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Preface to ”Energy Transfer in Alternative Vehicles”

This reprint is a collection of research that contribute to a better understanding of energy

transfer related to alternative powertrains and their implementation in different types of vehicles.

Hybridization of power units and alternative propulsion systems are the mainly developed

technologies in the automotive field today. The modernization of conventional propulsion sources is

justified by the increasingly stringent economic, ecological, and comfort requirements. The common

link in any renewable energy source or propulsion system today is electric motors. Their correct

use in propulsion offers the possibility of reducing or eliminating harmful emissions both in the

form of toxic compounds and noise or unwanted vibrations. The research works were related

to energy transfer in both hybrid and electric vehicles, and conversion of energy from renewable

sources such as photovoltaic installations to power alternative vehicles. However, you will also

find in this reprint papers that are related to modules of alternative propulsion such as drivetrain

efficiency analysis, ways of energy accumulation in batteries, and influence of the charging method

on the energy consumption of a vehicle during its life cycle. The search for solutions that reduce

energy consumption and simultaneous methods of generating energy should go together for the

global success of the energy transition. With the right transformation of electromobility, which is

developing rapidly in all areas of transportation, starting with small personal vehicles and passenger

cars through public transportation vehicles and ending with noticeable expansion in the area of urban

transportation services will be possible to implement in near future. I encourage you to read all the

articles dealing with the subject under discussion.

Wojciech Cieslik

Editor
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Research of Load Impact on Energy Consumption in an Electric
Delivery Vehicle Based on Real Driving Conditions: Guidance
for Electrification of Light-Duty Vehicle Fleet
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Poznan University of Technology, 60-965 Poznan, Poland

2 Faculty of Civil and Transport Engineering, Poznan University of Technology, 60-965 Poznan, Poland
* Correspondence: wojciech.cieslik@put.poznan.pl

Abstract: Electromobility is developing rapidly in all areas of transportation, starting with small
personal vehicles and passenger cars through public transportation vehicles and ending with no-
ticeable expansion in the area of urban transportation services. So far, however, there is a lack of
research determining how the effect of load weight defines the energy intensity of a vehicle under
real conditions, especially in the areas of urban, suburban and highway driving. Therefore, this
paper presents an analysis of a representative delivery vehicle and its energy consumption in two
transportation scenarios where cargo weight is a variable. A survey was also conducted to determine
the actual demand and requirements placed on the electric vehicle by transportation companies.

Keywords: electric light-duty vehicle; usability of an electric delivery vehicle; real energy consumption

1. Introduction

For a number of years now, road transport has gone through considerable alteration.
Ongoing research on more efficient, yet environmentally friendly powertrains supports the
EU’s 2030 climate policy implementation [1]. However, most attention is paid to passenger
car electrification, overlooking the need for heavy-duty (HDV) and light-duty (LDV) vehicle
customization. In compliance with European Environment Agency insights, HDVs, i.e.,
buses, coaches, and trucks, account for approximately a quarter of the carbon dioxide
(CO2) emissions from road transport in the EU. Poland, as a holder of the largest truck fleet
in EU, contributes to these emissions for the most part [2]. In order to launch a general
road transport transformation, a framework for HDV and LDV electrification should
be developed.

Profound discussion regarding electrification of heavy vehicles has considerable poten-
tial to direct the further development of electromobility in general. Research conducted in
the past drew key conclusions that the crucial parameter influencing electric vehicles energy
consumption is their mass [3–5]. In contrast to vehicles with conventional powertrains,
where the engine power is the leading light in the fuel consumption rate, performance of
vehicles driven by electric motors is not as reliant on the rated motor power. Such a feature,
correlated with the high overall efficiency of electric powertrains, may shed light on the
success of small EVs, notably evident in urban areas. Electro-micromobility is the central
thread of pursuing change in the urban transport structure [6]. Cities worldwide have
already experienced adjustments in the used and obtainable means of transport. This trend
is intensely fostered through vehicle-sharing systems advancement and broadening the
accessibility of electric means of microtransport, just as a couple of examples [7–9]. While
micromobility is undoubtedly suitable for city residents’ transportation, it will not meet
the requirements of the transportation of mass goods. This need should not be omitted, as
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delivery vans are becoming a more and more common element of urban structures, due to
the rapid rise in popularity of online shopping [10].

Scientists have already acknowledged this issue, beginning to conduct examinations
verifying the actual suitability of electric vans for delivery and transportation companies.
Most of these studies are focused on analyzing a variety of delivery scenarios by means of
algorithms and thus proposing the best charging stations’ arrangement to overcome battery
capacity limitations [11–16]. The conclusions and proposed adjustments are fundamental
for reasonable planning of road infrastructure modification; however, they mostly do not
consider real driving conditions, including traffic, variable loads, and driving style.

One of the possibilities to conduct research that takes account of the wide range of
potential variables is to carry out road tests performed in compliance with the RDE (real
driving emissions) procedure. It allows the counting of different road infrastructures, traffic,
road slopes, and driving behaviors, simultaneously assuring compliance with European
Union regulations test procedures [17]. Thanks to the prescriptive test method, results
obtained for the different vehicle and powertrain models can be compared and submitted
for analysis. While the RDE tests are focused on reflecting the vehicle’s impact on the
environment, research that draws on their procedures but omits exhaust emission analysis
is referred to as testing RDC (real driving conditions) [18,19]. Such examinations have been
performed in the past; however, they regarded combustion engine, hybrid, and electric
passenger cars for the most part [20–27]. Thereby, the electrification potential of HDVs and
LDVs remains an insufficiently researched subject.

According to the data presented in Table 1, the number of both passenger EVs and large
EVs registered in Poland has doubled year on year since 2019. While such an increasing
rate is highly desirable, it is clearly seen that large EVs still play a minor role in the global
service sector. To reach the goal of climate neutrality, immediate changes in this area
are needed.

Table 1. Number of registered electric vehicles in Poland in recent years (based on [28]).

Type of Vehicle 2019 2020 2021 November 2022

Passenger EV 5091 10,041 18,795 28,386
Passenger PHEV 3546 8834 19,206 28,540

Large EV 519 1

224 2
839 1

430 2
1657 1

651 2
2638 1

790 2

Small EV 3 6450 9308 11,091 16,541
FCEV 1 0 79 124

1 Delivery vans and trucks; 2 buses; 3 electric bikes, scooters.

Light-duty vehicles, being so far challenging for electrification, remain a common
element of the urban landscape and thus have an input into cities’ noise and air pollution.
Moreover, the demand for the road freight transport has been continuously growing. The
necessity to undertake further actions aiming to decarbonize the transport sector has
encouraged authors to pursue research on the actual usage potential of electric delivery
vans. With the aim of conducting tests possibly akin to real-life driving conditions, a survey
has been created. The questionnaire focuses on gathering data that portray the expectations
imposed on the delivery vehicles, as well as actions that could possibly spur users to turn
to electromobility.

This article consists of six main sections. The first one describes the general research
problem and presents the current state of the Polish fleet of various EVs. The second
chapter is covers the survey that was disseminated among transport companies and other
relevant businesses and data gathered on their demand for electromobility. The third part
describes the research objective: details regarding vehicles chosen for tests and the software
utilized for data gathering. In the fourth section, a description of the routes driven during
examinations and weather conditions on the measurement days can be found. The fifth
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chapter is a comprehensive presentation of results and data analysis, while the sixth one
contains a conclusion and guidelines for light-duty fleet electrification.

The information gathered throughout the series of driving tests combined with the
interviewees’ answers may serve as a comprehensive guide for electrification of the light-
duty vehicle fleet.

2. Survey Assessment: Guidelines and Demand of Transport Companies for
Electromobility

2.1. Questionnaire Design

For familiarization with the actual working conditions and the scale of electric delivery
vehicle usage, a questionnaire was created. The target group consisted of individuals
performing professional duties with the aid of delivery vehicles or representing relevant
companies, i.e., delivery and transportation companies, as well as self-employment. The
survey investigated interviewees’ perspectives on the usefulness of electric delivery vehicles
at their current technological level. Moreover, interviewees’ perceptions on the ongoing
projects fostering electromobility and expectations associated with them were assessed.

2.2. Data Collection

The questionnaire was designed with the aid of the Google Forms platform and dissem-
inated online. It was distributed predominantly on media platforms among professional
groups and through mailing lists to selected businesses. Video footage promoting the study
and encouraging receivers to take part in the survey had been released on YouTube [29] and
further advertised on social networks. Additionally, business cards containing references
to the questionnaire were produced and spread around university and cooperating car
dealers. The survey was available in Polish and disseminated among relevant companies
and individuals across Poland. The data were collected from mid-July to mid-August 2022.

2.3. Data Analysis

A total of 51 responses were gathered. Initially, interviewees were asked about the
type of propulsion with which the delivery vehicle is equipped. Obtained data show the
predominant usage of CI engines in large cars, having been declared by 83% of the respon-
dents. Delivery cars driven by electric motors were used by only 3% of the respondents,
pointing to their still-modest use (Figure 1).

Figure 1. Current status of the surveyed fleets in terms of their propulsion system (based on the survey).
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The number of collected survey responses represented virtually 1000 delivery vans.
Both small fleets, beginning from two delivery vans, as well as large fleets comprising more
than 200 vehicles, are included herein (Figure 2).

Figure 2. Number of vehicles managed by each fleet and their average daily distance, indicating the
potential of different versions of a battery capacity to meet vehicle range requirements as well as
the range of electrification potential in particular companies (based on the survey). 1 Electric range
ensured by the manufacturer for Toyota Proace Electric with 16” steel wheels. It is highlighted that
these figures may not reflect real driving conditions (RDCs). Electric range depends on accessories
package, driving style, conditions, speed, load, etc. [30].

As shown in Figure 2. daily distance covered by the delivery vehicle declared by
almost a third of respondents exceeds the range declared by the manufacturer for the
Toyota Proace Electric with a 50 kWh battery. Greater battery capacity naturally enhances
the range, but still does not meet all potential users’ needs. It should be highlighted that
the theoretical range ensured by the producer is given for the unloaded car with the basic
accessories package. Thus, it may be assumed that the predominant part of the electric
delivery vans executing delivery or transportation services in real driving conditions,
that is, with additional load and greater daily distance covered, will demand recharging
during the workday, i.e., while loading or unloading. However, this solution requires
infrastructure customization.

Of the examined group, 77% chose cargo vans. That statistic alone points out the
reasonableness of the car model choice for the examination. Frequently chosen by users’ car
bodies included Luton and city vans as well, both being represented by 22% of the answers
(Figure 3). This confirms the appropriateness of the choice of research object.

4
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Figure 3. Type of light-duty vehicle used in the company (based on own survey).

Commercial vehicles are characterized by a wide variation of construction depending
on their intended use, with many models of currently available vehicles available in a
variety of bodies. Both passenger and cargo versions are observed, with open or closed
cargo area. Selected cars available on the Polish market have been compared with each
other by the basic parameters declared by manufacturers. In this way, a summary was
created indicating selected electric vehicles and their range according to the WLTP test,
depending on battery capacity (Figure 4).

Figure 4. List of battery capacities of an electric LDV available on the Polish market, combined with
their catalogue range based on the WLTP test [31] (marked with a red, color two versions of the test
vehicle varying in battery capacity).
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The examined group was roughly equally divided in terms of car loading at the
beginning of a workday. Merely 4% of respondents declared to take less than 100 kg of
goods (Figure 5). This information should be considered notably, as load is one of the
factors affecting an electric car range.

Figure 5. The average load at the beginning of a workday (based on own survey).

Interviewees were requested to indicate which of the ongoing projects fostering elec-
tromobility could encourage them to modify the fleet of vehicles into electric-powered
models (Figure 6). Government subsidy for purchasing electric cars proved to be the most
efficient way to raise the interest in electromobility. Moreover, free charging stations, as
well as allowance for bus lanes usage, turned out to play an important role for potential
electric delivery vehicle users.

Figure 6. Factors deciding willingness to modify a fleet vehicle to electric-powered models (based on
own survey).

6



Energies 2023, 16, 775

2.4. Conclusions

Building on the survey answers, the following conclusion can be drawn:

• Light-duty vehicles are currently predominantly equipped with CI Engines. The usage
of electric motor is still modest—declared by only 3% of the respondents.

• Almost a third of the respondents declared the average daily distance covered being
greater than 230 km, which is the range declared by the manufacturer for the Toyota
Proace Electric with a 50 kWh battery.

• The cargo van is the most frequently chosen light-duty vehicle body type.
• Government subsidies for purchasing electric cars, free charging stations and al-

lowance for bus lane usage proved to be the most efficient ways to raise interest
in electromobility.

3. Research Object

The electric vehicle under test was a cargo van-type body structure. Its GVW is 3055
kg, and in the provided version of the equipment for the road tests conducted, the weight
of the vehicle was 2115 kg (the weight limits related to the tested vehicle are shown in
Figure 7; these values are presented on the basis of the registration certificate, which is an
approval document showing the parameters of a specific model, and on the basis of the
manufacturer’s data). Based on these values, the vehicle’s loading ranges were determined,
defining the carrying capacity.

Figure 7. Mass limits of the tested vehicle (values read from the registration certificate of used in
research vehicle) based on [32].

During the tests, the vehicle was equipped with a diagnostic system consisting of
a diagnostic computer and a GPS signal recorder (Figure 8). The vehicle was equipped
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with a 75 kWh battery (optionally, the vehicle can also be equipped with a smaller 50 kWh
battery capacity). Despite the available space, larger battery capacities are not available,
which is determined by the maximum allowable weight of the vehicle. Data were collected
with the use of an OBD diagnostic system and GPS module. The OBD system allowed the
gathering of parameters related to the powertrain or the high-voltage battery performance.
The frequency of data collection equaled 2 Hz.

Figure 8. Schematic of the measurement system including a view of the location of the traction
battery [32].

In its current configuration, the vehicle can be loaded with a weight of 940 kg. This
weight represents both the weight of the load space goods and the weight of the driver
and passengers. Therefore, when taking into account the maximum possible loading
weight, it is necessary to take into account the weight of the vehicle’s users as well (in the
tested version, the homologation specifies three people in the passenger compartment).
The research reported in the current work concerns the analysis of the maximum loading
weight, that is, the weight of the driver (90 kg) and a cargo weight of 850 kg (Figure 9).

Figure 9. Weights taken into account during road surveys conducted (based on the data from the
vehicle registration certificate—Figure 7).
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The realized research aims to assess the actual power consumption of an electric deliv-
ery car both in real traffic conditions and real driving conditions that include the influence
of a load on the powertrain performance. An electric vehicle (EV), contrary to a hybrid
(HEV) or a fuel cell (FCEV) vehicle, is characterized by considerably fewer powertrain
operating modes. Considering the drive phase only, two modes can be differentiated: drive
mode, during which the high voltage battery is discharged and deceleration mode, when
the battery is recharged (Figure 10). The high-voltage battery may by charged with the
aid of an external power source; however in this research, the charging process analysis is
regarded as not a critical element.

Figure 10. Drive train operating modes while driving ( 1©—electric drive motor, 2©—inverter,
3©—traction battery, 4©—on-board charger/DC-DC voltage transformer, 5©—ancillary battery,
6©—reduction gear) [32].

4. Measurement Route and Conditions

Research was conducted in compliance with RDC (real driving conditions) test re-
quirements, which are shown in Table 2 in detail, and effective traffic regulations.

Table 2. Real driving conditions shorter test requirements [33].

Selected RDE/RDC Test Requirements Urban Rural Motorway

Cycle repetition (+/− 10%) [%] 29 < ratio ≤ 34 33 ←
Speed [km/h] < 60 60 ≤ V ≤90 V > 90

Max. speed [km/h](+/− 15 km/h for
less than 3% of driving time) - - 145

Average speed (stops included) [km/h] 15 ≤ V ≤30 - -

Minimum travelled distance [km] 16 ← ←
Altitude difference (beginning/end) [m] 100 ← ←
Maximum slope [m/100 km] 1200 m/100 km ← ←

The marked route, depicted in Figure 11, met the RDC test requirements imposed by
the European Union regulations. Thereby it consisted of the urban, rural and motorway
sections, closely selected in accordance with the requirements imposed for the particular
route sectors (Figure 12).

9
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Figure 11. Route driven during the examinations.

 
Figure 12. Route divided into particular sections (S\F—Start/Finish).
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Tests were performed with the aid of an electric delivery van in Poznan (Poland) and
its vicinities. The car was driven by only one driver throughout the tests, thus eliminating
the influence of the driving manner on the gathered data. The length of the route averaged
100 km. The highest elevation, amounting to 131 m, was reached on the highway, while the
lowest point, equal to 51 m, was encountered in the urban area (Figure 13). Thereby, the
general elevation difference totaled 80 m.

Figure 13. The elevation pattern throughout the route.

Each drive included stopovers determined by the infrastructure of the particular
route’s sectors. Naturally, drives along the motorway inheld no stops. However, due to
the traffic lights and intersections encountered in the urban and rural sectors, in each drive
several dozen stops were registered. As an example, during one of the tests 40 stops were
enforced in the urban area (Figure 14) and 6 ones in the rural route, giving eventually the
total of 46 stopovers along the route.

 

Figure 14. Stops enforced by the infrastructure in the urban section along the marked route.

Drives were carried out on the working days at the hours of moderate traffic. They
were realized in July 2022. Although the measurements were conducted at an interval
of more than two weeks, during the period of varying temperatures, the temperature
circled around 25 ◦C when the tests were conducted (Figure 15). During the recordings, the
settings of the comfort systems including air conditioning were set at the same level.

11
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Figure 15. Ranges on measurement days [based on [34] and authors’ own measurements].

5. Research Results

The presented test results are representative of the two examined cases that differ in
the cargo load set in the vehicle’s rear compartment. The fundamental research question of
this research paper was to define the load impact on the energy consumption in the real
driving conditions. For this reason, two extreme cases have been considered. The first
one assumed 100% of the maximum load (the addition of the driver weight and the cargo
weight equal to 940 kg). As a matter of the second case the cargo area was emptied, thus
the only loading constituted the driver’s weight. For both cases, full battery charge at the
beginning of the drive was assured.

Both rides met the requirements of the test under real traffic conditions (guidelines
shown in Table 2). The basic parameters for the proportion of the road in the urban,
rural and motorway route are shown in Figure 16. Some differences can be seen in the
two runs, consisting especially in the varying values and characteristics of maintaining a
constant speed in freeway driving, but this did not adversely affect the fulfillment of the
test requirements. Varying driving conditions, traffic volumes are taken into account in the
test procedure allowing the two measurements to be compared.

The general number of stops differs between the drives as well as between the par-
ticular sections of the route. Such state is a direct result of a road infrastructure, that is,
the number of junctions, and naturally of the current traffic intensity. The number of
stops during the drives equals respectively: for the test with a 100% of a maximum cargo
load—38 stops, and for the test with a 0% of a maximum cargo load—40 stops.

12
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Figure 16. The course of RDC test in different driving mode with defining basic parameters for
meeting test requirements.

By analyzing parameters essential to determine the energy flow in a vehicle, the
authors compiled tests parameterization in terms of a particular drive phase share (accel-
eration -a+, constant speed—a0, deceleration—a−) and a stopover share. For both drives
these values, depicted in Figure 17, are similar and thereby allow us to make a reliable
assessment regarding the actual load influence on the powertrain’s energy consumption.

13
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Figure 17. Comparison of the phase motion share during the RDC test regarding the variable cargo load.

An electric vehicle is characterized by two states of drivetrain operation: the drivetrain
consumes or generates energy from/to a high voltage battery. With respect to the route
parameters in the real driving condition test, therefore, the time and distance intervals in
which the vehicle consumes or generates energy were determined—presented in Figure 18
(periods in which the vehicle does not consume energy from the battery during standstill
are not recorded—in most cases, at standstill, the battery is also discharged for vehicle
comfort purposes—air conditioning).

Figure 18. Parameterization of time- and route-dependent energy consumption and recovery for
individual phases of the RDC test.

For the both measurement runs, the highest energy recovery values are determined
for urban driving conditions, but it should be pointed out that the procedure counts energy
recovery/consumption with respect to vehicle speed, so any braking from highway or
suburban route speeds automatically enters into the sum of energy recovery for suburban
and urban routes, respectively. Nevertheless, it should be noted that in each case the loaded
vehicle recorded higher shares of both time and distance of energy recovery, which is
confirmed by the energy flow results shown in Figure 19. Greater time or distance of energy
recovery resulting also in higher values of recovered energy to the battery did not result in
lower energy consumption, as higher vehicle load results in higher energy consumption
in the acceleration phase. The higher the speed of the vehicle, the smaller this difference
is between runs. In city driving conditions, energy consumption is almost 20% higher for
a loaded vehicle than for an empty one. When driving on the highway, this difference
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decreases to about 8%. However, taking into account the higher energy recovery for a
vehicle loaded with a mass of cargo, these differences decrease in the total energy flow.

Figure 19. Energy consumption balance in terms of different cargo load.

A loaded vehicle is characterized not only by the total amount of energy consumed
at a higher level than a vehicle moving unloaded. Also, the individual operating points
(energy intensity of the drivetrain) reach higher values, which is noted in area 1 in Figure 20.
It can also be seen that the temporary energy recovered to the battery during braking
is higher (area 2 in Figure 20) compared to the unloaded vehicle. Despite the unloaded
vehicle reaching higher speeds on the highway, the energy flow is at a lower level (area 3 in
Figure 20).

Figure 20. Energy flow areas segmented by speed ranges for different vehicle payload levels.

Based on the above short-term energy consumption maps, the maximum ongoing
energy consumption was determined, which indirectly determines the use of the propulsion
system. Due to the limitations of the OBD system’s measurement monitor, the drive engine’s
operating parameters were not determined in the current work (this will be done in future
work). Instead, the maximum values presented indicate that the energy consumption from
the battery in practically every speed range is higher for a loaded vehicle (Figure 21).
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Figure 21. Maximum values of energy flow in speed intervals steps of 10 km/h.

The greatest energy recovery is realized in urban speed intervals, but this is due to the
frequency of braking in urban driving conditions. Instantaneous maximum energy recovery
values are highest in the 60–90 km/h speed range. Energy recovery for speeds below
10 km/h is marginal, so below this speed it is necessary to use the vehicle’s conventional
braking system.

6. Summary

The presented research made it possible to determine the usability of an electric
delivery vehicle in real traffic conditions with extreme load options. The conclusions of the
presented work are presented below:

• The maximum range of the LDV in actual traffic conditions differs from the declared
by the manufacturer (330 km WLTP), both in unloaded and fully loaded trips (by 15%
and 22%, respectively).

• The vehicle’s weight increased by 850 kg of loading affects the range reduction as
summarized in Figure 22. The largest decrease (by almost 14%) in range was recorded
for the urban route, due to increased energy consumption during acceleration.

• The impact of route type (average speed and proportion of recuperation) signifi-
cantly affects the vehicle range—differences between highway and urban routes
reach 25–30%.

Figure 22. Effect of cargo weight on estimated range in different phases of the RDC test.
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Based on the research presented, guidelines and conclusions were determined for
transportation companies interested in modernizing their vehicle fleets:

• In an urban application, an electric delivery vehicle will meet most of the transportation
requirements among surveyed entrepreneurs.

• The delivery vehicle should be adapted to the daily operation of the company. This
may allow to reduce the battery capacity (reduce the purchase price) or increase the
battery charging intervals. This applies to companies that declare a daily distance in
the range of up to 100 km.

• Variable loading has an impact on the maximum range of the vehicle during the day,
and proper planning of unloading from the heaviest goods can greatly increase the
range of the vehicle.

• The delivery electric vehicle should be used especially in urban transportation, as the
energy recuperation significantly reduces the energy consumption of the vehicle.
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Abbreviations

BEV battery electric vehicle
CAN controller area network
EV electric vehicle
FCEV fuel cell electric vehicle
HEV hybrid electric vehicles
ICE internal combustion engine
LCA life-cycle assessment
NEDC New European Driving Cycle
PHEV plug-in hybrid electric vehicles
RDC real driving conditions
SOC state of charge
TTW tank to wheel
WLTP Worldwide Harmonised Light Vehicles Test Procedure
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Abstract: The search for fossil fuels substitutes forces the use of new propulsion technologies applied
to means of transportation. Already widespread, hybrid vehicles are beginning to share the market
with hydrogen-powered propulsion systems. These systems are fuel cells or internal combustion
engines powered by hydrogen fuel. In this context, road tests of a hydrogen fuel cell drive were
conducted under typical traffic conditions according to the requirements of the RDE test. As a result
of the carried-out work, energy flow conditions were presented for three driving phases (urban, rural
and motorway). The different contributions to the vehicle propulsion of the hydrogen system and
the electric system in each phase of the driving route are indicated. The characteristic interaction
of power train components during varying driving conditions was presented. A wide variation
in the contribution of the fuel cell and the battery to the vehicle’s propulsion was identified. In
urban conditions, the share of the fuel cell in the vehicle’s propulsion is more than three times that
contributed by the battery, suburban—7 times, highway—28 times. In the entire test, the ratio of
FC/BATT use was more than seven, while the energy consumption was more than 22 kWh/100 km.
The amounts of battery energy used and recovered were found to be very close to each other under
RDE test conditions.

Keywords: hydrogen vehicle; energy flow; hybrid powertrain; real driving conditions

1. Introduction

The use of hydrogen for energy production can be particularly important for industries
that are difficult to convert to electric power. This is especially relevant for transporta-
tion and industrial production. Currently, most hydrogen is produced from natural gas
without CO2 capture during production (CCS—Carbon Capture and Storage). Beyond
2030, hydrogen production from this source with CO2 capture is not expected to increase
significantly, as this process will only become cost-competitive when CO2 emission fees are
around USD 90 per ton. In contrast, hydrogen from renewable electricity is and will only
be cost-effective if low-cost excess electricity is used. Furthermore, it is assumed that in
major hydrogen-consuming regions, hydrogen production from biomass will only play a
minor role [1].

Depending on the raw materials used in hydrogen production and the amount of
CO2 emissions accompanying this process, the produced hydrogen is labeled by colors.
Gray hydrogen is produced from fossil fuels, and the associated CO2 is released into the
atmosphere. When a process is used to capture CO2 that is infused, for example into a mine
shaft, the hydrogen is referred to as blue. If renewable energy and a CO2-free process are
used to produce hydrogen, the resulting hydrogen will be referred to as green hydrogen.

For producing hydrogen from fossil fuels, steam reforming and gasification processes
are used. The efficiency of these processes, their mass scale of production and the inexpen-
sive price of raw materials result in a low price of hydrogen. On the other hand, however,
they require additional hydrogen purification processes. For hydrogen produced from
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fossil fuels to have a purity above 99%, it must be purified in an enrichment step. This
technology is currently used on an industrial scale primarily as a pressure swing adsorption
(PSA). The contamination of hydrogen with hydrogen sulfide has a huge impact on the
durability of fuel cells, while the carbon monoxide content affects the voltage generated by
the cell.

Current hydrogen production is for chemical applications where it is fully consumed.
The demand generated by transport using hydrogen will be covered by the newly es-
tablished production facilities. The processes used there qualify the product as green
hydrogen, giving the desired effect of zero-emission transport at the same time.

A dominant process in producing green hydrogen is electrolysis. As a result of water
electrolysis, hydrogen and oxygen are extracted with very high purity, above 99.999%. This
fact is used in direct hydrogen production on the spot of the hydrogen fueling station for
fuel cell vehicles, without the need for further purification. However, to obtain such pure
hydrogen, the water must be preconditioned. The current energy efficiency of hydrogen
production by electrolysis is about 75%.

According to the International Energy Agency [1], the structure of world hydrogen
production consists of about 48% hydrogen produced from natural gas, 30% from oil and
18% from coal. The remaining 4% is produced by the electrolysis of water.

Hydrogen has a significantly higher energy density value than batteries (in terms
of mass and volume), which benefits the vehicle storage capacity and affects the driving
range of the vehicle. Taking these advantages into account, hydrogen fuel cells or internal
combustion engines powered by hydrogen can be used in passenger cars, vans, trucks
buses and other means of transport (Figure 1).

Figure 1. Comparison of range and payload for hydrogen and battery technology in means of
transportation [2].

The BEV systems can be used in small passenger vehicles where the daily mileage
limit is quite low. With respect to trucks, the use of FCEVs starts to be very beneficial. Fuel
cells require far fewer raw materials in the production stage than electrochemical batteries.
An additional advantage is the lack of the use of cobalt and the limited use of platinum
(compared to internal combustion engine vehicles).

The current price of hydrogen for end-user transport in Europe ranges from EUR 5
to EUR 9.5 per kg, depending on the region. The lowest price is due to the fact that it is
produced as a waste product in industrial chemical processes, while the highest price is
a contractual price intended to equate the cost of operating a fuel cell car with a spark
ignition (SI) engine.

According to the Hydrogen Council [3], the price of hydrogen for fuel cells will
decrease by about 60% for the end user over the next decade. This will occur in regions
with access to cheap natural gas and the ability to store captured CO2. In addition, with
an increased demand for hydrogen, the cost of hydrogen supply over the coming decade
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could decrease by as much as 70%. As a result, the cost of distributed hydrogen in 2030
could be in the range of USD 4.5–6 per kg. A comparative analysis of refueling vehicles
with conventional fuels, hydrogen and recharging batteries at the filling station shows
(Figure 2) that this time is significantly shorter for conventional fuels and hydrogen than
electric vehicles, while hydrogen provides a much greater driving range than in the case of
electric vehicles. Additional factors favoring hydrogen as a fuel are the investment costs
associated with the construction and size of refueling stations.

Figure 2. Comparison of refueling performance and investment rates for traditional and near-future
fuels [2].

According to the Hydrogen Council, the CO2 emission of hydrogen pathways (the
well-to-tank stage) from natural gas via SMR (steam methane reforming) was ~75 g/km,
accounting for ~60% of the total CO2 emissions of a FCEV from lifecycle perspective [4].
Most hydrogen today is produced from fossil fuels and emits carbon (grey hydrogen). For
producing low-carbon hydrogen from natural gas with CCS, the following two technology
options exist: steam methane reforming (SMR) and autothermal reforming (ATR) [3]. SMR
combines natural gas and pressurized steam to produce syngas, which is a blend of carbon
monoxide and hydrogen. ATR combines oxygen and natural gas to produce syngas. This
process can easily capture up to 95% of CO2 emissions. ATR technology is typically used
for larger plants compared with SMR technology. Based on the data presented in [5],
CO2 emission during hydrogen production is (kg CO2−e/kg H2): coal gasification (no
CCS)—12.7–16.8; coal gasification and CCS (best case)—0.71; SMR (no CCS)—8.5; SMR
and CCS (best case)—0.76.

The data compiled by the International Council on Clean Transportation Europe [6]
show that the average real-world fuel (kg) and electricity consumption (kWh/100 km)
values for lower medium and SUV segment cars registered in the European Union are,
respectively, BEV: 20.6 and 21.9 kWh and FCEV: 1.0 and 1.2 kg.

In a study, the authors of [6] stated that the life cycle for GHG emissions of average
gasoline- and diesel-powered ICEVs (internal combustion engine vehicle) are very similar
and range from 226–227 g CO2 eq./km for small, 245–246 g CO2 eq./km for lower medium
and 266–288 g CO2 eq./km for SUV segment cars. The emissions from FCEV vehicles
looks similar to the following: of medium segment, 202 g CO2 eq./km (from natural
gas) and 55–60 g CO2 eq./km (from renewable hydrogen). However, the data presented
in [7] show that in some European countries, the amounts of the average carbon footprint
over a lifetime (segment D) are significantly different: Germany—426 g CO2 eq./km and
France—112 g CO2 eq./km. This is mainly due to the way in which hydrogen is produced.
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When the electrolysis is powered by 100% renewable energy, the gain in emissions from
hydrogen production makes it possible to reach the BEV level (80 g CO2 eq./km).

As hydrogen in gaseous form has a very low density (0.089 kg/m3) and is significantly
lighter than air, it is usually stored compressed. In vehicle propulsion applications, to
increase the energy density, two standards are usually used for hydrogen storage pressure,
that is 35 MPa, which corresponds to a density of 23 kg/m3 and 70 MPa, which corresponds
to a density of 38 kg/m3. For a pressure of 35 MPa, the volumetric energy density of
hydrogen is 2.8 MJ/dm3, while for a pressure of 70 MPa, the energy density is 4.7 MJ/dm3.

Hydrogen fuel cell power cars started to reach the US consumer market already in
2014. Official U.S. sales of Hyundai’s cars began in June 2014, Toyota’s in October 2015 and
Honda’s in December 2016 (primarily in the state of California).

“Global Market for Passenger Hydrogen Fuel Cell Vehicles” conducted a study at the
beginning of the HFCV sale, which projected that by the end of 2020, global sales would
amount to more than 27,500 passenger cars powered by hydrogen fuel cells. In 2020 alone,
8500 units were sold [8]. A barrier to the development of this drive has been identified as
the lack of available hydrogen refueling infrastructure. The report also indicated that sales
of hydrogen-powered cars and SUVs will increase in the coming years. Last year, more
than 8500 of such vehicles were sold, which was the highest annual sales rate ever recorded.
It should be noted that such high sales in 2020 were achieved despite the huge economic
slowdown experienced by the automotive industry during the SARS-CoV-2 pandemic.
Consequently, sales of passenger cars and SUVs, light commercial vehicles and full-size
trucks and buses are expected to grow very rapidly in the coming years [8].

In 2020, the global number of hydrogen refueling stations was 553; it is planned that
in 2021 this number will increase by another 221 stations. In Europe, there are 200 stations
(including 100 in Germany), in Asia—275 and in North America—75. The most dynamic
development of this technology is observed in Germany, China, Korea and Japan [9].

2. Analysis of Hydrogen Usage in Internal Combustion Engines and Fuel Cells

The automotive deployment of hydrogen is currently in two application areas (a) as a
fuel in internal combustion engines and (b) as a fuel in fuel cells.

Research on hydrogen-powered internal combustion engines began in the 1930s [10].
A broad spectrum of categorization of a hydrogen internal combustion engine (HICE)
based on typical injection and ignition strategies was presented by Yip et al. [11]. Typical
solutions involve the indirect injection of hydrogen into the intake tract. The second
technical solution is the direct injection of hydrogen into the cylinder [12] or the use of both
variants [13]. It is realized in spark-ignition [14] and compression-ignition engines as well.

Smirnov and Nikitin [15] conducted studies of hydrogen ignitability in closed cham-
bers. Models of hydrogen combustion were proposed and verified with reference to
pre-mixed and non-premixed combustion and detonation models.

One form of using hydrogen in an internal combustion engine is its co-combustion
with the following other fuels (dual–fuel systems): gasoline [16], diesel [17], natural
gas [18,19], methanol [20,21] or as an additive to other fuels (butanol [22], natural gas [18]
or fuel mixtures [23]).

Simulation studies of co-combustion of hydrogen with diesel fuel by Babayev et al. [17]
indicate that (a) compressed ignition hydrogen reacting jets are fundamentally different
from diesel jets, (b) both the free-jet and the global mixing modes govern the compressed
ignition hydrogen combustion cycles and (c) jet-mixing combustion is more effective and
should be maximized in compressed ignition H2 engines.

A common solution is to use fuel cells together with internal combustion engines in
Range Extender systems. Such a solution presented by Chubbock and Clague [24] involves
a package of two fuel cells with a total power of 7.8 kW (the FC power mass index is
0.2 kW/kg) and a tank for storing 1.5 kg of hydrogen. The system uses a three-cylinder
internal combustion engine with a displacement of 660 cm3 and a power output of 30 kW
(operating as a power generator system).
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The fuel cells used in the first prototype vehicles (in 2002) achieved a volumetric power
factor of 1.0 kW/dm3 with a mass power factor of 0.75 kW/kg [25]. In the FCHV model (in
2008), these ratios were 1.45 kW/dm3 and 0.9 kW/kg, respectively. The first-generation
Toyota Mirai had values of 3.1 kW/dm3 and 2 kW/kg, while the new generation of the
Mirai vehicle achieves 5.4 kW/dm3 (4.4 kW/kg excluding end plates) and 5.4 kW/kg,
respectively [26].

Honda used 130 kW fuel cells in the Clarity model, for which the volumetric and mass
power factors were 3.1 kW/dm3 and 2.0 kW/kg [27,28].

Although the parameters and metrics of fuel cells are known, there is a lack of analysis
on energy consumption in typical road tests by fuel cell powered automotive vehicles.
There are few publications on different vehicles [29] or other research tests [30]. Therefore,
the aim of this paper is to fully analyze the energy flow in the Real Driving Condition test
(based on the Real Driving Emissions test) and, additionally, to analyze the use of fuel cells,
a high-voltage battery and an electric motor.

3. Materials and Methods

3.1. Research Objects

The research was conducted using a Toyota Mirai first-generation vehicle (Table 1).
The vehicle uses components from Toyota’s hybrid vehicle models mass-produced since
1997. These components consisted of the vehicle’s power management unit, known as
the power controller and the voltage converter, both used from a third-generation Prius
model; the traction electric motor was taken from a Lexus RX 450h hybrid model; and the
high-voltage battery was taken from a Toyota Camry model.

Table 1. Toyota Mirai powertrain system [31,32].

Component Parameter Value

Vehicle weight 1850 kg
top speed 179 km/h

acceleration 0 to 60 mph 9.6 s
range (homologation cycle) approx. 483 km

Fuel cell type PEM (polymer electrolyte)
power 114 kW

power density 2.0 kW/kg; 3.1 kW/dm3

number of cells 370
humidificiation method internal circulation system

Electric motor type permanent magnet synchronous
peak power 123 kW at 4500 rpm

maximum torque 335 N·m
total speed reduction ratio 3.542

Battery type Nickel Metal Hydride (NiMH)
capacity 6.5 Ah

nominal voltage 244.8 V (7.2 × 34)

hydrogen storage internal volume 122.4 dm3

nominal/filling pressure 70 MPa/87.5 MPa
mass approx. 5.0 kg

refueling time 3 min.

The vehicle was equipped with a stack of 370 fuel cells creating a 114-kW power
output. Two hydrogen tanks with a pressure of 70 MPa were used in the vehicle (Figure 3).
This produced the highest unit mass power density of compressed hydrogen. The voltage
from the fuel cell stack is converted to 650 V and powers an AC electric motor.

25



Energies 2021, 14, 5018

Figure 3. Toyota Mirai hydrogen system component layout (based on [33]).

The generation of the fuel cell used in this model has a volumetric energy density
28 times higher than that of the first generation used by Toyota. The first generation had a
volumetric energy density of only 0.11 kW/dm3, while the one used in the tested Mirai
model is 3.1 kW/dm3. This was achieved, partly due to the design of the cell stack with
a configuration that allows internal self-humidification, using the circulation of water
produced in each cell. This feature eliminated the need for a humidifier, significantly
reducing the volume of the entire cell stack.

The vehicle has two tanks of 120 and 122 dm3, holding a total of 5 kg of hydrogen
(Table 2). The calculated ratio of the mass of hydrogen, at maximum hydrogen filling, to
the empty mass of the tanks is 5.7%.

Table 2. Parameters of hydrogen tanks used in Toyota Mirai [34].

Component Parameter Value

Compressed hydrogen tanks Number of tanks 2
storage density 5.7 wt%

Front tank Capacity/weight 60 dm3/42.8 kg
Rear tank Capacity/weight 62.4 dm3/44.7 kg

The use of the Fuel Cell Boost Converter (FDC) from the hybrid model in the Mirai en-
abled the use of an inverter and an electric traction motor, already used in series-produced
hybrid vehicles. In addition to these components, an Intelligent Power Module (IPM) was
also used [33].

The high-voltage battery used in this model has the same function as in the hybrid-
drive models. Its main role is to accumulate the energy regenerated during braking [35].
The energy stored in the battery is used to power the powertrain during vehicle startup
and during acceleration [36]. This keeps the instantaneous hydrogen consumption at a very
low, or zero, level compared to if the energy was generated by the fuel cell alone. Since
the mass of the vehicle is 1850 kg, the designers used a 244.8 V traction battery to ensure
adequate performance. Since Toyota uses nickel-metal hydride batteries for a majority of
its hybrid models, the same battery was used for the model Mirai. The battery structure
contains 34 modules with 6 cells of 1.2 V each.
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3.2. Research Equipment and Methodology of Determination of the Energy Flow

The measurements were performed using a specialized, dedicated diagnostic tester
utilizing the OBD (on-board diagnostics) connector. The research used data provided by
one of the vehicle systems—the hybrid control. This system operates using selected vehicle
data, fuel cell stack, parameters of the electric motor and the parameters of the high-voltage
battery. The vehicle driving conditions were determined based on the measurements of the
vehicle speed and the data sampling time. The resolution was 1 Hz.

The assessment of the energy flow was carried out based on the measurements of the
engine speed and load, the speed and torque of the electric motors/generators, the battery
voltage and the current (including the boost voltage).

Using the above measurement data, the following quantities were determined:

• energy flow (urban, rural, motorway):

ΔEi =
∫ t=tmax

t=0
UBAT·IBATdt (1)

the instantaneous energy flow values ΔEi were divided in accordance with the
following criteria:

• discharging (urban, rural, motorway):

ΔEdis =
∫ t=tmax

t=0
UBAT·IBATdt (if ΔEi < 0), (2)

• charging (urban, rural, motorway):

ΔEch =
∫ t=tmax

t=0
UBAT·IBATdt

(
if ΔEi > 0 and Treg ≥ 0

)
, (3)

• regenerative braking (urban, rural, motorway):

ΔEreg =
∫ t=tmax

t=0
UBAT·IBATdt

(
if ΔEi > 0 and Treg < 0

)
, (4)

where UBAT—voltage (V), IBAT—current (A), dt—time interval (h), Treg—braking torque (Nm);

• boost value (urban, rural, motorway):

boost =
UHV

ULV
(5)

where ULV—low voltage side (V) and UHV—high voltage side (V).

4. Results

4.1. Driving Test Evaluation

The main problem of a constantly developing industry is its negative impact on
the environment. Transportation is one of the most rapidly changing industries, and
it significantly affects the concentration of hazardous substances in the air. To reduce
the impact of vehicles on the environment, increasingly stringent standards for exhaust
emissions are being introduced and solutions are being developed to minimize vehicle
emissions. Exhaust emission standards are set to control the pollutants emitted from
automotive vehicles around the world. Exhaust emission values are measured under
conditions in an established type of the approval test. This part of the vehicle certification
process is responsible for the environmental performance of the vehicle and is the same for
all passenger cars. The course of the test corresponds to the most likely road conditions,
and the tests performed, which are the same for all vehicles, authorize the comparison of
emission results between them. Nowadays, the focus is more and more on road testing, i.e.,
testing under real driving conditions. These tests have now been integrated into European
Union regulations under the name RDE (Real Driving Emissions) [37,38]. These are made

27



Energies 2021, 14, 5018

to best reflect the actual operating conditions of the vehicle in terms of environmental
aspects. The research presented in this paper omits the analysis of exhaust emissions
(which, in a fuel cell vehicle, is zero), focusing on the analysis of the energy consumption of
a modern propulsion system based on RDE test standards. With this in mind, the authors
refer to this test by the acronym RDC (Real Driving Conditions) [39,40]. Due to increasing
electrification of vehicles, comparative work on the energy consumption of propulsion
is extremely important for the development of the transportation field. The RDC (RDE)
test procedure is universal within the European Union and can be carried out on selected
sections of a road that meet the basic requirements. The route is divided into three sections
corresponding to the speed of urban, rural and motorway driving conditions. The test was
performed with the FC vehicle in Warsaw (Poland) and met all the requirements, as shown
in Figure 4.

Figure 4. Course of the RDC test with characteristics phases (S = 102.8 km, t = 114.5 min).

4.2. State of Charge (SOC) Change Analysis

The drive system of the Toyota Mirai is equipped with a high-voltage nickel-metal
hydride battery. During driving, the battery is charged and discharged due to the charac-
teristic parameters of the route, such as the amount of acceleration and braking in a given
section of the route. The energy recovered during braking can be reused to power the
vehicle, as is the case in hybrid and electric vehicles. The study identified the areas with
the highest and lowest average battery charge levels (Figure 5a).

Figure 5. Changes in battery SOC: (a) with averaged values for travel phases; (b) in relation to travel speed.
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As the driving speed increases, resulting in less braking zone, the high-voltage battery
reaches lower average charge levels. Of course, this value is dependent on the charac-
teristics of the route, since a single slowing of the vehicle results in a significant increase
in recovered energy. Despite the direct response of the level of charge to vehicle driving
parameters, the total SOC fluctuation area is in the range of 53–60%, which is a small range
of the full battery capacity of 1.6 kWh. Slight variations of the SOC are characteristic of
hybrid powertrains, where the engine (in the case of the vehicle under study, a fuel cell)
is the main source of propulsion. The battery is supposed to mainly store energy from
recovery modes or excess energy production by the powertrain.

The largest changes in battery charge are recorded in the range of driving speeds up to
60 km/h (which corresponds to urban driving speeds), where the highest average charge
was recorded at the same time (Figure 5b). The change in battery charge level oscillates in
the range of ΔSOC = 7.06% over the entire test interval.

4.3. Powertrain Performance Evaluation

In a hybrid vehicle, the energy for propulsion comes from two sources. The range
of the propulsion power source in the intervals of each stage of the RDC test route was
determined in the tested vehicle. The battery and fuel cell power consumption conditions
shown in Figure 6a,b indicate areas of battery-only operation and areas of dual power
source cooperation in the vehicle drive. At low vehicle speeds in the 0–10 km/h range,
the propulsion energy comes from the battery. Higher vehicle speeds result in the fuel cell
starting to work in the power generation process. An increase in vehicle speed increases
both the instantaneous maximum values of the powertrain energy demand and the average
values in each speed window with an interval of every 10 km/h (Figure 7).

Figure 6. Powertrain usage conditions: (a) battery, (b) fuel cell; with a specific subdivision of the test phases.

Figure 7. Average and maximum changes in battery (discharge and regeneration) and fuel cell
contributions during each phase of the RDC test.
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Due to the individual driving parameters, some speed ranges recorded lower energy
consumptions, however, the justification for these results should be found in the temporary
driving conditions, for example, the lowest average energy values were obtained in the
speed range 41–50 km/h, this speed usually occurs only in transition states between
acceleration and deceleration to the maximum speed of the urban speed range. Over a
wide range of speed ranges, similar energy recovery values were recorded for both the
urban and rural sections, indicating the versatility of energy recovery at varying speeds.

4.4. Evaluation of Electric Drive Operating Conditions and Energy Consumption

The energy to operate the vehicle comes mainly from the fuel cell, transient situations
caused by acceleration additionally consume energy from the high-voltage battery, but
in total, due to energy recovery to the battery during braking, the energy flow from this
source becomes neutral. The small changes between EC_ALL and EC_FC are due to the
inclusion of changes in battery discharge (EC_BATT) and battery recharge due to recovery
regenerative braking (EC_REC), according to the following equation:

EC_ALL = EC_FC − EC_BATT + EC_REC (6)

In this way, the difference between EC_ALL and EC_FC is not significant because the
battery usage and recharge is close to zero. These conditions are illustrated in Figure 8.

Figure 8. Energy consumption conditions in the RDC test phases (ECU—energy consump-
tion in urban phase, ECR—energy consumption in rural phase, ECM—energy consumption in
motorway phase).

Confirmation of the above statement regarding the main use of the fuel cell for vehicle
propulsion is provided by an analysis of the energy flow shares (discharge and charge) per
vehicle speed for the battery (Figure 9). It can be concluded that in selected speed ranges,
the regenerated energy is equal to the energy consumed during driving or acceleration.
However, it should be remembered that this graph only shows the energy flow from the
battery and the fuel cell is also used for propulsion, which generates much more energy to
drive the vehicle. The drive characteristics also indicate that braking energy recuperation
only occurs until 8 km/h, below which the vehicle decelerates using the conventional
braking system. The highest energy consumption from the battery was recorded for
accelerating the vehicle from a standstill when the fuel cell is not yet generating the
required propulsion power. In the presented single RDC test, the total energy recovered is
322 Wh more than the energy consumed; therefore, the energy recovery system is highly
efficient (the battery does not require an external source of charge to obtain the energy
needed to drive the vehicle—part of the energy also comes from the operation of the fuel
cell, what is indicated later in this article).
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Figure 9. Shares of battery energy use during discharge and charge in relation to driving speed.

Complementing the presented summary evaluation of the powertrain during the RDC
test is a discussion of energy flow on selected instantaneous single vehicle acceleration and
deceleration states. Based on Figure 10, it is possible to describe the following characteristic
operating points of the drive system:

1. during vehicle acceleration, the initial energy input from the battery is visible until
the fuel cell starts producing energy (for further analysis see Figure 11);

2. during braking, the fuel cell operation is shut down and the energy is recovered to
the high-voltage battery;

3. depending on the vehicle’s acceleration rate, larger amounts of energy are consumed
from both the battery and the fuel cell sources;

4. when the vehicle is standing still, the energy requirements of the on-board systems
(comfort, entertainment) are fulfilled by the high-voltage battery.

Figure 10. Interaction of powertrain components during driving of Toyota Mirai (selected events
on road).
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Figure 11. Analysis of a selected single acceleration process of a FC vehicle.

Regardless of the energy source, the wheel propulsion is provided entirely by the
electric motor. It is, therefore, important to recognize the operating conditions of the
drivetrain (Figure 12). During the entire RDC test, the powertrain generates 83.7% of
the vehicle’s propulsion and 16.3% of the energy is recovered during braking. During
both propulsion and braking of the vehicle, the powertrain operates within the voltage
range of mainly 300–350 V—achieving more than 60% of the total time share. Individual
operating points generate higher voltages in the range of 350–652 V; however, the total
share of these values is much lower (these are noted at intervals of higher vehicle speeds
or higher powertrain loads). The maximum torque achieved during the test was 216 Nm,
which is 65% of the max torque claimed by the manufacturer; therefore, the drivetrain in
the RDC test does not require maximum torque to complete the run. The regenerative
braking characteristics indicate a constant braking torque in the electric motor speed range
1500–9000 rpm at the level of 15 Nm. Regenerative braking is only possible down to a
speed of about 7 km/h.

Figure 12. Characteristics of an electric motor in relation to its operating voltage.
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The charging and discharging conditions of the high-voltage battery are shown in
Figure 13. Although the nominal voltage is reported as 244.8 V, its operating conditions
indicate much larger positive fluctuations around this value. The minimum value fluctuates
around 240 V, but the maximum value far exceeds 300 V. The operating conditions of the
battery indicate that it is possible to receive about 26 kW of power when discharged. During
its charging, much higher power values were obtained (more than 32 kW), indicating
slightly different charging and discharging conditions (with similar current values); the
voltage variations are around 20 V.

Figure 13. Characteristics of a high voltage battery.

The version of the first-generation Toyota Mirai powertrain presented in this paper
includes a Fuel Cell Boost Converter. This is a significant change from the powertrain
presented in 2008 (designated as Toyota FCHV adv). This means that the fuel cell using
boost can largely self-power the vehicle’s electric motor. The operating conditions in
Figure 14 indicate that at a fuel cell current value of about 100 A, the converter maintains a
voltage of 650 V. For current values from about 200 A, the converter converts voltage from
the cell to the maximum level of 650 V. The voltage–current characteristics of the fuel cell
indicate voltage values of 200–300 V at no load to about 200 V at maximum current values
of over 350 A. The power characteristics of the fuel cell do not have a typical maximum;
therefore, increasing the current increases its power. Thus, applying voltage amplification
at a specific current value, in this case at about 100 A, effectively increases the power
directed to the electric motor.
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Figure 14. Current–voltage characteristics of a fuel cell and its voltage converter.

An evaluation of the total energy flow in the Toyota Mirai drive system is shown in
Figure 15. The contribution of the HV battery in the individual phases of the RDC test is
not large—as the driving speed increases, the contribution decreases. For the entire test,
the share of battery utilization is about 13%. The share of energy recovery to the battery
(regenerative braking and fuel cell charging) is slightly higher. The larger values of energy
recovered to the battery apply to each phase of the test—approximately 0.6 percentage
points on average. This shows that in the entire driving test, slightly more energy was
supplied to the battery than was used. Energy flow analysis shows the vehicle consumed
22.285 kWh in the test. However, the fuel cell “produced” 22.60 kWh, which is indicated in
Figure 15—as 101.5% of the total energy consumed. This difference is due to the energy
recovery to the battery. Summarizing the energy flow in the RDC test, it should be stated
that the contribution of the fuel cell to the vehicle’s propulsion is more than 70%. The rest
is half, indicating the battery’s contribution and energy recuperation.

Figure 15. Energy consumption conditions for the RDC test phases and the entire RDC test.

5. Conclusions

Modern hybrid drives that use a fuel cell instead of an internal combustion engine as
the main source of propulsion are now a trend in the development of future zero-emission
automotive. The advantage of fueling the vehicle quickly is a key advantage over electric
vehicles, which take much more time to charge depending on the charging type. Fuel cells
are a multipurpose source of electricity that can be converted to electric drive in basically
any type of propulsion system; therefore, the research presented above is important because
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of the recognition of the energy balance of such vehicles. The widespread use of fuel cells
in automobile, truck and even maritime transport brings significant benefits. However, the
global use of this type of propulsion depends on the development of a hydrogen re-fueling
infrastructure. The study determined at what ranges the drive is realized with a fuel cell,
and in what ranges a high-voltage battery is engaged. The operating conditions of these
systems have been specified.

The above analysis of the operating conditions of the hydrogen vehicle propulsion
system under real traffic conditions (according to the RDE test procedure) indicates the
following:

• in most cases, the high voltage battery is charged only from energy regeneration
during braking; however, there are also situations where the battery is charged from
the energy generated by the fuel cell (in the test, the battery charge from the fuel cell
reached 0.315 kWh—Figure 15);

• as the vehicle speed increases (in other words as the RDC test interval changes), the
battery energy consumption decreases and the fuel cell energy consumption increases
(Figure 15);

• the vehicle is initially started from standstill by using a high-voltage battery, only after
a certain time, depending on the load, is the fuel cell activated (Figure 11).
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Abstract: Electrification of powertrain systems offers numerous advantages in the global trend in
vehicular applications. A wide range of energy sources and zero-emission propulsion in the tank
to wheel significantly add to electric vehicles’ (EV) attractiveness. This paper presents analyses of
the energy balance between micro-photovoltaic (PV) installation and small electric vehicle in real
conditions. It is based on monitoring PV panel’s energy production and car electricity consumption.
The methodology included energy data from real household PV installation (the most common
renewable energy source in Poland), electric vehicle energy consumption during real driving con-
ditions, and drivetrain operating parameters, all collected over a period of one year by indirect
measuring. A correlation between energy produced by the micro-PV installation and small elec-
tric car energy consumption was described. In the Winter, small electric car energy consumption
amounted to 14.9 kWh per 100 km and was 14% greater than summer, based on test requirements of
real driving conditions. The 4.48 kW PV installation located in Poznań produced 4101 kWh energy in
258 days. The calculation indicated 1406 kWh energy was available for EV charging after household
electricity consumption subtraction. The zero-emission daily distance analysis was done by the
simplified method.

Keywords: energy consumption; real driving conditions; electric vehicle; solar panels; energy flow;
renewable energy

1. Introduction

The introduction of environmentally friendly and highly efficient energy conversion
systems represents one of the biggest challenges in the development of vehicle drivetrain
systems [1]. Considering global energy consumption, 44% of global transport energy
is consumed by light-duty vehicles, the next 26% by heavy-duty vehicles [2], and 30%
by others [3]. Over 99.8% of transport means are still powered by combustion engines,
impeding fast transport decarbonization [3,4].

The mechanical energy generated by petroleum product’s combustion processes pro-
duces problematic carbon dioxide and other toxic exhaust compounds [5,6]. The EU
legislation pays special attention to CO2 emission and, starting in 2021, has limited it to
95 g/km [7,8]. The CO2 emission is tightly bound with fuel consumption and related
directly to engine efficiency in tank to wheel (TTW) calculations. A wide variety of pow-
ertrains systems, including internal combustion engines (ICE) and electric vehicles (EV),
dedicated to vehicles demand not only tank to wheel analysis but also life cycle assessment
(LCA). It provides detailed information about the environment’s energetic impacts [9].
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LCA analysis carried out by Message et al. [10] shows the most significant climate change,
expressed in gram CO2/km, for conventional vehicles using fossil fuels, particularly Petrol
Euro 4, and the lowest for EVs, highlighting the significance of energy source. The elemen-
tary difference in LCA between conventional and electric powertrain relies on Well-to-Tank
(WTT) and TTW share. EV characterizes the majority of the WTT energy conversion share
compared to conventional ICE, where TTW is dominant [10]. Respectively, other studies
indicate EV lifetime relevance [11]. The attractiveness of EVs in terms of global warming
potential increases with its lifetime.

An electric vehicle’s advantage is that it consumes energy from various energy sources,
such as fossil fuels, renewable energy (RES), bioenergy, or nuclear [12]. The trends in EV
technology field development provide a necessity for energy market analysis. The study
presented by Xu et al., 2020 [13] discusses four different charging strategies, and how they
will influence greenhouse gas (GHG) emissions in 2050, i.e., when high decarbonization
levels and large RES shares are expected. The analysis included electricity mix type and
reduced energy consumption from gas-fired power stations, and increased energy share
from RES by controlling the charging process. Other predictions, up to 2040, indicate the
benefits of implementing the ClimPol scenario. It significantly increases energy sharing
from RES, reducing kilogram carbon dioxide equivalence per kWh to just above 0.2, from
the global case of slightly more than 0.8 [14]. The trend is primarily influenced by an
increased share of wind, solar biomass, and nuclear power in energy generation and EV
battery charging, with results depending on the EU country [15]. Overall, the lowest
charging effect has been achieved in France in 2015. Forecasting shows a 19% increasing
RES share in 28 EU countries, along with a 17% decrease of share of electricity from solid
fuels between 2020–2050.

Rising demand for RES energy led to fast photovoltaic infrastructure development,
which became competitive in terms of low cost and high efficiency. The flexibility of the
design of PV systems allows energy production in a wide range of voltage, from systems
with power above 100 MWp to household applications, most often below 15 kWp [16,17].
Integration of household PV systems and electric vehicle use are a promising solution
for global GHG reduction and locally lower fuel costs [17,18]. Energy analysis from
Kyoto, with limited areas intended for RES, indicated 74% CO2 emission and 37% cost
reduction from the power and transport sectors by applying photovoltaic rooftop systems
and electric vehicles [19]. Results from 12 stands at an EV charging station equipped
with photovoltaic panels (48 kW) and Li-ion 100 kW battery energy storage show the
possibility of achieving 100% renewable electricity using appropriate control modes [20].
Modeling [21] of 400 combinations shows an attractive solution: cooperation of stationary
battery (EV) with household PV infrastructure. The electric vehicle, being mobile energy
storage, can effectively replace traditional battery storage. Using the battery in an EV as
energy storage in such vehicle to grid (V2G) combinations, the self-sufficiency of solar
self-consumption of household residentials increases [22]. In relation to V2G Technology,
Wu Y. et al. proposes a real-time energy management system (EMS), that allows for a
29–55% reduction of the total cost of a Photovoltaic assisted charging station [23].

Energy stored in lithium-ion batteries has many advantages [24]. However, significant
limitations are the dependence of the distance range on charging infrastructures, battery
capacity, and drive quality [25,26]. Hence, it is important to monitor the high voltage
battery state of charge to better understand energy flow phenomena and distance range
prediction [27]. The range–distance prediction can be estimated based on various data
collection methods. Zhang J. et al. obtained data from fifty EV taxis driving in Beijing [28].
In another study, testing was carried out by 32 electric busses traveling four routes under
different working conditions [29]. Many studies about energy consumption prediction used
data from experimental tests to validate new approaches [30–32]. In order to determine
energy consumption by an electric vehicle, some researchers [33,34] used the real driving
emission (RDE) test procedure as a suitable method to compare results with conventional
ICE vehicles.
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In recent years, Poland has noticed a rapid growth in interest in photovoltaic energy
development [35]. The installed generated power increased by approximately 30% between
the end of 2019 and May 2020 and achieved more than 1950 MW. The high growth rate
places Poland in the top five EU countries in terms of new power. Most solar energy is
produced by PV micro installations, representing more than 70% of all Polish PV markets
in 2019. New regulations and supporting programs cause changes in the Polish renewable
energy market [36]. The number of new registered battery electric vehicles has grown
parallel to the number of household PV installations. Within a year, Poland’s quantity of
EVs increased by 80% to almost 7300 vehicles [37]. In effect, electric energy consumption
will constantly be rising [38].

In the analysis of electric vehicle research, some major fields of experimental study
can be quoted:

• Energy consumption by electric vehicle [28,39],
• Energy production by household photovoltaic installations [40,41],
• EV charging process analysis and optimization with reference to PV source of

electricity [42–44].

Regarding the high rate of changes in the energy market and non-ICE vehicle devel-
opment, the authors decided to investigate the energy balance between energy production
from the micro photovoltaic system and the energy consumption by small passenger cars
equipped with a battery electric powertrain system. The approach of combining real
objects (vehicle, residential building) in the energy balance consideration, as proven in
the literature, is a commonly analyzed issue. In terms of the studied field, the novelty is
the connection between the following approaches: annual balance, changing of ambient
conditions, and road approved electric vehicle energy consumption evaluation based on a
real driving conditions (RDC) test.

This study’s aim is to assess household micro-photovoltaic systems’ self-sufficiency in
connection with battery electric vehicle use. The research goals are:

• How much energy does a city electric vehicle consume during its intended operation?
• Is the 4.48 kW photovoltaic installation capable of satisfying the energy demand in

the assumed scenarios of driving an electric vehicle?

The extent of this study included the energy flow analysis from a PV system, then
charging, followed by RDC testing to discover the amount of energy consumed by an elec-
tric vehicle. It covered a one-year period with energy generation analysis from photovoltaic
panels being carried out during the same periods as the vehicle tests, with average energy
consumption during driving estimated for both winter and summer measurements.

2. Methods of Analysis

The aim of this study was to evaluate the energy flow generated by the solar panels,
followed by analysis of the energy flow during vehicle’s charging and the energy con-
sumption in the RDC test. The analysis of energy generation from photovoltaic panels was
carried out during the same periods as the vehicle tests, i.e., in winter and summer periods
in 2020 on the territory of Poznan city in Poland. In the same periods, the average driving
energy consumption was also estimated. The following questions were posed: How much
energy does a city electric vehicle consume during its intended operation periods? Is the
applied 4.48 kW photovoltaic installation able to guarantee an electric vehicle’s energy
demand in the assumed driving scenarios? The scope of the research included two test
runs compliant with the RDC test procedure in urban, rural, and motorway cycles in winter
and summer conditions of 2020. The measurements were made in the ECO driving mode,
which in earlier studies [34] showed a beneficial reduction in energy consumption by the
vehicle. The measurements made in the same driving mode allowed the estimation of
the impact of weather conditions on the overall energy consumption of the vehicle on
selected road sections. The data from the test run were recorded in real-time based on
the information pulled from the vehicle controller area network (CAN) by a dedicated
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on-board diagnostics system (OBD) scan tool. The main parameters that were recorded
during the measurements in the actual traffic conditions of the vehicle were those describ-
ing the operation of the electric motor (rotational speed, value of the current and voltage,
and torque and vehicle speed) and the parameters concerning the accumulation of energy
in the battery (state of charge (SOC), and power).

The characteristics of the electric vehicle used in road tests are shown in Table 1. The
vehicle used in the tests—ŠKODA CITIGOe iV—is supplied with an electric drive, allowing
different driving modes and variable intensity of regenerative braking. The 61 kW ŠKODA
CITIGOe iV powertrain used a Li-Ion battery of 36.8 kWh full capacity and 32.3 kWh
useable capacity. The location of the batteries have also been shown in Table 1.

Table 1. Technical data of the analyzed powertrain fitted in ŠKODA CITIGOe iV [34].

Electric Motor/Car Battery

Parameter Value Parameter Value

Max. voltage 360 V Type Li-ion
Max. power output 61 kW Capacity total 36.8 kWh

Max. torque 212 Nm Capacity usable 32.3 kWh

Maximum speed 130 km/h Charge port AC-Type 2
DC-CCS2

Operating weight 1235 kg Charge power AC-7.2 kW
DC-40 kW

This article presents an analysis of three stages of energy conversion with emphasis on
the vehicle’s energy consumption under real traffic conditions (Figure 1). The comparison
of the stages of energy conversion from the PV energy generation to vehicle charging,
allowed us to develop a compilation of the possibility of driving the vehicle using energy
from renewable sources only.

Figure 1. Division of analysis carried out in the discussed studies.
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2.1. Long-term Analysis of Solar Panel Household Power Generation

Long term analysis of producing electric energy has been based on monitoring work-
ing the parameters of household micro-PV installation located in the northern part of
Poznan and in service since February 2020. The system has been working in on-grid mode
with solar electric power used by household and the surplus sold to the grid. The PV
installation contains fourteen monocrystalline rooftop PV panels, DC/AC inverter, fuses,
and assembly parts. The 320 W panels’ total power output is 4.48 kW. The installation
also includes three-phase 5.2 kW inverter SMA Sunny Tripower 5.0 and a two-way energy
meter. The real-time view of the energy data (±1 Wh) is possible through dedicated web
and mobile apps.

