a spider peptide lycosin-I. Exp. Parasitol. 2019, 198, 17–25. [CrossRef] [PubMed]

69. Tanaka, T.; Maeda, H.; Galay, R.L.; Boldbattar, D.; Umemiya-Shirafuji, R.; Suzuki, H.; Xuan, X.; Tsuji, N.; Fujisaki, K. Tick longicin
implicated in the arthropod transmission of Toxoplasma gondii. J. Vet. Sci. Technol. 2012, 3, 3633–3640. [CrossRef]

70. Tanaka, T.; Maeda, H.; Matsuo, T.; Boldbattar, D.; Umemiya-Shirafuji, R.; Kume, A.; Suzuki, H.; Xuan, X.; Tsuji, N.; Fujisaki,
K. Parasiticidal activity of Haemaphysalis longicornis longicin P4 peptide against Toxoplasma gondii. Peptides 2012, 34, 242–250.
[CrossRef]

71. Gustavo Tempone, A.; de Souza Carvalho Melhem, M.; Oliveira Prado, F.; Motoie, G.; Mitsuyoshi Hiramoto, R.; Maria Antoniazzi,
M.; Fernando Baptista Haddad, C.; Jared, C. Amphibian secretions for drug discovery studies: A search for new antiparasitic and
antifungal compounds. Lett. Drug Des. Discov. 2007, 4, 67–73. [CrossRef]

72. Hou, S.; Liu, Y.; Tang, Y.; Wu, M.; Guan, J.; Li, X.; Wang, Z.; Jiang, J.; Deng, M.; Duan, Z. Anti-Toxoplasma gondii effect of two spider
venoms in vitro and in vivo. Toxicon 2019, 166, 9–14. [CrossRef]

73. Khaleghi Rostamkolaie, L.; Hamidinejat, H.; Razi Jalali, M.H.; Jafari, H.; Najafzadeh Varzi, H.; Seifi Abadshapouri, M.R. In vitro
therapeutic effect of Hemiscorpius lepturus venom on tachyzoites of Toxoplasma gondii. J. Parasit. Dis. 2019, 43, 472–478. [CrossRef]

74. De Assis, D.R.R.; Pimentel, P.M.d.O.; Dos Reis, P.V.M.; Rabelo, R.A.N.; Vitor, R.W.A.; Cordeiro, M.d.N.; Felicori, L.F.; Olórtegui,
C.D.C.; Resende, J.M.; Teixeira, M.M. Tityus Serrulatus (Scorpion): From the Crude Venom to the Construction of Synthetic
Peptides and Their Possible Therapeutic Application Against Toxoplasma gondii Infection. Front. Cell. Infect. Microbiol. 2021, 11,
706618. [CrossRef]

75. De León-Nava, M.A.; Romero-Núñez, E.; Luna-Nophal, A.; Bernáldez-Sarabia, J.; Sánchez-Campos, L.N.; Licea-Navarro, A.F.;
Morales-Montor, J.; Muñiz-Hernández, S. In vitro effect of the synthetic cal14.1a conotoxin, derived from Conus californicus, on
the human parasite Toxoplasma gondii. Mar. Drugs 2016, 14, 66. [CrossRef]

76. De Oliveira Cardoso, M.F.; Moreli, J.B.; Gomes, A.O.; de Freitas Zanon, C.; Silva, A.E.; Paulesu, L.R.; Ietta, F.; Mineo, J.R.; Ferro,
E.A.; Oliani, S.M. Annexin A1 peptide is able to induce an anti-parasitic effect in human placental explants infected by Toxoplasma
gondii. Microb. Pathog. 2018, 123, 153–161. [CrossRef] [PubMed]

77. Giovati, L.; Santinoli, C.; Mangia, C.; Vismarra, A.; Belletti, S.; ’Adda, T.; Fumarola, C.; Ciociola, T.; Bacci, C.; Magliani, W. Novel
activity of a synthetic decapeptide against Toxoplasma gondii tachyzoites. Front. Microbiol. 2018, 9, 753. [CrossRef] [PubMed]

165



Antibiotics 2022, 11, 1658

78. Giacometti, A.; Cirioni, O.; Del Prete, M.S.; Barchiesi, F.; Scalise, G. Short-term exposure to membrane-active antibiotics inhibits
Cryptosporidium parvum infection in cell culture. Antimicrob. Agents Chemother. 2000, 44, 3473–3475. [CrossRef]

79. Giacometti, A.; Cirioni, O.; Barchiesi, F.; Caselli, F.; Scalise, G. In vitro activity of polycationic peptides against Cryptosporidium
parvum, Pneumocystis carinii and yeast clinical isolates. J. Antimicrob. Chemother. 1999, 44, 403–406. [CrossRef] [PubMed]

80. Giacometti, A.; Cirioni, O.; Del Prete, M.S.; Skerlavaj, B.; Circo, R.; Zanetti, M.; Scalise, G. In vitro effect on Cryptosporidium parvum
of short-term exposure to cathelicidin peptides. J. Antimicrob. Chemother. 2003, 51, 843–847. [CrossRef]

81. Giacometti, A.; Cirioni, O.; Kamysz, W.; Kasprzykowski, F.; Barchiesi, F.; Del Prete, M.S.; Maćkiewicz, Z.; Scalise, G. In vitro effect
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Abstract: Nature’s way for bioactive peptides is to provide them with several related functions and
the ability to cooperate in performing their job. Natural cell-penetrating peptides (CPP), such as
penetratins, inspired the design of multifunctional constructs with CPP ability. This review focuses
on known and novel peptides that can easily reach intracellular targets with little or no toxicity to
mammalian cells. All peptide candidates were evaluated and ranked according to the predictions
of low toxicity to mammalian cells and broad-spectrum activity. The final set of the 20 best peptide
candidates contains the peptides optimized for cell-penetrating, antimicrobial, anticancer, antiviral,
antifungal, and anti-inflammatory activity. Their predicted features are intrinsic disorder and the
ability to acquire an amphipathic structure upon contact with membranes or nucleic acids. In
conclusion, the review argues for exploring wide-spectrum multifunctionality for novel nontoxic
hybrids with cell-penetrating peptides.

Keywords: amphipathic peptides; multifunctional; design; penetratins; antimicrobial; antiviral;
anticancer; anti-inflammatory; cell-penetrating; non-toxic

1. Introduction

Bioactive peptides are all around us, including host defense peptides (HFD) in our
bodies. We can regard them as templates developed by natural evolution that are lead
compounds for creating commercial products or drugs. Various chemical modifications
are employed to increase their stability for different applications. Bioactive peptides are
often multifunctional. Some are hidden within proteins and liberated to perform their
functions only when needed. Others can be designed in silico by combining several
shorter peptides. In any case, there is a fast-growing field of design and applications for
peptides that may have multifaceted performance. Such candidate therapeutics may help
treat complex diseases often associated with opportunistic infections. Dual antibacterial
and anticancer activity has been frequently observed [1–6]. For instance, wide-range
antibacterial peptide aurein 1.2 exhibits high activity against 52 cancer cell lines [7]. Another
nontoxic antimicrobial peptide, buforin IIb, is active against 60 human tumor cell lines [8].
The bimodal function can encompass antimicrobial and anti-inflammatory activity [9–11].
Hilchie et al. [9] mention 18 biological activities of cationic host defense peptides and
their synthetic derivatives. In their 2019 review [12], Hilchie et al. stressed that “cationic
amphipathic peptides may exhibit any combination of antimicrobial, anticancer, or immune-
modulatory properties”.

Regarding antimicrobial performance, antifungal and antiviral activity are of particular
interest due to difficulties in the development of safe, low molecular weight antibiotics
against such targets [13–17]. The penetration inside cells also belongs to the coveted
multifunctional property, firstly for the ability of cell-penetrating peptides (CPP) to interact
with the cellular membrane in a non-invasive manner [18,19], and secondly for acting on
hard-to-reach intracellular targets [20,21].

Current algorithms for predicting the activity of multifunctional peptides have limited
accuracy. However, they are still helpful indicators of which natural peptides or in silico
constructs are promising for much more expensive verifications in vitro and in vivo. A
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plethora of user-friendly servers has appeared during recent years for sequence-based
prediction of cell-penetrating (CPP), antimicrobial (AMP), anticancer (ACP), antiviral
(AVP), antifungal (AFP), and anti-inflammatory (AIP) peptides [22–35]. An older server by
Hwang et al. [36] can be used to predict DNA binding. A valuable feature is when servers
allow for designing novel peptides with improved function [35] or decreased toxicity [37].
The goal of combining all six activities (CPP, AMP, ACP, AVP, AFP, and AIP) in a single
peptide construct is possible, but two caveats should be considered. We do not want
to invest time and money into examining strongly toxic peptides. Fortunately, in silico
prediction by dedicated servers for toxicity [37–39] and hemolytic activity [40] can be used
to prune designed candidates with high predicted hemolytic activity or toxicity to healthy
human cells. Secondly, all predictions are questionable in the absence of experimental
validation. Hence, whenever possible, we must compare predictions with observations to
obtain insight into the reliability of employed “in silico” expectations.

We shall describe in this review several classes of peptides that have confirmed or
predicted high multifunctional potential. Our approach is to start with some natural or
artificial peptides with proven cell-transduction efficiency. It is the parent peptide for
in silico exploration on how it can be modified or fused to other bioactive peptides for
acquiring multifunctional activity without losing its cell-penetrating ability. Such peptides
have a better chance of reaching intracellular pathogens that are difficult to eradicate with
conventional antibiotics.

Regarding predictions, there are several additional caveats to using publicly accessible
web servers for predicting sequence-based functionality for a peptide. The most important
one is reproducibility. Free assistance to the scientific community via such web servers is
never cost-free for those who maintain them. Suppose larger organizations up to the state
or international level are not involved in maintaining long-term reproducibility. In that
case, the half-life of servers for scientific calculations is measured in years, not decades.
The most severe reproducibility problem is when the server’s output (score) is different
for each submission of an identical peptide. That may happen when recent algorithms are
still riddled with bugs; although, their link is in the public domain and the description is
published in a high-impact journal. The case example is the ToxIBTL server for predicting
peptide toxicity [41].

Different artificial intelligence algorithms are becoming ever more popular in con-
structing predictive algorithms. However, most suffer from well-known weaknesses. They
are essentially black boxes containing some rules learned during the training procedure.
There is no easy way to discover and formulate these rules, however useful they may be in
raising the prediction accuracy. Overly intensive training does not help either because it
can decrease the performance when the AI algorithm is presented with the testing dataset,
which differs in some properties from the training dataset.

When large enough datasets of non-redundant and non-homologous peptides are
collected, one can separate the training and testing datasets by choosing some compromise
for the cut-off in similarity among these datasets. It is an excellent practice when several
benchmarking datasets are used for testing. However, the proper training procedure should
be such that testing datasets are never examined during the training procedure. Tests with
the benchmark datasets should be done only once. Frequent jackknife tests of the training
dataset amount to additional training procedures and should be avoided if possible. It may
not be possible when different descriptors are tested as well.

The fourth caveat is connected to the choice of features or descriptors. It is subjective
and usually limited to overly simple ideas about what is essential for peptides’ activity.
Atomic composition, amino acid composition, dipeptides composition, charges, and other
amino acid features (hydrophobicity) completely neglect the sequence order of amino acid
residues in a peptide, sequence profile of hydrophobicity and hydrophobic moments, dipole
moments, and many other structure-associated physicochemical features. These are features
and descriptors we described in our publications when we were constructing descriptors
for predicting selectivity and a membrane-induced increase in helical conformation [42–46].
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Recently developed AI algorithms, which we mentioned in Methods, incorporate interpretable
features and in-depth analysis of peptides’ biophysical and biochemical properties. We have
used them on many occasions during the past several years. There were only occasional short
service disruptions for some of them, probably due to maintenance. Our last accession was on
7 August 2022.

We shall firstly examine in this work the multitude of natural penetratin analogs with
special attention to those of ancient origin. Secondly, we shall use the hybrid constructs with
penetratin analogs and optimized penetratin to find promising lead compounds for strong
multifunctional activity. Thirdly, novel peptide conjugates for intracellular targets will be
proposed too. Next, shorter CPPs unrelated to penetratin, either known or novel, will be
examined regarding predicted multifunctional activities when conjugated to peptides with
verified activity for promising broad-spectrum applications.

Conclusions will gather the best compromise for all peptide constructs among strongly
predicted six multifunctional activities (CPP, AMP, ACP, AVP, AFP, and AIP) and low
toxicity estimates in the hope of future experimental verifications and appropriate chemical
modifications for various applications. The class of highly charged temporin analogs fused
to short CPP ended up as 50% of the 20 best peptides that have promising therapeutic
potential. They are not overly expensive for synthesis, with a length ranging from 22 to 31
amino acid residues.

2. Sequence-Based Servers for Predicting Peptide Activity and Proposed
Ranking Methods

The choice of online available predictive algorithms is according to (a) their online
persistence, (b) the usage simplicity when peptide sequence is submitted, and (c) claimed
accuracy. The last requirement (accuracy) is challenging to estimate independently from
the authors’ claims. Prediction results are commented on in the paper when they indicate
some algorithm shortcomings.

The MLCPP server, www.thegleelab.org/MLCPP/ (accessed on 7 August 2022) by
Manavalan et al. [22], is used to predict peptide cell-penetrating probability and uptake
efficiency. We also consulted the C2Pred server by Tang et al. [23] (http://lin-group.cn/
server/C2Pred, (accessed on 7 August 2022)) for the CPP probability.

The DP-Bind server http://lcg.rit.albany.edu/dp-bind/ (accessed on 7 August 2022)
by Hwang et al. [36] is used for sequence-based prediction of DNA-binding residues
in DNA-binding proteins and peptides. In some cases, the dSPRINT server http://
protdomain.princeton.edu/dsprint, (accessed on 7 August 2022)) by Etzion-Fuchs et al. [47]
provided the confirmation of the DNA-binding preference for sequence domains.

The antimicrobial peptide probability for a query peptide is found by applying the
Support Vector Machine (SVM) algorithm from the CAMPR3 web server http://www.
camp.bicnirrh.res.in/predict (accessed on 7 August 2022) [24]. We also used the AmpGram

server (http://biongram.biotech.uni.wroc.pl/AmpGram/ (accessed on 7 August 2022) [25])
to identify antimicrobial peptides.

Two web servers are used to predict the peptide’s anticancer activity. These are
the ACPred server http://codes.bio/acpred/ (accessed on 7 August 2022) [26] and the
mACPred server http://thegleelab.org/mACPpred/ (accessed on 7 August 2022) by
Boopathi et al. [27].

Three web servers are used to predict the peptide’s antiviral activity. These are the
ENNAVIA server https://research.timmons.eu/ennavia (accessed on 7 August 2022) by
Timmons and Hewage [28], the FIRM-AVP server https://msc-viz.emsl.pnnl.gov/AVPR/
(accessed on 7 August 2022) by Chowdhury et al. [29], and the Meta-iAVP server http:
//codes.bio/meta-iavp/ (accessed on 7 August 2022) by Schaduangrat et al. [30].

The iAMPpred web server http://cabgrid.res.in:8080/amppred/server.php (accessed
on 7 August 2022) of Meher et al. [31] gives predictions for antibacterial, antiviral, and
antifungal activity, but we reported only the last one. We also used the AntiFungal server
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of Zhang et al. [32] (https://www.chemoinfolab.com/antifungal/, (accessed on 7 August
2022)) to predict the antifungal activity.

For the prediction of anti-inflammatory activity, we used the AIPpred server (http:
//www.thegleelab.org/AIPpred/ (accessed on 7 August 2022) [33]), the PreAIP server
(http://kurata14.bio.kyutech.ac.jp/PreAIP/ (accessed on 7 August 2022) [34]), and the
scoring output of the AntiInflam server (http://metagenomics.iiserb.ac.in/antiinflam/
(accessed on 7 August 2022) [35]) when it predicts the anti-inflammatory activity. We used
the AntiInfam server to design peptides with a better anti-inflammatory score.

Two different methods estimated peptide toxicity. Firstly, the probability that the
peptide has hemolytic activity was assessed using the HAPPENN server https://research.
timmons.eu/happenn (accessed on 7 August 2022) by Timmons et al. [40]. Secondly, the
peptide toxicity was predicted by the ToxinPred server https://webs.iiitd.edu.in/raghava/
toxinpred/ (accessed on 7 August 2022) [37–39]. We used the server modules for batch
submission and designing peptides with decreased toxicity. To verify peptide toxicity class
(toxic or nontoxic), a more recent ToxIBTL server http://server.wei-group.net/ToxIBTL
(accessed on 7 August 2022) [41] was also employed. Besides toxicity class, that server’s
output contains an irreproducible and meaningless score because the user is given a
different score for an identical peptide in each submission.

We employed older reliable servers, SPLIT 3.5 [42] and SPLIT 4.0 [43], for predicting
the sequence profile of hydrophobicities, optimal hydrophobic moments, and membrane
preference for amphipathic and membrane-associated segments: http://split.djpept.com/
split/ (accessed on 7 August 2022) and http://split.djpept.com/split/4/ (accessed on 7
August 2022). Our Mutator tool [46] served to design anuran-like peptide antibiotics with
a predicted high selectivity index: http://mutator.djpept.com/ (accessed on 7 August 2022)
or http://splitbioinf.pmfst.hr/mutator/ (accessed on 7 August 2022).

For each of the considered peptides, we presented predicted results in Tables 1–5. The
summary Table 6 for ranking the best peptide constructs presents only mean scores for each
of the predicted activities. The mean score for anti-inflammatory activity can be higher than
1.0 because the AntiInflam server reports the score for the AIP activity that can be higher
than 1.0. The arithmetic average of mean CPP, AMP, ACP, AVP, AFP, and AIP scores served
to rank all peptides regardless of their toxicity to healthy human cells. We then introduced
the reward for predicted low toxicity and hemolytic activity to obtain the overall ranking
for all nontoxic multifunctional constructs. The reward score is calculated as a negative
mean of toxicity score (negative) by the ToxinPred server and the HAPPENN server output
(positive). Mean scores for six activities and the reward score are then averaged to obtain
the overall score. It ranges from 0.873 to 0.927 for the 20 best peptides, while the reward
score ranges from 0.346 to 0.867.
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The overall score ranking is highly dependent on estimated toxicity. Peptide toxicity is
usually firstly examined as hemolytic potency. Minimizing hemolytic activity can improve
the therapeutic potential of peptides. The HAPPENN server [40] employs the threshold
value of 0.5 to distinguish hemolytic from non-hemolytic peptides. Its valuable feature
is distinguishing C-terminal amidated from non-amidated peptides. Amidated peptides
are more active antimicrobials but can be associated with increased hemolytic activity.
Magainin-2 in its C-terminal amidated form is the best-known antimicrobial peptide. More
than 500 μM concentration of MG2 is needed to cause 50% hemolysis. Its hemolytic
probability is 0.83 (see Table 5, peptide 6 for the HAPPENN output). Therefore, a peptide
with a probability for hemolytic activity between 0.50 and 0.83 or less can still be a good
candidate for synthesis, purification, and testing.

3. Under-Appreciated Versatility of Penetratins

3.1. The Evolutionary Depth of Homeobox Domains and Penetratin-like Cryptides in the
Animalia Kingdom

Natural DNA-binding peptides can be the inspiration for designing cell-penetrating
peptides (CPP) with DNA-binding and other multifunctional activities. We shall first ex-
plore this idea for the penetratin-like peptides. Le Roux et al. published in 1993 [48], the pri-
mary structure of 35 amino acid long cryptide L(322)TRRRRIEIAHALCLTE
RQIKIWFQNRRMKWKKEN(356) rich in arginines from the homeodomain of the
Drosophila melanogaster (fruit fly) protein Antennapedia (pAntp). The highlighted se-
quence (with bold font residues) was named the penetratin peptide. Remarkably, that
16-residues long cryptide (hidden peptide) from homeodomain proteins connected fruit
flies to humans (Table 1). One can speculate that DNA-binding and cell-penetrating func-
tions are related and equally ancient for penetratin analogs found in homeobox-like proteins
(Tables 1 and 2). More to the point, membrane activity, cell-penetrating ability, antimicro-
bial potency, and anticancer activity are also related to the highly cationic and moderately
amphipathic structure of the penetratin and its natural or synthetic analogs [49–58].

Identical hexadecapeptide penetratin analog is present in Drosophila O18381, mouse
P63015, and human P26367 Pax-6 parent proteins. It is the arginine-rich ARIQVWFSNRRA
KWRR sequence (residues identical to Drosophila pAntp penetratin are in a bold font). We
can estimate its evolutionary depth by performing the peptide search for that arginine-rich
sequence in the UniProt database. There are about two thousand hits for invertebrate
and vertebrate animals, most associated with the Pax-6 annotation. The Pax-6 gene is a
master control gene responsible for developing photodetection and eye morphogenesis in
flies, mice, and humans. Walter Gehring and his co-authors postulated that the strikingly
diverse eyes found in the most primitive to the most advanced animals derived from an
ancestral eye and ancestral organ selector genes [59–63]. Pax and Pax-like genes coding for
penetratin analogs were found not only in flatworms, insects, and mammals but also in
sponges lacking a nervous system [64–66].

Corresponding proteins are transcription factors containing two to three domains
with three α-helices. The first two domains belong to the defining Pax signature of the
128-amino acid DNA-binding paired domain [67]. The third DNA-binding domain with
three helices is the 60-amino acid homeobox domain. Binding to DNA as homodimers
or heterodimers is often essential for the transcriptional activity of homeobox-containing
proteins [68]. An unresolved question is the functional importance of penetratin analogs
found in a homeobox-like sequence of the simplest and most ancient animals devoid
of organs. Another underexplored question regards the possible toxicity of natural or
designed penetratin analogs. When substituted amino acids change peptide–DNA or
parent protein–DNA interaction, the results can be either beneficial or harmful in vivo.
Disease-causing mutations in the human Pax3 gene belong to the latter examples.

