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This book introduces advanced machine learning and deep learning techniques for remote

sensing. A total of 17 research results are provided, and based on the research results introduced

here, it is expected that development and research in the field of artificial intelligence-based remote

sensing will become more active in the future.
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Advanced Machine Learning and Deep Learning Approaches
for Remote Sensing

Gwanggil Jeon 1,2

1 Department of Embedded Systems Engineering, Incheon National University, Incheon 22012, Republic of Korea;
gjeon@inu.ac.kr

2 Energy Excellence & Smart City Lab., Incheon National University, Incheon 22012, Republic of Korea

1. Introduction

Unlike field observation or field sensing, remote sensing is the process of obtaining
information about an object or phenomenon without making physical contact. According
to recent research results, technologies such as artificial intelligence-based deep learning
show the potential to overcome the problems of image and video signal processing faced
in remote sensing. These technologies generally require the help of high-speed image
processing devices such as GPUs, and high computing performance is essential. Through
the development of these devices, remote sensing technology, and aerial sensor technology,
the scientific community can now monitor Earth with high-resolution images and secure
huge quantities of earth observation data. These capacities stem from the fast, accurate
and highly reliable technology based on artificial intelligence. The papers published in
this Special Issue describe recent advances in big data processing and artificial intelligence-
based technologies for remote sensing technologies. A total of 17 papers were published in
this Special Issue.

2. Overview of Contributions

The most significant obstacle to optical remote sensing imaging is clouds. In the
contribution by Ma et al., entitled “Cloud Removal from Satellite Images Using a Deep
Learning Model with the Cloud-Matting Method”, the authors introduce a technique for
the removal of clouds from satellite images by paying attention to image overlap and
using a method that considers ground surface reflection and cloud top reflection as a linear
mixture of image elements [1]. To this end, a two-step convolutional neural network is used
to extract cloud transparency information and then generate ground surface information
for thin cloud regions. The authors test the proposed model on simulated and ALCD data
sets. The model successfully recovers the surface information of the thin cloud region when
thick and thin clouds coexist and does so without significantly damaging the information
of the original image.

The use of semantic segmentation technology, being a core component of computer
vision in remote sensing images, is currently widely applied. The majority of the remote
sensing image semantic segmentation methods are based on CNN, but recently transformer-
based technology is also widely applied. In the contribution by Li et al. “RCCT-ASPPNet:
Dual-Encoder Remote Image Segmentation Based on Transformer and ASPP”, the authors
propose RCCT-ASPPNet, which includes a dual encoder structure of RCCT and ASPP [2].
The RCCT uses transformers to fuse global multiscale semantic information, and residual
structures are used to connect inputs and outputs. ASPP, performed based on CNN,
can extract contextual information about high-level semantics and spatial and channel
information through the application of CBAM.

The SAR-ATR method uses unlabeled measured data and labeled simulated data to
improve performance. This is due to the problem that there is not a significant quantity
of labeled measurement data, and as such this method is currently widely used. In the
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contribution by Zhang et al., entitled “Azimuth-Aware Discriminative Representation
Learning for Semi-Supervised Few-Shot SAR Vehicle Recognition”, the authors propose a
method for designing two AADR loss functions that suppress the intra-class variation of
samples with large azimuth differences [3]. Through cosine similarity, they simultaneously
magnify the difference between classes of samples with the same azimuthal angle in the
feature embedding space. The unlabeled measurement data of the MSTAR dataset are
assigned labels of a more similar category among the SARSIM and SAMPLE datasets.

Big data and parameter tuning are essential in the twin process of training and using
convolutional neural networks. This process consumes an extensive temporal and com-
puting resources. To improve this, this paper proposes a new lightweight model called
FlexibleNet. The contribution by M. Awad, entitled “FlexibleNet: A New Lightweight Con-
volutional Neural Network Model for Estimating Carbon Sequestration Qualitatively Using
Remote Sensing”, proposed a scaling-based model of “width, depth and resolution” [4].
Unlike conventional methods that arbitrarily scale the “width, depth, and resolution” fac-
tors, FlexibleNet scales the network width, depth, and resolution uniformly using a fixed
set of scaling factors. Experiments have shown that the FlexibleNet model exhibits higher
robustness and lower parameter tuning requirements on smaller datasets compared to
conventional models.

In the contribution by Ravishankar et al., published under the name of “Capacity
Estimation of Solar Farms Using Deep Learning on High-Resolution Satellite Imagery”,
the authors propose a deep learning framework for detecting solar power plants via the
application of semantic segmentation convolutional neural networks to satellite images [5].
They also propose a model that predicts the energy generation capacity of the detected solar
power plant facility. According to their research results, the proposed deep learning model
achieved high performance indicators by showing an accuracy of 96.87% and a Jaccard
index value of 95.5%. In addition, the average error of the energy generation capacity
prediction model was 4.5%. In this study, 23,000 images of 256 × 256 size were used.

In recent ocean studies, ocean wave parameters, such as SWH, are being actively
predicted. Remote sensing has dramatically increased the available quantity of marine
data, and artificial intelligence technologies have demonstrated the ability to process big
data and derive meaningful insights from them. In the contribution by Atteia et al., entitled
“Deep-Learning-Based Feature Extraction Approach for Significant Wave Height Prediction
in SAR Mode Altimeter Data”, the authors propose a deep learning-based hybrid approach
for SWH prediction using satellite SAR data [6]. Several hybrid feature sets are created
using the proposed approach and SWH is modeled using GPR and NNR. SAR mode
altimeter data from Sentinel-3A missions, calibrated with field buoy data, were used to
train and evaluate the SWH model.

There has been substantial progress in the segmentation of remote sensing images
based on deep learning in recent years. However, existing remote sensing image segmen-
tation techniques have two limitations: (1) object detection performance in various scales
is poor in complex scene segmentation; (2) feature reconstruction for accurate segmenta-
tion is difficult. In order to improve this problem, the contribution by Ma et al., entitled
“Deep-Separation Guided Progressive Reconstruction Network for Semantic Segmentation
of Remote Sensing Images”, proposed the use of a deep separation-induced progressive
reconstruction network [7]. This study made two major contributions. First, the authors de-
sign a decoder composed of progressive reconstruction blocks that capture detailed features
at various resolutions by utilizing multi-scale qualities obtained from different receptive
fields. Second, they use deep features to detect objects of different scales by proposing a
deep separation module that classifies various classes based on semantic features. On the
basis of testing on two optical remote sensing image datasets, the proposed network shows
the best performance among the comparison targets.

In the contribution by Yang et al., entitled “A Multi-Dimensional Deep-Learning-
Based Evaporation Duct Height Prediction Model Derived from MAGIC Data”, an EDH
prediction network using MLP is proposed [8]. A multidimensional EDH prediction
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model is constructed using spatial and temporal “additional data” derived from meteo-
rological measurements. The experimental results reveal the following. (1) Compared
with the NPS model, the root mean square error of the weather-MLP-EDH model is 54%.
(2) RMSE can be reduced through the contribution of spatial and temporal parameters.
(3) The meteorological parameters can be appended to the multilayer-MLP-EDH model so
that measurements can fit well at both large and small scales, and the error is improved
by 77.51% compared to the NPS model. The proposed model can greatly improve the
prediction accuracy of EDH.

Despite many advances in remote sensing imaging technology, remote sensing imaging
struggles to meet application requirements due to its low resolution. In order to obtain
high-resolution remote sensing images, the authors apply super-resolution techniques to
restore and reconstruct remote sensing images. Super-resolution technology solves the
quality degradation problem of remote sensing image acquisition systems and efficiently
restores images. In the contribution by Wang et al., entitled “A Review of Image Super-
Resolution Approaches Based on Deep Learning and Applications in Remote Sensing”,
a study on a super-resolution method in deep learning-based remote sensing images is
conducted [9]. To this end, the research background of image super-resolution technology
is explained, and details such as training and test data sets, image quality and model
performance evaluation methods, and model design principles are explained.

The contribution by Wang et al., published un the title “Real-Time Vehicle Sound
Detection System Based on Depthwise Separable Convolution Neural Network and Spec-
trogram Augmentation”, proposes a lightweight model for intelligent sensor system and
vehicle detection [10]. Vehicle detection is a binary problem that classifies vehicles or non-
vehicles. Deep neural networks have shown high performance in many signal processing
applications. However, the performance of deep neural networks depends on big data.
Data abouts issues such as vehicle tracking are limited, making the application of data
augmentation technology essential. The proposed algorithm applies mel spectrogram
broadening before extracting MFCC features in order to improve the robustness of the
system. As the results of the experiment, the final frame-level accuracy achieved was
94.64%, and 34% of the parameters were reduced after compression.

An image whose image quality is degraded due to atmospheric turbulence is addition-
ally affected by noise. The added noise defeats basic signal processing techniques. Since
conventional widely used optimization methods are performed under the assumption
that there is no noise, noise removal and deblurring must be independently performed in
advance in order to use these techniques. The contribution by Shu et al., entitled “Blind
Restoration of Atmospheric Turbulence-Degraded Images Based on Curriculum Learning”,
proposes the use of an NSRN (noise suppression-based restoration network) for image
degradation due to turbulence [11]. The noise suppression module is designed to learn
low-order subspaces from turbulence-degraded images, the asymmetric U-NET module is
used for blurry image deconvolution, and the fine deep back-projection (FDBP) module
is used to reconstruct sharp images. It is used for multi-level functional fusion. They
also propose an improved learning strategy to incrementally train the network with the
purpose of achieving a good performance through a local-to-global, easy-to-difficult learn-
ing method. According to the experimental results, the method based on NSRN showed
excellent performance with PSNR 30.1dB and SSIM 0.9.

Sea surface temperature (SST) joins the widely used physical parameters in oceanog-
raphy and meteorology. In addition to direct measurement and remote sensing, models
for SST data have been developed to obtain SST. Since the ocean is a comprehensive and
complex dynamic system, the distribution and variability of SST are affected by a variety
of factors. In the contribution by Guo et al., entitled “Prediction of Sea Surface Temperature
by Combining Interdimensional and Self-Attention with Neural Networks,” a multivariate
long short-term memory (LSTM) model is proposed that uses wind speed and air pressure
at sea level as inputs along with SST in order to overcome this problem and improve
prediction accuracy [12]. In addition, for model optimization, a position encoding matrix
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and multi-dimensional input are studied. In addition, a self-attention strategy is adopted
to smooth the data during the training process. According to the experimental results,
the proposed model is superior to the LSTM alone model and the model with only SST
as input.

In the contribution of Qu et al., submitted under the title “Mode Recognition of Orbital
Angular Momentum Based on Attention Pyramid Convolutional Neural Network”, the
authors propose an OAM mode detection technique based on AP-CNN in order to solve
the problem of lack of accuracy in existing OAM detection systems for vortex optical
communication [13]. They introduce segmented image classification to exploit the low-
level detailed features of the vortex beam superposition and the similar light intensity
distribution of plane wave interferograms. ResNet18 is used as the backbone of AP-
CNN, and a technique for the detection of subtle differences in light intensity in images
is developed by adopting a dual path structure. According to the experimental results,
AP-CNN improved accuracy by up to 7% and reduced false mode identification by 3% in
the confusion matrix of superimposed vortex modes compared to ResNet18.

Improving the quality of low-light images is a key factor in the interpretation of the
surface state of remote sensing images. In the contribution by Rasheed et al., entitled “An
Empirical Study on Retinex Methods for Low-Light Image Enhancement”, the authors
aim to produce images with higher contrast, noise suppression, and better quality in their
low-light versions [14]. Recently, an image enhancement method based on the Retinex
theory has received a lot of attention. Therefore, the authors conduct a study to compare
the Retinex-based low-light enhancement method with other state-of-the-art low-light
enhancement methods and to determine the generalization ability and computational cost.
They use experimental results to compare the robustness of Retinex-based methods with
other low-light enhancement techniques using different test data sets. Various evaluation
criteria are used to compare the results, and an average ranking system is proposed to rank
quality enhancement methods.

Weather factors, such as bad weather, can occur when performing land classification
through remote sensing, which is a major cause of poor sensing performance. This limita-
tion can be reduced by several factors, such as low-quality aerial imagery and inefficient
fusion of multimodal representations. Therefore, it is essential to build a reliable framework
capable of robustly coding remote sensing images. In the contribution by Shi et al. on the
multimodal convergence and attention mechanism, entitled “Towards Robust Semantic
Segmentation of Land Covers in Foggy Conditions”, the authors use HRNet techniques to
extract basic features and then use the spectral and spatial representation learning module
to extract spectral–spatial representations [15]. In addition, in order to bridge the gap be-
tween heterogeneous devices, the authors propose the use of a multimodal Representation
fusion module.

Remote sensing images with high temporal and spatial resolution are important for
monitoring land surface changes, vegetation changes, and natural disaster surveillance.
However, it is difficult to directly obtain high-resolution remote sensing images, and
thus the deployment of space–time convergence technology to obtain remote sensing
images is receiving a lot of attention. In the contribution by Li et al., entitled “Enhanced
Multi-Stream Remote Sensing Spatiotemporal Fusion Network Based on Transformer and
Dilated Convolution”, the authors propose a deep learning model with high accuracy and
robustness to better extract spatiotemporal information from remote sensing images [16].
The proposed model is EMSNet, which extends the existing MSNet. Dilated convolution is
used to extract temporal information and reduce parameters. The authors further adapt
the improved transformer encoder to image fusion techniques and enhance it again to
effectively extract spatiotemporal information. Experimental results show that EMSNet
improved SSIM by 15.3% in the CIA dataset, ERGAS by 92.1% in the LGC dataset, and
RMSE by 92.9% in the AHB dataset when compared to MSNet.

LFMC is an important indicator used to assess wildfire risk and fire spread rate. In
the contribution by Xie et al. “Retrieval of Live Fuel Moisture Content Based on Multi-
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Source Remote Sensing Data and Ensemble Deep Learning Model”, the authors propose
two ensemble models that combine deep learning models in order to further improve the
inspection accuracy of LFMC [17]. One is a layered ensemble model based on LSTM, TCN
and LSTM-TCN models, and the other is an Adaboost ensemble model based on an LSTM-
TCN model. Measured LFMC data, MODIS, Landsat-8, and Sentinel-1 remote sensing
data and auxiliary data, such as canopy height and land cover in wildfire-prone areas in
the western United States, are selected as study subjects. As a result of the search, remote
sensing data of different groups are compared. The experimental results suggest that the
LFMC search accuracy is higher than that of single-source remote-sensing data since the use
of multi-source data can incorporate the advantages of different types of remote-sensing
data. The proposed ensemble model can better extract the non-linear relationship between
LFMC and remote sensing data.

3. Conclusions

This Special Issue introduces 17 research findings on advanced machine learning and
deep learning approaches for remote sensing. Based on the research results introduced here,
it is expected that further development and research in the field of artificial intelligence-
based remote sensing will yield results in the future.

Acknowledgments: I thank the authors who published their research results in this Special Issue
and the reviewers who reviewed their papers. I also thank the editors for their hard work and
perseverance in making this Special Issue a success.
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FlexibleNet: A New Lightweight Convolutional Neural
Network Model for Estimating Carbon Sequestration
Qualitatively Using Remote Sensing

Mohamad M. Awad

Remote Sesning Center, National Council for Scientific Research, Beirut 11072260, Lebanon; mawad@cnrs.edu.lb

Abstract: Many heavy and lightweight convolutional neural networks (CNNs) require large datasets
and parameter tuning. Moreover, they consume time and computer resources. A new lightweight
model called FlexibleNet was created to overcome these obstacles. The new lightweight model is a
CNN scaling-based model (width, depth, and resolution). Unlike the conventional practice, which
arbitrarily scales these factors, FlexibleNet uniformly scales the network width, depth, and resolution
with a set of fixed scaling coefficients. The new model was tested by qualitatively estimating
sequestered carbon in the aboveground forest biomass from Sentinel-2 images. We also created three
different sizes of training datasets. The new training datasets consisted of six qualitative categories
(no carbon, very low, low, medium, high, and very high). The results showed that FlexibleNet was
better or comparable to the other lightweight or heavy CNN models concerning the number of
parameters and time requirements. Moreover, FlexibleNet had the highest accuracy compared to
these CNN models. Finally, the FlexibleNet model showed robustness and low parameter tuning
requirements when a small dataset was provided for training compared to other models.

Keywords: peri-urban forests; lightweight convolutional neural network; FlexibleNet; carbon
sequestration; remote sensing

1. Introduction

Since the advent of machine learning (ML) in the mid-twentieth century [1], it has
played an important role in solving many complex problems such as image processing [2,3].

In the last decade, convolutional neural networks (CNNs), a sub-discipline of ML, have
played an important role in advancing image processing such as segmentation, recognition,
and classification sciences [4–7]. However, many networks suffered from huge computa-
tional resource and time requirements, such as ResNet50 [8], VGG16 [9], AlexNet [10], and
GoogleNet [11]. Later, improvements to CNNs were introduced by reducing the number of
layers and in turn reducing the number of parameters. The new generation of CNNs are
called lightweight CNNs. The first lightweight model, SqueezeNet [12], showed classifica-
tion accuracy close to AlexNet, and the number of parameters was only 1/510 compared
to AlexNet. In addition to SqueezeNet, there are many lightweight models to mention,
such as Xception [13], MobileNet [14], MobileNetV3 [15], ShuffleNet [16], and recently
EfficientNet [17]. The last lightweight network has seven versions from B0 to B7.

However, some of these introduced lightweight CNN models still suffer from a
growing amount of parameter tuning or inefficiency when there are insufficient sam-
ples [18]. Many researchers tried to improve some of these network models such as VGG16,
ResNet50, and MobileNet by adding an auxiliary intermediate output structure named
ElasticNet [19,20] that was directly connected to the network after each convolutional unit.
Other researchers tried to improve the lightweight CNNs [21] by using MobileNet to extract
deep and abstract image features. Each feature was then transformed into two features with
two different convolutional layers. The transformed features were subjected to a Hadamard
product operation to obtain an enhanced bilinear feature. Finally, an attempt was made to
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improve lightweight CNNs by introducing a model called DFCANet [22] for corn disease
identification. The model consisted of dual feature fusion with coordinate attention (CA)
and downsampling (DS) modules. The CA module suppressed the background noise and
focused on the diseased area. In addition, the DS module was used for downsampling. The
above models enhanced the existing CNN models or solved specific problems.

Carbon is one of many greenhouse gases that exist naturally in the Earth’s system [23].
However, carbon dioxide emissions have increased abnormally because of using fossil
fuels for energy and due to land use/cover (LULC) changes. The fast increase in the
carbon dioxide concentration in the air is making a major contribution to possible climate
change and in turn to natural disasters as well as environmental and economic losses in
the future [24]. The world’s total forest area is about 4 billion hectares, corresponding
to about 31% of the total land area [25]. Forests that include one or mixed types of trees
with different plants absorb air pollution and provide the oxygen we breathe through
photosynthesis, which absorbs carbon dioxide and preserves it in the leaves and stems up
to the roots. Planted forests and woodlots were found to have the highest CO2 removal
rates, ranging from 4.5 to 40.7 t CO2 ha−1 year−1 during the first 20 years of growth [26,27].

Remote sensing data and methods are widely used to estimate carbon sequestration.
Liu et al. [28] used airborne radar data to identify single-tree parameters such as the di-
ameter at breast height (DBH) and tree height, and based on these measurements they
estimated the AGB of single trees. Lizuka and Tateishi [29] used Landsat 8 and lso/Palsar
to estimate forest tree volumes and tree ages. They used the extracted information to
estimate carbon sequestration, and the verification was based on the collected field samples.
Castro-Magnani et al. [30] used MODIS gross primary productivity (GPP) and net primary
productivity (NPP) [31] to estimate carbon sequestration in the AGB. Later, they calculated
the socio-economic benefit of sequestering carbon. Published research [32] has used air-
borne light detection and ranging (LiDAR) to acquire the vertical structure parameters
of coniferous forests to construct two prediction models of aboveground carbon density
(ACD). One is a plot-averaged height-based power model, and the other is a plot-averaged
daisy-chain model. The correlation coefficients were significantly higher than that of the
traditional percentile model. A paper published by Kanniah et al. [33] utilized different
vegetation indices (Vis) and very high resolution WorldView-2 images to estimate carbon
sequestration in an urban area. One of the Vis correlated strongly with the collected field
data. However, the forest consisted of single tree species, which made the authors’ research
work simple. Uniyal et al. [34] estimated carbon sequestration using Landsat 8 and support
vector machine (SVM) [35], random forest [36], k-nearest neighbor (kNN) [37], and the
eXtreme gradient boosting (XGBoost) [38]. The authors used a huge number of variables
extracted from Landsat image as inputs and field-collected data as training samples, and
based on the R squared (coefficient of determination) they concluded that machine-learning-
algorithm regressions are better than a linear regression. Zhang et al. [39] compared a
convolutional neural network (CNN) to SVM and RF for estimating carbon sequestration
in forests’ AGB from Sentinel-2, Sentinel-1, and lso/Palsar. The authors used more than
67 variables to train the algorithms. The results showed that the CNN was better than RF
and SVM at estimating carbon sequestered above the surface.

A literature review showed different attempts to estimate carbon sequestration using
LIDAR data, which is limited by the technology’s availability and cost and the size of
the covered area. Some researchers used only one type of remote sensing optical data to
extract vegetation indices (Vis) to compare some machine learning algorithms in estimating
carbon sequestration. Other researchers used only optical images to calculate Vis and to
estimate carbon sequestration in urban areas. Researchers deployed both optical and radar
data without using machine learning to estimate carbon sequestration. One successful
study combined multiple types of radar and optical data to compare machine learning
algorithms, including a CNN, in estimating carbon sequestration in forests’ AGB. However,
this led to the need to calculate a large number of variables, and it demanded huge
computation resources. It is also known that a CNN alone is more effective in detecting
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patterns than estimating specific information [40,41]. Moreover, all the above research
shared one objective, which was quantitatively estimating carbon sequestration by AGB.

The objectives and the contributions of this research are the following: (1) creating
a new lightweight CNN model (FlexibleNet); (2) testing the new model (FlexibleNet) for
qualitatively estimating carbon sequestration in peri-urban forests’ AGB; and (3) creating
new datasets that combine multispectral satellite images and multicriteria themes with
different sizes. These datasets and python programs are available on GitHub.

Many issues make the new model better than other lightweight CNN models. First,
the new model’s flexibility arises from its ability to adapt to changes in tuning many
parameters, such as the image dimension, dataset size, and layer depth and width. Second,
the model uses only three extracted features from Sentinel-2 as inputs compared to the
multi-input for other CNN models. Third, the new lightweight model can qualitatively
measure carbon sequestration in peri-urban forests. Fourth, it is more efficient in dealing
with small datasets.

After the introduction section, the second section describes the data, the third section
contains the methods, the fourth section presents the experimental results, and the final
section provides our conclusions.

2. Data

2.1. Area of Study and Field Survey

The border of the study area is specified by a red square in Figure 1. It is located in
the El-Bared river basin in the northeast of Lebanon. The selection was based on many
criteria that included the diversity of the forest types, forest densities, the existence of urban
economic activities, the pressure exerted by the residents on the forest cover (cutting and
burning), the ease of accessibility to the area (specific spots), and the existence of local
authority support for fieldwork.

Figure 1. Study area.

The area of study occupies about 106.5 km2 of different land cover types such as fruit
trees, urban (including touristic facilities), forests, grasslands, etc. The highest elevation
in the area of study is 1500 m, and the landform is flat to moderately steep (a slope less
than 30%).

One can notice in Figure 1 that the field samples that were collected in the northeastern
part of the study area. The selection of the field sampling area was based on having different
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forest types such as pine “Pinus brutia”, cedar “Cedrus Libani”, fir “Abies cilicica”, juniper
“Juniperus excelsa”, and oak “Quercus Cerris” (Figure 2a–e).

     
(a) (b) (c) (d) (e) 

Figure 2. Forest types: (a) Quercus Cerris, (b) Abies cilicica, (c) Cedrus Libani, (d) Juniperus excelsa,
(e) Pinus brutia.

The sample collection was a random process, and it depended on the ease of acces-
sibility to the investigated area. Table 1 shows the species type, the number of collected
samples, the average height, and the average diameter at breast height (DBH). The cedars’
cover was very small compared to other forest covers, and the authorities prohibited access
to these trees because they were located in a reservation and they are national symbol.

Table 1. Information about the collected field samples.

Type Number of Samples Average DBH (cm) Average Height (Meters)

Quercus Cerris 17 119 15

Pinus brutia 19 125 12

Abies cilicica 46 237 17

Juniperus excelsa 32 225 8

2.2. Data Type and Source

In this research, we deployed Sentinel-2 data, which is considered to be important and
free optical remote sensing satellite data. Sentinel-2A and Sentinel-2B were launched in
June 2015 and March 2017, respectively [42]. Sentinel-2 is an optical remote sensing satellite.
It has a spatial resolution that varies between 10 m and 60 m depending on the wavelength.
Sentinel-2A has a temporal resolution of 10 days, which can become 5 days with the
combination of Sentinel-2B and another optical satellite with the same specifications as
Sentinel-2A. The clipped image has a size of 1115 × 955 pixels and consists of bands 3, 4,
and 8, which correspond to green, red, and near infrared. These bands were selected for
two reasons: they have the highest spatial resolution, and they are representative of the
crops’ photosynthesis process. To extract the required area, we used Google Earth Engine’s
(GEE) Sentinel-2 dataset and computation facilities. One Sentinel-2 image was selected in
May 2020 for two reasons: to reduce the cloud cover effect (less than 5% of the image size)
and to obtain the maximum vegetation cover (deciduous and coniferous trees, grasslands,
and agricultural lands).

Moreover, a vector layer representing the global canopy height for the year 2020 at a
10 m resolution [43] was used in the canopy density model (Figure 3).
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Figure 3. Canopy height map.

3. Methods

The following flowchart (Figure 4) shows the different tasks that were implemented in
this research to qualitatively estimate carbon sequestration in ABG forests using the new
lightweight CNN model (FlexibleNet) and the training and Sentinel-2 image datasets.

 

Figure 4. The general process for qualitatively assessing forests’ AGB carbon sequestration capacities.

3.1. Canopy Density Model (CDM)

An adapted model created by Abdollahnejad et al. [44] incorporated different indices
from Sentinel-2 images and the thermal band of Landsat to create a canopy density model.
The adapted model combined different resolutions, which lowered the credibility and
efficiency of the final product. Moreover, the model neglected the canopy heights, which
can successfully differentiate between forests and other vegetation types.

Both the Sentinel-2 image (level 2) and the canopy height layer were obtained using
the Google Earth Engine (GEE) platform. Scripts were written in the Java language to
retrieve the needed data. Normally, the acquired Sentinel-2 image is level 2, which is an
image that is corrected geometrically and atmospherically. Three indices were created from
the Sentinel-2 image using the following equations:

AVI = [(NIR + 1)× (1 − Red)× (NIR − Red)]1/3 (1)

BI =
(NIR + Green)− Red
(NIR + Green) + Red

(2)

SI =
√
(1 − Green)× (1 − Red) (3)

where AVI is the advanced vegetation index, BI is the bare soil index, and SI is the canopy
shadow index. Moreover, NIR, Red, and Green represent the three different spectrums and
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the bands B2, B3, and B8 in the Sentinel-2 image. AVI was modified to provide values
between −1 and 1. The modification included replacing 256 with 1 and normalizing the
bands. BI ranged between 0 and 1, where 0 meant complete bare soil or no vegetated
area and 1 meant completely covered by vegetation. Finally, SI was modified by replacing
256 with 1, and the bands were normalized. SI values ranged between 0 and 1, where the
maximum value indicated the highest canopy shadow.

These themes, including the canopy heights, were classified into six categories using
natural break classification (Jenks) [45]. The classes were based on natural groupings
inherent in the data. Normally, the classification process identifies breakpoints by picking
the class breaks that best group similar values and maximize the differences between
classes. Finally, a spatial analysis that included mathematical operations was deployed to
obtain the canopy density theme. The above processes were combined according to the
following flowchart (Figure 5).

 

Figure 5. Canopy density model.

Further investigation in the future to improve the canopy density layer may include
higher-spatial-resolution satellite images and time series of NDVI to separate deciduous
forest trees from evergreens, which could further enhance research work.

3.2. The New Lightweight Convolutional Neural Network Model (FlexibleNet)

CNNs are collections of neurons that are ordered in inter-related layers, with convolu-
tional, pooling, and fully connected layers [46]. CNNs require less preprocessing, and they
are the most effective learning algorithms for realizing image structures. Moreover, it was
proven that CNNs excel in image classification, recognition, and retrieval [47].

Normally, a simple CNN model consists of one or many of the following layers:
1—convolutional layer, 2—pooling layer, 3—activation layer, and a fully connected layer.