The daily average energy consumption has been calculated using Equation (1) below.

Ehousholdusage avg =

(
Ef rom the grid + Edirect use f rom solar panels

)
∑ analyzed days

(1)

Ehousholdusage avg =
2293 + 402

258
= 10.4

[
kWh
day

]
The calculation was based on 258 days with 2293 kWh of energy taken from the grid

and 402 kWh of energy supplied by PV installation.
Available energy dedicated to an electric vehicle charging has been estimated using

Equation (2).

Eavailable f or EV vehicle charging
= Ef rom solar panels

−
(

Ef rom the grid + Edirect use f rom solar panels

) (2)

Eavailable f or EV vehicle charging = 4101 − (2293 + 402) = 1406 [kWh]

This additional energy of 1406 kWh is available for EV charging (taking into account
the billing period of 258 days). Due to the analyses carried out in different periods of the
year, it is possible to change the flow of energy from the source in the form of photovoltaic
panels and the power plant. The trending differences are shown in Figure 2.

Figure 2. Characteristic correlations in electricity production from photovoltaic panels in the summer and winter months
(based on [45]).

2.2. Electrical Vehicle Charging Modes

Small passenger EV used in this investigation could be charged following the
modes below:

• 2.3 kW (AC) Type 2 from the household grid with dedicated converter supplied by
the manufacturer,

• 7.2 kW (AC) Type 2 from the wall outlet or a public charging station,
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• 40.0 kW (AC/DC) combined charging system (CCS) from the rapid charging station.

The combined charging system (CSS) can, within one hour, charge up to 80% of the
car battery capacity.

The full charge time increases with decreased charging power. Charging profile of the
first mode—2.3 kW (AC)—was observed over one full cycle. The charging level (±0.1%),
voltage (±1 V), and current (±0.01 A) were sampled with 1.3 Hz and were registered from
vehicle’s CAN in real time. The observation setup is shown below in Figure 3.

Figure 3. Vehicle charging setup.

2.3. Vehicle Energy Consumption in RDC Test

The test route was proposed in [34,46] and determined to lead through the city of
Poznań and its surrounding areas. It covered urban, rural, and motorway conditions. The
maximum motorway legal speed is 140 km/h. Selected test requirements related to the
course of the test run have been presented in Table 2. The duration of all the test runs
exceeded 90 min, and the total length of the track did not change.

Table 2. Real driving conditions test requirements with map of the route traveled during the measurements [34].

Route Pattern Followed in
Research

Selected RDE/RDC Test
Requirements

Urban Rural Motorway

Cycle repetition [%] (± 10%) 29 < ratio ≤ 34 33 ←
Speed [km/h] < 60 60 ≤ V ≤ 90 V > 90

Max. speed [km/h]
(± 15 km/h for less than 3% of

driving time)
- - 145

Average speed (stops included)
[km/h] 15 ≤ V ≤ 30 - -

Minimum travelled distance
[km] 16 ← ←

Altitude difference
(beginning/end) [m] 100 ← ←

Maximum slope [m/100km] 1200 m/100 km ← ←
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The main problem of constantly developing industry is its negative impact on the
environment. One of the most dynamically changing sectors of industry is transport, which
significantly affects the concentration of hazardous substances in the air. In order to reduce
the impact of vehicles on the environment, increasingly restrictive emission standards are
being introduced, and solutions are being sought to minimize the emission of exhaust
fumes from vehicles. Exhaust emission standards are set to control the pollutants emitted
from automotive vehicles around the world. Exhaust emission values are measured under
conditions in an established type approval test. This part of the vehicle certification process
is responsible for the environmental performance of the vehicle and is the same for all
passenger cars. The course of the test corresponds to the most likely road conditions,
and the tests performed, which are the same for all vehicles, authorize the comparison
of emission results between them. However, currently, more and more attention is paid
to road tests, i.e., tests performed in real driving conditions. At present, these tests have
been included in the European Union regulations under the name RDE (real driving
emissions) [47,48]. They are performed in order to best reflect the actual vehicle operation
conditions in terms of ecological aspects. Such tests must be performed with specific
requirements, the main assumptions of which are presented in Table 2. The winter and
summer runs performed in this research met the requirements specified in the RDE test
directive (Table 3). However, due to the lack of exhaust emission measurement, these tests
are named RDC.

Table 3. Meeting real driving emissions (RDE) test requirements for summer and winter performed
measurements [47,48].

Test Specification
Result Winter

Conditions
Result Summer

Conditions
Requirement

Urban component [km] 22.3 23.4 >16

Rural component [km] 27.2 23.6 >16

Highway component [km] 28.3 30.0 >16

Total route length [km] 77.8 77.0 >48

Urban component [%] 29.7 30.3 29−44

Rural component [%] 34.9 30.7 33 ± 10

Highway component [%] 35.4 39.0 33 ± 10

Average speed on urban route [km/h] 20.9 24.0 15–40

Duration of stops on urban route [%] 28.9 28.24 6–30

Trip duration at more than 100 km/h [min] 14.2 15.2 >5

Maximum speed [km/h] 117.0 116 <160

Trip duration at more than 145 km/h during
the highway component [%] 0.0 0.0 <3

Maximum single stop duration [s] 103.0 99.9 <180

Trip duration [min] 99.5 92.8 90–120

Urban: data set no. ai > 0.1 m/s2 1146 1024 >150

Rural: data set no. ai > 0.1 m/s2 263 269 >150

Highway: data set no. ai > 0.1 m/s3 158 188 >150

Urban: 95. percentile V·apos [m2 /s3] 17.0 15.0 <17.2 1 <17.7 2

Rural: 95. percentile V·apos [m2 /s3] 24.7 14.8 <24.9 1 <24.6 2

Highway: 95. percentile V·apos [m2 /s3] 25.9 24.7 <27.3 1 <27.3 2

Urban: RPA [m/s2] 0.323 0.268 >0.142 1 >0.137 2

Rural: RPA [m/s2] 0.099 0.085 >0.047 1 >0.053 2

Highway: RPA [m/s2] 0.065 0.078 >0.025 1 >0.025 2

1 and 2—Specific value determined for each trip, taking into account vehicle speed parameters based on European
Union regulations. 1 Data calculated for winter real driving conditions (RDC) test. 2 Data calculated for summer
RDC test.
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2.4. Energy Supply and Demand for Selected Driving Scenarios

The choice of a means of transport for many users is motivated by economic factors
(total cost of vehicle use). Literature sources of daily commutes provided average distances
in the EU. Commutes within cities ranged between 4–25 km. Commutes from suburban
areas can be significantly longer (Figure 4). In the next part of this section, we analyzed
and presented three scenarios of daily commute.

Based on described trends [50] of dependency of distance and travel frequency and
information about average distances covered in Poland [49], three different distances have
been selected to analyze (Figure 5). Scenario 1 assumes a 15 km distance per day focusing
on an urban area. Consequently, scenarios 2 and 3 concern the suburban areas where the
residence is a farther distance from the workplace.

Figure 4. Average travel distances (km) in Europe, with focus on Stockholm and Barcelona, showing
the dependence of the average distance on the distance from the metropolitan area [49].

Figure 5. Typical distribution of frequency of trips vs. distance covered in Italy [50], supplemented
by proposed scenarios and statistical data on average distances covered in Poland [49].
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3. Results

3.1. Long Term Analysis of PV Energy Production

In Poland, the solar radiation falls consistently within 1050–1160 kWh/m2/year, with
highest values observed in the central part (Poznan or Warsaw) and in the south of the
country (Krakow), as shown in Figure 6. The photovoltaic systems produce similar amounts
of energy throughout the country. The Institute of Renewable Energy report shows that, in
Poland, about 70% of currently installed photovoltaic sources are micro installations with an
increasing trend. In 2019, there were 640 MW of new power installed, three times more than
in 2018. Such a rapidly growing branch of power industry presents real possibilities for power
self-sufficient households with excess energy to be dedicated to zero-emission transport.

Figure 6. Average annual sum of photovoltaic (PV) power potential [51] and the development of micro installations in
Poland [35].

Measurements of an existing single-family building with a 4.48 kWp photovoltaic
installation were made. The Sunny Tripower 5.0 model STP5.0–3AV–40 424 inverter enabled
real-time measurement of the generated power by the photovoltaic system, with monitoring
performed by a dedicated application (SMA Smart Connected) and data archiving by the
Sunny Portal service. The inverter’s parameters are shown in Table 4 and the values of the
energy obtained are presented in Figure 7.

Table 4. Characteristics of the inverter Sunny Tripower 5.0 used in the tested home installation [52].

Input (DC) Output (AC) Efficiency

Parameter Value Parameter Value Parameter Value

Max. PV array power 9000 Wp Rated power
(at 230 V, 50 Hz) 5000 W Max. efficiency 98.2%

Max. input voltage 850 V Max. output
current 3 × 7.7 A European efficiency 97.4%

The differences between energy generation in the summer and winter months were
significant. Shortening the time of solar radiation of the panels by 30% reduced the
maximum power generated by 19% (Figure 7), resulting in a total reduction in the share of
accumulated energy by about 40% (energy gain in June was 664.5 kWh while in March only
406.7 kWh). Such large differences in the total values of energy produced raises doubts
about the ability to meet the energy demand for both the power supply to the building and
the electric vehicle.
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Figure 7. The data from 4.48 kWp solar energy installation located in Poznan city in Poland—energy generated during the
winter and summer weeks, collected by the Sunny Tripower 5.0 data acquisition system.

The compiled daily electricity production characteristics (Figure 7) were averaged
and presented in relation to the daily usage pattern of the electric vehicle (Figure 8). Part
of the energy produced during the day (around the afternoon hours) was transferred to
the power plant, because at this point, the energy was not used for the household’s needs.
The graph shows the maximum vehicle charging time with a discharged battery. Charging
time, in this case, is long also because of the choice of basic charging technology. In the
absence of energy production by photovoltaic panels, the energy needed to charge the
vehicle (as well as other home usage) was drawn back from the power plant.

Figure 8. Electric vehicle charging scenario (using charging mode 2) in relation to the average generation of electricity from
the photovoltaic installation (red—summer, blue—winter).

3.2. Vehicle Charging Analysis

The charging profiles, represented by SOC, power, and voltage, are shown in Figure 9.
The authors did not optimize the charging process. Algorithms implemented by the vehicle
manufacturer controlled the charging. Battery charging from 15.2% to 95.6% lasted almost
sixteen hours. The charging process was carried out by constant current (CC) mode, i.e.,
with approximate constant current and variable voltage using the original manufacturer
household charger. The voltage rose from 296.25 V to 351.75 V at the end of charging.
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At the same time, the current value was changing significantly. At 96% of SOC, current
reduced to slightly above 0, and with it, large voltage variations were observed. When
the car was not being used and had a full battery, the charger ensured stand by energy
consumption. The battery delivered 30.16 kWh energy after one charging cycle.

3.3. The Impact of Atmospheric Conditions on the Energy Consumption of an Electric Vehicle

The driving cycles, realized in compliance with the RDC procedures, were started at
100% battery SOC level (software readout). The test runs were performed by a single driver
to assure consistency in the driving style. Compared to the previous analysis results of the
driving energy consumption in the RDC test [34], this article focuses on the determination
of the total energy consumption by route sections: urban, rural, and motorway under
different atmospheric conditions. The vehicle velocity and relative SOC profile during
the RDC tests are shown in Figure 10. Presented curves marked in blue and red colors
represent different ambient conditions. Vehicle speed and state of charge are represented
by solid and dotted lines, respectively. In the tests with similar conditions achieved during
the measurement journeys, the indications of the vehicle speed in relation to the distance
travelled showed a high similarity to the journey, both in the urban part and in the sections
with increased speeds. Some differences in the speed on the suburban and highway routes
were dictated by road conditions, and there was no possibility to repeat them.

Figure 9. Single cycle charging profile carried out by household dedicated converter in constant current (CC) mode.

The driving cycles, realized in compliance with the RDC procedures, were started
at battery level SOC 100% (software readout). The test runs were performed by a single
driver to avoid inconsistency in the driving style. During the test run, the vehicle speed
and battery level were recorded. Due to running the vehicle in ECO mode, the maximum
speed was limited by the drivetrain controller; both runs were comparable speeds in the
given test intervals, and nevertheless, the energy consumption was about 11% more in
the winter period. For this reason, further work identifies the intervals of route split and
vehicle speed affecting the increased energy consumption.
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Figure 10. Comparison of the real driving conditions (RDC) test for the performed test runs in winter and
summer conditions.

The flow of the energy ΔE was determined based on the flow of current (IBAT) and
voltage (UBAT) of the battery as a result of its discharge and regenerative braking charge
during driving of the car:

ΔEi = ∑t=tmax
t=0 UBAT × IBAT dt (3)

• discharging:

ΔEdis = ∑t=tmax
t=0 UBAT × IBATdt (when ΔEi < 0) (4)

• energy recovery (regenerative braking):

ΔEreg = ∑t=tmax
t=0 UBAT × IBATdt

(when ΔEi > 0 and Mreg < 0)
(5)

In order to determine the individual electric powertrain operating conditions, road
portions were specified where the system operated in these individual conditions. On
this basis, the operating modes were divided into individual phases: driving, acceleration,
standstill, and braking, during operation of the electric drive. The adopted criteria have
been shown in Table 5 and Figure 11.

Table 5. Vehicle motion phase criteria.

Parameter Key Assumptions

Drive a = 0 v > 0
Acceleration a > 0 v > 0

Standstill - v = 0
Regenerative braking a < 0 v > 0 IBAT > 0
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Figure 11. Distribution of motion phases in winter and summer conditions.

The energy balance as a function of the type of the road is shown below (Figure 12).
Regardless of the weather conditions, similar energy recovery values were recorded. How-
ever, due to more vehicle stops during winter measurements, higher energy recovery was
achieved in both the urban and suburban parts during winter measurements. The greatest
amount of energy was recovered in the urban cycle due to the high number of brakings,
compared to the smooth traffic road portions.

Figure 12. Energy consumption balance in terms of road and weather conditions.

The specification of the assumptions used in the energy flow summation (Figure 12)
are specified in Table 6. The assumptions for the urban, rural, and motorway segmentation
of the route are consistent with the RDC test assumptions presented earlier (Tables 2 and 3).
The value of power delivered or generated from/to the battery was recorded during the
measurements, with the following assumptions, the summed energy flows presented
earlier were determined. These assumptions also apply to the energy consumption totals
in Figure 14.

Table 6. Vehicle motion phase criteria [34,35].

General Form of the Equation Energy Flow Speed Requirements

ΔEchar/dischar =
t=tmax

∑
t=0

PBAT × dt

Urban Rural Motorway
Charge

PBAT > 0 v ≤ 60 60 > v ≥ 90 v ≥ 90
Discharge
PBAT < 0
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During the RDC test, the vehicle’s energy consumption was dependent on the road
conditions. Increased energy consumption of the vehicle was noticeable in the higher
speed ranges. The bar charts of Figure 13 show the energy flow and the share of energy
consumption for different speed ranges. The marked points represent the total energy
flow of both recovered (green) and consumed (red) energy in a specific speed range. The
largest amount of energy was recovered in the 20–50 km/h range. The amount of energy
recovered in the urban speed range allowed us to increase the vehicle range. However,
the energy consumption in each speed range was higher than the recovered energy. The
highest energy consumption was recorded in the intervals of increased vehicle speed, both
during summer and winter driving conditions; in the speed range 110–120 km/h, the
vehicle consumes more than 4 kWh (the distance covered at this speed is almost 25% of
the entire RDC test). The shares of each speed interval in the test indicate nearly identical
driving conditions in the urban route speed range (0–60 km/h) and in the motorway route
range (v > 90 km/h).

Figure 13. Energy flow characteristic and the share of energy consumption for different speed ranges in the RDC tests.

A summary of the vehicle’s energy consumption during the RDC test for sections
of the route (urban, rural, and motorway) is shown below in Figure 14 and Table 7 (1, 2
and 3). It compares both the energy consumption without recovery and the reduction of
energy consumption after taking into account the recovery of energy from braking, which
is shown in Table 7 (1′, 2′ and 3′). The graph shows the energy flow characteristics for both
winter and summer conditions. The energy consumption was then calculated for 100 km
of the sections under consideration (urban, rural, and motorway), thus obtaining the total
energy consumption of the vehicle in winter conditions (14.9 kWh/100 km) and in summer
conditions (13.1 kWh/100 km). Averaging the total energy consumption of a vehicle,
without division into sections of the route and weather conditions, gives 14 kWh/100 km.
The assumptions presented below are affected by some simplifications, but the paper is
intended to undertake a preliminary analysis of the possibility of supplying an electric
vehicle from a renewable source. Due to the variety of drivers and routes taken, these
calculations are not applicable to every type of vehicle or every road with their own unique
characteristics; nevertheless, the authors estimated the average energy consumption for a
small urban vehicle, which was then compiled together with the assumed travel scenarios
of the electric vehicle user.
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Figure 14. Energy flow characteristics and the share of energy consumption for different speed
intervals in the RDC tests.

Table 7. Energy consumption of an electric vehicle in the RDC test of Figure 13.

[-] Period Explanation
Urban
[kWh]

Rural
[kWh]

Motorway
[kWh]

1
Winter condition

Energy consumption of the vehicle in the selected road section without
considering energy recovery

−4.83 −4.433 0.79–4.79

1′ Energy consumption of the vehicle in the selected road section with
considering energy recovery (energy recovery during vehicle braking)

−3.06 −3.91 −4.63

2
Summer condition

Energy consumption of the vehicle in the selected road section without
considering energy recovery

−4.16 −2.88 −5.23

2′ Energy consumption of the vehicle in the selected road section with
considering energy recovery (energy recovery during vehicle braking)

−2.67 −2.64 −5.03

3
Average

from research periods

Energy consumption of the vehicle in the selected road section without
considering energy recovery

−4.51 −3.65 −5.01

3′ Energy consumption of the vehicle in the selected road section with
considering energy recovery (energy recovery during vehicle braking)

−2.87 −3.27 −4.83

4 Winter condition Estimated energy consumption for 100 km in a selected section of the tested
route (including energy recovery from braking characteristic of the route) −13.73 −14.36 −16.39

5 Summer condition Estimated energy consumption for 100 km in a selected section of the tested
route (including energy recovery from braking characteristic of the route) −11.43 −11.15 −16.72

The above average values, without division into atmospheric conditions, were used
for the analysis of the electric vehicle driving scenarios and are presented below.

3.4. Energy Supply and Demand for Selected Scenarios of Driving a Vehicle

The analysis of the average distance travelled by passenger vehicles in 2.4 has been
used to develop a theoretical list of three scenarios (Table 8) in which the distance, together
with the share of individual route sections, is a variable. Scenario (S1)—the minimum
analyzed commuting distance is 15 km and covers urban driving conditions only. Scenario
(S2) assumes a one-way distance of 30 km with 15 km in urban and 15 km in suburban
driving conditions. Scenario (S3) assumes the participation of all three sections of the route
and is 45 km total in one direction. Increasing the distance makes it necessary to charge
the vehicle more often. This frequency was estimated based on calculations of the distance
of a particular route compared with the energy consumption of the vehicle presented in
the previous sections. According to the investigation’s assumptions about charging, the
vehicle must ensure an adequate charge to cover the entire route planned during the day.
An overview of the charging frequency is presented in Figure 15.
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Table 8. Analyzed scenarios of distances covered by an electric vehicle.

Scenarios
Under

Investigation

Daily
Distance

Work

Travel Conditions
Total

Distance
in Week

Energy
Usage in the

Scenario

Frequency
of Vehicle
Charging

Average Energy
Demand Per

MonthUrban Rural Motorway

[-] [km] [km] [km] [km] [km] [kWh] [-] [kWh]

S1 15 15 - - 210 3.78 8.54→8 113.4

S2 30 15 15 - 420 7.62 4.24→4 228.6

S3 45 15 15 15 630 12.6 2.56→2 378

Figure 15. Frequency of charging an electric vehicle in the presented scenarios depending on the
distance covered by a user.

The summary of energy production to power an electric vehicle, Figure 16, shows the
energy produced by the photovoltaic installations in the months from March to October,
marked as green. The calculated energy consumption of the vehicle in all scenarios shows
it can be met by the production of electricity from solar panels in all months except October.
However, if we also consider the current average electricity consumption of household
appliances, Scenario 3 is not possible in any month. In such cases, the energy to power the
vehicle in scenario 3 would come directly from the power plant. The solution to reduce
electricity costs in such cases should be increasing the number of photovoltaic panels.
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Figure 16. Energy balance of the presented scenarios of driving an electric vehicle in relation to the
energy produced and consumed by a household with a 4.48 kW photovoltaic installation.

4. Discussion

This paper focused on an experimental assessment of the energy flow between house-
hold PV installation and a small size battery electric vehicle. Karkosiński et al., 2018 [53]
conducted a similar approach without RDC test requirements and household energy con-
sumption. The results indicated a significant impact of the sun’s shining state during the
day for energy generation, obtaining 100 W/m2 sun irradiance on a cloudy day and almost
250 W/m2 on a clear day in January. In effect, 11.4 kWh energy was obtained on an average
sunny day in January. The study of [54], with polycrystalline and monocrystalline PV
modules, showed an 80% difference between the amount of energy produced in summer
and winter over a three year period. The results of this study confirmed the above trends
through detailed analyses of PV energy production during the week of ride test cycles. In
addition, a 19% increase in peak power has been observed in summer with the effective
energy production time during the day raised by approximately 4 h.

EV energy consumption was examined with RDC tests. The average energy consump-
tion in considered cases was 13.1 kWh/100 km in summer and 14.9 kWh/100 km in winter.
The elevated energy consumption was likely caused by interior comfort system energy
demand. For reference, in [33] where energy consumption was determined also with the
RDC test, the average energy consumption was 19.6 kWh/100 km, calculated from two
repeated rides with the difference between the rides of 1.3 kWh.

Comparison of three types of powertrain: gasoline, hybrid, and electric, in terms of an
RDC test, was performed by Pielecha J. et al., 2020 [55]. During the RDE test, the lowest
accumulated energy demand was achieved for the electric vehicle, approximately 30%
lower than the combustion engine and 10% lower than a plug-in hybrid powertrain. In the
research presented, like in [55], energy consumption was analyzed separately for each road
type and in terms of ambient climate conditions, not powertrain type. In [36], the influence
of drive mode and braking strategy on energy flow in small-sized EV was investigated
within the RDC test requirements.

During the summer, smaller energy consumption was observed, 17% for urban con-
ditions and 22% for rural residents, including braking energy recovery. The result of
another investigation [56] shows decrease of possible driving range from 150 km at 20 ◦C
to 85 km at 0 ◦C. Doyle A. et al., 2019 [57] indicated that interior thermal comfort systems
consume an average of 14% of the total trip’s energy by the cooling system and 18% by a
heating operation.

55



Energies 2021, 14, 1085

The last part of the investigation included analyses of energy balance between house-
hold PV installation and EV. To assess sufficiency of PV installations, three scenarios of
distance covered by EV were considered. In effect, it was possible to use an EV car charged
by surplus energy from PV installation. The mentioned aspect of cooperation between
electric vehicles and renewable energy sources is key to effective electric powertrain future
developments.

5. Conclusions

The article presents an analysis of energy flow from the stage of production of electric-
ity from a renewable source in the form of solar energy (PV panels), through the charging
of the electrical vehicle, and the subsequent consumption of this energy while driving.
Charging of electric vehicles, especially in areas with limited access to charging points, can
be difficult. Therefore, the estimates of both the energy consumption of the vehicle and
the necessary frequency of charging the vehicle are shown here. The energy consumption
of the vehicle has been recorded for driving conditions during both winter and summer
periods. The influence of the type of route (urban, rural, or motorway) and distance covered
have significant impact on the vehicle’s energy consumption. The presented scenarios
are a stage of preliminary elaboration by the authors of the mechanism of simulating the
energy consumption of electric vehicles considering various road conditions. In addition,
oversupply of energy produced by the residential PV system used in this study indicates
the possibility of reliance of charging of the EV from that source only.

The study specific conclusions:

• The electric vehicle’s (urban type) consumed energy during the RDC test:

◦ In winter conditions: 11.39 kWh/RDC test (estimated at 100 km = 14.9 kWh)
◦ In summer conditions: 10.35 kWh/RDC test (estimated at 100 km = 13.1 kWh)

• The 4.48 kW PV installation can guarantee sufficient EV energy demand:

◦ For all three scenarios in March–September period without energy demand by
household appliances

◦ For Scenario 1 and 2 in April–August period with household appliances

• For Scenario 3, the PV installation cannot guarantee the total energy demand while
also powering household appliances. This case will be the subject of further research
by the authors.
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Abbreviations

EV Electric Vehicle
CAN Controller Area Network
CC Constant Current
CSS Combined Charging System
GHG Greenhouse Gas
GWP Global Warming Potential
HEV Hybrid Electric Vehicle
ICE Internal Combustion Engines
LCA Life Cycle Assessment
OBD On Board Diagnostics System
PV Photovoltaic
RES Renewable Energy Source
RDC Real Driving Conditions
RDE Real Driving Emissions
SOC State of Charge
TTW Tank to Wheel
V2G Vehicle to Grid
WTT Well to Tank
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Abstract: In this paper, the operating principles of the acid battery and its features are discussed.
The results of voltage tests containing the measurements conducted at the terminals of a loaded
battery under constant load conditions, and dependent on time, are presented. The article depicts the
principles of the development of electric models of acid batteries and their various descriptions. The
principles for processing the results for the purpose of the determination and description of the battery
model are characterized. The characteristics under stationary and non-stationary conditions are
specified using glued functions and linear combinations of exponential functions, and the electrical
parameters of the battery are determined as the components of the circuit, i.e., its electromotive force,
resistance, and capacity. The dynamic characteristic of the battery in the form of transmittance was
determined, using the Laplace transform. Possible uses of the crankshaft driving signals as diagnostic
signals of the battery, electric starter, and internal combustion engine are also indicated.

Keywords: acid battery; battery operating parameters; testing and modeling

1. Introduction

The lead–acid battery is a chemical source of electric energy in which current is
generated as a result of chemical processes taking place on its electrodes in the presence
of sulfuric acid. The factor that forces the course of the current generating processes is
an electromotive force of the cell resulting from a difference in the electrodes constituting
the cell normal potentials. The basic parameters characterizing the electrical and energy
properties of the battery are: voltage, twenty amp hour (Ah) rate capacity, and the ability
to start an engine (CCA—Cold Cranking Amps). CCA is a rating used to define the ability
of the battery to start an engine in a cold temperature. The existing chemical models of the
battery explain a mechanism of the generation of an electromotive force and a sum of its
electrical and energetic capacities, e.g., electric capacity. However, the chemical models are
not useful for analyzing electrical circuits where the acid battery is a component. When
using an acid battery, it is not possible to determine the current electrical parameters of the
circuit, current, and voltage. In such a circuit it is necessary to use electric battery models
composed of the typical electrical circuit components: electromotive force, resistance,
capacitance, inductance, and others [1]. Modeling of the batteries, including acid batteries,
has become necessary and is carried out in a particularly intensive manner due to the
increased demand for electricity in vehicles resulting from the arrival of electric and hybrid
drives. The modeling and determination of the battery model parameters is considered a
difficult, unclear, laborious, expensive, and ambiguous process [2].

A lead–acid battery consists of a negative electrode made of porous lead and a positive
electrode consisting of lead dioxide. Both electrodes are immersed in electrolyte which is a
solution of sulfuric acid and water. The overall reversible chemical reaction, which enables
lead–acid batteries to store energy, is as follows:

PbO2 + Pb + 2H2SO4 ⇔ 2PbSO4 + 2H2O

Discharging a battery causes the formation of lead sulphate at both the negative and
positive electrodes. Sulphate from the sulfuric acid electrolyte surrounding the battery is
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used in the formation of this lead sulphate. When the battery is in the fully discharged
state, its two electrodes are of the same material and there is no chemical potential or
voltage between these two electrodes. Between the fully charged and discharged states,
the lead–acid battery experiences a gradual reduction in voltage. A voltage level is used to
indicate the state of charge of the battery. Thus, there is a dependence of the battery voltage
on the battery state of charge. The battery is in equilibrium only in the state characterized
by no load. The battery voltage and its capacity have specified values. The battery under
load is not in equilibrium, and its voltage and battery capacity differ significantly from the
equilibrium values. The difference between the voltage at equilibrium and that under a
load, with a current flow, is termed the battery polarization.

The battery voltage value or its dependence on time versus battery operating condi-
tion parameters is the basic battery operating parameter or characteristic. The operating
characteristics of the acid battery are the object of research and modeling for the imple-
mentation of many practical and theoretical objectives: the evaluation of the correlation of
the starting parameters of the internal combustion engine [3]; the design of the internal
combustion engine start-up systems [4]; the analysis of the dynamic properties of the
battery in electric vehicles [5]; the possibility of using the characteristics in the process
of diagnosing the internal combustion engine and its starting system [6]. In the case of
the lead–acid battery model in electric or hybrid vehicles, the charging and discharging
process is of great importance, i.e., a charging/discharging voltage and state of charge
(SoC) [7]. Very often the model of the lead–acid battery for the Stop-Start Technology is
a circuit model with two resistance–capacitance (RC) blocks [8]. The simulated battery
operating parameters are the voltages, currents, and state of charge (SoC). The battery
models for the different designs of the lead–acid-based batteries, i.e., batteries with gelled
electrolyte and an Absorbent Glass Mat (AGM), differ from the common lead–acid batteries
models in regards to the parameters of the battery model, although they are based on the
same chemistry [9]. There are also different models of the lead–acid battery in terms of
their ageing processes, i.e., deep discharge models which are combined with a sulfation
model [10]. The ageing processes determine the battery state of health (SoH). The purpose
of some works is to investigate factors which affect the failure of automotive batteries or
battery durability. The main factors influencing the aging process of batteries are the battery
temperature and the discharge current [11]. Statistical methods are used for analysis and
prediction of battery degradation in electric vehicle use [12], including regression models
for estimation of the battery state of health [13]. In regression models, charge/discharge
cycle number, battery terminal voltage, and internal resistance are used as independent
variables.

The existing methods of battery testing have been systematically developed, and new
approaches are used to determine the characteristics of batteries, e.g., based on neural
networks, genetic algorithms, or Kalman filters. These often concern the determination of
model parameters, the battery state of charge, and energy management in energy storage
systems using batteries. Genetic algorithms are used to optimize the energy system of
electric vehicles because of the growing number of electricity consumers in the vehicle [14].
For the state of charge of batteries, and its dynamic determination, supervised chaos genetic
algorithms have been used [15]. The use of the Kalman filter based on the RC model for
estimation of model parameters and the state of charge of lead–acid batteries requires
knowledge of the value of the process covariance and the measurement noise [16]. The
prediction voltage and lifetime of a lead–acid battery may be determined using neural
network methods [17]. Ref. [18] describes the design of a measurement system to conduct
the electrical tests, and an estimation algorithm for automatic analyses and reporting
proceedings for lead–acid started batteries. Determination of the state of charge (SoC) of
a lead–acid battery was tested using the electrochemical impedance spectroscopy (EIS)
method [19]. Lead–acid cells were explored during intermittent discharge and charge
processes. More battery parameters were taken into account in the design and simulation
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of a model of a lead–acid battery [20]. These parameters were the SoC, battery voltage, and
temperature of the battery in the charge and discharge state.

Previous research has also investigated the problems of the physical phenomena that
determine the operation of the energy storage system, i.e., the lead–acid battery [21]. A rela-
tively similar new modeling method for lead–acid batteries combined the physicochemical
model with the equivalent circuit model [22]. Ref. [23] drew attention to the fact that the
battery equivalent circuit model has two time constants. Because the load process duration
is often short, the test data during the load period may not contain sufficient information for
extracting these time constants. In contrast, the relaxation period may last hours, and thus
may provide sufficient data for this purpose. The problems of the modern technology used
in the battery production process were considered in [24]. Carbon materials are widely
used as an additive to the negative active mass and allow the battery specific energy and
active mass utilization to be increased. A constant problem concerning the use of battery
energy relates to the starting of an automobile engine in low or negative temperature
conditions. When using an autonomous means of engine pre-heating, it is necessary to
optimally distribute the battery energy to the pre-start and start-up discharges [25].

The objective of this paper is to present the author’s mathematical models of the acid
battery for stationary and non-stationary dynamic operating conditions. The basis for
the development of the models was the research results of voltage measurements at the
terminals of the loaded batteries under constant load conditions, i.e., the dependence of
the voltage on time. The battery tests were carried out on a test stand that was placed in a
low-temperature chamber, which allowed the ambient and tested battery temperatures to
be changed.

In the literature, the accumulator battery models are presented in graphic or math-
ematical form, and a mathematical description is not frequently used. Therefore, in this
work the mathematical form of the model is particularly emphasized and explained. On the
basis of test results, a linear model of the dependence of the battery terminals’ voltage on
its nominal electric capacity, loaded current, temperature, and battery state of charge (SoC)
is elaborated. This multidimensional model was developed for the stationary operating
conditions within the time period of several seconds following switching on the load.
In this case, the principles of planning the experiment were applied [26]. The dynamic
characteristics of the battery are also presented, i.e., its voltage at the dynamic state of
operating just after switching on the load, and after switching it off.

The principles of processing the results for the purpose of the determination and
description of the battery models are characterized. The characteristics under the stationary
and non-stationary conditions are specified using glued functions and linear combinations
of exponential functions, and the electrical parameters of the battery are determined as the
components of the circuit, i.e., its electromotive force, resistance, and capacity. Possible
uses of the crankshaft driving signals as diagnostic signals of the battery, electric starter,
and internal combustion engine are also indicated.

2. Materials and Methods

The battery performance tests were carried out on a test stand that was placed in a
low-temperature chamber, which allowed the ambient and the tested battery temperatures
to be changed. The equipment of the test bench enabled the test implementation and the
recording of the battery operation parameters to be controlled. The tested battery was
loaded with a constant resistance value within approx. 10 s. The values of the current and
voltage were recorded by means of a computer measuring system, including after switching
off the load, to observe changes in the electromotive force of the battery polarization during
this period. The examples of the recorded dependencies of the current and voltage at the
terminals within the load test of the battery of 54 Ah capacity are shown in Figures 1 and 2.
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Figure 1. The current drawn from the battery.

Figure 2. The voltage (to 10 s) at the loaded and unloaded battery terminals.

At the moment of switching on the load, characteristic and correlated, proportional
changes in the intensity of the absorbed current and voltage at the battery terminals can
be observed. During the initial discharge period, the voltage at the battery terminals and
the current decrease approximately exponentially, and then their values stabilize. When
the load is switched off, the voltage increases rapidly and then increases exponentially
(Figure 2). This is due to an increase in its electromotive force caused by changes in the
electrolyte concentration in the vicinity and in the inner layers of the active mass of the
battery plates.

The recorded characteristics have, in addition to the visible and clear trend of changes,
significant irregularity. This can cause difficulties in their further processing to determine
and interpret electrical characteristics and the battery model. Therefore, the courses were
subjected to pre-processing aimed at smoothing them. The causes of signal distortion were
analyzed, and methods of their elimination were developed. The following sources of
interference were identified:

• The own noise of the measuring system;
• Interference from the external electricity network;
• Quantization errors of the measuring system.

The various forms and principles of averaging were adopted as the methods of
smoothing of the received signals. These can only be used in the case of a good recognition
of the signal and an understanding of the nature of its changes, to ensure that useful signal
components are not lost. The own noise of the measuring system, particularly high values,
is usually represented as a single isolated deviation of its value from the set level. In
principle, all distortions can be reduced using a method analogous to the moving average;
the difference is that the moving average is a forecasting method in which the forecast
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value is assumed as the moving average of the preceding values. In this case, a calculated
value of the mean was taken as the central data value. It is preferred that this uses an odd
number of datapoints. Depending on the degree of a signal interference, the smoothing of
the curve can be used several times.

As a characteristic of the battery load, the dependence of the voltage at its terminals at
a constant value resistance load is considered. The analysis concerns the characteristics
during the battery load period, as shown in Figure 3 as Uload. After the load is turned off,
the voltage at the battery terminals increases abruptly, and then gradually stabilizes to the
value in the no-load state.

Figure 3. The voltage at the loaded (Uload) and unloaded (Uunload) battery terminals.

The different battery models are applied to the specific purposes and the different
methods used to test the battery characteristics [27,28]. The simplest model of the battery
presents it as an ideal voltage source, i.e., an electromotive force that does not exhibit even
any internal resistance. The lead–acid battery is most often treated as a voltage source of
electric current with a defined electromotive force and a variable internal resistance. In
the electrical circuit, certain voltage changes at its terminals (at a constant value resistance
load) can be justified by a change in its electromotive force or internal resistance. The
changes in the electromotive force (or the internal resistance) are caused by the processes in
the electrolyte around the electrodes or on their surface. When under the given discharge
conditions, a constant value of electromotive force is accepted, and a classic equivalent
electrical circuit of the battery can be presented, as shown in Figure 4.

Figure 4. The classic equivalent electrical circuit of the battery.

When such a battery is loaded with the external resistance R or the constant current I,
the voltage at the battery and receiver terminals is as follows (1):

U = RI = EB − IRint. (1)

A complex battery model takes into account its electromotive force, internal resistance,
inductance or capacitance, and other characteristics. The model presented in this article
considers the dependencies of the characteristics of the battery on its rated capacity, temper-
ature, and state of charge. However, the model should reflect the principle of the lead–acid
battery. It also should be simple, fast, and effective to implement and use. The equations of
the lead–acid model always contain constants that must be determined experimentally by
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laboratory tests. Any battery model can be validated by a simulation using, for example,
the MATLAB/Simulink Software [29].

3. Results

3.1. Stationary Operating Characteristics of an Acid Battery

The operating voltage of the lead–acid battery depends on its rated capacity, current
consumption, temperature, and state of charge (technical state). Previous research of one-
and two-dimensional operating characteristics of acid batteries formulated a conclusion
about the linear nature of the dependences of the battery operating voltage on the above-
mentioned independent parameters [30]. In order to determine the multidimensional
characteristics of the acid battery operation, an experiment was developed that enabled
determination of the coefficients of a linear equation that describes the relationship between
the voltage of the loaded battery and the factors influencing it. Testing the characteristics
of the batteries was carried out on a test stand prepared and placed in a low-temperature
chamber, which enabled the operating conditions of the battery to be changed. In the
initial period of load, changes in the current and voltage values are visible, resulting
from the dynamic nature of the tested battery operation (load switching on). Because the
objective of the study was the determination of the characteristics under the steady-state
load conditions, the values of the parameters describing the operating state of the battery
were determined for the load duration time of approx. 10 s, i.e., after their stabilization.

Gaining an understanding of the properties of the research object and its behavior un-
der the influence of extortion requires many, often costly and time-consuming experiments.
The number of measurements performed depends on the complexity of the model, the
number of independent variables affecting the research object, and the variables’ values.
For the purpose of limiting the number of measurements and, at the same time, obtaining
as much information as possible, it is necessary to plan the experiments and then perform
them according to the principles resulting from the adopted plan. In the experimental
research, the most commonly adopted approach is a linear structure of the model, in
addition to exponential or logarithmic structures that can be reduced to a linear form. The
method of least squares is most often used to determine the coefficients of these models.
The method of least squares is used to identify the linear models and the second-order
polynomials, in addition to the power or logarithmic functions.

The research object is characterized by the independent (input) variables xi, i.e., a set
of parameters influencing its properties; and dependent variables yi, i.e., output quantities
(the result of the interaction of input and disturbing quantities). The disturbing quantities
zi are the result of an impact of random factors on the research object and the inaccuracy of
measurement methods and means.

The research is carried out according to a prepared experiment plan, usually in
accordance with the experiment table included in the plan. The determination of the
inaccuracy of the measurement results is possible when the same experiment is repeated
several times. The arithmetic mean can be used as a position measure and the standard
deviation as a dispersion measure. The optimization of the model describing the real object
mainly consists in finding the best of all possible limitations, and a model that describes
the relationships between the studied variables.

As mentioned above, the experiment plan was developed with the assumption of
a linear structure of the mathematical model that describes the relationship between the
voltage of the loaded battery (dependent variable) and the physical quantities that influence
the voltage (independent variables): battery nominal capacity—Q [Ah]; load current
intensity—I [A]; temperature (of electrolyte)—T [◦C] (in this case it is more advisable
and convenient to use the Celsius temperature scale than the Kelvin temperature scale);
and battery condition—k. A two-level, static, determined, and complete experiment was
assumed. The plan assumes that the input factors, i.e., the independent variables, take two
levels of values: the upper ones are marked as “+1” and the lower ones are marked as
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“−1”. Therefore, the number of tests in the planned experiment for the four independent
variables is: n = 24 = 16.

For individual independent variables, the appropriate symbols xi were adopted, and
the levels of their variability were assumed. The levels of variability define the range
within which they take the values [xmin − xmax]. To develop the model, it is necessary to
code the input quantities. Coding consists of transforming the value of any input quantity
into a coded (normalized) value which is within the range limited by the conventional
levels of the input variables, and falling into the following set [−1 ÷ +1]. For this purpose,
mathematical operations were performed, consisting of determining central values; that
is, calculating arithmetic means for the individual variables and determining a unit of
variation for the individual quantities, which is the unit value of the input factor change.
These values were then coded. The units of the variables’ variation were determined on
the basis of the changes in the parameters of the operation of the engine starting system
under the average engine starting conditions with the use of an electric starter.

A calculation of the units of variation consists of determining the unit value of the
change in the independent variable. The unit of variation was determined on the basis of
Equation (2). The value of ximax and ximin in Equation (2) corresponds to the maximum
and minimum value, respectively, of the independent variable with the number, i.e., xi in
the adopted variation range.

Δxi =
xi max − xi min

2
. (2)

The central values are the arithmetic means of the maximum and minimum values of
each individual independent variables Equation (3):

xio =
xi max + xi min

2
. (3)

Coding of independent variables results in transforming the values of the input
quantities into dimensionless numbers contained in the following set [−1; +1]. Coding
makes the experiment plan independent of the real values and the physical meaning
of independent variables describing the research object, and replaces the independent
variables with dimensionless values. Hence, the methods of planning the experiment
become universal and independent of the physical importance of factors describing a given
phenomenon, and can be used in various fields of research.

Thus, the coded value of any independent variable, according to Equation (4), is:

xik =
xi − xio

Δxi
, (4)

where the individual component of Equation (4) has the following meaning:

• xik—the coded value of the independent variable;
• xi—the independent variable subjected to the coding;
• xio—the central value, determined by the Equation (3);
• Δxi—the unit of variation of the independent variable subjected to the coding.

The appropriate levels of the variability of the factors were adopted, for which the
values were, respectively:

• The battery nominal capacity: Q = 110 and 170 Ah;
• The current: I = 84 and 224 A;
• The temperature: T = 0 and +22 ◦C
• The battery condition (state of charge): k = 0.7 and 1.

The notional levels of the factor values are described as −1 for the lower value and
+1 for the higher value. The first step of the experiment is to code the variables, which
then assume conventional, dimensionless values. The central values of the independent
variables were determined in the form of the arithmetic mean of the values assumed by
these variables at the upper and lower levels according to Equation (3). Then, the units of
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variability of the factors considered in the experiment were calculated. After calculating
the central moments and units of variability, the variables were coded in accordance with
Equation (4). The results of the activities leading to the presentation of the variables in the
coded form are recorded in Table 1.

Table 1. Variables’ coding results.

Variable
Characteristic Value

Central Value Unit of Variation Coded Variable

Capacity: Q 140 30 xQ = Q−140
30

Current: I 154 70 xI =
I−154

70

Temperature: T 11 11 xT = T−11
11

SoC: k 0.85 0.15 xk = k−0.85
0.15

Voltage: U – – y = U

The dependent variable, i.e., the voltage at the terminals of the loaded battery, U [V],
is also coded. Following the coding of the variables, the next step in the preparation of the
experiment plan is the plan table arrangement, according to which the measurements are
carried out. Table 2 presents the table for the planned experiment in question. The number
of planned experiments results from the number of variables describing the research object
and the number of levels of the values that these variables take.

Table 2. The matrix of the experiment.

Number x0 x1 x2 x3 x4 ymean

1 +1 +1 +1 +1 +1 11.32
2 +1 +1 +1 +1 −1 11.03
3 +1 +1 +1 −1 +1 11.09
4 +1 +1 +1 −1 −1 10.63
5 +1 +1 −1 +1 +1 11.89
6 +1 +1 −1 +1 −1 11.78
7 +1 +1 −1 −1 +1 11.82
8 +1 +1 −1 −1 −1 11.34
9 +1 −1 +1 +1 +1 11.00

10 +1 −1 +1 +1 −1 10.78
11 +1 −1 +1 −1 +1 10.86
12 +1 −1 +1 −1 −1 10.41
13 +1 −1 −1 +1 +1 11.7
14 +1 −1 −1 +1 −1 11.61
15 +1 −1 −1 −1 +1 11.59
16 +1 −1 −1 −1 −1 11.21

The x0 value is an intercept of the linear model describing the object, and the subse-
quent columns represent independent variables, respectively: battery rated capacity, load
current, electrolyte temperature, and battery condition (SoC—state of charge). A single
experiment from Table 2 defines the measurement system as a set of independent variable
values. Only one value of each variable belongs to each set, and all independent variables
describing the research object were simultaneously taken into account. In the created plan,
the number of experiments was 16. It is also assumed that the individual experiments
included in Table 2 should be performed in a random order. The measurements were made
for the tests presented in the table.

The linear regression equation describing the relationships between the variables for
the presented plan takes the form of Equation (5):

y = a0 + a1x1 + a2x2 + a3x3 + a4x4. (5)
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The coefficients of the regression equation were determined using the following
relationships Equations (6) and (7):

a0 =
1
N ∑N

i=1 x0i·ymean, (6)

a1÷4 =
1
N ∑N

i=1 x1÷4i·ymean. (7)

After confirming the adequacy of the model, the equations were decoded and writ-
ten in the form of a linear function taking into account all independent variables. The
sought-after linear model of the object describes the relationships between the variables
Equation (8).

y = a0 + ai·xi − xio

Δxi
+ · · ·+ an·xn − xno

Δxn
. (8)

After carrying out the measurements according to the plan review table, the coef-
ficients of the linear equation describing the relationships between the variables were
determined according to Equations (6) and (7). After determining the coefficients, the
following equation was obtained in a coded form Equation (9):

y = 11.25 + 0.109xQ − 0.364xI + 0.135xT + 0.155xk. (9)

This expression presents a linear mathematical model of the object, i.e., an acid battery,
the coefficients of which, determined on the basis of the data from Table 2, indicate how
much the value of the dependent variable (battery voltage) will change when the value of
the coded independent variable changes by one.

The mathematical description of the research object, i.e., the lead–acid battery, obtained
as a result of the tests, is presented below. For this purpose, Equation (9) was decoded in
order to determine the coefficients describing the quantitative influence of the individual
physical variables on the value of the loaded battery voltage. The decoded linear model
of the research object is a quantitative model that describes the dependence of the loaded
battery terminal voltage U, as the dependent variable, on the nominal (rated) capacity Q,
the discharge current I, the ambient (electrolyte) temperature T, and the (technical) state
of charge (SoC) k, as the independent variables. This is presented as Equation (10). This
makes it possible to know the “degree of influence” of the individual independent variables
on the dependent variable.

U = 10.53 + 0.0036Q − 0.0052I + 0.012T + 1.033k; [V]. (10)

Thus, using the principles of experiment planning, a multidimensional model of
the acid battery under the stationary operating conditions was obtained. This method
significantly reduces the time needed to conduct experiments in order to achieve the
intended research objective, especially when the objective is to develop a mathematical
model with a known (assumed) form that describes the relationships between the factors.

3.2. Acid Battery Non-Stationary Operating Characteristics

In the electrical circuit of the acid battery under the non-stationary operating condi-
tions, the dynamic characteristics of the battery are revealed, which can be represented by
the variability of its internal resistance. On the basis of Equation (1), the internal resistance
of the analyzed battery was determined (Figure 5), considering that the voltage at the
terminals of the unloaded battery, i.e., its electromotive force, was equal to 12.97 V.
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Figure 5. The changes in the internal resistance of the loaded battery.

The analytical form of the obtained dependencies (internal resistance and analogously
of the voltage and current consumption) is convenient for the engineering calculations for
predicting the features of an object. One of the significant problems in this case is the choice
of the form of a regression function that is appropriate as an object or a process model. In
the analyzed case, e.g., for the internal resistance, it is advisable to adopt the exponential
function featuring the form Equation (11) because of the nature of the variability of the
observed dependency. In addition:

• It is a function commonly used in science and technology;
• It is easy to interpret;
• It enables the development, through the interpretations, of a structural model of the

object that undergoes an exponential response to a step extortion and its analytical
description.

Rint = Rs − Rv exp
(
− t
τ

)
, (11)

where:

• Rs—battery resistance in the steady operating state;
• Rv—amplitude of the variable resistance component of the battery;
• τ—time constant of the change process of the internal resistance.

The obtained signal courses (Figures 1–3, and 5) indicate the need to isolate fixed and
variable parts of the dependences. Clear determining the value of the specified course is
difficult because, under exponential variability, this value is reached in infinity. In addition,
especially at high current values, low temperature, and poor battery condition, the changes
in the value of the analyzed signals can also be a result of the battery discharge, and thus a
permanent change in its properties.

The variable part of the course, as presented in Figure 5, cannot be easily described
using one exponential function. In this case, the description can be made using a glued
function, i.e., a set of exponential functions defined in the different time intervals. The
functions should meet the condition of continuity at the limits of the time intervals. The
general form of the glued function, F, and the continuity condition can be written as in
Equation (12):

F(t) = Fi(t); ti−1 ≤ t < ti,
Fi(ti) = Fi+1(ti); i = 1, . . . , n − 1.

(12)

In this case, another problem is the choice of the number and domain of each function,
which are related to the description complexity and accuracy. As a criterion for the choice
and assessment of these properties, the coefficient of determination R2 for an individual
function can be used. With regard to the analyzed dependencies in Figure 6, the fixed
voltage values at the loaded and unloaded battery terminals were determined. Using
the value of the coefficient of determination as a criterion, the time intervals of voltage
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stabilization at the terminals of the loaded and unloaded battery were determined, in
addition to the variation intervals, for which the voltage change characteristic has an
invariable value with respect to the time constant (Figure 6). In this manner, it was
established that the voltage stabilization time of the loaded battery is approximately 4.5 s,
and the stabilization of the voltage value after the load was turned off did not end within
20 s. It is important to note that the approximation of the value of the variable voltage of
the loaded battery using the spline function requires two components, and for an unloaded
battery, the required number of components is equal to three.

 
(a) (b) 

Figure 6. The variable component of the: (a) loaded battery voltage together with the approximating glued function lines
(regression equations are written in the text (13)); (b) unloaded battery voltage together with the approximating glued
function lines (regression equations are written in the text (14)).

The final form of the analytical description of the two dependencies is presented
by Equations (13) and (14), and its illustration, together with the exponential analytic
functions, is shown in Figure 6.

Uload(t) =
{

0.68 exp(−3.47t) 0 ≤ t < 0.12;
0.55 exp(1.17t) 0.12 ≤ t < 4.5.

(13)

Uunload(t) =

⎧⎨⎩
0.65 exp(−2.01t) 0 ≤ t < 0.25;

0.41 exp(−0.28t) 0.25 ≤ t < 1.7;
0.32 exp(−0.14t) 1.7 ≤ t < 20.

(14)

The second possible means of describing the presented dependencies with the expo-
nential functions is using their linear combination, i.e., a mixture of exponential functions.
The mixture of functions, Fi, can be undertaken as follows Equation (15):

F(t) =
n

∑
i=1

aiFi(t), (15)

where ai represents the function weighting factors, which are also amplitudes of each
individual function.

In the case of the analyzed battery, the description was made using a mixture of
the voltage characteristic curve functions within the time interval from 0 to 4.5 s for a
loaded battery. A stable component of the value of Us = 11.37 was extracted. Hence, a
very good correspondence of the description with the real dependency was obtained, by
distinguishing the range of fast polarization voltage variations in the period up to 0.1 s.
In this case, a description according to Equation (16) was obtained, and the separated
intervals and their approximation functions are shown in Figure 7a. Similarly, the voltage
dependencies at the battery terminals after switching off the load were described using
a mixture of exponential functions (Figure 7b, Equation (17)). In addition, in the case of
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a mixture of functions, it was necessary to use the three components of the exponential
function.

Uload(t) = 0.19 exp(−30.88t) + 0.55 exp(−1.17t). (16)

Uunload(t) = 0.2548 exp(−26.12t) + 0.21 exp(−2.12t) + 0.32 exp(−0.14t). (17)

 

(a) (b) 

Figure 7. Determined voltage components at the terminals of the: (a) loaded battery within the time range up to 4.5 s
(regression equations, mixture of exponential functions, are written in the text (16)); (b) unloaded battery within the time
range up to 20 s (regression equations, mixture of exponential functions, are written in the text (17)).

Attention should be paid to the significant, more than 25-fold, differentiation in the
time constants of both functions (for the loaded battery), which is equal to about 0.032 s
for the fast-changing component, i.e., in the time interval up to 0.1 s and 0.86 s for the
slow-changing component (they are equal to the inverse of coefficients specified in the
function exponents).

3.3. Battery Structural Model

In the previous considerations, according to the electrical diagram given in Figure 4,
the reason for the voltage change at the terminals of the loaded battery was recognized
to be the change in its internal resistance. The primary reasons for the change are the
changes in the electrolyte density around the electrodes and in the inner layers of the active
mass of the battery plates. The change in the electrolyte density is also the reason for the
changing potentials of the electrodes, i.e., the electromotive force of the battery. Therefore,
the change in the voltage at the terminals can also be considered to be the change in the
component of the electromotive force called the electromotive force of polarization. The
polarity of each electrode (anode and cathode) can be distinguished, depending on the
location of the polarization processes and the voltage drop in the electrolyte. In general, the
electrical resistance of the battery is constituted by resistance, capacitance, and inductance
components.

The electrical diagram of the acid battery shown in Figure 4 can be used to describe
the operation of the battery under a constant current load or constant resistance. The
variability of the internal resistance with time under dynamic load conditions makes it
practically impossible to use this diagram to determine the response of the accumulator to
the variable, dynamic force.

The description of the battery discharge characteristics (voltage at its terminals) us-
ing the exponential function enables the introduction of the electric components to the
equivalent battery circuit, whose electrical properties generate responses in the form of
exponential function. Such a component of vicarious battery diagrams may consist of a
capacitor and a resistor through which the capacitor is charged or discharged. Therefore,
it is possible to connect the RC circuits to a stationary source of the electromotive force
of the battery EB, as in Figure 8. Under variable load conditions, these circuits gener-

72



Energies 2021, 14, 7212

ate the electromotive force of the polarization components Epi (Figure 8) according to
Equations (16) and (17). A description of the battery discharge characteristics by means of
a linear combination of two or more exponential functions indicates the possibility and
need to also apply a larger number of RC circuits connected in series to the equivalent
circuit of the battery.

Figure 8. Electrical equivalent circuit for an acid battery.

Determination of the parameters of the circuit components is made possible on the basis
of the test results of the battery discharge characteristics, as specified in Equations (16) and (17).
It is known that the capacitor discharge characteristic is the exponential curve in the fol-
lowing form Equation (18):

U(t) = Uo exp(− t
τ
) = Uo exp(− t

RC
). (18)

This enables physical values to be assigned to the indicated components of the battery
equivalent circuit. This is due to the fact that the time constant of the discharge process is
τ = RC.

4. Discussion

The characteristic of a device functioning (operating) is the dependence of its output
signal feature value, i.e., device response, on the value of the input signal. Devices have
static and dynamic characteristics. A device’s static characteristic is most often the function
y = y(u), which represents the dependence of the value of the output signal feature y
of the device on the input value, i.e., the input signal feature u under the steady-state
conditions. An example of such a characteristic may be the dependence of the voltage at
the battery terminals on the factors influencing its value, as presented above. The most
frequently expected static characteristic is a linear one-dimensional or multi-dimensional
characteristic, for example, as shown in Equation (10).

The dynamic characteristic of the device determines the transformation of the input
signal u(t) (extortion signal), which varies as a function of time, into the output signal y(t);
that is, the variable as a function of time constitutes a response of the system to this input.
The dynamic characteristics of a device are most frequently described using transmittance.
The operator transmittance, also referred to as a function of the device transition, is the
ratio of the Laplace transform of the output signal Y(s) to the Laplace transform of the
input signal U(s) under the zero initial conditions Equation (19):

G(s) =
Y(s)
U(s)

, (19)

where the Laplace transformation is a transformation of the time function f(t) into a complex
function of the complex variable F(s) Equation (20):

F(s) = L{f(t)} =
∫ ∞

0
f(t)e−stdt. (20)

On the basis of the transition function, using the inverse Laplace transform, it is
possible to determine the signal that will be obtained at the output of the system for any
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input signal Equation (21)—or vice versa—to determine the driving signal, which should
be given at the input of the device to obtain the desired response of the device.

y(t) = L−1{U(s)G(s)}. (21)

The transmittance is most often presented in the form of the amplitude characteristic
|A(f)| and phase characteristic Φ(f) of the device as a function of frequency f or angular
frequency ω, i.e., amplitude and phase transfer in the event of a sinusoidal input. A lack of
linearity of the amplitude and phase characteristics may cause dynamic deviations of the
output signal. The amplitude and phase characteristics of the device are derived from the
spectral transmittance.

The spectral transmittance is the ratio of the value of the complex Y response of
the system caused by a sinusoidal extortion to the complex value of this extortion in the
stationary state. Thus, spectral transmittance characterizes the response of the system
to a sinusoidal extortion. The spectral transmittance can be obtained from the operator
transmittance by substituting s = jω, thus obtaining the corresponding Fourier transform.

According to the aforementioned dependencies Equations (19) and (20), the battery
operator transmittance was determined for the signal presented in Figure 7a and described
using Equation (16). It was assumed that the input signal is the leap in the polarization elec-
tromotive force with a value equal to the sum of component amplitudes in Equation (16),
given as Equation (22):

Ep0 = Ep10 + Ep20. (22)

Therefore, in accordance with the above, the output signal Equation (16) can be written
as Equation (23):

Ep = Ep10

[
1 − exp

(
− t
τ1

)]
+ Ep20

[
1 − exp

(
− t
τ2

)]
. (23)

Performing the Laplace transforms of the above-written expressions, the transforma-
tions of the input and output signal were obtained in the forms of Equations (24) and (25):

Ep0(s) =
Ep10 + Ep20

s
. (24)

Ep(s) =
Ep10

s(1 + sτ1)
+

Ep20

s(1 + sτ2)
. (25)

As stated above, the battery operator transmittance can be obtained by dividing the
Laplace transforms of the output signal and the input signal. Thus, after performing the
appropriate transformations, the transmittance of the battery can be presented in the form
Equation (26) as below:

F(s) =
1

Ep10 + EP20
· Ep10(1 + sτ2) + Ep20(1 + sτ1)

(1 + sτ1)(1 + sτ2)
. (26)

Knowledge of the operating characteristics of the acid battery, both static and dynamic,
in the form of its transmittance Equation (26), enables determination of the battery response,
i.e., the voltage at its terminals, for any load value, i.e., the current drawn from the battery.
In the expression describing the static characteristic Equation (10), the independent factors
include the technical condition, i.e., the state of charge of the battery, k (it is advisable
and necessary to determine similar relationships for the dynamic characteristics). The
comparison of the battery voltage value determined on the basis of the characteristic for the
reference battery, with the voltage value measured under the experimental conditions, may
enable the (SoC) value k of the researched battery to be determined. In this case, value k
becomes i.e., the battery status indicator, and can be used as a diagnostic parameter for the
determination of the status of the battery. It is expected that the developed dependencies
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will be used in the diagnostic procedure of the battery, based on the measurement of the
engine start signals, i.e., the driving of its crankshaft by the starting system. The proposed
method will allow not only the diagnosis of the condition of the acid battery, but also the
electric starter and the internal combustion engine in terms of the resistance to motion,
taking into account the compression pressure of cylinder charges.

5. Conclusions

The acid battery is a functionally and structurally complex non-linear power source,
whose features are dependent on many parameters. Its static characteristic, i.e., the loaded
battery terminal voltage U in stationary operating conditions, depends on the nominal
(rated) capacity Q, the discharge current I, the ambient (electrolyte) temperature T, and
the (technical) state of charge (SoC) k as the independent variables. For the purpose of
describing the dynamic characteristic of its operation, that is, the response to a rapid leap
in current (i.e., a load with a constant current or resistance), it is convenient to use the expo-
nential functions in the form of glued functions or a mixture of functions. Both methods
of description correspond to two different electric models (equivalent circuits) of the acid
battery in the form: (1) the electromotive force and the variable internal resistanc; (2) the
stationary electromotive force and the (two or three) RC systems having different charac-
teristics, resulting in changes in the electromotive force of the polarization of the battery in
the circuit. The presence of two or three different components of the electromotive force of
polarization indicates that the equivalent circuit of a lead–acid battery should include at
least two RC circuits connected in series, with the significantly different parameters defined
by means of time constants. In fact, the change in the time constant of the polarization
electromotive force occurs continuously, from very small values to theoretically equal
to infinity. The consideration of many independent parameters in the description of the
battery and its structure requires long-term extensive experimental research.

A feature of modern machine exploitation is the constant, systematic increase in the
role and meaning of technical diagnostics. The broad possibilities of its application result
from the change in the properties of the exploitation objects, including motor vehicles and
the development of methods and means of diagnosis using digital signal recording and
processing techniques. In the diagnostics of internal combustion engines and their starting
systems, the diagnostic parameters of the working and accompanying processes of the
driving of the crankshaft can be used. These diagnostic parameters include: the current
consumed by the starter, the voltage at the battery or starter terminals, and the speed of
the crankshaft forced by the starter. The set of electric starter characteristics depends on
the properties of the energy source, i.e., the acid battery.

The developed models, both for the stationary and non-stationary conditions, will be
used in the proposed and currently developed diagnosis method for the internal combus-
tion engine–electric starting system based on the engine start-up signals and its driving by
the starting system. It will be possible to determine the state of charge of the battery on the
basis of Equation (10). The dynamic components of the model in the form of transmittance
Equation (26) will allow determination of the significance of the influence of the battery’s
dynamic characteristics on the process of driving the crankshaft of the engine, and the
necessity to include this in the diagnostic test of the system.

As a result of the presented research and characteristics of the acid battery, and the
analyses performed, conclusions important for the knowledge and understanding of the
principles of operation of the acid battery can be formulated:

• Regression methods that enable general, symbolic, and formal descriptions of the test
results play an important role in the study of the characteristics and parameters of the
acid battery structure.

• The static characteristics of the battery as a function of the essential independent
parameters, such as rated capacity, state of charge, current intensity, and electrolyte
temperature, are linear under a wide range of usable operating conditions.
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• Under dynamic operating conditions, the battery is a complex control object with time-
varying characteristics and properties of an equivalent structural electrical circuit. This
is expressed by the necessity to include two or even three RC circuits in its structure.

• The determined stationary and dynamic model enables determination of the influence
on the operation of the starter and the parameters of driving the crankshaft of the
internal combustion engine by the battery under specific operating conditions.

• Estimation of the time constants of dynamic voltage characteristics of the battery
enables the determination of its operator and spectral transmittance, and evaluation
of the impact of the dynamic characteristics, not only on the functioning of the battery,
but also on the internal combustion engine starting system and its crankshaft drive
characteristics.

• The dynamic characteristics of the load phase and voltage stabilization after switching
off the load are significantly different, and the equivalent circuit has two or three RC
circuits, respectively.

• Significant differences in the load phase and voltage stabilization characteristics indi-
cate a significant differentiation in the causes of the appearance and disappearance of
the imbalance of the loaded battery and after the load is turned off.

• The determination procedures, especially of the dynamic characteristics, are laborious
and require precise separation of the variable, dynamic part from the recorded course.
It is possible to achieve high accuracy in determining the characteristics, as assessed
by the value of the determination coefficient, which can be as high as 0.99.