From the UniProt entry P23760 the homeobox sequence is Q(219)RRSRTTFT
AEQLEEL(234)ERAF(238)ERTHYPDIYTREELAQRAKLTEARVQV(265)W(266)FSNR(270)
R(271)AR(273)WRKQA(278) for human Pax3 (we underlined helices α1, α2, and α3). The
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substitution of residues V(265), W(266), R(270), R(271), and R(273) from recognition helix
α3 with, respectively, F, C, C, C, and K, may result in the Waardenburg syndrome (WS1)
with impaired hearing and other disorders. Presumably, Phe (F) and Cys (C) cannot main-
tain crucial DNA–homeodomain interactions provided by V(265), W(266), and R(271).
Substitutions P for L(234) and S for F(238) are also causing WS1 syndrome probably by
destabilizing the hydrophobic interactions for the homeodomain fold (see Birrane et al.,
2009 paper [69], where L(16) and F(20) correspond to L(234) and F(238)). Birrane et al. [69]
concluded that Pax3 has no DNA-interacting residue in its first homeodomain helix (α1).
It has one DNA-interacting residue in its second helix (α2) and eight such residues in its
third DNA-recognition helix (α3). Other authors also concluded that the penetratin-like
helix α3 has the strongest contact with the major DNA groove [70,71].

We restricted Table 1 examples of metazoan penetratins to phylums Chordata (Mam-
malia class), Tunicata (subphylum, Ascidiacea class, which includes sea squirts), Antrophod
(Insecta class), Annelida (Polychaeta class worm), Cnidaria (Anthozoa class, including
stony corals), Ctenophora (Tentaculata class, which includes comb jellies), Porifera (De-
spongiae class), and Placozoa (T. adhaerens). In all subkingdoms of Animalia, we can easily
find those penetratin analogs that are essential motifs in transcription factors regulating
the development.

Given examples from Table 1, let us elaborate on the evolutionary depth of the con-
served role for Pax, Pax-like genes, homeotic genes, and associated penetratin-like DNA-
binding motifs. It is not only penetratin-like peptides from animals without eyes, eye
spots, and neurons (Table 1 examples for Porifera and Placozoa). Surprisingly, such pep-
tides are also present in fungi, yeasts, bacteria, Archaea, and viruses. In his 2013 review,
Peter Holland observed that homeotic genes were not found in Archaea or bacteria [72].
However, additional Archaea and bacterial genomes have been decoded during the past
decade. The last nine rows from Table 1 illustrate that homeobox domains and penetratin
analogs can be found as cryptides among proteins from prokaryotic cells and viruses. The
bacterial origin is more likely than the Archaea origin for a recognizable homeodomain
with the helix-loop-helix-turn-helix motif. Only marginal similarity to pAntp or human
Pax-6 penetratin is found for natural penetratin analogs from Archaea because at least 50%
of the residues from these hexadecapeptides are different. Recent whole-genome decod-
ing of giant viruses also revealed putative homeodomains and penetratin analogs [73,74].
The conserved motif WFXNRR is shared among all kingdoms of life, but it is too short
to find significant similarities. In any case, prokaryotes and viruses also use regulatory
transcription factors, and some of them may have been the progenitors of homeotic proteins
in eukaryotes.

Ed Lewis, the first expert on homeotic genes, quipped in a letter to Walter Gehring:
“Dear Walter, you made the homeobox our flying carpet.” The penetratin analog segments
are our time-machine part of the “flying carpet“ for reaching the distant past of Life
development. Let us show several examples to support that claim. We used our PROSITE
motifs, BLASTP, and UniProt searches to investigate the evolutionary roots. That is the
origin of some of the cited penetratin analogs (see Tables 1 and 2).
Example 1: Human penetratin-like sequences

There are more than 500 human homeotic proteins. Some human proteins contain
two homeobox domains and two different penetratin-like peptides (see some examples
at UniProt links O43812, Q96PT3, A6NLW8, and P0CJ85). Human Zink finger homeobox
protein 3 has four homeobox domains in its long sequence of 3703 residues (see Q15911)
with four associated penetratins, which are, however, of low similarity to pAntp penetratin.
Example 2: Nematodes, cnidarians, and tunicates

Previously mentioned arginine-rich analog ARIQVWFSNRRAKWRR is present in
the Vab-3 transcription factor G5EDS1 from the worm Caenorhabditis elegans. The worm
does not have eyespots, much less fully developed eyes. Since it lives underground or
inside rotting fruits, it does not require image-forming eyes, however primitive. Still, the
worm has consistently expressed the Pax6 gene [66], which must be somehow involved
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in developing its miniature brain. C. elegans uses rhodopsin-like sensory receptor protein
Q10042 annotated with a G protein-coupled receptor activity, but molecular details of its
function are unknown. Color-perceiving systems without eyes and without ”seeing“ color
may exist. The C. elegans animal model is probably the best for discovering neural circuits
and previously unrecognized proteins that have evolved to capture light and react to rich
information within the light spectrum. Its nervous system consists of only 302 neurons
and performs miracles of sensing mechanical forces, chemicals, temperature, humidity,
and electromagnetic fields. The Vab-3 involvement (if any) in C. elegans neural circuits for
eyeless light detection is still the subject of active research.

The same arginine-rich sequence is present in the Nematostella vectensis (sea anemone)
PaxC homeodomain from the transcription factor Q5IGV4. That cnidarian has a variable
number of neurons (several hundred at most [75]) in decentralized nerve nets and poorly
understood eyeless photodetection [76]). Another cnidarian, the Acropora millepora stony
coral, can tune spawning behavior with the phases of the moonlight [77]. It is unknown
whether the penetratin analog ARIQVWFSNRRAKWRK from Q5IGV4 protein, with a
conservative Arg to Lys substitution, plays a role in light sensing by coral larva or not. It
would not be surprising that more ancient eyeless vision needed penetratin analogs for its
development. The arginine-rich hexadecapeptide connects worms, corals, and starlet sea
anemones to insects and mammals. Its sequence can be as good a, if not a better, vehicle
than pAntp penetratin for trans-membrane transport.

Tunicates are the sister group to vertebrates. The Ciona intestinalis larva (sea squirt tu-
nicate) has the smallest brain of any chordate, with only 231 neurons [78]. Still, it needs the
transcription factor protein NP_001071798.1 containing the penetratin-like ARVQVWFSNR-
RAKWRR sequence. Larva’s simple eye-spot ocellus has a pigment cell and vertebrate type
ciliary opsin Ci-opsin1 [79], showing significant homology to vertebrate rhodopsins [80].
The retinal chromophore, Ci-opsin1, ocellus, and homeobox-containing transcription factors
are the connection to the evolution of complex vertebrate eyes.
Example 3: Placozoans

Placozoans are the simplest animals in the evolutionary tree of Metazoa. The expres-
sion of homeobox-containing proteins has been confirmed in Trichoplax adhaerens and other
placozoans [81–83]. T. adhaerens express genes encoding for proteins implicated in morpho-
genesis [84], innate immunity [85–90], and motility [91]. Moving and sensing are possible
without brain cells but not without specialized proteins. The ARVQVWFSNRRAKWRR
penetratin analog from the T. adhaerens ACH57174.1 Pax-3-like protein is different from
corresponding human analogs only in one or two conservative amino acid substitutions
(only V↔I or R↔K)! The TriPaxB penetratin RVVQVWFQNQRAKLKK from the Trichoplax
adhaerens protein Lim1 (UniProt entry B5LDT8) served as a query (named TriPaxB) for
extended penetratins in other simple organisms (see Table 2).

T. adhaerens has a high regeneration and rejuvenation potential, partially due to the
regulated expression of homeotic genes Not and Trox-2 [92]). The best-conserved regions
of corresponding proteins contain penetratin-like peptides AQVKVWFQNRRIKWRK

and KQVKIWFQNRRVKWKK. We used the bold font for residues from the T. adhaerens
peptides are identical to Drosophila pAntp penetratin residues.
Example 4: Poriferans

The Pax-6 protein XP_003387530.1 (or Uniprot entry A0A1X7UM72) from the embryo
of the sponge Amphimedon queenslandica is annotated as the homeobox domain-containing
protein (by UniProt) and as paired box protein Pax-6-like (by NCBI genome annotation
data). In both databases, the DNA binding is predicted as the transcription factor activity.
The PaxB penetratin from T. adhaerens with the sequence ARVQVWFSNRRAKWRK is
similar to the SRVQVWFQNRRAKWRK peptide in the sponge’s Pax-6. Substituted residues
are in bold font and underlined.
Example 5: Amoeboid protist

The amoeboid holozoan Capsaspora owczarzaki is one close unicellular relative of ani-
mals [84]. Authors labeled as Co_5 the homeobox domain from the protein A0A0D2VSA1.
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It contains six arginines within the penetratin sequence RVIRIWFQNRRAKQRR. Other
natural penetratins have a high number of Arg and Lys residues (Table 1). These sequences
are still underexplored candidates for transporting bioactive cargo into the cell.

3.2. The Penetratin-like Cryptides from Other Kingdoms

The search among ascomycetes (fungi) also resulted in diverse penetratins. One hit
with the Pax-6 annotation is for the Ceratocystis platani fungus causing disease on sycamore
trees. It is the Paired box protein Pax-6 (KKF93291.1) with 639 residues. The penetratin
analog from its homeobox region has a 56% identity to pAntp penetratin (see Table 1).

Another regulatory protein PHO2 (A0A1E5RMZ3) with the homeobox domain from
Hanseniaspora osmophila (wine-making yeast) has an associated penetratin analog, which
is similar in its sequence TQVKIWFQNRRMKWKR to the pAntp. The budding yeast
penetratin analog KNVRIWFQNRRAKVRKKGKL extended at its C-terminal (underlined)
from the PHO2 (Q6FKZ3) protein has a high positive charge and unknown abilities. Its CPP
probability prediction by the MLCPP server is similar (0.93) to pAntp (0.98). Hemolytic
activity prediction by the HAPPENN server is a strikingly low probability of 0.018 com-
pared to pAntp’s 0.936. Thus, exploring natural penetratin analogs from all available
sources can be the first stepping stone toward discovering nontoxic CPP candidates with a
peptide backbone.

Two representative bacterial and one archeon species are included in Table 1 because
at least one homeobox domain-containing motif with penetratin analog is found among
their expressed proteins. The similarity is modest or low to pAntp. Archeon penetratin
analog RQVSVWFTNARKRIWL is only 38% identical to pAntp penetratin (residues with
bold font are 6 out of 16 residues), raising doubts about similar functions.

Some viral proteins contain remarkably efficient CPP, such as the TAT peptide from
HIV [93,94], which has as promising drug-delivery therapeutic potential as penetratin [95].
The TAT peptide sequence GRKKRRQRRRPPQ is, however, easily cleaved by furin. Thus,
CPP is not stable enough in vivo for efficient cargo delivery [96]. Hemmati et al. [97]
identified 310 decapeptides with predicted CPP activity in the proteome of severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2). In the surface glycoprotein S (spike
protein) alone, there are 24 CPP candidates, some rich in Arg residues. Nucleocapsid
protein N is even richer in CPP candidates (54). Arginines are required firstly for binding
to negatively charged groups of viral nucleic acid [98] and secondly for penetrating the
eukaryotic cell membrane.

The superkingdom of viruses includes the class of giant viruses. The genomes with ac-
cession numbers: NC_014649, NC_020104, and NC_016072 contain homeobox proteins. The
dSPRINT server [47] examines whether the protein domain query binds DNA, RNA, small
molecules, ions, or peptides and assigns corresponding interaction probabilities to each interac-
tion type for each residue. Figure 1 illustrates these probabilities for predicted CPP peptide and
penetratin analog present within the homeodomain-containing protein QGR53678.1 of a giant
Moumouvirus maliensis virus. The corresponding residues Arg-44 to Arg-112 with underlined
Table 1 peptides for that virus are: RKNGVKMTKV(10)KKIRRSRLFT(20)TTQLQILEET(30)
YKTNKYISLN(40)EKINLSKNFG(50)VTVKQISIWF(60)ANRRAYDAR,where we highlighted
with a bold font those residues for which DNA-binding probability is higher than 0.95. The
probability of binding ligands other than DNA is less than 0.05 for all residues within both
predicted homeodomain motifs. Thus, three C-terminal residues from the predicted CPP pep-
tide (underlined N-terminal 17 residues) and ten residues from the predicted penetratin analog
(underlined C-terminal 16 residues) are strongly predicted DNA-binding residues (Figure 1).
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Figure 1. The dSPRINT server [47] prediction for DNA-binding probabilities (vertical axis, blue
lines profile) of residues from a homeodomain found in a giant virus Moumouvirus maliensis protein
QGR53678.1. Probabilities are negligible for binding residues to RNA, ions, other peptides, and small
molecules (other colors for profile lines). See the main text for details on the Pfam domains PF05920
and PF00046. We added the query sequence below the graph produced by the dSPRINT server. The
underlined residues are the predicted CPP segment (N-terminal) and the penetratin-like peptide
(C-terminal).

There are many predicted CPP cryptides from giant viruses other than penetratin
analogs. For example, the MLCPP and C2Pred servers predict with a high probability (0.94
and 0.96) that the RKNGVKMTKVKKIRRSR sequence (see Figure 1) should have the CPP
activity. We can adopt a tentative name 9RK17 for that CPP cryptide, which is hidden
in a putative homeodomain from the GenBank entry QGR53678.1 at a different sequence
location from the penetratin analog KQISIWFANRRAYDARK. We doubt that all CPP
cryptides from giant viruses (such as 9RK17) have been examined in experiments for their
cargo-transporting efficiency inside eukaryotic cells. For instance, the 21 amino acid long
cryptide ALHARRRRARQRLCQHRVSIK is present in the hypothetical Pandoravirus dulcis
(giant virus) protein YP_008318537.1. The predicted CPP probability is 0.95 (MLCPP server)
and 0.90 (C2Pred server). A longer cryptide MTWRRSCWRLLRQRRRQPRSPKMMRKR
is the N-terminal of hypothetical peptide YP_001425938.1 encoded by the Paramecium
bursaria Chlorella virus FR483 genome (also a giant virus). The peptide has associated CPP
probability predictions of 0.94 and 0.99 by MLCPP and C2Pred server.

Some bacteria and viruses tolerate the differences in the last four residues of natural
penetratin analogs (such as W14 to D14 substitution). These residues are less critical for
interaction with DNA. Examples of W14 to D14 substitution in penetratin-like peptides
from the homeobox domain are found in human sequences, too (see Homeobox even-
skipped homolog proteins 1 and 2 with the UniProt links P49640 and Q03828).

The penetratin’s biological role in a homeodomain is to serve as a major aggrega-
tion site for DNA-binding residues. The same is likely to hold for all other presented
Table 1 sequences. The dSPRINT server finds the same GO: 0003677 molecular function
by which a gene product interacts selectively and non-covalently with DNA for these
sequences. For corresponding proteins, the dSPRINT server finds PF00046_Homeodomain,
PF05920_Homeobox_KN motif, or both motifs overlapping the penetratin analog. One
example is the N-terminal part with 60 residues of the Euryarchaeota archaeon RYE98021.1
protein. For residues 11–40, the prediction for the PF05920_Homeobox_KN motif is associ-
ated with the E-value of 3.2 × 10−10. For residues 25–54, the prediction with the E-value
of 1.8 × 10−8 is for the PF00046_Homeodomain motif. The hexadecapeptide sequence
RQVSVWFTNARKRIWL extends from Arg-18 to Leu-33, thus forming a part of both home-
obox motifs. Extended sequence RQVSVWFTNARKRIWLPLRQKQARMRNKRAK, with
residues 18–48, has a higher CPP probability score of 0.93. Therefore, CPP, DNA-binding
ability, and the transcription factor DNA-binding function are frequently present in the
same protein domains.

179



Antibiotics 2022, 11, 1196

The UniProt database of all known and predicted proteins contains 85,650 sequences
from 1394 species with the PF00046_Homeodomain annotation. While Table 1 is far from
comprehensive, it still reports several additional species from Megaviricetes compared to
the Brandes and Linial data analysis in 2019 [99]. It is, of course, due to the fast progress
in genetic sequencing. An astonishing universality of that Pfam family motif in Animalia,
Fungi, Protista, Eubacteria, Archaea, and Viruses indicates its conservation across almost
all of life’s superkingdoms and kingdoms.

The PF05920_Homeobox-KN Pfam domain (Figure 1, thick orange line below the
x-axis) is also universal in all kingdoms of life. It belongs to the conserved homeobox
transcription factor KN domain from TALE, KNOX, and MEIS genes [100]. Current Pfam
taxonomy does not mention the presence of the PF05920_Homeobox-KN motif in bacteria
and viruses.

A caveat to keep in mind for penetratin-like peptides from bacteria, archaea, and
viruses is the hypothetical or predicted nature of some proteins containing them. Low
annotation scores in public databases may lead to failed verification for claimed associ-
ated species.

3.3. The Translocation Function of Homeobox Proteins, Homeobox, Penetratin, and
Penetratin-like Peptides

Homeodomain proteins fulfill many biological functions for which other segments in
these proteins are also crucial. The unconventional transport mechanism for these proteins
is an active research area [101]. Direct translocation of an identical protein in and out
from eukaryotic cells is complex because eukaryotic plasma membranes are asymmetric.
Their internal lipid layer has a different lipid composition from the external layer. Neutral
polar lipids, such as phosphatidylcholine, prevail among phospholipids oriented (with
their head groups) toward the cell exterior. Negatively charged phospholipids, such as
phosphatidylserine, are plentiful only among polar lipids in contact with the cell cyto-
plasm. Moreover, fatty acids’ unsaturation in the cytoplasmic plasma membrane leaflet is
about twofold higher [102]. In the case of engrailed-2 homeoprotein transfer, the anionic
phospholipid phosphatidylinositol-4,5-biphosphate is also involved [103]. It is a minor
component of the plasma membrane inner leaflet [104] and even less frequent in the outer
leaflet. Still, it is essential as a gatekeeper for cell signaling and molecular traffic among
cells [105]. Moreover, cell surface carbohydrates are probably involved in the cellular
uptake of homeoproteins from the external environment [106]. Therefore, the ability of
such proteins for unconventional bidirectional transfer across the plasma membrane of
some eukaryotic cells is likely to rely on distinct mechanisms for outside-directed and
inside-directed transport.

Distinct mechanisms imply the existence of several dedicated protein motifs for tar-
geting the plasma membrane from the cytoplasm and the cell outside. Specifically, the
bidirectional transfer function must be in-built inside an extended penetratin-like region
for each homeodomain segment. Dupont et al. [107] examined whether the penetratin
extended in its N-terminal to encompass the turn region between the second and third helix
is enough to ensure the peptide transport in and out of cells. Dupont et al. [107] named it
the SecPen peptide QSLAQELGLNERQIKIWFQNRRMKWKK, where the Sec peptide is
underlined, and the penetratin domain is highlighted with bold font.

The QSLAQELGLNE Sec peptide is a cryptide in engrailed-2 proteins Q05917
(HME2_CHICK), P52730 (HME2B_XENLA), and P09015 (HME2A_DANRE), to mention
only the reviewed Swiss-Prot proteins containing that peptide. The human analog of the
QSLAQELGLNE peptide contains glycine to serine substitution. Sec and Pen allow for
bidirectional membrane crossing [106]. These and other authors verified the validity of the
signaling homeoproteins concept with far-reaching implications [108].

Homeoproteins are rich in multifunctional cryptides. For example, let us examine the
UNIPROT Q05917 entry and structurally solved PDB 3ZOB sequence 3ZOB_1 with three
α-helices [109] for chicken engrailed 2 homeoprotein. The GAG (glycosaminoglycans at
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the cell surface)-binding sequence P(186)RSRKPKKKNPNKEDKRPR(204) is located just
before chicken engrailed 2 homeodomain (residues 200–259). That highly flexible protein
region contains two CW BBXB quadruplets (Cardin-Weintraub motifs [110]) and one KKK
triplet, all described as glycosaminoglycan or heparan sulfate binding motifs [111]. The
bold font for the residues at the N-terminal highlight the motif, which is part of the putative
nuclear localization signal (see Figure 1B from reference [111]). It is also a DNA-binding
motif, which has a significant probability of penetrating cells (0.88, according to the MLCPP
server). Thus, the multiplicity of functions for crucial motifs from engrailed proteins is
more a rule than an exception.