In this research, we created a new lightweight CNN model (FlexibleNet) to reduce the
resource and training dataset requirements (Figure 6). The performance of the new model
was tested in the qualitative classification of carbon sequestration. Our new model is a
CNN scaling-based model (width, depth, and resolution). The depth corresponds to the
number of layers in a network. The width is associated with the number of neurons in a
layer or, more pertinently, the number of filters in a convolutional layer. The resolution is
simply the height and width of the input image. Unlike the conventional practice, which
arbitrarily scales these factors, FlexibleNet uniformly scales the network width, depth, and
resolution with a set of fixed scaling coefficients.

We combined different strategies to improve the FlexibleNet performance. These
strategies were spatial exploitation and varying the depth. Spatial exploitation includes
parameters such as the number of processing units (neurons), filter size, and activation
function. We assumed that varying the CNN’s depth can better approximate the target
function with a number and can improve feature representations and network performance.
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Figure 6. The inner structure of the FlexibleNet model.

The spatial exploitation included changes to the filter size and the activation function.
Moreover, the depth of the FlexibleNet network or the number of convolutional layers
varied when the dimensions of the features changed. The variations in the width and depth
were based on the variation in the resolution of the image. The following equations depict
the changes to filter size:

Im =
m

∑
i=1

di × wi × ci → d = w = 2n → f = Rnd
(n

2

)
× Rnd

(n
2

)
(4)

where Im is the original image and m is the number of sub-images of size d × w × c, where
d is the number of rows, w is the number of columns, and c is the number of channels.
Moreover, n is the exponent, f is the filter size, and Rnd() is the round function (d, w, c, and
n ∈ Z

+). If the image (Im) has an uneven size, zeros are padded to the columns and/or
rows to make them even.

The number of filters for each convolution layer can be set up based on the follow-
ing rules: ⎧⎨⎩ fm =

Initial 2Rnd( n
2 )+1 where n ≥ 5

m = Rnd
( n

2
)
+ 2; 2m → m = m + 1
Final 1024

(5)

where fm represents the filter sizes. These rules work as follows: Suppose I have a sub-
image of size 32 × 32. Then, n = 5. This means that the initial filter is f0 = 16. Next, the
filter size is obtained by calculating m fm = 32, 64, 128, 256, and 512, where m = 6, 7, 8,
and 9 and the final filter size is 1024 (maximum) with m = 10.

Then, the leaky rectified linear activation function (LReLU) is used [48], which is a
modification of the ReLU activation function. It has the same form as the ReLU, but it
will leak some positive values to 0 if they are close enough to zero (Equation (6)). It is a
variant of the ReLU activation function. Normally, ReLU is half-rectified (from the bottom).
ReLU(p) is zero when p is less than zero, and ReLU(p) is equal to p when p is above or equal
to zero.

LReLU(p) = max(0.01 × p, p) (6)

The number of layers or the depth of the network (Laydepth) can be computed as
indicated in Equation (7). It is noticeable that the depth reached unity when the dimensions
of the image were >18. The creation of Equation (7) was based on the assumptions that a
sub-image cannot be less than 16 × 16 and that the maximum sub-image size is the image
itself. Adapting to the increase in the sub-image size requires decreasing the network depth
by one level (the number of convolution layers) each time the sub-image increases. The
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depth starts from Rnd
( n

2
)
+ 7 convolution layers to one layer, where the size of the image

is the image itself, assuming it may reach infinity as a size.

Laydepth =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Rnd
( n

2
)
+ 7 4 ≤ n

Rnd
( n

2
)
+ 5 5 ≤ n ≤ 6

Rnd
( n

2
)
+ 3 7 ≤ n ≤ 8

Rnd
( n

2
)
+ 1 9 ≤ n ≤ 10

Rnd
( n

2
)− 1 11 ≤ n ≤ 12

Rnd
( n

2
)− 3 13 ≤ n ≤ 14

Rnd
( n

2
)− 5 15 ≤ n ≤ 16

Rnd
( n

2
)− 7 17 ≤ n ≤ 18

1 n > 18

(7)

In addition to the Laydepth size, there is a fixed number of three dense layers (DL).
According to [49], the dense layer is an often-used layer that contains a deeply connected
neural network layer. DL is a hidden layer associated with one node in the next layer.

Figure 7a–c show the FlexibleNet structure for three different scales based on the
above rules, where n = 32, 256, and 512. One can notice that as the scale increases, the depth
decreases. This strategy can help reduce the computation requirements (processing power
and memory size).

3.3. Estimating Carbon Sequestration for the Collected AGB Samples

The measured trees were used to compute the volume of the AGB using
Equations (8) and (9). Where Vm3 is the volume of wood in cubic meters, Hm is the height
of the tree, DBH is the diameter at breast height, and Bm2 is the base area in square meters.
Lee et al. [50] suggested Table 2 to help in the calculation process of carbon sequestration in
the ABG. The carbon content usually uses a value of 0.5, which means that wood is about
50% carbon. We used the model created by Lizuka and Tateishi [29] to estimate carbon
sequestration per hectare (CSha) (Equation (10)). Fc = 44/12 converts the carbon value to
the carbon dioxide sequestration value, where 12 and 44 represent the molecular masses of
carbon and carbon dioxide, respectively.

Vm3 = Bm2 × Hm (8)

Bm2 = π ×
(

DBH
2

)2
(9)

CSha = Vm3 × Be × Bd × Cc × Fc (10)

Table 2. Coefficients for calculating carbon sequestration by forest type.

Type of Forest
Bulk Density (Bd)

(Tons/m3)
Biomass Expansion (Be) Carbon Content (Cc)

Coniferous 0.47 1.651 0.5

Deciduous 0.80 1.720 0.5

Mixed 0.635 1.685 0.5
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(a) (b) (c) 

Figure 7. FlexibleNet with different scales and depths: (a) 32, 7; (b) 256, 6; (c) 512, 5.

4. Results

For this section, we created different datasets of Sentinel-2 sub-images to prove the
efficiency of the new lightweight CNN model (FlexibleNet) in qualitatively estimating
carbon dioxide sequestration. The collected samples of trees’ characteristics, as shown
in Table 1, were used to calculate CSha using Equations (8)–(10). Then, these values were
converted to qualitative values using Sturges’ rule [51]. Since the samples represent trees’
characteristics, the “no carbon” class was removed. Figure 8 represents the distribution of
the samples according to five classes (very low, low, moderate, high, and very high). These
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created qualitative samples were used to verify the credibility of the canopy density dataset
using a confusion matrix [52] before using it in the training of the new model (Table 3). The
accuracy computed from the matrix using estimated versus measured values was 92.1%.

 
Figure 8. Trees samples classification.

Table 3. Confusion matrix.

Measured/Estimated Very Low Low Moderate High Very High

Very low 23 2 1 2 0

Low 1 15 0 0 0

Moderate 0 1 21 0 0

High 1 1 0 27 0

Very high 0 0 0 0 19

We created different datasets that consisted of tiled sub-images with three different
sizes of 32 × 32 (1050 images), 64 × 64 (270 images), and 128 × 128 (72 images) and three
bands representing different spectrums (green, red, and near infrared). The other datasets
consisted of the same size and number of tiles but only represented canopy densities with
six classes (no carbon, very low, low, moderate, high, and very high). A script was written
in the Python language to classify the Sentinel-2 sub-images into six classes based on the
computed canopy density statistics (Algorithm 1). The script takes every computed sum
(arr) for each canopy density sub-image and compares it to the created criteria (criteria)
based on Sturges’ rule.

The sums of the pixel values of all canopy density sub-images were calculated. Next,
these sums’ maximum, minimum, and average were computed. Then, they were used with
Struges’ rule to classify the Sentinel-2 sub-images into six classes. After that, the datasets
were split into 80% training and 20% validation samples. Figure 9 shows examples of the
original Sentinel 2 sub-images (false color) and their counterpart canopy density classes.
The colors in the canopy density images signify that very low is dark brown, low is light
brown, moderate is light green, high is green, and very high is dark green.

These samples were used as part of the training and validation datasets to check the
efficiency of the FlexibleNet model.
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Algorithm 1 A python script to classify Sentinel-2 sub-images.

if( (arr[i] ≤ 0) and file_exists):
# it checks if the sum is less or equal to zero and if the image exists in the folder
before copying it to the no carbon folder
shutil.copy(filename,dest1)
# copy image to no carbon folder (dest1)
if((arr[i] >0 and arr[i] ≤ criteria *2) and file_exists):
shutil.copy(filename,dest2)
# copy to folder very low
if((arr[i] > criteria *2 and arr[i] ≤ criteria *3) and file_exists):
shutil.copy(filename,dest3)
# copy to folder low
if((arr[i] > criteria *3 and arr[i] ≤ criteria *4) and file_exists):
shutil.copy(filename,dest4)
# copy to folder moderate
if((arr[i] > criteria *4 and arr[i] ≤ criteria *5) and file_exists):
shutil.copy(filename,dest5)
# copy to folder high
if((arr[i] > criteria *5 and arr[i] ≤ maxval) and file_exists):
shutil.copy(filename,dest6)
# copy to folder very high

       
(a) (b) (c) (d) (e) (f) (g) 

       
(h) (i) (j) (k) (l) (m) (n) 

Figure 9. Different sub-images showing (a–g) the original Sentinel-2 images and (h–n) canopy density
(very low, low, medium, high, and very high).

The FlexibleNet was compared with four popular and well-known convolutional
neural networks: the large model ResNet50 [8], the lightweight models Xception [13] and
MobileNetV3-Large [15], and the EfficientNet [17]. These models were selected based on
their popularity, efficiency, and availability.

All the models, including FlexibleNet, were run using “Jupyter Notebook” on Amazon
SageMaker cloud computing facilities that had 16 GB of memory capacity and two Intel
Xeon Scalable processors with 3.3 GHz speed. Moreover, these models were run for a maxi-
mum of 100 epochs, and each epoch had several steps (number of steps per epoch = (total
number of training samples)/batch size). We deployed a stochastic gradient descent (SGD)
optimizer in FlexibleNet with an initial learning rate of 0.001. SGD is an iterative method
for optimizing an objective function with suitable smoothness properties. SGD replaces the
actual gradient (calculated from the entire dataset) with an estimate thereof (calculated from
a randomly selected subset of the data). Especially in the high-dimensional optimization
problem, this reduces the very high computational burden, achieving faster iterations in
return for a lower convergence rate [53]. The learning rate of 0.001 was selected based on
previous research conducted by Asif et al. [54].

In the first experiment, the datasets of 32 × 32 were used to compare these models.
The outcomes of these models are shown in Table 4, and the behaviors of these models
during the run process are shown in Figure 10a–j.
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Table 4. Summary of the outcomes of the experiments using an image resolution of 32 × 32.

Model Name
Number of Parameters

(Millions)
Time Requirement

(Minutes)
Accuracy

%
Lowest Loss Value

FlexibleNet 5.52 13.3 98.81 0.042

ResNet50 26.38 77 96.41 0.1074

EfficientNetB5 31.30 28.4 52 1.1

MobileNetV3-Large 6.23 13.3 68.69 0.7122

Xception 21.58 62 66.96 0.83

     
(a) (b) (c) (d) (e) 

     
(f) (g) (h) (i) (j) 

Figure 10. Loss and accuracy of sub-images of size 32 × 32 processed by (a,f) FlexibleNet,
(b,g) ResNet50, (c,h) EfficientNetB5, (d,i) MobileNetV3-Large, and (e,j) Xception.

The new model had total parameters equal to 5.52 million. The total time was 13.3 min,
with 8 s for each iteration. The accuracy of the final trained model was about 98.81%, and
the final loss was 0.042.

The ResNet50 model was run for 100 iterations (epochs), with a total number of
parameters equal to 26.38 million. ResNet50 took 77 min, with an accuracy of about 96.41%,
and the final loss was 0.1074. The accuracy of ResNet50 was lower than that of FlexibleNet.
This proved the reliability and efficiency of the new model.

EfficientNet was also tested using the same datasets. The number of iterations was
100, and the number of parameters was 31.3 million. It took the model 88.4 min to complete
the iterations (epochs). The lowest loss was 1.1, and the highest accuracy was 52%. This
proved that FlexibleNet is more efficient and accurate than the lightweight EfficientNet.

The lightweight network models MobileNetV3-Large and MobileNetV3-Small are
normally targeted for high- and low-resource use cases. These models are then adapted
and applied to object detection and semantic segmentation. MobileNetV3-Small is more
suitable for mobile phone operating systems. MobileNetV3-Large is 3.2% more accurate
in ImageNet classification while reducing latency by 15% compared to MobileNetV2 [55].
The implemented MobileNetV3-Large had 6.23 million total parameters, and it was run for
100 iterations. It took the model 13.3 min to complete the iterations (epochs). The lowest
loss was 0.7122, and the highest accuracy was 68.69%. This proved that FlexibleNet was
more efficient and accurate than the lightweight MobileNetV3-Large.

The second experiment was conducted in the same area of study, but the datasets had
an image resolution of 64 × 64 pixels. Figure 11 shows different 64 × 64 sub-images along-
side corresponding canopy sub-images. We placed constraints on running the FlexibleNet

18



Remote Sens. 2023, 15, 272

model and the other tested models to avoid falling into the overfitting problem because of
the lack of a large dataset of images [56].

     
(a) (b) (c) (d) (e) 

     
(f) (g) (h) (i) (j) 

Figure 11. Sentinel-2 sub-images (64 × 64): (a–e) original and (f–j) canopy density (very low (dark
brown) to very high (dark green)).

During the fitting process of these models, the loss function was tested. The fitting
process was terminated when several iterations completed and the minimum loss value did
not change. Table 5 shows the outcomes of testing the different models on different image
resolutions. First, it is noticeable that the number of parameters increased for FlexibleNet,
ResNet50, and EfficientNetB5. Nevertheless, the time requirement decreased for all models
except EfficientNetB5. Finally, FlexibleNet was the only model with the highest accuracy
and the lowest loss function value, as shown in Figure 12a–j.

Table 5. Summary of the outcomes of the experiments using an image resolution of 64 × 64.

Model Name
Number of

Parameters (Millions)
Time Requirement

(Minutes)
Accuracy

%
Lowest Loss

Value
Total

Iterations

FlexibleNet 8.4 5 98.25 0.0457 60

ResNet50 32.6 13 96.74 0.0877 51

EfficientNetB5 32.9 40 93.06 0.1936 100

MobileNetV3-Large 6.23 4 90.22 0.3422 74

Xception 21.58 22 31.52 1.718 100

     
(a) (b) (c) (d) (e) 

(f) (g) (h) (i) (j) 

Figure 12. Loss and accuracy of 64 × 64 sub-images processed by (a,f) FlexibleNet, (b,g) ResNet50,
(c,h) EfficientNetB5, (d,i) MobileNetV3-Large, and (e,j) Xception.
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The final experiment was conducted in the same area of study, but the image resolu-
tion was 128 × 128 pixels, which resulted in smaller datasets. Figure 13 shows different
128 × 128 sub-images alongside corresponding canopy density sub-images.

    
(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

Figure 13. Sentinel-2 sub-images (128 × 128): (a–d) original and (e–h) canopy density.

We placed constraints on running the FlexibleNet model and the other tested models to
avoid falling into the overfitting problem because of a lack of a large dataset of images [56].
The loss function was tested, and the fitting process was terminated when the minimum
loss value did not change after a specific number of iterations.

Table 6 lists the results of running different models. Again, FlexibleNet and MobileNetV3-
Large showed stable numbers of parameters, even when the dimensions of the image
increased from 64 × 64 to 128 × 128. However, FlexibleNet was the fastest, and it had the
highest accuracy and lowest loss value compared to the other models. In this experiment,
FlexibleNet showed robustness in dealing with very small datasets (72 images), whereas the
others failed to deal with the problem. Many adjustments were made (such as duplicating
the dataset) to overcome the limited size of the dataset and make the other models run
smoothly. The performances of these models (accuracy and loss) are shown in Figure 14a–j.

     
(a) (b) (c) (d) (e) 

     
(f) (g) (h) (i) (j) 

Figure 14. Loss and accuracy of 128 × 128 sub-images processed by (a,f) FlexibleNet, (b,g) ResNet50,
(c,h) EfficientNetB5, (d,i) MobileNetV3-Large, and (e,j) Xception.
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Table 6. Summary of the outcomes of the experiments using an image resolution of 128 × 128.

Model Name
Number of

Parameters (Millions)
Time Requirement

(Minutes)
Accuracy

%
Lowest Loss

Value
Total

Iterations

FlexibleNet 8.4 0.8 98.25 0.0657 24

ResNet50 57.8 7.7 86.87 0.2953 23

EfficientNet 62.7 6 70.09 0.9102 11

MobileNetV3-Large 6.23 8.1 96.97 0.0951 68

Xception 55.1 20.53 90.91 0.2523 56

5. Conclusions

There were many advantages of deploying the new lightweight convolutional neu-
ral network model, FlexibleNet. First, we obtained the highest accuracy in qualitatively
classifying Sentinel-2 images into different carbon sequestration classes. Second, the Flex-
ibleNet model had the lowest loss values compared to the other models. Third, except
for MobileNetV3-Large, the new model used the lowest number of parameters and re-
quired the lowest time. In the first experiment, the FlexibleNet model was the best one
because it had the lowest number of parameters compared to the other models, including
MobileNetV3-Large. In the second and third experiments, the MobileNetV3-Large model
was slightly better than the FlexibleNet model, but both were stable concerning the num-
ber of parameters when the problem size changed. One disadvantage of the FlexibleNet
model was its inability to overcome the MobileNetV3 model in reducing the number of
parameters in all experiments. The FlexibleNet model is the first version of a series that
will include enhancements to many existing features in the new model, including reducing
the parameter requirements. It is also expected to be used to conduct more experiments on
other complex problems, such as using tropical forest datasets.
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Abstract: Clouds seriously limit the application of optical remote sensing images. In this paper, we
remove clouds from satellite images using a novel method that considers ground surface reflections
and cloud top reflections as a linear mixture of image elements from the perspective of image super-
position. We use a two-step convolutional neural network to extract the transparency information
of clouds and then recover the ground surface information of thin cloud regions. Given the poor
balance of the generated samples, this paper also improves the binary Tversky loss function and
applies it on multi-classification tasks. The model was validated on the simulated dataset and ALCD
dataset, respectively. The results show that this model outperformed other control group experiments
in cloud detection and removal. The model better locates the clouds in images with cloud matting,
which is built based on cloud detection. In addition, the model successfully recovers the surface
information of the thin cloud region when thick and thin clouds coexist, and it does not damage the
original image’s information.

Keywords: improved Tversky loss; two-step convolution model; cloud detection; cloud matting;
cloud removal

1. Introduction

In recent years, optical satellite remote sensing has become the primary survey and
monitoring means for disaster relief, geology, environment, and engineering construction,
which has introduced great convenience to the development of human science. However,
clouds are an unavoidable dynamic feature in optical remote sensing images. Global cloud
coverage in mid-latitude regions is about 35% [1], and global surface cloud coverage ranges
from 58% [2] to 66% [3]. High-quality images are not available almost all year round,
especially in areas with high water vapor content changes [4]. Clouds reduce the reliability
of remote sensing images and increase the difficulty of data processing [5].

Cloud detection is the first step in image de-clouding and restoration, which has re-
ceived much attention from researchers. There are many methods concerning the detection
of clouds and cloud shadows [6–13]. These methods can be divided into temporal and
non-temporal solutions in terms of the number of images or non-deep learning solutions
and deep learning [11–14] in terms of detection schemes. Foga et al. [15] summarized thir-
teen commonly used cloud detection methods and five cloud shadow detection methods.
They found that the accuracy of each cloud removal method has its advantages and disad-
vantages within different scenarios. Deep learning-based methods mainly segment clouds
in remote sensing images non-linearly with their solid-fitting ability. In the early years,
scholars used fully connected neural networks [16,17] for cloud detection. In recent years,
they primarily use convolutional neural networks [18,19] that are more suitable for image
processing. Mahajan et al. [20] investigated the main cloud detection methods from 2004
to 2018, and they found that neural networks can largely compensate for the limitations
of existing algorithms. The cloud detection scheme treats the detection process as a pixel
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classification, and it obtains a high-quality mask file but ignores the ground surface’s infor-
mation under the cloud. In order to solve the problem in which the inaccurate mask file
produces unsatisfactory results during cloud removal, Lin et al. [21] used the RTCR method
and the augmented Lagrange multiplier. However, in most cases, the signals received by
remote sensing imaging sensors are a superposition of the surface reflection signal and
the cloud reflection signal [22,23]. Simple classification methods only locate and identify
clouds in images but cannot estimate cloud amounts and recover surface information.
Li et al. [24] suggested a hybrid cloud detection algorithm by utilizing various algorithms
to their full potential. Clouds in images are usually mixed with surface information, and
different transparency leads to different superposition patterns. Therefore, it is better to
detect clouds by using a hybrid image element decomposition method.

Although there is a strong interconnection between cloud detection and cloud removal,
studies have always been conducted separately [22,23]. Many scholars use deep learning
techniques for single-image cloud removal. The widely used dark channel method has
excellent mathematical derivations [25]. However, its applicability may be limited due to
the imaging difference between satellite images and other images. Moreover, there are
some errors in transmittance estimations and the dark channel prior, so the images are
prone to dimming or are even distorted after cloud removal. The k-nearest neighbor (KNN)
matting [26] method falls under nonlocal matting. It assumes that the transparency of
a pixel can be described by weighting the transparency values of nonlocal pixels with
a similar appearance, such as matching the color and texture. The goal is to allow the
transparency value to propagate in nonlocal pixels. This includes laborious computations
due to the comparison with the nonlocal images. KNN matting improves nonlocal mat-
ting by only considering the first K neighbors in the high-dimensional feature space. It
reduces the amount of computation by only considering similarities between the color
and the position in their feature space. The drawback of this method is that it requires
a priori trimap as input and usually leaks pixels. Defining a general feature space with
few parameters is difficult. Closed-form matting [27] assumes that the reflectivity of the
foreground and background is the same in the local range of the sliding window and solves
the transmittance formula using the color-line model and the ridge regression optimization
algorithm. However, the clouds are easily overcorrected, and the solution requires an
accurate trilateral as an a priori input, which significantly limits the application of closed
extinction methods. The conditional generation countermeasure network (CGAN) [28] can
reconstruct damaged information well when entities are still visible. However, the number
of objects in remote-sensing images greatly increased. Therefore, the generative counter-
measure network exhibits noticeable distortions in the thick cloud area. Isola et al. [29]
proposed an image-to-image translation method (Pix2pix) based on CGAN to achieve
image-to-image generation, providing a new method for image de-clouding restoration.
Ramjyothi et al. [30] used GAN to repair the ground cover information under clouds in
remote sensing images. Pan et al. [22] and Emami et al. [31] introduced spatial attention to
GAN to control the redundancy of the model. Wen et al. [32] used a residual channel atten-
tion network for cloud removal. Via the solid-fitting ability of deep learning, the models
can effectively learn the difference between the features of clouded and cloudless images,
and then they can directly restore the absolute brightness value of the surface using image
reconstruction. Cloud removal based on generative adversarial networks for reconstructing
surface information is one of the trending research topics in recent years. However, the
biggest drawback of deep learning is that “it cannot admit that it does not know when
thin and thick clouds coexist”. The output of the models meets high metrics. However,
there is a big difference between created images and real images. The commonly used
cloud removal solutions for satellite images, especially for Sentinel-2, include Sen2cor [33],
Fmask [34], and S2cloudless [35]. Qiu et al. introduced Global Surface Water Occurrence
(GSWO) data based on Fmask3.3 and the global digital elevation model (DEM), and then
proposed the use of Fmask4 to improve the accuracy by 7.2% compared to the Sen2cor
algorithm specified by the European Space Agency (ESA) in version 2.5.5. Housman et al.
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proposed the cloud detection method S2cloudless by selecting ten bands of Sentinel-2 based
on the XGBoost and LightGBM tree learning algorithms for model inference, which is the
primary tool for Sentinel-hub cloud product production.

Other than the two-step “detection-removal” methods, Ji et al. [36] proposed a BC
smooth low-rank plus group sparse model to detect and remove clouds at the same time.

Cloud removal methods for a single image rarely consider cloud transparency informa-
tion. Surface information is often recovered approximately by interpolation or by mapping
convolutional layers based on relevant samples. In most cases, the information about areas
under thick clouds is completely lost. Cloud removal operations for such regions using
interpolation or mapping methods introduce significant errors and sometimes result in
useless images.

From the preceding description, this paper carries out experiments from a new cloud
detection paradigm by simulating the mixing relationship between surface information
and clouds, establishing a linear model based on the image superposition model. We
propose an integrated method for cloud detection, transparency estimation, and cloud
removal. This method can distinguish the foreground and background of mixed image
elements based on single-band images in order to achieve cloud removal in a single satellite
image. Considering that, the transparency of clouds varies in different bands of remote
sensing images, the reflected signal of clouds in the RGB channel is the same, and the blue
band is more sensitive to thin clouds. To promote the application of the model to multiple
bands in order to enhance the applicability and generalization ability of the model, this
paper uses the Sentinel-2 blue band for cloud-matting attempts. This idea mainly came
from applying deep learning in image-matting methods, which assume that the image’s
foreground and background are mixed by transparency information. The classic linear
superposition formula is shown in Equation (1) [37]. Image I can be decomposed into a
linear combination of foregrounds, F, and backgrounds, B:

I = αF + (1 − α)B, α ∈ [0, 1] (1)

where α is the cloud’s opacity (α = [0, 1]). The convolutional neural network can acquire
deeper feature information about the target [19], so the alpha matte of the foreground
image estimated using the convolutional neural network can better remove the background
information and extract the foreground information out of the image [38–40]. Given the
poor balance of the generated samples, this paper also improves the binary Tversky loss
function for multi-classification tasks. Through the improved Tversky loss function, we can
automatically balance the weight of multi-class samples in the complex and changeable
generated samples and focus the model’s attention on a specific class or multi-class samples.
In this manner, we can improve the prediction results of hard segmentation, effectively
distinguish thin and thick cloud regions, and recover cloud and shadow regions based on
cloud transparency information.

2. Methodology

2.1. Remote Sensing Imaging Process

The cloud removal model proposed in this paper is a deep-learning-based assumption.
Therefore, we simplify atmospheric transport operations by not considering the scattering
of particles in the air as well as aerosols. As shown in Figure 1, cloud occlusion between
the satellite and the ground surface results in a superposition between the reflected energy
from the ground surface and the reflected energy from the cloud’s top in the final reflected
energy obtained.
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Figure 1. A schematic diagram of the remote sensing imaging process. The reflected energy received
by sensors is a linear superposition of the reflected energy from the cloud’s top and the reflected
energy from the surface for given cloud transparency.

Different solar incidence angles form shadows that weaken or completely cover surface
information. The pixel composition of the reflected signal intensity received by the remote
sensing imaging system is as follows:{

ε = (1 − α)εground + αεcloud , (a)
ε = (1 − α)εground , (b)

(2)

where (a) represents the received reflective intensity of area with clouds and (b) repre-
sents the received reflective intensity of area with cloud shadows. α is the cloud opacity
(α = [0, 1]), εground is the reflection intensity at the surface, and εcloud is the reflection inten-
sity at the top of the cloud. Note that we assume constant solar irradiation with respect
to clouds in the remote sensing image and a fixed cloud brightness (random sampling
4000–6000). Cloud brightness and transparency can be better balanced using sample
generation based on Equations (1) and (2).

2.2. Model and Algorithm

The automatic generation of cloud-trimap is the first part of our proposed model,
followed by the generation of a cloud-matting mask and cloud removal and, finally, the
refinement and optimization of the cloud-matting mask and cloud removal’s result. Our
model contains two convolutional networks, as shown in Figure 2. The first convolutional
network (green) is the T-Net (Trimap generate network) and the other network (blue) is
the M-Net (Matting network). The T-Net is a semantic segmentation model that detects
clouds on satellite images. This model generates a cloud-trimap, which can classify the
image into opaque clouds, transparent clouds (uncertain regions), and non-clouds. The
M-Net is an end-to-end pixel estimation model that uses a multi-output method to fuse the
model’s feature extraction results to estimate cloud transparency and residuals between
the recovered and original images. Both T-Net and M-Net encoders adopt the Atrous
spatial pyramid pooling (ASPP) structure at the bottom layer to represent more scaled
information of image features with fewer parameters. The entire model can significantly
improve prediction accuracies by model fusion and residual calculation. B, F, and U in
Figure 2 represent the background, foreground, and conflicted regions, respectively. The
output’s results are not activated using the Softmax function because the loss in the T-Net
training process contains cross-entropy errors. We can obtain BS and US by using the same
method and, obviously, FS + BS + US = 1 where 1 denotes the pixel value of each image
element in the feature map.

FS =
exp(F)

exp(F) + exp(B) + exp(U)
(3)
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Figure 2. Two-step cloud-matting model.

The output result of picking M-Net contains two parts. The first part, αr, mainly
predicts the transparency information of clouds in the image. When the pixel is located in
an uncertain region, this part is very likely to have transparent clouds. Otherwise, αr can
be filtered.