• The criterion for assessing the accuracy of determining the dynamic characteristics
may be the value of the determination coefficient, both in the range of the value of
the stable voltage and in the time intervals of the exponential function with a specific
value of the time constant.
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Abstract: The growing environmental impact and rising emission of greenhouse gases have accel-
erated the research toward renewable energy sources and electric vehicles since one of the main
sources of pollution is the CO2 emissions produced by conventional combustion vehicles. This article
presents the analysis of the energy balance between a photovoltaic carport with 4.89 kWp installed
capacity and an EV, model Renault Fluence ZE DYN, driven in real conditions. The driving tests
were performed during the winter season in the city of Curitiba, the capital of the state of Paraná,
Brazil, with approximately 1.7 million inhabitants and 1.1 million vehicles. During the test period, we
attempt to reproduce the citizen’s daily routes through the city, presenting an average consumption
of 15.75 kWh/100 km. The carport PV module’s energy generation and in-plane incident irradiation
were acquired to calculate the performance ratio, making a comparison after cleaning maintenance
possible. The solar carport system has 4.89 kWp and has generated an average of 465.37 kWh during
its 24 months of operation. The analysis scenarios consist of replacing part of the city’s combustion
vehicle fleet with the EVs (the same as used in the study) and thus determining how many replicas of
the presented photovoltaic systems might be needed, as well as the area required for the installations.
In a simulation with 15% of the fleet’s replacement, it would be necessary to generate 17,151.8 MWh,
which requires the construction of 36,856 carports, covering an area of approximately 1,105,685 m2.
Finally, an economic comparison between an internal combustion vehicle and the EV determined
that the expenditures involving electric energy to charge the batteries are 3.3 times lower than buying
gasoline, assuming the same driving routines.

Keywords: vehicle charging stations; electric vehicles; energy consumption; energy generation;
renewable energy sources

1. Introduction

The environmental degradation resulting from greenhouse gas emissions and the
upcoming shortage of fossil fuels highlights the importance of generating energy with
minimal environmental impacts, confirming the relevance of including different energy
sources in the national energy matrix [1–3].

The transport sector is one of the biggest consumers of fossil fuels, contributing to
the increase in greenhouse gas emissions and global warming [4]. In 2019, this sector
produced 8.2 Gt of CO2 (gigatons of carbon dioxide), representing 24% of direct emissions
from fuel combustion [5,6]. Public and private transportation both have a crucial role
in the development of a region or entire country. However, there are also commonly
associated problems such as pollution, fossil fuel consumption, noise, accidents, resources
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use and waste, etc. [7]. Improvements aiming to decrease the dependence on these non-
renewable fuels and to reduce the environmental impacts are considered vital to ensure
energy security and population welfare [7,8].

Knowing the need to decrease pollution (mainly air) around the globe, we must reduce
the emissions caused by the transport sector by shifting away from the traditional fossil
fuel-based concept to an alternative system [8–10]. With numerous objectives to be achieved
(and quickly), electric vehicles (EVs) are set to be the key to shift into electric mobility,
considering that they have already been playing a significant role in recent years [6,8].

The electric motor is characterized by high efficiency, lack of emissions, and lower
noise, compared to traditional combustion engines [11–13]. In general, EVs have not been
successful in the past because of the limitations in battery technology in terms of high
weight and price, short life, and long charging time [14]. Supported by recent advances
and developments in technology, they are now on the market as strong competitors to
traditional internal combustion vehicles [12,14].

EVs can be divided into battery electric vehicles (BEVs), plug-in hybrid electric vehicles
(PHEVs), and fuel cell electric vehicles (FCEVs) [15]. BEVs are only powered by an
electric motor and traction batteries [16]. FCEVs use fuel cells to deliver energy and
power the electric motor [16]. Hybrid vehicles have two sources and are powered by an
internal combustion engine and batteries [16,17]. They are not completely free of non-
renewable fuels but cost less and can be used to travel long distances without stopping to
recharge [16,17].

EVs are known for their low maintenance, high performance and efficiency, and zero
air pollutant emissions, explaining their infiltration into the automobile market [15]. Along
with increasing environmental concerns and energy-related issues, EVs have become one
of the main subjects of research [16].

In the year 2020, there were 10 million electric vehicles moving around the globe, an
increase of 43% compared to 2019, with BEVs accounting for nearly 66% of the sales. The
sales forecast, in a stated policies scenario, declares that the EV stock in the year 2030 will
be approximately 150 million [18].

The largest fleet can be found in China, representing 45% of the global electric car
stock [18]. The Brazilian market is developing at a slow pace, and according to [19],
approximately 44 thousand EVs have been sold, representing less than 0.1% of the total
national fleet.

Public accessibility to chargers increased by 45%, considering both slow and fast
chargers, reaching 1.3 million stations [18]. In [20], an explanation about the different
kinds of plugs and charging levels is presented, pointing out the major characteristics and
differences. However, [18] found that when the power is lower than 22 kW, it is considered
a slow charge. Interurban transportation is one of the cases in which EVs may not be able
to provide a solution yet, due to the large distances between locations. To guarantee safe
interurban transportation, [21] proposed the deployment of fast-charging infrastructure on
the highways.

Continuous population growth and urban expansion have led to an increase in de-
mand for electricity [22]. Reduced carbon emissions are one of the main goals in urban
planning and energy policies [7,23]. With the cost of electricity generated by solar power
decreasing significantly and becoming competitive, the rapid development of photovoltaic
(PV) infrastructure was achieved, along with a strong market. The design flexibility of PV
systems allows the energy to be generated with a wide range of options, meeting the needs
of distinct levels of consumers, from homes to large industries [23,24].

The global installed capacity of renewable energies grew by more than 250 GW
(gigawatts) in 2020, led by photovoltaic solar energy, and it is estimated that approximately
29% of the electricity generated in 2020 came from renewable resources. For the sixth
consecutive year, renewable energy system installations have surpassed those of fossil fuel
and nuclear power capacity combined. More specifically, the photovoltaic solar energy
segment showed an increase of approximately 22% in installed capacity, with 139 GW
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being added. The greatest demand for photovoltaic solar has occurred in China, the
United States of America, Europe, and emerging markets around the world. The global
installed capacity is approximately 760 GW, which includes both on-grid and off-grid solar
generation capacity, compared to a total of less than 40 GW just ten years earlier [25].

Renewable energy sources for electricity generation, and the electrification of the
transport sector, offer great potential for reducing the use of fossil fuels–one of the major
causes of air pollution and health problems globally [12,26]. Thus, the benefits between
photovoltaic energy production and EV charging are greater when the integration between
charging stations and photovoltaic systems are considered, on what is a promising solution
to the abovementioned environmental problems [3,14,24,27]. To make the best use of both
technologies, the EVs must be charged during the day, using the energy generated by the
PV system or other renewable energy sources [28].

The combination of EV charging stations and PV generation can be achieved through
the construction of solar car parking, also named solar canopies or solar carports. These
structures are built to park a car under, and PV modules are installed on their roofs to
generate electricity. These systems are versatile and can be used in the most diverse places,
such as markets, hotels, shopping malls, restaurants, public institutions, country houses,
camping areas, shopping centers, business parks, sports centers, train stations, airports,
etc., benefiting areas that in most cases are available to be reshaped [6,14,29]. Any of
these places can provide convenient charging while the EVs are parked, supporting the
development and use of renewable energy systems [22,23].

During the life cycle of a PV module, situations like natural degradation, possible
components failure, various weather conditions, electrical stress, and others are faced
that momentarily and/or permanently alter some characteristics [30]. Out of the main
encountered situations, dust accumulation is one the most common, defined by the particles
that cover the module surface, blocking the cells from receiving the energy from the sun,
negatively impacting the PV energy generation [30,31]. During wet seasons, when it rains
more frequently, there is less dirt accumulation compared to dry seasons, which can be
accredited to the rain’s natural cleaning [32,33]. Although it is not as effective as a deep
cleaning made by a human or machine, it still exhibits positive effects.

The use of photovoltaic energy generation together with EV charging infrastructure
still poses challenges, mainly because of the uncertain energy demand pattern of EVs,
which is based on the drivers’ behavior and preferences and the intermittence of the
PV generation [9,34]. Ref. [24] presented a complete study of the vehicles’ charging re-
quirements based on the period of the year, distance traveled, and location of the route.
Meanwhile, ref. [35] modeled the driving patterns and energy demand of the EV for the
country of Austria. Studies in the field are essential for accurate planning of the investments
aiming to promote electric mobility [36].

EVs represent a storage capacity, in a great new approach known as Vehicle-to-Grid
(V2G), which gives the option of a bidirectional energy flow, positively affecting the
vehicle and the grid; this can be interpreted as another functionality for intelligent energy
networks (smart-grids) [29,34]. It can supply back-up electricity, shift the electricity load,
and respond quickly to balance the grid, representing a new important power source [15].
The work presented by [15] centers the attention on a technical and economic analysis for
the application of V2G techniques in the power grid.

In 2012, the National Electric Energy Agency—ANEEL, released Resolution 482 for the
regulation of the distributed energy generation in Brazil, which was amended in 2015 [37].
It is classified as micro-generation when the PV installation is up to 75 kW (kilowatt) and
mini generation for 75 kW to 5 MW (megawatt). It also gives the consumer the possibility
to exchange the surplus energy through a free loan with the grid, reducing the energy bill
and generating energy credits that can be consumed within 60 months [38]. The energy
does not need to be generated at the time or in the month it is consumed [39].

The constant increase in energy demand, at least in Brazil, has been leading to an
increase in the contribution of non-renewable energy sources in the production of Primary
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Energy, as can be seen in [40]. Observing the graphics, it can be seen that from 1970 to 1999,
the production of renewable sources was greater than the non-renewable ones, a scenario
that was reversed after the year 2000. Although both cases are presenting a growing pattern,
non-renewable energy production is growing at a higher rate. There is another challenge
regarding the grid voltage stability [41]. Ref. [42] proposes a combination of different local
resources to alleviate the potential grid problems. Charging EVs through renewable power
generation systems must be optimized in order to reduce the cost of operation and the grid
problems. Based on the Brazilian regulation, ref. [43] proposed a tariff model for public
access points, reducing the costs for the consumer.

In our work, considering an EV, we intend to define how much electrical energy is
consumed during daily and monthly driving routines, considering only working days
during the winter season in the city of Curitiba, Brazil. Regarding the PV systems, the
energy generation data and local irradiation information are acquired, making it possible
to calculate the performance ratio. At first, it is discussed if there are improvements in the
energy generation efficiency by performing a cleaning service in the modules. Examining
the integration of both technologies, it is discussed if the installed PV system is capable
of generating the electric vehicle required energy that was measured during the tests.
Based on fleet substitution scenarios, the manuscript discusses how many carports may be
necessary to recharge the EVs batteries in each condition. An economic analysis to compare
the monthly fuel costs of an EV and an internal combustion vehicle is presented.

The scope of this study includes the energy generated by the carport during its
24 months of operation, covering two parking spaces. In addition, the electric vehicle’s
actual consumption will be displayed. Finally, the performance ratio of the PV system will
be presented, and the maintenance of the modules will be discussed.

2. Materials and Methods

The aim of this study is the evaluation and analyses of the energy generated by a PV
system installed on the parking lot of the university and the required energy for charging
an EV, emulating the average driven distance by the citizen from the city of Curitiba, state
of Paraná, Brazil. The analysis of energy generation from the PV system is verified from
July 2019 (date when it was inaugurated) until June 2021, totalizing 24 months.

The average EV energy consumption is also presented. The following questions were
evaluated: How much energy does an electric vehicle in the city consume for its daily
activities? Does the 4.89 kWp (kilowatt-peak) carport photovoltaic system guarantee the
energy demand necessary to power two electric vehicles?

The system performance ratio is also calculated, and after the cleaning results are
presented, the system maintenance and meteorological factors that influence its operation
are discussed.

This article presents an analysis of two stages of energy conversion. The first one
studies the energy consumption of the electric vehicle Renault Fluence ZE DYN in real daily
conditions of the urban environment, while the second one deals with the maintenance of
energy generation of the solar carport. Figure 1 illustrates the proposed division.

2.1. Electric Vehicle

The electric vehicle used in the driving tests is a Renault Fluence ZE DYN, equipped
with a 22 kWh (kilowatt-hour) lithium-ion battery bank and an engine with a maximum
power of 95 hp (horsepower), corresponding to 70 kW. The main characteristics of the EV
are summarized in Table 1.

Recollecting the information about the EVs market in Brazil, it still represents a small
portion of the vehicle fleet, mainly due to their high prices. Under these circumstances, the
presented car is the only data source available for this type of test in the university. The EV
was recently purchased.
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Figure 1. Analyses proposed for this study: (a) Carport maintenance and energy generation; (b) Renault Fluence ZE DYN
energy consumption.

Table 1. Electric vehicle technical information [44].

Electric Motor/Car Battery

Parameter Value Parameter Value

Max. voltage 400 V Battery type LI-ion
Max. output power 70 kW Battery total capacity 22 kWh

Max. speed 135 km/h Charge Port AC-Type 2

2.2. Carport

The generated energy from the carport is acquired from the online website of the
installed inverter. The system is working connected to the grid since July 2019, and all the
generated energy that is not used, the surplus, is used as energy credit in the deduction of
the university’s monthly energy bill.

The entire PV system of the carport was built by the donation from some companies
that have business in the energy sector. From the academic point of view, it aims at the
integration of photovoltaic energy generation with EV battery recharging. In addition to
the energy generation and energy cost savings, it is an important source of information for
research in the field.

The PV system contains 15 polycrystalline solar modules, arranged in 2 strings, one
containing 6 modules from a manufacturer with 335 Wp each, while the other contains
9 modules from another manufacturer with 320 Wp each, totaling 4.89 kWp. The installation
also includes a single-phase 5 kW inverter with integrated monitoring.

The carport was assembled aligned with the parking lot’s geographical position,
distant from shadows of trees and light posts, with a north orientation, a 10◦ inclination, and
azimuth deviation of 22◦ to the west, allowing two vehicles to be parked simultaneously.
Table 2 summarizes the main parameters of the PV system, and Table 3 presents the inverter
electrical characteristics.

Table 2. Electrical parameters of the PV system strings [29].

Modules
Number

Pmp

Modules
Pmp

String
Voc

String
Vmp

String
Imp

String
Isc

String

String 1 6 335 W 2.01 kWp 274.8 V 224.4 V 8.96 A 9.54 A
9.05 AString 2 9 320 W 2.88 kWp 417.6 V 336.6 V 8.56 A
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Table 3. Electrical parameters of the PV system inverter [29].

Parameters

MPPT 2
MPPT Individual Maximum Current DC 12 A

Maximum Input Voltage DC 1000 V
Voltage Range MPPT 240–800 V

Rated Output Power AC 5000 W
Maximum Output Current AC 21.7 A
Connection Network Voltage 1-NPE 220/230 V

Network Frequency 50/60 Hz

For the electrical security of the PV system, there is a connection board in the DC
(direct current) side, containing 4 inputs and 2 output pairs, supporting the connection of
both strings into the MPPT (maximum power point tracking) channels of the inverter. It
also contains, for every string, a set of SPDs (surge protection devices) model Dehn Type II
for 1000 V (volts), a particular model for PV applications, and a disconnection switch of
1000 V and 25 A (amps). Regarding the AC (alternating current) side, there is a connection
board with a circuit breaker and an SPD.

It was decided to build a wall in front of the carport, measuring 3.17 m × 1.63 m
(meters), so that the fundamental equipment could be protected from the rainfall, but
also exhibited to the community and other students from the university, contributing to
the awareness of technologies and its benefits. In this wall, the inverter, both connection
boards, a pair of standard AC outlets, and the vehicular charger were fixed.

The two standard AC outlets were installed for charging the EV in Level 1 Charge
Mode or to use general electrical devices. The one and only vehicular charger so far, model
ProEV1, was donated and installed by Egnex company and is illustrated in Figure 2. There
is enough space for two more charges.

Figure 2. EGNEX ProEV1 charger.

This charger automatically communicates with the EV and starts charging it when
there is an established connection with the vehicle, in accordance with current technical
standards. To charge the EV, using the AC grid, the user can configure the equipment
according to the local electrical installation, from 1 to 7 kWh in a single-phase and from 2 to
22 kWh in a three-phase network. The charger is available with a Type 1 or Type 2 connector,
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which is the most accessible connector on the national market [45]. Figure 3 displays the
carport’s internal and external aspects, including the wall and the fixed equipment.

Figure 3. Current carport installations: (a) External; (b) Internal.

Each parking space has an area of approximately 15 m2 (square meter). Knowing
that two cars can be parked under the structure for simultaneous charging, the total area
covered by the carport is 30 m2.

3. Results and Discussion

3.1. Vehicle Energy Consumption

In order to measure the energy consumption of the Renault Fluence ZE DYN, it
was necessary to purchase and connect a specific scanner, “Konnwei OBDING BT 3.0”,
model KW902, to the EV’s on-board computer. Using an Android smartphone to install
the Fluence ZE Spy application, the device and the software establish communication
via Bluetooth, exhibiting the required information. Figure 4 shows the scanner, and the
application used to display the electrical consumption of the EV.

Figure 4. Required gadget and software: (a) Scanner Konnwei OBDING BT 3.0, model KW902; (b) Fluence ZE Spy
application.

After installing the scanner hardware and the application to display the required
results, the energy consumption of the EV was measured in the urban environment in
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June 2021, the winter season in Brazil. We executed two measurements with the same
driving distances, with the objective of obtaining a reliable result. The driving tests were
performed in the central area of the city, around 11 a.m., facing a light traffic jam. Eco mode
was enabled.

The total driving distance was 42.9 km (kilometer), and both attempts ended up with
approximately the same outcome, with 15.75 kWh/100 km (kilowatt-hour per a hundred
kilometer) for the first trip and 15.55 kWh/100 km for the second drive, both presented in
Figure 5.

Figure 5. Energy consumption measurements for the Renault Fluence ZE DYN in the urban environ-
ment during the driving tests.

To perform the evaluations proposed in this article, the highest obtained result from
the two-driving tests has been used; therefore, in the following scenario calculations, it will
be considered that the EV energy consumption, considering the urban traffic of the city of
Curitiba, is 15.75 kWh/100 km.

3.2. Carport Energy Generation and Performance Ratio

Based on the mass memory of the inverter, Table 4 presents the monthly energy
generation of the PV system from July 2019 to June 2021, totaling 24 months of analysis.
Summing the data from all operational months, the PV system has already generated
11,168.77 kWh. The monthly average energy generation is 465.37 kWh, and it is the value
that will be used in the scenario analyses, taking into consideration the local renewable
energy regulation.

One way to evaluate the generation of a photovoltaic system is by analyzing the merit
indices. These are important indicators that show whether the energy is being generated by
the systems in an optimized way and enable the comparison between other photovoltaic
installations or other energy sources [46–48].

Among the merit indices, only the performance ratio (PR) will be analyzed here, which
is the relation between the generated energy (kWh), the reference irradiance (kW/m2,
kilowatt per square meter), the incident irradiation in the plane of the photovoltaic panel
(kWh/m2, kilowatt-hour per square meter), and the installed PV power (kWp), according
to Equation (1).

PR =
Energy Generation × Re f erence irradiation

Irradiation × PV Power
(1)
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Table 4. Monthly Energy Generation of the Carport (kWh).

Month 2019 2020 2021

January - 488.72 400.08
February - 432.54 433.34

March - 571.15 412.02
April - 556.07 380.35
May - 501.02 413.40
June - 299.53 360.00
July 485.01 436.63 -

August 461.21 496.96 -
September 422.06 488.39 -

October 582.13 516.33 -
November 521.90 543.31 -
December 541.93 424.69 -

Annual 3014.24 5755.34 2399.19

It is impossible to achieve an efficiency of 100%, as photovoltaic installations present
losses that are typical, and among them, panel degradation, temperature, dirt, internal
network failures, cabling, inverter, transformer, and system availability can be highlighted.
For the dimensioning of photovoltaic systems, it is common to adopt a PR between 70%
and 80% [47].

Due to the dirt conditions that can be identified by visual inspection and the calculated
low-performance ratio indicator, a cleaning service was executed on the photovoltaic
modules on 1 June 2021 in order to verify its impacts on the generation of electricity.
A comparison between the electricity generated in June with the previous months is
performed. Figure 6 illustrates the conditions of the modules before and after cleaning
them.

Figure 6. Comparison of the PV modules conditions: (a) before washing; (b) after washing.

The irradiation data were acquired from a solarimetric station called EPESOL—Solar
Energy Research Station, located in the university’s campus, the same site where the carport
system is installed. However, the installation of the carport was prior to the solarimetric
station, which has been in operation since March 2020. The previous irradiation values
were obtained from the INMET (National Institute of Meteorology). Originally, these
measurements are acquired for the horizontal plane and later converted to the plane of the
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carport, according to the inclination and azimuthal deviation, through software, and are
presented in Table 5.

Table 5. Monthly average irradiation in the plane of the carport (kWh/m2/day).

Month 2019 2020 2021

January - 5.16 4.37
February - 4.57 6.24

March - 6.04 4.75
April - 5.44 4.26
May - 4.45 3.82
June - 2.87 3.01
July 3.69 3.99 -

August 3.98 4.43 -
September 4.00 4.69 -

October 5.49 5.24 -
November 5.23 6.06 -
December 5.30 5.18 -

With the acquired data and Equation (1), it is possible to calculate the monthly perfor-
mance ratio for the entire period of operation of the system.

In Table 6, the results of the performance ratio for the 24 months of the carport’s
operation are presented. For the periods when the calculated outcome is below 70%, it can
be understood as a warning signal, which may indicate that the PV system is experiencing
long periods of shading, the modules are dirty, or there are electrical problems.

Table 6. Performance ratio (%).

Month 2019 2020 2021

January - 62.48% 60.39%
February - 66.74% 50.72%

March - 62.38% 57.22%
April - 69.68% 60.86%
May - 74.27% 71.39%
June - 71.14% 81.53%
July 86.71% 72.19% -

August 76.44% 74.00% -
September 71.93% 70.98% -

October 69.95% 65.00% -
November 68.02% 61.11% -
December 67.45% 54.08% -

Annual 73.42% 67.01% 63.69%

The performance ratio measures the efficiency of the photovoltaic panel in a given
location, deducting the losses, measures the onsite quality, and compare PV installations
in other locations. Considering the 24 months studied, an average performance ratio of
68.04% was reached.

As mentioned earlier, scheduled cleaning of the PV modules was performed with
the objective of exploring its effect on the performance of the system. According to the
results presented in Table 6, it is possible to verify that there was an improvement of
approximately 10%, comparing June 2021 with May 2021, which can be assigned to the
executed maintenance.

Analyzing the abrupt variation between the months of April and May 2021 (Table 6), it
is possible to indicate two climatic factors that had a positive influence on the improvement
of efficiency. Rainfall rates collected from the same solarimetric stations indicate that the
month of April 2021 was extremely dry, recording only 7 mm (millimeters), in contrast to
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the month of May 2021, where 115.8 mm were registered. The rainfall collaborates with the
self-cleaning of the photovoltaic modules, eliminating superficial layers of deposited dirt.

Another determining factor for the improvement in the performance was the decrease
in the temperature, which, according to the datasheet of the PV modules, results in an
increase in the PV power. Comparing May 2021 with April 2021, the daily maximum
temperature dropped by more than 1 ◦C (degree Celsius), and the daily average tempera-
ture decreased by more than 2 ◦C. It may seem that the temperature variation is not very
significant, but the two climatic factors combined are strong contributors to an increase in
photovoltaic energy generation.

3.3. Vehicle Energy Consumption and Carport Energy Generation

According to [49], at the end of 2020, there were 1,099,979 vehicles registered in the
city of Curitiba, capital of the State of Paraná, whose population is 1,751,907 inhabitants. To
make the calculations simpler, it was considered that the fleet is composed of 1,100,000 ve-
hicles. According to [50], the population of the city travels, per day, an average of 13.7 km
to get to work, totaling 27.4 km considering round trips. Adding 10% as a margin for
supermarkets, gas stations, restaurants, or other emergencies, an average distance of 30 km
per day is used, resulting in 660 km in a month. Only the working days of each month
are included, which will be set at 22, considering that on weekends generally there is no
associated driving pattern. Table 7 presents a summary with the main values.

Table 7. Main parameters.

EV
Consumption
[kWh/100 km]

Mean
Generation

[kWh]

Distance Per Month
[Km]

15.75 465.37 660

After defining the variables, it was calculated that under these conditions, the electric
vehicle would consume 103.95 kWh of electrical energy per month. Therefore, with
the electricity generated by the carport, it would be possible to charge the battery of
approximately 4 vehicles like the one used in the example.

Expanding the analysis scenarios, the simulations do replace a percentage of the city’s
vehicle fleet with EVs, based on the results obtained with the Renault Fluence ZE DYN,
and compare with the electricity generation data from the presented carport. For each case
that the number of EVs is increased, the amount of required charging energy, the number
of identical carports, and the necessary available area for the installation of the PV system
also increase.

The work presented by [51] analyses the impacts in the electric power system for the
city of Curitiba in the case of a substitution of 15%, 30%, or 50% of the internal combustion
vehicle fleet with EVs.

The scenario analyses follow the same replacement rates and define the average electric
power generation of the carport as the basis for comparisons. The first two suppositions
can be considered as a condition for 15 to 30 years in the future. The main obtained results
are shown in Table 8.

Table 8. Comparison of the results.

15% Fleet 30% Fleet 50% Fleet

165,000 EVs 330,000 EVs 550,000 EVs

Charging
energy
[MWh]

Carport
units

Area
[m2]

Charging
energy
[MWh]

Carport
units

Area
[m2]

Charging
energy
[MWh]

Carport
units

Area
[m2]

17,151.8 36,856 1,105,685 34,303.5 73,712 2,211,369 57,172.5 122,854 3,685,616
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3.4. Economic Analysis

According to [52], the price of photovoltaic systems in 2021 increased compared to
2020. In the study, it is stated that the low-power residential installations are costing
approximately USD 0.95 per Wp. Reminding that the installed PV system has 4.89 kWp; as
a result, the considered cost is USD 4645.00.

As stated previously, the metallic structure of the carport was donated to the university.
However, the cost to purchase the product is about USD 2000.00. Another USD 200.00 is
required for the electrical devices, like the SPD, cabling, connection board, disconnection
switch, circuit breaker, and the construction expenses like the foundation and walls. Finally,
the total expenditure of the carport is summed as USD 6845.00.

The energy tariff charged by the local power distribution concessionaire is USD 0.18
per kWh. The PV system average energy generation data from the past two years is
reported as 465.37 kWh, resulting in an average avoided cost of USD 83.76 per month. The
calculations are based on the average energy generation considering the renewable energy
regulation of the country.

Performing a simple payback calculation for the carport and indexing the inflation
and increasing in the energy tariff in the variation of the dollar exchange rate results in
81.7 months, approximately six years and nine months.

According to the technical data presented in [53], the same vehicle, a Renault Fluence,
powered by a combustion engine and gasoline, presents a final consumption (in the city) of
9 L/100 km.

Considering the same usage scenario of 660 km/month, the car would consume 59.4 L
to complete the entire drive. Taking into account that the average price of gasoline in the
city of Curitiba is USD 1.05 per liter, the vehicle would generate a fuel cost of USD 62.37
per month.

If the same electric vehicle, used on an identical route, was recharged without the
photovoltaic system, using only the energy made available by the local utility, the con-
sumption of 103.95 kWh/month would generate an average extra electricity cost of USD
18.71 per month.

In the last comparison, when the EV is recharged by the electricity generated in the
carport, after the payback period of the PV system, it no longer has a recharge cost.

4. Conclusions

The selected EV is a Renault Fluence ZE DYN, whose driving consumption tests in the
city resulted in an average of 15.75 kWh/100 km. Investigating the responsible agencies,
the number of vehicles registered in the city is determined, making it possible to simulate
scenarios of the replacement of internal combustion vehicles by EVs.

The article presents the complete electric energy generation records of a PV system
constructed as a carport to cover two parking spaces of the parking lot of the Federal
University of Technology—Paraná, Brazil, with 4.89 kWp of installed power. Along with
the electricity generation, the irradiation data was collected from a solarimetric station
installed in the same area of the university, making it possible to calculate the system
performance ratio, both for monthly and annual analyses.

Calculated performance ratio values were lower than what is commonly accepted as
normal, and with high dirt accumulation, all the PV modules were cleaned, aiming for an
overall performance improvement of the PV installation. The task had a positive effect,
increasing the performance ratio by more than 10% when compared to the previous month,
demonstrating that the PV systems demand periodic maintenance, which is simple and
can improve efficiency.

Investigating the performance ratio of the other months, it was detected that after
a month with very low rainfall records, the rain performed a natural cleaning on the
photovoltaic modules, which, combined with the lower temperature due to the winter
season, there was an increase in the PV system performance ratio. The rain has the capacity
to perform superficial cleaning and reduce the rate of deposition of dirt on the modules.
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Defining the daily drive based on the distance to work, returning home, and a margin
for extra activities, while limiting it to weekdays, it was calculated that the EV energy
consumption was 103.95 kWh per month, and the average energy generated by the carport
was enough to charge the battery of approximately 4 EVs. The study does not define a
specific charging routine and also does not analyze the impact on the electric power system.
The energy balance is linked to the resolution of the National Electric Energy Agency,
where the credits from the months with high PV generation can be used within 60 months.

The economic analyses compared the monthly expenses of an internal combustion
vehicle and the EV for the same driving scenario. The EV presented approximately 3.3 times
less expenditure. Purchasing and maintenance costs were not compared.

The EV used in the driving test was recently purchased and is the only source of
energy consumption available at the moment. Future research should use larger driving
samples during different periods of the year and hours of the day.
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Abstract: The development of the electric mobility market in cities is becoming more and more
important every year. With this development, more and more electric scooters are appearing in cities.
Currently, the restrictions that result from the upcoming trends are reducing the number of vehicles
powered by combustion engines in favor of vehicles equipped with electric motors. Considering
the number of electric vehicles, the dominant type is an electric scooter. The aim of this article is
to determine the CO2 that is emitted into the atmosphere by using this type of vehicle. The main
suppliers of this type of vehicle in cities are shared mobility systems. To recognize the research gap,
consisting of the lack of CO2 emissions of an electric scooter type vehicle, studies were carried out
on the energy consumption of an electric scooter and CO2 emissions, which were calculated based
on the CO2 emission value needed to produce a given energy value kWh. The plan of the research
performed was developed on the basis of the D-optimal plan of the experiment, thanks to which the
results could be saved in the form of mathematical models based on formulas.

Keywords: electric scooter; shared mobility systems; CO2 emission; transportation engineering

1. Introduction

Climate change happening in the world forces man to become more and more in-
terested in harmful gases produced by humanity. One of the harmful greenhouse gases,
whose emissions in 2010 amounted to up to 76%, is CO2 gas [1]. Noticing the harmful
effects of CO2 emissions into the atmosphere, humanity strives to reduce CO2 emissions
in all branches of the economy [2]. One of the solutions to reduce CO2 emissions is to
introduce policies that aim to reduce the use of gas emission sources—vehicles powered by
internal combustion engines. Policies introduced in many countries around the world are
coordinating the use of electric vehicles to mix in urban agglomerations [1,3].

To reduce CO2 emissions, the Scandinavian countries have introduced a tax for owners
of vehicles with an internal combustion engine that is 180% higher than the value of the
tax on an electric vehicle [4]. In addition, owners of electric vehicles can count on free
charging and parking of their vehicle in the city. The Chinese government is also paying a
lot of attention to the development, research, and implementation of electrical vehicles. In
addition, China is among the leading countries to demand an end to the use of internal
combustion vehicles in favor of electric vehicles.

Another major contributing factor to CO2 production is the planning of fossil fuels,
from which many countries in the world produce electricity [5].

Therefore, it can be concluded that the elimination of vehicles with internal combustion
engines, in favour of electric vehicles, could result in a drastic reduction in CO2 emissions
in cities since electric vehicles are advertised and presented as zero emission vehicles [6].
The question must therefore be asked: is the use of an electric vehicle a zero-emission
vehicle? The research and results presented in this article indicate the answer to the
question asked above.
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With the development of electromobility and the emergence of electric vehicles, the
availability of electric scooter vehicles in cities has increased exponentially. Kwangho et al. [7]
found that the electric scooter works well as a last mile vehicle.

An electric scooter is a small device that allows you to move in an urban agglomeration,
which is equipped with a low-power electric motor (usually about 300 W) and a battery that
allows you to drive up to several dozen kilometers (depending on the scooter model) [8].
Due to the fact that electric scooters are available at every step in cities [9], and due to
the possibility of their short-term rental from shared mobility systems, a research gap was
noticed. What is the CO2 emission of an electric scooter? What is the difference between the
emission of an electric scooter and a motor vehicle with an internal combustion engine? It is
worth emphasizing that the number of scooter vehicles moving around the city can be from
several to several times higher than motor vehicles with electric drive [10]. For example,
in Poland in 2021, there were about 8000 vehicles with an electric motor, whereas there
were over 500% more available electric scooters [11]. Therefore, an electric scooter is one of
the possible ways to increase the level of environmental performance of transport while
having a positive impact on the economic aspects and quality of life of residents [12,13].
The introduction of this type of vehicle has also forced a number of actions that led to
changes in the culture of movement in terms of orientation towards electric vehicles, which
are referred to as electromobility [14]. The entire article is divided into four main chapters.
The first is an introduction. Another is the description of the methodology and materials
used in the research. The next chapter presents the results. The article ends with a chapter
where the research results were discussed and related to the research of other scientists.

2. Materials and Methods

The subject used to conduct research is an electric scooter used in shared mobility
systems, which is available in many urban agglomerations. The scooter was equipped with
an electric motor with a power of 300 W and a battery capacity of 475 Wh. Figure 1 show
an electric scooter and examples of values recorded during the tests.

 

Figure 1. Electric scooter and sample values recorded during the tests.

The research plan assumed that the rides made with an electric scooter would corre-
spond to the routes and driving style of the users of these systems. Then, determining the
value of electricity consumption for the tests carried out, calculations were made regarding
CO2 emissions, which is the result of the consumption of electricity necessary to perform
such a trip. The diagram of the research is shown in Figure 2.
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Figure 2. The diagram of the research implementation plan.

The first step was theoretical preparation for the assumed research. The next step
(the most important) was to properly plan the research. On the basis of the literature,
the factors influencing the value of energy consumption of an electric scooter have been
determined. After selecting the experiment factors, the plan was selected, thanks to which it
is possible to determine individual passes that are necessary for the mathematical modeling
of the studied phenomenon [15,16]. Experimental studies were carried out according to a
statistically established plan of a polyselective experiment. The third step was to determine
CO2 emissions based on electricity consumption. The last step of the research was the
analysis of the obtained results and the presentation of appropriate conclusions.

Planning an experiment according to the D-optimal plan—Hartley’s plan—is one
of the methods of describing phenomena. Hartley’s plan belongs to static, determined
polyselection plans for three input values in which three different values are used for each
input quantity The basic principle of creating polyselection plans is the deliberate selection
of a combination of values of input quantities (within the previously assumed range) in
such a way that it is possible to obtain the required scientific information under limited
conditions [16]. The development of the plan consists of determining the dependence
of the input quantities and their location relative to the base point—middle, zero. The
experimental plans developed for the three input factors are based on a hypercube for
which the coefficient α = 1. The entry factors that were selected for the experiment plan
are: x1—the type of surface on which the scooter moves; x2—the distance covered; and
x3—the scooter riding mode. Selected factors x1, x2, and x3 are factors that, in particular,
affect the possibility of differentiating the energy consumption of the scooter—results from
the kinematics of moving the vehicle and attempts to simulate different driving styles of
users. Factor x3—the type of riding mode—limited the speed of movement of the scooter.
In ECO mode, the maximum speed is 12 km/h; in NORMAL mode, the maximum speed is
20 km/h; and in TURBO mode, the maximum speed is 25 km/h. The overall form of the
experiment plan on a standardized scale is restated in Table 1.
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Table 1. Experiment plan for standardized scale factors.

Route No X1 X2 X3

1 −1 −1 1
2 1 −1 −1
3 −1 1 −1
4 1 1 1
5 −1 0 0
6 1 0 0
7 0 −1 0
8 0 1 0
9 0 0 −1
10 0 0 1
11 0 0 0

Thanks to the use of the general form of the experiment plan, it was possible to prepare
a plan of experiments described in the makings on a real scale. Input factors have been
introduced in the form of Formulas (1)–(3):

x1 =

⎧⎨⎩
−1 f or Asphalt/concrete road

0 f or Mixed road (50% Asphalt/concrete, 50% Road cobble − stones)
1 f or Road cobblestones

(1)

x2 =

⎧⎨⎩
−1 f or distance − 1km
0 f or distance − 3km
1 f or distance − 5km

(2)

x3 =

⎧⎨⎩
−1 f or eco mode

0 f or normal mode
1 f or turbo mode

(3)

Values based on Formulas (1)–(3): −1, 0, and 1 represent the variability of the individ-
ual factors x1, x2, and x3. Based on Formula (4), it is possible to reconstruct the mathematical
model of the phenomenon under study.

f
(

xi, . . . , xj
)
= k0 + ∑ ki(xi) + ∑ kii(xi) + ∑ kij(xi)

(
xj
)

(4)

Where:
f
(
xi, . . . , xj

)
—results,

xi, . . . , xj—input factor in the normalized scale,
k0, ki, kij—regression coefficients.
Supplemented by a general table with real-scale factors, Table 2 is shown.

Table 2. Experiment plan for real-scale factors.

Route No Type of Surface -X1 Distance -X2 Driving Type Mode -X3

1 Asphalt/concrete road 1 turbo
2 Road cobblestones 1 eco
3 Asphalt/concrete road 5 eco
4 Road cobblestones 5 turbo
5 Asphalt/concrete road 3 normal
6 Road cobblestones 3 normal
7 Mixed road (50% Asphalt/concrete, 50% Road cobblestones) 1 normal
8 Mixed road (50% Asphalt/concrete, 50% Road cobblestones) 5 normal
9 Mixed road (50% Asphalt/concrete, 50% Road cobblestones) 3 eco
10 Mixed road (50% Asphalt/concrete, 50% Road cobblestones) 3 turbo
11 Mixed road (50% Asphalt/concrete, 50% Road cobblestones) 3 normal
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3. Results

The results of the conducted research, which were carried out in accordance with the
previously planned experiment plan, pre-set in Table 2, are presented in Table 3. Each run
was repeated five times.

Table 3. The results of the conducted research.

Route No Energy Consumption [kWh/100 km] CO2 Emissions [kg/100 km]

1 1.796 1.668
2 3.755 3.489
3 1.324 1.230
4 2.158 2.005
5 1.654 1.536
6 3.297 3.063
7 2.749 2.554
8 1.762 1.637
9 2.657 2.468

10 2.506 2.328
11 2.529 2.349

Thanks to the obtained results presented in Table 3 and the use of Formula (4), it was
possible to determine the dependence of the impact of the selected factors x1, x2, and x3 on
the CO2 emission value expressed in kg/100 km unit. Figures 3–11 predict the dependence
of the type of surface, distance travelled, and driving style on CO2 emissions, although
some of the values shown in the diagrams are the result of prediction according to Formula
(4). The biggest CO2 emissions will be emitted by moving an electric scooter on a paving
stone over a distance of 1 km. The lowest emissions were recorded for a scooter that
moves on an asphalt road while covering a 5 km route. It is worth noting that the lowest
consumption is almost three times lower than the value of the maximum CO2 emissions
that have been achieved.

Figure 3. CO2 emission value depending on driving style and length for asphalt road driving.
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Figure 4. CO2 emission value depending on driving style and length for driving on paving stones.

Figure 5. CO2 emissions depending on driving style and length for mixed road driving.
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Figure 6. CO2 emissions depending on driving style and type of surface when covering a distance of
1 km.

Figure 7. CO2 emissions depending on driving style and type of surface when covering a distance of
5 km.
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Figure 8. CO2 emissions depending on driving style and type of surface when covering a distance of
10 km.

Figure 9. CO2 emission value depending on the length of the route covered and the type of surface
for steering in ECO mode.
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Figure 10. CO2 emission value depending on the length of the route covered and the type of surface
for steering in NORMAL mode.

Figure 11. CO2 emission value depending on the length of the route covered and the type of surface
for TURBO mode.
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By analyzing the graphs presented in Figures 3–5, it can be concluded that, regardless
of the occurrence of the surface, the greatest impact on the emission value will be generated
by the distance at which the scooter moves. It is also worth emphasizing that the type of
surface affects the range of achieved emission values.

Figures 6–8 show the CO2 emission values when travelling different distances with
an electric scooter. It is worth noting that the impact of the driving mode generates a
linear increase in emission values, while the asphalt surface type generates the lowest CO2
emission values.

Figures 9–11 show the CO2 emission values when moving a scooter in different riding
modes. The greatest curiosity is the mode of moving the scooter in turbo mode. The extreme
of the function is achieved for moving on the road paving stones. For other surfaces, the
CO2 emission value is at the same level and increases with increasing distance.

4. Discussion and Conclusions

The results obtained during the research suggest quite interesting and valuable conclu-
sions. The research is a continuation of research that has already been carried out on electric
scooters used in urban shared mobility systems. Studies have shown that factors, such as
the type of pavement, can influence the value of energy consumption by linear dependence.
Additionally, the type of surface that is transversed can cause a twofold increase in CO2
emissions. Another factor, the length of the route, is characterized by the greatest variability
of the final results, where electricity consumption and CO2 emissions can be increased by
up to three times. The least variability is characterized by scooter riding modes. Choosing
the right mode will limit the user’s CO2 emissions according to the presented results, the
variability of which is small. The objectives of the study presented in this article have been
proven and executed. The results obtained in these studies indicated the dependence of the
length of movement of the scooter, the type of surface, and the mode of riding the electric
scooter. This fills a research gap among other authors who have conducted research on this
subject. Other authors, such as Wang et al., conducted a study of motor vehicles with an
internal combustion engine where they focused on the effect of ambient temperature on
CO2 emissions. The results indicate that a vehicle in low temperaments (−10 ◦C) emits
more than two times more CO2 than a vehicle used at 40 ◦C. It is worth noting that the
results achieved by a vehicle with an internal combustion engine (gasoline) are about
300 g/km, which gives 30 kg CO2/100 km. An electric scooter achieves a result 10 times
smaller [17].

Buberger et al., in their article, touched on the total CO2 emissions resulting from
all stages of the vehicle’s life. They found that vehicles running on renewable fuels (e.g.,
compressed biogas) have a similar impact on climate change as electric vehicles. Moreover,
emissions of hybrid and electric vehicles are up to 89% lower compared to vehicles with
an internal combustion engine. The total CO2− emissions of a vehicle with an internal
combustion engine that burns 7l/100 km is about 49,500 kg. For comparison, an electric
vehicle emits about 5500 kg of CO2 [18].

Reducing CO2 emissions is one of the key actions to improve the quality of climate
cities. The emergence of alternative vehicles to replace a motor vehicle has made users
more and more willing to choose electric scooters as the primary means of transport. When
comparing the replacement of one combustion vehicle—or several—with a dozen or so
scooters, it is worth considering whether the emission of a dozen or so electric scooters is
an acceptable result. Furthermore, the number of electric scooters in cities is growing at an
amazing pace. Currently, it is estimated that there are about 360,000 electric scooters in 30
cities in Europe alone [19]. Estimating that electric scooters cover a distance of up to 100
km per week, all electric scooters can emit up to approx. 58,320,000 kg of CO2 per year.

Sovacool, in his article, touched on what values of CO2 emissions are emitted into
the atmosphere to produce 1 kWh of energy. Currently, the most advantageous forms of
industrial energy production are nuclear power plants, which emit 1.4 g/1 kWh, whereas
coal-fired power plant emissions are about 790 g/1 kWh [20]. Furthermore, it should be
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noted that a nuclear power plant does not directly emit greenhouse gas emissions, and the
total CO2emissions result from the life cycle (as a result of the construction and operation
of the power plant, the extraction and grinding of uranium, and the decommissioning of
the power plant).

To sum up, the research carried out in this article touches on a very interesting and
modern form of mobility in cities, which is currently one of the fastest growing branches of
vehicle sharing in cities. Moving around with the different power modes of a scooter can
more than double CO2 emissions. Cyclically, there are more and more operators providing
scooter sharing services in cities, which means that the number of electric scooters in cities is
increasing year by year. In the current era, it is necessary to consider, first of all, what source
of energy the batteries of electric scooters are charged from. Studies have also shown that
the highest CO2 emissions result from the use of energy from coal-fired power plants. Due
to the increasing number of scooters in cities, one should consider whether cities should not
have energy from renewable sources or, for example, solar energy. Of course, the conducted
research also has limitations. Primarily, apart from the measurements made, the other
results are the result of prediction, which results from the applied plan of the experiment.
Another limitation is the impact of wind, which can increase aerodynamic drag and energy
consumption. Studies with the influence of different wind speeds will be carried out in the
future. The next planned research will complement the existing research in order to learn
about the impact of other factors affecting CO2 emissions, such as electricity consumption
or the dressage to which the user of this vehicle is exposed.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The author declares no conflict of interest.

References

1. The Emissions Reduction Obligation Quota Policy is Reinforced with Increasing the Share of Renewables in Vehicle Fuels.
Available online: https://www.regeringen.se/pressmeddelanden/2020/09/branslebytet-forstarks-med-hogre-inblandning-
av-fornybart-i-drivmedel/ (accessed on 7 August 2022).

2. European Union. Regulation (EU) 2019/631 of the European Parliament and of the Council of 17 April 2019 setting CO2
emission performance standards for new passenger cars and for new light commercial vehicles, and repealing regulations (EC)
No 443/2009 and (EU) No 510/2011. Available online: https://eur-lex.europa.eu/legal-content/PL/TXT/PDF/?uri=CELEX:
32019R0631&from=EN (accessed on 7 August 2022).

3. Morfeldt, J.; Davidsson Kurland, S.; Johansson, D.J.A. Carbon Footprint Impacts of Banning Cars with Internal Combustion
Engines. Transp. Res. Part D Transp. Environ. 2021, 95, 102807. [CrossRef]

4. Fridstrøm, L. The Norwegian Vehicle Electrification Policy and Its Implicit Price of Carbon. Sustainability 2021, 13, 1346. [CrossRef]
5. Energy and the Environment Explained. Available online: https://www.eia.gov/energyexplained/energy-and-the-environment/

where-greenhouse-gases-come-from.php (accessed on 7 August 2022).
6. Towoju, O.A.; Ishola, F.A. A Case for the Internal Combustion Engine Powered Vehicle. Energy Rep. 2020, 6, 315–321. [CrossRef]
7. Baek, K.; Lee, H.; Chung, J.-H.; Kim, J. Electric Scooter Sharing: How Do People Value It as a Last-Mile Transportation Mode?

Transp. Res. Part D Transp. Environ. 2021, 90, 102642. [CrossRef]
8. Kubik, A. Impact of the Use of Electric Scooters from Shared Mobility Systems on the Users. Smart Cities 2022, 5, 1079–1091.

[CrossRef]
9. Dias, G.; Arsenio, E.; Ribeiro, P. The Role of Shared E-Scooter Systems in Urban Sustainability and Resilience during the Covid-19

Mobility Restrictions. Sustainability 2021, 13, 7084. [CrossRef]
10. Oeschger, G.; Carroll, P.; Caulfield, B. Micromobility and public transport integration: The current state of knowledge. Transp. Res.

Part D Transp. Environ. 2020, 89, 102628. [CrossRef]
11. The Number of Electric Cars in Poland is Growing! Available online: https://globenergia.pl/rosnie-liczba-samochodow-

elektrycznych-w-polsce-efekt-mojego-elektryka/ (accessed on 7 August 2022).
12. Pietrzak, K.; Pietrzak, O. Environmental Effects of Electromobility in a Sustainable Urban Public Transport. Sustainability 2020,

12, 1052. [CrossRef]

105



Energies 2022, 15, 8188

13. The Future of Urban Mobility. Towards Networked, Multimodal Cities of 2050. Available online: https://www.adlittle.com/
sites/default/files/viewpoints/adl_the_future_of_urban_mobility_report.pdf (accessed on 7 August 2022).

14. Ingeborgrud, L.; Ryghaug, M. User perceptions of EVs and the role of EVs in the transition to low-carbon mobility. ECEEE
Summer Study Proc. 2017, 325, 893–900.
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Highlights:

What are the main findings?

• Energy consumption reduction up to 24% with the use of ECMS algorithm
• Method for EMS algorithms comparison under the same required energy
• Back engineering extracted commercial algorithm based on experimental data

What is the implication of the main finding?

• ECMS adaptability advantage can be utilized under different driving conditions

Abstract: The study examines alternative on-board energy management system (EMS) supervisory
control algorithms for plug-in hybrid electric vehicles. The optimum fuel consumption was sought
between an equivalent consumption minimization strategy (ECMS) algorithm and a back-engineered
commercial rule-based (RB) one, under different operating conditions. The RB algorithm was first
validated with experimental data. A method to assess different algorithms under identical states of
charge variations, vehicle distance travelled, and wheel power demand criteria is first demonstrated.
Implementing this method to evaluate the two algorithms leads to fuel consumption corrections of up
to 8%, compared to applying no correction. We argue that such a correction should always be used in
relevant studies. Overall, results show that the ECMS algorithm leads to lower fuel consumption than
the RB one in most driving conditions. The difference maximizes at low average speeds (<40 km/h),
where the RB leads to more frequent low load engine operation. The two algorithms lead to fuel
consumption differences of 3.4% over the WLTC, while the maximum difference of 24.2% was
observed for a driving cycle with low average speed (18.4 km/h). Further to fuel consumption
performance optimization, the ECMS algorithm also appears superior in terms of adaptability to
different driving cycles.

Keywords: fuel consumption optimization; energy management system; hybrid vehicle control

1. Introduction

Global warming due to increasing emissions of greenhouse gases (GHG) appears
today as the main environmental pressure [1]. Transport is one of the key sources of
manmade carbon dioxide (CO2) emissions [1–3]. This has led authorities around the world
to set targets and take measures to reduce these emissions [3,4]. The European Union
(EU) has set a target of reducing CO2 levels from new passenger cars by 37.5% by 2030,
compared to 2021 [5]. Therefore, solutions such as electrified vehicles are promoted by the
automotive industry to meet these targets [6].

Hybrid Electric Vehicles (HEVs) and Plug-in Hybrid Electric Vehicles (PHEVs) are cur-
rently the most widespread options for electrified vehicles in the market. HEVs and PHEVs
have two independent energy sources, namely the battery and the fuel tank. However,
only PHEVs can be charged directly by grid power and can cover substantial ranges (e.g.,
the latest models appear to have an electrical range of 100 km or 65 miles [7]) with electric
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power alone [6]. The share and mix between battery and engine power are constantly being
decided during operation by an on-board energy management system (EMS) [1,6,8,9]. The
EMS performance has a significant impact on fuel consumption (FC), which is directly
linked to CO2 emissions. Therefore, EMS supervisory algorithms can be optimized to
further decrease CO2 emissions from PHEVs.

Wu et al. [10] showed that there are a variety of principles for EMS algorithms. The
main categories can be distinguished into rule-based (RB), optimization-based (OB), and
learning-based (LB) ones. RB algorithms rely on a fixed set of rules, without a priori
knowledge of driving conditions. OB algorithms are further split to offline or online ones.
In online OB algorithms, such as the Equivalent Consumption Minimization Strategy
(ECMS) [10–13], an instantaneous optimization is conducted based on current vehicle oper-
ation. In offline OB algorithms, a cost function is optimized for the complete driving cycle.
Dynamic Programming (DP) [14,15] and Pontryagin’s Minimum Principle (PMP) [10,16] are
some of the common offline OB algorithms. LB algorithms are capable of instantaneously
and in real time controlling and learning the optimal power split operations. Reinforcement
Learning [17,18] and Artificial Neural Networks are some principles that are used in LB
algorithms implementation [10].

There are only limited works in the literature on how different algorithm categories
compare to each other under different operation conditions. Actually, Torreglosa et al. [19]
mentioned that the optimization algorithms presented in the literature are seldom com-
pared against commercial RB strategies. In their study, they compared different EMSs
for HEVs with RB strategies using FASTSim, an open-source tool that includes validated
HEV RB models. That analysis showed that optimum EMSs may provide fuel consump-
tion benefits of 5% to 10%, compared to commercial RB EMSs. Wu et al. [20] proposed
an optimization-based strategy that appeared to reduce the fuel consumption of a 2010
Toyota Prius hybrid by 3.5–6%, compared to an RB algorithm that was earlier published by
Kim et al. [21]. Hwang et al. [22] applied particle swarm optimization to improve the fuel
economy of a power split hybrid, and showed up to 9.4% improvement compared to an RB
algorithm. This limited previous work showed that there are further margins to improve
fuel consumption over commercially applied algorithms.

In assessing the performance of different algorithms, one needs to make sure that
the exact operation profile is followed over computer simulations or real-world experi-
mentation with the various EMS approaches. Fuel consumption differences of only a few
percentage units, such as those expected when varying the EMS, can be observed only
due to slight deviations of the original speed profile in consecutive simulations, e.g., due
to underpowering accelerations. Moreover, it needs to be ensured that fuel consumption
improvement is assessed under the same state of charge levels (SOC) to avoid part of the
difference only being due to variation in the battery depletion levels, e.g., over consecutive
simulations. Although such conditions may be self-evident, these are seldom if at all
demonstrated in published EMS algorithm comparison studies.

The article focuses on the comparative assessment of commercial RB and ECMS based
algorithms for a plug-in hybrid vehicle powertrain. The purpose is to examine if further
FC reduction can be achieved by introducing an enhanced EMS over a commercial one.
A method is first presented to compare fuel consumption over identical battery state of
charge (SOC) levels, vehicle distance traveled and wheel power demand. The proposed
method suggests novel corrections for the fuel energy consumption of the compared EMS
algorithms. More specifically, the method introduces correction terms for the deviations in
the final SOC values, propulsion energy and benefits from regenerative braking between
the compared EMS algorithms. We propose that such a method needs to be used in all
similar studies of fuel consumption comparison.
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2. Methods

2.1. Back-Engineered EMS Algorithm

A vehicle simulator of a parallel P2 PHEV [23] has been built in the AVL Cruise simu-
lation platform. Its overall performance has been validated with actual experimental data
collected by tests on an actual vehicle in the chassis dynamometer of Aristotle University.
The vehicle’s technical specifications are listed in Table 1.

Table 1. Parallel P2 PHEV Technical Specifications.

Component Specifications

Vehicle test mass 1700 kg

Fuel-type, displacement, engine power Gasoline, 1560 cm3, 77.2 kW

Battery, type 8.9 kWh Li-Ion Polymer

Electric motor 44.5 kW

Gearbox 6-speed dual-clutch automatic

Table 2 shows the tests conducted in the lab on the particular vehicle to understand
the performance of its stock EMS algorithm. A Worldwide harmonized Light vehicles Test
Cycle (WLTC) [24] and an ERMES cycle [25] have been used for the tests. The different
cycles are distinguished into cold and hot start ones, depending on whether the start engine
coolant temperature was lower than 35 ◦C or higher than 70 ◦C, respectively. A single case
with intermediate start temperature is identified as warm start in Table 2.

Table 2. Driving cycles and specifications use for experimental validation of the back-engineered
algorithm.

Cycle ICE Condition Initial SOC Vehicle Mode Short Name

ERMES Cold start 35.7% Charge depleting/sustain mode ERMES CDCS

ERMES Hot start 11.8% Charge sustain mode ERMES CS

WLTC Hot start 20.4% Charge sustain mode WLTC CS HOT2

WLTC Cold start 12.9% Charge sustain mode WLTC CS COLD

WLTC Hot start 13.7% Charge sustain mode WLTC CS HOT1

WLTC Cold start 71.4% Charge depleting mode WLTC CD

WLTC Warm start 28.2% Charge depleting/sustain mode WLTC CDCS

These experiments have been used to back-engineer the rules of the heuristic controller
on-board the commercial vehicle. In this paper, the RB algorithm is a specialization of
the general methodology described by Doulgeris et al. [26], while the specific controller
algorithm is described in detail by Doulgeris et al. [27].

Figure 1 shows the flowchart of the RB algorithm. The engine switches on if the power
demand, vehicle speed or acceleration, and SOC level are above specific thresholds. The
power demand threshold for engine start depends on the SOC level. The engine always
shuts off when the power demand becomes negative.

Figure 2 shows the engine power output decided by the algorithm curve, depending
on the gear engaged (x-axis) and the vehicle speed (parameter). If the engine meets the
criteria for switch-on according to Figure 1, then the engine power output is determined by
Figure 2 depending on current vehicle speed and gear.
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Figure 1. Stock rule-based algorithm extracted from experimental evidence.

Figure 2. Engine power output decided by the RB algorithm depending on gear and vehicle speed.

2.2. Alternative Algorithm Description

An Equivalent Consumption Minimization Strategy (ECMS) algorithm has been de-
veloped in the current study, as an alternative to the back-engineered RB one. Both of
the algorithms—ECMS and the back-engineered one—are applied to the same vehicle
simulator platform of parallel P2 PHEV that has been built in the AVL Cruise simulator
platform. The ECMS algorithm aims at optimizing a predefined FC cost function for given
operation conditions. The general cost function for fuel consumption optimization of a
hybrid vehicle is given in Equation (1), where J is a performance index that needs to be
minimized. The integral term represents the total fuel consumption over a complete driving
profile, as it integrates the instantaneous FC (

.
mfuel) from an initial (t0) to a terminal time

stamp (tf). FC depends on the normalized engine load function u that ranges between
0 (engine shut off) to 1 (operation at full power—Pe,max), according to Equation (2). The
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first term in Equation (1) is used as a soft constraint for the value of the SOC at the end
of the cycle (SOCf). With the use of the ϕ function, SOC deviations from the final target
value (SOCtarget) are being penalized. The choice of the SOCtarget value depends on the
examined study. Usually, in PHEVs applications, the charge depletion is permitted because
the battery can be charged from the electric power grid. As a result, for PHEVs applications,
the SOCtarget can be lower than the initial value of SOC [8,9].

J = ϕ
(
SOCf, SOCtarget

)
+
∫ tf

t0

.
mfuel(u(t), t)d (1)

u =
Pe

Pe,max
(2)

The optimization of Equation (1) leads to the determination of the u for every second
of the driving cycle, which in turn gives the instantaneous engine power output by means
of Equation (2).

The ECMS optimization is subject to the conditions of the set of Equations (3)–(6).
Equation (3) presents the power balance for the powertrain of a P2 parallel hybrid vehi-
cle [28]. The sum of the demanded power at wheels (Preq,wheels) and the mechanical power
losses (Pmech,losses ) must be equal to the mechanical power output from the main power
units (electric motor power—Pem and engine power—Pe). If the vehicle velocity is known,
then the Preq,wheels and Pmech,losses can be determined by a vehicle power-based model. We
have set up a vehicle model in AVL Cruise for this purpose. So, with the use of Equation (3),
the power output of the electric motor is determined.

Preq,wheels + Pmech,losses = Pe + Pem (3)

Pe ≤ Pe,max (4)

Pem,min ≤ Pem ≤ Pem,max (5)

SOCmin ≤ SOC ≤ SOCmax (6)

Equations (4)–(6) correspond to the physical constraints of the powertrain components.
Equation (4) suggests that the engine cannot overcome its full load curve, represented by
the maximum engine power output (Pe,max). The electric motor is also limited by its full
load curve, depending on whether it works as a motor (Pem > 0) or generator (Pem < 0)
(Equation (5)), with corresponding limits given by Pem,max and Pem,min. Finally, the battery
SOC cannot exceed a range of maximum (SOCmax) and minimum (SOCmin) levels for the
purpose of maintaining battery life (Equation (6)).

Optimizing Equation (1) within the set of Conditions (3)–(6) is only possible when
the operation mission is known a priori. In the real-world, a priori knowledge of the
driving profile application is known only over in-lab tests and not for on-road driving. For
on-road operation, the ECMS will have to be locally optimized according to the present
driving conditions. Such local optimization is achieved by means of Equation (7), where
the integral term of Equation (1) has been eliminated. In Equation (7), the engine fuel
rate

( .
mfuel

)
and the battery power flow expressed in terms of an equivalent fuel rate( .

meq
)

(Equation (8)—where QLHV is the fuel’s lower heating value) result in an equivalent
total fuel mass rate

( .
mtot

)
by means of the equivalence factor s (Equation (9)). The latter

comprises the constant term s0 and a penalization term p(SOC) that depends on SOC. The
s0 term is used as the main weighting factor of the

.
meq inside the cost function. The p

penalizes deviations of the current SOC values from the target. The usage of the p term is
similar to the one of the ϕ term in Equation (1). The difference is that the penalization is
made for the instantaneous values of SOC instead of the SOC value at the end of the cycle,
because the optimization is only carried out locally. The battery power (Pbatt) in Equation (8)
can be positive for power outflux from the battery (Equation (10a)) and negative when the
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EM acts as a generator that charges the battery (Equation (10b)), with ηbatt and ηem being
the battery and electric motor efficiencies, respectively.

.
mtot =

.
mfuel + s × .

meq (7)

.
meq =

Pbatt
QLHV

(8)

s = s0 + p(SOC) (9)

Pbatt =

(
Pem

ηbatt × ηem
|P em ≥ 0

)
(10a)

Pbatt = (Pem × ηbatt × ηem |P em < 0) (10b)

The algorithm basically decides on the engine operation variable u(t) in Equation (2)
that leads to the lowest total equivalent fuel mass (

.
mtot). This procedure is repeated in every

second of the complete mission profile. The algorithm takes into account two conditions
regarding the potential battery charge or discharge. The first one is that a potential battery
charge will lead to an SOC surplus, which can be utilized in the future. The second
condition is that a present battery discharge generates a requirement for a future battery
charge in order to retain the battery SOC within certain limits. An optimal solution can
be guaranteed if the s term in Equation (7) is adapted appropriately (Equation (9)). In this
way, although the s-by-s optimization cannot achieve as good a performance as the global
optimal solution, it still produces a practical optimization solution that can be integrated in
EMS without knowledge of the forthcoming driving profile.

Three alternative expressions for p have been examined in the current work
(Equations (11a)–(11c)). In Type A expression, p is proportional to the difference of current
SOC over a constant reference value SOCref (Equation (12a)). Therefore, this expression tries
to keep SOC at a value close to the reference one over the complete driving profile—and
it is tuned by a proportional term (kp). In Type B, the SOCref value varies with travelled
distance D (Equation (12b) [29]). The algorithm also tries to keep the current SOC close to
the SOCref value, as in Type A. More specifically, in Type B, the SOCref value starts with an
initial value (SOCi) and then the SOCref decreases proportionally with the D until it reaches
the target SOC value (SOCtarget). In Type B, the total driving distance (Dfinal) must be either
known or estimated. Some research articles mention that this type of linear SOC trajectory
with distance seems to be close to the global optimal solution [30,31]. In Type C expression,
a specific SOC window is used for determining p [8] (Equation (11c)). More specifically, the
p value dependents on SOC, a target value for the SOC (SOCtarget), selected maximum and
minimum SOC values and a selected superscript for the penalization function (a). With
this expression, SOC is retained above a certain level in order to ensure the battery physical
constraints (SOC > SOCmin) proactively with the adaptation of the equivalence factor.
Moreover, this expression constrains battery charging during charge sustain operation until
a rational level (e.g., SOCmax = 18%).

Attention is required in selecting the parameters for each expression to achieve feasible
solutions. For example, in our effort for parameters tuning, we spotted that some parameter
combinations led to extremely low SOC levels or even that the vehicle could not follow
the speed profile. So, after a trial-and-error basis in order to achieve feasible solutions, the
setup of the algorithm parameters is presented in Table 3.

p(SOC) = kp × (SOC − SOCref) (11a)

p(SOC) = kp × (SOC − SOCref(D)) (11b)

p(SOC) = kp ×
(

1 −
( (

SOC − SOCtarget
)

0.5(SOCmax − SOCmin)

)a)
(11c)

SOCref = SOCtarget (12a)
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SOCref(D) = SOCi −
[(

SOCi − SOCtarget
)×( D

Dfinal

)]
(12b)

Table 3. Parameters selected for the three ECMS versions.

Version s0 kp SOCtarget SOCmax SOCmin a

ECMS Type A 3.5 −0.5 15 - - -

ECMS Type B 3.5 −0.5 14 - - -

ECMS Type C 3 −1.5 13 18 8 3

The ECMS algorithm flowchart is illustrated in Figure 3. ECMS requires power
demand, vehicle velocity, gear number and current SOC as input data. The first step is
to select the numerical values for the physical limitations according Equations (4)–(6).
After that, the algorithm calculates the equivalent fuel rate

.
mtot for the different candidate

operating points by adjusting the equivalent consumption of the electrical motor according
to the SOC, as described in Equations (9) and (11a)–(12b). Finally, the algorithm selects the
case with the minimum fuel mass, which is then translated into specific torque outputs of
the ICE and the electric motor.

Figure 3. ECMS Procedure Overview.

2.3. Corrections for the Assessment of Different Algorithms

The assessment of different EMS algorithms needs to be carried out on a fair ba-
sis. Each EMS algorithm leads to different decisions for engine and motor engagement
(Equation (2)) that may slightly affect the speed of the vehicle due to power availability
and gear change interference. The different speed profiles will, in turn, result in a slightly
different demanded power profile for each algorithm. These differences could have been
avoided by backward modeling, because this approach guarantees that the vehicle exactly
follows the target speed. However, in our approach, the forward modeling is chosen
because forward simulators are based on physical causality. With these simulators, online
control strategies can be developed [8]. Moreover, the SOC difference between trip start
and end may differ between various algorithms. Nevertheless, when assessing the impacts
of different algorithms on FC, one needs to make sure that the distance, demanded energy,
and SOC differences are identical in the various simulations.