Among other examples, the N-terminal hexapeptide QRRSRT for the Pax3 and Pax7
homeodomain is also a good starting point for the design of multifunctional peptides. We
can ask what would be predicted activities for the sequence tandem peptide QRRSRT-
GQRRSRT with inserted Gly residue as a middle flexible linker. That tridecapeptide is
expected to be nontoxic by the Raghava ToxinPred server [38], highly cell-penetrating (the
MLCPP server), and strongly DNA-binding (binding probability higher than 0.7 for all
arginines according to the DP-BIND server [36]). However, predictions by the CAMPR3
and AmpGram algorithms exclude its antimicrobial function. When we fuse the QRRSRT-
GQRRSRT sequence with some antimicrobial peptide such as IKKIVSKIKKLLK (L-K6V1-
temporin-1CEb) [112], it can gain multifunctional abilities without undesirable hemolytic
and toxic effects. For instance, the hybrid peptide with the sequence KKLFKKILKYL-GG-
QRRSRTGQRRSRT (BP100-CPP conjugate) is expected to have all six considered functions
and lesser hemolytic activity compared to BP100. The same idea should work for N-terminal
decapeptide GLNRRRKKRT from the homeobox domain of the pou2f1 transcription fac-
tor (Xenopus laevis African clawed frog, Uniprot entry P16143). The sequence tandem
GLNRRRKKRTGLNRRRKKRT did not need middle Gly insertion, its cell-penetrating
probability score of 0.98 is almost maximal, and all residues 3 to 19 of that 20 residues long
peptide have DNA-binding probability higher than 0.8. Moreover, the tandem peptide
may have antimicrobial activity against intracellular pathogens. The CAMPR3 server SVM
module result is 0.925 probability for the AMP activity, while the HAPPEN server predicts
a negligible probability of 0.03 for the hemolytic activity.

The translocation function is the best researched for the homeobox protein engrailed-2
from chicken, which is 99% identical to human En2 [109,111]. However, for chick and
human engrailed-2 protein, the hexadecapeptide analog of Drosophila antennapedia pen-
etratin is different in underlined residues: SQIKIWFQNKRAKIKK (only one arginine
instead of three). A decreased number of arginines opens the question about the impor-
tance of human and chick penetratin motifs for membrane translocation of corresponding
homeodomain and intact engrailed proteins.

The previous paragraphs indicated that the translocation function might be mediated
by protein motifs outside the homeobox domain acting in concert with the recognition helix
from that domain. Suppose a minimal number of six consecutive arginines is needed for
cell penetration [113]. In that case, the question is whether these residues are close in the
3D structure but not so close in sequence. Hence, we can speculate that CPP activity can be
preserved after the number of arginines drops to the single one within the penetratin-like
peptides during biological evolution with a compensatory increase in strategically placed
arginines outside penetratin.

Firstly, it is easy to find cases when more arginines are in the homeodomain regions
preceding the penetratin segment. Secondly, space separation may exist among nega-
tive and positive charges. Anionic residues (D and E) may be located only at the one
homeodomain surface. The residues with positive charges dominate at the opposite home-
odomain surface where the penetratin motif is situated. The spatial separation of anionic
from cationic charges persists for the engrailed 2 protein when one examines only two last
homeodomain helices with a turn between them. Thus, an electrostatic dipole moment
and the corresponding electric field are more substantial for the whole homeodomain and

181



Antibiotics 2022, 11, 1196

the 2nd-helix-turn-3rd-helix compared to penetratin peptides, which are mostly devoid of
negative charges.

We have recently published the observation that strong 3D electrostatic and 3D-
hydrophobic moments are instrumental for better interaction between some flexible cationic
peptides with helix-turn-helix secondary structures and membranes containing polar lipids
with anionic head groups [114]. The calculated hydrophobic moment for an ideal α-helix
rod (the 2D moment) is not relevant for the peptide–membrane interaction of highly
plastic peptides such as penetratin [115]. Furthermore, a high degree of peptide helicity or
amphipathicity is not required for penetratin internalization [116].

The helix-turn-helix motif of engrailed proteins is the ultrafast independently folding
domain [117]. An additional internalization advantage for intact homeodomain is that its
20 times lower extracellular concentration of 5 × 10−8 M is enough to achieve substantial
accumulation in the cell nuclei [118]. In contrast, micromolar penetratin concentrations
must be added for efficient internalization [49].

Three arginines from the pAntp penetratin RQIKIWFQNRRMKWKK are not the
only regulators of its translocation process. The substitution of two tryptophans with
similarly bulky aromatic and hydrophobic phenylalanine residues inhibits penetration
internalization [119]. The role of two tryptophans has been examined in the tryptophan
fluorescence study after the first (Trp-6) or second Trp (Trp-14) has been substituted with
the Phe residue [49]. The first Trp from the wild-type penetratin sequence motif WF
inserts more deeply into the lipid bilayer than the second Trp. The WF motif is also better
conserved across biological kingdoms (Table 1). Penetratin membrane incorporation is
more profound in the presence of anionic polar lipids, such as phosphatidylserine.

To study the cell penetration mechanism, direct interaction with specific plasma
membrane phospholipids is as essential for penetratin-like peptides as their binding to
glycosaminoglycans at the cell surface. The mechanism and target molecules may differ
among penetratin analogs, homeoboxes, and homeoproteins. We previously mentioned the
involvement of phosphatidylinositol-4,5-biphosphate [103], a key lipid signaling molecule
important for endocytosis, exocytosis, membrane fusion, and myriad other biological
activities. In addition to cell-surface GAGs and heparan sulfate, polysialic acid is also the
surface receptor for pAntp Drosophila homeobox peptide [118].

Lysines are less critical for penetratin uptake compared to arginines. When all lysines
are replaced with arginines, a designed analog sequence RQIRIWFQNRRMRWRR-NH2
exhibits almost 50% better internalization ability than wild-type penetratin [55]. Wild-type
penetratin possesses moderate antimicrobial activity [50]. In comparison, Bahnsen et al. [55]
found that the analog with seven arginines has about four times stronger antimicrobial
activity against E. coli. However, the analog exhibits eight times greater toxicity to human
cells. These activity changes are not predicted by the servers we used (compare results
for pAntp peptide 1 from Table 2 and PenArg peptide 1 from Table 3). On the other hand,
predictions and experimental validations agree that amphipathic antimicrobial peptides
with high lysine content can have negligible hemolytic activity and low toxicity. One
example is L-K6V1-Temporin-1CEb [112] (Table 3, peptide 40).

Electrostatic interactions are important for translocation into cells [120]. These interac-
tions have been tuned during biological evolution by clustering positive charges near the
C-terminal of penetratin-like peptides and by retaining lone arginine at the first or second
N-terminal position in animals. The lengthwise charge asymmetry is accompanied by the
hydrophobic interactions of peptide middle leading to the bend conformation parallel to
the membrane surface.

Detailed molecular dynamics simulations and free energy calculations uncovered the
role of Trp-6 interaction with Arg-1 and Arg-10 at the membrane surface [121]. In observed
Trp-Arg stacking, the indol ring of W is positioned almost parallel to the guanidinium
group of R. Trp-6 is more involved than Trp-14—the observation of the importance of WR
cation–π interactions [122], which is in accordance with the better preservation of Trp−6
in penetratin-like peptides. We can safely assume that all of the presented penetratin-
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like sequences from Table 1 (and many more not present in that table) are membrane-
active peptides. The membrane-activity terminology implies that peptide conformational
plasticity and membrane curvature adaptation occurs after mostly disordered peptides from
an aqueous solution reach the membrane surface [53,121,123,124]. The structural plasticity
of penetratin (from random coil to beta-sheet and α-helix in different environments) is
relatively high among other cell-penetrating peptides [125]. It contributes to its functional
CPP versatility through clathrin-mediated endocytosis, caveolae-mediated endocytosis,
macropinocytosis, and direct translocation by forming inverted micelles [53,126,127].

Clathrin-mediated endocytosis is an active transport process requiring GTP hydrol-
ysis [128]. On the other hand, direct translocation is an energy-independent uptake. It
is a self-initiated spontaneous process producing only transient perturbation of plasma
membrane integrity [116]. Alves et al. [53] proclaimed: “penetratin usurps endocytotic cell
processes but can also translocate into the cells.” Translocation and uptake rates depend
on CPP sequence and concentration, cell type, buffer, temperature, cargo (if any), and
other experimental variables [56]. With such versatility, it is no wonder that penetratin
can induce phase separation, de-packing of membrane lipids, negative curvature, and ag-
gregation of lipid vesicles [123,129]. These macroscopic effects of penetratin are enhanced
for cases of higher membrane fluidity and the presence of anionic phospholipids at the
membrane surface.

One biological role of penetratin is the contribution to driving the translocation of its
parent homeoprotein, but the translocation of intact homeoprotein is much more efficient
(<1 nM [106]) in comparison with the penetratin uptake. Homeoproteins are natural
cargoes for at least some penetratin-like peptides. Moreover, homeoproteins are active
cargoes with non-penetratin protein regions participating in the synergetic amplification of
specific translocations. The biological roles have not been examined for most of the natural
penetratin-like peptides. That did not prevent widespread penetratin usage in life sciences
and therapeutic applications.

3.4. Penetratin Sequence Optimization and Possible Applications

Penetratin sequence optimization by Kauffman et al. [56] resulted in considerably
improved direct translocation (with different cargoes) by the RKKRWFRRRRPKWKK
analog with six arginines, five lysines, and two tryptophans. Similarly designed penetratin
analogs may be helpful delivery vehicles for biotechnological applications and systemic
therapeutics (a fast-growing market). Older results on the vectorization strategies with
penetratin are gathered in the book by Dupont et al. [130].

The mechanisms of CPP penetration and CPP-cargo transport across the blood–brain
barrier are discussed this year by Zorko and Langel [131]. Penetratin is usually linked with
a drug, protein, or nucleic acid cargo at its N-terminal. Škrlj et al. [132] used penetratin as
the linker peptide connecting two antibody fragments specific for the pathological form of
the prion protein. That vectorization strategy enabled efficient delivery across the blood–
brain barrier. Liposomal formulation using penetratin molecules is an effective treatment
strategy for delivering a therapeutic gene to the brain. The aim is, for instance, to reverse
Alzheimer’s disease pathophysiology [133]. Non-viral gene delivery for all therapeutic
goals has advantages when penetratin or similar peptides are used as nontoxic vehicles
that do not provoke an immune response.

In the proof of principle experiments, Liu et al. [134] demonstrated how penetratin-
coated nanoparticles can reach the eye fundus, thus eliminating the need for invasive eye
injection during the gene therapy treatment of diseases such as diabetic retinopathy and
age-related macular degeneration. Needle-in-the-eye application is naturally associated
with low patient compliance and increased infection risk.

The penetratin (PEN) and other cell-penetrating peptides have a promising potential
for drug targeting and oncological pharmacotherapy [57,58]. Combating drug-resistant
cancers by targeted delivery of drugs should facilitate the development of effective person-
alized therapies. The designed GEM-PEN conjugate improved the intracellular delivery
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and anticancer activity of gemcitabine (GEM) [135]. Anticancer peptides can also be co-
valently connected to penetratin. Kanovsky et al. [136] synthesized three p53 peptides
PPLSQETFS, PPLSQETFSDLWKLL, and ETFSDLWKLL in peptide linkage to reversed
penetratin analog sequence KKWKMRRNQFWVKVQRG. The authors did not explain their
rationale for reversing the Antennapedia penetratin sequence GRQIKIWFQNRRMKWKK

(in the bold font) or replacing isoleucines with valines with added terminal glycine. It is
connected to the previous observation about the absence of chiral receptor requirement for
the transduction ability of penetratin and its reversed analog (see the publication [137] cited
by Kanovsky et al. [136]). The three p53 peptides are amino-terminal parts of that tumor
suppressor protein, which can interact with oncogene-encoded ubiquitin-protein ligase
mdm-2 (MDM2 [Q00987]), targeting p53 for degradation and accelerated proliferation of
cancer cells.

Kanovsky et al. [136] reasoned that the blockage of p53-mdm-2 interactions could
inhibit cell-transforming oncogenic events by competition of the peptides mentioned above
to p53 for mdm-2 binding. Thus, these three peptides should be able to act as anticancer if
they can reach intracellular mdm-2 target proteins. The attachment of reverse penetratin
KKWKMRRNQFWVKVQRG sequence to the carboxy-terminal end of each peptide had a
dual role—to enable transport of the peptides across the plasma membrane and to stabilize
the α-helical conformation of each peptide for maximal interaction with mdm-2 proteins.
NMR experiments subsequently confirmed the helical conformation [138] (see the PDB
entry 1Q2F). Increased helical content of the peptide was not achieved when the penetratin
leader sequence was attached to the amino-terminal end of the PPLSQETFSDLWKLL
sequence. It resulted in considerably lower helical probabilities of reverse penetratin
carboxy-terminal part (with added Gly residue) and bioactive peptide amino-terminal
segment containing the Pro pair. Therefore, the N-terminal or C-terminal conjugation of
a bioactive peptide to CPP is not arbitrary. It should be guided by the maximization of
the interaction with internal targets of chimeric peptides. Chosen peptide conjugates by
Kanovsky et al. [136] were highly cytotoxic on various tumor cells and did not affect normal
cells in culture.

Interestingly, amino-terminal p53 peptides induce cell death in malignant cells without
inducing apoptosis and independently of p53 protein activation, arguing for a general
antiproliferative effect on these cells. The software tools ACPred and mACPred failed to
predict the high probability of anticancer function for reverse VV–penetratin hybrid with
N-terminal p53 peptide PPLSQETFS (see Table 2, peptide 11). Hence, the p53 peptide
conjugated to penetratin was erroneously classified as noncancer (NACP).

Selivanova et al. [139] examined the option for C-terminal p53 peptides conjugated
to penetratin. The importance of the p53 gene stems from observations that more than
half of human tumors have mutations in that gene. Transcribed protein has several DNA
binding domains. The G(361)SRAHSSHLKSKKGQSTSRHKK(382) sequence is the most
highly charged cationic domain near the C-terminal (see P04637 UniProt entry), which
regulates DNA binding. Selivanova et al. [139] investigated whether the C-terminal peptide
can restore the growth suppressor function of mutant p53 proteins. The authors used
the peptide GSRAHSSHLKSKKGQSTSRHKKWKMRRNQFWVKVQRG (named fusion
peptide 46; see peptide 19 predictions in Table 2). By bold font and underlining, we
highlighted the C-terminal p53 peptide and reversed penetratin to emphasize that CPP
is ligated to the carboxy-terminal end of the bioactive peptide without its KK pair at
the amino-terminal end because the KK pair is already present at the C-terminal of the
fusion peptide.

Subekti and Kamagata [140] proposed the role of the flexible and disordered C-
terminal p53 domain. It enables p53 to land on and twin around DNA, forming the
encounter complex at lower salt concentrations. The flexibility facilitated the protein jump-
ing along DNA at higher salt concentrations. Selivanova et al. [139] proved that the growth
suppressor function of mutant p53 could be restored by an excess of the fusion peptide 46.

184



Antibiotics 2022, 11, 1196

The authors proposed that the peptide can displace the C-terminal domain from its binding
site to the core p53 domain.

Restoring the ability to bind DNA worked for Ala-143, His-175, Trp-248, Ser-249,
His-273, and Lys-280 mutant forms of p53 [141]. Activated p53 induced apoptosis in Ew36
and BL41 Burkitt lymphoma cells, SW480 colon carcinoma cells, and breast cancer cells
MCF-7, MDA-MB-468, and MDA-MB-231, despite mutant p53 forms being present in these
cells [141]. Normal breast and colon cell lines were not affected. The corresponding peptide
19 from Table 2 has predicted DNA-binding, cell-penetrating, antimicrobial, antiviral,
and antifungal activity combined with toxicity absence by some of the algorithms we
used. However, peptide 19 is associated with modest probabilities of 0.61 and 0.65 for
anticancer activity as calculated by the ACPred [26] and mACPpred [27] servers. Of course,
experimental results should prevail in our minds over any theoretical predictions. We
can anticipate the therapeutic benefits of anticancer-peptide-CPP conjugates when their
pharmacokinetic parameters are improved for medical applications.

3.5. Multifunctional or Hybrid Penetratin-like Peptides

Table 2 results belong to three peptide classes. The first class contains natural sequences
1 (pAntp), and 3 (TriPaxB). Listed examples of longer natural peptides 4–6 with additional
four residues at each peptide terminal contain the TriPaxB penetratin and belong to the
second class. The first sequence (peptide 4 in Table 2) is from an uncharacterized cnidarian
protein with 445 AA from medusa Clytia hemisphaerica (jellyfish). The following peptide
(peptide 5) is found in the T2M9B9 UniProt entry for an unreviewed protein named
LIM homeobox transcription factor 1-alpha (LMX1A). The protein LMX1A is from the
fresh-water polyp Hydra vulgaris, claimed to be immortal [142,143]. The sequence for
peptide 6 (A0A183IGD8) is from the parasitic stomach-dwelling worm of American martens
Soboliphyme baturini and Loa loa eye worm. These three natural sequences were submitted
to the dSPRINT server http://protdomain.princeton.edu/dsprint (accessed on 7 August
2022) [47]. They have a common PF00046_Homeodomain motif for the first 20 residues
and the GO: 0003677 molecular functions by which a gene product interacts selectively
and non-covalently with DNA. Rationally designed peptides 2 and 7–22 are the third
class. Peptide 2 is the VV-penetratin sequence RQVKVWFQNRRMKWKK. It is present in
the predicted homeobox proteins of some birds and fishes (UniProt entries A0A7K7IKL9,
A0A7K9GUV0, and A0A1A8LZ63). The designed sequences validated in experiments have
the “/E” extension in their abbreviated name. In silico design by this author is associated
with the “/DJ” extension.

Regarding possible penetratin involvement in antimicrobial defense, Drosophila
pAntp penetratin RQIKIWFQNRRMKWKK-NH2 is fungicidal for the clinical isolates
of Cryptococcus neoformans [51]. It exhibits moderate antibacterial activity against Escherichia
coli and Staphylococcus aureus with MIC values from 32 to 64 μM [55]. Some of penetratin’s
natural analogs from Table 1 may have stronger antimicrobial potency or better therapeutic
index. Our goal was to find or design multifunctional peptides with low predicted toxicity
to healthy human cells. All Table 2 peptides have predicted cell-penetrating and DNA-
binding activity combined with a considerably lower prediction for the hemolytic activity
compared to pAntp penetratin. In addition, most Table 2 peptides have predicted antimi-
crobial, anticancer, antiviral, antifungal, and anti-inflammatory activity. For sequences 4–6,
11, and 14–15, the ACPred server does not predict anticancer activity. Some of them have
been designed and validated as ACP (peptide 11).

It is not easy to achieve strongly predicted antifungal (probability higher than 0.7)
along with other activities and low toxicity to red blood cells. At the end of Chapter
2, we explain our reasons for choosing the higher limit of 0.83 for hemolytic activity
probability, which can still ensure good selectivity. The peptides 2–11, 13–18, and 20–22
from Table 2 satisfy that criterion. Three of them are constructs involving parts of the
pexiganan antibiotic and TriPaxB or VV-penetratin (peptides 7–9). Peptide 10 is fused
TriPaxB with the antifungal sequence BP16 studied by Badosa et al. [144]. Peptide 13 is
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reversed VV-penetratin [136] fused to the anticancer TPR peptide [145]. The Gly residue
is a flexible linker between two bioactive peptides in both cases. The N-terminal part of
peptide 15 is reversed amoebae penetratin (peptide 14 from Table 2), which we singled out
in Table 1 as a natural penetratin-like peptide with the highest number of arginines (six).
Short C-terminal sequence CGIKRTK is similar to tumor-homing peptide tLyp-1 with the
sequence CGNKRTR [146]. The tLyp-1 and CGIKRTK are nontoxic but also not associated
with other predicted activities except cell penetration (see peptide 1 from Table 5).

The optimization for better anti-inflammatory activity led to the best multifunctional
peptides 20 (with underlined activity scores) and 21 from Table 2. They consist of a reverse
penetratin analog [56] (see peptides 16 and 17) with two amino acid substitutions (A8 and
I15) and analogs to the tumor-homing peptide [146]. The predicted toxicity to red blood
cells is very low (0.01) for peptides 20 and 21. Another advantage of these peptides is their
short length (22 residues). Their overall rank among all 176 sequences from Tables 2–5 is
6th and 22nd. Peptide 21 is an example of when increasing the number of substitutions
to increase the anti-inflammatory activity impairs other functionalities. The peptide 22 is
an analog of reversed optimized penetratin [56] (see Chapter 4 for details of its design).
Its overall rank is 31st (Table 6). Still, its short length (18 residues) and predicted lack
of hemolytic activity and toxicity argue for experimental validation of cell-penetrating,
antibacterial, anticancer, and antiviral activity.

The tentative conclusions from Table 2 are the following. Searching through natural
cryptides from biological databases is always a promising initial approach. Using the
rational design may be more successful in widening the activity spectrum of bioactive-CPP
conjugates. In vitro and in vivo tests can confirm whether some of Table 2 peptides remain
viable candidates for drug development. For a hybrid pAntp–TPR anticancer sequence
(peptide 12), predicted hemolytic activity slightly decreases in comparison with pAntp
alone. The observed toxicity of peptide 12 to normal cell lines is significantly smaller than
its toxicity to cancer cell lines [145].

If confirmed, the antifungal activity might be the most interesting for several reasons.
Firstly, nature’s design for penetratins gives these peptides the specialized ability to easily
pass through the eukaryotic cell membrane and for DNA binding. Secondly, there are
precious few drugs toxic to fungal cells causing different diseases but are nontoxic to human
cells. One example is the urgent need for compounds inhibiting the growth of C. neoformans
yeasts in patients who had organ transplantation and are immunocompromised. Thirdly,
the conjugated antifungal–CPP hybrid peptide may gain additional activities, as predicted
in Table 2 (see peptide 10). The rational design option for creating antifungal hybrid pep-
tides targeting intracellular molecules is to conjugate penetratin or some penetratin analog
with known antifungal peptides such as LKLFKKILKVL or KKLFKKILKKL [144]. They
are active against pathogenic fungi Fusarium oxysporum. The probability for antifungal
activity increased from 0.22 for the TriPaxB penetratin sequence RVVQVWFQNQRAKLKK
(see Table 2, peptide 3) to 0.54 or higher for the constructs RVVQVWFQNQRAKLKK-G-
LKLFKKILKVL or RVVQVWFQNQRAKLKK-G-KKLFKKILKKL (see Table 2, peptide 10
for the second construct predictions). The sequence should be submitted to other predic-
tive algorithms (besides iAMPpred [31] and AntiFungal [32]) for serious consideration of
experimental confirmations.