αp = FS + USαr (4)

αp is the refinement of αr; when US shifts towards 1, then FS shifts towards 0. At the
same time, αp shifts towards αr. When FS shifts towards 1, then US shifts towards 0 and
αp shifts towards FS ( αp → 1). This simple filtering method can improve the prediction
result’s confidence level. It also effectively shields background information interference
and directs the model’s attention to the region where the image’s elements are mixed. The
residuals between the predicted image and the cloud-free image are output by the M-Net,
allowing the recovery of images using cloud transparency and the preservation of the
original image’s features.

Taking the derivative of both sides of the Equation (1), we have the following.

∂B
∂α

=
I − F + (1 − α)∂I/∂α

(1 − α)2 (5)

From Equation (5), we can observe that when (1 − α) shifts towards zero, even a
slight perturbation will result in a colossal mistake. The bottom map’s recovery is prone to
distortion. Permitting M-Net to directly recover the original surface’s information—which
is obscured by clouds—is unreliable without considering cloud transparency information.
The prediction results need to be masked for regions with poor reliability (the mask’s
threshold in Figure 2 is α ≥ 0.9). It is worth noting that the M-Net model’s input is the
channel’s superimposed feature map of both the T-Net’s input and output, and Softmax is
used to activate the T-Net’s output and project the feature value to [0,1].

Complex problems can be simplified by employing the two-step method. Compared
to the commonly used one-step method, the two-step method can fix a portion of the
parameters while training another portion, resulting in a smoother model optimization
process and faster training convergence. Interpretability improves over time, resulting in
more accurate predictions.
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For both T-Net and M-Net, we adopt the classic end-to-end (Sequence to Sequence,
Seq2Seq) structure, extract features via the encoder, and then fuse features via the decoder.
Due to a large number of parameters in the T-Net, a residual connection is adopted. Since
fewer parameters exist in the M-Net, the encoder and decoder channel stacking are adopted
to minimize information loss between feature maps. The encoding and decoding process
will still reduce the image’s sharpness when restored, so we will output the residuals to
recover the image to the maximum extent.

2.3. Loss Function

The model is evaluated using a combined loss function.
Pre-training T-Net: Our T-Net primarily uses the cross-entropy error as the error

function, according to Chen et al. [41]. The cross-entropy function is calculated using the
following formula.

Lcross = −
n

∑
i=1

xi log x̂i (6)

In Equation (6), [xi, x̂i] denotes the pixel value of the predicted cloud-trimap and
the real cloud-trimap, respectively. On the one hand, using only Lcross to generate cloud-
trimap is unsatisfactory because T-Net’s input categories are unbalanced, and the output’s
results are biased towards the background and conflicted regions, ignoring foreground
information. On the other hand, due to the sample generation scheme used in the paper, it
is challenging to add weights directly, making T-Net convergence difficult. The Tversky
function was created to solve the problem of unbalanced medical image classification
between focal and non-focal regions in machine learning by balancing the proportion of
false positives and false negatives in training [42], resulting in a higher callback rate and a
better balance between accuracy and sensitivity for the function. Therefore, we improve the
binary classification Tversky function to solve the problem of unbalanced T-Net samples.
In the binary classification problem, Tversky loss incorporates the benefits of focal loss [43]
and Dice loss [44,45], and it is applied to the image segmentation study with the following
formula transformation.

LTversky = 1 − ∑n
i=1 Pxi Px̂i + S

∑n
i=1 [(2Pxi + 1)(1 − α1Px̂i ) + α1Pxi ] + S

(7)

In the neural network’s training process, Pxi is the foreground probability of labeled
pixels, Px̂i is the foreground probability of predicted pixels, and α1 is the weight of control
parameters to balance the samples. We usually set 0 < S < 10−6 to ensure that the equation
holds, and LTversky is the corresponding loss function.

The Tversky weight balance function is designed for binary classification problems
and cannot directly apply to multiclassification problems. It is difficult to express the model
error with a fixed weight because the first step of our model generates a cloud-trimap
of images associated with multiple classifications. In addition, the trimap of each set of
images is uncertain. In this paper, we improve the Tversky loss function by assuming
that one or more classes of weights have a negative balance of significance. We build the
automatic balance loss function with the classification corresponding to the unique thermal
encoding channel.

TPk =
m0
∑

k=1

n
∑

i=1
Pk

xi
× Pk

x̂i

FPk =
n
∑

i=1
(

m1
∑

j=1
Pj

xi ×
m0
∑

k=1
Pk

x̂i
)

FNk =
n
∑

i=1
(

m0
∑

k=1
Pk

x̂i
×

m1
∑

j=1
Pj

xi )

(8)
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⎧⎪⎪⎨⎪⎪⎩
LTversky = 1 −

m0
∑

k=1

TPk
(TPk+βFPk+(1−β)FNk+S)m0

n
∑

k=1
TPk > 0

LTversky =
m0
∑

k=1

FPk+FNk
(M×N)m0

n
∑

k=1
TPk = 0

(9)

In Equations (8) and (9), m0 is the image channel of interest after one-hot encoding;
m1 is the remaining channels included in the one-hot encoding; n is the number of pixels
of the image; [Px, Px̂] corresponds to the predicted classification and labeled classification,
respectively; k and j represent the kth channel and jth channel of the image, respectively;
β is the weight balance parameter; [TPk, FPk, FNk] denotes the true positive rate, false
positive rate, and false negative rate of the attention channel, respectively; [M, N] is the
training sample size of the image; LTversky is the loss value; S is the factor that prevents the
denominator from proceeding to zero.

We effectively extend the dichotomous classification method to multi-categorization
scenario applications by improving the Tversky loss function. The method does not require
obtaining the sample’s share in advance. It can automatically balance the sample’s weights
based on the samples’ distribution characteristics, which can still effectively adjust the
model’s attention in the case of there being significant differences in the number of multi-
categorization samples, ensuring that the model’s optimization process does not favor the
more dominant category.

It is worth noting that when TPk is 0, the loss function LTversky degrades significantly.
To compensate for the loss in model training, we concentrate on optimizing the loss
function’s balance to be applied to any multiclassification model. To compensate for the
model’s training degeneracy, we focus on optimizing the loss function’s balance to increase
its applicability. LTversky directs the gradient optimizer towards the channel of interest for
iterative optimization using the improved Tversky loss function. As the number of training
increases, the number of false positives increases. The LTversky gradient direction shifts to
reduce both false positives and false negatives for iterative optimizations. The T-Net loss
function is calculated by adding Lcross and LTversky.

LT−Net = 0.5(Lcross + LTversky) (10)

Freeze T-Net and training M-Net: we fixed the weight of the T-Net network to train
the M-Net after several rounds of iterative T-Net output results converged. The final output
of the model contains two parts: cloud transparency estimation, αp, and the recovered
image, Ipre. We express the accuracy of αp as L||α||2 and the reconstruction error as Lc. The
multi-scale expression of the distribution of Lms−ssim and the image element error in terms
of Ipre are included. The αp error function can be expressed as follows.

L||α||2 =

√
n

∑
i=1

(xi − x̂i)
2 (11)

Lc =

√
n

∑
i=1

(ci − ĉi)
2 (12)

In Equations (11) and (12), [xi, x̂i] represents the pixel values of predicted αp and actual
α, respectively, and [ci, ĉi] represents the pixel values of the synthetic cloud removal image
and the actual cloud-free remote sensing image pixel values, respectively. The synthetic
cloud removal image is generated from the actual background image and αp, according to
Equation (1).

We introduce MS-SSIM as the Ipre error function; MS-SSIM is an image quality evalua-
tion method that merges image details at different resolutions. It can evaluate two images
based on their brightness, contrast, and structural similarity. The MS-SSIM loss function is
calculated as shown in Equation (13).

31



Remote Sens. 2023, 15, 904

Lms−ssim = 1 −
M

∏
m=1

(
2μpμg + c1

μ2
g + μ2

g + c1

)βm( 2σpg + c2

σ2
p + σ2

g + c2

)γm

(13)

M represents the scale factor, [μp, μg] denotes the mean value between the predicted
feature map and the actual image, [σp, σg] denotes the standard deviation between the
predicted image and the actual image, σpg denotes the covariance between the predicted
image and the actual image, [βm, γm] denotes the importance between the two multiplica-
tive terms, and [c1, c2] is a constant term used to prevent the divisor from being 0. It is
worth noting that the cloud occupation is usually tiny in remote sensing images. Therefore,
the loss value obtained by calculating the global error function is small and cannot guide
the optimization correctly.

We record the cloud-trimap output by the T-Net as the weight of the loss function,
ω, to solve the problem that M-Net’s error cannot be optimized to calculate the feature
mat’s local error (reduce the background error weight). Therefore, the Lms−ssim error
function is [μp, μg, σp, σg, σpg] = ω[μp, μg, σp, σg, σpg]. As shown in Equation (14), the M-
Net loss function combines the error functions of L||α||2 , Lc, and Lms−ssim. w denotes the
significant coefficient, which ensures that the image is similar to the actual image and
promotes the image’s element value to be more similar, and it will decrease as the number
of iterations increases.

LM−Net = w(L||α||2 + Lc) + (1 − w)Lms−ssim (14)

3. Experiments

3.1. Datasets

Existing cloud datasets are primarily designed for cloud detection, and they are accom-
panied by a mask for distinguishing clouds from other regions, which cannot be used for
cloud-matting operations. As a result, we need simulated remote sensing cloud images as
the model’s data driver. Therefore, in this paper, we refer to traditional matting sample gen-
eration cases such as the alphamatting.com dataset [46], portrait image matting dataset [47],
classical remote sensing image cloud detection dataset, L7Irish [48], and L8SPARCS [49].
Cloud-matting samples were obtained from the blue band of the Sentinel-2 satellite, and
the samples were pooled into one image as the actual label of cloud transparency; the
cloud-free Sentinel-2 blue band image was used as the base image according to Equation (1)
to build the training and validation dataset required for the study.

We used Equation (2) to assume that the absolute brightness of clouds is consistent
within a specific range, and the cloud’s transparency primarily determines the variation
of cloud light and darkness; thus, at first, we used the Sentinel-2 images from the sea to
produce a normalized alpha layer based on the color range. We created a cloud-trimap
based on the transparency threshold and added an offset (50–150 pixels) to simulate cloud
shadows on this foundation. Secondly, we selected multi-scene Sentinel-2 images with few
clouds in different areas and at different times. Then, we used a slice index to rank and build
a cloudy area mask one by one in order to obtain a cloud-free remote sensing image base
map. Thirdly, the base image was randomly cropped to the specified size, and then training
and validation samples were generated using the cloud transparency image, shadow image,
and random cloud brightness. Finally, we generated a total of 50,000 samples, of which 20%
were used as the validation set, 5% were used as the prediction set, and 75% were used as
the training set. Figure 3 depicts the dataset construction scheme and the result.
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Figure 3. Cloud-matting dataset generation. Columns 1–3: The cloud-free image base map with
Sentinel-2 Band2. The cloud transparency information notation is α. The cloud shadow notation is
f (1 − α), which is randomly generated according to cloud transparency, and f represents the offset
calculation. The fourth column is the trimap image of the cloud, and we set α > 0.9 relative to the
cloud-trimap foreground. The fifth column is the composite image with clouds.

Cloud-trimap is obtained using a 3 × 3 sliding window image expansion calculation
method based on cloud transparency. This aims to increase the tolerance of cloud detection
by incorporating all information on image elements that may be clouded into cloud-trimap,
and then they are further discriminated by the M-Net.

3.2. Evaluation Metrics

Our evaluation task involves cloud detection and cloud removal. The confusion matrix
statistics of precision, recall, and accuracy were used for the former. The specific calculation
is shown in Figure 4. For the latter, we used two methods to verify the results. 1. RMSE is
used to verify the accuracy of the alpha calculation directly, and 2. SSIM is used to calculate
the difference between the structural features of the predicted image and the real image.
3. The peak signal-to-noise ratio (PSNR) is also used. 4. The root mean square error (RMSE)
is used to directly count the pixel difference between the predicted and actual images.

 

Figure 4. Confusion matrix applied to the evaluation index.
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3.3. Implementation Details Evaluation Metrics

We compared and validated the cloud-matting method against the generated dataset
and the Sentinel-2 classification dataset ALCD established by Baetens et al. [50]. For better
verification, we also used three cloud detection methods and four de-clouding algorithms
to demonstrate its effectiveness.

The cloud detection methods used for comparisons include S2cloudless, which is
based on XGBoost and LightGBM tree gradient-boosting machine learning algorithms
used by Sentinel hub, the ESA’s (European Space Agency) atmospheric correction tool
Sen2cor2.09 [51], and the USGS’s (United States Geological Survey) remote sensing image
classification tool FMASK4.0. The other four cloud removal methods are as follows: dark
channel based on prior features, SpA-GAN based on attention mechanism, KNN-Image-
matting based on non-local similarity, and closed-form-matting based on image local
smoothness and color line model assumption.

We first validate the cloud detection performance on the ALCD dataset. As shown in
Figure 5, S2cloudless (p = 0.5), Sen2cor, FMASK4.0, and T-Net can effectively locate clouds
in the Sentinel-2 images. FMASK4.0 and T-Net detection results are more consistent with
the actual distribution of thin clouds. Sen2cor and S2cloudless tend to miss some thin cloud
features. Although S2cloudless can extract thin clouds better, as the threshold decreases, it
will lead to many misclassifications.

 

Figure 5. Cloud detection comparison experiments. The first to sixth columns are Band-2 image
information, S2cloudless cloud detection results with a probability greater than 0.5, Sen2cor-2.09
cloud detection results, FMASK4.0 cloud detection results, T-Net trisection prediction results, and
ALCD Tags.
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S2cloudless (p = 0.5) and Sen2cor extracted more refined results and higher differen-
tiation between clouds and snow in thick cloud regions, whereas FMASK4.0 has a high
number of misclassifications due to the lower differentiation between clouds and snow.
The T-Net’s results are moderately granular compared to S2cloudless (p = 0.5) and Sen2cor.
The T-net model can effectively distinguish thick clouds from thin clouds in trimap because
the expansion factor is used in the training process. The T-Net distinguishes clouds and
snow better because we build the corresponding bottom map information to enhance the
difference between clouds and snow. The misclassification can be effectively reduced in
areas where clouds and snow are separated. We calculated five groups of indicators based
on thick and thin clouds to compare the cloud detection accuracy of the four models further,
and the results are shown in Table 1.

Table 1. Comparison of the accuracy of four cloud detection methods.

Methods Sen2cor S2cloudless Fmask4.0 Ours-TNet Label

Precision (thin cloud) 0.6837 0.7712 0.7762 0.7981
Recall (thin cloud) 0.9632 0.9400 0.9271 0.9445

Accuracy (thin cloud) 0.9458 0.9560 0.9550 0.9596
IoU (thin cloud) 0.6663 0.7351 0.7315 0.7551

Cloud content (thin cloud) 9.4740 12.975 17.271 16.315 15.815
Precision (thick cloud) 0.6658 0.7172 0.7699 0.8019

Recall (thick cloud) 0.8835 0.8757 0.8643 0.8665
Accuracy (thick cloud) 0.9409 0.9448 0.9477 0.9596

IoU (thick cloud) 0.6122 0.6509 0.6868 0.7254
Cloud content (thick cloud) 4.4960 5.7000 13.400 10.810 12.190

Even if two repeat-pass images are used, obtaining the same surface reflection infor-
mation is hard. We use a simulated dataset to assess the robustness and accuracy of the
cloud removal algorithm. As described in the Introduction section, closed form-matting
is similar to our scheme proposed in this paper. Therefore, we emphatically describe
the difference from the other three models, such as dark channel, SpA-GAN, and KNN
image matting. The cloud removal results are shown in Figure 6. Since most de-clouding
models are built using RGB color images, this paper creates a set of corresponding RGB
cloud images. The image data types are converted using an alpha superposition operation,
resulting in differences in image color parameters in human vision. However, the actual
image element’s reflection signals are unaffected.

Dark-channel, closed-form matting, and cloud matting can filter out thin clouds well
for image recovery when there are thick or cirrus clouds in the image. In Figure 6, we can
see that dark-channel, SpA-GAN, closed-form matting, and cloud matting show a better
cloud removal effect when only thin clouds appear in the image. We rank the overall cloud
removal effect as our cloud-matting method > SpA-GAN > Dark channel > Closed form
mating > KNN image mating. However, it is worth noting the following.

1. When using the dark-channel for remote sensing image de-clouding operations, the
estimated projection size is often inversely proportional to the overall brightness of the
remote sensing image, resulting in a weakening of feature brightness and a reduction in
the overall brightness of the image.

2. Although the SpA-GAN used in this paper performed migration learning on the
generated dataset, the results are unsatisfactory. The model’s inference results are close to
fitting adjacent image elements. This method is better for de-clouding restoration in thin
cloud regions, but in thick cloud regions the model tends to generate image elements with
similar characteristics to the entire image, resulting in significant distortions.

3. Both dark-channel and SpA-GAN process the entire image, so regardless of the
presence of clouds, both models modify the pixel values of the original image, resulting
in pixel distortions in the de-clouded image and making them unsuitable for quantitative,
qualitative remote sensing and other studies.
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4. KNN image matting and closed-form matting perform de-clouding by estimating
the transparency of clouds. However, these methods require a substantial amount of prior
manual inputs, such as accurate trimap and maximum reflected brightness of cloud tops.
The accuracy of the two models drops significantly or even fails when only thin clouds are
in the image. KNN image matting and closed-form matting are limited for cloud removal
over remote sensing images.

 

Figure 6. Comparison of cloud removal results of five models. The first to seventh columns are
remote sensing images with clouds, remote sensing images without clouds, dark-channel, SpA-GAN,
KNN image matting, closed-form matting, and our proposed cloud-matting method, respectively.

We observed that the cloud transparency estimation image, i.e., opacity image α, can
be obtained using the de-clouded image as the background (Figure 7). Because image α
only has brightness variations, and it is no longer disturbed by the image’s background, it
can more intuitively reflect the effect of model de-clouding processes. The better the effect
of model de-clouding, the closer the brightness variation of the opacity image relative to the
label it represents. The degree of damage to the original image during model de-clouding
processes is represented by the purity of the opacity image.

According to Equation (2), α = (ε − εground)/(εcloud − εground). Theoretically, the
calculated α is greater than 0. The brightness of estimated α from the dark Channel is
closest to α̂, but the background of the α layer is disorderly. Most features are on this layer,
resulting in the serious distortion of thick cloud areas. The α obtained by SpA-GAN is
less stable, with significant variations in lightness, darkness, and purity, leading to image
distortion as well.
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KNN image matting is more accurate for α locations. The background of the obtained
α is purer than SpA-GAN. The estimation of the transparency probability value has a large
offset, making it difficult to recover the image accurately. Closed-form matting estimates
the brightness of α, and the purity of α is quite close to the label. However, there will be an
underestimation, leading to poor cloud removal effects.

Although there are various methods for single remote sensing image de-clouding,
cloud matting can better maintain the original image element information and is less likely
to cause image distortion, as shown in the above comparison. We used 640 sets of sliced
image pairs to evaluate the restored images in terms of RMSE, SSIM, and PSNR to compare
the effect of the five models further. Table 2 shows the results of the evaluation. The SpA-
GAN and cloud-matting methods produce the most accurate de-clouding results and cloud
transparency. The SpA-GAN metric results are very similar to cloud matting, especially
in the mean and minimum values of image de-clouding recovery, which are significantly
higher than other methods. However, this is the metric trap of SpA-GAN, which employs a
Nash equilibrium-trained model. SpA-GAN uses the model obtained by Nash equilibrium
training. Rather than removing the cloud by using the model, the better explanation is that
SpA-GAN creates a pixel to minimize the loss function via the generator. Therefore, the
model’s accuracy is often high, but the results can be better. As shown in Figures 6 and 7,
the result of SpA-GAN in the fourth row of the image is PSNR(Image) = 20.669, while the
result of our cloud-matting is PSNR(Image) = 2.820. The image element information in the
thick cloud region is completely covered. The thicker the cloud, the lower the reliability of
the cloud’s removal result. It is impossible to remove thick clouds by using only one image.
The results of SpA-GAN have significant errors, but the overall brightness and structure
of the image are very similar to the original one, which lead to large errors. In contrast,
cloud-matting results have a higher confidence level. It performs thin cloud removal well
in the presence of both thick and thin clouds without damaging the original image.

Table 2. Comparison of five cloud removal methods. The optimal value, average value, and worst
value of the cloud removal result are represented by green, blue, and red, respectively.

Metrics Dark-Channel SpA-GAN KNN Image Matting Closed-Form Matting Ours

RMSE (Image)
0.0233 0.0121 0.0073 0.0065 0.0025
0.1234 0.1098 0.8620 0.1429 0.2121
0.3396 0.3788 7.1633 1.1419 3.2967

SSIM (Image)
0.8198 0.9959 0.9922 0.9942 0.9992
0.4115 0.8321 0.6153 0.7418 0.8120
0.1542 0.2570 0.0276 0.1404 0.1040

PSNR (Image)
32.6296 44.1723 42.6939 43.6871 51.8999
19.3394 26.7704 11.1344 20.0632 23.8369
9.3797 8.4318 −17.1023 −1.1526 −10.3616

RMSE (Alpha)
0.0059 0.0071 0.0129 0.0159 0.0067
0.0803 0.0314 0.2382 0.1141 0.0263
0.2993 0.0793 0.8259 0.6057 0.0791

SSIM (Alpha)
0.9928 0.9941 0.9893 0.9953 0.9967
0.8171 0.8616 0.7537 0.8588 0.9810
0.4960 0.6412 0.0000 0.4268 0.9350

PSNR (Alpha)
44.5602 43.1151 37.7872 35.9338 43.3984
23.8009 30.5172 17.0365 21.1993 32.7192
10.4768 23.1798 1.6613 4.3540 22.0270
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Figure 7. Comparison of estimated cloud transparency images.

4. Discussion

Tversky is an efficient and excellent balance loss function for two-class samples. This
paper expanded it to multi-class applications. It is suitable for the dataset that we generated
and can be effectively applied to other types of negative balance sample research without
manual work. Setting the weights can automatically balance the weights of the samples.

Dark channel transmittance estimation has the drawback of not adhering to the
imaging mechanism of remote sensing images, causing the image to be enhanced or
weakened depending on the brightness of the pixels. The approximate pixels will still be
output, resulting in a sharp drop in the model’s reliability.

Generally speaking, GAN added a discriminator based on CNN, which makes the
generated image close to the domain of the target image through the Nash equilibrium
principle. Therefore, GAN has an additional constraint than CNN. The discriminator
calculates the distance between the generated and target image domains, which leads to
the fact that the results obtained by GAN on this basis are more in line with human vision.
The disadvantage of the methods of CGANs is that the generated data points conform
to image distribution characteristics. Furthermore, commonly used single-image cloud
removal methods will damage the original remote sensing image’s reflection information,
resulting in inconsistent brightness changes in the input and output images.

It is not reasonable to directly apply the SpA-GAN to pin the clouded images to
cloudless images. SpA-GAN is an image translation network with an attention mechanism
that can be well applied to image restoration tasks. However, if SpA-GAN removes clouds
from a single remote sensing image, the obtained cloud removal results must be over-
corrected. Since the model learns the mapping from cloudy to cloudless images, it must
generate pixels similar to the target domain (cloudless image) in the cloud coverage area.
However, clouds in remote sensing images usually cover multiple entities rather than a
part of them, which is troublesome for image restoration tasks. Therefore, SpA-GAN and
other generated countermeasures networks will output a pixel deception discriminator
subject to the target domain. It is challenging to locate these overcorrected pixels, resulting
in errors in the cloudless image. Since the characteristics of the cloud are similar to a noise,
the discriminator considers the output image true as long as it detects that the generated

38



Remote Sens. 2023, 15, 904

image conforms to the reasonable noise distribution. However, the generator can easily
acquire noise signal and deceive the discriminator. The loss function value provided by the
discriminator then is almost meaningless. SpA-GAN degenerates into a CNN network that
only relies on the generator and image similarity loss.

In contrast, our cloud-matting model is of great significance for cloud removal. As
long as the cloud can be accurately segmented from remote sensing images, cloud removal
can be completed without damaging the image surface information. There are many mature
methods in the field of cloud detection. The model structure adopted by our method is
simple. The model includes only an essential multi-scale image segmentation analysis.
Therefore, the accuracy has much room to improve in the future. In the following study,
we will perform the following: 1. The model will be improved and trained with the more
reliable and advanced backbone. 2. The difficulty of model training and migration will
be reduced by combining two-step and one-step methods. 3. The image base maps of
heterogeneous areas will be collected to improve the cloud removal results of the model.

5. Conclusions

In this paper, based on the principle of image superposition, we studied the cloud
removal of remote sensing images from a new perspective and discussed the principles,
advantages, and disadvantages of various single-image cloud removal methods. A set of
simulated cloud map generation schemes have been established and is open source. The
following conclusions can be drawn from the research findings.

1. The traditional cloud removal models for a single image can only restore the surface
information covered by thin clouds. The model’s reliability is significantly reduced when
thick and thin clouds coexist.

2. Our cloud-matting scheme only takes the reflection intensity at the top of the cloud
into consideration, which is more in line with the imaging mechanism of remote sensing
images.

3. Our cloud-matting scheme uses cloud detection to restore surface information based
on cloud opacity. It is easily mathematically interpretable, and it does not affect the original
cloud-free areas.

4. The experiment results show that our cloud-matting method outperforms other
methods. It is worth noting that the GAN image element’s reconstruction ability is powerful
in the cloud removal index, but it can easily appear “fabricated” when thick and thin
clouds coexist.

5. Using deep learning combined with cloud matting to remove clouds from a single re-
mote sensing image can effectively establish a cloud mask and show good anti-interference
performances when thick clouds and thin clouds coexist without damaging the surface
information of the original image. Cloud removal with a combination model is a valuable
research direction, and we will continue to work in this direction.
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Abstract: Among the current methods of synthetic aperture radar (SAR) automatic target recognition
(ATR), unlabeled measured data and labeled simulated data are widely used to elevate the perfor-
mance of SAR ATR. In view of this, the setting of semi-supervised few-shot SAR vehicle recognition
is proposed to use these two forms of data to cope with the problem that few labeled measured
data are available, which is a pioneering work in this field. In allusion to the sensitivity of poses of
SAR vehicles, especially in the situation of only a few labeled data, we design two azimuth-aware
discriminative representation (AADR) losses that suppress intra-class variations of samples with huge
azimuth-angle differences, while simultaneously enlarging inter-class differences of samples with the
same azimuth angle in the feature-embedding space via cosine similarity. Unlabeled measured data
from the MSTAR dataset are labeled with pseudo-labels from categories among the SARSIM dataset
and SAMPLE dataset, and these two forms of data are taken into consideration in the proposed loss.
The few labeled samples in experimental settings are randomly selected in the training set. The phase
data and amplitude data of SAR targets are all taken into consideration in this article. The proposed
method achieves 71.05%, 86.09%, and 66.63% under 4-way 1-shot in EOC1 (Extended Operating
Condition), EOC2/C, and EOC2/V, respectively, which overcomes other few-shot learning (FSL) and
semi-supervised few-shot learning (SSFSL) methods in classification accuracy.

Keywords: semi-supervised learning; few-shot learning; SAR target recognition; discriminative
representation learning

1. Introduction

As a longstanding and challenging problem in Synthetic Aperture Radar (SAR) im-
agery interpretation, SAR Automatic Target Recognition (SAR ATR) has been an active
research field for several decades. SAR ATR plays a fundamental role in various civil appli-
cations including prospecting and surveillance, and military applications such as border
security [1]. (Armored) vehicle recognition [2–4] in SAR ATR aims at giving machines the
capability of automatically identifying the classes of interested armored vehicles (such as
tank, artillery and truck), which is the focus of this work. Recently, high-resolution SAR
images are increasingly easier to produce than before, offering great potential for studying
fine-grained, detailed SAR vehicle recognition. Despite decades of effort by researchers,
including the recent successful preliminary attempts presented by deep learning [5–8],
as far as we know, the problem of SAR vehicle recognition remains an underexploited
research field with the following significant challenges [9].

• The lack of large, realistic, labeled datasets. Existing SAR vehicle datasets, i.e.,
the Moving and Stationary Target Acquisition and Recognition (MSTAR) dataset [10],
are too small and relatively unrealistic, and cannot represent the complex charac-
teristics of SAR vehicles [1] including imaging geometry, background clutter, occlu-
sions, and speckle noise and true data distributions, but are very easy for many
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machine-learning methods to achieve high performance with abundant training sam-
ples. Certainly, such SAR vehicle datasets are hard to create due to the non-cooperative
application scenario and the high cost of expert annotations. Therefore, label-efficient
learning methods deserve attention in such a context. In other words, in the recog-
nition missions of SAR vehicle targets, labeled SAR images of armored vehicles are
usually difficult to obtain and interpret in practice, which leads to an insufficient
sample situation in this field [11].

