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Recent Developments in the Theory and Applicability of
Swarm Search

Yaniv Altshuler

MIT Media Lab, Cambridge, MA 02139-4307, USA; yanival@media.mit.edu

1. Overview

Swarm intelligence (SI) is a collective behaviour exhibited by groups of simple agents,
such as ants, bees, and birds, which can achieve complex tasks that would be difficult
or impossible for a single individual. The collective behaviour of these organisms is
characterized by decentralized decision making, self-organization, adaptive responses
to environmental changes, and emergent properties that are not present in individual
organisms. SI algorithms emulate these features to solve complex optimization, control,
classification, clustering, routing, and prediction problems in diverse domains, such as
engineering, robotics, biology, economics, social sciences, and humanities [1].

SI algorithms can be classified into two main categories: swarm-based algorithms
and swarm-inspired algorithms [2]. Swarm-based algorithms involve the simulation of a
population of individuals (agents) that interact with each other and their environment to
achieve a collective goal. Examples of swarm-based algorithms include ant colony optimiza-
tion (ACO) [3], particle swarm optimization (PSO) [4], artificial bee colony (ABC) [5], and
firefly algorithm (FA) [6]. Swarm-inspired algorithms, on the other hand, extract specific
mechanisms or principles from natural swarms and incorporate them into conventional
optimization or machine learning algorithms. Examples of swarm-inspired algorithms
include artificial immune systems (AIS) [7], bacterial foraging optimization (BFO) [8], and
grey wolf optimizer (GWO) [9].

The success of SI algorithms is attributed to their ability to efficiently explore a large
search space, converge to optimal or near-optimal solutions, and handle multiple objectives
or constraints simultaneously. The collective intelligence of the swarm enables the sharing
and exchange of information, the exploitation of promising regions, and the avoidance of
suboptimal regions. Furthermore, the decentralized and distributed nature of the swarm
allows for scalability, robustness, fault-tolerance, and adaptivity to dynamic or uncertain
environments [10].

Despite their advantages, SI algorithms face several challenges and limitations, such as
premature convergence, scalability issues, sensitivity to parameter settings, lack of theoreti-
cal guarantees, and difficulty in interpreting or explaining the obtained results. Researchers
have proposed various approaches to overcome these challenges, such as hybridization
with other optimization or machine learning techniques, dynamic adaptation of parameters,
incorporation of domain knowledge, and rigorous analysis of convergence properties.

2. Applications

The advancement of technology has spurred a growing demand for multi-agent and
swarm robotics solutions to address an ever-expanding range of complex and diverse
challenges. With the emergence of distributed systems, it has become increasingly clear
that relying solely on a single robot may not be the optimal approach for many applica-
tion domains. Instead, teams of robots are being called upon to work in a coordinated
and intelligent fashion, leveraging the power of redundancy to achieve greater efficiency
and reliability.

Entropy 2023, 25, 710. https://doi.org/10.3390/e25050710 https://www.mdpi.com/journal/entropy
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The benefits of multi-agent systems stem from their ability to harness the collective
intelligence of multiple entities, allowing them to tackle complex tasks that would be
beyond the capability of a single robot. This approach provides the flexibility to scale up or
down the number of robots based on the task at hand, while also providing redundancy to
ensure mission success even in the face of individual robot failures. Moreover, multi-agent
systems can leverage complementary skills and diverse perspectives, leading to improved
problem-solving capabilities and more robust decision making.

Swarm robotics takes the concept of multi-agent systems a step further by drawing
inspiration from the collective behaviour of natural swarms, such as ants, bees, and birds.
Swarm robotics seeks to emulate the self-organizing and adaptive behaviour of swarms in
order to create distributed systems that can operate autonomously and efficiently. By lever-
aging simple local interactions between agents, swarm robotics can achieve complex global
behaviours, such as exploration, foraging, or assembly, without the need for centralized
control or explicit communication. The emergence of swarm robotics opens up exciting new
possibilities for applications in fields such as search and rescue, environmental monitoring,
and precision agriculture.

In [11], a detailed description of swarm-robotics application domains is presented,
demonstrating how large-scale decentralized systems of autonomous robotic agents can be
significantly more effective than a single robot in many areas. However, when designing
such systems it should be noted that simply increasing the number of robots assigned
to a task does not necessarily improve the system’s performance—multiple robots must
intelligently cooperate to avoid disturbing each other’s activity and achieve efficiency.

In nature, “simple-minded” animals such as ants, bees or birds cooperate to achieve
common goals and exhibit amazing feats of collaborative work. It seems that these animals
are “programmed” to interact locally in such a way that the desired global behaviour is
likely to emerge even if some individuals of the colony die or fail to carry out their task for
other reasons. A similar approach may be considered for coordinating a group of robots
without a central supervisor, by using only local interactions between the robots. When
this decentralized approach is used, much of the communication overhead (typical of
centralized systems) is saved, the hardware of the robots can be fairly simple, and better
modularity is achieved. A properly designed system should be readily scalable, achieving
reliability through redundancy.

There are several key advantages to the use of such intelligent swarm robotics. First,
such systems inherently enjoy the benefit of parallelism. In task-decomposable application
domains, robot teams can accomplish a given task more quickly than a single robot, by
dividing the task into sub-tasks and executing them concurrently. In certain cases, a single
robot may simply be unable to accomplish the task on its own (e.g., to carry a large and
heavy object).

Second, decentralized systems tend to be, by their very nature, much more robust than
centralized systems (or systems comprised of a single but very complex unit). Generally
speaking, a team of robots may provide a more robust solution by introducing redundancy,
and by eliminating any single point of failure, while considering the alternative of using a
single sophisticated robot, we should note that even the most complex and reliable robot
may suffer an unexpected malfunction, which will prevent it from completing its task.
When using a multi-agent system, on the other hand, even if a large number of the agents
stop working for some reason, the entire group will often still be able to complete its
task, although perhaps slower. For example, for exploring a hazardous region (such as a
minefield or the surface of Mars), the benefit of redundancy and robustness offered by a
multi-agent system is quite obvious, and it is in this context that Rodney Brooks wrote their
famous “Fast, Cheap and Out of Control” report [12].

Another advantage of the decentralized swarm approach is the ability of dynamically
reallocating sub-tasks between the swarm’s units, thus adapting to unexpected changes in
the environment. Furthermore, since the system is decentralized, it can respond relatively
quickly to such changes, due to the benefit of locality—the ability to swiftly respond to
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changes without the need of notifying a hierarchical “chain of command”. Note that as the
swarm becomes larger, this advantage becomes increasingly important.

In addition to the ability of quick response to changes, the decentralized nature of such
systems also improves their scalability. The scalability of multi-agent systems is derived
from relying on the “emergence” of task completion by inherently low communication and
computation overhead protocol implemented by the agents. As the tasks assigned nowa-
days to multi-agent-based systems become increasingly complex, so does the importance
of the high scalability of the systems.

Finally, by using heterogeneous swarms, even more efficient systems could be de-
signed, thanks to the utilization of different types of agents whose physical properties
enable them to perform much more efficiently in certain special tasks.

Significant research effort has been invested during the last few years in the design
and simulation of multi-agent robotics and intelligent swarm systems (see, e.g., [13–20]).

Such designs are often inspired by biology (see [21,22] for evolutionary algorithms, [23]
or [24,25] for behaviour-based control models, [26–29] for flocking and dispersing mod-
els, [30–32] for predator–prey approaches and [33] for models inspired by the behaviour
of cats), by physics [34–36], sociology [37–39], network theory [40–43] or by economics
applications [44–54].

A swarm-based robotics system can generally be defined as a highly decentralized
group of extremely simple robotic agents, with limited communication, computation
and sensing abilities, designed and deployed to accomplish various tasks. Tasks that
have been of particular interest to researchers in recent years include synergetic mission
planning [55,56], emergency detection using decentralized sensing capabilities [57], pa-
trolling [58–60], fault tolerance cooperation [61–63], network security [64], adversarial
learning modelling [65], financial system modelling [66], crowd modelling [67], swarm
control [68,69], human design of mission plans [70,71], role assignment [72–76], multi-robot
path planning [59,77–81], traffic control [82–84], formation generation [85–88], formation
keeping [89–91], exploration and mapping [45,92,93], target tracking [94,95], collabora-
tive cleaning [96–99], control architecture for autonomous drones [100,101] and target
search [102,103].

Unfortunately, the mathematical and geometrical theory of such multi-agent systems
is far from being satisfactory, as pointed out in [104–107] and many other papers.

Our interest is focused on developing the mathematical tools necessary to design and
analyse such systems. For example, in [108] it was shown that a number of agents can
arrange themselves equidistantly in a row via a sequence of linear adjustments, based
on a simple “local” interaction. The convergence of the configuration to the desired one
is exponentially fast. A different way of cooperation between agents, inspired by the
behaviour of ant colonies, is described in [109]. There it was proven that a sequence of ants
engaged in deterministic chain pursuit will find the shortest (i.e., straight) path from the
ant hill to the food source, using only local interactions. In [110], the behaviour of a group
of agents on Z2 was investigated, where each ant-like agent pursued their predecessor,
according to a discrete biased-random-walk model of pursuit on the integer grid. The
average paths of such a sequence of a(ge)nts engaged in a chain of probabilistic pursuit
was shown to converge to the “straight line” between the origin and destination, and this
too happens exponentially fast.

An in-depth analysis of the effect of certain geometric properties on the search effi-
ciency of a collaborative swarm of autonomous drones appears in [111,112], whereas an
example of a set of analytic complexity bounds for this problem can be found in [113,114].
A work that analysed the effect of a stochastic framework for the same problem is presented
in [115].

3. Decentralized Intelligence Architectures and the Swarm Paradigm

A key principle in the notion of swarms, or multi-agent robotics, is the simplicity of
the individual agent. The notion of “simplicity” here means that the agents should be

3
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significantly simpler than a “single sophisticated system”, which can be constructed for
the same purpose. As a result, the capabilities and the resources of such simple agents are
assumed to be very limited, with respect to the following aspects:

• Memory resources—basic agents should be assumed to contain only O(1) memory
resources (i.e., the size of memory is independent of the size of the problem or the
number of agents). This usually imposes many interesting limitations on the agents.
For example, agents can remember only a limited history of their activities so far. Thus,
protocols designed for agents with such limited memory resources are usually very
simple and attempt to solve a given problem by relying on some (necessarily local)
basic patterns arising in the environment. The task is completed by a repetition of
these patterns by a large number of agents.

• Sensing capabilities—defined according to the specific nature of the problem. For
example, for agents moving along a 100 × 100 grid, a reasonable sensing radius may
be 3 or 4, but certainly not 40.

• Computational resources—although agents are assumed to employ only limited com-
putational resources, a formal definition of this constraint is hard to define. In general,
most of the time-polynomial algorithms may be used, provided that the amount of
memory the agents have is sufficient.

• Communication is very limited—the issue of communication in multi-agent systems
has been extensively studied in recent years. Distinctions between implicit and explicit
communication are usually made, in which implicit communication occurs as a side
effect of other actions, or “through the world” (see, for example [116]), whereas explicit
communication is a specific act intended solely to convey information to other robots
on the team. Explicit communication can be performed in several ways, such as a
short-range point-to-point communication, a global broadcast, or by using some sort
of distributed shared memory. Such memory is often referred to as a pheromone,
used to convey small amounts of information between the agents [22,117–119]. This
approach is inspired from the coordination and communication methods used by
many social insects—studies on ants (e.g., [120,121]) show that the pheromone-based
search strategies used by ants in foraging for food in unknown terrains tend to be
very efficient. Additional information can be found in the relevant NASA survey,
focusing on “intelligent swarms” comprised of multiple “stupid satellites” [122,123]
or the following survey conducted by the US Naval Research Center [124]. The lack of
explicit communication poses an challenge for various special configuration sets, such
as symmetric environments [111].
In the spirit of designing a system which uses as simple agents as possible, we aspire
that the agents will have as little communication capabilities as possible. With respect
to the taxonomy of multi-agents discussed in [125], we would be interested in using
agents of the types COM-NONE or if necessary COM-NEAR with respect to their
communication distances, and BAND-MOTION, BAND-LOW or even BAND-NONE
(if possible) with respect to their communication bandwidth. Therefore, although a
certain amount of implicit communication can hardly be avoided (due to the simple
fact that by changing the environment, the agents are constantly generating some
kind of implicit information), explicit communication should be strongly limited or
avoided altogether, in order to fit our paradigm (note that in many works in this field,
this is not the case, and communication, as well as memory, resources, are often being
used in order to create complex cooperative systems).

In summary, while designing intelligent swarm systems we must assume (and often
even aspire for) having an available individual agents that are myopic, mute, senile and
rather stupid.

4. Limitations

While SI has been applied successfully in many fields, including optimization, robotics,
and networking, it also has limitations that need to be taken into account. One of the main
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limitations of SI is its sensitivity to initial conditions and parameter settings. Small changes
in the initial configuration or the parameters of the swarm can have a significant impact on
its behaviour and performance, leading to suboptimal solutions or even failure to converge.
This problem is exacerbated in large-scale systems, where the number of variables and
interactions increases exponentially [10].

Another limitation of SI is its vulnerability to perturbations and disturbances. Swarms
are designed to be robust and resilient to individual failures or disruptions, but they can
be vulnerable to systemic disturbances [126], such as environmental changes, resource
depletion, or external attacks. These disturbances can destabilize the swarm beyond
its self-emergent macroscopic regularities [127], leading to disintegration, divergence,
or oscillations.

Real-world examples of these limitations include the behaviour of ant colonies in
changing environments. Ants use SI to forage for food and build nests, but they are also
susceptible to disturbances such as climate change or human intervention. In some cases,
ant colonies can collapse or become maladapted to their environment due to the loss of
critical resources or the disruption of communication channels.

Another limitation of SI is related to the trade-off between exploration and exploitation.
Swarms can achieve impressive results by exploring a large search space and exploiting the
best solutions found. However, there is a risk of getting stuck in local optima or suboptimal
regions of the search space, especially if the swarm lacks diversity or adaptability [128].
In some cases, the swarm may require a balance between exploration and exploitation to
achieve the best results, which can be challenging to achieve in practice [54].

A related limitation is the scalability of SI [113], while swarms can scale up to thou-
sands or millions of agents, the computational and communication overheads can become
prohibitive in large-scale systems. The swarm may require efficient algorithms for coordina-
tion, decision making, and resource allocation, which can be difficult to design and optimize.
Such limitations may take form, for example, when SI is used in traffic management systems.
Swarms of autonomous vehicles or drones can optimize traffic flow and reduce congestion
by coordinating their movements and avoiding collisions [83]. However, these systems
require efficient algorithms for path planning, decision making, and communication, as
well as robust mechanisms for handling uncertainties and unexpected events.

Another example is the application of SI in social networks. Swarms of agents can learn
and adapt to social dynamics by interacting with each other and with the environment [129].
However, these systems are also susceptible to biases, echo chambers, and polarization,
which can affect their ability to explore new ideas and perspectives [130].

5. Swarm Search with Communication

While decentralized swarms have been the main focus of swarm-based search al-
gorithms due to their scalability and simplicity, there are also several promising works
that utilize synchronization or communication among the agents. These parallel swarms
often employ communication to enhance the efficiency of the search process, such as par-
allel ant colony optimization, parallel particle swarm optimization, and other parallel
metaheuristic approaches.

Parallel ant colony optimization (PACO) [131] is an example of a parallel swarm
algorithm that utilizes communication among agents. PACO algorithms allow multiple
agents to cooperate by sharing pheromone information, which helps in quickly identifying
the optimal solution. For instance, PACO has been used in multi-robot coverage problems,
where a group of robots are required to explore an unknown environment while avoiding
collisions with each other. By sharing pheromone information, the robots can quickly
converge to a solution, even in complex and large environments [22,132].

Parallel particle swarm optimization (PPSO) [133] is another example of a parallel
swarm algorithm that uses communication among agents. PPSO is a variant of particle
swarm optimization (PSO) that allows multiple agents to communicate with each other
to improve the search process. For instance, PPSO has been used to optimize complex
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systems such as power grids, where the agents need to communicate to efficiently manage
the distributed resources [134].

In cases where decentralized swarms may not be sufficient, parallel swarms can be
beneficial. For example, in situations where the problem space is complex, the search
space is vast, and the search process is time-critical, parallel swarm algorithms can offer
a significant advantage over decentralized swarms. In such scenarios, communication
among agents can help to identify the optimal solution more quickly and efficiently.

However, one of the main drawbacks of parallel swarm algorithms is the increased
complexity of the communication mechanisms, which may require significant computa-
tional resources [135]. Additionally, communication can also lead to increased synchroniza-
tion overhead, which may impact the scalability of the algorithm. Thus, in cases where
the problem space is relatively simple, decentralized swarm algorithms may still be a
better choice.

While decentralized swarms remain the main focus of swarm-based search algorithms,
parallel swarm algorithms that utilize communication among agents have shown significant
promise in enhancing the efficiency of the search process. These algorithms have been
used in various applications, such as multi-robot coverage problems and power grid
optimization. However, the increased complexity of communication mechanisms and
synchronization overhead should also be considered when deciding on the appropriate
approach for a given problem.

6. Opportunities and Future Research

SI and swarm systems have received considerable attention in recent years due to their
potential for solving complex problems in various fields, such as robotics, optimization,
and network design. As a result, there are numerous opportunities for future research in
this area.

One promising avenue for future research is the development of more sophisticated
algorithms and models for SI, while current approaches have shown promise, there is
still much to be done in terms of improving the efficiency and adaptability of swarm
systems [136]. Researchers may explore new ways to optimize the communication and
coordination of swarm agents, or develop new approaches for dealing with the inherent
uncertainty and complexity of real-world environments [137].

Another important area for future research is the application of SI to real-world
problems, while there have been many successful demonstrations of swarm systems in
laboratory settings, there is a need for more research on how to apply these systems to
real-world problems. This may involve working with industry partners to develop practical
solutions that can be deployed in the field, or collaborating with government agencies to
address societal challenges such as disaster response or urban planning [138,139].

In addition to these technical challenges, there are also important ethical and social
considerations to be addressed. As swarm systems become more advanced and pervasive,
there may be concerns around issues such as privacy, security, and control. Researchers may
need to explore new ways to address these concerns, such as developing transparent and
accountable algorithms, or working with policymakers to establish appropriate regulations
and standards [140].

Overall, there are numerous opportunities for future research in SI and swarm systems.
By continuing to explore these systems and their potential applications, researchers can
help to unlock new solutions to complex problems and contribute to the advancement of
science and technology.

7. Conclusions

The study of SI has revealed that even seemingly simple organisms, such as ants, can
exhibit complex and sophisticated collective behaviours when allowed to work together
in a synergistic manner. This insight has led researchers to investigate the potential for
applying this approach to artificial intelligence and robotics, with promising results.
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In this Special Issue, a number of research studies have been presented that demon-
strate the power of SI in producing complex and adaptive behaviours. By studying the
ways in which ants and other social insects cooperate and communicate with one another,
researchers have been able to develop algorithms and models that can be applied to a wide
range of problems.

One of the key insights from these studies is that individual agents within a swarm
do not necessarily need to be highly intelligent or even aware of the larger goals of the
group. Rather, by following simple rules and responding to local cues, they can collectively
produce intelligent and adaptive behaviours that emerge at the swarm level.

This approach has numerous potential applications, from optimizing traffic flow to
coordinating the movements of swarms of robots in search and rescue operations. By
harnessing the power of SI, researchers are exploring new ways to tackle complex problems
that would be difficult or impossible for any individual agent to solve alone.

Overall, the research presented in this Special Issue provides compelling evidence that
even the simplest organisms can exhibit remarkable intelligence and adaptability when
working together in a synergistic manner. By taking inspiration from nature, researchers are
opening up exciting new avenues for developing advanced technologies that can benefit
society in countless ways.

In summary, let us cite a statement made by a scientist after watching an ant making
his laborious way across a wind-and-wave-moulded beach [141]:

“An ant, viewed as a behaving system, is quite simple. The apparent complexity
of its behavior over time is largely a reflection of the environment in which it
finds itself.”

Such a point of view, as well as the results of the research presented in this Special
Issue, lead us to believe that even simple, ant-like beings, when allowed to synergically
collaborate, can yield a complicated, adaptive and quite efficient macroscopic behaviour, in
the intelligent swarm-level scope.
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Abstract: We study the collective motion of autonomous mobile agents in a ringlike environment. The
agents’ dynamics are inspired by known laboratory experiments on the dynamics of locust swarms.
In these experiments, locusts placed at arbitrary locations and initial orientations on a ring-shaped
arena are observed to eventually all march in the same direction. In this work we ask whether, and
how fast, a similar phenomenon occurs in a stochastic swarm of simple locust-inspired agents. The
agents are randomly initiated as marching either clockwise or counterclockwise on a discretized, wide
ring-shaped region, which we subdivide into k concentric tracks of length n. Collisions cause agents
to change their direction of motion. To avoid this, agents may decide to switch tracks to merge with
platoons of agents marching in their direction. We prove that such agents must eventually converge to
a local consensus about their direction of motion, meaning that all agents on each narrow track must
eventually march in the same direction. We give asymptotic bounds for the expected time it takes
for such convergence or “stabilization” to occur, which depends on the number of agents, the length
of the tracks, and the number of tracks. We show that when agents also have a small probability of
“erratic”, random track-jumping behavior, a global consensus on the direction of motion across all
tracks will eventually be reached. Finally, we verify our theoretical findings in numerical simulations.

Keywords: mobile robotics; swarms; crowd dynamics; natural algorithms; locusts

1. Introduction

Birds, locusts, human crowds, and swarm-robotic systems exhibit interesting collective
motion patterns. The underlying autonomous agent behaviors from which these patterns
emerge have attracted a great deal of academic interest over the last several decades [1–6].
In particular, the formal analysis of models of swarm dynamics has led to varied and deep
mathematical results [7–10]. Rigorous mathematical results are necessary for understanding
swarms and for designing predictable and provably effective swarm-robotic systems.
However, multi-agent swarms have a uniquely complex and “mesoscopic” nature [11], and
relatively few standard techniques for the analysis of such systems have been established.
Consequently, the analysis of new models of swarm dynamics is important for advancing
our understanding of the subject.

In this work, we study the dynamics of “locust-like” agents moving on a discrete
ringlike surface. The model we study is inspired by the following well-documented exper-
iment [12]. Place many locusts on a ringlike arena at random positions and orientations.
They start to move around and bump into the arena’s walls and into each other, and as they
do, remarkably, over time, they begin to collectively march in the same direction–either
clockwise or counterclockwise (see Figure 1). Inspired by observing these experiments,
we asked the following question: What are simple and reasonable myopic rules of be-
havior that might lead to this phenomenon? Our goal is to study this question from an
algorithmic perspective by considering a swarm of autonomous and identical discretized
mobile agents that act according to a local algorithm. The precise mechanisms underlying
locusts’ behaviors are very complex and subject to intense ongoing research, e.g., [3,12–15].
Consequently, as with much of the literature on swarm dynamics [7,16,17], our goal is
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not to study an exact mathematical model of locusts in particular, but to study the kinds
of algorithmic local interactions that lead to collective marching and related phenomena.
The resulting model is idealized and simple to describe, but the patterns of motion that
emerge while the locusts progress toward a “stabilized” state of collective marching are
surprisingly complex.

Figure 1. Image from locust experiments, courtesy of Amir Ayali. The collective clockwise marching
of locusts in a ring arena is shown. Locusts were initiated at random positions and orientations in the
arena but converged to clockwise marching over time.

The starting point for this work is the following postulated “rationalization” of what
a locust-like agent wants to do. It wants to keep moving in the same direction of motion
(clockwise or counterclockwise) for as long as possible. We can therefore consider a model
of locust-like agents that never change their heading unless they collide head-on with
agents marching in the opposite direction and are forced to do so due to the pressure which
is exerted on them. When possible, these agents prefer to bypass agents that are headed
toward them rather than collide with those agents. This is accomplished by changing lanes,
moving in an orthogonal manner between concentric narrow tracks which partition the
ringlike arena. The formal description of this “rationalized” model is given in Section 3,
and will be our subject of study.

Contribution

We describe and study a stochastic model of locust-inspired agents in a 2D discretized
ringlike arena which is subdivided into k tracks, each consisting of n locations. We show
that our agents eventually reach a “local consensus” about the direction of marching,
meaning that all agents on the same track will march in the same direction. We give
asymptotic bounds for the time this takes based on the number of agents and the physical
dimensions of the arena. Due to the idealized deterministic nature of our model, a global
consensus where all locusts walk in the same direction is not guaranteed, since locusts in
different tracks might never meet. However, we show that when a small probability of
“erratic”, random behavior is added to the model, such a global consensus must occur. We
verify our claims via simulations and make further empirical observations that may inspire
future investigations into the model.

Despite being simple to describe, analyzing the model proved tricky in several respects.
Our analysis strategy is to show that the model oscillates between two phases: one in which
it is “chaotic”, and locusts are moving about without a discernible pattern; and one in which
it is “orderly”, and all locusts are stuck in dense deadlock situations where collisions are
frequent. We derive our asymptotic bounds from studying orderly phases while bounding
the amount of time the locusts can spend in the chaotic phases.

Previous works in the literature (e.g., [18,19]) have explained collective marching by
appealing to a principle of local averaging, wherein each agent attempts to average its
direction of motion with its neighbors’. It is interesting to note that our model attains
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collective marching from nearly the opposite set of assumptions. Our agents’ primary
motivation is to avoid changing their direction of motion, and any change to it is thus the
result of an unavoidable conflict. We refer the reader to the Related Work section below for
further discussion.

2. Related Work

Some of our results were presented at DARS2021 [20]. Here we extend our work by
improving the time bounds for reaching consensus (Theorem 2) by substantially expanding
and restructuring the technical analysis to include the full details which were omitted
in [20] and by adding new simulation results, technical figures, and references.

The locust experiments inspiring our work are discussed in [3,12–14,18,19]. The
phenomenon was originally studied by Buhl et al. [18]. They show that above a certain
critical density, a rapid transition occurs from disordered movements of locust nymphs to
highly aligned collective motion. Buhl et al., and subsequently Yates et al. [19], hypothesize
that a main cause of this behavior is the locusts’ tendency to change their direction to
align with neighbors within a local interaction range (a common modeling assumption in
multi-agent dynamics [9]) and that individual behavior does not change in relation to group
density. In this work, we show how collective marching might emerge from almost the
opposite set of assumptions; the locust-like agents we describe try to avoid changing their
direction of motion for as long as possible, going as far as actively avoiding locusts that
are headed in the opposite direction However, consensus eventually occurs as a result of
unavoidable conflicts where locusts bump into each other. The assumption that locusts want
to maintain their direction of motion is critical for enabling collective marching in our model,
since it characterizes the stable states of the system. Bazazi et al. [21] hypothesize collective
marching occurs due to a model of cannibalistic pursuit wherein locusts attempt to pursue
locusts in front of them and evade locusts behind them to bite and avoid being bitten. Our
model includes an element of evasion, too, but it is motivated by the locusts’ desire to
avoid changing their direction of motion. All previous models assume local interactions
between locusts, i.e., locusts are only affected by neighboring locusts. Interactions in our
model consist of conflicts between adjacent locusts and track changes that occur as a result
of trying to avoid said conflicts. Conflicts are by definition local. Track-changing rules can
be assumed either local or global, and our analysis applies in both cases.

Notably, in [18,19], it is observed that at intermediate densities swarms of locusts
exhibit periodic directional switching, and at low densities the directions of motion are
random. Our model does not replicate these phenomena; we show that our locust-like
agents converge to local consensus at every density (or global consensus, assuming noise).
Interestingly, we note that if we assume each locust has a small probability r > 0 of
randomly flipping their heading at the beginning of a time step, such directional switching
becomes possible. The probability of directional switching under such a postulate is
inversely proportional to the density, thus likelier at low and intermediate densities than at
high densities. We emphasize, however, that unlike works such as Buhl et al., replicating
all features of locust swarms is not the goal of this work. Whereas the works we discussed
seek to model actual locusts, our work can be characterized as trying to find a minimalistic
locust-inspired set of assumptions that provably attains collective marching and to study it
analytically for the sake of deepening our understanding of multi-agent systems.

More generally, the mathematical modeling of the collective motion of natural organ-
isms, such as birds, locusts, and ants, and the convergence of such systems of agents to
stable formations, has been discussed in numerous works including [5,9,10,22]. The most
relevant to us among these are works within the field of natural algorithms, which assert that
the behavior of natural organisms can be understood using concepts from the theory of
robotics and computer science [11,16,17], such as complexity analysis, look-compute-move
phases, and decision-making based on discrete internal states. Natural algorithms open
up interplay between biology and computer science, allowing us to study nature via the
language of algorithms and vice versa, allowing us to translate principles, algorithms, and
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mechanisms gleaned from nature to the design of systems that are meant to service or
interact with humans, such as autonomous vehicles and warehouse robots.

The central focus of this work regards consensus. Do the agents eventually converge to
the same direction of motion, and how long does it take? These questions bear mathematical
and conceptual resemblance to questions in the field of opinion dynamics [23–25]. If the
agents’ direction of motion (clockwise or counterclockwise) is considered an “opinion”,
and the agents’ interactions that cause changes in the direction of motion are considered
social pressure, we can ask how long it takes for the agents to arrive at a consensus of
opinions. Building on this analogy, we note that when there are no empty locations in the
environment, our agent model is distinctly similar to the voter model on a ring network
with two opinions. The voter model is a classical model in opinion dynamics explored in
numerous works (we refer the reader to the survey [26]).

The comparison to the voter model breaks when we introduce empty locations and
multiple ringlike tracks at which point we must take into account the agents’ dynamically
changing positions. Unlike the voter model, where only an agent’s static neighborhood
can influence its opinion, in our model, an agent’s current location determines which
agents can influence it. Several works have explored models of opinion dynamics in a ring
environment where the agents’ physical location is taken into account [27,28]. Our model
is distinct from these in several respects. First, in our model, an agent’s internal state—its
direction of motion—plays an active part in the algorithm that determines which locations
an agent may move to. Second, we partition our ring topology into several narrow rings
(“tracks”) that agents may switch between, and an agent’s decision to switch tracks is
influenced by the presence of platoons of agents moving in its direction in the track that
it wants to switch to. In other words, we model agents that actively attempt to “swarm”
together with agents moving in their direction of motion. We believe our work is unique in
that we study, in a single model, both how an agent’s physical location affects its opinion
(via conflicts with nearby agents), and how an agent’s opinion affects its physical location
(via the desire to swarm with agents of the same opinion or equivalently, evade those of a
different opinion).

Protocols for achieving consensus about a value, location, or the collective direction of
motion have also been investigated in swarm robotics and distributed algorithms [29–32].
The purpose of these protocols is typically to be as efficient as possible in terms of parame-
ters such as time, computational load, and distance traveled. However, in this work, we
are not searching for a protocol that is designed to efficiently bring about consensus; we are
investigating a protocol that is inspired by natural phenomena and want to see whether it
leads to consensus and how long this process is expected to take.

Broadly speaking, some mathematical similarities may be drawn between our model
and interacting particle systems such as the simple exclusion process, which has been used
to understand biological transport and traffic phenomena [33,34]. Such particle systems
have been studied on rings [35]. In these discrete models, as in our model, agents possess a
physical dimension, which constrains the locations they might move to in their environment.
These are not typically multi-agent models where agents have an internal state (such as a
persistent direction of motion), but rather models of particle motion and diffusion, and the
research focus is quite different. The main point of similarity to our model is in the way
that a given discrete location can only be occupied by a single agent and in the random
occurrence of “traffic shocks” where agents line up one after the other and are prevented
from moving for a long time.

3. Model and Definitions

We postulate a locust-inspired model of marching in a wide 2D ringlike arena which
is discretized into k narrow concentric rings, each consisting of n locations. Each narrow
concentric ring is called a track. This discretized environment is topologically equivalent to
the surface of a discretized cylinder of height k partitioned into k narrow rings of length
n which are layered on top of each other. For example, the environment of Figure 2
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corresponds to k = 3, n = 8 (3 tracks of length 8). The coordinate (x, y) refers to the xth
location on the yth track (which can also be seen as the xth location of a ring of length n
wrapped around the cylinder at height y). We define ∀x, (x + n, y) ≡ (x, y).

Figure 2. One step of the locust model with k = 3, n = 8 split into horizontal and vertical movements:
(a) shows the initial configuration at the beginning of the current time step t; (b) illustrates changes
to the configuration after conflicts and horizontal movements; and (c) is the configuration at the
beginning of time t + 1 (or equivalently the end of time t) after vertical movements. The front and
back of the blue locust are the red and green locusts, respectively. The purple locusts conflict with
each other. Since conditions (1)–(3) are fulfilled, the blue locust may switch tracks, and it does so in
the illustration.

A swarm of m identical agents, or “locusts”, which we label A1, . . . , Am, are dispersed
at arbitrary locations and move autonomously at discrete time steps t = 0, 1, . . .. A given
location (x, y) can contain at most one locust. Each locust Ai is initiated with either a
“clockwise” or “counterclockwise” heading, which determines their present direction of
motion. We define b(Ai) = 1 when Ai has clockwise heading, and b(Ai) = −1 when Ai
has a counterclockwise heading.

The locusts move synchronously at discrete time steps t = 0, 1, . . .. At every time
step, locusts try to take a step in their direction of motion. If locust A is at (x, y), it will
attempt to move to (x + b(A), y). A clockwise movement corresponds to adding 1 to x,
and a counterclockwise movement corresponds to subtracting 1. The locusts have physical
dimension, so if the location a locust attempts to move to already contains another locust at
the beginning of the time step, the locust instead stays put. If Ai and Aj are both attempting
to move to the same location, one of them is chosen uniformly at random to move to the
location, and the other stays put.

Locusts that are adjacent exert pressure on each other to change their heading. If
Ai has a clockwise heading and Aj has a counterclockwise heading, and they lie on the
coordinates (x, y) and (x + 1, y), respectively, then at the end of the current time step, one
locust (chosen uniformly at random) will flip its heading to the other locust’s heading. An
equivalent way to model these dynamics is as follows: at the start of a conflict, each of the
two locusts uniformly samples a random number ri, rj ∈ (0, 1) called ’pressure’. The locust
with lower pressure “loses” the conflict and changes its heading (noting that the probability
of ri = rj is 0). Such an event is called a conflict between Ai and Aj. A conflict is “won” by
the locust that successfully converts the other locust to their heading.

Let A be a locust at (x, y). If the locust A has a clockwise heading, then the front of A
is the first locust after A in the clockwise direction, and the back of A is the first locust in the
counterclockwise direction. The reverse is true when A has a counterclockwise heading.
Formally, let i > 0 be the smallest positive integer such that (x + b(A)i, y) contains a locust,
and let j > 0 be the smallest positive integer such that (x − b(A)j, y) contains a locust. The
front of A is the locust in (x + b(A)i, y), and the back of A is the locust in (x − b(A)j, y). The
locusts in the front and back of A are denoted A→ and A←, respectively, and are called A’s
neighbors; these are the locusts that are directly in front of and behind A. Note that when
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a track has two or less locusts, A→ = A←. When a track has one locust, i = j = n, and
A = A→ = A←.

At any given time step, besides moving in the direction of their heading within their
track, locust A at (x, y) can switch tracks, moving vertically from (x, y) to (x, y + 1) or
(x, y − 1) unless this would cause it to go above track k or below track 1. Such vertical
movements occur after the horizontal movements of locusts along the tracks but on the
same time step where those horizontal movements took place. Locusts are incentivized
to move vertically when this enables them to avoid changing their heading (“inertia”).
Specifically, A may move to the location E = (x, y ± 1) at time t when:

1. At the beginning of time t, A and A→ are not adjacent to each other and b(A) �=
b(A→).

2. Once A moves to E, the updated A← and A→ in the new track will have heading
b(A).

3. No locust will attempt to move horizontally to E at time t + 1.

Condition (1) states that there is an imminent conflict between A and A→ which is
bound to occur. Condition (2) guarantees that, by changing tracks to avoid this conflict, A
is not immediately advancing toward another collision; A’s new neighbor will have the
same heading as A. Condition (3) guarantees that the location A wants to move to on the
new track is not being contested by another locust already on that track. Together, these
conditions mean that locusts only change tracks if this results in avoiding collisions and
in “swarming” together with other locusts marching in the same direction of motion. If a
locust cannot sense that all three conditions (1)–(3) are fulfilled, it does not switch tracks.

Besides these conditions, we make no assumptions about when locusts move vertically.
In other words, locusts do not always need to change tracks when they are allowed to by
rules (1)–(3); they may do so arbitrarily, say with some probability q or according to any
internal scheduler or algorithm, and we may impose visibility range constraints on the
locusts such that they only switch tracks when they can see that rules (1)–(3) are fulfilled.
We do not determine in any sense the times when locusts move between tracks, but only
determine the preconditions required for such movements. Our results in the following
sections remain true regardless. This makes our results general in the sense that they hold
for many different track-switching “swarming” rules, as long as those rules do not break
the conditions (1)–(3).

Figure 2 illustrates one time step of the model, split into horizontal and vertical
movement phases.

To slightly simplify our analysis of the model, we assume that every track has at least
two locusts at all times, although our results remain true without this assumption.

Although we work in a discrete time model where movement is instantaneous, it
is helpful for the sake of formal analysis to define the beginning of a time step as the
configuration of the swarm at that time step before any locusts moved, and the end of a
time step as the configuration at that time step after all locust movements are complete.
Somewhat idiosyncratically, the end of time t is precisely the beginning of time t + 1—both
terms refer to the same thing. By default and unless stated otherwise, the words “time step
t” refer to the beginning of that time step.

4. Stabilization Analysis

We will mainly be interested in studying the stability of the headings of the locusts
over time. Does the model reach a point where the locusts stabilize and stop changing their
heading? If so, are their headings all identical? How long does it take?

In the case of a single track (k = 1), we shall see that the locusts all eventually stabilize
with identical heading and bound the expected time for this to happen in terms of m and
n. In the multi-track case, we shall see that the locusts stabilize and agree on a heading
locally (i.e., all locusts on the same track eventually have the identical heading and thereafter
never change their heading) and bound the expected time to stabilization in terms of
m, n, k. In the multi-track case, we further show that adding a small probability of “erratic”
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track-switching behavior to the model induces global consensus: all locusts across all tracks
eventually have the identical heading.

4.1. Locusts on Narrow Ringlike Arenas (k = 1)

We start by studying the case k = 1; that is, we study a swarm of m locusts marching
on a single track of length n. Throughout this section, we assume this is the case, except in
Definition 1, which is also used in later sections.

For the rest of this section, let us call the swarm non-stable at time t if there are two
locusts Ai and Aj such that b(Ai) �= b(Aj); otherwise, the swarm is stable. A swarm which
is stable at time t remains stable thereafter. We wish to bound the number of time steps
it takes for the system to become stable, which we denote Tstable. Our goal is to prove
Theorem 1, which tells us that the expected time to stabilization grows quadratically in the
number of locusts m and linearly in the track length n.

Theorem 1. For any configuration of m locusts on a ring with a single track, E[Tstable] ≤ m2 +
2(n − m). This bound is asymptotically tight; there are initial locust configurations for which
E[Tstable] = Ω(m2 + n − m).

Theorem 1 tells us that all locusts must have identical bias within a finite expected
time. This fact in isolation (without the time bounds in the statement of the theorem) is
relatively straightforward to prove by noting that the evolution of the locusts’ headings
and locations can be modeled as a finite Markov chain, and the only absorbing classes in
this Markov chain are ones in which all locusts have the same heading (see [36]).

Next we define segments: sets of consecutive locusts on the same track which all have
the same heading. This allows us to partition the swarm into segments such that every
locust belongs to a unique segment (see Figure 3). Although this section focuses on the case
of a single track (and claims in this section are made under the assumption that there is
only a single track), the definition is general, and we will use it in subsequent sections.

Definition 1. Let A be a locust for which b(A←) �= b(A) at time t, and consider the sequence of
locusts B0 = A, Bi+1 = B→

i . Let Bq be the first locust in this sequence for which b(Bq) �= b(B0).
The set {B0, B1, . . . Bq−1} is called the segment of the locusts B0, . . . Bq−1 at time t. The locust
Bq−1 is called the segment head, and A is called the segment tail of this segment.

Figure 3. A locust configuration with n = 8, k = 3. Locusts are colored based based on the segment
they belong to (Definition 1). There are 8 segments in total.

Only locusts which are segment heads at the beginning of a time step can change their
heading by the end of that time step. When the heads of two segments are adjacent to each
other, the resulting conflict causes one to change its heading, leave its previous segment,
and instead become part of the other segment. If the head of a segment is also the tail of
a segment, the segment is eliminated when it changes heading. Two segments separated
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by a segment of opposite heading merge if the opposite-heading segment is eliminated,
which decreases the number of segments by two. No other action by a locust can change
the segments. Hence, the number of segments and segment tails can only decrease.

Since our model is stochastic, different sequences of events may occur and result in
different segments. However, by the above argument, we can conclude that in any such
sequence of events, there must always exist at least one locust which remains a segment
tail at all times t < Tstable and never changes its heading (since at least one segment must
exist as long as t < Tstable). Arbitrarily, we denote one such segment tail “AW”.

Definition 2. The segment of AW at the beginning of time t is called the winning segment at
time t and is denoted SW(t). The head of SW(t) is labelled HW(t). For convenience, if at time t0
the swarm is stable (i.e., t0 ≥ Tstable), then we define SW(t0) as the set that contains all m locusts.

Lemma 1. The expected number of time steps t < Tstable in which |SW(t)| changes is bounded
by m2.

Proof. Let Cm denote the number of changes to the size of SW(t) that occurs before time
Tstable. Note that Tstable is the first time step where |SW(t)| = m. |SW(t)| can only decrease,
by one locust at a time, if HW(t) conflicts with another locust and loses. |SW(t)| can
increase in several ways, for example, when it merges with other segments. In particular,
|SW(t)| increases by at least one whenever HW(t) conflicts with a locust and wins, which
happens with probability at least 1

2 . Hence, whenever SW(t) changes in size, it is more
likely to grow than to shrink. We can bound E[Cm] by comparing the growth of |SW(t)| to
a random walk with absorbing boundaries at 0 and m:

Consider a random walk on the integers which starts at |SW(0)|. At any time step
t, the walker takes a step left with probability 1

2 , otherwise it takes a step right. If the
walker reaches either 0 or m, the walk ends. Denote by C∗

m the time it takes the walk to
end. Using coupling (cf. [37]), we see that E[Cm] ≤ E[C∗

m|the walker never reaches 0], since
per the previous paragraph, |SW(t)| clearly grows at least as fast as the position of the
random walker (note that |SW(t)| > 0 is always true, which is analogous to the walker
never reaching 0).

Let us show how to bound E[C∗
m|the walker never reaches 0]. Since the walk is memo-

ryless, we can think of this quantity as the number of steps the random walker takes to get to
m, assuming it must move right when it is at 0, and assuming the step count restarts when-
ever it moves from 0 to 1. If we count the steps without resetting the count, we realize that
this is simply the expected number of steps it takes a random walker walled at 0 to reach po-
sition m, which is at most m2 (cf. [38]). Hence E[C∗

m|the walker never reaches 0] ≤ m2.

Lemma 2. The expected number of time steps t < Tstable in which |SW(t)| does not change is
bounded by 2(n − m).

Lemma 2 will require other lemmas and some new definitions to prove.

Definition 3. Let A and B be two locusts or two locations which lie on the same track. The
clockwise distance from A to B at time t is the number of clockwise steps required to get from A’s
location to B’s location and is denoted distc(A, B). The counterclockwise distance from A to B is
denoted distcc(A, B) and equals distc(B, A).

For the rest of this section, let us assume without loss of generality that the winning
segment’s tail AW has a clockwise heading. Label the empty locations in the ring at time
t = 0 (i.e., the locations not containing locusts at time t = 0) as E1, E2, . . . En−m, sorted by
their counterclockwise distance to AW at time t = 0, such that E1 minimizes distcc(Ei, AW),
E2 has the second smallest distance, and so on. We will treat these empty locations as
having persistent identities. Whenever a locust A moves from its current location to Ei, we
will instead say that A and Ei swapped, and so Ei’s new location is A’s old location.
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We say a location Ei is inside the segment SW(t) at time t if the two locusts which have
the smallest clockwise and counterclockwise distance to Ei, respectively, are both in SW(t).
Otherwise, we say that Ei is outside SW(t). A locust or location A is said to be between Ei
and Ej, j > i, if distc(Ei, A) < distc(Ei, Ej).

Definition 4. All empty locations are initially blocked. A location Ei becomes unblocked at
time t + 1 if all empty locations Ej such that j < i are unblocked at time t, and a locust from
SW(t) swapped locations with Ei at time t. Once a location becomes unblocked, it remains that
way forever.

Lemma 3. There is some time step t∗ ≤ n − m such that:

1. Every blocked empty location E is outside SW(t∗) (if any exist)
2. At least t∗ empty locations are unblocked.

Proof. If E1 is outside SW(0), then the same must be true for all other empty locations,
so t∗ = 0 and we are finished. Otherwise, E1 becomes unblocked at time t = 1. If Ei
becomes unblocked at time t, then at time t, it cannot be adjacent to Ei+1, since the locust
that swapped with Ei in the previous time step is now between Ei and Ei+1. By definition,
there are no empty locations Ej between Ei and Ei+1. Consequently, if Ei+1 is inside SW(t)
at time t, it will swap with a locust of SW(t) at time t, and become unblocked at time t + 1.
If Ei+1 is outside the segment at time t, it will become unblocked at the first time step t′ > t
that begins with Ei+1 inside SW(t′). Hence, if Ei becomes unblocked at time t, then Ei+1
becomes unblocked at time t + 1 or Ei+1 is outside SW(t + 1) at time t + 1.

Let t∗ be the smallest time where there are no blocked empty locations inside SW(t∗).
By the above, at every time step t ≤ t∗ an empty location becomes unblocked; hence there
are at least t∗ unblocked empty locations at time t∗. Moreover, since there are n − m empty
locations, this implies t∗ ≤ n − m.

Lemma 4. There is no time t < Tstable where an unblocked location is clockwise-adjacent to HW(t)
(i.e., there is no time t where an unblocked empty location E is located one step clockwise from
HW(t)).

Proof. First consider what happens when E1 becomes unblocked: it swaps its location with
a locust in SW(t), and since E1 is the clockwise-closest empty location to AW , the entire
counterclockwise path from E1 to AW consists only of locusts from SW(t). Hence E1 will
move counterclockwise at every time step until it swaps with AW . Once it swaps with AW ,
E1 will not swap with another locust at all times t < Tstable, since for that to occur we must
have that b(A←

W ) = b(AW), which is impossible since by definition AW remains a segment
tail until t = Tstable. E1 does not swap with HW(t) while E1 moves counterclockwise toward
AW nor after E1 and AW swap as long as the swarm is unstable; hence there is no time step
t < Tstable when E1 is unblocked and swaps with HW(t).

Now consider E2. E2 becomes unblocked at least one time step after E1, and there is
at least one locust in SW(t) which is between E1 and E2 at the time step E1 that becomes
unblocked (in particular, the locust in SW(t) that swapped with E1 must be between E1
and E2 at that time). Since E1 subsequently moves toward AW at every time step until they
swap, E2 cannot become adjacent to E1 until they both swap with AW . Hence the location
one step counterclockwise to E2 must always be a locust until E2 swaps with AW , meaning
that similar to E1, E2 also moves counterclockwise toward AW at every time step after E2
becomes unblocked until they swap locations. Consequently, just like E1, there is no time
step t < Tstable when E2 is unblocked and swaps with HW(t).

More generally, by a straightforward inductive argument, the exact same thing is true
of Ei: once it becomes unblocked, it moves counterclockwise toward AW at every time step
until it swaps with AW . Thus, upon becoming unblocked, Ei does not swap with HW(t) as
long as t < Tstable.
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Using Lemmas 3 and 4, let us prove Lemma 2.

Proof. If, at the beginning of time step t, HW(t) is adjacent to a locust from a different
segment, then |SW(t)| will change at the end of this time step due to the locusts’ conflict.
Hence, to prove Lemma 2, it suffices to show that out of all the time steps before time Tstable,
HW(t) is not adjacent to the head of a different segment in at most 2(n − m) different steps
in expectation.

If all empty locations are unblocked at time n − m, then by Lemma 4, HW(t) conflicts
with the head of another segment at all times t ≥ n − m. Therefore, |SW(t)| will change at
every time step n − m < t < Tstable, which is what we wanted to prove.

If there is a blocked location at time n − m, then by Lemma 2, there must be some time
t∗ ≤ n − m where at least t∗ empty locations are unblocked and all blocked empty locations
are outside SW(t∗). Let Ej be the minimal-index blocked location which is outside SW(t∗)
at time t∗. Since there are no blocked empty locations inside SW(t∗), all locations Ei with
i < j are unblocked. Hence, Ej will become unblocked as soon as it swaps with the head of
the winning segment. Since (by the clockwise sorting order of E1, E2, . . .) Ej+1 cannot swap
with the winning segment head before Ej is unblocked, Ej+1 will also become unblocked
after the first time step where it swaps the winning segment head. The same is true for
Ej+2, . . . En−m. Hence, every empty location that HW(t) swaps with after time t∗ becomes
unblocked in the subsequent time step. By Lemma 2, the total swaps HW(t) could have
made before time Tstable is thus most t∗+(n−m− j) ≤ n−m. Whenever an empty location
is one step clockwise from HW(t), they will swap with probability at least 0.5 (the swap
is not guaranteed, since it is possible the location is also adjacent to the head of another
segment, and hence a tiebreaker will occur in regards to which segment head occupies the
empty location in the next time step). Consequently, the expected number of time steps
HW(t) is not adjacent to the head of another segment is bounded by 2(n − m).

The proof of Theorem 1 now follows.

Proof. Lemma 2 tells us that before time Tstable, |SW(t)| does not change in at most 2(n−m)
time steps in expectation, whereas Lemma 1 tells us that the expected number of changes
to |SW(t)| before time Tstable is at most m2. Hence, for any configuration of m locusts on a
ring of track length n, E[Tstable] ≤ m2 + 2(n − m).

Let us now show a locust configuration for which E[Tstable] = Ω(m2 + n), so as
to asymptotically match the upper bound we found. Consider a ring with k = 1, m
divisible by 2, and an initial locust configuration where locusts are found at coordinates
(0, 1), (1, 1), . . . (m/2, 1) with a clockwise heading and at (−1, 1), (−2, 1), . . . (−m/2 − 1, 1)
with a counterclockwise heading, and the rest of the ring is empty. This is a ring with
exactly two segments, each of size m/2. Since after every conflict, the segment sizes are
offset by one in either direction, the expected number of conflicts between the heads of
the segments that is necessary for stabilization is equal to the expected number of steps a
random walk with absorbing boundaries at m/2 and −m/2 takes to end, which is m2/4
(see [39]). Since the heads of the segments start at distance n − m from each other, it takes
Ω(n − m) steps for them to reach each other. Hence the expected time for this ring to
stabilize is Ω(m2 + n − m).

4.2. Locusts on Wide Ringlike Arenas (k > 1)

Let us now investigate the case where m locusts are marching on k > 1 tracks of length
n. The first question we should ask is whether, just as in the case of the k = 1 setting,
there exists some time T where all locusts have identical heading. The answer is “not
necessarily”: consider for example the case k = 2 where on the k = 1 track, all locusts
march clockwise, and on the k = 2 track, all locusts march counterclockwise. According
to the track-switching conditions (Section 3), no locust will ever switch tracks in this
configuration; hence the locusts will perpetually have opposing headings. As we shall
prove in this section, swarms stabilize locally–meaning that eventually, all locusts on the
same track have identical heading, but this heading may be different between tracks.
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Let us say that the yth track is stable if all locusts whose location is (·, y) have the
identical heading. Note that once a track becomes stable, it remains this way forever, as by
the model, the only locusts that may move into the track must have the same heading as
its locusts. Let Tstable be the first time when all the k tracks are stable. Our goal will be to
prove the following asymptotic bounds on Tstable:

Theorem 2. E[Tstable] = O(min(log(k)n2, mn)).

Recalling Definition 1, each locust in the system belongs to some segment. Each track
has its own segments. Locusts leave and join segments due to conflicts or when they pass
from their current segment to a track on a different segment. In this section, we will treat
segments as having persistent identities similar to SW in the previous section. We introduce
the following notation:

Definition 5. Let S be a segment whose tail is A at some time t0. We define S(t) to be the segment
whose tail is A at the beginning of time t. If A is not a segment tail at time t, then we will say
S(t) = ∅ (this can happen once A changes its heading or moves to another track, or due to another
segment merging with S(t) which might cause b(A←) to equal b(A), thus making A no longer
the tail).

Furthermore, define S1 to be the segment tail of S and Si+1 = S→
i .

Let us give a few examples of the notation in Definition 5. Suppose at time t1 we have
some segment S. Then the tail of S is S1, and the head is S|S|. S(t) is the segment whose tail
is S1 at time t; hence S(t1) = S. Finally, S(t)|S(t)| is the head of the segment S(t).

In the k > 1 setting, locusts can frequently move between tracks, which complicates
our study of Tstable. Crucially, however, the number of segments on any individual track is
non-increasing. This is because, first, as shown in the previous section, locusts moving and
conflicting on the same track can never create new segments. Second, by the locust model,
locusts can only move into another track when this places them between two locusts that
already belong to some (clockwise or counterclockwise) segment.

That being said, locusts moving in and out of a given track make the technique we used
in the previous section unfeasible. In the following definitions of compact and deadlocked
locust sets, our goal is to identify configurations of locusts on a given track which locusts
cannot enter from another track. Such configurations can be studied locally, focusing only
on the track they are in. In the next several lemmas, we will bound the amount of time
that can pass without either the number of segments decreasing or all segments entering
into deadlock.

Definition 6. We call a sequence of locusts X1, X2, . . . compact if Xi+1 = X→
i and either:

1. every locust in X has a clockwise heading and for every i < |X|, distc(Xi, Xi+1) ≤ 2, or
2. every locust in X has a counterclockwise heading and for every i < |X|, distcc(Xi, Xi+1) ≤ 2.

An unordered set of locusts is called compact if there exists an ordering of all its locusts that
forms a compact sequence.

Definition 7. Let X = {X1, X2, . . . Xj} and Y = {Y1, Y2, . . . Yk} be two compact sets, such that
the locusts of X have a clockwise heading and the locusts of Y have a counterclockwise heading. X
and Y are in deadlock if distc(Xj, Yk) = 1. (See Figure 4).

A compact set of locusts X is essentially a platoon of locusts all on the same track
which are heading in one direction and are all jammed together with at most one empty
space between each consecutive pair. As long as X remains compact, no new locusts can
enter the track between any two locusts of X because the model states that locusts do not
move vertically into empty locations to which a locust is attempting to move horizontally,
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and the locusts in a compact set are always attempting to move horizontally to the empty
location in front of them.

Figure 4. Two segments in deadlock, colored green and red (Definition 7).

Definition 8. A maximal compact set is a set X such that for any locust A /∈ X, X ∪ A is not
compact.

A straightforward observation is that locusts can only belong to one maximal compact set:

Observation 1. Let A be a locust. If X and Y are maximal compact sets containing A, then
X = Y.

Lemma 5. Let X and Y be two sets of locusts in deadlock at the beginning of time t. Then at every
subsequent time step, the locusts in X ∪ Y can be separated into sets X′ and Y′ that are in deadlock,
or the locusts in X ∪ Y all have identical heading.

Proof. Let X = {X1, X2, . . . Xj} and Y = {Y1, Y2, . . . Yk} be compact sets such that Xi+1 =
X→

i , Yi+1 = Y→
i . It suffices to show that if X and Y are in deadlock at time t, they will

remain that way at time t + 1, unless X ∪ Y’s locusts all have identical heading. Let us
assume without loss of generality (“w.l.o.g.”) that X has a clockwise heading, and therefore
Y has a counterclockwise heading. By the definition of deadlock, at time t, Xj and Yk
conflict, and the locust that loses joins the other set. Suppose w.l.o.g. that Xj is the locust
that lost. If |X| = 1, then the locusts all have an identical heading, and we are finished.
Otherwise, set X′ = {X1, . . . Xj−1} and Y′ = {Y1, Y2, . . . Yk, Xj}. Note that since X and Y
are compact at time t, no locust could have moved vertically into the empty spaces between
pairs of locusts in X ∪ Y. Furthermore the locusts of X and Y all march toward Xj and Yk,
respectively; hence the distance between any consecutive pair Xi, Xi+1 or Yi, Yi+1 could not
have increased. Thus X′ and Y′ are compact.

To show that X′ and Y′ are deadlocked at time t + 1, we just need to show that
distc(Xj−1, Xj) is 1 at time t + 1. Since the distances do not increase, if distc(Xj−1, Xj) was
1 at time t, we are finished. Otherwise distc(Xj−1, Xj) = 2 at time t, and since Xj did not
move (it was in a conflict with Yk), Xj−1 decreased the distance in the last time step, hence
it is now 1.

Lemma 6. Suppose P and Q are the only segments on track K at time t0, and P’s locusts have a
clockwise heading. Let d = distc(P1, Q1). After at most 3d time steps, P(t0 + 3d) and Q(t0 + 3d)
are in deadlock, or the track is stable.

Proof. The track K consists of locations of the form (x, y) for some fixed y and 1 ≤ x ≤
n. For brevity, in this proof we will denote the location (x, y) simply by its horizontal
coordinate, i.e., x, by writing (x) = (x, y).

We may assume w.l.o.g. that t0 = 0 and that P1 is initially at (0). Note that this
means Q1 is at (d) at time 0. If at any time t ≤ 3d the track is stable, then we are finished,
so we assume for contradiction that this is not the case. This means that P1 and Q1 do
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not change their headings before time 3d. This being the case, we get that distc(P1, Q1) is
non-increasing before time 3d. Since the segments P(t) and Q(t) move toward each other
at every time step t ≤ 3d, we may focus only on the interval of locations [0, d], i.e., the
locations (0), (1), . . . (d). We then define the distance dist(·, ·) between two locusts in this
interval whose x-coordinates are x1 and x2 as |x1 − x2|.

At any time t ≤ 3d, we may partition the locusts in [0, d] into maximal compact sets
of locusts. This partition is unique, by Observation 1. Let us label the maximal compact
sets of locusts that belong to P(t) as C t

1, C t
2, . . . C t

ct , where the segments are indexed from
1 to ct, sorted by increasing x coordinates, such that C t

1 contains the locusts closest to (0).
Analogously, we label the maximal compact sets that belong to Q(t) as W t

1,W t
2, . . .W t

wt ,
with indices running from 1 to wt, sorted by decreasing x-coordinates such that W t

1 contains
the locusts that are closest to (d) (see Figure 5). In this proof, the distance between two sets
of locusts X, Y, denoted dist(X, Y), is defined simply as the minimal distance between two
locusts A ∈ X, B ∈ Y. Our proof will utilize the functions:

L1(t) =
ct−1

∑
i=1

dist(C t
i , C t

i+1), L2(t) =
wt−1

∑
i=1

dist(W t
i ,W t

i+1)

L3(t) = dist(C t
ct ,W t

wt), L(t) = L1(t) + L2(t) + L3(t)

(1)

L1(t) is the sum of distances between consecutive clockwise-facing sets in the partition
at time t. L2(t) is the sum of distances between the counterclockwise sets. L3(t) is the
distance between the two closest clockwise and counterclockwise facing sets. The function
L(t) is the sum of distances between consecutive compact sets in the partition. When
L(t) = 1, there are necessarily only one clockwise and one counterclockwise facing sets in
the partition, which must equal P(t) and Q(t), respectively. Furthermore, L(t) = 1 implies
that the distance between P(t) and Q(t) is 1. Hence, when L(t) = 1, P(t) and Q(t) are both
in deadlock. The converse is true as well; hence L(t) = 1 if and only if P(t), Q(t) are in
deadlock. We will use L(t) as a potential or “Lyapunov” function [40] and show it must
decrease to 1 within 3d time steps. By Lemma 5, once P and Q are in deadlock they will
remain in deadlock until one of them is eliminated, which completes the proof.