Confusingly, a dedicated server for the classification of peptides according to predicted
antifungal activity—the http://webs.iiitd.edu.in/raghava/antifp (accessed on 7 August 2022)
server, predicts as non-antifungal the peptides LKLFKKILKVL (BP33; [144]), KKLFKKILKKL
(BP16; [144]), LKLFKKILKVLG, together with hybrid peptides LKLFKKILKVL-G-RVVQVWFQ
NQRAKLKK, RVVQVWFQNQRAKLKK-G-LKLFKKILKVL, and sequence 10 from Table 2.
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4. Design of Cell-Penetrating Multifunctional Peptides

4.1. Advantages of Cell-Penetrating Antimicrobial Peptides

Conventional antibiotics often have difficulties reaching pathogens in mammalian cells.
The challenge of eliminating intracellular pathogens reflects in the persistence of related
diseases, rising antibiotic resistance, and severe side effects [192,193]. Fortunately, many
different drug delivery systems have been developed in recent years. One such delivery
mechanism is covalently connecting a bioactive molecule to some cell-penetrating peptide
that can target specific cell types, malignant cells, or intracellular pathogens [54]. In this
chapter, we shall consider peptide–CPP hybrids. Noninvasive applications of therapeutic
peptides conjugated to CPP offer new solutions to the problem of how to overcome the
barriers in a body such as the plasma membrane, blood–brain barrier, intestinal lumen, skin
barrier, air–lung barrier, blood–lung barrier, nasal cavity, or the posterior segment of the
eye [194]. The CPP choice must consider the cell-penetrating ability or probability, uptake
efficiency, toxicity, stability, half-life, immunogenicity, and other features that can all change
depending on the attached cargo molecule. A short-length CPP conjugate has the practical
advantage of being less expensive for synthesis and testing. For a peptide as bioactive cargo,
we mainly chose among known antimicrobial or anticancer peptides. Homing peptides are
a good choice for targeting specific populations of cells or intracellular organelles.

Peptide–CPP hybrids designed by other authors and us are in Tables 3–5. Our primary
design goal was to have a broad spectrum of highly predicted functional activities (cell-
penetrating, antibacterial, anticancer, antiviral, antifungal, and anti-inflammatory) and
as low toxicity as possible. The short conjugate length was the secondary goal because
combining many different functions in a short hybrid peptide is difficult.

4.2. Potential for Clearing Intracellular Drug-Resistant Bacteria

Besides cancer cells as targets for CPP-cargo molecules, there is a pressing need to
discover nontoxic last-resort drugs to eliminate intracellular multidrug or pan-resistant
bacteria [195]. Colistin is a peptide-fatty acid conjugate that belongs to the last-resort
class of antibiotics against hard-to-treat bacteria. For several decades it was abandoned in
medical practice due to its nephrotoxicity. Its toxicity and additional resistance induction
are obstacles to clinical usage [196,197]. After multidrug resistance proliferated, medical
doctors are again treating endangered patients with colistin by carefully balancing positives
(saving patient’s life) and negatives (a certain degree of damage to some organs).

It would be better to widen the availability of nontoxic peptides capable of clearing re-
sistant intracellular bacterial targets [198]. Fortunately, some bacteriocins are highly specific
bactericides for their target bacteria and nontoxic to eukaryotic cells. Among them, pepti-
doglycan hydrolases induce bacterial lysis by cleaving specific conserved bonds within the
peptidoglycan (PG) of the bacterial cell wall. PG target bonds are well conserved, making
it difficult for bacteria to develop resistance against PG hydrolases. These advantages
are enhanced when PG hydrolases are fused to penetratin or some other cell-penetrating
peptide. Such constructs eradicate intracellular drug-resistant Staphylococcus aureus [199].
These authors used the bacteriocin enzyme lysostaphin fused to penetratin or TAT peptide
from HIV. Both constructs were equally efficient in clearing intracellular antibiotic-resistant
strains of S. aureus responsible for recurrent infections. Therefore, CPP-fused PG hydrolases
are promising therapeutic applications of penetratin and other cell-penetrating peptides.

Some cationic antimicrobial peptides (AMPs) are selective and refractory to resis-
tance mechanisms developed by microbial pathogens and cancer cells [171]. Ribosomally
synthesized peptides are more costly than small molecular weight drugs but less expen-
sive compared to recently developed immunotherapy. As host defense peptides, AMPs
are an essential component of our immune system, with some able to translocate across
membranes without the need to design artificial AMP–CPP hybrids. There should be no
undesired immune response to peptides recognized as innate by the human body, even if
some slight modifications are introduced to enhance their stability.
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Unfortunately, the research about AMPs is underfunded by pharmaceutical compa-
nies and governmental agencies charged with supporting health-oriented innovations.
There was an initial failure of AMPs to achieve clinical applications, which resulted in
a widespread bias against them, despite all evidence that AMPs can be used as multi-
functional agents effective against bacteria, fungi, viruses, drug-resistant biofilms, and
cancer [200–205]. Nevertheless, the promise of multifunctional AMPs will eventually come
to fruition [206].

4.3. Short Cell-Penetrating Peptides and Their Conjugates

Optimized penetratin analog RKKRWFRRRRPKWKK [56] has six arginines, five
lysines, and two tryptophans. Besides its high cell-penetrating ability, in silico predictions
make a case for antibacterial, anticancer, and antiviral activity with considerably lower
hemolytic activity than the pAnp penetratin (see prediction results for peptide 16 from
Table 2). In known homeoproteins, there is no natural penetratin-like peptide of similar
length (15–16 residues) with such a large number of positive charges (≥+10). However,
the hypothetical protein OLQ14316.1 from coral dinoflagellate symbiont Symbiodinium
microadriaticum [207] contains a similar sequence R(603)RRRRRWFRRRRRRWFRKI(621),
named DiR6WF (Table 3, peptide 2), with an even higher number of arginines.

The decapeptide RRWFRRRRRR (abbreviation WFR8) from that domain has the best
chance of being a short CPP peptide, according to the CellPPD server [167]. Both peptides
have a high CPP probability (0.99) and are predicted as nontoxic with antimicrobial, an-
tiviral, and anticancer activity (see prediction results for peptides 2 and 3 from Table 3).
Identical decapeptide R(122)RWFRRRRRR(131) from the asparagus plant (Asparagus offic-
inalis) uncharacterized protein A0A5P1FK94 with 142 residues is also the best predicted
CPP in that protein. We shall name it asparagutin. The natural function of asparagutin is
unknown. The WF doublet from asparagutin is conserved in all penetratin-like peptides
from homeodomains (see Table 1).

In Table 3, we mostly use pAntp penetratin and short CPP candidates—the decapep-
tide RRWFRRRRRR and its reversed version RRRRRRFWRR (peptides 3 and 4 from Table 3),
which to our knowledge, have never been synthesized and tested. Asparagutin is con-
siderably shorter than penetratin, but it may be more difficult for solid-state synthesis.
Wender et al. [208] proposed a better pathway for synthesizing polyarginine peptides. We
assume that difficulties synthesizing the RRWFRRRRRR sequence or its reversed analog
should no longer be a serious issue. According to the VaxiJen server by Doytchinova and
Flower [209] for the immunogenicity prediction (http://www.ddg-pharmfac.net/vaxijen/
VaxiJen/VaxiJen.html, (accessed on 7 August 2022)), the asparagutin is the probable antigen
for parasites and fungi and probable non-antigen for bacterial, viral, and tumor cell targets.
The predicted cleavage site for different proteases is after the Phe residue (the result of
Song et al. [210] server analysis at the link: https://prosper.erc.monash.edu.au/, (accessed
on 7 August 2022)). Six terminal arginines after protease cleavage should still have the
CPP ability, with somewhat lesser uptake efficiency than the widely used eight arginine
CPP [211]. The hemolytic activity is negligible for the reversed sequence RRRRRRFWRR
(0.08 probability).

Wei et al. [168] used molecular simulations to design the KRKRWHW peptide (named
KW), which exhibited little cytotoxicity and high penetrating efficiency into mammalian
cells. For that peptide and its 30 conjugates (see Table 4 peptides 1–11, 14–16, 19, 25–28,
30, 33, 34, 36, 40, 50, and 52 and Table 5 peptides 8, 19, 23, and 28), we obtained variable
predictions for the hemolytic activity. Due to the importance given to low toxicity estimates,
five KW-containing peptides with a low probability of harming red blood cells (0.4 or lesser
probability) and low toxicity score (−1.01 or less) entered among the 20 best multifunctional
constructs with a high overall score (see Table 6). These are hybrid peptides 25, 30, 33, 36,
and 50 from Table 4. Despite different bioactive cargo (temporin, novispirin, or BMAP
antimicrobial peptides), an excellent multifunctional activity is possible for all of them.
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Identical septapeptide KRKRWHW is present in the C-terminal segment GQEQR
KRKRWHWRKFHKK of bacterial protein A0A1G1FKX2 from Nitrospiraceae bacterium
named the PSP1 C-terminal domain-containing protein (preliminary data). The segment
is also predicted with a high uptake efficiency (CPP probability of 0.91) and increased
antibacterial and antifungal activity compared to its KRKRWHW fragment. Its binding
affinity for bacterial or eukaryotic mRNA may be more important according to the PROSITE
pattern https://prosite.expasy.org/doc/PS51411 (accessed on 7 August 2022) for the PSP1
C-terminal domain profile. The DP-Bind server predicts DNA-binding sites for all but the
first three residues: QRKRKRWHWRKFHKK. When the whole A0A1G1FKX2 protein (pre-
liminary data) is examined with the RNABindRPlus web server http://ailab1.ist.psu.edu/
RNABindRPlus/ (accessed on 7 August 2022), thirty binding sites to RNA are predicted,
but none of them are even close to the C-terminal sequence GQEQRKRKRWHWRKFHKK.

The biological significance of the PSP1 C-terminal domain for cell cycle regulation is
still under investigation [212]. Anyway, it is possible that rationally optimized molecular
docking and dynamics simulations by Wei et al. [168] rediscovered short nontoxic CPP,
which nature has already developed as a protein motif in some bacteria. The KRKRWHW
peptide (KW) exhibits non-covalent binding to disaccharide trehalose. Trehalose provides
an exceptional stabilization of proteins during the desiccation procedure for extended
storage [213,214]. Loading trehalose in mammalian cells is considerably more efficient in
combination with the KW peptide and less damaging than other procedures for introducing
that disaccharide into cells [168].

Anticancer and antiviral activities are well predicted for the KW peptide fused to
BMAP-18 cathelicidin fragment GGLRSLGRKILRAWKKYG of BMAP-28 antimicrobial
peptide, which targets mitochondria [174] (peptide 25, Table 4). BMAP antibiotics cause
mitochondrial depolarization and cytochrome c release by opening the mitochondrial
permeability transition pore.

We used peptides CGIKRTK, CGAKRTK, CGNKRTR, RCGNKRTR, and RCGIKRTK
as short CPPs for designing multifunctional constructs (see Table 2 peptides 15, 18, 20, and
21; Table 3 peptide 8; Table 4 peptide 20; Table 5 peptides 1, 2, 7, 18, 22, 26, 27, 31, and 32).
The tLyP-1 tumor-homing peptide CGNKRTR [146] is found in predicted helicases from
Ferroplasma species (Archaea) HII82410.1, A0A1V0N279, and A0A7K4FM37. Ferroplasma
sp. loves a hot acid, heavy-metal rich environment (pH from 0 to 2 and temperatures from
35 to 55 ◦C. The archeon exhibits strange ancient bioenergetics dependent on oxidizing
ferrous iron (Fe2+) to ferric iron (Fe3+). Helicases containing the CGNKRTR motif from
Ferroplasma sp. are classified as DEAD/DEAH-box helicases—the essential enzymes for
the survival of advanced invasive melanomas [215], lung adenocarcinoma [216], and renal
cell carcinoma [217]. Hence, a connection may exist spanning billions of years of biological
evolution with the evolution of invasive cancer cells.

Unsurprisingly, helicases have been popular study subjects from 1976 onward due to
their ability to unwind duplex DNA [218]. The CGNKRTR peptide is also present in the
unchanged or slightly changed form at the C-terminal of integral membrane protein for
sodium-dependent phosphate transport from Actinia tenebrosa and Nematostella vectensis (sea
anemones): respectively, XP_031563687.1, and XP_032222729.1 (A7RG57). Septapeptides
are too short of having solid evidence about their biological significance in the absence of
broad conservation. Octapeptide RCGIKRTK from the C-terminal of N. vectensis predicted
protein A7RG57 has higher probabilities for multifunctional activity than CGNKRTR (see
peptide 2 prediction results in Table 5). All conjugates mentioned above with the CGNKRTR
or its analogs are interesting for synthesis and testing. All have a well-predicted broad
activity spectrum, and only two (peptides 26 and 27 from Table 5) have higher predicted
toxicity to healthy mammalian red blood cells than magainin-2.

The predicted probability for anticancer activity is high for some hybrid peptides. It
is 0.92 or higher as the output of both ACP servers for peptides 20 and 21 from Table 2,
20 from Table 4, and peptides 2, 7, 22, 26, 27, and 31 from Table 5 containing tLyP-1 or
its analogs. The IFLLWQR septapeptide (IF7, see peptide 13 from Table 4) binds to the
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annexin-1 protein, which is over-expressed on the endothelial caveolae surfaces of different
tumors [219]. Through endocytosis, annexin family proteins are internalized, allowing IF7
conjugates with anticancer drugs (such as anticancer peptides) to penetrate tumor cells
freely. Many other short tumor-homing peptides are described in the literature [170].

Xia Xu developed with collaborators several additional short CPP for helping anti-
cancer drugs enter tumor cells. These are RRRRRWW [220], RRRRQWWQW [221], and
RRRRRWWPP [188]. Employed servers suggest an antibacterial, antiviral, and antifungal
activity for the IKKIVSKIKKLLK-PPWWRRRRR conjugate, good cell-penetrating ability,
and low toxicity (see peptide 47, Table 5). The reversed sequence of the RRRRRWWPP
positioned the proline residues near the peptide middle due to expectations of increased
selectivity [185,222].

The high electric field of energized mitochondria attracts arginine-rich CPPs after
they pass through the plasma membrane. Peptide 13 from Table 4 may have multiple
means for internalizing tumor cells and reaching mitochondria due to its asparagutin
moiety. Peptide 6 from Table 3 is an example of how attached asparagutin RRWFRRRRRR
can promote the uptake of mitochondrial-homing peptide MIASHLLAYFFTELN (dubbed
pHK). Woldetsadik et al. [147] fused the homing peptide with the penetration-accelerating
sequence GKPILFF [223]. The hybrid peptide MIASHLLAYFFTELN-GKPILFF-amide (pHK-
PAS) disrupted the association of hexokinase II (HK2) with mitochondria in cancer cells.
It led to mitochondrial dysfunction and apoptosis of cancer cells without substantially
increased cytotoxicity to normal cells [147]. Thus, the hybrid peptide containing pHK
and either RRWFRRRRRR or GKPILFF can be the artificial death signal for malignant
mitochondria with potential therapeutic applications (see peptide 6, Table 3). The pHK-
PAS peptide is predicted as non-ACP by both servers for anticancer peptides illustrating
difficulties in constructing such servers.

Malignant mitochondria and their protein–protein interactions contributing to can-
cer phenotype are key targets for chemotherapy because the respiratory metabolism of
mitochondria is crucial for cancer survival despite the Warburg effect. Mitochondrial
structure and function are different between normal cells and cancer cells. These differ-
ences offer a potential for the design of anticancer compounds acting on mitochondria
for the selective killing of cancer cells [224]. The peptide pHK prevents the hexokinase II
association with outer mitochondrial membrane VDAC porin [225]. The pentadecapeptide
M(1)IASHLLAYFFTELN(15) is the VDAC-binding N-terminal domain of human HK2
(Uniprot entry P52789), acting as a surrogate peptide for HK2. HK2-VDAC association
helps keep mitochondrial permeability transition pores in closed conformation when bound
to the ATP–synthasome complex [226]. Mitochondria die together with the cell containing
mitochondria when transition pores are continuously open due to the inhibition of the
HK2-VDAC association. HK2 enzymes are gatekeepers of life and death [227].

There are, of course, many other possibilities to fuse the pHK peptide with some
cell-penetrating peptide for easier access to malignant mitochondria. One such option
for targeting cancer cells with a designed artificial death signal has been explored by
Chiara et al. [225]. These authors used the HIV-1 TAT CPP peptide to create the MIASHLLA
YFFTELN(β-Ala)-GYGRKKRRQRRRG-amide hybrid, called HK2-TAT. Unfortunately, sub-
sequent experiments revealed that a low concentration of that hybrid peptide (1 μM
HK2-TAT) causes rat heart ischemia [228]. Hence, additional study is needed with different
pHK-CPP conjugates. One possibility is the MIASHLLAYFFTELN-GG-RCGNKRTK con-
struct that uses the tLyp-1 analog for the penetration acceleration of pHK. Its advantage
would be considerably lower toxicity (0.09 probability for hemolytic activity) in comparison
with HK2-asparagutin (0.44), HK2-TAT (0.34), and HK2-PAS (0.29).

Designed short tumor-homing peptides KW and tLyP-1 (peptide 1 from Table 4 and
peptide 1 from Table 5) are similar in N-terminal and C-terminal parts. The hybrid construct
CGNKRFRWHW may have a good combination of CPP and other multifunctional activities
for its short length. We added the Arg residue at its N-terminal because it is present as
a natural tLyP-1 analog RCGIKRTK. Central KRFR motif is present in some cathelicidin
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antimicrobial peptides. The resulting RCGNKRFRWHW conjugate (peptide 3 from Table 5)
will be named MFC for the Multi-Functional Construct. A likely membrane-stabilized
structure of the MFC is an amphipathic beta-strand for residues 5–11 (SPLIT prediction).
The DP-Bind server predicts DNA binding for all RCGNKRFRWHW residues. The most
interesting expected features are low toxicity and the absence of any hemolysis combined
with high cell-penetrating, anticancer, and antiviral activity of that undecapeptide. Two
C-terminal tryptophans are natural fluorescence probes for examining the location and
microenvironment of MFC added to membrane vesicles, organelles, or living cells. A high
density of positive charges and hydrophobic residues should help MFC accumulation
by topologically closed membranes with active bioenergetics. Histidine presence should
make it sensitive to pH changes. The presence of reactive cysteine facilitates chemical
modification for fine-tuning desired effects.

BLASTP search discovered only one natural MFC analog (peptide 30 from Table 5
named MFCA) with a similar sequence RCNRKRFRWQWK. The MFCA peptide is found
as the 36–47 segment of the uncharacterized protein (partial) KAF5879953.1 during a
recent genome analysis of walking catfish Clarias magur. Its predicted CPP probability
is promising 0.97 with a high score of 0.76 for uptake efficiency, but other predicted
multifunctional activities are not enhanced compared to MFC. The equally low likelihood
for the hemolytic activity of 0.01 leaves enough space for fine-tuning that peptide without
making it toxic to healthy human cells. Hybrid peptides 11, 12, 14–16, and 33–35 from
Table 5 illustrate how adding bioactive cargo sequences to MFC can result in widely
different hemolytic activity predictions. Seven conjugates are associated with predicted
hemolytic activity of 0.06 or less (peptides 12, 15, 16, and 33–35 from Table 5). For three
of them (peptides 15, 16, and 35), we used the same design approach as before by adding
a shorter pexiganan sequence (PexShort) or pexiganan’s N and C terminal tetrapeptides
(PexNC) (see peptides 8–10 from Table 2) to respective MFC terminals.

The peptides 15 and 35 from Table 5 with sequences RCGNKRFRWHW-GIGKLKKAKK
FGKKILKK and RCGNKRFRWHW-GIGKLLKRKKFGKKILKK have a maximal probability
(between 0.97 and 1.0) for clearing antibacterial, antifungal, and anticancer intracellular
targets. Peptide 35 is optimized for anti-inflammatory activity after two amino acid sub-
stitutions (bold and underlined residues), and its overall rank is seventh among all of
the considered peptides from Tables 2–5. An unexpected finding is a high probability
(0.93 or higher) for the antifungal activity of MFC conjugates 11, 12, 14–16, and 35. The
pexiganan analog cargo of these peptides may have a similar capability of depolarizing
mitochondria and killing fungi and parasitic intracellular protozoans as the pexiganan but
must be stabilized against proteolytic degradation [229].

For peptide 12 from Table 5, the bioactive cargo is Zp3a sequence GIKAKIGIKIKK
(see also peptide 32 from Table 3). That peptide was recently designed by Zeng et al. [161]
to eradicate the resistant Vibrio species pathogens, a frequent cause of disease outbreaks
related to seafood consumption. When combined with our MFC construct, or asparagutin,
a good compromise is achieved for Zp3a hybrids for predicted toxicity absence and broad-
spectrum multifunctional activity. These molecules are more likely than Zp3a to enter the
cytoplasm and disrupt mitochondrial membranes.