A method to adjust for such potential differences is, therefore, introduced. Assuming
a total energy consumption over a theoretical accurate driving profile in each simulation,
variations of this profile will lead to energy differences, not because of EMS performance
but because of distance and SOC variations in each simulation. A corrected fuel-equivalent
energy consumption (CE) can, therefore, be estimated from the simulated one (SE) by

113



Energies 2023, 16, 1497

correcting for deviations in the SOC (ΔE SOC), propulsion energy (ΔEPROP) and contribution
of regenerative braking (ΔEREG) in Equation (13). ΔE SOC correction is needed to make
sure that all simulations result in identical final SOC. The ΔEPROP term corrects for slight
differences in the driving profile (speed, acceleration and distance) of the simulations
of a given driving sequence. Finally, ΔEREG adjusts the energy consumption when the
simulated regenerative braking energy benefits are different from the ones calculated in the
theoretically accurate driving profile. In that way, the energy differences due to driving
profile variations at the braking phases can be corrected. The corrected energy correction of
Equation (13) should be implemented in all relevant works where different optimization
algorithms are being compared.

CE = SE + ΔE SOC + ΔEPROP − ΔEREG (13)

Equation (14) describes ΔESOC as the fuel energy delivery that covers the difference
between the simulated and reference depleted energies from the battery (Ebat). In the de-
nominator of Equation (14), the average product of the individual components’ efficiencies
has been considered for the time moments that the battery is charged from the ICE, with
ηe being the ICE efficiency. The calculation for the reference value of the depleted battery
energy is presented in Equation (15). The value is calculated as a difference from a final
SOC level, which in our case has been selected to be 14%, with Cbat and Vbat being the
battery capacity and average battery voltage, respectively.

ΔESOC =
Ebat − Ebat,SOCf(

(ηbatt × ηem × ηe) |P em< 0 ∧ Pe >0
) (14)

Ebat,SOCf
= (SOCi − SOCf)× Cbat × Vbat (15)

The ΔEPROP—Equation (16)—is the fuel energy that should be supplied to equalize
the simulated energy demand at gearbox (EGB) with the one calculated from the theoretical
speed profile (EGB,th). The ICE efficiency should be the average one during positive power
demand at gearbox inlet (PGB). EGB,th—Equation (17)—is the energy demand for vehicle
motion for positive tractive force at the wheels (Fth), with vth and ηtr being the force,
theoretical vehicle speed and average transmission efficiency from gearbox inlet to vehicle
wheels, respectively. Ftr,th consists of a polynomial function of vehicle speed (which
corresponds to road loads) and the term for vehicle acceleration (Equation (18)—F2, F1, F0
are coast down test coefficients and Mv is the vehicle mass).

ΔEPROP =

(
EGB,th − EGB

ηe
|P GB > 0

)
(16)

EGB,th =

(
∑ Ftr,th × vth

ηtr
|F tr,th ≥ 0

)
(17)

Ftr,th = F2 × v2
th + F1 × vth + F0 + Mv × dvth

dt
(18)

ΔEREG—Equation (19)—expresses the potential fuel energy that can be saved if the
simulated speed profile was identical to the theoretical one (EBat, th) during decelerations.
The simulated battery energy influx is calculated for the time instances that the power
demand at gearbox inlet is negative. To convert the battery energy influx difference to fuel
energy, the same average product of efficiencies as the one in Equation (14) has been used.
The EB−Bat,th—Equation (20)—is the potential energy of braking that can be recuperated.
In this calculation, the negative energy influx from the wheels (EB,th) is calculated based
on Equation (21). In the current study, the share of the total braking energy that can be
recuperated (bREG) is assumed to be 40% of the total braking energy, while the rest is
consumed at the mechanical brakes. The losses from the gearbox inlet up to the battery
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have been taken into account by the average product of the EM and battery efficiencies
during the time events that PGB is negative.

ΔEREG = (EB−Bat,th − EBat |P GB < 0)×
(
(ηbatt × ηem × ηe) |P em< 0 ∧ Pe > 0

)
(19)

EB−Bat,th =
(

EB,th × bREG × ηtr × (ηbatt × ηem) |P GB < 0
)

(20)

EB,th =
(
∑(Ftr,th × vth) |F tr,th < 0

)
(21)

2.4. Drive Cycles Used in the Simulations

The performance of the Rule Based (RB) and the different types of ECMS Based (EB)
algorithms are compared in different driving cycles, according to Table 4. Firstly, they are
compared in WLTC driving cycle. After that, various driving cycles have been used in
order to examine different conditions and identify the best algorithm in each case. For
WLTC, ERMES and 10-15 Mode [32] cycles, the individual segments have been examined
as well. Table 4 displays a summary of the characteristics of the different driving cycles
that have been used. All simulations have been conducted with the same initial SOC of
20%, which allows a comparison of the algorithms during the most challenging charge
sustain mode.

Table 4. Simulated Driving Cycles and characteristics.

Cycle Repetitions
Average Speed

[km/h]
RPA [m/s2]

Total Trip
Length [km]

10 Mode 6 16.0 0.198 12.0

WLTC Low 6 18.4 0.217 18.4

10-15 Mode 5 22.9 0.172 20.8

JC08 [33] 2 26.9 0.184 20.6

ERMES Urban 6 32.1 0.188 29.7

WLTC Medium 6 40.0 0.209 28.2

WLTCx2 2 46.1 0.160 46.1

WLTC High 6 56.0 0.137 42.6

ERMES 2 66.0 0.106 48.0

ERMES Extra Urban 6 69.9 0.120 44.1

WLTC Extra High 6 90.7 0.131 49.0

ERMES Motor 6 96.0 0.086 75.0

3. Results

3.1. Validation of the Rule Based Algorithm

Figures 4 and 5 present examples for model accuracy in SOC and fuel consumption,
respectively, for four of the seven conducted tests (Table 2). The initial SOC was the actual
one at the beginning of each test. The simulated SOC profile satisfactorily follows the
measured one during the course of each cycle. This can be reflected by the high correlation
coefficient values for SOC (RSOC), which are higher than 69%. There is only one exception,
for WLTC CS HOT1, where our back-engineered RB results in higher battery depletion in
the 1000–1200 s range compared to the measured one. Apart from this, the simulated SOC
follows the measured trend with a rather constant offset.
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Figure 4. SOC measurement vs. simulation—examples.

Figure 5. FC measurement vs. simulation—examples.

Table 5 compares the total simulated and measured FC and final SOC (SOCf) values for
the seven tests conducted. The absolute error in the simulation of total FC is lower than 7%
for five of the seven tests. In the WLTC CD and WLTC CDCS tests, the FC estimation error
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is higher, but over very low FC values that overall lead to satisfactory deviations (WLTC
CD: 0.5 g/km; WLTC CDCS: 4.2 g/km). The correlation coefficient between instantaneous
measured and simulated fuel consumption (Rfuel) is always higher than 70% except in
WLTC CD (57.7%). In WLTC CD, the initial SOC is rather high (71.4%) so the engine
engagement is limited leading to few points where the instantaneous fuel consumption
is non-zero, and this leads to a drop of the regression coefficient. With regard to battery
SOC, the simulated final SOC values are quite close to the measured ones for WLTC.
For the ERMES cases, the simulated SOC varies more than the measured one in WLTC.
Additionally, for the ERMES CS the RSOC value is negative. This means that the simulated
battery charging events do not follow the measured ones for that test. It is worth mentioning
that the parameters tuning for engine start/shut-down events (Figure 1) were based on
the WLTC tests experimental data. As the ERMES cycle has different characteristics, we
expected that the model could not have the same accuracy as in the WLTC tests. For all the
other test cases, the RSOC is higher than 69% which implies satisfactory model performance.

Table 5. Total FC and ΔSOC Comparison.

Magnitude

Cycle

WLTC CS
COLD

WLTC
CDCS

WLTC CS
HOT1

WLTC CS
HOT2

WLTC CD
ERMES
CDCS

ERMES CS

FCmeas
[ g

km
]

40.9 24.0 36.2 32.0 1.5 22.7 39.2

FCsim
[ g

km
]

39.8 28.2 35.3 30.4 2.0 24.0 41.0

(FCmeas−FCsim)
FCmeas

[%] −2.8 17.4 −2.6 −5.0 27.9 6.1 4.8

RFC [%] 82.8 82.3 78.7 84.3 57.7 89.5 76.3

SOCi [%] 12.9 28.2 13.7 20.4 71.4 35.7 11.8

SOCf,meas [%] 13.7 13.7 12.9 12.9 28.2 11.8 12.2

SOCf,sim [%] 13.5 14.5 12.2 13.2 27.5 16.4 13.2

SOCf,meas −
SOCf,sim [%]

0.2 −0.8 0.7 −0.3 0.7 −4.6 −1.0

RSOC [%] 84.2 99.4 69.1 95.5 99.9 99.7 −66.0

3.2. Comparative Assessment of RB and EB Algorithms in WLTC

Table 6 summarizes the simulation results for the three ECMS types (EBA, EBB, EBC)
and the RB algorithm over WLTC. The FC values show correspondence to the simulation
output (SFC) and the corrected ones (CFC), according to Equations (13)–(21). The table
values clearly show that if no correction was introduced then one would come up with
totally wrong conclusions regarding the relative performance of the different algorithms.
For example, EBC leads to the highest FC difference over the RB (−3.4%), which is actually
lower than the magnitude of the correction (−5.6%). Had the correction not been applied,
the EBC would have actually resulted in +4.9% higher FC than the RB, i.e., this would have
led to an entirely opposite conclusion than what is actually reached using the corrected
values. This can be explained because the ΔESOC correction turns out negative for the EB
and positive for the RB cases. The negative value for ΔESOC means that the final SOC is
higher compared to the reference one in EB, and vice versa for RB. Additionally, Table 6
shows that ΔEPRO has a higher impact on EB cases. This indicates that the simulated speed
profile in the RB simulation better follows the theoretical one than in EB simulations.

The net energy flows between the different powertrain components during WLTC are
presented in Figure 6. The shown energy flows stand for the positive propulsion instances.
The electrical energy from the battery (2.89 MJ) and the energy demand at the gearbox
inlet (13.2 MJ) have been adjusted to the exact same values in order to ensure that the
comparison of the different algorithms is on a fair basis. Furthermore, the shown fuel
energy consumption is the corrected one, which has been calculated from Equation (13).
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Table 6. Consumption and mean efficiency values of the main powertrain components for WLTC.

Magnitude
Algorithm

RB EBA EBB EBC

SFC [g] 698.5 750.0 736.1 732.6

ΔESOC/QLHV [g] 17.0 −78.0 −62.1 −66.8

ΔEPROP/QLHV [g] 0.7 19.8 25.5 25.7

ΔEREG/QLHV [g] 0.6 0.2 0.1 0.1

CFC [g] 715.6 691.6 699.4 691.4

(CFC-SFC)/SFC [%] 2.4 −7.8 −5.0 −5.6

(CFCEBX-CFCRB)/CFCRB [%] - −3.3 −2.3 −3.4

Propulsion Efficiency [%] 39.5 40.7 40.3 40.8

ICE Mean Efficiency [%] 37.9 37.6 37.1 37.8

EM Mean Efficiency [%] 82.7 80.8 80.3 80.7

Figure 6. Net energy flows (kJ) for positive propulsion instances in WLTC for ECMS-Based Type A
(EBA) algorithm, ECMS-Based Type B (EBB) algorithm, ECMS-Based Type C (EBC) algorithm and
Rule-Based (RB) algorithm. ICE: Internal Combustion Engine, EM: Electric Motor, B: Battery and GB:
Gearbox, FT: Fuel tank. Negative numbers correspond to energy loss.

The electric motor may function either as a propulsion device or as a generator for
battery charging, depending on power flux direction. Assuming positive power flux from
the battery to the gearbox, the energy flow through the EM ranges from 2121 kJ with the
EBB to 1622 kJ with the RB algorithm. The difference in net energy flows is explained by
the decisions of the different algorithms.

The lowest net EM energy flow is balanced by the maximum total energy outflux
from the FT (30.6 MJ) with RB compared to EB. The simulation results in Table 6 show
that the average ICE efficiency is quite close for all cases. Additionally, the demanded
mechanical output energy from the ICE is higher in the RB case (11.59 MJ) compared to the
EB (11.1–11.2 MJ). In RB, the electric motor contributes more for propulsion compared to
the EB cases and results in higher battery discharge. This requires higher power demand
from the ICE during hybrid mode to recharge the battery. That higher power demand
for battery charging could have been saved had the EMS controller decided to directly
command ICE propulsion with the assistance of the electric motor.

The above analysis showed that the description of the energy flows is very useful in
order to understand the FC differences between RB and ECMS algorithms. For analysis
convenience, in this paper a quantifiable metric for energy flow comparisons has been used,
namely the average propulsion efficiency (ηPROP). The ηPROP is defined as the ratio of the
demanded energy at the gearbox (EGB) over the sum of the two net energy flows from
the energy sources during the positive propulsion phase (Equation (22)). The provided
fuel energy is the corrected one, but only during the propulsion phases. Therefore, the
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correction terms of ΔE SOC and ΔEPROP have been added to the simulated fuel energy.
Additionally, the reference battery depleted energy has been considered in the denominator.
Table 6 shows that the RB algorithm results in the lowest propulsion efficiency and that
leads to the highest fuel consumption.

ηPROP =
EGB

Ebat,SOCf=14% + SE + ΔE SOC + ΔEPROP
(22)

As a benchmark, the results of Table 6 that have been obtained with localized opti-
mization are compared to the global optimum for the known profile of WLTC. To do so,
we have properly parameterized the hybrid electric vehicle model of Sundstrom et al. [34],
which uses a DP a solution as an EMS algorithm. The parameterization has been achieved
using exactly the same values for the individual components (ICE, EM, battery, Gearbox,
axles, vehicle resistances and weight) with the ones used in the AVL Cruise simulated
model. The DP model delivered 640.9 g as global optimum CFC, which is 7.3% lower than
the one from the best-performing EBC (640.9 g vs. 691.4 g).

3.3. Comparison of RB and EB Algorithms for Other Cycles

Figure 7 illustrates the relative CFC difference between EB and RB algorithms for the
different cycles. In most cases, EB achieves lower fuel consumption compared to RB. The
highest FC reduction is observed for WLTC Low, which is 22.1–24.2% depending on the
EB type, while the highest EB increase over RB is 2.7% over the ERMES Extra Urban. EB
outperforms RB in all cycles of low speed. Evidently, the restrictions of RB on engine switch
on criteria (Figure 1) and power output (Figure 2) have a cost on FC reached, while the
adaptability of ECMS (Figure 3) allows for a much better result to be obtained.

Figure 7. Fuel consumption change in ECMS algorithm types vs. Rule Based algorithm case for
different cycles. EBA: ECMS Based Type A, EBB: ECMS Based Type B, EBC: ECMS Based Type C.

Table 7 better explains how EBC and RB perform for a low speed (WLTC Low) and a
high speed (ERMES Extra Urban) cycle. In WLTC Low, EBC results in a higher propulsion
efficiency by eight percentage units compared to the RB, and this leads to 22% FC reduction
(RB: 582 g and EBC: 453 g). The improvement in propulsion is mainly linked to the mean
ICE efficiency in this case. As Figure 2 shows, RB selects to operate the engine at lower load
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for vehicle speeds 0–30 km/h, which results in low engine efficiency. In reality, this selection
may have to do with the need to retain low noise, vibration and harshness (NVH) levels in
the vehicle cabin during low-speed driving. On the other hand, ECMS algorithm decisions
for the engine load are dependent on the optimization of a cost function—Equation (7). As
a result of its optimization-based functionality, ECMS leads to higher ICE Mean efficiency
by 3.7 percentage units compared to RB in WLTC Low.

Table 7. Consumption and mean efficiency values of the main powertrain components for WLTC
Low and ERMES Extra Urban in the case of Rule Based (RB) and ECMS Based—C (EBC) algorithms.

Cycle Magnitude
Algorithm Type

Rule Based (RB) ECMS Based—C (EBC)

WLTC Low

Fuel Consumption [g] 582 453

Propulsion Efficiency [%] 32.5 40.5

ICE Mean Efficiency [%] 33.3 37.0

EM Mean Efficiency [%] 78.8 76.9

ERMES
Extra Urban

Fuel Consumption [g] 1341 1363

Propulsion Efficiency [%] 38.0 37.4

ICE Mean Efficiency [%] 37.2 34.8

EM Mean Efficiency [%] 86.7 84.3

The FC with ECMS appears higher than RB only in the ERMES cycle, and in particular
in ERMES Extra Urban. In order to explain this, we can look the propulsion efficiency
values at Table 7. The RB algorithm has a higher propulsion efficiency by 0.6 percentage
units compared to EBC. The ERMES has a much higher power requirement and stronger
accelerations than WLTC, which was used to tune the parameters of the ECMS algorithm
(Equations (11a)–(12b) and Table 3). A better tuning for high power cycles could lead to
lower FC compared to RB.

4. Discussion and Conclusions

This study makes an assessment and performance analysis for two types of en-
ergy management algorithms, including a back-engineered stock RB algorithm and an
ECMS one.

A novel methodology to assess the different algorithms on a fair basis has been devel-
oped, introducing corrections for distance travelled, final SOC level and energy propulsion
differences between alternative simulations. Our analysis showed that the impact of such
corrections on fuel consumption can exceed 5%. Hou et al. [35] also considered SOC correc-
tions when comparing different EMS algorithms, and found the impact of these corrections
to be no more than 1% in fuel consumption. However, they did not correct for propulsion
energy demand and regenerative braking. Our analysis shows that all three corrections can
have a measurable result on fuel consumption values when different EMS algorithms are
compared, and these should not be neglected in relevant studies.

The energy flow analysis also showed that the EMS affects both the efficiency of each
powertrain component and the net energy flow between components. Therefore, it is the
combination of these two magnitudes that affects overall total fuel consumption. As a
result, the efficiencies of the individual components can be quite close for the two different
EMS algorithms, but the FC can differ for the same energy demand.

Another important finding is that different driving conditions affect the magnitude of
FC reduction that can be achieved with an alternative algorithm. Regarding the WLTC cycle,
it has been found that the potential FC reduction with the use of ECMS algorithm is 3.4%
over RB. For benchmarking purposes, a DP global optimization algorithm has been used
for comparison. This requires a priori knowledge of the driving profile to find the optimum
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solution. The DP led to a 7.3% lower FC compared to the one from ECMS. Sun et al. [13]
demonstrated that, on average, the FC achieved with DP can be 6.7% lower compared to an
ECMS algorithm. ECMS algorithms, therefore, seem to offer good adaptability to driving
conditions and sufficiently good final fuel consumption, which is not very distant from the
global optimum.

With the use of ECMS, we found that fuel consumption in driving cycles with low
average speeds (lower than 20 km/h) can be improved by up to 24.2% compared to a stock
RB algorithm. The magnitude of improvement achieved was actually similar to the ones
reported by Geng et al. [36], who proposed a combination of DP and ECMS to reduce FC
by up to 19.9% in NEDC compared to RB. In another study, Hao et al. [37] used an adaptive
ECMS to decrease the FC by 8–15% compared to an RB algorithm on a mild parallel hybrid
vehicle. In our case, this large difference was partly because the RB forced the engine to
operate at low loads when switched on in low average speeds. Although this may have
been mandated in order to retain low NVH in the cabin at low speeds or due to pollutants
emission control restriction, one needs to admit that an improvement margin of more than
20% is a significant incentive to invest more in powertrain efficiency control, especially in
urban conditions.

This paper examines the energy optimization of the hybrid powertrain for propulsion.
However, an EMS algorithm may consider additional parameters, such as consumption of
auxiliaries for cabin comfort and the thermal management of the emission control devices.
These parameters are not addressed in the current work, as they add complexity and
extra investigation is required to achieve balance between real-time implementation and
optimality. However, they can be addressed in a future work by extending the cost function
expression to cover these terms and by extending the list of conditions that have been
considered to the implemented the algorithms. Such conditions can also take into account
NVH requirements that can be added as cost penalizing terms in relevant optimization.

In general, ECMS algorithms are simple to enforce in an ECU as they do not require
a full set of guidance for all foreseeable conditions and could always be used as back-up,
fail-safe algorithms. For example, in driving situations that have not been thoroughly
considered when setting up an RB algorithm and which cause higher FC than what would
be technically possible, an ECMS could step in instead. Moreover, an ECMS could be
identical for different vehicle model variants, without needing to set exact limits for each
version of the vehicle when, e.g., engine or motor sizes change while powertrain architecture
stays the same. An ECMS algorithm can, therefore, have a more universal usage due to its
adaptability features.
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Abbreviations

B Battery
CO2 Carbon dioxide
CFC Corrected fuel consumption
DP Dynamic programming
EBA ECMS based type A
EBB ECMS based type B
EBC ECMS based type C
ECMS Equivalent consumption minimization strategy
EM Electric motor
EMS Energy management system
EU European union
FC Fuel consumption
GB Gearbox
GHG Greenhouse gases
HEVs Hybrid electric vehicles
ICE Internal combustion engine
LB Learning based
NVH Noise, vibration and harshness
OB Optimization based
PHEVs Plug in hybrid electric vehicles
PMP Pontryagin’s minimum principle
R Correlation coefficient
RB Rule based
RPA Relative positive acceleration
SFC Simulated fuel consumption
SOC State of charge
WLTC Worldwide harmonized Light vehicles Test Cycle
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Abstract: Climate change at the global level has accelerated the energy transition around the world.
With the aim of reducing CO2 emissions, the paradigm of using electric vehicles (EVs) has been
globally accepted. The impact of EVs and their integration into the energy system is vital for
accepting the increasing number of EVs. Considering the way the modern energy system functions,
the role of EVs in the system may vary. A methodology for analyzing the impact of reactive power
from public electric vehicle charging stations (EVCSs) on two main indicators of the distribution
system is proposed as follows: globally, referring to active power losses, and locally, referring to
transformer aging. This paper indicates that there is an optimal value of reactive power coming
from EV chargers at EVCSs by which active energy losses and transformer aging are reduced. The
proposed methodology is based on relevant models for calculating power flows and transformer
aging and appropriately takes into consideration the stochastic nature of EV charging demand.

Keywords: electric vehicles; electric vehicle charging stations; active power losses; power distribution
transformers; thermal aging; reactive power

1. Introduction

In July 2009, the leaders of the European Union and the G8 announced the aim
to reduce greenhouse gas emissions to at least 80% below 1990s’ levels by 2050. The
automotive sector has a very important role to play in achieving this ambitious goal [1].

One of the best ways to promote the use of electric vehicles (EVs) is to increase the
number of available public electric vehicle charging stations (EVCSs). Connecting a large
EV fleet in a small area faces a number of challenges such as: overheating distribution
transformers, increasing power losses, voltage instability and harmonic distortion [2,3].
Therefore, there is a need for modeling and mitigating the impacts of EVCSs on the
distribution grid. Connecting EVCSs to the distribution system has a significant impact on
the exploitation of the existing energy infrastructure. This especially refers to increasing the
total load, peak load and changing the load profile of the distribution transformer where
EVCSs are connected. Taking into account a large number of distribution transformers as
well as the fact that in most cases they do not operate in parallel in low voltage networks, the
prevention of failures or possible losses of life (LOL) is of great importance. Since charging
EVs at EVCSs increases load on distribution transformers, it could cause overloading and
therefore overheating of distribution transformers. Apart from overheating, there are other
sources of transformer aging such as: fault currents caused by short-circuits or inrush
currents, overvoltage caused by lightning and switching impulses, contamination of the oil
that could shorten their lifetime and cause premature failure [4,5]. Bearing in mind that
the subject of this paper is the influence of EVCS on the power system and on transformer
aging under normal operating conditions, an overview of the literature related to the aging
of transformers under such conditions is given.

Researches have studied the impact of distributed generation (DG) and energy storage
(ES) on transformer aging [6,7]. It has been concluded that with a high penetration of
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EVs, and no support from photovoltaic (PV) and ES, the transformers will dramatically
age. Furthermore, researchers have dealt with the influence of the charging method
on transformers’ aging [8–13]. The main idea is to find an optimal charging scheme to
minimize the impact of EVs’ charging demand on distribution transformers. The [8]
proposed model considers time-of-use rates in order to minimize energy consumption
costs and avoid transformer overloading and LOL based on load and meteorological data.
The proposed smart charging scheme together with PV with ES can prevent transformer
overloading and LOL. PV generation can reduce the energy purchased from the grid, while
ES can assist during peak hours. Three smart ways of charging (central, decentralized
and hierarchical) as well as dump charging have been analysed [9]. Based on the obtained
results, it has been concluded that hierarchical charging strategies are the most desirable
in terms of LOL, while the centralized charging strategy (valley filling) has shown the
greatest LOL of transformers. In one paper [10], a simple method is used to coordinate
the charging process of PEVs to avoid the overloading of transformers by using the fact
that idle time represents a significant percentage of EV parking time. In the paper, [11]
reducing the impact on transformer aging by implementing the capability of delivering
a variable charging rate has been proposed. Two charging algorithms have been used as
strategic ways for reducing the overload of distribution transformers. The results suggest
that for both uncontrolled and controlled charging, the load on the transformer will be
reduced. Since the current commercial, residential charging technology is categorized,
infrastructure changes are necessary in order to support this idea. Another paper [12]
proposes a temperature-based smart charging strategy that reduces transformer aging
without substantially reducing the frequency by which EVs obtain a full charge. These
reductions are substantially larger at hot climate locations compared to cool climate ones.
The results indicate that simple smart charging schemes, such as delaying charging until
after midnight can actually increase, rather than decrease, transformer aging. The authors
of [13] analyze the impacts of a price incentive-based demand response on neighburhood
distribution transformer aging. The results indicate that the integration of EVs in residential
premises may indeed cause accelerated aging of distribution transformers, while the need
to investigate the effectiveness of dynamic pricing mechanisms is evident. In [14], the
number of EVs has been optimized by calculating additional steady-state hottest-spot
temperature rises by ensuring that distribution reliability requirements are met.

In order to reduce transformer aging, the reactive power potential from on-board EV
chargers (OBCs) at EVCSs is proposed in this paper. OBCs in modern EVs are bidirectional,
which allows them to work in all four quadrants [15]. Using reactive power support,
as a part of the vehicle-to-grid concept, is already familiar and has been investigated as,
e.g., part of on-line control for improving the voltage stability of a microgrid with PV,
wind, battery storage, residential and commercial building feeders [3], the load control of
active and reactive power [16], the compensation of reactive load of wind turbines near
the station [17] and the revenue potential of providing reactive power service [18]. In this
paper, the respective value of reactive power is obtained by small oversizing charging
converters, which does not require an upgrade of the charging infrastructure. In relation
to [15], where the influence of the oversizing of converters on voltage deviations, peak
load and grid losses in the network has been analyzed, this paper’s analysis is extended to
include transformer aging. Besides the impact on transformer aging, also the influence of
reactive power potential of EVCSs is analyzed with the aim of reducing active energy losses
without additional devices and facilities. Locations of EVCSs are chosen from the aspect of
increasing the efficiency of the network, which refers to reducing total active energy losses.

The reduction of losses in the power system in the presence of EVCSs is achieved in
different ways. A large number of papers can be found in the literature that treat the prob-
lem of reducing energy losses in the presence of electric vehicles, e.g., optimal operation
of vehicles with distributed generators [19–23], optimal reconfiguration of the distribu-
tion network [24–28], optimal operation of the battery storage, [29,30], optimal charging
strategies [31–34] and optimal location and size of reactive power compensators [35,36].
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The contribution of this paper is related to the impact analysis of the influence of
reactive power on active power losses and transformer aging. In other words, the paper
proposes a methodology that allows the determination of the optimal injection of reactive
power of the EVCSs with the aim of reducing transformer aging and reducing active
power losses. The proposed method is based on the well-known model for calculating
transformers’ aging, which is described in detail in [37]. It is applicable to an arbitrary
network with an arbitrary number of EVCSs. Considering the stochastic nature of EV
charging demand, the presented paper clearly indicates the benefits and limitations of
reactive power from OBCs at EVCSs to energy losses reduction and transformers aging.

Numerical results, obtained in MATLAB and on the IEEE 33 bus radial distribution
network, indicate that it is possible to achieve the optimal value of injecting reactive power
from EV vehicles in order to enable reductions of transformers’ aging and a reduction in
energy losses in relation to the case where there is no reactive power injection or when
reactive power injection is the maximum possible. This analysis may serve focus on local
distributions in order to prevent shortening transformers’ working life. Furthermore, the
presented results may be useful for the analysis of global distribution system parameters
such as energy losses and node voltages.

The rest of the paper is organized as follows. Section 2 is dedicated to the system
components modeling. In Section 3, a description of methodology is given, while in the
final Section 4, the most important conclusions and directions for further research have
been stated.

2. Modeling System Components

2.1. Load Modeling

There is certain number of load models in the literature that can be used for various
analyses. In addition, in recent times, new nodal classifications have been made and
their characteristics have been reviewed [38]. Considering that a steady state analysis is
performed in this paper, basic information about node loads have been used in this paper.
Namely, loads in the system are modeled as PQ nodes. On the basis of the type of loads
connected to the nodes busses, three types have been adopted: residential, commercial
and industrial busses, as seen in Table 1 [19]. There are 18 residential busses, 5 commercial
buses and 9 industrial buses. Load changing over time has been taken into account by
introducing a load scaling factor. Load scaling factor changes over time as a percentage of
nominal load, which varies depending on a load type, Figure 1, [39].

Figure 1. Typical buses load curve, [39].
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Table 1. Grouping of buses data, [19].

Bus Type Bus Numbers

Residential 2, 3, 5, 6, 7, 8, 9, 10, 13‚ 14, 15, 16, 17, 20, 21, 23, 24, 25
Commercial 4, 11, 12, 18, 19

Industrial buses 22, 26, 27, 28, 29, 30, 31, 32, 33

2.2. Public EVCS Modeling

According to the way EVs are connected to the electric grid, there are two types of
charging strategy: conductive EV charging and inductive EV charging. In conductive
charging, there is a physical connection between EV and the electrical grid. In inductive
charging, also known as wireless power transfer [40], there is no galvanic connection
between the vehicle and the electrical grid. Since conductive charging is the most common
method of charging, this type of charging has been analyzed. There are two types of
conductive charging in EVCSs: AC charging and DC charging with different power levels:
Level 1, Level 2 and Level 3 charging. In this paper, the AC Level 2 type of charging station
has been analyzed because of its simple infrastructure, low price and availability for the
most commercial types of charging in public places.

There is a certain number of models for grid support by EVCSs [41]. Bearing in mind
that vehicles are mostly stationary during the day, their role may be different. The literature
recognizes that EVCSs could most effectively serve in the following ways: to ensure a fast
frequency response [42,43] for shifting electricity [44,45], improve power quality [46] and
as energy storage [44].

Significant work has been done towards minimizing grid losses due to PHEV charg-
ing through efficient charging algorithms with different objective functions [47–49]. All
mentioned papers, in one way or another, with different stimulation techniques, have an
influence on drivers’ behavior. Nevertheless, this paper adopts an approach that does not
impair the comfort of EV users, which means that two cases have been observed, which are
as follows: active power is consumed during the charging of EVs; while in the second case,
while charging with active power, vehicles inject reactive power.

2.2.1. Operation Region of EV Chargers

In order to obtain reactive power and not to jeopardize EVs drivers’ habits, the concept
of small oversizing of 5.3% of on-board chargers ratings has been used, [15]. With this, a
significant amount of reactive power which is 32.9% of active power is obtained. What
is important is that this does not require an upgrade of the charging infrastructure, and
charging active power is the same in both cases. The operating region of on-board charger
charging is region IV, Figure 2. It can be seen that with small oversizing of an EV charger,
in Figure 2 shown as a larger circle, with the same active charging power, a representative
value of reactive power is obtained.

The charging operation in the second and third quadrants of the P-Q diagram was
not considered, since the management of the active power of the chargers affects the
convenience of the consumers themselves as well as battery life. Furthermore, the operation
of chargers in the first quadrant, wherein EV can also consume reactive power, is not
suitable for the analyzed network and loads.

During the charging of EVs, we have analyzed the influence of reactive power from
equal to zero to the maximum available. The national network operator in our country
does not yet support the injection of active power or the injection and absorption of reactive
power by the EVCSs. The operation of chargers in all four or two quadrants is discussed
in the literature at the level of conceptual solutions for which there are numerical or
real experiments. The results obtained both in this work and in the literature represent
guidelines for changing the network requirements of new electricity consumers/producers.
This paper demonstrates the benefits of reactive power from EV charger compared to the
current regulation, which stipulates that they only consume active power. Finally, it is
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important to note that the network codes for the LV network, after looking at the possible
positive impact of the operation of network inverters of photovoltanic power plants, have
been changed in Germany. For example, in Germany, LV grid-connected PV installations
rated above 3.68 kVA have to follow a specified PF droop curve as a function of their
instantaneous power output [15].

Figure 2. Operation region of EVs chargers.

Furthermore, it is very important to regulate the interaction between EVs the and
distribution system. The design of the battery charger will be crucial in this effort to
effectively control the power flows. One of the important requirements of an EV charger
is the amount of current distortion that it draws from the grid [50]. Parameters such
as total harmonic distortion (THD) and total demand distortion (TDD) can be used to
evaluate the harmonic content of the charger. Additionally, the chargers should meet the
individual harmonic limits as well [50–52]. The tasks of OBC system controller is to follow
the charging power and reactive power commands controlled by the grid operator. In [50],
the proposed design of OBC has shown analytically and experimentally that chargers are
able to symmetrically operate at all four quadrants of the power plane. Furthermore, grid
current requirements such as that the ac-dc converter input current THD should be limited
to 5% have been satisfied.

Figure 3 shows the proposed application of on-board EV chargers used in this paper.
The chargers form EVCS injecting reactive power at the point of common coupling (PCC)
and decreases transformer overloading. In the case of the AC charging station, electric
vehicle supply equipment (EVSE) serves for monitoring, management and communication
with a vehicle during charging, while energy conversion from AC to DC power is suitable
for charging battery performed via OBC.

In this paper, it is assumed that the power factor management of EVCSs is performed
based on the previous day’s consumption forecast of the analyzed network and EVCS
demand. After processing the necessary data, the distribution network control centre sends
a signal for the value of the power factor of the station. The power factor is constant during
the 24 h period.
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Figure 3. Proposed reactive power support diagram using OBC from EVCS.

2.2.2. Mobility Stochastic Behavior Model

There is a large number of papers dealing with the optimal structure of EVCSs, which
refers to number of charging spots, types of charging and technology of chargers them-
selves [53–55]. In this paper, the charging demand of EVCSs is obtained using the number
of EVs that arrive at the EVCS during 24 h as an input. Furthermore, the random nature of
EV arrival time, electrical efficiency, battery capacity and daily miles driven are respected
in order to obtain EVCS demand. In this paper, the stochastic nature of EV load is modeled
using probability density functions (PDF) for two parameters: plug-in time and miles
traveled before last charge.

• Behavior of start charging time

A PDF of vehicles’ arrival time is obtained from [56], where the results of a large
number of measurements from public charging stations have been analyzed. Based on
actual data, the multimodality of distribution has been described using the Beta Mixture
Model (BMM), which has proved to be appropriate for analysing EV data, [56].

A corresponding density function from the BMM model is obtained by summing up
the beta distributions of different parameters and weight factors. The beta distribution of
probability density is defined by the following equation:

Beta(x | a, b) =
Γ(a + b)
Γ(a)Γ(b)

xa−1xb−1, (1)

where Γ(.) is gamma function, a and b are parameters which define the shape of distribution
and x is a parameter from the interval between [0, 1].

The BMM is represented by the following sum:

BMM(x) = ∑M
m=1(wnBeta(x | am, bm)) (2)

wherein the sum of weights are equal to one:

∑M
m=1 wn = 1 (3)
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Obtained PDFs for working days and weekends plug in times are presented in Figure 4,
while parameters of BMM are given in Table 2. The values in Table 2 are rounded to two
decimal places [56].

Figure 4. PDF for plug in time for: (a) Working day; (b) Weekend.

Table 2. Parameters for BMM model.

Bus Type Working Day Weekend

Number of modes 4 3

Parameter a

32.80
76.42
4.13
36.12

300.71
8.69
6.22

Parameter b

76.76
33.40
2.34
42.65

150.08
9.12
3.05

Weights

0.23
0.14
0.56
0.08

0.02
0.48
0.50

• Behavior of distance travelled and initial state of charge

In order to determine the energy required to charge vehicles, it is necessary to predict
the level of the charge of a battery (SOC) of a single EV. An important factor for this is
to determine daily miles traveled. The lognormal distribution of the distance travelled
function has been shown to be suitable for describing the mileage distribution functions,
and is represented by way of [6]:

g(d, μ, σ) =
1

d·
√

2πσ2
e−

(ln d−μ)2

2σ2 , d > 0 (4)

The distribution parameters depend on a driver’s habits in the area being analyzed.
Statistics on the conventional vehicles are often taken into account due to insufficient data
of EVs. This paper uses statistical data that 50% of drivers drive less than 25 miles during
the day, and 80% of drivers travel less than 40 miles [57]. The corresponding lognormal
distribution of daily traveled miles and coresponding CDF are presented at Figures 5 and 6,
with mean value μ = 3.37 and standard deviation σ = 0.5 [58].
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Figure 5. PDF of daily distance traveled of EV.

Figure 6. CDF of daily distance traveled of an EV.

Now, the initial state of the charge can be determined as shown below [6]:

SOCi(x) =
(

1 − Econs·d
Cb

)
·100 (5)

where Cb battery capacity in kWh, Econs is energy consumtion in kWh per miles and d
estimated daily distance traveled in miles.

2.2.3. Charging Power Model

Considering the latest statistics of dominating shares of EV types, [59,60] all EVs
charged in this study have 71% probability of being a battery electric vehicle (BEV) and
29% probability of being a plug-in hybrid electric vehicle (PHEVs).

Electric car economy changes all the time, depending on things such as road gradient
and car speed. In this paper, electrical efficiency and battery capacity are taken as random
numbers between values given in Table 3 depending on the type of EV.
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Table 3. Parameters of BMM model.

EV Types BEV PHEV

Number of vehicles [%] 71 29
Battery capacity [kWh] 40–80 10–16

Electrical efficiency [kWh/mile] 0.25–0.40 0.25–0.40

In order to sustain a longevity, it is known that whole battery’s energy capacity is
usually not fully utilized. It has been found that between 78–95% of the full batteries
capacity is used for different EV models [60]. The required value of SOCreq for the user is
taken to be 95% [6,61,62]:

Ereq =

(
SOCreq − SOCi

) · Cb

η · 100
(6)

where η is charging efficiency 0.95. The duration of EV charging depends on the required
energy and charging power of EV and is equal to:

Tch =
Ereq

PEV
, PEV =

{
3.4kW, PHEV
7.2kW, BEV

(7)

2.3. Power Flow Analysis

Power flow or load flow calculations are very fundamental for all power system analy-
ses. It is a very important tool for power systems planning, design, operations, maintenance,
optimization and control. At the planing stage, load flow analysis is used to determine:
the location of distributed generators, the location of capacitors, economic scheduling,
power quality improvements, network reconfiguration, power systems optimization and
other applications. Furthermore, in order to plan future growing load demands, power
flow analysis is necessary. At the operation stage, it is run to explore system stability
and to improve efficiency. Usage of power flow analysis enables that maintenance plans
can proceed, without violating power system security. Load flow studies are performed
for the determination of the steady state operating condition of a power system. Input
parameters of power flow analysis of distribution network are network topology and
network parameters, as well as load and generator models. Power flow calculations are
performed by iterative methods. The most common power flow calculation methods are
Gauss–Seidel Method, Newton–Raphson Method and Fast Decoupled Method. These
methods are not appropriate for distribution systems due to their special characteristics
such as low line X/R ratios, unbalanced load, radial or weakly meshed network structure
and large number of nodes, etc. These features make distribution systems power flow
computation different to analyze, as compared to the transmission systems. There is a
number of methods proposed in the literature for the solution of power flow problem in
radial distribution networks [63]. Back–forward sweeping (BFS) iterative method is suitable
for calculations of radial distribution system load flow, which is analyzed in this paper [64].
The algorithm is very robust and numerically efficient for convergence. It is applicable for
a wide variation of distribution networks. The algorithm begins with an initial solution
for all node voltages and performs basic steps until a convergence criterion is satisfied. In
the backward step, currents of each branch are calculated. Bus voltages are updated in a
forward sweep starting from the first branch and moving towards end branches. After the
convergence criterion has been satisfied, node voltages, currents in branches and active
and reactive power losses are determined. This iterative method is implemented in Matlab
for calculating power losses in radial IEEE 33 bus network. Different load types together
with EVCS demands are implemented in this model. In this paper, power flow analysis has
been used from the planning aspect, as a part of the optimization process for determinating
optimal positions for EVCSs in an analyzed network. Additionally, it is used for calculating
power losses for different EVCS demands level.
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3. Methodology

3.1. Description

A flowchart of the proposed methodology is shown in Figure 7. The methodology
includes both global and local solution approaches. The global one refers to the modeling
and analysis of the power network and the determination of active power losses in the
network, and the local one to the determination of the aging of the selected distribution
transformer. The proposed algorithm consists of four steps. In the first step, network
data and nodal loads are entered. Additionally, active and reactive nodal power are
defined depending on a type of load (industrial, commercial or residential) according to
Figure 1. Then, in this step, the number of stations are entered, as well as the data needed
to determine the EVCS demand. The stochastic nature of EV charging is taken into account
and explained in detail in Section 2. The second step of the proposed methodology includes
the position of EVCSs in the power system. More precisely, in this step, a matrix that
includes the possible positions of EVCSs is formed. In this step, the criterion that only one
station can be placed in each part of the network has been met. The proposed methodology
takes into account the fact that it is possible to divide the network into an arbitrary number
of parts, and in each part of the network an arbitrary number of stations can be found. The
third step represents the calculation of the electrical parameters of the network. In this step,
the method for calculating power flows according to the characteristics of the network is
implemented. In the fourth step, the locations of EVCSs are selected based on the criterion
of minimum network losses, defined by the following equation:

J = minPl =
B

∑
i=1

Pli (8)

where i, B, Pl and Pli, are the index, total number of branches, total active power and active
power losses of branch i, respectively.

In this paper, optimization is achieved by searching the obtained results, so that
the focus of paper is not the development and improvement of optimization methods.
Nevertheless, it is important to note that in the last few years, different methods have
been developed and applied to account for optimal power flows in the energy system or
for different types of examples that comply with different limitations. Some of them are
detailed and tested in papers [65–68]. In the fifth step, the final value of reactive power
injection of the EVCSs is selected. Namely, in this step, by choosing the final value of
the reactive power injected by EVCSs, the influence of the reactive power on the losses
of active energy and on transformer aging through which the station is connected to the
grid is affected. In this paper, the GRA method is used for determining the final value of
reactive power.

After obtaining the best positions for EVCSs, off-grid managing of the EVCSs has been
proposed. Based on the predicted daily diagram of EVCSs and other consumption, the
station operator evaluates the optimal daily reactive power injection from EVs, i.e., power
factor of on-board chargers of EVs in EVCSs. The proposed methodology assume that
power factor of OBC is constant during the 24 h period. Detailed post-optimization analysis
of the reactive power injection from EVs at EVCSs to energy losses and transformer aging
has been performed.

It is important to emphasize that the performed post-optimization analysis represents
an incremental contribution in relation to the paper [15], since it is extended to include
transformer aging analyzis. Based on the performed analyses, the correlation of the impact
of reactive power on energy losses and the impact of reactive power on transformer aging
can be clearly seen.

The aim of this paper is to explore the possibility of the impact of reactive power
from oversized OBCs on active power losses and on transformer aging. With regard to
experimental confirmation of the obtained results, at this stage it was primarily necessary
to computerize a model and verify the simultaneous influence of active energy losses and
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transformer aging. On the other hand, the impact of chargers on losses in the distribution
system in real-time circumstances is very difficult. Furthermore, one of the bigger obstacles
so far is the number of EVs, because in whole of Montenegro there are only 126 EVs [69]
and these are vehicles that have chargers that are not pre-dimensional. Relatively small
oversizing of the OBCs is the basis of the assumption of this paper.

Figure 7. Flowchart of proposed methodology.

3.2. Sample Generation with Monte Carlo

The Monte Carlo (MC) statistical method was used to obtain the daily EVCS demand.
The method requires that parameteres of the physical system, in this case EVCS demand,
are described as PDFs.

When these functions are known, the MC simulation continues with a random selec-
tion of values from functions. For this purpose, the inverse transformation method was
used, which states that any probability distribution can be obtained from a uniform proba-
bility distribution, if an inverse cumulative probability distribution can be determined [70].
A flowchart of the generation of a EVCS demand profile is given in Figure 8.

To terminate the MC process criteria number of MC iterations is used. The process
was set to repeat until reaching 5000 iterations.
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Figure 8. Flowchart for EVCS demand.
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3.3. Transformer Aging Model

The insulation system of mineral oil transformers is composed of thermally upgraded
oil-impregnated paper. Cellulose deterioration is influenced by hydrolysis, oxidation and
pyrolysis which are the consequences of water, oxygen and heat, respectively. Taking into
consideration that exposure to moisture and oxygen in transformers are generally reduced,
the most significant determining factor to insulation deterioration is the heat. Transformer
heating is caused primarily by energy losses. The majority of losses are located in magnetic
core (no-load losses) and the windings (load losses). No-load are hysteresis and eddy
current losses, while winding losses are primarily due to DC losses and stray load loss due
to the eddy currents induced in other structural parts of the transformer. All these losses
cause heating in the corresponding parts of the transformer. The most critical part for the
transformer isolation system is placed where temperature has maximum value, which is
known as hot spot temperature [4].

According to the loading guides, IEEE guide for loading mineral-oil-immersed trans-
formers [37], the hot-spot temperature in a transformer winding consists of three components:

θH = θA + ΔθTO + ΔθH (9)

where θH, is the winding hottest-spot temperature, ◦C, θA, is the average ambient tem-
perature during the load cycle to be studied, ◦C, ΔθTO is the top-oil rise over ambient
temperature, ◦C, and ΔθH is the winding hottest-spot rise over top-oil temperature, ◦C.

As is proposed in the IEEE guide, θA is constant and equals to 30 ◦C. The top-oil rise
over ambient temperature is given in the following equation:

ΔθTO = (ΔθTO,u − ΔθTO,i)·
(

1 − e−t/τTO
)
+ ΔθTO,i (10)

where τTO top-oil time is constant, ΔθTO,i and ΔθTO,u are the initial and ultimate top-oil
rises over ambient temperature, respectively, which equals to:

ΔθTO,i = ΔθTO,R·
[(

K2
i ·R + 1

)
R + 1

]n

(11)

ΔθTO,u = ΔθTO,R·
[(

K2
u·R + 1

)
R + 1

]n

(12)

In the previous equations, ΔθTO,R is the top-oil temperature rise over ambient tem-
perature at rated load, ki and ku represent the ratio of initial and ultimate load to rated
load, per unit, n is an empirically derived exponent which depends on a cooling mode and
describes effects of change in oil resistance to change in load, while R is the ratio of a load
loss at a rated load to a no-load loss. The top-oil time constant at a rated kVA is given in
the following equation. The time constant equals to:

τTO = τTO,R

(
ΔθTO,u
ΔθTO,r

)
−
(

ΔθTO,i
ΔθTO,r

)
(

ΔθTO,u
ΔθTO,r

) 1
n −

(
ΔθTO,i
ΔθTO,r

) 1
n

(13)

Transient winding hottest-spot temperature rise over top-oil temperature is equal to:

ΔθH = (ΔθH,u − ΔθH,i)·
(

1 − e−t/τw
)
+ ΔθH,i (14)

In Equation (14), ΔθH,i and ΔθH,u represent the initial and ultimate winding hottest-
spot rises over top-oil temperature in ◦C, which equals to:

ΔθH,i = ΔθH,R·K2m
i (15)
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ΔθH,u = ΔθH,R·K2m
u (16)

where ΔθH,R is the winding hottest-spot rise over top-oil temperature at rated load. Param-
eter m describes changes in resistance and oil viscosity with changes in load.

Calculating the temperature of the hottest spot allows the determination of important
parameters that describe transformers’ aging, which are the accelerated transformer aging
factor FAA and LOL.

The aging acceleration factor for a given load and hottest spot temperature can be
obtained as shown in Equation (17):

FAA = e[
15000
383 − 15000

θH+273 ] (17)

If FAA > 1, the transformer is experiencing accelerated aging. According to [37],
normal aging occurs at the reference hottest-spot temperature of 110 ◦C, where FAA = 1.
The equivalent aging factor FEQA is further obtained as indicated below:

FEQA =
∑N

j=1 FAA,jΔtj

∑N
n=j Δtj

(18)

where j is the time intervals index, N is the total number of time intervals, Δt is the time
interval, FAA,j is the aging acceleration factor for j-th time interval. The percentage of
shortening the isolation life of a transformer is calculated as shown in the relation below:

%LOL =
FEQA·t·100

Normal insulation life
(19)

The value of the normal duration of insulation, [37], is taken to be 18,000 h or 20.55
years. Therefore, when the temperature of the hottest point is 110 ◦C for 24 h, the percentage
of the daily shortening of the lifespan is equal to:

%LOL =
24 · 100
180, 000

= 0.01333% (20)

3.4. Transformer Loading with EVCS

Adding EVCS demand at node n to the distribution transformer affects its loading, and
therefore can cause further transformer aging. The available reactive power of inverters
of EVs can be utilized for reactive power compensation in order to improve power loss
reduction and prevent transformer aging. The total active load of the transformer at node k,
PTLk , is equal to:

PTLk = PLk + PEVCSk (21)

where PLk and PEVCSk re the sum of load without EVs and active power demand of EVCSs
at node k. In case, during the charging of EVs, reactive power is injected, the total reactive
load of transformer QTLn is equal to:

QTLk = QLk − QEVCSk (22)

where QLk represents the sum of the load without EVs and QEVCSi is reactive power injected
from EVCSs obtained from EV charging inverters at node k. Injecting reactive power to the
transformer at node k has an influence on reducing the apparent power of the total load
and therefore the loading and temperature of the transformer as well.

3.5. Grey Relational Analysis (GRA)

The selection of the final solution is done using Grey Relational Analysis (GRA). The
GRA is a multiple-attribute decision-making method and it is widely applied in electric
power systems [71–74]. GRA is performed in several steps. In the first step, n alternatives
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sequences with m criteria are formed. Yi represents i-th alternative sequence, and value yij
represents the value of attributes j of alternative i:

Yi =
(
yi1, yi2, . . . yij, . . . , yin

)
(23)

The second step of the GRA procedure is normalization, which converts the data to
values between [0,1]. The smaller the normalization used in this case, the better, since
smaller values are prefered in the problem desribed in this paper. The comparability
sequence is as follows:

Xi =
(

xi1, xi2, . . . xij, . . . , xin
)

(24)

is obtain using the equation below:

xij =
max

{
yij,i = 1, 2, . . . , m

}− yij,

max
{

yij,i = 1, 2, . . . , m
}− min

{
yij,i = 1, 2, . . . , m

} (25)

where i = 1, 2, . . . , m, and j = 1, 2, . . . , n.
Reference sequence X0 is defined as (x01, x01, . . . , x01, . . . x01) = (1, 1, . . . , 1, . . . 1).

The aim is to find an alternative whose comparability sequence is closest to the reference
sequence. For this purpose, the Grey Relational Coefficient (GRC) between xij and x0j, is
calculated using the equation:

γ
(
x0j, xij

)
=

Δmin + ξ·Δmax

Δij + ξ·Δmax
(26)

where i = 1, 2, . . . , m, and j = 1, 2, . . . , n.
The values of Δij, Δmin, Δmax, ξ are defined as:

Δij =
∣∣ x0j − xij

∣∣ (27)

Δmin = Min
{

Δij, i = 1, 2, . . . , m; j = 1, 2, . . . n
}

, (28)

Δmax = Max
{

Δij, i = 1, 2, . . . , m; j = 1, 2, . . . n
}

, (29)

ξε[0, 1] (30)

For this purpose, 0.5 is usually used as the distinguishing coefficient value ξ.
For the problem described in this paper, the total number of alternatives which are

compared equals the number of optimal solutions obtained from Pareto, while the elements
of the sequence are the values of two criteria: transformer daily aging and active power
losses. Now, in order to determine the best solution, it is necessary to determine the Grey
Relation Grade (GRG). GRG is calculated by using the following equation:

Γ(X0, Xi) =
n

∑
j=1

wj·γ
(
xoj, xij

)
(31)

where wj represents the weight factor for the corresponding index. The alternative with the
highest GRG would be the best choice.

4. Analysis and Results

For the purpose of the analysis, the IEEE medium voltage radial distribution network
with 33 bus has been modeled, Figure 9. The base voltage of the network is 12.66 kV,
and the base power is 100 MVA. Line parameters are taken from [75]. Daily active power
demand, without public stations, is 62,556 kWh. Total daily active energy losses, obtained
from the power flow analysis amount to 2924 kWh. The lowest value of voltage in the
system occurs during the 18th hour at bus 18 with the value of 0.9016 p.u.
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Figure 9. Single-line diagram of 33-bus test system.

4.1. EVCSs Location Impact of Active Energy Losses

The proposed methodology, Figure 7, enables us to perform an analysis of the impact
of EVs on losses for an arbitrary number of EVCSs. In this paper, it is adopted that it is
necessary to build four EVCSs. Based on the calculation of power flow, the best and worst
cases in terms of energy losses are determined by the “brute force” algorithm. The results
of the power flow calculations and algorithm are shown in Table 4 below. OBCs of EVs are
assumed to operate with a unit power factor.

Table 4. Best and worst cases for EVCSs locations.

Parameters Without PEV Load
With Public Charging Stations

Best Case Worst Case

Location of charging station - 2, 19, 20, 21 15, 16, 17, 18
Daily active power demand [kWh] 62,557 72,152 72,152

Daily active energy loss [kWh] 2924 3008 4486

Lowest voltage value in p.u. 0.9016
(18 h, bus 18)

0.9012
(18 h, bus 18)

0.8422
(18 h, bus 18)

Table 4 shows a comparison between the parameters with or without charging stations
and a comparison between the best and worst cases for charging station positions when
energy losses are concerned.

There is a clear difference in losses depending on the location of EVCSs. In the best
case, the increase in daily losses is 3% and in the worst case, it is 53% compared to the case
without charging stations. These results show a significant influence of location of charging
stations on network losses.

4.2. Impact of Reactive Power from EVCSs on Energy Losses

From the previously obtained results shown in Table 4, it can be seen that the obtained
locations of EVCSs are in a row, so it can be assumed that they will not satisfy the needs of
EVs that are far from such station. For this purpose, the spatial division of the network into
four parts is proposed, so that each separate part includes eight nodes, see Figure 9 [76].

The proposed methodology, Figure 7, also allows an arbitrary division of the network
with an arbitrary number of nodes.

After the division of the network, it is necessary to determine one location in each
zone of the network where a station for electric vehicles would be placed. In this part of
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the paper, the impact of the power factor of on-board chargers on active energy losses
is analyzed.

Accordingly, two scenarios are considered: the first scenario is that EVs are charged
with a unit power factor; the second scenario is that vehicles are charged with the same
active power as in the first case, and the maximum reactive power capacity from on-board
chargers is used. As is mentioned in Section 2, it is assumed that on-board charges are
oversized by 5.3%. The results are summarized in Table 5 below.

Table 5. Locations for EVCSs and network parameters for the two scenarios.

Parameter
Scenario 1

No Reactive Power Support
Scenario 2

Reactive Power Support

Location of charging station 2, 21, 8, 12 2, 21, 8, 12
Daily active energy loss [kWh] 3419.34 3320.00

Lowest voltage value in p.u
(time and number of bus)

0.8889
(18 h, bus 18)

0.8920
(18 h, bus 18)

As can be seen in Table 5, for analyses of the nework and proposed network division,
reactive power injection from on-board chargers does not have influence on EVCSs location.
On the other hand, reactive power injection has an influence on daily acitive energy losess.
Namely, it is shown that with a relatively small oversizing of the inverter, it is possible to
reduce the loss of active power by about 3% without any interruption of an EV driver’s
habits or charging behavior.

Bearing in mind that voltage level of 12.33 kV, at which the R/X ratio is not large,
produces the expected results obtained by these voltages. More precisely, the lowest voltage
in the network in case the stations provide reactive power, is slightly higher compared to
the scenario where the stations’ power factor is 1.

4.3. Impact of Reactive Power from EVCS on Transformer Aging

The effect of reactive power injection on transformer aging is shown in Tables 6
and 7 below. The percentages in the tables refers to the gradual increase in power of
EVCSs in relation to higher EV penetration. The results were obtained based on the
formulas from Section 3.2. Two standardized distribution transformers 11/0.433 kV of
different rated power, T1 (200 kVA) and T2 (250 kVA) have been compared in order to
determine the appropriate power transformer for the analysed bus 12. Thermal parameters
of transformers are taken from [33].

Table 6. LOL for different levels of reactive power for T1 for different additional penetration level.

Q/Qmax

Working Day
EV Additional Penetration [%]

Weekend
EV Additional Penetration [%]

0 4 7 10 20 0 4 7 10 20

LOL % LOL %

1 0.0082 0.0129 0.0183 0.0260 0.0831 0.0065 0.0102 0.0142 0.0198 0.0613
2/3 0.0076 0.0119 0.0168 0.0235 0.0728 0.0061 0.0094 0.0130 0.0180 0.0537
1/3 0.0080 0.0124 0.0174 0.0242 0.0740 0.0063 0.0097 0.0133 0.0184 0.0540
1/5 0.0084 0.0131 0.0182 0.0253 0.0771 0.0066 0.0102 0.0139 0.0192 0.0563

0 0.0094 0.0145 0.0202 0.0282 0.0856 0.0074 0.0112 0.0155 0.0213 0.0623
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Table 7. LOL for different levels of reactive power for the T2 for different additional
penetration levels.

Q/Qmax

Working Day
EV Additional Penetration [%]

Weekend
EV Additional Penetration [%]

0 20 40 50 60 0 20 40 50 60

LOL % LOL %

1 0 0.0024 0.0148 0.0379 0.0977 0 0.0020 0.0118 0.0294 0.0729
2/3 0 0.0021 0.0127 0.0316 0.0787 0 0.0018 0.0101 0.0244 0.0591
1/3 0 0.0022 0.0124 0.0305 0.0749 0 0.0018 0.0099 0.0234 0.0559
1/5 0 0.0022 0.0128 0.0313 0.0768 0 0.0019 0.0102 0.0241 0.0572

0 0 0.0024 0.0139 0.0341 0.0835 0 0.0020 0.0110 0.0261 0.0620

There is a large number of papers the optimal transformer sizing [77] and especially
transformer sizing with the presence of electric vehicle charging [78]. In this paper, we
only take these to values for rated power for purpose of analysis based on the overall load
which is sum of EVCS load and the other load for the analysed bus 12.

In Table 6, LOL percentage for a workday and weekend are represented for different
values of reactive power injection during the EV charging for T1.

Since the daily energy consumption from EVCS during the weekend, and mainly
concentrated in the central part of the day, is about 18% lower than during the weekday [56],
the values for LOL are expected to be lower than during the weekday.

From Table 6, it can be concluded that different values of reactive power injection
by the chargers also have different values of LOL. Namely, on the basis of Table 6, it is
shown that, with an increased penetration of 4% per working day, LOL values change
between 0.0129% and 0.0145 %. From Equation (20), it can be concluded that if the LOL
value is greater than 0.01333%, additional aging of the transformer occurs. As we can see,
with increased penetration of 4% per working day, with some injection level of reactive
power, there is no additional aging. If reactive power injection is zero, than LOL = 0.0145%
which means (0.0148 × 180,000/100 = 26.1 h) 26.1 h over the 24 h period. That means
2.1 h of additional ageing every day. It can also be noted that for values of reactive power
Q = 2/3Qmax, LOL has a minimum value for each considered level of EV penetration.
Within this case, with a higher degree level of reactive power, LOL is reduced compared
to the case when there is no injection of reactive power from the vehicle charger. For this
case, in Figure 10, the reactive load of the transformer per hour without reactive power
from the vehicle (in blue color) is shown, and the reactive load of the transformer with the
reactive power injection from EVs (in yellow) is shown as well. As it can be seen, there is
a compensation of reactive power in the largest portion of the day. This has resulted in
reduced apparent power for almost the entire duration of the day, Figure 10.

There is similar situation with the increase of 7% for the weekend, with adequate
reactive power support there will be no aging during the weekend. If there is no reactive
power support there will be 27.9 h daily aging over the 24 h period. That means 3.9 h of
additional ageing every day.

As is presented in Table 6 for the example of the EV penetration increase of 7% at a
EVCS, the daily aging value is 36.6 h (for cosϕ = 1) to 30.24 h (for Q = 2/3Qmax) representing
a decrease of 17.37%. During the working day with 7% additional EV penetration, daily
transformer LOL reaches 0.0202%. With reactive power injection of 2/3Qmax, there is a
decrease of daily aging from 36.36 h to 30.24 h, which is a 17% decrease. Even though it
is significant reduction, hot spot temperature reaches 140 ◦C, which represents a critical
value at which gas bubbles appear [35].

From Table 7, it can be seen that transformer T2 with an increased penetration of 40%
increases aging on the working day with 25 h aging over the 24 h period with no reactive
power support. What is interesting is that LOL is higher at maximum reactive power
support compared to where cosϕ = 1 and it is 26.64 h.
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Figure 10. Reactive and apparent power loading of T1 with (Stl) and without reactive power (QEVCS)
from EVCSs (Sl), with 4% increase in EVCS demand.

As is shown in Table 7, with an adequate value of reactive power, the value of LOL
is less than 0.0133%. Furthermore, as in the previous case, there is an improvement in
decreasing the aging, using reactive power from EVs. The change in daily aging of the
transformer and daily energy losses in the function of reactive power injection are presented
in Figures 11 and 12, for transformer T2 with EV adiditional penetration of 40%. From
the obtained characteristics, it can be seen that for some power injection there is aditional
aging (above 24 h). So, it can be concluded that there is an optimal value of reactive power
support that can have a positive influence on both transformer aging and energy losses.

Figure 11. Change in active daily losses in function of reactive power from public EVCSs.

In order to better understand the mutual influence of reactive power on transformer
aging and active energy losses, solutions that satisfy the Pareto principle of non-dominance
are shown in Figure 13. The presented solutions have been obtained by changing the
reactive power range from 0 to Qmax with a step of 0.05Qmax.
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Figure 12. Change in daily transformer aging in function of reactive power factor of the EVCS.

Figure 13. Pareto front optimal solutions.

In order to choose the final solution, a post-optimized analysis based on GRA has
been performed. In this paper, the total number of sequences compared equals to the
number of optimal solutions obtained by analysed Pareto front solutions. The elements of
the sequence are the values of two criteria functions. The results from the GRA analysis are
shown in Table 8, the while the optimal solution is pointed out in Figure 13.

Table 8. Obtained Γ0i for the set of optimal solutions.

Daily Transformer Aging [h] Active Daily Power Losses [kWh] Q/Qmax Γ0i Ranking Solution

24.000 3540.0 0.75 0.66667 2
24.012 3533.4 0.80 0.68824 1
24.553 3526.9 0.85 0.58257 4
25.200 3520.4 0.90 0.54352 6
25.880 3514.0 0.95 0.56736 5
26.689 3507.7 1.00 0.66667 2

A set of Pareto front optimal solutions, with points, is shown in Figure 12. For the
selected solutions, it is shown that for the analyzed range of reactive power injection, the
reduction of active energy losses leads to a faster aging of the transformer.
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The solution involves reactive power injection of 0.8Qmax, which means that the losses
of active energy amount to 3533.4 kWh and that the daily aging of the transformer is
24.012 h. In the end, the adopted solution enables the reduction of active daily energy loss
in the amount of 3.1%. Furthermore, with these values of reactive power injection, the
reduction of transformer LOL amounts to 4% compared to the case when an EV operates
with the unit power factor and 10.3% when an EV injects maximum available reactive
power Qmax.

5. Conclusions

In this paper, the potential of reactive power from OBCs in EVCSs to reduce losses
of active energy and the aging of transformers is analyzed in detail. For the analyzed
network and the number of EVCSs, it is shown explicitly that the injection of reactive power
contributes to a reduc-tion in the active energy losses, but contributes significantly more
to the reduction of transformer aging. Namely, for the analyzed IEEE 33 bus distribution
network and obtained EVCS demand, it is shown that if on-board EV chargers in EVCSs
operate in the capacitive mode and with maximum possible reactive power, the losses of
active energy are reduced by 3% compared to the scenario when stations operate with the
unit power factor. On the other hand, the impact of reactive injection power on the aging
of transformers is significantly more pronounced.