Figure 5. A partition into maximal compact subsets as in our construction. In this configuration,
L1(t) = 3, L2(t) = 3, L3(t) = 1, and L(t) = 7. Note that although C1, C2 are compact, P(t) = C1 ∪ C2

is not compact, and similarly Q(t) is not compact; thus P(t) and Q(t) are not in deadlock, and
L(t) �= 1.

Let us denote by max(X) the locust with maximum x-coordinate in X, and by min(X)
the locust with minimal x-coordinate. We may also use max(X) and min(X) to denote
the x coordinate of said locust. Note that dist(C t

i , C t
i+1) is the distance between max(C t

i )

and min(C t
i+1).

Recall that in the locust model, every time step is divided into a phase where locusts
move horizontally (on their respective tracks), and a phase where they move vertically.
First, let us show that the sum of distances L1(t) does not increase due to changes in either
the horizontal or vertical phase. Since L1(t) is the sum of distances between compact
partition sets whose locusts move clockwise, and for all C t

i except perhaps C t
ct , max(C t

i )
always moves clockwise, the distance dist(C t

i , C t
i+1) does not increase as a result of locust

movements (note that clockwise movements of max(C t
i ) do not result in a new compact set

because the rest of the locusts in Ct
i follow it). Furthermore, since conflicts cannot result in

a new maximal compact set in the partition, conflicts do not increase L1(t). Hence, L1(t)
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does not increase in the horizontal phase. In the vertical phase, clockwise-heading locusts
entering the track either create a new set in the partition, which does not affect the sum of
distances (as they then merely form a “mid-point” between two other maximal compact
sets), or they join an existing compact set, which can never increase L1(t). By the locust
model, the only locusts that can move tracks are max(C t

ct) and min(W t
wt), since these are

the only locusts for which the condition b(A) �= b(A→) is true, so locusts moving tracks
cannot increase L1(t) either. In conclusion, L1(t) is non-increasing at any time step. By
analogy, L2(t) is non-increasing.

Similar to L1 and L2, the distance L3(t) cannot increase as a result of locusts entering
the track. It can increase as a result of a locust conflict which eliminates either W t

wt or C t
ct ,

but such an increase is compensated for by a comparable decrease in either L1(t) or L2(t).
It is also simple to check that, since P(t) and Q(t) are always moving toward each other
when they are not in deadlock (i.e., when L(t) > 1), there will be at least two compact sets
in the partition that decrease their distance to each other; hence L1, L2 or L3 must decrease
by at least one in the horizontal phase.

To conclude: L1(t) and L2(t) are non-increasing. L3(t) is non-increasing during the
horizontal phase and as a result of new locusts entering K. If L(t) > 1, L(t) decreases
during each horizontal phase. Hence, L(t) decreases in every time step where L(t) > 1,
and no locusts in K move to another track.

What happens when locusts in K do move to another track? As proven, L1(t) and
L2(t) do not increase. However, the distance L3(t) will increase, since the only locusts that
can move tracks are max(C t

wt) and min(W t
ct). It is straightforward to check that when C t

ct
contains more than one locust, L3(t) will increase by at most two as a result of max(C t

wt)
moving tracks. When C t

ct contains exactly one locust, L3(t) can increase significantly (as
L3(t) then becomes the distance between Ct

ct−1 and Wwt ), but any increase is matched by
the decrease in L1(t) as a result of C t

ct being eliminated. Analogous statement hold for W t
wt ,

and hence L3(t) can increase by at most two as a result of one locust moving out of the
track. We need to bound, then, the number of locusts in K that move tracks before time 3d.
We define the potential function F(t):

F(t) =
ct−1

∑
i=1

(dist(C t
i , C t

i+1)− 1) +
wt−1

∑
i=1

(dist(W t
i ,W t

i+1)− 1) + |P(t) ∪ Q(t)|

= L1(t) + L2(t)− ct − wt + |P(t) ∪ Q(t)|
(2)

F(t) is the sum of the empty locations between consecutive compact sets in the par-
tition whose locusts have the same heading plus the number of locusts in K. Note that
F(t) ≥ 0 at all times t. We will show F(t) is non-increasing and that it decreases whenever
a locust leaves the track. Hence, at most F(0) locusts can leave the track.

Let us show that F(t) is non-increasing. We already know L1 and L2 are non-increasing.
In the horizontal phase, |P(t) ∪ Q(t)| is of course unaffected. Then ct and wt can decrease
as a result of maximal compact sets merging, hence increasing F, but this can only happen
when the distance between two such sets has decreased; hence the resulting increase to
F is undone by a decrease in L1 and L2. Hence, F(t) does not increase because of locusts’
actions during the horizontal phase.

Likewise, locusts leaving K can decrease ct or wt when they cause a maximal compact
set to be eliminated, but this is matched by a comparable decrease in L1 or L2 which means
that F does not increase due to locusts moving out of the track. Furthermore, |P(t) ∪ Q(t)|
decreases when this happens. Hence, a locust moving out of the track decreases F(t) by at
least one. Finally, let us show that locusts entering the track does not increase F(t).

At time t, locusts can only enter the track at empty locations that are found in intervals
of the form [max(W t

i ), min(W t
i+1)] or [max(C t

i+1), min(C t
i )] for some i. In particular, locusts

cannot enter empty locations that are between two locusts belonging to the same compact
set (because a locust in that set will always be attempting to move to that location in the
next time step, and the model disallows vertical movements to such locations), nor can
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they enter the track on the empty locations between min(C t
ct) and max(W t

wt). Thus, locusts
entering the track at time t decrease the amount of empty locations between two clockwise
or counterclockwise compact partition sets (and perhaps cause the sets between which they
enter to merge into a single compact set). This will always decrease L1(t) + L2(t)− ct − wt
by at least one and increase |P(t) ∪ Q(t)| by 1. On net, we see that new locusts entering K
either decrease or do not affect F.

In conclusion, F(t) is non-increasing, and any time a locust moves to another track,
F(t) decreases by one. Thus, at most F(0) locusts can move from K to another track. Recall
that locusts moving out of the track can increase L(t) by at most two. Hence after at most
L(0) + 2F(0) ≤ d + 2d = 3d time steps, L(t) = 1.

Lemma 7. Let seg(t) denote the set of segments in all tracks at time t. At time t + 3n, either every
segment is in deadlock with some other segment, or |seg(t + 3n)| < |seg(t)|.

Proof. Consider some track K and a segment P which is in that track at time t. Let us
assume that |seg(t + 3n)| = |seg(t)|, and show that P(t + 3n) must be in deadlock with
another segment. At any time t′ ≥ t, as long as the number of segments on K does not
decrease, the locusts of P(t′) will be marching toward locusts of another segment, which
we will label Q(t′). They cannot collide or conflict with locusts belonging to any segment
other than Q(t′). Hence, other segments in K do not affect the evolution of P(t) and Q(t)
before time t + 3n, and we can assume w.l.o.g. that P(t) and Q(t) are the only segments in
K at time t. Let d be as in the statement of Lemma 6. Since n ≥ d, Lemma 6 tells us that at
some time t ≤ t∗ ≤ t + 3n, P(t∗) and Q(t∗) must be in deadlock. Since by Lemma 5, P and
Q must remain in deadlock until one of them is eliminated, we see that at time t + 3n they
must still be in deadlock, since we assumed |seg(t)| = |seg(t + 3n)|.

Theorem 3. E[Tstable] = O(mn).

Proof. Let |seg(t)| denote the number of segments at time t. E[Tstable] can be computed as
the sum of times E[T2 + T4 + . . . + T|seg(0)|], where Ti is the expected time until the number
of segments drops below i, if it is currently i (we increment the index by two since segments
are necessarily eliminated in pairs).

Let us estimate E[T2i]. Suppose that at time t, the number of segments is 2i. Then
after 3n steps at most, either the number of segments has decreased, or all segments are
in deadlock. There are in total i pairs of segments in deadlock, and as there are m locusts,
there must be a pair P, Q that contains at most min(m/i, n) locusts at time t + 3n. By
Lemma 5, P, Q remain in deadlock until either P or Q is eliminated. We can compute
how long this takes in expectation, since at every time step after time t + 3n, the heads
of P and Q conflict, resulting in one of the segments increasing in size and the other
decreasing. Hence, the expected time it takes P or Q to be eliminated is precisely the
expected time it takes a symmetric random walk starting at 0 to reach either |P| or −|Q|,
which is |P| · |Q| ≤ min((m

2i )
2, ( n

2 )
2). Hence, E[T2i] ≤ 3n + min((m

2i )
2, ( n

2 )
2).

Let us first assume m ≥ n. Using the fact that min((m
2i )

2, ( n
2 )

2) = ( n
2 )

2 for i ≤ 
m/n�,
we have:

E[T2 + T4 + . . . + T|seg(0)|] ≤ 3n · |seg(0)|
2

+ 
m/n�(n
2
)2 +

∞

∑
i=�m/n�

(
m
2i
)2

≤ 3
2

mn +
1
4

mn +
1
4

m2
∞

∑
i=0

(
1

m/n + i
)2

≤ 7
4

mn +
1
4

m2(
n2

m2 +
n
m
) ≤ 9

4
mn

(3)
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where we used the inequalities ∑∞
i=0(

1
m/n+i )

2 ≤ n2

m2 +
∫ ∞

i=0(
1

m/n+i )
2 = n2

m2 +
n
m and |seg(0)| ≤

m. If m < n, by using the identity ∑∞
i=1(

1
i )

2 = π2

6 we obtain:

E[T2 + T4 + . . . + T|seg(0)|] ≤ 3n · |seg(0)|
2

+
∞

∑
i=1

(
m
2i
)2 ≤ 3

2
mn +

π2

24
m2 ≤ (

3
2
+

π2

24
)mn (4)

So we see that E[Tstable] = O(mn).

Next we wish to show that E[Tstable] = O(log(k)n2). For this, we require the
following result:

Lemma 8. Consider k independent random walks with absorbing barriers at 0 and 2n, i.e., random
walks that end once they reach 0 or 2n. The expected time until all k walks end is O(n2 log(k)).

Proof. First, let us set k = 1 and estimate the probability that the one walk has not ended
by time t. Let P be the transition probability matrix of the random walk, and let v be the
vector describing the initial probability distribution of the location of the random walker.
Then vPt is the probability distribution of its location after t time steps [41]. The evolution
of vPt is well-studied and relates to “the discrete heat equation” [42]. The probability that
the walk has not ended at time t is the sum ∑2n−1

i=1 v(i). Asymptotically, this sum is bounded
by O(λt), where λ = cos( π

2n ) is the second largest eigenvalue of P (cf. [42]).
Returning to general k, let Tk be a random variable denoting the time when all k

walks end. By looking at the series expansion of cos(1/x), we may verify that for n > 1,
cos( π

2n ) < 1 − 1
n2 . From the previous paragraph, and because the walks are independent,

we therefore see that

Pr(Tk ≥ t) = 1 − Pr(T1 < t)k = 1 −
(
1 −O(λt)

)k
= 1 −

(
1 −O((1 − 1

n2 )
t)
)k (5)

Consequently, for t � n2, the following asymptotics hold for some constant C:

Pr(Tk ≥ t) < 1 − (1 − Ce−t/n2
)k (6)

where we used the fact that (1+ x/n)n → ex as n → ∞. Note that Pr(Tk ≥ t+ n2 log(C)) <
1 − (1 − e−t/n2

)k. Hence:

E[Tk] =
∫ ∞

0
Pr(Tk > t)dt ≤ n2 log(C) +

∫ ∞

0
1 − (1 − e−t/n2

)kdt

= n2 log(C) +
∫ ∞

0
1 −

k

∑
j=0

(
k
j

)
(−1)je−tj/n2

dt

= n2 log(C) +−
k

∑
j=1

(
k
j

)
(−1)j

∫ ∞

0
e−tj/n2

dt

= n2 log(C) +−n2
k

∑
j=1

(
k
j

)
(−1)j

j
= O(n2 log(k))

(7)

where we used the equality ∑k
j=1 (

k
j)

(−1)j

j = −∑k
j=1

1
j ≈ log(k).

Theorem 4. E[Tstable] = O(log(k) · n2).

Proof. Let segi(t) denote the number of segments in track i at time t, and define Mt =
max1≤i≤k segi(t). Let us bound the expected time it takes for Mt to decrease. Define the
set K(t) to be all tracks that have |Mt| segments at time t. Then Mt decreases at the first
time t′ > t when all tracks in K(t) have had their number of segments decrease. We may
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bound this with the following argument: slightly generalizing Lemma 7 to hold for subsets
of tracks (Lemma 7 holds not just for the set seg(t) but for the segments in a given subset of
tracks, with the proof being virtually identical. Here we apply the Lemma to the subset
K(t + 3n).), if Mt does not decrease after 3n time steps (i.e., Mt = Mt+3n), all tracks in
K(t + 3n) now have all their segments in deadlock. The number of deadlocked segment
pairs at every track in K(t + 3n) is Mt/2, so in every such track there is such a pair with at
most 2n/Mt locusts. By Lemma 8, using a similar argument as Theorem 3, these pairs of
deadlocked segments resolve into a single segment after at most c · log(k)

( 2n
Mt

)2 expected
time for some constant c. Hence, the number of expected time steps for Mt to decrease is
bounded above by 3n + c log(k)

( 2n
Mt

)2.
Tstable is the first time when Mt = 0. Let us assume n is even for simplicity (the

computation will hold regardless, up to rounding). We have that M0 ≤ n, and Mt
decreases in leaps of two or more (since segments can only be eliminated in pairs). Hence,
Tstable is bounded by the amount of time it takes Mt to decrease at most n/2 times. By
linearity of expectation, this time can be bounded by summing 3n + c log(k)

( 2n
Mt

)2 over
Mt = n, n − 2, n − 4, . . . 2:

E[Tstable] ≤
n
2
· 3n + c log(k)

(2n
n

)2
+ c log(k)

( 2n
n − 2

)2
+ . . . + c log(k)

(2n
2

)2

≤3
2

n2 + 4c log(k)n2
∞

∑
i=1

(
1
2i
)2 =

3
2

n2 +
π2

6
c log(k)n2 = O(log(k)n2)

(8)

as claimed.

The proof of Theorem 2 follows immediately from Theorems 3 and 4 by taking the
minimum.

Erratic Track Switching and Global Consensus

Theorem 2 shows that, after finite expected time, all locusts on a track have an identical
heading. This is a stable local consensus, in the sense that two different tracks may have
locusts marching in opposite directions forever. We might ask what modifications to the
model would force a global consensus, i.e., make it so that stabilization occurs only when
all locusts across all tracks have the identical heading. There is in fact a simple change that
would force this to occur. Let us assume that at time step t any locust has some probability
of acting “erratically” in either the vertical or horizontal phases:

1. With probability r, a locust might behave erratically in the horizontal phase, staying
in place instead of attempting to move according to its heading.

2. With probability p, a locust may behave erratically in the vertical phase, meaning that
even if the vertical movement conditions (1)–(3) of the model (see Section 3) are not
fulfilled, the locust attempts to move vertically to an adjacent empty space on the
track above or below them (if such empty space exists).

These behaviors are independent, and so a locust may behave erratically in both the
vertical and horizontal phases, in just one of them, or in neither.

The next theorem shows that the existence of erratic behavior forces a global consensus
of locust headings. The goal is to prove that there is some finite time after which all locusts
must have the same heading. Note that the bound we find for this time is crude and is not
intended to approximate Tstable. We study the question of how p affects Tstable empirically
in the next section.

Theorem 5. Assuming there is at least one empty space (i.e., m < nk), and the probability of
erratic track switching is 0 < r, p < 1, the locusts all have identical heading in finite expected time.

Proof. Our goal is to show that all locusts must have identical heading in finite expected
time. We will find a crude upper bound for this time. It suffices to show that as long as there
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are two locusts with different headings in the system (perhaps not on the same track), there
is a bounded-above-zero probability q that within a some constant, finite number of time
steps C (and shall show C = O(log(k)n2 + nk)), the number of locusts with a clockwise
heading will increase. This amounts to showing that there is a sequence of events, each
individual event happening with non-zero probability, that culminates in a conflict between
two locusts occurring (since any conflict has probability 0.5 of increasing the number of
clockwise locusts). Since q > 0, the only stable state of locust headings is the state where all
locusts have the identical heading, as otherwise there is always some probability that all
locusts will have a clockwise heading after m · C time steps. This completes the proof.

Let us show such a sequence of events. First let us consider the case where there is a
track in which two locusts have non-identical headings. In this case, assuming no locusts
behave erratically for O(log(k)n2) steps (which occurs with a tiny but bounded-above-zero
probability since p, r > 0), Theorem 2 tells us that in expected O(log(k)n2) steps, locusts
on the same track will have the identical heading. Hence, there is a sequence of events that
happens with non-zero probability which leads to local consensus in the tracks.

If any conflict occurs during this sequence, we are finished. Otherwise, we need to
show a sequence of events that leads to a conflict, assuming all tracks are stable. The
only thing that causes locusts in local consensus to move tracks is erratic behavior. If two
adjacent tracks have locusts with non-identical heading, and there is at least one empty
space in one of them, then (since r > 0) with some probability within at most n time steps
an empty space in one track will be vertically adjacent to a locust in the other track. At this
point, with probability p, that locust will move from one track to the other. This creates
a situation where in one track there are locusts of different headings again. If the erratic
locust moves tracks at the right time, upon moving it will be adjacent to another locust in
its new track, whose heading is different. Hence, the erratic locust will enter a conflict in
the next time step, which will increase the number of clockwise locusts with probability 0.5.

Now let us consider a pair of two adjacent tracks with locusts of different headings
such that there no empty space in one of them. We note that since there is at least one empty
location in some track, erratic behavior can cause that empty location to move vertically in
an arbitrary fashion until, after at most k movements, it enters a track from the pair. With
non-zero probability, this can take at most nk time steps, after which we are reduced to the
situation in the previous paragraph.

A pair of adjacent tracks that have locusts with different headings must exist unless
there is global consensus. Hence, in every O(log(k)n2 + nk) time steps where there is no
global consensus, there is a some probability q > 0 that the number of clockwise-heading
locusts will increase.

5. Simulation and Empirical Evaluation

Let us explore some questions about the expected value of Tstable through numerical
simulations. Certain aspects of the locusts’ dynamics were not studied in our formal
analysis, the most interesting of which is the helpful effects of track switching on Tstable.
Recall that our model allows locusts to switch tracks if this would enable them to avoid a
conflict and join a track where locally, locusts are marching in their same direction. At least
in principle, this seems like it should help our locusts achieve local stability faster, hence
decrease Tstable. However, recall also that we do not specify when locusts switch tracks,
which means that some locusts might never switch tracks, or they might choose to do so
in the worst possible moments. Hence, the positive effect track-switching usually has on
Tstable cannot be reflected in the bounds we found for E[Tstable], since these bounds must
reflect all possible locust behaviors. Under ordinary circumstances, however, it seems as
though frequent track switching should noticeably decrease the time to local stabilization.
As we shall see numerically, this is indeed the case. This justifies the track-switching
behavior as a mechanism that, despite being highly local, enables the locusts to achieve
local consensus about the direction of motion sooner.
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In Figure 6a,b, we measure Tstable as it varies with n and k, assuming the probabilities
of erratic behavior are 0 (i.e., r = p = 0). We simulate two different locust configurations:
a “dense” configuration and a “sparse” configuration. In the dense configuration, 50% of
locations are initiated with a locust, with the locations chosen at random. In the sparse
configuration, 10% of locations are initiated with a locust (or slightly more, to guarantee all
tracks start with two locusts). The locusts are initiated with random heading. We measure
the effect of track switching on Tstable; the opaque lines measure Tstable when locusts switch
tracks as often as they can (while still obeying the rules of the model), and the dotted
lines measure Tstable when locusts never switch tracks. For every value of n, k, we ran the
simulation 2000 times and averaged Tstable over all simulations.

As we can see, in the sparse configuration, track-switching has a significantly positive
effect on time to stabilization. For example, with k = 30, n = 30, Tstable is approximately
13.5 when locusts switch tracks as soon as they can and approximately 25 when they never
switch tracks—nearly double. In the dense configuration, we see that enabling locusts to
move tracks has little to no effect, since the locust model rarely allows them to do so due to
the tracks being overcrowded.

In column (c) of Figure 6, we measure how a non-zero probability p of erratic behavior
affects Tstable. We set r = 0. As we proved in the previous section, whenever p > 0,
stabilization requires global rather than local consensus. Hence, we cannot directly compare
the Tstable of these graphs with columns (a) and (b), where Tstable measures the time to local
consensus. We note that the expectation and variance of Tstable approach ∞ as p goes to 0,
since when p = 0, global stability can never occur in some initial configurations. E[Tstable]
decreases sharply as p goes to some critical point around 0.1, and decreases at a slower rate
afterwards. It is interesting to note that low probability of erratic behavior affects E[Tstable]
significantly more in the sparse configuration, where for p = 0.02, if locusts also switch
tracks whenever the model allows them, E[Tstable] was measured as being approximately
1974, as opposed to 669 in the dense configuration. One of the core reasons for this seems to
be that in the sparse configuration, when a locust erratically moves to a track with a lot of
locusts not sharing its heading, it will often be able to non-erratically move back to its former
track, thus preventing locust interactions between tracks of different headings. When we
disabled the locusts’ ability to switch tracks non-erratically, Tstable was significantly smaller
in the sparse configuration (E[Tstable] ≈ 232 for p = 0.02).

Based on the above, we make the curious observation that, while non-erratic track
switching accelerates local consensus, for some track-switching behaviors it will in fact
decelerate the attainment of global consensus. This is seen by the fact that frequent non-
erratic track-switching was helpful in Columns (a) and (b) of Figure 6 but increased time
to stabilization in Column (c). This is perhaps a very natural observation because agents
that aggressively switch tracks will attempt to avoid conflict as often as possible, whereas
conflict is necessary to create global consensus.

To finish this section, we also verify the bounds of Theorem 1 by numerical simulation,
by fixing k = 1 and measuring Tstable as n goes from 1 to 100—see Figure 7. We again
measure both sparse and dense configurations (i.e., m ≈ 0.1n and m ≈ 0.5n, respectively).
The average expected time appears asymptotically bounded by m2, as expected. We also
simulated the asymptotic worst-case locust configuration in the proof of Theorem 1 (not
illustrated in Figure 7) and confirmed its stabilization time is asymptotically Ω(m2 + n−m),
verifying that the bounds of Theorem 1 are asymptotically tight.
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Figure 6. Simulations of the locust model. The y axis is Tstable. Column (a) measures Tstable for
k = 1 . . . 30, with n fixed at 30. Column (b) measures Tstable for n = 1 . . . 60, with k fixed at 5. Column
(c) measures Tstable with n = 30, k = 5, and p (the probability of erratic behavior) going from 0 to
1. The top row measures Tstable in sparse locust configurations (m ≈ 0.1n), while the bottom row
does so for dense configurations (m ≈ 0.5n). The dashed red line estimates Tstable when locusts never
switch tracks (except while behaving erratically in column (c)); the blue line estimates Tstable when
locusts switch tracks as often as the model rules allow. Error bars show the standard deviations.

Figure 7. Simulations of the locust model fixing k = 1 and letting n run from 1 to 100. The y axis is
Tstable. The orange line denotes dense locust configurations (m ≈ 0.5n), and the green line denotes
sparse configurations (m ≈ 0.1n). Error bars show the standard deviations.

6. Concluding Remarks

We studied collective motion in a model of discrete locust-inspired swarms, and
bounded the expected time to stabilization in terms of the number of agents m, the number
of tracks k, and the length of the tracks n. We showed that when the swarm stabilizes, there
must be a local consensus about the direction of motion. We also showed that, when the
model is extended to allow a small probability of erratic behavior to perturb the system,
global consensus eventually occurs.

A direct continuation of our work would be to find upper bounds on time to stabi-
lization when there is some probability of erratic behavior. Furthermore, our empirical
simulations suggest several curious phenomena related to erratic behavior. First, there
seems to be a clash between “erratic” and non-erratic, “rational” track-switching, as when
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locusts switch tracks non-erratically to avoid collisions. This seems to accelerate the at-
tainment of local consensus but mostly hinder the attainment of global consensus. Second,
increasing the probability of erratic track-switching p behavior was helpful in accelerating
global consensus up to a point, but in simulations, its impact seemed to fall off past a
small critical value of p. In future work, it would be interesting to investigate these “phase
transition” aspects of the model.

As discussed in the Related Work section, in [18,19] it is observed that at intermediate
densities, swarms of locusts exhibit periodic directional switching, and at low densities the
directions of motion are random. Although this phenomenon does not occur in our model,
if we assume each locust has a small probability r > 0 of randomly flipping their heading at
the beginning of a time step, such directional switching becomes possible, with probability
inversely proportional to the density (or so we expect). This extension of our model, of
course, does not have stable states, thus cannot be studied by the same methods we used in
this work. Nevertheless, we would be interested in studying it in terms of the expected time
the swarm spends in consensus or near-consensus about the direction of motion before
directional switching occurs.

For the sake of mathematical theory, the authors would be very interested in rigorous
results established over a fully asynchronous version of this model where locust wake-up
times are determined independently. In such a model, the winner of a conflict between
two locusts can be determined as the locust that wakes up first (thus exerts pressure on the
other locust first), which is perhaps more elegant. We speculate that most of the conclusions
will not be majorly affected by transitioning to an asynchronous model.

Although our agent marching model is inspired by experiments on locusts, it can be
understood in more abstract terms as a model that describes a situation where many agents
that wish to maintain a direction of motion are confined to a small space where they exert
pressure on each other. It is natural to ask what kinds of collective dynamics, if any, we
should expect when this small space has a different topology; rather than a ringlike arena,
we might consider, e.g., a square arena. We believe that rich models of swarm dynamics
can be discovered through observing natural organisms exert pressure on each other in
such environments. In the introduction, we mentioned points of similarity between our
model and models of opinion dynamics. We suspect that these points of similarity will
remain in settings with non-ringlike arenas and might provide a starting point for formally
modeling and analyzing them.
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Abstract: Mobile crowdsensing (MCS) is attracting considerable attention in the past few years as a
new paradigm for large-scale information sensing. Unmanned aerial vehicles (UAVs) have played a
significant role in MCS tasks and served as crucial nodes in the newly-proposed space-air-ground
integrated network (SAGIN). In this paper, we incorporate SAGIN into MCS task and present a Space-
Air-Ground integrated Mobile CrowdSensing (SAG-MCS) problem. Based on multi-source observations
from embedded sensors and satellites, an aerial UAV swarm is required to carry out energy-efficient
data collection and recharging tasks. Up to date, few studies have explored such multi-task MCS
problem with the cooperation of UAV swarm and satellites. To address this multi-agent problem,
we propose a novel deep reinforcement learning (DRL) based method called Multi-Scale Soft Deep
Recurrent Graph Network (ms-SDRGN). Our ms-SDRGN approach incorporates a multi-scale convolu-
tional encoder to process multi-source raw observations for better feature exploitation. We also use a
graph attention mechanism to model inter-UAV communications and aggregate extra neighboring
information, and utilize a gated recurrent unit for long-term performance. In addition, a stochastic
policy can be learned through a maximum-entropy method with an adjustable temperature param-
eter. Specifically, we design a heuristic reward function to encourage the agents to achieve global
cooperation under partial observability. We train the model to convergence and conduct a series
of case studies. Evaluation results show statistical significance and that ms-SDRGN outperforms
three state-of-the-art DRL baselines in SAG-MCS. Compared with the best-performing baseline,
ms-SDRGN improves 29.0% reward and 3.8% CFE score. We also investigate the scalability and
robustness of ms-SDRGN towards DRL environments with diverse observation scales or demanding
communication conditions.

Keywords: mobile crowdsensing; deep reinforcement learning; UAV control; graph network; maximum-
entropy learning

1. Introduction

In the past few years, Mobile Crowdsensing (MCS [1,2]) has rapidly become a popular
research paradigm for large-scale information gathering and data sensing, which is an
essential solution for the construction of smart cities or the Internet of Things [3]. In
general, an MCS task consists of several stages: mobile sensing, crowd data collection, and
crowdsourced data processing [4]. The traditional human-centric MCS paradigm relies
on the perception capabilities of a large crowd of citizens’ mobile devices, such as mobile
phones, wearable devices or portable sensors. Compared with ordinary sensing networks,
a human-centric MCS system makes full use of human intelligence for large-scale sensing
purposes. However, the major challenge to traditional MCS lies that, users may be reluctant
to participate in the MCS system for privacy and security concerns.

Entropy 2022, 24, 638. https://doi.org/10.3390/e24050638 https://www.mdpi.com/journal/entropy
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With the help of high-precision embedded sensors and path planning algorithms [5],
smart unmanned vehicles, including automated guided vehicles (AGVs) and unmanned
aerial vehicles (UAVs), are gradually taking the place of human participants for data collec-
tion. A swarm of intelligent unmanned vehicles can perform collaborative sensing tasks
round-the-clock [6,7], or even cooperate with humans [8]. Among all kinds of unmanned
vehicles, UAVs have better maneuverability and versatility compared to ground vehicles.
Hence, UAV-based MCS technology can achieve large-scale, high-quality, long-term, and in-
depth data collection in diverse real-world scenarios, such as efficient area coverage [9,10],
smart city traffic monitoring [11,12], field search and rescue [13], post-disaster relief [14],
communication support [15,16], reconnaissance in future wars [17], etc.

As the rapid developments and applications of modern network technologies [18,19],
several studies have dug deep into heterogeneous networking and proposed an architecture
called Space-Air-Ground Integrated Network (SAGIN [20,21]). SAGIN interconnects space,
air, and ground network segments using different networking protocols. Satellite-based
networks in space could provide global yet fuzzy observations of large-scale areas, but
have some propagation delay due to the operating orbits and long communication ranges.
Aerial networks, such as Flying Ad-Hoc Network (FANET [22]), have high mobility and
self-organizing ability, but their performance are commonly constrained by unstable con-
nections or dynamic network topology [23]. Ground networks have low transmission
latency and efficient power supply, while they cannot maintain network coverage in certain
remote areas.

In this paper, we employ the concept of SAGIN into the data collection task, and
present a new MCS framework with a collection of UAVs, ground nodes and satellites,
namely Space-Air-Ground integrated Mobile CrowdSensing (SAG-MCS). In SAG-MCS scenario,
a UAV swarm is used to cooperate autonomously and fly above an area with multiple
Points of Interest (PoIs) for coverage and sensing. As illustrated in Figure 1, UAV agents can
partially observe ground information using embedded sensors within a fixed observation
range. They also have access to fuzzy global information periodically from remote sensing
satellites in space, which contains ambiguous locations of PoIs and other agents. As the
coverage range is set smaller than the observation radius, UAVs should get close enough to
the observed PoIs for valid data collection. Based on the FANET, UAV pairs that within
maximum communication range can interconnect together and share current states and
observations using Wi-Fi, Bluetooth or LoRa. We consider communication dropout would
occur inevitably during such aerial ad-hoc network connections. As for energy consump-
tion, due to the limitations of the rotor power efficiency and the onboard battery capacity,
we set all UAVs with limited battery attributes as energy constraints. Several charging
stations and barriers are deployed in the SAG-MCS simulation scenario as well. The UAV
swarm is required to avoid collision with obstacles when performing data collection and
flight path planning tasks, and makes proper decisions to go for charging before their
batteries run out. On arrival at the charging stations, UAVs can transfer the data collected
and batteries will be replaced.

On the whole, this paper endeavours to propose a decision-making model for UAVs,
which are powered by limited onboard batteries and distributed charging stations, to
energy-efficiently and persistently sense and collect PoIs on the ground. The multi-UAV
swarm shall perform actions according to local airborne observations and global observa-
tions from satellites. The overall optimization objective of the UAV swarm is to maximize
the data coverage and geographical fairness among all PoIs, and minimize the power
consumed during flying or battery charging.
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* Ad Hoc Connections between UAVs could cause Communication Dropout
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Figure 1. Proposed SAG-MCS Scenario Schematic.

For such an MCS task that has multiple complex objectives, existing approaches that
modeling MCS as an optimization problem is no longer effective. However, recently well-
explored Deep Reinforcement Learning (DRL) could be a feasible solution. It has achieved
great performances in several game-playing tasks [24] or path planning problems [25].
Based on powerful deep neural networks, DRL models can extract more complicated
features of higher dimensions from environmental states, thereby can optimize action
policies to achieve different objectives. For multi-agent systems such as our SAG-MCS,
typical methods that take the whole system as a single agent cannot guarantee promising
results, while recent studies on Multi-Agent Deep Reinforcement Learning (MADRL) focus
on controlling multiple agents in a fully distributed manner. The action strategy of each
agent in MADRL depends on not only the interaction with the environment, but also other
agents’ actions, observations, etc.

Contributions

To this end, this paper formulates the problem as a Partially Observable Markov
Decision Process (POMDP) and proposes a stochastic MADRL algorithm in SAG-MCS
environment, to perform data collection and task allocation simultaneously. The main
contributions of this article are summarized as follows:

1. We design a realistic SAG-MCS environment with obstacles and charging stations for
simulation. To further enhance exploration of the global area, the UAV swarm can
acquire multi-source observation inputs from embedded sensors and satellites.

2. We propose a DRL algorithm based on graph attention mechanism, namely Multi-Scale
Soft Deep Recurrent Graph Network (ms-SDRGN). It integrates a multi-scale convolu-
tional encoder to process different sizes of observations. This method also utilizes
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graph attention network (GAT [26]), gated recurrent unit (GRU [27]), as well as a
maximum entropy method.

3. Although UAV swarm can receive parts of global observations from satellites, SAG-
MCS is formulated as a practical partially-observed problem, and UAVs cannot have
access to the overall system states during training. Therefore, we propose a heuristic
reward function that only utilizes local observed information, but manages to train
the UAV swarm to properly act for optimizing several global metrics.

4. We have designed and conducted several simulation case studies to verify the effec-
tiveness of our stochastic MADRL method and reward function. Additionally, we
validate the robustness of the trained model and the multi-scale CNN encoder under
different communication conditions and at different environment scales.

The remaining part of this paper proceeds as follows: Section 2 reviews the related
research efforts about MCS and DRL approaches. Section 3 introduces the SAG-MCS
problem definition and the 2D simulation environment in detail. Section 4 presents the
proposed solution ms-SDRGN for SAG-MCS problem. We introduce simulation settings
and present the experimental results and analysis in Section 5. Then, Section 6 discusses
the practical implementation issues and limitation of the proposed approach. Finally,
conclusions are made in Section 7.

2. Related Works

In this section, we review the literature related to mobile crowdsensing problem, DRL
approaches for multi-agent systems, and the joint studies of these two topics.

Threat to validity [28,29]: For this review, we have used multiple strings to search and
identify relevant literature in recent decade, such as ‘UAV swarm and mobile crowdsensing’,
‘multi-task allocation and mobile crowdsensing’ and ‘multi-agent deep reinforcement
learning’. Google Scholar is used for forward searches and most of the related works are
retrieved from five databases: IEEE Xplore, SpringerLink, Web of Science, ScienceDirect
and Arxiv.

2.1. Multi-Task Allocation for Mobile Crowdsensing

MCS scenarios usually have multiple constraints and objectives. One of the key
issues is how to perform task allocation, or how to choose appropriate action strategies
for different tasks. The main tasks of SAG-MCS are data collection by covering PoIs and
energy management by keeping batteries charged. UAVs need to automatically select
action strategies to meet the data collection requirements under the energy-efficiency
constraint. Solving such multi-agent task allocation is an NP-hard problem, and the related
research is still in a relatively early stage. Feng et al. [30] utilized dynamic programming
for path planning in UAV-aided MCS and used Gale-Shapley-based matching algorithm
to allocate different tasks for agents. Wang et al. [31] modeled multi-task allocation as
a dynamic matching problem, then proposed a multiple-waitlist based task assignment
(MWTA) algorithm. In addition, several surveys of task allocation have demonstrated
the effectiveness of heuristic algorithms. Hayat et al. [13] proposed a genetic algorithm
approach to get the minimum task completion time for UAV path planning. Similarly,
Xu et al. [32] formulated this problem as a specific mathematical model, and tried to
minimize incentive cost under the constraint of sensing quality based on greedy algorithms
and genetic algorithms.

2.2. Deep Reinforcement Learning (DRL) for Multi-Agent Systems

In multi-agent systems, Reinforcement Learning (RL) generally targets at problems of
agents sequentially interacting with local environment. At timestep t, the environment is at
state st and agent i obtains a observation oi

t. Then, agent i selects and executes an action ai
t

based on oi
t, and then gets a reward ri

t from the environment. In POMDP, agents cannot
directly perceive the underlying states and oi

t is not equal to st. The objective of RL is to
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learn a policy πi(ai | oi) for agent i. The policy is expected to maximize the discounted
reward E[Rt] = E

[
∑∞

k=0 γkri
k

]
, with a discounted factor γ ∈ [0, 1].

Currently, DRL methods have achieved state-of-the-art performance in various RL
tasks [24,25], and can be categorized into value-based or policy-based ones. In this paper,
we adopted the value-based method. Deep Q-learning (DQN [24]) is one of the most vital
value-based DRL approaches. Based on Q-learning, DQN uses deep neural networks to
learn a Q-value function Q(o, a), which could estimate the expected reward return E[Rt]
and be recursively updated. DQN regards the action with biggest Q-value as the most
optimal policy π

′
(s) = arg max Qπ(o, a), and selects it to interact with the environment. In

addition, DQN integrates fixed target network and experience replay methods to make the
training process more efficient and stable [33]. Specifically, the Q-value function Q(o, a) is
updated through minimizing the Q-loss function as:

Qloss =

(
rt + max

at+1
Q′(ot+1, at+1)− Q(ot, at)

)2
. (1)

where Q is the learned network and Q′ is the target network. Note that the policies learned
by DQN are deterministic, therefore DQN should be trained with action policies such as
ε − greedy to enhance exploration.

Compared with classical heuristic algorithms, agents can learn a strategy more effi-
ciently and independently through DRL algorithms, so as to achieve multiple objectives in
the sensing area simultaneously.

2.3. DRL Methods for UAV Mobile Crowdsensing

To date, several studies have investigated the application of DRL algorithms in the
UAV Mobile Base Station (MBS) scenario, which is a sub-topic of MCS. In the UAV MBS sce-
nario, a swarm of UAV serve as mobile base stations to provide long-term communication
services for ground users. Liu et al. [15] proposed a DRL model based on Deep Determinis-
tic Policy Gradient (DDPG [34]) to provide the long-term communications coverage in the
MBS scenario. Further, Liu et al. [16] implemented DDPG in a fully distributed manner.

Different from policy gradient methods, Dai et al. [35] applied Graph Convolutional
Reinforcement Learning (DGN [36]) in MBS. They modeled the UAV swarm as a graph,
and used Graph Attention Network (GAT [26]) as a convolution kernel to extract adjacent
information between neighboring UAVs. To further explore the potential of graph networks,
Ye et al. [37] designed a FANET based on GAT, named GAT-FANET, allowing two adjacent
UAV agents within the communication range to communicate and exchange information at
low costs. This work also applied Gated Recurrent Unit (GRU) as a memory unit to record
and process long-term temporal information from the graph network.

On the basis of MBS, Liu et al. [38,39] took practical factors such as obstacles and
charging stations into consideration in the UAV MCS scenario. Based on the actor-critic
network of DDPG, their DRL models used CNN to extract observed spatial information,
and deployed a distributed experience replay buffer to store previous training information.
Piao et al. [40], Dai et al. [41] and Liu et al. [38] utilized the concept of the Long Short-
term Memory (LSTM [42]) network to store sequential temporal information of previous
interaction episodes. As a specific application of MCS, Dai et al. [41] designed an approach
for mobile crowdsensing, where mobile agents are required to retrieve data and refresh the
sensors distributed in the city, with limited storage capacities of the sensors. Wang et al. [43]
proposed a more practical and challenging 3D MCS scene for disaster response simulation,
where the UAVs’ action space had been expanded to three dimensions.

Compared with the UAV MBS and MCS works mentioned above, this paper proposes
a more complicated and promising SAG-MCS scenario, which incorporates global and
local observations from space and air, respectively, and encourages UAVs to interact with
charging stations as ground nodes. While [38–41] proposed multi-UAV MCS scenarios
and used policy-based DRL methods as solutions which utilized LSTM to store temporal
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information of MCS systems, our approach selects the value-based method based on
DQN and uses GRU as the memory unit, which performs similarly to LSTM but is more
computationally efficient [44]. Furthermore, when most MADRL studies about MCS solved
the problem with deterministic policies, our method learns a stochastic policy following
Ye et al. [37] to improve robustness.

3. System Model and Problem Statement

In this section, we design a partially observable space-air-ground integrated MCS
system, with space-based remote sensing satellites and an aerial UAV swarm jointly per-
forming the MCS task. We define the problem and present the 2D simulation system model
specifically. Then, we describe the design of evaluation metrics.

3.1. System Model

As illustrated in Figure 1, the SAG-MCS scenario is simplified to a 2-dimensional
continuous square area with the size of L × L pixels. The simulation area has fixed bor-
ders and multiple obstacles that UAVs cannot fly over. We assume that there are a set
K � {k | k = 1, 2, . . . , K} of PoIs, and each PoI is assigned a certain data amount d(k), ∀k.
Note that PoIs are regarded as persistent information nodes and are not going to disappear
after coverage. Additionally, we consider a set C � {c | c = 1, 2, . . . , C} of charging stations
and a set B � {b | b = 1, 2, . . . , B} of round and rectangular obstacles. At the beginning
of each simulation episode, the locations of all the PoIs, charging stations, and obstacles
are randomly distributed in the 2D map. Each PoI’s data amount d(k), ∀k is randomly
assigned in a certain range as well, but the total data volume Σkd(k) of different episodes
remains consistent.

Let U � {u | u = 1, 2, . . . , U} be U UAV agents deployed in the simulation area, where
the UAVs can perform continuous and horizontal flying movements at a fixed altitude. We
define Robs as the observation range, and Rcov as the coverage range or sensing range of
each UAV. Arbitrary UAV can observe the local map within the radius Robs in real-time
and receive Lsat × Lsat fuzzy global map captured by satellites every some timesteps. Any
PoI k within a UAV’s Rcov is recognized as covered and all its data d(k) is collected once at
each timestep t. Note that Rcov is smaller than Robs, as UAVs can only collect data when
approaching to PoIs, but they can observe a wider range of area in general. Moreover, we
consider the UAV swarm can autonomously form the ad-hoc network, and each pair of
agents can be interconnected within communication range Rcomm and exchange observed
information for joint decision making. Considering the delays and packet losses in real-
world ad-hoc networking, we set a communication dropout probability p between adjacent
UAV nodes in training and evaluation. As for the energy consumption, we set the onboard
battery status φ(u) ∈ [0, 100%], ∀u.

For each simulation episode, the data collection task in SAG-MCS scenario will last
for T timesteps in total. Each UAV’s position is randomly assigned and their batteries are
fully-charged in the beginning. At each timestep t, UAV u can obtain local observation
from embedded sensors; while every few timesteps, it can obtain fuzzy global observation
from the satellite. Using the multi-scale observations {ou

t }u∈U , UAV u performs an action
{au

t }u∈U . We set the battery φ(u) consumed at timestep t as {eu
t }u∈U , which is determined

by the current flying speed {vu
t }u∈U and will be introduced in Section 3.4. When flying

close to charging stations, their batteries will be fully charged in next timestep, simulating
the real-world battery replacement process on the ground.

3.2. Observation Space

In SAG-MCS, each UAV agent u can obtain the multi-scale observation {ou
t }u∈U at

timestep t from different sources, as introduced in Section 3.1. In Figure 2, we formulate
the observation space with three elements: O � {ou

t = (Ou
local ,Ou

global ,Ou
sel f )}∀u∈U .
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Figure 2. The observation space of UAV u in SAG-MCS.

(1) Local observation Olocal from embedded sensors: UAV can observe local infor-
mation within a circle of radius Robs in real-time, centering on itself. Let Olocal � {ou

l =

(Ou,1
local ,O

u,2
local ,O

u,3
local)}∀u∈U denotes local observation space, which consists of three 2D

vector channels. The first channel contains the data amounts and distribution of surround-
ing PoIs. We set the data value d(k) as the corresponding pixel value if it refers to PoI k,
otherwise 0. The second channel contains the locations of obstacles relative to the UAV,
where we set pixel value 1 for coordinates of obstacles, otherwise 0. The third channel
includes the locations of other UAVs within Robs. In addition, we define pixel value 1 for
coordinates of UAV agents as well, otherwise 0.

(2) Global observation Ou
global from satellites: Every n timesteps, satellites will capture

fuzzy global observation and transmit the information to all UAVs. As shown in Figure 2,
Ou

global consists of three 2D channels with reduced size of Lsat × Lsat(Lsat < L), which

cannot provide precise locations of the environment elements globally. We define Oglobal �
{ou

g = (Ou,1
global ,O

u,2
global ,O

u,3
global)}∀u∈U in absolute positioning coordinates. The encoding

method for global observation is nearly the same as local observation, except in the third
channel of UAV locations, we set −1 as the corresponding pixel value if it refers to the
absolute location of UAV u in global map.

(3) Auxiliary observation Ou
sel f : Then we utilize information from onboard flight

control computer to assist UAV to learn optimal policy. Specifically, we define Osel f �{
ou

s = concatenate
(
x(u), y(u), vx(u), vy(u), φ(u), {Δx(c), Δy(c)}∀c∈C

)}
∀u∈U . For UAV u,

ou
s includes its absolute position, velocity and current remaining battery, and the relative

locations of all charging stations towards UAV u.

3.3. Action Space

The rotor UAVs are capable of applying different thrust at all directions responsively.
We choose to discretize the entire 2-dimensional continuous space into eight directions
for simplicity, and UAV agents can apply maximum-thrust (denoted as 1.0 unit), half-thrust
(0.5 unit), or zero-thrust (0 unit) at any direction. Note that zero-thrust represents hovering
in place. Therefore, the action space in SAG-MCS is defined as:

A �
{

au
t = (θu

t , f u
t ) | θu

t ∈ { kπ

4
| k = 0, 1, . . . , 7}, f u

t ∈ {0, 0.5, 1.0}
}

. (2)
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where θu
t denotes the thrust angle and f u

t is the thrust magnitude. The action space A
consists of 17 actions in total. Since the timestep interval in the simulation is quite short,
we assume the physical model is a uniform acceleration process. UAV can adjust the
magnitude and direction of velocity using certain actions.

3.4. Evaluation Metrics

As stated in Section 3.1, the UAV swarm is aimed at collecting maximum information
over PoIs as long as possible. UAVs should avoid collisions with obstacles and borders
during movement, and recharge in time when power is low. Following Ye et al. [37] and
Liu et al. [45], we propose three global evaluation metrics to evaluate the effectiveness of
the joint cooperation of the UAV swarm in this SAG-MCS task. These metrics are ultimately
used to evaluate the DRL policy we have trained.

The first metric is Data Coverage Index, which describes the average data amounts
collected by the whole UAV swarm per timestep, as:

ct =
∑K

k=1 wt(k)d(k)
Kt

, t = 1, . . . , T. (3)

where wt(k) denotes the number of timesteps when PoI k was successfully collected from
timestep 1 till t. d(k) denotes the data amount carried by PoI k and K is the number of PoIs.

We noticed that in some cases, isolated PoIs in rural areas may not be covered even
when the data coverage index is quite high; however, isolated or sparse PoIs in remote areas
can carry valuable information in certain scenarios such as disaster relief. Considering
the comprehensiveness of the data collection task, we propose the second global metric
Geographical Fairness Index to evaluate the exploration ability of the UAV team, as:

ft =

(
∑K

k=1 wt(k)d(k)
)2

K ∑K
k=1(wt(k)d(k))

2 , t = 1, . . . , T. (4)

where wt(k) and d(k) are defined the same as Equation (3). When all PoIs are evenly
covered, Equation (4) gives ft = 1.

In addition, the third metric Energy Consumption Index is used to indicate the energy-
saving status of the UAV swarm. In order to further simulate the energy consumed by
multi-rotor UAV in reality, we adopt an equation of power on the flight speed [46], as:

PT =
1
2

CD Aρv3 +
W2

ρb2v
, (5)

where CD is the aerodynamic drag coefficient, ρ is the density of air and v is the current
flying speed. Parameter A, W, b denote UAV’s front facing area, total weight, and width,
respectively. For simplicity, we adopt a general UAV model and specific values are omitted
in this paper. In timestep t, we assume the consumed energy eu

t by UAV u is linear to its
battery power, as:

eu
t = e0 + ηePT

u
t , (6)

where e0 represents hovering energy consumption and ηe is an energy coefficient. PT
u
t

refers to the output power of UAV u in timestep t. Equations (5) and (6) reveal that UAV’s
battery is more efficient at an optimal cruising flight speed, while hovering or flying at
maximum speed will consume more power. Note that energy consumed during flight is
mainly from rotors and embedded sensors, and we ignore the communication budgets in
the ad-hoc network. Therefore, we define the energy consumption index by taking the
average of all U UAVs in T timesteps:

et =
1

t × U

t

∑
τ=1

U

∑
u=1

eu
τ , t = 1, . . . , T. (7)
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After a complete simulation episode, we calculate the metrics mentioned above as final
global metrics, denoted as {cT , fT , eT} = {ct, ft, et}t=T . We hope to maximize the coverage
and fairness index for sensing data adequately, while minimize the energy consumption
index for energy-saving. Therefore, following Ye et al. [37], we define the overall objective
coverage-fairness-energy score (CFE score) by a DRL policy π:

CFEt(π) =
ct × ft

et
, t = 1, . . . , T. (8)

Obviously, our objective is to optimize the policy π to maximize CFET(π) of the whole
episode. As our SAG-MCS is a practical partially observable scenario, UAV agents cannot
be aware of these global metrics of the whole swarm. They can only make actions according
to the decentralized policy πu, ∀u ∈ U and self-owned information. Therefore, we propose
a heuristic reward function to train the optimal policy π, which will be further introduced
in Section 4.4.

4. Proposed ms-SDRGN Solution For SAG-MCS

Due to the multi-scale observation space and complicated SAG-MCS task, we propose
a heuristic DRL method named Multi-Scale Soft Deep Recurrent Graph Network (ms-SDRGN).
As illustrated in Figure 3, we first utilize a Multi-scale Convolutional Encoder to integrate
local and global observed information for better feature extraction from observation space.
Based on the concept of DRGN [37], we use graph attention mechanism (GAT [26]) to
aggregate neighboring information through ad-hoc connections, and adopt gated recurrent
unit (GRU [27]) as a memory unit for better long-term performance. In addition, we utilize
a maximum-entropy method to learn stochastic policies via a configurable action entropy
objective, and control each UAV agent in a distributed manner. Furthermore, a customized
heuristic reward function is proposed for decentralized training.
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Unit
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Figure 3. ms-SDRGN Model Architecture.

4.1. Multi-Scale Convolutional Encoder

Exploiting observations properly is essential for agents to perceive the current state of
RL systems and make corresponding actions. Previous DRL methods (e.g., DQN, DGN,
MAAC) apply multi-layer perceptron (MLP) as linear encoders to process raw observations,
which is preferred for scenarios with smaller observation dimensions or less information,
such as Cooperative Navigation [47]. However, in our SAG-MCS task, observations and
environment states are more complicated and their input sizes are relatively larger.

Our intuition lies that compared with MLP, convolutional neural network (CNN) is
more capable of processing data that has spatial information and large receptive fields,
such as images. CNN can integrate information from different input channels as well.
So we treat the local observation Olocal and satellites’ fuzzy global observation Oglobal as
simplified real images, and design two CNN to extract spatial feature representations of
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local and global input states separately. Specifically, we construct the local CNN with two
convolutional layers and two fully connected layers, which outputs local embedding elocal

u .
The global CNN has a larger input scale, and we use five convolutional layers, which yields
global embedding e

global
u . As for the auxiliary information in Osel f , we simply use a fully

connected layer and take e
sel f
u as output from UAV self-owned information. Finally, we use

concatenation operation to combine them as a multi-scale observation embedding eu for
UAV u:

eu = concatenate(elocal
u | e

global
u | e

sel f
u ), ∀u ∈ U . (9)

Such multi-scale features can help UAVs better select actions, by taking full account
of: (a) the relative position between current UAV and surrounding PoIs, obstacles or other
agents; (b) the correlation of current UAV’s remaining battery and the distance to the closest
charging station; (c) the distribution of PoIs in the fuzzy global map for better exploration
and coverage.

4.2. Aggregate Adjacent Information with Graph Attention Mechanism

For the purpose of multi-agents exchanging information through ad-hoc connections in
SAG-MCS, we model the UAV swarm as a graph network, where each node is represented
as a UAV, and the edges are the communication links of neighboring UAV pairs. For
each node i, we denote ei extracted from observation space as its node embedding. Let
all UAVs networked with UAV node i as a set Gi. This is implemented by an adjacency
mask A, which is a U × U symmetric matrix and satisfies A(i, j) = 1 if UAV node i is
interconnected with UAV node j. For all UAV node j ∈ Gi, we utilize GAT to determine
the weight of UAV node i towards its different neighbors j as αij. Building on the concept
of self-attention [48], an attention coefficient between node i and its neighboring node
j is defined as eij = a(Wei, Wej), where a() is a shared attentional mechanism. Then,
we calculate the attention weight αij by normalizing eij across all possible node j using
softmax function:

αij = softmaxj
(
eij

)
=

exp
((

WKej
)T · WQei

)
∑k∈Gi

exp
(
(WKek)

T · WQei

) , (10)

Then GAT aggregates information from all adjacent nodes j by weighted summation,
which is given by:

gi = ∑
j∈Gi

αk
ij · WVej. (11)

where we denote gi as the aggregated output embedding of UAV j after one GAT layer.
In addition, WQ, WK, WV ∈ W are learnable weight matrics related with query, key, and
value vector.

As shown in Figure 3, we utilize two GAT layers to aggregate information from
neighboring UAV agents within a two-hop communication range, which could further
expand the perception range and enhance cooperation of the UAV swarm. For better
convergence, we then use skip connections [49] by concatenating the input observation
embedding ei, the outputs of the first GAT layer gi,1 and the second GAT layer gi,2, as
gi = concatenate(ei | gi,1 | gi,2).

Additionally, to make full use of temporal information during the interaction with RL
environments and improve long-term performance, we integrate a gated recurrent unit
(GRU) to memorize temporal features as:

ht = GRU(gi | ht−1). (12)

where we take gi as input and ht is the hidden state of timestep t stored in the memory unit.
After adjacent information aggregation and GRU, we apply an affine transformation layer
to ht for calculating Q-value Q(Ot, at).
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4.3. Learn Stochastic Policies with Adjustable Action Entropy

Based on the Q-value produced by DRGN, we can learn a deterministic policy, where
each Q-value represents a fixed probability of the corresponding action. However, deter-
ministic policies can easily jump into local optimum and lack for exploration in complex,
real-world scenarios. Inspired by the maximum entropy RL framework [50,51], we utilize
soft Q-loss to learn a stochastic policy in SAG-MCS, with the objective of maximizing
expected reward and optimizing the action entropy towards a certain target. A flow chart
of the training process is presented in Figure 4.

ms-SDRGN 
learned model

Action Probability Temperatue 
Parameter

Action Entropy

Replay Buffer

sample
experiences

Q-value Soft Q-loss ms-SDRGN 
target model

update parameters periodically

argmin

temperatured
softmax

Figure 4. The training process of ms-SDRGN. In the flow chart, solid lines indicate feed forward
propagation, and dashed lines denote updating parameters by backpropagation.

Firstly, we sample previous interaction experiences from the replay buffer as training
inputs. The ms-SDRGN learned model infers a set of Q-value from the experiences. Then,
we apply temperatured softmax operation to Q-value for getting the action probability:

π(Ot, at) = softmaxat

(
Q(Ot, at)

α

)
= exp

(
Q(Ot, at)

α
− log Σat exp

(
Q(Ot, at)

α

))
, (13)

where α is an adjustable temperature parameter, and Q-value Q(Ot, at) is produced by the
learned model when receiving Ot and at as inputs. Specific action during simulation is
sampled from the action probability. Then, we use Equation (13) to estimate the action
entropy by calculating the information entropy expectation from sampled experiences:

E[Hπ(O, a)] = E[−Σat∼ππ(Ot, at) · log π(Ot, at)], (14)

The action entropy represents the action uncertainty of policy π, which can be ad-
justed by the temperature parameter α. Therefore, we preset a target action entropy as
Htarget

π = pα ·maxHπ , where the maximum action entropy is determined by action space as
maxHπ = log(dimA), and pα is a hyper-parameter named target entropy factor. Note that
different RL tasks require different levels of exploration, so pα shall be modified according
to specific scenarios. More concretely, our goal is to let the action entropy E[Hπ(O, a)]
approach the pre-defined target action entropy Htarget

π , by updating the temperature pa-
rameter α through gradient descent:

∇α = f
(
Htarget

π −E[Hπ(O, a)]
)

. (15)
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where f is a customized activation function and Htarget
π denotes the target action entropy.

The configurable action entropy mentioned above guarantees the balance between interac-
tion stability and exploration capability of the policy.

Following Soft Q-learning [50], we also include the temperature parameter α to help
define a V-value function for the target model. Finally, we use the mean squared error
calculated by Q-value function and V-value function as Qloss:

V(Ot) = α · log Σat exp
(

Q(Ot, at)

α

)
, (16)

Qloss =
1
S

Σ(rt + V(Ot+1)− Q(Ot, at))
2. (17)

where rt is the reward earned in timestep t, V(Ot) denotes the V-value function and S
is the batch size. The Q-value function Q(o, a) of the learned model is updated through
minimizing the Qloss in Equation (17). In the learning process, ms-SDRGN target model
will be updated periodically by duplicating the parameters of the learned model directly.

4.4. Heuristic Reward Function

In this section, we design a heuristic reward function to evaluate the result when the
UAV swarm conducted action at based on respective observation ot. Since each UAV agent
in SAG-MCS is only exposed to local information and acts in a decentralized manner, we
expect the reward function can help agents to achieve a better CFE score, while not directly
aiming at optimizing the global metrics mentioned in Section 3.4. Therefore, the reward
function considers the impact of data collection, battery charging, energy consumption and
collision with boundaries.

Firstly, we encourage the UAV swarm to collect data as much as possible. Note that
PoIs that within UAV’s coverage range Rcov are referred as ‘covered’. For UAV u, we design
an individual coverage term rsel f

u and a swarm coverage term rswarm
u :

rsel f
u =

{
η1 · Σpd(p), if PoI p is covered only by UAV u
−1, if none PoI is covered by UAV u

(18)

rswarm
u =

{ η2
nu

· Σqd(q), if PoI q is covered by other UAVs in Gu

0, if UAV u is not networking with others
(19)

where rsel f
u counts the data amounts collected individually by UAV u, and rswarm

u counts
the data amounts covered by agents that network with UAV u in one-hop connection. They
are expected to improve the data coverage index through both individual exploration and
swarm cooperation. Let nu denote the number of UAV u’s one-hop neighboring nodes.
In addition, we set balance coefficients η1 = 0.4, η2 = 0.04.