Mitochondrial-targeting peptide KLLNLISKLF is the prodeath domain MTD of the
Noxa, the BH3-only Bcl-2 family protein [157,178,230]. It causes cellular death by open-
ing the mitochondrial permeability transition pore and needs some cytosolic factor to
become toxic. Moreover, the peptide requires help to penetrate the cytoplasmic membrane
to reach mitochondria. Seo et al. [178] used the CPP-MTD sequence RRRRRRRRGRQ-
KLLNLISKLF (peptide 29, Table 4) to study MTD killing mechanism. Jeong et al. [157] used
the cationic RIMRILRILKLAR segment from the S5 subunit of a voltage-gated potassium
channel (Kv2.1) connected to KLLNLISKLFCSGT via glycine triplet. We fused it with the
asparagutin (peptide 27, Table 3) or the KRKRWHW CPP sequence (peptide 15, Table 4). All
multifunctional predictions are pretty good for these three hybrid peptides. Low toxicity
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predictions are, however, questionable because all cell types can be penetrated, and the
selectivity for cancer cells is not expected without some tumor-homing mechanism.

There are tumor-homing peptides that can be fused to the MTD. Seo et al. [178]
used CGNKRTRGC and CNGRCVSGCAGRC tumor vascular-targeting motifs discov-
ered by Arap et al. [231] to design selective MTD–CPP hybrids. The C2Pred server by
Tang et al. [23] predicts that the hybrid peptide CGNKRTRGCGGKLLNLISKLF (named
TU3: MTD) gains the CPP ability. That was verified in experiments by Seo et al. [178]. The
Chosun University from South Korea patented TU3: MTD and similar peptides in 2012 (US
patent 2012/0165269 A1).

Pfeiffer et al. [176] discovered that the antimicrobial peptide mastoparan (INLKALAA
LAKKIL-amide) facilitates the mitochondrial permeability transition. Mastoparan peptide
from wasp venom has a broad spectrum of activities. Among others, it causes cell death of
malignant melanoma cells by activating the mitochondrial apoptosis pathway [232]. The
hybrid peptide KW–mastoparan (peptide 27 from Table 4) has promising multifunctional
potential too.

Peptide 24 from Table 4 is the DP1 pro-apoptotic peptide constructed by Mai et al. [173]
with the sequence: RRQRRTSKLMKR-GG-KLAKLAKKLAKLAK. The N-terminal half is
the protein transduction domain PTD-5 [233], which is connected via Gly-Gly linker to the
C-terminal antimicrobial peptide (KLAKLAK)2 [234]. The DP1 is an efficient killer of tumor
cells from accessible solid tumors both in vitro and in vivo. The probable mechanism is
disrupting the mitochondrial membranes from these cells [173].

4.4. Magainin-2 Analogs Fused to Cell-Penetrating Peptides

Our Mutator server for predicting the therapeutic index TI [46] results in the maximal
possible TI = 94.9 for the magainin analog GIAKFLDSAKKFGKKFVKTIMQL (peptide 25
from Table 5). We underlined substituted residues regarding magainin-2. Maximal TI is the
best compromise between low hemolytic and robust antimicrobial activity. That magainin
analog entered before or after CGNKRTR CPP into constructs 26 and 27, which we designed
for the present paper. The HAPPENN server by Timmons and Hewage [40] rejects both
magainin conjugates after a probability prediction of 0.98 and 0.86 for their hemolytic
activity. It illustrates how different algorithms for predicting the same functionality can
produce contrasting results.

Some examples when predictions agree with experimental results are magainin-2-
pAntp [172] and magainin-2-bombesin conjugate [171,235] (see prediction results for pep-
tides 22 and 23 from Table 4). Magainin-2 and bombesin were both isolated from frog
skin. Bombesin is a cancer-homing peptide apt to recognize various human cancer cells.
The magainins exhibit a modest anticancer activity (see peptide 6 from Table 5 and refer-
ences [236–238]. Liu et al. [235] provided a positive answer to whether the conjugation
of magainin 2 (MG2) to the bombesin could enhance the selectivity and cytotoxicity of
hybrid peptide MG2B against tumor cells. It induced apoptosis of tumor cells in vivo
and in vitro. The killing mechanism involves increased binding to cancer cell membranes
and increased translocation into these cells. Cellular uptake of MG2B was confirmed by
Liu et al. [235] after using fluorescein-labeled MG2B and fluorescence-activated cell sorting.
Hence, we have the experimental confirmation for the CPP activity of MG2B despite Table 4
(peptide 22) prediction of the smallest CPP probability (0.30) for MG2B among all 52 pep-
tides from that table. Unconfirmed MG2B ability is for treating polymicrobial co-infections
(bacterial, viral, and fungal) and cancer. Immunocompromised persons receiving common
anticancer drugs, patients with organ transplants exposed to immunosuppressants, or
patients with a partially destroyed immune system (after HIV infection, for instance) are
prone to co-infections. They can benefit from antimicrobial peptide conjugates with the
unique potential to fight such infections [171].

Liu et al. [172] also examined magainin-2-penetratin conjugate (MG2A abbreviation,
peptide 23 from Table 4) for its selective anticancer activity. They observed that penetratin
binds to chondroitin sulfate (CS), which is overexpressed on the surface of some tumor cells.

204



Antibiotics 2022, 11, 1196

Thus, penetratin should be able to act as a tumor-homing and cell-penetrating peptide at the
same time while enhancing the anticancer activity of magainin 2. Achieved selectivity was
not outstanding because the therapeutic index was not higher than three to five, meaning
that cytotoxicity to normal cells was only five times lower. Still, MG2A performed better
than MG2B, according to predictions for all beneficial activities (Table 4). Liu et al. [172,235]
did not examine these peptides’ antiviral and antifungal efficacy.

Magainin analogs coupled to shorter CPP are in Table 5 (peptides 7–9, 18–20, 22–24,
26–29, and 38). Some of them have better predicted overall performance than MG2A.
In the absence of experimental confirmation, there is no way to ensure their therapeu-
tic index is also better, but we have some reasons to expect so. Tumor-homing peptide
CGNKRTR and other short CPPs, such as KRKRWHW, RCGIKRTK, RCGNKRFRWHW,
RRWFRRRRRR, and RRRRRRFWRR may be able to provide good selectivity. Little cytotox-
icity to mammalian cells and high penetrating efficiency was confirmed for the KRKRWHW
peptide [168] (peptide 1 from Table 4). However, the predicted hemolytic activity for
hybrids 7–9, 18–20, 22–24, 26–29, and 38 is spread around the probability for magainin 2
(0.83) with no value lower than 0.57 for peptide 19 (the conjugate with KRKRWHW).

One can find in the literature multiple confirmations for the broad-spectrum activity
of magainin 2, its analogs and hybrids. It includes antibacterial [182,239], antiviral [240],
antiprotozoal [241], and antifungal activity [242] in addition to antitumoral properties. To
lower production costs, recombinant expressing systems have been developed to obtain
large amounts of biologically active peptides [239]. Certain magainin analogs from Table 5
also have confirmed antimicrobial activity (peptides 10 and 13 [182]; peptide 17 [183];
peptide 21 [184]). Peptides 10 (9P0-1) and 13 (9P1-3) exhibited, respectively, 8 to 125
and 4 to 65 times stronger antibacterial activity than their parent peptide 6 (magainin-
2) in Azuma et al. [182] experiments with Escherichia coli ATCC25922 and Staphylococcus
epidermidis ATCC12228 strain. That would be difficult to anticipate based on a slight
probability increase (from 0.95 to 0.99) for antimicrobial activity of analogs 10 and 13 by the
CAMPR3 algorithms (the SVM module) reported in Table 5. The CAMPR3 Discriminant
Analysis (DA) classifier obtains the same (correct) ranking for the antimicrobial potency,
that is, 9P0-1 > 9P1-3 > MG2.

Older designed MG2 analogs are peptide 17 [183] and peptide 21 [184] from Table 5.
Predicted SVM probabilities by the CAMPR3 server are 0.965 and 0.985 for the antimicrobial
activity of these peptides. The peptide 17 has confirmed antibacterial potency is from 6 to
40 times more potent in comparison to MG2 against, respectively, Pseudomonas aeruginosa
and Escherichia coli. A slight increase from 0.946 (for MG2) to 0.965 (for peptide 17) for the
probability of AMP activity cannot be easily interpreted as confirmation of the server’s
accuracy in predicting an order of magnitude stronger antibacterial activity detected in
experiments. Instead, it is a possible indication that the applied design principles of
Dathe et al. [183] are a good choice. For peptide 21, one amino acid substitution (Q19)
was enough for Matsuzaki et al. [184] to observe 4 to 8 times stronger antibacterial activity
against the Acinetobacter calcoaceticus ATCC 14987 and Escherichia coli ATCC 8739 strains.
That significant improvement also corresponded to a slight increase in predicted SVM
probability, from 0.946 for MG2 to 0.985 for Q19MG2. Attached asparagutin to peptide 17
significantly increased the probability for the CPP activity of the hybrid peptide 20 (also
from Table 5) without any apparent decrease in its potential for other MF activities. Two
CPP hybrids with peptide 21 with similar predicted features are peptides 23 and 24.

4.5. Imperfect and Perfect Activity-Enhancing Palindromes

The palindromic motifs RLLRRLLR and RWQWR enhance the antibacterial activity
against Gram-negative and Gram-positive strains [243] when chimeric peptides are con-
structed based on buforin 2 sequence TRSSRAGLQFPVGRVHRLLRK [159] and lactoferricin
fragment RRWQWRMKKLG [244]. Both buforin 2 and lactoferricin have confirmed strong
antibacterial, anticancer, antifungal, anti-endotoxin, DNA-binding, and cell-penetrating prop-
erties (see [8,159,245–247] for validated activities of buforin-like peptides, and [248–251] for
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lactoferricin-like peptides). Those and similar palindromic motifs can be employed as LEGO
pieces to achieve the desired fine-tuning of desired specificity and selectivity. Asparagutin
decapeptides RRWFRRRRRR and RRRRRFWRR are imperfect arginine-rich palindromes with
an excellent CPP potential (peptides 3 and 4 from Table 3).

In silico tests were performed with 48 asparagutin hybrids, including some analogs
with one amino acid substitution, which decreased the number of arginines to seven.
These are peptides 3, 4, 6, 7, 9–16, 20–29, 31–33, 35–38 and 42 from Table 3, peptides
12, 13, 17, 18, 21, 35, 37–39, 41–45, and 51 from Table 4, and peptides 9, 20, 24, 29, 38,
and 43 from Table 5. Summary Table 6 lists 8 asparagutin hybrids among the best 20
multifunctional peptides according to the overall score. All magainin analogs fused to
asparagutin retained the hemolytic activity and toxicity predictions similar to or worse
than magainins. That eliminated them from the ranks of the 20 best peptides (Table 6) due
to the strict requirements of the overall score for significantly lower hemolytic activity and
toxicity predictions.

Some authors concluded that the guanidino groups from arginines play a crucial role
in the membrane permeability of various molecules having different structures [211,252].
Designed penetratin analogs underlined the importance of the cell-penetrating role of the
last seven residues of Drosophila pAntp penetratin [253,254], namely, residues R(10)RM
KWKK(16). It is the motif BBXBXBB when B stands for cationic residues (R, K) and
X stands for hydrophobic residues. Alanine substitutions at each sequence position of
that septapeptide destroyed the cell-penetrating function of penetratin analogs except
for position 12 (Met-12 to Ala-12 substitution). Table 1 illustrates that natural evolution
during the last billion years also tolerated alanine substitution at the twelfth position of
all penetratin analogs. Examples of penetratin-like peptides from all animals (including
sponges and Placozoa) contain the same BBXBXBB palindromic motif. Exceptions from that
septapeptide palindromic rule are easier to find in homeotic proteins from other kingdoms
of life. Degenerate peptidic palindrome would probably be a better description [255]
because palindromic BB sides are connected with an asymmetric linker region (XBX is
usually MKW or AKW).

Binding to palindromic DNA sequences with perfect dyad symmetry does not re-
quire an equally ideal arrangement of the recognition helix from a transcription factor.
The DNA-binding proteins often contain imperfect palindromic motifs, which medi-
ate interaction with the DNA palindromic sequence. For instance, the RRSRARK sep-
tapeptide from DNA-recognition helix L(230)KRARNTEAARRSRARKLQRMKQL(253)
or A(229)LKRARNTEAARRSRARKLQRMKQ(252) [256] of yeast transcriptional activator
GCN4 (2DGC PBD identification for the P03069 protein) is anchored inside the major
groove of the palindromic ATF/CREB site and conforms to the same BBXBXBB peptide
palindrome with an asymmetric linker [257,258].

The BBXB is the simpler of two Cardin–Weintraub motifs [110] for heparin sulfate
proteoglycan recognition [259], indicating that penetratin-like peptides can first bind to
negatively charged glycosaminoglycans before they enter eukaryotic cells. Most cationic
CPP conform to this motif due to the high density of positively charged residues [260]. Cell
surface proteoglycans promote the uptake of arginine-rich penetratin-like peptides [261],
but the uptake mechanism is still disputed [53,262]. Peptide-phospholipid interaction at the
plasma membrane surface may mediate internalization at low, while accumulated peptide-
glycosaminoglycan clusters activate endocytosis at higher, peptide concentrations [263].
By the way, both choices for the recognition helix (see above) from the GCN4 master
regulator of gene expression (which activates more than 500 genes [264]) also have a high
probability (0.95 to 0.96 according to the MLCPP server) to act as cell-penetrating peptides.
So does the recognition helix ERKRLRNRLAATKCRKRKLERIAR [256] from the JunB
prokaryotic transcription factor (CPP probability 0.96), which contains shorter BBXB and
longer BBBXXB CW motifs (underlined). A dual role of CW motifs is essential for exported
morphogens such as Sonic hedgehog protein and growth factors midkine and pleiotrophin,
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which bind to heparan sulfate in the form of monomers or multimers and show bactericidal
activity [265,266].

4.6. Construction of Chimeras Containing Bacterial Pheromones or Ribosomal-Homing Peptide

Almost all chimeric peptides from Tables 3–5 are predicted to exhibit antibacterial, an-
tiviral, and anticancer activity. Homing peptides often gain multifunctional abilities when
fused to CPP sequences. Adding the N-terminal ribosomal-homing peptide YKWYYRGAA
(RHP) to penetratin produces peptide 5 from Table 3 with the sequence YKWYYRGAAR-
QIKIWFQNRRMKWKK, which readily enters into and kills all eukaryotic cells, whether
healthy or malignant [54]. A killing mechanism involves binding to the ribosomal pro-
tein RPL29 and disrupting ribosomal function. Both algorithms for predicting anticancer
activity, the ACPred [26] and mACPred [27], agree on predicting high ACP probability
(respectively, 0.95 and 0.98). Antiviral activity for that peptide is also possible (probabilities
equal to or higher than 0.8). In vivo usefulness is doubtful due to the peptide’s nonselective
cytotoxicity, which agrees with the probability of 0.97 for its hemolytic activity.

Sequence 7 from Table 3 contains the same ribosomal-homing motif, but its CPP part
is our WFR8 peptide. Predictions are better for almost all activities calculated in that Table
than the peptide 5 results. The most encouraging is the prediction by the HAPPENN
server for hemolytic activity. The peptide YKWYYRGAARRWFRRRRRR is expected to be
non-hemolytic (with a small probability of 0.12 for the hemolytic activity). The predicted
absence of hemolytic activity is even better for peptide 2 from Table 4 (0.02 probabil-
ity), which we constructed as fused ribosomal-homing peptide YKWYYRGAA and short
cell-penetrating sequence KRKRWHW designed by Wei et al. [168]. Hexadecapeptides
YKWYYRGAAKRKRWHW and KRKRWHWGYKWYYRGAA (also 0.02 probability for
hemolytic activity) look like promising lead compounds for selective anticancer activity
(probability range from 0.97 to 0.99). Cell-penetrating peptide-based anticancer therapies
provide the advantage of rapid delivery to intracellular targets and low toxicity compared
to other drugs [267,268].

We can also consider designed hybrids when ribosomal-homing peptide YKWYYR-
GAA is fused with other shorter CPPs of minimal toxicity, such as reverse-WFR8, CGNKRTR,
RCGIKRTK, and RCGNKRFRWHW (respectively, peptides 4 from Table 3, and 1–3 from
Table 5). These are sequences YKWYYRGAARRRRRRFWRR (peptide 33 from Table 3),
CGNKRTRYKWYYRGAA, RCGIKRTKYKWYYRGAA, and RCGNKRFRWHWYKWYYR-
GAA (peptides 31–33 from Table 5). All of them should have good cell-penetrating activity
(probability range from 0.78 to 0.97) without any hemolytic activity (probability predictions
of 0.04 or less). If some other well-predicted activities are confirmed (anticancer, antiviral,
or antifungal) among these four MF candidates, this would be an additional motivation for
drug development.

The significant achievement in using pheromones for targeting specific pathogenic bacteria
is the construction of the C16G2 peptide TFFRLFNRSFTQALGKGGGKNLRIIRKGIHIIKKY,
which is specifically targeted toward dental caries causing Streptococcus mutans [269,270]. The un-
derlined domains in the peptide’s tripartite structure have different functions. The N-terminal
part is the targeting sequence TFFRLFNRSFTQALGK derived from S. mutans competence-
stimulating peptide, quorum-sensing bacterial pheromone. By itself, this domain has weak
antibacterial activity. The GGG triplet is introduced next to provide a flexible linker. Underlined
C-terminal domain KNLRIIRKGIHIIKKY is well-known broad-spectrum peptide antibiotic
novispirin G10 [152,271] derived from sheep AMP ovispirin-1 by glycine for isoleucine sub-
stitution at the sequence position 10 to decrease ovispirin toxicity to human cells. It is the
“killing domain” forming kinked amphipathic alpha helix in a membrane with resulting high
hydrophobic moment. The HAPPENN and ToxinPred offer conflicting predictions. Expected
hemolytic activity is very high (0.986 probability), while toxicity is low (−0.98 score).

Just-described discoveries opened a new field of specifically targeted chimeric an-
timicrobial peptides with a bright perspective of being used daily as a mouth rinse or
as an essential ingredient in toothpaste to prevent caries. The importance of research in
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the case of C16G2 is illustrated by many clinical NIH-funded trials involving voluntary
participants, with seven already completed: https://clinicaltrials.gov/ct2/results?term=
C16G2&Search=Search (accessed on 26 July 2022).

One can use the same principle to construct other chimeric antimicrobial peptides
with a flexible linker connecting the AMP region and the pheromone for targeted bac-
teria. One possibility to test is combining the S. mutants UA 159 mature pheromone
GLDWWSL [272,273] with short but powerful broad-spectrum antimicrobial peptide RRL-
FRRILRWL [156]. With the same GGG linker, we designed specifically targeted chimeric
AMP: GLDWWSLGGGRRLFRRILRWL, which is considerably shorter (21 amino acid
residues) and cheaper to synthesize than the C16G2 peptide (35 amino acid residues). It
has a very high hydrophobic moment for an amphipathic helix in the second half of its
sequence. The hemolytic activity prediction for that peptide decreased to an acceptable
magainin 2 probability (0.823). The predicted toxicity score is substantially lower (−1.52).

For gangrene-causing Streptococci sp., some other Streptococci-specific pheromones
can be helpful, either alone [274], or when combined with a broad-spectrum AMP. For
instance, it may be interesting to test the SilCR competence-stimulating peptide DIFK-
LVIDHISMKARKK linked with GGG triplet to RRLFRRILRWL or KNLRIIRKGIHIIKKY
AMP when Streptococcus pyogenes or Streptococcus dysgalactiae is detected in necrotizing
tissue. In the case of Streptococcus oralis, implicated in throat infection or dental plaque
formation, the pheromone choice can be DWRISETIRNLIFPRKK. For multi-drug-resistant
Streptococcus strains, it would be advantageous to have an alternative option of antibiotics.
The few examples we described for chimeric-targeted AMPs are only a minuscule portion
of all possibilities. Still, the critical point here is that we can perform the rational design of
promising chimeric peptides in silico before testing in the laboratory.

4.7. The Optimization of Multifunctional Constructs

Table 5 peptides 31–52 represent in silico attempts to answer different questions
about the design of multifunctional peptides. A rational approach toward better anti-
inflammatory activity increased the overall score of MFC (peptide 3) fused with short
pexiganan analog (peptide 35) enough to classify it among the best 20 multifunctional
peptide constructs (seventh). The same approach was successful with the PR-35 analog
(peptide 45), the 13th peptide in the overall rank (Table 6). The parent peptide for the PR-35
analog is the antimicrobial PR-39 cathelicidin from the pig (the P80054 UniProt entry).
Interestingly, all seven automatic substitutions replaced prolines to increase the predicted
anti-inflammatory activity without decreasing the potential for CPP and most other PR-39
and PR-35 functionalities (compare peptides 41, 44, and 45 from Table 5).

Cecropin-magainin-2 hybrid peptide 39 (dubbed P18 by Shin et al. [185]) is the oppo-
site example when suggested amino acid substitutions by the Anti-inflammatory server
by Gupta et al. [35] produced its analog (peptide 46) with a high probability for hemolytic
activity and no toxicity decrease. Substitution of central Pro residues with Leu elimi-
nated low hemolytic activity predicted and observed for P18. However, substitutions
suggested by the ToxinPred server by Gupta et al. [37,38] and the HeliQuest server by
Gautier et al. [275] decreased the predicted hemolytic and toxic activity. In the optimized
sequence KWRLFKKI-P-RFLRSARRF (peptide 49 from Table 5), we selected substitu-
tions that replaced all but the first cationic residue with Arg. We rejected all substitutions
for central proline residue to maintain the high selectivity [222]. The other five servers
predicted better multifunctional activities for that highly amphipathic helical peptide
CA-MA2-analog2, including its cell-penetrating ability.