• Large intra-class variations and small inter-class variations. Variations in imaging
geometry, such as the imaging angle including azimuth angle and depression angle,
imaging distance and background clutter, lead to remarkable effects on the vehicle
appearance in SAR images (examples shown in Figure 1), causing large intra-class
variation. The aforementioned variations in imaging conditions can also cause ve-
hicles of different classes to manifest highly similar appearances (examples shown
in Figure 1), leading to small inter-class variations. Thus, SAR vehicle recognition
demands robust yet highly discriminative representations that are difficult to learn,
especially from a few labeled samples.

• The more difficult recognition missions among extended standard operation (EOCs).

In MSTAR standard operation condition (SOC), the training samples and testing sam-
ples are only different in the depression angles, which are 17◦ and 15◦. When it comes
to EOCs, different from the SOC, the variations in the depression angles and the con-
figuration or versions of targets lead to obvious imaging behaviors among SAR targets.
Thus, the recognition missions among EOCs are much more difficult than SOC in the
MSTAR dataset. This phenomenon also exists in the few-shot recognition missions.

Figure 1. The samples of four categories among the MSTAR SOC under the azimuth-angle normaliza-
tion. According to its azimuth angle, the SAR image from each category is selected every 24 degrees.
To ensure the continuity of the samples based on azimuth angles, the image of an adjacent azimuth
angle is chosen if there is a vacancy of the particular degree value.

Recently, in response to the aforementioned challenges, FSL [12] has been introduced
to recognition missions of SAR ATR, aiming to elevate the recognition rate through a few
labeled data. The lack of training data suppresses the performance of those CNN-based SAR
target classification methods, which achieve a high recognition accuracy when the labeled
data are sufficient [2]. To handle this challenge, simulated SAR images generated from
auto-CAD models and the mechanism of electromagnetic scattering are introduced into the
SAR ATR to elevate the recognition accuracy [13–15]. Although some common information
can be transferred from labeled simulated data, there still exists huge differences between
simulated data and measured data. The surroundings of the imaging target, the disturbance
of the imaging platform, and even the material of vehicles make it hard to simulate the
samples in the real environment. Because of this, some scholars are willing to leverage
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unlabeled measured data, instead of simulated data, in their algorithms, which launches
the settings of semi-supervised SAR ATR [16–19].

Building upon our previous study in [11], this paper presents the first study of SSFSL in
the field of SAR ATR, aiming to improve the model by making use of labeled simulated data
and unlabeled measured data. Besides leveraging these data, information on azimuth angle
is regarded as a kind of significant knowledge in digging discriminative representation in
this paper.

When there are enough labeled SAR training samples, the feature-embedding space
based on the azimuth angle of a category is approximately complete from 0◦ to 359◦. Hence,
under this situation, the influence of a lack of several azimuth angles on recognition rate
is limited. Nevertheless, if there are only an extremely small number of labeled samples,
their azimuth angle will dominate the SAR vehicle recognition results. Figure 1 shows
four selected categories of SAR images from the MSTAR SOC within the azimuth-angle
normalization [11]. It is obvious that the SAR vehicle images with huge differences in
azimuth angles from the same category own quite different backscattering behaviors, which
can be considered to be high intra-class diversity. When the difference of the azimuth angles
of samples is over 50 degrees, the backscattering behaviors, including the shadow area
and target area of the target, are dissimilar in accordance with the samples in the same
row of Figure 1. In the meantime, the SAR vehicle images with the same or adjacent
azimuth angles from different categories share similar backscattering behaviors, which
is the inter-class similarity. The samples in the same column in Figure 1 are homologous
in the appearance of the target area and shadow area, especially when vehicle types are
approximate; for instance, the group of BTR60 and BTR70, and T62 and T72. These two
properties among SAR images cause confusion in representation learning and mistakes in
classification results.

To solve this problem, an azimuth-aware discriminative representation (AADR) learn-
ing method is proposed, and this algorithm can grasp the distinguishable information
through azimuth angles among both labeled simulated data and unlabeled measured data.
The motivation of the method is to design a specific loss to let the model study not only the
category information but also the azimuth-angle information. For suppressing the intra-
class diversity, the pairs of SAR samples from the same category within huge azimuth-angle
differences are selected, and their absolute value of cosine similarity of representations will
be adjusted from zero-near value to one-near value. Simultaneously, to enlarge inter-class
differences, samples from different categories with the same azimuth angle are selected
and their feature vectors will be pulled from approximately overlap to near orthogonality
in the metric manner of cosine similarity. Following this idea, the azimuth-aware regular
loss (AADR-r) and its variant azimuth-aware triplet loss (AADR-t) are proposed, and
the details will be introduced in Section 3. Furthermore, the cross-entropy loss from the
labeled simulated datasets and the KL divergence of pseudo-labels from the unlabeled
measured dataset (MSTAR) are also considered in the proposed loss. After experiencing the
modification through the proposed loss, the algorithm is used to learn the discriminative
representation from the few-shot samples and be tested among the query set.

Based on the baseline in SSFSL, there is no overlap between categories among the
source domain and the target domain. The number of simulated data in the source domain
is abundant, whereas there are an extremely small number of measured samples with labels
and enough unlabeled measured data in the target domain. According to the settings of
SSFSL, samples from the support and query sets are distinguished by different depression
angles, and the unlabeled data are only chosen from the samples in the support set.

Extensive contrast experiments and ablation experiments were carried out to show
the performance of our method. In general, the three contributions of the paper are
summarized below:

• Due to the lack of large and realistic labeled datasets among SAR vehicle targets,
for the first time, we propose the settings of semi-supervised few-shot SAR vehicle
recognition, which takes both unlabeled measured data and labeled simulated data
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into consideration. In particular, simulated datasets act as the source domain in
FSL, while the measured dataset MSTAR serves as the target domain. Additionally,
the unlabeled data in MSTAR dataset are available in the process of model training.
This configuration is really close to the active task in few-shot SAR vehicle recognition
that labeled simulated data, and unlabeled measured data can be obtained easily.

• An azimuth-aware discriminative representation loss is proposed to learn the simi-
larity of representations of intra-class samples with large azimuth-angle differences
among the labeled simulated datasets. The representation pairs are considered to be
feature vector pairs, which are pulled close to each other in the direction of the vector.
Meanwhile, the inter-class differences of samples with the same azimuth angle are also
expanded by the proposed loss in the feature-embedding space. The well-designed
cosine similarity works as the distance to make representation pairs in the inter-class
be orthogonal to each other.

• tlo information and phase data knowledge are adopted in the stage of SAR vehicle data
pre-processing. Moreover, the variants of azimuth-aware discriminative representation
loss achieve 47.7% (10-way 1-shot SOC), 71.05% (4-way 1-shot EOC1), 86.09% (4-way
1-shot EOC2/C), and 66.63% (4-way 1-shot EOC2/V), individually. Plenty of contrast
experiments with other FSL methods and SSFSL methods prove that our proposed
method is effective, especially in three EOC datasets.

There are five sections in this paper. In Section 2, the semi-supervised learning
and its applications in SAR ATR, FSL and its applications in SAR ATR, and SAR target
recognition based on azimuth angle are introduced in the related work. The settings of
SSFSL among SAR target classification is presented in Section 3.1. Then, in Section 3.2,
the whole framework of the proposed AADR-r is shown. After that, AADR-t is described
in Section 3.3. Then, in Section 4, experimental results among SOC and three EOCs are
demonstrated in diagrams and tables. Sufficient contrast experiments, ablation experiments,
and implementation details are introduced and analyzed in Section 5. Finally, this paper is
concluded, and future work is designed in Section 6.

2. Related Work

2.1. Semi-Supervised Learning and Its Applications in SAR Target Recognition

(1). Semi-supervised learning: Semi-supervised learning uses both labeled and unla-
beled data to perform certain learning tasks. In contrast to supervised learning, it permits
the harnessing of large amounts of unlabeled data available in many cases [20]. Generally,
there are three representative approaches for semi-supervised learning—generative mod-
els [21,22], conditional entropy minimization [23], and pseudo-labeling [24]. Among the
methods of generative models, various auto-encoders [25,26] were proposed by adding
consistency regularization losses computed on unlabeled data. However, all unlabeled ex-
amples were encouraged to make confident predictions on some classes in the approaches
of conditional entropy minimization [27]. The means of pseudo-labeling [28], which was
adopted in this article, imputes approximate classes on unlabeled data by making predic-
tions from a model trained only on labeled data.

(2). Semi-supervised SAR target recognition: According to the classification of meth-
ods in semi-supervised learning, the methods of semi-supervised SAR target recognition
can also be divided into three parts. A symmetric auto-encoder was used to extract
node features and the adjacency matrix is initialized using a new similarity measurement
method [16]. The methods with generative adversarial networks were also popular in
solving the semi-supervised SAR target recognition [29]. In [30], the pseudo-labeling and
the consistency regularization loss were both adopted, and these unlabeled samples with
pseudo-labels were mixed with the labeled samples and trained together in the designed
loss to improve recognition performance. Multi-block mixed (MBM) in [31], which could
effectively use the unlabeled samples, was used to interpolate a small part of the training
image to generate new samples. In addition, semi-supervised SAR target recognition under
limited data was also studied in [18,19]. Kullback–Leibler (KL) divergence was introduced
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to minimize the distribution divergence between the training and test data feature repre-
sentations in [18]. The dataset attention module (DAM) was proposed to add the unlabeled
data into the training set to enlarge the limited label training set [32].

2.2. Few-Shot Learning and Its Applications in SAR Target Recognition

(1). Few-shot learning: Currently, few-shot learning is proposed to learn a classifier
from the base dataset and adapt with extremely limited supervised information of each class.
The methods to solve the few-shot learning problems are generally divided into metric-
based and optimization-based. The metric-based methods tend to classify the samples
by judging the distance between the query-set image and the support-set image, such as
matching networks [33], prototypical networks [34], deep nearest-neighbor neural network
(DN4) [35]. Optimization-based algorithms designed novel optimization functions [36],
better initialization of training models [37] and mission-adapted loss [38] to improve the
rapid adaptability to new tasks, which could be regard as common solutions in few-shot
learning methods.

(2). Semi-supervised few-shot learning: When there are only a few labeled examples
among novel classes, it is intuitive to use extra unlabeled data to improve the learning [39].
This leads to the setting of semi-supervised few-shot learning. Prototypical networks were
improved by Ren et al. [40] to produce prototypes for the unlabeled data. Liu et al. [41]
constructed a graph between labeled and unlabeled data and used label propagation to
obtain the labels of unlabeled data. By adding the confident prediction of unlabeled to
the labeled training set in each round of optimization, Li et al. [42] applied self-training in
semi-supervised few-shot learning. In [43], a simple and effective solution was proposed to
tackle the extreme domain gap by self-training a source domain representation on unlabeled
data from the target domain.

(3). Few-shot SAR target recognition: Few-shot SAR target recognition [44–53] has had
more and more emphasis placed on it in recent years. An AG-MsPN [9] was proposed to
consider both complex-value information of SAR data and the prior attribute information
of the targets. The connection-free attention module and Bayesian-CNN were proposed
to transfer common features from the electro-optical domain to the SAR domain for SAR
image classification in the extreme few-shot case [54]. The Siamese neural network [55]
was also ameliorated to cope with the problems of few-shot SAR target recognition [51].
The MSAR [45] with a meta-learner and a base-learner could learn a good initialization as
well as a proper update strategy. The inductive inference and the transductive inference
were adopted in the hybrid inference network (HIN) [49] to distinguish the samples in
the embedding space. These methods divided the MSTAR dataset into query set and
support set and the performance is not reflected on the whole MSTAR dataset. DKTS-N
was proposed to take SAR domain knowledge into consideration and evaluated among the
whole categories in the MSTAR dataset, but the performance of DKTS-N among MSTAR
EOCs was not pleasant according to [11].

2.3. SAR Target Recognition Based on Azimuth Angle

The information on azimuth angle, which is a kind of important domain knowledge
in SAR images, has been applied in the algorithms for a long time. Usually, a series of SAR
images with regular azimuth angles are input into the network, which is named multiview
or multi-aspect [56–60]. In [56], every input multiview SAR image was first examined by
sparse representation-based classification to evaluate its validity for multiview recogni-
tion. Then, the selected views were jointly recognized with joint sparse representation.
Multiview similar-angle target images were used to generate a joint low-rank and sparse
multiview denoising dictionary [57]. MSRC-JSDC learned a supervised sparse model from
training samples by using sample label information, rather than directly employing a
predefined one [61]. A residual network (ResNet) and bidirectional long short-term mem-
ory (BiLSTM) network was proposed to learn the azimuth-angle information among SAR
images [58]. However, to exploit the spatial and temporal features contained in the SAR
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image sequence simultaneously, this article proposed a sequence SAR target classification
method based on the spatial-temporal ensemble convolutional network (STEC-Net) [59].
The authors in [60] adopted a parallel network topology with multiple inputs and the
features of input SAR images from different azimuth angles would be learned layer by
layer. Although these above-mentioned methods made full use of the azimuth angles,
a certain number of SAR images with different azimuth angles were required, which was
impossible in extremely few-shot SAR target recognition. In this article, the discriminative
representation information among different samples is refined from specially designed loss
during model training.

3. Proposed Method

To cope with the challenge of semi-supervised few-shot SAR target recognition,
the AADR framework is proposed within three stages in Figure 2. In this section, the set-
tings of SSFSL are illustrated first. Then, the whole framework of AADR-r is introduced.
Finally, the variant loss AADR-t will be described in detail.

Figure 2. The whole framework of the azimuth-aware discriminative representation framework with
regular loss.

3.1. Problem Setting

Initially, the definition of terminology used in semi-supervised few-shot SAR target
recognition can be written as follows: a huge labeled simulated dataset
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Dsim =
{
(xi, li, αi)|i = 1, 2, . . . , p, li ∈ Csim

}
. xi is the image in the labeled simulated dataset

Dsim. li is the label of xi and the αi is the azimuth angle of the xi. Csim is the categories
among the simulated dataset. The measured MSTAR datasets are divided into Dtrain

mea
and Dtest

mea, according to the popular baseline. The train dataset and test dataset can be
formulated by

Dtrain
mea =

{
(xtrain

i , ltrain
i , αtrain

i )|i = 1, 2, . . . , r, ltrain
i ∈ Ctrain

mea
}

(1)

Dtest
mea =

{
(xtest

j , ltest
j , αtest

j )|j = 1, 2, . . . , s, ltest
j ∈ Ctest

mea

}
(2)

xtrain
i , ltrain

i , αtrain
i are the image, label and azimuth angle of the image among the train-

ing measured dataset, respectively, while xtest
j , ltest

j , αtest
j are the image, label and azimuth

angle of the image among the testing measured dataset. Ctrain
mea and Ctest

mea are the categories in
the training and testing dataset and satisfy the relationship of Ctrain

mea ⊇ Ctest
mea. Actually, in the

experiment settings of MSTAR SOC and EOC1, the relationship between categories among
training and testing sets is Ctrain

mea = Ctest
mea, while in the experimental settings of EOC2/C and

EOC2/V, there are more categories in the training set than categories in the testing set, so the
relationship changes to Ctrain

mea ⊃ Ctest
mea. The unlabeled measured dataset Dunlabel is the same

dataset as the Dtrain
mea without the label information, Dunlabel =

{
(xj, αj)|j = 1, 2, . . . , r,

}
.

N-way K-shot indicates that there are N categories and each category contains K
labeled samples. In most times, K is set to 1 or 5 in the experiments of MiniImageNet [36]
and Ominiglot [62]. At the pre-train stage, all the labeled data are sampled from the
Dsim, and the unlabeled data Dunlabel are the same samples as the Dtrain

mea but without the
labels. In addition, Dsim and Dunlabel are involved in the azimuth-aware discriminative
representation learning stage. It should be noted that there is not any FSL setting at either
the first or the second stages. At the few-shot recognition stage, N-way K-shot samples
are randomly selected from the Dtrain

mea , which act as the support set. All the data in Dtest
mea

compose the query set.

3.2. The Whole Framework with AADR-r

The whole framework of the azimuth-aware discriminative representation method
is illustrated in Figure 2. At the pre-training stage, after the processing of azimuth-angle
normalization, the simulated labeled data are fed into the deep neural network [6] within
cross-entropy loss.

min
θ

∑
(xi ,li ,αi)εDsim

Lce( fθ(xi), li) (3)

In Formula (3), a trained model φ with parameters θ0 and classifier are achieved. Due
to the plenty of labeled data in the labeled simulated dataset, the recognition accuracy
among Dsim is perfect, which is shown in the first row in the pre-training stage in Figure 2.
φ embeds the input image x into R

d. The input dim of the classifier is d, and the output
dim is the number of classes among labeled simulated dataset Csim. Then, the trained
model φ with parameters θ0 and the classifier is adopted to classify the unlabeled data
in Dtrain

mea with the pseudo-labels Csim. After that, the pseudo-label of each unlabeled data
are achieved, which is shown in Formula (4) and described in the second row in Figure 2.
Every pseudo-label Csim of the unlabeled image is fixed thorough the whole azimuth-aware
discriminative representation learning stage. Formula (5) describes the process of feature
extraction and classification, which appears many times in the training stage with the
changing parameters θ.

lj = fθ0(xj), ljεCsim, ∀xjεDunlabel (4)

fθ(xj) = classi f ier(φ(xj)) (5)

The azimuth-aware discriminative representation learning module works at the second
stage. Both simulated labeled data and unlabeled measured data experience azimuth-angle
normalization before being fed into the network. Among the simulated labeled data,
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the information on labels and azimuth angles is accessible, so it is feasible to calculate the
difference in azimuth angles between the samples from the same category. In the article,
the gap is set to 50 degrees. The selected pair of samples among simulated labeled datasets
obeys the rule according to Formula (6). The number of pairs in Psim is Nsim = Card(Psim),
which is involved in Formula (7). The cos distance restricts the directions among repre-
sentations of selected pairs. Before optimization, the cos distance of samples from the
same category with huge differences in azimuth angle is relatively close to zero. However,
through the designed azimuth-aware discriminative representation learning regular loss in
simulated labeled dataset modules, the above-mentioned situation can be alleviated and
the result of cos distance is guided to one. The cross-entropy loss of recognition among
simulated labeled datasets is also taken into consideration to restrict the adaptation of θ in
the whole optimization.

Psim =

{
(xi1 , li1 , αi1), (xi2 , li2 , αi2)|1 ≤ i1 < i2 ≤ p,

50 <
∣∣αi1 − αi2

∣∣ < 310, li1 = li2 εCsim

}
(6)

Lsim = ∑
(xi ,li ,αi)εDsim

Lce( fθ(xi), li) +
λ

Nsim
∑

1≤i1<i2≤p

1∣∣cos(φ(xi1), φ(xi2))
∣∣+ 1 (7)

When it comes to the unlabeled measured dataset Dunlabel , although the samples
are selected from the Dtrain

mea , only the pseudo-labels from the pre-training stage can be
achieved, which is lj in Formula (8). The azimuth angles of samples are known. It is
worth noting that, among the MSTAR dataset, the azimuth angles of any two samples
in one category are different. Therefore, in Dunlabel , if there are two samples with the
same azimuth angle, then these two samples must come from two different categories.
Actually, before optimization, the cos distance of these two samples may be closer to 1
than 0, because of the similar backscattering behaviors. The purpose of the designed loss
in Formula (9) is to make the model distinguish data from various categories within the
same azimuth angle, through which the proposed loss enlarges the inter-class differences
of samples and lets the feature vectors of these sample pairs be orthogonal to each other
as far as possible. The selected samples pair Punlabel is described in Formula (8) and the
number of pairs in Punlabel is Nunlabel = Card(Punlabel). λ is the hyper-parameter in the
loss. The KL loss introduces noise during training by encouraging the model to learn the
representations that emphasize the groupings induced by the pseudo-labels among the
unlabeled measured samples. The total loss of the second stage is shown in Formula (10).
In ablation experiments, the effects of different parts of loss will be discussed and the results
are shown in the corresponding tables.

Punlabel =

{
(xj1 , lj1 , αj1), (xj2 , lj2 , αj2)|
1 ≤ j1 < j2 ≤ r, αj1 = αj2

}
(8)

Lmea = ∑
(xj ,αj)εDunlabel

LKL( fθ(xj), lj) +
λ

Nunlabel
∑

1≤j1<j2≤r

∣∣cos(φ(xj1), φ(xj2))
∣∣ (9)

Ltotal = Lsim + Lmea (10)

In terms of the few-shot recognition stage, it is composed of a training and testing
process, as shown in Figure 2. N way K shot labeled samples are randomly selected from
the Dtrain

mea , acting as the support set, and all the samples in Dtest
mea comprise the query set.

The parameters θ are reserved from the second stage and frozen in this stage. Because the
output categories in the fully connected classifier are different between the second stage and
the third stage, the parameter of the classifier needs adapting through the few labeled data.
After that, the feature extractor and the fully connected classifier are tested through the
query set. The operation in the third stage is repeated 600 times and the average recognition
rate and variance are recorded.
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3.3. The Variants of AADR-t

In fact, the motivation of our designed AADR-r is similar to the triplet loss but without
the anchor samples. To compare with the standard triplet loss, the AADR-t is designed
to minimize the distance between an anchor sample and a positive sample with the same
category, and maximize the distance between the anchor sample and a negative sample of
a different category [63]. The differences between AADR-r and AADR-t are the selection
rules of sample pairs and the loss function, which all exist in the second stage. It is worth
noticing that, in this article, the selection of anchor sample (xa

i , la
i , αa

i ), its hard negative
sample (xn

i , ln
i , αn

i ) and its hard positive sample (xp
i , lp

i , α
p
i ) take the azimuth angle into

consideration. The hard negative sample shares the same azimuth angle as the anchor
samples, but they are from different categories. The hard positive sample is the same class
as the anchor sample but with a huge difference in azimuth angle. The details of selection
rules are shown in Formulas (11) and (12). The categories among unlabeled samples are
from pseudo-labels in the simulated dataset. The numbers of the triplet group in Pt

sim
and Pt

unlabel can be expressed through Nt
sim = Card(Pt

sim) and Nt
unlabel = Card(Pt

unlabel).
Unlike the max operation and settings of margin in the raw triplet loss, the proposed
AADR-t expands the cosine distance among the anchor sample and hard negative sample,
and pulls in the cosine distance between the anchor sample and hard positive sample in
both simulated dataset and unlabeled dataset, as shown in Formulas (13) and (14). The total
triplet loss is composed of the loss in the simulated dataset and the unlabeled dataset, which
is similar to Formula (10).

Pt
sim =

⎧⎪⎨⎪⎩
(xa

i , la
i , αa

i ), (xp
i , lp

i , α
p
i ), (xn

i , ln
i , αn

i )|
1 ≤ i ≤ p, 50 <

∣∣∣αa
i − α

p
i

∣∣∣ < 310,

αn
i = αa

i , la
i = lp

i 
= ln
i , la

i , lp
i , ln

i εCsim

⎫⎪⎬⎪⎭ (11)

Pt
unlabel =

⎧⎪⎪⎨⎪⎪⎩
(xa

j , la
j , αa

j ), (xp
j , lp

j , α
p
j ), (xn

j , ln
j , αn

j )|
1 ≤ j ≤ r, 50 <

∣∣∣αa
j − α

p
j

∣∣∣ < 310,

αn
j = αa

j , la
j = lp

j 
= ln
j , la

j , lp
j , ln

j εCsim

⎫⎪⎪⎬⎪⎪⎭ (12)

Lt
sim = ∑

(xa
i ,la

i ,αa
i )εDsim

Lce( fθ(xa
i ), la

i )+

λ

Nt
sim

∑
1≤i≤p

|cos(φ(xa
i ), φ(xn

i )| −
∣∣∣cos(φ(xa

i ), φ(xp
i )
∣∣∣ (13)

Lt
mea = ∑

(xa
j ,la

j ,αa
j )εDunlabel

LKL( fθ(xa
j ), la

j )+

λ

Nt
unlabel

∑
1≤j≤r

∣∣∣cos(φ(xa
j ), φ(xn

j )
∣∣∣− ∣∣∣cos(φ(xa

j ), φ(xp
j )
∣∣∣ (14)

Lt
total = Lt

sim + Lt
mea (15)

4. Experiments

To test the validity of AADR for semi-supervised few-shot SAR vehicle classification,
extensive experiments were performed under the experimental settings that the public
simulated SARSIM dataset and the simulated part of Synthetic and Measured Paired
Labeled Experiment (SAMPLE) dataset were combined as the Dsim. The public MSTAR
dataset was recognized as the Dmea. Actually, the few-shot labeled data are sampled from
Dtrain

mea , and the data in the query set Dtest
mea are from different depression angles or different

types. The unlabeled data are all from Dtrain
mea . Take MSTAR SOC (Standard Operating

Condition) as an example: the few-shot labeled data comprise the support set, while the
unlabeled measured data are selected from the set of 17◦ depression angle in MSTAR SOC,
while the samples within 15◦ depression angle in MSTAR SOC compose the query set.
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Contrast experiments with traditional classifiers, other advanced FSL approaches, and semi-
supervised learning approaches were conducted. Additionally, ablation experiments
with different dimensions of features, various base datasets, and errors in azimuth-angle
estimation are also involved in our work.

Without the phase data, the data in the SAMPLE dataset and the SARSIM dataset only
experience the gray-image adjustment and azimuth-angle normalization. However, the
samples in the MSTAR database experience the phase data augmentation as in [11].

The feature extractor network in Figure 2 contains four fully convolutional blocks [64],
which own a 3 × 3 convolution layer with 64, 128, 256 and 512 filters, relatively, 2 × 2
max-pooling layer, a batch-normalization layer, and a RELU (0.5) nonlinearity layer. We use
the SGD with momentum optimizer with momentum 0.9 and weight decay 1 × 10−4. All
experiments were run on a PC with an Intel single-core i9 CPU, four Nvidia GTX-2080 Ti
GPUs (12 GB VRAM each), and 128 GB RAM. The PC operating system was Ubuntu 20.04.
All experiments were conducted using the Python language on the PyTorch deep-learning
framework and CUDA 10.2 toolkit.

4.1. Datasets

(1). SARSIM: The public SARSIM dataset [15] contains seven kinds of vehicles (humvee
9657 and 3663, bulldozer 13,013 and 8020, tank 65,047 and 86,347, bus 30,726 and 55,473,
motorbike 3972 and 3651_Suzuki, Toyota car and Peugeot 607, and truck 2107 and 2096).
Every image is simulated in the identical situation to MSTAR and for 5◦ azimuth-angle
interval at the following depression angles (15◦, 17◦, 25◦, 30◦, 35◦, 40◦, and 45◦), so there
are 72 samples in each category under a certain depression angle.

(2). SAMPLE: The public SAMPLE dataset [65,66] is released by Air Force Research
Laboratory with both measured and simulated data in 10 sorts of armored vehicle (tracked
cargo carrier: M548; military truck: M35; wheeled armored transport vehicle: BTR70; self-
propelled artillery: ZSU-23-4; tanks: T-72, M1, and M60; tracked infantry fighting vehicle:
BMP2 and M2; self-propelled howitzer: 2S1). The azimuth angles of the samples, which
are 128x128 pixel, in the SAMPLE dataset are from 10◦ to 80◦ and their depression angles
are from 14◦ to 17◦. For every measured target, a corresponding synthetic image is created
with the same sensor and target configurations, but with totally different background
clutter. In order to make the categories in the few-shot recognition stage and pre-training
stage different, in most experiment settings in this article, only the synthetic images in
the SAMPLE dataset are leveraged and combined with the SARSIM dataset to expand the
richness of categories in the base dataset.

(3). MSTAR: In recent years, the MSTAR SOC dataset [10], including ten kinds of
military vehicles during the Soviet era (military truck: ZIL-131; tanks: T-72 and T-62;
bulldozer: D7; wheeled armored transport vehicle: BTR60 and BTR70; self-propelled
howitzer: 2S1; tracked infantry fighting vehicle: BMP2; self-propelled artillery: ZSU-23-4;
armored reconnaissance vehicle: BRDM2), was remarkable for verifying the algorithm
performance among SAR vehicle classification missions. Imaged under the airborne X-
band radar, the samples in this dataset were HH polarization mode within the resolution
of 0.3 × 0.3 m. Targets, whose depression angles were 17◦, were for the support set and
consisted of the unlabeled measured data, and 15◦ were for testing, whose numbers among
each category were shown in Table 1. The EOC1 (large depression variation) contained four
kinds of target (ZSU-23-4, T-72, BRDM-2 and 2S1). The depression angle of the training
and testing set were 17◦ and 30◦, relatively. The targets in the EOC2/C (configuration
variation) were various in parts of the vehicle, including explosive reactive armor (ERA)
and an auxiliary gasoline tank. The EOC2/V (version variation) corresponded to the target
version variation and shared the identical support set to the EOC2/C, but with a different
query set, which is displayed in Table 2.
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Table 1. Categories among MSTAR SOC.

SOC 17◦ Support Set 15◦ Support Set

2S1 299 274
BMP2 233 196
BRDM2 298 274
BTR60 256 195
BTR70 233 196
D7 299 274
T62 299 274
T72 232 196
ZIL131 299 274
ZSU-23-4 299 274

Table 2. Categories among MSTAR EOCs.