Secondly, in order to guide UAVs to charging stations when their batteries are low,
we propose a charge term rcharge

u as:

rcharge
u = −min θu

c , ∀c ∈ C, (20)

where θu
c ∈ [0, 1] is normalized euclidean distance between UAV u and charging station c.

The charge term rcharge
u will increase as UAV moving closer to its nearby charging station.

We deem the UAV is in charging state when the relative distance meets θu
c ≤ 2.0, then an

extra reward of 2.0 points will be added to rcharge
u .

Other factors such as energy consumption and collisions are considered as well.
According to Equation (6), we simply define an energy term as renergy

u = 1/eu
t . UAVs that

consume less energy are expected to gain higher rewards. Then, we define a penalty term
pu = 1 when UAV u collides with the fixed boundary in our scenario, otherwise put pu = 0.
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We integrate local evaluation terms and define the heuristic reward function as:

ru =

(
rsel f

u + rswarm
u

)
× ε + rcharge

u × (1 − ε)

renergy
u

+ pu, if φ(u) > 0, (21)

where the weight parameter ε refers to the remaining battery percentage, denoted as
ε = φ(u)/100%. Equation (21) only functions when battery is not empty, otherwise the
reward function is defined as:

ru = renergy
u , if φ(u) ≤ 0. (22)

For training simplicity, UAV can still operate when its battery has drained, but it
cannot get reward from data collection and will get an extra punishment.

5. Experiments

In this section, we introduce the setup of experiments and performance metrics. Then,
we compare our approach with three state-of-the-art DRL baselines. Case studies are
performed to analyze the effectiveness, expansibility and robustness of ms-SDRGN.

5.1. Experimental Settings

In this section, we use Pytorch 1.9.0 to perform experiments on Ubuntu 20.04 servers
with two NVIDIA 3080 GPUs and an A100 GPU. In the SAG-MCS simulation environment,
we set the 2D continuous target area of 200× 200 pixels, where 120 PoIs, 3 charging stations,
and 50 obstacles (20 round obstacles and 30 rectangular obstacles) are randomly initialized.
PoIs are scattered around 3 major points from Gaussian distribution, each PoI is randomly
assigned associated data within [1, 5]. We deploy 20 UAVs in the training stage with a
parameter-shared model for action inference. We define their coverage range Rcov = 10,
the observation range Rcov = 13, and the communication range Rcomm = 18 with the
probability p = 0.5 of communication dropout. The fuzzy global observation with the size
of 40 × 40 pixels is updated from satellites to UAVs every 5 timesteps. Each UAV’s battery
is initially fully charged to 100% and the consumed energy at each timestep is calculated
after every movement, according to Equations (5) and (6).

In our implementation, the target entropy factor is set to pα = 0.3 and the discounted
factor γ is 0.99. We use Adam for optimization with the learning rate of 1 × 10−4, and
ReLU as the activation function for all hidden layers. The experience replay buffer is
initialized with the size of 2.5 × 104 for storing interaction histories, and the batch size is
set to 256. As for the exploration strategy, we apply ε − multinomial for stochastic policies
such as ms-SDRGN, letting ε start with 0.9 and exponentially decay to 0 in the end. For
deterministic policies, we use ε − greedy strategy and set ε to exponentially decay to 0.05 at
30,000 training episodes.

One simulation episode lasts for 100 timesteps, and each DRL model interacts with the
simulation environment for 50,000 episodes in total. Interaction experiences will be pushed
to the replay buffer concurrently. After each simulation episode, the learned network
is trained for 4 times using the experiences sampled from the replay buffer, while the
target network is updated every 5 episodes by directly copying the parameters from the
learned network. After training, we test the converged models for 1000 episodes to reduce
randomness.

As introduced in Section 3.4, we use the following metrics to evaluate the performance.

• Episodic Reward: calculates the accumulated reward of the whole evaluation episode. It
generally evaluates the SAG-MCS task achievements by the UAV swarm, considering
data collection, battery management and collisions.

• Data Coverage Index (cT): describes the average data amount collected from PoIs.
• Geographical Fairness Index ( fT): shows how evenly the PoIs are covered by all UAVs

geographically and represents the UAV swarm’s exploration level.
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• Energy Consumption Index (eT): calculates the average energy consumed by the UAV
swarm, according to the flight speed and hovering status.

• CFE Score (CFET): represents the overall performance by combining cT , fT and eT as
Equation (8). We expect CFE score to be as large as possible.

5.2. Analysis of Training Convergence and Heuristic Reward Function

To validate the feasibility and effectiveness of our SAG-MCS environment design
and the heuristic reward function, we first present the learning curves of episodic reward
and the global metrics over time. During the training phase, we evaluate the model for
20 episodes after every 100 training episodes, and calculate the average global metrics and
accumulated reward, as illustrated in Figure 5.

(a) (b)

Figure 5. (a) The episodic reward learning curves of DRL algorithms. (b) The global metrics learning
curves of ms-SDRGN.

In Figure 5a, we observe the average episodic reward of ms-SDRGN improves very
quickly at the beginning, and gradually converges at around 20,000 episodes. Figure 5b
presents the changes of four global metrics during the training progress of ms-SDRGN. The
final energy index gradually drops and stabilizes to 0.9 at 20,000 episodes, indicating that
UAVs have learned to operate at an optimal cruising speed. In addition, the final coverage
and fairness index quickly grow and converge at around 10,000 episodes. Correspondingly,
the overall CFE score has a similar growth trend and reaches convergence rapidly. Therefore,
it can be proved that ms-SDRGN has learned the policy to fulfill the overall objective of
maximizing the CFE score. After convergence, the UAV swarm can continuously collect
PoIs maximumly using energy-efficient flying speed. The training results have suggested
the effectiveness of the heuristic reward function.

Through visualization, we can observe that UAVs have learned to appropriately assign
tasks at different remaining batteries. When its battery drops to around 25~40%, the UAV
will proceed to the closest charging stations for battery exchange. In each simulation
episode with 100 timesteps, the whole swarm rarely runs out of power, as such a charging
process will happen two times for each UAV.

5.3. Comparing with DRL Baselines

We then compare our approach ms-SDRGN with three DRL baselines, including
DGN [36], DQN [24] and MAAC [52]. DQN is a simple and efficient single-agent DRL
approach, but it is still applicable for multi-agent tasks. Based on DQN, DGN uses GAT
for modeling and exploiting the communication between agents. MAAC integrates self-
attention mechanism with MADDPG [47], and provides agents with fully observable
information to learn decentralized stochastic policy using a centralized critic. Thus, we
compare ms-SDRGN with DGN to show the effectiveness of the multi-scale encoder and
memory unit. Then, we compare with MAAC to validate the necessity of communication
for the multi-agent swarm, especially in a partially observable environment.
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We have evaluated the converged methods for 1000 episodes, and taken the mean
value and standard deviation of all metrics, as shown in Table 1. Note that for a fair
comparison, we also provide fuzzy global observations for the baselines, to ensure the raw
observation inputs are the same.

Table 1. Comparison of DRL Baselines.

Algorithm Reward CFE Score Coverage Fairness Energy

ms-SDRGN 6025.82 ± 911.13 0.8911 ± 0.1699 1.5345 ± 0.1509 0.5205 ± 0.0423 0.9067 ± 0.0347
DGN 4730.38 ± 840.32 0.8104 ± 0.1802 1.4636 ± 0.1600 0.5032 ± 0.0514 0.9226 ± 0.0514

MAAC 4670.71 ± 783.61 0.8587 ± 0.1799 1.4496 ± 0.1519 0.5255 ± 0.0484 0.8992 ± 0.0373
DQN 3291.03 ± 631.22 0.6273 ± 0.1367 1.3332 ± 0.1554 0.5027 ± 0.0521 1.0819 ± 0.0227

The evaluation results are presented in Table 1. Then, we conduct a independent
T-test between our approach and other three DRL baselines on every evaluation metric. It
can be concluded that ms-SDRGN has a significant difference comparing to the baselines
(p < 0.05). We can obtain the following observations from Table 1:

Firstly, the proposed approach ms-SDRGN outperforms all other baselines in terms
of reward and coverage index significantly. It demonstrates that with the help of multi-
scale convolutional encoder and graph-based communication, ms-SDRGN achieves better
data collection and energy management efficiency in SAG-MCS scenario. Compared with
DQN and DGN, ms-SDRGN can better sense the surrounding environment from previous
experiences in the memory unit, and make decisions more efficiently between seeking for
more PoIs or returning for charging.

Secondly, from the perspective of fairness and energy, MAAC improves 0.005 fairness
and 0.0075 energy index than ms-SDRGN. As a fully observable algorithm, we believe that
MAAC can achieve similar cooperative exploration as ms-SDRGN using the observation
embeddings from the whole UAV swarm. Regardless of extracting features from neigh-
boring UAV nodes or from the memory unit, MAAC has a simpler objective to reduce its
energy consumption for getting a higher reward.

Furthermore, the reward standard deviation of ms-SDRGN is higher than other meth-
ods, which may be attributed to randomness generated by the complex MADRL framework.

5.4. Analysis of Communication Dropout

In practical wireless networking applications, communication losses commonly occur
in forms of delay, congestion or packet losses. To better cope with such real-world demand-
ing communication conditions, we assume a p = 0.5 probability of communication dropout
between interconnected UAVs during the training phase. Theoretically, this setting can
improve the robustness of our model when implemented in different conditions. Therefore,
we have trained two ms-SDRGN models in environments with and without communication
dropout, respectively. Then, we test them in SAG-MCS, where the random communication
dropout rate p varies in [0, 1], with an interval of 0.1. The evaluation result is shown in
Figure 6.

From Figure 6a, it is observed that as the dropout rate grows in evaluation environment,
the reward of the model trained w/o dropout continuously decreases. While the model
trained w/ dropout achieves more stable evaluated reward and outperforms the other
when the dropout rate p is larger than 0.4. In terms of the major metric CFE score in
Figure 6b, ms-SDRGN trained w/ dropout continuously surpasses ms-SDRGN trained
w/o dropout. When the evaluating communication dropout rate changes from 0 to 1.0,
the CFE score of ms-SDRGN trained w/ dropout drops around 0.05 point. By contrast,
ms-SDRGN trained w/ dropout gets 0.19 point of degradation on CFE score.

Random communication dropout can affect the stability of timing correlation in GRU
memory unit. However, after trained in environment with 50% probability of communica-
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tion losses, our ms-SDRGN is proved to be more robust, and will not result in significant
performance loss even under unreliable communication conditions.

(a) (b)

Figure 6. The evaluation results in environments with different communication dropout rate:
(a) mean episodic reward and (b) CFE score.

5.5. Impact of Simulation Environment Scale Setting

Next, we proceed to verify the performance of the multi-scale convolutional encoder.
In actual MCS tasks, UAVs could encounter various densities of overground PoIs. For
regions with dense PoI distributions such as modern cities, we hope to perform finer-
grained observations for higher feature resolution. While we can perform coarse-grained
or lightsized observations for areas with sparse PoIs. In order to handle tasks of different
observation scales and enhance robustness, we implement CNNs as the multi-scale encoder,
which technically is more applicable than linear encoders for large-scale observations.
Therefore, we expect to compare the front-end multi-scale convolutional encoder with
original linear encoder using different local observation scales.

In this experiment, we simulate different sizes of observation inputs by proportionally
scaling the whole map, which could maintain the distribution of all elements and ensure
comparison fairness. Specifically, we set the original environment setting introduced in
Section 5.1 as scale 1.0 unit, and adjust the scale factor from 0.5 to 2.0 with the interval of
0.5 unit. The major settings of different scale factors are listed in Table 2.

Table 2. Simulation Environment Scale Experiment Settings.

Environment Scale Factor 0.5 1.0 1.5 2.0

Environment Size in Pixels 100 × 100 200 × 200 300 × 300 400 × 400
Coverage Range Rcov 5 10 15 20

Observation Range Robs 7 13 20 26
Communication Range Rcomm 9 18 27 36

The evaluation results of four environment scales are presented in Figure 7. As
size of local observation space varying with observation range Robs, we can observe that
CNN encoder outperforms linear encoder consistently on episodic reward. As for CFE
score, ms-SDRGN with local CNN encoder achieves better CFE score than linear encoder
when the scale factor is greater than or equal to 1.0, while linear encoder exceeds CNN
encoder by 0.04 points at scale 0.5. The above result demonstrates that linear encoder can
efficiently extract features from small-size input. In addition, the local CNN used in our
multi-scale convolutional encoder has better representational capacity for large observation
space. This finding demonstrates the expansibility of ms-SDRGN towards various scales of
raw observations.
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(a) (b)

Figure 7. The evaluation results in environments with different scale factors: (a) mean episodic
reward and (b) CFE score. (‘w/o local CNN encoder’ denotes using linear encoder to process local
observations).

5.6. Ablation Study

Finally, we conduct an ablation study by separately removing components of ms-
SDRGN, including multi-scale encoder, GAT layers, and GRU. We evaluate each case for
1000 episodes and the average results are listed in Table 3.

Table 3. Ablation study of ms-SDRGN method.

Algorithm Reward CFE Score

ms-SDRGN 6025.82 ± 911.13 0.8911 ± 0.1699
ms-SDRGN-ms 5198.48 ± 877.04 0.8674 ± 0.1985
ms-SDRGN-Soft 5337.79 ± 814.41 0.8592 ± 0.1791

ms-SDRGN-1GAT 5523.05 ± 905.01 0.8102 ± 0.1762
ms-SDRGN-2GAT 4984.57 ± 837.96 0.7956 ± 0.1729
ms-SDRGN-GRU 4318.14 ± 815.62 0.8017 ± 0.1878

‘-ms’ means removing local CNN encoder. ‘-Soft’ means training a deterministic policy instead of a stochastic
policy. ‘-1GAT’ and ‘-2GAT’ denotes disabling one GAT layer and two GAT layers separately. ‘-GRU’ means
disabling GRU memory unit.

It can be observed in Table 3 that when removing any components, our ms-SDRGN will
generally result in performance degradation. Firstly, removing local CNN encoder in case
‘-ms’ will reduce average CFE score and reward, which demonstrates the validity of CNN
encoder, as discussed in Section 5.5. Secondly, case ‘-Soft’ demonstrates the stochastic policy
outperforms the deterministic policy by improving exploration and coverage efficiency.
Thirdly, case ‘-1GAT’ disables one GAT layer and limits the ad-hoc communication to
one-hop range, which decreases 0.08 points on CFE score and 530 points on reward. Case
‘-2GAT’ disables both two GAT layers, which completely cuts off the communication of the
UAV swarm and causes further performance loss. This finding suggests the necessity of
GAT mechanism for modeling the communication between agents. Moreover, case ‘-GRU’
removes the memory unit and significantly reduces the average reward and CFE score. For
complex MARL tasks such as SAG-MCS in this paper, the memory unit can help agents
recall long-term experiences, especially when the positions of PoIs and obstacles are fixed.

6. Discussion

In this section, we discuss two limitations of our method and explore future directions
for practical implementation.

Firstly, the computational complexity is crucial for practical applications. The proposed
MADRL approach functions in a decentralized manner. Each UAV agent infers its action
using on-board processor and executes the action subsequently. In addition, the multi-

53



Entropy 2022, 24, 638

scale convolutional encoder introduced in Section 4.1 becomes the major computational
burden for embedded processors. Therefore, future works will focus on introducing more
computationally efficient spatial feature extractors.

Secondly, hand-crafted reward function limits the scalability. The heuristic reward
function designed in Section 4.4 is customized for SAG-MCS simulation environment.
When migrated to other application scenarios, the reward function requires modification
case to case. Inverse reinforcement learning can be a solution for agents to infer reward
functions from expert trajectories [53].

7. Conclusions

This paper introduced a partially observable MCS scenario named SAG-MCS, with
an aerial UAV swarm jointly performing data collection task under energy limits. We
proposed a value-based MADRL model named ms-SDRGN to address this multi-agent
problem. Conclusively, ms-SDRGN applied a multi-scale convolutional encoder to handle
the multi-scale observations, and utilized GAT and GRU for modeling communications and
providing long-term memories. Effectively, a maximum-entropy method with configurable
action entropy was employed to learn a stochastic policy. Experiments were conducted
to demonstrate the superiority of our model compared with other DRL baselines, and
validate the necessity of major components in ms-SDRGN. In addition, we analyzed the
effectiveness of the communication dropout setting and the front-end CNN encoder. Future
works will be focused on implementing fully continuous action space and exploring multi-
stage multi-agent scenarios.
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GRU Gated Recurrent Unit
CFE Coverage-Fairness-Energy Score
CNN Convolutional Neural Network
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22. Bekmezci, İ.; Sahingoz, O.K.; Temel, Ş. Flying Ad-Hoc Networks (FANETs): A Survey. Ad. Hoc. Netw. 2013, 11, 1254–1270.
[CrossRef]

23. Hassan, M.U.; Shahzaib, M.; Shaukat, K.; Hussain, S.N.; Mubashir, M.; Karim, S.; Shabir, M.A. DEAR-2: An Energy-Aware
Routing Protocol with Guaranteed Delivery in Wireless Ad-hoc Networks. In Recent Trends and Advances in Wireless and IoT-enabled
Networks; Jan, M.A., Khan, F., Alam, M., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 215–224. [CrossRef]

24. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.; Antonoglou, I.; Wierstra, D.; Riedmiller, M. Playing Atari with Deep
Reinforcement Learning. arXiv 2013, arXiv:1312.5602.

25. Walker, O.; Vanegas, F.; Gonzalez, F.; Koenig, S. A Deep Reinforcement Learning Framework for UAV Navigation in Indoor
Environments. In Proceedings of the 2019 IEEE Aerospace Conference, Big Sky, MT, USA, 2–9 March 2019; pp. 1–14. [CrossRef]

26. Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Liò, P.; Bengio, Y. Graph Attention Networks. arXiv 2018, arXiv:1710.10903.

55



Entropy 2022, 24, 638

27. Cho, K.; van Merrienboer, B.; Bahdanau, D.; Bengio, Y. On the Properties of Neural Machine Translation: Encoder-Decoder
Approaches. arXiv 2014, arXiv:1409.1259.

28. Shaukat, K.; Luo, S.; Varadharajan, V.; Hameed, I.A.; Xu, M. A Survey on Machine Learning Techniques for Cyber Security in the
Last Decade. IEEE Access 2020, 8, 222310–222354. [CrossRef]

29. Shaukat, K.; Luo, S.; Varadharajan, V.; Hameed, I.A.; Chen, S.; Liu, D.; Li, J. Performance Comparison and Current Challenges of
Using Machine Learning Techniques in Cybersecurity. Energies 2020, 13, 2509. [CrossRef]

30. Feng, J.; Gu, B.; Ai, B.; Mumtaz, S.; Rodriguez, J.; Guizani, M. When Mobile Crowd Sensing Meets UAV: Energy-Efficient Task
Assignment and Route Planning. IEEE Trans. Commun. 2018, 66, 5526–5538. [CrossRef]

31. Wang, B.; Sun, Y.; Liu, D.; Nguyen, H.M.; Duong, T.Q. Social-Aware UAV-Assisted Mobile Crowd Sensing in Stochastic and
Dynamic Environments for Disaster Relief Networks. IEEE Trans. Veh. Technol. 2020, 69, 1070–1074. [CrossRef]

32. Xu, S.; Zhang, J.; Meng, S.; Xu, J. Task Allocation for Unmanned Aerial Vehicles in Mobile Crowdsensing. Wirel. Netw. 2021, 1–13.
[CrossRef]

33. Francois-Lavet, V.; Henderson, P.; Islam, R.; Bellemare, M.G.; Pineau, J. An Introduction to Deep Reinforcement Learning. Found.
Trends Mach. Learn. 2018, 11, 219–354. [CrossRef]

34. Lillicrap, T.P.; Hunt, J.J.; Pritzel, A.; Heess, N.; Erez, T.; Tassa, Y.; Silver, D.; Wierstra, D. Continuous Control with Deep
Reinforcement Learning. arXiv 2019, arXiv:1509.02971.

35. Dai, A.; Li, R.; Zhao, Z.; Zhang, H. Graph Convolutional Multi-Agent Reinforcement Learning for UAV Coverage Control.
In Proceedings of the 2020 International Conference on Wireless Communications and Signal Processing (WCSP), Nanjing, China,
21–23 October 2020; pp. 1106–1111. [CrossRef]

36. Jiang, J.; Dun, C.; Huang, T.; Lu, Z. Graph Convolutional Reinforcement Learning. arXiv 2020, arXiv:1810.09202.
37. Ye, Z.; Wang, K.; Chen, Y.; Jiang, X.; Song, G. Multi-UAV Navigation for Partially Observable Communication Coverage by Graph

Reinforcement Learning. IEEE Trans. Mob. Comput. 2022. [CrossRef]
38. Liu, C.H.; Dai, Z.; Zhao, Y.; Crowcroft, J.; Wu, D.; Leung, K.K. Distributed and Energy-Efficient Mobile Crowdsensing with

Charging Stations by Deep Reinforcement Learning. IEEE Trans. Mob. Comput. 2019, 20, 130–146. [CrossRef]
39. Liu, C.H.; Chen, Z.; Zhan, Y. Energy-Efficient Distributed Mobile Crowd Sensing: A Deep Learning Approach. IEEE J. Sel. Areas

Commun. 2019, 37, 1262–1276. [CrossRef]
40. Piao, C.; Liu, C.H. Energy-Efficient Mobile Crowdsensing by Unmanned Vehicles: A Sequential Deep Reinforcement Learning

Approach. IEEE Internet Things J. 2019, 7, 6312–6324. [CrossRef]
41. Dai, Z.; Wang, H.; Liu, C.H.; Han, R.; Tang, J.; Wang, G. Mobile Crowdsensing for Data Freshness: A Deep Reinforcement

Learning Approach. In Proceedings of the IEEE INFOCOM 2021—IEEE Conference on Computer Communications, Vancouver,
BC, Canada, 10–13 May 2021; pp. 1–10. [CrossRef]

42. Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]
43. Wang, H.; Liu, C.H.; Dai, Z.; Tang, J.; Wang, G. Energy-Efficient 3D Vehicular Crowdsourcing for Disaster Response by Distributed

Deep Reinforcement Learning. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining,
Virtual Event, 14–18 August 2021; pp. 3679–3687. [CrossRef]

44. Chung, J.; Gulcehre, C.; Cho, K.; Bengio, Y. Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling.
arXiv 2014, arXiv:1412.3555.

45. Liu, C.H.; Dai, Z.; Yang, H.; Tang, J. Multi-Task-Oriented Vehicular Crowdsensing: A Deep Learning Approach. In Proceedings
of the IEEE INFOCOM 2020—IEEE Conference on Computer Communications, Nanjing, China, 25–27 June 2020; pp. 1123–1132.
[CrossRef]

46. Thibbotuwawa, A.; Nielsen, P.; Zbigniew, B.; Bocewicz, G. Energy Consumption in Unmanned Aerial Vehicles: A Review
of Energy Consumption Models and Their Relation to the UAV Routing. In Information Systems Architecture and Technology:
Proceedings of 39th International Conference on Information Systems Architecture and Technology – ISAT 2018; Świątek, J.; Borzemski, L.,
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Abstract: Increasing the autonomy of multi-agent systems or swarms for exploration missions
requires tools for efficient information gathering. This work studies this problem from theoretical
and experimental perspectives and evaluates an exploration system for multiple ground robots
that cooperatively explore a stationary spatial process. For the distributed model, two conceptually
different distribution paradigms are considered. The exploration is based on fusing distributively
gathered information using Sparse Bayesian Learning (SBL), which permits representing the spatial
process in a compressed manner and thus reduces the model complexity and communication load
required for the exploration. An entropy-based exploration criterion is formulated to guide the
agents. This criterion uses an estimation of a covariance matrix of the model parameters, which is
then quantitatively characterized using a D-optimality criterion. The new sampling locations for
the agents are then selected to minimize this criterion. To this end, a distributed optimization of
the D-optimality criterion is derived. The proposed entropy-driven exploration is then presented
from a system perspective and validated in laboratory experiments with two ground robots. The
experiments show that SBL together with the distributed entropy-driven exploration is real-time
capable and leads to a better performance with respect to time and accuracy compared with similar
state-of-the-art algorithms.

Keywords: distributed estimation; Sparse Bayesian Learning; exploration; swarm; multi-agent
systems; consensus; D-optimal design

1. Introduction

For exploration tasks that rely on multi-agent systems, with complex, unstructured
terrains, autonomy plays a key role to lower potential threats or tedious work for human
operators, be it space exploration, disaster relief, or routine industrial facility inspections.
The main objective here is to give a human operator more detailed information about the
explored area, e.g., in terms of a map, and to support further decision making. While
multiple agents do provide an increased sensing aperture and can potentially collect
information more efficiently than a single-agent system, they have to rely more heavily on
autonomy to compensate, e.g., possible large (or unreliable) communication delays [1] or
the complexity of teleoperating multiple agents.

One of the approaches to increase the autonomy of multi-agent systems consists of
using in situ analysis of the collected data with the agents’ own computing resources to de-
cide on future actions. In the context of mapping, such an approach is also known as active
information gathering [2,3] or exploration. Note that mapping is generally not restricted to
sensing with imaging sensors, such as cameras. The exploration of gas sources [4] or of the
magnetic field [5] also falls in this category.

An approach for active information gathering lies in the focus of the presented work.
In the following, we provide an overview of work related to the approach discussed in this
paper, the arising challenges, and a proposed solution.

Entropy 2022, 24, 580. https://doi.org/10.3390/e24050580 https://www.mdpi.com/journal/entropy
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1.1. Related Work

The objective of active information gathering is to utilize the collected data, represented
in terms of a parameterized model, to compute information content as a function of space.
This can be done using heuristic approaches, as in [6,7], where the authors modify the
random walk strategy by adjusting the movement steps of each robot such as to collect
more information. Alternatively, information–theoretic approaches can be used. In [8],
the authors use a probabilistic description of the model to steer cameras mounted on
multiple unmanned aerial vehicles (UAVs). In this case, the information metric can be
computed directly based on statistics of the pixels. The resulting quantity is then used to
autonomously coordinate UAVs in an optimal configuration. In [9], the authors propose an
exploration driven by uncertainty by minimizing the determinant of the covariance matrix for
an optimal camera placement for a 3D image. This approach essentially implements an
optimal experiment design [10], which in turn relates the determinant of the covariance
matrixof the model parameters to the Shannon entropy of Gaussian random variables.
This connection has been further explored in [11], where the authors compare criteria for
optimal experiment design with mutual information for Gaussian processes regression
and sensor placement. This leads to a greedy algorithm that uses mutual information
for finding optimal sensor placements. An extension of [11] for multiple agents and a
decentralized estimation of the mutual information is presented in [2,12]. In the latter, the
authors also considered robotic aspects, such as optimal trajectory planning along with
information gathering: an approach that has been further investigated in [13].

One of the key elements in experiment design-based information gathering is the
ability to compute the covariance structure of the model parameters as a function of space
and evaluate it in a distributed fashion. In [14], the authors studied the information-
gathering approach for sparsity constrained models, i.e., under assumption that the model
parameters are sparse. This required implementing non-smooth �1 constraints in the opti-
mization problem, which in turn made the exact computation of the parameter covariance
impossible. Instead, the covariance structure was approximated by locally smoothing the
curvature of the objective function. In [14], the method was applied to generalized linear
models with sparsity constraints for a distributed computation with two versions of data
splitting over agents: homogeneous splitting, also called splitting-over-examples (SOE),
and heterogeneous splitting, also called splitting-over-features (SOF). However, despite
the method yielding in simulations a better performance as compared to systematic or
random exploration approaches, the used approximation has been derived with purely
empirical arguments.

1.2. Paper Contribution

To address this, the exploration problem with sparsity constraints has been cast into a
probabilistic framework, where the parameter covariance can be computed exactly. In [15],
we formulated a Bayesian approach toward cooperative sparse parameter estimation for
SOF, and in [16] for SOE data splitting. However, the distributed computation of the
covariance matrix and information-driven exploration has not been considered so far. With
this contribution, we close this gap and study an information-driven exploration strategy
that is based on a Bayesian approach toward distributed sparse regression. Specifically,

• We consider a distributed computation of the corresponding parameter covariance
matrices for information-seeking exploration using a Bayesian formulation of the
model, and

• Validate the algorithm’s performance both in simulations as well as in an experiment
with two robots exploring the magnetic field variations on a laboratory floor.

The rest of the paper is structured as follows. We begin with a model formulation
and model learning in Section 2. In Section 3, we discuss a distributed computation of
the exploration criterion for the considered regression problem. Afterwards, we outline
the experimental setting, the collection of ground truth data, and the sensor calibration in
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Section 4, as well as the overall system design in Section 5. The experimental results are
summarized in Section 6, and Section 7 concludes this work.

2. Distributed Sparse Bayesian Learning

2.1. Model Definition

We make use of a classical basis function regression [17] to express an unknown scalar
physical process p(x) ∈ R, with x ∈ Rd and d ∈ N. Typically, the process is d-dimensional,
with d ∈ {2, 3}. To represent the process p(x), a set of N ∈ N basis functions φn(x, πn) ∈ R,
n = 1, . . . , N are used, where πn ∈ Rs is dependent on the used basis function and s is a
number of parameters per basis function.

Each basis function is parameterized with πn, n = 1, . . . , N, which can represent
centers of corresponding basis functions, their width, etc. More formally, we assume that

p(x) =
N

∑
n=1

φn(x, πn)wn, (1)

where wn ∈ R are generally unknown weights in the representation.
To estimate wn, n = 1, . . . , N, we make M observations of the process p(x) at locations

X = [x1, . . . , xM]T ∈ RM×d. The corresponding m-th measurement is then represented as

y(xm) = p(xm) + η(xm) =
N

∑
n=1

φn(xm, πn)wn + η(xm), (2)

where η(xm) ∝ N (0, λ−1) is an additive sample of white Gaussian noise with a known
precision λ ∈ R+. By collecting M measurements in a vector y(X) = [y(x1), . . . , y(xM)]T

∈ RM, we can reformulate (2) in a vector-matrix notation. To this end, we define

Π � [π1, . . . , πN ]
T ∈ R

N×s, (3)

φn(X, πn) � [φn(x1, πn), . . . , φn(xM, πn)]
T ∈ R

M, (4)

Φ(X, Π) � [φ1(X, π1), . . . , φN(X, πN)] ∈ R
M×N , (5)

and w � [w1, . . . , wN ]
T ∈ R

N , (6)

which allows us to formulate the measurement model in a vectorized form

y(X) = Φ(X, Π)w + η(X), (7)

with η(X) � [η(x1), . . . , η(xM)]T ∈ RM.
Based on (7), we define the likelihood of the parameters w as follows

p(y(X)|w) ∝ exp
{
−λ

2
‖y(X)− Φ(X, Π)w‖2

}
. (8)

Often, the representation (1) is selected such that N � M, i.e., it is underdetermined.
This implies that there is an infinite number of possible solutions for w. A popular approach
to restrict a set of solutions consists of introducing sparsity constraints on parameters.
Within the Bayesian framework, this can be achieved by defining a prior over the parameter
weights w. This leads to a class of probabilistic approaches referred to as Sparse Bayesian
Learning (SBL).

The basic idea of SBL is to assign an appropriate prior to the N-dimensional vector
w such that the resulting maximum a posteriori (MAP) estimate ŵ is sparse, i.e., many of
its entries are zero. Typically, SBL specifies a hierarchical factorable prior p(w|γ)p(γ) =
∏N

n=1 p(wn|γn)p(γn), where p(wn|γn) = N (wn|0, γn), n ∈ {1, . . . , N} [18–20]. For each
n ∈ {1, . . . , N}, the hyperparameter γn, also called sparsity parameter, regulates the width
of p(wn|γn); the product p(wn|γn)p(γn) defines a Gaussian scale mixture (the authors in
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work [21] extend this framework by generalizing p(wn|γn) to be the probability density
function (PDF) of a power exponential distribution, which makes the hierarchical prior
a power exponential scale mixture distribution). Bayesian inference on a linear model
with such a hierarchical prior is commonly realized via two types of techniques: MAP
estimation of w (Type I estimation; note that many traditional “non-Bayesian” methods
for learning sparse representations such as basis pursuit de-noising or re-weighted �p-
norm regressions [22–24] can be interpreted as Type I estimation within the above Bayesian
framework [21]) or MAP estimation of γ (Type II estimation, also called maximum evidence
estimation, or empirical Bayes method). Type II estimation has proven (both theoretically
and empirically) to perform consistently better than Type I estimation in the present
application context. One reason is that the objective function of a Type II estimator typically
exhibits significantly fewer local minima than that of the corresponding Type I estimator
and promotes greater sparsity [25]. The hyperprior p(γn), n ∈ {1, . . . , N}, is usually
selected to be non-informative, i.e., p(γn) ∝ γ−1

n [26–28]. The motivation for this choice is
twofold. First, the resulting inference schemes typically demonstrate superior (or similar)
performance as compared to schemes derived based on other hyperprior selections [21].
Second, very efficient inference algorithms can be constructed and studied [26–30].

In the following, we consider only SBL Type II optimization as it leads to usually
sparser parameter vectors w [21], and we drop explicit dependencies on measurements X
and basis function parameters Π to simplify notation. The marginalized likelihood for SBL
Type II optimization is therefore

p(y|γ) =
∫ ∞

−∞
p(y|w)p(w|γ)dw ∝ |Σ|− 1

2 exp
{
−1

2
yTΣ−1y

}
, (9)

where Σ = λ−1 I + ΦΓΦT , Γ = diag{γ}, and I being the identity. Taking the negative
logarithm of (9), we obtain the objective function for SBL Type II optimization in the
following form

L(γ) = − log p(y|γ) = log(|Σ|) + yTΣ−1y. (10)

An estimate of hyperparameters γ is then found as

γ̂ = arg min
γ

L(γ). (11)

Once the estimate γ̂ is obtained, the posterior probability density function (PDF)
of the the parameter weights w can be easily computed: it is known to be Gaussian
p(w|y, γ̂) = N (ŵ, Σw) with the moments given as

ŵ = λΣwΦTy, Σw =
(

λΦTΦ + Γ̂−1
)−1

, (12)

where Γ̂ = diag{γ̂} (see also [18]).

2.2. Sparse Bayesian Learning with the Automatic Relevance Determination

The key to a sparse estimate of w is a solution to (11). There are a number of efficient
schemes [26–28] to solve this problem. The method that we use in this paper is based
on [26]. In the following, we shortly outline this algorithm.

In [26], the authors introduced the reformulated automatic relevance determination
(R-ARD) by using an auxiliary function that upper bounds the objective function L(γ)
in (10). Specifically, using the concavity of the log-determinant in (10) with respect to γ, the
former can be represented using a Fenchel conjugate as

log|Σ| = min
z

zTγ − h∗(z), (13)
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where z ∈ RN is a dual variable and h∗(z) is the dual (or conjugate) function (see
also [31] (Chapter 5) or [32]).

Using (13), we can now upper-bound (10) as follows

L(γ, z) � zTγ − h∗(z) + yTΣ−1y ≥ L(γ). (14)

Note that for any γ, the bound becomes tight when minimized over z. This fact is
utilized for the numerical estimation of γ, which is the essence of the R-ARD algorithm.

R-ARD alternates between estimating z, which can be found in closed form as [26,31]

ẑ = arg min
z

L(γ̂, z) =
∂

∂γ
log |Σ|

∣∣∣∣
γ=γ̂

= diag{ΦTΣ−1Φ}, (15)

and estimating γ̂ as a solution to a convex optimization problem

γ̂ = arg min
γ

L(γ, ẑ) = arg min
γ

ẑTγ + yTΣ−1y. (16)

In order to solve (16), the authors in [26] proposed to use yet another upper bound on
L(γ, z). Specifically, by noting that

yTΣ−1y = min
w

λ‖y − Φw‖2 +
N

∑
l=1

w2
l

γl
(17)

the cost function in (16) can be bounded with

L(w, γ, ẑ) � λ‖y − Φw‖2 +
N

∑
l=1

(
ẑlγl +

w2
l

γl

)
≥ L(γ, ẑ). (18)

The right-hand side of (18) is convex both in w and γ. As such, for any fixed w, the

optimal solution for γ can be easily found as γl = ẑ−
1
2

l |wl |, l = 1, . . . , N. By inserting the
latter in (18), we find the solution for w that minimizes the upper-bound L(w, γ, ẑ) as

ŵ = arg min
w

L(w, γ̂, ẑ) = arg min
w

λ‖y − Φw‖2 + 2
N

∑
l=1

ẑ
1
2
l |wl |, (19)

which can be recognized as a weighted least absolute shrinkage and selection operator
(LASSO) cost function. Expression (19) builds a basis for a distributed estimation learning of
SBL parameters, since there exist techniques to optimize a LASSO function over a network,
which are presented in the following section.

2.3. The Distributed Automated Relevance Determination Algorithm for SOF Data Splitting

The derivation of the distributed R-ARD (D-R-ARD) for SOF is shown in [14]. Here,
we would like to show the main aspects of the distribution paradigm and the resulting
algorithm. The main aspect of heterogeneous data splitting is that each agent has its
own model. Therefore, the parameter weights w are distributed among K ∈ N agents as
w = [wT

1 , . . . , wT
K]

T and each agent has its part wk ∈ RNk , where N = ∑K
k=1 Nk. Likewise,

the matrix Φ is partitioned among K agents as Φ = [Φ1, . . . , ΦK] where Φk ∈ RM×Nk . The
SOF model is then formulated as

y =
[
Φ1 . . . ΦK

]⎡⎢⎣w1
...

wK

⎤⎥⎦+ η =
K

∑
k=1

Φkwk + η. (20)

Similarly, the hyper-parameters γ are also partitioned as γ = [γT
1 , . . . , γT

K ]
T .
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The solution to cooperative SOF inference then amounts to computing z from (15) and
optimizing the upper bound (18) over a network of K agents.

Unfortunately, in the case of the SOF model, the dual variable z = [zT
1 , . . . , zT

K]
T in (15)

cannot be computed exactly. Instead it is upper-bounded [14] as zk ≤ z̃k, where z̃k is
computed for each agent:

z̃k = diag
{

ΦT
k ΛΦk − ΦT

k ΛΦkΣw,kΦT
k ΛΦk

}
, (21)

with Σw,k = (ΦT
k ΛΦk + Γ−1

k )−1 and Λ = λI. This approximation preserves the upper
bound in (18). Consequently, (19) can be reformulated to fit for SOF as

ŵk = arg min
wk

L(w, z̃) = arg min
wk

λ

∥∥∥∥∥ K

∑
k=1

y − Φkwk

∥∥∥∥∥
2

+ 2
Nk

∑
l=1

z̃
1
2
k,l |wk,l |, (22)

which can be solved distributively via the alternating direction method of multipliers
(ADMM) algorithm [33] (Section 8.3). The D-R-ARD algorithm for SOF is summarized in
Algorithm 1. When using ADMM to solve for ŵk, the only communication between the
agents takes place inside of the ADMM algorithm. The communication load of the ADMM
algorithm for SOF is discussed in [33] (Chapter 8).

Algorithm 1 D-R-ARD for SOF

1: z̃k ← diag{ΦT
k ΛΦk}

2: while not converged do
3: ŵ ← arg min

w
L(w, z̃) � See (22); is solved distributively using

ADMM [33] (Section 8.3)
4: γ̂k ← |ŵk,n |√

z̃k,n
, ∀n = 1, . . . , Nk

5: z̃k ← (21)
6: ŵ = [ŵT

1 , . . . , ŵT
K]

T , γ̂ = [γ̂T
1 , . . . , γ̂T

K ]
T

2.4. The Distributed Automated Relevance Determination Algorithm for SOE Data Splitting

For SOE, we will assume that measurements y at locations X are partitioned into
K disjoint subsets {yk(Xk), Xk}K

k=1, each associated with the corresponding agent in the
network. Hence, each agent k makes Mk observations yk(Xk) = [yk,1(xk,1), . . . , yk,Mk

(xk,Mk
)]

at locations Xk = [xk,1, . . . , xk,Mk
]T , such that M = ∑K

k=1 Mk, y = [yT
1 , . . . , yT

K]
T , X =

[XT
1 , . . . , XT

K ]
T , Φ = [ΦT

1 , . . . , ΦT
K]

T , and η = [ηT
1 , . . . , ηT

K]
T . This allows us to rewrite (7) in

an equivalent form as

y =

⎡⎢⎣y1
...

yK

⎤⎥⎦ =

⎡⎢⎣Φ1
...

ΦK

⎤⎥⎦w +

⎡⎢⎣η1
...

ηK

⎤⎥⎦, (23)

where we assumed that perturbations ηk, k = 1, . . . , K, are independent between agents, i.e.,

E{ηkηT
m} =

{
0I k �= m

λ−1
k I k = m.
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To cast R-ARD in a distributed setting, we need to be able to solve (19) and compute ẑ
in (15) over a network of agents. To this end, let us define

D � ΦTΛΦ =
K

∑
k=1

ΦT
k λkΦk = K × 1

K

K

∑
k=1

ΦT
k λkΦk︸ ︷︷ ︸

averaged consensus

. (24)

where Λ = diag [λ1 I1, . . . , λK IK], and Ik is an identity matrix of size Mk × Mk, k = 1, . . . , K.
We point out that D, or rather the last factor in (24), can be computed over a network of
agents using an averaged consensus algorithm [34,35].

Next, we apply the Woodbury identity to Σ−1 to obtain

Σ−1 =
(

Λ−1 + ΦΓΦT
)−1

= Λ − ΛΦΣwΦTΛ, (25)

where Σw = (ΦTΛΦ + Γ−1)−1. Inserting (25) and (24) into (15), we get

ẑ = diag{ΦTΛΦ − ΦTΛΦΣwΦTΛΦ} = diag{D − DΣwD}, (26)

where Σw = (D + Γ−1)−1. Thus, once D becomes available, ẑ can be found distributively
using expression (26).

To solve (19) distributively, we first note that for the model (23) the likelihood (8) can
be equivalently rewritten as

p(y|w) ∝ exp

{
−1

2

K

∑
k=1

λk‖yk − Φkw‖2

}
. (27)

It is then straightforward to show that the upper bound (18) will take the form

L(w, γ, ẑ) � 1
2

K

∑
k=1

λk‖yk − Φkw‖2 +
M

∑
l=1

(
ẑlγl +

w2
l

γl

)
≥ L(γ, ẑ). (28)

Similarly to (18), for any wl , l = 1, . . . , M, the bound is minimized with respect to γl
at γl = |wl |/

√
ẑl , l = 1, . . . , M. Inserting the latter in (28), we obtain an objective function

for estimating wl

ŵ = arg min
w

1
2

K

∑
k=1

λk‖Φkw − yk‖2
2 + 2

M

∑
l=1

√
ẑl |wl |. (29)

Expression (29) can be readily solved distributively using an ADMM algorithm (see
e.g., [33] (Chapter 8) and [36]). Once ŵ is found, optimal parameter values γ̂ are found as

γ̂l = ẑ−
1
2

l |ŵl |, l = 1, . . . , N.
In Algorithm 2, we now summarize the key steps of the resulting D-R-ARD algorithm

for SOE. As we can see from Algorithm 2, D-R-ARD includes two optimizing loops. The
inner optimization loop is an ADMM algorithm, which is guaranteed to converge to a
solution [33]. The convergence of the outer loop is basically the convergence of the R-ARD
algorithm presented in [26].
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Algorithm 2 D-R-ARD for SOE

1: ẑn ← 1, ∀n = 1, . . . , N
2: Compute D using averaged consensus over ΦT

k ΛΦk as in (24)
3: while not converged do
4: ŵ ← arg min

w
L(w, γ, ẑ) � See (29); is solved distributively using ADMM [33,36]

5: γ̂ ← |ŵn |√
ẑn

, ∀n = 1, . . . , N

6: Σw ← (D + Γ−1)−1

7: ẑ ← (26)

Communication Load of D-R-ARD

In the D-R-ARD algorithm, two communication steps are required. The first commu-
nication step involves the computation of the matrix D, where we leverage an average
consensus algorithm. There, each of the A ∈ N consensus steps requires the transmission
of N(N + 1)/2 floats due to the symmetry of D. Note that the number A of averaged
consensus iterations can vary depending on the connectivity of the network.

The second communication step involves the iterative estimation of the model pa-
rameters. Assuming that the update loop of D-R-ARD requires I ∈ N iterations, the
distributed estimation of parameters ŵ with R ∈ N ADMM iterations then scales up as
O(I × ARN). Thus, the total communication load of D-R-ARD algorithm behaves as
AN(N + 1)/2 +O(I × ARN). Please note also that for this estimation of the communica-
tion load, the network structure remains unchanged.

3. Distributed Entropy-Driven Exploration for Sparse Bayesian Learning

The learning algorithm described in the previous section estimates the parameters of
the model w and γ given the measurements y and X. In the following, we focus on the
question of how a new measurement is acquired in an optimal fashion. As we will show,
the main criterion for this purpose is the information or, more specifically, the entropy
change as a function of a possible sampling location.

3.1. D-Optimality

One possible strategy to optimally select a new measurement location x̃ is provided by
the theory of optimal experiment design. Optimal experiment design aims at optimizing
the variance of an estimator through a number of optimality criteria. One of these criteria
is a so-called D-optimality: it measures the “size” of an estimator covariance matrix by
computing the volume of the corresponding uncertainty ellipsoid. More specifically, a
determinant (or rather the logarithm of a determinant) of the covariance matrix is computed.
The latter can then be optimized with respect to the experiment parameter. In our case, the
covariance matrix Σw of the model parameters w is readily given in (12) as a second central
moment of p(w|y). Thus, the D-optimality criterion can be formulated as

min log|Σw(X, Π)|, (30)

where the dependency of Σw on measurement locations X has been made explicit. Note that
due to the normality of the posterior pdf p(w|y), the term log|Σw(X, Π)| is proportional
to the entropy of w; thus, minimization of the criterion (30) would imply a reduction of
the entropy of the parameter estimates. Note that in contrast to [14], the covariance matrix
is not approximated here, but it is computed exactly based on the resulting probabilistic
inference model. Our intention is now to evaluate and optimize (30) as a function of the
new possible sampling location x̃.

Let us consider a modification of the model (7) as a function of the location x̃. The
incorporation of x̃ into (7) would imply that the design matrix Φ would be extended as
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Φ̃([XT , x̃]T , [ΠT , π̃]T) =

[
Φ(X, Π) φ(X, π̃)
φT(x̃, Π) φ(x̃, π̃)

]
, (31)

where π̃ is a new parameterization of a function φ based on the new location x̃—a new
regression feature. Let us stress that in general, the potential measurement at x̃ does not
have to lead to a new column in (31)—columns, i.e., basis functions in Φ can be fixed from
the initial design of the problem. In the latter case, Φ would be extended only by a row
vector φT(x̃, Π) = [φ(x̃, π1), . . . , φ(x̃, πN)]. However, a basis function with a currently
zero parameter weight estimate might be useful for explaining the new measurement value
at x̃ and, thus, might be activated. Our next step is to consider how

1. The D-optimality criterion can be evaluated efficiently for the “grown” design matrix
Φ̃ in (31),

2. And how the criterion can be evaluated in a distributed fashion.

3.1.1. Measurement Only-Update of the D-Optimality Criterion

We will begin with considering the update of the D-optimality criterion with respect
to a new measurement location x̃ assuming that only the number of rows in Φ grows, while
the number of features stays constant. In this case, (31) can be represented as

Φ̃([XT , x̃]T , Π) =

[
Φ(X, Π)
φT(x̃, Π)

]
. (32)

Based on (32), the new covariance matrix Σ̃w that accounts for the new measurement
location x̃ can be computed as

Σ̃w(X, Π, x̃) =
(

Φ̃([XT , x̃]T , Π)Λ̃Φ̃([XT , x̃]T , Π) + Γ̂−1
)−1

, (33)

where Λ̃ = diag{Λ, λ̃} ∈ RM+1×M+1 and λ̃ is the assumed noise precision at the poten-
tial measurement location. It is worth noting that we assume every measurement to be
independent white Gaussian noise.

By combining terms that depend on x̃, we can represent (33) as

Σ̃w(X, Π, x̃)−1 =
[
ΦTΛΦ + Γ̂−1

]
+ λ̃φ(x̃, Π)φ(x̃, Π)T

=Σ−1
w + λ̃φ(x̃, Π)φ(x̃, Π)T . (34)

As we see from (34), an addition of a new measurement row causes a rank-1 per-
turbation of the information matrix Σ−1

w . Using matrix determinant lemma [37], we can
thus compute

log |Σ̃w(X, Π, x̃)| =− log |Σ−1
w + λ̃φ(x̃, Π)φ(x̃, Π)T | (35)

= log |Σw| − log
∣∣∣1 + λ̃φ(x̃, Π)TΣwφ(x̃, Π)

∣∣∣ (36)

Note that Σw is independent of x̃, and thus, only the second term on the right-hand
side of (36) is relevant for the estimation.

Finally, the D-optimality criterion with respect to a location x̃ can be formulated as

arg min
x̃

log |Σ̃w| ≡ arg max
x̃

log
∣∣∣1 + λ̃φ(x̃, Π)TΣwφ(x̃, Π)

∣∣∣ = arg max
x̃

log
∣∣∣ f (x̃, λ̃)

∣∣∣, (37)

where we have exchanged minimization with a maximization by changing the sign of the
cost function.
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3.1.2. Computation of the D-Optimality Criterion with Addition of a New Feature

The computation of the D-optimality criterion becomes more involved when a mea-
surement at a location x̃ is associated with a new feature π̃. This can happen if, e.g., π̃ is a
center or location of a new basis function.

Then, based on (31), the new covariance matrix Σ̃w that accounts for x̃ and π̃ is
formulated as

Σ̃w(X, Π, x̃, π̃) =

(
Φ̃T([XT , x̃]T , [ΠT , π̃]T)Λ̃Φ̃([XT , x̃]T , [ΠT , π̃]T) +

[
Γ̂−1 0

0 γ̃−1

])−1

, (38)

where γ̃ is a sparsity parameter associated with a new column [φT(X, π̃), φ(x̃, π̃)]T . By
combining terms that depend on x̃, we can represent (38) as

Σ̃w(X, Π, x̃, π̃)−1 =

[
ΦTΛΦ + Γ̂−1 ΦTΛφ(X, π̃)
φT(X, π̃)ΛΦ φT(X, π̃)Λφ(X, π̃) + γ̃−1

]
+ λ̃

[
φ(x̃, Π)
φ(x̃, π̃)

][
φ(x̃, Π)
φ(x̃, π̃)

]T

. (39)

To simplify the notation, let us define

c(π̃) � ΦTΛφ(X, π̃), b(π̃) � φT(X, π̃)Λφ(X, π̃) + γ̃−1, (40)

which can be inserted into (39), leading to

Σ̃w(X, Π, x̃, π̃)−1 =

[
Σ−1

w c(π̃)
cT(π̃) b(π̃)

]
+ λ̃

[
φ(x̃, Π)
φ(x̃, π̃)

][
φT(x̃, Π) φ(x̃, π̃)

]
. (41)

The first term in (41) describes how much the new feature column contributes to the
covariance matrix, while the second term represents the contribution of a measurement at
location x̃. Let us now insert (41) into the D-optimality criterion in (30). By applying the
matrix determinant lemma [37] to the resulting expression, we compute

log |Σ̃w(X, ΠN , x̃, π̃)| =− log
∣∣∣∣ Σ−1

w c(π̃)
c(π̃)T b(π̃)

∣∣∣∣
− log

∣∣∣∣∣1 + λ̃

[
φ(x̃, Π)
φ(x̃, π̃)

]T[
Σ−1

w c(π̃)
c(π̃)T b(π̃)

]−1[
φ(x̃, Π)
φ(x̃, π̃)

]∣∣∣∣∣. (42)

Now, consider separately the contribution of the two terms in the right-hand side
of (42) to the D-optimality criterion. For the first term, we can use the Schur comple-
ment [38] q(π̃) = b(π̃)− cT(π̃)Σwc(π̃) such that the first logarithmic term can be refor-
mulated as

log
∣∣∣∣ Σ−1

w c(π̃)
c(π̃)T b(π̃)

∣∣∣∣ = − log |Σw|+ log q(π̃). (43)

Note that Σw is independent of x̃ and of π̃, which is a fact that will become useful later.
To simplify the second term in the right-hand side of (42), we first apply inversion

rules for structured matrices [39], which allows us to write[
Σ−1

w c(π̃)
c(π̃)T b(π̃)

]−1

=

[
Σw − Σwc(π̃)q(π̃)−1c(π̃)TΣw −Σwc(π̃)/q(π̃)

−c(π̃)TΣw/q(π̃) 1/q(π̃),

]
(44)

and thus
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log

∣∣∣∣∣1 +
[

φ(x̃, Π)
φ(x̃, π̃)

]T[
Σ−1

w c(π̃)
c(π̃)T b(π̃)

]−1[
φ(x̃, Π)
φ(x̃, π̃)

]∣∣∣∣∣
= log

(
1 + λ̃φT(x̃, Π)Σwφ(x̃, Π) + λ̃

(
φ(x̃, π̃)− c(π̃)TΣwφ(x̃, Π)

)2
/q(π̃)

)
= log

(
f (x̃, λ̃) + λ̃

(
φ(x̃, π̃)− c(π̃)TΣwφ(x̃, Π)

)2
/q(π̃)

)
. (45)

Finally, after inserting (43) and (45) into (42), the D-optimality criterion with respect to
a location x̃ can be formulated as

arg min
x̃

log |Σ̃w(X, Π, x̃, π̃)| ≡ (46)

arg max
x̃

log
[

q(π̃) f (x̃, λ̃) + λ̃
(

φ(x̃, π̃)− c(π̃)TΣwφ(x̃, Π)
)2

]
,

where we have exchanged minimization with a maximization by changing the sign of the
cost function, and we dropped log |Σw| as it is independent of x̃ and π̃.

3.1.3. Distributed Computation of the D-Optimality Criterion for SOE

Let us begin first with evaluating the D-optimality criterion for the SOE case.
Evaluating (37) for this data splitting is easier as compared with SOF.

Since Π is known to each agent, the vector φ(x̃, Π) can be evaluated without any
cooperation between the agents. The covariance Σw can then be evaluated distributively
using averaged consensus as Σw = (D + Γ̂−1)−1, where D is computed using network-
wide averaging. To compute (46), a few more steps are needed. Specifically, in addition to
Σw, we also need to compute the quantities c(π̃) and b(π̃) in (40) to evaluate the criterion.
These can already be computed using averaged consensus as

c(π̃) = ΦTΛφ(X, π̃) = K × 1
K

K

∑
k=1

ΦT
k Λφ(Xk, π̃), (47)

b(π̃) = φ(X, π̃)TΛφ(X, π̃) + γ̃−1 = K × 1
K

K

∑
k=1

φ(Xk, π̃)TΛφ(Xk, π̃) + γ̃−1. (48)

Then, using (47) and (48) as well as Σw computed distributively, the criterion (46) can
be easily evaluated by each agent.

It is worth noting that the choice of γ̃−1 in (48) is the only parameter that can be set
manually in this exploration criterion. Basically, it controls how much we know about the
potential measurement location. If γ̃−1 is large, the criterion would yield that the potential
measurement location is not informative. On the other side, if γ̃−1 → 0, the criterion
yields that the considered measurement location is potentially informative. We set γ̃−1 = 0
for all considered measurement locations, such that the current information in the model
determines how informative a measurement location could be.

3.1.4. Distributed Computation of the D-Optimality Criterion for SOF

For SOF, (37) is unsuited for a distributed computation such that some changes have
to be made. First, we define the following terms to facilitate the distributed formulation
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H � ΦΓ̂ΦT = K × 1
K

K

∑
k=1

ΦkΓ̂kΦT
k , (49)

d � ΦΓ̂φ(x̃, Π) = K × 1
K

K

∑
k=1

ΦkΓ̂kφ(x̃, Πk), (50)

v � φT(x̃, Π)Γ̂φ(x̃, Π) = K × 1
K

K

∑
k=1

φT
k (x̃, Πk)Γ̂kφ(x̃, Πk), (51)

where Πk = [π1, . . . , πNk ]
T ∈ RNk×s and Γ̂k = [γ̂1, . . . , γ̂Nk ]

T . All terms in (49)–(51) can
then be computed by means of an averaged consensus [40,41]. Next, we reformulate Σw
with the help of the matrix-inversion-lemma as

Σw = Γ̂ − Γ̂ΦT(Λ−1 + ΦΓ̂ΦT)−1ΦΓ̂ = Γ̂ − Γ̂ΦT(Λ−1 + H)−1ΦΓ̂. (52)

Now, (37) can be reformulated in a distributed setting for SOF as

f (x̃, λ̃) = 1 + λ̃φT(x̃, Π)Σwφ(x̃, Π)

= 1 + λ̃φT(x̃, Π)
(

Γ̂ − Γ̂ΦT(Λ−1 + H)−1ΦΓ̂
)

φ(x̃, Π)

= 1 + λ̃φT(x̃, Π)Γ̂φ(x̃, Π)− λ̃φT(x̃, Π)Γ̂ΦT(Λ−1 + H)−1ΦΓ̂φ(x̃, Π)

= 1 + λ̃v − λ̃dT(Λ−1 + H)−1d. (53)

For the case when the criterion (46) is used for evaluaton of the D-optimality, the
variable q(π̃) in (46) and the second additive term there have to be reformulated in a
form suitable for SOF data splitting. For the former, we utilize the definitions in (49)–(51),
together with (52) such that

q(π̃) = γ−1 + φT(X, π̃)Λφ(X, π̃)− φT(X, π̃)ΛΦΣwΦTΛφ(X, π̃)

= γ−1 + φT(X, π̃)Λφ(X, π̃)− φT(X, π̃)Λ(H − H(Λ−1 + H)−1H)Λφ(X, π̃)

= γ−1 + φT(X, π̃)Λφ(X, π̃)− φT(X, π̃)Λ(Λ + H−1)−1Λφ(X, π̃)

= γ−1 + φT(X, π̃)(Λ − Λ(Λ + H−1)−1Λ)Λφ(X, π̃)φ(X, π̃)

= γ−1 + φT(X, π̃)(Λ−1 + H)−1φ(X, π̃). (54)

The other term in (46) is then reformulated similarly using the results (49)–(52) as

cT(π̃)Σwφ(x̃, Π) = φT(X, π̃)ΛΦ(Γ̂ − Γ̂ΦT(Λ−1 + H)−1ΦΓ̂)φ(x̃, Π)

= φT(X, π̃)Λ(ΦΓ̂φ(x̃, Π)− ΦΓ̂ΦT(Λ−1 + H)−1ΦΓ̂φ(x̃, Π))

= φT(X, π̃)Λ(d − H(Λ−1 + H)−1)d)

= φT(X, π̃)Λ(I − H(Λ−1 + H)−1)d. (55)

As a result, the exploration criterion can be re-formulated for SOF in the following form

arg min
x̃

log |Σ̃w(X, Π, x̃, π̃)| ≡ (56)

arg max
x̃

log
[

q(π̃) f (x̃, λ̃) + λ̃
(

φ(x̃, π̃)− φT(X, π̃)Λ(I − H(Λ−1 + H)−1)d
)2

]
,

with q(π̃) defined in (54) and f (x̃, λ̃) given in (53).