The amphipathic peptide LKLLKKLLKKLLKLL-NH2 (peptide 40, named K6L9) does
not look promising due to observed and predicted potent hemolytic activity [186]. Still, its
good antimicrobial and anticancer properties [276] stimulated the search for non-hemolytic
analogs. For helical peptides with a continuous hydrophobic face, the selectivity can be
increased together with the reduction in the hemolytic activity by inserting charged or
D-amino acid residues into that helix face [277,278]. The LKlLKkLlkKLLkLL-NH2 analog of
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K6L9, named D-K6L9, has five D-amino acid residues (lower case letters indicate D-amino
acids). It does not show any hemolytic activity, and it is better protected from in vivo
cleavage by proteases [186]. Another ingenious chemical modification is the introduction
of the site-specific isopeptide bond switch in K6L9. One such peptide, Amp1EP9 [279],
is a stable and non-toxic antimicrobial peptide with other possible beneficial functions,
such as anticancer and cell-penetrating. Unfortunately, the servers used in this review
work only for the proteinogenic amino acids interconnected with peptide bonds. We
can, however, imitate the D-K6L9 peptide by Gly and Arg substitutions into sequence
locations 3 and 8 (Gly substitutions) and 6, 9, and 13 (Arg substitutions). The resulting
LKGLKRLGRKLLRLL-NH2 peptide has a considerably lower probability of hemolytic
activity (0.153 instead of 0.907) with similar predictions for all other functionalities.

Like PR-39, pyrrhocoricin is also a proline-rich antibacterial peptide (peptide 42 from
Table 5). That host defense peptide from insects is devoid of in vitro or in vivo toxicity
and has confirmed low hemolytic activity [187,280] (probability of 0.004 according to the
HAPPENN server). Akin to other proline-rich peptides, pyrrhocoricin can enter a cell’s
cytoplasm and exhibits multiple functions [280]. A recent finding is that the PRP repeat
from pyrrhocoricin blocks the exit tunnel of 70S bacterial ribosome, which is essential for
synthesizing all proteins [281,282]. Together with its cell-penetrating ability, this would
explain the very high selectivity index and nanomolar concentration of pyrrhocoricin,
which is enough to kill E. coli D22 and Agrobacterium tumefaciens [187]. It may be possible to
broaden and strengthen the activity spectrum of pyrrhocoricin by fusing it with asparagutin
(see Table 5 results for peptide 43).

4.8. Antimicrobial Peptides with Anticancer Activity Fused to Cell-Penetrating Peptides

A common theme in research about cancer and multidrug-resistant bacteria is the
toxic side effects of last-resort drugs and natural obstacles impeding them from reaching
their targets. Multifunctional peptides have the potential to overcome both hindrances.
Besides magainins, many other natural peptides have verified antimicrobial and anticancer
activity. Antibacterial AMPs with anticancer activity (ACP) are often cytotoxic to healthy
human cells, but some are highly potent against bacteria and cancer cells while harmless to
normal mammalian cells. Hoskin and Ramamoorthy [1] introduced classifications based
on two general modes of AMP anticancer activity and several structural features in their
influential review.

The structure of BMAP peptides, cecropins, LL-37, hCAP-18, magainins, tempo-
rins, fowlicidins, gaegurins, aureins, citropins, brevinins, ranatuerins, melittins, and their
analogs is predominantly amphipathic α-helical in the membrane environment. Melittins
are cytotoxic to all cells. Defensins, lactoferricins, and tachyplexins form amphiphilic β-
sheet structure, while Pro-Arg-rich cathelicidin PR-39 and pyrrhocoricin lack the secondary
structure. Some ACPs have a cyclic structure usually formed by disulfide bonds. Gomesin,
tachyplexin I, and defensins are well-known examples. Our DADP database of anuran
defense peptides ([283]; http://split4.pmfst.hr/dadp/, accessed on 7 August 2022) contains
108 peptides with dual AMP and ACP functions.

Gaspar et al. [2] enlisted 18 primary sequences for peptides with published data about
their anticancer activity toward solid and hematological tumors. They concluded that
the remaining challenges are delivery to tumor cells and lowering toxicity profile against
healthy cells. The review of Deslouches and Di [171] lists 18 representative AMPs exhibiting
anticancer activity as promising targets for drug development. The ADP database version
3 ([284]; https://aps.unmc.edu/AP/, accessed on 7 August 2022) contains 266 AMPs with
anticancer activity. That is close to 8% of all their entries for antimicrobial peptides (a total
of 3425 peptides). A richer CAMPR3 database with more than ten thousand antimicrobial
peptides contains even more ACPs. The CancerPPD database [285] encompasses more
than 600 experimentally confirmed anticancer peptides. Felício et al. [3] concluded their
review of dual AMP and ACP activities with a statement that at least 10 of these peptides
can be approved for clinical applications during the next five years. Low selectivity, high
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production costs, and low resistance to proteolytic cleavage slowed down the progress in
the drug delivery pipeline. Still, some peptide candidates exhibited cytotoxic activity and
good selectivity against multidrug-resistant cancer cells.

A more recent review by Tornesello et al. [286] mentions only one natural dual-
action peptide (AMP and ACP), which reached phase II of clinical trial steps for the
melanoma target. It is the LL-37 peptide with the primary structure: LLGDFFRKSKEKIGKE-
FKRIVQRIKDFLRNLVPRTES.

The LL-37 is one of the best-known multifunctional peptides and the only cathelicidin
expressed in humans. Nijnik and Hancock [287] enumerated 12 different experimentally
confirmed functions for LL-37, including immune modulation, wound healing, and an-
giogenesis, besides its antimicrobial and inhibition of biofilm formation activity. They did
not discuss early indications of its anticancer, antiviral, antifungal, DNA binding, and
cell-penetrating activity. Two LL-37 weaknesses are its weak potential for cell penetration
(probabilities 0.68 and 0.45 for, respectively, CPP activity and uptake efficiency according
to the MLCPP server) and low therapeutic index between 3 to 5 due to its toxicity to
eukaryotic cells at slightly higher concentrations [1]. The selectivity index measured by
hemolysis and minimal inhibitory concentration for bacterial growth is about 20 [288].
Regarding anticancer activity, LL-37 suppresses tumorigenesis in gastric cancer, but there is
a perplexing implication for LL-37 in promoting breast, ovarian, and lung cancers [289].

Efforts to minimize the cost of peptide synthesis identified the LL-37 central helical
region as the most important for its antibacterial, antibiofilm, and antiviral activity [290].
The same author (Guangshun Wang) subsequently added glycine at the N-terminal of their
peptide GF-17 with the primary structure FKRIVQRIKDFLRNLV, which retained some
antimicrobial and anticancer activity. To make it more resistant to proteases and more
potent against multidrug-resistant ESKAPE bacterial species, Wang et al. [291] substituted
two L-isoleucines and one L-leucine with three D-leucines. They also introduced several
chemical modifications to make it more hydrophobic [291]. In the most active stable version
of the GF-17 peptide, these authors replaced both phenylalanines with biphenylalanines.
Substitution of Phe for biphenylalanine residues increases peptide hydrophobicity and self-
assembly propensity. The resulting GF-17 analog, named 17BIPHE2 by Wang et al. [291],
was equally potent against the S. aureus USA300 MRSA strain and the Gram-negative
multidrug-resistant strains (MIC = 3.1 μM) with considerably higher SI = 73 compared to
its parent peptide LL-37.

In our studies on how peptide antibacterial performance changes between Gram-
negative and Gram-positive species [292], we have seen that high selectivity is more difficult
to achieve against Gram-positive species such as Staphylococcus aureus. One possible reason
is that more active peptides against S. aureus strains are more hydrophobic and more
toxic to human cells. This makes it challenging to find the best compromise between low
toxicity to healthy human cells and high wide-spectrum potency against most pathogenic
bacteria and cancer cell types. Nevertheless, the 17BIPHE2 peptide exhibits 16 times better
performance PE = SI/MIC than pexiganan’s performance against S. aureus strains (see
reference [292] for antibacterial performance definition and estimates). Still shorter LL-37
dodecapeptide with one D-Leu residue in its primary structure KRIVKLILKWLR, named
KR-12-a5(6-DL) by Kim et al. [293], had a mean MIC = 3.4 μM, and SI = 61.2 (D-Leu at 6th
location is in italic font).

In our experience, the majority of natural or designed peptide antibiotics with an excel-
lent performance against a broad spectrum of Gram-negative and Gram-positive bacteria
(including some multidrug clinical isolates) are likely to exhibit some degree of selective an-
ticancer activity too. Good examples are the peptides we designed and named trichoplaxin-
2a, pexiganan-L18, flexampin, zyk-1, adepantin-1a, and mapegin [88]. Their respective
sequences are: RHHWRRYARIGFRAVRTVIGK (T2R1), GIGKFLKKAKKFGKAFVLILKK
(PEXA), GIKKWVKGVAKGVAKDLAKKIL (FLEX), GIGREIIKKIIKKIGKKIGRII (ZYK1),
GIKKAVGKALKGLKGLLKALGES (A1A), and KIGKKILKALKGALKELA (MAPA). For
prostate cancer PC-3 cells, the IC50 concentrations ranged from 1.5 (Zyk-1) to 12 μM (A1A),
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which is 40 to 5 times stronger anticancer activity compared to the Polybia-MP1 anticancer
peptide IDWKKLLDAAKQIL-NH2 [88,294].

There are other examples when experimental confirmations exist for the conjugates
to target cancer cells or their organelles [146,147,158,160,295]. Conjugates with reversed
optimal penetratin (peptides 17, 18, 20, and 21 from Table 2) belong to the same category.
Their cancer-homing C-terminals are tLyP-1 peptides or their analogs (see peptide 1 from
Table 5). Such peptides can be the artificial death signal for malignant mitochondria and
tumors. The associated probability for hemolytic activity is negligible (see the HAPPENN
server results from Table 2). Thus, therapeutic applications are possible for nontoxic or
weakly toxic anticancer peptide conjugates with tLyP-1, even when one of the two servers
we used does not predict anticancer activity.

A particular class of anticancer peptides can elicit tumor eradication through cytotoxic
T-cell responses. For instance, cancer vaccination is performed with telomerase peptide
EARPALLTSRLRFIPK named GV1001 [296]. The peptide can internalize into the cell
cytoplasm [154]. Uptake efficiency prediction is boosted from low to high when the GG
linker is introduced, and asparagutin is attached to construct the hybrid peptide 24 from
Table 3.

Transforming dual-function (antimicrobial and anticancer) into a multiple-function
peptide is easy in silico. One example is the asparagutin–adepantin hybrid sequence
(peptide 18 from Table 4), which ranks 19th without substitutions (see overall rank from
Table 6). This would not be possible if the conjugate did not excel at all six predicted
activities in combination with low toxicity. One amino acid substitution in the adepantin
1A (Gly15 replacement with Leu15) increased the anti-inflammatory activity score from 1.36
to 1.62, according to the AntiInflam server. Still, the overall score decreased from 19th to
21st (see peptide 51 in Tables 4 and 6). It illustrates how easily optimizing anti-inflammatory
activity can increase hemolytic activity and decrease other beneficial functions.

4.9. Design Examples for Low Toxicity and Multiple Activities

The design for common antimicrobial, anticancer, and cell-penetrating ability can start
with known AMP to which CPP is fused to increase the cell-penetrating efficiency of a hybrid
peptide. It can also begin with known CPP by introducing amino acid substitutions to widen
its activity spectrum. Let us first describe how we achieved the goal of in vitro antibacterial
and anticancer activity for a modified CPP named mapegin [88]. Its parent CPP is well-known
MAP sequence KLALKLALKALKAALKLA [166]. Rational design by Juretić et al. [88] resulted
in the mapegin sequence KIGKKILKALKGALKELA (named MAPA). It differs from the MAP
sequence in highlighted and underlined amino acid residues I2, G3, K4, I6, G12, and E16,
which increased flexibility (due to two glycines) but did not decrease the high amphipathicity
feature of the parent peptide. We confirmed the predicted decrease in hemolytic activity and
good antibacterial and anticancer activity. Minimal inhibitory concentrations of mapegin
against E. coli and S. aureus bacteria (including drug-resistant strains) ranged from 0.5 to 8 μM,
while IC50 against PC-3 prostate cancer cells was 8 μM [88].

Selectivity (toxicity absence) was not so good. For healthy human fibroblasts, the
therapeutic index was about three. Regarding the hemolysis of human erythrocytes, the
selectivity index was variable for different bacterial strains but more often on the low side.
For E. coli and S. aureus the SI range was 10 < SI < 40. The 50% hemolysis after mapegin
application was reached already with the peptide concentration of 20 μM. It is still an
improvement in the hemolytic activity of the parent peptide (MAP), which is toxic to red
blood cells. Moreover, mapegin is at least two times stronger antibacterial compound than
MAP. The probability of hemolytic activity is low for mapegin, according to the HAPPENN
server (0.079). Predicted cell-penetrating, antifungal, and anti-inflammatory activity of
the mapegin await experimental confirmation. The cell-penetrating activity is expected to
decrease due to six amino acid substitutions introduced into already excellent MAP CPP.

If we want to regain an excellent CPP function, the mapegin can be fused to some
known CPP, such as the TAT peptide. We formed hybrid peptides mapegin–TAT (T3-
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48), mapegin–TAT analog1 optimized for higher anti-inflammatory activity (T3-49), and
mapegin–TAT analog2 optimized for lower toxicity (T3-50). These are peptides 48–50 from
Table 3. Their good overall rank (27th, 30th, and 11th, Table 6) makes all of them interesting
for various applications. The disadvantage of hybrid peptides is their longer length and
the increased cost to synthesize them.

We performed the rational design to obtain wide-spectrum antibacterial compounds
before any tests on cancer cell lines [88]. Some dual-function peptides (PEXA, FLEX,
ZYK1, A1A, and T2R1) are as good initial choices for creating hybrid peptides as the
mapegin (see predictions for peptides 17–21, 35, 46–49, and 51 from Table 4). Observed MIC
concentration values against E. coli ATCC 25922 and S. aureus ATCC 29213 were around
one micromolar for all these peptides. The activity and the therapeutic index TI were
surprisingly good against human prostate PC-3 cancer cells. After comparing peptide
toxicity toward healthy human fibroblasts, we observed that the TI range was from about 3
(for mapegin and pexiganan-L18) to 10 (trichoplaxin-2a) [88]. Thus, for these six peptides,
the therapeutic index tested on PC-3 cancer cells is not as high as the selectivity index for
bacteria, which ranges from about 10 to more than 1000. Nevertheless, it is better than
the TI for the anticancer peptide MP1 [294,297], which we used as a control. Since MP1
exhibits a moderate anticancer activity on tumor cell lines (around IC50 = 50 μM), our
peptide antibiotics also have considerably better activity against cancer cells. There are, of
course, other examples of how one can modify CPP or AMP templates for designing their
anticancer or multifunctional analogs [1,3,5,6,12,166,298–301].

Our choice of online servers, mACPpred and ACPred, for anticancer activity is sub-
jective and subject to flaws. There are some contradictory predictions for the anticancer
activity (peptides 3–6, 14, and 15 from Table 2; peptides 6, 8, 28, and 29 from Table 3; peptide
41 from Table 4; and peptide 36 from Table 5). The reader can notice that the ACPred server
frequently gives the ACP probability of around 0.98. This would be difficult to falsify in
experiments because there is always the possibility that the peptide is active against a
particular cancer cell line but inactive against other malignant cell types.

The lack of toxicity for proliferating human cells is questionable if a permanent
blockage occurs for selected transcription sites in human DNA. On the other hand, a
surrogate peptide that inhibits DNA binding of transcription factors needed for cancer cell
proliferation may be useful in cancer treatments. It would be a welcome outcome for our
hybrid peptides to directly prove their worth as anticancer peptides. Novel short CPP can
serve as penetratin to import anticancer cargo drugs to desired internal targets in tumor
cells. There are many other DNA/RNA-binding cryptides that can be used directly or in
a modified form to increase libraries of multifunctional peptide assets. All transcription
factors (TF) are prospective parent proteins for such peptides.

5. Summary Comments about Peptide Constructs

All the 20 best peptides (1st to 20th in the overall rank) have a high probability of
intrinsic disorder throughout their length (see Table 6 legend). Due to their plasticity, there
is no conflict with assuming a partially ordered structure in a suitable microenvironment.
They often obtain an amphipathic secondary structure consisting of two arms with a flexible
linker between them (α-helix or β-strand-hinge-α-helix or β-strand) when bound to an
anionic membrane surface. After cell penetration and interaction with internal macro-
molecules, the peptides can change their conformation again. There is a high probability of
forming DNA or RNA contacts, but it differs in the extent and sequence location among
different peptides and their segments. For the best 20 peptides, the predicted binding sites
with nucleic acids encompass 41% (sixth) to 100% (first and third) of their length (see Table 6
legend). Predicted protein binding residues make up from 10% to 70% of their length.

The spectrum of the most disordered and malleable structures adapting the conforma-
tion to different targets is not reserved for the listed Table 6 sequences of two-arm peptides.
From the remaining nine Table 6 peptides and other Tables 2–5 sequences, there are also
examples when all of their residues are predicted with disordered conformation and high
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binding probability to nucleic acids. This is the case for the 22nd peptide, which is the con-
jugate of reversed optimal penetratin analog with the tLyp-1 analog (see peptide 21 Table 2),
and the T2R3G3 construct with an overall score of 0.7981 (see peptide 34 from Table 3).
The T2R3G3 is a modified trichoplaxin 2 analog sequence after adding two N-terminal and
three C-terminal residues. It is a highly amphipathic α-helix membrane-binding structure
for its central 6–21 segment (SPLIT algorithm prediction). The only outstanding feature of
the first peptide (temporin analog fused to asparagutin analog) is its absence of predicted
protein-binding contacts and the perfect separation between DNA-binding (1–11) and
RNA-binding segment (residues 12–25).

We verified that with different scoring methods, temporin-CPP hybrids with a central
bend interrupting helical structure are still top-ranking multifunctional peptides. Glycine, as a
single or double linker in the central position, allows for a greater freedom of movement and
better exploration of targets for the hybrid peptides. Increased flexibility contributes to better
selectivity and lesser toxicity of hybrid peptides containing such a linker. Higher selectivity
is the outcome for some of the designed peptides when central proline residue or proline
doublet introduces the hinge between bioactive and cell-penetrating peptide segments.

Temporins were described and named by Simmaco et al. [302] as the smallest natural
antibacterial peptides known at that time. They were first found from the skin secretion
of Rana esculenta [303] and Rana temporaria [302], amphibian species widely distributed
in Western and Central Europe. The top-listed in silico-designed candidates (Table 6) are
certain temporin analogs fused to the RRWKIVVIRWRR, RRWFRRRRRR, or KRKRWHW
cell-penetrating peptides. Natural temporins are amidated at their C-terminal, have a
low net charge (from −1 to +3), and have a short length of between 8 and 17 amino
acid residues [304,305]. Typically, they exhibit an amphipathic α-helical conformation
in a nonpolar environment. Low toxicity to healthy mammalian cells, low cost for their
synthesis, and multifunctional activity against bacteria, viruses, filamentous fungi, yeasts,
protozoa, and cancer cells are well-known advantages of some natural temporins [304].
Temporin L, with the highest net charge (+3), has the broadest activity spectrum [306].

The therapeutically promising ability of temporins is that they do not harm macrophages
at concentrations lethal to these cells’ intracellular parasites [304]. Anti-protozoa activity was
not considered in our review, but neither were the anti-endotoxin, chemotactic, synergistic,
and anti-biofilm formation activities attributed to temporins [307,308]. Of special interest are
anticancer, antiviral, and fungicidal abilities of some temporins [304,309,310].

Synthetic analogs are often better than their “parent” peptides for desired activity.
Shang et al. [112,311] examined highly charged analogs of temporin 1CEb starting from
its sequence ILPILSLIGGLLGK-NH2 [162]. One of these analogs with six lysines and the
sequence IKKIVSKIKKLLK-NH2 was named L-K6V1 [112]. It forms considerably less
hydrophobic and more amphipathic helix in a membrane environment. Regarding their
functionality spectrum, the analog gained better cell-penetrating and antimicrobial ability
while losing its hemolytic activity (compare peptides 39 and 40 from Table 3). These
improvements are much more apparent in experimental validations [112]. The L-K6V1
peptide (peptide 40, Table 3) still does not enter among the 20 best peptides from Tables 2–5
(Table 6). It, however, served in turn as the “parent “peptide for fusing it with short and
powerful CPP, such as the KW peptide (peptide 1, Table 4) or asparagutin (peptide 3,
Table 3).

The broadest spectrum of best predictions is with the asparagutin analog RRWFRSRRRR,
Gly-Gly linker, and L-K6V1 analogs. One of these sequences, the temporin-asparagutin analog
3 (peptide 37, Table 3) with the sequence VKKIVSKIRKLLK-GG-RRWFRSRRRR, ranked as
the best one. The preliminary score (when toxic and hemolytic activity is not considered) and
the overall score (when low toxicity is also considered in the overall mean score) agree on the
highest ranking for that hybrid peptide.