Target Support Set EOC1 Query Set

2S1 299 2S1-b01 288
BRDM2 298 BRDM2-E71 287
T72 691 T72-A64 288
ZSU-23-4 299 ZSU-23-4-d08 288

Target Support Set EOC2/C Query Set

BMP2-9563 233 T72-S7 419
BRDM2-E71 298 T72-A32 572
BTR70-c71 233 T72-A62 573
T72-SN132 232 T72-A63 573

T72-A64 573

Target Support Set EOC2/V Query Set

BMP2-9563 233 T72-SN812 426
T72-A04 573

BRDM2-E71 298 T72-A05 573
T72-A07 573

BTR70-c71 233 T72-A10 567
BMP2-9566 428

T72-SN132 232 BMP2-C21 429

4.2. Experimental Results
4.2.1. Experiments in SOC

Comparative experiments including classical classifiers (CC), FSL methods and SSFSL
methods are shown in Table 3, under the FSL setting among 10-way K-shot (K = 1, 2, 5, 10).
The average recognition rate and variance of 600 random experiments for each setting are
displayed in Table 3. CC algorithms include LR (logistic regression) [67], DT (decision
tree) [68], SVM (support vector machine) [69], GBC (gradient-boosting classifier) [70] and
RF (random forest) [71]. These methods share the same feature extractors as the AADR
with individual classifiers. The average recognition rate of algorithms in SSFSL is higher
than in FSL and CC in Table 3. Although the recognition rates of classical classifiers are
unsatisfactory in few-shot conditions, some of them achieve a higher result than SSFSL in
the settings of 10-way 10-shot. Our proposed AADR-r and AADR-t obtain a relatively better
recognition rate in few-shot settings (K ≤ 5), which are only a little lower than DKTS-N.
The DKTS-N outstrips all the other methods in the settings of both few-shot and limited
data in SOC for the following reason. The advantage of DKTS-N is learning the global and
local features. The samples in training and testing sets in MSTAR SOC are similar because
of the approximate depression angle 17◦ and 15◦. Hence, the global and local features
between the two sets are close and easy to be matched through Earth’s mover distance
and nearest-neighbor classifiers in DKTS-N. However, highly different configurations and
versions of armored vehicle lead to huge discrepancies in local features, which influence
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the scattering characteristics among SAR images. Therefore, the performance in the EOCs
of DKTS-N decreases, which is the restriction of this metric-learning-based algorithm.
The proposed AADR, an optimization-based method, overcomes the difficulties and shows
an overwhelming performance in EOCs.

Table 3. Few-shot classification accuracy of SOC among CC, FSL and SSFSL algorithms.

SOC (10-Way)

Algorithm 1-Shot 2-Shot 5-Shot 10-Shot

SVM [69] 38.75 ± 0.45 50.32 ± 0.41 67.49 ± 0.34 77.99 ± 0.27
LR [67] 41.96 ± 0.35 52.82 ± 0.37 69.06 ± 0.32 79.52 ± 0.24

CC DT [68] 18.54 ± 0.47 26.02 ± 0.44 40.70 ± 0.43 50.31 ± 0.38
GBC [70] 34.64 ± 0.41 36.49 ± 0.40 38.72 ± 0.39 47.56 ± 0.36
RF [71] 18.64 ± 0.50 24.79 ± 0.43 39.96 ± 0.38 51.86 ± 0.35

DeepEMD [72] 36.19 ± 0.46 43.49 ± 0.44 53.14 ± 0.40 59.64 ± 0.39
DeepEMD grid [73] 35.89 ± 0.43 41.15 ± 0.41 52.24 ± 0.37 56.04 ± 0.31
DeepEMD sample [73] 35.47 ± 0.44 42.39 ± 0.42 50.34 ± 0.39 52.36 ± 0.28

FSL DN4 [35] 33.25 ± 0.49 44.15 ± 0.45 53.48 ± 0.41 64.88 ± 0.34
Prototypical Network [34] 40.94 ± 0.47 54.54 ± 0.44 69.42 ± 0.39 78.01 ± 0.29
Relation Network [74] 34.23 ± 0.47 41.89 ± 0.42 54.32 ± 0.37 64.45 ± 0.32
DKTS-N [11] 49.26 ± 0.48 58.51 ± 0.42 72.32 ± 0.32 84.59 ± 0.24

ICI [75] 49.18 ± 0.54 54.31 ± 0.46 57.82 ± 0.35 63.92 ± 0.22
EP [76] 44.74 ± 0.64 47.82± 0.57 53.20 ± 0.46 57.16 ± 0.30
PPSML [77] 36.56 ± 0.48 46.19 ± 0.34 59.56 ± 0.23 73.36 ± 0.16

SSFSL STARTUP [43] 36.19 ± 0.33 49.81 ± 0.32 65.27 ± 0.26 74.47 ± 0.20
STARTUP (no SS) [43] 37.96 ± 0.37 51.61 ± 0.39 67.17 ± 0.30 75.47 ± 0.19
ConvT [78] 42.57 ± 0.79 54.37 ± 0.62 75.16 ± 0.21 88.63 ± 0.22
our AADR-r λ = 0.5 46.84 ± 0.43 57.00 ± 0.37 69.12 ± 0.27 78.19 ± 0.20
our AADR-t λ = 0.7 47.70 ± 0.45 58.37 ± 0.38 69.91 ± 0.29 78.77 ± 0.19

4.2.2. Experiments in EOCs

Due to the huge differences among SAR vehicle images, the FSL missions are harder
in EOCs than in SOC. However, most of the SSFSL methods are better than FSL methods in
the results of both SOC setting and EOCs settings, which means the usage of unlabeled data
is beneficial for the FSL among SAR vehicles. In addition, the awareness of the azimuth
angle also helps the model to grasp the important domain knowledge among SAR vehicles
and overcome the intra-class diversity and inter-class similarity in few-shot conditions.
From Table 4, it is obvious that our proposed AADR-r and AADR-t do a good job in EOCs,
and the recognition results are much higher than other FSL methods and SSFSL methods.
Instead of comparing the metric distances between the features, the model optimization
through designed loss performs well in a large difference in depression angle, vehicle
version, and configuration.

A similar process with different losses causes different results such that the accuracy
of AADR-r exceeds AADR-t in most times. In fact, the categories of the anchor sample,
hard negative sample, and hard positive sample among unlabeled data are generated by
the trained model in the pre-training stage, according to Figure 2. Thus, the pseudo-labels
participate in the loss and influence the result. For instance, the anchor sample and its hard
negative sample are from the different categories, which are the pseudo-labels among the
simulated data. However, if these two samples are from the same actual category in Dtrain

mea ,
this will lead to the wrong training in the second stage. Therefore, the results of AADR-t
contain more uncertainties than AADR-r.
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Table 4. Few-shot classification accuracy of EOCs.

EOC1 (4-Way)

Algorithm 1-Shot 2-Shot 5-Shot 10-Shot

DeepEMD [72] 56.81 ± 0.99 62.8 ± 0.78 65.16 ± 0.61 67.58 ± 0.49
DeepEMD grid [73] 55.95 ± 0.43 57.46 ± 0.41 63.81 ± 0.37 65.72 ± 0.31
DeepEMD sample [73] 49.65 ± 0.44 54.00 ± 0.42 58.19 ± 0.39 60.34 ± 0.28

FSL DN4 [35] 46.59 ± 0.83 51.41 ± 0.69 58.11 ± 0.49 62.15 ± 0.43
Prototypical Network [34] 53.59 ± 0.93 56.57 ± 0.53 61.94 ± 0.48 65.13 ± 0.43
Relation Network [74] 43.21 ± 1.02 46.93 ± 0.81 54.97 ± 0.56 38.62 ± 0.49
DKTS-N [11] 61.91 ± 0.91 63.94 ± 0.73 67.43 ± 0.48 71.09 ± 0.41

ICI [75] 57.90 ± 1.03 61.02 ± 0.84 64.31 ± 0.61 65.49 ± 0.45
EP [76] 51.46 ± 0.85 55.81 ± 0.72 57.62 ± 0.59 58.20 ± 0.49
PPSML [77] 65.01 ± 0.96 74.32 ± 0.79 79.56 ± 0.61 84.23 ± 0.46

SSFSL STARTUP [43] 52.83 ± 0.60 60.20 ± 0.52 69.23 ± 0.40 74.07 ± 0.26
STARTUP (no SS) [43] 63.33 ± 0.67 70.99 ± 0.58 76.34 ± 0.35 77.77 ± 0.25
ConvT [78] 59.57 ± 0.76 64.06 ± 0.88 68.17 ± 0.38 74.80 ± 0.20
our AADR-r λ = 0.5 71.05 ± 0.74 76.00 ± 0.57 82.52 ± 0.38 85.83 ± 0.33
our AADR-t λ = 0.7 70.02 ± 0.69 75.43 ± 0.59 81.13 ± 0.42 83.61 ± 0.33

EOC2/C (4-Way)

Algorithm 1-Shot 2-Shot 5-Shot 10-Shot

DeepEMD [72] 38.39 ± 0.86 45.65 ± 0.75 54.53 ± 0.60 62.13 ± 0.50
DN4 [35] 46.13 ± 0.69 51.21 ± 0.62 58.14 ± 0.54 63.08 ± 0.51

FSL Prototypical Network [34] 43.59 ± 0.84 51.17 ± 0.78 59.15 ± 0.70 64.15 ± 0.61
Relation Network [74] 42.13 ± 0.90 48.24 ± 0.82 53.12 ± 0.71 36.28 ± 0.59
DKTS-N [11] 47.26 ± 0.79 53.61 ± 0.70 62.23 ± 0.56 68.41 ± 0.51

ICI [75] 69.85 ± 1.73 73.62 ± 1.44 80.26 ± 1.10 85.32 ± 0.93
EP [76] 81.74 ± 1.35 86.36 ± 1.02 89.68 ± 0.81 93.77 ± 0.65
PPSML [77] 46.67 ± 1.66 50.83 ± 1.31 60.85 ± 1.09 71.32 ± 0.85

SSFSL STARTUP [43] 67.22 ± 1.47 79.54 ± 1.41 89.95 ± 0.86 95.95 ± 0.50
STARTUP (no SS) [43] 69.42 ± 1.29 80.33 ± 1.16 91.46 ± 0.94 96.38 ± 0.46
ConvT [78] 44.32 ± 0.65 51.93 ± 0.82 64.12 ± 0.34 89.74 ± 0.18
our AADR-r λ = 0.5 83.78 ± 1.19 90.41 ± 0.71 95.69 ± 0.34 97.02 ± 0.17
our AADR-t λ = 0.7 82.52 ± 1.06 87.38 ± 0.77 90.65 ± 0.56 92.22 ± 0.38

EOC2/V (4-Way)

Algorithm 1-Shot 2-Shot 5-Shot 10-Shot

DeepEMD [72] 40.92 ± 0.76 49.12 ± 0.65 58.43 ± 0.51 67.64 ± 0.42
DN4 [35] 47.00 ± 0.72 52.21 ± 0.61 58.87 ± 0.55 63.93 ± 0.52

FSL Prototypical Network [34] 45.13 ± 0.72 52.86 ± 0.65 62.07 ± 0.52 67.71 ± 0.40
Relation Network [74] 40.24 ± 0.91 46.32 ± 0.82 54.22 ± 0.68 35.13 ± 0.52
DKTS-N [11] 48.91 ± 0.70 55.14 ± 0.58 65.63 ± 0.49 70.18 ± 0.42

ICI [75] 50.75 ± 1.38 56.44 ± 1.12 68.19 ± 1.01 84.00 ± 0.83
EP [76] 51.33 ± 1.22 55.48 ± 1.07 61.62 ± 0.89 64.16 ± 0.65
PPSML [77] 46.74 ± 1.14 51.66 ± 0.96 61.09 ± 0.87 71.43 ± 0.61

SSFSL STARTUP [43] 50.94 ± 1.06 61.04 ± 1.01 68.40 ± 0.74 75.07 ± 0.42
STARTUP (no SS) [43] 53.63 ± 0.98 63.14 ± 0.91 71.89 ± 0.67 80.18 ± 0.47
ConvT [78] 42.27 ± 0.89 58.27 ± 0.68 68.05 ± 0.52 83.55 ± 0.25
our AADR-r λ = 0.5 66.63 ± 1.21 73.99 ± 0.96 81.41 ± 0.45 84.64 ± 0.32
our AADR-t λ = 0.7 62.77 ± 1.24 69.42 ± 0.92 77.77 ± 0.55 83.10 ± 0.41

5. Discussion

In this section, the value of hyper-parameter λ in the total loss is discussed, which
determines the proportion of the azimuth-aware discriminative representation learning
loss. Then, the influence of different compositions of categories among base datasets is
analyzed in this subsection. Moreover, the dimension configuration of the feature extractor
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is also discussed. The azimuth angles are accurate in the processing of normalization, but in
this subsection, the angle errors are taken into account in both MSTAR SOC and EOCs.

5.1. The Influence of Loss Modules

In Tables 5 and 6, the influence of different loss modules and their parameters on
the recognition rate is shown, and other experiment settings are the same. Both 10-way
recognition in SOC and 4-way recognition in EOCs are conducted. Azimuth-aware in the
table is the proposed module in this article, which uses azimuth angle to suppress intra-
class diversity of samples with huge azimuth-angle differences and enlarged inter-class
differences of samples. The × in the table means that the related loss is not in the total loss.
The SimCLR module is proposed in [23] and widely leveraged in semi-supervised learning.
It encourages augmentations such as cropping, adding noise, and flipping. KL and CE
indicate the Kullback–Leibler divergence and the cross-entropy loss, respectively. “-r” and
“-t” represent the “AADR-r” and “AADR-t” and the hyper-parameter λ ranges from 0.1
to 0.7.

Table 5. Influence of different loss module among SOC (10-way).

Azimuth-
Aware

KL CE SimCLR 1-Shot 2-Shot 5-Shot 10-Shot

� � � � 36.19 ± 0.33 49.81 ± 0.32 65.27 ± 0.26 74.47 ± 0.20

� � � � 37.96 ± 0.37 51.61 ± 0.39 67.17 ± 0.30 75.47 ± 0.19

-r (λ = 0.7) � � � 46.23 ± 0.47 55.26 ± 0.40 68.84 ± 0.26 77.32 ± 0.19

-r (λ = 0.5) � � � 46.84 ± 0.43 57.00 ± 0.37 69.12 ± 0.27 78.19 ± 0.20

-r (λ = 0.3) � � � 43.92 ± 0.42 53.65 ± 0.38 68.88 ± 0.29 77.86 ± 0.19

SOC -r (λ = 0.1) � � � 41.68 ± 0.41 53.79 ± 0.36 67.06 ± 0.27 76.13 ± 0.20

-r (λ = 0.7) � � � 38.94 ± 0.41 48.17 ± 0.37 59.95 ± 0.27 68.32 ± 0.22

-t (λ = 0.7) � � � 47.70 ± 0.45 58.37 ± 0.38 69.91 ± 0.29 78.77 ± 0.19

-t (λ = 0.5) � � � 41.94 ± 0.43 51.13 ± 0.39 63.27 ± 0.28 71.21 ± 0.21

-t (λ = 0.3) � � � 43.76 ± 0.43 53.56 ± 0.39 65.34 ± 0.29 74.77 ± 0.22

-t (λ = 0.1) � � � 41.17 ± 0.37 55.17 ± 0.34 68.05 ± 0.27 76.19 ± 0.21

The loss in the first row in each experiment setting is the result of STARTUP [43] and
the loss in the second row is the result of STARTUP (no SS) [43]. Although the SimCLR
module is beneficial to the classification rate in optical image datasets, it is obvious that the
total loss without SimCLR (no SS) shows a better performance. Actually, the targets are in
the center of the images and with the behaviors of backscatterings, which is different from
the optical images. The operations in the SimCLR module, such as cropping, adding noise,
and flipping, are not suitable for the SAR vehicle images. For instance, the crop operation
may cut the key part of the SAR vehicles and the added noise is not reasonable according
to the SAR imaging mechanism. The AADR-r is more stable than its variants AADR-t
because the anchor samples among AADR-t, involving the pseudo-labels, which are the
classification results of the unlabeled data, participate in the triplet loss. Every unlabeled
sample actually owns its real label. If different unlabeled samples, which are from the same
real category, are classified into different pseudo-labels, the results of AADR-t will be poorly
influenced. The λ indicates the proportion of the azimuth-aware module in the total loss,
and a fixed λ cannot be competent to all experimental settings. Comparatively, the result of
λ = 0.5 in AADR-r is better. When it comes to the contribution of KL divergence, which is
an important part of the semi-supervised learning with pseudo-labeling, it is easy to see
that the absence of KL in the AADR-r with λ = 0.7 decreases a lot, compared to the raw
contrast version.
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Table 6. Influence of different loss module among EOCs (4-way).

Azimuth-Aware KL CE SimCLR 1-Shot 2-Shot 5-Shot 10-Shot

� � � � 52.83 ± 0.60 60.20 ± 0.52 69.23 ± 0.40 74.07 ± 0.26

� � � � 63.33 ± 0.67 70.99 ± 0.58 76.34 ± 0.35 77.77 ± 0.25

-r (λ = 0.7) � � � 66.98 ± 0.61 72.17 ± 0.46 76.60 ± 0.31 81.80 ± 0.29

-r (λ = 0.5) � � � 71.05 ± 0.74 76.00 ± 0.57 82.52 ± 0.38 85.83 ± 0.33

-r (λ = 0.3) � � � 70.62 ± 0.68 75.91 ± 0.56 80.11 ± 0.31 83.70 ± 0.28

EOC1 -r (λ = 0.1) � � � 68.31 ± 0.68 74.50 ± 0.51 81.74 ± 0.30 84.87 ± 0.21

-r (λ = 0.7) � � � 60.36 ± 0.41 65.87 ± 0.74 70.32 ± 0.52 71.47 ± 0.38

-t (λ = 0.7) � � � 70.02 ± 0.69 75.43 ± 0.59 81.13 ± 0.42 83.61 ± 0.33

-t (λ = 0.5) � � � 61.34 ± 0.94 66.07 ± 0.80 70.35 ± 0.55 72.08 ± 0.42

-t (λ = 0.3) � � � 65.34 ± 0.93 70.90 ± 0.79 76.34 ± 0.56 78.86 ± 0.43

-t (λ = 0.1) � � � 65.13 ± 0.57 69.24 ± 0.52 77.72 ± 0.41 82.09 ± 0.32

� � � � 67.22 ± 1.47 79.54 ± 1.41 89.95 ± 0.86 95.95 ± 0.50

� � � � 69.42 ± 1.29 80.33 ± 1.16 91.46 ± 0.94 96.38 ± 0.46

-r (λ = 0.7) � � � 76.32 ± 1.46 83.64 ± 1.11 91.15 ± 0.63 94.81 ± 0.43

-r (λ = 0.5) � � � 83.78 ± 1.19 90.41 ± 0.71 95.69 ± 0.34 97.02 ± 0.17

-r (λ = 0.3) � � � 81.60 ± 1.49 89.13 ± 1.02 95.41 ± 0.49 97.02 ± 0.30

EOC2/C -r (λ = 0.1) � � � 86.09 ± 1.13 92.75 ± 0.75 97.00 ± 0.48 99.00 ± 0.24

-r (λ = 0.7) � � � 70.05 ± 2.34 80.86 ± 1.65 89.95 ± 1.12 90.27 ± 1.06

-t (λ = 0.7) � � � 82.52 ± 1.06 87.38 ± 0.77 90.65 ± 0.56 92.22 ± 0.38

-t (λ = 0.5) � � � 82.45 ± 2.19 90.04 ± 1.41 94.16 ± 0.81 95.63 ± 0.56

-t (λ = 0.3) � � � 82.50 ± 2.20 90.13 ± 1.42 94.40 ± 0.80 95.65 ± 0.58

-t (λ = 0.1) � � � 68.83 ± 1.14 80.28 ± 1.04 90.16 ± 0.74 95.25 ± 0.45

� � � � 50.94 ± 1.06 61.04 ± 1.01 68.40 ± 0.74 75.07 ± 0.42

� � � � 53.63 ± 0.98 63.14 ± 0.91 71.89 ± 0.67 80.18 ± 0.47

-r (λ = 0.7) � � � 56.15 ± 1.20 61.50 ± 0.99 74.66 ± 0.66 83.92 ± 0.39

-r (λ = 0.5) � � � 66.63 ± 1.21 73.99 ± 0.96 81.41 ± 0.45 84.64 ± 0.32

-r (λ = 0.3) � � � 61.94 ± 1.32 69.22 ± 1.14 79.06 ± 0.68 84.99 ± 0.40

EOC2/V -r (λ = 0.1) � � � 60.93 ± 1.04 66.36 ± 0.90 74.40 ± 0.62 81.46 ± 0.40

-r (λ = 0.7) � � � 53.21 ± 1.5 60.87 ± 1.26 69.53 ± 0.89 74.28 ± 0.71

-t (λ = 0.7) � � � 62.77 ± 1.24 69.42 ± 0.92 77.77 ± 0.55 83.10 ± 0.41

-t (λ = 0.5) � � � 57.76 ± 1.65 64.61 ± 1.28 73.11 ± 0.89 78.47 ± 0.58

-t (λ = 0.3) � � � 58.04 ± 1.64 65.20 ± 1.26 74.23 ± 0.88 79.75 ± 0.57

-t (λ = 0.1) � � � 54.62 ± 1.11 62.98 ± 0.96 74.34 ± 0.68 82.24 ± 0.43

5.2. Estimation Errors of Azimuth Angle

Figure 3 illustrates the accuracy of SOC and EOCs with various azimuth-angle es-
timation errors from 1-shot to 30-shot in 10-way and 4-way. The five-set of experiments
shares the same configurations and parameters but with random estimation errors within a
given range. The given range ±α◦ indicates that the estimation errors of azimuth-angle
range from −α◦ to α◦. ±0◦ shows that the estimation error of azimuth angle is approximate
to zero and achieves the highest recognition rate in the figure, which is regarded as the
baseline. From the figure, when the estimation azimuth-angle errors are less than ±5◦,
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there are almost 1% decreases in comparison to the baseline in SOC, EOC1, and EOC2/V.
This demonstrates that our AADR is impressive under low estimated errors of azimuth
angle. If the random errors ascend to ±20◦, the recognition rates will witness a nearly
10% drop in SOC and EOC1. However, in the result of EOC2/C and EOC2/V, within the
changes among weapon configurations and versions, the impact of estimated azimuth error
on the accuracy is relatively tiny. According to these results, the estimated errors of azimuth
angle have a more marked influence on the large variation of depression angle between the
source tasks and the target tasks, than the changes in version or weapon configuration.

Figure 3. The line charts of estimated azimuth-angle errors to the accuracy among SOC and EOCs.

6. Conclusions

To sum up, we put forward the AADR to deal with the task of few-shot SAR target
classification, especially in the situations of a huge difference between support sets and
query sets. The use of unlabeled measured data and labeled simulated data are one of the
key means to elevate the recognition rate in a fresh semi-supervised manner. Additionally,
azimuth-aware discriminative representation learning is also an available way to cope
with the intra-class diversity and inter-class similarity among vehicle samples. In gen-
eral, a large number of experiments showed that AADR was more impressive than other
FSL algorithms.

There are still some flaws in the proposed methods. First, due to the optimization-
based design, the classifier of the fully connected layer in AADR is not pleasant when
the number of labeled data is over 10. According to Figure 3, as the number increases,
the elevation of performance is limited. Hence, how to use more labeled data is significant
to making the AADR powerful in situations of both few-shot and limited data. Second,
the hyper-parameter λ in the loss, which indicates the proportion of azimuth-aware module,
is fixed in the current algorithm. From the results, it is hard to determine a certain value of
λ that can fit four experiments. Thus, a self-adaptation λ in the loss, related to the training
epochs and learning rate, can guide the gradient descent in a better way.
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Abbreviations

The following abbreviations are used in this manuscript:

SAR Synthetic Aperture Radar
ATR Automatic Target Recognition
AADR Azimuth-Aware Discriminative Representation
EOC Extended Operating Condition
SOC Standard Operating Condition
FSL Few-shot Learning
SSFSL Semi-supervised Few-shot Learning
MSTAR Moving and Stationary Target Acquisition and Recognition
KL Kullback–Leibler
MBM Multi-block mixed
DAM Dataset attention module
DN4 Deep Nearest-Neighbor Neural Network
HIN Hybrid Inference Network
ResNet Residual Network
BiLSTM Bidirectional Long Short-term Memory
STEC-Net Spatial-temporal Ensemble Convolutional Network
SAMPLE Synthetic and Measured Paired Labeled Experiment
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Abstract: Remote image semantic segmentation technology is one of the core research elements in
the field of computer vision and has a wide range of applications in production life. Most remote
image semantic segmentation methods are based on CNN. Recently, Transformer provided a view of
long-distance dependencies in images. In this paper, we propose RCCT-ASPPNet, which includes
the dual-encoder structure of Residual Multiscale Channel Cross-Fusion with Transformer (RCCT)
and Atrous Spatial Pyramid Pooling (ASPP). RCCT uses Transformer to cross fuse global multiscale
semantic information; the residual structure is then used to connect the inputs and outputs. ASPP
based on CNN extracts contextual information of high-level semantics from different perspectives
and uses Convolutional Block Attention Module (CBAM) to extract spatial and channel information,
which will further improve the model segmentation ability. The experimental results show that the
mIoU of our method is 94.14% and 61.30% on the datasets Farmland and AeroScapes, respectively, and
that the mPA is 97.12% and 84.36%, respectively, both outperforming DeepLabV3+ and UCTransNet.

Keywords: remote image; deep learning; semantic segmentation; CNN; multiscale feature fusion; Transformer

1. Introduction

With the continuous development of artificial intelligence technology, computer vision
has attracted much attention as one of the important research areas. Unlike the other fields
of computer vision, such as image classification, object detection, and instance segmentation,
current mainstream deep learning-based image semantic segmentation research aims to
densely predict each pixel of an image using algorithms in which each pixel is labeled
with its own category, thus achieving the goal of assigning semantic information to each
identical pixel in the image [1]. The result of deep semantic segmentation gives computers
a more detailed and accurate understanding of images and has a wide range of application
needs in the fields of autonomous driving [2,3], face segmentation [4–7], and medical
imaging [8–11].

Due to rapid advances in aerospace and sensor technology, it is easy and fast to obtain
high-resolution satellite imagery and aerial imagery. Remote image semantic segmentation
is one of the core contents of computer vision research [12–14]. With the active development
of deep learning, remote image deep learning semantic segmentation networks have been
continuously proposed, such as the FCN [15], UNet [16], SegNet [17], DeepLab [18–21],
PSPNet [22], SETR [23], UCtransNet [24] models, etc. Some of these are based on convo-
lutional neural network (CNN) and some are based on Transformer, which are explained
below in terms of these two aspects.

1.1. Remote Image Segmentation Method Based on CNN

The CNN-based semantic segmentation method is one of the mainstream methods and
mainly utilizes the encoder–decoder structure. The encoder typically uses convolutional
neural networks and downsampling to reduce the resolution and to extract image feature
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maps, while the decoder aims to transfer the low-resolution image and feature into image
segmentation maps to achieve a pixel-level prediction, often using deconvolution [25] for
upsampling, and the last layer of the network structure is mostly softmax classifiers to
classify each pixel.

FCN replaces the fully connected layer at the end of the CNN with a convolutional
layer and then upsamples it to obtain an image of the same size as the input. UNet also
has an encoder–decoder structure (same as FCN), in which feature extraction is carried out
in the first half and upsampling is carried out in the second half, and the skip connection
layer in UNet merges low-level location information with deep-level semantic information.
Similar to UNet, SegNet uses an encoder–decoder structure, but the encoder and decoder
use different technologies. In addition, the encoder part of SegNet uses the first 13 layers
of the VGG16 [26] convolutional network, each encoder layer corresponds to a decoder
layer, and the output of the final decoder is fed into a softmax classifier to generate class
probabilities for each pixel independently. DeepLabv1 [18] is based on two innovations:
dilated convolution [27] and fully connected conditional random field. DeepLabv2 differs
by proposing Atrous Spatial Pyramid Pooling (ASPP) [19], and DeepLabv3 [20] is based on
further optimization of ASPP by adding convolution, BN operation, etc. DeepLabv3+ [21] is
based on the structure of DeepLabV3 by adding an upsampling decoder module to optimize
the accuracy of edges. These methods are widely used in remote image segmentation tasks
and have obtained effective performance. However, the traditional CNN-based encoder–
decoder network will lose some spatial resolution after a series of downsampling in the
encoder stage, which affects the performance of semantic segmentation algorithms.

1.2. Remote Image Segmentation Method Based on Transformer

Transformer [28] was originally used in the field of natural language processing.
Transformer is essentially an encoder–decoder structure. Transformer is based on the
attention mechanism, which can solve the long-distance dependence problem. The attention
mechanism has a better memory and can remember longer distance information. The most
important thing is that attention supports parallelized computation, which is very suitable
for remote images semantic segmentation. The transformer model is completely based on
the attention mechanism, and it completely discards the structure of CNN.