4. Experimental Setup

This section describes definition of the experimental setup, calibration of the sensors,
and collection of ground-truth data for performance evaluation.
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4.1. Map Construction

The following describes our experimental setup. We conducted the experiments indoor
in our laboratory with two paper boxes as obstacles displayed in Figure 1a. Red lines in the
figure represent the borders of the experimental area. We use two Commonplace Robotics
(https://cpr-robots.com, accessed on 19 March 2022) ground-based robots with mecanum
wheels; further in the text, we will refer to the robots as sliders due to their ability to move
holonomically. To position the slider within the environment, the laboratory is equipped
with 16 VICON (https://www.vicon.com/, accessed on 19 March 2022) Bonita cameras.
For the experiment itself, we assume that the map is a priori known to the system. Thus, we
need to record the map before the experiment. So, a single slider is equipped with a light
detection and ranging (LIDAR) sensor. We use a Velodyne (https://velodynelidar.com/,
accessed on 19 March 2022) VLP-16 LIDAR and the corresponding robot operating system
(ROS) package, which can be downloaded from the ROS repository. We construct the map
while sending waypoints to the slider manually. The steering of the slider is done with the
help of ROS’ navigation stack [42] together with the Teb Local Planner [43]. The sensor output
of the LIDAR and the slider position estimated by the VICON system are then used to
generate a map with the Octomap [44] ROS package. Because we use the VICON position of
the slider, which is accurate, this mapping procedure is simpler compared to simultaneous
localization and mapping (SLAM) algorithms [45,46]. Figure 1b shows the constructed
map, which is afterwards used in the experiment.

(a) (b)

Figure 1. (a) The experimental setting with obstacles. The red line indicates the experimental area,
where the slider can navigate. (b) The constructed map.

4.2. Sensor Calibration

Each slider is equipped with a XSens MTw inertial measurement unit (IMU). The
sensor comprises a three-axis magneto-resistive magnetometer, an accelerometer, gyro-
scopes, and a barometer. For the following experiment, we only use the magnetometer.
The sensor is attached to a wooden stick to reduce the influence of the metal wheels on
the measurement. Although the sliders are equipped with sensors from the same product
line of the same manufacturer, their absolute perception differs. Additionally, the sensors
can still perceive the metal in the wheels of the robots. Therefore, we need to calibrate the
sensors relatively to each other to perceive the environment equally using the approach
proposed in [47].

The authors in [47] assume that the sensor readings of one sensor can be expressed as
another sensor’s reading through an affine transformation. To estimate the rotation and
translation, multiple sensor readings of all sensors have to be acquired. These readings
are then exploited to estimate the rotation and translation relative to one specific sensor
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by means of a least squares method. In this experiment, each magnetic field sensor reads
at a position xm one measurement of the magnetic field per Euclidean axis. During the
estimation, absolute values of these measurements are used. Figure 2a shows the absolute
values of the sensor readings for multiple measurement locations of two sensors. The error
of the sensor readings before and after calibration are presented in Figure 2b. The correction
thus reduces the bias and the standard deviation of the error between both sensors.

(a) (b)

Figure 2. (a) Absolute values of the magnetic field samples of two sensors. It is assumed that each
sensor measured at the same locations. (b) Error of the absolute values of the magnetic field samples
before and after the corrections. The calibrated sensor has now the same mean as the reference sensor,
and the standard deviation of the error is reduced.

However, this calibration is only useful if the orientation of both sensors is constant
during the experiment. As the sensors always measure in the same orientation, this
assumption is fulfilled for our experiments. For further information on intrinsic calibration
of inertial and magnetic sensors, the reader is referred to [48].

4.3. Collecting Ground Truth Data

In order to evaluate the performance of the distributed exploration, we also need
to know the actual magnetic field in the laboratory—a ground truth data. For collecting
the ground truth data, one slider measures the area of the Holodeck in a systematic
fashion, where the distance between each measurement was set to be 5 cm such that in total,
8699 measurement points were collected. On each measurement position, multiple sensor
readings are taken and averaged. The resulting ground truth is displayed in Figure 3.

Figure 3. Magnetic field intensity of the Holodeck collected for the experiment with real sensors. The
measurements were made in 5 cm steps.

5. Experimental System Design

Our setup relies on ROS (https://www.ros.org/, accessed on 19 March 2022), which
manages the communication between all software modules called nodes. On each slider, sev-
eral ROS nodes are running such as the motor controller, which translates the measurement
locations into velocity commands for each wheel, the path-planner, and the sensor.
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As a path-planner, we use the popular A* [49,50]. We implemented the A* algo-
rithm as a global and as a local planner, which is utilized for collision avoidance. There-
fore, each slider does not only consider the global map but also a local map around its
current position.

After receiving a new waypoint, the global path planner estimates a path in the global
map from the current position to the goal avoiding the obstacles. If there is no other robotic
system in its path, the goal is reached. However, if another slider enters the local frame
while the robot is on its way toward the goal, the robot stops, and the path within the local
frame is re-planned to avoid collisions. If the planner is not able to find a solution in the
local frame within a given time, the global path planning is re-initiated, taking the current
slider as an obstacle into account.

The whole system design for this experiment is shown in Figure 4. The distributed
exploration criterion uses the computed map excluding the locations of the obstacles. In
addition, the map information is used by the path-planner to find an obstacle-free path
to the estimated measurement location x̂. Figure 4 also describes the process-flow of the
whole system.

For comparison, we will use non-Bayesian SOF and SOE formulations as discussed
in [14]. As in these formulations, the ADMM algorithm [33] was used for estimation, we
will refer to them as ADMM for SOF and ADMM for SOE, respectively. For the Bayesian
learning and algorithms discussed in this paper, we will refer to them as D-R-ARD for SOF
and the D-R-ARD for SOE (see also Table 1).

Table 1. The algorithms that are used in this experiment and where they are introduced.

Algorithm Introduced in Exploration Introduced in

ADMM for SOE [33] [14]
ADMM for SOF [33] [14]

D-R-ARD for SOE Section 2.4 Section 3.1.3
D-R-ARD for SOF [15] Section 3.1.4

In the experiments, we will set the number of basis functions to N = 560, which also
determines the size of the vector w. The basis functions are distributed in a regular grid.
We consider Gaussian basis functions with a width set to σn = 0.25 such that

φn(x, πn) = exp
{
−‖x − πn‖2

2σ2
n

}
, (57)

where πn ∈ Rs and s = d.
After initialization of the system, every agent takes a first measurement and incorpo-

rates it in its local measurement model to calculate the first estimate of the regression. Then,
each algorithm requires that the intermediate estimated parameter weights are distributed
to the neighbors (following Figure 4) to do an average consensus [40,41]. Consequently,
each agent can proceed to estimate with the regression using the averaged intermediate
parameter weights. When the distributed regression converged, the agents use the es-
timated covariance matrix in the distributed exploration step. In this step, the agents
propose candidate positions to their neighbors and receive information to compute the
D-optimality criterion locally. When the best next measurement locations are chosen, they
are passed to the coordination part [51] to verify that all agents go to different positions.
If the measurement location is considered as valid, an agent locally plans its path on the
global frame to reach the goal. While approaching the goal, the agent checks if other agents
entered into the local frame to avoid collisions. When all agents reached their goal, the
agents take measurements and the process flow continues.
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D-R-ARD

Path Planing and
Collision Avoidance

Distributed Exploration

Solve (29) with ADMM
Locally estimate wk

Distribute wk
to all neighbors

Introduce measurement locally
Φk([XM, xM+1]

T) =
[ΦT

k (XM), φT(xm+1, Π)]T ]
yk = [yT

k (XM), yk(xM+1)]
T)

Compute the
D-Optimality
as in (46).

Distribute local data
to neighbors by
(47) and (48)

Make measurement at
x = x̂

Move towards
measurement locations

γ̂, Σw
x̂k∀k = 1, . . . , K

Φk, yk

Check local frame for
collisions

Initialization

Coordination

Select measurement
location according
to agent’s positions

Reached?

All agents
reached?

no

yes

yesno

XSens mTw

Replan path in
local frame

Plan path on global frame
A*

A*

A*

Found
solution?

no

yes

Compute γ̂ and ẑ
with (26)

yes

noconverged?

Figure 4. System design with additional path planner and map constraints. Each gray box represents
interaction between other agents. In some boxes, the lower right indicates where this process belongs.
This software setup is representative for the SOE distribution paradigm.

As evaluation metric, we chose the normalized mean square error (NMSE), which can
be defined as

e � ‖ytrue(XT)− Φ(XT , Π)ŵ‖
‖ytrue(XT)‖

, (58)

where ytrue(XT) ∈ RT is the ground truth measured at T ∈ N positions XT ∈ RT×d. Here,
we set T = 560, and these locations are equal to the center positions of the Gaussian
basis functions.

6. Experimental Validation

Figure 5 shows the NMSE of all conducted experiments with respect to time (top plot)
and to the number of measurements (bottom plot). Each experimental run has a different
duration, and the ROS system uses asynchronous interprocess communication resulting
in asynchronous time-steps. Thus, all runs of one particular algorithm are visualized as
a scatter plot. The number of measurements varies because the computation time for
each measurement could be different. As a consequence, an averaging along multiple
experimental runs along the time axis is not reasonable. For both ADMM algorithms, we
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conducted four experiments, whereas for each D-R-ARD algorithm, we conducted two
experiments. The corresponding results are summarized in Figure 5.

Figure 5. The NMSE of the conducted experiments with respect to time and with respect to the
number of measurements.

When looking at the top plot in Figure 5, the D-R-ARD for SOE has the best perfor-
mance because the NMSE is reduced faster compared to the other methods.

Regarding the ADMM algorithms, the SOE paradigm has a brief benefit until the
1200 s until SOF paradigm outperforms the SOE paradigm. The weak performance of
D-R-ARD for SOF might result from the distributed structure of the algorithm, which
requires the algorithm to compute a matrix inversion in each iteration together with the
computational complex estimation of parameter weights and variances. In contrast to that,
the corresponding algorithm with the SOE distribution paradigm is able to cache the matrix
inversion, which drastically increases the performance. Yet, the D-R-ARD algorithms have
generally a higher computational complexity compared to the ADMM algorithms. This is
due to the fact that the Bayesian methods require the covariance to be computed in each
iteration. The ADMM algorithm, in contrast, does not require this.

The plot at the bottom of Figure 5 displays the NMSE with respect to the number of
obtained measurements. There, the D-R-ARD for SOF and ADMM for SOF have almost
the same performance. However, the ADMM for SOF is able to achieve substantially more
measurements because it is computationally less complex. Consequently, the ADMM for
SOF achieves not only more measurements but is on a par with the D-R-ARD for SOF when
it comes to efficiency per measurement.

For the SOE distribution paradigm, on the contrary, it is beneficial to use the Bayesian
methodology. In the experiments we present here, the D-R-ARD for SOE achieves a lower
NMSE with fewer measurements compared to ADMM for SOE algorithm. This could be
due to the fact that D-R-ARD for SOE computes the entropy of the parameter weights and
does not approximate it. The computed entropy seems then to be better for the D-optimality
criterion than the approximated version for the ADMM for SOE.

To support the claim that the Bayesian framework estimates a better covariance
of the parameter weights when the SOE paradigm is applied, Figure 6a,b present the
estimated magnetic field and the estimated covariance at different timesteps. In both
figures, the left most plots display the beginning of the experiment and the most right
plots show the end result of the experiment. At the beginning of the experiments, both
algorithms—ADMM and D-R-ARD for SOE—estimate a sparse covariance with not much
difference. As the measurements increase, the approximated covariance becomes smoother,
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and the covariance estimated in the Bayesian framework stays sparse. This effect might
result from the approximation of a covariance as introdcued in [14], where a penalty
parameter needs to be chosen as a compromise between sparsity and a reasonably well
approximated covariance.

(a)

(b)

Figure 6. (a) SOE with a classic framework. (b) SOE with a Bayesian framework. In both figures, the
upper row displays the estimates at different time steps and the lower row shows the entropy at the
same time steps.

As a second remark, the ADMM algorithms involve a thresholding operator, which
sets all not used basis functions to zero such that these basis functions can not be considered
by the exploration step. This is controlled by a manually set penalty parameter and might
be sub-optimal. The D-R-ARD for SOE, on the other side, estimates a hyper-parameter
for each basis function based on the current data. Therefore, the influence of each basis
function is addressed more individually and, hence, leads to a better covariance estimate.
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The way basis functions and parameter weights are introduced in the SOF paradigm makes
this effect eventually not observable between the Bayesian and the Frequentist framework.

7. Conclusions

The presented paper proposes and validates a method for spatial regression using
Sparse Bayesian Learning (SBL) and exploration, which are both implemented over a
network of interconnected mobile agents. The spatial process of interest is described as
a linear combination of parameterized basis functions; by constraining the weights of
these functions in the final representation using a sparsifying prior, we find a model with
only a few, relevant functions contributing to the model. The learning is implemented
in a distributed fashion, such that no centralized processing unit is necessary. We also
considered two conceptually different distribution paradigms splitting-over-features (SOF)
and splitting-over-examples (SOE). To this end, a numerical algorithm based on alternating
direction method of multipliers is used.

The learned representation is used to devise an information-driven optimal data
collection approach. Specifically, the perturbation of the parameter covariance matrix with
respect to a new measurement location is derived. This perturbation allows us to choose
new measurement locations for agents such that the size of the resulting joint parameter
uncertainty, as measured by the log-determinant of the covariance, is minimized. We
show also how this criterion can be evaluated in a distributed fashion for both distribution
paradigms in an SBL framework.

The resulting scheme thus includes two key steps: (i) cooperative sparse models
that fit data collected by agents, and (ii) the cooperative identification of new measure-
ment locations that optimizes the D-optimality criterion. To validate the performance of
the scheme, we set up an experiment involving two mobile robots that navigated in an
environment with obstacles. The robots were tasked with reconstructing the magnetic
field which was measured on the floor of the laboratory by a magnetometer sensor. We
tested the proposed scheme against a non-Bayesian sparse regression method and a similar
exploration criterion.

The experimental results show that the Bayesian methods explore more efficiently
than the benchmark algorithms. Efficiency is measured as the reduction of error over the
number of measurements or the reduction of error over time. The reason is that the used
Bayesian method directly computes the covariance matrix from the data and has fewer
parameters that have to be manually adjusted. The exploration with these methods is
therefore simpler to set up as compared with non-Bayesian inference approaches studied
before. Yet, for the SOF distribution paradigm, the Bayesian method is computationally
too demanding such that significantly fewer measurements can be collected in the same
amount of time as compared with the non-Bayesian learning method.
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Abbreviations

The following abbreviations are used in this manuscript:

ADMM alternating direction method of multipliers
ROS robot operating system
SBL Sparse Bayesian Learning
PDF probability density function
SOF splitting-over-features
SOE splitting-over-examples
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NMSE normalized mean square error
D-R-ARD distributed R-ARD
R-ARD reformulated automatic relevance determination
IMU inertial measurement unit
LIDAR light detection and ranging
SLAM simultaneous localization and mapping
UAV unmanned aerial vehicle
LASSO least absolute shrinkage and selection operator
MAP maximum a posteriori
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Abstract: Most previous studies on multi-agent systems aim to coordinate agents to achieve a
common goal, but the lack of scalability and transferability prevents them from being applied to
large-scale multi-agent tasks. To deal with these limitations, we propose a deep reinforcement
learning (DRL) based multi-agent coordination control method for mixed cooperative–competitive
environments. To improve scalability and transferability when applying in large-scale multi-agent
systems, we construct inter-agent communication and use hierarchical graph attention networks
(HGAT) to process the local observations of agents and received messages from neighbors. We also
adopt the gated recurrent units (GRU) to address the partial observability issue by recording historical
information. The simulation results based on a cooperative task and a competitive task not only show
the superiority of our method, but also indicate the scalability and transferability of our method in
various scale tasks.

Keywords: multi-agent; deep reinforcement learning; partial observability

1. Introduction

The last few years witnessed the rapid development of the multi-agent system. Due
to its ability to solve complex computing or coordinating problems [1], it has been widely
used in different fields, such as computer networks [2,3], robotics [4,5], etc. In the multi-
agent system, agents try to learn their policies and execute tasks collaboratively, in either
cooperative or competitive environments, by making autonomous decisions. However,
in large-scale multi-agent systems, partial observability, scalability, and transferability are
three important issues to be addressed for developing efficient and effective multi-agent
coordination methods. Firstly, it is impossible for agents to learn their policies from the
global state of the environment, as it contains massive information about a large number
of agents. Therefore, they need to communicate with other agents in some ways, to reach
consensus on decision making. Secondly, the previous methods either learn a policy to
control all agents [6] or train their policies individually [7], which is difficult to be extended
for large-scale agents. Thirdly, in existing deep-learning-based methods, the policies are
trained and tested under the same number of agents, making them untransferable to
different scales.

In this paper, we propose a scalable and transferable multi-agent coordination control
method, based on deep reinforcement learning (DRL) and hierarchical graph attention
networks (HGAT) [8], for mixed cooperative-competitive environments. By regarding the
whole system as a graph, HGAT helps agents extract the relationships among different
groups of entities in their observations and learn to selectively pay attention to them, which
brings high scalability when applying in large-scale multi-agent systems. We enforce inter-
agent communication to share agents’ local observations with their neighbors and process
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the received messages through HGAT; therefore, agents can reach consensus by learning
from their local observations and information aggregated from the neighbors. Moreover,
we introduce the gated recurrent unit (GRU) [9] into our method to record the historical
information of agents and utilize it when determining actions, which optimizes the policies
under partial observability. We also apply parameter sharing to make our method transfer-
able. Compared with previous works, our method achieves a better performance in mixed
cooperative–competitive environments while acquiring high scalability and transferability.

The rest of this paper is organized as follows. In Section 2, we review the related works.
We describe some background knowledge of multi-agent reinforcement learning and
hierarchical graph attention networks in Section 3. In Section 4, we describe a cooperative
scenario, UAV recon and a competitive scenario, predator-prey. We present the mechanism
of our method in Section 5. The simulation results are shown in Section 6. We discuss
advantages of our method in Section 7 and draw the conclusion in Section 8. The list of
abbreviations is shown in Abbreviations.

2. Related Work

Multi-agent coordination has been studied extensively in recent years and imple-
mented in various frameworks, including heuristic algorithms and reinforcement learning
(RL) algorithms. In [10], the authors presented a solution to the mission planning problems
in multi-agent systems. They encoded the assignments of tasks as alleles and applied the
genetic algorithm (GA) for optimization. The authors of [11] designed a control method for
the multi-UAV cooperative search-attack mission. UAVs employ ant colony optimization
(ACO) to perceive surrounding pheromones and plan flyable paths to search and attack
fixed threats. The authors of [12] focused on the dynamic cooperative cleaners problem [13],
and presented a decentralized algorithm named “sweep” to coordinate several agents to
cover an expanding region of grids. It was also used to navigate myopic robots who cannot
communicate with each other [14]. In [15], the authors designed a randomized search
heuristic (RSH) algorithm to solve the coverage path planning problem in multi-UAV
search and rescue tasks, where the search area is transformed into a graph. The authors
of [16] proposed a centralized method to navigate UAVs for crowd surveillance. They
regarded the multi-agent system as a single agent and improved its Quality of Service (QoS)
by using an on-policy RL algorithm state-action-reward-state-action (SARSA) [17]. Ref. [18]
proposed a distributed task allocation method based on Q-learning [19] for cooperative
spectrum sharing in robot networks, where each robot maximizes the total utility of the
system by updating its local Q-table.

However, as the scale of multi-agent systems increases, the environment becomes more
complex while the action space of the whole system expands exponentially. It is difficult for
heuristic algorithms and the original RL methods to coordinate agents since they need more
time and storage space to optimize their policies. Combining deep neural networks (DNNs)
and RL algorithms, deep reinforcement learning (DRL) is widely used for multi-agent
coordination in cooperative or competitive environments. It extracts features from the
environment state with DNN and uses them to determine actions for agents, which brings
better performance. Moreover, since the environment is affected by the action of all agents
in multi-agent systems, it is hard for adversarial deep RL [20] to train another policy to
generate possible disturbances from all agents. Semi-supervised RL [21] also fails to apply
in multi-agent systems, as it cannot learn to evaluate the contribution of each agent from
the global state and their actions. DRL can either control the whole multi-agent system by
a centralized policy (such as [6]) or control agents individually in a distributed framework
called multi-agent reinforcement learning (MARL). In a large-scale environment, MARL
is more robust and reliable than the centralized methods because each agent can train its
policies to focus on its local observation instead of learning from the global state.

The goal of MARL is to derive decentralized policies for agents and impose a consen-
sus to conduct a collaborative task. To achieve this, the multi-agent deep deterministic
policy gradient (MADDPG) [22] and counterfactual multi-agent (COMA) [23] construct
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a centralized critic to train decentralized actors by augmenting it with extra information
about other agents, such as observations and actions. Compared with independent learn-
ing [24], which only uses local information, MADDPG and COMA can derive better policies
in a non-stationary environment. However, it is difficult for these approaches to be applied
in a large-scale multi-agent system, as they directly use the global state or all observations
when training. Multi-actor-attention-critic (MAAC) [25] applies the attention mechanism
to improve scalability by quantifying the importance of each agent through the attention
weights. Deep graph network (DGN) [26] regards the multi-agent system as a graph and
employs a graph convolutional network (GCN) with shared weight to process information
from neighboring nodes, which also brings high scalability. Ref. [8] proposed a scalable
and transferable model, named the hierarchical graph attention-based multi-agent actor-
critic (HAMA). It clusters all agents into different groups according to prior knowledge
and constructs HGAT to extract the inter-agent relationships in each group of agents and
inter-group relationships among groups, aggregating them into high-dimensional vectors.
By using MADDPG with shared parameters to process those vectors and determine ac-
tions, HAMA can coordinate agents better than the original MADDPG and MAAC when
executing cooperative and competitive tasks.

Various MARL-based methods have recently been proposed for multi-agent coor-
dination. Ref. [27] designed a distributed method to provide long-term communication
coverage by navigating several UAV mobile base stations (UAV-MBSs) through MADDPG.
Ref. [7] presented a MADDPG-based approach that jointly optimizes the trajectory of
UAVs to achieve secure communications, which also enhanced the critic with the attention
mechanism, such as [25]. The authors of [28] adopted GCN to solve the problem for large-
scale multi-robot control. Ref. [29] separated the search problem in indoor environments
into high-level planning and low-level action. It applied trust region policy optimization
(TRPO) [30] as the global and local planners to handle the control at different levels. In
our previous work, we proposed the deep recurrent graph network (DRGN) [31], a novel
method that is designed for navigation in a large-scale multi-agent system. It constructs
inter-agent communication based on a graph attention network (GAT) [32] and applies
GRU to recall the long-term historical information of agents. By utilizing extra information
from neighbors and memories, DRGN performs better than DQN and MAAC when navi-
gating a large-scale UAV-MBS swarm to provide communication services for targets that
are randomly distributed on the ground.

The difference between our method and the previous works are summarized as follows.
DRGN represents the observation as a pixel map of the observable area and processes
it by DNN. Our method regards the global state as a graph where the nodes represent
the entities in the environment and employs HGAT to process the observation. It is more
effective for our method to learn relationships between agents and entities through HGAT.
Moreover, our method spends less space to store the observation than DRGN, as the scale
of the observation in our method is independent of the observation range. In HAMA,
each agent observes up to K nearest neighboring entities per type, where K is a constant.
Our method considers that agents can observe all entities inside the observation range
and uses an adjacency matrix to denote the relationships of the observation, which can
describe the actual observation of agents more accurately than HAMA. In addition, our
method introduces GRU and HGAT-based inter-agent communication to provide extra
information for agents, so they can optimize policies for coordination by learning from
historical information and neighbors.

3. Background

3.1. Multi-Agent Reinforcement Learning (MARL)

The process of MARL is regarded as a decentralized partially observable Markov
decision process (Dec-POMDP) [33]. In MARL, each agent i observes the environment state
s and obtains a local observation oi. Then, it selects an action according to its policy πi. The
environment executes the joint actions a = (a1, · · · , aN) and transforms s to the next state
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s′. After execution, each agent acquires a reward ri = Ri(s, a) and a next observation o′i
from the environment. Each agent aims to optimize its policy to maximize its total expected
return Ri = ∑T

t=0 γtri(t), where T is a final timeslot, and γ ∈ [0, 1] is the discount factor.
Q-learning [19] and policy gradient [34] are two popular RL methods. The idea of Q-

learning is to estimate an state-action value function Q(s, a) = E[R] and select the optimal
action to maximize Q(·). Deep Q-network (DQN) [35], a Q-learning-based algorithm, uses
a DNN as a function approximator and trains it by minimizing the loss:

L(θ) = Es,a,r,s′ [(y − Q(s, a|θ))2] (1)

where θ is the parameter of the DNN. The target value y is defined as y = r + γ maxa′ Q′(s′, a′) [35],
where Q′ is the target network, whose parameters are periodically updated from θ. DQN
also applies a replay buffer to stabilize learning.

Policy gradient directly optimizes the policy π to maximize J (θπ) = E[R] and
updates parameters based on the gradient [34]:

∇θπJ (θπ) = Es∼pπ ,a∼π [∇θπ log π(a|s, θπ)Q(s, a)] (2)

where pπ is the state distribution. Q(s, a) can be estimated by samples [36] or a function
approximator, such as DQN, which leads to the actor–critic algorithm [37].

3.2. Hierarchical Graph Attention Network (HGAT)

HGAT is an effective method for processing hierarchically structured data represented
as a graph and introduced into MARL to extract the relationships among agents. By
stacking multiple GATs hierarchically, HGAT firstly aggregates embedding vectors el

ij from

neighboring agents in each group l into e′ li and subsequently aggregates e′ li from all groups
into e′ i. The aggregated embedding vector e′ i represents the hierarchical relationships
among different groups of neighbors.

4. System Model and Problem Statement

In this section, we describe the settings of a multi-agent cooperative scenario, UAV
recon and a competitive scenario, predator-prey.

4.1. UAV Recon

As shown in Figure 1a, we deploy N UAVs into a hot-spot area to scout n point-of-
interests (PoIs) for T timeslots, where PoIs are randomly distributed. As we consider our
UAVs to move at the same altitude, the area of our mission is two-dimensional. Each UAV
has a circled recon area whose radius is considered as a recon range. If the Euclidean
distance between a UAV and a PoI is less than the recon range, we consider the PoI to
be covered.

In the beginning, each UAV is deployed in a random position. At each timeslot t, each
UAV i determines its acceleration acci ∈ {(acc, 0), (−acc, 0), (0, acc), (0,−acc), (0, 0)} as its
action. The action space of i is discrete. The energy consumption of i is defined as:

Ei = Eh +
vi

vmax
Em (3)

where vi is the velocity of i and vmax is the maximum velocity of UAVs. Eh and Em are the
energy consumption for hovering and movement, respectively.
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Predator
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(b)

UAV
PoI

(a)

Figure 1. Illustrations of (a) UAV Recon and (b) Predator-Prey.

In our scenario, our goals of UAVs are to cover more PoIs more fairly with less energy
consumption. To evaluate the quality of tasks, we consider three metrics: coverage C,
fairness F, and energy consumption E. The score of C denotes the proportion of covered
PoIs, which is defined as:

C =
nC(t)

n
(4)

where nC(t) is the number of covered PoIs at timeslot t.
The score of fairness denotes how fair all PoIs are covered. Here, we use Jain’s fairness

index [38] to define the score of F as:

F =
(∑n

j=1 cj)
2

n ∑n
j=1 c2

j
(5)

while cj is the coverage time of PoI j.
Finally, UAVs need to control energy consumption in tasks. We define the score of

E as:

E =
1
N

N

∑
i=1

Ei (6)

When executing recon missions, each UAV needs to observe local states of other UAVs
and PoIs to determine its action. The local state of UAV i is defined as si = (Pi, vi), where
Pi and vi are the position and the velocity of i, respectively. Each PoI j’s local state sj = (Pj).
If a PoI is in UAV i’s observation range, we consider the PoI is observed by i. If another
UAV j is in i’s communication range, we consider i can communicate with j. To train UAV’s
policy, we define a heuristic reward ri as:

ri =
η1 × rindv + η2 × rshared

Ei
− pi (7)

where pi is a penalty factor. When UAV i flies across the border, it is penalized by pi.
rindv = −1 if no PoIs is covered by i individually, otherwise rindv = nindv, where nindv
means the number of PoIs that are only covered by i. rshared = 0 if i does not share PoIs

with others, otherwise rshared =
nshared
Nshare

, where nshared denotes the number of PoIs which

are covered by Nshare neighboring UAVs. η1 and η2 are the importance factor of rindividual
and rshared, respectively. We empirically set η1 � η2 to encourage UAVs to cover more PoIs
and avoid overlapping with others.
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4.2. Predator-Prey

As shown in Figure 1b, we deploy Npredator predators to eliminate Nprey prey.
Both of them are controlled by a DRL-based method. If the distance between a predator

and a prey is less than predators’ attack range, we consider the prey to be eliminated. The
goal of the predators is to eliminate all prey, while the goal of the prey is to escape from
the predators. The speed of the predators is slower than the prey speed, so they need to
cooperate with each other when chasing prey.

The action space of the predators and the prey is the same as the UAVs in the UAV
recon scenario. The local state of each predator or prey is defined as si = (Pi, vi), where
Pi and vi are the position and the velocity of a predator or prey, respectively. We consider
that each predator and prey can observe the local state of adversaries inside its observation
range, while it can communicate with companions inside its communication range. The
eliminated preys can neither be observed nor communicate with others. To evaluate the
performance of predators and prey, we define the score as:

S =
T − Teliminate

T
(8)

where T is the total timeslots of an episode, while Teliminate is the timeslot when all prey are
eliminated.

When predator i eliminates prey j, i will obtain a positive reward, while j will obtain a
negative reward. When all prey are eliminated, the predators will get an additional reward.

5. HGAT-Based Multi-Agent Coordination Control Method

To achieve the goals of two scenarios described in Section IV, we present a multi-agent
coordination control method based on HGAT for mixed cooperative–competitive environ-
ments. In our method, the global state of the environment is regarded as a graph, containing
the local state of agents and the relationship among them. Each agent summarizes the
information from the environment by HGAT and subsequently computes the Q-value and
action in a value-based or actor–critic framework.

5.1. HGAT-Based Observation Aggregation and Inter-Agent Communication

In the multi-agent system, the environment involves multiple kinds of entities, includ-
ing agents, PoIs, etc. As they are heterogeneous, agents need to treat their local states and
model their relationships separately. Thus, we categorize all entities into different groups at
the first step of execution in cooperative or competitive scenarios. As shown in Figure 2, M
entities (containing N agents) are clustered into K groups and represent the environment’s
state as graphs. The agents construct an observation graph GO and a communication graph
GC respectively based on their observation ranges O1, · · · ,ON and communication ranges
C1, · · · , CN . The edges of GO represent that the entities can be observed by agents, while
the edges of GC represent that two of the agents can communicate with each other. The
adjacency matrix of GO and GC are AO and AC , respectively. i’s observation is defined as
oi =

{
sj|j ∈ Oi

}
. Its received messages from the others is mi =

{
mji|j ∈ Ci

}
, where sj is

agent j’s local state and mji is the message that j sends to i.
At each timeslot, the agents use the network shown in Figure 3 to determine their

actions according to s, AO , and AC received from the environment, where s = (s1, , · · · , sM).
The parameters of the network are shared among the agents in the same group. The network
contains three components, a set of encoders, two stacked HGAT layers, and a recurrent unit,
which consists of a gated recurrent unit (GRU) layer and a fully connected layer. GRU is a
variant of the recurrent neural network (RNN). To summarize the information in each agent
i’s observation oi, the first HGAT layer processes oi into a high-dimensional aggregated
embedding vector e′i as shown in Figure 4. Firstly, the encoder which consists of a fully
connected layer transforms the local states from each group l into embedding vectors as
ej = f l

e(sj), where f l
e means the encoder for group l. ej is the embedding vector for entity j in

group l. Then, it aggregates ej as e′ li = ∑j αijW
l
vej [32], where Wl

v is a matrix that transforms
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ej into a “value”. The attention weight αij represents the importance of the embedding

vector ej from j to i, which is calculated by softmax as αij ∝ exp(ej
TWl

k
T

Wqei) [32] if aOi,j
in AO is 1, otherwise αij = 0. Wk and Wq transform a embedding vector into a “key”
and a “query”, respectively. AO is used for selection so that only the local states from Oi
are summarized. To improve the performance, we use the multiple attention heads here.
Finally, e′ li from all groups are aggregated into e′i by a fully connected layer fG, as:

e′i = fG(‖K
l=1 e′ li) (9)

where ‖ represents the concatenation operation. We do not apply another GAT for aggre-
gating, such as HAMA, as our approach has less computing overhead.

Agent in group l

Agent in group m

Observation range 

Communication range 

Edge of observation

Edge of communication

Figure 2. The clustering of agents and their topology.

sl

sm

Encoder

Encoder

HGAT HGAT

e''i

Q(oi, mi, ai, hi)

e'i

mi

el

em

Concatenate

Recurrent
unit

GRU

FC

hi

Figure 3. The overall structure of the network. sl and el represent the local states and embedding
vectors of agents in group l. Ai denotes the ith row of A.

After calculating e′i , agent i sends it as a message mij to each neighboring agent j in C(i).
Inter-agent communication helps agents to share their observations with neighbors, which
brings a better performance in coordination. To summarize each agent i’s received messages
mi, the second HGAT layer processes mi and aggregates it into another embedding vector
e′′i by the same means as shown in Figure 4. The adjacency matrix used here is AC instead
of AO . Our method is capable of inner-group and inter-group communication and can
easily extend to a multi-hop by stacking new HGAT layers.
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Figure 4. The architecture of an HGAT layer.

5.2. Implementation in a Value-Based Framework

This implement is based on DQN. Each agent i maintains hidden states hi for the
recurrent unit and calculates its Q-values by a Q-network, as shown in Figure 3. Similar to
DQN, our method also employs a target network with the same structure.

We introduce the skip-connection strategy by concatenating e′i and e′′i as an input of
the recurrent unit when computing the Q-value, so agents can use the information both
from their observation and others’. The Q-value is calculated as:

Ql(oi, mi, ai, hi) ≈ f l
R(e

′
i , e′′i , hi) (10)

where Ql represents the Q-network of group l where i belongs, f l
R means the recurrent

unit in Ql , and ai is the action determined by i according to Q-values. We apply ε-greedy
policy [35] to balance the exploitation and exploration as:

ai =

{
arg maxa∈Ai Ql(oi, mi, a, hi), with probability 1 − ε
random(Ai), with probability ε

(11)

where Ai is the action space of i.
After executing the joint actions a = (a1, · · · , aN), the environment transforms the

current state to the next and sends the next local states s′, the next adjacency matrix A′O and
A′C , and the reward ri to each agent i. The experience (s, AO , AC , a, r, s′, A′O , A′C , h, h′)
is stored in a shared replay buffer B, where r = (r1, · · · , rN), h = (h1, · · · , hN), and
h′ = (h′1, · · · , h′N). h′i is the next hidden state that the Q-network outputs when agent i
calculates Q-values. hi is initialized to zero at the beginning of an episode.

To training the Q-network of each group, we sample H experiences from B as a
minibatch and minimize the loss:

L(θQ
l ) =

1
Nl

Nl

∑
i=1

E[(yi − Ql(oi, mi, ai, hi|θQ
l ))2] (12)

where Nl means the number of agents in group l and θQ
l denote the parameters of Ql . yi is

the target value that calculated by the target network Q′ l , as:

yi = ri + γ max
a′∈Ai

Q′ l(o′i , m′
i, a′, h′i|θQ′

l ) (13)

where o′i and m′
i are i’s next observation and next received messages, respectively. θQ′

l
denote the parameters of Q′ l , which are periodically updated from θQ

l .
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5.3. Implementation in an Actor–Critic Framework

Our method can also be implemented on the actor–critic framework. In this imple-
mentation, each agent i has an actor network and a critic network, maintaining hidden
states hπ

i and hQ
i . After obtaining s, AO and AC , agent i in group l computes the probability

of actions as:
πl(oi, mi, hπ

i ) ≈ f πl

R (e′πi , e′′πi , hπ
i ) (14)

where πl represents the actor network of group l and f πl

R represents the recurrent unit
in πl . We employ the ε-categorical policy here. Agent i determines an action based on
πl(oi, mi, hπ

i ) with probability 1 − ε and makes a random choice with probability ε. The
critic network Ql subsequently calculates Q-values, such as the value-based framework.
The hidden states hπ

i and hQ
i and the next hidden states h′πi and h′Qi are stored in the replay

buffer, where h′πi and h′Qi are the outputs of πl and Ql , respectively.
The critic network of each group is trained by minimizing the loss L(θQ

l ), which is
computed as (13). As the actor–critic framework selects actions according to πl(oi, mi, hπ

i )
instead of the maximum Q-value, we use the expectation of the next state’s Q-value to
calculate the target value yi as:

yi = ri + γ ∑
a′∈Ai

π′ l(a′|o′i , m′
i, h′πi , θπ′

l )Q′ l(o′i , m′
i, a′, h′Qi |θ

Q′
l ) (15)

where θπ′
l and θQ′

l are the parameters of target network π′ l and Q′ l , respectively.
The actor network of each group is trained according to the gradient:

∇θπ
l
(J (θπ

l )) =
1
Nl

Nl

∑
i=1

E[log πl(ai|oi, mi, hπ
i , θπ

l )(Q
l(oi, mi, ai, hQ

i |θ
Q
l )− bi)] (16)

where the baseline bi is designed to reduce variance and stabilize training [39], which is
defined as:

bi = ∑
a∈Ai

πl(a|oi, mi, hπ
i , θπ

l )Q
l(oi, mi, a, hQ

i |θ
Q
l ) (17)

After training, θπ′
l and θQ′

l are updated as θπ′
l ← τθπ

l + (1 − τ)θπ′
l , and θQ′

l ← τθQ
l +

(1 − τ)θQ′
l , respectively [40].

Our method can be extended to continuous action space by estimating the expectation
of bi with Monte Carlo samples or a learnable state value function V(oi, mi) [23].

6. Simulation

6.1. Set Up

To evaluate the performance of our method, we conduct a series of simulations on an
Ubuntu 18.04 server with 2 NVIDIA RTX 3080 GPUs. We implement a value-based (VB)
version and an actor–critic (AC) version of our method in PyTorch. Each fully connected
layer and GRU layer contains 256 units. The activation functions in encoders and HGAT
layers are ReLU [41]. The number of attention heads is 4. Empirically, we set the learning
rate of the optimizer to 0.001, and the discount factor γ to 0.95. The replay buffer size is
50 K and the size of a minibatch is 128. ε is set to 0.3. For the value-based version, The
target networks are updated every five training steps. For the actor–critic version, we set
τ to 0.01. The networks are trained every 100 timeslots and update their parameters four
times in a training step.

We compare our method with four MARL baselines, including DGN, DQN, HAMA,
and MADDPG. For non-HGAT-based approaches, each agent concatenates all local states
in its observation into a vector, while padding 0 for unobserved entities. The parameters of
networks are shared among agents in all baselines except MADDPG. We use the Gumbel-
Softmax reparameterization trick [42] in HAMA and MADDPG to make them trainable
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in discrete action spaces. DGN is based on our proposed algorithm [31], which applies a
GAT layer for inter-agent communication. We train our method and each baseline for 100 K
episodes and test them for 10 K episodes.

6.2. UAV Recon

As summarized in Table 1, we deploy several UAVs in a 200 × 200 area where 120 PoIs
are distributed. The penalty factor p in (7) is set to 1. We evaluate the performance of our
method in the test stage under different number of UAVs and compare it with baselines.

Table 1. Experiment parameters of UAV recon.

Parameters Settings

Target Area 200 × 200
Number of PoIs 120

Recon Range 10
Observation Range 15

Communication Range 30
Maximum Speed 10/s

Energy Consumption for Hovering 0.5
Energy Consumption for Movement 0.5

Penalty Factor p 1
Importance Factor η1 1
Importance Factor η2 0.1

Timeslots of Each Episode 100

Figure 5 shows the performance of each method in terms of coverage, fairness, and
energy consumption under different numbers of UAVs. Note that both two versions of
our method are trained with 20 UAVs and transferred to a different scale of UAV swarms.
From Figure 5a,b, we observe that our method outperforms all baselines in terms of
coverage and fairness. Compared with DGN and DQN, our method employs HGAT to
extract features from observation, which is more effective than processing raw observation
vectors directly. Therefore, our method helps UAVs to search PoIs and better optimize
their flight trajectories. Although HAMA also applies HGAT, UAVs cannot cooperate
as effectively as our method, owing to the lack of communication. In our method, the
UAVs communicate with others and process received messages by another HGAT layer.
Furthermore, the recurrent unit helps UAVs to learn from the hidden states, which induces a
better performance. In MADDPG, each UAV trains an individual network and concatenates
observations and actions of all agents into a high-dimensional vector as an input of the
critic. As the networks in MADDPG expands exponentially to the scale of the agents, it
is hard to be trained effectively and efficiently in large-scale multi-agent systems. As a
consequence, the MADDPG consumes more time to train but obtains the lowest score.

Figure 5c indicates that our method consumes less energy than DGN and DQN. As
their flight trajectories are better, UAVs can cover more PoIs fairly while consuming less
energy. The energy consumption of HAMA is considerable with our method in low-scale
environments and increases when the number of UAVs is up to 40. MADDPG fails to
improve coverage and fairness, so it tends to save on energy to maximize its reward.

To test the capability of transferred learning, we compare the transferred policies with
those trained under the same settings of testing. As shown in Figure 6, the performance
does not deteriorate when the policy is transferred to execute with 10, 30, or 40 UAVs,
which indicates that our method is highly transferable under various numbers of UAVs.
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Figure 5. Simulation results of all methods on coverage, fairness, and energy consumption under
different number of UAVs.
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Figure 6. Simulation results of transfer learning on coverage, fairness, and energy consumption
under different number of UAVs.

6.3. Predator-Prey

As summarized in Table 2, we deploy five predators in a 100 × 100 area to eliminate
five prey. We set the attack reward of predators and prey to 10 and −10, respectively. The
additional reward is set as radditional = 10× S. We train the policy by the value-based version
of our method and test it by competing with other policies trained by different methods.
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Table 2. Experiment parameters of predator-prey.

Parameters Settings

Target Area 100 × 100
Number of Predators 5

Number of Preys 5
Attack Range 8

Observation Range 30
Communication Range 100

Maximum Speed of Predators 10/s
Maximum Speed of Preys 12/s
Timeslots of Each Episode 100

Table 3 indicates that our method shows its superiority over all baselines in both
roles of predator and prey. By introducing GRU and inter-agent communication, the
predators obtain more information from hidden states and neighbors to decide which
prey to capture. It is more flexible for predators to determine whether to chase prey
individually or cooperatively. Similarly, GRU and inter-agent communication also bring
more information to prey, so they can choose from various strategies to survive. For
example, prey can escape from predators by their faster speed or sacrifice one of them to
distract predators.

Table 3. The mean and standard deviation of scores in predator-prey.

Predator Prey

Our Method DGN DQN

Our method 0.331 ± 0.088 0.535 ± 0.086 0.591 ± 0.101
DGN 0.051 ± 0.060 0.271 ± 0.095 0.386 ± 0.095
DQN 0.014 ± 0.034 0.173 ± 0.086 0.120 ± 0.078

Predator Prey

Our Method HAMA MADDPG

Our method 0.331 ± 0.088 0.787 ± 0.027 0.472 ± 0.098
HAMA 0.051 ± 0.050 0.351 ± 0.050 0.403 ± 0.091

MADDPG 0.038 ± 0.048 0.239 ± 0.090 0.051 ± 0.057

7. Discussion

The experimental results indicate that the performance of our method is superior
to those of others in both cooperative and competitive scenarios. We assume that three
components, including HGAT, GRU, and inter-agent communication, are the key factors
which induce the success of our method. To validate our hypothesis, we conduct an
ablation study in Appendix A to clarify the necessity of each component (HGAT, GRU, and
inter-agent communication).

From Table A1, we observe a significant deterioration in performance when removing
HGAT or GRU, while disabling inter-agent communication also induces a decrease in terms
of coverage and fairness. To explain the necessity of each component, we assume the follow-
ing reasons. Firstly, HGAT plays an important role in summarizing observations. Not only
does it process the local states from all groups, but it also quantifies their importance with
attention weights. In addition, HGAT models the hierarchical relationships among agents
as a graph, which is effective for them to optimize their policies in dynamic environments.
Secondly, GRU makes a significant contribution to overcoming the limitation of partial
observability. When determining actions, GRU helps agents to remember the historical
information recorded in the hidden states, such as the position of the observed PoIs in
the UAV recon. It is beneficial for agents to improve their performance by getting what
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they cannot observe from the hidden states. Finally, inter-agent communication expands
agents’ horizons. By sending high-dimensional embedding vectors, they share their obser-
vations with others. With the help of HGAT, agents can cooperate better by using extensive
information from those vectors in decision making.

Compared with non-HGAT-based approaches, our method has another advantage in
the replay buffer. As they concatenate all local states into a vector and pad 0 for unobserved
entities, the space complexity of observations in their replay buffer is O(N × M), where N
and M means the number of agents and entities, respectively. However, our method only
stores local states, whose space complexity is O(M). Although it has to store the adjacency
matrices AO to represent the relationship among agents, this is more economical than
storing observations in terms of storage, as an adjacency matrix represents the relationship
between agents by a bit.

8. Conclusions

In this paper, we propose a scalable and transferable DRL-based multi-agent coor-
dination control method for cooperative and competitive tasks. This method introduces
HGAT, GRU, and inter-agent communication into DRL to improve performance in mixed
cooperative–competitive environments. By intensive simulations, our method shows its
superiority over DGN, DQN, HAMA, and MADDPG both in UAV recon and predator-prey.

In the future, we will improve our method by introducing an adaptive policy base
on the action entropy of the agent to provide a more intelligent exploration. We will
evaluate the performance of the entropy-based policy and compare it with the ε-greedy
and ε-categorical policies. Specifically, we will test the capabilities of automating entropy
adjustment under different entropy targets in large-scale multi-agent systems. Furthermore,
we will try to extend our method into continuous policies and evaluate its performance in
cooperative and competitive scenarios with continuous action space.
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Abbreviations

AC Actor–Critic
ACO Ant Colony Optimization
COMA COunterfactual Multi-Agent
Dec-POMDP Decentralized Partially Observable Markov Decision Process
DGN Deep Graph Network
DNN Deep Neural Network
DQN Deep Q-Network
DRGN Deep Recurrent Graph Network
DRL Deep Reinforcement Learning
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GA Genetic Algorithm
GAT Graph Attention neTwork
GCN Graph Convolutional Network
GRU Gated Recurrent Unit
HAMA Hierarchical Graph Attention-Based Multi-Agent Actor–Critic
HGAT Hierarchical Graph Attention neTwork
MAAC Multi-Actor-Attention-Critic
MADDPG Multi-Agent Deep Deterministic Policy Gradient
MARL Multi-Agent Reinforcement Learning
PoI Point-of-Interest
QoS Quality of Service
RL Reinforcement Learning
RSH Randomized Search Heuristic
SARSA State-Action-Reward-State-Action
TRPO Trust Region Policy Optimization
UAV Unmanned Aerial Vehicle
UAV-MBS Unmanned Aerial Vehicle Mobile Base Station
VB Value-Based

Appendix A. Ablation Study

In the ablation study, we test our method and three variants in UAV recon with
20 UAVs and summarized the performances in Table A1. The variants are described as
follows:

• Without H: removing the first HGAT layer;
• Without G: removing GRU in the recurrent unit;
• Without C: disabling inter-agent communication.

Table A1. The mean and standard deviation of three metrics in the ablation study (N = 20).

Model Metric

Coverage Fairness Energy Consumption

Our method 0.466 ± 0.046 0.784 ± 0.061 0.665 ± 0.015
Without H 0.103 ± 0.022 0.696 ± 0.087 0.710 ± 0.011
Without G 0.349 ± 0.065 0.726 ± 0.116 0.730 ± 0.017
Without C 0.412 ± 0.058 0.749 ± 0.081 0.668 ± 0.023
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Abstract: As state-of-the-art deep neural networks are being deployed at the core level of increasingly
large numbers of AI-based products and services, the incentive for “copying them” (i.e., their
intellectual property, manifested through the knowledge that is encapsulated in them) either by
adversaries or commercial competitors is expected to considerably increase over time. The most
efficient way to extract or steal knowledge from such networks is by querying them using a large
dataset of random samples and recording their output, which is followed by the training of a student
network, aiming to eventually mimic these outputs, without making any assumption about the
original networks. The most effective way to protect against such a mimicking attack is to answer
queries with the classification result only, omitting confidence values associated with the softmax
layer. In this paper, we present a novel method for generating composite images for attacking a
mentor neural network using a student model. Our method assumes no information regarding the
mentor’s training dataset, architecture, or weights. Furthermore, assuming no information regarding
the mentor’s softmax output values, our method successfully mimics the given neural network and
is capable of stealing large portions (and sometimes all) of its encapsulated knowledge. Our student
model achieved 99% relative accuracy to the protected mentor model on the Cifar-10 test set. In
addition, we demonstrate that our student network (which copies the mentor) is impervious to
watermarking protection methods and thus would evade being detected as a stolen model by existing
dedicated techniques. Our results imply that all current neural networks are vulnerable to mimicking
attacks, even if they do not divulge anything but the most basic required output, and that the student
model that mimics them cannot be easily detected using currently available techniques.

Keywords: deep learning; cybersecurity; artificial intelligence; swarm intelligence; adversarial AI;
information theory; entropy; models; neural networks; communication

1. Introduction

In recent years, deep neural networks (DNNs) have been used very effectively in a
wide range of applications. Since these models have achieved remarkable results, redefining
state-of-the-art solutions for various problems, they have become the “go-to solution” for
many challenging real-world problems, e.g., object recognition [1,2], object segmentation [3],
autonomous driving [4], automatic text translation [5], cybersecurity [6–8], credit default
prediction [9], etc.

Training a state-of-the-art deep neural network requires designing the network archi-
tecture, collecting and preprocessing data, and accessing hardware resources, in particular
graphics processing units (GPUs) capable of training such models. Additionally, training
such networks requires a substantial amount of trial and error. For these reasons, such
trained models are highly valuable, but at the same time, they could be the target of attacks
by adversaries (e.g., a competitor) who might try to duplicate the model and the entire
sensitive intellectual property involved without going through the tedious and expensive
process of developing the models by themselves. By doing so, all the trouble of data
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collection, acquiring computing resources, and the valuable time required for training the
models are spared by the attacker. As state-of-the-art DNNs are used more extensively in
real-world products, the prevalence of such attacks is expected to increase over the next
few years.

An attacker has two main options for acquiring a trained model: (1) acquiring the raw
model from the owner’s private network, which would be a risky criminal offense that
requires a complicated cyber attack on the owner’s network; and (2) training a student
model that mimics the original mentor model. That is, the attacker could query the original
mentor using a dataset of samples and train the student model to mimic the output of the
mentor model for each of the samples. The second option assumes that the mentor is a
black box, i.e., there is no knowledge of its architecture, no access to the training data used
for training it, and no information regarding the trained model’s weights. We only have
access to the model’s predictions (inference) for a given input. Thus, such a mentor would
effectively teach a student how to mimic it by providing its output for different inputs.

In order for mimicking to succeed, a key element is to utilize the certainty level of
a model on a given input, i.e., its softmax distribution values [10,11]. This knowledge is
highly important for the training of the student network. For example, in case of a binary
classification, classifying an image as category i with 99% confidence and as category j
with 1% confidence is much more informative than classifying it to category i with, say,
51% confidence and to category j with 49% confidence. Such data are valuable and often
much more informative than the predicted category alone, which in both cases is i. This
confidence value (obtained through the softmax output layer) also reveals how the model
perceives this specific image and to what extent the predictions for categories i and j are
similar. In order to protect against such a mimicking attack, a trained model may hide this
confidence information by simply returning only the index with the maximal confidence,
without providing the actual confidence levels (i.e., the softmax values are concealed,
while the output contains merely the predicted class). Although such a model would
substantially limit the success of a student model using a standard mimicking attack, we
provide in this paper a novel method by querying the mentor with composite images, such
that the student effectively elicits the mentor’s knowledge, even if the mentor provides the
predicted class only.

Contributions: This research possesses various contributions to the domain of DNN
intellectual property extraction.

1. It is possible to extract the intellectual property of a model with no access to the
original data (inputs and labels) used for training it.

2. All classification models are vulnerable, maximum protection of the model was
assumed, and still, the composite method managed to extract the intellectual property.

3. A novel composite method using unlabeled data was described for knowledge extrac-
tion, which can be applied on any model as long as unlabeled data are available.

4. The state-of-the-art watermarking methods are not able to identify a student model
once it contains the knowledge of the mentor model, which was protected using
watermarks.

The rest of the paper is organized as follows. Section 2 reviews previous methods used
for network distilling and mimicking. Section 3 describes our new approach for a successful
mimicking attack on a mentor, which does not provide softmax outputs. Section 4 presents
our experimental results. Finally, Section 5 makes concluding remarks. This paper is based
on a preliminary version published in [12].

2. Background

2.1. Threats to Validity

We included the studies that (1) deal with methods to attack machine learning or
deep learning models, (2) protect models’ intellectual property from attacks or provide
methods to identify stolen models, and (3) discuss the mentor–student training schema
and its limitations, such as the number of layers reduction, speedup gain, and accuracy
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reduction. We have used multiple combination strings such as ‘DNN distillation’, ‘mentor
student training’, ‘teacher student training’, ‘DNN attacks’, ‘machine learning attacks’,
‘watermarking in DNN’, ‘DNN protection’, ‘DNN intellectual property’, and ‘ML and DL
models protection’ to retrieve the peer-reviewed articles of journal conference proceedings,
book chapters, and reports. We have targeted the five databases, namely IEEE Xplore,
SpringlerLink, Scopus, arXiv digital library, and ScienceDirect. Google Scholar was also
largely used for searching and tracking cited papers based on the topics of interest. The title
and abstract were screened to identify potential articles; then, the experimental results were
carefully reviewed in order to identify relevant baselines and successful methods.

2.2. Motivation

There already exist secondary markets for the resale of stolen identities, such as
www.infochimps.com (accessed on 19 November 2021) or black market sites and chat
rooms for the resale of other illegal datasets [13,14]. It also reasonable to assume that a
digested “learned” data would be worth more to such buyers than the raw data itself,
and that models learned through the use of more data and higher computational resources
might be priced differently than more basic ones. After all, why work hard when one can
employ the high-quality results of a learning process executed by others [15–18]?

We note that such stolen knowledge could be used for several malicious goals:

• Selling to the highest bidder (both “legit” bidders, advertisers, etc., or in the black
market to other attackers) [19–22].

• Bootstrapping for more advanced models [23–25]
• Business espionage—e.g., analyzing a competitor’s capabilities or potential weak-

nesses [26,27].

2.3. Watermarking

The idea of watermarking that has been well studied in the past two decades was
originally invented in order to protect digital media from being stolen [28,29]. The idea
relies on inserting a unique modification or signature not visible to the human eye. This
allows proving legitimate ownership by presenting that the owner’s unique signature
is embedded into the digital media [30,31]. With the same goal in mind, embedding a
unique signature into a model and subsequently identifying the stolen model based on that
signature, some new techniques were invented [32,33]. A method to embed a signature
into the model’s weights is described in [34]; it allows for the identification of the unique
signature by examining the model’s weights. This method assumes that the model and
its parameters are available for examination. Unfortunately, in most cases, the model’s
weights are not publicly available; an individual could offer an API-based service that
uses the stolen model while still keeping the model’s parameters hidden from the user.
Therefore, this method is not sufficient.

Another method [35] proposes a zero-bit watermarking algorithm that makes use of
adversaries’ examples. It enables the authentication of the model’s ownership using a set
of queries. The authors rely on predefined examples that give certain answers. By showing
that these exact same answers are obtained using N queries, one can authenticate their
ownership over the model. However, this idea may be problematic, since these queries are
not unique and there can be infinitely many of them. An individual can generate queries
for which a model outputs certain answers that match the original queries. In doing so,
anyone can claim ownership. Furthermore, it is possible that different adversaries will
have a different set of queries that gives the exact predefined answers.

Some more recent papers [36] offer a methodology that allows inserting a digital
watermarking into a deep learning (DL) model without harming the performance and
with high model pruning resistance. In [37], a method of inserting watermarking into a
model is presented. Specifically, it allows identifying a stolen model even if it is used via
an application programming interface (API) and returns only the predicted label. It is done
by defining a certain hidden “key", which can be a certain shape or noise integrated into a
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part of the training set. When the model receives an input containing the key, it will predict
with high certainty a completely unrelated label. Thus, it is possible to use some available
APIs by sending them an image integrated with the hidden key. If the result is odd and the
unrelated label is triggered, it may be an indication that this model is stolen. Our method
is resistant to this protection mechanism, as its learning is based on the predictions of
the mentor. Specifically, our training is based on random combinations of inputs, i.e., the
chances of sending the mentor a hidden key that will trigger the unrelated label mechanism
is negligible. We can train and gain the important knowledge of such a model without
learning the watermarks, thereby assuring that our model would not be identified as stolen
when provided a hidden key as input. Finally, Ref. [38] shows that a malicious adversary,
even in scenarios where the watermark is difficult to remove, can still evade the verification
by the legitimate owners. In conclusion, even the most advanced watermarking methods
are still not good enough to properly protect a neural network from being stolen. Our
composite method overcomes all of the above defense mechanisms.

2.4. Attack Mechanisms

As previously explained, trained deep neural networks are extremely valuable and
worth protecting. Naturally, a lot of research has been done on attacking such networks
and stealing their knowledge. In [39,40], an attack method exploiting the confidence level
of a model is presented. The assumption that the confidence level is available is too lenient,
as it can be easily blocked by returning merely the predicted label. Our composite method
shows how to successfully steal a model that does not reveal its confidence level(s). In [41],
it is shown how to steal the knowledge of a convolutional neural network (CNN) model
using random unlabeled data.

Another known attack mechanism is a Trojan attack described in [42] or a backdoor
attack [43]. Such attacks are very dangerous, as they might cause various severe conse-
quences, including endangering human lives, e.g., by disrupting the actions of a neural
network-based autonomous vehicle. The idea is to spread and deploy infected models,
which will act as expected for almost all regular inputs, except for a specific engineered
input, i.e., a Trojan trigger, in which case the model would behave in a predefined manner
that could become very dangerous in some cases. Consider, for example, an infected deep
neural network (DNN) model of an autonomous vehicle, for which a specific given input
will predict making a hard left turn. If such a model is deployed and triggered in the
middle of a highway, the results could be devastating.

Using our composite method, even if our proposed student model learns from an
infected mentor, it will not catch the dangerous triggers, and in fact, it will act normally
despite the engineered Trojan keys. The reason lies within our training method, as we
randomly compose training examples based on the mentor’s prediction. In other words,
the odds that a specific engineered key will be sent to the mentor and trigger a backdoor
are negligible, similarly to the way training based on a mentor containing watermarks is
done. We present some interesting neural network attacks and show that our composite
method is superior to these attacks and is also robust against infected models.