Other temporin-asparagutin analogs with the G, GG, GGEPPKG, or GGGPPKG linker
(Table 4, peptide 39; Table 3 peptide 36; Table 4, peptides 38 and 30; Table 3 peptide 9;
Table 4 peptide 37; Table 3, peptide 35) ranked 2nd to 5th, 8th, 9th, and 14th, respectively,
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in the overall multifunctional score. The TA peptide 9 from Table 3 is already predicted
with potent anti-inflammatory activity without needing any amino acid substitution. Se-
quences 30 from Table 4 (5th) and 48 from Table 5 (10th) are the shortest temporin-CPP
conjugates with only 22 residues. To construct the 10th best peptide (peptide 48, Table 5),
we used the novel P9 CPP carrier, RRRRRWWPP [188], as the reversed version (revP9)
and added it to the C-terminal of L-K6V1 temporin [112]. One Pro residue remained near
the central position after optimizing a hybrid peptide with the AntiInflam server. These
nine temporin analogs are predicted with a nearly perfect score for antiviral activity. All of
them enter among the 15 multifunctional peptides with the best overall score. The design
of the 17th best peptide consisted in adding the N-terminal part of the first best peptide
(VKKIVSKIRKLLKGG) to the CPP construct RRWKIVVIRWRR without any additional
optimization. Among many possible applications, we can mention treating skin ulcers
caused by the herpes virus. In any case, it is encouraging that in silico search for sequences
with the best combination of multifunctional activities, intracellular targeting, and low
toxicity zeroed on the class of temporin–CPP hybrids as 60% of the 15 best and 50% of the
20 best peptides. In contrast, ten temporin construct “winners” make up only about 6% of
all peptides (176) we considered.

The second class of predicted top performers encompasses optimized penetratins and
their analogs fused to the tumor-homing peptide tLyP-1. Optimal penetratin sequence
GKRIGKKWKPRRRRFWRK with 18 residues (Table 2, peptide 22) ranks 31st among
the best multifunctional peptides. We used the reversed optimal penetratin [56] as the
parent peptide. The design consisted in increasing its alpha hydrophobic moment and
applying several methods for improving its therapeutic index: locating the proline in the
sequence middle, forming a hydrophobic sector interrupted with a charged residue, and
introducing the small GXXXG motif at its N-terminal for stimulating peptides association
in membrane environment [312]. We removed two C-terminal residues from the parent
sequence KKWKPRRRRFWRKKR and added the pentapeptide GKRIG to its N-terminal
to achieve these goals. A different approach is additional optimization for better anti-
inflammatory activity and adding the tumor-homing peptide tLyp-1 [146] or its analog
CGAKRTK to the C-terminal. The overall rank increased for hybrids 20 and 21 from Table 2
(6th and 22nd).

Our multifunctional construct RCGNKRFRWHW (peptide 3, Table 5) was useful
when conjugated with the pexiganan analog optimized with two substitutions for better
anti-inflammatory activity (T5-35). It ranked as the seventh best peptide. The predicted
membrane-associated structure of MFC-PexS has a low profile of alpha and beta hydropho-
bic moments, distinguishing it from most other top-ranking peptides.

When fused mapegin and TAT CPP are optimized for low toxicity, the 11th peptide is
obtained with 31 residues (Table 3, peptide 50). It has the lowest toxicity score of −1.81 and
the highest reward score of 0.867 for the mean of low hemolytic probability and toxicity
score. Any remaining confirmed activity (antiviral, antifungal, and anti-inflammatory)
would be beneficial.

BMAP peptide analogs target mitochondria and cause apoptosis [174,313]. The most
active peptide part (the 18 residues cathelicidin fragment from bovine) is fused to short
CPP (the KW peptide). The top-scoring conjugates are peptide 33 from Table 4 (12th), and
peptides 25 and 36 from Table 4 (16th and 18th). Optimizing peptide 25 from Table 4 for higher
anti-inflammatory activity (with conservative substitution Leu for Ile) did not impair other
beneficial functionalities of the peptide 33 sequence KRKRWHW-GGLRSLGRKLLRAWKKYG
(Table 4).

Recently, experimentalists confirmed broad activity against enveloped viruses by the
second bovine cathelicidin fragment with the sequence GRFKRFRKKFKKLFKKIS [179].
It was derived from BMAP-27 [314]. Its variant GRFKRFRKKFKKLFKKLS exhibited
anti-parasitic activity [315]. We verified in silico that the hybrid peptide KRKRWHW-
GRFKRFRKKFKKLFKKIS (peptide 52 from Table 4) is nontoxic for mammalian cells.
Adding KW peptide conferred high multifunctional activities (32nd in the overall rank)
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without optimization. Thus, cathelicidin-CPP constructs are also promising lead com-
pounds for multifunctionality.

We optimized only the best peptide candidates for higher anti-inflammatory activity.
As a rule, we limited substitutions to three. One exception is the proline-arginine-rich pep-
tide PR-35 (peptide 44 from Table 5). The optimized sequence RRRVRPPYLPRVRPQPFFP
LRLLKRISPGFPPRFP has seven substituted residues (peptide 45 from Table 5). Its pre-
dicted toxicity to mammalian cells is low, and the overall rank is high (13th). There is,
however, a decrease in expected cell-penetrating and anticancer activity compared to parent
peptide PR-35.

Novispirin analogs also deserve several comments. The novispirin analog sequence
KNLRIIRKGIHIIKKY (dubbed G2) lacks arginine at the fifth sequence location of novispirin-
G10. It is used for anti-biofilm and anti-caries applications [269,270,316,317]. This was our
starting peptide for creating and optimizing CPP chimeras. With KW CPP linked via Gly
doublet after the G2 peptide, the optimization for lower toxicity resulted in the sequence
KNLRIFRKGIHIHKKY-GG-KRKRWHW (T4-50), which scored 20th in the overall rank.

Intriguingly, 11 out of 20 best multifunctional peptides exhibit anticancer and antiviral
probability close to 1.0 (>0.95, see Table 6 results from columns 5 and 6 highlighted in the
gray background). A common feature of cancer phenotype and cell transformation into the
viral factory is intensive bioenergetics [227], which is likely to be inhibited by antimicrobial
peptides, such as temporin, BMAP, adepantin-1, and trichoplaxin-2 analogs.

6. Conclusions

Nature endowed host defense peptides with multifaceted activity. Natural AMPs
with CPP activity, or CPP fragments, can interact with multiple sites of bacterial or fungal
cells. There are hundreds of internal protein targets for penetratin, lactoferricin B, and
PR-39, to name just a few well-known peptides explored with the protein microarray
technique [318–320]. Thus, we should not constrain rational design to the “magic bullet“
goal. Some short synthetic CPP, such as Sub 5 [189] (see last rows of Table 5), have
remarkably diverse internal protein targets [321]. Multiple targeting and rapid action
minimize the chance of resistance development in targeted microorganisms or cancer cells.
Marketed single-target drugs are frequently unable to reach internal targets and are prone to
mistargeting with associated side effects. Fast-evolving microbes or malignant cells quickly
develop resistance to such drugs. Deleterious effects then predominate benefits. However,
targeting sequences conjugated to CPP offer a precision medicine tool for acting on well-
protected organelles [322], intracellular pathogens, hijacked processes in pathological
conditions, and foreign molecules in our cells.

Advanced prediction tools combined with expert design allow the construction of
about 20 nontoxic CPP-hybrids with a high score for anti-inflammatory activity and a
high probability (≥0.7) for the intrinsic disorder, cell-penetrating, antibacterial, antifungal,
antiviral, and anticancer activity. Such flexible peptides with a high cationic charge often
adapt the two arms structure after coming into contact with anionic molecules. For instance,
an amphipathic helix-hinge-helix conformation can bridge different molecules and exhibit
complex functionality. Designed peptides should pass easily through the plasma membrane
in the eukaryotic cells. Their likely internal targets are respiring mitochondria, unprotected
parts of nucleic acids, or negatively charged molecules in the cell wall and cytoplasmic
membrane of bacterial cells. Multiple protein targets are also possible due to the wide
range of predicted functions. In conclusion, the review is the argument for exploring
wide-spectrum multifunctionality in silico, in vitro, and in vivo. Let us hope pharmaceutical
companies and governmental regulations become less refractory to the multifunctional
drug potential of cell-penetrating antimicrobial peptides and their conjugates.
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Abstract: Cryptococcus neoformans is the pathogen responsible for cryptococcal pneumonia and
meningitis, mainly affecting patients with suppressed immune systems. We have previously revealed
the mechanism of anticryptococcal action of synthetic antimicrobial peptides (SAMPs). In this
study, computational and experimental analyses provide new insights into the mechanisms of action
of SAMPs. Computational analysis revealed that peptides interacted with the PHO36 membrane
receptor of C. neoformans. Additionally, ROS (reactive oxygen species) overproduction, the enzymes of
ROS metabolism, interference in the ergosterol biosynthesis pathway, and decoupling of cytochrome
c mitochondrial membrane were evaluated. Three of four peptides were able to interact with
the PHO36 receptor, altering its function and leading to ROS overproduction. SAMPs-treated
C. neoformans cells showed a decrease in scavenger enzyme activity, supporting ROS accumulation.
In the presence of ascorbic acid, an antioxidant agent, SAMPs did not induce ROS accumulation in
C. neoformans cells. Interestingly, two SAMPs maintained inhibitory activity and membrane pore
formation in C. neoformans cells by a ROS-independent mechanism. Yet, the ergosterol biosynthesis
and lactate dehydrogenase activity were affected by SAMPs. In addition, we noticed decoupling
of Cyt c from the mitochondria, which led to apoptosis events in the cryptococcal cells. The results
presented herein suggest multiple mechanisms imposed by SAMPs against C. neoformans interfering
in the development of resistance, thus revealing the potential of SAMPs in treating infections caused
by C. neoformans.

Keywords: redox system; Cryptococcus neoformans; ROS metabolism; ergosterol; synthetic antimicro-
bial peptides

1. Introduction

Currently, treatments against bacterial and fungal infections are limited due to the
development of resistance to drugs by pathogens [1]. C. neoformans is a good example of
a multidrug-resistant pathogen that causes dangerous infections worldwide [2]. Crypto-
coccosis and cryptococcal meningitis caused by C. neoformans mainly affect people with
compromised immune systems. It is estimated 278,000 infections occur yearly in HIV-
positive patients worldwide, leading to 181,000 deaths annually [3].
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The high level of resistance presented by C. neoformans narrows down the number of
drugs that can be used in treatments. For example, C. neoformans presents intrinsic resistance
to caspofungin, which inhibits the enzyme (1→3)-β-D-glucan synthase and, nevertheless,
perturbs the turnover of the fungal cell wall [1,3,4]. Therefore, combined treatment of
amphotericin B (AmB) and flucytosine (FC) are commonly used to treat cryptococcosis
infections [4]. However, prolonged exposure results in the emergence of cryptococcal
populations resistant to this treatment, as well as to the toxicity of those drugs [5].

To cope with this problem imposed by C. neoformans, SAMPs have emerged as promis-
ing alternative molecules due to their mechanism of action, which is generally associated
with membrane pore formation. This mechanism makes it difficult for microorganisms
to acquire resistance, low toxicity, and allergenicity [6–8]. Recently, our research group
reported the anti-cryptococcal potential of SAMPs PepGAT, PepKAA, RcAlb-PepII, and
RcAlb-PepIII [7]. Studies on mechanisms of action revealed that SAMPs prompted mem-
brane pore formation and apoptosis induced by DNA degradation in C. neoformans cells [7].

In this study, an in silico and in vitro approach provided new insight into the mecha-
nism of action of SAMPs (PepGAT, PepKAA, RcAlb-PepII, and RcAlb-PepIII) against C.
neoformans. In silico analysis revealed that three SAMPs bind to the PHO36 receptor of
C. neoformans, inducing conformational alteration. In vitro analysis showed a high accu-
mulation of ROSs in C. neoformans treated with SAMPs. In further experiments, it was
determined that peptides cause a disbalance in redox enzymes and lactate dehydrogenase
activity in C. neoformans cells. Additionally, SAMPs induced the decoupling of cytochrome
c from the mitochondrion and inhibited ergosterol biosynthesis. Together, these findings
strengthen the need for employment of these SAMPs against C. neoformans infections.

2. Results

2.1. ROS Accumulation in C. neoformans Cells

Recently, we showed that the SAMPs PepGAT, PepKAA, RcAlb-PepII, and RcAlb-
PepIII presented an MIC50 against C. neoformans cells of 0.04, 0.04, 25, and 0.04 μg mL−1,
respectively [7]. In the same study, some mechanisms of action were evaluated. In this
study, new information about the mechanism of action is presented. All of the experiments
were performed at MIC50 for all peptides.

The first step analyzed whether the SAMPs were able to induce the accumulation
of different types of ROS. The first analysis was conducted to evaluate the accumulation
of anion superoxide (O2•−) (Figure 1). The experiment was designed using nitro blue
tetrazolium (NBT), which is converted into formazan with a blue or cyan color in the
presence of O2•−. As expected, the control cells of C. neoformans (Figure 1—DMSO panel)
presented no blue or cyan dots, indicating no conversion of NBT in formazan and, thus, no
accumulation of O2•−. In contrast, SAMPs-treated C. neoformans cells presented a blue or
cyan color, suggesting the conversion of NBT by high levels of O2•− into formazan (Figure 1:
panel of peptides; blue or cyan dots—black arrow). Additionally, the quantification of
formazan corroborated the data of light microscopy. All treatments presented the statistical
significance of the control.
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Figure 1. Qualitative and quantitative analysis of anion superoxide accumulation in C. neoformans.
Light microscopy analysis of the conversion of NBT into formazan (blue or cyan dots–black arrows).
The panel of DMSO represents the control cells, and other panels are treated C. neoformans cells with
synthetic peptides. The inserted graphic represents the quantitative analysis of anion superoxide
accumulation in C. neoformans cells. In control bar indicates 100 μm. In treated cells bar indicate
50 μm. The different lowercase letters indicate statistical significance at p > 0.05.

In further experiments, the accumulation of H2O2 was induced by SAMPs in C.
neoformans cells (Figure 2). The control cells treated with DMSO solution presented no
accumulation of H2O2 (Figure 2). In contrast, all peptides induced ROS accumulation in C.
neoformans cells. Based on the brightness fluorescence, RcAlb-PepIII, PepGAT, and PepKAA
presented a higher accumulation of ROSs than RcAlb-PepII. Interestingly, in Figure 2, the
light field shows that cells treated with PepGAT presented a conformational alteration,
leading them to assume an elongated shape. This was not observed in the control cells.

2.2. Synthetic Peptides Alter the Activity of Enzymes in ROS Metabolism

The detection of both O2•− and H2O2 in C. neoformans cells treated with SAMPs led us
to investigate the activity of the enzymes involved in redox metabolism. The first enzyme
analyzed was the superoxide dismutase (SOD). As expected, control cells of C. neoformans
presented the highest SOD activity (4.98 AU mgP−1). In contrast, C. neoformans cells treated
with RcAlb-PepII and RcAlb-PepIII presented no SOD activity. Cells of C. neoformans
treated with PepGAT and PepKAA still presented SOD activity, but the activity values
were three and four times lower than those of the control cells (Figure 3A).
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Figure 2. Hydrogen peroxide detection in C. neoformans cells. Green fluorescence revealed the
overaccumulation of H2O2 in C. neoformans cells induced by synthetic peptides. Control cells were
treated with 5% DMSO in 0.15 M NaCl. Bars indicate 100 μm.

Regarding the catalase activity (CAT), the control cells presented the highest levels
of activity compared to the treated cells (Figure 3B). As with SOD, RcAlb-PepIII did not
present CAT activity (Figure 3B). In this case, no CAT activity was detected for PepKAA.
RcAlb-PepII and PepGAT presented CAT activity levels three and five times lower than
those of the control cells (Figure 3B).

For ascorbate peroxidase (APX), only cells treated with PepGAT presented no APX
activity (Figure 3C). The cells treated with DMSO (control) presented the highest activity
(3.43 AU mgP−1). In the case of the other SAMPs, RcAlb-PepIII, PepKAA, and RcAlb-PepII
presented APX activity levels 7.4, 4, and 3.43 times lower, respectively, than C. neoformans
cells treated with DMSO (Figure 3C).

2.3. Anticryptococcal Activity of Peptides Is Affected by Ascorbic Acid

To determine the role of ROSs (O2•− and H2O2) in the activity of SAMPs against
C. neoformans, the activity was observed in the presence of ascorbic acid (AsA, 10 mM)
(Figure 4). As reported above, all of the experiments in this study were performed with
MIC50 concentration. As shown in Figure 4A, in the absence of AsA, the SAMPs still
presented MIC50 activity (Figure 4A white columns). However, in the presence of AsA,
in which all ROSs (O2•− and H2O2) were consumed, all SAMPs had affected activity
levels. The most affected was RcAlb-PepII, which completely lost its activity (Figure 4A
dashed columns). The other peptides still presented some activity, but the activity levels
were below 20%. To prove the absence of ROS, a microscopic fluorescence analysis was
conducted in the presence of AsA, which revealed that no ROSs were produced.
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Figure 3. The activity of redox enzymes in C. neoformans cells. (A) SOD, (B) CAT, and (C) APX.
All activities the enzymes were tested in C. neoformans cells treated and non-treated with synthetic
peptides. SOD is an that enzyme that convert anion superoxide into hydrogen peroxide that is
consumed by CAT and APX. The different lowercase letters indicate statistical significance at p > 0.05.
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Figure 4. Effect of the antioxidant agent, ascorbic acid, in the activity of synthetic peptides against
C. neoformans. (A) Inhibitory activity of synthetic peptides against C. neoformans in the presence of
10 mM of ascorbic acid. (B–F) Fluorescence microscopy analysis showed no detection of H2O2 in the
cells of C. neoformans in the presence of 10 mM of ascorbic acid. Bars indicate 100 μm. The different
lowercase letters in (A) indicates statistical significance at p > 0.05.

As Aguiar et al. [7] revealed, all SAMPs can induce pore formation. Herein, we aimed
to evaluate whether this pore formation was ROS-dependent. The fluorescence microscopy
of the propidium iodide uptake assay with AsA revealed that SAMPs did not induce pore
formation. RcAlb-PepII entirely lost its activity in the presence of AsA (Figure 4A), and was
unable to induce pore formation in C. neoformans cells (Figure 5). Likewise, PepGAT did not
induce pore formation in C. neoformans cells in the presence of AsA (Figure 5). In contrast,
RcAlb-PepIII and PepKAA still maintained some inhibitory activity and induced pore
formation in C. neoformans cells in the presence of AsA, suggesting that this mechanism is
not dependent on ROSs (Figure 5).

2.4. Synthetic Peptides Interfere in Other Metabolic Processes on C. neoformans Cells

Here, it was evaluated whether SAMPs could inhibit the biosynthesis of ergosterol in
C. neoformans cells (Figure 6A). As expected, the control cells did not present any inhibition
in ergosterol biosynthesis. In this assay, the control used for inhibition was itraconazole
(ITR), inhibiting the biosynthesis of ergosterol at 47%. All tested SAMPs presented values
of inhibition higher than those of ITR. RcAlb-PepII, RcAlb-PepIII, PepGAT, and PepKAA
inhibited, respectively, 80%, 85%, 75%, and 89% of the biosynthesis of ergosterol in C.
neoformans cells (Figure 6A).
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Figure 5. Effect of the antioxidant agent, ascorbic acid, in the membrane pore formation induced by
synthetic peptides in C. neoformans. Propidium iodide uptake assay to evaluate the ability of synthetic
peptides in induce pore formation in C. neoformans cells in the presence of 10 mM of ascorbic acid.
Bars indicate 100 μm.

The energetic metabolism of C. neoformans was investigated after contact with SAMPs
(Figure 6B,C). First, the ability of SAMPs to interfere with the activity of lactate dehydro-
genase (LHD) in C. neoformans cells (Figure 6B) was analyzed. Control cells presented
the highest activity of LDH (227.25 UA mgP−1) (Figure 6B). Apart from RcAlb-PepII
(24.21 UA mgP−1), which presented LDH activity 10 times lower than the control cells, in
the cells treated with RcAlb-PepIII, PepGAT, and PepKAA, no activity of LDH was detected
(Figure 6B).

It was also analyzed whether peptides could induce the decoupling of Cyt c from
the mitochondrial membranes of C. neoformans cells (Figure 6C). As expected, DSMO
was unable to release Cyt c from the mitochondrial membranes of C. neoformans. In this
experiment, the positive control that induced Cyt c from C. neoformans was H2O2, which
presented the highest level of Cyt c decoupling of C. neoformans cells (Figure 6C). All
SAMPs induced the decoupling of Cyt c from the mitochondrial membrane of C. neoformans.
However, all of these values were below that of H2O2 (Figure 6C). Among SAMPs, the
highest value for Cyt decoupling was presented by PepKAA.
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Figure 6. Effect of synthetic peptides in the cellular process of C. neoformans. (A) inhibition of
the biosynthesis of ergosterol, (B) lactate dehydrogenase activity, and (C) release of Cytochrome c
from the mitochondrial membrane. The different lowercase letters indicate statistical significance at
p > 0.05.
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2.5. Computational Simulations

Aiming to produce more information about the mechanisms of action of SAMPs, we
performed a docking analysis to try to explain more about the action of peptides. The
protein chosen was the membrane receptor PHO36 from C. neoformans. First, the sequence
of PHO36 from Saccharomyces cerevisiae was employed to fish the sequence of PHO36 from
C. neoformans. After finding the protein sequence, the Swiss model server was employed
to construct a three-dimensional (3D) model. Then, ClusPro 2.0 Web Server was used to
perform the docking analysis. PHO36 is a transmembrane protein. Based on that, the
peptides that did not interact in the transmembrane domain were only considered for
docking analysis, as shown in Figure 7 (red dashed lines). Among the tested SAMPs,
RcAlb-PepIII was the only peptide that interacted in the transmembrane domain; thus, the
result was not considered.