Recently, some scholars used Transformer in semantic segmentation. Zheng et al. [23]
proposed the SETR model for semantic segmentation, in which CNN is not used and so
the resolution of the image is not degraded. Transformer cuts the image into multiple
small pieces and encodes the ordering to achieve sequence-to-sequence encoding using
attention mechanisms. Cao et al. [29] combined UNet with Transformer to extract multi-
scale features. Although Transformer has achieved good performance in some semantic
segmentation tasks, it has some limitations, such as larger model parameters and less
segmentation capability than CNN. UCTransNet incorporates different feature layers of
CNN into Transformer, which provides a new idea for multi-scale feature fusion. However,
its CNN layer structure is simple, feature fusion is relatively single, the encoding and
decoding methods are complex, and the ability to express various application scenarios of
remote imaging is not sufficient.

1.3. Remote Image Segmentation Method Based on CNN and Transformer

To solve the problems caused by a single encoder, we concatenate CNN-based and
Transformer-based network structures in order to compensate for the shortcomings of a
single structure in remote image segmentation. First, we propose the Residual Multi-scale
Channel Cross-Fusion with Transformer (RCCT) module as one of our encoding structures
based on the multi-scale feature cross fusion approach of UCTransNet. Unlike UCTransNet,
RCCT takes the first three feature layers of ResNet50 [30] as input and performs a cross-
fusion of features, which capture the relationship between different feature layers in a
Transformer way in order to obtain multi-scale semantic information. The output of RCCT
is then concatenated into a whole feature layer and finally takes residual concatenation
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with the three input feature layers. Second, To enhance the segmentation capability of the
model on a remote image, the fourth feature layers of ResNet50 are input into the ASPP
module, followed by connecting a Convolutional Block Attention Module (CBAM) [31] as
the second encoding structure. The dual–encoder structure, which is called RCCT-ASPPNet,
can effectively represent the global contextual information in the image and increase the
receptive field, with a comprehensive performance higher than that of a single encoder.

1.4. Contributions

This paper addresses some challenges in the field of semantic segmentation of remote
image by proposing a dual-encoder RCCT-ASPPNet. The main contributions of this paper
can be illustrated in the following points.

First, an efficient remote image segmentation method based on CNN and Transformer
is proposed. We design a Transformer-based RCCT structure. The first three feature layers
of resnet50 are used as the input of RCCT, and the dependencies between each feature layer
are learned in a Transformer cross-fusion manner. Then, we use the residual structure to
link the fused input feature layer with the fused output feature layer.

Second, we not only extract features by transformer but also utilize the CNN-based
ASPP module to obtain larger receptive field information, while adding channel attention
and spatial attention after ASPP to learn deeper semantics. With the dual-encoder struc-
tures, we alleviate the problems of small targets, multiple scales, and diverse and complex
categories in remote image.

Finally, we tested the method proposed on two datasets. The AeroScapes is a public
dataset, which has a variety of perspectives, complex scenes, and more categories. The
Farmland is a self-made dataset, which is top-down view, and the data have small objects.
The experimental results show the effectiveness of our method. Our method has a further
improvement in semantic segmentation of remote image with an mIoU of 94.14% and
61.30% on the datasets Farmland and AeroScapes [32] respectively.

1.5. Article Structure

In the Introduction section, an overview of deep learning, semantic segmentation tech-
niques is provided, and the semantic segmentation method based on CNN and Transformer
is introduced. The Methods and Data section explains the theoretical approach behind the
model proposed in this paper and some parameter settings, in addition to the dataset used
in this paper. The Results section mainly describes the ablation experiment and provides a
comparison of different models. The Discussion section analyzes the experimental results,
and their advantages and disadvantages. The Conclusions section summarizes the remote
image semantic segmentation method proposed in this paper; in addition, the shortcomings
of the method of this paper and the next step are explained.

2. Methods and Data

2.1. RCCT-ASPPNet Model Overview

Figure 1 shows a general description of the proposed approach. We use a two-layer
encoder structure, including RCCT and ASPP-CBAM. The RCCT encoding module uses
Transformer as the backbone network, and Transformer is used to cross fuse each feature
layer to learn the feature relationship between the layers in an end-to-end way. The input
and output are connected with residuals in a feature fusion way. The ASPP-CBAM encoding
module combines ASPP with channel and spatial attention mechanisms, extracts feature
maps of different receptive fields for concatenation, and then uses CBAM as an attention
layer to learn the importance of channel and spatial importance.
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Figure 1. RCCT-ASPPNet model structure.

2.2. Residual Multi-Scale Channel Cross-Fusion Transformer (RCCT)

To address multi-scale feature fusion, we propose a RCCT module that takes advantage
of long-dependency modeling in Transformer to fuse features from multi-scale encoders.
The RCCT module has four steps: multi-scale feature embedding, multi-headed channel-
based cross-attention, multi-layer perceptron (MLP), and residual feature fusion.

2.2.1. Multi-Scale Feature Embedding

Given as an input, the multi-scale feature embedding is the first three feature layers of

ResNet50 Ei ∈ R

H×W
22×(i+1) ×Ci , (i = 1, 2, 3), where Ci is the number of channel dimensions, and

C1 = 256, C2 = 512, and C3 = 1024. The standard Transformer accepts a sequence of token
embeddings as input. To process 2D features, we reshape the feature Ei as a flattened block
sequence Si ∈ R

N×Ci , (i = 1, 2, 3), where ( H
2i+1 , W

2i+1 ) is the resolution of the original feature;
(pi, pi) is the resolution of each feature block; p1 = 16, p2 = 8, p3 = 4; and N (Equation (1))
is the number of feature blocks generated, that is, the effective input sequence length of
the Transformer. In this process, we keep the channel size N constant. Position embedding
Spos ∈ R

N×Ci is also added to the feature block to retain the spatial location information
between the input feature blocks (Equation (2)).

N =

H×W
2i+1×2i+1

pi
2 , (1)

Si = Si + Spos. (2)

Then, we fuse the three embedded layers as the key and value (Equation (3)).

S∑ = Concat(S1, S2, S3). (3)
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2.2.2. Residual Channel Cross-Fusion Transformer

From Figure 1, we know that Si is input into the multi-head channel cross attention
module, followed by an MLP with a residual structure; the CCT module has been used L
times; and we obtained the three outputs of the CCT module Oi. Finally, the fused input
feature layer is connected to the fused output feature layer in a residual manner, with O as
the final output feature layer of RCCT. In this way, we learn the dependencies between the
different input feature layers in a Transformer cross-fusion way.

As shown in Figure 2, the multi-head cross attention module contains four inputs, that
is, three embedded layers as the query matrix and one integrated embedded layer S∑ as
the key K and the value V.

Qi = δ(Si)WQi , K = S ∑ WK, V = S ∑ WV, (4)

Figure 2. Multi-head cross attention.

WQi ∈ R
Ci×Ci , WK ∈ R

C∑×C∑ , and WV ∈ R
C∑×C∑ are different input weights and δ(·)

represents layer normalization. Meanwhile, Qi ∈ R
N×Ci , K ∈ R

N×C∑ , and V ∈ R
N×C∑ .

The formula for cross attention is described as follows:

Attention(Qi, K, V) =

{
σ

[
ψ

(
Qi

TK√
C∑

)]
VT

}T

, (5)

ψ(·) and σ(·) represent the instance normalization and softmax function, respectively. We
adopt instance normalization, which can normalize each instance matrix of multi-head
attention so that the gradient can spread smoothly. Attention(Qi, K, V) ∈ R

N×Ci is the
same size as the input Qi. Because we have Hn heads’ attention, the output result after
multi-head cross attention is calculated as follows:

MHAttentioni =

[
Attention

(
Qi

1, W, K
)
+ Attention

(
Qi

2, W, K
)

+, . . . ,+Attention
(
Qi

Hn , W, K
) ]

/Hn, (6)

where Hn is the number of heads. Then, combining MLP and residual operation, the output
is as follows:

Oi = δ(MHAttentioni) + MLP(Qi + MHAttentioni), (7)

The operation in Equation (7) is repeated L times to establish an L-layer Transformer,
in which the output of the L-layer is Oi ∈ R

Ci×N . In this paper, Hn and L are both set to 4.
The output of the last layer is a multi-scale residual fusion, and the formula is as follows:

O = Concat(S1, S2, S3) + Concat(O1, O2, O3), (8)
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O ∈ R
C∑×N is the final output of the RCCT module.

Matrix O obtains the feature layer M ∈ R
C∑×

√
N×√

N through the reshape operation,
and we obtain Z1 through upsampling and the convolutional operation.

2.3. CBAM Module

In the output feature map of the ASPP module, CBAM, as shown in Figure 3, infers the
attention map in turn along two independent dimensions (channel and spatial) and then
multiplies the attention map and the input feature map for adaptive feature optimization.
Now, the channel and spatial attention modules are distinguished.

 
Figure 3. CBAM sketch map.

Figure 4 shows the structure of the channel attention module CA. It models the
importance of each feature channel and then enhances or suppresses different channels.
The output F of ASPP is used as the input of channel attention. F goes through the maximum
pooling layer and the average pooling layer. The two outputs are connected to the same
MLP, and their parameters are shared. The two outputs of MLP are added, and a sigmoid
function is finally connected to obtain FC.

 
Figure 4. Channel attention module.

Figure 5 depicts the structure of the SA module. Not all regions in the image contribute
equally to the task. Only the regions related to the task need to be concerned. The SA
model aims to find the most important part of the network for processing. FC

′ is the input
of SA, FC

′ also goes through the maximum pooling layer and the average pooling layer,
and their outputs are concatenated on the channel dimension. Then, a convolution layer
and a sigmoid function are connected to obtain feature FS.
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Figure 5. Spatial attention module.

2.4. Dual Encoders of ASPP-CBAM and RCCT

ASPP samples the given input in parallel with a convolution of different dilation
rates, which is equivalent to capturing the context of the image at multiple scales. The

last feature layer E4 ∈ R

H×W
22×(4+1) ×C4 of ResNet50 is used as the input of ASPP. E4 went

through four different convolution operations with different dilation rates to extract the
features under different receptive fields. ASPP includes a 1 × 1 convolution layer and three
3 × 3 dilated convolution, dilated rate = {2, 4, 8}, and pooling layers, as shown in Figure 1.
The five feature layers are merged as the output of ASPP and enter the CBAM attention
layer. Then, after the upsampling and convolution operations, we obtain the ASPP-CBAM
output layer Z2. Finally, the output layer is merged with the output layer of RCCT Z1 by
the following equation:

Z = Concat(Z1, Z2), (9)

2.5. Data
2.5.1. Self-Made Dataset

The data come from the agricultural remote sensing image (Farmland) taken by UAV,
as shown in Figure 6, which is divided into six categories: grassland, construction land,
cultivated land, forest land, garden land, and other lands. The image is from an overhead
perspective, and the difference between target sizes is large. The drone is a DJI M300 RTK
with a flight altitude of 5 km, and a DJI P1 camera with an image size of 8192 × 5460 pixels
and a sensor size of 35.9 mm × 24 mm, with 45 million effective pixels and an image
element size of 4.4μm. In addition, the data were collected in November 2021.

Figure 6. Farmland including raw and labeled images.

To enhance the generalization ability of the model, this study adopts the method of
data enhancement. The original remote images and labeled images were first generated by
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cropping multiple images of size 512 × 512 pixels, expanding the data set using random
rotation, adding noise, flipping, and using other data enhancement methods, as shown in
Figure 7. A total of 5000 images were generated, which were then divided into the training
and validation sets according to a 4:1 ratio.

Figure 7. Data enhancement methods.

2.5.2. AeroScapes Dataset

The AeroScapes semantic segmentation dataset includes images captured from 5 m to
50 m height using commercial UAVs. This dataset provides 3269 720 pixel × 1280 pixel
resolution images and real land surface labels for 12 classes. Figure 8 shows the information
of 11 categories and background categories. The dataset has a variety of perspectives, target
scales vary greatly, and there are many small targets.

 

Figure 8. AeroScapes dataset.

3. Results

3.1. Experimental Environment and Parameter Setting

We use Python as the deep learning framework, JetBrains PyCharm 2021 as the
development platform, and Python 3.8 as the development language. All models are
trained and tested on computers configured with Intel Core (TM) i7-10700K CPUs and
NVIDIA GeForce GTX 3090 Ti graphics cards.

The model uses a poly [33] strategy to reduce the learning rate. The formula is
as follows:

lr = initial_lr × (1 − epo
maxepo

)
power

, (10)
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The initial learning rate initial_lr is set to 0.001, and power is set to 0.9. The maximum
number of iterations maxepo is 300, and epo represents the current number of iterations. In
this study, the batch size is set to 8, and the Stochastic gradient descent SGD [34] optimizer
is used to optimize the poly algorithm and network parameters. The model’s backbone
network Resnet50 uses the trained weight of the dataset ImageNet [35] as the initial weight.

3.2. Evaluation Index and Loss Function

To quantify the effect of the evaluation model, this study uses the most common eval-
uation index in the field of semantic segmentation: mean Intersection over Union (mIoU).

mIoU =
1

c + 1

c

∑
i=0

pii

∑c
j=0 pij + ∑c

j=0 pij − pii
, (11)

where pii represents the number of pixels predicted by category i to category i; c + 1 is
the total number of categories; and pij is the number of pixels predicted by category i to
category j.

We also use mean Pixel Accuracy (mPA) as another evaluation index.

mPA =
1

c + 1

c

∑
i=0

pii

∑c
j=0 pij

, (12)

The loss function of Lovasz Softmax [36] is usually used to evaluate semantic seg-
mentation using the Jaccard index [37], also known as the IoU index. In Equation (13), y∗
is the true label, and y is the predicted value. The Jaccard index of category c is defined
as follows:

Jc(y∗, y) =
|{y∗ = c} ∩ {y = c}|
|{y∗ = c} ∪ {y = c}| , (13)

The corresponding loss function is as follows:

LJc(y∗, y) = 1 − Jc(y∗, y), (14)

Figure 9 shows the trend of the training set and validation set of the proposed method
on the Farmland dataset with the number of iterations. The curve decreases more rapidly in
the first 50 iterations of the loss value and stabilizes after the number of iterations exceeds
250.

Figure 9. Lovasz Softmax loss function change curve.
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3.3. Ablation Experiment of RCCT Module with Different Feature Combinations

To verify the influence of input Ei of different scales on the model, four groups of RCCT
module inputs with different combinations are designed for experimental comparison. The
four groups of experiments were combined with the ASPP module.

The following conclusions can be drawn through the comparison of four groups of
experiments in Table 1:

Table 1. Comparison of different feature combination inputs of the RCCT module.

Input Feature
Farmland AeroScapes

mIoU (%) mPA (%) mIoU (%) mPA (%)

E1, E2, E3 93.97 96.83 60.86 84.20
E1, E2 93.46 96.75 60.47 83.61
E1, E3 94.11 97.10 61.19 84.58
E2, E3 94.00 96.97 61.05 84.55

Not all feature inputs can increase the performance of the model, and some features
can reduce the accuracy of the model. For example, the mIoU and mPA of the combination
E1, E2, and E3 are lower than that of combination E1 and E3 and the combination E2 and E3,
indicating that, when feature input E1 and E2 are used together, they will have negative
effects. Considering that the combination effect of E1 and E3 is better than that of E2 and
E3, it indicates that E1 and E3 are the optimal combination, that is, the effect of E1 is greater
than that of E2. Therefore, E2 needs to be removed from the final RCCT module feature
input, thus improving the model performance and reducing the model parameters.

A high-level feature is necessary. From the experimental results, combination E1 and
E2 has the worst effect. As long as E3 appears in the combination, its mIoU will be 0.5%
or higher than that without E3. In the combination with E3, mIoU has little difference.
Therefore, high-level feature E3 plays a crucial role in the model.

3.4. Ablation Experiment of Different Attention Combinations in the ASPP Module

The combination of the ASPP module with SA and CA can effectively increase the
mIoU and mPA of the model. We have verified the effect of different attentions on the
module (Table 2). The input combination of the RCCT module in the experiment is E1, E2,
and E3.

Table 2. ASPP module: different attention combinations.

Attention
Combination

Farmland AeroScapes
mIoU (%) mPA (%) mIoU (%) mPA (%)

ASPP 93.97 96.83 60.86 84.20
ASPP + CA 94.12 97.06 61.22 84.22
ASPP+ SA 94.02 96.87 61.13 84.25

ASPP + CBAM 94.14 97.12 61.30 84.36

From the experiment results in Table 2, the CA and SA modules are more effective
than the ASPP without the attention module. The mIoU and mPA values are higher when
both attention modules act on ASPP simultaneously than when one attention module is
used alone. Therefore, CBAM can effectively improve the performance of ASPP by paying
attention to the feature information under different visual fields in space and channel.

3.5. Ablation Experiment of Dual Encoders

To compare the effects of the two encoders on the model, experiments using RCCT
module alone and ASPP module alone are designed. Table 3 shows the results. The RCCT
used an E1, E2, and E3 input combination in the experiment, and the ASPP did not use the
CBAM module.
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Table 3. Comparison of two encoder modules.

Module
Farmland AeroScapes

mIoU (%) mPA (%) mIoU (%) Mpa (%)

RCCT 91.52 93.68 59.72 82.18
ASPP 92.72 94.81 60.35 80.65

RCCT + ASPP 93.97 96.83 60.86 84.20

Table 3 shows the experimental results of the two independent encoders. The accuracy
of the dual encoding structure of RCCT and ASPP is greater than that of either encoding
structure, illustrating that both Transformer-based multiscale feature fusion and ASPP
with different dilation rates are important components of semantic segmentation of remote
images. From another aspect, the accuracy of the Transformer-based RCCT module alone
is lower than that of the ASPP module in Farmland, reflecting that ASPP is more capable
than RCCT at overhead angle semantic segmentation tasks. Moreover, the difference in
mIoU between RCCT and ASPP on AeroScapes is small, but for mPA, RCCT is better than
ASPP, so RCCT performs better on multi-angle and more categories datasets.

3.6. Comparative Experiment of Different Network Models

We compared our method with some mainstream remote image semantic segmentation
methods, including FCN-8s, UNet, DeepLabV3+, SETR, and UCTransNet. Table 4 shows
the experimental results of various models in our dataset and AeroScapes dataset.

Table 4. Comparison of different networks.

Network Model
Farmland AeroScapes Model

mIoU (%) mPA (%) mIoU (%) mPA (%) Parameters (M)

FCN-8s 92.21 96.43 40.23 78.69 80
UNet 89.38 95.06 42.38 50.41 124

DeepLabV3+ 92.80 96.28 59.63 67.07 170
SETR 49.53 64.82 30.63 37.38 348

UCTransNet 92.82 93.27 52.33 81.67 363
RCCT-ASPPNet 94.14 97.12 61.30 84.36 411

Table 4 shows that the mIoU of DeepLabV3+ is 92.80% and 59.63% in Farmland and
AeroScapes datasets, respectively, which is the best performance among the CNN-based
network models. However, the mPA of FCN-8s is 78.69% in AeroScapes datasets, and it is
better than DeepLabV3+, but the mIoU of FCN-8s is only 40.23%. Moreover, UCTransNet
performs best among Transformer-based models. Our RCCT-ASPPNet network model
outperforms the other models with mIoU of 94.14% and 61.30% and mPA of 97.12% and
84.36% for the Farmland and AeroScapes datasets, respectively, which is a dual-encoder
structure based on CNN and Transformer.

4. Discussion

4.1. Visual Analysis

Figure 10 shows the effect of Farmland data prediction. The performance of CNN-
based FCN-8s, UNet, and DeepLabV3+ is evidently better than that of Transformer-based
SETR and UCTransNet. RCCT-ASPPNet combines CNN and Transformer, and its per-
formance is relatively good in Farmland. Figure 11 shows that the prediction results of
FCN-8s, UNet, DeepLabV3+, and SETR are relatively poor in AeroScapes. UCTransNet
and RCCT-ASPPNet have relatively good prediction effects in (l). Therefore, the improved
Transformer model is better than the traditional model. Although RCCT-ASPPNet showed
some misdividing in (k), overall, the segmentation effect of RCCT-ASPPNet in different
views and small targets was better than UCTransNet. By comparing the three lines of
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pictures in (g), (h), and (i), our model handles the best details in terms of the prediction
results under people’s tilt angle of view and top angle.

Figure 10. Farmland data prediction results, from left to right, are real labels, FCN, UNet, Deeo-
LabV3+, SETR, UCTransNet, and RCCT-ASPPNet, from top to bottom, (a–f) are the selected 6 sets of
Farmland test images.

Combining the performance of the above two datasets, the CNN-based model is
more effective at processing the top-view images in the Farmland dataset. However, for
the multiple views and more categories in the AeroScapes dataset, the CNN model does
not perform well. Moreover, UCTransNet performs the opposite. The combination of
Transformer and ASPP can compensate for the shortcomings of each.
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Figure 11. AeroScapes data prediction results, from left to right, are real labels, FCN, UNet, Deeo-
LabV3+, SETR, UCTransNet, and RCCT-ASPPNet, from top to bottom, (g–l) are the selected 6 sets of
AeroScapes test images.

4.2. Analysis of Experimental Results
4.2.1. Analysis between Network Models

The performance of the six models on Farmland and AeroScapes is compared, as
presented in Table 4. Among all the models, SETR has the worst results on both datasets
because the simple Transformer model does not combine multiscale features and loses
many low-level semantic features. In addition, the SETR model is more homogeneous
and difficult to segment remote images in complex situations. The FCN-8s network model
uses multiscale feature fusion, which can effectively learn multiple features while up-
sampling using deconvolution, preserving the spatial information of the original input
image. However, FCN-8s performs poorly in AeroScapes images with multiple categories
and views, with only 40.23% mIoU. The reason is that FCN-8s has difficulty extracting
higher-level features and the multiscale fusion approach is simply concatenated, which
does not sufficiently learn the relationships among the feature layers. The ASPP module of
DeepLabV3+ convolution with higher-level features at different dilate rates extracts the
feature information under different fields of view and fuses the lower-level feature layers.
The mIoU of DeepLabV3+ on Farmland and AeroScapes is 92.80% and 59.63%, respectively,
which achieved good results but at the same time ignored the cross information between
feature layers; the mPA of DeepLabV3+ on AeroScapes is only 67.07%. UCTransNet used
Transformer to cross-fuse all input feature layers, which solved the problem of insufficient
feature fusion, and it has a mPA metric of 81.67% on dataset AeroScapes, which exceeds
most network models; this shows that UCTransNet has better performance in handling
multi-category and multi-angle datasets. However, the different fields of view of feature
layers are equally important; therefore, UCTransNet does not perform as well as the CNN-
based model on Farmland. RCCT-ASPPNet cross-fuses some input features and then uses
the residual method to connect the front and back feature layers as an encoder. Meanwhile,
RCCT-ASPPNet uses the ASPP module to process the high-level features and CBAM to
learn the channel and spatial information, which is the second encoder. RCCT-ASPPNet
considers the feature fusion method and the field of view information of the feature layer
to achieve optimal results on both Farmland and AeroScapes.
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In this paper, a dual encoder model was proposed. The first encoder is used to
cross-fuse the first three feature layers of ResNet50 using Transformer to learn multi-scale
information; it can learn the dependencies of a feature layer with other feature layers.
In addition, we added a residual module before and after fusion to prevent gradient
disappearance; the second encoder module uses ASPP to process the highest feature layer
of ResNet50 to obtain a larger receptive field and uses CBAM to learn its channel attention
and spatial attention. In this paper, we used the common evaluation metrics of semantic
segmentation, mIoU and mPA, to measure the accuracy of the model. RCCT-ASPPNet
outperforms other semantic segmentation models on both Farmland and Aeroscapes in
Table 4; in addition, we can see from Figures 10 and 11 that the algorithm in this paper
has better segmentation performance in handling small targets and multi-scale objects and
using one object in multiple views.

4.2.2. Analysis of Ablation Experiments

By introducing two encoders, the RCCT module and the ASPP module, the experi-
mental design in Table 3 shows that the effect of double coding is more accurate than that
of single coding. In addition, this study was designed for the influence of different input
feature combinations of RCCT modules on the experimental results. Table 1 shows that
the feature combination of E1 and E3 is optimal, and the mIoU and mPA on Farmland
reach 94.11% and 97.10%, while, 61.19% and 84.58%, respectively, on AeroScapes, so not all
features are effective combinations. From another aspect, the experimental results show
that the E3 feature is essential. The experimental design in Table 2 can obtain the impact of
different attention mechanisms on the ASPP module. When the attention mechanism is not
applicable, mIoU and mPA are 93.97% and 96.83% of the lowest value on Farmland, the
same for AeroScapes. When CA or SA is used alone, mIoU and mPA show slight increases,
whereas when CBAM is used, the index reaches the highest value. Therefore, CBAM has a
certain effect on the ASPP module.

5. Conclusions

In this work, we proposed an effective RCCT-ASPPNet network model for the seman-
tic segmentation of remote image. We used a dual-encoder structure, including a residual
multiscale channel cross-fusion Transformer to address multiscale feature fusion and ASPP
to address information extraction at different scales on a single feature layer. Extensive
experiments evaluated that the proposed model can effectively alleviate the problems of
remote images with large-scale variations, small target objects, and diverse viewpoints.
RCCT-ASPPNet outperforms the CNN-based DeepLabV3+ and Transformer-based UC-
TransNet. Compared with other state-of-the-art remote image semantic segmentation
methods, RCCT-ASPPNet’s accuracy has a first-class performance.

Although our experimental results have achieved good results, the effects on other
data sets are unclear, so we will study the performance of this algorithm on each data set
later. From another aspect, Table 4 shows that our model parameters are larger than those
of other algorithms, which is very unfriendly for the real-time segmentation. Therefore,
future work should balance the accuracy and efficiency of the model.
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Abstract: Global solar photovoltaic capacity has consistently doubled every 18 months over the
last two decades, going from 0.3 GW in 2000 to 643 GW in 2019, and is forecast to reach 4240 GW
by 2040. However, these numbers are uncertain, and virtually all reporting on deployments lacks
a unified source of either information or validation. In this paper, we propose, optimize, and
validate a deep learning framework to detect and map solar farms using a state-of-the-art semantic
segmentation convolutional neural network applied to satellite imagery. As a final step in the pipeline,
we propose a model to estimate the energy generation capacity of the detected solar energy facilities.
Objectively, the deep learning model achieved highly competitive performance indicators, including
a mean accuracy of 96.87%, and a Jaccard Index (intersection over union of classified pixels) score
of 95.5%. Subjectively, it was found to detect spaces between panels producing a segmentation
output at a sub-farm level that was better than human labeling. Finally, the detected areas and
predicted generation capacities were validated against publicly available data to within an average
error of 4.5% Deep learning applied specifically for the detection and mapping of solar farms is
an active area of research, and this deep learning capacity evaluation pipeline is one of the first
of its kind. We also share an original dataset of overhead solar farm satellite imagery comprising
23,000 images (256 × 256 pixels each), and the corresponding labels upon which the machine learning
model was trained.

Keywords: convolutional neural network; deep learning; computer vision; solar farm; solar panel;
capacity estimation; photovoltaics; remote sensing; optical remote sensing

1. Introduction

1.1. Motivation

The sharp increase in photovoltaic panel adoption has resulted in photovoltaic installa-
tions becoming a key contribution to renewable energy production, first through residential
deployment, and subsequently through commercial solar farms. The reasons for this sig-
nificant rise include the global push for renewables (the UN Sustainable Development
Goals being a recognizable example [1]), coupled with the steadily decreasing cost of each
unit of electricity produced (the global average cost of renewable energy has dropped by
89% for solar equipment since 2009 [2]). Figure 1 shows the official numbers and targets
of various countries over the last decade. There has been a clear exponential trend over
the last two decades, going from 0.3 GW in 2000 to 3.5 GW in 2009 to 63.5 GW in 2019,
and a forecast to reach 4240 GW by 2040 [2]). Currently, the global solar capacity doubles
every 18 months [2]. It is estimated that at least $400 million is being invested annually into
commercial solar energy generation [3]. The International Solar Alliance has 180 member
countries as of 2022, and has committed one trillion dollars as an investment target [4].

The generation behavior of renewables such as solar and wind reflects the uncertainty
and complexity of the natural world. The inherent decentralized nature of the deployment
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has resulted in a dearth of traceable data to better understand the demographic, geographic,
and regional trends. Satellite imagery provides an opportunity to track this inherently
decentralized deployment at scale and with granularity, objectivity, and in potential real-
time, which could be an instrumental tool that informs both policymakers and industries
of the state of PV deployment by region. Enhancing the diffusion of PV solar energy
generation is aligned with the UN Sustainable Development Goals (SDGs), specifically
goal 7—to “Ensure access to affordable, reliable, sustainable and modern energy for all”.
Detailed asset-level data, including the spatial arrangement of installations, are particularly
required to address the challenges of generation and planning faced by electricity system
operators and electricity market operators and participants.

Figure 1. Growth of global photovoltaic capacity has been exponential over the last two decades,
from 0.3 GW in 2000 to 63.5 GW in 2019, roughly doubling every 18 months [2,3].