The main contribution of this paper is that it has been shown that a relatively small
oversizing of the OBCs enables a significant reduction in transformer aging in addition to
the reduction of active energy losses in the system. The proposed methodology is based on
generally known models for calculating power flows and the widely used model for trans-
former aging. It is important to emphasize that the proposed methodology can be applied
to any network and any number of EVCSs. Furthermore, the proposed methodology takes
into account the stochastic nature of the EVs, using appropriate PDFs and MC simulations.

It is important to point out that the contribution of reactive power from EVs at EVCSs
depends on the transformer rating and the EVCS demand. In particular, it was shown that
if the EVCS demand is 4% higher than planned, it is possible to prevent additional aging
of a 200 kVA transformer by injecting reactive power in the range from 0.154Qmax to Qmax.
Furthermore, for a transformer of 250 kVA, for a 40% higher EVCS demand, additional
aging of a transformer could be prevented by injecting reactive power in the range from
0.096Qmax to 0.799Qmax.

For different levels of the EVCS demand, there are different values of improvement
in LOL. For example, for the increase in the EVCS demand for 7% 200 kVA transformers,
there is an 18% improvement in LOL % in comparison to the case where there is no
reactive power injecting from EVs. Moreover, with a 60% increase in the EVCS demand for
250 kVA transformers, for optimal reactive power injection, there is a 23.33% improvement
of LOL compared to a case where there is a maximum reactive power injection and a 10.3%
improvement when an EV operates with the unit power factor.
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Abstract: Car-sharing systems, i.e., automatic, short-time car rentals, are among the solutions of
the new mobility concept, which in recent years has gained popularity around the world. With
the growing interest in services in society, their demands for the services offered to them have
also increased. Since cars play a key role in car-sharing services, the fleet of vehicles should be
properly adapted to the needs of customers using the systems. Due to the literature gap related to
the procedure of proper selection of vehicles for car sharing and the market need for car-sharing
service operators, this work has been devoted to the selection of car models for car sharing from the
perspective of users constantly using the systems (regular users). This paper considered the case
of the Polish who are constantly using car-sharing service systems. Vehicle selection was classified
as a multi-faceted, complex problem, which is why one of the ELECTRE III multi-criteria decision
support methods was used for this study. This study focused on the classification of vehicles from the
user’s perspective. Twelve modern and most popular car models in 2021 with internal combustion,
electric and hybrid engines were considered. The results indicate that the best choice from the point
of view of regular customers is large cars (representing vehicle classes C and D), with a large luggage
compartment capacity, the highest possible ratio of engine power to vehicle weight, and the ratio
of engine power to energy consumption. Importantly, small urban vehicles, which ideologically
should be associated with car-sharing services due to occupying as little urban space as possible,
were classified as the worst in the ranking. The results support car-sharing operators during the
process of completing or upgrading their vehicle fleets.

Keywords: car sharing; car-sharing services; e-car-sharing systems; electric car sharing; hybrid car
sharing; short-term car rentals; shared mobility; modern mobility; sustainable transport systems;
multi-criteria decision analysis; fleet management

1. Introduction

Modern cities are developing at a very fast pace. Currently, 55% of the world’s
population is urban residents, and statistics indicate that this percentage is expected to
increase to 68% by 2050 [1]. It is projected that the phenomena of globalization and
urbanization, as well as the gradual shift of public habitation from rural areas, could add
another 2.5 billion people to urban areas [2]. Such an increase is to be particularly noticeable
in the case of cities with a population of less than 1 million [3], which makes the issue
important for both small urban centers and large agglomerations.

The dynamic development of urban centers, in addition to several advantages, is also
associated with many problems, including difficulties with one of the key factors of their
economic development—transport and the elementary need of society, which is mobility [4].
To ensure efficient, cost-effective, and, above all, sustainable urban mobility, so-called new
transport mobility services are offered [5]. As part of new mobility, many different forms
of transport are offered. These include, inter alia, all services offering shared mobility
services [6]. These services derive from the trend of the sharing economy, according to
which, using publicly available cooperation platforms (websites, mobile applications), it
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is possible to temporarily use given goods or services by several different people [7]. In
addition to the use of web-based systems, companies offering services within the sharing
economy also rely on three main assumptions [8]:

• Ensuring the greatest possible time flexibility in terms of the availability of a full range
of services for the user;

• Having a rating system for users, aimed at increasing trust in the user’s offer;
• Basing this mainly on rented, shared, or borrowed resources.

Of all the forms of shared mobility offered, car-sharing services are among the most
affordable in terms of convenience and autonomy [9]. Car-sharing services are systems
that give the possibility of renting a motor vehicle for a short time via a website or mobile
application. There are four main types of car sharing [10,11]:

• Roundtrip car sharing (roundtrip station-based, back-to-base car sharing)—when the
vehicle is rented and returned always in the same location—a dedicated parking space;

• Roundtrip home-zone-based car sharing—when the vehicle is rented and returned in
specific zones of operation of the operator of a given system in the city;

• One-way (station-based) car sharing—when the vehicle is rented, e.g., at point A,
and is returned at another point, e.g., at point B, but limited only to rental points
established by the system operator;

• Free-floating car sharing—when the vehicle is rented and returned anywhere in the
city, within the entire area of operation of the car sharing.

From year to year, car-sharing services are gaining more and more popularity. The
latest data indicate that vehicle-sharing systems are currently in operation in 59 countries
around the world [12]. They are offered by 236 operators and are available in 3128 cities [12].
Statistics estimate that the fleet of vehicles will grow from the current 380,000 available cars
to almost 7.5 million units in 2025 [13], and the global car-sharing market will be worth
over USD 11 billion [12].

Since car-sharing services are developing very dynamically both in terms of the
growing number of operators, vehicles, and users, there are also more and more problems
related to their proper and, above all, effective functioning in cities. The literature review
indicates the occurrence of numerous problems covering a very wide range of issues. These
include, inter alia [14–21]:

• Economic and technical problems (e.g., the problem of proper adjustment of systems
to a given area of operation in terms of business model; the problem of defining
operating rules and the need for system location restrictions for a given area of the
city; the problem of inadequate pricing policy);

• Transport problems (e.g., the problem of appropriate adjustment of the number of
vehicles to the given system of services offered; the problem of determining the
location of system operation areas, the location of parking spaces or charging stations
for electric vehicles; problems with the technical maintenance of vehicles);

• Environmental problems (e.g., problems related to exhaust emissions of conventionally
powered vehicles used in car sharing);

• Social problems (e.g., problems with meeting society’s expectations of the services of-
fered);

• Legal problems (e.g., the problem of identifying privileges that can promote this way
of traveling, and at the same time not adversely affect other pro-ecological solutions—
sharing bus lanes or entering zones available only for public transport).

Making a detailed analysis of the indicated problems, it can be seen that most of
them are directly related to one aspect—the fleet of vehicles offered for rental in car-
sharing services. This is a factor directly related to the quality of services provided and
attractiveness for potential users. The fleet of vehicles available in car sharing has been the
research topic of many scientific studies. These studies involved various research areas.
One of them was the issue of vehicle rotation within the scope of the zone provided and
the appropriate number of vehicles offered. This aspect was called the ‘Fleet Position
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Problem’ and was considered for appropriate vehicle optimization, accessibility of cars for
customers in the city area, or proper placement of cars using specially dedicated parking
spaces [22–26].

Another current trend was the analysis of all kinds of improvements and systemic
changes implemented in car sharing during the COVID-19 pandemic. At that time, the
researchers focused on defining the right framework for disinfecting vehicles and actions
that users believe increase their comfort and safety level [27–29].

A separate group of studies was the issue of the impact of vehicles used in car sharing
on society, the economy, and the environment. The change, i.a., social decisions in the field
of giving up one’s vehicle in favor of cars from car sharing was analyzed. For example,
Jain et al. have shown that Melbourne residents are able to give up having a second car in
their family in favor of a properly functioning car-sharing system [30]. In turn, Liao et al.
emphasized that in their analyses of Dutch society, 20% of respondents are able to give up
buying the first car in the family in favor of car sharing, which would be close to their place
of residence [31]. Similar results with a result of 50% abandonment of car purchase were
achieved by Hui et al. for Hangzhou in China [32]. Restrictions on purchasing decisions
are topics that were also directly related to the impact of car sharing on the environment.
Many scientists also took up topics related to vehicles equipped with alternative drives
and the possibilities of their use in car sharing. For example, Shaheen et al. showed that
users in the U.S. increased their interest in car sharing after the deployment of electric
and hybrid vehicles [33]. Migliore et al. pointed to the numerous benefits of making
changes to car-sharing fleets and reducing the harmful impact of cars on the environment
by significantly reducing exhaust emissions [34]. Many studies were also closely related
to the spectra of the direct impact of vehicles on the environment through, for example,
exhaust emissions analysis, the possibility of replacing internal combustion engine cars
with hybrid or electric vehicles, as well as many detailed studies on electric vehicle batteries
and their tests in various road conditions [35–46].

In a broad literature review, one can notice a research gap related to the selection
of the right type of vehicle models for the car-sharing fleet. In the maze of car-sharing
research, the factors influencing car-sharing systems are widely considered, but the factors
determining the selection of given models are ignored. It should be borne in mind that car
models, and hence their detailed equipment, are the main element needed to provide the
car-sharing service. Meeting the appropriate requirements of the society by the vehicle may
become among the factors that will change their transport behavior and, as a result, allow
them to use car sharing instead of their own car. Moreover, the car can become among the
main factors that will determine whether the car-sharing service is successful and whether
the customer will use the services of a given operator more often than once. Analyzing
the literature on the specific social needs of vehicles, one can find my previous research
focused on the requirements of operators [42] or research on users who use car sharing up
to ten times a month [47]. Noticing this niche, I dedicated a research cycle to the subject of
fleet selection for car-sharing vehicles, considering the needs in its scope from the point
of view of various groups of users of car-sharing systems. This article was devoted to the
analysis of vehicle selection from the perspective of users constantly using car-sharing
systems, i.e., people who regularly rent cars from car-sharing systems more often than ten
times a month.

This study was conducted in the case of a car-sharing operator providing services in
the territory of Poland. The Polish car-sharing market is considered to be among the most
dynamically developing in terms of shared mobility [12,44]. Concerning the European
market, car-sharing systems in Poland appeared relatively late—in 2016—despite this,
since their appearance on the market, they have gained great interest, to the extent that at
the peak of market development in Poland there were 17 car-sharing operators, and the
services could be used in over 250 cities [44]. This type of expansion also translated into
significant financial results. Annual revenues in 2019 amounted to over PLN 50 million,
while in 2021 it was already over PLN 100 million [44]. The Polish car-sharing market,
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despite many good practices, is also associated with numerous imperfections, which in
many cases led to the closure of numerous service systems or a significant reduction in the
zones of operation of the systems [42,45,46]. The literature states that the causes of market
failures were often inadequately adapted to the needs of customers’ rental service, which
was based on the use of vehicles that did not meet the expectations of customers [42,45,46].
This work was therefore a response to a real market needs and an attempt to improve the
functioning of car-sharing systems operating in the Polish area.

This article consists of four chapters. The first chapter refers to the literature review
and the definition of the purpose of the work. The second part was devoted to presenting
the research process and the detailed methodology used to achieve the results of this
study. The third part presents the obtained research results. The fourth chapter contains a
discussion of the results and a summary, as well as limitations on the conducted research
and future research plans about vehicle selection for car sharing.

2. Methodology

2.1. Multi-Criteria Decision Making

Choosing the right type of vehicle for the needs of users of car-sharing systems is a
problem that requires making the right decisions. Decision making is a difficult task for the
person responsible. Usually, along with the question of choice, there are thoughts about
other possible alternatives or ways in which you can check whether a given decision will
have a positive impact on the analyzed issue or not. The problem becomes even more
complicated if it turns out that many different factors can affect the accuracy of a given
decision. Then, all kinds of methods for performing decision analysis come to the rescue.
These include i.a., multi-criteria decision support methods.

Multi-criteria decision making (MCDM) or multi-criteria decision analysis (MCDA)
methods are a subdiscipline of operations research [48]. Their task is to provide tools
that, in the presence of many, often contradictory, criteria, will be used to evaluate and
rank decision options, to facilitate the decision-making process [48–50]. What is more,
methods help to structure and formalize decision-making processes transparently and
consistently [51].

The methods are based on elements of knowledge from such fields as decision theory,
mathematics, economics, computer science or information systems [51]. Many methods can
be used for solving problems and they can be arranged according to different parameters
and different stakeholders [51]. Due to the high level of utilitarianism, the methods are suc-
cessfully used in the case of individuals, enterprises, and government institutions [51]. In
the case of transport issues, the methods were used for, inter alia, during selection the Paris
Metro project to choose the right types of scooters for sharing companies, to decide what
type of car-sharing services should be provided in Shanghai, to assess the overall state of
transport in Istanbul, to improve the bike rental station for the city located in Beijing, China,
when making decisions on the availability of air connections with Pittsburgh, analyzing the
functioning of shared mobility services in the post-COVID-19 era, or improving the quality
of bike-sharing services in the Chinese city of Xi’an [52–58].

There are many different methods of multi-criteria decision support that are widely
used. There are three main groups of methods—methods based on overshooting rations,
aggregate measures, and utility functions. Each MCDA method has its calculation method
by which alternatives are queued [51]. Since different types of vehicles are considered
when selecting vehicles, the ELECTRE III method is often contradictory to comparing and
evaluating them in pairs and used to obtain a ranking of variants in the work.

The ELECTRE III is among the ELECTRE collection methods, named after Elimination
Et Choix Traduisant la Realitè. The ELECTRE III method owes its widespread popularity to
the fact that among other methods of the ELECTRE family, it is possible to perform analyses
with the indication of a ranked final ranking [59]. It is the possibility of obtaining a hierarchy
among the objects under consideration that makes the method widely popular [59–61].
The ELECTRE III method is a particularly frequently used tool when solving various
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types of transport issues. It has been used, inter alia, during the evaluation of urban
transportation projects [62], during the selection of means of urban passenger transport [63],
safety analysis in a suburban road network [64,65], evaluation of environmental indicators
for transport [64], evaluation service quality of international airports in Sicily [66] or
during choosing a route for Dublin port motorway [67]. Due to the possibility of obtaining
an ordered final ranking, detailed pairwise comparisons of individual criteria, and the
universality of application to the problem of selection for analysis, the use of the ELECTRE
III method was proposed.

2.2. Research Process

To obtain results on the selection of appropriate vehicle models for the needs of regular
users of car-sharing systems, a four-stage research process was proposed, which was shown
in Figure 1.

Figure 1. Research process.

The proposed research process was directly related to the algorithm of conduct in the
ELECTRE III method. In the first step, the decision variants and a set of factors (criteria
characterizing vehicle models parameters), which were used for detailed analyses were
identified [60,61]. In the analyzed case study, the variants were car models considered
for implementation in car-sharing systems. A detailed list of vehicles and the criteria
considered is presented in the Results section. In the second step, research was carried out
with the participation of users who constantly use car sharing. Their task was to assess the
importance of individual factors considered when selecting vehicles. The evaluation was
carried out by performing a pairwise comparison of each of the analyzed factors.

The criteria were assessed by comparing them in pairs and giving ratings from 1 to 9,
according to Saaty’s scale. The values of the scale ratings are presented in Table 1. Then,
by comparing the two analyzed criteria, the exceedance index was calculated. A detailed
pairwise comparison matrix is presented in the Results section.

Table 1. Saaty’s Scale.

Weight Detailed Description

“1” Equal importance of the criteria
“2” Very weak advantage of one criterion over the other
“3” Weak advantage of one criterion over the other
“4” More than a weak advantage of one criterion over the other, but less than a strong advantage
“5” Strong advantage of one criterion over the other
“6” More than a strong advantage of one criterion over the other, but less than very strong
“7” Very strong advantage of one criterion over the other
“8” More than a very strong advantage of one criterion over the other, less than an extreme
“9” Extreme, total advantage of one criterion over the other
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In the third stage, detailed analyses were carried out using the ELECTRE III method.
Based on the calculated exceedance index, it was determined whether the first of analyzed
variant is not worse than the second analyzed variant due to the indicated factor. Con-
sequently, calculations of the compliance rate should be performed to obtain the level
of advantage of one variant over the other in terms of all analyzed factors [53,54]. The
compliance rate is the sum of the weights of the criteria for which the evaluation value
of one variant is greater than or equal to the evaluation value of the other variant [52,53].
ELECTRE III introduces three main parameters that allow determining the relationships
between the analyzed variants [61]:

• The maximum difference of factors values Δ—the difference between the highest and
lowest value in the assessment of two variants;

• Indifference threshold Q—is the biggest difference between the performance of the
variants and profiles on the factors;

• Preference threshold p—the greatest difference between the performance of the vari-
ants and profiles such that one is preferable to the other on the considered factor;

• Veto threshold V—the difference in the assessment of two variants concerning a
given factor.

Sequentially, an altitude difference matrix is created. Variants should be arranged
sequentially, starting from their initial ordering using classification procedures of ascend
distillation and descend distillation [51–53]. Both distillations rate the variants from best
to worst [51–53]. Ascend distillation is a planning process that begins with selecting the
best variant and placing it at the top of the ranking [51–53]. The best variant is selected one
by one from the remaining variants and placed in the next position in the classification.
This procedure is repeated until all possible variants have been analyzed [51–53]. Descend
distillation is a planning process that starts with selecting the worst variant and placing it
at the end of the ranking. Subsequently, similarly, to ascending distillation, further analyses
should be performed, bearing in mind that in the subsequent iterations of the variants to
be considered, the worst variant is always selected and placed in the next positions from
the end of the ranking [55,56]. After the distillation has been performed, a final ranking is
made. The results are presented in the next chapter.

3. Results

This study was conducted in June 2022 for a case study of a car-sharing company
operating in Poland. Currently, the company has a fleet of 2000 cars. Cars owned by the
operator are vehicles of one type constituting urban, small-sized cars, which are equipped
with three or five doors. The operator expected to receive indications as to the possibility
of modernizing the fleet, and to check what factors were the most crucial for users during
the process of choosing vehicles.

To determine the fleet of implementable cars, twelve modern vehicles were selected to
represent different types of drives including cars with internal combustion engine, cars with
hybrid engines and cars with electric engines. To consider the vehicles attractive to users,
the focus was on the selection of vehicles that were the most popular cars in Europe in 2021
according to the list published by Automotive News Europe [68]. The vehicles published
in the report were representatives of different classes of cars. Car classes are a standard
used in Europe that specifies the regulations, description, and detailed categorization of
vehicles according to ISO 3833-1977. The standard distinguishes nine classes of vehicles
from A to M which distinguish cars from small and city to medium, large, family, vans,
off-road and luxury vehicles. From a wide range of vehicles presented in the report, vehicles
representing car classes from A to D were selected, following the fact that vehicles of these
classes are the cars most often chosen by Poles [69]. Moreover, vehicles from classes A
to D are also the most frequently used cars in European car sharing involving passenger
cars [45]. Van and combivan cars are offered in Poland in cargo car-sharing systems. Since
the operator does not provide this type of service, this study was limited to models of
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classes from A to D. Detailed characteristics of the selected car classes are presented in
Figure 2.

Figure 2. Characteristics of the analyzed vehicle classes.

Since the preferences of Poles who most often choose vehicles from classes A to D also
correspond to the fleets of cars used in the Polish car-sharing market, twelve vehicle models
were selected, which were considered in further analyses. The selection of vehicles did not
favor any of the specific brands of vehicles. A detailed list of vehicle models considered in
the analyses is presented in Table 2.

Table 2. Analyzed car models.

Vehicle Model Number Car Class Type of Engine

VM1 C class Internal Combustion Engine
VM2 B class Internal Combustion Engine
VM3 B class Hybrid Engine
VM4 D class Hybrid Engine
VM5 B class Internal Combustion Engine
VM6 C class Hybrid Engine
VM7 C class Internal Combustion Engine
VM8 A class Electric Engine
VM9 D class Hybrid Engine
VM10 A class Electric Engine
VM11 D class Electric Engine
VM12 D class Electric Engine

Subsequently, a detailed list of factors that were used to evaluate the various variants
was indicated. A detailed list is presented in Table 3.

Table 3. Set of factors considered during car-sharing fleet selection analysis.

Factor Number Factor Characteristics

F1 Rental fee [€]
F2 The ratio of engine power to vehicle weight [kW/kg]
F3 The ratio of engine power to consumption [kW/kWh]
F4 Time of battery charging/time of refueling [min]
F5 Boot capacity [l]
F6 Number of doors in the vehicle [-]
F7 Vehicle length [m]
F8 Euro NCAP rating [-]
F9 Safety equipment [-]

F10 Warranty period in years [-]
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The list of factors for the assessment of individual vehicles was prepared based on
the author’s previous research [47], in which slight modifications were made, inter alia, in
terms of costs, considering the cost of renting cars instead of the cost of purchasing vehicles.
In the case of vehicle rental costs, due to the lack of use in the current Polish car-sharing
systems indicated in Table 2 of vehicle models, Formula (1) has been developed, which
considers the costs of renting vehicles depending on the time of their use and the distance
traveled. Stopover costs are also included.

rental f ee(a, b) = ( fmin + smin)a + fkmb [€] (1)

where a—rental time [min], b—travel distance [km],

fmin =

⎧⎪⎪⎨⎪⎪⎩
0.14 € f or A − class cars
0.17 € f or B − class cars
0.21 € f or C − class cars
0.27 € f or D − class cars

—rental cost for 1 min,

fkm =

⎧⎪⎪⎨⎪⎪⎩
0.24 € f or A − class cars
0.24 € f or B − class cars
0.24 € f or C − class cars
0.28 € f or D − class cars

—rental cost for 1 km,

smin = 0.03 € f or A, B, C, D − class car—stopover fee for 1 min

The next step was to establish the importance of individual indicators when selecting
vehicles. For this purpose, pairwise comparisons of all factors were developed. The factors
were assessed by the car-sharing service users. The questionnaire was available online by
using the CAWI (Computer-Assisted Web Interview) method. The aim of this study was to
obtain a pairwise comparison of each of the factors and assign an appropriate weighting
according to the Saaty scale presented in Table 1. The respondents indicated appropriate
weights by filling in the matrix presented in Figure 3. This study included 250 people who
use car-sharing systems very often (more often than ten times a month) and were considered
regular customers of the systems. The survey was conducted anonymously in June 2022.
The users who participated in this study represented a population of 200,000 users of the
system of the analyzed enterprise. For the research sample, the confidence level was 95%
(α = 0.95). The fraction size was 0.5 and the maximum error was estimated at 7%.

The next step was to prepare a summary of the values of individual criteria for each of
the analyzed variants. A detailed list is presented in Table 4.

Table 4. Summary of the values of individual factors for each of the considered car models.

Variant

Rental
Cost

The Ratio of
Engine Power

to Vehicle
Weight

The Ratio of
Engine Power

to Energy
Consumption

Charging
Time/

Refueling
Time

Boot
Capacity

Number
of

Doors

Vehicle
Length

Euro NCAP
Rating

Safety
Equipment

The
Warranty
Period in

Years

F1
[€]

F2
[kW/kg]

F3
[kW/kWh]

F4
[min]

F5
[l]

F6
[-]

F7
[m]

F8
[-]

F9
[-]

F10
[-]

VM1 0.48 0.051 0.475 2 380 5 4.28 5 10 2
VM2 0.44 0.077 0.511 2 311 5 4.05 4 9 2
VM3 0.44 0.078 0.388 1.5 286 3 3.94 5 8 3
VM4 0.58 0.154 0.062 2 480 4 4.70 5 11 2
VM5 0.44 0.049 0.613 1.5 391 5 4.05 5 10 2
VM6 0.48 0.078 0.327 2.5 361 4 4.37 5 10 3
VM7 0.48 0.075 0.420 2.5 600 5 4.68 5 10 3
VM8 0.41 0.034 0.421 90 300 5 3.73 1 6 2
VM9 0.58 0.056 0.229 2 443 5 4.47 5 8 5
VM10 0.41 0.070 0.157 240 363 3 3.63 4 8 2
VM11 0.58 0.051 0.132 360 585 5 4.49 5 8 2
VM12 0.58 0.063 0.133 450 543 5 4.58 5 8 3
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Figure 3. Pairwise comparison matrix provided to respondents.

Then, based on the ELECTRE III methodology, the maximum difference of criteria
values, equivalence threshold, preference threshold, and veto threshold values were deter-
mined. Detailed data were presented in Table 5.

Table 5. The set of equivalence, preference, and veto thresholds.

Factor Number
Maximum

Difference of
Factors Values Δ

Indifference
Threshold Q

Preference
Threshold p Veto Threshold V

F1 0.17 0.0425 0.085 0.17
F2 182 45.5 91 182
F3 27.5 6.875 13.75 27.5
F4 448.5 112.125 224.25 448.5
F5 314 78.5 157 314
F6 2 0.5 1 2
F7 1.07 0.2675 0.535 1.07
F8 4 1 2 4
F9 5 1.25 2.5 5

F10 3 0.75 1.5 3

The next step according to the ELECTRE III methodology was to create the concor-
dance matrix. The matrix is presented in the form of Table 6.
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Table 6. Concordance matrix values.

Variants VM1 VM2 VM3 VM4 VM5 VM6 VM7 VM8 VM9 VM10 VM11 VM12

VM1 - 1.0 0.9977 0.8564 0.9994 0.9977 0.8578 1.0 0.911 0.916 0.7617 0.8694
VM2 1.0 - 0.9977 0.7317 1.0 0.9765 0.7707 1.0 0.8452 0.916 0.6454 0.7122
VM3 0.8491 0.918 - 0.5999 0.7322 0.8128 0.6514 0.918 0.6955 0.916 0.525 0.609
VM4 0.6875 0.6875 0.7672 - 0.6875 0.7844 0.6852 0.6875 0.8619 0.916 0.834 0.9157
VM5 1.0 1.0 0.9977 0.81 - 0.9765 0.8136 1.0 0.8494 0.916 0.7023 0.7868
VM6 0.9007 0.8404 1.0 0.8928 0.6875 - 0.7968 0.918 0.829 0.916 0.6619 0.7851
VM7 1.0 1.0 1.0 0.918 0.9073 1.0 - 1.0 0.911 0.916 0.834 0.918
VM8 0.5719 0.7435 0.8121 0.543 0.6208 0.5696 0.5696 - 0.5624 0.7028 0.4854 0.5671
VM9 0.779 0.7695 0.9643 0.934 0.7299 0.9604 0.8436 0.909 - 0.916 0.9025 1.0

VM10 0.4868 0.6259 0.8242 0.662 0.5863 0.6609 0.4029 0.7065 0.721 - 0.6113 0.6767
VM11 0.7299 0.7695 0.7995 0.934 0.7299 0.8621 0.7276 0.7695 0.993 1.0 - 0.9977
VM12 0.7299 0.7695 0.8035 0.934 0.7299 0.8661 0.7299 0.7695 0.993 0.9434 0.916 -

The next stage in the ELECTRE III method was to perform the ascend and descend
distillation against each of the variants and create and in the final step create a dominance
matrix. The dominance matrix was presented in Table 7.

Table 7. Dominance matrix values.

Variants VM1 VM2 VM3 VM4 VM5 VM6 VM7 VM8 VM9 VM10 VM11 VM12

VM1 - B+ B+ B+ W− B+ W− B+ W− B+ W− B+
VM2 W− - B+ B+ W− B+ W− B+ W− B+ W− B+
VM3 W− W− - W− W− W− W− W− W− B+ W− W−
VM4 W− W− B+ - W− W− W− B+ W− B+ W− W−
VM5 B+ B+ B+ B+ - B+ W− B+ W− B+ R B+
VM6 W− W− B+ B+ W− - W− B+ W− B+ W− R
VM7 B+ B+ B+ B+ B+ B+ - B+ R B+ R B+
VM8 W− W− B+ W− W− W− W− - W− B+ W− W−
VM9 B+ B+ B+ B+ B+ B+ R B+ - B+ B+ B+
VM10 W− W− W− W− W− W− W− W− W− - W− W−
VM11 B+ B+ B+ B+ R B+ R B+ W− B+ - B+
VM12 W− W− B+ B+ W− R W− B+ W− B+ W− -

where (B+)—the first variant is better than the second variant; (R) — a pair of variants are equivalent; (W−)—the
first variant is worse than the second variant.

The last step was to prepare the final ranking presenting the ranking of variants in
terms of the preferences of experts and the adopted factors. The final ranking was presented
in Table 8.

Table 8. Variants final ranking.

Dominance Matrix Ascend Distillation Descend Distillation

VM1 3.0 5.0
VM2 4.0 5.0
VM3 6.0 9.0
VM4 5.0 7.0
VM5 3.0 3.0
VM6 5.0 5.0
VM7 2.0 1.0
VM8 6.0 8.0
VM9 1.0 2.0

VM10 7.0 9.0
VM11 1.0 4.0
VM12 4.0 6.0

The graphical arrangement of the variants is shown in Figure 4.
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Figure 4. Ranking of car models best suited to car sharing from the perspective of regular users.

4. Discussion and Conclusions

Research carried out using the ELECTRE III multi-criteria decision support method
allowed obtaining the final ranking of ranked vehicle models for the car-sharing system,
which best meet the expectations of people regularly using car-sharing systems. In the first
place, ex aequo placed two models of vehicles—VM9 and VM11. The second place was
taken by VM5.

When making detailed analyses in terms of the size of the winning vehicles, it should
be stated that the models represented C and D class cars. They are therefore vehicles with
medium and large dimensions providing comfortable travel conditions simultaneously for
five adults on urban routes, but also over long distances. The vehicles are also equipped
with large cargo space. In the case of class D, these were family cars. Interestingly, the
worst place in the ranking was achieved by a vehicle representing class A, the smallest of
the car models under consideration.

Considering the obtained results in terms of the car propulsion, it should be stated that
hybrid and conventionally powered vehicles ranked highest in the ranking. In turn, the
second place was taken by an electric vehicle. Interestingly, the last places in the ranking
were also taken by vehicles with conventional and hybrid drives. This means that for the
respondents, the type of drive was not a key factor, and the ecological thread is debatable.
Research indicates that it was not the type of power supply but only more detailed technical
parameters, inter alia, the ratio of engine power to fuel consumption or engine power to
vehicle weight characterizing specific car models played a key role. This indicates that over
time if electric vehicles are equipped with more and more capacious batteries and achieve
greater ranges, these vehicles will reach higher places in the rankings.

Analyzing the obtained results from the point of view of the importance of individual
criteria for users, it should be mentioned that the most important issues were the ratio of
engine power to energy consumption, the ratio of engine power to vehicle weight, boot
capacity, and vehicle length. In the case of the ratio of engine power to energy consumption,
this means that for users, the issue of eco-friendliness and economy of cars is important. In
turn, the ratio of engine power to vehicle weight is directly related to the dynamics of the
vehicle. The higher the ratio, the greater the dynamics and driving comfort for the users.
Analysis of the most important factors shows that that regular customers of car-sharing
systems prefer vehicles with high engine power, which at the same time are economy
cars, providing the opportunity to overcome the longest possible reach. What is more, it
is worth emphasizing that it was particularly important for users that the vehicles were
large, comfortable spacious, and roomy cars. Therefore, the relatively smallest cars were
placed in the worst positions. Such conclusions show that regular users of car-sharing
systems treat rental vehicles as classic, large family cars owned, which means that in
their case car-sharing cars can replace ownership of their car. On the one hand, this is a
very interesting conclusion, because it indicates that car sharing fulfills the basic task of
exchanging a single vehicle for a rented one. On the other hand, it is worth emphasizing
that the idea of carsharing was to ensure the high availability of small, urban cars that
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do not take up much public space [70,71]. However, the conducted research indicates
the opposite. This kind of conclusion is in line with the realities of the Polish car-sharing
market because many systems that were based on fleets comprised of small, city cars have
been closed.

Comparing the results on the choice of vehicles by regular users using the systems
more than 10 times a month, to less using cars up to ten times a month, it should be
emphasized that they have similar preferences in terms of size and type of vehicles. Such
results can be an important indication for operators when composing the composition of
their fleet because frequent customers and regular customers can be included in one group
of service recipients. It is also an important tip for researchers when further considering
the segmentation of car-sharing customers.

To sum up, based on the research carried out, operators of Polish car-sharing services,
when composing their fleet tailored to the needs of users constantly using the systems,
should focus on large and long C or D class vehicles, equipped with engines with high
parameters and at the same time low energy consumption and equipped with the largest
luggage space. This type of fleet should also find interest among customers who often
use car-sharing systems. Since the systems are also used by occasional customers who
rarely use the systems, it is recommended to use fleet differentiation. This article has some
limitations. This article focuses on analyses concerning only one group of users—regular
users. The analyses were performed exclusively for the Polish market and focused on
vehicles representing classes from A to D. The respondents assessed the criteria indicated
arbitrarily by the author, without the possibility of indicating their own proposals of factors
that could affect the choice of vehicles.

In the following articles, the author plans to analyze the composition of the car-sharing
fleet, considering the opinions of people who rarely use the systems, to obtain the full
social perspective. Moreover, the author would also like to consider in the analyses the
vehicle classes that were not included in this article, i.e., E, F, J, and M. This will allow for a
possible consideration of the operators’ approach to the implementation of cargo services.
The author also plans to introduce the possibility for users to indicate their own factors
which, in their opinion, affect the choice of car-sharing vehicles. The author would also like
to perform similar research for other countries to obtain a comparison of the approach to
the car-sharing fleet on the world market.
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Selection of Car Models with a Classic and Alternative Drive to
the Car-Sharing Services from the System’s Rare
Users Perspective

Katarzyna Turoń

Department of Road Transport, Faculty of Transport and Aviation Engineering, Silesian University of Technology,
8 Krasińskiego Street, 40-019 Katowice, Poland; katarzyna.turon@polsl.pl

Abstract: Short-term, automated car rental services, i.e., car sharing, are a solution that has been
improving in urban transportation systems over the past few years. Due to the intensive expansion
of the systems, service providers face increasing challenges in their competitiveness. One of them
is to meet the customer expectations for the fleet of vehicles offered in the system. Although this
aspect is noted primarily in the literature review on fleet optimization and management, there is
a gap in research on the appropriate selection of vehicle models. In response, the article aimed to
identify the vehicles best suited for car-sharing systems from the customer’s point of view. The
selection of suitable vehicles was treated as a multi-criteria decision-making issue; therefore, the
study used ELECTRE III—one of the multi-criteria decision-making methods. The work focuses on
researching the opinions of users who rarely use car-sharing services in Poland. The most popular
car models in 2021, equipped with internal combustion, hybrid, and electric engines, were selected
for the analysis. The results indicate that the best suited cars are relatively large, spacious, and
equipped with electric drive and represent the D segment of vehicles in Europe. In addition, these
vehicles are to be equipped with a powerful engine, a spacious boot, and a fast battery charging time.
Interestingly, small city cars, so far associated with car sharing, ranked the worst in the classification
method. In addition, factors such as the warranty period associated with the quality of the vehicles,
or the number of car doors, are not very important to users. The results support car-sharing operators
in the process of selecting or modernizing a fleet of vehicles.

Keywords: car sharing; shared mobility; sustainable transportation; fleet management; mobility
management; vehicle selection; transportation engineering; multi-criteria decision analysis; ELECTRE
III; MCDA; electromobility

1. Introduction

Car-sharing systems, that is, short-term automated car rental services, are solutions
that are becoming more and more popular around the world. The systems’ popular-
ity and intensive development are mainly related to our high convenience and self-
commissioning [1]. Furthermore, the systems also benefit from the fact that the vehicles
of the systems have free access to parking lots within the operating zones of operation,
and in most systems, it is possible to return the vehicle anywhere within the zones located
in the city [2]. The great interest in car-sharing services also translates into international
statistics. In 2020, the global car-sharing market exceeded USD 2 billion [3]. By 2027, the
market value is projected to exceed USD 3 billion [4].

The significant development of car-sharing services in the world has led to many
changes in the rules of their operation. For example, operators have made improvements
in the operation and optimization of their systems, service management, and the imple-
mentation of new transport or area solutions to all innovations related to the COVID-19
pandemic, with a need to adapt the vehicle fleet to a higher level of safety for users [5–8].
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All of these aspects are of great interest to scientists around the world. However, from the
point of view of scientists, one issue is considered relatively often—the fleet of cars used in
car sharing. When the international literature is analyzed, four main thematic areas can be
distinguished from the point of view from which a car-sharing fleet is considered.

The first area concerns the relocation of vehicles. The relocation of vehicles is particu-
larly important due to the limited parking space in cities [9]. The analysis and recommenda-
tions for the relocation of cars in systems are particularly important due to the functioning
of various types of car-sharing systems on the market. These include [10–14]:

• Round-trip car-sharing (round-trip station-based, back-to-base car-sharing)—when the
vehicle is rented and always returned to the same location—a dedicated parking space;

• Round-trip home zone-based—when the vehicle is rented and returned to specific
zones of operation by the operator of a given system in the city;

• One-way (station-based car-sharing)—when the vehicle is rented, e.g., at point A,
and is returned to another point, e.g., at point B, but limited only to the rental points
established by the system operator;

• Free-floating car-sharing—when the vehicle is rented and returned anywhere in the
city, within the entire area of operation of the car-sharing system.

Various forms of rentals and returns generate the need for a proper rotation of vehi-
cles within the available zones, which is emphasized by Changaival et al., defining the
placement of the vehicles as a fleet placement problem (FPP) [15]. Ströhle et al. showed a
relationship between leveraging the customer’s flexibility for car sharing and fleet optimiza-
tion, indicating that a customer’s flexibility in the range of 1 km allows a fleet reduction of
12% [16]. In turn, Monteiro et al. analyzed the distribution of the zones in car sharing and
proved that settling more parking spaces and vehicles near each other is more effective than
having parking spaces located in the city but distant from each other [17]. In turn, Lemme
et al. focused on the creation of an optimization model to evaluate electric vehicles as an
alternative to a fleet composition in station-based car-sharing systems, demonstrating that
it is possible to rotate vehicles properly in zones; although, in the case of electric vehicles
being implemented for the first time in a fleet, this should be checked in pilot programs
due to the main disadvantage of vehicles, which is the economic dimension [18]. In turn,
Carlier et al. proposed a programming-oriented mathematical approach and introduced a
simple linear model based on total flow variables [19]. Their solution was based on three
optimization criteria: maximizing the met car-sharing requirements while minimizing the
vehicle fleet and relocation operations [19].

The second of the thematic areas dedicated to the fleet of cars in car-sharing systems
is devoted to issues related to the size of the fleets owned in the systems. For example,
Nourinejad and Roorda devoted their research to fleet size decision support and showed
that the number of cars is related to specific user demand patterns [20]. In turn, Barrios
and Godier simulated the appropriate number of vehicles to achieve a flexible car-sharing
system, stressing that the periodic redistribution of vehicles, which is not carried out
continuously, is of particular importance [21]. In comparison, Lu et al., conducting research
on optimizing the profitability and quality of service in car-sharing systems under demand
uncertainty, showed that exogenously given one-way car-sharing demand can increase
car-sharing profitability under a given one-way and round-trip price difference and vehicle
relocation cost, while an endogenously generated one-way demand, due to pricing and
strategic customer behavior, may decrease car-sharing profitabilities [22].

The third area of fleet research is devoted to considering vehicles from car-sharing
systems and their impact on economic and social issues. For example, Hui et al. considered
the impact of car sharing on the willingness to postpone a car purchase, indicating that
50% of respondents in the Chinese city of Hangzhou will postpone their car purchases
by participating in car sharing [23]. For comparison, Jain et al., in their research on the
Australian city of Melbourne, showed that residents of densely populated inner suburbs
used a shared car to avoid or delay owning a car, while residents of the middle suburbs
used car sharing to avoid buying a second car [24].
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In turn, Liao et al., who performed research in the Netherlands, obtained results that
around 40% of the respondent’s car drivers indicated that they are willing to replace some
of their private car trips with car sharing, and 20% indicated that they could abandon a
planned purchase or lose a current car if car sharing becomes available near them [25].

Another identified research topic was devoted strictly to the use of alternatively
powered vehicles and all pro-ecological solutions affecting the improvement in the level
of sustainability of car-sharing systems. In this area, many research works were carried
out. Many works have been devoted to the idea of alternative drives and eco-friendly
issues, including the application of an alternative power supply for vehicles through the
possibility of urban power electromobility from historical buildings, the use of vehicles-
to-grid or research on the real energy consumption of vehicles that can be used in car-
sharing services in urban conditions [26–30]. For example, Migliore et al. dealt with the
definition of the environmental benefits related to car-sharing systems, indicating the
possibility of achieving limits in pollutants emission by 25% for PM10 and 38% for CO2 [31].
Shaheen et al., examining the approach of system users to the fleet of alternatively powered
vehicles, indicated that pairing shared electric or plug-in hybrid vehicles increased user
sympathy for the use of car sharing [32]. In turn, Liao and Correia showed that electric
vehicles in car sharing are mainly used for short trips, and their current users are mostly
middle-aged men with relatively high incomes and education [33].

The last of the identified thematic groups is the research on the operational and
technical aspects of a fleet of vehicles made available in car-sharing systems. In this area,
together with our co-authors, we carried out various types of research aimed at identifying
the main technical aspects that are important for the proper functioning of the services [34].
We also carried out research on the determination of the types of fleets used in car-sharing
systems in Europe [35], as well as analyzing the type of vehicle tailored to the requirements
of car-sharing system operators [36]. However, this research focused on the needs of the
service providers and how this translated into business profitability, not on checking the
real expectations of society. Noticing this research gap, the author proposed a research
cycle devoted to the selection of vehicles for the car-sharing fleet from the point of view of
various types of users. This article aimed to analyze the types of vehicles best suited to the
needs of customers who rarely use car-sharing systems.

The research was proposed in a case study of a company operating in the Polish
car-sharing services market. The Polish car-sharing market has not been selected by chance,
as Poland is considered one of the fastest-growing shared-mobility markets [3]. Although
car-sharing systems in Poland were relatively late compared to other European countries
(in 2016), the market is considered dynamic and valuable [37,38]. At the highest stage
of the development of the systems, 17 service providers offered car-sharing services in
250 Polish cities [38]. From a financial point of view, car-sharing services generated revenues
of more than PLN 50 million in 2019 and more than PLN 100 million in 2021 [38]. In
Poland, car-sharing services, despite many superlatives, have also suffered many failures.
These included, in addition to the financial problems of the operators, an unsuitable
vehicle fleet or the type of car-sharing services offered in cities [34–36]. In many cases,
changes to the vehicle fleet appear only as pilots, such as the introduction of several electric
vehicles [34–36]. In response to the appropriate adaptation of the vehicles to the needs of
society using car sharing, our own research was proposed. The results of the research are
presented in this article.

The work was divided into five chapters. The first section is an introduction with
a review of the literature. In the second chapter, the research methodology is presented.
The third chapter indicates the obtained research results, which are discussed in the fourth
part of the article. The fifth chapter presents a summary, research limitations, and further
research plans of the author.
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2. Methodology

Choosing appropriate vehicle models for a car-sharing fleet is a multifaceted problem.
In situations related to complex decision-making problems, one of the methods of support
in analytical processes is the method of multi-criteria decision support, called Multiple-
Criteria Decision Making (MCDM) or Multiple-Criteria Decision Analysis (MCDA). These
methods can provide a wide range of tools to help identify the best options for the criteria
under consideration or a full ranking of the possible solutions [39]. The methods are based
on elements of knowledge in such fields as decision theory, mathematics, economics,
computer science, or information systems [31]. The widespread interest in these methods
is related to their wide utilitarianism [31]. Transport processes, due to their multi-criteria
nature and complexity [40–42], seem to be an excellent application for MCDA methods.
From the point of view of transport issues, multi-criteria decision support methods were
used in selecting the Paris Metro project, car-sharing services in Shanghai, assessment of
the state of transport in Istanbul, or air connections with Pittsburgh [43–45].

There are many different methods of multi-criteria decision support. According to
the classification, the methods based on superiority ratios, function, utility, and aggregate
measures can be distinguished [46–49]. One method that allows for making a detailed
comparison of the analyzed criteria and, on its basis, obtaining a ranking of the solutions
(given variants) chosen for analysis is the ELECTRE III method.

ELECTRE III is a method that derives from the French name Elimination Et Choix
Traduisant la Realitè. It owes its popularity to the fact that among all the methods of the
ELECTRE group, performing analyses with an indication of a ranked final ranking is possi-
ble [50]. The ELECTRE III method introduces parameters that determine the relationship
between individual variants—the preference threshold, the equivalence threshold, and the
veto threshold [51].

The ELECTRE III method is based on the use of society’s opinion to assess the im-
portance of individual factors that influence the choice of a given variant [52]. Individual
criteria in the ELECTRE III method may be strongly or slightly better than each other,
respectively. Therefore, by using this method, it is possible to determine the insignificant or
very significant differences between the analyzed variants [53]. The ELECTRE III method
is based on a three-stage algorithm presented in Figure 1.

 

Figure 1. ELECTRE III steps of the procedure.
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In the first stage, it is necessary to identify the variants of the decision and then define
a set of criteria that will be used to evaluate each of the variants [50–55]. For each of the
criteria, a weight is determined, which is indicated by experts. The respondents compared
each pair of criteria according to Saaty’s scale, giving grades from 1 to 9, where [46]:

• 1—same meaning;
• 2—very weak advantage;
• 3—weak advantage;
• 4—more than a weak advantage, less than strong;
• 5—strong advantage;
• 6—more than a strong advantage, less than very strong;
• 7—a very strong advantage;
• 8—more than a very strong advantage, less than an extreme;
• 9—extreme, total advantage.

Then, by comparing the two decision variants, the exceedance index was
calculated [50–55].

In the second stage, using the calculated exceedance index, it was determined whether
the first variant was better than the second due to the selected criterion. Consequently, the
calculations of the compliance rate should be performed to obtain an answer with the level
of advantage of one variant over the other in terms of all criteria [50–55]. The compliance
rate is the sum of the criteria weights for which the evaluation value of one variant is
greater than or equal to the evaluation value of the other variant [50–55].

In the third stage, an altitude difference matrix was created. The variants should be
arranged sequentially, starting from their initial ordering using the classification procedures
of ascending and descending distillation [50–55]. Both distillations rate the variants from
best to worst [50–55]. Ascend distillation is a planning process that begins with selecting
the best variant and placing it at the top of the ranking [50,51]. The best variant is selected
one by one from the remaining variants and placed in the next position in the classification.
This procedure is repeated until all possible variants have been analyzed [50,51]. Descend
distillation is a planning process that begins with selecting the worst variant and placing it
at the end of the ranking. Subsequently, similar to ascending distillation, further analyses
should be performed, bearing in mind that in the subsequent iterations of the variants to
be considered, the worst variant is always selected and placed in the next positions from
the end ranking [53,54]. After the distillation has been completed, a final ranking is made.

The results are presented in the next chapter.

3. Calculation Procedure

The proposed study was carried out for the case study of one car-sharing company
operating in the Polish area. The company currently has about 2000 vehicles, focusing on
cars of one type: small-sized cars and urban hatchback cars equipped with three or five
doors. The research aimed to analyze and indicate what type of fleet would be best suited
to the needs of system users who rarely use rental cars, that is, from 5 to 10 times a year.

Twelve new vehicle models equipped with internal combustion, hybrid, and electric
engines were selected for the study. The proposed models were chosen among the most
popular cars in Europe in 2021, based on the Automotive News Europe report [56]. The
car models selected for the analysis represented different vehicle classes (car segments).
The car classes are car-scheme classifications used in Europe, standardized following ISO
Standard 3833–1977. They categorize vehicles in terms of size and equipment. The standard
distinguishes nine main classes marked with the letters A to M that characterize the type of
vehicle. A detailed breakdown of the vehicle classes is presented in Table 1.

Among the car models included in the report, the focus was on the vehicles represent-
ing the four most popular car segments in Poland, which are the A, B, C, and D classes [57].
A list of the vehicle models included in the analysis is presented in Table 2.
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Table 1. Characteristics of vehicle classes.

Segment Description

A
Cars designed for urban driving; are characterized by small dimensions and low operating costs. Impractical to
travel on extra-urban routes. They can be two- or four-seater, and five-seaters usually allocate three rear seats
for children.

B Small cars that offer more than the A segment space for passengers and a practical boot. These features allow them
to be driven on routes outside the city, but they are more intended for use in the city as “another car” in the family.

C
Medium-sized cars; designed for city and highway driving. They offer space for five adults and a luggage
compartment, as well as relatively comfortable travel conditions. Selected as both the first and the next vehicle in
the family.

D
Cars that provide comfortable travel conditions for five adults (with luggage) over longer distances. Most often in
body versions of sedans (or similar in size to hatchback sedans) and station wagons. Many of them are available in
coupé versions, most often as sporty, exclusive versions of a given model.

E
Large, comfortable, and well-equipped cars, the purpose of which is not only to be used by families but also as
representative limousines for companies. The technology and equipment contained in them allow for long journeys,
and the technical data of the leading versions can often compete, even with typical sports cars.

F
Limousines with the highest level of equipment and the best (often the largest) engines. Their features allow for a
very comfortable journey for both the driver and passengers. Often used as representative limos for heads of state,
companies, etc., these cars are often better driven as rear seat passengers rather than as drivers.

J Sport utility cars or cars have features that allow off-road driving.

M Multipurpose cars. A class of spacious cars that can carry at least five people along with large luggage.

S
A class of cars that includes a very large group of vehicles considered being sports, sporting, and extravagant coupé
style or very high-performance vehicles, designed either as models designed to achieve high speeds and high
accelerations or as road versions of performance cars.

Table 2. Variants included in the analysis.

Variant Number Car-Class Type of Engine

V1 C ICE
V2 B ICE
V3 B Hybrid
V4 D Hybrid
V5 B ICE
V6 C Hybrid
V7 C ICE
V8 A Electric
V9 D Hybrid
V10 A Electric
V11 D Electric
V12 D Electric

ICE—Internal Combustion Engine (ICE).

Following the methodology to proceed using the ELECTRE III method, the next step
was to develop a set of criteria from which individual variants were evaluated. Due to the
lack of literature devoted to analyzing the impact of the individual criteria on fleet selection,
the factors were arbitrarily indicated. When defining the set of criteria, the desire was made
to indicate the measurable factors directly related to the specification of individual vehicles.
A set of factors is presented in Table 3.
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Table 3. Set of criteria considered during car-sharing fleet selection analysis.

Criteria Number Name of the Criterion Characteristics of the Criterion

C1 Rental cost [€]

The cost of renting a car from the car-sharing system, considering rental
time, rental distance, and stop-over fee, expressed by the Formula (1)

rentalcost(i, j) = (rmin + smin)i + rkm j (1)

where:
i—rental time [min],
j—rental distance [km],

rmin =

⎧⎪⎪⎨⎪⎪⎩
0.14 € f or A − class cars
0.17 € f or B − class cars
0.21 € f or C − class cars
0.27 € f or D − class cars

—rental cost for 1 min,

rkm =

⎧⎪⎪⎨⎪⎪⎩
0.24 € f or A − class cars
0.24 € f or B − class cars
0.24 € f or C − class cars
0.28 € f or D − class cars

—rental cost for 1 km,

smin = 0.03 € f or A, B, C, D − class car—stop-over fee for 1 min

C2 Engine power [kW] The power generated by the vehicle’s engine.

C3 Energy consumption/fuel
consumption [kWh/100 km] The amount of fuel or electricity required for a car to travel 100 km.

C4 Time of battery charging/time of
refueling [min]

Minutes needed to top up fuel/electricity to maximum fuel tank
capacity or car battery capacity.

C5 Boot capacity [l] The number of liters of luggage that can fit in the boot of a car.

C6 Number of doors in the vehicle [-] The number of doors the vehicle is equipped with.

C7 Vehicle length [m] Distance from the front to the rear of the vehicle in meters is one of the
main dimensions describing the vehicle.

C8 Euro NCAP rating [-]

Vehicle Safety Ranking, published by the European New Car Assessment
Program (Euro NCAP)—an independent and non-profit vehicle safety
assessment organization. Euro NCAP has created the five-star safety
rating system to help consumers, their families, and businesses
compare vehicles more easily and to help them identify the safest
choice for their needs. The safety rating is determined from a series of
vehicle tests designed and carried out by Euro NCAP. These tests
represent, in a simplified way, important real-life accident scenarios
that could result in injured or killed car occupants or other road users.
The number of stars reflects how well the car performs in the Euro
NCAP tests, but it is also influenced by the safety equipment that the
vehicle manufacturer is offering in each market.

C9 Safety equipment [-]

Vehicle equipment to increase the level of safety is one of the Euro
NCAP system assessment categories considering factors, such as the
frontal crash protection systems (front airbag, belt pre-tensioner,
belt-load limiter, knee airbag), lateral crash protection (side head
airbag, side chest airbag, side pelvis), airbag, center airbag), child
protection (Isofix/i-size, integrated child seat, airbag cut-off switch),
safety assist (seatbelt reminder), and other safety systems.

C10 Warranty period in years [-] One of the institutions of contract law. In Polish law, this refers to
certifying the quality of the item sold. It is expressed in years.

The developed criteria were used for the analysis of the vehicles. Each of the vehicles
considered in the analysis (variants presented in Table 2) was represented by the technical
parameters that characterized them as corresponding to the assumed criteria. Therefore,
the next step was to assign each of the criteria values of the individual parameters based
on the technical specifications of the vehicles and the Euro NCAP reports. A detailed list is
presented in Table 4.
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Table 4. Criteria values for individual car variants.

No.
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

[€] [kW] [kWh/100 km] [min] [l] [-] [m] [-] [-] [-]

V1 0.48 81 38.5 2 380 5 4.28 5 10 2
V2 0.44 74 37.8 2 311 5 4.05 4 9 2
V3 0.44 74 28.7 1.5 286 3 3.94 5 8 3
V4 0.58 215 13.3 2 480 4 4.70 5 11 2
V5 0.44 48 29.4 1.5 391 5 4.05 5 10 2
V6 0.48 90 29.4 2.5 361 4 4.37 5 10 3
V7 0.48 110 37.8 2.5 600 5 4.68 5 10 3
V8 0.41 33 13.9 90 300 5 3.73 1 6 2
V9 0.58 104 23.8 2 443 5 4.47 5 8 5
V10 0.41 70 11 240 363 3 3.63 4 8 2
V11 0.58 109 14.4 360 585 5 4.49 5 8 2
V12 0.58 128 17 450 543 5 4.58 5 8 3

The next step was to establish the importance of the individual criteria when determin-
ing the vehicles by respondents. For this purpose, a survey was conducted among users of
the car-sharing system. Among the users of the analyzed operator, 200 car-sharing users
were selected for the study, who use the systems rarely, that is, from 5 to 10 times a year.
The survey was conducted anonymously in June 2022. The respondents who participated
in the survey represented a population of 200,000 users of the system of the analyzed
enterprise. For the research sample, the confidence level was 95% (α = 0.95). The fraction
size was 0.5, and the maximum error was estimated at 8%. The respondents filled in the
questionnaire, which was made available via the internet using the Computer-Assisted
Web Interview (CAWI) method. The questionnaire was fully anonymous and focused on
obtaining only the answers needed to perform the ELECTRE III analyses, i.e., receiving
pairwise comparisons of each of the criteria. The respondents assessed the importance of
each criterion on Saaty’s scale, assigning values from 1 to 9 and entering them into the
appropriate field of the matrix. The matrix of pairwise comparisons is shown in Figure 2.

Based on the assessments given by the respondents, a list was created showing the
average importance of each of the criteria. The score values were used for further analysis
using the ELECTRE III method. The summary is presented in Table 5.

Table 5. Weight values.

Criteria Number Weights

C1 0.133
C2 0.176
C3 0.066
C4 0.1225
C5 0.1395
C6 0.084
C7 0.082
C8 0.082
C9 0.108
C10 0.007

According to the ELECTRE III methodology, the next step was to determine the maxi-
mum difference in the criteria values, the equivalence threshold, the preference threshold,
and the veto threshold. Detailed data are presented in Table 6.

The next step, according to the ELECTRE III methodology, was to create the concor-
dance matrix. The matrix is presented in the form of Table 7.
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Figure 2. Matrix of pairwise comparisons.

Table 6. The set of thresholds for equivalence, preference, and veto.

Criteria Number

Maximum Difference
of Criteria Values

Equivalence
Threshold

Preference Threshold Veto Threshold

Δ = max − min Q = 0.25 × Δ p = 0.5 × Δ V = Δ

C1 0.17 0.0425 0.085 0.17
C2 182 45.5 91 182
C3 27.5 6.875 13.75 27.5
C4 448.5 112.125 224.25 448.5
C5 314 78.5 157 314
C6 2 0.5 1 2
C7 1.07 0.2675 0.535 1.07
C8 4 1 2 4
C9 5 1.25 2.5 5

C10 3 0.75 1.5 3
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Table 7. Concordance matrix values.

Variants V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12

V1 - 1.0 0.9977 0.606 1.0 0.9977 0.8175 1.0 0.803 0.8775 0.548 0.5318
V2 1.0 - 0.9977 0.4047 0.9973 0.9816 0.7762 1.0 0.6612 0.8775 0.4951 0.443
V3 0.7734 0.8946 - 0.2775 0.8041 0.8014 0.6083 0.916 0.499 0.8775 0.382 0.3598
V4 0.85 0.85 0.9317 - 0.85 0.9317 0.7739 0.916 0.8742 0.8775 0.7464 0.7912
V5 0.9786 0.9854 0.9977 0.5903 - 0.9816 0.7184 1.0 0.7288 0.8775 0.4546 0.3839
V6 0.8946 0.9014 1.0 0.5999 0.916 - 0.7488 0.916 0.7128 0.8775 0.464 0.464
V7 1.0 1.0 1.0 0.691 1.0 1.0 - 1.0 0.803 0.8775 0.6875 0.6875
V8 0.5299 0.7279 0.7849 0.2795 0.7057 0.5066 0.3148 - 0.3638 0.8118 0.2394 0.1979
V9 0.8692 0.934 1.0 0.773 0.9352 0.9352 0.7297 1.0 - 0.8775 0.7647 0.8393
V10 0.5803 0.8033 0.9186 0.3486 0.7385 0.5779 0.4384 0.916 0.5775 - 0.4959 0.3625
V11 0.8692 0.934 0.9317 0.773 0.8692 0.8669 0.8669 1.0 0.9688 1.0 - 0.9977
V12 0.8692 0.934 0.9537 0.7835 0.8822 0.8822 0.8692 1.0 0.993 1.0 1.0 -

The next stage in the ELECTRE III method was to perform the ascending and de-
scending distillations against each of the variants and create, in the final step, a dominance
matrix. The dominance matrix is presented in Table 8.

Table 8. Dominance matrix values.

Variants V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12

V1 - E R+ R− E E R− R+ R− R+ R− R−
V2 E - R+ R− E E R− R+ R− R+ R− R−
V3 R− R− - R− R− R− R− R− R− R+ R− R−
V4 R+ R+ R+ - R+ R+ R+ R+ R R+ R− R−
V5 E E R+ R− - E R− R+ R− R+ R− R−
V6 E E R+ R− E - R− R+ R− R+ R− R−
V7 R+ R+ R+ R− R+ R+ - R+ R− R+ R− R−
V8 R− R− R+ R− R- R− R- - R− R+ R− R−
V9 R+ R+ R+ R R+ R+ R+ R+ - R+ R− R−

V10 R− R− R− R− R− R− R− R− R− - R− R−
V11 R+ R+ R+ R+ R+ R+ R+ R+ R+ R+ - R−
V12 R+ R+ R+ R+ R+ R+ R+ R+ R+ R+ R+ -

(E)—a pair of variants are equivalent; (R+)—the first variant is better than the second variant; (R−)—the first
variant is worse than the second variant.

The last step was to prepare the final ranking that presents the variants in terms of the
preferences of experts and the adopted factors. The final ranking is presented in Table 9.

Table 9. Final ranking.

Doinance Matrix Ascend Distillation Descend Distillation

V1 5 5
V2 5 5
V3 6 7
V4 2 4
V5 5 5
V6 5 5
V7 4 4
V8 6 6
V9 3 3
V10 7 7
V11 1 2
V12 1 1

The graphical arrangement of the variants is shown in Figure 3.
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Figure 3. Final ranking—graphic visualization.

4. Discussion

The research, carried out using the ELECTRE III multi-criteria decision support
method, allowed us to draw a ranking of the vehicle models that meet the expectations of
users who rarely use car-sharing systems. According to the results, the best model turned
out to be the V12 car model. The selected model is a mid-range electric crossover passenger
car. The V11 variant took second place, and the variants V4 and V9 ex aequo were third.

When analyzing the results in detail, in terms of the vehicle size, it should be stated that
the main positions were taken by the models representing the class D cars, i.e., the segment
that includes middle-class passenger cars, relatively large and comfortable family and
sports cars. This class includes classic passenger cars with dimensions larger than compact
ones, ensuring a relatively comfortable ride for five people on longer journeys. Interestingly,
the vehicles representing the smallest class of cars, i.e., A, were ranked the worst.

From the point of view of vehicle propulsion, the fully electric vehicle was classified as
the highest in the ranking. Second place was also taken by a car with this type of drive. In
turn, the third and fourth places are represented by cars with hybrid drives. Interestingly,
the last places in the ranking were also taken by electric cars (variants V3 and V10). Such
results indicate that, for the respondents, it was especially for not the fact that the vehicles
had alternative propulsion but the detailed parameters characterizing individual vehicles.

When analyzing the results obtained from the point of view of the importance of indi-
vidual criteria for users, it should be mentioned that the most important issues were engine
power, boot capacity, rental cost, battery charging/refueling time, and safety equipment.
This may prove that people who rarely use car-sharing vehicles want to use relatively
large, spacious, and comfortable vehicles equipped with large luggage spaces, in which
it will be possible to charge the battery or refuel the car in the shortest possible time. In
addition, safety equipment issues were also important. Therefore, placing vehicles such
as the V10 and V8 variants in the last places is because these cars represent class A, have
a small load space, and have low engine performance. Interestingly, the size of the car,
its capacity, and the performance of the engine weighed heavily on the cost of renting a
car. Factors that came in the last positions deserve special attention. These were issues,
such as the warranty period that were deliberately included in the analysis, as it is usually
associated with high-quality vehicles. Factors such as NCAP safety and the number of
doors in the vehicle were equally low rated. Such factors may indicate that the respondents
treat car-sharing vehicles as an additional, occasional means of getting around, which they
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usually use alone or with one additional passenger, disregarding the facilities needed by
families, such as more doors. It is also worth paying attention to the safety issues that did
not turn out to be of key importance to the respondents, perhaps because the vehicles are
not used by them frequently.

5. Conclusions

In conclusion, the research conducted allowed us to achieve the goal of the work,
which was to select vehicles for car-sharing systems from the point of view of users who
rarely use the services. The research showed that the V12 model representing the D vehicle
class, equipped with a high-performance electric motor, was the best solution. Furthermore,
it should be emphasized that the vehicles with alternative drives were placed in the highest
rankings. By taking into account the detailed expectations of users about the fleet, it should
be noted that the most important criteria include engine power, boot capacity, rental cost,
battery charging/time of refueling, and safety equipment. Therefore, the fleet preferred
by users who rarely use car-sharing systems is relatively large, spacious, and comfortable,
with vehicles equipped with high-performance engines. By comparing the results obtained
with real business practices, it should be noted that the V12 variant car, which leads in
the ranking, is the main model used in the German car-sharing model, WeShare, in Berlin
or Hamburg [58]. Therefore, these vehicles are successfully used in urban conditions, as
evidenced by their use in large metropolitan car-sharing.

An interesting finding was that small city vehicles were ranked the lowest. It should
be mentioned that the idea of car-sharing services assumed that the vehicles used in the
systems would be small city cars, whose task would be to free public space [59]. However,
the results obtained show that this type of vehicle will not be the first choice among users
who rarely use car-sharing systems. This is a valuable note for car-sharing service operators
who, when planning to diversify their fleet, should pay attention to the real needs of their
users. Of course, from the point of view of public space, small city cars will be the best
solution due to their dimensions, but then it is worth undertaking detailed research on
the needs of users. The analyzed example shows that in the case of users rarely using car-
sharing systems, small vehicles would not be rented, and as a result, a large number of them
would remain unrolled in the city, becoming unprofitable for the operator and occupying
public space. Taking into account the users’ specific expectations, it can be assumed that if
small vehicles were equipped with high-power engines and fast-charging batteries, they
could significantly make gains in the final classification in the ranking. Furthermore, when
considering the modernization of the vehicle fleet in the category of future rentals by rare
users, the aspects of warranty, NCAP safety, or the number of doors should not be crucial.
These considerations should provide important guidance to operators in their willingness
to select other vehicles for their fleet than the models covered in this article.