2.5. Defense Mechanisms

In addition to watermarking, which is the main method of defending a model (or of
enabling at least a stolen model to be exposed), there are some other available interesting
possibilities. In [44], a method that adds a small controllable perturbation maximizing the
loss of the stolen model while preserving the accuracy is suggested. For some attacking
methods, this trick can be effective and significantly slow down an attacker, if not prevent
it completely. This method has no effect on our composite method, which preserves the
accuracy. In other words, for each sample x if for a specific index i the softmax layer predicts
F(x)[i] as the maximum value, now the output of our network for that index would be:

F′(x)[i] = F(x)[i] + ψ
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where ψ is an intended perturbation, and where the following still holds:

argmax(F(x)) = argmax(F′(x)) = i

This is the important element of our composite method, which solely relies on the
model’s binary labels and is not affected by this modification. Most defense mechanisms
are based mainly on manipulating the returned softmax confidence level, shuffling all of the
label probabilities except for the maximal one, or returning a label without its confidence
level. The baseline is that all of these methods have to return the minimal information of
what the predicted label is. Indeed, this is all that is required by the composite method, so
our algorithm is unaffected by such defense mechanisms.

3. Proposed Method

In this section, we present our novel composite method, which can be used to attack
and extract the knowledge of a black box model even if it completely conceals its softmax
output. For mimicking a mentor, we assume no knowledge of the model’s training data
and no access to it (i.e., we make no use of any training data used to train the original
model). Thus, the task at hand is very similar to real-life scenarios, where there are plenty
of available trained models (as services or products) without any knowledge of how they
were trained and of the training data used in the process. Additionally, we assume no
knowledge of the model’s network architecture or weights; i.e., we regard it as an opaque
black box. The only information about the model (which we would like to mimic) is its
input size and the number of output classes (i.e., output size). For example, we may assume
that only the input image size and the number of possible traffic signs are known for a
traffic sign classifier.

As previously indicated, another crucial assumption is that the black box model we
aim at attacking does not reveal its confidence levels. Namely, the model’s output is merely
the predicted label, rather than the softmax values, e.g., in case of an input image of a traffic
sign, whether the model is 99% confident or only 51% confident that the image is a stop
sign, in both cases, it will output “stop sign” without further information. We assume the
model hides the confidence values as a safety mechanism against mimicking attacks by
adversaries who are trying to acquire and copy the model’s IP. Note that outputting merely
the predicted class is the extreme protection possible for a model providing an API-based
prediction, as it is the minimum amount of information the model must provide.

Our novel method for successfully mimicking a mentor that does not provide its
softmax values makes use of what we refer to as composite samples. By combining two
different samples into a single sample (see details below), we effectively tap into the hidden
knowledge of the mentor. (In the next section, we provide experimental results, comparing
the performance of our method and that of standard mimicking using both softmax and
non-softmax outputs.) For the rest of the discussion, we refer to the black box model (we
would like to mimic) and our developed model (for mimicking it) as a mentor model and a
student model, respectively.

3.1. Datasets for Mentor and Student
3.1.1. Dataset for Mentor Training

CIFAR-10 [45] is an established dataset used for object recognition. It consists of 60,000
(32 × 32) RGB images from 10 classes, with 6000 images per class. There are 50,000 training
images and 10,000 test images in the official data. The mentor is a pretrained model on the
CIFAR-10 dataset. We use the test set (from this dataset) to measure the success rate of our
mentor and student models. Note that the training set of the CIFAR-10 dataset is never
used in the training process by the student (to conform to our assumption that the student
has no access to the data used by the mentor for training), and the test subset, as mentioned
above, is used for validation only (without training).
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3.1.2. Dataset for Mimicking Process

ImageNet [46] is a dataset containing complex, real-world size images. In particular,
ImageNet_ILSVRC2012 contains more than 1.2 million (256 × 256) RGB images from
1000 categories. We use this dataset (without the labels, i.e., an unlabeled dataset) for
the mimicking process. Each image is down-sampled (32 × 32) and fed into the mentor
model, and the prediction of the mentor model is recorded (for later mimicking by the
student). Note that any large unlabeled image dataset could be used instead, and we used
this common large dataset for convenience only.

3.2. Composite Data Generation

Our goal is to create a diverse dataset that will allow observing the predictions of the
mentor on many possible inputs. By doing so, we would gain insights into the way the
mentor behaves for different samples. That is, the more adequate the input space sample
is, the better the performance of the mimicking process becomes. The entire available
unlabeled data, which is the down-sampled ImageNet, is contained in an array dataArr.
For each training example to be generated, we randomly choose two indexes i1, i2, such that
0 <= i1, i2 < N, where is N equal to the number of samples we create and use for training
the student model. In our composite method, we choose N = 1,000,000, so the amount of
generated training samples created in each epoch is 1, 000, 000. Next, we randomly choose
a ratio p. Once we have i1, i2, and p, we generate a composite sample, which is created by
combining two existing images in the dataset. The ratio p determines the relative influence
of the two random images on the generated sample:

x_gen = p ∗ dataArr[i1] + (1 − p) ∗ dataArr[i2]

where the label of x_gen is a “one-hot” vector; i.e., the index containing the ’1’ (correspond-
ing to the maximal softmax value) represents the label predicted by the mentor. The dataset
is generated for every epoch; hence, our composite dataset changes continuously, and it
is dynamic. We gain the predictions of a mentor model on new images during the entire
training process (with less overfitting). Note that even though in our data-generating
mechanism, we create a composite of two random images (with a random mixture between
them), it is possible to create composite images of N images where N > 2 as well.

Algorithm 1 provides the complete composite data-generation method, which is run
at the beginning of each epoch. Figure 1 is an illustration of composite data samples created
by Algorithm 1.

3.3. Student Model Architecture

The mentor neural network (which we intend to mimic) is an already trained model
that reaches 90.48% test accuracy on the CIFAR-10 test set. Our goal in choosing an
architecture for the student is to be generic, such that it would perform well, regardless
of the mentor we try to mimic. Thus, with small adaptations to the input and output size,
we created a modification of the VGG-16 architecture [47] for the student model. In our
model, we use two dense layers of size 512 each and another dense layer of size 10 for the
softmax output (while in the original VGG-16 architecture, there are two dense layers of
size 4096 and another dense layer of size 1000 for the softmax layer). Table 1 presents the
architecture of our student model.
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Algorithm 1 Composite Data Generation.

1: Input:
2: mentor—the mentor model
3: dataArr—all available data array
4: N—number of samples to generate
5: Output:
6: X—generated examples
7: Y—corresponing labels
8: function GENERATE_DATA(mentor, dataArr, N)
9: X, Y = [], []

10: for i = 1 to N do
11: i1 = math.random(len(dataArr))
12: i2 = math.random(len(dataArr))
13: p = math.random(100)/100
14: x_gen = p ∗ dataArr[i1] + (1 − p) ∗ dataArr[i2]
15: X.append(x_gen)
16: Y.append(argmax(mentor.predict(x_gen)))
17: end for
18: return X, Y
19: end function

(a) 75% cat 25% dog (b) 70% horse 30% kangaroo (c) 30% horse 70% ship

(d) 40% ship 60% parrot (e) 50% tiger 50% dog (f) 20% car 80% elephant
Figure 1. Illustration of images created using our composite data-generation method. The images
and their relative mixture are random. Using this method during each epoch we create an entirely
new dataset, with random data not seen before by the model.

3.4. Mimicking Process

Using the above described composite data generation, a new composite dataset is
generated for every epoch during the mimicking process. We train on this dataset using the
stochastic gradient descent (SGD) algorithm [48]. Table 2 describes the parameters used for
training the student model. Our student model does not use any dropout or regularization
methods. Such regularization methods are not necessary, since our model does not reach
overfitting as a result of the dynamic dataset (a new composite dataset generated at each
epoch). To evaluate the final performance of the student model, we test it on a dedicated
test set that was used to evaluate also the mentor model (note that neither the student nor
the mentor were trained on images belonging to the test set).
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Table 1. The architecture used in the composite training experiment for the student model. This
architecture is a modification of the VGG-16 architecture [47], which has proven to be very successful
and robust. By performing only small modifications over the input and output layers, we can adapt
this architecture for a student model intended to mimic a different mentor model.

Modified VGG-16 Model Architecture for Student Network

3 × 3 Convolution 64

3 × 3 Convolution 64

Max pooling

3 × 3 Convolution 128

3 × 3 Convolution 128

Max pooling

3 × 3 Convolution 256

3 × 3 Convolution 256

3 × 3 Convolution 256

Max pooling

3 × 3 Convolution 512

3 × 3 Convolution 512

3 × 3 Convolution 512

Max pooling

3 × 3 Convolution 512

3 × 3 Convolution 512

3 × 3 Convolution 512

Max pooling

Dense 512

Dense 512

Softmax 10

In addition, we have used learning rate decay, starting from 0.001 and multiplied by
0.9 every 10 epochs, as we have found it essential in order to reach high accuracy rates.
A detailed description of our experimental results is provided in Section 4.

Table 2. Parameters used for training in the composite experiment.

Parameters Values

Learning rate 0.001

Activation function ReLU

Batch size 128

Dropout rate -

L2 regularization -

SGD momentum 0.9

Data augmentation -
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3.5. Data Augmentation

Data augmentation is a useful technique frequently used in the training process of
deep neural networks [49,50]. It is mostly used to synthetically enlarge a limited size
dataset in an attempt to generalize and enhance the robustness of a model under training
and to reduce overfitting.

The basic notion behind this method relies on training the model on different training
samples at each epoch. Specifically, during each epoch, small random visual modifications
are made to the dataset images. This is completed in order to allow the model to be trained
during each epoch on a slightly different dataset, using the same labels for the training.
Examples of simple data augmentation operations include small vertical and horizontal
shifts of the image, a slight rotation of the image (usually by θ for 0◦ < θ <= 15◦), etc.

This technique is used for our student models, which are trained on the same dataset
during each epoch. However, for the composite model experiment, we found it to have
no effect on the performance. Our composite data-generation method ensures virtually a
continuous set of infinitely many new samples never seen before; thus, data augmentation
is not necessary here at all. Our end goal is to represent a nonlinear function, which takes
an n-dimensional input and transforms it to an m-dimensional output, e.g., a function that
takes an image of size 256 × 256 of a road and returns one of Y possible actions that an
autonomous vehicle should take. Using data augmentation, we can train the model to
better represent the required nonlinear function. For our composite method, though, this
would be redundant, since the training process is always performed on different random
inputs, which allows for estimating empirically the nonlinear function in a much better
way without using the original training dataset for training the model.

3.6. Swarms Applications

A swarm contains a group of autonomous robots without central coordination, which
is designed to maximize the performance of a specific task [51]. Tasks that have been of
particular interest to researchers in recent years include synergetic mission planning [52],
patrolling [53], fault tolerance cooperation [54], network security [55], crowds model-
ing [56], swarm control [57], human design of mission plans [58], role assignment [59],
multi-robot path planning [60], traffic control [61], formation generation [62], formation
keeping [63], exploration and mapping [64], modeling of financial systems [65], target
tracking [66,67], collaborative cleaning [68], control architecture for drones swarm [69], and
target search [70].

Generally speaking, the sensing and communication capabilities of a single swarm
member are considered significantly limited compared to the difficulty of the collective
task, where macroscopic swarm-level efficiency is achieved through an explicit or implicit
cooperation by the swarm members, and it emerges from the system’s design. Such designs
are often inspired by biology (see [71] for evolutionary algorithms, Ref. [72] or [73] for
behavior-based control models, Ref. [74] for flocking and dispersing models, Ref. [75]
for predator–prey approaches), by physics [76], probabilistic theory [77], sociology [78],
network theory [79,80], or by economics applications [64,81–84].

The issue of swarm communication has been extensively studied in recent years.
Distinctions between implicit and explicit communication are usually made in which
implicit communication occurs as a side effect of other actions, or “through the world”
(see, for example [85]), whereas explicit communication is a specific act intended solely to
convey information to other robots on the team. Explicit communication can be performed
in several ways, such as a short range point-to-point communication, a global broadcast,
or by using some sort of distributed shared memory. Such memory is often referred to as a
pheromone, which is used to convey small amounts of information between the agents [86].
This approach is inspired from the coordination and communication methods used by
many social insects—studies on ants (e.g., [87]) show that the pheromone-based search
strategies used by ants in foraging for food in unknown terrains tend to be very efficient.
Additional information can be found in the relevant NASA survey, focusing on “intelligent
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swarms” comprised of multiple “stupid satellites” [88] or the following survey conducted
by the US Naval Research Center [89].

Online learning methods have been shown to be able to increase the flexibility of
a swarm. Such methods require a memory component in each robot, which implies an
additional level of complexity. Deep reinforcement learning methods have been applied
successfully to multi-agent scenarios [90], and using neural network features enables
the richest information exchange between neighboring agents. In [91], a nonlinear de-
centralized stable controller for close-proximity flight of multirotor swarms is presented,
and DNNs are used to accurately learn the high-order multi-vehicle interactions. Neural
networks also contribute to system-level state prediction directly from generic graphical
features from the entire view, which can be relatively inexpensive to gather in a completely
automated fashion [92].

Our method can be applied to DNN-assisted swarms for extraction of the DNN models.
By observing the robots’ reaction in the neutral environment, and by forcing more rare
reactions based on the interaction with a specific designed malicious robot to create more
useful recorded samples, we can create an infinite amount of state and reaction samples.
Since each robot is interchangeable and uses the model we want to extract, the amount of
possible states and reactions is limitless. The method enables compounding a dataset for
training and creating replicas of the DNN intellectual property used in the original swarms
in a resembling fashion to [12]. The extracted DNN can be used for different applications,
such as deployment to different types of robots using a DNN-assisted decision-making
system or simply creating a replica of the swarm with the secret intellectual property at
our disposal.

4. Experimental Results

4.1. Experimental Results for Unprotected Mentor (with Softmax Output) and Standard Mimicking

To obtain a baseline for comparison, we assume in this experiment that the mentor in
question reveals its confidence levels by providing the values of its softmax output (refering
to it as an “unprotected mentor”), using the same modified VGG-16 architecture presented
in Table 1. In this case, we create a new dataset for the student model only once and
use it together with standard data augmentation. We feed each training sample from the
down-sampled ImageNet into the mentor and save the pairs of its input image and softmax
label distribution (i.e., its softmax layer output). The total size of this dataset is over 1.2
million samples (the size of the ImageNet_ILSVRC2012 dataset). Once the dataset is created,
we train the student using regular supervised training with SGD. In this experiment, since
overfitting would occur without regularization, we use dropout to improve generalization.
The parameters used for training this model are presented in Table 3.

Table 3. Parameters used for the training process using standard (non-composite) mimicking.

Parameters Values

Learning rate 0.001

Activation function ReLU

Batch size 128

Dropout rate 0.2

L2 regularization 0.0005

SGD momentum 0.9

Data augmentation Used

Using these parameters, we obtained a maximum test accuracy of 89.1% for the
CIFAR-10 test set, namely, 1.38% less than the mentor’s 90.48% success rate. (Note that
the student was never trained on the CIFAR-10 dataset, and instead, after completing the
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mimicking process using the separate unrelated dataset, its performance was only tested
on the CIFAR-10 test set.)

4.2. Experimental Results for Protected Mentor (without Softmax Output) and Standard Mimicking

In this experiment, we assume that the mentor reveals the predicted label with no
information about the certainty level (i.e., it is considered a “protected mentor”). This is a
real-life scenario, in which an API-based service is queried by uploading inputs, and only
the predicted output class (without softmax values) is returned.

By sending only the correct labels, the models are more protected in the sense that
they reveal less information to a potential attacker. For this reason, this method has become
a common defense mechanism for protecting intellectual property when neural networks
are deployed in real-world scenarios.

In this subsection, we try a standard mimicking attack (without composite images).
Here, we execute exactly the same training process of the soft labels experiment (described
in the previous subsection) with one important difference. In this case, the labels available
for the student are merely one-hot labels provided by the mentor and not the full softmax
distribution of the mentor. For each training sample (from the down-sampled ImageNet
dataset), we take the output distribution, find the index with the maximum value, and set
it to ‘1’ (while setting all the other indices to ‘0’). The student can observe only this final
vector with a single ‘1’ for the correct class and ‘0’ for all other classes. This accurately
simulates a process that can be applied on an API service. The student only knows at this
point the mentor’s prediction but not its level of certainty. We use the same parameters
of Table 3 for the mimicking process. The success rate in this experiment is the lowest;
the student reached only ∼87.5% accuracy on the CIFAR-10 test set, which is substantially
lower than that of the student that mimicked an unprotected mentor.

4.3. Experimental Results for Protected Mentor (without Softmax Output) and Composite
Data Mimicking

In this experiment, we assume again that our mentor reveals the predicted label
with no information about the certainty level. However, instead of launching a standard
attack on the mentor, we employ here our novel composite data generation as described
in Algorithm 1 in order to generate new composite data samples at each epoch. In this
case, the student only has access to the predicted labels (minimum output required from a
protected mentor). Unlike the previous two experiments using standard mimicking, we do
not use here data augmentation or regularization, since virtually all of the data samples are
always new and are generated continuously. Figure 2 illustrates the expected predictions
from a well-trained model for certain combined input images. Empirically, this is not totally
accurate, since the presentation and overlap of objects in an image also affect the output
of the real model. However, despite this caveat, the experimental results presented below
show that our method provides a good approximation. Our student model accuracy is
measured compared to the mentor model accuracy, which is trained regularly with all the
data and labels.

Training with composite data, we obtained 89.59% accuracy on the CIFAR-10 test set,
which is only 0.89% less than that of the mentor itself. (Again, note that the student is
not trained on any of the CIFAR-10 images, and that the test set is used only for the final
testing, after the mimicking process is completed. The mentor’s accuracy is used as the
baseline or the ground truth.) This is the highest accuracy among all of the experiments
conducted; surprisingly, it is even superior to the results of standard mimicking for an
unprotected mentor (which does divulge its softmax output). Figure 3 depicts the accuracy
over time (i.e., epoch number) for the composite and soft-label experiments. As can be seen,
the success rate of the composite experiment is superior to that of the soft-label experiment
during almost the entire training process. Even though the latter has access to valuable
additional knowledge, our composite method performs consistently better without access
to the mentor’s softmax output.
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(a) 50% dog 50% cat

(b) 60% cat 40% car

(c) 90% ship 10% car

Figure 2. Generated images and their corresponding expected softmax distribution, which reveals
the model’s certainty level for each example. In practice, the manner by which objects overlap and
the degree of their overlap largely affect the certainty level.

A summary of the experimental results is presented in Table 4, including relative
accuracy to the mentor’s accuracy rate. The results show that standard mimicking obtained
∼98.5% of the accuracy of an unprotected mentor and only ∼96.7% of its accuracy when
the mentor was protected. However, using the composite mimicking method, the student
reached (over) 99% of the accuracy of a fully protected mentor. Thus, even when a mentor
only reveals its predictions without their confidence levels, the model is not immune to
mimicking and knowledge stealing. Our method is generic, and it can be used on any
model with only minor modifications on the input and output layers of the architecture.
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Figure 3. Student test accuracies for composite and soft-label experiments, training the student over
100 epochs. The student trained using the composite method is superior during almost the entire
training process. The two experiments were selected for visual comparison as they reached the
highest success rates for the test set.

Table 4. Summary of the experiments. The table provides the CIFAR-10 test accuracy of three student
models in absolute terms and in comparison to the 90.48% test accuracy achieved by the mentor
itself. The three mimicking methods use standard mimicking for unprotected and protected mentors,
as well as composite mimicking for a protected mentor, which provides the best results.

Method Mentor Status Test Accuracy Relative Accuracy

Standard Unprotected 89.10% 98.47%
Standard Protected 87.46% 96.66%

Composite Protected 89.59% 99.01%

5. Conclusions

In view of the tremendous DNN-based advancements that have been carried out
during the recent years in a myriad of domains, some involving problems that have been
considered very challenging hitherto, the issue of protecting complex DNN models has
gained considerable interest. The computational power and significant effort required by
a training process makes a well-trained network very valuable. Thus, much research has
been devoted to studying and modeling various techniques for attacking DNNs aiming for
developing appropriate mechanisms for defending them, where the most common defense
mechanism is to conceal the model’s certainty levels and output merely a predicted label.
In this paper, we have presented a novel composite image attack method for extracting
the knowledge of a DNN model, which is not affected by the above “label only” defense
mechanism. Specifically, our composite method achieves this resilience by assuming only
that this mechanism is activated and relies solely on the label prediction returned from a
black box model. We assume no knowledge about this model’s training process and its
original training data. In contrast to other methods suggested for stealing or mimicking a
trained model, our method does not rely on the softmax distribution supplied by a trained
model with a certainty level across all categories. Therefore, it is also highly robust against
adding a controlled perturbation to the returned softmax distribution in order to protect
a given model. Our composite method assumes a large unlabeled data source which is
used to generate composite samples, which in our case is the entire ImageNet dataset.
The large amount of possible images that are randomly selected provide diversity in the
final composite dataset, which works very well for the IP extraction. In case a smaller
unlabeled data source is chosen, e.g., the Cifar-10 dataset with no labels, the diversity will
most likely be harmed as well as the IP extraction quality. In order to overcome the lack of
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diversity, it is possible to generalize the composite dataset creation; instead of randomly
selecting 2 images, we can select n images and n − 1 random ratios i1, i2, . . . , in−1 summing
to 1, the composite image will be the sum of the randomly selected images multiplied by
the corresponding ratios. This adaptation can contribute greatly to the diversity of the
composite dataset and might overcome the smaller unlabeled data source.

By employing our proposed method, a user can attack a DNN model and reach an
extremely close success rate compared to the attacked model while relying only on the
minimal information that has to be given by the model (namely, its label prediction for
a given input). Our proposed method demonstrates that the current available defense
mechanisms for deep neural networks provide insufficient defense, as countless neural
networks-based services are exposed to the attack vector described in this paper using the
composite attack method, which is capable of bypassing all available protection methods
and stealing a model while carrying no marks that can identify the created model as stolen.
Such models can be attacked and copied into a rival model, which can then be deployed and
affect the product’s market share. The rival deployed model will be undetectable and carry
no mark proofs that it is stolen, as explained in Section 2.3. The novelty of the composite
method itself is reflected in its robustness and possible adaptation to any classification
use case, assuming maximal protection of the mentor model and no assumption on its
architecture or training data.
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Abstract: The domain of policymaking, which used to be limited to small groups of specialists, is
now increasingly opening up to the participation of wide collectives, which are not only influenc-
ing government decisions, but also enhancing citizen engagement and transparency, improving
service delivery and gathering the distributed wisdom of diverse participants. Although collective
intelligence has become a more common approach to policymaking, the studies on this subject
have not been conducted in a systematic way. Nevertheless, we hypothesized that methods and
strategies specific to different types of studies in this field could be identified and analyzed. Based on
a systematic literature review, as well as qualitative and statistical analyses, we identified 15 methods
and revealed the dependencies between them. The review indicated the most popular approaches,
and the underrepresented ones that can inspire future research.

Keywords: collective intelligence; crowdsourcing; policymaking; public policy; e-participation;
literature review

1. Introduction

The phenomenon of collective intelligence (CI), which is understood as an ability
of a particular collective to solve problems, mainly through gathering data, generating
ideas and making decisions, has been the subject of interest of many scientific disciplines
in recent years. The primary characteristic of a collective showing a high CI level is its
capability to solve problems in which the difficulty exceeds the capacity of an individual.
CI frequently manifests itself when cooperation, competition or mutual observation gives
rise to totally new solutions to the problems or leads to an increase in the ability to solve
them. Contemporary studies on CI, although clearly inspired by the development of the
Internet in their origins, have so far been carried out in very diverse disciplines, from
biology, through social sciences and organization management, to artificial intelligence.

Several empirical studies and theoretical simulations have proven that a collective can,
under certain conditions, achieve better results in problem solving than a narrow group
of experts [1–5]. To date, this phenomenon has been studied both as a feature of small
groups, in which ties and interactions between participants are strong and the deliberation
processes lead to informed intellectual outputs [6,7], and as a statistical phenomenon
resulting from the aggregation of a vast number of dispersed opinions coming from
incoherent crowds [8,9]. The most promising examples of recent projects in which a
high level of CI was observed have combined humans and machines, organizations, and
ICT networks [3]. The current empirical studies on CI are therefore largely focused on
interactions between users in online communities. In parallel, theoretical work has been
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carried out to simulate collective behavior with the use of computational methods. One
of the most interesting is the approach called swarm intelligence (SI), which takes its
inspiration from the biological examples provided by social insects such as ants, termites,
bees and flocks of birds. In this model, self-organization takes place in decentralized
communities in which the logical process is multi-threaded, chaotic and parallel; in which
the threads intertwine and interlock; and in which the agents exhibit adaptive behavior,
while also maximizing the number of diverse future paths among the possible choices.
Simulations show the possible effectiveness of such a decision model, but its application to
real social processes is not easy [10–12].

The domain of policymaking (i.e., formulating public policies), which used to be
strictly limited to small groups of specialists, is now increasingly opening up to the partici-
pation of wide collectives, which are not only influencing government decisions, but also
enhancing citizen engagement and transparency, improving service delivery and gathering
the distributed wisdom of diverse participants [13–16]. National and local governments
use CI methods in the policymaking processes, such as in legislative reforms [17,18], urban
strategy planning [16], analyzing large amounts of social data to detect patterns and abnor-
malities [19,20], using dynamic models for learning, adaptation and forecasting of policy
formulation [21,22], real-time continuous policy monitoring [15,23], as well as online public
debates and consultations [24,25]. Opening policymaking tasks to public participation,
fuelled by the theories of participatory democracy [26,27] and the concept of deliberative
democracy [28], has found its practical expression in a paradigm shift towards collaborative
governance [29,30], in which policy issues are addressed by networks of governmental
and non-governmental actors. However, some models of CI, especially those that are
characteristic of swarm intelligence, seem to be very difficult to reconcile with the common
understanding of policymaking.

Although collective intelligence has become a more common approach to policymak-
ing, the studies on this subject have not been conducted in a systematic way. The methods
of studying the theoretical models, the successful case studies, the public sphere domains
in which projects can be implemented, the expected results and the factors influencing CI
vary greatly depending on the scientific discipline in which they are conducted. Moreover,
different research traditions often use alternative terminologies to describe the same phe-
nomena, an example of which is the competitive use of the labels “crowdsourcing” and
“collective intelligence”. Furthermore, there has been no scientific literature review regard-
ing the phenomenon of CI in the field of policymaking. Research methods and strategies
used in the studies conducted so far have not been systematized either. Nevertheless, we
hypothesized that the methods and strategies specific to different types of CI studies in the
field of policymaking can be identified and analyzed.

In order to better understand the present state of knowledge in this field, we raised
the main research question (RQ1): what methods and strategies were specific to the studies
on collective intelligence in policymaking during the last 10 years? What was the trend
in the number of publications by year, and what were the most common concepts that
appeared in the studies concerning CI in policymaking?

To supplement the knowledge about the methods and strategies we planned to identify,
additional research questions were established:

RQ2: what statistical dependencies occurred between the identified research methods?
What dependencies occurred between the research methods and other features of the
analyzed studies?

RQ3: in which research areas were the studies conducted? What research methods
and strategies were used in the specific research areas?

RQ4: what research methods and strategies were employed in the most influential
works and in the topics of special importance for the study of CI in policymaking?

To answer these questions, we conducted a systematic literature review. On this basis,
using the grounded theory method, we were able to categorize the identified approaches
into a list of 15 methods and strategies and subsequently performed a series of analyses,
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described later in this article. With the use of statistical analyses, we revealed the depen-
dencies between different study methods, as well as between study methods and other
variables. Our cross-sectional analysis has produced interesting results, which may form
the foundation for future projects.

2. Materials and Methods

To answer the research questions posed, we divided the work into the tasks described
below. In order to answer Research Question 1, we adopted the following work plan:

a. Task 1.1. Selection of a database of scientific articles to be searched;
b. Task 1.2. Search for the studies on collective intelligence in policymaking in the last

10 years, based on selected keywords;
c. Task 1.3. Verification of the trend in the number of articles published per year;
d. Task 1.4. Search for the most common concepts and terms that appear in the articles;
e. Task 1.5. Identification of the methods and strategies of studying CI in policymaking.

The method used in the first stage of our research was a systematic literature review.
This literature review followed the Preferred Reporting Items for Systematic reviews and
Meta-analyses (PRISMA) methodology [31]. This section clearly articulates guidelines
regarding the inclusion or exclusion criteria of research papers to find relevant papers in
our research area. We have also clearly mentioned how and to what extent the review was
performed. The PRISMA flowchart for the research process is shown in Figure 1.

Figure 1. Flow diagram of the article-selection process.

When selecting keywords, alternative terms of CI used in the literature were taken
into account, including “collective intelligence”, “crowdsourcing”, “swarm intelligence”,
“wisdom of crowds” and “crowdlaw”. These concepts, although not fully identical, have an
established position, and are used by researchers to describe similar phenomena, depend-
ing on the background of individual authors (the relationships and differences between
these concepts were described by Buecheler [32]). The second set of keywords included
concepts related to political science, administration and governance: “policymaking” (vari-
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ants: “policy-making” and “policy making”), “public policy”, “political science”, “public
administration”, “public sector” and “public governance”. The Web of Science was chosen
from a number of pre-selected databases (other databases considered were Scopus, Sci-
encedirect and EBSCO) because of its reputation for the greatest coverage and the greatest
impact in terms of most cited authors and articles, as well as for the most accurate subject
classification. Search engines, such as Google Scholar, were excluded, as our priority was
to select peer-reviewed publications. The timeframe for the search was set for the period
from 2011 to 2020. The data search was conducted on March 8, 2020. We applied the logical
search to the topic (including the abstract, keywords and indexed fields), as well as the titles
of the scientific articles. The inclusion criteria were focused on peer-reviewed scientific
articles dealing with issues in the field of public policymaking and combining them with
methods, models and concepts derived from the CI research domain. In addition, we used
the language filter to focus on the publications in English.

The logical search used the following syntax: TS = ((“Collective Intelligence” OR
“Crowdsourcing” OR “Swarm Intelligence” OR “Wisdom of crowds” OR “Crowdlaw”)
AND (“Policy Making” OR “Policy-making” OR “policymaking” OR “Public Policy” OR
“Public Administration” OR “Political Science” OR “Public Sector” OR “Public Gover-
nance” OR “e-participation”)) OR TI = ((“Collective Intelligence” OR “Crowdsourcing” OR
“Swarm Intelligence” OR “Wisdom of crowds” OR “Crowdlaw”) AND (“Policy Making”
OR “Policy-making” OR “policymaking” OR “Public Policy” OR “Public Administration”
OR “Political Science” OR “Public Sector” OR “Public Governance” OR “e-participation”)).

This search led to an initial total of 169 references, and after removing the duplicates,
that number reached 167. Then, in accordance with the guidelines of H. Snyder [33], the
content of all articles was screened in terms of checking the inclusion criteria, according
to the title-abstract-references scheme, which allowed us to identify the content that did
not meet the criteria described above and remove it from the database. To focus on high-
quality literature, we excluded the conference proceedings, editorial materials and reviews,
and excluded articles written in a language other than English. Another 10 articles were
excluded during the eligibility assessment due to the fact that they obviously did not
concern the topic of review (e.g., their topic was tourism, citizen science initiatives, the
student learning environment, etc.). This led to the refined list of 88 results. By creating
the list as described above, it was possible to check how many articles were published
annually and what the trends were in the number of publications per year.

The content of the articles was evaluated by our team of 3 experts, with experience
and academic backgrounds in both policymaking and information technologies (2 experts
with a PhD in political science and experience working on ICT projects, and 1 expert with
an MA in IT and experience in working in social projects). The preliminary analysis was
made by creating lists of the most common concepts that appeared in article titles, article
abstracts, original keywords, as well as KeyWords Plus. The next stage, a qualitative
research step, the purpose of which was to extract the methods and strategies of studying
CI in policymaking from the analyzed texts, was based on the grounded theory approach.
We applied this approach for extracting the theoretical value from the selected studies,
grouping and presenting the key concepts, conceptualizing and articulating the concepts
and distilling the categories from them. The analysis included stages that were specific
to the grounded theory method: open coding, axial coding and selective coding. The
open coding stage involved an analytical process of generating high-abstraction level
type categories from sets of concepts. In this stage we focused on extracting keywords
specific to the analyzed texts that appeared in titles and abstracts. The analysis of keywords
allowed for a preliminary division of the texts into 11 subgroups, which became the initial
categories. The next stage, i.e., axial coding, aimed to identify the key processes and the
main research results described in the examined articles. We adopted an iterative method
of working: texts were analyzed in groups of 10, using the existing categories, and then
categories were redefined, combined or divided, and their definitions were developed.
The emerging categories were grounded during the progressive analysis of subsequent
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texts from our sample. Then, at the stage of selective coding, the categories were finally
integrated and refined [34]. Theoretical saturation was achieved when, during the analysis
of the following texts, no new concepts, properties or interesting links arose [35]. Based
on the review of the references included in the analyzed texts and the relevant theoretical
literature, we adopted the final definitions to describe the identified methods. As a result of
the analysis described above, 1 to 5 methods or strategies were identified in each reviewed
text, and the general list of 15 methods of studies on CI in the field of policymaking was
proposed.

After completing the work described above, we attempted to answer the additional
research questions. To answer RQ 2, the following tasks were planned:

a. Task 2.1. Checking what number of research methods were used on average per article;
b. Task 2.2. Analyzing the changes in the popularity of the use of particular methods in

the analyzed period;
c. Task 2.3. Finding statistical dependencies between research methods;
d. Task 2.4. Finding dependencies between research methods and other features of the

analyzed studies (number of citations, usage, number of pages, publication year).

This stage of our research was a series of statistical analyses. The first two tasks
were based on the simple counting of averages and the visualization of trends. Then, to
analyze the dependencies between research methods, we used Pearson’s Chi-squared test
of independence, and Yates’s correction for continuity (Yates’s Chi-squared test). Next,
analyzing the dependencies between research methods and other features of the analyzed
studies, we had to perform a Shapiro–Wilk test of normality for all continuous variables, the
Chi squared of independence test, and statistical analysis based on Pearson’s Chi-squared
test of independence. Finally, we used the Fisher exact test of independence.

In order to answer Research Question 3, we planned the following tasks:

a. Task 3.1. Identification of the research areas of the studies;
b. Task 3.2. Grouping the related research areas, taking into account the specificity of

the researched issue;
c. Task 3.3. Analysis of the number of studies published yearly within the research

area groups;
d. Task 3.4. Identification of which methods and strategies of studying CI in policy-

making were used more frequently and which were used less frequently within the
research area groups.

Based on the WoS Research Areas, we verified in which scientific disciplines the
studies were conducted, and what was their number. For the further analytical purposes,
we grouped the related scientific disciplines into collections, taking into account the special
position of the computer sciences and political sciences. On this basis we tracked the
yearly number of studies in each research area group and the most common methods and
strategies in each research area.

Finally, to answer Research Question 4, the following tasks were planned:

a. Task 4.1 Ranking of the top 10 articles based on usage and citation criteria to identify
the most influential works;

b. Task 4.2. Identification of which methods and strategies were used more frequently
and which were used less frequently in the “top 10” groups;

c. Task 4.3. Ranking the topics of special importance for the study of CI in policymaking;
d. Task 4.4. Identification of which methods and strategies were used more frequently

and which were used less frequently in the “topics of special importance” groups;

To analyze the most influential studies, we ranked the top 10 articles based on usage
and citation criteria, obtained from the Web of Science statistics. On this basis we tracked
the most common methods and strategies in each research area. Then, building the ranking
of topics of special importance, to ensure data triangulation and to avoid duplicating
regularities already detected, in the selection of topics we relied on a different method than
the one used in the earlier stages of this work. The monographic publications concerning
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the issues of collective intelligence and policymaking were shortlisted. Due to the scarcity
of monographic literature, only 8 publications were included in this list after the review. On
this basis, an initial list of 20 concepts was compiled. Subsequently, a survey was conducted
in which a group of 6 social science researchers were invited to assess the significance of the
proposed issues. Thus, the final list of 7 concepts that were subject to analysis was selected,
and we searched our literature database for keywords specific to each of these concepts.
The identified sub-groups of studies were analyzed in terms of the research methods and
strategies that were adopted.

3. Results

3.1. Methods and Strategies of Studying CI in Policymaking
3.1.1. Number of Articles in the Selected Database and the Growth Trend

As described above, the Web of Science database was selected for our review, and
studies were searched within it according to the adopted criteria. After the initial analysis,
it was discovered that none of the reviewed articles were published in 2011. The first article
that met the inclusion criteria appeared in 2012. In the years 2012–2017, we observed a
clear increase in interest in the issue under study. The peak period of interest was 2017,
when 18 articles were published. Despite the decrease observed later, 2020 was again
characterized by an increase in the number of publications compared to the previous year
(see Figure 2 below).

 

Figure 2. Number of articles concerning the issues of collective intelligence and policymaking
published annually, and the growth trend for the period 2012–2020.

3.1.2. Concepts and Terms That Appeared in the Articles

We analyzed the content of the research articles included in the review, and created
lists of the most common concepts that appeared in article titles, article abstracts, original
keywords, as well as KeyWords Plus generated by the Web of Science algorithm [36]. The
results are presented below in Table 1.
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Table 1. Rankings of top 10 concepts based on: (a) article titles, (b) article abstracts, (c) author
keywords, (d) KeyWords Plus.

(a) (b)

Top 10 Concepts in ARTICLE TITLES Top 10 Concepts in ARTICLE ABSTRACTS

Concept
Number of

Occurrences
Concept

Number of
Occurrences

Crowdsourcing 24 Public 153
Open 16 Crowdsourcing 125
Public 16 Government 84
Social 13 Data 82

Innovation 11 Social 79
Case 10 Open 78

Government 9 Innovation 76
Participation 9 Research 64

Online 9 Policy 63
Policy 9 Online 51

(c) (d)

Top 10 Concepts in AUTHOR KEYWORDS Top 10 Concepts in KEYWORDS PLUS

Concept
Number of

Occurrences
Concept

Number of
Occurrences

Crowdsourcing 50 Participation 14
Open 21 Innovation 14
Public 21 Media 9
Policy 19 Social 9

Government 16 Coproduction 8
Innovation 16 Government 8

Social 14 E-Government 7
Participation 11 Information 6

Data 10 Democracy 6
Democracy 10 Engagement 6

3.1.3. Identifying Methods and Strategies of Studying CI in Policymaking

In this section, the methods and strategies of studying CI in policymaking, which
were identified in the analyzed texts, are presented. As described in Section 2, 15 methods
and strategies were identified in the reviewed sample, and each text was associated with a
minimum of one and a maximum of five methods. In Table 2 we present a list of identified
methods and strategies, ranked from the most to the least popular, and the adopted
definitions, supplemented with references to theoretical literature.

As we can see, the analysis of organizational structure/design was the most popular
method. Fewer studies used the analysis of created values approach. Subsequent identified
methods, such as the analysis of the e-participation process, the analysis of participants’
behavior or collaboration models enjoyed moderate popularity. On the other hand, the least
frequently used methods included the analysis of platform usability, analysis of the impact
of AI algorithms and analysis of organizational learning. The relatively rare occurrence of
the analysis of impact on policymaking approach is also worth noting.
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3.2. Statistical Analysis
3.2.1. Number of Methods per Article

On average, 1.89 methods were used per article. Figure 3 visualizes the number of
research articles using a specified number of methods. It can be noted that a majority of
the analyzed articles used at most two methods.

 

Figure 3. The number of research articles using specified numbers of methods.

3.2.2. Changes in the Popularity of Using Particular Methods

Changes in the number of articles using the identified methods appearing in subse-
quent years were also analyzed. The chart below shows the yearly numbers of articles
using the seven most common methods and strategies, in the period 2012–2020. We can
observe that although the analysis of organizational structure has been the most widely
used method since 2016, it has recently lost its popularity, falling behind the analysis of
created values. In turn, the analysis of the e-participation process, which enjoyed a peak
in interest in 2015, has now largely lost its relevance. A similar decline in interest can be
observed in relation to the analysis of collaboration model, which peaked in 2018. (as can
be seen below in Figure 4).

 

Figure 4. The number of research studies using the following methods: (1) analysis of organizational
structure/design, (2) analysis of created values, (3) analysis of e-participation process, (4) analysis of
participants’ behavior, (5) analysis of collaboration model, (6) analysis of participants’ motivations,
(7) analysis of communication model, (8) analysis of innovation process.
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3.2.3. Dependencies between Research Methods

In this section we answer the question of whether there are any dependencies be-
tween the various research methods. It is common that when we want to investigate the
relationship between variables, we calculate the classical Pearson’s correlation coefficient.
However, Pearson’s correlation coefficient should only be applied to check the dependency
between two continuous variables. In our situation this is not the case because the variables
describing the usage of research methods are binary variables, answering the question
of whether a particular method was used or not. When we are looking for relationships
between binary or categorical variables, the commonly used statistical test is Pearson’s
Chi-squared test of independence. We performed Pearson’s Chi-squared test between each
pair of variables out of all 15 variables, describing the research methods in Table 2. The
results can be seen in Table 3.

Table 3. p-values from Pearson’s Chi-squared test of independence applied to each pair of research method variables
(where, for example, RM1 stands for Research Method 1). The assignment of particular methods and strategies to the labels
numbered from RM1 to RM15 is described in Table 2.

RM
1

RM
2

RM
3

RM
4

RM
5

RM
6

RM
7

RM
8

RM
9

RM
10

RM
11

RM
12

RM
13

RM
14

RM
15

RM1 0.000
RM2 0.371 0.000
RM3 0.089 0.273 0.000
RM4 0.089 0.030 0.143 0.000
RM5 0.430 0.005 0.524 0.434 0.000
RM6 0.933 0.026 0.919 0.000 1.000 0.000
RM7 0.541 0.225 0.816 0.562 0.214 0.894 0.000
RM8 0.900 0.225 0.261 0.136 0.002 0.231 0.285 0.000
RM9 0.158 0.062 0.608 0.600 0.662 1.000 0.824 0.317 0.000
RM10 0.227 0.377 0.177 0.781 0.781 0.882 0.712 0.712 0.383 0.000
RM11 0.090 0.668 0.260 0.278 0.278 0.384 0.437 0.437 0.467 0.498 0.000
RM12 0.131 0.197 0.317 0.335 0.335 0.439 0.490 0.490 0.517 0.547 0.000 0.000
RM13 0.661 0.877 0.317 0.717 0.091 0.439 0.318 0.490 0.257 0.547 0.615 0.655 0.000
RM14 0.944 0.267 0.388 0.406 0.489 0.505 0.179 0.552 0.137 0.604 0.665 0.701 0.000 0.000
RM15 0.458 0.526 0.623 0.635 0.635 0.704 0.734 0.734 0.750 0.767 0.805 0.826 0.826 0.850 0.000

The statistical analysis based on Pearson’s Chi-squared test of independence showed
that in most cases there was no statistically significant evidence of a statistical relationship
between research methods (p-value > 0.05). The analysis showed that only in seven cases
(highlighted in bold in Table 3) was there a significant statistical dependency between
certain specific research methods (p-value < 0.05). We discuss these dependencies based on
the results from Table 4 below and in Figure A1 in the Appendix A.

It must be noted that one of the assumptions of Pearson’s Chi-squared test of inde-
pendence is the fact that the value of the contingency table cell should be five or more in
at least 80% of the cells, and no cell should have a value less than one. Unfortunately, all
the contingency tables from Table 4 have at least one cell with a value smaller than five;
therefore, the assumption above was not met. Since this was the case, we applied Yates’s
correction for continuity (Yates’s Chi-squared test) [59]. The results can be seen in Table 5.

After Yates’s correction there were only five cases with significant statistical depen-
dency between certain specific research methods (p-value < 0.05). However, three of them
were statistically highly significant (p-value < 0.001).
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Table 4. Contingency tables of Pearson’s Chi-squared test of independence for the variables with statistically significant
dependency. The assignment of particular methods and strategies to the labels numbered from RM1 to RM15 is described in
Table 2.

Research Method 4 Research Method 5

Research Method
2

0 1 Sum Research Method
2

0 1 Sum

0 48 15 63 0 16 47 63
1 24 1 25 1 0 25 25

Sum 72 16 88 Sum 16 72 88

Research Method 6 Research Method 6

Research Method
2

0 1 Sum Research Method
4

0 1 Sum

0 52 11 63 0 68 4 72
1 25 0 25 1 9 7 16

Sum 77 11 88 Sum 77 11 88

Research Method 8 Research Method 12

Research Method
5

0 1 Sum Research Method
11

0 1 Sum

0 5 11 16 0 82 1 83
1 4 68 72 1 2 3 5

Sum 9 79 88 Sum 84 4 88

Research Method 14

Research Method
13

0 1 Sum

0 83 1 84
1 2 2 4

Sum 85 3 88

Table 5. p-values from Yates’s Chi-squared test of independence.

Relationship
between

RM2
& RM4

RM2
& RM5

RM2
& RM6

RM4
& RM6

RM5
& RM8

RM11
& RM12

RM13
&

RM14

p-value 0.062 0.013 0.061 0.00016 0.009 5.05 × 10−7 0.00012

Finally, we can conclude that there are five statistically significant relationships be-
tween research method variables: A relationship between analysis of created values and
analysis of collaboration model, between analysis of participants’ behavior and analysis of
participants’ motivations, between analysis of collaboration model and analysis of inno-
vation process, between categorization of the implemented projects and state-of-the-art
review, and finally between analysis of platform usability and analysis of the impact of AI
algorithms. Note that the Chi-squared test of independence does not not give an answer
as to what kind of dependency exists between variables. It only answers the question of
whether there is dependency between variables. To find the limits on what can be shown
from the analysis we looked at the contingency tables and corresponding figures and
checked if we were able to draw any conclusions from them. From Table 5 and Figure A1
we can suppose that the latter four relationships rely on the fact that in the vast majority of
cases, both of these methods were not used simultaneously. In the case of the relationship
between analysis of created values and analysis of collaboration model, we can hypothesize
that the discontinuation of the analysis of created values method was associated with an
increase in the applicability of the analysis of collaboration model method. However, in
this case the relationship between variables was not obvious.
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3.2.4. Dependencies between Research Methods and Other Features of the
Analyzed Studies

In this section, we investigate whether there are relationships between the research
method used and other article features such as citations, popularity, number of pages and
year of publication. As before, in order to perform statistical analysis, we used binary
variables describing the use of the peculiar research method in the articles. The variables
describing article features are the following: Cited Reference Count, Times Cited WoS Core,
Times Cited All Databases, 180 Day Usage Count, Since 2013 Usage Count, Number of
Pages and Publication Year (all variables defined in the Web of Science specification [60]).
All the above variables except the last one are continuous-type variables and the last one
is categorical. In the case of the last variable, the matter is simple. In order to check its
relationship with binary variables describing the research methods used, we used the
Chi-squared test of independence as before. To check the relationship between binary
variables and the other six continuous variables, we calculated the point biserial correlation
coefficient. Note that one of the assumptions of the point biserial correlation is the fact
that the continuous variable is normally distributed. To check this assumption we plotted
histograms, quantile-to-quantile plots and performed the Shapiro–Wilk test of normality
for all six continuous variables. The results are shown in Table 6, Figures 5 and 6.

Table 6. p-values of the Shapiro–Wilk test of normality applied for variables: Cited Reference Count,
Times Cited WoS Core, Times Cited All Databases, 180 Day Usage Count, Since 2013 Usage Count,
Number of Pages.

Cited Reference Count Times Cited WoS Core Times Cited All Databases

8.85 × 10−5 1.37 × 10−18 1.28 × 10−18

180 Day Usage Count Since 2013 Usage Count Number of Pages

6.3 × 10−16 6.78 × 10−16 0.0307

Figure 5. Histograms of the variables: Cited Reference Count, Times Cited WoS Core, Times Cited
All Databases, 180 Day Usage Count, Since 2013 Usage Count, Number of Pages.
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Figure 6. Q–Q plots of the variables: Cited Reference Count, Times Cited WoS Core, Times Cited All
Databases, 180 Day Usage Count, Since 2013 Usage Count, Number of Pages.

From the histogram plots in Figure 5 we can see that only the distribution of the
Number of Pages variable is approximately bell-shaped and therefore looks like a normal
distribution. The quantile-to-quantile plots from Figure 6 confirm that only the Number
of Pages variable may be normally distributed (because the values are arranged along a
straight line). However, if we look at Table 6, we see that the p-values of the Shapiro–Wilk
test of normality of all the considered variables are small (p-value < 0.05) and therefore we
must reject the null hypothesis that a sample came from a normally distributed population.
Since one of the assumptions of point biserial correlation was not met, we could not use this
method to investigate the relationship between binary research method variables and the
variables describing article features. However, we used a different solution. We grouped
the values of continuous variables into one of three categories: low, medium and high,
according to the scheme described in Table 7, and then we used the Chi-squared test of
independence as before. The Publication year variable is already a categorical variable.
However, due to the fact that it has nine values and the sample size is small, we also
grouped its values into three categories. The remaining variables were grouped so that the
size of each class was at least 10 and that all classes were more or less equal.
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Table 7. Qualifying intervals for variables.

Low Medium High

Range N Range N Range N

Cited Reference Count 0–40.71 29 40.72–59.42 29 59.43–173 30

Times Cited WoS Core 0–3 34 4–11 27 12–502 27

Times Cited All
Databases

0–3 33 4–11 27 12–512 28

180 Day Usage Count 0 30 1–2 38 3–39 20

Since 2013 Usage
Count

0–8 33 9–23.42 25 23.43–454 30

Publication Year
2012–
2014 10 2015–2017 38 2018–2020 40

Number of Pages 4–13 31 14–19 29 20–34 28

We performed the Chi-squared test of independence for all pairs such that the first
variable in the pair was a binary variable describing the research method used and the
second variable in the pair was a continuous variable describing the features of the article.
The results of the analysis are shown in Table 8.

Table 8. p-values from the Pearson’s Chi-squared test of independence (where CRC stands for Cited Reference Count, CW
for Times Cited WoS Core, CA for Times Cited All Databases, 180U for 180 Day Usage Count, 2013U for Since 2013 Usage
Count, PY for Publication Year and NoP for Number of Pages).

RM 1 RM 2 RM 3 RM 4 RM 5 RM 6 RM 7 RM 8 RM 9 RM 10 RM 11 RM 12 RM 13 RM 14 RM 15

CRC 0.929 0.750 0.149 0.376 0.554 0.197 0.246 0.211 0.382 0.329 0.071 0.017 0.338 0.042 0.357
CW 0.905 0.232 0.156 0.775 0.456 0.906 0.188 0.511 0.503 0.586 0.340 0.124 0.892 0.085 0.319
CA 0.954 0.298 0.415 0.748 0.454 0.897 0.181 0.563 0.465 0.560 0.052 0.141 0.869 0.075 0.319

180U 0.398 0.049 0.983 0.113 0.879 0.157 0.633 0.054 0.944 0.407 0.959 0.361 0.925 0.447 0.376
2013U 0.239 0.726 0.877 0.929 0.850 0.823 0.505 0.780 0.258 0.939 0.907 0.864 0.318 0.263 0.430

PY 0.872 0.930 0.623 0.473 0.545 0.087 0.798 0.505 0.944 0.159 0.484 0.398 0.763 0.155 0.545
NoP 0.848 0.005 0.848 0.512 0.479 0.038 0.272 0.704 0.656 0.543 0.812 0.758 0.758 0.042 0.357

The statistical analysis based on the Pearson’s Chi-squared test of independence
showed that in most cases there is no statistically significant evidence that there is a
statistical relationship between research methods and article features (p-value > 0.05).
The analysis showed that only in six cases (highlighted in bold in Table 8) there is a
significant statistical dependency between certain specific research methods and article
features (p-value < 0.05). We discuss these dependencies based on the results from Table 9
below and in Figure A2 in Appendix A.

For the two first relationships from Table 9, we have enough value in each cell of the
contingency table so we can conclude that there is a statistical relationship between the
Analysis of created values method and 180 Day Usage Count variable—the use of this
method translates into popularity among readers. There is also a statistical relationship
between the Analysis of created values method and the number of pages of the article. In
this case, it is easy to see from the chart that the use of this research method is related to
the reduction of the number of pages of the article in which this method is used.
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Table 9. Contingency tables of the Pearson’s Chi-squared test of independence for the variables with statistically significant
dependency.

180 Day Usage Count Number of Pages

Research
Method 2

High
180U

Medium
180U

Low
180U Sum Research

Method 2
4–13 14–19 20–34 Sum

0 11 32 20 63 0 16 22 25 63
1 9 6 10 25 1 15 7 3 25

Sum 20 38 30 88 Sum 31 29 28 88

Number of Pages Cited Reference Count

Research
Method 6

4–13 14–19 20–34 Sum Research
Method 12

Low CR High
CR

Medium
CR Sum

0 30 26 21 77 0 29 26 29 84
1 1 3 7 11 1 0 4 0 4

Sum 31 29 28 88 Sum 29 30 29 88

Cited Reference Count Number of Pages

Research
Method 14

Low CR High CR Medium
CR Sum Research

Method 14
4–13 14–19 20–34 Sum

0 26 30 29 85 0 31 26 28 85
1 3 0 0 3 1 0 3 0 3

Sum 29 30 29 88 Sum 31 29 28 88

Unfortunately, the other four contingency tables from Table 9 have at least one cell
with value smaller than five; therefore, we should apply Yates’s correction for continuity.
However Yates’s correction for continuity is mainly applied for 2 × 2 contingency tables.
This is not our case, so we have to use a different statistical test to resolve the remaining
four cases. We performed Fisher’s exact test, which is also commonly employed when
sample sizes are small or the data are very unequally distributed among the cells of the
contingency table. The results of the Fisher exact test can be seen in Table 10.

Table 10. p-values from the Fisher exact test of independence (where RM6 stands for Research
method 6, NoP for number of Pages and CRC for cited reference count).

Relationship
between

RM6 & NoP RM14 & NoP RM14 & CRC RM12 & CRC

p-value 0.042 0.063 0.067 0.032

From the Fisher exact test, it follows that there are two more statistical relationships
(p-value < 0.05) between the analysis of participants’ motivations method and the number
of pages of the article, the state-of-the-art review method and the cited reference count.
Again from Table 9 and Figure A2, we can draw some conclusions. It appears that use of
the analysis of participants’ motivations method is related to the increase of the number of
pages of the article. Moreover, it seems that use of state-of-the-art review method has a
positive impact on Cited Reference Count.

The last relationship we looked for was the relationship between the number of
methods used in the articles and the features of the article. As before, we conducted the
Chi-squared test of independence. For the purposes of the analysis, the variable describing
the number of methods used was divided into four categories: one method, two methods,
three methods, and 4–5 methods. Due to the small number of the articles with four or
five methods used, these articles were grouped into one category. The obtained results
(compare Table 11) showed that there is no statistically significant evidence that there was a
statistical relationship between the number of methods used in the articles and the features
of the article (p-value > 0.05).
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Table 11. p-values from the Chi-squared test of independence (where NoM stands for Number of
Methods, CRC for Cited Reference Count, CW for Times Cited WoS Core, CA for Times Cited All
Databases, 180U for 180 Day Usage Count, 2013U for Since 2013 Usage Count, PY for Publication
Year and NoP for Number of Pages).

Relationship
between

NoM
& CRC

NoM
& CW

NoM
& CA

NoM
& 180U

NoM
& 2013U

NoM
& PY

NoM
& NoP

p-value 0.461 0.681 0.773 0.773 0.970 0.068 0.856

3.3. Research Areas
3.3.1. Identification of the Research Areas of the Studies

When classifying the research areas to which the analyzed texts belonged, we used
the WoS Research Areas label, which was assigned to each journal publishing the analyzed
texts (every record in the Web of Science core collection contains the subject category of its
source publication, assigned to at least one of the subject categories). Figure 7 shows in
which WoS Research Areas the texts were published in the analyzed period.

 

Figure 7. The WoS Research Areas assigned to the journals publishing the analyzed texts (percentage per year).

We observe that in the first year covered by the analysis (2012), the studied texts
belonged to only two research areas, which also happened to be closely related (i.e.,
information science and computer science), whereas in the subsequent years (with the
exception of year 3) the number of research areas systematically grew, reaching its peak
in 2017 (17 research areas), and almost maintaining this high level in 2018 and 2020
(16 research areas).

3.3.2. Grouping the Identified Research Areas

For the sake of the clarity of the analysis, we have grouped the emerging research
areas into five research area groups (RAGs) as shown in Table 12. We have paid special
attention to two general areas that we found of particular importance to the studied topic,
here separated into broad categories: (1) computer science, information science and related
and (2) political sciences and related. Other research areas in which the references to CI in
policymaking appeared were gathered into three groups: (3) humanities and social sciences
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other than political sciences, (4) natural sciences and mathematics, and (5) applied sciences.
In some cases, one article was assigned to more than one research area because it belonged
to multiple disciplines according to the Web of Science classification. This was the case for
32 articles of 88 analyzed.

Table 12. Research area groups, grouping the WoS research areas, within which the studies on CI in policymaking were
conducted in the 2012–2020 period.

Research Area Group
(RAG)

WoS Research
Areas Included

The Total Number of Studies
in 2012–2020

Computer Science,
Information Science

and related

Computer Science,
Information Science & Library Science,

Telecommunications, Medical Informatics.
32

Political Sciences
and related

Public Administration,
International Relations,

Government & Law, Communication,
Public, Environmental &

Occupational Health.

38

Humanities
and Social Sciences,

other than
Political Sciences

Anthropology, Sociology, Psychology,
History, Cultural Studies,

Education & Educational Research,
Arts & Humanities—Other Topics,

Social Issues, Urban Studies,
Social Sciences—Other Topics.

11

Natural Sciences
& Mathematics

Mathematics, Physics, Physical Geography,
Chemistry, Neurosciences & Neurology,

Environmental Sciences & Ecology.
8

Applied Sciences

Engineering, Health Care
Sciences & Services,

Business & Economics,
Biodiversity & Conservation,

Operations Research
& Management Science,

Science & Technology—Other Topics,
Remote Sensing, Forestry

22

3.3.3. Studies Published Yearly within the Research Area Groups

The next stage of the work was an analysis of the number of studies published yearly,
within the research area groups. This revealed that until 2017 computer science and related
was the leading approach. However, since 2017, political sciences have become the main
field of research in which studies on collective intelligence in policymaking are conducted.
In recent years, the amount of research conducted in the field of computer science has
clearly decreased, giving way to various types of social research. Changes in the amount of
work published annually within the grouped research areas are shown in Figure 8.

3.3.4. Study Methods Used within the Research Area Groups

The next stage of our work was to verify, based on the texts that were analyzed, which
methods and strategies of studying CI in policymaking were used in the research areas.
Figure 9 visualizes the number of research articles, in which the specific methods and
strategies used for studying CI in policymaking were used, broken down by research areas,
in total for the period 2012–2020.
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Figure 8. The number of studies on collective intelligence in policymaking published yearly within the RAGs.

 

Figure 9. Number of research articles in which the methods and strategies used for studying CI in
policymaking were used, broken down by research area groups, in total for the period 2012–2020. The
assignment of particular methods and strategies to the labels numbered from 1 to 15, as described
in Table 2.

We also compared the percentage of method usage (MU) in particular research areas to
the percentage of MU in all the reviewed studies. This allowed us to see which methods and
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strategies were used more frequently and which were used less frequently in the examined
research areas. Below, in Figure 10, we present the visualization of this comparison. The
visualized difference between MU in the whole sample and in particular research areas,
from this point forward referred to as the difference in percentage points (DPP). The source
data are presented in Table A1 in Appendix B.

Figure 10. Method usage within the research area groups compared to the reviewed studies. The
assignment of particular methods and strategies to the labels numbered from 1 to 15 as described in
Table 2.