Existing databases of solar generating capacity are insufficient to address databasing
needs because they are either aggregated (for example, those of the IEA2, IRENA3, or BP1),
limited in geographical scope (for example, Google OpenPV, DeepSolar [5], or SolarNet [6]),
or are not geospatially localized (for example, S&P Global World Electric Power Plant
Database [2]), and/or are not publicly available for the research and policy community (for
example, IHS’s Electric Plants).

This work aims to scientifically develop and test a globally generalizable approach
for the detection and capacity evaluation of medium- and large-scale photovoltaic solar
farms with state-of-the-art accuracy. This can be considered as a segmentation or pixel-level
classification problem showing great potential for applying deep learning techniques to
analyze remote sensing tasks. According to SolarNet [6], solar farm detection is more
challenging than rooftop solar panel detection, because of the confusing backgrounds in
which they are found. We use remote sensing and deep learning to detect solar farms—both
their existence and precise boundaries—to estimate the energy generation capacities of
individual facilities in an accurate manner, using publicly available satellite data and limited
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computational expense. These values are used to triangulate self-reported information,
validate capacity figures, and even to identify real-world inefficiencies.

1.2. Previous Work

Identifying, understanding, and mapping renewables deployment is a topic that has
gained interest in recent years. A variety of methods have been proposed to detect first
residential and subsequently commercial photovoltaics from remote sensing images. Ad-
mittedly, rooftop detection is the more interesting case, given that they are more dispersed
and not reported, but as commercial solar deployment becomes more widespread, the latter
problem has developed into one of both intellectual and practical interest.

Stanford Deepsolar [5] kick-started interest in this field by proposing a deep learning
framework to map residential rooftop solar panels for the US. DeepSolar utilized transfer
learning to train a CNN classifier on imagery from Google Static Maps, and detected over
1.47 million PV installations in urban areas throughout the US with a precision of 93.1% and
a recall of 88.5%. However, commercial solar deployment was not addressed by DeepSolar.
Prior to that, rule-based efforts at detecting PV installations have not been able to achieve
very high levels of precision and recall [7].

More recently, SolarNet [6] proposed an expectation maximization attention network
to recognize solar farms on satellite imagery in China. In their paper, the authors compare
the two most popular networks, UNet and EMANet, and combine the strengths of both to
come up with their own SolarNet, which is a combination of the two. SolarNet was limited
by geography and did not evaluate the capacity, or report semantic segmentation evaluation
metrics such as the Jaccard Index. The detections by SolarNet and by Kruitwagen et al. [3]
were at the bounding box/convex hull level for each solar farm. This is useful to achieve
an upper bound on true solar capacity, but tends to overestimate the true solar capacity of
an installation. Prior efforts also did not make the underlying data sets fully public.

1.3. Problem Statement

In this research, we seek to answer the following questions:

1. How do we best use deep learning to extract detected polygon areas containing solar
farms from satellite imagery?

2. Apart from verifying the existence and geographic location of a solar farm, can we
estimate the number of individual panels?

3. What is the best way to use this information to predict how much solar energy is
generated annually?

We show how to extract this information from satellite imagery and to validate both
the detected areas and generation capacities against publicly available data, including the
electricity generation data reported by solar farm management.

1.4. Contributions

In this paper, we propose, optimize, and validate a deep learning based framework to
detect and map solar farms across different geographies using a state-of-the-art semantic
segmentation convolutional neural network-based pipeline. Semantic segmentation enables
the precise localization of solar panel areas from satellite imagery for a more accurate
estimate of the deployment area. As a final step in the pipeline, we develop a multi-step
capacity evaluation model to estimate the number of panels and the energy generation
capacity of the detected solar energy facilities.

The final question of the problem statement addresses the real world consequential
information that can be extracted from the output polygons of the model. We develop a ca-
pacity evaluation model that starts where the deep learning problem ends, and demonstrate
on some sample solar farms, verifying against real-world reported data. Deep learning ap-
plied specifically for the detection and mapping of solar farms is an active area of research,
and this deep learning capacity evaluation pipeline is the first of its kind. Prior work in
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using satellite and aerial imagery has estimated the solar farm size, but not its estimated
annual energy production capacity.

In summary:

1. We present a deep learning model capable of solar farm detection that achieves highly
competitive performance metrics, including a mean accuracy of 96.87%, and a Jaccard
Index (intersection over union of classified pixels) score of 95.5%.

2. Subjectively, our model was found to detect spaces between panels and pathways
between panel rows producing a segmentation output that is better than human
labeling. This has resulted in some of the most accurate detections in comparison
with the existing literature.

3. We share the original, pixel-wise labeled dataset of solar farms comprising 23,000 images
(256 × 256 pixels each) on which the model was trained.

4. Finally, we propose an original capacity evaluation model—extracting panel count,
panel area, energy generation estimates, etc., of the detected solar energy facilities
that were validated against publicly available data to within an average 4.5% error.

2. Materials and Methods

The capacity evaluation pipeline proposed in this paper comprises dataset creation,
the deep learning model, and the capacity evaluation model. Our deep learning model
was trained on an original dataset created by collecting the satellite imagery of several
major solar farms in the US, and tested on images of farms unseen by the model. Data
augmentation and ablation studies were performed to check the model’s robustness to
complex backgrounds and edge cases. This computationally intensive task of training
was carried out with the help of the MIT Supercloud using a minimum of 2056 processors.
Finally, the output polygons detected by the model were fed into the capacity evaluation
model for further analysis.

2.1. Dataset

Seen in Figure 2 is what a typical solar farm looks like from space. The imperial county
solar farm in Southeast California, close to the Mexico border, was all farmland in 2012,
and has seen progressive development over the following years. Each of these images is
a mosaic of geotiff tiles and serves as our source of data. Note that while it appears to be
encroaching on farmland (one of the major criticisms of solar energy), the facility is actually
in the middle of the arid Mojave desert and encroaching on highly irrigation intensive
farms. The tradeoff in land use between farming and energy is an interesting use case but
is beyond the scope of this paper.

Figure 2. Growth of Mount Signal Solar in Imperial Valley, California, into one of the world’s largest
solar farms, over the last decade. Satellite imagery allows for a qualitative and quantitative “big
picture” view of solar farms.
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The first step in the process was to evaluate the sources of satellite imagery suitable
for building a dataset of labeled images on which to train and test a deep learning model.
In order to create our own dataset of imagery for this purpose, a number of satellite imagery
sources were explored, with the criteria being resolution and availability across geographies.
Sources range from freely accessible satellite imagery, low-resolution imagery from publicly
owned assets (such as NASA’s Landsat series of satellites), etc., to higher-resolution images
from commercial resources like Planet, DigitalGlobe’s WorldView, or ArcGIS. For the
needs of this project, the USDA NAIP repository [8] (0.6 m GSD) sourced via USGS Earth
Explorer [9] was chosen for analysis and dataset creation because it satisfied both the
criteria of adequate resolution and uniform availability across the US.

Overhead imagery was collected, and detailed annotation was carried out on 10 major
solar farms across the US (the annotated imagery of a few solar farms is included in
Appendix A for reference). Solar farm areas were manually labeled to be used as ground
truth (this is machine learning terminology, not the remote sensing definition) This is
known as annotation. Annotation encompasses the negative labeling of nearby agricultural,
semi-urban, and topographical relief systems. This was achieved using an open source
tool called QGIS that helps build on geotiff files and creates masks that were then used as
ground truth. A visual representation of the labeling process that was involved in dataset
creation is seen in Figure 3.

Figure 3. The dataset annotation process.

Next, the large geotiff imagery was patchified into 256 × 256 patches, forming the
basis of our novel dataset (one of the contributions of this paper) of about 23,500 labeled
images in total for training, validating, and testing. Certain solar farms were set aside in
entirety for testing so that the model could be evaluated on solar farms previously unseen
by the model. Table 1 gives an overview of the composition of the dataset.
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Table 1. Composition of the dataset. Some labeled and unlabeled solar farms are reserved exclusively
for testing as an additional check for robustness and generalizability. The labeled portion of the
dataset consists of 23,500 images, along with their corresponding labels/masks ready for training.

Solar Farm Location Capacity (mW) Train/Test Images Labels

Mount Signal Imperial County, CA,
32◦40′24′′N, 115◦38′23′′W

1165 Train 4000 4000

Techren Solar Boulder, NV,
35◦47′N, 114◦59′W

700 Train 2500 2500

Topaz Solar San Luis Obispo, CA,
35◦23′N, 120◦4′W

550 Train 6000 6000

Copper
Mountain Solar

El Dorado, NV
35◦47′N, 114◦59′W

298 Train 2500 2500

Desert Sunlight Desert Center, CA,
33◦49′33′′N, 115◦24′08′′W

1287 Test 4500 4500

Agua Caliente Yuma County, AZ,
32◦57.2′N, 113◦29.4′W

740 Test 4500 4000

Solar Star Rosamond, CA,
34◦49′50′′N, 118◦23′53′′W

831 Test 4000 -

Springbok Kern county , CA,
35.25◦N, 117.96◦W

717 Test 4500 -

Great Valley
Solar

Fresno County, CA,
36◦34′52′′N, 120◦22′46′′W

200 Test 4000 -

Mesquite Maricopa County,
AZ, 33◦20′N, 112◦55′W

400 Test 2000 -

2.2. Dataset Augmentation

Ideally, a robust convolutional neural network (CNN) should be able to classify objects
even when they are positioned in different orientations or translations. However, CNNs
are not architecturally invariant to translation, size, or illumination. In fact, several studies
have found that these networks systematically fail to recognize new objects in untrained
locations or orientations [10].

This is where data augmentation becomes essential. We account for the amount and
diversity of data by training a neural network with additional synthetically modified data
without actually collecting or labeling new data. This means applying minor alterations
and changes to our existing dataset so that variations of the training set images are more
likely to be seen by the model, dramatically improving subsequent generalization.

In this study, we augmented our dataset using contrast matching to bring out subtle
differences in shade and to create a higher contrast image, as well as some commonly
used morphological transformations in image processing, such as random rotations in 45
and 90 degree increments, and flipping the image horizontally and vertically with a 50%
probability.

It is observed that augmentation techniques play a positive role in precise detection.
Qualitative effects of image augmentation can be observed in the figure in Section 3.3.
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2.3. Deep Learning Model Architecture

The structure of this problem calls for the use of a pixel-wise classifier, otherwise
known as a semantic segmentation convolutional neural network (CNN). Semantic seg-
mentation enables the precise localization of solar panel areas from satellite imagery for the
most accurate estimate of the deployment area. This is because the output is a mask, rather
than just a classification or bounding box. A standard CNN can classify a full image as
containing a certain object. A bounding box level classifier will localize the detected object
to within a square or rectangular box. A pixel-to-pixel classifier, however, can identify
which pixel(s) of the image contains the object of interest, thus resulting in an output
polygon of arbitrary shape. Since we are interested in the exact panel area of facilities,
a pixel-level classifier can give us the most accurate area estimate. Similar problems have
been addressed in [11,12] that used semantic segmentation convolutional neural networks
for various purposes. The architecture of a CNN for semantic segmentation differs from
the classification/bounding box CNNs, in that the output is at the pixel level. The choice to
use such a CNN comes with the additional burden of requiring pixel-to-pixel labels for the
datset. A semantic CNN also needs less data to train because the training labels specify
exactly what to look for in the imagery.

An established CNN used as a benchmark semantic segmentation model is known
as the “UNet”, which is a traditional patch classification method first proposed in 2014.
It gets its name from its architecture (U shaped) that contains two paths. The first path is
the contraction path (also known as the encoder), which is used to capture the context in
the image. The second path is the symmetric expanding path (also known as the decoder),
which is used to enable precise localization. This is how U-Net combines low-level detail
information and high-level semantic information. This architecture produces a prediction
for each pixel, while retaining the spatial information in the original input image. The key
to doing this is to change the last step of a CNN, making it fully convolutional instead of
fully connected. This is why the UNet is an FCN (fully convolutional network), not a CNN
(convolutional neural network).

Figure 4 visualizes the generalized architecture of UNet. It is similar to a CNN at every
layer, except the final step, which is a 1 × 1 convolution used to map the channels to the
desired number of classes retaining the pixel-to-pixel structure in the output. For compar-
ison, a convolutional neural network (CNN) adopts the fully connected layer to obtain
fixed-length feature vectors for classification. Instead of this, the deconvolution layer of
FCN performs the feature map of the last volume-based layer. The UNet architecture that
stems from FCN is used as a baseline model, and the network architecture is illustrated in
Figure 4.

Figure 4. UNet architecture for solar farm detection. F = 64.

85



Remote Sens. 2023, 15, 210

For this research, a deep learning model was developed using the open-source PyTorch
library running in Python 3.7. We chose a UNet architecture with F = 64, which gives
us a model with 1,940,000 trainable parameters—F was initially chosen based on the
literature, and the parameters were finetuned until the best metrics were achieved. All
FCN architectures explored were common in their utilization of normalized CMYK satellite
images as input.

2.4. Model Evaluation

In order to properly train and test the proposed segmentation method, training images
are generated by cropping the large original image tiles into patches of “digestible size”,
and these are fed into the network to learn the parameters. For deployment on larger
images during the testing phase, the output masks can be stitched together as depicted in
Figure 5, to conform with the input image, no matter the size. No data augmentation was
used during initial training. The model was trained with an empirically optimal minibatch
size of 10. The learning rate was initially set to 0.001 and then reduced to 0.1. The network
converged in roughly 20–30 epochs.

Figure 5. Postprocessing—hundreds of individual images were stitched together to visualize detected
solar farm areas.

The metrics for evaluating any semantic segmentation model differ slightly from those
of a CNN used for classification problems. Rather than precision and recall (completeness
and correctness), insight is gleaned from metrics called pAcc (pixel accuracy), mAcc (mean
accuracy), and the Intersection over Union (IoU)/Jaccard index.

Pixel accuracy is a metric that denotes the percent of pixels that are accurately classified
in the image. This metric calculates the ratio between the amount of adequately classified
pixels and the total number of pixels in the image as

pAcc =
correctly classi f ied pixels

total pixels

The mean accuracy is a metric that denotes the percent of images that are accurately
classified in the dataset. This metric calculates the ratio between the amount of adequately
classified images and the total number of images in the image as

mAcc =
correctly classi f ied images

total images
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In semantic segmentation, a correctly classified image is hard to define. It is typically a
threshold, say, more than half of the image is correctly segmented. As a consequence, poor
detections can pass through this metric, making it more generous and less informative than
what is needed. The most exacting metric is the intersection over union score, also known
as the Jaccard similarity coefficient, a statistic that is used for gauging the similarity of the
detected shape against its label.

IoU =
A ∩ B
A ∪ B

2.5. Capacity Evaluation Model

In order to maximize utility to stakeholders, the final step in the proposed pipeline—the
capacity evaluation model—explores the extraction of further information from remotely
sensed solar energy facilities. Beyond verifying the existence and geographic location of
the farms, can we estimate or count the number of panels? How do we predict how much
solar energy is generated annually? These values can be used to triangulate self reported
information, validate capacity figures, and even identify real-world inefficiencies.

The capacity evaluation model proposed in this section is a compound model of
three independent steps—the accurate estimation of deployment area, the estimate of the
number of panels, and finally, the evaluation of the energy production capacity of the
facility. As depicted in Figure 6, the polygons detected via a deep learning pipeline are used
to estimate the “convex hull” area of the facility. Next, the area estimate is distilled down
to an estimate of panel area, and consequently, the number of panels. Finally, the energy
production capacity is evaluated using a standard formula that includes efficiency, location
(weather effects), and/or capacity factor. The area estimate hinges on model accuracy and
quality of imagery; the estimate of the number of panels depends on panel dimensions,
packing density, and axis system type. Finally, the energy production number depends
on capacity factor, which in turn is governed by location, weather effects, panel efficiency,
and so on.

Figure 6. Depiction of the capacity evaluation model for solar farms. The goal is to estimate annual
energy generation from polygons detected by the deep learning model on remotely sensed imagery.

Two approaches are explored to arrive at a capacity estimate. The first is a formula
that uses a published capacity factor for a given geographic location, or the farm itself,
if the number is available. The second, more complex method independent of assumptions,
is based on NREL’s PySAM model [13].
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The capacity factor (CF), used in the first method, is defined as the ratio of actual
energy delivered over a period of time over the maximum possible as per the rated capacity
of a power plant operating non-stop. The typical capacity factors of most farms in the
world range between 30 and 40%, while those in the Mohave desert are more specifically
clustered at around 33–37%. CF depends on the geographic location and varies based on
the actual weather events for a particular year.

Capacity Factor =
Annual Energy Production (kWh/year)

System Rated Capacity (kWh/h) × 24 (h/day) × 365 (days/year)
(1)

Alternately, a more complex route may be taken that is independent of assumptions,
and that is based on NREL’s PySAM model. NREL’s PySAM model uses a large number
of criteria, including actual hourly meteorological data (horizontal irradiance, normal
irradiance, diffuse irradiance, dew point, surface albedo, temperature, relative humidity,
solar zenith angle. . . ) to arrive at the energy generated by a panel on a given day. This
estimate can then be fed into the model to calculate the actual annual production instead of
the capacity factor method, which is an extrapolation from day to year.

The methodology is visualized in Figure 6, and step-by-step calculations and results
are elaborated in the tables in Section 3.4. The method is as follows: first, the polygons
detected by the deep learning pipeline are used to estimate the “convex hull” area of the
facility, which is brought down to panel area using a packing density. The model accuracy,
resolution of imagery available, and quality of imagery directly affect this number. Next,
the area estimate is distilled down to an estimate of the panel area, and consequently, the
number of panels.

Number o f Panels =
Total Panel Area
Area per Panel

(2)

=⇒ Number o f Panels =
Number o f Pixels × (Area/Pixel) × Packing Density

Area o f Panel
(3)

Ultimately, the energy production capacity is evaluated using Equation (1) as:

Annual Capacity (kWh/year) = CF × System Rated Capacity (kW) × 24 × 365 (4)

where,

System Rated Capacity (kW) = Panel Rated Capacity (kW) × Number o f Panels (5)

3. Results

Summarized in Table 2 are the performance metrics achieved by our best model. Our
best performing model produced a semantic segmentation output that is better than human
labeling, and the patches can be seen in Figure 7. The segmentation performance on various
full solar farms can be seen in Figure 8.

Table 2. Results—key performance metrics of the CNN.

Metric Description Result

pAcc (Pixel Accuracy) Correctly classified
pixels/total pixels 99.19%

mAcc (Mean Accuracy) Mean accuracy considering
optimal threshold 96.87%

mIoU (Mean
IoU/Jaccard Index)

Overlap between mask
and prediction 95.5%

fIoU (Frequency
corrected IoU)

IoU reported for each class
and weighted 97%
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Figure 7. Predictions on individual patches (before postprocessing) show clearer outputs than human
labeling (ground truth).
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Figure 8. Segmentation performance on various test solar farms. Comparison of the confidence
masks between teacher confidence (in black and white) and the student confidence (in color) shows
that the model produces an output with better veracity than human labeling.

3.1. Performance Metrics

The best performing model achieved a mean accuracy of 96.87% and an mIoU of
95.5%. For comparison, solarNet achieved an mIoU score of 94.2%. The high IoU score is
supported by Figures 7 and 8, which illustrate how the model is able to identify nuances
within the solar farm at a sub-farm level, such as spaces between panel rows, pathways,
and maintenance blocks.

3.2. Effect of Confidence Threshold

The IoU threshold is the confidence value at which a pixel is considered to be classified
as containing photovoltaics. In standard practice, >0.5 confidence is considered as a positive
prediction. A classification threshold is analogous to saying that there are higher/lower
standards for accepting a pixel as yes/no. Seen in Figure 9 is the variation of the IoU score
with the IoU threshold. As expected, there is a decline as the cutoff is made tighter. This
can be interpreted in two ways. One, that the model is confident in its predictions, as IoU
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score only drops fast as the cutoff approaches 1. The best IoU score, 95.5%, was achieved
with a cutoff at 0.4, which means the model is balanced but slightly more confident of
negative predictions.

Figure 9. The variation of IoU score with confidence cutoff/threshold.

3.3. Effect of Image Augmentation

It can be qualitatively observed from Figure 10 that the augmentation techniques
play a positive role in precise detection. As seen in Figure 10, the model detections are
noisy before training the model on the augmented images. The results after applying the
augmentation techniques (elucidated in the Methodology section) show that augmentation
not only reduced the amount of noise, but was able to progressively help the model learn
the essence of a solar farm.

Figure 10. Visualization of early improvement in the model with image and dataset augmentation.

3.4. Capacity Evaluation

The previous sections have affirmed our ability to input satellite imagery and ex-
tract detected polygon areas containing solar farms using a deep-learning-based pipeline.
The capacity evaluation model developed in this paper comprises three pieces—the accu-
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rate estimation of the deployment area, the estimate of the number of panels, and finally,
the evaluation of the energy production capacity of the facility. These steps are visualized
in the model diagram in Figure 6, and are enumerated and presented in Tables 3–5.

Illustrated in the following tables are some case studies of the model applied to
US solar farms. The results are presented step-by-step and are compared with reported
numbers. Table 3 depicts the area detection, the first step in the capacity evaluation pipeline.
The pixel count is multiplied by the square of the resolution (0.36 (m2)) to arrive at the area
estimate. Note that the differences between the detected area and the reported area are
accounted for by the fact that the detected area comes from purely panel outlines detected
by the CNN, whereas the reported area is a number from a commercial point of view—the
area operated by farm management—and therefore, includes peripheral area, ongoing
work, pathways, etc.

Table 3. Area Detection—the first step in capacity evaluation. Note that detected area is purely panel
outlines while reported area includes peripheral area.

Solar Farm
Pixels
Counted
Mil

Area
Detected

(km2)

Area
Reported

(km2)

Panel
Area

(km2)

Mount Signal 34.27 12.34 15.9 4.93
Agua Caliente 21.65 7.79 9.7 3.12

Desert Sunlight 38.53 13.87 16 5.55
Solar Star 25.33 9.12 13 3.65
Springbok 18.33 5.52 5.7 2.21

Table 4 depicts the estimate of the number of panels. The panel area is converted into
panel count by taking into account the types of panels in the farm and their corresponding
dimensions. This is because “number of panels” itself is not as relevant as total photovoltaic
area. The difference in numbers is likely also caused in part due to somewhat incorrect data
itself—the precise outlines of farms are dynamic, and reporting nomenclature can change
as they are influenced by financial factors, taxation, timing, ownership change, etc.

Table 4. Estimate of the number of panels. The panel area is converted into panel count, taking into
account the type of panels in the farm and their corresponding dimensions.

Solar Farm
Panel
Type

Panel
Area

(km2)

# Panels
Counted
(Million)

# Panels
Reported
(Million)

Error
(%)

Mount Signal FS 3&4 4.93 6.85 6.8 <1%
Agua

Caliente FS S4 3.12 4.33 4.8 9.7%

Desert
Sunlight FS S4 5.55 7.71 8.0 3.6%

Solar Star Sunpower 3.65 1.55 1.7 8.8%
Springbok FS S4 2.21 3.07 3.0 2.3%

Finally, Table 5 shows the capacity calculation results using capacity factors that are
relevant to the geographical location of the farm. While the model ultimately gives fairly
close estimates overall (all within 10%), there is notable variation between farms. There
is a case of the capacity evaluation error percentage being low, despite panel estimates
not being as precise (Agua Caliente), and vice versa (Springbok). Hence, the maximum of
the two errors is also reported. This variation in numbers could be attributed to temporal
factors—solar farms are dynamic and changing, whereas the reported figures are true for a
point in time. Time changes, weather variations, and nuances have not been considered in
our model, whether in panel count, capacity factor, or annual generation.
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Table 5. Capacity calculation results. We report the average of the two error values for each solar
farm, which lies in the range 2–7%.

Solar
Farm

# Panels
Counted

# Panels
Reported

Annual
Capacity
Calculated
(GWh)

Annual
Capacity
Reported
(GWh)

Capacity
Evaluation
Error (%)

Max
(Errors)

(%)

Mount
Signal 6.85 6.8 1165.1 1197 2.7% 2.7%

Agua
Caliente 4.33 4.8 736.0 740 <1% 9.7%

Desert
Sunlight 7.71 8.0 1309.9 1287 1.8% 3.6%

Solar Star 1.45 1.7 861.2 831 3.7% 8.8%
Springbok 3.07 3.0 623.2 717 13.1% 13.1%

4. Conclusions

The intersection of remote sensing and deep learning presents an exciting opportunity
for geographically quantifying photovoltaic system deployment, essentially giving us the
ability to draw insights on insofar lumped data. Insights from the remote quantification
of photovoltaic deployment could have outcomes such as strategic decision-making, the
cross-verification of reported data, and the incentivization of renewables targeting under-
served territories.

This work explored several independent elements of a capacity pipeline that goes
from raw overhead imagery to annual energy generation estimates by creating a dataset,
labeling it, choosing a neural network, and training, testing, and optimizing the model for
performance, and finally, by using results from the deep learning model to extract panel
count, panel area, and capacity predictions of the detected solar energy facilities. Some of
the key takeaways of this study are:

1. A semantic segmentation model that achieved strong performance metrics includ-
ing a mean accuracy of 96.87%, a Jaccard Index of 95.5% (compared to SolarNet’s
94.2%), and that is capable of highly precise and detailed detections. This has re-
sulted in arguably some of the most precise/accurate solar farm detection imagery in
the literature.

2. An original, pixel-wise labeled dataset of solar farms that was sourced, annotated,
and built for this problem, comprising 23,000 256 × 256 images on which the model
was trained.

3. A capacity evaluation model to extract panel count, panel area, energy generation
estimates, etc., of the detected solar energy facilities that were validated against
publicly available data to within 10% error, and an average error of 4.5%.

Future Work

There is plenty of scope for future work on this problem, as well as to the broader
problem of applying remote sensing to renewable energy technology. This work fits into a
longer-term goal of creating a granular global database of solar energy capacity production
that could serve as a single source of truth for industries and policymakers to identify
underserved areas and to inform decision-making. In the future, a highly refined version
of this model could even be used as a replacement for conventional sources of knowledge,
or as a secondary source of intelligence for the cross-validation of reported figures. We
identify certain directions that future efforts at extending this research could take. They
can be segmented as follows.

1. Exploring newer neural net architectures and conducting a more detailed optimiza-
tion study.

2. Exploring other data sources, including hyperspectral imagery.
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3. Testing the performance of the CNN on data from other countries, incorporating
additional training data if necessary. What remains to be conducted is automatic
deployment on large geographical areas such as states and countries.

4. Improving the accuracy and robustness of the capacity model. We were able to arrive
at reasonably close estimates of solar farm areas, numbers of panels, and even the
annual energy generated, but they are inconsistent. We enumerated some of the
possible reasons for inconsistency that had to do with temporal changes, reporting,
and data collection. With cleaner and more reliable data to compare to, the param-
eters/constants in the model, such as packing factor, can be updated with a least
squares fit.

5. Identifying trends and consequently underserved areas with high solar energy po-
tential. The CNN can be deployed on the imagery of various regions to assess the
deployment of commercial PV over time, and garner insights regarding the impacts of
historical political, social, and economic factors on the deployment of solar renewable
energy technology at scale.

6. Identifying solar panel defects such as cracked solar cells, broken glass, and dust/sand
build-up: defects in solar panels are unlikely to be detectable with imagery at a
resolution of 0.4–0.7 m, so this will have to be completed with drone imagery.
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Abbreviations

The following abbreviations are used in this manuscript:

CF Capacity factor
CNN Convolutional neural network
FCN Fully connected network
FN False Negative
FP False Positive
GIS Geographic Information System
GSD Ground Sampling Distance
IoU Intersection over Union
mAcc mean Accuracy
mIoU mean IoU
NAIP National Agriculture Imagery Program
NREL National Renewable Energy Labs
PV Photovoltaics
PySAM NREL Python System Advisor Model
QGIS Quantum GIS
ReLu Rectified Linear Unit
TN True Negative
TP True Positive
UNet “U” Network
USDA United States Department of Agriculture
USGS United States Geological Survey
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Appendix A

Figure A1. Mount Signal Solar (32◦40′24′′N, 115◦38′23′′W) in Imperial county, California, along with
its corresponding hand-labeled “ground truth”.

Figure A2. Agua Caliente (32◦57.2′N, 113◦29.4′W), California, along with its corresponding label.
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Figure A3. Solar Star (34◦49′50′′N, 118◦23′53′′W), the world’s largest solar farm, along with its
corresponding hand-labeled annotation.