This article has limitations. The main limitation was that the research only covered the
Polish market. Moreover, they were devoted exclusively to a group of people who rarely
use car-sharing systems. As there is no literature dedicated directly to the selection of the
fleet of vehicles for car-sharing systems, the author did not refer to the research conducted
by other authors in discussing the results.

In future work, the author plans to analyze other user groups to obtain the full range
of user approaches to the vehicle fleet. In addition, the author plans to conduct research for
countries other than Poland to compare users’ preferences in terms of the vehicle fleet.

Funding: Publication supported under the rector’s pro-quality grant. Silesian University of Technol-
ogy, 12/010/RGJ22/1041.

Institutional Review Board Statement: According to our University Ethical Statement, following:
the following shall be regarded as research requiring a favorable opinion from the Ethic Commission
in the case of human research (based on document in polish: https://prawo.polsl.pl/Lists/Monitor/
Attachments/7291/M.2021.501.Z.107.pdf (accessed on 21 March 2022): research in which persons
with limited capacity to give informed or research on persons whose capacity to give informed or
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free consent to participate in research and who have a limited ability to refuse research before or
during their implementation, in particular: children and adolescents under 12 years of age, persons
with intellectual disabilities, persons whose consent to participate in the research may not be fully
voluntary, prisoners, soldiers, police officers, employees of companies (when the survey is conducted
at their workplace), persons who agree to participate in the research on the basis of false information
about the purpose and course of the research (masking instruction, i.e., deception) or do not know at
all that they are subjects (in so-called natural experiments); research in which persons particularly
susceptible to psychological trauma and mental health disorders are to participate, mental health, in
particular: mentally ill persons, victims of disasters, war trauma, etc., patients receiving treatment
for psychotic disorders, family members of terminally or chronically ill patients; research involving
active interference with human behavior aimed at changing it, research involving active intervention
in human behavior aimed at changing that behavior without direct intervention in the functioning
of the brain, e.g., cognitive training, psychotherapy psychocorrection, etc. (this also applies if the
intended intervention is intended to benefit (this also applies when the intended intervention is
to benefit the subject (e.g., to improve his/her memory); research concerning controversial issues
(e.g., abortion, in vitro fertilization, death penalty) or requiring particular delicacy and caution (e.g.,
concerning religious beliefs or attitudes towards minority groups) minority groups); research that
is prolonged, tiring, physically or mentally exhausting. Our research is not conducted on people
meeting the mentioned condition. Any of the researched people, where any of them had limited
capacity to be informed or any of them had been susceptible to psychological trauma and mental
health disorders; the research did not concern the mentioned-above controversial issues; the research
was not prolonged, tiring, physically or mentally exhausting.
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Abstract: This work presents a control scheme to control a grid-connected single-phase photovoltaic
(PV) system. The considered system has four 250 W solar panels, a non-inverting buck-boost DC-
DC converter, and a DC-AC inverter with an inductor-capacitor-inductor (LCL) filter. The control
system aims to track and operate at the maximum power point (MPP) of the PV panels, regulate the
voltage of the DC link, and supply the grid with a unity power factor. To achieve these goals, the
proposed control system consists of three parts: an MPP tracking controller module with a fuzzy-
based modified incremental conductance (INC) algorithm, a DC-link voltage regulator with a hybrid
fuzzy proportional-integral (PI) controller, and a current controller module using a linear quadratic
regulator (LQR) for grid-connected power. Based on fuzzy control and an LQR, this work introduces
a full control solution for grid-connected single-phase PV systems. The key novelty of this research is
to analyze and prove that the newly proposed method is more successful in numerous aspects by
comparing and evaluating previous and present control methods. The designed control system settles
quickly, which is critical for output stability. In addition, as compared to the backstepping approach
used in our past study, the LQR technique is more resistant to sudden changes and disturbances.
Furthermore, the backstepping method produces a larger overshoot, which has a detrimental impact
on efficiency. Simulation findings under various weather conditions were compared to theoretical
ones to indicate that the system can deal with variations in weather parameters.

Keywords: fuzzy control; grid-connected PV system; incremental conductance algorithm; linear
quadratic regulator; maximum power point tracking; unity power factor

1. Introduction

Renewable energy is emerging as one of the main sources of energy for the future. The
key reason for this is the depletion and pollution of fossil fuels. Renewable energy sources
are available, clean, eco-friendly, and cost-effective. There are various types of renewable
energy sources, of which solar and wind energy systems have become more and more
popular in many countries. According to [1,2], harmonic resonances, which often occur in
grid-connected wind power farms, cause negative effects on the power quality of the grid.

Nowadays, solar energy is widely used around the world and demonstrates impressive
results. To effectively obtain electricity from solar energy, photovoltaic (PV) systems should
be installed. The system efficiency is strongly affected by two major factors, as follow [3,4]:

(a) Weather factors such as the temperature and solar radiation;
(b) Hardware factors such as power electronic devices and system loads.

While the prior factor is uncontrollable, the second one depends on the designer,
system operator and electric grid. To improve the efficiency of the power electronic parts,
appropriate converter topologies together with efficient control schemes are required.
From [5–8], there are two modes of operation for the PV systems, which are:

• Stand-alone mode;
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• Grid-connected mode.

Between these two modes of operation, the grid-connected mode is preferable, as
it can avoid the issues of storage systems in the stand-alone mode. For grid-connected
systems, the following two problems need to be solved simultaneously [7–9]:

• Management of several combined systems;
• Regulation of each power stage or system.

Solving the second problem often requires the following tasks:

• tracking the maximum power point (MPP);
• minimizing the harmonics, which usually cause negative effects on the power grid

and devices;
• maintaining the DC-link voltage within a desired range;
• keeping the unity power factor (PF) at the output of the filter [10].

One of the most important parts of this research is the MPP tracking part, which is
mainly used to find and keep the output power of a PV panel at its maximum value [11–13].
The MPP tracking (MPPT) technique can be divided into two main categories: the perturb
and observe (PO) technique and the incremental conductance (INC) algorithm. The neg-
ative side of the PO algorithm is its high computational complexity, but it leads to high
efficiency. It measures voltage and current values to periodically estimate the power of
the solar panel and compares it with the previous power. If the power of the PV module
has increased (dP/dV > 0), the system will start adjustments in that direction; otherwise,
it will adjust in the opposite way. These operations continue until system finds the MPP.
In fact, the technique depends on perturbations of the voltage, so if the perturbations are
high, the speed of the technique is fast. The advantages of this method are simplicity
without interest in the previous PV characteristics; however, the main drawback is that
oscillations happening near the MPP, which may lead to power losses in varying weather
conditions [10]. The INC type is more advantageous in terms of accuracy in finding and
tracking the MPP compared to the second type; therefore, in this paper, the INC algorithm
is improved by fuzzy control and then implemented in the grid-connected PV system.

Considering current controller strategies, generally, they can be divided into two
main categories: on/off controllers and pulse width modulation (PWM)-based control
techniques [14]. The first group has two subdivisions, which are hysteresis control and
predictive control. Hysteresis control has high dynamics and fast response; however,
its major drawbacks are variations of the switching frequency and high complexity of
the system. Predictive control has positive sides such as less computation time, better
regulation, and a decrease in offset error. On the other hand, it requires identifying a
proper model for the system and the installation cost of the system is high. The second
group can be divided into linear and non-linear control [14]. Proportional-integral (PI)
controller and its different update versions such as multiple generalized integral (MGI) [15]
and Manta Ray Foraging Optimization [16] control are the well-known classical control
techniques, along with their improved versions, which can be easily designed to control
the current. However, the key disadvantage of this controller is its poor compensation of
lower-order harmonics and presence of steady-state errors [17]. The proportional-resonant
(PR) controlled can compensate for the harmonics. Moreover, this type of controller has
high dynamics, is less complex, and can reach a high gain at the resonance frequency.
However, this controller has problems reaching the power factor control, which means that
the system is not able to control the losses in the system [18].

Generally, the power factor is a ratio between working power and apparent power.
Thus, if there is no control/maintenance of a high-power factor, the system efficiency is
consequently low. On the other hand, predictive deadbeat control has a high level of
harmonic compensation and rapid fast-tracking performance. The disadvantage of this
controller is that it requires a lot of computation effort [19]. Harmonic compensation and
steady-state error can also be done by repetitive controllers; their slow tracking response is
their main drawback [20]. In various dynamic conditions, the effectiveness of the third order
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complex filter (TOCF) control algorithm may be demonstrated. This controller serves as a
distribution static compensator, enhances grid power quality by reducing harmonics, and
balances grid currents while maintaining a unity power factor. However, the controller’s
biggest disadvantage is its enormous computational load [21]. Another method which
possibly could be proposed for mitigation of the issue is the model predictive control
(MPC) method [22] and its improved versions [23,24]. However, these methods present
oscillations when the load varies. In addition, the THD of MPC is higher compared to
other methods, which makes the technique unsuitable for implementation in this case.
There exist different kinds of adaptive filtering techniques, such as leaky least mean mixed
norm (LLMMN), least mean mixed norm (LMMN), and least mean square (LMS). However,
all of the above-mentioned adaptive approaches have the drawback of being unable to
maintain acceptable performance in the presence of DC-offset [25]. The combined affine
projection sign algorithm (CAPSA) has high stability and tracking performance, but output
has the same problem as the previous mentioned method, which is the high THD [26].
Artificial neural networks (ANN) also can be implemented as controllers in this system,
but the main disadvantage are their low output power compared to fuzzy logic [27]. Fuzzy
logic controllers (FLC) [14] are one of the popular intelligent control techniques. They are
extensively used in renewable energy systems due to their efficiency and ease of use. They
are also robust and applicable to a wide range of the dynamics systems, from linear to
nonlinear systems. Moreover, this type of controller can perform complex estimations,
which are not possible with conventional methods [11]. The linear quadratic regulator
(LQR) is an effective control method that is applicable for both linear and nonlinear systems.
In this method, the control gain is designed to minimize a quadratic cost function by
selection of appropriate weighting matrices. In our study case, the cost function is the
quadratic function of the tracking error between the current and its reference and the
control efforts. This technique was chosen to be implemented due to its properties such as
stability, robustness, and ease in application. Moreover, the computational complexity of
the LQR controller is not high, which means that it is fairly simple to implement.

This paper proposes a complete control solution for grid-connected single-phase
PV systems based on fuzzy control and an LQR. Our past related research on this topic
was conducted with a different type of controller, namely the backstepping approach.
The present study is a significant extension and improvement of our former research in
terms of enhancing the quality of the control method. The proposed technique is the
LQR in appropriate combination with fuzzy control and improved INC algorithms for
grid-connected photovoltaic systems; furthermore, detailed explanations on developing the
fuzzy association rules of the designed fuzzy logic controllers are newly presented in this
study. The main originality of this paper is to show and prove by comparison of our former
and present control methods that the newly suggested method is more effective in various
aspects. Specific details of the PV system and controllers can be found in our past work
in [28], which was used as the basis for this paper. The major advantage of the LQR method
is its ability to react in a rapid manner to changes of the system, namely, changes in the
module temperature or solar irradiation. In other words, the system can reach its settling
time faster, which is important to stabilize the behavior of output. Moreover, it can be
said that the LQR technique is robust when faced with different disturbances and changes
compared to the backstepping technique and its improved fault tolerant version [29]. In
addition, the backstepping method has a higher overshoot, which significantly impacts
efficiency in a negative way. As was mentioned above, the speed of the LQR is faster,
which makes this kind of controller preferable. These are the key contributions of this
study compared to our past research in [28]. Simulation results under different weather
conditions show that the proposed control system can cope with changes in weather
parameters effectively, and were compared with theoretical ones. Moreover, it was shown
that variations in weather parameters do not significantly affect the performance of the
proposed control system.
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The remains of the paper are organized as follows. Section 2 shows the modeling of
the grid-connected PV system, which includes the system description, PV panel model,
and modeling of power converters. The control system design is depicted in Section 3,
which consists of the MPPT control module, DC-link voltage regulator module, and current
controller module. In addition, Section 4 provides simulation results in MATLAB, in which
the first test case is with a fixed module temperature, and the second test case is with an
unchanged solar irradiation. A detailed comparison and assessment of efficacy between
the LQR control method in this study and the backstepping approach in our past work [28]
is presented in Section 5; brief comparisons between this research and other related works
are also shown in this section. The conclusions are described in the last section.

2. PV Grid-Connected System Modeling

2.1. System Description

This paper considers a grid-connected PV system consisting of two stages of power
conversion. The nominal power of the system is 1 kW. Figure 1 shows the circuitry of the
system; the power generated from the PV array is directed to the non-inverting buck-boost
DC-DC converter. After that, to supply the grid, the obtained result is converted to AC via
the single-phase DC-AC inverter. To remove unwanted noises and disturbances injected to
the grid, the LCL output filter was used [30,31].

Figure 1. PV single-phase grid-connected system.

2.2. PV Panel Model

The PV panels used in this paper have characteristics as presented in [28]. The
provided data is applicable when the module temperature is 25 ◦C and the solar radiation
is 1000 W/m2. In total, the PV array consists of four panels, where the nominal power of
each panel is 250 W. Figure 2 shows the impacts of module temperature and solar radiation
on the power and voltage of the PV panel, respectively. Table 1 represents MPPs of the PV
panel and array in terms of power and voltage.

(a) (b) 

Figure 2. Power obtained from PV panels for different (a) solar radiation values and (b) module
temperature values.
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Table 1. Power and Voltage at Maximum Power Points.

MPPs M1 M2 M3/M4 M5 M6

Vp (V) 29.3 30.32 30.4 29.8 28.04

PP,panel (W) 95.9 211.7 250 244.8 225.7

PP,array (W) 383.6 846.8 1000 979.2 912.8

2.3. Modeling of Converters

Figure 1 illustrates all components of the system including the single-phase inverter
and the non-inverting buck-boost converter [7]. The input control signals of the non-
inverting buck-boost converter and the single-phase inverter are αp and βp, respectively.

αp =

{
0; S1 and S2 are OFF
1; S1 and S2 are ON

βp =

⎧⎨⎩
1; S3 and S5 are ON, S4 and S6 are OFF

0; S3, S4, S5 and S6 are OFF
−1; S3 and S5 are OFF, S4 and S6 are ON

The modeling technique, specifically averaging, and Kirchhoff’s laws were used to
estimate a mathematical model for the two converters. Equation (1) and Table 2 demonstrate
details of the previously mentioned procedure⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

.
x1 = 1

Ci

−
I P − α 1

Ci
x2

.
x2 = α 1

L1
x1 − R1

L1
x2 + (α − 1) 1

L1
x3

.
x3 = (1 − α) 1

CDC
x2 − β 1

CDC
x4

.
x4 = β 1

L f
x3 − R f

L f
x4 − 1

L f
x5

.
x5 = 1

Cf
x4 − 1

Cf
x6

.
x6 = 1

Lg
x5 − Rg

Lg
x6 − 1

Lg
Vg

(1)

Table 2. Variables.

Variable Symbol in Figure 1 Averaged Variable in (1)

PV array voltage Vp x1
Current through the inductor L1 iL1 x2

DC link voltage VDC x3
Input current of the LCL filter if x4

Voltage on the capacitor Cf VCf x5
RMS value of the electric grid current ig x6

Control signal of the non-inverting
buck-boost DC-DC converter

αp
{0,1}

α
(0,1)

Control signal of the single-phase
DC-AC inverter

βp
{−1,0,1}

β
[−1,1]

PV array current Ip Īp
RMS value of the electric grid voltage Vg Vg

3. Control System Design

The design of the control system considered in this study is shown in Figure 3 and
includes three main parts: the MPPT controller, the DC link voltage regulator, and the
current controller. In this paper, detailed explanations on developing the fuzzy rules of
the two designed fuzzy logic controllers are presented, which are useful as references for
designing other fuzzy controllers.
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Figure 3. System schematics in detail.

3.1. The MPPT Controller Module

The PV array produces its optimal power despite varying weather with the help of
the designed MPPT controller. According to Figure 4, this controller has two parts: the first
fuzzy logic controller (FLC-1) and the proportional-integral (PI-1) controller.

Figure 4. MPPT controller module schematics.

3.1.1. FLC-1

The main idea of this sub-controller is to improve the conventional INC-MPPT algo-
rithm in terms of response time and efficiency by combining it with a fuzzy logic controller
(FLC-1). According to Figure 5, the FLC-1 has two inputs and one output. The first input
can be one of the following two kinds:

• |Ap(k)|—the absolute value of a modified slope of the power–voltage (P-V) curve as
expressed in (2). This equation also includes a pre-scaling module Gp(k), as shown in (3);

• |dIp(k)|—the change in the current of PV panels in absolute value.

AP(k) = GP(k)[SP(k)] = GP(k)
[

Ip(k) + Vp(k)
dIP(k)
dVP(k)

]
(2)

GP(k) =
1

1 + g1

[
PP(k)
Pmax

P,total

] (3)

where Pmax
P,total = 1000 W is the maximum power of PV panels and g1 is a positive coefficient.

The second input is the INC algorithm’s prior step-size ΔV(k−1). Figure 6 shows the
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detailed flowchart of the proposed method. In addition, the aforementioned scaling module
Gp(k) is used to suitably increase the sensitivity of slope Sp(k) as given in Figure 7.

lim
Pp(k)→0

GP(k) = 1, lim
Pp(k)→Pmax

P,total

GP(k) =
1

1 + g1

PP(k) = VP(k)× IP(k) (4)

dIP(k) = IP(k)− IP(k − 1) (5)

dVP(k) = VP(k)− VP(k − 1) (6)

To avoid significant changes in the step-size and instability of the PV output power, a
switching module is implemented as described in Figure 5. According to the first input,
namely, |Ap(k)| or |dIp(k)|, the system will use the appropriate output coefficient g2 as
shown in Table 3.

Table 3. Switching module operation.

If the Input Is |AP(k)| If the Input Is |dIP(k)|

|AP(k)| > 0.1 |AP(k) ≤ 0.1 g2 = 1 (where every value of
|dIP(k)|)g2 = 0.25 g2 = 0.1

As is known from previous parts of this paper, the inputs are in the range of [0,1]. It
should be noted that all the inputs have the same number of linguistic variables, specifically
five linguistic variables: VS—Very Small, SM—Small, ME—Medium, LA—Large, VL—Very
Large. The output has nine linguistic variables in a range of [−1;1]; in detail, NL—Negative
Large, NM—Negative Medium, NS—Negative Small, NZ—Negative Zero, ZE—Zero,
PZ—Positive Zero, PS—Positive Small, PM—Positive Medium, PL—Positive Large. As a
result, there are 49 fuzzy rules associated in the FLC-1.

Figure 5. FLC-1 structure.
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Figure 6. INC-MPPT algorithm with fuzzy logic.

Figure 7. PV panel power–voltage (P-V) curve.

All the association rules of the FLC-1 are shown in Table 4, while the membership
functions of the inputs and output can be referred to in [28]. To explain the fuzzy rules in
Table 4, we can analyze several sample cases as follows. In the first case, when the two
inputs ΔV(k−1) and |dIp(k)| are VS, that means that the PV system is close to the MPP and
the step voltage is also very small; thus, the output of the FLC-1 as the additional voltage
Vadd(k) should be ZE to avoid fluctuations in the PV voltage at the steady state. Whereas, in
another case when ΔV(k−1) is LA and |dIp(k)| is ME, the additional voltage Vadd(k) will
be NZ because the tendency of the PV system is automatically approaching the MPP. On
the other hand, when ΔV(k−1) is vs. and |dIp(k)| is VL, it means that the PV system is
far from the MPP; therefore, the output ΔV(k−1) should be PL to force the PV system to
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quickly move to the MPP. Furthermore, when |dIp(k)| is VL and ΔV(k−1) is VL, the output
ΔV(k−1) can be chosen as either PZ or ZE for the PV system to automatically move to the
MPP; in this study, we want to increase the speed for searching the MPP, so the output
ΔV(k−1) is set as PZ in this case. In general, the other fuzzy rules in Table 4 can be suitably
interpreted with the same deductive method.

Table 4. Fuzzy association rules for FLC-1.

Vadd(k)
|Ap(k)| or |dIp(k)|

VS SM ME LA VL

ΔV(k−1)

VS ZE PZ PS PL PL

SM NZ ZE PZ PM PL

ME NS NZ ZE PS PM

LA NM NS NZ PZ PS

VL NL NM NS ZE PZ

3.1.2. PI-1 Controller

The PI-1 controller with an anti-windup block (refer to [32]) serves as the second
sub-controller of the system. Figures 4 and 8 show detailed schematics of the controller.

Figure 8. PI-1 controller in detail.

3.2. DC Link Voltage Regulator Module

According to Figure 3, the objective of the DC link voltage regulator is to determine
an appropriate value of the reference grid current Ire f

g used for the current controller
module. We note that the ultimate goal here is to make the DC link voltage VDC reach
its desired value Vre f

DC once the actual grid current Ig is well regulated to its reference

Ire f
g [7,8] by the proposed current controller module using the LQR technique, which

will be shown in detail in Section 3.3. In existing studies, a conventional PI controller
has often been used to generate the reference grid current Ire f

g from the DC link voltage

difference eVdc = Vre f
DC − VDC, as shown in the upper left part of Figure 9. Nevertheless,

it is difficult to manually choose and tune optimal values for the coefficients of the PI-2
controller due to the high nonlinearity of the grid-connected PV system, including a LCL
output filter. Furthermore, the response of the conventional PI-2 controller usually has
fairly large overshoot in the transient state and achieves the steady state in a relatively slow
manner. Thus, this paper proposes a novel hybrid control scheme for the DC link voltage
regulator module using another FLC (named FLC-2) as depicted in Figure 9 to overcome
the above-mentioned drawbacks of the traditional PI-2 controller and remarkably enhance
the response time.

189



Energies 2022, 15, 1286

Figure 9. Proposed PI-fuzzy hybrid control scheme, where g3, g4 and g5 are design coefficients.

Firstly, the theoretical relation between the output power of the DC-AC inverter
supplied to the grid PAC and the output power of the PV array PP can be expressed
as follows:

PAC = ηDC−AC × PDC−link = ηDC−AC × (ηDC−DC × PP) = ηExp × PP (7)

where:

ηDC−DC—the efficiency of the buck-boost DC-DC converter can be estimated theoretically
as a ratio value of the DC link power PDC−link and the output power of PV array PP;
ηDC−AC—the efficiency of the DC-AC inverter can be estimated theoretically as a ratio
value of the output power of the inverter PAC and the DC link power PDC−link;
ηExp = ηDC−DC × ηDC−AC—the overall efficiency of the grid-connected PV system.

Equation (7) can be written as:

Vg Ig
(
cos θg

)
= ηExpPP (8)

here cosθg is the PF of the PV system, Vg is the rms value of the grid voltage, and Ig is the
rms value of the grid current. In the normal operation of the grid, the rms value of the grid
voltage is often larger than zero, meaning that Vg > 0 V.

Hence,

Ig = ηExp
PP

Vg(cos θg)
(9)

When the PF = 1, the grid current will reach the following value.

Ig = ηExpPP/Vg (10)

However, the actual overall efficiency ηExp depends not only on the PF, but also on
other component parameters of the DC-DC buck-boost converter and the DC-AC inverter,
as well as the operating conditions of the PV system (e.g., the PV power, temperature,
input voltage, and so forth); as a result, it is difficult to accurately estimate a particular
value for ηExp. We note that Equations (7)–(10) are only explanations of the theoretical
relations among the parameters ηExp, PP, PAC, Ig, and Vg, which are used as the reference
basis for introducing and calculating a new “virtual efficiency” ηvir

exp in our proposed hybrid
control scheme for the DC link voltage regulator module, as depicted in Figure 9. Hence,
the calculated value of the “virtual efficiency” ηvir

exp in this figure and (11) is not the actual
value of the overall efficiency of the PV system ηExp in (7). In this study, we calculate the
“virtual efficiency” value ηvir

exp instead of estimating the actual overall efficiency ηExp.
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To fulfill the above goal, the FLC-2 is designed to frequently update a suitable value
for the “virtual efficiency” ηvir

exp(k) in real-time, as described in (11) and Figure 9. Then, from

(10), an additional value IFLC
g for adjusting the reference grid current Ire f

g can be computed
as IFLC

g (k) = ηvir
exp(k)× PP(k)/Vg(k), as shown in the right part of Figure 9. Finally, this

computed additional value IFLC
g (k) is used to effectively compensate for the output of the

conventional PI-2 controller IPI
g (k) to appropriately determine the reference grid current

Ire f
g (k), as presented in the upper right part of Figure 9; in detail, Ire f

g (k) = IPI
g (k) + IFLC

g (k).
The key aims of IFLC

g (k) generated by our proposed control scheme using the FLC-2 are
to significantly improve the response time for updating a suitable value for the reference
current Ire f

g (k) and to elevate the effectiveness of the conventional PI-2 controller against
effects caused by the high nonlinearity of the PV system.

In fact, using the proposed current controller module (refer to Figure 3 and Section 3.3),
when the grid current Ig(k) is regulated to its reference Ire f

g (k) suitably generated by the
designed PI-Fuzzy hybrid control scheme (see Figure 9), the DC link voltage VDC achieves
its desired value Vre f

DC [7,8]. This means that both the error values of the DC link voltage
(eVdc in Figure 9) and the grid current in (14) and (15) are considered and regulated by the
proposed complete control system, as given in the lower part of Figure 3.

The designed FLC-2 has two inputs and one output.
The two inputs are:

eVdc(k)—error between desired and present DC link voltage;
deVdc(k)—change in error.

The output is:

Δη(k)—step in efficiency, added to the “virtual efficiency” ηvir
exp to reach the desired value:

ηvir
exp(k) = ηvir

exp(k − 1) + Δη(k) (11)

The two inputs are:
eVdc(k) = Vre f

DC − VDC(k) (12)

deVdc(k) = eVdc(k)− eVdc(k − 1) (13)

All the inputs have the same number of linguistic variables, specifically seven; the
range is [−20;20]: NL—Negative Large, NM—Negative Medium, NS—Negative Small,
ZE—Zero, PS—Positive Small, PM—Positive Medium, PL—Positive Large

The output Δη(k) has nine linguistic variables, and they range from [−1;1]: NL—Negative
Large, NM—Negative Medium, NS—Negative Small, NZ—Negative Zero, ZE—Zero,
PZ—Positive Zero, PS—Positive Small, PM—Positive Medium, PL—Positive Large. As a
result, there are 49 fuzzy rules formed in the FLC-2.

All the association rules of the FLC-2 are presented in Table 5, while the membership
functions of the inputs and output can be referred to in [28]. To interpret the fuzzy rules in
Table 5, we can analyze and evaluate some sample cases as follows. Firstly, when deVdc(k)
is NL and eVdc(k) is PL, the output of the fuzzy controller Δη(k) should be ZE since the
tendency of the DC-link voltage Vdc(k) is automatically approaching its reference value. On
the other hand, when deVdc(k) is ZE and eVdc(k) is NL, it means that Vdc(k) is much smaller
than its reference value; thus, the output Δη(k) should be PL to force Vdc(k) to rapidly
move to the desired value. Furthermore, when deVdc(k) is ZE and eVdc(k) is PS, it means
that Vdc(k) is marginally larger than its reference value; hence, the output Δη(k) should be
NS to slightly decrease Vdc(k) to its desired value without oscillation at the steady state.
In general, the other fuzzy rules in Table 5 can be appropriately explained with a similar
deductive technique.
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Table 5. Fuzzy association rules for FLC-2.

Δη(k)
eVdc(k)

NL NM NS ZE PS PM PL

deVdc(k)

NL PU PU PL PL PM PS ZE

NM PU PU PL PM PS ZE NS

NS PU PL PM PS ZE NS NM

ZE PL PM PS ZE NS NM NL

PS PM PS ZE NS NM NL NU

PM PS ZE NS NM NL NU NU

PL ZE NS NM NL NL NU NU

3.3. Current Controller Module

In this section, the current controller is designed by an optimal control method. Firstly,
from (2), we have the following dynamic model,⎧⎪⎨⎪⎩

.
x4 = − R

L x4 − 1
L x5 +

u
L.

x5 = 1
C x4 − 1

C x6
.
x6 = 1

Lg
x5 − Rg

Lg
x6 − 1

Lg Vg

(14)

The main purpose of the current controller is to make the grid current ig (i.e., x6)
converge to its reference x6ref . Then, from the third equation of (14), the error dynamics of
x6 and the reference for x5 (i.e., x5ref ) can be derived as,

.
x6 − .

x6re f =
1
Lg

((
x5 − x5re f

)
+ x5re f

)
− Rg

Lg

((
x6 − x6re f

)
+ x6re f

)
− 1

Lg
Vg (15)

Thus, we have
.
x̃6 =

1
Lg

x̃5 −
Rg

Lg
x̃6 − 1

Lg
x5re f (16)

where x5ref is determined by

x5re f = Rgx6re f + vg +
.
x6re f Lg (17)

Similarly, with x5ref achieved from (17), combined with the second equation of (14),

.
x5 − .

x5re f =
1
C

((
x4 − x4re f

)
+ x4re f

)
− 1

C

((
x6 − x6re f

)
+ x6re f

)
(18)

then
.
x̃5 =

1
C

x̃4 − 1
C

x̃6 (19)

where
x4re f = x6re f +

.
x5re f Cf (20)

From x5ref and x4ref , obtained in (17) and (20), respectively, the first equation of (14)
can be rewritten as

.
x̃4 = −R

L
x̃4 − R

L
x4re f − 1

L
x̃5 − 1

L
x5re f − .

x4re f +
1
L

u1 +
1
L

u2 (21)

Hence, we have
.
x4 = −R

L
x̃4 − 1

L
x̃5 +

1
L

u1 (22)
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where
u2 = Rx4re f + x5re f + L

.
x4re f (23)

Here, we decompose the control input u into two terms: u1 and u2; in detail, u1 is
used for feedback control to stabilize the error dynamics, whereas u2 is the compensating
term used to compensate for the offset in the reference tracking problem. Finally, the error
dynamics of (15) are achieved by combining (22), (19), and (16), as follows:

⎡⎣ x4
x5
x6

⎤⎦ =

⎡⎢⎣ − Rg
Lg

1
Lg

0

− 1
L 0 1

C
0 − 1

L − R
L

⎤⎥⎦+

⎡⎣ 0
0
1
L

⎤⎦u1 (24)

Equation (24) is rewritten in the following form:

.
x = Ax + Bu1 (25)

Consider the following cost function:

J(x, u) =
∫ ∞

0
xTQx + uT

1 Qu1 (26)

where Q ≥ 0 and R > 0 are the weighting matrices with appropriate dimensions; that is,
3 × 3 and a scalar, respectively. After that, this cost function is minimized by the following
control law:

u1 = −Kx = −R−1BT Px (27)

where K is the controller gain matrix, and P is the positive definite solution of the algebraic
Riccati equation as follows

PA + AT P − PBR−1BT P + Q = 0 (28)

Typically, Q is chosen to be diagonal:

Q =

⎡⎣ q1 0 0
0 q2 0
0 0 q3

⎤⎦ (29)

where its elements and R can be selected by the following criteria,

qi =
1

tsi(ximax)
2 , R =

1

(u1max)
2 , p > 0 (30)

In (30), ximax is the |xi| constraint, uimax is the |ui| constraint, and tsi is the required
settling time of xi.

4. Simulation Results

The simulation performed in MATLAB/Simulink and all related parameters of the
considered PV system can be referred to in [28]. The results with the designed LQR control
are illustrated in Figures 10–13, in which the time unit in the horizontal axis is second.
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(a) (b) 

Figure 10. MPPT module performance for constant temperature: (a) PV voltage; (b) PV output power.

 
(a) (b) 

 
(c) 

Figure 11. DC link voltage regulator module and current controller module performances with the
LQR method for constant temperature case: (a) DC link voltage; (b) grid current magnitude; (c) grid
voltage waveform Vg (V) and current waveform where Gain is 10 × Ig (A).
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(a) (b) 

Figure 12. MPPT module performance for constant solar irradiation: (a) PV voltage; (b) PV output
power.

 
(a) (b) 

 
(c) 

Figure 13. DC link voltage regulator module and current controller module performances with the
LQR for constant solar irradiation case: (a) DC link voltage; (b) grid current magnitude; (c) grid
voltage waveform Vg (V) and current waveform where gain is 10 × Ig (A).

4.1. Simulation 1: Constant Module Temperature

This case considers when the PV module temperature is constant at 25 ◦C. Irradiation
starts from 850 W/m2 at a time from 0 s to 0.3 s, then it becomes 1000 W/m2 from 0.3 s to
0.6 s and finally becomes 400 W/m2 from 0.6 s to 0.9 s. Figure 10 shows that the results of
the voltage Vp of the PV array are close to the reference values for the MPPT. The obtained
output powers of the PV array are 847 W, 998 W, and 385 W, which match to the reference
data provided in Table 1. Thus, this means that the power loss is small in this test.

The DC-link voltages correspond to each other in Figure 11. Furthermore, the grid
current is equal to the reference values. Finally, it was shown and proven that the voltage
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and current of the grid are in phase, which means that the power factor of the grid-
connected PV system is nearly unity.

4.2. Simulation 2: Constant Solar Irradiation

In the second case, solar irradiation is constant at 1000 W/m2, but the module temper-
ature is varying. From t = 0 s to 0.3 s temperature is 25 ◦C, next, at 0.3 s the temperature is
45 ◦C, and lastly, at 0.3 s the temperature is 30 ◦C. According to Figure 12, the performance
of the panel is 30.38 V/1000 W, 27.92 V/912.1 W, and 29.76 V/978.8 W, which is highly
close to the values represented in Table 1. Despite the module temperature change, VDC
matched its reference at all times. In addition, the RMS value of Ig is maintained according
to the reference trend, as presented in Figure 13. The phases of the grid voltage and current
match, which means that the system’s power factor is unity.

5. Comparison between LQR and Backstepping Approaches

This research suggests the suitable combination of an LQR and fuzzy control for grid-
connected PV systems. To show the effectiveness of the provided technique, it is important
to make comparisons between some other methods, such as photovoltaic grid-connected
systems using fuzzy logic and backstepping approaches [28] (see this reference paper for the
specific details of simulations). Figures 14–17 present the simulation results of fuzzy control
and the backstepping approach for a grid-connected photovoltaic system with the module
temperature (Figures 14 and 15), and then with constant solar irradiation (Figures 16 and 17),
in which the time unit in the horizontal axis is seconds. The obtained simulation results
should be compared to those of the above-mentioned method. Specifically, the results in
Figures 11 and 13 should be compared with those in Figures 15 and 17, respectively. We
can see that both the control methods have good results.

 
(a) (b) 

Figure 14. MPPT module performance in case with the backstepping approach for constant tempera-
ture: (a) PV voltage; (b) PV output power.

196



Energies 2022, 15, 1286

 

(a) (b) 

 
(c) 

Figure 15. DC link voltage regulator module and current controller module performances with
backstepping approach for constant temperature case: (a) DC link voltage; (b) grid current magnitude;
(c) grid voltage waveform Vg (V) and current waveform where gain is 10 × Ig (A).

 
(a) (b) 

Figure 16. MPPT module performance in case with the backstepping approach for constant solar
irradiation: (a) PV voltage; (b) PV output power.
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(a) (b) 

 
(c) 

Figure 17. DC link voltage regulator module and current controller module performances with
backstepping approach for constant solar irradiation case: (a) DC-link voltage; (b) grid current
magnitude; (c) grid voltage waveform Vg (V) and current waveform where gain is 10 × Ig (A).

5.1. Simulation 1: Constant Module Temperature

It is obvious that the simulation results of the MPPT parts in both the cases are the
same since the main changes were not related to the MPPT controller, but to the LQR.
Thus, the behaviors shown in Figures 10 and 14 are same; the performances presented in
Figures 12 and 16 are also similar. Comparing the DC link voltage regulator module and the
current controller module in both the cases, it can be clearly seen that the LQR case reacts to
the changes in the module temperature and irradiation faster; in other words, the settling
time of the LQR technique is lower compared to the backstepping method. Moreover, the
LQR is robust when faced with different temperature and irradiation changes, which makes
this technique preferable. In addition, in the case of the backstepping method, overshooting
of the signal was observed, which significantly degrades the output and overall efficiency
of the considered PV system. Furthermore, the response speed of the designed LQR is
faster; consequently the rise time and peak time of the LQR are lower than those of the
backstepping approach.

5.2. Simulation 2: Constant Solar Irradiation

In addition, the fuzzy-based INC-MPPT controller (see Figures 3–7 and Table 4) in
this paper is improved from our past method [33], with significant modifications in the
pre-scaling module Gp(k) for increasing the sensitivity of the slope Sp(k), in the fuzzy
association rules for boosting the speed of searching the MPP, and in the control parameter
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values, which are designed and tuned to be more suitable for grid-connected PV systems
with the LCL output filter. The detailed analysis and evaluation of the effectiveness of the
prior related MPPT method for a small stand-alone PV system in various simulations and
experiments can be referred to in Sections 4 and 5 of our past work [33], in which cases
of partial shadow on the PV array were also investigated in experiments. Moreover, the
influence of the module temperature on the performance of the stand-alone PV system and
MPPT controller can be found in Sections 2.2 and 4.3 of the prior study [33]. In fact, our
present paper proposes a complete control solution for grid-connected single-phase PV
systems including the LCL output filter based on fuzzy control and LQR techniques with
multiple objectives as described in Sections 1 and 3 above; thus, it is noted that the separate
assessment of the MPPT controller compared to other MPPT systems is out the scope of
this study.

Due to substantial differences in configurations of considered PV systems and control
objectives between this study and other existing works, it seems inappropriate and difficult
to directly compare the detailed effectiveness of the proposed control scheme in this research
to that of other studies. Therefore, we have only performed the detailed comparison
of the current controller module using the LQR method proposed in the present paper
with our past work using the backstepping approach [28] for evaluation, as described in
Section 5 above. Moreover, for further reference, the current controller module using the
LQR technique in this paper is briefly compared with the PID-fuzzy hybrid controller
introduced in our other study [34], as represented in Table 6.

Table 6. Comparison between the proposed current controller module and the previously introduced
PID-fuzzy controller in [34].

Control Methods
The Current Controller Module Using the

LQR in This Paper
The Introduced PID-Fuzzy Hybrid

Controller in [34]

Design and computational
complexity

- Fairly simple design based on an optimal
control method using the algebraic
Riccati equation (see Section 3.3)

- Includes three separate FLCs for
controlling gains Kp, KI, and KD, in which
each FLC consists of 49 association rules.

Field of application in
power systems

- For a complete single-phase
grid-connected PV system including the
LCL output filter with the consideration
of DC link voltage regulation.

- For a simple single-phase grid-connected
PV system including the L output filter
without the consideration of DC link
voltage regulation.

Control objectives,
performance, and
effectiveness

- Can well regulate the grid current with a
unity power factor and DC link voltage
under different operating conditions of
the PV system.

- Very fast response, and small overshoot.
- Has good efficacy and is robust faced

with large variations in solar radiation
and PV module temperature.

- Theoretical analysis of stability of the
LQR controller has been confirmed.

- Can control the active and reactive power
supplied to the grid with the step change
of reference signals for the two powers.

- Quick response and relatively
small overshoot.

- Has not yet been checked with large
variations in solar radiation and PV
module temperature.

- Theoretical analysis of stability of the
hybrid controller has not yet
been performed.

In this grid-connected PV system using a DC-AC inverter and LCL output filter, due to
parasitic capacitance and grounding resistance, the issues of common mode (CM) voltage
and leakage current may become significant if the design and control of the inverter and
LCL filter are not appropriate [35,36]. As presented in other existing studies [37,38], the
issues of CM voltage and leakage current in grid-connected PV systems can be effectively
investigated and reduced using various techniques such as improved PWM methods,
modified topologies of PV inverters with complementary switches [37], design and im-
plementation of CM filters [38,39], active damping control approaches [40], and so forth.
On the other hand, our paper focuses on developing a complete control scheme for grid-
connected single-phase PV systems including an LCL filter based on fuzzy logic and an
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LQR method with three key goals comprising the MPPT, DC link voltage regulation, and
injection of the PV power into the grid with a unity PF. Hence, it should be noted that the
assessment and reduction of the CM voltage and leakage current are beyond the scope of
the present paper; these issues will be thoroughly considered in our future work.

6. Conclusions

Based on fuzzy control and an LQR, this study provides a comprehensive control
solution for grid-connected single-phase PV systems. In terms of improving the quality
of controller methods, this work represents a substantial extension and enhancement of
our past research. For grid-connected solar systems, the suggested approach is an LQR
suitably combined with fuzzy control, in which the design procedures of all the controllers
are also described in detail. The major novelty of this study is to demonstrate and verify
that the newly proposed approach is more successful in different aspects by comparing our
past and present control methods. The LQR technique’s major benefit is its ability to react
quickly to unexpected changes in the system, such as changes in module temperature and
solar irradiation. In other words, the systems achieve their settling period sooner, which is
necessary to steady the output behavior.

Furthermore, as compared to the backstepping approach, the LQR method is more
resistant to various changes in weather conditions. The backstepping approach also has
the greater overrun, which has a detrimental effect on the efficiency of the investigated
PV system. As previously stated, the LQR has the quicker response speed, making this
type of controller more desirable. These are the major contributions of our present work
as compared to the earlier research. Moreover, the results of simulations under different
weather circumstances were compared to theoretical ones, indicating that the proposed
system can cope with variations in weather parameters well. It was also demonstrated
that abrupt changes in weather factors had no significant effects on the proposed control
system’s performance.

In future work, intelligent models based on fuzzy control for effectively predicting
PV power and load demand will be thoroughly studied and implemented to improve the
effectiveness and quality of grid-connected solar energy systems, especially under adverse
conditions such shaded solar PV modules.
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Abstract: Transportation, as one of the most growing industries, is problematic due to environmental
pollution. A solution to reduce the environmental burden is stricter emission standards and ho-
mologation tests that correspond to the actual conditions of vehicle use. Another solution is the
widespread introduction of hybrid vehicles—especially the plug-in type. Due to exhaust emission
tests in RDE (real driving emissions) tests, it is possible to determine the real ecological aspects
of these vehicles. The authors of this paper used RDE testing of the exhaust emissions of plug-in
hybrid vehicles and on this basis evaluated various hybrid vehicles from an ecological point of
view. An innovative solution proposed by the authors is to define classes of plug-in hybrid vehicles
(classes from A to C) due to exhaust emissions. An innovative way is to determine the extreme
results of exhaust gas emission within the range of acceptable scatter of the obtained results. By
valuating vehicles, it will be possible in the future to determine the guidelines useful in designing
more environmentally friendly power units in plug-in hybrid vehicles.

Keywords: exhaust emission; energy consumption; real driving emissions test

1. Introduction

The main problem of the ever-growing industry is its negative impact on the natural
environment. One of the most dynamically changing sectors of industry is transport, which
significantly contributes to air pollution. In order to reduce the impact of vehicles on the
environment, increasingly stringent emission standards are introduced and solutions are
sought that could allow minimization of the exhaust emissions from vehicles. One of the
solutions proposed by the carmakers aiming at a global reduction of exhaust emissions is
to replace as many conventional vehicles as possible with electric ones. Yet, due to the high
cost of batteries, low vehicle range, and the lack of infrastructure, fully electric vehicles
cannot fully replace the conventional ones. Manufacturers of conventional vehicles still
struggle with the increasingly stringent exhaust emission standards.

The emission standards are set forth worldwide to control the pollutants emitted from
vehicles to the atmosphere. The exhaust emissions are measured under the conditions of a
predefined type of approval test. This part of the vehicle certification is responsible for its
ecological properties and is the same for all passenger cars. The course of the test reflects
the most probable road conditions and its performance, identical for all vehicles, entitles
a comparison of the emission results among all the tested vehicles. These days, however,
increased attention has been drawn to the performance of road tests, i.e., performed under
actual traffic conditions. Currently, these tests are specified in the EU regulations as RDE
(real driving emissions) [1–6]. They are carried out to most accurately reproduce the actual
traffic conditions in the environmental aspect. Such tests must be performed in compliance
with certain precisely defined requirements while at the same time allowing a relative
arbitrariness, which significantly spreads the obtained exhaust emission results despite
meeting the RDE requirements. The performed qualitative and quantitative analyses of
the exhaust emissions in different tests was the subject of [7]. The authors proved that the
values of relative road emissions depend more on the distance covered during the test than
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the duration of the test. The exhaust road emission values determined in different tests
depend mainly on the type of test and are greater in shorter tests compared to the RDE test.
The analysis of the investigations has confirmed that it is possible to shorten the tests by
approximately 20% without a significant change in the exhaust emission results. This is
confirmation of the increasing importance being placed on road test results, which must be
verified for not only static parameters, but also, to a large extent, for dynamic parameters.

The detailed requirements of the RDE tests and the possibilities of optimization of
a combustion engine were investigated by Pielecha and Skobiej [8]. The analysis of the
emission level of individual exhaust components allowed the authors to show that the
exhaust emission level may be lower by 26% to 81% compared to the road test performed
under actual traffic conditions. The performed tests indicate that already at the stage of
design, the engines can be optimized in terms of their exhaust emissions. Roadside emission
tests have also been shown to be the most reliable vehicle performance information vehicle.
The literature presented in this paper intends to indicate the actions and research aimed at
increasing the environmental aspects of hybrid vehicles. These are both solutions involving
better management of the energy stored in the batteries and technical solutions affecting
the development of this type of vehicle.

A partial solution to the problem of the limited range of electric vehicles as well as
its dependence on the traffic conditions is the introduction of a plug-in hybrid [9,10]. A
plug-in hybrid combines the advantages of hybrid and electric vehicles. Compared to
typical hybrids, the batteries used in plug-in hybrid electric vehicles (PHEVs) have greater
capacity and range and can be charged from an external power supply. Such vehicles are
more economical in terms of fuel consumption and more ecological in terms of exhaust
emissions. Due to the fact that approximately 30–50 km [11] can be covered using electrical
energy, PHEVs are more ecological than the conventional ones.

Cieslik et al. [12] investigated an electric vehicle under varied vehicle operating
conditions, particularly the influence of the weather on the energy consumption by the
vehicle. Under actual traffic conditions in sub-zero temperatures, the energy consumption
in such a vehicle is greater by 14% compared to warm weather. Similar investigations were
carried out by Yi et al. [13], indicating that energy consumption in the electric vehicle (EV)
may vary drastically depending on the driving conditions, which is extremely impactful
on the vehicle range.

Li et al. in [14], observing the growing popularity of electric and plug-in hybrid
vehicles, proposed a methodology of assessment of the energy distribution within a vehicle.
Plug-in hybrids allow charging of the batteries while driving, which reduces the demand
for energy from the external sources.

Pielecha et al. [15] compared vehicles of different powertrains: conventional, plug-in
hybrid, and electric, in tests under actual traffic conditions. They showed that the plug-in
hybrid consumes 20% less energy than the conventional vehicle.

As per the IEA, the Global EV Outlook 2020 reported [16] that since 2010 (last 10
years), the number of electric vehicles has increased and today their share in the market
amounts to 2.5% (1 in 40 new vehicles is fitted with an electric powertrain), including 74%
fully electric ones and 26% plug-in hybrids. The increase in the number of plug-in hybrid
vehicles is presented in Figure 1, where the 2010–2019 phase is compared. In 2012, when
the sales of plug-in hybrids were initiated, already 100,000 vehicles were located in the US.
In 2017, the number of these vehicles exceeded 1 million, for which the greatest share was
in Europe. The sales of plug-in hybrid vehicles reached a level of 2.4 million worldwide in
2019 and the highest number of these vehicles was recorded in Europe.
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Figure 1. Increasing the number of plug-in hybrid vehicles between 2010 and 2019 globally (based
on [16]).

Due to the fact that this type of vehicle is equipped with two sources of propulsion—a
conventional internal combustion engine and an electric motor—it is necessary to optimally
develop an energy management strategy and calibrate its parameters; the new system is
designed to reduce emissions on the one hand and minimize energy consumption on the
other.

2. Aim of the Paper

The addressing of the topic discussed in the paper is a result of social expectations,
related to fair provision of vehicle emission-related information. Accusations were made
that emission tests (particularly the type of approval tests) do not reflect the actual vehicle
emissions, and, at the same time, the provided fuel economy information significantly
diverges from the values obtained in daily vehicle operation. A similar topic, but in
terms of a very broad scope of research, was addressed by the Initial Green Vehicle Index
Roadmap project [17], where the assumption was to develop a basis for the comprehensive
assessment of vehicles in terms of exhaust emissions, fuel consumption, and energy. The
project, divided into phases between 2019 and 2030, assumed the study of exhaust emissions
in type approval tests (NEDC, WLTC, and RDE) and, on this basis, the classification of
vehicles on a 10-point scale of two indices: the clean air index and energy efficiency index.
The clean air index compared on-road exhaust emissions with the permissible values—the
lower the exhaust emissions, the higher the index value. The second index, the energy
efficiency index, assessed the energy consumption of vehicles represented in kWh/100 km.
Determination of the two indices and their respective values made it possible to assign a
rating from 0 to 5 stars to the vehicle.

Therefore, the authors of this paper see the need for an objective approach to the
assessment of the fuel consumption and exhaust emissions under actual operation of a
vehicle. Such a particularization is necessary in the times of valuation of much data influ-
encing, not only the vehicle operation, but also the choices of the end-users. A very good
example is the valuation of the energy consumption of electric vehicles (though, condi-
tioning of this parameter on external conditions should be required). The categorization
of exhaust emission assessments conditional on the probability distribution of the results
obtained in road tests is a novel approach. A novel method of determining the above
will be the estimation of the extreme values of the exhaust emissions for a given vehicle
within the admissible spreads of the road test results. Such a scenario, in the first stage,
forced the application of a mathematical optimization apparatus in order to determine the
minimum and the maximum values of the exhaust emissions and fuel consumption and, in
the second stage, the need to practically validate the possibilities of obtaining such results
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from vehicles fitted with given powertrains (plug-in hybrid vehicles). The realization
of such a research plan resulted in the development of a new tool that may be used in
the environment-related assessment of motor vehicles under actual traffic conditions. In
relation to this, the discipline of transport would gain another solution, serving the purpose
of protecting the natural environment. Currently, the certificate of type approval provides
the final values related to the conformity of a vehicle to a given ecological category without
energy- and emission-related valuations in the said category. Currently, sold vehicles in the
emission category of Euro 6 are not classified in terms of adequacy of the actual emission
and fuel consumption with the values stated in the certificate of type approval. The aim of
the paper is the development of a procedure, according to which one could assess whether
the road emission test performed on a plug-in hybrid is reliable and, at the same time,
indicate an interval of probability of meeting the requirements for tests carried out in the
actual traffic. Such a task remains in line with the optimization tasks, in which one needs
to determine the extreme values and indexes, to which the obtained emission result is to be
compared. In the paper, the authors introduced valuation of vehicles in road tests (classes
from A to C), which facilitates the assessment of the vehicle emission category of a PHEV
(not only in the type approval but also in road exhaust emission tests).

The effect of the paper will be the possibility of assessing the adequacy of the exhaust
emissions under actual traffic conditions based on the vehicle emission category and
determining the index (valuation), directly translating the results of a type approval test
to the road tests. By evaluating plug-in hybrids in environmental tests, it will potentially
be possible not only to assess their actual environmental impact, but also to establish
guidelines that will contribute to the design of more environmentally friendly powertrains
in the future. The research presented in this paper is an alternative approach to the issues
of environmental assessment of vehicles, although limiting oneself only to the emission of
exhaust compounds—in the case of PHEVs—is not a complete solution. The next challenge,
which is a continuation of the research, will be to develop a methodology for evaluating
the energy consumption of such vehicles. The consequence of these actions will be the
determination of the ecological assessment of conventional vehicles (evaluation of exhaust
emissions), hybrid vehicles (evaluation of exhaust emissions and energy consumption),
and electric vehicles (only energy consumption).

This procedure is motivated by the following reasons:

1. The proposal to categories vehicles was not developed on a large scale (with the
exceptions quoted above), particularly in road emission tests. The projects so far have
been mainly based on the exhaust emission results of homologation tests, in which the
only criterion was the maximum value of exhaust emission. There is a research niche
in the approach proposed in the paper—the authors propose two extreme values:
maximum (used so far), but they also outline the methodology for determining the
minimum value of exhaust emission.

2. The information defining the categorization of vehicles in road emissions tests in
terms of, among other things, exhaust emissions reflects the latest literature data well:

• Electrified vehicles (ZEV and PHEV) will have a significantly large share (about
90%) of the European market in 2030, of which more than 70% of such vehicles
will be equipped with internal combustion engines [18].

• The environmental impact of hybrid combustion vehicles powered, e.g., by
hydrogen is significantly lower than that of cars powered only with electric
motors [19].

3. The proposal to categorize vehicles is not required by any legislation; however,
the proposed method of exhaust emission assessment may be an indication of the
direction of the development of regulations. Using the authors’ methodology, the
trend of evaluating the exhaust gas emission in the road tests could be maintained,
e.g., with partial elimination of very complex type-approval tests.
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4. Increase public awareness of the environmental aspects of vehicles, which have a
local and direct impact on human health (exhaust emissions), as opposed to energy
consumption, which can be produced in a very distant area or from renewable sources.

3. Methodology

3.1. Requirements for the Tests under Actual Traffic Conditions

From 2017 onwards, the approval process for a new type of passenger car in the
European Union includes a procedure for measuring emissions under real traffic conditions.
The European Union Regulation (715/2007/EC [1] and 692/2008 [2]) on RDE tests is a
response to the results of tests concerning the increased emission of nitrogen oxides from
cars equipped with compression ignition engines, despite the fact that such vehicles met
the acceptable standards in laboratory conditions. According to the RDE rules (Package
1–4), for all new approvals from September 2020, the emission of nitrogen oxides measured
under road conditions will not exceed 1.43 times (CF—conformity factors) the maximum
limit (for Euro 6d-Temp is 60 mg/km), i.e., 86 mg/km (Table 1). The parameters of the
road tests are not arbitrary, and the moving average windows method (MAV) (also referred
to in the literature as EMROAD, developed by the JRC) is used to determine emissions.

Table 1. Requirements for RDE testing in Europe [3–6].

2015 2016 2017 2018 2019 2020 2021 2022

Euro 6b Euro 6d-Temp Euro 6d
NEDC WLTC

research and concept phase Conformity Factor (CF)

CFNOx = 2.1 CFNOx = 1.5
CFPN = 1.5

CFNOx = 1.43
CFPN = 1.5

The route shall be chosen in such a way that the test is carried out without interruption,
the data is recorded continuously, and the duration of the test is between 90 and 120 min.
The electrical energy for the PEMS (portable emission measurement system) shall be
supplied by an external power supply and not by a source that draws its energy directly or
indirectly from the engine of the vehicle under test. The installation of the PEMS system
shall be carried out in such a way that it affects vehicle emissions, performance, or both
as little as possible. Care shall be taken to minimize the mass of the installed equipment
and potential aerodynamic changes in the test vehicle. RDE tests shall be conducted on
working days, and on paved roads and streets (e.g., off-road driving is not permitted).
Prolonged idling after the first ignition of the combustion engine at the start of the emission
test shall be avoided (Table 2).

Table 2. Specific requirements of the RDE test [3–6].

Parameter Requirement

ambient
temperature (ta)

normal range: 0 ◦C ≤ ta ≤ 30 ◦C
lower extended range: –7 ◦C ≤ ta < 0 ◦C

(emission corrective factor 1/1.6)
upper extended range: 30 ◦C < ta ≤ 35 ◦C

(emission corrective factor 1/1.6)

driving test
altitude (h)

normal range: h ≤ 700 m a.s.l.;
extended range: 700 < h ≤ 1300 m a.s.l.

impact evaluation of
ambient weather and

road conditions as well
as the driving style

total altitude increase: less than 1200 m/100 km; relative positive
acceleration (RPA): move than RPAmin (for all road conditions); the

product of velocity and acceleration (V · a+): less than V · a+ max (for all
road conditions)
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Table 2. Cont.

Parameter Requirement

cold start

duration of the cold start period is defined from engine start to first of
5 min or coolant temp ≥70 ◦C; max velocity during cold start

≤60 km/h; the average speed (including stops) shall be
between 15 km/h and 40 km/h; total stop time during cold start

<90 s; idling after ignition <15 s

any vehicle stop no longer than 180 s

vehicle aftertreatment
systems operation

a single regeneration of the particulate filter justifies repeating the RDE
test; the occurrence of two filter regenerations is to be included in the

results of the RDE test

driving comfort
systems operation

regular use as intended by the manufacturer (for example: use of the
air conditioning)

vehicle load
vehicle mass: driver (and passenger) along with the PEMS equipment;
maximum load <90% of the sum of the mass of the passengers and the

vehicle curb weight

test requirements duration 90 min–120 min

urban test phase
requirements

29–44% share of the whole test time; distance: more than 16 km; vehicle
speed: up to 60 km/h; average speed: 15 km/h–40 km/h; vehicle stop:

6–30% of the urban phase of the test time

rural test phase
requirements

23–43% share of the whole test time; distance: more than 16 km; vehicle
speed (V): 60 km/h < V ≤ 90 km/h

motorway test phase
requirements

23–43% share of the whole test time; distance: more than 16 km; vehicle
speed: more than 90 km/h; vehicle speed over 100 km/h for at least

5 min; vehicle speed over 145 km/h no more than 3% of the test phase
time

3.2. Research Equipment

In order to measure the concentration of toxic compounds in the engine exhaust gas,
mobile exhaust gas analyzers were used in stationary tests. The concentration of gaseous
compounds was measured with the use of a Semtech DS analyser by Sensors. It enables
measurement of the concentration of carbon monoxide, hydrocarbons, nitrogen oxides,
and carbon dioxide, and, on the basis of oxygen concentration, the coefficient of excess air
is determined.

The main purpose of the Semtech DS analyser is to measure the concentration of
gaseous compounds from automotive vehicles. In this version, it can be used to test
engines powered by different fuels, whose composition should be taken into account in
the final data treatment (post processing). It is a representative of a group of PEMS-type
measuring devices. It therefore meets the ISO 1065 standard for testing exhaust emissions
with mobile systems. In addition to the possibility of using the analyser for in-service
vehicle tests, it can be used as a measuring device for stationary tests, e.g., on an engine
dynamometer. The Semtech DS analyser consists of the following measurement modules:

• Flame ionization detector (FID), which uses the change in electrical potential result-
ing from ionization of the particles in the flame; it is used to determine the total
concentration of hydrocarbons;

• NDUV (non-dispersive ultra violet)-type analyser, using ultraviolet radiation to mea-
sure concentrations of nitrogen oxide and nitrogen dioxide;

• NDIR (non-dispersive infrared) analyser, using infrared radiation to measure concen-
trations of carbon monoxide and carbon dioxide;

• Electrochemical analyser to determine the oxygen concentration in the exhaust gas.

The Semtech DS analyser, in cooperation with a suitable flow meter, enables mea-
surement of the exhaust mass flow rate. An important aspect is the appropriate thermal
condition of the equipment, which is necessary to ensure stable indications. The time
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needed to obtain the appropriate temperature of the analyzer is 60 min. The measurement
starts with the introduction of the exhaust sample into the analyser through a measuring
probe that maintains a temperature of 191 ◦C. The exhaust gas sample is then filtered from
the particulate matter. The filtered sample is then subjected to a hydrocarbon concentration
measurement. The next step is to cool the exhaust sample to 4◦C and start measuring the
concentration of nitrogen oxides, carbon monoxide, carbon dioxide, and oxygen. Table 3
presents the values of measurement uncertainty and the measurement range of particular
modules of the Semtech DS analyser.

Table 3. Uncertainty of indications of individual measurement modules of the Semtech DS analyzer.

Uncertainty NDIR Analyser Indications NDUV Analyser Indications

Component
Carbon

Monoxide
Carbon
Dioxide

Nitrogen
Oxide

Nitrogen
Dioxide

measuring range 0–8% 0–20% 0–2500 ppm 0–500 ppm

extended uncertainty
of measurement

±3% reading
(or 50 ppm CO)

±3% of reading
(or 0.1% CO2)

±3% reading
(or 15 ppm)

±3% reading
(or 10 ppm)

whichever is greater

For the measurement of particle diameters, a TSI Incorporated analyser—EEPS 3090
(Engine Exhaust Particle Sizer™ Spectrometer) was used. It allowed measurement of
the discrete range of particle diameters (from 5.6 nm to 560 nm) based on their different
electrical mobility. Exhaust fumes are directed to the device through a dilution system
and a system that maintains the required temperature. A pre-filter stops particles larger
than 1 μm in diameter that are outside the measuring range of the device. After passing
through the neutralizer, the particles receive a positive electrical charge depending on their
diameter. The particles deflected by the high-voltage inner electrode enter the ring slot. In
the space between the inner electrode (having a positive electrical charge) and the outer
cylinder (built as a stack of isolated electrodes arranged in rings), the electric charge of the
collected particles (on the outer electrodes) is read by the processing system. Technical data
of the TSI 3090 EEPS analyser are presented in Table 4.

Table 4. Spectrometer characteristics of EEPS TSI 3090.

Parameter Value

range of measured particle diameters 5.6 nm–560 nm
measurement resolution (number of channels) 16 channels per decade (total 32)

reading frequency 10 Hz
airflow 40 dm3/min

flue gas sample flow 10 dm3/min
sample temperature range 10 ◦C–52 ◦C

operating temperature of the device 0 ◦C–40 ◦C
analyser weight 32 kg

3.3. Characteristics of the Research Objects

The characteristic features of the research objects are presented in Table 5. All vehicles
were plug-in hybrids. They varied in terms of the displacement of the fitted combustion
engine, maximum power output, and torque. The vehicles were selected so as to most
efficiently diversify and compare vehicles of different environmental performances. Vehicle
A is characterized by the highest power output of the combustion engine and the electric
motor and the highest battery capacity (13.6 kW·h). Vehicle B is distinguished by a con-
tinuously variable transmission, the lowest curb weight, and an average battery capacity
(8.8 kW·h). Vehicle C is characterized by the highest engine capacity but has the lowest
battery capacity (3.3 kW·h). Depending on the battery capacity, the vehicles were referred
to as large battery (vehicle A), medium battery (vehicle B), and small battery (Vehicle C).
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Table 5. Technical parameters of plug-in vehicles.

Technical
Parameters

Vehicle A
Large Battery

Vehicle B
Medium Battery

Vehicle C
Small Battery

engine gasoline, Turbo, R4 gasoline, R4 gasoline, R4
fuel system direct injection multipoint injection direct injection

engine displacement 1395 cm3 1798 cm3 1999 cm3

max. power 115 kW
+ 85 kW (electric)

72 kW
+ 53 kW (electric)

113 kW
+ 50 kW (electric)

max. torque
250 Nm/1500–3500

rpm
+ 330 Nm (electric)

142 Nm/3600 rpm
+ 163 Nm (electric)

189 Nm/5000 rpm
+ 205 Nm (electric)

gearbox automatic, 6 gears automatic infinitely
variable e-CVT automatic, 6 gears

size
(length/width/height) 4869/1864/1503 mm 4540/1760/1490 mm 4855/1860/1470 mm

curb weight 1655 kg 1375 kg 1740 kg
average CO2

emissions 31–42 g/km (WLTP) 28–35g/km (WLTP) 33 g/km (WLTP)

euro standard Euro 6d-Temp Euro 6-Temp Euro 6
model year 2020 2020 2019

battery 13.6 kW·h 8.8 kW·h 3.3 kW·h

3.4. Adopted Method to Search for the Function Minimum

In search for the lowest road (specific) emission in the RDE test, a task was applied
consisting in seeking the lowest value of the function of many variables while fulfilling the
imposed conditions. Such a task was formulated in the form:

min f(x) (1)

fulfilling the limitations:
h(x) = 0, (2)

g(x) ≤ 0 (3)

where: f—objective function of the optimization task, h(x)—equality limitations vector,
and g(x)—inequality limitation vector.

The above-presented general form of the objective function and the function of limita-
tions requires an introduction of the modification of the objective function and limitations
to enable an application of the general reduced gradient method. The general reduced
gradient method belongs to a group of methods searching for the function minimums
of many variables without limitations. The equality and inequality limitations can be
considered by including them in the objective function:

K(x) = f(x) ∑i h2
i (x) + 1/(2μ) ∑i W(g) + 1/(2μ), (4)

where: W(g) = g(x)−g(min) for g ≤ g(min) and μ—par parameter modified in the optimiza-
tion process.

The generalized reduced gradient (GNG) algorithm implemented in the Excel add-in
Solver was used to perform the analysis. The principle of operation of the GNG algorithm
in a shortened version is presented on the basis by Lasdon et al. [20]. Such an algorithm
works very well for solving nonlinear problems; however, it is sensitive to the choice of
initial data.