The mean absolute error (MAE) analysis has shown that computer science and po-
litical sciences are the most characteristic areas of research for issues related to CI and
policymaking. As can be seen, in the field of computer science, the most important methods
that were used most often in the entire analyzed sample were the analysis of created values
(the difference in percentage points, or DPP: +9.09) and the analysis of e-participation
process (DPP: +5.68). In turn, the most underrepresented methods were analysis of orga-
nizational structure (DPP: −7.10), analysis of impact on policymaking (DPP: −4.83) and
state-of-the-art review (DPP: −4.55). On the other hand, in the field of political sciences, as
if in opposition to the previous group, an increased interest in analysis of organizatonal
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structure (DPP: +6.88) was observed, as well as in analysis of collaboration model (DPP:
+5.50), whereas low interest in analysis of decision-making (DPP: −6.46) was observed. It
is also noticeable that in this group, as in the entire study sample, the analysis of impact
on policymaking method is relatively rarely used, which is surprising. When it comes
to the research area of the social sciences and humanities (other than political science),
we noticed the great popularity of the analysis of participants’ behavior (DPP: +18.18)
and the analysis of innovation process (DPP: +17.05), with a complete lack of interest
in the analysis of created values. On the other hand, the research conducted within the
natural sciences and mathematics was characterized by the little use of the analysis of
organizational structure (DPP: −22.73) and the analysis of the e-participation process (DPP:
−19.32), but a significantly increased use of the analysis of decision-making process (DPP:
+28.41). However, it should be remembered that the studies assigned to areas no. 3 and no.
4 constituted a much smaller sample than those grouped in other areas. Finally, the last
presented group of disciplines are applied sciences. In this group, as in computer sciences,
the increased use of the analysis of created values (DPP: + 12.50) is observed, and at the
same time we see the smaller than in the entire sample, use of the analysis of participants’
behavior (DPP: −9.09), and the analysis of collaboration model (DPP: −9.09).

3.4. Methods and Strategies Used in the Most Influential Works and in the Topics
of Special Importance
3.4.1. Analysis of the Most Influential Studies

To analyze the most influential studies, we ranked the top 10 articles based on the
usage and citation criteria. First, when analyzing the usage criterion, we examined data
obtained from the Web from Science: the Since 2013 usage and the 180 Day Usage Count
variables. However, we observed that the differences in the top 10 lists generated on their
basis were relatively small, so we decided to choose the Since 2013 usage variable for
creating the ranking. The results are presented in Appendix C in Table A4.

Secondly, we have prepared a ranking of the top 10 articles based on the criterion of
the highest citations (Times Cited, WoS Core). The results are shown below in Appendix C
in Table A5.

Finally, we analyzed which methods and strategies of studying CI in policymaking
were used in the created sets of the most influential studies. As previously, we compared
the percentage of method usage in the most influential studies to the percentage of method
usage in all reviewed studies. This allowed us to determine which methods and strategies
were used more frequently and which were used less frequently in the examined groups, in
a similar way as we did before with research areas. In Figure 11 we present the visualization
of this comparison. The source data are presented in Table A2 in Appendix B.

Figure 11. Method usage within the most influential studies compared to all the reviewed literature; 1 to 15 are as described
in Table 2.
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The analysis made it possible to observe interesting similarities and differences be-
tween the examined collections of research articles. First, their most common feature was
an increased interest in the analysis of innovation process; respectively, DPP +29.77 in the
most-read articles group, and DPP +19.77 in the most-cited texts group. Likewise, the
analysis of organizational structure is an equally popular method in both groups (DPP
+4.77). However, the differences are revealed mainly in the use of analysis of created values:
in the group of the most often cited, it is one of the most popular approaches for half of all
texts, and DPP +21.59 compared to the use in the entire study sample. However, although
it is among the most widely read, this method was not more popular than the entire sample.
We have the opposite situation in the case of the analysis of e-participation process: Among
the most frequently read texts we can see an increased interest in this method (DPP +20.68),
which is not the case with the most often cited texts (DPP +0.68).

3.4.2. The Analysis of Topics of Special Interest

The last stage of our analysis was to examine, within the reviewed literature, the
topics of special interest for the research on CI in policymaking. To ensure data triangu-
lation, and to avoid duplicating regularities that were already detected, in the selection
of topics we relied on a different method than the one used in the earlier stages of the
work. When selecting specific topics for analysis, we relied on monographs concerning
issues of collective intelligence and policymaking, published after 1990. The method of
selecting topics for analysis is described in Appendix D. The final list of seven topics
included: Citizenship, Communities, Consensus, Deliberation, Diversity, Local governance
and Urban development, and Open data.

Next, we searched our literature database for the keywords specific to each of these
topics. The topic-oriented subgroups of studies were created, based on the occurrence of
the related keywords. The results are presented in Table 13.

Table 13. Saturation of the analyzed research studies with selected topics of interest.

Concept
Number of Studies

Where the Concept Appeared
References in Monographic

Publications

Citizenship 47 [61–64]
Local governance

& Urban development 30 [2,63–65]

Communities 14 [2,62,64]
Deliberation 9 [61,62,64–67]
Open data 7 [64,65]
Diversity 5 [2,61,63,66]

Consensus 5 [61,62,66]

The four most popular topic-oriented subgroups were analyzed in terms of the meth-
ods and strategies that were adopted in the conducted research. The aim was to verify
to what extent the reviewed literature relates to the examined topics, and what research
methods were used in the studies focused on these topics. The results of the analysis are
shown in Figure 12. The source data are presented in Table A3 in Appendix B.
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Figure 12. Method usage within the most influential studies compared to all the reviewed studies. The assignment of
particular methods and strategies to the labels numbered from 1 to 15 as described in Table 2.

4. Discussion

The analyses conducted allowed us to conclude that throughout the whole sample the
approaches that were most frequently used to study collective intelligence in the domain
of policymaking were analysis of the organisational structure and analysis of the created
values. Moreover, the analysis of the two most important research areas in which the
studies were conducted revealed that the first of these methods is primarily peculiar to
political science, and the latter is more common in computer science. Apart from this
general observation, we were able to investigate a number of other issues related to the
analyzed topic.

We observed that at least since 2015, the topic of CI in policymaking remains a subject
of increasing interest among researchers. Although 2017 was the peak of interest, the
subsequent years also demonstrated the continued popularity of this issue. Content
analysis allowed for the identification of concepts that constituted the most important
points of reference in the studies. The dominance of the term crowdsourcing, both in article
titles and in author keywords, is noticeable. Due to the fact that this term in its original
meaning mainly referred to business projects, we can see that many authors remain rooted
to translating patterns developed in the commercial sector into the public sphere. This
observation seems to be consistent with the analysis of research methods. The frequent
use of analysis of the created values approach is also a common point with commercial
projects, in which the direct results of collective effort are one of the primary subjects of
interest. In turn, concepts such as the public and government frequently appearing in
article abstracts, embedding the research in the political sciences domain. In addition,
the KeyWords Plus analysis (based on the literature cited in the analyzed works) shows
that the concepts that were most frequently referred to were innovation and participation.
Note that the term innovation, in its business sense—being a multi-stage process whereby
organisations transform ideas into new/improved products, service or processes [A1]—is
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now increasingly used in social and political sciences to describe the process of reforming
public organizations by opening them to participation [A2], which was also confirmed by
our analysis.

Statistical analysis proved that some significant relationships between the research
methods can be observed. The negative relationship between the analysis of created
values and the analysis of collaboration model is particularly noteworthy. This can be
explained by the fact that projects mainly oriented at generating new values are studied
in the context of the existing governance framework. The studies on new models of
intersectoral collaboration between public and private entities, when the scope of the project
extends beyond the structure of one specific organization, require a different approach. The
remaining relationships are fairly obvious: A common combination in the reviewed studies
was to analyze the behavior and motivation of the participants at the same time. Similarly,
it is not surprising that state-of-art-review and categorization of implemented projects were
linked. The observed positive relationship between the analysis of created values and the
180 Day Usage Count also led to interesting observations. It can be concluded that the
use of the analysis of created values method translates into increased popularity among
readers. On the other hand, we can see that studies based on this method result in texts
with fewer pages, which makes them more accessible to readers.

The analysis of research areas in which the studies were conducted points to the
conclusion that the number and diversity of the scientific disciplines covered by the review
is growing year by year. References to CI and policymaking appear in more and more
specialized works related to the implementation of public policies. It shows that reflections
on CI in policymaking have moved from general considerations to the application of
solutions in specific domains of public policy. Secondly, the analysis of the number of
studies appearing yearly in research area groups confirmed that researchers tend to be less
interested in technological aspects of projects (the computer science and related group), and
more in the implementation of these projects in diverse areas of administration, and in the
public sphere (the political sciences and related group). As we have already emphasized,
the patterns of analysis borrowed from business projects (i.e., created value analysis) were
the leading methods of study in computer science. At the same time, the analysis conducted
from an organizational perspective was characteristic of contemporary governance studies
on CI. However, the low popularity of the analysis of the impact of AI algorithms approach
was surprising. It seems that CI studies are still conducted almost entirely separately from
AI studies. Despite the fact that the combination of AI and CI has been recently proposed as
one of the most important topics of research, for example, in the report Identifying Citizens’
Needs by Combining AI and CI [68] or in the works of G. Mulgan [69], it looks like this
demand has not yet been answered. The relatively low popularity of the analysis of the
impact on policymaking is also puzzling. It can be concluded that the practical function of
CI in policymaking is often reduced to fitting CI projects into the existing administrative
structure, or on increasing efficiency in achieving goals formulated at the political level,
whereas actual shaping of public policy agendas is still rare. Nevertheless, the observed
decline in the popularity of the analysis of organisational structure approach may herald
some changes.

Research into created values is not the only approach that stands out in computer
science. We also notice the popularity of studies on the e-participation processes, focused
on engaging wide audiences in policymaking, which is promising in the context of future
research. It is also interesting that in the political sciences, apart from research on the
organizational structure, there is a significant interest in collaboration models. Reflecting
on the cooperation of different types of partners, achieving mutual benefits seems to be a
promising model for the future shape of policymaking.

A review of the most influential articles, taking into account both their use and
citations, allowed their specific features to be captured. The innovation analysis was a
particularly popular research approach in this group. Our observation may be an indication
for future research that including the analysis of project innovativeness in the planned
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works may contribute to increased interest in research results. However, as in the other
analyzed subgroups, the number of studies tracking the actual impact of CI projects on
shaping public policies was still unexpectedly low. Conversely, the analysis of the e-
participation process enjoys increased popularity in this group, although only among the
frequently read, though not among the most cited articles. We also noted that the articles
relating to user behavior were underrepresented in this group.

Finally, the analysis of the selected topics of interest showed that the most popular
concept in our sample was citizenship, and studies using this term were often associated
with the method of analyzing the motivations of participants. This is in line with postulated
changes in the relationship between citizens and the state, as proposed by Noveck [67] and
others. The government is expected to transform from an authoritative problem-solving
center into an arbiter, inviting the citizens to jointly seek the best solutions. Putting the
citizens at the center of interest and studying their motivations enhances their role as active
participants in the online public sphere. Another very popular concept in the analyzed
sample was local governance. References to this topic could be found in over 34% of the
reviewed studies. The analysis showed that cities, as well as communities (both local
and based on interests), have become the main field of implementation of CI projects in
the public space. In the case of cities, the organizational structure of projects was the
main method of study, and in the case of communities, the values they produce were
more important. It was also noted that topics with a deep theoretical foundation, such
as diversity or consensus, were still not very popular among the analyzed works, which
may be related to their relatively low applicability to the leading topics of citizenship and
local governance.

5. Conclusions

Opening policymaking tasks to public participation has become one of the major
trends in public policy in recent years. Regarding the 2030 Agenda for Sustainable De-
velopment, approved by United Nations Member States in 2015, “responsive, inclusive,
participatory and representative decision-making at all levels” is one of the adopted strate-
gic goals for the future [70]. The role of governments is substantially changing, and the
emergence of new and complex social problems requires looking for new ways to collabo-
rate in making public decisions with non-governmental actors, and with self-organized
communities. For this reason, there is a need to constantly review the existing research on
collective intelligence in the domains of public policy and the methods of studying this
topic, which may contribute to the better planning of future implementations.

In the present study we made an attempt to identify which methods and strategies
have been used so far for researching CI in policymaking. To answer Research Ques-
tion 1, we conducted a systematic literature review following the PRISMA methodology,
supplemented by an analysis of article titles, abstracts and keywords, the yearly number
of publications, as well as qualitative research based on the grounded theory method.
We identified 15 methods in the analyzed sample. The analysis of the organizational
structure and analysis of the created values approaches proved to be the most frequently
used approaches.

Considering Research Question 2, the analysis of statistical dependencies allowed
us to identify several positive and negative correlations between research methods and
between research methods and other variables (especially usage count, as well as the
number of pages).

Considering Research Question 3, we found that studies were conducted mainly
in computer sciences and political sciences, with the latter group, though initially less
numerous, becoming dominant in recent years. We also identified which research methods
were more common and which were less common in particular research areas.

Finally, considering Research Question 4, it is possible to conclude that the most
influential, i.e., the most cited and the most popular articles, differed from typical studies in
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terms of the research methods used. A similar phenomenon occurred in relation to groups
of articles built around topics of special importance.

The authors hope that by publishing this article they contributed to the systemati-
zation of knowledge about studies on collective intelligence in policymaking, showing
in which areas the research has been conducted and which methods have been used for
this purpose. In addition to identifying the most popular methods, we have attempted to
identify the underrepresented approaches, which are promising for the future develop-
ment of these studies. The present study differs significantly from the studies that were
conducted in the past. None of the literature reviews on CI and public policymaking
have so far developed a comprehensive list of analytical methods and approaches used in
this type of research. For example, Prpić et al. presented the status of research focusing
on three selected policy crowdsourcing techniques (virtual labor markets, tournament
crowdsourcing, open collaboration), to compare them to the different stages of the policy
cycle [37]; Liu et al. synthesized prior research and practices mainly to provide practical
lessons for designing new projects in the public sector [52] and Linders focused on classi-
fying citizen co-production initiatives [54]. As our review shows, some types of research
have so far been extremely rare. For example, only one study in the analyzed sample
concerned organizational learning, and yet, according to studies conducted by Mulgan [4]
and Malone [71], it is one of the most important elements involved in collective intelligence.
The state of research on the impact of CI in shaping public policy agendas, and on the
use of AI algorithms in implemented projects also seems insufficient. We trust that by
indicating the areas in which research is still limited, we will contribute to the better quality
of future studies.
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Appendix A

Figure A1. 3D barplot of the contingency tables from Table 4 of the Pearson Chi-squared test of
independence for the variables with statistically significant dependency.

139



Entropy 2021, 23, 1391

Figure A2. 3D barplot of the contingency tables from Table 9 of the Pearson Chi-squared test of
independence for the variables with statistically significant dependency.
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Appendix B

Table A1. Methods and strategies of studying CI in policymaking used in each particular research area group (RAG),
compared to all the reviewed studies. NoS stands for number of studies, in which the particular research method is
used; method usage (MU) indicates the percentage of studies in which the research method was used; DPP stands for the
difference in percentage points between MU in this group and MU in all the reviewed studies; MAE stands for the mean
absolute error for the analyzed group. The assignment of particular methods and strategies to the labels numbered from 1
to 15 is described in Table 2.

Research Methods & Strategies (RM)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

All reviewed
literature

(n-88)
NoS 31 25 17 16 16 11 9 9 8 7 5 4 4 3 1

Method Usage
(MU) 35.23 28.41 19.32 18.18 18.18 12.50 10.23 10.23 9.09 7.95 5.68 4.55 4.55 3.41 1.14

RAG 1:
Computer

Science & related
(n = 32)

NoS 9 12 8 6 5 4 3 2 3 1 1 0 1 1 0
Method Usage

(MU) 28.13 37.50 25.00 18.75 15.63 12.50 9.38 6.25 9.38 3.13 3.13 0.00 3.13 3.13 0.00

DPP −7.10 9.09 5.68 0.57 −2.56 0.00 −0.85 −3.98 0.28 −4.83 −2.56 −4.55 −1.42 −0.28 −1.14
Mean Absolute

Error (MAE) 2.99

RAG 2: Political
Sciences &

related (n = 38)
NoS 16 9 6 7 9 5 4 5 1 3 1 3 1 0 0

Method Usage
(MU) 42.11 23.68 15.79 18.42 23.68 13.16 10.53 13.16 2.63 7.89 2.63 7.89 2.63 0.00 0.00

DPP 6.88 −4.72 −3.53 0.24 5.50 0.66 0.30 2.93 −6.46 −0.06 −3.05 3.35 −1.91 −3.41 −1.14
Mean Absolute

Error (MAE) 2.94

RAG 3: Social
Sciences &

Humanities (n = 11)
NoS 4 0 3 1 4 2 0 3 2 1 1 1 0 0 0

Method Usage
(MU) 36.36 0.00 27.27 9.09 36.36 18.18 0.00 27.27 18.18 9.09 9.09 9.09 0.00 0.00 0.00

DPP 1.14 −28.41 7.95 −9.09 18.18 5.68 −10.23 17.05 9.09 1.14 3.41 4.55 −4.55 −3.41 −1.14
Mean Absolute

Error (MAE) 8.33

RAG 4: Natural
Sciences &

Mathematics
(n = 8)

NoS 1 3 0 1 0 0 1 0 3 0 0 0 1 1 1
Method Usage

(MU) 12.50 37.50 0.00 12.50 0.00 0.00 12.50 0.00 37.50 0.00 0.00 0.00 12.50 12.50 12.50

DPP −22.73 9.09 −19.32 −5.68 −18.18 −12.50 2.27 −10.23 28.41 −7.95 −5.68 −4.55 7.95 9.09 11.36
Mean Absolute

Error (MAE) 11.67

RAG 5: Applied
Sciences (n = 22)

NoS 9 9 3 2 2 1 2 2 3 2 0 1 2 2 1
Method Usage

(MU) 40.91 40.91 13.64 9.09 9.09 4.55 9.09 9.09 13.64 9.09 0.00 4.55 9.09 9.09 4.55

DPP 5.68 12.50 −5.68 −9.09 −9.09 −7.95 −1.14 −1.14 4.55 1.14 −5.68 0.00 4.55 5.68 3.41
Mean Absolute

Error (MAE) 5.15
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Table A2. Methods and strategies of studying CI in policymaking used in the most influential studies, compared to all
reviewed studies. NoS stands for the number of studies in which the particular research method was used; method
usage (MU) stands for the percentage of studies in which the research method was used; DPP stands for the difference in
percentage points between MU in this group and MU in all reviewed studies; MAE stands for the mean absolute error for
the analyzed group. The assignment of particular methods and strategies to the labels numbered from 1 to 15 is described
in Table 2.

Research Methods & Strategies (RM)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

All reviewed
literature

(n-88)
NoS 31 25 17 16 16 11 9 9 8 7 5 4 4 3 1

Method Usage
(MU) 35.23 28.41 19.32 18.18 18.18 12.50 10.23 10.23 9.09 7.95 5.68 4.55 4.55 3.41 1.14

Top 10 articles,
according to

usage
criterion—Since

2013 usage
(n = 10)

NoS 4 3 4 1 3 1 1 4 0 1 1 0 0 0 0
Method Usage

(MU) 40.00 30.00 40.00 10.00 30.00 10.00 10.00 40.00 0.00 10.00 10.00 0.00 0.00 0.00 0.00

DPP 4.77 1.59 20.68 −8.18 11.82 −2.50 −0.23 29.77 −9.09 2.05 4.32 −4.55 −4.55 −3.41 −1.14
Mean Absolute

Error (MAE) 7.24

Top 10 articles,
according to

citation
criterion—Times
Cited, WoS Core

(n = 10)
NoS 4 5 2 0 2 1 0 3 0 1 2 1 0 0 0

Method Usage
(MU) 40.00 50.00 20.00 0.00 20.00 10.00 0.00 30.00 0.00 10.00 20.00 10.00 0.00 0.00 0.00

DPP 4.77 21.59 0.68 −18.18 1.82 −2.50 −10.23 19.77 −9.09 2.05 14.32 5.45 −4.55 −3.41 −1.14
Mean Absolute

Error (MAE) 7.97

Table A3. Methods and strategies of studying CI in policymaking used in the subgroups of studies based on selected topics
of interest. NoS stands for number of studies in which the particular research method is used; method usage (MU) stands
for the percentage of studies in which the research method was used; DPP stands for the difference in percentage points
between MU in this group and MU in all reviewed studies; MAE stands for the mean absolute error for the analyzed group.
The assignment of particular methods and strategies to the labels numbered from 1 to 15 is described in Table 2.

Research Methods & Strategies (RM)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

All reviewed
literature

(n-88)
NoS 31 25 17 16 16 11 9 9 8 7 5 4 4 3 1

Method Usage
(MU) 35.23 28.41 19.32 18.18 18.18 12.50 10.23 10.23 9.09 7.95 5.68 4.55 4.55 3.41 1.14

Citizenship
subgroup (n = 47)

NoS 16 10 13 10 10 11 3 6 3 2 3 2 3 3 0
Method Usage

(MU) 34.04 21.28 27.66 21.28 21.28 23.40 6.38 12.77 6.38 4.26 6.38 4.26 6.38 6.38 0.00

DPP −1.18 −7.13 8.34 3.09 3.09 10.90 −3.84 2.54 −2.71 −3.70 0.70 −0.29 1.84 2.97 −1.14
Mean Absolute

Error (MAE) 3.57

Local governance
& urban

development
subgroup (n = 30)

NoS 16 8 7 7 7 4 3 3 1 1 2 2 3 2 0
Method Usage

(MU) 53.33 26.67 23.33 23.33 23.33 13.33 10.00 10.00 3.33 3.33 6.67 6.67 10.00 6.67 0.00

DPP 18.11 −1.74 4.02 5.15 5.15 0.83 −0.23 −0.23 −5.76 −4.62 0.98 2.12 5.45 3.26 −1.14
Mean Absolute

Error (MAE) 3.92
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Table A3. Cont.

Research Methods & Strategies (RM)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Communities
subgroup (n = 14)

NoS 4 7 4 3 2 1 1 2 0 1 0 0 1 1 0
Method Usage

(MU) 28.57 50.00 28.57 21.43 14.29 7.14 7.14 14.29 0.00 7.14 0.00 0.00 7.14 7.14 0.00

DPP −6.66 21.59 9.25 3.25 −3.90 −5.36 −3.08 4.06 −9.09 −0.81 −5.68 −4.55 2.60 3.73 −1.14
Mean Absolute

Error (MAE) 5.65

Deliberation
subgroup (n = 9)

NoS 2 2 3 1 2 1 1 0 1 0 0 0 0 0 1
Method Usage

(MU) 22.22 22.22 33.33 11.11 22.22 11.11 11.11 0.00 11.11 0.00 0.00 0.00 0.00 0.00 11.11

DPP −13.01 −6.19 14.02 −7.07 4.04 −1.39 0.88 −10.23 2.02 −7.95 −5.68 −4.55 −4.55 −3.41 9.97
Mean Absolute

Error (MAE) 6.33

Appendix C

Table A4. Ranking of top 10 articles, according to the usage criterion (Since 2013 usage).

Authors (Year) Title
Research

Area Group
Research
Method

Since
2013

Usage

180 Day
Usage
Count

Times
Cited, WoS

Core

Times
Cited/Year

Linders, D.
(2012)

From e-government
to we-government:

Defining a typology
for citizen

coproduction in the
age of social media

Computer
Science &

related
2, 10 454 39 502 55.78

Mergel, I.;
Desouza, K.C.

(2013)

Implementing Open
Innovation in the
Public Sector: The

Case of
Challenge.gov

Political
Sciences &

related
5, 8 192 9 128 16

Diaz-Diaz, R.;
Perez-

Gonzalez, D.
(2016)

Implementation of
Social Media

Concepts
for e-Government:

Case Study of
a Social Media Tool

for Value
Co-Creation and

Citizen Participation

Computer
Science &

related;
Applied
Sciences

1, 2, 3 165 14 17 3.4

Almirall, E.;
Lee, M.;

Majchrzak, A.
(2014)

Open innovation
requires integrated

competition-
community

ecosystems: Lessons
learned from civic
open innovation

Applied
Sciences 1, 2, 8, 12 161 4 68 9.71

Mergel, I.
(2015)

Opening
Government:

Designing Open
Innovation Processes
to Collaborate With
External Problem

Solvers

Computer
Science &

related;
Humanities

& Social
Sciences

5, 8 112 1 42 7
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Table A4. Cont.

Authors (Year) Title
Research

Area Group
Research
Method

Since
2013

Usage

180 Day
Usage
Count

Times
Cited, WoS

Core

Times
Cited/Year

Wijnhoven, F.;
Ehrenhard, M.;
Kuhn, J. (2015)

Open government
objectives and
participation
motivations

Computer
Science &

related
3, 6 93 2 76 12.67

Mergel, I.
(2018)

Open innovation in
the public sector:

drivers and barriers
for the adoption of

Challenge.gov

Applied
Sciences;
Political
Sciences
& related

8 86 14 38 12.67

Lampe, C.;
Zube, P.; Lee, J.;

Park, C.H.;
Johnston, E.

(2014)

Crowdsourcing
civility: A natural

experiment
examining the effects

of distributed
moderation in online

forums

Computer
Science &

related
1, 3 68 1 53 7.57

Lin, Y.L. (2018)

A comparison of
selected Western and

Chinese smart
governance: The

application of ICT in
governmental
management,

participation and
collaboration

Political
Sciences &

related;
Computer
Science &

related

1, 5, 7 63 15 11 3.67

Pieper, A.K.;
Pieper, M.

(2015)

Political
participation via

social media:
A case study of

deliberative quality
in the public online

budgeting process of
Frankfurt/Main,
Germany 2013

Computer
Science &

related;
Applied
Sciences

3 62 1 3 0.5
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Table A5. Ranking of top 10 articles, according to the citation criterion (Times Cited, WoS Core).

Authors (Year) Title
Research

Area
Group

Research
Method

Since
2013

Usage

180 Day
Usage
Count

Times
Cited,
WoS
Core

Times
Cited/Year

Linders, D. (2012)

From e-government to
we-government:

Defining a typology for
citizen

coproduction in the age
of social media

Computer
Science &

related
2, 10 454 39 502 55.78

Mergel, I.; Desouza,
K.C. (2013)

Implementing Open
Innovation in the

Public Sector: The Case
of Challenge.gov

Political
Sciences
& related

5, 8 192 9 128 16

Wijnhoven, F.;
Ehrenhard, M.;
Kuhn, J. (2015)

Open government
objectives and
participation
motivations

Computer
Science

& related
3, 6 93 2 76 12.67

Almirall, E.; Lee, M.;
Majchrzak, A. (2014)

Open innovation
requires integrated

competition-community
ecosystems:

Lessons learned from
civic open innovation

Applied
Sciences 1, 2, 8, 12 161 4 68 9.71

Chen, L.J.; Ho, Y.H.;
Lee, H.C.; Wu, H.C.;

Liu, H.M.; Hsieh,
H.H.; Huang, Y.T.;

Lung, S.C.C. (2017)

An Open Framework for
Participatory PM2.5
Monitoring in Smart

Cities

Computer
Science &

related;
Applied
Sciences

1, 2 31 4 68 17

Prpić, J.; Taeihagh,
A.; Melton, J. (2015)

The Fundamentals of
Policy

Crowdsourcing

Political
Sciences
& related

10, 11 8 0 65 10.83

Lampe, C.; Zube, P.;
Lee, J.; Park, C.H.;
Johnston, E. (2014)

Crowdsourcing civility:
A natural experiment

examining the effects of
distributed moderation

in online forums

Computer
Science &

related
1, 3 68 1 53 7.57

Stritch, J.M.;
Pedersen, M.J.;

Taggart, G. (2017)

The Opportunities and
Limitations of Using

Mechanical Turk
(MTURK)

in Public Administration
and Management

Scholarship

Computer
Science &

related
1, 2 22 1 48 12

Charalabidis, Y.;
Loukis, E.N.;

Androutsopoulou,
A.; Karkaletsis, V.;

Triantafillou, A.
(2014)

Passive crowdsourcing
in government using

social media

Computer
Science &

related
2 1 0 45 6.43

Mergel, I. (2015)

Opening Government:
Designing Open

Innovation Processes to
Collaborate With
External Problem

Solvers

Computer
Science &

related;
Humanities

& Social
Sciences

5, 8 112 1 42 7
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Appendix D

The monographic publications concerning (fully or partially) the issues of collective
intelligence and policymaking published after 1990 were shortlisted. Due to the scarcity of
monographic literature, only eight publications were included in this list after the review.
On this basis, an initial list of 20 issues was compiled. Then, a questionnaire was conducted
in which a group of six social science researchers were invited to assess the significance
of the proposed issues. Thus, the final list of seven concepts that were subject to analysis
was selected. The final list of seven topics included citizenship, communities, consensus,
deliberation, diversity, local governance and urban development, and open data.

Table A6. Monographic publications used as initial references to select the topics of special interest.

Author Title Reference

Aitamurto, T.
Crowdsourced Off-Road Traffic

Law
Experiment In Finland

[61]

Landemore, H.
Democratic Reason: Politics,

Collective Intelligence, and the Rule
of the Many

[62]

Landemore, H.
Open Democracy: Reinventing

Popular Rule for
the Twenty-First Century

[63]

Levy, P.
Collective Intelligence: Mankind’s

Emerging
World in Cyberspace

[2]

Noveck, B.S.

Smart Citizens, Smarter State. The
Technologies

of Expertise and the Future of
Governing

[64]

Noveck, B.S.; Harvey, R.;
Dinesh, A. The Open Policymaking Playbook [65]

Noveck, B.S.; et al.
Crowdlaw for Congress.

Strategies for 21st Century
Lawmaking

[66]

Ryan, M.; Gambrell, D.;
Noveck, B.S.

Using Collective Intelligence
to Solve Public Problems [67]
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Abstract: With the advent of microservice-based software architectures, an increasing number of
modern cloud environments and enterprises use operating system level virtualization, which is
often referred to as container infrastructures. Docker Swarm is one of the most popular container
orchestration infrastructures, providing high availability and fault tolerance. Occasionally, discovered
container escape vulnerabilities allow adversaries to execute code on the host operating system and
operate within the cloud infrastructure. We show that Docker Swarm is currently not secured against
misbehaving manager nodes. This allows a high impact, high probability privilege escalation attack,
which we refer to as leadership hijacking, the possibility of which is neglected by the current cloud
security literature. Cloud lateral movement and defense evasion payloads allow an adversary to
leverage the Docker Swarm functionality to control each and every host in the underlying cluster. We
demonstrate an end-to-end attack, in which an adversary with access to an application running on
the cluster achieves full control of the cluster. To reduce the probability of a successful high impact
attack, container orchestration infrastructures must reduce the trust level of participating nodes and,
in particular, incorporate adversary immune leader election algorithms.

Keywords: Docker Swarm; leader election; privilege escalation; defense evasion; cloud

1. Introduction

Securing distributed collaborative multi-agent agent systems is an extremely com-
plex task. Since attackers are not obliged to follow the protocols defined by the system
developers, they may create diverse adverse effects with simple manipulations applied to
non-adversary-resilient protocols. Unfortunately, it is extremely difficult to secure a multi-
agent system if it was not designed with security in mind. A good example of a design
decision that may affect the overall security of a system is the choice of the leader-election
algorithm [1]. In this article, we explore the consequences of the insecure leader election
algorithm used in Docker Swarm.

As Docker gained popularity among cloud service providers, attackers began to
develop various techniques to attack Docker-based applications. Although a great deal of
attention was paid to securing Docker hosts from application level exploits and container
escape few solutions exist for securing against privilege escalation among different hosts
in a Docker cluster. In this work, we show how an attacker with access to a manager host
inside a Docker cluster can escalate their privileges in the cluster. The research scope is
presented in Figure 1.

For example, Raft, a consensus algorithm used to manage a replicated log [2], is used
in Docker Swarm to synchronize the cluster’s state between all managers of the cluster. See
Section 2.2 for details. The logs are replicated using a strong leader, which is elected in the
leader election phase in the algorithm. In case of a leader failure (a crash, network issues,
etc.), the rest of the managers choose a new leader using the Raft algorithm. Despite its
many advantages, Raft is a non-Byzantine algorithm that can allow a malicious insider to
become a leader.

Entropy 2021, 23, 914. https://doi.org/10.3390/e23070914 https://www.mdpi.com/journal/entropy
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Figure 1. High-level description of the end-to-end scenario.

In this paper, we highlight a new privilege escalation technique called leadership
hijacking (see Section 4.2). An attacker with access to a manager node in Docker Swarm
can use this technique, which abuses the aforementioned fact that Raft is a non-Byzantine
algorithm, to escalate their cluster privileges and become the cluster leader. By doing so,
the attacker can control all messages and decisions within the cluster.

In addition, we demonstrate two possible malicious payloads expected to be executed
by a typical attacker: a lateral movement payload and a defense evasion payload. The former
utilizes cluster leader privileges and allows the attacker to execute code on every host in
the cluster.

The latter is used by an attacker in order to hide their malicious activity from infras-
tructure management tools.

The rest of this paper is structured as follows: Section 2 reviews the technical back-
ground. In Section 4.2, we introduce the novel privilege escalation technique, called
leadership hijacking. Next, in Section 4.3 we investigate malicious payloads that can be
executed after the privilege escalation. In Section 5, we demonstrate an end-to-end attack
scenario that illustrates the potential security risk and the impact of the investigated attack.
Finally, in Section 6, we discuss possible mitigation and propose countermeasures. Our
final remarks can be found in Section 7.

2. Background

2.1. Docker Swarm

An increasing number of organizations are moving their digital systems to the cloud.
The benefits of cloud servers are easy deployment, high availability, continuous mainte-
nance, system security, and more. From online websites to internal servers and databases,
cloud servers store a lot of sensitive information, making them an attractive target for at-
tackers. As the cost of hardware has decreased, software has become the main performance
bottleneck. In order to fully utilize the available hardware, cloud service providers use
virtualization technology to run different applications on the same hardware.

Until recently, the most advanced solution was virtual machine (VM) technology.
VM technology allows one physical server to run many different virtual servers, all of

them running different operating systems.
From a security point of view, a VM is a good solution, since breaking out of a VM is a

relatively complex task [3].
On the other hand, VMs suffer from significant performance overhead [4]. The main

reason for the reduced performance is the overhead added by the hypervisor to each
hardware operation emulated to the VM.
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Today, many cloud service providers use operating system level virtualization, which
employs isolated user space instances called containers. In contrast to a VM, which
includes its own operating system, containers run under the host’s operating system and
communicate with it directly. During the runtime, a container communicates through a
regular system call interface with the host OS, without any intermediate software.

The architectural difference is illustrated in Figure 2.

Figure 2. Container vs. VM architecture [5].

At the time of this writing, Docker is one of the leading OS virtualization solu-
tions (https://resources.flexera.com/web/media/documents/rightscale-2019-state-of-
the-cloud-report-from-flexera.pdf (accessed on 8 July 2021)). Docker is implemented in
the Go programming language and enables the creation, deployment, and management
of containers on a host computer. A Docker container is a lightweight software unit that
bundles its own tools and libraries. Typically, one container includes one instance of an
application or service, e.g., a Web server, database, or scientific software package.

Docker is a rich ecosystem. One of the main components of this ecosystem is the
Docker daemon. The Docker daemon is software that runs on the host and is responsible
for the creation of images and containers. The Docker daemon can run containers and
create their runtime environment; it can also create a container’s networking interfaces,
mount points, can trigger actions, and execute commands inside a running container. The
Docker daemon implements Docker’s main logic and many of its features.

When deploying an application in a production environment, it is important to ensure
that when a container fails, a new container will start and replace the faulty container.
In addition, it is highly recommended to run several instances of a container for high
availability and load balancing. To address these issues, Docker introduced a feature
called swarm.

Docker Swarm abstracts many Docker hosts to one virtual Docker host. Each host that
participates in the swarm cluster is called a node. Each node can have two roles: manager or
worker. A manager’s job is to keep a replicated state of the cluster. One manager node is
also a leader. The cluster’s leader is responsible for scheduling new containers and services
for the cluster. A worker’s job is to get container tasks from the leader and to actually run
the container. The weakest point in the design of Docker Swarm exploited in this research
is the Raft leader election algorithm.
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2.2. Leader Election

Raft [2] is a consensus algorithm used to manage a replicated log. Raft was de-
signed with the aim of producing an efficient and understandable algorithm which, unlike
Paxos [6–8], would be easy to learn and use in practical systems. Raft was chosen in Docker
Swarm due to its important features:

• Strong leader—Raft uses a stronger form of leadership than other consensus algo-
rithms. For example, log entries only flow from the leader to other servers.

• Leader election—Raft uses randomized timers to elect leaders. This adds only a small
number of mechanisms to the already existing heartbeat mechanism and facilitates
simpler conflict resolution.

• Membership changes—Raft’s mechanism for changing the set of servers in the cluster
uses a new joint consensus approach, which allows the cluster to continue operating
normally during configuration changes.

Raft assumes that all nodes are honest and is not tolerant to malicious (Byzantine)
nodes participating in the leader election process.

Byzantine fault tolerant (BFT) leader election algorithms have existed for a long time.
These algorithms provide the ability to overcome failures in networks where some nodes
are Byzantine. For example, Castro et al. [9,10] described a state machine replication
algorithm able to tolerate Byzantine faults. The algorithm guarantees safety, i.e., each
replicated log is agreed on by all non-faulty nodes.

Bessani et al. [11] introduced an open-source Java library implementing robust BFT
state machine replication. Key features of their implementation include reliability, modular-
ity, and a flexible application programming interface (API). Moreover, their implementation
achieved good performance and can tolerate real world faults.

Castro et al. [9] implemented a BFT library, that can be used to build highly available
systems that tolerate Byzantine faults. Castro et al. used the library to implement a
Byzantine-fault-tolerant NFS file system. They showed that the replicated library can be
even more efficient than the non-replicated version of NFS.

3. Related Work

When attacking a cloud based application, an adversary may exploit classical ap-
plication vulnerabilities, such as SQL injection, buffer overflow, command injection, etc.
Using such vulnerabilities, an attacker can control the victim’s container and data inside it.
Container escape exploits are another technique class; in this case, after successful container
exploitation, the attacker exploits a vulnerability allowing the attacker to escape from the
container to the underlying host. Access to the underlying host grants an attacker access to
data and other containers that run on the compromised host.

There are many products and protocols that try to mitigate the above-mentioned
techniques. First, Docker offers built in protections (https://docs.docker.com/engine/
security/ (accessed on 8 July 2021)), such as protecting the Docker daemon socket and
using data encryption between the Docker daemon and public registries. These protections
harden Docker hosts with a “security in depth” approach. In addition, software, such as
SE-Linux and App-Armor, can help harden container isolation and minimize the attack
surface between containers and the host. Furthermore, Docker offers an image scanning
service (https://docs.docker.com/engine/scan/ (accessed on 8 July 2021)), which can
detect vulnerabilities in Docker images.

In the rest of this section, we overview the previous work on cloud security related to
Docker. Table 1 summarizes the main differences from related works.

Singh et al. [12] demonstrated primary techniques used by attackers to attack cloud
services. There are many potential attack vectors that attackers can use, including: DoS and
DDoS attacks [13,14], malware injection, and side-channel attacks [15–18]. In their study,
Jensen et al. [19] demonstrated an attack on the software of the cloud itself and outlined the
threat of flooding attacks on cloud systems. The authors suggested improving the cloud’s
security by first improving the security of frameworks used in the cloud.
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In [20], Liu et al. provided an overview of the latest technologies in cloud computing
and discussed how Docker is integrated into it. According to Liu et al., the major difference
between classic VM and containers is that a VM contains not only the application and
its dependencies but also the entire guest operating system. The authors listed rapid
application deployment, portability across machines, lightweight footprint, and minimal
overhead as the main advantages of Docker over traditional VM-based virtualization
software. Moreover, in [21], Marathe et al. overviewed the process of the setup of a
computer cluster based on Docker Swarm and Kubernetes and evaluated each one of
these platforms.

Xavier et al. [22] performed numerous experiments in order to evaluate the perfor-
mance of container-based cloud environments compared to VM-based cloud environments
as well as the trade-off between performance and isolation. They found that the cloud envi-
ronment would benefit from container-based solutions, due to the fact that container-based
solutions achieve near-native performance.

Table 1. Comparison with related works.
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Our paper � � � �

Wu et al., 2020 [23] � � �

Linetsky et al., 2020 [24] � �

Seather 2018 [25] �

Amara et al., 2017 [26] � �

Kabbe 2017 [27] �

Combe et al., 2016 [28] � �

Singh & Shrivastava 2012 [12] � �

Jensen et al., 2008 [13] �

Other research [28] suggested a new attack surface in the Docker environment: namely
indirect adversaries. Unlike a direct adversary, who exploits vulnerabilities in the cluster
directly, an indirect adversary exploits third party appliances (e.g., Docker Hub) in order to
attack Docker’s environment.

An overview of attack types and mitigations in cloud environments is shown in [26].
Among others, Amara et al. mentioned SQL injection as “application level attack”, which
is used to obtain an initial foothold in the cluster. Moreover, they mentioned hypervisor
attacks as “VM level attacks”, which are used for privilege escalation and breaking VM
isolation. In addition, they offered mitigations to each one of the attacks that they describe.

Moreover, Wu et al. [23] evaluated the security of container based cloud services.
They defined metrics upon which they evaluated a number of services. Among others,
they specified “privilege escalation” metric and “container escape” metric. They found
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that, although there are some services that failed in the “privilege escalation” metric, the
“container escape” metric was very high, which limits the impact of the attacker.

In his master’s work, Kabbe [27] compared the security model of containers to
hypervisor-based systems and virtual machines. He compared the outcome of known
attacks (DirtyCow, (https://nvd.nist.gov/vuln/detail/CVE-2016-5195 (accessed on 8 July
2021)) Heartbleed, (https://nvd.nist.gov/vuln/detail/CVE-2014-0160 (accessed on 8 July
2021)) and Shellshock (https://nvd.nist.gov/vuln/detail/CVE-2014-6271 (accessed on
8 July 2021))) in a containerized environment, with the outcome of the same attacks per-
formed in hypervisor/virtual machine environments. He found that containers offered at
least the same amount of security as hypervisor/virtual machine environments.

In his master thesis [25], Seather reviewed the underlying security of the Docker
Swarm infrastructure. Namely, Seather tested many adversarial scenarios, including:
flooding the orchestrator with invalid/corrupted requests, sniffing the network from
within the cluster, impersonating a cluster member, performing man-in-the-middle attacks
between containers within Docker’s internal network, and more. The conclusions of his
thesis were that Docker’s infrastructure is secure, Docker Swarm’s design is good (from a
security point of view), the technology stack used by Docker is immune to known attacks,
and the development community responds quickly to security incidents.

Attacking the cloud’s infrastructure is also shown in [24]. In their work, Linetskyi et
al. showed and utilized a Kubernetes privilege escalation exploit, in which an attacker can
obtain a root privileges inside a container. If the container is misconfigured, this can result
in root privileges to the underlying host. The bug resides in Kubernetes’s management tool,
which stresses the fact that extra care should be made to secure the code of the infrastructure
(in that case, Kubernetes).

4. Taking over the Docker Swarm

In this section we present the new techniques that can be used to take over a Docker
Swarm cluster. We present a full exploit chain starting with existing container escape
exploit. When combined with our leadership hijacking technique it ultimately gives the
attacker cluster leader privileges. Later, we show how our malicious payloads can be used
to completely compromise cloud environment while evading detection.

4.1. High-Level Overview

A high-level overview of the end-to-end attack scenario can be seen in Figure 1. The
attack consists of five major steps:

1. Exploitation of an application vulnerability inside a container, in which an attacker
gains a foothold within the user’s container

2. Container escape exploitation, in which an attacker obtains access to the container’s
underlying host

3. Leadership hijacking, in which an attacker executes the privilege escalation technique
presented in Section 4.2 and obtains cluster leader privileges

4. Lateral movement, in which an attacker executes the lateral movement payload
described in Section 4.3.1 and gains privileged access to all hosts in the cluster

5. Defense evasion, in which an attacker uses the defense evasion payload described in
Section 4.3.2 in order to hide their lateral movement payload from management tools

In order to demonstrate the feasibility and impact of the leadership hijacking technique
and the malicious payloads, we developed an end-to-end attack scenario that shows how
an external attacker can chain exploits seen in the wild with our technique and payloads, in
order to obtain full control of a cluster. A detailed description of this scenario is provided
in Section 5. Steps 1 and 2 are implemented in order to demonstrate the feasibility of our
work, but they are not elaborated upon, since they are out of the scope of our research.
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4.2. Leadership Hijacking

In this section, we introduce an adversarial technique named leadership hijacking. A
precondition to employing this technique is code execution access to a manager node.

In Section 5, we show how this precondition can be achieved in a production envi-
ronment. From now on, we will refer to the manager host compromised by the attacker as
the attacker’s manager. The main idea of our technique is to repeatedly trigger a leader
election phase until the attacker’s manager becomes the cluster leader.

The technique’s pseudocode is shown in Algorithm 1.

Algorithm 1 Attack pseudo code.

1: @Pre-condition: attacker escaped his container
2: procedure GET-LEADERSHIP
3: if Attacker’s manager is cluster leader then
4: Exit
5: while Attacker’s manager is not leader do
6: leader_id ← find out current leader ID
7: demote node with id leader_id
8: wait until a new leader is elected
9: promote node with id leader_id to be manager

10: @Post-condition: attacker’s manager is the leader

As shown in Algorithm 1, the first step of the technique is to identify the current
cluster leader. If the current leader is the attacker’s manger, the technique’s code will exit.
Otherwise, the technique starts a loop.

In each loop iteration, the technique demotes (i.e., removes from the leader role) the
current cluster leader using the Docker’s demotion API [29]. This will cause the cluster to
initiate a leader election algorithm and elect a new leader. The first manager that reaches
timeout proposes itself as the cluster leader. Afterwards, each manager votes in favor of
one manager, and the manager that receives the majority of the votes becomes the new
cluster leader.

In the final step of the iteration, the current cluster leader is identified again. If
the attacker’s manager is the leader, the technique exits. Otherwise, it will continue the
loop until the attacker’s manager becomes the cluster leader. To avoid being detected
through repeated reduction in the number of available managers, the attacker promotes
the demoted node back to the manager role [30] by the end of each leader election.

In order to prove that the technique works in practice, we implemented the pseu-
docode shown in Algorithm 1. We set up a lab to test the implementation, and its architec-
ture is illustrated in Figure 3.

Running our technique’s implementation in the lab was successful: the attacker was
able to escalate privileges in order to become the new cluster leader.

4.2.1. Analysis
Convergence

In each iteration, the technique code demotes the leader. According to the Docker
Swarm documentation, a manager that does not receive the heartbeat from the leader
during the predefined time window assumes that the leader is unavailable and proposes
itself to be the new cluster leader. Since the leader has been demoted, none of the managers
receive the heartbeat from the leader, and hence a new leader election phase will start when
the first manager reaches its timeout.
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Figure 3. Overview of the lab architecture.

Docker Swarm closely follows the specification and implementation of Raft where
the election timeout (the time a node waits before starting a new election) is randomly
drawn from a predefined range. In addition to the election timeout, the probability of every
manager becoming a leader depends on the communication delays and may not be the
same for all managers [31]. Yet, it is safe to assume that in a properly configured swarm,
every manager has a roughly equal probability to be elected.

In the absence of an attacker, each leader election is independent of the previous
iterations of leader election. This stems from the fact that Raft nodes do not maintain any
state concerning the leader election process except being a follower, a candidate, or a leader
(Temporarily, there may be more than one node in a leader state due to collisions, which
are solved by Raft). The attack introduces a slight dependency between iterations due to
the absence of the previous demoted leader in the set of candidates.

The absence of a candidate cannot reduce the probability of the attacker’s manager
being elected. Thus the probability of the attacker’s manager to be elected during each
attack iteration is bounded from below by the probability of the respective manager to be
elected without the attack. The positive probability of the attack success in each iteration
and the ability of the attacker to continue demoting the leaders guarantee the eventual
success of the attack.

The positive probability of the attack success in each iteration and the ability of the
attacker to continue demoting the leaders guarantee the eventual success of the attack. In a
properly configured system where each manager has the same probability to be elected,
the number of managers is the mean number of leader elections until the attack succeeds.

156



Entropy 2021, 23, 914

Advantages

The first advantage of the technique is its simple implementation. In order to prove its
feasibility, we decided to implement the technique in the most simple way possible. After
reviewing the Docker Swarm API, we realized that our technique could be implemented
with repeated calls to demote and promote API [29,30]. This simple implementation makes
our technique stable and reliable.

The second advantage of our technique is its stealthiness. A typical attacker would
like to stay undetected as long as possible while in an engagement. Our technique can be
implemented in many ways; however, some are rather loud, which will increase the chance
to get caught by the system administrators. For example, an attacker can demote all other
managers of the cluster and become the only manger and, hence, the cluster leader. The
obvious issue of this implementation is that the system administrators will quickly notice
that the cluster state has changed. On the other hand, our implementation’s changes to the
cluster state are minimal, which makes it harder to detect the technique.

Limitations

The main limitation of our technique is that it is probabilistic. Although we showed
that our technique completes successfully with probability P → 1, the number of iterations
in each execution may differ. An unknown number of iterations is particularly problematic
in a real-world scenario.

4.3. Malicious Payloads

In order to illustrate the impact of the leadership hijacking technique, we developed
malicious payloads that use cluster leader privileges and used them to perform some
malicious operations.

Typically, an attacker who has access to one host inside a cluster would like to spread
and obtain a wider foothold in the cluster. Ideally, the attacker would like to have access to
all hosts in the cluster, with high privileges in each host. Moreover, once the attacker con-
trols a cluster they would like to remain undetectable by the users/system administrators
for as long as possible.

To achieve the above goals, the attacker has to find a way to spread inside the cluster
and hide their malicious activity from users and monitoring tools. In this work, we
introduce and develop two types of malicious payloads: a lateral movement payload and a
defense evasion payload. These payloads utilize leader privileges and allow an attacker to
execute high privileged code on every node in the cluster and hide from monitoring tools.

4.3.1. Lateral Movement

Typically, an attacker would like to establish a wide foothold in a cluster, preferably
with high privileges. In this work, we create a payload that enables lateral movement in
the cloud. Using this payload, we demonstrate how an attacker with leader privileges in a
Docker Swarm cluster can execute high privileged code on each host in the cluster.

Due to the fact that, after successful execution of leadership hijacking, the attacker
gains leader privileges, the attacker can control all messages that come out of the leader
node. By hooking the leader’s function responsible for sending messages between the
leader and other nodes, the attacker can change these messages and alter their content.

In order to execute code on other nodes in the cluster, the attacker who is in control of
a leader host can send the victim node a task to run. The attacker instructs the worker to
run a container task with an image controlled by the attacker. As we show in Section 5, the
victim node will execute the container. The container’s image will be a malicious image.

However, the malicious container runs in an isolated environment in the host. As
discussed in Section 3, containers run in a separate namespace from the host. Thus, for
example, a process inside a container cannot sniff the host’s network.

There are many ways to overcome this limitation. In addition to controlling what
image the container will run on each host, the attacker also controls the creation flags of the
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container. Thus, for example, the attacker can mount the main file system of the host to the
container. Then, from inside the container, the attacker can alter the host’s executable files
with a malicious code. In order to obtain highly privileged code execution, the attacker
has to alter a file that is executed by a highly privileged user on the host. When the user
executes the file, the attacker’s malicious code will get executed as well, resulting in high
privileged code execution on the host.

4.3.2. Defense Evasion

With the above lateral movement payload, the attacker can spread and move laterally
by deploying service with malicious image to every host in the cluster. In this subsection,
we show how an attacker can stay undetected in the cluster and hide malicious activity
from the cloud’s management tools. We introduce the cloud defense evasion payload,
which offers rootkit-like functionality in the cloud.

In this subsection, we assume that the attacker is the cluster leader and has a malicious
service in the cluster, which they wish to hide from system administrators, e.g., a malicious
cryptocurrency mining service.

The default Docker Swarm command line offers a rich variety of commands for cluster
administration. In particular, Swarm offers the docker service (https://docs.docker.
com/engine/reference/commandline/service/ (accessed on 8 July 2021)) command for
viewing and updating services that run on the cluster. In order to view services that
run on the cluster, the system administrator can issue the docker service ls (https:
//docs.docker.com/engine/reference/commandline/service_ls/ (accessed on 8 July 2021))
command and view its output. The output includes the service’s name, image, number of
replicas, exposed ports, etc.

In order to obtain this information, the Docker daemon of the host that issued the
command queries the leader of the cluster and retrieves the information from the leader.

However, the attacker is in control of the leader host. Hence, the attacker can hook
the function that returns this information on the leader’s Docker daemon and spoof the
answers. In this way, the attacker can change malicious service’s name, image, ports, or
even the service itself (i.e., the attacker can trick the user into thinking that there is no such
service at all, by removing any information related to the malicious service).

In a similar manner, the system administrator can view what containers are running
for each service. Using docker service ps (https://docs.docker.com/engine/reference/
commandline/service_ps/ (accessed on 8 July 2021)) command, the system administrator
can obtain information about a container’s image, name, state, etc. In a similar way to
the docker service ls command, the issuing host queries the leader host and retrieves
that information. The attacker has access to the leader host, and thus they can alter that
information as well. By doing so, the attacker can trick the system administrator and show
them that a container is running a different image than the real image, for example.

In this way, the attacker can hide malicious activity from Docker’s default tools, which
query the cluster leader to obtain information about objects (running services, containers,
etc.) in the cluster.

5. End-to-End Attack Showcase

To prove that our leadership hijacking technique and malicious payloads are feasible,
we implemented a combined scenario that demonstrates the impact of our technique and
of the payloads. We show the importance of our technique and payloads, as well as that
the initial assumption regarding the attack is reasonable. We provide proof-of-concept
demonstration of an external attacker leveraging an exploit, which has been seen in the
wild together with our leadership hijacking technique and malicious payloads, in order to
ultimately control the entire cluster.
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5.1. Lab Setup

To demonstrate the attack we set up a test-bed that, on the one hand, mimicked a
cloud environment with a Docker Swarm and multiple client’s services; and, on the other
hand, included a typical attackers’ tool set.

Cloud nodes were simulated using virtual machines that ran the Ubuntu guest OS.
We set up a Docker Swarm cluster in which all hosts were both manager and worker hosts.
In addition, an external laptop was used as the attacking machine. The laptop ran the Kali
Linux operating system version 2019.3.

One important tool that we used was the Metasploit framework [32], an open-source
framework supporting various penetration testing tasks.

The lab’s architecture is shown in Figure 4.

Figure 4. Diagram of the attack steps.

5.2. Scenario Overview

In our end-to-end attack scenario, the attacker started on an external laptop with
network access to a Docker container that ran inside a Docker cluster. Ultimately, the
attacker obtained high privileged code execution on each host in the cluster. The scenario
contained five major steps:

1. Container exploitation
2. Container escape exploitation
3. Leadership hijacking
4. Lateral movement
5. Defense evasion

In each step, the attacker expands their foothold in the cluster. An illustration of the
entire scenario and its steps can be seen in Figure 4.

The next subsections explain these steps in greater detail.

5.3. Container Exploitation

First, the attacker needs to have an initial foothold in the cluster. They have network
access to an application that runs on a container in the cluster. In order to obtain an initial
foothold, the attacker exploits a vulnerability in the application.

In this case, the application running inside the container is the Apache Tomcat Web
server, version 8.5.19. The attacker finds a one-day exploit for that Web server in the
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Metasploit framework; after successful exploit completion, the attacker has shell access to
the application’s container.

5.4. Container Escape

After the attacker has successfully exploited the application, the attacker has a shell in
the restricted Docker environment. In order to execute our privilege escalation technique,
the attacker needs to escape from the restricted environment and retrieve a shell on the
underlying host of the container.

The attacker then exploits a vulnerability in the host’s RunC component (https://
www.cvedetails.com/cve/CVE-2019-5736/ (accessed on 8 July 2021)). RunC is a container
runtime that was originally developed as part of Docker, which is responsible for running
and managing new container environments.

A vulnerability resides in RunC version < 1.0-rc6 (which is used by Docker < 18.09.2),
allowing the attacker to overwrite the host’s RunC binary and, thus, achieve code execution
with root privileges on the host.

5.5. Cloud Privilege Escalation

Once the attacker has achieved code execution on Docker’s manager host, they can
execute the leadership hijacking technique and escalate their privileges in order to become
the cluster leader (see Section 4.2 for a description of the leadership hijacking technique).

After the leadership hijacking technique’s successful execution, the attacker obtains
leader privileges in the cluster and, thus, will be able to control all messages that flow
between the leader and other hosts in the cluster.

The result of the technique’s successful execution can be seen in Figure 5. In this figure,
we can see that, before the attack, UBUNTU-HOST3 was the cluster leader, and after the
technique was successfully executed, UBUNTU-HOST1 (which is the attacker’s manager)
obtained the leadership role in the cluster.

Figure 5. Successful attack attempt.
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5.6. Lateral Movement and Defense Evasion

Armed with leader privileges, the attacker can now control all messages that flow
between the leader and other hosts in the cluster. As described in Sections 4.3.1 and 4.3.2,
the attacker can execute a malicious container on each host in the cluster and hide these
actions from various management tools.

To effectively demonstrate the attack and its potential impact, in our scenario, the
attacker will run a WebShell service, which will run a WebShell container on every host in
the cluster.

The malicious WebShell container provides a root privileged command execution envi-
ronment on the underlying host. The host’s file system is mounted in the container’s /tmp
directory. This allows the attacker to view, modify, and delete the host’s files. Effectively,
the attacker runs a root WebShell on all hosts in the cluster.

The output of the WebShell can be seen in Figure 6. In addition, the figure shows that
the WebShell is executed with high privileges (root).

Figure 6. The output of the malicious WebShell.

The attacker uses the defense evasion functionality described in Section 4.3.2, hooking
the leader’s Docker daemon function, which is responsible for listing the services and
containers of services. By doing so, any service listing request that is made to the cluster
leader will be monitored by the attacker. In cases in which the attacker’s malicious service
is running, the attacker will spoof the answer of the listing and hide their malicious service
image with a benign Alpine image.

As seen in Figure 7, docker service ls command reveals a single running service,
with image "alpine:latest". In addition, it seems that there are no listening ports;
however, in actuality, a container on each host is listening on port 80.

Furthermore, the attacker also hooks the function responsible for listing container
of each service; thus, the output of docker service ps $(docker service ls -q) does
not reveal the real image that each container is actually running. According to Docker’s
default tools, it looks like the service running is a benign alpine service but accessing each
host in port 80 reveals the true “face” of the service.
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Figure 7. Docker’s default tools used for viewing information about malicious services.

6. Discussion

The main advantage of our technique is that, unlike many techniques seen in the wild,
our technique does not exploit any software bugs. A software bug is usually a mistake in a
program’s code, which can lead to an undefined behavior of the program. In most cases,
software bugs are easily fixed. However, our technique does not exploit any programming
errors but rather exploits a design flaw. Unlike programming bugs, logical bugs are much
harder to fix, since, in many scenarios, a large amount of code must be changed, which can
be costly and time-consuming for software developers.

As shown in Section 4.2, our technique exploits the fact that the Raft algorithm is used
to replicate logs in the Docker Swarm environment but is a non-adversarial algorithm. Raft
is a key component of Docker Swarm’s management infrastructure, and it is integrated
into the core logic of Docker Swarm. Replacing the Raft algorithm in Docker Swarm is a
mandatory step to mitigate our proposed technique, since exploits used to escape from
container to host (as shown in Section 5) are very common and relatively easy to find. Since
its a design bug, replacing Raft requires a significant amount of work.