Figure 7. Molecular docking analysis of synthetic peptides and PHO36 receptor from C. neofor-
mans. Overview of the interaction of peptides (A) RcAlb-PepII, (B) PepGAT, and (C) PepKAA
with PHO36 from C. neoformans. Zoomed view of peptides (D) RcAlb-PepII, (E) PepGAT, and
(F) PepKAA with PHO36 from C. neoformans showing amino acid residues involved in the interaction
and distance.

Contrary to RcAlb-PepIII, all the other peptides interacted with PHO36 in the extracel-
lular domain (Figure 7). The binding energy of peptides with PHO36 was −632.98, −678.98,
and 578.12 kCal mol−1, respectively, for RcAlb-PepIII, PepGAT, and PepKAA. An analysis
of RMSD (root-mean-square deviation) indicated changes in the atomic position, and then
in the 3D structure, of PHO36. The values of RMSD were 1.542, 0.876, and 1.247, respec-
tively, for RcAlb-PepIII, PepGAT, and PepKAA. These values indicate that the interaction
of peptides with PHO36 changed its structure and, thus, its functions in cells (Figure 7).
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The peptides interacted with the PHO36 receptor from C. neoformans, which was supported
by hydrogen bonds and salt bridge-type interactions.

3. Discussion

C. neoformans causes severe infections in immune-deficient patients, such as patients
with transplanted organs and those in intensive care units [1,2,4]. As C. neoformans is
resistant to several drugs used in its treatment, it becomes essential to search for bioactive
molecules as an alternative to conventional treatment [9,10]. This study was developed
based on this emergence to find new molecules in order to overcome the resistance of
C. neoformans to drugs. Herein, we provide new mechanisms behind the activity of four
synthetic peptides against C. neoformans.

Our SAMPs demonstrated inhibitory activity (MIC50) in a previous study at low
concentrations [7]. The mechanisms evaluated at that time were pore formation, DNA
damage, apoptosis induction, and damage caused by peptides to the cell wall and pores
in the membrane [7]. Based on previously published results regarding DNA damage
and apoptosis induction, we began the analysis by evaluating the redox metabolism
in C. neoformans cells after contact with peptides (Figures 1–3). The induction of ROS
overaccumulation in microorganisms by peptides was not a surprise, but it could explain
how SAMPs act against C. neoformans [11–14].

In pathogenic fungi with controlled production, ROSs have many beneficial effects
on pathogens, such as developmental process, increased virulence, biofilm formation, and
infection [15]. On the other hand, ROSs are a byproduct of the natural metabolic process in
cells. Without a proper scavenger system to balance their levels, ROSs could bring damage
to cells by interaction with vital molecules such as DNA, lipids, and protein, leading to
death [15].

Usually, H2O2 is the main molecule analyzed in experiments of ROS accumulation
induced by peptides in cells because it is more stable and easy to evaluate [11–13]. Here,
to better picture the redox state in C. neoformans cells, we analyzed the accumulation of
•O2

− (Figure 1), which is one of the most unstable ROSs and is rapidly converted into
H2O2 [15]. Our results revealed a higher accumulation of •O2

− in C. neoformans cells after
treatment with peptides (Figure 1). Uncontrolled accumulation of •O2

− accelerates the
oxidative damage to DNA molecules caused by iron. The •O2

− induces an increase in
iron levels by releasing it from proteins and enzyme clusters. The free iron interacts with
DNA molecules, oxidizing it and leading to fragmentation [16]. This result is in accordance
with our previously published result that C. neoformans cells presented fragmented DNA
after treatment with the same synthetic peptides [7]. To prevent the damage caused by
•O2

−, cells use the SOD enzyme to produce H2O2, which is more stable than •O2
−, but

still lethal [15]. Our results revealed a high accumulation of H2O2 in C. neoformans cells
after incubation with peptides (Figure 2).

Although H2O2 induces damage to DNA molecules, as does •O2
−, it usually has

other targets, such as proteins and lipids. In the case of lipids, H2O2 causes the oxidation
of lipids in the membrane by a process known as lipid peroxidation. This process could
lead to membrane destabilization and, consequently, pore formation, increasing membrane
permeability [17,18]. In addition, H2O2 also interacts with proteins, damaging them and
inhibiting their activity [19]. Recently, Branco et al. [19], using a proteomic approach,
revealed that Klebsiella pneumoniae cells treated with a synthetic peptide presented a high
accumulation of H2O2, followed by an increase in the accumulation of proteins involved
in the recovery of proteins damaged by ROS. This result suggests that the higher levels of
H2O2 are involved with protein damage, in agreement with our hypothesis.

It is clear that synthetic peptides cause a perturbation in redox homeostasis of •O2
−

and H2O2 (Figures 1 and 2). However, more information about how peptides accomplish
this is necessary. Based on this, the activity of scavenger enzymes was evaluated in C.
neoformans cells. The enzymes evaluated were SOD, CAT, and APX (Figure 3). First, it is
necessary to understand the role of these enzymes in ROS metabolism. SOD enzymes are
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involved in the conversion of •O2
− into H2O2; CAT and APX are responsible for converting

H2O2 into H2O and O2 [15]. These enzymes are responsible for the delicate balance of ROS
levels that distinguishes the beneficial from the harmful effects of ROSs.

As revealed in Figure 3A, SAMPs-treated C. neoformans cells presented reduced SOD
activity. This reduced SOD activity is responsible for two problems: (1) the reduced activity
of the SOD enzyme is responsible for low levels of conversion of •O2

− into H2O2, leading to
accumulation of •O2

− (Figure 1 blue or cyan dots). (2) Low activity of SOD in C. neoformans
cells treated with peptides is still associated with H2O2, even if it is at a low concentration.
However, the activity of CAT and APX (Figure 3B,C), which are involved in scavenging
of H2O2, is also reduced in cells treated with peptides, leading to the accumulation of
H2O2 in C. neoformans cells (Figure 2 green fluorescence). Therefore, synthetic peptides,
by an unknown mechanism, insult the balance between SOD (converts •O2

− into H2O2),
CAT, and APX (H2O2 in H2O and O2), producing a scenario wherein •O2

− and H2O2
(Figures 1 and 2) accumulate at the same in C. neoformans cells, thus potentializing the
damage caused by ROS. As far as we know, our study is the first to demonstrate ROS
accumulation and propose how peptides induce it by negatively modulating the activity of
redox enzymes involved in ROS metabolism.

There are few studies with similar results to ours regarding redox enzymes with
peptides in yeasts, and even in C. neoformans. However, Neto et al. [20] reported that
MoCBP3 from Moringa oleifera seeds also caused perturbation in the redox enzymes, leading
to the accumulation of ROSs. In that case, the authors only measured the accumulation
of H2O2.

Our data revealed that ROSs are important to the anticryptococcal activity of SAMPs.
However, one question arises: Is the antimicrobial action of peptides fully or partially
dependent on ROSs? An experiment with the antioxidant AsA provided new clues for the
answer to this question. In the presence of 10 mM of AsA, all peptides had affected activity
(Figure 4A). The most affected peptide, RcAlb-PepII, completely lost its activity. Similar
results were posted by Neto et al. [20] for an anticandidal protein that had its activity
reduced by 60% in the presence of AsA. Fluorescence microscopy (Figure 4B–F) proved
that there was no ROS accumulation in C. neoformans treated with peptides in the presence
of AsA.

A common mechanism of action of peptides against pathogens is the induction of
pore formation on the membrane, leading to the loss of internal content and, subsequently,
death [21,22]. The pore formation process depends on many aspects. It could be driven
directly by the binding of peptides with lipids in the membrane or an indirect process
driven by ROS species [13,15,18]. In a previous work, Aguiar et al. [7] showed that all
synthetic peptides induced pore formation in C. neoformans. Here, as shown, the same
peptides had activity in the absence of ROS, which was consumed by AsA. Therefore, we
attempted to understand whether the ability of peptides to form pores is dependent on
ROS accumulation. To do so, peptides were incubated with C. neoformans cells and AsA.
After incubation, an iodide propidium uptake assay was performed. The result was quite
surprising and exciting (Figure 5). The peptides RcAlb-PepII and PepGAT lost the ability to
induce pore formation in C. neoformans membranes (Figure 5). For RcAlb-PepII, the result
corroborates the loss of activity in the AsA (Figure 4A).

The exciting results occurred with RcAlb-PepIII and PepKAA, which, even in AsA
preventing ROS accumulation (Figure 4), induced pore formation in C. neoformans cells. This
result suggests that the induction of pore formation by these peptides is ROS-dependent
and might be driven by the direct interaction of peptides with the membrane. RcAlb-PepIII
and PepKAA are cationic peptides with a net charge, respectively, of +1 and +3, and they
have hydrophobic potential [8,23]. These features are important for pore formation in two
ways: (1) positive charge is important to ionic interaction with the negative charge of lipid
heads in the membrane, and (2) hydrophobic potential is critical for inserting peptides into
the membrane’s hydrophobic core [8].
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In our previous study [7], we observed that the presence of exogenous ergosterol
affected the activity of peptides against C. neoformans, suggesting that peptides can bind
to sterol in fungal membranes [7]. Therefore, we experimented with verifying whether
peptides also inhibited ergosterol biosynthesis. In this experiment, the control was the
antifungal drug ITR (Figure 6A). All peptides presented inhibition higher than ITR. ITR is
an antifungal drug belonging to the azole class, whose main mechanism is to inhibit the
ergosterol synthesis pathway. Our results demonstrate that peptides are more effective
in inhibiting biosynthesis than ITR. Recently, the antifungal MoCBP2 protein, purified
from M. oleifera seeds, could not inhibit the biosynthesis of ergosterol. New targets and
different mechanisms in potential new drugs are important due to the resistance to the
current antifungal [24].

All of our data suggest that synthetic peptides dysregulate the redox metabolism of C.
neoformans cells. As we know, ROSs are natural byproducts of cell metabolism [15]. The en-
ergetic metabolism is essential to cell response to environmental insults because it provides
energy, as NADPH and ATP are used to produce response proteins [25]. Even the regarding
the importance of energetic metabolism to cells, studies reporting alterations caused by
peptides in energetic metabolism are scarce. Herein, we attempted to understand whether
peptides could cause perturbation in the production of energy by C. neoformans. First, the
activity of the LDH enzyme in C. neoformans cells was analyzed after the treatment with
peptides. All peptides dramatically reduced the activity of LDH (Figure 6B).

LDH is involved in the carbohydrate metabolic pathway, and it catalyzes the conver-
sion of pyruvate into lactate, regenerating the NAD+ from NADH [26]. This reaction is
important to regenerate the NAD+ in order to maintain the glycolytic pathway, and to pro-
duce ATP and pyruvate in order to run the Krebs cycle [26]. Another experiment suggested
that peptides interfere in the energetic metabolism of C. neoformans cells. The analysis of
Cyt c decoupling from the mitochondrial membrane induced by peptides indicates that
peptides interfere with mitochondria’s energy production.

Inducing the decoupling of Cyt c from mitochondrial membrane peptides causes two
problems for C. neoformans cells. First, Cyt c is a key molecule in the electron transport
chain (ETC) to support ATP synthesis [27]. Inducing the decoupling of Cyt c peptides to
destabilize the ETC leads to a depletion in the ATP levels of the cell. Second, the release
of the mitochondrial membrane by Cyt c acts as a stimulus for cells to begin apoptosis.
Thus, peptides may be inducing this event. It is essential to note that all peptides induced
apoptosis in C. neoformans cells, as revealed by our previously published study [7].

In an attempt to find possible protein targets for peptides to induce these damages in
C. neoformans cells, computational simulations were employed. The target chosen was a
transmembrane protein known as PHO36. PHO36 is a receptor adiponectin-like protein
involved in lipid and phosphate metabolism in yeasts [28]. PHO36 works with RAS proteins
in the same pathway that is involved in several cellular events essential for the life of yeasts,
such as division, apoptosis, longevity, differentiation, nitrogen, and carbon nutrition [28].

Herein, molecular modeling analysis revealed that RcAlb-PepII, PepGAT, and PepKAA
interact with PHO36 in the extracellular domain, resulting in conformational alterations
to its structure. By interacting with PHO36 and changing its structures, peptides inhibit
PHO36 function in cells, negatively affecting several cellular processes in yeasts. Addition-
ally, misfunction is related to a stimulus for apoptosis in yeast cells. Lopes et al. [29] recently
reported that a synthetic peptide interacting with PHO36 from C. albicans induced ROS
accumulation, DNA fragmentation, and apoptosis. Our results revealed that RcAlb-PepII,
PepGAT, and PepKAA interact with PHO36 and cause the same damage. These results
suggest PHO36 as a new target for antimicrobial activity mediated by synthetic peptides.

4. Materials and Methods

4.1. Fungal Strains, Chemicals, and Synthetic Peptides

C. neoformans (ATCC 32045) was obtained from the Department of Biochemistry
and Molecular Biology at the Federal University of Ceará (UFC), Fortaleza, Brazil. The
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high-grade chemicals were obtained from Sigma Aldrich (São Paulo, SP, Brazil). The
SAMPs PepGAT (GATIRAVNSR), PepKAA (KAANRIKYFQ), RcAlb-PepII (AKLIPTIAL),
and RcAlb-PepIII (SLRGCC) were synthesized and purchased from the Chempeptide
company (Shanghai, China).

4.2. Antifungal Assay

The antifungal assay was performed following the methodology [7,30]. Yeasts were
cultivated in YPD (yeast extract peptone dextrose) agar for fifteen days. After that, har-
vested in a YPD medium. Because the MIC50 found previously was 0.04 μg mL−1 [7] for
all synthetic peptides, that was the concentration chosen at which to perform all studies of
the mechanisms. Thus, 25 μL of YPD with cryptococcal cells (106 cells mL−1) and 25 μL of
SAMPs at their final concentrations (0.04 μg mL−1) were added and incubated for 24 h at
30 ◦C before each assay. The activity of SAMPs was also tested in the presence of 10 mM
AsA to verify whether the activity of SAMPs was dependent of ROS overproduction [20].

4.3. Detection of ROS Overproduction

To evaluate the peptide-induced ROS generation (H2O2), a fluorometric assay with
DCFH-DA (2′,7′ dichlorofluorescein diacetate) was performed. Briefly, after the antifungal
assay, the samples were washed with NaCl 0.15 M and centrifuged (5000× g for 10 min
at 4◦C). Next, 9 μL of DCFH-DA was added, and cells were incubated for 20 min at
22 ± 2◦C in the dark. Then, the samples were washed two times with NaCl 0.15 mM and
centrifuged as described. Finally, cryptococcal cells were transferred to slides and observed
with a fluorescence microscope (Olympus System BX 41, Tokyo, Japan) with an excitation
wavelength of 535 nm and an emission wavelength of 617 nm [31].

Qualitative and quantitative assays for anion superoxide followed the example of
Choi et al. [32]. For the qualitative assay, C. neoformans cells were treated with SAMPs.
Then, they were washed with 0.15 M NaCl to remove the excess media. Afterward, cells
were incubated with 0.1 mM of nitroblue tetrazolium (NBT) for 3 h at room temperature
(22 ± 2◦C) in the dark. Cells were then visualized using a light microscope (Olympus
System BX 41, Tokyo, Japan). The quantitative assay was placed in the same way as the
qualitative. The difference was that the quantitative assay was performed in 96-well plates,
and the conversion of NBT to formazan was quantified at 630 nm in a microplate reader
(Epoch, Biotek, Santa Clara, CA, United States).

In addition, the same assay used to detect H2O2 was performed in the presence of
10 mM ascorbic acid (AsA) [20]. Moreover, the pore formation in the presence and absence
of 10 mM AsA was assessed using the Propidium Iodide (PI) influx assay, following the
methodology described in [7].

4.4. Redox System Enzyme Activity
4.4.1. Catalase (CAT)

The CAT activity was assessed according to [33] to evaluate the catalase activity. After
the antifungal assay, conducted at the same conditions described previously, cells were
washed three times with 0.15 M NaCl, resuspended in 0.05 M sodium acetate buffer pH
5.2, frozen for 24 h, sonicated for 30 min, and centrifuged for 10 min (10,000× g at 4 ◦C),
and the supernatant was collected as described by [20]. A total of 200 μL of samples were
incubated with 700 μL phosphate buffer with 50 mM potassium, pH 7.0, at 30 ◦C for 10 min.
Subsequently, 100 μL of 112 mM H2O2 was added, starting the reaction. The mixture
was placed into a quartz cuvette (1 cm−1) and absorbance was assessed. The reduction in
absorbance at 240 nm was measured at intervals of 10 s until reaching 1 min. A decrease of
1.0 absorbance unit per minute was assumed to represent 1 unit of catalase activity (AU).

4.4.2. Ascorbate Peroxidase (APX)

Ascorbate peroxidase activity was evaluated following the methodology previously
described by Souza et al. [33]. After the antifungal assay, 800 μL tubes contained 50 mM
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potassium phosphate buffer, pH 6.0, which consisted of 0.5 mM of L-ascorbic acid and
100 μL of 2 mM hydrogen peroxide in 100 μL of either the treated sample or the control.
Then, they were incubated at 30 ◦C for 10 min. The enzymatic activity was measured
through ascorbate oxidation, indicating the action of the enzyme, for 1 min at 10 s intervals
using the spectrophotometer at a length of wave of 290 nm. Ascorbate peroxidase activity
was expressed (UA) by reducing absorbance by 0.01 at 290 nm, indicating the use of
ascorbate to remove H2O2 by milligram of the protein (UA/mg).

4.4.3. Superoxide Dismutase (SOD)

Superoxide dismutase activity was measured according to Souza et al. [33] in 96-
well microplates. In triplicate, 1 M potassium phosphate buffer, pH 7.8 (10 μL), 1 mM
2,2′,2′′,2′′′- ethylenediaminetetraacetic acid (EDTA) (20 μL), 10 μL of Triton × 0.25%, 20 μL
of 130 mM L-Methionine, 100 μL of samples in deionized water in the presence and absence
of peptides (MIC50), and 100 mM of riboflavin (20 μL) were homogenized and kept in the
dark for 5 min. Then, the reactional mixture was placed in a 96-well microplate, exposed to
fluorescent light (32 W), and read at 630 nm in intervals of 1 min until reaching 5 min. All
reagents without yeast extract (replaced by ultrapure water) were used as controls. The
enzyme activity was measured as the difference between the absorbance recorded for the
light reaction and the corresponding dark reaction (estimated per min). This was expressed
in activity units (AU). One unit of SOD activity (1 AU) corresponded to the amount of the
sample needed to inhibit the photoreduction of NBT by 50%.

4.5. Ergosterol Biosynthesis Inhibition

The ergosterol biosynthesis inhibition was evaluated following the method described
previously by Neto et al. [20]. Ergosterol content was calculated based on the following
equations:

% ergosterol + 24(28) [DHE = (Abs282/290) × F]/pellet weight (1)

% 23(28) DHE = [(Abs230/518) × F]/pellet weight (2)

% ergosterol = % ergosterol + 24(28) DHE − % 24(28) DHE (3)

24(28) DHE refers to 24(28) dehydroergosterol, a class of sterol that presents an absorbance
reading similar to that of ergosterol at 282 nm. F, in both equations, represents the factor
for dilution in ethanol.

4.6. Lactate Dehydrogenase Activity

The LDH Liquiform™ kit (Labtest Diagnóstica, BR) was used to evaluate lactate
dehydrogenase activity, following the manufacturer’s instructions.

4.7. Cytochrome c Release

Because cytochrome c release is related to apoptotic events in cells, we evaluated the
induction of cytochrome c release by peptides following the methodology described in
Neto et al. [20]. The Cyt c was measured using a microtiter plate reader at 550 nm.

4.8. Bioinformatics Assays
4.8.1. Molecular Modeling of PHO36 Receptor from the C. neoformans Genome

The C. neoformans amino acid sequence for PHO36 was taken using homolog genes
from the NCBI database (http://www.ncbi.nlm.nih.gov (accessed on 10 November 2022))
with the BLAST tool, using the sequence of Saccharomyces cerevisiae.

The 3D models of the PHO36 from C. neoformans were built by comparative modeling
using the A chain of the revised crystals of the adiponectin receptors (PDB code: 5LXG
and 5LWY) by means of the SWISS-MODEL (https://swissmodel.expasy.org/interactive
(accessed on 10 November 2022)) [29]. All the checks and refinements in the models were
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performed following the protocol established by Lopes et al. [29]. The best 3D model was
submitted to the simulation of interaction (receptor and each peptide).

4.8.2. Molecular Docking

Molecular docking studies between the synthetic peptides (ligands) and the plasma
membrane receptor of C. neoformans were performed using the protein–protein ClusPro
2.0 docking server (https://cluspro.bu.edu/login.php (accessed on 12 November 2022)),
and the output files were analyzed using the PyMol program.

4.9. Statistical Analysis

All experiments were performed three times, and the values are expressed as the mean
± standard error. GraphPad Prism 5.01 (GraphPad Software Company, Santa Clara, CA,
USA) for Microsoft Windows was used to run the statistical analyses. All data obtained in
the assays were compared using ANOVA followed by the Tukey test (p < 0.05).

5. Conclusions

The synthetic peptides evaluated in this study displayed anticryptococcal activity by
multiple mechanisms of action. Synthetic peptides interfered with the redox enzymes,
leading to the accumulation of ROSs, which are involved in cell death. It was also shown
that some peptides induced pore formation in a ROS-dependent manner, while others did
the same in a ROS-independent manner. All peptides caused perturbation in the energetic
metabolism by inhibiting the activity of LDH and decoupling Cyt c from the mitochondrial
membrane. Altogether, these results reinforce the potential of these synthetic peptides
against C. neoformans and describe their activity along with a promise to develop new forms
of treatment against C. neoformans infections.
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