4. Results

4.1. Validation of the Tests for Compliance with the Requirements

In order to be able to compare the exhaust emissions in the first place, the nature of the
test drives had to be compared. The performed tests were validated for their compliance
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with the RDE procedure, which requires three phases: urban, rural, and motorway. First, a
formal check of the test drives was performed, and the detailed data are shown in Table A1
in Appendix A. All tests were repeated 5 times; tests in which extreme values were reached
were rejected. For the purposes of this paper, the test that did not deviate by more than 10%
from the average value in terms of the emissions of each exhaust constituent was assumed
to be representative.

Despite meeting all the formal requirements for the tests, the most vital parameters
were also compared that could have impact on the different emission results of the in-
vestigated vehicles. The course of the test route clearly indicates the three phases of the
test (Figure 2a). We can distinguish the urban phase 20–25 km, the rural phase—25 km
to 50 km, and the motorway phase—60 to 90 km. All three phases were rather similar in
terms of their average speeds (Figure 2b). The spread of the average speed for the urban
phase did not exceed 1 km/h; for the rural phase, 2 km/h; and for the motorway phase
(the greatest), 5 km/h. The average value of the speed in the entire test was similar in each
drive and amounted to 52, 56, and 54 km/h for vehicles A, B, and C, respectively.

Figure 2. The tracings of the speed in the tests performed on the plug-in hybrids of different battery capacities (a) and
average values of the speed in each phase of the test and in the entire RDE test (b).

In a second step, the authors compared the contribution of each phase of the RDE test
for individual vehicles. The formal requirement is that the urban phase fills from 29% to
44%, the rural phase 23% to 43%, and the motorway phase 23% to 43% of the entire RDE
test. The obtained results for the urban phase were 36.7%, 33.1%, and 34.1% for vehicles
A, B, and C, respectively (Figure 3). This means that the data variation described with
the coefficient of variation CoV (the ratio of the standard deviation to the mean) is 1.5%.
This is a very small value and indicates a very high probability of the obtained results. For
the rural phase of the test, the obtained results are 27.5%, 31.6%, and 32.7%, which gives
a CoV = 7.4%. This value is several times higher than that from the urban phase. This
phase of the test is characterized by a greater variability of vehicle speed and a greater
share of unpredictable conditions. For the motorway phase, the shares in the entire test
were 35.5%, 35.3%, and 33.2%, which gives a value of CoV = 3.3%. Such a comparison
clearly confirms the similarity of the phase shares in the RDE test. It is noteworthy that,
despite the allowable high variability in phase shares, the authors tried to keep the test
drives very similar throughout the study, so that the emission results were only affected by
traffic parameters (which the authors had no control over).
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Figure 3. Comparison of the share of individual phases of the RDE test for the plug-in hybrids with a large (a), medium (b),
and small (c) battery capacity.

The third and last stage of the comparison was determining the parameters character-
izing the dynamic states of the vehicle operation. The first parameter was the 95% centile
of the product of speed and positive acceleration (Figure 4a), which, in each phase of the
test, should be lower than the predefined maximum. The requirement is to make sure that
the test drive is not excessively dynamic, and the vehicle accelerations do not drastically in-
crease the dynamics, resulting in increased exhaust emissions. The values of this parameter
for the urban part, shown in Figure 4a, are in the range 9–12 m2/s3 and are similar for all
test drives. For the rural phase, the obtained values of this parameter in individual drives
have a greater spread (14 m2/s3 to 18 m2/s3). For the motorway phase, these values are the
most similar and amount to approximately 14 m2/s3. It is noteworthy that in each phase
of the test, the admissible value is not exceeded (marked with a continuous line). This
suggests the correctness of the test realization in terms of driving dynamics. At the same
time, it indicates a significant similarity, which will constitute a basis for the comparison of
the exhaust emissions from the investigated vehicles.

Figure 4. Comparison of the 95% centile of the product of vehicle speed and positive acceleration (a) and the relative
positive acceleration (b) in each phase of the test performed on the plug-in hybrids.

The other parameter describing the dynamic conditions was relative positive accel-
eration (Figure 4b). This parameter described the minimum dynamic conditions for the
test drive not to be a steady state and to eliminate driving with the use of cruise control.
Unfortunately, this parameter is determined on such a level that the performed tests are
characterized by only slightly higher values than the minimum ones. For the urban part of
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the test, for all the vehicles, the relative positive acceleration fell in the range 0.14 m/s2 to
0.16 m/s2 and was approximately 10% greater than the minimum (13 m/s2) defined for
the obtained average speed in this phase (approximately 30 km/h). In the rural phase of
the test, the values were even closer to one another, and fell in the range of approximately
0.6–0.7 m/s2 and were greater than the minimum by approximately 5% (for the average
speed of 75 km/h). In the motorway phase of the test, the relative positive acceleration
was the lowest. It amounted to 0.3 ± 0.04 m/s2 and was slightly higher than the minimum
defined on the level of 0.25 m/s2.

The presented characteristics of the tests as well as the steady state and dynamic
properties of the test drives prove that the formal requirements (presented in a concise
form) for each of the test drives and each phase of the test were met. Such a situation
implies the possibility of moving on to the next stage of the investigations, consisting in
determining the exhaust emission values. Similar test conditions and similar dynamic
parameters obtained for all the vehicles tested provide grounds for concluding that the
exhaust gas emission results are not burdened with inaccuracy resulting from differences
in the test course. At the same time, the similarity of the test runs indicate differences
resulting only from individual vehicle characteristics, such as the engine used or battery
capacity.

4.2. Exhaust Emission Results

Due to the fact that the engine was not in the initial phase of the RDE test, the
characteristic aspect of the emission of individual exhaust components is the initial flat
period of the relation. It results from the fact that the initial phase of the RDE test is
performed only with the electric motor activated and the cold phase of the test is moved
from the urban phase to the rural one (Figure 5a). This is particularly visible when we
analyze the emission of carbon dioxide (shown in increments), from which we conclude
that the vehicle of the lowest battery capacity drove approximately 40 km on the electric
motor. The other vehicles used the electric motor for the distance of over 50 km. The
advantage of this situation is that the engine warm-up time is reduced. This is due to
the fact that there is a higher engine speed and load during the rural phase of the test.
This results in much faster catalytic converter firing and a reduced cold start time. The
downside, however, is the fact that the cold engine operation at higher loads and speeds
results in higher emissions of individual exhaust components. This is particularly visible
in the analysis of the emission of carbon monoxide (Figure 5b), where the start of a cold
engine (vehicle A) in a very short time resulted in emission of almost 50% of the entire
emission of this component (approximately 30 mg/km for the distance of approximately
50 km and for the entire test this value was approximately 60 mg/km for the distance of
approximately 100 km).

A separate comment is required related to the nature of the changes in the emission of
carbon monoxide for the medium-battery plug-in hybrid, for which this emission drops
as the test continues (from 70 km onwards). This is caused by the lowest increment of
the mass of carbon monoxide compared to the distance covered by the vehicle. In the
outstanding two cases, the increase in the mass of carbon monoxide was greater than the
increment in the covered distance. For each investigated vehicle, the emission of carbon
monoxide was lower than the admissible one (1000 mg/km Euro 6d-Temp). For individual
vehicles, the obtained values of the emission of this component, defined as the total mass
of the emitted component against the total covered distance, are: 63, 74, and 109 mg/km,
for vehicle C, B, and A, respectively.
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Figure 5. Dependence of the emission of carbon dioxide (a), carbon monoxide (b), nitrogen oxides (c), and particle number
(d) on the distance covered during the road tests for individual investigated vehicles; the curves were made using the
emission intensity results obtained in each second of the test.

The nature of the changes in the emission of nitrogen oxides (Figure 5c) was heavily
dependent on the engine displacement and the vehicle weight. Vehicle C (of the highest
curb weight and engine displacement) was characterized by the highest emission of nitro-
gen oxides and, at the same time, had a constant growing trend in the rural and motorway
cycles. The final value of the emission of nitrogen oxides obtained using all the data related
to the emission intensity in the entire RDE test was 9.5 mg/km, which is an approximately
50% higher value compared to vehicle B (6.4 mg/km) and more than 3 times higher than
the results obtained for vehicle A (approximately 3 mg/km). In the final described case,
vehicle A had the engine of the lowest displacement, but the engine was turbocharged. The
catalytic converter significantly reduces the concentration of nitrogen oxides in the exhaust
system, which is particularly visible in modern turbocharged engines. The obtained values
of the emission of nitrogen oxides do not exceed the limits prescribed in the Euro 6d-Temp
standard, which amounts to 60 mg/km.

A different tracing from the previous one was obtained for particle number (Figure
5d). The smallest increase was observed for vehicle C, for which the greatest emission of
nitrogen oxides was recorded, which confirms the inversely proportional relation between
these exhaust components. When comparing the obtained results of all the investigated
vehicles, we know that the particle number is lower than the prescribed limit, which
amounts to 6·1011 1/km for the direct-injected engines. Determining the total exhaust
emissions in the tests requires an application of an averaging algorithm of the emissions in
the measurement windows that are determined based on the emission of carbon dioxide in
individual phases of the WLTC test (red dots in Figure 5).
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The value of the road emission of carbon dioxide in the RDE test, determined individu-
ally for each of the vehicles, in the majority of cases falls between the lower (Tollow = 0) and
the upper (Tolhigh = +45%) limit of tolerance. In all the investigations of the plug-in hybrids,
one can see a similarity of the distribution of the average emission of carbon dioxide in the
measurement windows (Figure 6): for the speed in the range up to 75 km/h, the observed
values do not exceed 100 g/km. In the range from 75 km/h to 125 km/h, the emission
values of carbon dioxide are from 100 g/km to 200 g/km for vehicle A (Figure 6a); for
vehicle B, up to 220 g/km (Figure 6b); and for vehicle C, up to 150 g/km (Figure 6c).

Figure 6. Characteristic curves determining the relation between the emissions of carbon dioxide in the measurement
windows that are the basis for the determination of the emission of individual exhaust components in the RDE test for:
Plug-in, Large Battery (a), Plug-in, Medium Battery (b), Plug-in, Small Battery (c).

Analyzing the carbon dioxide emissions for the different phases of the RDE test reveals
zero emissions of this component in the urban phase for all plug-in hybrid vehicles tested
(Figure 7a). The differences are visible only in the subsequent phases of the test: in the
rural phase, the greatest emission occurs for the vehicle with the smallest battery capacity
(49 g/km) and the lowest emission occurs for vehicle B with the medium battery capacity
(32 g/km). The greatest values of the emission of carbon dioxide were recorded in the
motorway phase of the test: 3–4 times higher compared to the rural phase. The greatest
emission of carbon dioxide (159 g/km) is for the vehicle with the lowest engine displace-
ment, which suggests the load of the powertrain. At the same time, it is confirmation of the
fact that downsized engines fitted in vehicles of relatively high curb weight do not ensure
the expected environmental results. The final result of the road emission of carbon dioxide
for all the vehicles is 63 ± 2 g/km, which means that none of the values differed from one
another by more than 3.2%. This is a very similar result confirmed by the gas mileage of
2.6, 2.8, and 3.0 dm3/100 km for vehicles A, B, and C, respectively. This is caused by the
fact that the electric mode was used in each phase of the test by each vehicle and its share
was 60%, 53%, and 48% for vehicles A, B, and C, respectively.
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Figure 7. Road emission of carbon dioxide (a), carbon monoxide (b), nitrogen oxides (c), and particle number (d) for each
phase of the test and in the entire RDE test for individual plug-in hybrid vehicles; the values were determined using an
algorithm allowing for averaging in the measurement windows.

Much greater differences in individual phases of the test were recorded for the emis-
sion of carbon monoxide (Figure 7b). Similar to the previous case, the urban phase was
characterized with zero emission of this component and in the rural phase, the differences
were significant and amounted to 33% (for vehicle B, the emission of this component was
99 mg/km and for vehicle C, 67 mg/km). Vehicle A reached an intermediate value of
74 mg/km. An even greater divergence was recorded in the motorway phase of the test,
where, similar to carbon dioxide, the highest values (259 mg/km) were recorded for vehicle
A (downsizing) and the smallest (93 mg/km) for vehicle C (the greatest displacement).
This translated into the final values that, for vehicle A (110 mg/km), were twice as high
compared to vehicle C (53 mg/km). It is noteworthy that these values are 10–20 times
lower than the admissible ones prescribed in the Euro 6d-Temp standard, where the limit
is 1000 mg/km.

The road emission of nitrogen oxides was dependent on the engine displacement: the
greater the engine displacement, the higher the emission of this component in individual
phases of the RDE test (Figure 7c). The road emission of nitrogen oxides in the rural phase
for all the tested vehicles was the result of the engine cold start in this phase. The recorded
values of the road emission in the rural phase were 2.9 g/km, 4.9 mg/km, and 5.8 mg/km
for vehicles A, B, and C, respectively. Vehicle C generated twice the mass of nitrogen
oxides compared to vehicle A (assuming the same distance in the rural phase of the test).
The values of this parameter in the motorway phase were even more varied: vehicle C
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generated 2.5 times the mass of nitrogen oxides compared to vehicle A, which could have
been caused by the mileage of this vehicle in the first place (MY 2019) and the reduced
efficiency of the catalytic converter. The consequence is the final result of the emission of
nitrogen oxides for vehicle A of 3.3 mg/km and vehicle C of twice as much (8 mg/km).
These values are more than 10 times lower that the ones prescribed in the RDE standard:
60 mg/km (bNOx Euro 6d-Temp) × 1.43 (CFNOx) = 86 mg/km. The road emission of the
particle number was quite the opposite compared to nitrogen oxides. The highest values in
each phase of the test and in the entire RDE test were recorded for vehicle B (Figure 7d).
These values were approximately 10–20% higher compared to vehicle A, whose values
were 0, 4.4·1010 1/km, 1.7·1011 1/km, and 6.9·1010 1/km in the urban, rural, motorway
phase, and the entire test, respectively. The lowest emission of the particle number was
vehicle C, for which the value in the entire RDE test was 3.1·1010 1/km. All the obtained
values were several times lower than the admissible limit of this component prescribed in
the RDE test requirements, amounting to 1.5 times the limit of the Euro 6d-Temp standard
(6·1010 1/km × 1.5 = 9·1011 1/km).

The above-presented procedure of determination of exhaust emissions under road
conditions served to assess the environmental performance of three different plug-in hybrid
vehicles. On this basis, the authors identified the exhaust emissions falling in the admissible
limits, i.e., quantitative information was obtained. The qualitative information, however,
was not assured, i.e., the result was not obtained against the environmental capabilities of
a given plug-in hybrid vehicle model. The obtained results do not contain information on
the scope of variability in the position of the results against the minimum and maximum
obtainable values for each vehicle.

5. Discussion

The obtained on-road emission values from each vehicle were used as input parame-
ters to determine the limits (where the values are possible). Specifying a maximum value
is not questionable because it should be a limit:

bj,max = bj,Euro6d-Temp × CFj (5)

where: bj,Euro6d-Temp denotes the admissible value of the road emission for the j-th exhaust
component (bCO,Euro 6d-Temp = 1000 mg/km, bNOx,Euro 6d-Temp = 60 mg/km, bPN,Euro 6d-Temp

= 6·1011 1/km and CFj—conformity factor for the j-th exhaust component (CFCO = 2.1,
CFNOx = 1.43, CFPN = 1.5).

The minimum values that vehicles can theoretically obtain were determined with
constant and variable emission rates. Constant emissivity should be assumed when
changes in emissivity do not appear in individual phases of the RDE test. This means that
a significantly small standard deviation occurs from the average value described with the
coefficient CoV < 10%. The exact values of CoV for the emission intensity of all the exhaust
components from all the investigated vehicles are presented in Table 6.

Table 6. CoV coefficient for all the tested exhaust components.

Exhaust Components
Vehicle A Vehicle B Vehicle C

Rural Motorway Rural Motorway Rural Motorway

CoVCO2 [%] 93.9 21.7 78.3 28.4 125.4 14.6
CoVCO [%] 86.0 33.5 77.5 61.0 552.0 17.5
CoVNOx [%] 83.2 30.6 77.5 17.2 125.9 14.6
CoVPN [%] 128.2 61.8 77.2 35.5 131.7 104.3

It can be seen from Table 6 that all CoV values are greater than 10%, so the emission
intensity (or road emission value) must depend on a mean value that accurately describes
the nature of changes in the said emission intensity (or road emission). In this paper, the
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minimum value of the exhaust emissions with both methods was determined irrespective
of the above.

5.1. Determining the Minimum Road Emissions
5.1.1. Constant Road Emission Intensity

For the determination of the theoretical values of the minimum exhaust emissions,
the authors used a method described in Section 3.4 of this paper. As the input values, the
authors used the emission intensities of a given exhaust component Ej,k, determined from
the road emissions bj,k; j = CO2, CO, NOx, PN, for the rural and motorway phases). In
the urban phase, the emission intensity was 0. The variable values of the algorithm were:
urban, rural, and motorway test duration (tk) and the distance in the urban, rural, and
motorway phases (Sk). The limitations were:

• The sum of the entire test duration: tU + tR + tM ∈ (90–120 min);
• Average speed in the urban phase SU/tU ∈ (15–40 km/h);
• Average speed in the rural phase SR/tR ∈ (40–80 km/h);
• Average speed in the motorway phase SM/tM ∈ (80–140 km/h).

The initial values were: tU = tR = tM = 30 min and SU = SR = SM = 16 km.
The values of the emission intensity of individual exhaust components (Table 7) were

obtained based on the average road emission, the time, and the distance covered in each
test phase. The objective function had a form:

bj,RDE = 0.34 bj,U + 0.33 bj,R + 0.33 bj,M (6)

and upon including the constant emission intensity Ej,k in each phase of the test:

bj,RDE = 0.34 Ej,U tU/SU + 0.33 Ej,R tR/SR + 0.33 Ej,M tM/SM. (7)

Table 7. The value of the constant emission intensity for the phases of the RDE test (rural, motorway)
as the algorithm input data.

Emission
Intensity

Vehicle A Vehicle B Vehicle C
Rural Motorway Rural Motorway Rural Motorway

ECO2 [g/s] 0.80 4.74 0.69 4.80 1.02 4.37
ECO [mg/s] 1.51 7.75 2.10 4.57 1.40 2.80
ENOx [mg/s] 0.06 0.21 0.10 0.41 0.12 0.56

EPN [1/s] 9.1·108 4.9·109 9.9·108 6.4·109 3.6·108 2.3·109

Using the Solver tool (Excel MS OfficeTM), for each of the vehicles, the duration of each
of the test phases (tk), the distance covered in each of the test phases (Sk), and the share of
each test phase in the entire RDE test (uk) were determined. Detailed data are presented
in Tables A2–A4 (Appendix A), for vehicles A–C, respectively. From the comparison of
the data in the tables, the theoretical minimum value of the exhaust emissions is greater
than zero, which means that the plug-in hybrid vehicle in the RDE test will always use
a combustion engine. For vehicle A, the minimum value of the road emission of carbon
dioxide was 49 g/km; for carbon monoxide, 83 mg/km; for nitrogen oxides, 2.5 mg/km;
and for the particle number, 5.2·1010 1/km. It should be noted that the obtained values of
the parameters of time (tk), test phase duration (Sk), and test phase share (uk) were different
for each exhaust component and the scatter of results in individual analyzed categories,
as measured with the CoV coefficient, fell in the range from 1.1% to 5.7% (Table A2). For
vehicle B, the following road emission values were obtained using the same pattern: bCO2
= 48 g/km, bCO = 65 mg/km, bNOx = 4.7 mg/km, a bPN = 6.6·1010 1/km, at the coefficient
of variation CoV changing from 0.9% to 20% (Table A3). For vehicle C, the values of
individual parameters were as follows: bCO2 = 49 g/km, bCO = 41 mg/km, bNOx = 6.2
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mg/km, a bPN = 2.4·1010 1/km, at the coefficient of variation CoV changing from 0.0% do
12.4% (Table A4).

The obtained average values for individual vehicles and each exhaust component
are shown in Figure 8. From this figure, the road emission of carbon dioxide for each
vehicle falls in the range 60–80 g/km (Figure 7a) at the minimum value of approximately
49 g/km (Figure 8a). The value was adopted obligatorily on the level of 95 g/km (this
is a target value for a manufacturer’s vehicle fleet; however, this value may decrease in
future years). The road emission of carbon monoxide for all the investigated vehicles was
in the range 50–110 mg/km (Figure 7b) at the maximum value of 2100 mg/km and the
minimum one of 40–80 mg/km (Figure 8a). The road emission of nitrogen oxides fell in the
range 3.3 mg/km–8.0 mg/km (Figure 7c) at the maximum value of 86 mg/km, determined
according to Equation (5).

Figure 8. Values of the minimum road emission intensity of carbon dioxide (a), carbon monoxide (b), nitrogen oxides (c),
and particle number (d) in the RDE test obtained according to the algorithm for a constant emission intensity; data provided
in Tables A2–A4.

The theoretical minimum value of the road emission of nitrogen oxides was in the
range from 2.5 mg/km to 4.7 mg/km (Figure 8c). The last investigated exhaust component,
the road emission of particle number, was in the range from 3.1·1010 1/km to 8.3·1010 1/km
(Figure 7d). For this parameter, the maximum value determined in Equation (5) is 9·1011

1/km and the minimum determined value falls in the range from 2.4·1010 1/km to 6.6·1010

1/km (Figure 8d).

5.1.2. Variable Road Emission Intensity

The determination of the minimum road emission using constant emission intensity of
a given exhaust component does have its flaws: the engine warm up and increased catalyst
efficiency after light-off are not allowed for. A more generalized approach may also be
the use of the mathematical description of the curves presented in Figure 5, in relation to
which the general form of Equation (2) assumes a form where individual values of the
road emission for each exhaust component and each test phase will be dependent on the
distance covered by the vehicle:

bj,RDE = 0.34 bj,U(S) + 0.33 bj,R(S) + 0.33 bj,M(S). (8)

In this case, we need to apply the non-continuous function for each exhaust component
that will allow for the operation of the electric motor (in the range Sk ≤ SEV) during the
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urban and (partially) rural phases. For the outstanding distance, each course of the road
emissions was described with a square Equation (9):

bj,k(Sk) =

{
0 for Sk ≤ SEV

xj,k(Sk)
2 + yj,kSk + zj,k for Sk > SEV

(9)

where: j = CO2, CO, NOx, PN; S—distance [km]; SEV—distance covered by the vehicle using
an electric motor [km]; k = Vehicle A, Vehicle B, Vehicle C; and xj,k, yj,k, zj,k—multinomial
coefficients (Table 8).

Table 8. Values of the equation indexes of the z, y, z multinomial and the coefficient of determination
(R2) for the road emission in the RDE test for each plug-in hybrid vehicle.

j
k

Vehicle A Vehicle B Vehicle C

SEV [km] 52.2 51.6 40.0

bCO2 [g/km]

x –0.0351 –0.0332 –0.0201
y 6.6697 6.5103 4.1145
z –250.92 –248.93 –132.92

R2 0.996 0.998 0.998

bCO [mg/km]

x –0.0579 –0.0322 –0.0067
y 10.922 5.2708 1.5469
z –404.81 –138.60 –24.207

R2 0.990 0.919 0.995

bNOx [mg/km]

x –0.0024 –0.0013 –0.0021
y 0.4972 0.2977 0.3557
z –16.292 –10.467 –12.417

R2 0.976 0.994 0.998

bPN [1/km]

x –5.91·107 –9.62·107 –6.33·106

y 1.08·1010 1.59·1010 1.58·109

z –4.05·1011 –5.76·1011 –5.51·1010

R2 0.983 0.996 0.979

The values of the multinomial coefficients (xj,k, yj,k, zj,k) are presented in Table 8 and
their analysis indicates an increase in the road emissions upon exceeding the distance (Sk >
SEV), which is indicated by the negative value of each coefficient xj,k.

The positive value of coefficient yj,k indicates a shift of the course of the emissions
to the right for the increasing distance from the start of the test and the negative value
of coefficient zj,k confirms the assumptions of zero emission of each exhaust component
during the operation of the electric motor. In Table 8, the authors also provide the coefficient
of determination (R2), which indicates a very good fit of the adopted equation to the curves,
showing the road emission of each exhaust component in the RDE test.

Utilizing Equation (9) and the data contained in Table 8, the minimum road emission
of each of the exhaust components was determined in individual phases of the RDE test
and in the entire test. The obtained detailed results regarding the duration of each phase of
the test, the distance in each phase of the tests, and the share of each phase in the test are
shown in Tables A5–A7 (Appendix A). The graphical presentation of the final relations is
shown in Figure 9. From the figure, it is found that the minimum value of carbon dioxide
for vehicles A and B is 0 g/km, which leads to the conclusion that the vehicle can cover the
entire RDE test distance using an electric motor exclusively (which is compliant with the
test detailed requirements). This is possible because the range of vehicles A and B on an
electric motor was approximately 52 km and the minimum distance of the RDE test is 48
km. Due to the fact that the combustion engine was off, the emission of the outstanding
exhaust components from vehicles A and B was also zero. Only in the case of vehicle C
with the small battery capacity was it impossible to carry out the entire RDE test exclusively
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using the electric motor. For this particular vehicle, the theoretical minimum values of
the road emission are greater than zero for each of the exhaust components. However,
when comparing the results obtained for constant and variable emission intensity, one can
observe lower values for the latter method. It is probable that the theoretical minimum
values of the road emission obtained using the variable emission intensity method during
the road tests are closer to reality, which is why the authors recommend them for application
in further research.

Figure 9. Value of the minimum road emission of carbon dioxide (a), carbon monoxide (b), nitrogen oxides (c), and particle
number (d) obtained according to the algorithm for variable exhaust emission intensity; data provided in Tables A5–A7.

5.2. Plug-in Vehicles Emission Category

The environmental assessment of the vehicles was initiated upon the analysis of the
obtained results of actual road emissions of individual exhaust components (p. 4) and
upon adopting the maximum values (values adopted based on the emission standards—p.
5.1.1) and the minimum ones (values adopted based on the theoretical determination
of the minimum for the measured emission intensity—p. 5.1.2). The environmental
categorization (EC—ecological category) for each exhaust component was performed based
on the determination of the percentage value of the obtained road emission depending on
the minimum and maximum value according to the formula:

ECj [%] = 100% × (bj—bj,min)/(bj,max—bj,min). (10)

Equation (10) describes the process of scaling that adapts the value of any exhaust
component to the new limits determined with the minimum (0%) and the maximum
value (100%). Such an approach enables each road emission to be presented as a value
ranging from 0–100%, as shown in Table 9. According to the results presented below, one
can confirm that the highest values (EC = 64–68%) are gained for the road emission of
carbon dioxide, which indicates great potential for improvement in this matter. In the
case of the emission category pertaining to the road emission of carbon monoxide, the
determined values are in the range from 4% to 11%. This confirms a substantial reserve of
approximately 90%, which is tantamount with the fact that the analyzed vehicles generate
much less of this exhaust component compared to the emission standard prescribed for the
RDE test. We have a similar situation for the road emission of nitrogen oxides and particle
number: the obtained values from 4–7% also confirm the rule.
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Table 9. Real values of the road exhaust emissions (bj), theoretically determined maximum value
(bj, max) minimum value (bj, min), and the environmental assessment (ECj) for individual plug-in
hybrid vehicles.

Parameter Vehicle A Vehicle B Vehicle C

bCO2 [g/km] 65 61 64
bCO [mg/km] 110 81 53
bNOx [mg/km] 3.3 5.9 8

bPN [1/km] 6.90·1010 8.30·1010 3.10·1010

bCO2, max [g/km] 95 95 95
bCO, max [mg/km] 1000 1000 1000
bNOx, max [mg/km] 86 86 86

bPN, max [1/km] 9.00·1011 9.00·1011 9.00·1011

bCO2, min [g/km] 0 0 5.99
bCO, min [mg/km] 0 0 11.43

bNOx, min [mg/km] 0 0 2.35
bPN, min [1/km] 0 0 2.00·109

ECCO2 68% 64% 65%
ECCO 11% 8% 4%
ECNOx 4% 7% 7%
ECPN 8% 9% 3%

The values of emissions of individual exhaust components for individual vehicles
were used for the overall environmental assessment of the analyzed vehicles. An arithmetic
average relation was applied, yet the authors are aware that a valuation can be introduced
in terms of the significance of each of the exhaust components. Such an action would
require considering the hazard of individual exhaust components to human health and
the criteria of its assessment would require further analyses. Therefore, the application of
an arithmetic average allows all the discussed exhaust components to be treated equally.
The obtained values, shown in Figure 10, show that all the vehicles under analysis obtain
ecological values lower than 50%, which classifies them to the ecological category A.

Figure 10. Value of the minimum road emission in the RDE test (�—vehicle A, �—vehicle B, �—
vehicle C) obtained according to the algorithm for variable exhaust emission intensity; data provided
in Tables A4–A6.

An explanation is required for the case in which the road emission of an exhaust
component is greater than the product of the CF coefficient and the value provided in the
emission standard. In such a case, the value of CF will be greater than 100%, which, for
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conventional vehicles, will result in the necessity to extend the range of qualification and
emission categories.

6. Conclusions

In the paper, the authors presented the process of creation of a new tool that can be
used in the environmental assessment of motor vehicles under actual traffic conditions.
Currently, the certificate of type approval provides the final results as regards the compli-
ance with the vehicle ecological category, yet without the emission-related valuation of the
vehicle. The methodology presented in the paper and applied when investigating plug-in
hybrid vehicles unveils its practical application, which is confirmation that the analyzed
vehicles adapt well environmentally when it comes to the trends in electromobility, given
their emission category (A). The division into emission categories of plug-in hybrid vehicles
can be introduced in a different subjective way, e.g., by creating more categories from A
to E.

The major conclusions of the paper can be summarized in the following points:

1. The concept of this paper was aimed at indicating the methodology of processing
of the hybrid vehicles exhaust emission results, but it could also be of use for either
conventional vehicles or electric ones, in which instead of analyzing the exhaust
emissions one could focus on the energy consumption. The authors see no contraindi-
cations to applying the methodology in heavy-duty vehicles, in the case of which
other indexes are used for the description of their emissions-related performance
(referred to the performed work of a vehicle).

2. The estimated minimum exhaust emission results for the RDE test assuming constant
emission rates are about 20–40% less than the actual values. However, estimating
the minimum values, for variable emission rates, reveals the largest differences, as
the minimum values can be zero. This is a characteristic feature of hybrid vehicles,
especially PHEVs, whereby using a large electric capacity of the battery, zero emissions
can be achieved in the RDE test. Therefore, the next stage of the research should be
a parallel analysis consisting in the evaluation of emission aspects on the one hand,
and energy consumption aspects on the other.

3. In the era of fighting for environmental protection, the additional emission class
indicator of a vehicle may be an important aspect in the consumer’s choice of a
vehicle. Due to the campaigns of the European Union and member states, consumer
awareness of the harmfulness of exhaust emissions is constantly rising. The proposed
method of categorizing hybrid vehicles (the authors plan to extend the RDE study
and publish an article on the energy consumption of vehicles in the future) is clear
and transparent, which may support the choice of greater ecological power unit.

4. The research presented in this paper describes an alternative way to evaluate the
environmental performance of vehicles, although limiting oneself only to emissions
for PHEVs is not a closed solution. The next stage of work will be to develop a
methodology for evaluating the energy consumption of hybrid and electric vehicles in
road tests. The result of such a procedure will be the ecological evaluation of vehicles
powered only by combustion engines (evaluation on the basis of exhaust emissions),
hybrid vehicles—HEVs and PHEVs (evaluation on the basis of exhaust emissions and
energy consumption), and vehicles powered by electricity or fuel cells (evaluation on
the basis of energy consumption).
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Abbreviations

a acceleration vehicle
b road exhaust emission
CF Conformity Factor
CoV coefficient of variation
E exhaust emission rate
EC ecological category
EV Electric Vehicle
FID flame ionization detector
GNG Generalized Reduced Gradient
h driving test altitude
HEV Hybrid Electric Vehicle
M motorway
MAV Moving Average Windows
NDIR non-dispersive infrared
NDUV non-dispersive ultra violet
NEDC New European Driving Cycle
PEMS Portable Emission Measurement System
PHEV Plug-in Hybrid Electric Vehicle
R rural
RDE Real Driving Emissions
RPA Relative Positive Acceleration
S distance
t time
u share
U urban
V vehicle speed
WLTC Worldwide-harmonized Light duty vehicles Test Cycle
WLTP Worldwide-harmonized Light duty vehicles Test Procedure

Appendix A

Table A1. Characteristic data of the performed tests and their comparison with the admissible values.

Trip Characteristics Vehicle A Vehicle B Vehicle C Valid Unit

Distance 91.90 97.40 96.45 – km
Duration 106.17 104.52 107.83 90–120 min

Cold start duration 5.00 5.00 5.00 5.00 min
Urban distance 33.73 32.22 32.88 >16 km
Rural distance 25.25 30.79 31.58 >16 km

Motorway distance 32.92 34.39 31.98 >16 km
Urban distance share 36.70 33.08 34.10 29–44 %
Rural distance share 27.48 31.61 32.74 23–43 %

Motorway distance share 35.82 35.31 33.16 23–43 %
Urban average speed 30.05 31.14 30.33 15–40 km/h
Rural average speed 74.09 76.23 75.34 – km/h

Motorway average speed 107.55 113.37 108.83 – km/h
Total trip average speed 51.94 55.91 53.66 – km/h
Motorway speed above

145 km/h 0.00 0.00 0.00 <3% mot.
time %
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Table A1. Cont.

Trip Characteristics Vehicle A Vehicle B Vehicle C Valid Unit

Motorway speed above
100 km/h 16.28 16.63 17.32 ≥5 min

Stop share (Urban phase) 20.09 17.91 15.12 6–30 %
Initial idling duration 0.00 0.00 0.00 ≤15 s

Cold start average speed 23.70 23.68 21.33 15–40 km/h
Cold start maximum

speed 44.25 45.86 47.00 <60 km/h

Cold start stop time 0.00 31.00 18.00 ≤90 s

Table A2. Road emissions for the RDE test (assuming constant exhaust emission intensity)—output
data obtained from the algorithm and the proposed values for the generalized test (Vehicle A).

Exhaust
Components

t S U b

U R M U R M U R M RDE
[s] [s] [s] [km] [km] [km] [–] [–] [–]

CO2 4157 640 603 19.1 16.0 24.3 0.321 0.270 0.409 49.4 g/km
CO 3999 717 684 18.6 17.9 27.5 0.290 0.280 0.430 83.4 mg/km

NOx 4106 640 654 18.9 16.0 26.3 0.309 0.261 0.430 2.51 mg/km
PN 3999 718 683 18.6 18.0 27.5 0.290 0.280 0.430 5.2·1010 1/km

Average 4065 679 656 18.8 17.0 26.4 0.303 0.273 0.425 –
St. deviation 68.8 38.8 33.0 0.21 0.97 1.33 0.01 0.01 0.01 –

CoV [%] 1.7% 5.7% 5.0% 1.1% 5.7% 5.0% 4.4% 2.9% 2.1% –

Table A3. Road emissions for the RDE test (assuming constant exhaust emission intensity)—output
data obtained from the algorithm and the proposed values for the generalized test (Vehicle B).

Exhaust
Components

t S U b

U R M U R M U R M RDE
[s] [s] [s] [km] [km] [km] [–] [–] [–]

CO2 4096 878 427 16.0 21.9 17.2 0.290 0.398 0.312 48.4 g/km
CO 4013 710 677 18.4 17.8 27.2 0.290 0.280 0.430 65.2 mg/km

NOx 4004 715 681 18.5 17.9 27.4 0.290 0.280 0.430 4.68 mg/km
PN 4040 640 720 22.4 16.0 29.0 0.333 0.237 0.430 6.6·1010 1/km

Average 4038 736 626 18.8 18.4 25.2 0.301 0.299 0.400 –
St. deviation 35.8 87.2 116.4 2.31 2.18 4.69 0.02 0.06 0.05 –

CoV [%] 0.9% 11.8% 18.6% 12.3% 11.8% 18.6% 6.1% 20.0% 12.8% –

Table A4. Road emissions for the RDE test (assuming constant exhaust emission intensity)—output
data obtained from the algorithm and the proposed values for the generalized test (Vehicle C).

Exhaust
Components

t S U b

U R M U R M U R M RDE
[s] [s] [s] [km] [km] [km] [–] [–] [–]

CO2 3673 915 812 22.7 22.9 32.7 0.290 0.292 0.418 49.3 g/km
CO 4015 709 676 18.4 17.7 27.2 0.290 0.280 0.430 41.4 mg/km

NOx 4002 716 682 18.5 17.9 27.5 0.290 0.280 0.430 6.2 mg/km
PN 3811 911 678 20.5 22.8 27.3 0.290 0.323 0.387 2.4·1010 1/km

Average 3875 813 712 20.0 20.3 28.7 0.290 0.294 0.416 –
St. deviation 142 101 58 1.75 2.51 2.32 0.00 0.02 0.02 –

CoV [%] 3.7% 12.4% 8.1% 8.7% 12.4% 8.1% 0.0% 6.0% 4.2% –
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Table A5. Road emissions for the RDE test (assuming variable exhaust emission intensity)—output
data obtained from the algorithm and the proposed values for the generalized test (Vehicle A).

Exhaust
Components

t S U b

U R M U R M U R M RDE
[s] [s] [s] [km] [km] [km] [–] [–] [–]

CO2 3665 1338 397 16.0 16.0 16.0 0.333 0.333 0.333 0
CO 3665 1338 397 16.0 16.0 16.0 0.333 0.333 0.333 0

NOx 3665 1338 397 16.0 16.0 16.0 0.333 0.333 0.333 0
PN 3665 1338 397 16.0 16.0 16.0 0.333 0.333 0.333 0

Average 3665 1338 397 16.00 16.00 16.00 0.333 0.333 0.333 –
St. deviation 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 –

CoV [%] 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% –

Table A6. Road emissions for the RDE test (assuming variable exhaust emission intensity)—output
data obtained from the algorithm and the proposed values for the generalized test (Vehicle B).

Exhaust
Components

t S U b

U R M U R M U R M RDE
[s] [s] [s] [km] [km] [km] [–] [–] [–]

CO2 3602 1338 460 16.0 16.0 18.5 0.317 0.317 0.367 0
CO 3602 1338 460 16.0 16.0 18.5 0.317 0.317 0.367 0

NOx 3602 1338 460 16.0 16.0 18.5 0.317 0.317 0.367 0
PN 3602 1338 460 16.0 16.0 18.5 0.317 0.317 0.367 0

Average 3602 1338 460 16.0 16.0 18.5 0.317 0.317 0.367 –
St. deviation 0.0 0.0 0.0 0.00 0.00 0.00 0.00 0.00 0.00 –

CoV [%] 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% –

Table A7. Road emissions for the RDE test (assuming variable exhaust emission intensity)—output
data obtained from the algorithm and the proposed values for the generalized test (Vehicle C).

Exhaust
Components

t S U b

U R M U R M U R M RDE
[s] [s] [s] [km] [km] [km] [–] [–] [–]

CO2 3665 1338 397 16.0 16.0 16.0 0.333 0.333 0.333 6.0 g/km
CO 3665 1338 397 16.0 16.0 16.0 0.333 0.333 0.333 11.4 mg/km

NOx 3665 1338 397 16.0 16.0 16.0 0.333 0.333 0.333 2.3 mg/km
PN 3665 1338 397 16.0 16.0 16.0 0.333 0.333 0.333 2.0·109 1/km

Average 3665 1338 397 16.0 16.0 16.0 0.333 0.333 0.333 –
St. deviation 0 0 0 0.00 0.00 0.00 0.00 0.00 0.00 –

CoV [%] 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% –
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Abstract: Electric vehicles could be a significant aid in lowering greenhouse gas emissions. Even
though extensive study has been done on the features and traits of electric vehicles and the nature of
their charging infrastructure, network modeling for electric vehicle manufacturing has been limited
and unchanging. The necessity of wireless electric vehicle charging, based on magnetic resonance
coupling, drove the primary aims for this review work. Herein, we examined the basic theoretical
framework for wireless power transmission systems for EV charging and performed a software-in-
the-loop analysis, in addition to carrying out a performance analysis of an EV charging system based
on magnetic resonance. This study also covered power pad designs and created workable remedies
for the following issues: (i) how power pad positioning affected the function of wireless charging
systems and (ii) how to develop strategies to keep power efficiency at its highest level. Moreover,
safety features of wireless charging systems, owing to interruption from foreign objects and/or living
objects, were analyzed, and solutions were proposed to ensure such systems would operate as safely
and optimally as possible.

Keywords: electric vehicle; wireless power transmission; battery system for energy storage; compensation
networks; coil design; and wireless charging system

1. Introduction

Electric vehicle (EV) technology has been gaining popularity due to its lower fuel emis-
sions, and the numbers of EVs is anticipated to increase quickly. This has created a demand
for ongoing improvements to charging infrastructures, especially wireless infrastructure.
These must be designed for private, commercial, and public applications and be usable for
both home and public charging stations. The technology of wireless power transmission
can eliminate the use of wires, thus increasing the mobility, convenience, and safety of
electronic devices for all users. Wireless power transfer is useful to power electrical devices
where interconnecting wires are inconvenient, hazardous, or not possible. Thus, the accessi-
bility of wireless charging stations resolves the problems with charging time, range anxiety,
and charger connectivity, arguably the biggest obstacles to the widespread adoption of
electric vehicles (EVs). The deployment of such effective and dependable high-power
wireless charging infrastructures at close ranges would support a wider free range for EVs.
However, many technical difficulties have arisen relating to the installation of EV wireless
charging infrastructure. The main obstacles to wireless charging system adoption include
low coupling coefficient between the transmitters and the receiver, misaligned power pads,
and interruption from foreign objects like metal or live objects [1]. Electric vehicles (EVs)
are a viable and feasible solution to the environmental problems the automotive industry is
now experiencing. Figure 1 depicts wireless technology for charging electric vehicles.

Electrified transportation has created a paradigm shift in the transportation industry.
It is regarded as being more intelligent, safe, and reliable, while also being more environ-
mentally friendly. Less reliance on fossil fuels will result from the adoption of electrified
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transportation [2]. Conductive or plug-in chargers have provided trouble for EV owners
struggling to meet the high voltage batteries’ periodic charging needs. Electric vehicle
wireless charging could be a remedy. The issues posed by conductive EV chargers would
be avoided, and wireless charging would improve the EV user experience. Numerous
researchers have been drawn to the idea of wireless power transmission via electromagnetic
induction for use in the implementation of wireless charging of electronic devices and high-
voltage batteries of electric cars. Despite the apparent advantages of EV wireless charging,
substantial barriers to the economic feasibility and acceptance of wireless power transfer
technology in the automotive sector have been defined. Compared to established conduc-
tive EV chargers, the main issues are high initial cost and limited power transfer efficiency.

Figure 1. Wireless Electric Vehicle Charging Technology.

Additionally, significant standards and regulatory bodies have published guidance to
avoid potential safety hazards. A new era of environmentally friendly and secure mobility
has been made possible by burgeoning inventive research and ongoing improvements in
the wireless charging technology of EVs [3].

Wireless power transmission (WPT) is a practical, cordless, trustworthy, appropriate,
and all-weather power transmission or charging technology. A standard WPT system setup
for charging an EV is made up of a transmitting coil buried in the ground at the charging
station and a receiving coil built into the car. It consists of two separate electrical systems
coupled to one another. The high-voltage EV battery can be charged wirelessly thanks to
magnetic coupling. The inherent advantages of EV wireless charging performance include
electrical separation, operation in harsh environments, and safety (owing to non-contact
operation). However, high current is needed to charge high-voltage EV batteries, and any
interruption to WPT will substantially impact the system’s viability [4].

Therefore, power transfer efficiency must be close to 100% for wireless charging to be
commercially feasible. Inductive charging can achieve such high efficiency provided the
receiving and transmitting coils are correctly matched and there is no magnetic loss in the air.
The practical constraints of transmitting and receiving coils to transfer power without loss
and the necessity for precise alignment are two significant barriers to inductive coupling
in wireless EV charging. MIT researchers suggested magnetic resonance coupling, with
a 90% over-the-air power transmission efficiency within a few millimeters [5]. Currently,
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more power is lost through the process than is added to an EV’s battery pack. The amount
depends significantly on the electrical output and surrounding circumstances.

The standard inductive power transfer at a resonance frequency is magnetic resonance
coupling. Compared to traditional inductive power transfer, where resonance aids in the
maximum power transfer, the resonance coupling approach is slightly more complicated.
Magnetic resonance coupling can effectively power/charge EVs wirelessly across a few
millimeters [6]. Research and development must be done to maximize wireless power
transfer efficiency under realistic and imperfect EV charging settings and to make wireless
charging sustainable from a business standpoint. The following are the main obstacles to
wireless EV charging as defined by this work.

Two crucial elements significantly impact the functionality and effectiveness of EV
wireless charging systems: (i) the efficiency of the resonant frequency power electronics
circuitry and (ii) the power pad in the coupling efficiency [7].

A WPT system must have at least two magnetic couplers to transmit power wirelessly;
on the transmitter side, a central coupler and, on the receiver side, a secondary coupler
similar to the other. For a more efficient WPT system, it is vital to have a high coupling
coefficient (k) between the quality factor (Q) and the coupler. To understand the effective
coupling of transmitter and receiver for wireless charging, it is crucial to investigate the
effects of different coil shapes, coil structures, physical coil spacing, and coil materials,
according to power transfer level, on the power transfer performance. The power electronics
industry has been working hard to create efficient circuits, with significant advancements
in semiconductor technology [8]. To date, there are very few standardized and optimized
per-pad systems designed for commercially-feasible wireless EV charging, as the standards
are still in the research stage [9]. This study examined and validated power pad design
parameters for extremely effective wireless EV charging systems, keeping in mind that
different vehicle segments may have different ground clearances, ranging from less than
10 cm for compact electric vehicles to roughly 30 cm for large SUVs [10]. Depending on
the make and model of the car, the normalized distance between the transmission and
receiver coils beneath the car (vehicle) will vary. Designing around limitations on the height
and location of the coil on the vehicle body has proven difficult because it can limit other
design elements, including aerodynamics, safety, and aesthetics. There is an an urgent
need to design and create an EV wireless power transfer system to transfer power over the
pads. The trick is to keep an appropriate power transfer rate while achieving a reasonable
separation distance between the pads in the receiver and the transmitter coils. As the
distance between the coils grows, the power transfer efficiency may drop quickly [11]. As
the power input to the transmitting coil increases, magnetic flux leakage will simultaneously
increase Therefore, a trade-off between distance, efficiency, and radiation leakage must
be made for the best wireless charging system. These issues could be resolved in two
ways: by creating a system with a low degree of transmitter-to-receiver mismatch, or by
creating a resonant tank tailored for maximum power transfer. A transmitter to receiver
pad auto-alignment strategy was established in this research work.

Regarding the ideal alignment of the coils, drivers cannot be expected to park their car
precisely over the wireless charging pad. Thus, it is difficult to put into practice a purely
mechanical technique for aligning the coils present in the transmitting and receiving coils.
Still, alignment optimization is a creative approach with many benefits. First, complete
alignment is feasible, as is maximum efficiency. Second, aligning the coils does not require
a skilled driver. However, if coils are gravely misaligned, mechanical adjustment may be
unavoidable [12]. Still, to facilitate a static solution, limiting such mechanical alignment
methods may be desirable. An adaptive system must be developed and constructed to
maintain wireless EV charging systems’ best power transmission efficiency under various
usage scenarios.

The impact of mounting metallic objects in EV wireless charging cannot be ignored.
Therefore, substantial design attention must be paid to avoid interference from living
objects and foreign object debris between the transmitting and receiving charging pads of
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EVs. If these issues are not resolved, magnetic resonance coupling will be constrained and,
therefore, unprofitable for wireless EV charging. This inspired the current work and this
author’s efforts to research and develop a method for maximizing power transfer efficiency
in less-than-ideal, real-world EV charging circumstances [13].

Three alternative charging modes—static, quasi-dynamic, and dynamic charging—
could be used to automate the charging of automobiles using wireless charging [14]. Static
charging has several advantages, including the possibility of being deployed in convenient
places like parking lots or garages and eliminating the electric shock posed by cables [15].
The QWC system enables charging for EVs when they are temporarily stationary, such as
at traffic lights, extending their range and reducing the requirement for energy storage [16].
The DWC system would continually charge the EV through authorized on-road charg-
ing lanes, increasing driving range and shrinking battery size [17,18]. Utilizing wireless
charging systems with an efficiency range of around 88.5%, WPT was completed by level 2
(230-V ac) powering at a rate of 7.2 kW.

Today, the most efficient forms of wireless charging are resonant CPT [19–22], utilized
in dedicated lanes for dynamic charging [23–25], and resonant IPT [26–30], used in both
Static WC and Dynamic WC methods. In [19], a comparison of capacitive and inductive
WPT was made. IPT has allowed for successfully marketed products at low power levels
for many years [31,32]. Magnetic couplers—transformers with only a few millimeters
between the propagation (transmitter (Tx)) and reception (receiver (Rx)) components—
have been in various phases of development for some time [33]. Many researchers have
used enhanced compensation strategies to increase efficiency [34–37], air gap, and power
level [38–42]. WPT distances have been extended by MIT researchers, who published a
study in 2007 detailing their success in lighting a 60-W bulb at a distance of 2 m, thereby
building researchers’ confidence in expanding WPT to the necessary distances [43].

There have been several emerging areas of interest in research, including system
design and analysis [44], component stress optimization, and compensation networks.
Ongoing research has led to an increase in WPT of about 96% at a distance of 200 mm and
several kilowatts of output power. The conductive method of wireless charging is currently
in its stabilization phase and has produced several commercial goods and standards.

Electric vehicle (EV) charging infrastructure development and implementation are
necessary for the efficient use of EVs. EVs have fewer charging stations and range-specific
connectors than ICE vehicles, requiring more recharge time. To solve this refueling issue,
an EV charger with high power and efficiency is required. Using a fast charger, approx-
imately 50% of the battery may be charged in 3 min, and up to 80% may be charged in
15 min [45,46]. Fast charging methods, however, have been shown to cause high-voltage
batteries to degrade. Control algorithms are necessary, based on the cost and rating of
the converter used in a charger, using different microcontrollers, digital signal processors,
and specialized linear integrated circuits. Ideal voltage and current ratios contribute to
longer battery. To address prolonged charging issues, however, fast chargers are necessary.
The conductive charging method is nearly mature [47], and established standards have
been made. Inductive charging, which is still developing, has the potential to supplement
conductive charging.

The structure of this paper was as follows. The definition and the benefits of wireless
charging devices were covered in the first section after the introduction. EV conductive
charging methods were explained in the second part. The wireless power transmission
methods were described in detail in the third section. Static and dynamic wireless charging
methods were presented and discussed in the fourth section. Upcoming and present
standards of EV in WPT were covered in the fifth section. EV-based V2G charging methods
were described in the sixth section. The quadruple power pad coil analysis for wireless
EV charging was explained in the seventh section, in detail. The compositions of wireless
charging were presented in the eighth section. The last and final section was the conclusion,
including the final decisions determined by this paper.
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2. Benefits of Wireless Charging over Wired Charging

Plug-in and wireless power transmission methods have been used to charge electric
vehicles. In the plug-in technique, the electric vehicle’s battery is charged at the charging
station via a cord or plug. In contrast, in the wireless charging method, the battery of
an electric vehicle (car) is charged utilizing wireless power transmission. The wireless
charging technique is superior to wired charging in several ways. First, there is no need to
carry and store cords, which could be considered the primary advantage of using wireless
charging. Using this method circumvents the possibility of having wires wear out over
time [48]. A wireless charging system may also reduce the size of the typical electric
vehicle battery using dynamic wireless charging. Large-sized batteries are currently used
in electric vehicles. However, it has been projected that similar automobile batteries will
grow lighter and smaller once wireless technologies are incorporated. As a result, these
two requirements will lower the overall cost of electric vehicles. Due to these advantages,
significant automakers like Hyundai, Nissan, and Tesla have been investing heavily in
wireless technology, primarily for electric vehicles. However, very few companies currently
have wireless technology incorporated into their models. Due to all of these factors, the
market for wireless EV charging is expected to undergo revenue growth.

2.1. Restrictions: Maximize the Upgrading Costs for Wireless Charging Technologies

For power transmission with a power control device (PCU), wireless charging technol-
ogy for electric cars requires transmitter and receiver coils. The transmitter coil is located
in the base charging pad (BCP), whereas the receiver coil is located in the vehicle charging
pad (VCP). The average entire cost of a fitted commercial wireless charging system for a
home is between USD 2500 and USD 3000. The cost of an electric vehicle increases when
wireless charging technology is used in the vehicle. Consequently, this raises the cost of
wireless electric vehicle charging [49–52].

Wireless charging technology will become more affordable in response to rising de-
mand and the widespread manufacturing of electric vehicles. The electric vehicle industry
is still in the introductory stage, regarding wireless charging technology. However, it is
anticipated that most vehicle OEMs will implement this technology into their car models in
the future. Therefore, it can be concluded that, given the current state of the economy and
scale-induced economies of scale, the very high cost of upgrading or enriching to wireless
charging technology remains a significant constraint.

2.2. Chance: Increasing the Government Funding for Wireless Charging Technology

In many nations, the advancement of wireless charging is now supported by govern-
ment incentives and support for electric vehicles. The main benefits of wireless charging
include full autonomy, the lack of a charging station, the decreased risk of an electric shock
to the driver, and smaller battery units. The general population would be able to work
for extended periods without needing to wait for their cars to charge. This increase in
productive hours would also contribute to the GDP growth of a nation. The absence, or
reduced requirement for, charging stations for dynamic charging is another crucial factor
supporting the implementation of wireless charging in urban areas with a lack of available
space [53–55].

The UK government awarded over USD 48.5 million for 12 initiatives in July 2019
to improve the experience of electric car owners and drivers. A business called Charge
received USD 3.01 million from the government to install technology for wireless charging
in suburban buildings. The first wireless testing technology was completed in Bucking-
hamshire, Marlow, in December 2021.

Successful testing for a wireless charging road occurred in Sweden in 2021, in an effort
to modernize transportation processes and hasten the transition to electric mobility. The
Israeli company Electron erected a dynamic wireless charging system on a 1.65-kilometer
public road in Sweden’s Gotland. A fully electric transport truck was charged on this intel-
ligent road. The US state of Michigan signed an agreement that would see the construction
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of the world’s first wireless charging road infrastructure in Detroit. In Detroit, Electron
will use its dynamic charging technology to offer on-the-go charging for battery-powered
automobiles. The project is anticipated to be completely operational in 2023.

2.3. Challenge: Minimizing Efficiency Loss

An electric vehicle (EV) can be charged wirelessly by parking it at the top of the base
panel, i.e., without any manual connections. Compared to conventional power transfer,
power loss in wireless charging is approximately 7–12% higher. Additionally, the distance
over which a wireless charger may transmit using electromagnetic induction and/or
magnetic resonance is constrained [56–59]. This is a significant hurdle for manufacturers,
particularly in the case of SUVs and LCVs possessing a high specific ground clearance
as also for automatic design [60]. The ratio of energy power efficiency to transmitter-to-
receiver separation is inversely proportional. Another difficulty facing the wireless EV
charging industry is safety during vehicle charging because powerful electromagnetic
fields could damage the biological environment. Thus, efficiency and safety concerns have
become a barrier for manufacturers in this sector. An EV electric drive system is only
responsible for a 15–20% energy loss, compared to 64–75% for a gasoline engine. EVs also
use regenerative braking to recapture and reuse energy that would typically be lost in
braking, and waste no energy idling.

The market category with the quickest growth rate is anticipated to be 3–11-kW. The
segment (by power supply range) anticipated to increase at the quickest rate over the
projection period is also 3–11 kW. For very small- and medium-sized battery-powered
electric vehicles (EV), 3–11-kW wireless charging devices are typically employed. Wireless
charging solutions could be portable and lightweight at this power level, making them
appropriate for charging at both home and work. The Nissan Leaf and Chevrolet Volt
now have access to a 3.3 kW wireless charger from Plugless Power. IncWiTricity and
Prodrive Technologies unveiled a wireless charging system in 2016 that was able to charge
an electric vehicle up to 11 kW more efficiently than cable charging solutions. Due to its
applicability in the workplace and in home charging situations where rapid charging is not
a requirement, the 3–11-KW category is anticipated to dominate the market [61–64].

The 3–11-kW infrastructure in the market for wireless EV charging was anticipated to
develop at the highest rate in Europe over the research period. Growing demand for home
charging systems, due to rising sales of battery-powered electric cars, has been credited
with driving market growth in Europe. Major OEMs have taken steps to include wireless
charging in their automobiles, including BMW, Audi, and Mercedes. This could encourage
market expansion in Europe. During the forecast timeline, BEVs have been projected
to experience the fastest growth. By propulsion, BEVs are anticipated to experience the
quickest growth during the projection period. In BEVs, as opposed to Plug-in Hybrid
Electric Vehicles (PHEVs), wireless charging system adoption has been higher. In BEVs,
the battery is the only source of power, and it must be charged frequently. Wireless
charging technology is installable in offices, malls, public spaces, and garages. Increasing
expenditures in the deployment of wireless charging technologies for battery electric
vehicles have been predicted to benefit the BEV segment in the wireless EV charging
market in the coming years. These countries include Sweden, Germany, Italy, and the USA,
among others. The Tesla Model S, Nissan Leaf, and Jaguar I-Pace are well-known BEVs
that support wireless charging. As a result, it is anticipated that, over the projected period,
the BEV segment will be greater than the PHEV segment.

During the forecast years, Europe is anticipated to be the largest market for BEVs in
the wireless EV charging market. This market expansion can be attributed to the existence
of top auto manufacturers seeking to employ wireless charging technology in Europe.
Leading players using wireless charging will persuade other significant participants in the
automotive sector to use the technology for BEVs. Revenues for the BEV market in the
region are anticipated to increase due to rising BEV sales in Europe, as well as the European
Union’s legal targets, e.g., to cut CO2 emissions from vehicles and vans by 55% and 50%,
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respectively, by 2030. The number of battery-electric vehicles in Europe increased from
around 1 million in 2019 to 1.8 million in 2020.

The EV market in the Asia-Pacific region is predicted to undergo the most rapid
increase during the forecast period. The Asia-Pacific region includes both developed and
developing countries, like South Korea and Japan, and emerging economies, like India
and China. The area has become a center for the manufacture of automobiles in recent
years. The Asia-Pacific region has experienced increasing demand for electric vehicles due
to rising environmental concerns and the rising purchasing power of the populace. Both
municipal and federal governments have shown interest in lowering carbon emissions
through electrifying transportation [65–69]. As a result, the use of electric vehicles has
gained familiarity in the area. Governments have concentrated on constructing robust
charging infrastructures to encourage the adoption of electric vehicles. Rapid technological
development in South Korea and Japan’s electronic equipment manufacturing hubs is
anticipated to lower the price of the wireless charging technology used in electric vehicles.
Cost savings are then anticipated to fuel the expansion of the wireless EV charging market
in the area. It is also anticipated that the presence of some of the top companies in the
wireless EV charging trending market will aid expansion in the Asia-Pacific region. Toshiba
Corporation, ZTE Corporation, Mitsubishi Electric, and Toyota Motor Corporation are a
few companies active in this area.

3. EV Conductive Charging Method

A logical interconnection exists between the electrical power system and the vehicle,
through an EV conductive charger. It comprises a low-frequency AC to high-frequency
AC converter, including the power factor adjustment, or DC–DC converters and AC/DC
rectifiers (PFC). Off-board and on-board chargers are the two categories of conductive
chargers. For onboard chargers, battery current regulators and rectifiers are inside the car;
for off-board chargers, they are present outside of the vehicle [70]. Conductive chargers are
categorized according to the level included in their power transmission. These device are
capable of being charged with an AC level 1 charger. Conductive wireless charging has no
practical application for enhancing system effectiveness. The efficiency of such systems is
dependent on converters with a very high frequency.

SWC charges a vehicle when it is at a stop [71]. The vehicle is also charged while it
is moving, thanks to dynamic en route charging (DWC) [72]. This was demonstrated by
the proposed creation of a wireless on-the-go bus charging system in Malaga, Spain by
the Endesa-led project Victoria (see also CIRCE and others) [73]. QWC, also referred to
in [74] as the static en route charge method, is especially favorable for vehicles that stop at
predetermined locations throughout the day, such as bus stops, traffic lights or taxi stands.
Thus, wireless charging could be achieved via underground fit technology when a bus
stops at a bus stop [75]. EM fields are the primary WPT system used to charge EVs. A
discussion on the wireless charging modes DWC, QDC, and SWC is shown in Figure 2.
Systems for wirelessly charging electric vehicles are a prospective replacement option for
charging electric vehicles (EVs), potentially avoiding any plug-in issues (WEVCS). In this
work, existing wireless power transfer technology that is currently available for EVs was
outlined. Additionally, studied wireless transformer designs with different ferrite forms
were included. Due to safety and health issues that have been brought up, WEVCS has
been connected to the present expansion of international standards. The two primary
application types, static WEVCS and dynamic WEVCS, were described, and the most
current advancements, with components from academic and commercial research labs,
were documented. Along with qualitative comparisons to other existing technologies,
future concept-based WEVCS were also discussed and investigated, incorporating in-wheel
wireless power systems as well as vehicle-to-grid (V2G) technologies (WCS).
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Figure 2. SWC, DWC, and QWC installation for statistical analysis.

The following various electric car (vehicle) wireless charging methods may be classi-
fied depending on their functioning principles:

1. Capacitive Wireless Charging System (CWCS);
2. Permanent Magnetic Gear Wireless Charging System (PMWC);
3. Inductive Wireless Charging System (IWC); and
4. Resonant Inductive Wireless Charging System (RIWC).

Four techniques have been utilized to develop WEVCS since wireless charging systems
for EVs were first introduced: the capacitive method of wireless power transfer (CWPT),
the traditional inductive method of power transfer (IPT), the resonant inductive method of
wireless power transfer (RIPT), and the magnetic gear method of wireless power transfer
(MGWPT) [76,77]. Currently available wireless power transfer technologies for rechargeable
batteries in electric vehicles (BEVs) are listed in Table 1.

Table 1. Various methods of WPT and their parameters.

WPT Methods
The Distance between

Transmitter and
Receiver Circuits

Transmission of
Power

Parameter
Efficiency

Rate Cost Safety and Protection

Inductive
Coupling Around a millimeter A few watts

or less Minimum

It is economical to utilize
secondhand equipment, since it

is affordable and
easily accessible.

It is secure from a
biological perspective.

Capacitive
Coupling Multiple Kilowatts A few Kilowatts

or more Minimum
It is less costly since the power

transmission is done via
aluminum plates.

Compared to the
resonant approach,
operation is safe.

Magnetic
Resonance A few meters Kilowatts Maximum

It is cost-effective, since old
equipment is affordable and

easily accessible.

It is secure from a
biological perspective.

Microwaves It can be produced up to
100 km.

Up to hundreds
of Megawatts Maximum It is expensive compared to

other treatments.

1 GHz to 1000 GHz
high-frequency radiation

is unhealthy for
human health.

Optical

Using a high-intensity
beam, it may be utilized
across greater distances

than a few meters.

Up to hundreds
of Megawatts Minimum

It has identical financial
circumstances to

inductive coupling.

It would be detrimental
to human health.
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3.1. Capacitive Wireless Power Transmission Method

For medium- and low-power implementations, like spinning machines [78], portable
electronics [79], and phone chargers [80], the CWPT framework technology’s cost-effectiveness
and ease of use, utilizing improved mechanical configurations, as well as the geometric
patterns of something like the coupling capacitors [76,77], are very advantageous. Inside
the CWPT, coupling capacitors are employed to transmit power from the receiver to the
source, rather than coils or magnets. Half-bridge converters receive their primary AC
voltage via power quality control circuitry. The schematic of the capacitive wireless power
transfer technique is presented in Figure 3.

 

Figure 3. Schematic Representation of Capacitive Wireless Power Transmission method.

The coupling capacitors upon the receiver’s side transmit the AC created by the H-
bridge high-frequency. In contrast to the IPT, the CWPT runs on minimum and maximum
current. Furthermore, in order to lower the range of impedance values of the transmitting
and receiving sides, at the configuration of resonance, extra inductors should be coupled
only with the combination present in the coupling capacitors. Given this arrangement, the
circuitry could integrate soft switching. Rectifier and filter circuitry is used to change the
incoming AC power to DC for either the load or the battery bank [81]. The two variables
affecting power transfer levels are (1) the coupling capacitor’s size and (2) the separation
between its two plates. CWPT offers excellent performance and better field restrictions for
small air gaps formed between the two capacitors’ plates. Since its introduction, CWPT has
only been partially applied to electric vehicles (EVs), owing to considerable high power
level needs and air gaps. The authors of [82] offered suggestions for the rotary mechanism’s
high capacitance coupling designs and air-gap reduction. According to the authors of [83],
a receiver might be attached to the vehicle’s bumper bar to help close the air gap between
the two connecting plates. A static research prototype with a power output of much more
than 1 kW and approximately 83% efficiency (from the DC power supply to the battery
bank) was demonstrated at the 540 kHz operating frequency.