First, Docker’s developers should choose and implement a byzantine fault tolerant
algorithm [9,11] in Go, or find such an implementation as a Go package. The implemen-
tation should be high quality, since it will be deployed to every manager in the cluster.
Next, the developers should modify Docker Swarm’s source code. In Docker Swarm, Raft’s
implementation is encapsulated with a wrapper object. The developers of Docker Swarm
should change the entire wrapper object to encapsulate the new package instead of Raft.

Then, series of tests should be ran to ensure that the new package meets Docker’s
efficiency requirements: both local and network. The new package should not consume a
significant amount of the host’s resources, and should be be efficient in terms of network
activity between hosts in the Docker Swarm. Moreover, the tests should ensure that the
new package works as expected on every operating system supported by Docker Swarm.
Since managers are the most valuable servers in the cluster, any bug in a manager can be
fatal. The tests should ensure, as much as possible, that the new package is bug free and
that it has no unwanted side effects. In any case, replacing the Raft implementation holds a
major risk and may cause a service degradation.

There are some best practices that may block our attack; the most common is to
separate the manager nodes from worker nodes. In such a case, even if the attacker
compromised a worker node, he will not be able to escalate his privileges in the way
we suggested in this article, since the attacker’s node is not part of the managers group.
However, although considered a best practice, this is not the default behavior of Docker
Swarm. We believe that Docker’s developers chose to make the manager node a worker too
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by default in order to not waste expensive computing power. If a node is just a manager, it
will not receive the client container to execute, and hence the cluster’s computing capacity
decreases. Regardless, in this article, we chose to research and exploit systems in their
default state and not delve into best practices.

We offer two strategies in order to effectively mitigate our technique. In the short
term, the technique can be mitigated by detecting and blocking container escape exploits.
As discussed in Section 4.2, the leadership hijacking technique should be executed from
a manager host. We showed in Section 5 that an attacker can gain such access using a
container escape exploit. In the case that the container escape exploit fails, an attacker
cannot launch the technique and, therefore, cannot escalate his privileges in the cluster. In
order to reduce the amount of container escape exploits, Docker can start a bug bounty
program. We believe that this will help Docker patch container escape vulnerabilities
before they can be exploited by real attackers in the wild.

In the long term, we offer to replace the Raft algorithm with a byzantine fault tolerant
algorithm [33,34]. As discussed earlier, Raft is a non adversarial algorithm; hence, an
attacker who is in control of a Raft’s participant can forge and spoof messages. In that way,
the attacker can trick other participants to vote for him in the leader election phase and
become the cluster’s leader. In the case that a BFT algorithm is used, other participants
would not vote for the attacker since the algorithm can tolerate byzantine participants.
In that way, the attacker would not be able to escalate his privileges to cluster leader.
Furthermore, in order to support future changes, the developers of Docker should divide
Docker’s infrastructure from the leader election algorithm. The architecture of Docker
Swarm should be “plug and play”, such that the leader election algorithm is chosen as a
configuration option instead of a source code modification.

7. Conclusions

In this work, we suggested a new attack vector on the Docker Swarm orchestrator.
Our technique demonstrated a new concept in offensive security in which a cluster is
treated as a single unit of processing and an attacker is able to escalate their privileges
in that unit and, thereafter, perform malicious activity on every component of that unit
separately (i.e., every host in the cluster).

We presented a novel technique that, when combined with our proposed payloads,
allows an attacker to gain full control over the Docker Swarm cluster. Since our tech-
nique and payloads do not exploit a software bug but rather exploit a design weakness,
developers should take them into account during the design of their multi-agent systems.
Future research should, on the one hand, explore additional ways in which attackers can
obtain leader privileges in other cloud environments, e.g., Kubernetes, and, on the other
hand, develop methods to detect misbehaving managers, for example, using anomaly
detection techniques.
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Abstract: A critical question relevant to the increasing importance of crowd-sourced-based finance
is how to optimize collective information processing and decision-making. Here, we investigate an
often under-studied aspect of the performance of online traders: beyond focusing on just accuracy,
what gives rise to the trade-off between risk and accuracy at the collective level? Answers to this
question will lead to designing and deploying more effective crowd-sourced financial platforms and
to minimizing issues stemming from risk such as implied volatility. To investigate this trade-off, we
conducted a large online Wisdom of the Crowd study where 2037 participants predicted the prices of
real financial assets (S&P 500, WTI Oil and Gold prices). Using the data collected, we modeled the
belief update process of participants using models inspired by Bayesian models of cognition. We
show that subsets of predictions chosen based on their belief update strategies lie on a Pareto frontier
between accuracy and risk, mediated by social learning. We also observe that social learning led to
superior accuracy during one of our rounds that occurred during the high market uncertainty of the
Brexit vote.

Keywords: crowd-sourcing; wisdom of the crowd; social learning; Bayesian models; risk

1. Introduction

Distributed financial platforms are on the rise, ranging from Decentralized Au-
tonomous Organizations [1], crowd-sourced prediction systems [2] to the very recent
events during which retail investors self-organized using social media and drove up asset
and derivative prices [3,4]. In this work, we investigate how financial agents process
information from one another and predict-individually and collectively—the future prices
of real assets. Specifically, we are interested in understanding the computational models
they use to update their beliefs after information exposure and how different social vs.
non-social belief update strategies lead to trade-offs in prediction performance.

Here, we expand the typical definition of performance for collective prediction to
include the concept of risk. Typically, the prediction performance of collectives and swarms
is measured mostly by the accuracy of the group over collections of tasks [5–7]. However,
it has been shown theoretically [8,9] and observed in a variety of applications [10,11] that
there is a fundamental trade-off between prediction accuracy (average error) and prediction
risk (variance of error).

This means that for any prediction system, risk will always be present, and that
maximizing accuracy will come at the expense of increased risk. Hence, the performance
of the system will always exist within a pre-defined Pareto frontier [12,13] which is the
curve containing all possible system performance parametrizations (here, pairs of possible
accuracy and risk values). Therefore, a platform designer will need to make trade-offs
between risk and accuracy and cannot achieve arbitrarily combinations of risk and ac-
curacy. Treating risk and accuracy as equally important for prediction is standard in
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statistical [8–10] and financial [14–16] forecasting applications and literature because it
allows for prediction systems to be calibrated and deployed with regard to specific accuracy
and risk profiles [17–21].

However, characterizing the performance of crowd-based prediction systems regard-
ing both accuracy and risk is not common and such a Pareto frontier has not been observed
in crowd-sourced financial asset price prediction. We are therefore interested in investi-
gating if a Pareto frontier exists and what the causes are behind this trade-off. From the
perspective of crowd-sourced financial platform designers, understanding the trade-off
between accuracy and risk and how to select subsets of predictions that achieve a certain
accuracy and risk is useful to fit a required risk profile. This, in turn, allows for more
sophisticated and versatile applications of crowd-sourced predictions such as hedging
risks over portfolios of prediction tasks.

To test our hypothesis that a Pareto frontier exists between risk and accuracy and
that it is mediated by social learning, we designed our collective prediction experiments
as a series of Wisdom of the Crowd (WoC) tasks. For background, the Wisdom of the
Crowd [22,23] is a popular domain within the collective intelligence literature where
participants (the ‘crowd’) are asked to make predictions of a certain quantity, such as the
future price of an asset on the stock market [24] or the caloric content of food items [25].
Prior work in the WoC literature [25–27] has focused on maximizing the average accuracy
of collectives with little regard to the risk of the predictions.

The structure of this paper is as follows: we do a short literature review of the
connections of this work to research on collective intelligence and the accuracy-risk trade-
off in Section 2. We discuss our materials and methods (experimental design, data collection,
and modeling and estimation) in Section 3. We present our results (belief update modeling,
accuracy-risk trade-off and prediction under high uncertainty during Brexit) in Section 4.
We discuss the implications and limitations of our work in Section 5.

Contributions

Our work makes the following novel contributions:

• We present an experimental procedure where we exposed 2037 participants to social
and non-social information during 7 independent rounds of predicting financial
asset prices (S&P 500, gold and WTI Oil). We collected 4634 prediction sets which
include participants’ predictions before and after information exposure, as well as the
information they were exposed to. We are releasing this data here.

• Using computational models inspired by Bayesian models of cognition [28,29] to
investigate the belief update strategy of participants, we observe that a simple model
that approximates the likelihood (evidence) to be a unimodal Gaussian beats a more
complex Monte Carlo approach. This suggests that our participants exhibit the at-
tribute substitution heuristic of human decision-making [30], whereby a complicated
problem is solved by approximating it with a simpler, less accurate model.

• We observe that participants prefer to learn from social information rather than from
non-social information, another interesting information processing heuristic.

• Our main contribution: we observe a Pareto frontier between accuracy and risk. As
the average accuracy of the crowd over the different prediction rounds increases, so
does the risk in the crowd’s predictive accuracy. We further observe that this trade-off
is mediated by the amount of social learning i.e., the extent to which participants pay
attention to each other’s judgments.

• We deployed one of our prediction tasks just before the Brexit vote during which
there was a great deal of market uncertainty [31], and we observe that during such
uncertain times social learning leads to higher accuracy.

These results are not only important for the practical deployment of distributed
financial prediction platforms but also expand our understanding of how financial agents
process information and make distributed predictions.
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2. Related Work

2.1. Collective Intelligence and Social Learning

There is a rich literature on how decentralized information processing, learning and
decision-making affects the performance of collectives and swarms [32–36]. Here, we focus
on how platforms can be designed for people to make predictions with high performance,
which is a central question for the Wisdom of the Crowd [22,23,37].

It has been shown that the temporal influence and mutual information dynamics
between individuals can have a strong effect on crowd collective performance. On the
one hand, prior work has shown that exposure to social information can lead to degraded
performance in aggregate guesses [26,37,38]. For example, increasing the strength of
social influence has been shown to increase inequality [39]. Selecting the predictions of
people who are resistant to social influence has been shown to have improved collective
accuracy [27]. The influence of influential peers has been theoretically shown to prevent
the group from converging on the true estimate [26], and exposure to the confidence levels
of others has been shown to influence people to change their predictions for the worse [40].

On the other hand, social learning has also been shown to lead to groups outperform-
ing their best individuals when they work separately [41] and a collective intelligence factor
has been shown to predict team performance better than the maximum intelligence of
members of the team [35]. Similarly, human-inspired social communication between agents
has been shown to improve collective performance in optimization algorithms [5,42].

Therefore, the role of social learning in collective performance is still being under-
stood. Our contribution to this line of research is that a more complete characterization
of performance in terms of not just accuracy but also risk provides avenues for future
work towards reconciling the disagreements as to the role of social influence on perfor-
mance. This is especially important due to the already existing strong social components in
many crowd-sourcing platforms and applications [43–48] that could be harnessed more
effectively for performance improvement.

2.2. Accuracy-Risk Trade-Off

Previous work has investigated several avenues to optimize the accuracy of the crowd
such as by recalibrating predictions against systematic biases of individuals [26] and
selecting participants who are resistant to social influence [27]. Additionally, rewiring the
network topology of information-sharing between subjects [25,41], and optimally allocating
tasks to individuals [49] has improved collective accuracy. However, these studies focused
on accuracy with little regard to risk. There is a rising movement to go beyond accuracy
and to fully characterize performance—at the individual and the collective level—in terms
of both accuracy and risk. Some call this emerging line of work going beyond the ‘bias bias
(In the statistics literature, bias is another name for accuracy. This movement suggests that
research should go beyond its current focus on just bias and study risk).

At the individual level, there is increasing evidence that people preferentially opti-
mize for risk instead of accuracy in a variety of domains [50]. Cognitively, people have
been observed to manifest decision heuristics [51] to be conservative in the face of un-
certainty [52,53]. For example, rice farmers have been observed not to adopt significant
harvest improvement technology because of the risk of it failing once and causing signifi-
cant family ruin [54]. Evolutionarily, risk aversion has been shown to emerge when rare
events have a large impact on individual fitness [52]. Furthermore, in a meta-study of
105 forecasting papers, 102 of them support prioritizing for lower risk to achieve higher
overall performance [55]. At the collective level, there is limited work regarding the charac-
terization of the performance of collectives and swarms in terms of both accuracy and risk
although there is a large literature on other related trade-offs such as between speed and
accuracy [56–60].

From a system design perspective, crowd-sourcing platform designers should charac-
terize their performance in terms of both accuracy and risk due to theoretical results [8,9]
and observations in applications [10,11] that the performance of any prediction system is
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subject to a fundamental trade-off between accuracy and risk. This is especially impor-
tant in our domain of predicting financial asset prices as risk is already known to have
negative effects on the efficiency of markets such as through the phenomenon of implied
volatility [61].

3. Materials and Methods

3.1. Experimental Design

To test our hypothesis that a Pareto frontier exists between risk and accuracy—i.e.,
that there is a trade-off between risk and accuracy of prediction across several predic-
tion rounds—and that it is mediated by social learning, we need a dataset with the
following requirements:

• Predictions are made of complex and difficult-to-predict phenomena so that our results
are applicable to the real-world platform applications.

• Predictions are made over many independent prediction rounds so that the risk of the
crowd over these different tasks can be estimated.

• A ground-truth is needed against which we can compare our dataset to judge the
external validity of individual and collective performance metric.

• The social and non-social information each participant was exposed to after their initial
pre-exposure prediction is recorded so that we can later model how different types of in-
formation influenced them in updating their belief into their post-exposure prediction.

Given the above requirements, we designed the experimental procedure as detailed
below: we recruited a total of 2037 participants over seven prediction rounds to predict
the future prices of financial assets (the S&P 500, WTI Oil, and gold prices) during seven
separate consecutive 3-week rounds over the span of 6 months, resulting in 9268 predictions
(i.e., 4634 prediction pairs or sets). We focused on predicting financial prices as doing so is
a hard prediction problem [62,63]. Our participants were mid-career financial professionals
with years of financial experience. Our participants consented to their data being used in
this study and we obtained prior IRB approval. One of our rounds of prediction happened
to end the day of the Brexit vote, which means that we have prediction data during a
particularly volatile market period [31] as described in Supplementary Section A.5 .

During each round, participants made a prediction of the same asset’s closing price
for the same final day of the round. We use the round’s last day’s closing market price
as our measure of ground-truth. We carefully instrumented the social and non-social
information that our participants were exposed to, and collected their predictions before
and after exposure to this information. We also deployed one of our rounds during a high
uncertainty period to understand if variance reduction strategies allow the crowd to be
resistant to risk.

We did not opt for an A/B testing experimental design [64]—where we would have
split participants and shown each group either the social information or the historical
price time series—because we wanted participants to naturally choose whichever source of
information to use to update their belief. This was an important experimental design choice
as we wanted to understand, as close as possible to in-situ how people update their beliefs
in the real-world where they are already exposed to both their peers’ beliefs and to price
history information, such as through financial news. Our design is in contrast to previous
work where the experiments were deployed within a carefully controlled laboratory set-up
as in prior work [25,37,40].

3.2. Data Collection

As shown in the screenshot of the user interface in Figure 1, we designed the data
collection process as follows: every time a participant makes a prediction of an asset’s
future price through our platform, the following prediction set comprising Bpre, BH , BT and
Bpost is collected:
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• A “pre-exposure” belief prediction Bpre, which is independent of both social informa-
tion and price history. For example, a participant might show-up on the platform and
predict that the closing price of the S&P 500 to be 2001 on 24 June 2016.

• The predictions BH within the social information histogram shown to each participant
after each initial prediction. Additionally, we display a 6-month time series of the
asset’s price BT up to this point.

• The revised “post-exposure” prediction Bpost. For example, after seeing the social
histogram and asset price history, a participant might update their belief to 2201. Since
the real price (the ground-truth V) ended up being 2037.41, this participant became
more accurate after information exposure (they went from 2001 to 2201).

Social 
Histogram

Updated
Prediction

(post-
exposure)

Initial 
Prediction 

(pre-
exposure)

Price
History

Figure 1. An annotated screenshot of how data were collected: the pre-exposure prediction Bpre is shown first, followed by
the social histogram BH and the price history BT . Finally, the updated prediction Bpost is collected. The ground-truth of the
asset’s final closing price will be V (not shown here, realized at the end of the round).

Overall, we ensure that the “pre-exposure” prediction is made before any social
information and price history is shown. We present a unique histogram for every new
prediction (as it is built using past predictions up to this point), as well as a unique price
history time series (as it shows the 6-month price data up to the time of prediction). We
require all participants to make a post-exposure prediction even if they decide to keep it at
the pre-exposure level.

3.3. Modeling and Estimation

Using the data collected in the live experiments, we want to test our hypothesis that a
Pareto frontier exists between risk and accuracy and that it is mediated by social learning.
In this section, we describe all the modeling and estimation steps required to investigate
our hypothesis:

• In Section 3.3.1, we describe how we model individual belief update: how a partici-
pant updates their prediction from a pre-exposure belief to a post-exposure prediction
using a variety of models that are either Monte Carlo methods or simpler approxi-
mate methods inspired by Bayesian models of cognition [28,29]. This allows us to
understand how participants update their belief after information exposure.

• In Section 3.3.2, using the models described earlier, we detail how to estimate the
relative amount of social vs. non-social learning for each prediction to understand how
much social vs. non-social data were factored into a prediction’s belief update. We then
introduce our methodology for selecting predictions based on the estimated amount
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of social vs. non-social learning. This allows us to make aggregate predictions—at the
platform level—based on a pre-specified amount of social learning.

• In Section 3.3.3, we detail how the accuracy and risk—at the platform level—of
selected subsets are measured, and how they are used to investigate whether a Pareto
trade-off exists between accuracy and risk and whether it is mediated by the relative
amount of social vs. non-social learning.

3.3.1. Modeling Belief Updates

Using formalism inspired by Bayesian models of cognition [29], we can model the
4634 prediction sets collected over many rounds, at a high level, as a Bayesian update.
To use this formalism, we need to select a prior distribution for each individual’s belief
before exposure to any information and a likelihood (evidence) distribution to model
the data participants are exposed to. Additionally, a sampling or approximate method
is required to use the prior and evidence to compute the posterior (updated belief after
information exposure) distribution. Here, we describe the modeling assumptions and
procedure at a high level, and detail more thoroughly our modeling assumptions and
present our derivations in Supplementary Section A.3.

Fundamentally, we are interested in how participants predict an asset’s future price
(ground-truth) V based on the information we expose them to. The choice of the prior
distribution is straightforward: Pprior(V) ≈ P(Bpre), the distribution of belief of an indi-
vidual before they are exposed to any information. We discuss in our model derivation
(Supplementary Section A.3) how, when needed, we approximate the full distribution
P(Bpre) since we obtain only one sample, Bpre, for each participant and cannot observe the
full distribution P(Bpre).

After participants input their pre-exposure belief Bpre, there are two main likelihood
(evidence) distributions participants employ: they are exposed to the assets’ price history
BT , giving us Plikelihood(V) ≈ P(BT), or analogously, the social histogram BH , giving us
Plikelihood(V) ≈ P(BH). In the modeling stage here, we assume that participants used
these two likelihood distributions separately to update their beliefs, but we relax this
assumption in the estimation stage next where we estimate the relative amount of social
vs. non-social learning for each prediction. We detail in Supplementary Section A.3 how
likelihood distributions are built from the information that participants are exposed to. In
Supplementary Section A.2, we formally detail how we transform the price history into a
cognitively accurate ‘rates histogram’ using price momentum. As a summary, because it
has been shown that people process time series as a distribution of changes as opposed to
a distribution of the quantity itself [65–67], we convert the price history time series into a
histogram of daily changes (slopes) in prices which is used for both the simple Gaussian
models and the numerical models for price prediction.

Given the prior and likelihood, the modeled posterior prediction Pposterior(V), can,
therefore, be approximated as Pposterior(V) ∝ P(BH) · P(Bpre) in the case of exposure to
social information, and Pposterior(V) ∝ P(BT) · P(Bpre) when participants are exposed to
the past price history. We do not make any other assumptions in terms of what data to
use to approximate the likelihood and prior distributions. Given these distributions, the
question is then how to compute the posterior (updated) belief of an individual.

Although we focus on Bayesian models in this work, we include one popular model
commonly used as a benchmark in the literature, the DeGroot model [68]. In this model,
an individual updates their belief as the weighted average belief of their peers where
weights can be, for example, trust values of the individual for their peers. Here we set the
weights (trust values) equal for all peers, as we have no data to estimate these weights, and
therefore assume a uniform prior.

Although the space of possible distributions and posterior computation approaches is
very large, we focus here on using two simple, interpretable, and theoretically motivated
approaches from prior work [28]. We either use Gaussian (normal) conjugate distributions
to approximate priors and likelihoods due to strong evidence of their ubiquity as Bayesian
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models of cognition [29], or use a full Monte Carlo numerical sampling approach to
calculate the posterior from the actual distributions of prices that participants were exposed
to. We leave to future work the exploration of richer distributions and approaches to
modeling belief update as it is beyond the scope of this study.

3.3.2. Subsetting Predictions Based on Social Learning

Based on how participants update their belief, we would like to select subsets of
predictions based on whether they were more likely updated using social or non-social
information. This approach of using characteristics of how predictions are updated is
standard in the Wisdom of the Crowd literature. For example, prior work has estimated
resistance to social influence [27] and influenceability in revising judgments after seeing
the opinion of others [69,70], and used them to improve collective performance. No prior
work has investigated investigating if the modeling of belief update strategies could be
leveraged for improved collective performance.

Using the previously modeled posteriors, we can estimate how much of each infor-
mation source—social information and price history—each participant used to update
their belief by comparing the residual errors of models using either only social information
or only price history as likelihood. As will be introduced in the Section 4, although we
explored many models of belief update, the simple conjugate Gaussian models model
best how participants update their belief. This is in line with previous research showing
that although simple, they are highly accurate models of mental estimation in a variety of
domains [28].

Therefore, for the purposes of selecting subsets of prediction based on their relative
amount of social vs. non-social learning, we choose to focus on the GaussianSocial and
GaussianPrice. These models assume the likelihood (evidence) data distribution to be
built, respectively, from the social information and price history participants are exposed to.

Our approach is illustrated in Figure 2: using the prediction of the models Gaussian
Social and GaussianPrice, we calculate a residual εH for when updating belief us-
ing social information BH and a residual εT when updating from the price history BT ,

as εH =
|GaussianSocial−Bpost |

Bpost
and εT =

|GaussianPrice−Bpost |
Bpost

respectively. We define
α = εT − εH , and we use it to measure how likely a participant used each source of
information to update their prediction. For example, for a prediction set [Bpre, BH , BT , Bpost]
if α > 0 (i.e., εT > εH), this means that this prediction set is better modeled using the social
histogram of peer’s belief BH instead of the price history BT .

Using α, which we re-scale to be in the interval [−1, 1] for each round, we can select
a subset Sαs of the prediction sets such that the α of these prediction sets lie in the range
0 ≤ α < αs (or αs < α ≤ 0 when αs < 0). αs is the one-sided boundary we will vary to
measure how much more likely a participant updated their belief from the social information
instead of the price history. For example, the higher αs is, the more likely a prediction set is
better modeled using the social histogram of peer’s belief BH instead of the price history BT.

It is important to note that the residuals we use to select subsets are belief update
model residuals (between the observed updated belief and the predicted modeled updated
belief) which are uncorrelated with the crowd residual (between the crowd’s aggregate
prediction and the ground-truth).
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difference in 
model residual, here $3 

GaussianSocial
 modeled updated 
belief using social 
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GaussianPrice
 modeled updated 
belief using price 
history e.g. $171

initial user prediction
e.g. $152 updated user 

prediction
e.g. $164

social model 
residual, here $4

price model 
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}
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showing distribution of 
peer beliefs a user is 
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price histogram 
showing distribution of 
price history a user is 

exposed to

Figure 2. An example belief update: for each prediction set, a participant updates their belief
from the pre-exposure prediction Bpre to the updated prediction Bpost by either learning from the
social histogram BH and/or the price history BT . εH is the residual between the modeled updated
prediction GaussianSocial and the participant’s updated prediction Bpost; εT is the residual between
GaussianPrice and Bpost. α is the difference between εT and εH .

3.3.3. Evaluating Improvement of Subsets

Our hypothesis is that a Pareto frontier exists between risk and accuracy and that this
trade-off is mediated by the relative amount of social vs. non-social learning.

To test this hypothesis, we investigate how the accuracy and variance of subsets Sαs

of predictions selected using αs (a measure of the relative amount of social vs non-social
learning) compares to the current standard Wisdom of the Crowd approach whereby all
predictions are used.

From the perspective of platform designers who want to be able to select predictions
based on required levels of accuracy or risk (e.g., to fit a certain portfolio of risk), it is
important to measure improvement of subsets relative to the full collection of predictions.
This is because, currently, platform designers only have access to one global measure of
risk and accuracy—that of the whole set of predictions (when there is no subset filtering).
To demonstrate that selecting subsets of predictions can lead to significant improvements in
accuracy and risk, we therefore need to calculate these improvements.

We therefore define improvement ISαs as the absolute difference between the error eSαs
when using a subset Sαs compared to the error eSall when using the full set of predictions
Sall , the Wisdom of the Crowd, where Sall is defined as the full subset over all predictions
using −1 ≤ α ≤ 1.

The error ei,Sαs
over all predictions j ∈ Sαs for an estimated amount αs of relative

social vs. non-social information during experiment round i is defined as
|∑j∈Sαs [Bpost,j ]−Vi |

Vi
.

To allow for estimation uncertainty over the improvement in accuracy and risk of sub-
sets, we use 100 bootstraps with replacement. This procedure is formally described in
Supplementary Section A.3.4.

We use an analogous approach to estimate the risk of the platform by calculating the
standard deviation instead of the mean of the improvements over experiment rounds. This
measures the risk for platform designers to estimate, over a basket of prediction rounds, what
is the variance of improvements over this basket. This is the same as understanding the
variance of error of a statistical prediction model (e.g., machine learning model) such that we
can calibrate both the accuracy and variance of the model over a portfolio of predictions.
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4. Results

Here we present our results. In Section 4.1, we detail our supporting result related
to how different belief update models perform. Next, in Section 4.2, we present our main
result about the trade-off between accuracy and risk in the Wisdom of the Crowd. Lastly,
we present the supporting result regarding the effect of social learning during the high
uncertainty period before the Brexit vote in Section 4.3.

4.1. Belief Update Models

Although the space of possible prior and likelihood distributions and posterior com-
putation approaches is very large, we focus on using simple, interpretable, and theoretically
motivated approaches from prior work [28]. We leave to future work the exploration of
richer distributions and approaches to modeling belief update as it is beyond the scope of
this study. We detail how model error and confidence intervals are evaluated in Supple-
mentary Section A.3.3.

As can be seen in Figure 3, models that use social information as likelihood for mod-
eling the belief update of participants (GaussianSocial,GaussianSocialModes, Numerical
Social) outperform better than models that use the price history (GaussianPrice, Numerical
Price). This suggests that our participants more likely use social information instead of the
price history to update their belief, in line with previous work showing that participants
often prefer using social information [71,72].
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Figure 3. The y-axis shows the relative residual between modeled belief update and actual updated
belief. Simple approximated models do better at modeling belief update than numerical models,
and models using social histograms as likelihood perform better than models using the price history.
Error bars represent 95% CI.

Specifically, GaussianSocial, our simple Gaussian model that assumes the data fol-
lows a single-mode Gaussian distribution, outperforms GaussianSocialModes, a model
that identifies when the social histogram is non-unimodal (using the Hartigan’s dip test
of unimodality [73]) and uses the largest mode as the mean of the distribution. This sug-
gests that participants assume the data they learn from to be unimodal even when it is
non-unimodal, in line with prior work [74,75] showing that this might be due to the fact
that using multi-modal data is cognitively costly.

Additionally, GaussianSocial outperforms the more precise numerical model
NumericalSocial which makes no parametric assumption on the data distributions and
uses a Monte Carlo procedure to estimate the posterior distribution. This suggests that
participants employ simple heuristics when learning from their peers, in line with the at-
tribute substitution heuristic of human decision-making [30]. However, when participants
are learning from the price history, the dominance of simpler models is not as clear because
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the performance of the simple GaussianPrice model is indistinguishable from that of the
numerical model (NumericalPrice).

GaussianSocial also outperforms the popular DeGroot model commonly used as a
benchmark in the literature [68], where an individual updates their belief as the weighted
average belief of their peers. Here we set the weights (trust values) equal for all peers,
as we have no data to estimate these weights, and therefore assume a uniform prior.
It is interesting to note that GaussianSocial is equivalent to the DeGroot model when
a participant’s weight on their own prior belief is equal to the total of the weights of
all other participants. This agrees with previous work showing that participants put a
disproportionately larger weight on their own prior belief [76,77].

Overall, the superiority of GaussianSocial in predicting belief update suggests that
participants use a heuristic, unimodal, and simple belief update procedure when updating
their beliefs, and that they predominantly update their predictions using social information
instead of price history. It is important to note that approximate (non-Monte Carlo) models
such as GaussianSocial and GaussianPrice are parameter-less models and did not require
any parameter fitting, making their success in modeling belief update quite interesting.

4.2. Accuracy-Risk Trade-Off

Here, we present our main result about the trade-off between accuracy and risk in the
Wisdom of the Crowd. Using a Pareto curve, we compare the improvement in prediction
accuracy and risk (variance) of each subset Sαs as defined by αs, a measure of the relative
amount of social vs non-social learning.

As shown in Figure 4, we observe that with improvements in accuracy of subsets
comes increased risk, mediated by the relative amount of social vs. non-social learning
αs, suggesting a trade-off between accuracy and risk. As formally described earlier in
Section 3.3.3, improvement is a measure of the additional accuracy gained from a subset of
predictions compared to when using all predictions by the crowd (the de-facto Wisdom of
the Crowd) over all prediction rounds. Similarly, risk is a measure of the risk of this subset
compared to when using all predictions over all rounds. From a system design perspective,
we choose these measures of improvement and risk as they allow us to understand how
choices over subsets of participants might affect performance, allowing us to calibrate the
crowd as per the platform designer’s risk preferences.
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Figure 4. (A): In this Pareto curve, we plot the improvement of each subset vs. the risk (standard deviation) in improvement
within this subset. We see a risk-return trade-off: predictions made with price history are more accurate, but with higher
risk (standard deviation). Fitted line has R2 of 0.49, and p-value < 0.001. Horizontal and vertical error bars represent
95% CI from 100 bootstraps. (B,C): Instead of plotting risk vs. improvement (as in (A), here we plot the same values of
improvement ((B), R2 = 0.82, p-value < 0.001) or risk ((C), R2 = 0.50, p-value < 0.001) against the relative amount of social
vs. non-social learning, αs, that generated these values of improvements or risk.
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Additionally, since we observe that variance of improvement (risk) decreases with
increased social leaning, our result replicates prior findings that exposure to social infor-
mation decreases the variance of the crowd [37]). Please note that the decrease in risk
from social learning is not because participants are simply converging towards the crowd’s
mean: as detailed in the previous Section 4.1, the social histogram participants are shown is
quite often non-unimodal (tested using the Hartigan’s dip test of unimodality [73]), which
means that participants are intentionally collapsing multiple distribution modes in the
observed data.

Such a Pareto trade-off between risk and accuracy is common in financial forecast-
ing [15,16] and statistical prediction [8–11], but has not been typically observed in the
literature on the Wisdom of Crowds. This has strong implications for the design of crowd-
sourced prediction platforms as described in the Discussion Section 5.1.

4.3. Performance under High Uncertainty

A supporting result of our work is from the investigation of the crowd’s performance
during a period of high uncertainty using the data from the prediction round that happened
during the Brexit vote (see supplementary Section A.5 for details about this round).

Following the same procedure described in the Methods Section 3.3.3, we bin all
α’s from the prediction sets and investigate the improvements of subsets of predictions
compared to the whole crowd. The main difference here is that unlike in all previous
results where we took care not to use the last week of data to calculate collective accuracy
so that prediction was not too easy, we do so here as the high uncertainty only happened
in the last week (as shown in supplementary Figure S1). This last week of data that we use
is a disjoint subset from the data we previously used.

As can be seen in Figure 5, as αs decreases (i.e., we select predictions that were
more likely updated using the price history instead of the social information, αs < 0),
improvement in accuracy of subsets compared to the Wisdom of the Crowd (all predictions)
decays to a great extent.
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Figure 5. Improvement when selecting predictions based on how much more they were likely made
using social information (αs > 0) vs. price history (αs < 0). 95% Confidence intervals obtained
through 100 bootstraps.

Conversely, as subsets of predictions updated using the social histogram (αs > 0) are
selected, the improvement in their accuracy is stable.

Given that such high market uncertainty only occurred during one round, we do not
have enough data to produce a Pareto curve over multiple rounds. Additionally, note that
although a smaller number of predictions were made during the last week before Brexit
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(52 prediction sets compared to 284 during the open period of prediction used earlier), we
have sufficient data to afford statistically significant results as shown by the 95% confidence
intervals of our findings.

This supporting result suggests that during periods of high uncertainty, social learning
leads to higher accuracy in contrast to the result in the previous section where the asset
prices were more predictable. This result has implications for platform designers such as
the potential of leveraging social learning as a valuable tool that minimizes catastrophic
performance during high uncertainty prediction regimes.

5. Discussion

Our main result (the trade-off seen in Figure 4) supports our hypothesis that a Pareto
frontier exists between risk and accuracy—similarly to what has been observed in statistical
modeling [8–10] and financial [14–16] forecasting systems. This trade-off is mediated by
the relative amount of social vs. non-social learning. Additionally, as supporting results,
we observe that simple approximate models outperform more complicated Monte Carlo
approaches in modeling the belief update process of participants. This suggests that
participants use several heuristics, and that during periods of high uncertainty, social
learning leads to higher accuracy.

Here, we discuss the implications of our results for platform designers in Section 5.1,
describe the contributions of our work to the literature on heuristics in information pro-
cessing and decision-making in Section 5.2. We end with a description the limitations of
this work in Section 5.3.

5.1. Collective Intelligence System Design Implications

If we are to deploy crowd-sourced financial prediction and speculation systems at
scale, it will be important to fully characterize the performance of these systems. This is
especially given the growing importance of decentralized financial prediction and specula-
tion including very recent events during which retail investors self-organized using social
media and drove up asset and derivative prices [3,4]. However, crowd-sourced prediction
systems and literature so far focus on measuring and optimizing for the accuracy of the
predictions with little regard to the risk of these predictions even though measuring both
accuracy and risk is standard in machine learning [8–10] and financial [14–16] forecasting
applications. More generally, proper modeling and estimation of risk will support more
sophisticated and versatile applications of crowd-sourced predictions such as hedging
risks over portfolios of prediction tasks.

Additionally, beyond the passive monitoring and reporting of risk, a practical question
for designers is how to tune the platform to reach a desired value of risk and accuracy.
Our result that social learning can mediate the accuracy-risk trade-off provides a practical
means to attain performance along this frontier. Specifically, our results suggest that social
learning within a crowd-sourcing platform could be more purposefully leveraged to fit the
task at hand. For example, platform designers could incentivize social learning between
participants to have lower risk. This might be especially needed during highly uncertain
times, as our results from the Brexit prediction (Figure 5) prediction showed. Past work has
already showed that crowd-sourcing platforms can be incentivized to be more social [43,44].

Beyond platform design considerations, our results also add to the rich study of
social learning and its impact on collective intelligence within the Wisdom of the Crowd
domain [25,27,37,40,41] by adding the novel perspective that risk is an important dimension
of the behavior of crowds to be measured.

More generally, our work brings together two disjoint studies by showing that it is
possible to improve collective intelligence by modeling individual belief update. Our
results therefore suggest a connection between the field of collective intelligence [78] (of
which the Wisdom of the Crowd is one domain) and the field of computational cognitive
science [79] (of which Bayesian models of cognition is an area). Until now, the latter
literature has mostly focused on individual models of belief update such as through
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computational models of how people perform sampling [80], what their priors are [81], and
how they perform inference [82], sometimes in social situations [83]. Yet, there is little work
that looks at the impact of individual belief update on collective performance. On the other
hand, there is limited collective intelligence literature regarding leveraging the modeling
of individual belief update to improve group performance and past work has instead been
focused on using personal characteristics such as resistance to social learning [27].

5.2. Information Processing and Decision-Making Heuristics

Our results also have implications for the literature on decision heuristics and bi-
ases [75,84]. Through the modeling of belief update, we observe that our subjects exhibit
the attribute substitution heuristic of human decision-making [30]. This information pro-
cessing heuristic describes when people attempt to solve a complicated problem by approx-
imating it with a simpler, less accurate model. We observe this heuristic as our participants’
updated beliefs are better modeled by the GaussianSocial model (which assumes the
data to be unimodal) than by the multi-modal belief update model GaussianSocialModes.
This indicates that our participants assume the data to be unimodal even when it is not,
in line with previous studies that have shown that people wrongly assume data to be
unimodal [74,85,86]. This is hypothesized to be because updating belief using multi-modal
data is cognitively costly [87]. Additional evidence of this substitution heuristic is from
the fact that simpler, approximate models better predict the updated beliefs of participants
than the more complicated Monte Carlo numerical models.

Another decision heuristic that we observe is that participants prefer to use so-
cial information rather than the underlying price history of an asset to update their
belief as models which use social information (GaussianSocial,GaussianSocialModes,
and NumericalSocial) outperform models that use price history (GaussianPrice and
NumericalPrice) as shown in Figure 3. This is surprising given that our participants were
mid-career finance professionals with strong financial experience who should know that
price information is generally better to predict future prices [88,89]). However, such behav-
ior was observed in prior work where even experts performing a familiar task demonstrate
sub-optimal decision heuristics [90,91], and often over-rely on social information [71,72].

Generally, such information processing and decision-making heuristics have been
seen as irrational and sub-optimal. Our results suggest that within the full specification of
both accuracy and risk, perhaps participants are preferentially aiming for lower risk instead
of higher accuracy. This preference for social information especially pays off during the
high uncertainty period before the Brexit vote. Our results support growing evidence that
heuristics and biases are not merely defects of human decision-making, but that perhaps
they optimize for richer objectives or are optimized for more time- or data-constrained
decision-making [92–98]. For example, when individual decision-making is viewed within
the lens of more realistic requirements such as limited time [99,100] or attention [101],
heuristics and biases have been shown to act as helpful priors that facilitate fast and
risk-averse decision-making [102,103].

5.3. Limitations and Future Work

We made several simplifying assumptions in this work that open up rich avenues
for future work. First, we used simple, interpretable, and theoretically motivated belief
update modeling approaches from prior work [28] and leave to future work the exploration
of richer models, distributions and posterior computations to investigate belief update.
One important set of models to investigate is the use of log-normal distributions for the
likelihood instead of the normal distributions used in this work due to the established
tendency of people to guess quantities log-normally [37,104,105]. Similarly, people have
been shown to incorporate information asymmetrically based on where their predictions
lie in relation to the information they are exposed to [106]. Overall, although we used
Gaussian models here, an interesting direction of future work would be to build on the rich
existing literature on how people incorporate information [84,107,108]. We also restricted
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each round to have a static population of participants whose predictions were shared
using a specific visualization. An interesting direction for future work would be to embed
participants in social networks given the importance and popularity of recent work on
the effect of communication topologies [25,41,42,109] on group performance. Similarly, it
would be interesting to investigate if different avenues for communication (e.g., discussions
on forums [110]) exhibit a similar accuracy-risk trade-off.

Although this work demonstrates that our simple estimation technique can be used to
tune crowd-predictions for desired levels of accuracy and risk, there are potential causal
issues that could be improved in our experimental design and data analysis. One such
issue is that there are two experimental and two analysis factors being investigated simul-
taneously here. These are the two different treatments in the form of sources of information
(peer beliefs for the social histogram and price trajectory from the past price history) and
the two different approaches through which each of these sources of information are being
processed (simple binning of peer beliefs into a histogram, and transformation of the price
history into a ‘rates histogram’). It can be argued that these two experimental treatments
and two approaches constitute four possible approaches of how to deploy and analyze an
experiment, and we have only compared two of these four approaches. From a scholarly
perspective, we believe that our paper still makes a contribution because the goal of this
work was to show that a trade-off exists and is mediated by social learning. We achieve this
goal even though we only compare two approaches. Another causal concern is that the two
experimental treatments might interact in non-trivial ways. For example, when visualized
as a causal graph, there might be causally confounding paths between the treatments.

Several research designs and estimations techniques exist to remedy these causal
limitations. One approach would be to use an A/B test [64] framework although it would
require exposing people to different information separately. Doing so would be against our
goal to investigate how people update their belief in real-life situations where users are
exposed to both social information and price history. However, experiments where different
types of information are shown separately could still be used to understand the effect of
different information exposures on accuracy and risk, and used in deployment. Similarly
different amounts of information exposure could be attempted using a multi-factorial
A/B test [111,112]. We leave the exploration of these more sophisticated designs to future
work. Other de-confounding approaches could involve assuming a causal graph [113]
that is believed to capture how people update information and to use causal tools such as
d-separation to estimate the effect of different information exposure. Another approach
would be to use a potential outcomes framework [114] to estimate these treatments. These
are promising directions of research which could be investigated using our data that we
leave to future work. From a platform design perspective, even though these confounding
issues remain, our estimation technique could be readily applied to crowd-sourced systems
where price histories and peer beliefs are being shown.
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Abstract: Stratifying behaviors based on demographics and socioeconomic status is crucial for
political and economic planning. Traditional methods to gather income and demographic information,
like national censuses, require costly large-scale surveys both in terms of the financial and the
organizational resources needed for their successful collection. In this study, we use data from
social media to expose how behavioral patterns in different socioeconomic groups can be used
to infer an individual’s income. In particular, we look at the way people explore cities and use
topics of conversation online as a means of inferring individual socioeconomic status. Privacy is
preserved by using anonymized data, and abstracting human mobility and online conversation
topics as aggregated high-dimensional vectors. We show that mobility and hashtag activity are
good predictors of income and that the highest and lowest socioeconomic quantiles have the most
differentiated behavior across groups.

Keywords: human behavior; socioeconomic status; data analysis; social media

1. Introduction

Historically, governments have quantified natural and societal systems in order to
outline and validate public policies, and to organize their territory [1–3]. Having socioeco-
nomic data to guide the design of these policies is nevertheless crucial. However, gathering
such information can represent a challenge for governments and corporations given the
costly efforts associated to the deployment of large-scale national surveys. This is especially
the case in developing countries, whose governments may lack the resources needed for
completing such endeavors. The recent access to datasets collected from social media and
other electronic platforms has enabled the direct observation of individuals and social be-
haviors [4]. These new sources of data, when properly mined through efficient algorithmics,
can provide researchers with an in-depth view of social processes hard to obtain otherwise.

Data obtained from social media enabled an unprecedented analysis of the complexity
of societies [4]. Recent studies have shown patterns of social behaviors across multiple
scales of observation, ranging from individual preferences up to the structure and dynamics
of self-organized groups and collectives [5–7]. Example applications of these analyses
include the analysis of stock market variations based on collective sentiment analysis [8],
the prediction of electoral results [9], the political polarization of societies [10], and the
relationship between health and shopping preferences [11]. These types of studies have
only become more prevalent with the rising ease of access to geolocated data, enabling the
modeling and prediction of human mobility through online communication data [12].

Traditional socioeconomic studies how economic activities and their context shape
social behaviors, and vice versa [13]. These studies reveal how different behaviors are
characteristic of different social strata. For instance, income groups feature characteristic
patterns of behavior that distinguish them from each other in terms of culture, beliefs,
health, and education [14–19].

The underlying structure of a social system conditions the behaviors of its mem-
bers [20]. Similarly wealth also conditions with respect to spaces of mutual exposure and
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collective learning [21]. Previous studies have shown that income segregation in urban ar-
eas determines the places people visit [22,23], the people they interact with, and the topics
of conversation they engage in [24]. These analyses show that the segregation of the urban
space fragments the social network where information flows and from where behaviors
are transmitted and adopted among individuals. Because we learn from imitation, the
segregated structure of social networks leads to differentiated social behaviors, including
sentiments and emotions [25]. Reinforcing dynamics differentiate behaviors further despite
having access to everyone on Internet.

In this paper, we analyze Twitter activity and expose patterns of behavior that are
characteristic of different socioeconomic groups and that underlie income prediction tasks.
We apply machine learning and information theory methods, including dimensionality
reduction techniques, to expose how linguistic and mobility patterns can be used to infer
socioeconomic status. More concretely, we analyze the relationship between mobility
patterns and hashtag usage with income, as well as the differences between the collective
behavior among neighborhoods of different socioeconomic status in terms of the diversity
of their interactions.

The paper is organized as follows. Section 2 contains a summary of related studies in
the field of income prediction. Section 3 includes a description of the data and the methods
we use to collect and analyze it. In Section 4, we present the analysis on mobility and
hashtag behavior. In Section 5, we show the structure of the conversational space by means
of dimensional reduction. In Section 6, we show signature patterns of socioeconomic
groups according to the diversity of their interactions. Finally, we discuss our results in
Section 7, and conclude in Section 8.

2. Related Work

Methods for inferring demographic information from observations of social behaviors
have been recently developed. The availability of social media data combined with tra-
ditional sources such as census records enable the observation and analysis of both finer
and coarser views of society [4]. Until recently, researchers could only access data from
surveys or questionnaires, which by definition are limited in size, scope and frequency,
given the difficulties for their deployment and collection. Nowadays, social media data
provide researchers with the possibility of observing patterns of behavior which are charac-
teristic of certain demographic groups and therefore enabling the inference of traits from
unlabeled individuals.

Twitter is a social media platform where users can post messages and interact with
other people. Tweets include metadata with information about the author’s profile, the
detected language, as well as the time and location when it was posted. Twitter activity
has been analyzed to understand the geography of human sentiments [26], content share
networks [6], and dynamics of social influence [27]. It has also been used to advance the
understanding of global patterns of human mobility [28], activity [29], and languages [30].

Multiple features have been used in order to predict demographic traits of individu-
als from the data generated by the usage of multiple types of electronic communication.
Socioeconomic status, for instance, has concentrated a great deal of recent attention on the
topic. These advances enable a further characterization of the population and prediction
of individual attributes such as age [31], occupation [32–35], political affiliation [36], per-
sonality traits [37], and income [32,38]. The properties of Twitter activity and network of
followers have also been used to estimate gender and ethnicity [39], unemployment [40],
and language [41].

In particular, human mobility patterns are relevant predictors of income. Previous
research has shown that the diversity of human mobility is an indicator of economic
development across multiple regions [42]. Aggregated data produced by using mobile
phones [43,44] and geolocated social media outlets [45] have been crucial in advancing the
analysis of human mobility patterns, which are predictable given the regularity of com-
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muting [46] and visitation destinations. Another basis for income prediction is language
usage and online content production.

The relationship between income and language has been studied since the early stages
of socio-linguistics. At that time, researchers were able to show that social status inferred
from someone’s occupation determines the language used [47]. Recently, advances in
machine learning take advantage of this social property to build automated classifiers
and infer income from behavioral traits [32–34]. Gaussian Processes have been applied to
predict user income, occupation, and socioeconomic class based on demographics, as well
as psycho-linguistic features and standardized job classifications. These technologies map
Twitter users to their professional occupations. The high predictive performance has
proven this concept with r = 0.6 for income prediction, precision of 55% for 9-ways SOC
classification, and 82% for binary SES classification. These results further solidify the use
of semantic features as proxies to predict individual socioeconomic status.

Furthermore, in a previous work [21], we analyzed the collective topics of conversation
coming from neighborhoods of different income in multiple cities around the world.
Wealthier neighborhoods tend to discuss lifestyle topics such as travels or leisure, while
economically deprived neighborhoods seem to be characterized by other topics of
conversation such as sports or TV shows. Second, we noticed that the frequency of
visitation between neighborhoods was consistent with the similarity of their topics of
conversation. Therefore, neighborhoods that are segregated from one another, such as the
case of cities that are segregated by income, tend to also be separated in the space of online
conversations. Other studies of urban segregation using geolocated Twitter data confirm
that different ethnic groups are less exposed to each other because of segregated residential
and travel patterns [22,23].

3. Data and Methods

The goal of this paper is to expose patterns of behavior that are characteristic of
socioeconomic groups and to show that variations of behavior can be used to derive
income predictors. The research question is as follows: Which patterns of Twitter activity
are characteristic of different socioeconomic groups and how can we expose them? For
this purpose, we downloaded and analyzed Twitter data using statistical, computational,
and machine learning methods. We studied multiple aspects of human activity observable
from Twitter data. These included mobility patterns, language usage via hashtag adoption,
and social interactions via mentions. In this section, we detail the methods used to collect
and treat Twitter data, as well as the representation model we created to analyze patterns
of behavior from individuals and neighborhoods.

The data have been collected using the Application Programming Interface (API)
provided by Twitter for streaming content [48]. The stream API provides around 3% of
the overall Twitter activity in real time [49] and over 90% of publicly available tweets with
geo-location [50]. The geo-location feature provides precise coordinates of individuals
as they post messages. Specifically, we collected over 100M tweets posted by over 2M
users, from August 2013 to August 2015, from two European countries. Global statistics
show that ~10% of tweets contain hashtags and ~50% of them have at least one mention to
another user [51].

Previous studies have analyzed biases in geolocated Twitter users [52–54]. In general,
Twitter users trend younger, wealthier and urban. However, the under-aged population
is underrepresented and the wealth of individuals seems irrelevant in most American
cities [21]. These biases can be understood as imbalanced samples, and can be resolved
with the corresponding techniques to under-sample over-represented populations. Despite
these observations, more recent studies have shown that opinions collected on social media
around relevant topics do not differ from the ones one would observe through traditional
surveys [55].

In Section 4, we analyze how multiple features of human mobility and online conver-
sations change when conditioned on income. For this purpose, users are characterized
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with vectors representing either neighborhoods visited or hashtags used. The non-zero
elements of the mobility vector represents neighborhoods where the user tweeted from.
We assume people’s home locations according to the neighborhood most frequently visited
at nighttime during weekdays. The use of these methods is consistent with the procedures
followed by other studies relying on mobile phone [56] and Twitter data [46]. We first as-
sign individuals to neighborhoods and then label each user with the average neighborhood
income provided by the Census data. The income labels are used to build predictors and
characterize the collective activity of the different socioeconomic groups. The non-zero
elements of the hashtag vector represents the ones adopted by each user. Hashtags are
text labels people use to identify tweets with ongoing events or trends. Hashtags can be
used as proxies of collective attention, and their usage has a clear relationship to human
distinctive behaviors either in large-scale cultures down to urban life.

We create two independent feature spaces: one representing human mobility and
another representing hashtag activity. In both cases, samples represent individuals. In the
mobility feature space, the features indicate neighborhoods visited. In the hashtag feature
space, each dimension represents whether a given hashtag has been used. We only consider
hashtags used by at least five people. We set up a threshold because hashtag usage follows
a power law distribution [57]. Most hashtags are used by a single user, while a few of
them are used collectively. By doing so, we reduce considerably the number of hashtags
and therefore limit the overall dimensionality of the parameter space. Each feature space
is then transformed using TF-IDF (Term Frequency-Inverse Document Frequency [58]).
This transformation is often used to classify documents based on patterns in their text
bodies before using topic models. The underlying assumption behind topic models is
that documents that have similar content will tend to also share similarities in their word
usage. TF-IDF improves the process of topic discovery by highlighting local information as
opposed to globally used terms. Otherwise, very common words or words that appear in
single documents would create uninformative signals.

In Section 5, we derive topics of conversation for each user and analyze their overall
structure. The topic analysis is generated by means of a word2vec model with skip-gram
architecture and negative sampling [59]. Word2vec is a natural language processing (NLP)
technique based on neural networks. The model generates a representation space where
pairs of words that are structurally or semantically similar to each other are located in
close proximity. This property is due to the architecture behind word2vec. The skip-gram
architecture predicts the context of words and learns the relationships between words
based on their proximity in the text. Negative sampling reduces the number of parameters
to train and therefore improves computation time. In this process, words are mapped
and embedded onto 50-dimensional vectors. Topics of conversation are then derived by
clustering the word co-ocurrence matrix.

Finally, in Section 6 we characterize the collective activity of neighborhoods via
interaction vectors. These vectors represent the aggregate behavior of the neighborhoods’
inhabitants. We create mobility and online communication vectors. Mobility vectors
aggregate the frequency that individuals from neighborhood i visit neighborhood j. Online
communication is measured via the mentions mechanisms. Mention vectors represent the
number of times people from neighborhood i mention other people from neighborhood
j. Unlike the passive information exposure and lesser social involvement reflected by the
follower network, the mutual mention network has been shown [60] to better capture the
underlying social structure between users.

4. Mobility and Hashtag Space

In this section, we discuss properties of mobility patterns and hashtag usage with
respect to income. We apply two learning algorithms to the mobility and hashtag feature
spaces defined in Section 3. The first algorithm is a Multi-Layer Perceptron (MLP) [61]
regression that predicts income as a numeric value. The other one is based on predicting
the income quantile using an MLP classifier. We apply them to both mobility and hashtag
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space. For this purpose, we divide the sample in a training set with 75% of individuals
and a test set with the remaining 25% of them. We create multiple samples in order to
analyze the performance of the predictors behavior as a random variable. Bootstrapping
the performance enables more robust understanding of the prediction quality.

Figure 1 shows the results of the prediction both numerically (left panels) and cate-
gorically (right panels). The top panels show the results of the human mobility feature
space. The bottom panels show results of hashtag usage feature space. The results of the
regressor are shown in the left panels as scatter plots showing the predicted values (y-axis)
against the real ones (x-axis). The scatter plots show the overlapped results of the multiple
samples we create to bootstrap the algorithm’s performance. For each sample, we calculate
the Pearson correlation. We present the distribution of these correlations in Figure 2 (top
left). The correlations are high with an average of r = 0.8 for the mobility feature space and
r = 0.55 for the hashtag one. In both cases, a considerable part of the variance is explained
by the algorithm.

Figure 1. Income prediction based on mobility patterns (top) and hashtag usage (bottom). Left
panels show scatter plots of actual (x-axis) and predicted (y-axis) income using regression. Right
panels show the prediction of income quantiles using a classifier. Each quantile represents 25% of the
population sorted by income (from left to right, and top to bottom). The matrix elements quantify the
number of guesses for each quantile pair (confusion matrix). Scale in figure.

The right panels in Figure 1 show the categorical prediction of socioeconomic quan-
tiles rather than the numeric values. Diagonal values correspond to True Positives and
off-diagonal values represent errors or miss-classifications. The matrices show a strong
diagonal structure indicating a very good prediction quality. In the case of mobility (top
matrix) the diagonal is almost perfect. In the case of hashtag (bottom matrix) the results are
more diffused. However, the wrong predictions are close to their original values and not
homogeneously distributed among quantiles. This indicates that errors are not randomly
distributed and that contiguous socioeconomic strata have similar behaviors.
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Figure 2. Top left: Pearson correlation between predicted and real income values using Regression.
Top right: Accuracy of the classifier used to predict income quantiles. Dashed line shows random
guess. Bottom: Mean square error of the income quantile prediction using classifiers. Units are
income quantiles. In all panels, distribution represent bootstrapping results. Colors indicate mobility
or hashtag usage feature space.

The error structure presented in the classification matrices can be interpreted as a
behavioral distance among individuals from different quantiles of the income distribution
(right panels in Figure 1). The more misclassifications among individuals of different
income quantile, the closer their behavior. Previous studies also use similar prediction
accuracy as a proxy of cultural distance [16]. In this case, the upper right and bottom
left corners of the matrix are colored by darkest blue, showing the least amount of error.
This means that the top and bottom socioeconomic quantiles have the most differentiated
behavior and therefore are easier to classify.

The bootstrap of the prediction accuracy is shown in Figure 2 (top right). Both hashtag
(orange) and mobility (blue) are significantly higher than the error guess (dashed line).
Therefore, a considerable part of the variance of hashtag usage and mobility patterns are
explained by income. Another way of measuring the prediction quality is through the
Mean Square Error (MSE). As quantile labels are also numerical, we can estimate the error
of the prediction using the average euclidean distance between the real and predicted value.
The MSE in Figure 2 (bottom) shows that the while prediction errors are lowest when using
mobility features, the ones obtained from hashtags are still low—with an error below 1.5
quantile difference. Studies based on semantic features and topics of conversation report
similar predictive performance [62].

The relationship of mobility and communication has been observed using mobile
phones [63] and social media data [24]. People tend to communicate with places they have
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already visited. Moreover, patches in the territory that host certain populations are consis-
tent with their geographic communication at multiple scales, from national levels down the
suburban granularity [12]. These analyses have shown that income fragments the human
mobility patterns in cities due to neighborhood segregation and therefore also affects the
way people interact with each other both offline and online [21]. Furthermore, previous
studies have already hinted toward the existing correlation between the socioeconomic
status of people and the diversity of locations they visit. Indeed, as previously pointed
out [44], high SES users tend to have patterns of mobility that are more diverse than the
ones observed among low SES users, which in turn leads to the lower predictability of their
whereabouts. These results may relate to previous work [64,65], which explains this trend
by means of the positive payoff between commuting farther for better jobs, while keeping
better housing conditions. This in turn also explains why mobility might be used as an
indicative predictor of an individual’s socioeconomic status.

5. Topic Analysis

Conversational patterns differ by people’s income. Following the methodology devel-
oped in a previous study [62], we characterized users by a probability distribution over a
set of predefined topics rather than a frequency distribution over all the words of a given
dictionary. Topics represent a latent word space such that certain words create topics and
users sample words from the topics they talk about. The topic analysis creates a new space
of reduced dimensions that represent new features. These new feature can input the classic
algorithms used to predict a user’s income based on their tweets.

The topic analysis begins by training a word2vec model with the skip-gram architecture
and negative sampling on a given collection of tweets [59]. The skip-gram architecture
predicts the context of words given their location in sentences. It learns the relationships
between words under the assumption that their proximity in the text is not independent
of their meaning. The negative sampling method is used for reducing the number of
parameters to be inferred in the network. These methods are commonly used for natural
language processing. During this process, words are mapped onto a 50-dimensional vector.
The words that co-occur in the same tweet will be embedded in vectors that are in proximity
to each other. The co-occurring words becomes the basis for deriving conversational topics.

In Figure 3 (top panel), we show a 2-dimensional representation of the embedding
space using t-SNE for visualization. Words are represented by dots, and their proximity is
not encoded by the euclidean distance but rather by the cosine similarity value existing
between pairs of word vectors. By running a spectral clustering algorithm on the word-to-
word similarity matrix and setting negative similarity values to null we derived a prefixed
number d (here d = 100) of clusters of words or topics grouping similar words. These topics
were then manually labeled based on which words they contained. In the visualization,
some topics have been colored with distinct colors and labeled after manual inspection.

We obtained a distribution of topical interest for users by computing the frequency of
use of a given topic over a user’s tweets. The individual vectors show the normalized usage
frequency of words from each topic. These vectors coarsely represented users’ syntax and
interests and can be used to cluster individuals based on areas of interest. More importantly,
we can observe differences among topic vectors based on people’s income. In Figure 3
(bottom panel) we show the income distribution of the individuals who mentioned (or not)
a given topic. Individuals that talk about politics, technology, literature and travel have
in average higher income than users who did not talk about these issues. Analogously,
individuals that used slang, insults or urban interjection had a significantly lower income
than the population who didn’t use these words.
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Figure 3. Topic model analysis of tweets per individual. Top panel: 2D visualization (t-SNE) of the
embedding space obtained from applying word2vec on skip-grams and negative sampling. Colors
correspond to topics obtained via clustering. Bottom panel shows income distributions of those who
talk about the topics identified.