It is possible to wirelessly transfer energy between both the transmitter and receiver
sides by utilizing the displacement current that the varying electric magnetic field creates.
In this case, coupling capacitors are used as the transmitter and receiver for wireless power
transmission, in place of magnets or coils [84–90].

The AC voltage is sent into the power factor component adjustment circuit to improve
the efficiency range, maintain voltage levels, and reduce transmission losses. The high-
frequency supply of AC is then provided to the transmitting plate, producing an oscillating
electric field that, via electrostatic induction, produces displacement current at the receiving
plate. After that, it is provided to a half-bridge for the generation and improvement of
maximum AC voltage. The receiver side AC voltage is transformed into DC and utilized to
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power or charge the battery throughout the BMS using filter circuits and a rectifier. The
voltage, frequency, coupling capacitor dimension and size, and air gap produced between
both the transmitting and receiving sides affect how much power is transmitted. It runs
between 100 and 600 kHz in frequency.

3.2. Magnetic Gear Wireless Power Transmission Method

The magnetic gear WPT (MGWPT) is very different from the CWPT and IPT, as shown
in Figure 4. This method uses two side-by-side synchronized permanent magnets (PM), as
opposed to earlier WEVCS that relied on coaxial cable. The transmitter side winding gets
the main power supply, as the current source causes the primary PM to suffer mechanical
torque power. The primary PM spins and mechanically communicates with the secondary
PM to apply torque, utilizing mechanical torque. The generator mode functioning is
performed by the primary PM of such a combination of synchronous PMs. In contrast, the
secondary PM gathers power and sends it to the battery through the power converter and
BMS [91]. A 1.6-kW laboratory prototype called the MGWPT was created; it was able to
provide and deliver over an air gap distance of 150 mm.

 

Figure 4. Magnetic gear wireless power transmission method.

Nevertheless, this approach in dynamic and static systems is fraught with several
challenges. According to [92], rotators stopped synchronizing at 150 Hz, which significantly
affected the transmitted power. A sophisticated feedback mechanism must be used to
continuously shift the speed from the primary side to the battery side to avoid going over
the upper limitation of power. As the coupling between the two synchronized windings
dramatically weakens, the capacity to transmit power is inversely associated with separat-
ing the primary and secondary PMs from axis to axis. This makes it potentially beneficial
for fixed WEVCS, but rather tricky for dynamic applications [93].

The armature winding and the synchronized permanent magnets make up the trans-
mitter and receiver, respectively. Functioning at the transmitter side is comparable to motor
operation [94–100]. The spinning of the transmitter magnet is caused by the mechanical
tension induced on the transmitter winding when AC is applied to it. The receiver’s PM is
torqued by the transmitter’s magnetic interaction shift, which makes the receiver magnet
rotate synchronously with the transmitter magnet. The receiver now acts as a generator
because the permanent magnetic field of the receiver has changed, converting mechanical
power input into electrical output at the receiver winding. Permanent magnets connected
by rotating gear are referred to as magnetic gear. Power converters rectify and filter the
produced AC power at the receiver side before feeding it to the side of the battery.

3.3. Inductive Power Transmission Method

In 1914, Nikola Tesla developed the traditional IPT for wireless power transmission.
Figure 5 shows the fundamental block diagram of the conventional IPT. Several EV charging
systems have had an impact on it. IPT has been evaluated and carried out in some packages,
ranging from mW to kW for the transmission of contactless strength from the supply to
the receiver. In 1996, a well-known automobile manufacturer (GM) unveiled the Chevrolet
S10 EV. The magnet-charge IPT (J1773) system was used to feed it, which provided stage 2
(6.6 kW) slow and degree three (50 kW) rapid charges [101]. The magnetic-number-one
rate coil, a charging paddle (inductive coupler), was inserted into the auto’s charging port,
where the secondary coil received energy and could charge the vehicle. The University
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of Georgia displayed a 6.6 kW stage 2 EV charger with a seventy-seven kHz running
frequency and a two hundred–four hundred V charging variety. This IPT made use of a
10-KVA coaxial winding transformer. The core premise of IWC is induction by Faraday’s
law. Electricity is transmitted wirelessly using magnetic field mutual induction between the
transmitter and receiving coils [102–108]. When the principle AC delivery is supplied to
the transmitter coil, an AC magnetic area that passes through it and transports the electrons
creates AC power. The electric car’s storage device is charged with this rectified and filtered
AC output. The frequency, mutual inductance, and separation between the transmitter
and receiver coils all affect how much electricity is sent and received. IWC makes use of a
frequency variety of 19 to 50 kHz.

Figure 5. Inductive power transmission method.

3.4. Resonant Inductive Wireless Charging System (RIWC)

Regardless of weaker magnetic fields, resonance operation makes it possible to switch
an equal amount of electricity as in IWC because resonators with excessive pleasant ele-
ments transmit electricity at a much higher charge. Power can be transmitted across long
distances without the use of cables—the resonant inductive wireless charging system is
shown in Figure 6.

Figure 6. Resonant Inductive Wireless Charging System (RIWC).
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The most significant power that may be sent over the air occurs when the resonant
frequencies (bandwidth) of the sides of the propagation (transmitter) and reception (re-
ceiver) coils are matched, or when the transmitter and receiver coils are adjusted [109–112].
Additional reimbursement networks are consequently delivered in series and parallel to
the transmitter and receiver coils to achieve appropriate resonance frequencies. Together
with an increase in resonance frequency, these extra compensation networks also help to
cut down on additional losses. The RIWC’s operating frequency ranges from 10 to 150 kHz.

4. Static and Dynamic Wireless Charging

Wireless EV charging systems fall into two categories, depending on the application:

1. Static Wireless Charging;
2. Dynamic Wireless Charging.

4.1. Static Wireless Charging Method

As the name suggests, the vehicle charges every time it is in static mode. The block
representation of the static wireless charging technique is shown in Figure 7. Thus, it would
be easy to park the EV within a particular spot or in storage that permitted interface with
the WCS. The transmitter would be located underground, while the receiver would be set
up in the automobile’s underside. Before getting out of the car to complete charging, the
driver would align the transmitter and receiver [113–120]. The space between the edges of
the transmitter and receiver, the scale of their pads, and the AC supply strength would all
affect charging speed.

Figure 7. Static Wireless Charging Method.

The best places to build SWCs are those where EVs are routinely parked for long periods.

Wireless Charging Types and Charging Methods

These days, the world is moving toward electrified mobility, both to offer an al-
ternative to expensive fuel for transportation and to minimize the pollution emissions
created by nonrenewable fossil fuel cars. However, for electric vehicles, the two main
problems preventing their adoption over conventional vehicles are their driving ranges
and charging procedures.

Wired charging technology made it possible to charge your electric vehicle while
parked. There is no longer a need for drawn-out charging station lines. Why can’t power
be delivered over the air? We are already accustomed to wireless data, audio, and video
transmission [121].
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The principles of transformer operation and wireless charging are identical. Wireless
charging uses a transmitter and a receiver. The transmitter coil receives high-frequency
alternating current from a 220 V 50 Hz AC source. The high-frequency AC creates an
alternating magnetic field, which interrupts the receiver coil and enables the receiver
coil to generate AC power. However, the transmitter and receiver’s resonance frequency
should remain constant for wireless charging to function. Compensation networks are
implemented on both aspects to preserve this resonance frequency. Furthermore, the
battery management system delivers this rectified DC power, generated from the receiver
side which is connected to the battery side (BMS). Figures 8 and 9 show the wireless
charging methods.

Figure 8. Wireless charging system.
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Figure 9. Block Representation of a Wireless Charging System.

The wireless charging block diagram displays the conversion processes and their
overall effectiveness. Each conversion step is designed such that you the end user is
able acquire the most effective efficiency [122]. The efficiency depicted in the diagram
is general. More than 95% efficiency has been attained, according to Qualcomm, Oak
Ridge National Laboratory (ORNL), and others [123–127]. There are several phases in
a wireless charging system, and each stage varies in complexity and efficiency. When
converting PS from AC to DC, Active Front End (AFE) with Power Factor Correction is
used. Power transmission from IPT calls for excessive-frequency AC to be successful. As
a result, the DC–AC converter transforms low-frequency DC into high-frequency AC. A
remote high-frequency transformer is placed between the converter and the primary coil in
order to prevent primary winding isolation breakdown. The alternating magnetic discipline
produced by this excessive-frequency AC follows Ampere’s equation. Due to the interplay
of this magnetic discipline with the secondary coil, high-frequency AC is produced, in
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keeping with Faraday’s law. The secondary repayment community is utilized to evolve
to resonant surroundings, improving performance. A compelling rectifier is then used to
feed the battery to rectify the AC energy. The three crucial components of an EV wireless
charging system are the compensation network, the power electronics converters, and the
remote, loosely coupled primary and secondary coils, which are covered via ferrite.

4.2. Dynamic Wireless Charging Method

Dynamic wireless charging is used to recharge EVs while they are being driven,
making it unnecessary to wait while the battery charges. This theory, put forth in 1978 by J.
G. Bolger et al., states that energy is transferred to the vehicle as it moves [128]. A study at
KAIST has been working to develop dynamic wireless charging since 2009.

This study addressed continuous power transmission, high-frequency contemporary
controlled inverters, and various electromagnetic interference parameters [129]. Choi
et al. provided a beneficial analysis of OLEV. Dynamic wireless charging solves most of
the problems with electric vehicles, such as battery capacity range, range anxiety, cost,
etc. Inductive wireless power transfer is used by current dynamic wireless charging
gadgets [130–133]. This technique is based on a pickup coil mounted in the electric vehicle
(EV) that obtains an electromagnetic field, generating high-frequency current, and coils
hidden beneath the road pavement. The on-road coils constantly deliver power to the
pickup coil throughout a track. After being adequately prepared, the EV battery can be
charged by the current captured by this coil. To transfer energy to the integrated system
with a transmitter coil and several resonators, low-power wireless systems have been
created. However, because they follow a path, these systems are worthless for electric
vehicles (EVs) [134]. The two track types developed for DWC systems have different shapes,
referred to as stretched tracks and lumped tracks. A stretched track includes a transmitter
coil that is notably larger than the pickup coil of a lumped track, which contains many coils
with radii that could reach near the pickup coil. Even as KAIST evolved the OLEV (electric
automobile) prototype as a consequence of researching stretched tracks, a study group from
Auckland University researched aggregated tracks [135,136]. Only a portion of the lumped
track with the linked transmitter coil can drive the related receiver coil. This supply strategy,
often referred to as segmentation, aids in increasing DWC effectiveness and reducing
electromagnetic field radiation from the non-coupled rail segments. Prior research on coil
sizing for static wireless charging systems has centered chiefly on sizing the coils [137] and
researching axes misalignment’s effects [138]. In terms of DWC systems, some researchers
have looked into coil-based lumped tracks placed side by side [139], while others have
assessed the appropriate coil length in a stretched track [140,141]. Galvanic isolation and
user ease are two benefits of EV wireless charging over touch charging. To avoid using
wires and cords and to circumvent the need for careful charging and discharging, it is
possible to top off a vehicle’s battery frequently. At the same time, a vehicle may be
parked at different charging places, including at work, at home, at a traffic light, and while
shopping. By incorporating a charging lane into motorways that would allow charging
while driving, DWC could do away with fast charging infrastructures. Compared to cable
charging, wireless charging has lower cost, size, manufacturing complexity, efficiency, and
power density.

Table 2 shows the study’s review of the works based on WPT.
EV wireless charging presents difficulties that must be considered for effective power

transfer. Wireless power transfer necessitates energy conversion, which reduces the effi-
ciency of conversion and transfer; as a result, it must to be optimized, and transfer efficiency
improved. These issues have made it difficult for certain businesses to switch from con-
ductive charging to wireless charging. Each component is a crucial research subject in the
application of wireless chargers. Each factor—e.g., distance, geometry, frequency, com-
pensation topology, coil design, and alignment—has an indirect or direct impact on the
practical system’s performance. DWC effectiveness is also influenced by EV speed and
many underlying issues, as demonstrated in Figure 10.
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Table 2. Overview of earlier works on WPT.

Problems Addressed Performance Assessment Key Contribution Resolution

In an EV, using a cable circuit will
harm the charger. Daily maintenance

will be performed. The AC outlet
requires plug-in.

Yokogawa digital power meter Simple,
cheap WPC prototype

The receiver coil attached to the battery
picked up the magnetic induction created

by the transmitter under the road.

Inductance coupling
(efficiency improved).

Network reflection coefficient
and scattering parameters

Employment of
repeater concept

The power was doubled and reproduced
in the air by the repeater coil, which was

positioned between the transmitter
and receiver.

Inhibited transmission efficiency and
power loss transmission. Unnamed optimization strategy Phase shift

amplitude control

While the active portion of the blockage
was left alone on the receiving end, the

sensitive portion of the obstruction had its
impedance modified.

Figure 10. Demonstration of wireless charging.

5. Standards for Wireless Electric Vehicle Charging

Electric vehicles may now be wirelessly charged without the need for a plug. How-
ever, it would be unproductive or harmful if every manufacturer developed their own
proprietary standard for wireless charging that could not be used in conjunction with
other technologies. The user experience for wireless EV charging could be improved. The
Society of Automotive Engineers (SAE), International Electro-Technical Commission (IEC),
Underwriters Laboratories (UL), and Institute of Electrical and Electronics Engineers (IEEE)
are a few of the international organizations working to develop standards [142–144].

SAE J2954 established the Alignment Technique for Light-Duty Plug-In EVs WPT.
According to this standard, the maximum input power at level 1 is 3.7 kW, level 2 is
7.7 kW, level 3 is 11 kW, and level 4 is 22 kW. The minimal target reliability must also be
higher than 85% when aligned. The side-to-side accuracy should be less than 4 inches,
and the maximum permitted ground clearance should be 10 inches. The best alignment
technique was determined to be magnetic triangulation, helping both human-controlled
and autonomous vehicles find parking spaces.

• SAE. J1772 standard described the EV/PHEV conductive system of charge couplers.
• SAE. J2847/6 standard described the communication transmission between wireless

EV Chargers and wirelessly-charged vehicles.
• SAE. J1773 standard described the EV inductive method of coupled charging.
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• SAE. J2836/6 standard described the usage of a wireless charging system of communi-
cation for PEVs.

• UL subject 2750 described the investigation’s general plan for WEVCS.
• IEC. 61980-1 Cor.1 Ed.1.0 described the general configuration of the EV WPT system.
• IEC. 62827-2 Ed.1.0 described the WPT-Management: Multiple Varieties of Manage-

ment of Device Control.
• IEC. 63028 Ed.1.0 described the WPT-Air fuel alliance resonant baseline system requirements.

Table 3 shows the safety and technical standards for WPT.

Table 3. WPT U.S. Technical specifications and safety requirements.

Standard Developer Standard Name Published Year Description

SAE J2836/6_201305 2013 Applications for PEV wireless charging communication

SAE J2953/1_201310 2013 Equipment for PEV compatibility with electric vehicles (EVSE)

SAE J2953/2_201401 2014 Procedures for testing PEV compatibility with EVSE

SAE J2953/3 2016 EVSE and PEV interoperability test scenarios

SAE J2953/4 2020 reporting on PEV charge rates

SAE J2847/6 2020 Wireless EV charging stations and light-duty PEVs can
communicate for WPT.

SAE J2954 2020 WPT for plug-in light-duty vehicles, as well as
alignment techniques

5.1. EV Wireless Charging: Implementations and Standards

For the reliable implementation of high voltage and high power WPT, standards are
necessary, since wireless charging is quickly overtaking other EV charging methods on the
market. In addition to checking setup configurations for wireless charging, standardization
also encompasses safety requirements, efficiency, electromagnetic restrictions, and inter-
operability goals as for a reliable computational design [145]. A crucial prerequisite for
EVs to be practical after standardization is ubiquity. Customers should not need to worry
about charging station compatibility [146–150]. The entire wireless power transfer system
is contained in the IEC-61980-1 standard, from the network supply to electric vehicles (EVs)
for charging the vehicle’s battery, or the use of standardized equipment (or equipment
parameters) at the standard power supply range of 1000 V AC or 1500 V DC. All of these
were addressed using the SAE standard in SAE TIR J2954. This was the first actual wireless
power transmission specification created by SAE considering EV charging. The static
wireless charging industry largely followed its own trends. The owner of an EV might want
to wirelessly charge their vehicle from a domestic wireless charger, workplace charger, or
commercial charger, among many others, while enjoying similar charging functionality due
to the frequency spectrum, interoperability, protection, coil specifications, and EMC/EMF
constraints in SAE TIR J2954. The suggested frequency band per SAE 2954 is 85 kHz for
any light-duty electric cars (81.39 kHz–90 kHz). Table 4 [151–158] shows the major wireless
charging standards ready to be checked in the next years to be cyber-resilient [159].

Table 4. Standardization of charging power levels for light-duty EVs.

Classification Power Level Standard Status

WPT1 3.7 kW SAE J2954

WPT2 7.7 kW SAE J2954

WPT3 11 kW SAE J2954 (WIP)

WPT4 22 kW SAE J2954 (WIP)
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A schematic diagram of a static wireless charging improvement for a stationary
placement is shown in the Figure 7. A high-frequency converter is connected to the grid-
side supply [160–169]. The principal pad receives this high-frequency feed (transmitter).
Magnetic resonance is connected with the coils of the primary and secondary regions. An
AC–DC converter is also employed on the load side to deliver power straight to the battery
type. A battery management system (BMS) regulates the battery’s state of charge (SOC)
and overall health. The BMS is linked to the car’s controller area network (CAN), which
manages the vehicle’s sensing component. The vehicle is connected to the management
pole for wireless charging through radio indicators [17–177].

Alternately, a different DC–DC converter must be used if the vehicle’s battery man-
agement system does not permit powering the battery directly. The deployment of static
wireless charging is completely operator-free. With an intelligent controlling system cou-
pled with CAN and BMS, all charging types would be feasible without human intervention.
Wireless charging will only overtake the market if it provides more convenience at a lower
cost [178–182] together with optimization algorithm adopted in other fields [183]. Table 5
shows the international technical standards of the EV.

Table 5. Worldwide technical standardization.

Standards Inventor Name of the Standard Invention Year Description

IEC 61980-1-Ed.2.0 2020 General Requirement, Part-I, EV-WPT system

IEC 61980-3 2019 WPT System-part-3 for electric vehicles: particular
specifications for entire magnetic field WPT systems

IEC 61980-2 2019

Specific criteria for wireless communication systems
among electric road vehicles (EVs) and

infrastructure, outlined in part two of the electric
vehicle WPT systems.

IEC 61980-1:2015/COR1:2017 2017 General Requirement, Part 1 of the EV-WPT system

IEC 61980-1:2015/COR1 2017 General Requirement, Part 1 of the EV-WPT system

IEC 61980-Ed.1.0.New Addition 2015 General Requirement, Part 1 of the EV-WPT system

IEC 61980/1 AMD 1 Ed.1.0 2015 General Requirement, Part 1 of the EV-WPT system

IEC/TS 61980-2 Ed.1.0 2017

Widespread requirements for communication
between electric-powered road cars and

infrastructure concerning WPT devices and element
2 of EV-WPT systems

IEC/TS 61980-3 Ed.1.0 2015 Part 2 of the general necessities for the magnetic field
power transmission gadget for EV-WPT systems

ISO 19363:2020 2020 Magnetic field WPT for electrically-driven road
vehicles: protection and interoperability necessities

ISO 9363:2017 2017 Safety and interoperability criteria for
electrically-driven road vehicles’ magnetic fields

5.2. Companies Working to Develop and Improving WCS

• The Evatran Group developed plug-less charging for first-generation wireless electric
vehicles such the Nissan Leaf, Chevrolet Volt, Tesla Model S, and Audi i3.

• Recently, WiTricity Corporation worked with Honda Motor Co. Ltd., Nissan, GM,
Hyundai, and Furukawa Electric to create WCS for sedans and SUVs.

• Qualcomm Halo produced WCS for passenger, sport, and race cars, and Witricity
Corporation obtained Qualcomm Halo.

• Hevo Power has been manufacturing WCS for a passenger automobile.
• Bombardier Primove manufactured WCS for vehicles ranging from rider automobiles

to SUVs.
• Siemens and BMW have been manufacturing WCS for rider automobiles.
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• Momentum Dynamic manufactured WCS for corporate and commercial fleet buses.
• Conductix-Wampfler manufactured WCS for buses and industrial fleets.

5.3. Challenges Faced by WEVCS

• The current infrastructure is insufficient for the necessary installations. Hence, de-
veloping dynamic and static wireless charging stations on highways will necessitate
building new infrastructure [184–189].

• Maintaining EMC, EMI, and frequencies according to standards is necessary for human
health and safety. Table 6 shows the various challenges faced by WEVCS.

Table 6. Challenges and issues faced by WEVCS.

WPT Types Resonant Coupling Induction Coupling Microwave

Difficulties Moderate Low High

Distance capability Maximum of 1 km 5 mm -

Efficiency performance High Low High

Transmission of Loss Moderate High Low

Number of receivers entering Multiple receivers are applicable Utilizing a single receiver
is appropriate Single receiver

Power wave Fluctuating power signal Continuous Continuous

Radiation energy Non-radiant power Non-radiant power Radiant power

Frequency range Power transmitted at 6.7 MHz
Control signals at 2.4 GHz 110–205 KHz 300 MHZ–300 GHz

Receiver Coil of copper with few turns Coil of copper with few turns Rectenna with SCR

Safety considerations Risk of sparks produced at several
million volts Considered harmless Detrimental to living matter, like

telecommunications

Transmission of energy Electromagnetic resonance EMI Radiowave, microwave, and laser

Transmitter

Primary coil with a short gap and
few turns. The secondary coil

contained 10 times as many turns
as the primary coil without a gap.

Several-turn copper coil Antenna for transmission that
uses a wave guide

6. EV-Based Vehicle-to-Grid (V2G)

Wireless charging—the need for EV charging, specifically—is one of the most signifi-
cant difficulties facing the current electrical infrastructure. Vehicle-to-grid (V2G) topologies
could be used to solve this problem. Vehicle-to-grid (V2G) is a well-known application
for EVs, representing power delivery to the electrical grid. H. Nguyen et al. performed
an in-depth analysis of V2G technology’s integration and coordination with conductive
charging methods [190–196]. Flexibility, automated charging, and bidirectional discharging
are necessary components for a V2G integration. Most of the aforementioned criteria can
be met via wireless charging. Through the electrification of transportation, fossil fuels may
eventually be replaced by renewable energy. Local microgrids could gain power from V2G,
and these could be combined with renewable energy systems [197–204]. Although they
cannot be used to generate electricity directly, batteries are used for storage. Numerous
initiatives have been made in the last ten years to increase energy conversion and lessen
reliance on fossil fuels for electricity production and transportation electrification. As a
result, we have seen expanding usage of electric vehicles (EVs) for mobility. In the future,
it is anticipated that renewable energy sources will be used to generate power [205–214].
Because of the unpredictability of climatic conditions, renewable electricity sources (RES),
especially wind and solar systems, present issues relating to the main grid’s sustainability
and power supply quality.

Adopting EVs on a broad scale, whether hybrid or entirely battery-based, also poses
significant issues for the electrical grid [215]. The best option would be to use RES to
offset the necessary demand for EVs [216]. Additionally, the power grid’s stability and
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power quality could be improved by integrating RES with EVs, which has already been
acknowledged by V2G systems. For this level of RES, EV, and grid integration, EV charging
and discharging systems must be flexible, autonomous, easy, safe, and reliable. Research
has placed great emphasis on design elements such as maximum efficiency, very low
rate (cost), adaptability, and autonomous charging and discharging techniques. Due to
automation, wireless charging of EVs could offer and produce bidirectional power flow
between EVs and the grid. The comparison of interactivity between wired and wireless
connections was briefed in [217,218]. According to the studies mentioned above, wireless
connectivity or charging could achieve up to 65% connectivity, whereas conventional
connectivity only achieved rates of 10% [219]. Several wireless communication devices
have proven able to detect automatically and comply with V2G standards, helping to
automate wireless charging. With the advent of wireless charging, a vehicle’s interface with
the grid could improve, enabling extra vehicle power whenever required.

6.1. Applications for EV Wireless Charging: LOD and FOD

Foreign Object Detection (FOD) detects foreign objects that are close to the charging
pads and might or might not interfere with the transmission fields. Snow, dirt, twigs, water,
oil, grease, leaves, and other items that might or might not interact with the magnetic
field are considered benign objects. FOD may include magnetic materials, metal objects
interacting with high-frequency fields, and animals sleeping on charging pads. Any object
with metal available between the transmission and the reception sides prevents the charging
process from continuing because of the power flow of eddy current through it [220]. The
EV and the charging system could thus be impacted by the heating of the object that has
the metal particle or any other conducting object.

Due to a strong electromagnetic field, living matter and objects are also affected. Any
living thing could suffer harm during charging. Under FOD Detection Methods, numerous
real-world examples of a charging apparatus coming into contact with living things for
both short- and long-term exposure, such as children near the car to pick up a ball/toy, a
driver reaching out to hold something felt, a pet lying still for a while, etc, were detailed.

• System variables
• Efficiency of power loss
• Actual temperature
• Image from wave-based detection
• Thermal ultrasonic radar
• Field-based laser light detection
• Resistance inductance capacitance

Most things exposed to intense magnetic fields experience both long- and short-term
effects. Therefore, the International Committee on Electromagnetic Safety (ICES), Institute
of Electrical and Electronics Engineers (IEEE), and International Commission on Non-
Ionizing Radiation Protection (ICNIRP) recommendations [221] have determined rules
governing magnetic field limits. The FOD detection methods are shown in Figure 11.

Different scientists have introduced various LOD and FOD techniques. WiTricity
created an FOD technique using an overlapping coil structure that measured current,
voltage, and resonators that had the phase and frequency. Another type of FOD technique
is power detection, which measures a power loss brought on via the availability of a foreign
object [222]. This technique is typically helpful for the minimum power transmission of
wireless charging. An FOD method mainly depends on the fluctuation of quality factor (Q),
as introduced by S. Fukuda et al. in [223]. Due to the position of the coils, this approach’s
Q could not be used for EV charging applications. Other FOD techniques, e.g., RFID, video
cameras, and radar-based systems, were also considered in SAE standards [224,225]. The
category-by-category classification of FOD techniques is shown in Figure 12. The benefits
and drawbacks of each of the strategies mentioned above are listed in Table 7.
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Figure 11. Categories of foreign object detection and metal object detection.

 

Figure 12. A wireless charging system and an FOD system.

For EV wireless charging for light-duty plug-in and alignment techniques, SAE. J2954
was created. [226–228]. This standard had to be revised to include FOD technologies. Metal
objects represent a serious problem, and must be found and removed because of intense
heat, and living things are a problem because magnetic radiation can distort living cells.
Numerous researchers have put forth solutions to FOD (foreign object detection) and LOD
(living object detection) problems.
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Table 7. Advantages and disadvantages of FOD.

Methods for Detecting
Foreign Objects

Benefits Drawbacks Comments

Method for power;
oss analysis Detects while it is powered.

High-powered wireless charging is
not recommended.

Only metal detection is involved, not the
transmitter or receiver.

Power consumption is low.

System parameter change
detection method

No extra equipment and
implementation is easy.

A small metal item is hard to find.
Depending on the primary power source,

only metal detection occurs.
Power consumption is low.

Image, thermal and
radar sensing Can identify living things and metal. High price, failure-pronse, and has

environmental factors.
Detects both metal and

living things.

Magnetic field change
detection method

High-power wireless charging is
acceptable, regardless of the weather.

Low-power wireless charging is challenging;
detection occurs while charging.

Relates to high-power
wireless charging.

Laser sensor
Able to find any object,

suitable for all wireless charging levels.
Reliable and simple to implement.

Costly, but very simple and robust. Proposed laser
sensor-based system.

6.2. LOD Detection Prototype Implementation

A novel method of FOD and LOD detection was put forth in this research work. First,
a beam array of light was produced over the transmitter using two different multiple laser-
sensor combinations. Second, a similar type of technology was also introduced; a reflecting
mesh covered the transmitter, with two high-quality reflecting mirrors and two identical
combinations of laser-detectors, which were used and utilized [229–231]. The configuration
was presented in the suggested method of the laser-sensor-based detection system. The
suggested system could be added as an accessory to any wireless charging system already
in use. The laser sensor arrangement, control circuit, and auxiliary power supply made up
the auxiliary system. Enclosed ferromagnetic shielding was used to protect the auxiliary
control and power systems from the strong magnetic field. To make the charger installation
simple and compatible with all static types of charging, the laser-sensor arrangement was
placed in a physical, non-magnetic, sturdy frame that could be made according to the
transmitter form and size.

Moreover, each electric vehicle’s underbody system is unique, and their chassis are
elevated from the ground by at least 10 cm. As a result, the auxiliary system was created to
elevate 5 to 10 cm.

7. Quadruple Power Pad Coil Analysis for Wireless EV Charging

The power pad coil configuration is among the most important design considerations
for EV wireless charging applications. The most crucial stage of creating an effective and
trustworthy wireless power transmission system is choosing the best power pad design.
Each available coil design offers benefits that are appropriate for particular applications. In
this chapter, the two-objective optimization challenges, involving optimum size and design,
dimension and shape, and current directions in sub-square structures of Quadruple Power
Pad (QPP), were examined. Finite Element Analysis (FEA), utilizing ANSYS Maxwell®,
was used to verify the dimensional design’s optimization for minimum area interaction
with the current directions, as well as the maximum amount of coupling coefficient with
minimal interference among the corresponding coils. The outcomes of each case study
were thoroughly examined and analyzed in comparison. The comparability evaluation
of the structure of the QPP structure design with the Double (DD), Rectangular (D), and
Double D Quadrature (DDQ) coil architectures represented another significant contribution
to this chapter. Results were observed and compared, and other coil structures were used to
confirm the QPP structure’s computability. Figure 13 shows the quadruple power pad coil.
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Figure 13. Quadruple Power Pad Coil.

7.1. Background

A new technique for charging electrical items was made possible by wireless power
transfer. However, problems in wireless charging of EVs exist, including high-frequency
power conversion converters, power pad design [232–234], electromagnetic field protec-
tion [235,236], metal object detection, and foreign object detection [237]. All of these are
crucial to research and the creation of standards as in optimization [238] and structural
field [239]. The main topics of this chapter were the structural study and compatibility
of the QPP structure with other coil winding structures, including the D, DD, and DDQ
power pads. Maximizing the value of the quality factors and the geometrical layout were
the main design difficulties for the power pad.

However, the quality factor and the coupling coefficient of the transmitted and received
coils directly impacts the efficiency of wireless power transmission. Unipolar, bipolar, and
solenoid coil architectures are the three primary coil types used in the static method of
wireless charging systems. The unipolar coil’s configurations create the vertical magnetic
flux and exhibit a maximum coupling coefficient due to the coil excitation, which only
creates one set of polarities. Due to the primary coil excitation producing two sets of
magnetic polarities, bipolar coil configurations produce the vertical magnetic flux and
exhibit a low coupling coefficient [240]. Due to the double-sided magnetic flux that the
solenoid coil produces, and the fact that only half of it is interconnected with the receiver
coil, the solenoid construction is ineffective for EV wireless charging. DD, DDQ, BP, and
solenoid pads are examples of non-polarization of power pads. Polarization coil structures,
such as rectangular, circular, and square-shaped power pads, are another way to classify
power pads. Non-polarized pads have one single pole and magnetic flux dispersed in all
directions, with one pole located in the coil’s core and the other outside of it. Two poles,
north and south, are produced in the polarized power pad.

The magnetic field is localized in the central region and is parallel to the corresponding
nonpolarized power pads. While at the center of the polarized power pad, the magnetic
field is parallel. The interoperability between polarized power pads will, therefore, be
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higher when they are not in alignment, even if no evident power (VA) links appear when
they are correctly aligned. Multi-coil topologies like DD and bipolar pads have many sets
of mutually-disconnected coils (BP) [241,242]. The circular coils’ lack of sharp edges results
in a limited amount of eddy current and a dramatic peak in magnetic flux in the center of
the primary coil, which is advantageous for high power transfer. The coil design structure
is round and reduced, but nevertheless prone to misalignment, because of the restricted
dispersion of the flux diameter [243]. D-shaped coils [244] are the ideal coil configuration,
i.e., an array-type arrangement, such as in dynamic wireless charging. Unfortunately,
corners with sharp edges in the coil structure are inappropriate, owing to the development
of hotspots and eddy currents. Although hexagon configurations have very high maximum
power transmission at the coil’s core, they are inappropriate because they lose power at
the periphery [245]. Better misalignment tolerance is demonstrated by the oval-shaped
coil structure, although it performs less well in high-power applications. Because non-
polar power pads perform poorly under horizontal misalignment, multi-coil rectangle
configurations have been used to create polar pad constructions. Both single-phase and
three-phase applications can benefit from multi-coil designs. Bipolar, DD, solenoid, QPP,
DDQ, and Quad D Quadrature architectures are a few examples.

7.2. Analysis of the QPP Configuration

An in-depth analysis and discussion of QPP structures was provided in Figure 14.
A structural investigation of the QPP structure was carried out with mathematical study,
modeling, and simulation to determine its coupling coefficient. Later, interoperability
testing was done to see how well the QPP structure worked with other rectangular coil
topologies like D, DD, and DDQ. Geometrical diagrams of the quadruple power pad
structure are illustrated in Figure 14.

 

Figure 14. Geometrical diagram of quadruple power pad structure.

7.3. Misalignment Prevention for Wireless Charging Technology of Electric Vehicles: Design,
Development, and Implementation

One of the primary barriers to wireless charging for electric vehicles (EVs) is the
mismatch between power pads [246]. In this chapter, the intelligent alignment of the
receiving coil to minimize electromagnetic leakage was discussed. The recommended
remedy comprises the employment of sensors to gauge the flux intensity, both in the center
and at the corners of the receiver coil. A controller circuit and a stepper motor driver are
coupled to orient the receiver coil in two dimensions. To detect flux, the receiver is outfitted
with a variety of Hall effect sensors, with the sensor that receives the minor flux producing
the least voltage. Additionally, the controller instructs the reception coil to be moved in the
direction of the sensor that registers the most excellent flux level. This chapter evaluated
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and confirmed the magnetic flux distribution at the optimum alignment site between the
transmitter and receiver with finite element analysis (FEA) utilizing Ansys Maxwell®. The
recommended modification enhanced the efficiency of wireless power transmission while
reducing flux leakage. The conceptual model built the suggested system, and each system
component was briefly examined and discussed. The simulation and modeling results
confirmed the value of the recommended intelligent alignment.

With the improvement of EV technology’s range, complex research on the wireless
charging infrastructure will be required [247]. The main elements that significantly in-
fluence wireless charging include the charging coil design [248], compensation topolo-
gies [249–251], coil misalignment [252], and the frequency of wireless power transmis-
sion [253]. Coupling efficiency, however, increased at a precisely aligned location when a
ferrite core was used [254,255]. Even a minimal change in the charging coils’ alignment
caused the efficiency to decline [256]. The charging efficiency was significantly impacted by
lateral and horizontal misalignment [257]. Numerous academics have suggested compen-
sation topologies to increase misalignment tolerance [257,258]. The effectiveness of WPT
is impacted by misalignment in all directions [259]. Misalignment is inevitable if vehicles
are manually parked, however, even if the suggested solutions were put into practice.
Additionally, a method to self-align the transmitter or receiver is needed, which could use
sensors to determine the degree of misalignment between the coils present in the region
of transmission and reception. The position of the receivers or transmitters could be then
modified using the proper autonomous control technique until power transmission was
restored to its ideal state.

In this chapter, an ideal solution was conceived, created, and developed to solve the
fundamental issue of wireless EV charging systems’ power pads being out of alignment.
A magnetic tracking-based automatic alignment receiver system (AARS) was suggested.
AARS is a cutting-edge technique that uses two-dimensional control of the receiver, with a
hall effect sensor over the transmitter’s magnetic field that has been minimized to automat-
ically align the receiving coil over the transmitter. To determine the increase in alignment
efficiency, the outputs of the wireless charging system’s electrical circuit analysis, model-
ing, and simulation were examined in Section 5.2. The recommended system’s hardware
implementation procedure was detailed in Section 5.3.

The projected AARS system’s results, implementation issues, and solutions were
covered. For short air gaps with significant magnetic field coupling, inductive energy
transfer is a very effective form of wireless power transmission, but it would be difficult to
use for greater power wireless charging. Moreover, even a slight misalignment would have
a major detrimental effect on the effectiveness of power transfer. Below, electrical research
was used to show the degree to which misalignment affected how well wireless power
transfer was able to function.

7.4. Analysis of Wireless Power Transfer Efficiency Caused by EV Static Wireless
Charging Misalignment

The transformer (which has no core or uses an air layer as a core) and wireless
power transfer both operate on the same fundamental principles [260]. Series–series (SS)
compensation topology was employed in this investigation. The operating frequency
was particular for the constant current operation, where the primary side inductance and
capacitance were present. This investigation was done to show the elements directly or
indirectly affecting wireless power transmission effectiveness. A general block architecture
of an EV wireless charging station was presented. The high-frequency converter, rectifiers,
power supply, load, and coupling coils made up the static wireless charging system. To
comprehend the connection between the misalignments and the effectiveness of the WPT,
simple circuit analysis was carried out, as the alignment between the coils between the
transmitter and receiver could alter the coefficient in the coupling.

Consequently, the coupling coefficient had a direct impact on efficiency. Inductance,
resistance, capacitance, voltage, and current were the primary electrical properties on
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the secondary (receiver) side. The primary (transmitter) side included properties such as
supply voltage, operating angular frequency, secondary side load resistance, and mutual
inductance of the WPT system.

According to Equation (1), the mutual inductance and frequency of operation
were connected:

M =
Vs

ωI1
(1)

According to WPT, Equation (2) described the connection between mutual inductance
and coupling coefficient:

M = K
√

L1L2 (2)

7.5. Two Receiver Coils Were Used in a Novel Wireless Charging System Employed in
Electric Vehicles

Most electric vehicle systems are designed around various components to ensure the
maximum power and dependability of the automobile. The majority of these components’
connections to the charging system are shown in Figure 15. Dynamic wireless power
transmission could reduce the cost of onboard batteries in hybrid cars and aid with range
anxiety. Pure electric vehicles have long used wireless recharging, enabling charging even
while the car is moving. Analysis was difficult, nevertheless, because of the complicated
working philosophy of this approach, and the existence of so many different variables and
elements. Nevertheless, several characteristics, including the vehicle speed and the shape,
volume, and sizes of the coil receivers, were determined by the vehicle’s condition, i.e.,
whether it was in motion or stationary [261]. This study proposed a brand-new technique
for enhancing dynamic wireless recharge system performance. The suggested technique
for increasing charging power included a dynamic continuous statistical model that could
characterize and analyze source-to-vehicle power transmission even when a vehicle was in
motion. The suggested mathematical model presented and addressed each of the physical
parameters associated with the model. The outcomes demonstrated the viability of the
suggested model. Additionally, by placing two coil receivers under the car, the simulation
results were validated by experimental testing [262].

 

Figure 15. Composition of wireless transmitter system.

The paucity of fossil fuels and environmental concerns indicates new energy chal-
lenges. Traditional transportation accounts for a sizable share of global oil use, which
generates substantial emissions [263]. The investigation and development of electric
vehicle (EV) technology, as a solution to these issues, is essential and will continue to
impact the automotive industry as a whole. Electric power storage is now a very pop-
ular field of study [264–266]. Electrical energy storage technology improvements have
increased the power and mass of energy generated, making it possible to meet automotive
demands [267–269]. The primary shortcoming of these storage options is the high cost of
manufacture [270]. To minimize the overall cost of EVs, experts have been working to de-
velop effective storage solutions and improve their reliability and charging strategies. This
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sector has seen the development of numerous storage systems that have been successfully
incorporated into the electric power train system, improving their performance [271–275].
Therefore, losses relating to vehicle power systems could be reduced by controlling the
main grid, engine, or even the rechargeable battery system flawlessly. The designers of [276]
studied several control techniques to increase system efficacy. Numerous studies on the
internal structures of batteries have been done to boost overall production. Numerous
approaches were implemented to increase the energy efficiency of E-transportation sys-
tems [277–279]. These solutions were included in current iterations of electric cars and
now have a proven track record of independence. Some researchers have concentrated on
charging equipment, seeking to maximize overall performance to increase vehicle efficiency
and autonomy.

In contrast, the authors presented a unique wireless charging method in [280–283].
The hybrid recharging system, which also used two types of internal power sources for
the automobile, received additional consideration [284]. Additionally, PV systems have
been integrated into vehicles to supply power from several sources, including blended
power sources [285–289]. The main goals of the problems, addressed in the models above
regarding shading impact, charging remedies, and vehicles’ extra structures, included PV
recharging and hybrid techniques and their remedies [290]. Research has been done on
wireless charging techniques to discover more reliable and practical solutions. Accordingly,
based on the literature relating to recharging strategies, more researchers have demon-
strated that two components must be used, a receiver and transmitter, in parallel, for this
method to be very effective.

The whole machine’s performance would be constrained if the two sections were to
move apart by a few inches [291]. As a result, the analysis could only be correct if the two
pieces were aligned correctly and stable (i.e., not in motion). The precision of the analysis
would change if one of these were still moving. Inductive power transfer, magnetic gear
wireless power transfer, capacitive wireless power transfer, and inductive coupling link
wireless power are just a few of the wireless energy transfer methods discussed in the
literature. Of these, inductive coupling link wireless power has proven to be among the
most popular. Numerous representations emerged in the literature due to the extensive
discussion surrounding mathematical expressions and their representations of this recharg-
ing tool. In [292], the authors looked into static modeling to increase the effectiveness of
a 50 kW, 22 kHz, 70 kHz and 85 kHz wireless charging system range for electric vehicles.
This concept was only evaluated when the receiver and transmitter coils were overlaid,
and it was based on mutual inductance among primary and secondary coils. The authors
of [67] looked at a dynamic setting to comprehend the connection between the receiver and
transmitter coil orientation deviations. Calculations were made to determine the output
voltage and total efficiency factor so as to build an integrated computational framework
similarly to other fields [293,294].

The analysis and mathematical model considered internal factors, including the in-
ductance, resistance, and pitch angle among the two coils. The specifications of each of the
two prior approaches were examined in [24], which also contrasted and examined the two
methods. These evaluations were performed using a single receiver coil without consid-
ering the significance of the divergence speed between the receiver coils and transmitter
halves. The issue, involving a two-receiver system, was not adequately examined in any
current research, and its dynamic yield has not been examined.

Pitch elevation angle, resistance, coil size, inductance, spacing among the coils, and
the displacement speed present in the receiver coil were assessed in the newly presented
model in connection to the efficacy of the coil’s recharging tool. This model helped specify
the proper number of wireless coils to completely power the car while it was on a charged
road. The recharging process was described in detail using a detailed mathematical model.
It also offered intriguing data, showing how the physical equations worked. The tests were
performed under two different circumstances: when the car was stopped and when it was
in motion.
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Two wireless receivers were tested in the vehicle as part of this investigation, and
the outcomes demonstrated the value of the suggested model. The authors considered
where the receiver was in relation to the transmitter and when the vehicle’s speed changed.
Additionally, the effects of the autonomous driving system were discussed. Current
approaches were contrasted with these findings. The results of this study showed the
benefits of two receivers below the car. The suggested concept underwent experimental
testing utilizing a prototype, and the findings were confirmed.

8. Wireless Charging System—Composition

This research looked at the wireless power transfer system, which had two main parts:
one on the road and one within a car. On the road, the stationary part was referred to as the
transmitter. The second part, placed below the vehicle, was called the moveable receiver.
Each of the two halves utilized an electronic system and was isolated from the other by a
vacuum. The transmitter block generated a magnetic flux with a maximum frequency. This
magnetic flux was converted into electrical energy whenever connected to the receiver coil,
which was then used to recharge the EV battery. The other had two receivers, whereas the
first has just one [295].

As seen in Figure 16, the transmitter component was installed on the road and coupled
to various electrical components to ensure the receivers and the AC power supply were
compatible. It provided the initial energy, AC power coupled to the AFE converter, which
created a controlled DC voltage. This part of the transmitter block was updated by a PFC
block, which kept track of the reactive power going from the source to the transmitter
to preserve grid stability. After that, a strong excitation current was delivered to the
transmitter coil using a high-frequency (HF) full-bridge inverter [296]. Two variables
significantly influenced the entire system’s profitability. The first element had to do with
the compensating technique that ensured the accuracy of the current and voltage waves.
The second crucial element was how the coils were made, specifically whether or not the
transmitter coil surface was mainly related to the coil form’s circularity. More information
on these factors has been provided in the two following subsections [297].

Figure 16. Two instances of electric vehicles.

8.1. Topologies for Compensation

A wireless power system transmission (WPT) system might use four resonant circuit
topologies. After placing the capacitor on either side, that was indicated. The types of
topologies are: series–series (SS) method, series–parallel (SP) method, parallel–series (PS)
method, and parallel–parallel(PP) method, assuming that the connection and intercon-
nection can be in series (S) type or parallel (P) type with the coil. Figure 17 provides
an illustration of these plans. More information regarding these methods was provided
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in [298–300]. For management of the filter, the values of the first and second inductances
and the capacitors (L1, L2) and (C1, C2) are fixed. To increase the transmission of power, one
must reduce the apparent power supply and ensure the distribution of the active energy
to the load; the coupler’s primary and secondary circuits—and perhaps inductance and
capacitance—are used [301]. The authors of [302,303] researched various topologies and
used a few working prototypes to demonstrate their system concepts.

Figure 17. Compensation topologies for primary and secondary resonant circuits.

Compensation is crucial in a resonant inductive power transmission system. The
system’s VA ratings must consistently be decreased whenever the coupling coefficient falls
under 0.3. Both parties’ compensation should be reasonable and capable of performing. In
the case of parasitic capacitance, the network’s architecture prevents the system from res-
onating or receiving compensation. Additional reactive parts, like inductors or capacitors,
are required to change the operating resonant frequency.

Mono resonant topology refers to the primary and basic fundamental compensation
that may be achieved by interconnecting the single capacitor in series or parallel. A
kind of compensation known as multi-resonant compensation affects several reactive
elements. On the other hand, improper compensation results in greater reactive power and
current. Reactive current enhances conduction and semiconductor losses, especially on the
inverter side.

The main goals of compensation are:

• decreased reactive power;
• the feasibility of operating with a gentle duty cycle;
• avoidance of bifurcation and segmentation;
• the creation of a system able to tolerate severe misalignment; and
• to achieve optimum efficiency, bifurcation tolerance, a compact design, and cost reduction.

An automatically coupled voltage power source inverter and series compensated
transmitter’s coil is possible. An inductor transforms a paralleled compensatory coil
winding of the inverter into an inverted current source utilizing an inductance. Secondary
compensation is utilized to reduce the coil’s VA rating. It is possible to offset the series
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network’s secondary side by converting the transmitter coil’s continuous output on the
current side of the series network of a transmitter coil to an input source voltage.

Primarily on the secondary side, parallel networking rectification creates a current
source [304]. To reduce the coil VA, Zero’s Phase Angle(φ)(ZPA) criteria would need to be
enhanced. This situation would only be feasible if the voltage, as well as the current, were
in phase. This can be accomplished by fine-tuning the main capacitor using predetermined
load and coupling characteristics. The primary side compensation, like the secondary side
compensation, aims to achieve zero switching current (ZCS) or zero switching voltage
(ZVS) if it retains a small portion of reactive or active power demand [305]. Compensation
schemes can. be adjusted to the resonance frequency, also known as the ZPA frequency,
due to abrupt changes in some parameters. This bifurcation occurs in the RIPT system, and
the resulting parameter specification is referred to as the critical parameter. The electrical
properties are modified by bifurcation. Electronic components could suffer harm as a result.

In RIPT system circumstances, basic resonant topologies exhibit bifurcation and pri-
mary level-type capacitance.

8.2. Mono-Resonant Compensation Networks

Based on the capacitor connection, there are four different compensation topologies.
The two letters can then be used to address them because of the series/parallel link. As
shown in Figure 17, the first sign denotes the connection of the primary side, while the
subsequent (second) symbol denotes the interconnection present on the secondary side.
Series–series type (SS), series–parallel type (SP), parallel–series type (PS), and parallel–
parallel type (PP) are the four variations. QS must be established as a secondary quality
criterion in order to get major reimbursement Qs = ω0LP

RL
for series-type compensation,

and Qs = RL/ω0LP for parallel-type compensation, where inω_0 represents the frequency
in resonance. The quality factor (QF) is the proportion of reactive power to active power.
Table 8 displays the primary capacitances of fundamental compensatory techniques.

Table 8. Requirements for averting the basic compensations’ bifurcation occurrence.

SS SP PS PP

Primary Capacitance 1
ω2·Lp

1
ω2·Lp · M2

LS

LP(
ω2.M2

R

)2
+L2

pω2

Lp− M2
Ls(

R.M2

L2
s

)2

+ω2
(

Lp− M2
Ls

)2

Bifurcation Qp > 4Q3
s

4Q2
s−1

Qp > Qs +
1

Qs
Qp > Qs Qp > Qs +

1
Qs

Because they increase performance, compensations like SS-type and SP-type are fre-
quently employed in these applications. The capacitance levels are not impacted by changes
in load thanks to the their compensatory networks. Additionally, SS compensation is un-
affected by the main coupling coefficient of the network’s capacitance. Owing to the
uniqueness of the network’s coupling coefficient, this leads to reduced susceptibility to
misalignment. This requirement is typically included in the approach known as DWPT.
Additionally, as SP compensation type is dependent only on some of the available coef-
ficients of the coupling range, a higher primary capacitance value is required for solid
magnetic coupling [306]. In an SP topology, the mutual inductance squared equals the
main side transmission impedance. In this circumstance, putting DWC into practice is
rather tricky. Two additional networking topologies, namely the PP type and PS type, have
different properties, based only on the compensation network’s resistive load and coupling
coefficient range. Current source converters power these systems. The primary capacitance
value needed for PP topology is higher than for PS [307]. Table 9 shows the analysis of the
review study of the resonant power transmission.
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Table 9. Analysis of review study on resonant power transmission.

Complication to be Resolved Involvement in This Paper Resolution Performance

A single base station for
power delivery and data

collecting in WSN

Fully automated recharging of
mobile vehicles.

The driving assistance (automotive
vehicle) travels along defined routes

according to the blueprint, and OPT-4
transfers electricity to the necessary nodes.

OPT-5
OPT-1

Multi-frequency Multi-frequency unwired power
transmission system.

Certain electrically-powered equipment
could only receive electricity from a
predetermined frequency channel.

—–

The transmitter circuit’s
nearby and reserved loads

each received the same
amount of energy.

Technique for electrical circuit
separation matching of impedance

Employment of several repeaters and
resonators to create arithmetic

derivations was suggested.

Power division
method

For series–series compensation, the PF is the low coupling coefficient that causes unity
and maximum accuracy. In the presence of a receiver, the associated impedance only goes
to zero at the resonance frequency. However, the rated current is constrained by parasitic
impedance [308], which makes operation potentially dangerous. Additionally, SP-type
compensation is influenced by the more extensive primary (main) capacitance ranging
value, and the coupling coefficient is required for robust electromagnetic coupling [309].
In adding more topologies, such as PP and PS types, coupling coefficient ranges and load
resistances dictate capacitance values. In such systems, current source converters are
employed. SS-compensating secondary sides have become a well-liked alternative for
bidirectional wireless chargers due to their symmetry, which facilitates the construction
of identical control topologies. The overall impedance for the four topologies is shown in
Table 10. Research [310] claimed the following to be possible descriptions of the mutual
inductance between two coils:

M = πμ0r4N2/2D3 (3)

where μ0 represents the vacuum permeability, the spacing between the two coaxial coils is
shown by the letters D, N, and r, which represent the coil’s radius, turns, and number. The
load is given, by transmitted power, as:

P =
ω0M2Qs

Ls
∗ I2

p (4)

Table 10. Overall impedance of compensation topologies.

Symbol Representation Equation

ZT − SS

[
RP + J

(
ωLP − 1

ωCP

)]
+ ω2 M2

[RS + RL + J
(

ωLS − 1
ωCS

)
]

ZT − SP

[
RP + J

(
ωLP − 1

ωCP

)]
+ ω2 M2

[RS + JωLS +
RL

1 + JRLCS ω ]

ZT − PS

1
(RP + JωLP) +

ω2 M2

(RS + RL + J
(

ωLS − 1
ωCS

)
)
+ JωLP

ZT − PP

1
1

(RP + JωLP) +
ω2 M2(1 + JRLCSω)

(RL + ((RS + JωLS)(1 + JRLCSω))
+ JωCP

Misalignment reduces mutual inductance, which changes the impedance range of the
entire system. Thus, according to Equations (1) and (2), the power transfer enhances power
production and effectiveness and is approximately proportionate to the transmission signal.
The total compensation, at the most basic level, and how they relate to mutual inductance,
misalignment, and whole impedance, including current mutual inductance for output
power and beneficial transmission effects, were discussed.

258



Energies 2023, 16, 2138

The average total impedance falls when the ratio of current to load rises under both
the series–series-type topology and the series–parallel-type topology compensatory design.
Thus, the total value of the impedance rate would progressively grow along with the
misalignment under the topologies of parallel–series type, as well as the parallel–parallel
type compensations, resulting in a sudden reduction in the value of the current [311].
PS-type and PP-type coils’ compensations would offer a maximum power factor value
(PF) value and very high efficacy at low mutual inductances, and thus, the broader value
spectrum of mutual inductance variations and load fluctuation [312]. Table 10 shows the
detailed symbol representation of the topologies.

The value in the power factor (PF) of the PP-type layout is minimal; at the same time,
the parallel main (primary) loads require a maximal current rate; primary parallel loads
require a maximum reference voltage [313]. The primary side input impedance range
produced by series-type compensation, presenting mostly on the secondary side of the
network connection (SS-type or PS-type), has a significantly and comparatively minimal
value compared to that produced by compensation for parallel networks (mostly on the
secondary side in the network connection (SP-type or PP-type) [56]. A quick comparison of
many fundamental network topologies is shown in Table 11. The positives and negatives
of each strategy are listed.

Table 11. Comparison table of the Network Topologies.

Characteristics of Topology SS-Type Topology SP-Type Topology PS-Type Topology PP-Type Topology

The primary compensation capacitance found in
the load condition, which a significant impact

on topology.
- - Interdependent Interdependent

The circuit equivalent impedance at resonance Minimum Minimum Maximum Maximum

The AC power supply type that will be utilized to
transfer a large amount of power

Voltage power
source

Voltage power
source

Current generator or
power source with
very high voltage

Current generator or
power source with
very high voltage

At the stable current source (SS, SP), energy is
transmitted (PS, PP) Lower Higher Lower Higher

Peak performance of efficiency High Low High Low

Power factor tolerance for changing frequency Lower Greater Lower Greater

The capability of power transmission Maximum Maximum Minimum Minimum

As a function of distance, power factor sensitivity Minimum Minimum Medium Medium

Alignment tolerances Maximum Maximum Medium Minimum

The impedance range at the resonance state Minimum Minimum Maximum Maximum

Suitability for use in electric vehicles (EV) Maximum Maximum Medium Medium

8.3. Coil Design

WPT makes it possible for electrical power to go from the source to the receiver by
utilizing an air-core wireless transformer architecture [1].

In Figure 18, many planar coil designs for WPT systems are depicted, including
rectangular, circular, and hybrid forms. These are applied to boost output and fix transmitter
and receiver misalignment problems similarly to structural issues [314]. Additionally, each
model’s associated benefits and drawbacks are listed in a similar table [315]. The literature
review assessed several WPT architectures’ viability and magnetic coupling for automotive
applications. These studies mainly concentrated on circularly-shaped structures. Inductive
power transfer for a 2 kW circular planar construction was recently tested in [316,317]. It
was proven that this model’s null zone was the lowest. This design was chosen for this
research as a result. Two coils, attached and allowing for the transmission of electricity
through a magnetic field, made up the system’s core component for wireless power transfer
(WPT). In WPT systems, an electrical current discharge among the principal (primary) side
coil creates a changing magnetic field over time. Whenever the secondary winding of the
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coil, which is in the reception (receiving) part, is near to that same primary (main) side coil,
present in the propagation (transmitter) section, voltage is produced as the magnetic field
is halted. Several variables, including the separation among the two winding of coils, the
intensity of the electromagnet field, and the number of coiled turns provided throughout
the time, affect the expected size of the induced emf voltage. Due to this voltage, the
secondary coil of the receiver will have current flowing through it.

Figure 18. Exploded view of the power pad.

Power transmission resistance may not have been provided by the permeability
and electrical flux channel that linked the coil that had the windings used to create the
transformer’s loosely coupling coil. When every coil was interconnected via the appropriate
compensating communication network, the resonance movements enhances the electrical
charging current, which traveled on the coil side. The Q factor of certain coil winding and
the availability of coefficient in coupling (k)—which were connected toward the optimum
permitted tolerance to boost the wide-angle length of aperture and lateral displacement
in the longitudinal/lateral interfaces—were important criteria utilized for the overall
process of designing the coil pads included within the primary (active) and secondary
(passive) coils.

Another way to improve coil design in the coupling is to progressively increase coil
size or decrease the air gap size of the aperture. Thus, the width present in the air gap, or the
size of the coil, is determined by the implementation, and EV charging is prohibited. The
coupling coefficient can be enhanced utilizing same-sized coils, e.g., a mutual inductance
range for a 0.1 m aperture measurement vs. the proportion of the receiver coil (Rx) to the
transmitter coil (Tx) radius.

In an EV application, with utilization of coils of the same size, both the current in
the eddy coil to the vehicle chassis and the permeability of the magnetic field around the
coil field are reduced [318]. When the volume and size of the receiver’s coil are lessened,
it is easier to install and more suitable for use in vehicles. There are more advantages in
terms of weight reduction, size, and dimension when automobiles are equipped with a
secondary side circuit. Additionally, each pad costs less, since less ferrite is used. These
pot designs are consequently shifted to discs, rods, or plates that are evenly distributed
across the coil [319]. The pad architecture created by Budhia et al. saved ferrite while
maintaining the crucial connection between the circuits’ primary (main) coil and secondary
coil [157,320]. The authors, Budhia et al., separated the coils present in the winding to
produce two different coils, interconnected in series mode. Better coil topologies have been
studied and investigated due to their capacity to create a unidirectional flux. The DD and
DDQ pads [321], bipolar-type pad [321], tripolar-type pad [322], and zigzag design [323] are
well-known examples. The structural component of the core’s top and also the side faces are
wrapped in the shape of a round helical coil to form an electrical flux pipe-like pad known
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as a DD-type pad. This creates paths in the electromagnetic flux, which then turns away
from the coil winding formed around the core material and returns to its initial position.
Moreover, the backside of the coil creates zero magnetic flux with this arrangement.

The formation of the flux in the electromagnetic field connecting the main coil side
accessible in the primary (active) and the secondary (passive) side available in the reception
(receiver) pad is caused by the coefficient in the coupling between most of the two coils
housed on a single pad.

Dimensions of the flux pipe need to be constructed in order to evaluate the coupling
effect. Thus, only lateral flux is combined in the DD design, which is a downside. The
quadrature coil described in [324] could be connected to the vertical parts to create the
DDQ structure. The DDQ pad is another example which calls for extra wires, because it
joins two windings to create a circular coil with nothing more than a double flux height.
According to the authors, Bosshard et al. [325], the parameter performance of the DD charge
methods and rectangle approaches were distinct. In contrast to the two independent coils
utilized in a DD pad, tripolar design variants needed three separate coils associated with
the DDQ coil. In an egg-like shape and size, three different kinds of coils imbricated and
detached from each other. It was feasible to separate the coils by diminishing the magnetic
flux in the neighboring coil winding and altering the fabricating region [326]. This kind of
coil winding pad offered a wide quasi-misarrangement tolerance and, as a result, a more
effective and appropriate design space for distributing the chosen, rated amount of power,
by allowing significantly more winding of coils [327].

Moreover, the leakage field was somewhat decreased compared to a circular pad. The
requirement for a complex control strategy design, however, was a significant drawback.
A separate inverter used each coil independently, which resulted in a very high cost. An
alternative layout was proposed that used three kinds of coils for each pad, with one larger
group of magnetic coils twisted into a rectangle next to smaller rectangular coils [328]. The
smaller coils were able to precisely and uniformly control the magnetic flux.

The load condition received power from the coil and made tiny adjustments across a
significant misalignment region. Most of the time, a considerable amount of wire cable was
needed. In order to increase the transmission distance, inter-junction coils could be placed
concurrently among the transmitting coils’ main side and the receiving winding coil [329].
Additionally, this investigation did not understand the future coils or outsourcing [330].
Whenever the layout design was separated in the power utility grid, the conclusion of the
comparison of the achievability of different coil designs (Table 12) was that there was zero
tolerance for the misalignment rate or the altitude of the magnetic flux path. This is crucial
for any further innovations in the system [331] or cyber-resilience [332–334]. Additionally,
other data-driven processes for design and optimization must be considered [335,336].

Table 12. Comparative evaluation of various coils’ design methodologies.

Design Specification of Coils Rate Range of Misalignment Tolerance for the Flux Path’s Height

Circular type Zero at 40–50% range in diameter. 1/4 amount of a coil’s diameter

Magnetic Flux pipe/flat solenoid A great step toward tolerance. 1/2 amount of a coil’s length

DD coil type Null at 35% of the length of the pad (x-direction). 1/2 the amount of the coil’s length

DDQ coil type Around 96% of the length, null (x-direction). 2 circular times

Bipolar coil type Approximately 96% of the length was
null (x-direction). 2 circular times

Tripolar coil type Non-symmetrical type of tolerance. N/A

Zigzagcoil type No null and empty values are present in this. 1/(2.5) amount of the coil’s length

8.4. Batteries and Electric Vehicles

Wireless charging gives EVs, both pure and hybrid, greater independence. As such, it
has become much more prevalent on motorways. Additionally, since a battery-powered
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electric vehicle (BEV) cannot currently be charged when moving, advancements in wireless
recharging methods might be helpful. Hence, it will be crucial for manufacturers to disclose
BEV’s interior designs. The basic variants for the primary electric motor consist of battery
systems coupled to an inverter [160]. The entire system is managed or supervised by
a control unit. Because specific current systems do not allow for wireless charging, the
preceding mention solely refers to the vehicle-to-grid (V2G) classification’s basic form. The
size of the motor must be maximized in recently- and soon-to-be-introduced EV models,
battery technology must progress, and several easy charging methods must be supported
in order to contribute to the reduction of pollutants [337–339]. It is commonly known that
the battery, which supplies the necessary energy to run the system, is among an electric
car’s crucial components (EV). This component type was modeled in this work to examine
power flow and demonstrate how well wireless recharging tools work [340,341]. The
charging/discharging voltage of lithium-ion batteries is determined by devices comprising
a DC voltage source and a series of variable resistance. It is influenced by several factors, as
shown in the Equations and the recommended methods, considering related assumptions,
that must be adopted in order to optimize battery function and performance. [342–344].

9. Conclusions

In this work, we compared and contrasted several types of power pads utilized for
the wireless charging types of electric vehicles. Thanks to mutual induction, electric vehicle
batteries may be charged wirelessly, without physical connections. Critical obstacles to EV
wireless charging include power transmission frequency, power pad design, space between
transmission of coils, and alignment of transfer coils. These were reviewed in this paper.
This paper also discussed power pad design, involving economic analysis, in addition to
optimization of the coil and core size, material, and shape for rapid prototyping.

The article evaluated existing coil shapes and designs, using a ferrite core across the
coils, to create a powerful power pad for wireless EV charging. Because of the unusual
way the flow was distributed, analysis was done using the 3D FEA. Only three kinds of
coils—D, DD, and DDQ—were used to examine the impact of the magnetic ferrite core. The
comparison was based on data imported from various findings, and magnetic flux patterns
and simulation results were evaluated. The magnetic configuration of the power pad coils
was simulated using Ansys 3D Maxwell simulation software. The findings showed that
the DD model coil had the largest coupling coefficient, best magnetic fields, and greatest
tolerance for misalignment, as explained in detail in this paper. The ferrite core, inserted
across coils, somewhat improved the coupling coefficient and aligned the magnetic flux
pattern, which was also discussed.

The development of EVs and HEVs is inevitable, as a result of growing worries over
the energy crisis and energy usage. While an overview of new technologies could be
helpful to many stakeholders, many fascinating innovations that have been developed
in the previous few decades were also discussed herein. This paper sought to provide
engineers, researchers, and academics eager to pursue their interests in this field with
a place to start. The latest EV/HEV models, electrochemical energy sources, wireless
charging infrastructures, and electric vehicles, in general, represent some of the major
subjects covered in this article. As such, this work was designed to give readers a road
map, so they may start their own fieldwork.
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