6. Diversity

We also characterize the diversity of collective activity. For this purpose, we create
mobility and communication vectors by neighborhood as explained in Section 3. These
vectors represent the aggregate behavior of the individuals who reside there. Mobility
vectors aggregate the number of times people from neighborhood i visit neighborhood
j. Online communication is measured via mentions and represent the number of times
people from neighborhood i mentions other people from neighborhood j in their tweets.

We measure the diversity of mobility and communications per neighborhood by
quantifying the entropy of the collective behavior vectors. Before calculating the entropy
we normalize the vectors by their sum, such that they can be defined as probability density
functions. We then calculate the entropy of these distributions and divide it by the
hypothetical entropy of the uniform distribution which represents the maximum possible
value that the entropy function can attain. Therefore, neighborhoods whose entropy
is close to 1 have the most diverse patterns of visitation and interaction online, while
neighborhoods whose entropy are close to zero have the least diverse patterns of behavior.

In Figure 4, we present a scatter plot where dots represent neighborhoods colored
by income (from red to blue). The x-axis shows the entropy of the mobility vectors
and the y-axis shows the entropy of the mentions vectors. There is a direct relationship
between the entropy of both vectors. Diverse urban exploration is consistent with diverse
online communications (r = 0.57). Moreover, a clear separation of behavior by income is
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manifested. The diversity for both types of behaviors is consistent with the neighborhood
income. Wealthier neighborhoods are consistently more diverse than poorer neighborhoods
both in terms of mobility (r = 0.46) and mentions (r = 0.35).

Figure 4. Diversity of collective behaviors in terms of urban mobility and online communication
patterns. Dots represent neighborhoods colored by income (from red to blue). The x-axis represents
the entropy of mobility vectors aggregated by neighborhoods. The y-axis represents the entropy of
Twitter mention vectors aggregated by neighborhoods. Scale in figure. Units represent the number of
standard deviations from the mean (centered at zero).

The diversity of social exploration is closely related with the diversity of the informa-
tion people are exposed to. Those who receive information from multiple sources are more
likely to find better opportunities than those who receive information from fewer sources.
Therefore, while diverse neighborhoods are also richer, they might be richer precisely
because they are diverse. Previous work shows that the diversity of urban exploration is
consistent with income and age [66,67]. Our results show that it is also consistent with the
diversity of online interactions.

While physical exploration requires resources, online exploration in principle should
be considerably less costly. However, the patterns from both offline and online world are
remarkably similar. This result is further explored in a previous study [24], where multiple
cities are compared and consistent results are obtained from multiple sources of data,
including shopping and credit cards. Despite having new methods to interact with one
another, people continue to mainly interact with those from their offline lives and behave
in similar manners.

In another work [12], we show that people’s mobility and communication patterns
online create geographical patches that are preset at multiple scales of observation, ranging
from sub-urban areas, up to large national regions. The multiscale nature of these regions
arise from the structure of weak and strong ties [5]. While strong ties are local and remain
in a radius of 5km approximately, weaker ties span across larger scales, are more diverse
and connect distant areas. Previous analysis of social networks show that those long range
connections, which are responsible for the spread of information across the whole system,
are also unequally distributed among the different income groups.

7. Discussion

Inferring the socioeconomic status (SES) of individuals is an important milestone in
the development of tools aimed at informing policy makers on how to best curb social
problems like income inequality, segregation, and poverty. While nationwide censuses
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are meant to provide such information, their costs make their collection rather infrequent.
Social media analysis on the other hand provides alternative sources of information. Here
we provided a general overview on how this can be performed by predicting individual
SES based on linguistics and mobility patterns. We showed some of the key patterns that
differentiate the behavior of people belonging to different socioeconomic groups.

In order to provide a complete understanding of social context and behaviors, further
research should not be bounded to the sole exploration of social media. New approaches
relying on widely available satellite imagery and mobile phone data are also proving
themselves to be instrumental in capturing part of the inherent dynamics involved in these
phenomena, capturing interesting behaviors that had remained hitherto unseen [68,69].
The information provided by these innovative approaches needs, however, to be dealt
cautiously. More in-depth studies about the implicit biases underlying these models are
necessary before they can be deployed.

The results presented in this paper provide a clear reflection on how complex societal
phenomena such as polarization and segregation affect the way we use and interact with
social media, which could in turn be used to better understand these social processes.
Recent studies indicate that the differentiation of behaviors and physical segregation are
deeply intertwined given the reinforcing dynamics of collective learning. The results of
these nonlinear processes are reflected in the feature space as unstructured patterns of
information that algorithms can use to infer demographic information.

While standardized metrics and measurements are necessary for achieving effective
planning, they reduce the description of social and natural systems down to levels that
are legible by the policy maker [70]. In some cases, that reduction removes details that
are fundamental for the healthy functioning of the system such as relationships and
elements that contribute in the background to the stability of the system [1]. The new
data sources enable a finer observation of the complexity and varieties of social behaviors
and relationships which opens the opportunity for creating plans that are adequate to the
complexity of the phenomenon. Being able to observe social behavior at finer granularity
brings the mental map closer to reality and increases the amount of available and relevant
information to design effective interventions and decision-making processes.

8. Conclusions

In summary, we aimed to characterize multiple patterns of Twitter user activity that
are related to people’s to show how Twitter user activity differed from user to user when it
was conditioned on individual socioeconomic status (SES) differentiate behaviors across
multiple social strata and are behind income prediction tasks. In particular, we showed
that (1) human mobility is a better predictor of income than hashtag usage, which either
way explain a large part of the variance; (2) online topics of conversation and collective
interest are strongly influenced by socioeconomic status; and (3) wealthy neighborhoods
have more diverse interactions and communication patterns than poorer neighborhoods.
These results confirm a segregated and differentiated structure of social groups in both
physical and virtual space which in turn enables the prediction of their income.

This study presents certain limitations that open space for further research and future
work. Some limitations are related to the methods and representativity of the data. First,
we assume that the income of individuals corresponds to the neighborhood average. More
advanced methods for inferring home locations could improve such assignment. Moreover,
combining both traditional surveys with observational data could improve the income
assignation for the training and labeled dataset. Second, the behaviors that we derived
can be subject to de-contextualization and generalization which can yield oversimplified
views of reality and wrong conclusions. Differentiating between emergent patterns and
those within our circle of influence is critical to design effective intervention mechanisms
and policies.

The inference of socioeconomic status from widely available digital traces holds a
large potential for updating census information as well as enriching other data corpuses
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with socioeconomic information. This in turn opens the door for further studies to address
population level correlations of income with language, space, time, or social network.
The use of the aforementioned methods is important as it provides new observations on
how socioeconomic status shapes the fabric of society and cements further developments
in fields ranging from recommendation systems to economic aid allocation.
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Abstract: In this paper, we describe the concept of generative design approach applied to the
automated evolutionary learning of mathematical models in a computationally efficient way. To
formalize the problems of models’ design and co-design, the generalized formulation of the modeling
workflow is proposed. A parallelized evolutionary learning approach for the identification of
model structure is described for the equation-based model and composite machine learning models.
Moreover, the involvement of the performance models in the design process is analyzed. A set
of experiments with various models and computational resources is conducted to verify different
aspects of the proposed approach.

Keywords: generative design; automated learning; evolutionary learning; co-design; genetic programming

1. Introduction

Nowadays, data-driven modeling is a very popular concept, first of all because of
many examples of the successful application for a wide range of tasks where we have data
samples which are sufficient for model training. However, originally the term “modeling”
assumes a wider meaning than just identifying numerical coefficients in equations. One
may say that modeling is an art of creation of mathematical (in the context) models that
describe processes, events, and systems with mathematical notation. And current successes
of artificial intelligence (AI) give the opportunity to come closer to the solution of the task
of mathematical modeling in this original formulation.

For this purpose we may use an approach of generative design that assumes open-
ended automatic synthesis of new digital objects or digital reflections of material objects
which have desired properties and are aligned with possible restrictions. Open-ended
evolution is a term that assumes ongoing generation of novelty as new adaptations of spec-
imens, new entities and evolution of the evolvability itself [1]. We assume that new objects
are objects with essentially new features that appeared during the adaptation process and
that can’t be obtained with simple tuning or recombination of initially known parameters.
Other words, it is an approach that aims of algorithmic “growing” of a population of new
objects when each of them is aligned with restrictions and have desired properties, to
some extent. However, only the objects which could maximize the measure of fitness will
be used for their intended purpose. The generative design is a well-known concept for
creation of digital twins of material objects [2]. The same idea can be applied to mathe-
matical models [3]. Indeed, it is known that we may grow mathematical expressions that
approximate some initial data with a symbolic (usually polynomial) regression approach.
However, if we look at mathematical expressions in a wider perspective we may admit
that expressions could be different even much more complicated. For example, we may try
to apply this approach to the problem of searching for an equation of mathematical physics
that is able to describe observed phenomena. Or, we may want to create in an automated
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way a complicated data-driven model that consists of many single models and feature
processing stages. Tasks in both examples can be formalized as the generative design of
computer models.

Both of cases (model as mathematical equation and complicated data-driven models)
have their own spheres of application, but they also can be joined as composite models. In
machine learning the composite model case often is described in terms of the multi-model
data-driven pipelines. If a single data-driven model cannot provide appropriate results,
various ensembling techniques like stacking or blending are applied [4]. To achieve better
quality, complex modeling pipelines can be used, that include different pre-processing
stages and can contain several types of models. A generalization of ensembling approaches
is the composite model concept [5]. A composite model has a heterogeneous structure, so
it can include models of different nature: machine learning (ML), equation-based, etc. [6].

A design of a composite model can be represented from an automated ML (AutoML)
perspective that may use a genetic algorithm for learning the structure. The evolutionary
learning approach seems to be a natural and justified choice because of several reasons.
First of all, the idea of generative design refers to the possibility of controlled open-ended
evolution under a set of restrictions. After that, genetic algorithms give flexible opportuni-
ties for treating mixed problems with combinatorial and real parts of a chromosome.

However, the design of the composite model may depend on different factors: the
desired modeling quality, computational constraints, time limits, interpreting ability re-
quirements, etc. It raises the problem of co-design [7] of the automatically generated
composite models with the specific environment. Generative co-design is an approach
which allows to synthesize jointly a set (mostly a pair) of objects that will be compatible
with each other. In context of this article these are mathematical models and computational
infrastructure. The conceptual difference between the generative design (that builds the
model on a basis of dataset only) and the generative co-design (that takes into account both
data and infrastructure) is illustrated in Figure 1. The structure of composite models can be
very complex, so it is complicated to construct the models in an expert way. For this reason,
different optimization techniques are used for the structural learning of the model. Usually,
the objective function for optimization is aimed to minimize the error of the predictions
obtained from the candidate model [8].

�

� �

�

� �

�

�

	

Figure 1. The description of the generative co-design concept: the different aspects of the model design (genotype,
phenotype, and the identification methods); the pipeline of the data-driven modeling; the difference between classical
design approach and co-design approach.
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The paper is organized as follows. Section 2 describes the existing approaches to the
design of models. Section 3 provides the mathematical formulation for the model’s design
and co-design tasks and associated optimization problems. Section 4 described the actual
issues of generative co-design for the mathematical models. Section 5 provides the results
of experimental studies for different applications of generative design (composite models,
equation-based models, etc). The unsolved problems of co-design and potential future
works are discussed in Section 6. Section 7 provides the main conclusions.

2. Related Work

An extensive literature review shows many attempts for mathematical models design
in the different fields [9,10]. In particular, the methods of the automated model design
is highly valuable part of the various researches [11]. As an example, the equation-free
methods allow building the models that represent the multi-scale processes [12]. Another
example is building of the physical laws from data in form of function [13], ordinary
differential equations system [14], partial differential equations (PDE) [15]. The application
of the automated design of ML models or pipelines (which are algorithmicaly close notions)
are commonly named AutoML [8] although most of them work with models of fixed
structure, some give opportunity to automatically construct relatively simple the ML
structures. Convenient notation for such purpose is representation of a model as a directed
acyclic graph (DAG) [16]. Another example of popular AutoML tool for pipelines structure
optimization is TPOT [17].

To build the ML model effectively in the complicated high-performance environ-
ment [18], the properties of both algorithms and infrastructure should be taken into ac-
count. It especially important for the non-standard infrastructural setups: embedded [19],
distributed [20], heterogeneous [21] systems. Moreover, the adaptation of the model design
to the specific hardware is an actual problem for the deep learning models [22,23].

However, the application of co-design approaches [24] for the generative model
identification in the distributed or supercomputer environment [25,26] is still facing a
lot of issues. For example, the temporal characteristics of the designed models should
be known. The estimations of fitting and simulation time of the data-driven models can
be obtained in several ways. The first is the application of the analytical performance
models of the algorithm [27]. The identification of the analytical performance models can
be achieved using domain knowledge [28]. However, it can be impossible to build this
kind of model for the non-static heterogeneous environment. For this reason, the empirical
performance models (EPMs) are highly applicable to the different aspects of the generative
model design [29]. Moreover, the effective estimation of execution time is an important
problem for the generation of optimal computational schedule [30] or the mapping of
applications to the specific resources [31].

The execution of the complex resource-consuming algorithms in the specific infras-
tructure with limited resources raises the workflow scheduling problem [32]. It can be
solved using an evolutionary algorithm [33] or neural approaches [34].

It can be noted that the existing design and co-design approaches are mostly focused
on the specific application and do not consider the design for the different types of mathe-
matical models. In the paper, we propose the modified formulation of this problem that
allows applying the generative design and co-design approaches to the different tasks
and models.

3. Problem Statement

A problem of the generative design of mathematical models requires a model repre-
sentation as a flexible structure and appropriate optimization methods for maximizing a
measure of the quality of the designed model. To solve this optimization problem, different
approaches can be applied. The widely used approach is based on evolutionary algorithms
(e.g., genetic optimization implemented in TPOT [35] and DarwinML [16] frameworks) be-
cause it allows solving both exploration and exploitation tasks in a space of model structure
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variants. The other optimization approaches like the random search of Bayesian optimiza-
tion also can be used, but the populational character of evolutionary methods makes it
possible to solve the generative problems in a multiobjective way and produce several
candidates model. Such formulation also can be successfully treated with the evolutionary
algorithms or hybrid ones that combine the use of evolutionary operators with additional
optimization procedures for increasing of robustness and acceleration of convergence. In
this section, we describe the problem of generative co-design of mathematical models and
computational resources in terms of the genetic programming approach.

A general statement for numerical simulation problem can be formulated as follows:

Y = H(M|Z), (1)

where H is an operator of simulation with model M on data Z.
In the context of problem of computer model generative design, the model M should

have flexible structure that can evolve by changing (or adding/eliminating) the properties
of a set of atomic parts (“building blocks”). For such task, the model M can be described as
a graph (or more precisely as a DAG):

M = 〈S, E, {a1:|A|}〉, (2)

with edges E that denoted relations between nodes
〈

S,
{

a1:|A|
}〉

that characterize func-

tional properties S of atomic blocks and set of their parameters
{

a1:|A|
}

.
In terms of evolutionary algorithms each specimen dp in population D of computer

model can be represented as a tuple that consists of phenotype Y, genotype M and fitness
function ϕ(M):

dp =
〈
Yp, Mp, ϕ

(
Mp

)〉
, D =

(
dp, p ∈ [1 : |D|]

)
. (3)

Genotype M should be mapped on plain vector as a multi-chromosome that consists of
three logical parts: functional properties, sets of their parameters, relations between blocks:

Mp =
〈

Sp, Ep, {Ak}p

〉
=

〈{
s1:|Sp|

}
p
,
{

e1:|Ep|
}

p
,
{

a1:|Sp||Ak |
}

p

〉
, Ak =

{
a1:|Ak |

}
k
, k ∈

[
1 :

∣∣Sp
∣∣]. (4)

The genotype is also illustrated in Figure 2.

�

� �

�

Figure 2. The structure of the genotype during evolutionary optimization: functional properties, set of parameters and
relations between atomic blocks.
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An important property is that
∣∣Sp

∣∣, ∣∣Ap
∣∣, ∣∣Ep

∣∣ �= const, what means varying over-
all size of chromosome (and its structure). Such property makes this approach is really
open-ended and consistent with idea of model evolution because it give an opportunity
to synthesize the models with truly new features instead of simple recombination and
optimization of existed ones. Technically open-endedness here refers to the ability of
generative design algorithms to expand or narrow a combinatorial search space in the
process of optimization with evolutionary operators. This leads to need of special real-
izations for crossover and mutation operators. As the chromosome Mp is a ordered set

with the structure fixed in a tuple
〈

S,
{

a1:|A|
}

, E
〉

it is necessary to preserve this structure
after crossover and mutation. That’s why these operators are written relative to the graph
structure and influence on the parts of chromosome that describe the node or a set of nodes
with associated edges (sub-graphs). We may say that each single node can be described
as some function with parameters yk = fk

(
x,

{
a1:|A|

}
k

)
. And mutation of function fk

performs symbolic changes in the mathematical expression that results in extension of
range of limits of initial genes.

So, the task of mathematical model generative design can be formulated as optimiza-
tion task:

pQ
max(M∗) = max

M
fQ

(
M|I+, Tgen ≤ τg

)
, M =

{
Mp

}
, (5)

where fQ is a fitness function that characterizes quality generated mathematical and pQ
max

is a maximal value of fitness function, model M is a space of possible model structures,
I+ - actual computational resources, Tgen is time for model structure optimization critical
threshold τg. In such formulation we try to design the model with the highest quality, but
we need to rely optimization to single configuration of computational resources. This factor
is a strong limitation for the idea of generative design because this idea assumes flexibility
of searched solution including the possibility to find the most appropriate for applied task
combination of model structure and computational resources. The concept was illustrated
on Figure 1.

Model and computational infrastructure co-design may be formulated as follows:

pmax(M∗, I∗) = max
M,I

F
(

M, I|Tgen ≤ τg
)
, I =

{
Iq
}

, M =
{

Mp
}

, (6)

where I is a set of infrastructure features, F is a vector fitness function that characterize a
trade off between a goodness of fit and computational intensity of model structure. Vector
function F consists of quality function fQ and time function fT that is negative for correct
maximization:

F(M, I) =
(

fQ(M, I),− fT(M, I)
)
. (7)

The time function fT is a function that shows expected execution time of the model that is
being synthesized with generative design approach. As the model M is still in the process
of creation at the moment we want to estimate F, the values of fT may be defined by
performance models (e.g., Equation (9)). The example of the model selection from the
Pareto frontier on a basis of pmax and τc constraints is presented is Figure 3. It can be seen
that model M4 has the better quality but it does not satisfy the execution time constraint τc.

However, in most of cases correct reflection of infrastructure properties to model per-
formance is quite complicated task. In described case when we need, first, to generate the
model with appropriate quality and vital limitations for computation time, we have several
issues: (1) we may be not able to estimate model performance with respect to certain infras-
tructure in straight forward way and as a consequence we need performance models; (2) es-
timation of the dependency between model structure and computational resources reflects
only mean tendency due to number of simplifications in performance models and search for
minima on such uncertain estimations lead to unstable convergence to local minima. Due to
these issues the formulation of optimization for co-design on stage of model building may
be simplified to single criteria problem F

(
M, I|Tgen ≤ τg

)
≈ F′(M| TM ≤ τ, Tgen ≤ τg

)
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with change of direct usage of infrastructure features to estimated time of model execution
via performance models TM ≈ T = fT(M, I):

p̂max(M∗) = max
M

f̂Q
(

M| TM ≤ τc, Tgen ≤ τg
)
, (8)

where fQ is single criteria fitness function that characterize goodness of fit of model with
additional limitations for expected model execution time TM and estimated time for
structural optimization Tgen.

Figure 3. Pareto frontier obtained after the evolutionary learning of the composite model in the “quality-execution time”
subspace. The points referred as M1 - M4 represent the different solutions obtained during optimization. pmax and τc

represent quality and time constraints.

In the context of automated models building and their co-design with computational
resources, performance models (PM) should be formulated as a prediction of expected
execution time with the explicit approximation of a number of operations as a function
of computer model properties S,

{
a1:|S|

}
and infrastructure I parameters. However, for

different computer models classes, there are different properties of performance models. In
the frame of this paper, we address the following classes of models: ML models, numerical
models (based on the numerical solution of symbolic equations), and composite models
(that may include both ML and numerical models).

For ML models PM can be formulated as follows:

TPM
ML (Z, M) = maxi

[
∑
it

OMLi,it

Vi(I) + Consti(I)

]
+ O(I), (9)

where OML = OML(Z, M) is an approximate number of operations for data-driven model
with data volume Z and parametric model M, it—iterator for learning epoch, Vi(I) is for
performance of i′th computational node in flops, Consti(I) is for constant overheads for
i′th node in flops, O(I) is for sequential part of model code.
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According to structure M =
〈

S, E,
{

a1:|S|
}〉

for data driven-model case, duple 〈S, E〉
characterize structural features of models (e.g., activation functions and layers in neural
networks) and

{
a1:|S|

}
characterize hyper-parameters.

For numerical models PM can be formulated as follows:

TPM
Num(R, M) = maxi

[
ONi

Vi(I) + Consti(I)

]
+ O(I), (10)

where ON = ON(R, M)is an approximate number of operations for numerical model. In
distinction with ML models they are not required for learning epochs and do not have
strong dependency from volume of input data. Instead of this, there are internal features of
model M, but it is worth separately denote computational grid parameters R. They include
parameters of grid type, spatial and temporal resolution. Among the most influential
model parameters M there are type and order of equations, features of numerical solution
(e.g., numerical scheme, integration step, etc.).

For composite models PM total expected time is a sum of expected times for sequential
parts of model chain:

TPM
Comp(R, Z, M) = ∑

j
maxi

[ OCi,j

Vi(I) + Consti(I)

]
+ O(I), (11)

where expected time prediction for each sequential part is based on properties of appropri-
ate model class:

OC =

{
OML, i f model is ML

ON, i f model is numerical
. (12)

4. Important Obstacles on the Way of Generative Co-Design Implementation

It may seem that the problem statement described above gives us a clear vision of an
evolutionary learning approach for generative design and co-design. However, several
subtle points should be highlighted. This section is devoted to a discussion of the most
interesting and challenging points (in the authors’ opinion) that affect the efficiency or
even the possibility of implementation the generative design (and co-design) approach for
growing new mathematical models.

Issue 1. Numerical Methods for Computation of Designed Arbitrary Function

Open-ended realization of automated symbolic model creation with a generative
design approach leads to the possibility of getting an unknown function as a resulted
model. On the one hand, it gives interesting perspectives to create the new approximations
of unknown laws. However, on the other hand, this possibility leads to the first conceptual
problem of the generative design of mathematical models and a serious stumbling block
on the way to implementing this idea. This problem is the need to calculate an arbitrary
function or get the numerical solution of an arbitrary equation.

The choice of the numerical method for a given problem (discovered algebraic, or-
dinary differential, partial differential equation equations) is the crucial point. In most
cases, the numerical method is designed to solve only several types of equations. When
the numerical method is applied to the problem type, where convergence theorem is not
proved, the result may not be considered as the solution.

As an example, solution of the partial difference equations using the finite difference
schemes. For brevity, we omit details and particular equations, the reader is referred
to [36] for details. The classical one-dimensional diffusion equation has different schemes,
in particular, explicit, implicit, Crank-Nicolson scheme. Every scheme has a different
approximation order and may lead to different solutions depending on the time-spatial
grid taken. If the Crank-Nicolson spatial derivative scheme is taken to solve another
equation, for example, the one-dimensional string equation, then the solution will also
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depend on the time-spatial grid taken, however, in another manner. It leads to the general
problem that the particular finite schemes cannot be used for the general equation solution.

The second approach is to approximate a solution with a neural network, which
somewhat mimics the finite element method. The neural networks are known as universal
approximators. However, their utility for differential equations solution is still arguable.
The main problem is that the good approximation of the field is not necessary leads to
the good derivative approximation [37]. There is a lot of workarounds to approximate
derivatives together with the initial field, however, it is done with the loss of generality.

The possible promising solution is to combine optimization methods, local neural
network approximation, and classical approach [38]. However, there is still a lot of the
“white spots”, since the arbitrary equation means a strongly non-linear equation with
arbitrary boundary conditions. Such a generality cannot be achieved at the current time
and requires a significant differentiation, approximation, and numerical evaluation method
development. The illustration examples of the inverse problem solution are shown in
Section 5.1.

Issue 2. Effective Parallelization of Evolutionary Learning Algorithm

The procedure of generative design has high computation cost, thus effective algo-
rithm realization is highly demanded. Efficiency can be achieved primarily by parallelizing
the algorithm. As discussed generative algorithm is implemented on a base of the evolu-
tionary approach, so the first way is a computation of each specimen dp in a population in
a separate thread. Strictly speaking, it may be not only threads, but also separate computa-
tional nodes for clusters, but not to confuse computer nodes with nodes of a model graph
Mp, here and further we will use the term “thread” in a wide sense. This way is the easiest
for implementation but will be effective only in the case of cheap computations of objective
function ϕ(M).

The second way is acceleration of each model Mp on the level of its nodes
〈

S,
{

a1:|A|
}〉

with possibility of logical parallelized. However, this way seems to be the most effective if
we have uniform (from the performance point of view) nodes of models Mp and computa-
tional intensity appropriate for used infrastructure (in other words, each node should be
computed in a separate thread in acceptable time). Often for cases of composite models
and numerical models, this condition is becoming violated. Usually, the numerical model
is consists of differential equations that should be solved on large computational grids.
And composite models may include nodes that are significantly more computationally
expensive than others. All these features lead us to take into account possibility of par-
allelization of generative algorithm on several levels: (1) population level, (2) model Mp

level, (3) each node
〈

S,
{

a1:|A|
}〉

level; and make an adaptation of algorithm with respect
to certain task.

Moreover, for the effective acceleration of the generative algorithm, we may take into
account that most of the new composite models are based on nodes that are repeated nu-
merously in the whole population. For such a case, we may provide storage for computed
nodes and use them as results of pre-build models. The illustration of an ineffective and an
effective parallelization setups described above is shown in the Figure 4.

The set of experiments that illustrates the problem raised in this issue and proposes
the possible solutions is presented in Section 5.2.2.

Issue 3. Co-Design of an Evolutionary Learning Algorithm and Computational Infrastructure

In the frame of this research, the problem of co-design appears not only for the question
of automatic creation of the computer model but also for the generative optimization
algorithm itself. In Equation (8) we described co-design of generated model regarding the
computational resources using estimation of model execution time TM. Separate problem
is adaptation of generative evolutionary algorithm regarding the computational resources
and specific traits of the certain task. In formulation Equation (8) it was only accounted
for by the restriction to the overall time Tgen for model generation. However, the task
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can be formulated as search for generative evolutionary algorithm that is able to find
the best model structure M in limited time Tgen. This task can be solved by optimization
of hyper-parameters, evolutionary operators (and strategy of their usage) for generative
optimization algorithm and formulated as meta-optimization problem over a set of possible
algorithms U that are defined by a set of strategies B:

U = {u(B)}, B =
{

b1:|B|
}

, b = 〈H,R〉, (13)

u∗ = u(b∗) = arg max
b

F (u(b)|Tgen ≤ τg), (14)

where F is a meta-fitness function and each strategy b is defined by evolutionary op-
erators R and hyper-parameters H. Evolutionary operators also my be described as
hyper-parameters but here we subdivide them in separate entity R.

Figure 4. Setup that illustrates inefficiency of the parallel evolution implementation due to fitness function computation
complexity.

For the model’s generative design task, the most expensive step usually refers to the
evaluation of the fitness function value [6]. The calculation of the fitness function for the
individuals of the evolutionary algorithm can be parallelized in different ways that are
presented in Figure 5.

Figure 5. Approaches to the parallel calculation of fitness function with the evolutionary learning algorithm: (a) syn-
chronously, each element of the population is processed at one node until all is processed (b) asynchronously, one of the
nodes controls the calculations in other nodes.
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The described approaches can be used for the different variants of the computational
environment used for the generation of the models. The practical application of the
generated models with the complex structure almost always difficult because of the high
computation complexity of the numerical model-based simulations.

There are several groups of models that can be separated by the simulation pipeline
structure. For the data-driven model, the computational cost of the fitting (identification)
stage is higher than for the simulation stage. For the equation-based numerical models
with rigid structure, there is no implicit fitting stage, but the simulation can be very expen-
sive. In practice, different parallelization strategies can be applied to improve simulation
performance [39].

The set of experiments that provides the examples to the problem raised in this issue
can be seen in Section 5.3.

Issue 4. Computational Strategies for Identification of Graph M

The problem of DAG M =
〈

S, E,
{

a1:|S|
}〉

identification has two sides. First of all, the
task of structural and parametric optimization of model M has exponential computational
complexity with the growth of nodes number. Even if the functional structure 〈S, E〉 of the
composite model is already identified, there is a computationally expensive problem of
parameters

{
a1:|S|

}
(or hyperparameters in ML terms) tuning.

However, except for the computational intensity, there is a problem of searching the op-

timal set of values
〈

S∗, E∗,
{

a1:|S|
}∗〉

in a space of high dimension (when chromosome has
great length from tens to hundreds of values). This leads to unstable results of optimization
algorithm because of the exponential growth of possible solutions in a combinatorial space
(some parameters could be continuous but they are discretized and generally problem may
be treated as combinatorial). One of the obvious ways for dealing with such a problem is
local dimensionality reduction (or segmentation of the whole search space). This could be
done with the application of various strategies. For example, we may simplify the task and
search with generative algorithm only functional parts, and parameters (hyperparameters)
may be optimized on the model execution stage (as discussed in Section 6). Such a way is
economically profitable but we will get a result with lower fitness. An alternative variant is
to introduce an approach for iterative segmentation of the domain space and greedy-like
search on each batch (Section 5.4).

Another point should be taken into account, the structure of DAG with directed
edges and ordered nodes (composite model with primary and secondary nodes) leads to
the necessity of introducing the sequential strategies for parameters tuning. Despite the
tuning can be performed simultaneously with the structural learning, there is a common
approach to apply it for the best candidates only [16]. Unlike the individual models tuning,
the tuning of the composite models with graph-based structure can be performed with
different strategies, that are represented in Figure 6.

�

�

�

�

Figure 6. The different strategies of hyper-parameters tuning for the composite models: (a) individual tuning for each
atomic model (b) the tuning of the composite model that uses secondary models to evaluate the tuning quality for the
primary models.
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The experiment that demonstrates the reduction of the search space for the composite
model design by the application of the modified hyperparameters tuning strategy for the
best individual is described in Section 5.4.

Issue 5. Estimation of PM for Designed Models

Analytic formulations of PM show expected execution time that is based on relation
between approximate number of operations and computational performance of certain
infrastructure configuration. The problem is to estimate this relation for all pairs from model
structures M =

〈
S, E,

{
a1:|A|

}〉
and computational resources I =

{
Iq
}

with respect to
input data Z because we need to make estimations of OML, ON and OC (depending on the
class of models). Generally, there are two ways: (1) estimation of computational complexity
(in O notation) for each model M, (2) empirical performance model (EPM) estimation of
execution time for every specimen 〈M, I, Z〉. The first option gives us theoretically proved
results, but this is hardly may be implemented in case of models’ generative design when
we have too many specimens 〈M, I, Z〉. The second option is to make a set of experimental
studies for specimens 〈M, I, Z〉 execution time measurements. However, in this case, we
need to make a huge number of experiments before we start the algorithm of generative co-
design and the problem statement becomes meaningless. To avoid numerous experiments,
we may introduce estimation of EPM that consists of two steps. The first one is to estimate
relation between time TM and volume of data Z: TPM

Num(M, Z, I) ≈ TEPM
Num (Z|M, I). To

simplify identification of TEPM
Num (Z|M, I), we would like to approximate this with a linear

function with non-linear kernel ψ(Z):

TEPM
Num (Z|M, I) =

W

∑
w=1

ωwψw(Z), (15)

where W is a number of components of linear function. The second step is to use
value of TEPM

Num (Z|M, I) to estimate relation between execution time and infrastructure I:
TEPM

Num (Z|M, I) → TEPM
Num (I|M, Z). For this purpose we should make even a raw estimation

of number of operations OML, ON and OC.
On the example of EPM for numerical model (Equation (10)) we can make the follow-

ing assumptions:

O(I) ≈ 0, Consti(I) ≈ 0, V = meani(Vi(I)), ON = meani(ONi), (16)

maxi

[
ONi

Vi(I) + Consti(I)

]
= meani

[
ONi

Vi(I) + Consti(I)

]
, (17)

and get the following transformations for raw estimation of overall number of operations
nON with respect to n computational nodes:

nON(M, Z) = nTPM
Num(M, Z, I)V(I), i ∈ [1 : n]. (18)

It is worth nothing that the obvious way to improve accuracy of estimation nON is to
use for experimental setup resources with characteristics of computational performance
close to V = meani(Vi(I)) and task partitioning close to ON = meani(ONi). Getting the
estimation of nON and infrastructure parameters Vi(I), Consti(I), O(I) we may go to raw
estimation:

TEPM
Num (M, Z, I) = maxi

[
αinON(M, Z)

Vi(I) + Consti(I)

]
+ O(I), (19)

where αi is coefficient for model partitioning. Similar transformations could be made for
other models.

The experiments devoted to the identification of the empirical performance models
for both atomic and composite models are provided in Section 5.5.
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5. Experimental Studies

The proposed approaches to the co-design of generative models cannot be recognized
as effective without experimental evaluation. To conduct the experiments, we constructed
the computational environment that includes and hybrid cluster and several multiprocessor
nodes that can be used to evaluate different benchmarks.

A set of experiments have been held with the algorithm of data-driven partial dif-
ferential equation discovery to analyze its performance with different task setups. All
experiments were conducted using the EPDE framework described in detail in [15].

The other set of experiments devoted to the automated design of the ML models
was conducted using the open-source Fedot framework (https://github.com/nccr-itmo/
FEDOT). The framework allows generating composite models using evolutionary ap-
proaches. The composite model generated by the framework can include different types
of models [6]. The following parameters of the genetic algorithm were used during the
experiments: maximum number of the generations in 20, number of the individuals in
each population is 32, probability of mutation, probability of mutation is 0.8, probability
of crossover is 0.8, maximum arity of the composite model is 4, maximum depth of the
composite model is 3. More detailed setup is described in [40].

5.1. Choice of the Model Evaluation Algorithm

The first group of experiments is connected with the Issue 1 that describes the different
aspects of numerical computation of designed models.

For example, the problem of data preprocessing for partial differential equations
models, represented by the calculation of derivatives of the input field, is of the top priority
for the correct operation of the algorithm: the incorrect selection of tools can lead to
the increasing magnitudes of the noise, present in the input data, or get high values of
numerical errors. The imprecise evaluation of equation factors can lead to cases, when the
wrong structure has lower equation discrepancy (the difference between the selected right
part term and the constructed left part) and, consequently, higher fitness values, than the
correct governing equation.

However, the versatility of the numerical differentiation adds the second criterion on
the board. The finite differences require a lot of expertise to choose and thus their automatic
use is restricted since the choice of the finite difference scheme is not a trivial task that
requires either a fine grid to reduce the error or choice of the particular scheme for the
given problem. Both ways require extended time.

Artificial neural networks (ANN), used to approximate the initial data field, are an
alternative to this approach, which can have a number of significant advantages. To get the
fields of derivatives, we utilize the automatic differentiation, that is based on the approach,
similar to the chain differentiation rule from the elementary calculus, and is able to combine
the evaluated values of derivatives of a function, comprising the neural network to get
the “correct” values of derivatives. In contrast to the previously used method of analytical
differentiation of polynomials, the automatic differentiation is able to get mixed derivatives.
From the performance point of view, the advantages of the artificial neural networks lie in
the area of ease of parallelization of tensor calculations and the use of graphical processing
units (GPU) for computation.

However, the task setup has a number of challenges in the approach to ANN training.
First of all, the analyzed function is observed on a grid, therefore, we can have a rather
limited set of training data. The interpolation approaches can alter the function, defining
the field, and the derivatives, in that case, will represent the structure of the interpolating
function. Next, the issue of the approximation quality remains unsolved. While the ANN
can decently approximate the function of one variable (which is useful for tasks of ordinary
differential equations discovery), on the multivariable problem statement the quality of the
approximation is relatively low. The example of approximation is presented in Figure 7.

In the conducted experiments [41] we have used the artificial neural network with the
following architecture: the ANN was comprised of 5 fully connected layers of 256, 512,
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256, 128, 64 neurons with sigmoid activation function. As the input data, the values of the
solution function for a wave equation (utt = αuxx), solved with the implicit finite-difference
method, have been utilized. Due to the nature of the implemented solution method, the
function values were obtained on the uniform grid. The training of ANN was done for a
specified number of epochs (500 for the conducted experiments), when of the each epoch
the training batch is randomly selected as a proportion of all points (0.8 of the total number
of points). To obtain the derivatives, the automatic differentiation methods, implemented
in the Tensorflow package are applied to the trained neural network.
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0.0
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0.6
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y

approximation by ANN
solution of the equation

(a) (b)
Figure 7. Comparison of the equation solution and its approximation by artificial neural networks (ANNs) for a time slice
(a) and heatmap of the approximation error (uapprox − utrue) (b).

Even with the presented very good approximation of the original field, the first
derivatives (Figure 8) are obtained with decent quality and may serve as the building
blocks. However, it is seen that the derivative field is significantly biased.
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Figure 8. Comparison of derivatives obtained by polynomial differentiation and by symbolic regression for first time
derivative (a) first spatial derivatives (b) for a time slice (t = 50).

Further differentiation amplifies the error. The higher-order derivatives shown in
Figure 9 cannot be used as the building blocks of the model and do not represent the
derivatives of the initial data field.
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Figure 9. Comparison of derivatives obtained by polynomial differentiation and by symbolic regression for second time
derivative (a) second spatial derivatives (b) for a time slice (t = 50).

Both of the implemented differentiation techniques are affected by numerical errors,
inevitable in the machine calculations, and contain errors, linked to the limitations of the
method (for example, approximation errors). To evaluate the influence of the errors on
the discovered equation structure, the experiments were conducted on simple ordinary
differential Equation (ODE) (20) with solution function (21).

L(t) = x(t) sin t +
dx
dt

cos t = 1, (20)

x(t) = sin t + C cos t. (21)

We have tried to rediscover the equation, based on data, obtained via analytical
differentiation of function (21), application of polynomial differentiation, and with the
derivative, calculated by automatic differentiation of fitted neural network. The series of
function values and the derivatives are presented in Figure 10. Here, we can see, that the
proposed ANN can decently approximate data; the analytical & polynomial differentiation
obtains similar fields, while automatic differentiation algorithm may result in insignificant
errors. 10 independent runs of the equation discovery algorithm have been performed
for each derivative calculation method, and the results with the lowest errors have been
compared. For the quality metric, the Mean Square Error of the vector, representing
the discrepancy of the function x̄(t), which is the solution of discovered on data-driven
equation M(t) = 0 with aim of |M(t)| −→ min, evaluated on the nodes of the grid was used.

While all of the runs resulted in the successful discovery of governing equations, the is-
sues with such equations are in the area of function parameters detection and calculating the
correct coefficients of the equation. The best result was achieved on the data from analytical
differentiation: MSE = 1.452 · 10−4. The polynomial differentiation got the similar quality
MSE = 1.549 · 10−4, while the automatic differentiation achieved MSE = 3.236 · 10−4. It
could be concluded, that in the case of first-order equations, the error of the differentiation
has less order than all other errors and thus the fastest method for the given problem may
be used. However, in the PDE case, it is complicated to use only first-order derivatives,
whereas arbitrary ordinary differential equations may be represented as the system of the
first-order equations.
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Figure 10. The solution of ODE from Equation (20), its approximation by neural network, and derivatives calculated by
analytic, polynomial and automatic differentiation.

5.2. Computationally Intensive Function Parallelization
5.2.1. Parallelization of Generative Algorithm for PDE Discovery

The first experiment devoted to the parallelization of the atomic models’ computation
using partial differential equations discovery case as an example. As shown in Figure 4,
the parallelization of the evolutionary algorithm in some cases does not give significant
speed improvement. In cases where atomic models are computationally expensive, it is
expedient to try to reduce every node computation as much as possible.

The experiment [42] was dedicated to the selection of an optimal method of com-
putational grid domain handling. It had been previously proven, that the conventional
approach when we process the entire domain at once, was able to correctly discover the
governing equation. However, with the increasing size of the domain, the calculations may
take longer times. In this case parallelization of the evolutionary algorithm does not give
speed-up on a given computational resources configuration, since the computation of a
fitness function of a single gene takes the whole computational capacity.

To solve this issue, we have proposed a method of domain division into a set of spatial
subdomains to reduce the computational complexity of a single gene. For each of these
subdomains, the structure of the model in form of the differential equation is discovered,
and the results are compared and combined, if the equation structures are similar: with
insignificant differences in coefficients or the presence of terms with higher orders of
smallness. The main algorithm for the subdomains is processed in a parallel manner due
to the isolated method of domain processing: we do not examine any connections between
domains until the final structure of the subdomains’ models is obtained.

The experiments to analyze the algorithm performance were conducted on the syn-
thetic data: by defining the presence of a single governing equation, we exclude the issue
of the existence of multiple underlying processes, described by different equations, in
different parts of the studied domain. So, we have selected a solution of the wave equation
with two spatial dimensions in Equation (22) for a square area, which was processed as
one domain, and after that, into small fractions of subdomains.

∂2u
∂t2 =

∂2u
∂x2 +

∂2u
∂y2 . (22)
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However, that division has its downsides: smaller domains have less data, therefore,
the disturbances (noise) in individual point will have a higher impact on the results.
Furthermore, in realistic scenarios, the risks of deriving an equation, that describes a local
process, increases with the decrease in domain size. The Pareto front, indicating the trade-
off between the equation discrepancy and the time efficiency, could be utilized to find
the parsimonious setup of the experiment. On the noiseless data (we assume, that the
derivatives are calculated without the numerical error) even the data from a single point
will correctly represent the equation. Therefore, the experiments must be held on the data
with low, but significant noise levels.

We have conducted the experiments with the partition of data (Figure 11), containing
80 × 80 × 80 values, divided by spatial axes in fractions from the set {1, 10}. The experi-
ments were held with 10 independent runs on each of the setup (size of input data (number
of subdomains, into which the domain was divided, and sparsity constant, which affects
the number of terms of the equation).

(a) (b)
Figure 11. The results of the experiments on the divided domains. (a) evaluations of discovered equation quality for
different division fractions along each axis (2× division represents division of domain into 4 square parts); (b) domain
processing time (relative to the processing of entire domain) for subdomain number.

The results of the test, presented in Figure 11, give insight into the consequences of
the processing domain by parts. It can be noticed, that with the split of data into smaller
portions, the qualities of the equations decrease due to the “overfitting” to the local noise.
However, in this case, due to higher numerical errors near the boundaries of the studied
domain, the base equation, derived from the full data, has its own errors. By dividing
the area into smaller subdomains, we allow some of the equations to be trained on data
with lower numerical errors and, therefore, have higher quality. The results, presented
in the Figure 11b are obtained only for the iterations of the evolutionary algorithm of the
equation discovery and do not represent the differences in time for other stages, such as
preprocessing, or further modeling of the process.

We can conclude that the technique of separating the domain into lesser parts and pro-
cessing them individually can be beneficial both for achieving speedup via parallelization
of the calculations and avoiding equations, derived from the high error zones. In this case,
such errors were primarily numerical, but in realistic applications, they can be attributed to
the faulty measurements or prevalence of a different process in a local area.

5.2.2. Reducing of the Computational Complexity of Composite Models

To execute the next set of experiments, we used the Fedot framework to build the
composite ML models for classification and regression problems. The different open
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datasets were used as benchmarks that allow to analyze the efficiency of the generative
design in various situations.

To improve the performance of the model building (this issue was noted in Issue 2),
different approaches can be applied. First of all, caching techniques can be used. The cache
can be represented as a dictionary with the topological description of the model position in
the graph as a key and a fitted model as a value. Moreover, the fitted data preprocessor
can be saved in cache together with the model. The common structure of the cache is
represented in Figure 12.
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Figure 12. The structure of the multi-chain shared cache for the fitted composite models.

The results of the experiments with a different implementation of cache are described
in Figure 13.
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Figure 13. The total number model fit requests and the actually executed fits (cache misses) for the shared and local cache.

Local cache allows reducing the number of models fits up to five times against the
non-cached variant. The effectiveness of the shared cache implementation is twice as high
as that for the local cache.

The parallelization of the composite models building, fitting, and application also
makes it possible to decrease the time devoted to the design stage. It can be achieved
in different ways. First of all, the fitting and application of the atomic ML models can
be parallelized using the features of the underlying framework (e.g., Scikit-learn, Keras,
TensorFlow, etc [43]), since the atomic models can be very complex. However, this approach
is more effective in the shared memory systems and it is hard to scale it to the distributed
environments. Moreover, not all models can be efficiently parallelized in this way.

Then, the evolutionary algorithm that builds the composite model can be paralleled
itself, since the fitness function for each individual can be calculated independently. To con-
duct the experiment, the classification benchmark based at the credit scoring problem (https:
//github.com/nccr-itmo/FEDOT/blob/master/cases/credit_scoring_problem.py) was
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used. The parameters of the evolutionary algorithm are the same as described at the
beginning of the section.

The obtained values of the fitness function for the classification problem are presented
in Figure 14.
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Figure 14. (a) The best achieved fitness value for the different computational configurations (represented as different
number of parallel threads) used to evaluate the evolutionary algorithm on classification benchmark. The boxplots are build
for the 10 independent runs. (b) Pareto frontier (blue) obtained for the classification benchmark in “execution time-model
quality” subspace. The red points represent dominated individuals.

The effectiveness of the evolutionary algorithm parallelization depends on the vari-
ance of the composite models fitting time in the population. It is matters because the new
population can not be formed until all individuals from the previous one are assessed. This
problem is illustrated in Figure 15 for cases (a) and (b) that were evaluated with classifica-
tion dataset and parameters of evolutionary algorithm described above. It can be noted that
the modified selection scheme noted in (b) can be used to increase parallelization efficiency.
The early selection, mutation, and crossover of the already processed individuals allow to
start the processing of the next population before the previous population’s assessment
is finished.
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Figure 15. (a) The comparison of different scenarios of evolutionary optimization: best (ideal), realistic and worst cases
(b) The conceptual dependence of the parallelization efficiency from the variance of the execution time in population for
the different types of selection.
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The same logic can be applied for the parallel fitting of the part of composite model
graphs. It raises the problem of the importance of assessment for the structural subgraphs
and the prediction of most promising candidate models before the final evaluation of the
fitness function will be done.

5.3. Co-Design Strategies for the Evolutionary Learning Algorithm

The co-design of the generative algorithm and the available infrastructure is an impor-
tant issue (described in detail in the Issue 3) in the task of composite model optimization.
The interesting case here is optimization under the pre-defined time constraints [44]. The
experimental results obtained for the two different optimization strategies are presented
in Figure 16. The classification problem was solved using the credit scoring problem
(described above) as a benchmark for the classification task. The parameters of the evo-
lutionary algorithm are the same as described at the beginning of the section. The fitness
function value is based on ROC AUC measure and maximized during optimization.

The static strategy S1 represents the evolutionary optimization with the fixed hyper-
parameters of the algorithm. The computational infrastructure used in the experiment
makes it possible to evaluate the 20 generations with 20 individuals in the population with
a time limit of T0. This strategy allows finding the solution with the fitness function value
F0. However, if the time limit T1 < T0 is taken into account, the static strategy allow to find
the solution S1 with the fitness function value F1, where F1 < F0.

Otherwise, the adaptive optimization strategy S2, which takes the characteristics of
the infrastructure to self-tune the parameters can be used. It allow to evaluate 20 generation
with 10 individuals in a time limit T1 and reach the fitness function value F2. As can be
seen, the F1 < F2 < F0, so the better solution is found under the given time constraint.g

Figure 16. The comparison of different approaches to the evolutionary optimization of the composite models. The min-
max intervals are built for the 10 independent runs. The green line represents the static optimization algorithm with
20 individuals in the population; the blue line represented the dynamic optimization algorithm with 10 individuals in the
population. T0, T1 and T2 are different real-time constraints, F0, F1 and F2 are the values of fitness functions obtained with
the corresponding constraints.
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5.4. Strategies for Optimization of Hyperparameters in Evolutionary Learning Algorithm

As it was noted in the issue described in Issue 4, the very large search space is a major
problem in the generative design. To prove that it can be solved with the application of the
specialized hyperparameters tuning strategies, a set of experiments was conducted.

As can be seen from Figure 6, the direct tuning strategy means that each atomic model
is considered an autonomous model during tuning. The computational cost of the tuning
is low in this case (since it is not necessary to fit all the models in a chain to estimate
the quality metric), but the found set of parameters can be non-optimal. The composite
model tuning allows to take into account the influence of the chain beyond the scope of
an individual atomic model, but the cost is additional computations to tune all models. A
pseudocode of an algorithm for composite model tuning is represented in Algorithm 1.

Algorithm 1: The simplified pseudocode of the composite models tuning algorithm illustrated in Figure 6b.
Data: maxTuningTime, tuneData, paramsRanges
Result: tunedCompositeModel
fitData, validationData = Split(tuneData)
for atomicModel in compositeModel do

candidateCompositeModel = compositeModel
while tuningTime < maxTuningTime do

bestQuality = 0
candidateAtomicModel ← OptFunction(atomicModel, paramsRanges) // OptFunction can be

implemented as random search, Bayesian optimization, etc.
candidateCompositeModel ← Update(candidateCompositeModel, candidateAtomicModel)
Fit(candidateCompositeModel, fitData)
quality = EvaluateQuality (candidateCompositeModel, validationData)
if quality > bestQuality then

bestQuality = quality
bestAtomicModel = candidateAtomicModel

end

compositeModel ← Update(compositeModel, bestAtomicModel)
end

end

tunedCompositeModel = compositeModel

The results of the model-supported tuning of the composite models for the different
regression problems obtained from PMLB benchmark suite (Available in the https://
github.com/EpistasisLab/pmlb) are presented in Table 1. The self-developed toolbox
that was used to run the experiments with PMLB and FEDOT is available in the open
repository (https://github.com/ITMO-NSS-team/AutoML-benchmark). The applied
tuning algorithm is based on a random search in a pre-defined range.

Table 1. The quality measures for the composite models after and before random search-based tuning of hyperparameters. The
regression problems from PMLB suite [45] are used as benchmarks.

Benchmark Name MSE without Tuning MSE with Tuning R2 without Tuning R2 with Tuning

1203_BNG_pwLinear 8.213 0.102 0.592 0.935
197_cpu_act 5.928 7.457 0.98 0.975

215_2dplanes 1.007 0.001 0.947 1
228_elusage 126.755 0.862 0.524 0.996

294_satellite_image 0.464 0.591 0.905 0.953
4544_GeographicalOriginalofMusic 0.194 2.113 0.768 0.792

523_analcatdata_neavote 0.593 0.025 0.953 0.999
560_bodyfat 0.07 0.088 0.998 0.894

561_cpu 3412.46 0.083 0.937 0.91
564_fried 1.368 0.073 0.944 0.934
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It can be seen that the hyperparameter optimization allow increasing the quality of
the models in most cases.

5.5. Estimation of the Empirical Performance Models

The experiments for the performance models identification (this problem was raised
in the issue described in Issue 5) were performed using the benchmark with a large number
of features and observations in the sample. The benchmark is based on a classification
task from the robotics field. It is quite a suitable example since there is a large number
of tasks in this domain that can be performed on different computational resources from
the embedded system to supercomputer in robotics. The analyzed task is devoted to
the manipulator grasp stability prediction obtained from the Kaggle competition (https:
//www.kaggle.com/ugocupcic/grasping-dataset).

An experiment consists of grasping the ball, shaking it for a while, while computing
grasp robustness. Multiple measurements are taken during a given experiment. Only one
robustness value is associated though. The obtained dataset is balanced and has 50/50
stable and unstable grasps respectively.

The approximation of the EPM with simple regression models is a common way to
analyze the performance of algorithms [46]. After the set of experiments, for the majority
of considered models it was confirmed that the common regression surface of a single
model EPM can be represented as a linear model. However, some considered models can
be described better by another regression surface (see the quality measures for the different
structures of EPM in Appendix A). One of them is a random forest model EPM. According
to the structure of the Equation (9), these structures of EPM can be represented as follows:

TEPM =

⎧⎨⎩ Θ1NobsNf eat + Θ2Nobs, f or the common case
Nobs
Θ2

1
+

N2
obs Nf eat

Θ2
2

, speci f ic case f or random f orest
, (23)

where TEPM—model fitting time estimation (represented in ms according to the scale of
coefficients from Table 2), Nobs—number of observations in the sample, Nf eat—number of
features in the sample. The characteristics of the computational resources and hyperparam-
eters of the model are considered as static in this case.

We applied the least squared errors (LSE) algorithm to (23) and obtained the Θ
coefficients for the set of models that presented Table 2. The coefficient of determination R2

is used to evaluate the quality of obtained performance models.

Table 2. The examples of coefficients for the different performance models.

ML Model Θ1 · 104 Θ2 · 103 R2

LDA 2.9790 3.1590 0.9983
QDA 1.9208 3.1012 0.9989

Naive Bayes for Bernoulli models 1.3440 3.3120 0.9986
Decision tree 31.110 4.1250 0.9846

PCA 3.1291 2.4174 0.9992
Logistic regression 9.3590 2.3900 0.9789

Random forest −94.42 · 104 2.507·108 0.9279

The application of the evolutionary optimization to the benchmark allows finding the
optimal structure of the composite model for the specific problem. We demonstrate EPM
constructing for the composite model which consists of logistic regression and random
forest as a primary nodes and logistic regression as a secondary node. On the basis of (11),
EPM for this composite model can be represented as follows:

TEPM
Add = max(Θ1,1NobsNf eat + Θ2,1Nobs, Θ1

1,2NobsNf eat + Θ2,2Nobs) +
Nobs

Θ2
1,3

+
N2

obsNf eat

Θ2
2,3

, (24)
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where TEPM
Add —composite model fitting time estimated by the additive EMP, Θi, j-i coeffi-

cient of j model type for EPM according to the Table 2.
The performance model for the composite model with three nodes (LR + RF = LR) is

shown in Figure 17. The visualizations for the atomic models are available in Appendix A.

Figure 17. Predictions of the performance model that uses an additive approach for local empirical performance models
(EPMs) of atomic models. The red points represent the real evaluations of the composite model as a part of validation.

The RMSE (root-mean-squared-error) measure is used to evaluate the quality of chain
EPM evaluation against real measurements. In this case, the obtained RMSE = 21.3 s
confirms the good quality of obtained estimation in an observed 0–400 seconds range.

6. Discussion and Future Works

In a wider sense co-design problem may be solved as an iterative procedure that
includes additional tuning during the model execution stage and a cyclic closure (or re-
building stage) with respect to time evolution. Re-building stage may be initiated by two
types of events: (1) model error overcomes acceptable threshold ec; (2) execution time
overcomes acceptable threshold τc. In this case a solution is to build the new model with
respect to corrected set of structures S̃ and performance model T̃M:

p′min
(M∗, t) > ρc, Tex

min > τc, p̃min(M∗∗, t) = max
M̃

F′(M̃, t| T̃M ≤ τc, Tgen ≤ τg
)
, (25)

where t is a variable of real time and ρc is a critical threshold for values of error function
E. Such a problem is typical for models that are connected with a lifecycle of their pro-
totype, e.g., models inside digital shadow for industrial system [47], weather forecasting
models [48], etc.

Additional fitting of co-designed system may appear also on the level of model
execution where classic scheduling approach may be blended with model tuning. Classic
formulation of scheduling for resource intensive applications Tex

min(L∗) = min
A

G′(L|M, I)

is based on idea of optimization search for such algorithm L∗ that helps to provide minimal
computation time Tex

min for model execution process through balanced schedules of
workload on computation nodes. However, such approach is restricted by assumption
of uniform performance models for all parts of application. In real cases performance of
application may change dynamically in time and among functional parts. Thus, to reach
more effective execution it is desirable to formulate optimization problem with respect to
possibility of tuning model characteristics that influence on model performance:
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Tex
max

({
a1:|S|

}∗
, L∗

)
= max

a,L
G
(

M
({

a1:|S|
})

, L|I
)

, M = S∗, E∗,
{

a1:|S|
}

, L = {Lm}, (26)

where G is objective function that characterize expected time of model execution with
respect to used scheduling algorithm L and model M. In the context of generative modeling
problem on the stage of execution model M can be fully described as a set of model
properties that consists of optimal model structure: optimal functions S∗ (from previous
stage) and additional set of performance influential parameters

{
a1:|S|

}
. Reminiscent

approaches can be seen in several publications, e.g., [49].

7. Conclusions

In this paper, we aimed to highlight the different aspects of the creation of mathe-
matical models using automated evolutionary learning approach. Such approach may be
represented from the perspective of generative design and co-design for mathematical
models. First of all, we formalize several actual and unsolved issues that exist in the
field of generative design of mathematical models. They are devoted to different aspects:
computational complexity, performance modeling, parallelization, interaction with the
infrastructure, etc. The set of experiments was conducted as proof-of-concept solutions
for every announced issue and obstacle. The composite ML models obtained by the FE-
DOT framework and differential equation-based models obtained by the EPDE framework
were used as case studies. Finally, the common concepts of the co-design implementation
were discussed.
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ANN Artificial neural network
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EPM Empirical performance model
GPU Graphics processing unit
ML Machine learning
MSE Mean squared error
NAS Neural architecture search
ODE Ordinary differential equation
PDE Partial differential equation
PM Performance model
R2 Coefficient of determination
RMSE Root mean square error
ROC AUC Area under receiver operating characteristic curve
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Appendix A. Additional Details on the Empirical Performance Models Validation

The validation of different EPM for the set of the atomic models (that was noted in
Table 2) is presented in Table A1. R2 and RMSE metrics are used to compare the predictions
of EPM and real measurements of the fitting time. The obtained results confirm that
the linear EPM with two terms is most suitable for most of the ML models used in the
experiments. However, the fitting time for some models (e.g., random forest) is represented
better by the more specific EPM. The one-term EPM provides a lower quality than more
complex analogs.

Table A1. Approximation errors for the different empirical performance models’ structures obtained
for the atomic ML models. The best suitable structure is highlighted with bold.

Model
Θ1Nobs Nf eat

Θ1Nobs Nf eat
+ Θ2Nobs

Nobs
Θ2

1
+

N2
obs Nf eat

Θ2
2

RMSE, s R2 RMSE, s R2 RMSE, s R2

LDA 0.35 0.92 0.11 0.99 0.66 0.74
QDA 0.75 0.57 0.03 0.99 0.93 0.36

Naive Bayes 0.82 0.42 0.04 0.99 0.961 0.21
Decision tree 1.48 0.98 1.34 0.98 3.49 0.89

PCA 0.28 0.78 0.04 0.99 0.28 0.95
Logit 0.54 0.91 0.37 0.96 0.95 0.75

Random forest 96.81 0.60 26.50 0.71 21.36 0.92

The visualization of the performance models predictions for the different cases is
presented in Figure A1. It confirms that the selected EPMs allow estimating the fitting time
quite reliably.

(a) LDA (b) QDA

(c) DT (d) PCA

Figure A1. Cont.
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(e) BernoulliNaveBayes (f) Logit

Figure A1. The empirical performance models for the different atomic models: LDA, QDA, Decision Tree (DT), PCA
dimensionality reduction model, Bernoulli Naïve Bayes model, logistic regression. The heatmap represent the prediction of
EPM and the black points are real measurements.
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