Figure A4. Topaz Solar (35◦23′N, 120◦4′W) , along with its corresponding label.
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Figure A5. Copper Mountain Solar (35◦47′N, 114◦59′W) , along with its corresponding label.
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Abstract: At present, with the advance of satellite image processing technology, remote sensing
images are becoming more widely used in real scenes. However, due to the limitations of current
remote sensing imaging technology and the influence of the external environment, the resolution
of remote sensing images often struggles to meet application requirements. In order to obtain high-
resolution remote sensing images, image super-resolution methods are gradually being applied
to the recovery and reconstruction of remote sensing images. The use of image super-resolution
methods can overcome the current limitations of remote sensing image acquisition systems and
acquisition environments, solving the problems of poor-quality remote sensing images, blurred
regions of interest, and the requirement for high-efficiency image reconstruction, a research topic that
is of significant relevance to image processing. In recent years, there has been tremendous progress
made in image super-resolution methods, driven by the continuous development of deep learning
algorithms. In this paper, we provide a comprehensive overview and analysis of deep-learning-based
image super-resolution methods. Specifically, we first introduce the research background and details
of image super-resolution techniques. Second, we present some important works on remote sensing
image super-resolution, such as training and testing datasets, image quality and model performance
evaluation methods, model design principles, related applications, etc. Finally, we point out some
existing problems and future directions in the field of remote sensing image super-resolution.

Keywords: image super-resolution; deep learning; remote sensing; model design; evaluation methods

1. Introduction

Agriculture, meteorology, geography, the military, and other fields have benefited
from remote sensing imaging technology. In application scenarios such as pest and disease
monitoring, climate change prediction, geological survey, and military target identification,
remote sensing images are indispensable. Therefore, in order to realize remote sensing
image applications and analyses, high-resolution remote sensing images are essential.
Despite this, factors such as sensor noise, optical distortion, and environmental interference
can adversely affect the quality of remote sensing images and make it difficult to acquire
high-resolution remote sensing images. Image super-resolution aims to reconstruct high-
resolution (HR) images from low-resolution (LR) images (as shown in Figure 1), which
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is a typical computer vision task to mitigate the effects of acquisition equipment and
environmental factors on remote sensing imaging results and improve the resolution of
remote sensing images. However, the SR problem assumes that low-pass-filtered (blurred)
LR data are a downsampled and noisy version of HR data. The loss of high-frequency
information during the irreversible low-pass filtering and secondary sampling operations
causes SR to be an ill-posed problem. In addition, the super-resolution (SR) operation is a
pair of multiple mappings from LR to HR space, which can have multiple solution spaces
for any LR input, so it is essential to determine the correct solution from it. Many methods
have been proposed to solve such an inverse problem, which can be broadly classified into
early interpolation-based methods [1–3], reconstruction-based methods [4–6], and learning-
based methods [7–14]. Since interpolation-based methods, such as the bicubic interpolation
method [15], typically upsample LR images to obtain HR images, although they are simple
and fast, some high-frequency information is destroyed in the process, leading to a decrease
in model accuracy. The reconstruction-based methods are implemented based on adding
the prior knowledge of the image as a constraint to the super-resolution reconstruction
process of the image. Based on the SoftCuts metric, [16] proposes an adaptive SR technique
based on prior edge smoothing. Although this overcomes the problem of uncomfortable
image super-resolution, it also has the disadvantages of slow convergence speed and
high computational cost. To achieve super-resolution reconstruction, the learning-based
method relies on a large number of LR and HR images as a priori information. In [17],
local feature blocks are learned between LR and HR images using the neighbor embedding
method. Nonetheless, if learning becomes difficult (for example, when super-resolution
magnification damages detailed features in the image), the learning-based method will
perform less well. Therefore, the currently popular super-resolution is based on deep
learning, which learns the mapping between LR and HR image spaces to predict the missing
high-frequency information in low-resolution images in a time-saving and efficient manner.

LR HR

Figure 1. SR aims to reconstruct a high-resolution (HR) image from its degraded low-resolution
(LR) counterpart.

The field of deep learning is continually developing. In recent years, many SR models
based on deep learning have been proposed and have achieved significant results on bench-
mark test datasets of SR. Furthermore, the application of SR models to super-resolution
tasks on remote sensing images has become an increasingly popular topic in the field of SR.
Many attempts have been made by researchers to improve the performance of SR models
on remote sensing images. In particular, Dong et al. first designed a model with three
CNN layers, i.e., SRCNN [18]. Subsequently, Kim et al. increased the network depth to
20 in DRCN [19], and the experimental results were significantly improved compared with
those of SRCNN [18]. On this basis, Liebel et al. [20] retrained SRCNN [18] using remote
sensing image datasets to adapt the model to the multispectral nature of remote sensing
data. VDSR [21] introduced residual learning and gradient cropping while increasing
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the number of network layers and solved the problem of processing multi-scale images
in a single framework. LGCnet [22] is a combined local–global network based on VDSR
proposed by Lei et al. The problem of missing local details in remote sensing images is
solved by combining shallow and deep features through a branching structure, which
makes full use of both local and global information. To solve the discomfort problem of the
super-resolution of images, Guo et al. developed a dual regression model, DRN [23]. This
model learns mappings directly from LR images without relying on HR images. Overall, in
order to achieve better results, most SR methods are improved in terms of the following
aspects: network architecture design, selection of the loss function, development of the
learning strategy, etc.

Due to their superior performance, the exploration of deep-learning-based SR methods
is growing deeper. Several survey articles on SR have been published. However, most
of these reports highlight various evaluation metrics for the reconstruction results of SR
algorithms. In this paper, instead of simply summarizing available survey works [24–28],
we provided a comprehensive overview of SR methods, focusing on the principles and
processes of deep learning to demonstrate their performance, innovation, strength and
weakness, relevance, and challenges, while focusing on their application to remote sensing
images. Figure 2 shows the hierarchically structured classification of SR in this paper.

 Image Super-resolution

 Training and Test Datasets

 Evaluation Methods
 Image Quality Assessment

 Model Reconstruction Efficiency

 Network Design

 Recursive Learning  DRCN,DRRN,EBDN...

 Residual Learning  ResNet,VDSR,EDSR...

 Multi-Scale Learning  MSRN,MSFFRN,ELAN...

 Attention Mechanism  RCAN,HAN,NLRN,CRAN...

 Feedback Mechanism  DBPN,RBPN,SFRBN...

 Sparsity Based Models  SCN,HWCN,SMSR...

 Frequency Information Based Models  EBRN,DFSA,ClassSR...

 Learning Strategies

 Loss Function

 Regularization

 Batch Normalization

 Other Improvement Methods

 Knowledge Distillation Based Models

 Adder Operation Based Models

 Transformer Based Models

 Reference Based  Models

  Remote Sensing Applications
 Supervised Remote Sensing Image Super-resolution

 Unsupervised Remote Sensing Image Super-resolution

 Current Challenges and Future Directions

 Network Design

 Learning Strategies

 Evaluation Methods

 PISR,DAFL...

 AdderSR

 ESRT,SwinIR...

 RefSR,TTSR

Figure 2. Hierarchically structured classification of SR in this paper.

The main contributions of this paper are as follows:
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• We provide a comprehensive introduction to the deep-learning-based super-resolution
process, including problem definitions, datasets, learning strategies, and evaluation
methods, to give this review a detailed background.

• We classify the SR algorithms according to their design principles. In addition, we an-
alyze the effectiveness of several performance metrics of representative SR algorithms
on benchmark datasets, and some remote sensing image super-resolution methods
proposed in recent years are also introduced. The visual effects of classical SR methods
on remote sensing images are shown and discussed.

• We analyze the current issues and challenges of super-resolution remote sensing
images from multiple perspectives and present valuable suggestions, in addition to
clarifying future trends and directions for development.

The remaining sections of this review are arranged as follows. In Section 2, we briefly
discuss what deep-learning-based SR is, the commonly used datasets, and the evaluation
metrics. Section 3 describes in detail representative deep neural network architectures for
SR tasks. In Section 4, several evaluation metrics are used to compare the performance of
the SR methods mentioned in Section 3 and their application to remote sensing images. The
applications of SR in remote domains are presented in Section 5. In Section 6, we discuss
the current challenges and potential directions of SR. Finally, the work is concluded in
Section 7.

2. Background

2.1. Deep-Learning-Based Super-Resolution

With advances in computing power, deep learning [29] in super-resolution has de-
veloped rapidly in recent years. Deep learning is a concept developed based on artificial
neural networks [30], which is an extension of machine learning. Artificial neural networks
imitate the way the human brain thinks, with artificial neurons as the computational units;
the artificial neural network structure reflects the way these neurons are connected. The
objective of deep learning is to determine the feature distribution of data by learning
a hierarchical representation [31] of the underlying features. Specifically, deep learning
continuously optimizes the super-resolution algorithm process through a series of learning
strategies, such as deep network architecture, optimizer, and loss function design, while
alleviating the ill-posed problem of super-resolution. Typically, the LR image Ix is modeled
as the output of the following degradation:

Ix =
(

Iy ⊗ k
) ↓s +n, (1)

where Iy ⊗ k denotes the convolution operation between the HR image Iy and the de-
generate blur kernel k (e.g., double cubic blur kernel, Gaussian blur kernel, etc.), ↓s is
the downsampling operation with scale factor s, and n is the usually additive Gaussian
white noise.

Deep learning differs from traditional algorithms because it can transfer the above
processes into an end-to-end framework, saving time and efficiency. This is represented by
the network structure of SRCNN [18], as shown in Figure 3. The image super-resolution
process is roughly divided into three steps: feature extraction and representation, non-linear
mapping, and image reconstruction. Specifically, first, the feature blocks are extracted from
the low-resolution image by 9 × 9 convolution, and each feature block is represented as
a high-dimensional vector. Then, each high-dimensional vector is non-linearly mapped
to another high-dimensional vector by 5 × 5 convolution, where each mapped vector is a
high-resolution patch. Finally, the final high-resolution image is generated by aggregating
the above high-resolution patches by 5 × 5 convolution.
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LR HR

Patch extraction and 
representation

Non-linear mapping Reconstruction

64-channel features

5 5 conv 5 5 conv9 9 conv

32-channel features

Figure 3. The network structure of SRCNN [18].

In comparison with natural images, remote sensing images differ in that (1) remote
sensing images are captured from a distance of several hundred kilometers from the surface
of the earth and are usually acquired by the use of aerial photography, land and ocean
satellites, etc.; (2) most of the scenes in remote sensing images are forests, rivers, industrial
areas, and airports, etc., which are typically large in scope, contain small objects, and have
varied distribution forms; and (3) remote sensing images acquired under different weather
conditions differ as well, due to factors such as lighting conditions on sensors, and clouds
and fog that obscure the ground. The reconstruction of super-resolution remote sensing
images, therefore, requires special considerations. For remote sensing images collected from
forests and grasslands, the colors of the objects in the scene are very similar. It is difficult to
classify the scene contents by color features alone. By referring to the texture features of
these images, the “rough” forest and the “smooth” grass can be easily distinguished by the
super-resolution method for these images.

2.2. Training and Test Datasets

Deep learning is a method of learning from data, and the goodness of the data plays
an important role in the learning outcome of the model, with high-quality data being
able to facilitate the improvement of the reconstruction performance of the deep learning
SR-based model. Many diverse datasets for training and testing SR tasks have previously
been proposed. Datasets commonly used for SR model training include BSDS300 [32],
BSDS500 [33], DIV2K [34], etc. Similarly, BSD100 [32], Set5 [35], Set14 [36], Urban100 [37],
etc. can be used to effectively test model performance. In particular, remote sensing image
datasets such as AID [38], RSSCN7 [39], and WHU-RS19 [40] have been widely used in
remote sensing image super-resolution tasks. In Table 1, we list some datasets that are
commonly used in SR tasks (including the super-resolution of remote sensing images) and
specify their image counts, image formats, resolutions, and content descriptions. Among
them, the representative training dataset is the DIV2K [34] dataset, on which most SR
models are trained. The DIV2K [34] dataset has three components: 800 training images,
100 validation images, and 100 test images. Set5 and Set14 are the classic test datasets for
SR tasks, and they can accurately reflect the model performance. The OutdoorScene [41]
dataset contains plants, animals, landscapes, reservoirs, etc., in outdoor scenes. AID [38]
was originally used for the object detection task of remote sensing images, which contains
10,000 remote sensing images of 600 × 600 pixels, with scenes including airports, beaches,
deserts, etc. RSSCN7 [39] contains 2800 remote sensing images from different seasons,
arranged at four different scales, showing scenes such as farmland, parking lots, residential
areas, and industrial areas. The WHU-RS19 [40] dataset comprises remote sensing images
from 19 scenes, of which 50 images are included in each category. UC Merced [42] contains
remote sensing images of 21 categories of scenes, 100 images per category, and each image
size is 256 × 256 pixels. NWHU-RESISC45 [43] is published by Northwestern Polytechnic
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University. The images represent 45 different categories of scenes, with 700 images per
scene. RSC11 [44] is derived from Google Earth and contains 11 categories of scene, with
each category having 100 images.

Table 1. Common datasets for image super-resolution (SR) and some remote sensing image datasets.

Dataset Amount Resolution Format Short Description

BSD300 [32] 300 (435, 367) JPG animal, scenery, decoration, plant, etc.
BSD500 [33] 500 (432, 370) JPG animal, scenery, decoration, plant, etc.
DIV2K [34] 1000 (1972, 1437) PNG people, scenery, animal, decoration, etc.

Set5 [35] 5 (313, 336) PNG baby, butterfly, bird, head, woman
Set14 [36] 14 (492, 446) PNG baboon, bridge, coastguard, foreman, etc.
T91 [45] 91 (264, 204) PNG flower, face, fruit, people, etc.

BSD100 [32] 100 (481,321) JPG animal, scenery, decoration, plant, etc.
Urban100 [37] 100 (984, 797) PNG construction, architecture, scenery, etc.
Manga109 [46] 109 (826, 1169) PNG comics

PIRM [47] 200 (617, 482) PNG animal, people, scenery, decoration, etc.
City100 [48] 100 (840,600) RAW city scene

OutdoorScene [41] 10624 (553, 440) PNG scenes outside
AID [38] 10000 (600, 600) JPG airport, bare land, beach, desert, etc.

RSSCN7 [39] 2800 (400, 400) JPG farmlands, parking lots, residential areas, lakes etc.
WHU-RS19 [40] 1005 (600, 600) TIF bridge, forest, pond, port, etc.
UC Merced [42] 2100 (256, 256) PNG farmland, bushes, highways, overpasses, etc.

NWHU-RESISC45 [43] 31,500 (256, 256) PNG airports, basketball courts, residential areas, ports, etc.
RSC11 [44] 1232 (512, 512) TIF grasslands, overpasses, roads, residential areas, etc.

In addition to the datasets introduced above, datasets such as ImageNet [49],
VOC2012 [50], and CelebA [51] for other image processing tasks were also introduced
into the SR task.

2.3. Evaluation Methods

The evaluation index of image reconstruction quality can reflect the reconstruction
accuracy of an SR model. Meanwhile, the number of parameters, running time, and com-
putation of a model reflect the performance of an SR model. In this section, the evaluation
methods of image reconstruction quality and reconstruction efficiency are introduced.

2.3.1. Image Quality Assessment

Due to the widespread use of image super-resolution techniques, evaluating the quality
of reconstructed images has become increasingly important. Image quality refers to the
visual properties of an image, and the methods of image quality evaluation, distinguished
from the point of view of human involvement, include two branches: subjective and
objective evaluation. Using subjective evaluation, we can determine the quality of an
image (whether it appears realistic or natural) based on statistical analysis and with a
human being as the observer. This type of method can truly reflect human perception.
The objective evaluation of an organization is usually conducted based on numerical
calculations utilizing some mathematical algorithm that can automatically calculate the
results. In general, the former is a straightforward approach and more relevant to practical
needs, but these methods are difficult to implement and inefficient. Therefore, objective
evaluation methods are more widely used in image quality assessment, especially complete
reference methods, and several commonly used methods for image quality assessment are
described below.

Peak Signal-to-Noise Ratio (PSNR)

PSNR [52] is one of the most popular objective image evaluation metrics in SR. Given
a ground truth image Iy with N pixels and a reconstructed image ISR, the PSNR can be
defined by using the mean square error (MSE) as

104



Remote Sens. 2022, 14, 5423

PSNR = 10 · log10

(
L2

MSE

)
, (2)

MSE =
1
N

N

∑
i=1

(
Iy − ISR

)2, (3)

where L refers to the peak signal, i.e., L = 255 for an 8-bit grayscale image. Although PSNR
is relatively simple in its computational form and has a clear physical meaning, it essentially
does not introduce human visual system characteristics into the image quality evaluation
because it only considers MSE at the pixel level. Only the differences are analyzed purely
from a mathematical perspective, resulting in the inability of PNSR to capture the differ-
ences in visual perception. However, it is more important to evaluate the constructive
quality of the reconstructed image, so PNSR remains an accepted evaluation metric.

Structural Similarity (SSIM)

SSIM [52] is another popular image evaluation metric in the SR field. Unlike PSNR,
which measures absolute error, SSIM belongs to the perceptual model and can measure the
degree of distortion of a picture, as well as the degree of similarity between two pictures.
As a full-reference objective image evaluation metric, SSIM is more in line with the intuition
of the human eye. Specifically, SSIM is a comprehensive measure of similarity between
images from three aspects, including structure, brightness, and contrast, which is defined as

SSIM =
(

l
(

ISR, Iy
)α · c

(
ISR, Iy

)β · s
(

ISR, Iy
)γ
)

, (4)

l
(

ISR, Iy
)
=

(
2μISR μIy + C1

)
μ2

ISR
+ μ2

Iy+
C1

, (5)

c
(

ISR, Iy
)
=

(
2σISR σIy + C2

)
σ2

ISR
+ σ2

Iy
C2

, (6)

s
(

ISR, Iy
)
=

(
σISR Iy + C3

)
σISR σIy + C3

, (7)

where C1, C2, and C3 are constants and α, β, and γ are weighting parameters. In order
to avoid the case that the denominator is 0, C1 = (k1L)2, C2 = (k2L)2, C3 = C2

2 , and
k1 � 1,k2 � 1. SSIM takes values in the range of [0,1], and the larger the value, the
higher the similarity between two images. MS-SSIM is a variant of SSIM, and due to the
multivariate observation conditions, it takes into account the similarity between images at
different scales and makes the image evaluation more flexible.

Mean Opinion Score (MOS)

MOS is a subjective evaluation method, usually using the two-stimulus method [53].
An observer directly rates the perception of image quality, and this result is mapped to a
numerical value and averaged over all ratings, i.e., MOS. Many personal factors, such as
emotion, professional background, motivation, etc., can impact the evaluation results when
the observer performs the evaluation, which will cause the evaluation results to become
unstable and not accurate enough to ensure fairness. Moreover, MOS is a time-consuming
and expensive evaluation method because it requires the participation of the observer.

In addition to the above image evaluation metrics, there are many other image eval-
uation methods [54], such as the Natural Image Quality Evaluator (NIQE) [55], which is
an entirely blind metric that does not rely on human opinion scores and expects a priori
information to extract “quality-aware” features from images to predict their quality. The
algorithmic process of NIQE is more accessible to implement than MOS. Learned Perceptual
Image Patch Similarity (LPIPS) [56] is also known as “perceptual loss”. Specifically, when
evaluating the quality of super-resolution reconstructed images, it pays more attention to
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the depth features of the images and learns the inverse mapping from the reconstructed
images to a high resolution, and then calculates the L2 distance between them. Compared
with the traditional PNSR and SSIM methods, LPIPS is more in line with human perception.

2.3.2. Model Reconstruction Efficiency
Storage Efficiency (Params)

When evaluating an SR model, the quality of the reconstructed images it outputs is
essential. Still, the complexity and performance of the model need to be paid attention to
as well in order to promote the development and application of image super-resolution
in other fields while considering the output results of the losing model. The number of
parameters, running time, and computational efficiency of an SR model are important
indicators reflecting the efficiency of model reconstruction.

Execution Time

The running time of a model is a direct reflection of its computational power. The
current popular lightweight networks not only have a relatively low number of parameters
but also have short running times. If an SR model adds complex operations, such as atten-
tion mechanisms, this can lead to an increase in running time and affect the performance
of the model. Therefore, the running time is also an essential factor in determining the
performance of the model.

Computational Efficiency (Mult & Adds)

Since the algorithmic process in convolutional neural networks is primarily dependent
upon multiplication and addition operations, the multiplicative addition operands are
used to assess the computational volume of the model, as well as to indirectly reflect its
computational efficiency. The size of the model and the running time are the influencing
factors of the multiplicative–additive operands.

To conclude, when evaluating the SR model, it is also important to take into account
the complexity and performance of the model.

3. Deep Architectures for Super-Resolution

3.1. Network Design

Network design is a key part of the deep learning process, and this section will
introduce and analyze some mainstream design principles and network models in the
super-resolution domain, as well as explain and illustrate some deep learning strategies.
Finally, some design methods that deserve further exploration will be discussed.

3.1.1. Recursive Learning

Increasing the depth and width of the model is a common means to improve the
performance of the network, but this brings with it a large number of computational
parameters, as shown in Figure 4. Recursive learning is proposed to control the num-
ber of model parameters and to achieve the sharing of parameters in recursive mod-
ules. In simple terms, recursive learning means reusing the same module multiple times.
DRCN [19] applies recursive learning to super-resolution problems by using a single con-
volutional layer as the recursive unit and setting 16 recursions to increase the perceptual
field to 41 × 41 without introducing too many parameters. However, the superimposed
use of recursive modules also poses some problems: gradient explosion or disappearance.
Therefore, in DRRN [57], global and local residual learning is introduced to solve the
gradient problem, i.e., ResBlock is used as the recursive unit to reduce the training difficulty.
Ahn et al. [58] made improvements to the recursive application of ResBlock. They proposed
a global and local cascade connection structure to further speed up the network training
and make the transfer of information more efficient. In addition, the EBRN presented by
Qiu et al. [59] uses recursive learning to achieve the differentiation of information with a
different frequency, i.e., low-frequency information is processed with shallow modules in
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the network, and high-frequency information is processed with deep modules. Recursive
learning has also been widely used in some recent studies [60–62]. For example, in the
SRRFN proposed by Li et al. [60], the recursive fractal module consists of a series of fractal
modules with shared weights, which enables the reuse of model parameters.

Figure 4. The structure of recursive learning.

3.1.2. Residual Learning

While recursive learning enables models to achieve a higher performance with as
few parameters as possible, it also introduces the problem of exploding or vanishing
gradients, and residual learning is a more popular approach to alleviate these problems.
He et al. [63] proposed the use of residual learning in ResNet. It aims to mitigate the
problem of exploding or disappearing gradients by constructing constant mappings using
layer-hopping connections so that gradients in back-propagation can be passed directly to
the network front-end through shortcuts, as shown in Figure 5. In image super-resolution
tasks, low-resolution input images and high-resolution reconstructed images have most of
the relevant information in terms of features, so only the residuals between them need to
be learned to recover the lost information. In such a context, many residual learning based
models [58,64–66] were proposed. Kim et al. proposed a profound super-resolution residual
network VDSR [21] based on VGG-16, which has 20 layers, and takes the low-resolution
image with bi-trivial interpolation as the input image. The residual information learned
by the network is summed with the original input image as the output. Generally, the
composition of the residual branch includes 3 × 3 convolutional layers, BN layers, and the
relu activation function; some other ways this can be set up are mentioned in [67]. However,
it is mentioned in EDSR [68] that the BN layer in the residual module is not suitable for
super-resolution tasks because the distribution of colors of any image is normalized after BN
layer processing. The original contrast information of the image is destroyed, which affects
the quality of the output image of the network. Therefore, the BN layer is often chosen to be
removed when designing residual modules in super-resolution tasks. RDN [64] proposes
a residual dense block (RDB) that can fully preserve the features of the output of each
convolutional layer. Nowadays, residual learning is a common strategy for super-resolution
network design and has been applied in many models [69–73].

Figure 5. The structure of residual learning.

Although this global residual learning strategy achieves good results, global residual
learning refers to the jump connection established from the input to the output. As the
network levels deepen, global residual learning alone cannot recover a large amount of
lost information, so researchers propose local residual learning, which is located in every
few stacked layers and helps to preserve image details. A combination of global and local
residual learning is applied in models such as VDSR [21], and EDSR [68].
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3.1.3. Multi-Scale Learning

It has been pointed out [74,75] that images at different scales possess different features,
and these rich features will help to generate high-quality reconstructed images. Therefore,
multi-scale learning has been proposed to enable models to fully utilize features at different
scales, while being applied to many SR models [76]. Li et al. [65] concluded that previous
models were less robust to scale and less scalable, so multi-scale learning was applied
to the SR task. He proposed a multi-scale residual module (MSRB) that used a 1 × 1
convolution kernel combined with 3× 3 and 5× 5 convolution kernels to obtain information
at different scales (as shown in Figure 6), while local residual learning further improves
the network training efficiency. In [77], the authors combined residual learning with
multi-scale learning and proposed a multi-scale feature fusion residual block (MSFFRB) to
extract and fuse image features of different scales. The multi-scale feature extraction and
attention module (MSFEAAB) in [78] used convolutional kernels containing different sizes
within the same layer to extract information of different frequencies. Among them, small-
sized convolutional kernels primarily extract low-frequency components, while large-sized
convolutional kernels extract high-frequency components. Not only are the rich image
features obtained, but the computational complexity is not increased. Recently, more SR
network models have adopted multi-scale learning to improve model performance. In
ELAN [79], the authors proposed the grouped multi-scale self-attention (GMSA) module,
in which self-attention is computed using windows of different sizes on a non-overlapping
set of feature maps, as a way to establish long-range dependencies.

Figure 6. The structure of multi-scale residual block (MSRB) [65].

3.1.4. Attention Mechanism

The attention mechanism was proposed due to the fact that convolutional neural
networks focus more on local information and ignore global features. The attention mech-
anism is widely used in various computer vision tasks, often inserted into the backbone
network as a component, and its main purpose is to allocate computational resources to
more important tasks with limited computational power. In short, the attention mechanism
helps the network to ignore irrelevant information and focus on important details. Many
works have previously been proposed to facilitate the development of attention mecha-
nisms. For example, Hu et al. [80] proposed a novel “squeeze and excite” (SE) block, which
adaptively adjusts channel feature responses according to the interdependencies between
channels, as shown in Figure 7. With the continuous progress of the attention mechanism
and the advancement of previous research work, the attention mechanism has begun to be
applied to image super-resolution tasks.

Figure 7. The structure of channel attention mechanism [80].
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Channel Attention

In RCAN [81], Zhang et al. proposed a residual channel attention block (RCAB) to
achieve higher accuracy by learning the correlation between channels to adjust channel
features. To make the network pay more attention to the vital spatial features in the residual
features, Liu et al. [66] proposed an enhanced spatial attention (ESA) block, which used
a 1 × 1 convolution to reduce the number of channels to be light enough to be inserted
into each residual block. Furthermore, three 3 × 3 convolution combinations are used in
order to expand the perceptual field. Since channel attention treats each convolutional
layer as a separate process and ignores the correlation between different layers, the use
of this algorithm will lead to the loss of some intermediate features during the image
reconstruction. Therefore, Niu et al. [82] proposed a holistic attention network (HAN)
consisting of a layer attention module (LAM) and a channel space attention module (CSAM).
The LAM can assign different attention weights to features in different layers by obtaining
the dependencies between features of different depths, and then use the CSAM to learn the
correlations at different locations in each feature map, so as to capture global features more
efficiently. Similarly, the second-order channel attention (SOCA) module in SAN [83] learns
the inter-channel feature correlations by using the second-order statistics of the features.
The matrix multispectral channel attention (MMCA) module [84] first transformed the
image features to the frequency domain by DCT and then learned the channel attention to
achieve reconstruction accuracy in the SOTA results.

Non-Local Attention

Due to the limited perceptual field size, most image super-resolution networks are
only good at extracting local features in images, ignoring the correlation between long-
range features in images. However, this may provide critical information for reconstructing
images. Therefore, some studies have been proposed for non-local feature correlation. For
example, the purpose of the region non-local RL-NL module in SAN [83] is to divide the in-
put image into specific sizes and perform non-local operations on each region. Liu et al. [85]
proposed a non-local recurrent network (NLRN) to introduce non-local operations into
recurrent neural networks (RNN) for image recovery tasks to obtain the correlation of deep
features at each location with their neighboring features. Regarding non-local attention,
a cross-scale non-local (CS-NL) attention module was proposed in CSNLN [86], which
computes the similarity between LR feature blocks and HR target feature blocks in an
image and improves the performance of the SR model.

Other Attention

In addition to the common attention mechanisms mentioned above, there are also
some attention mechanisms designed from a specific perspective. For example, the contex-
tual reasoning attention network [87] generates attention masks based on global contextual
information, thus dynamically adjusting the convolutional kernel size to accommodate
image feature changes. Zhang et al. [79] argued that the transformer’s self-attention com-
putation is too large and certain operations are redundant for super-resolution tasks, so
the grouped multi-scale self-attention (GMSA) module was proposed, which computes
attention within windows of different sizes while sharing attention to accelerate the com-
putation. Mei et al. [88] introduced sparse representation to non-local self-attention to
improve the performance of the attention mechanism and reduce the number of operations.

3.1.5. Feedback Mechanism

The feedback mechanism differs from the input-to-target object mapping by introduc-
ing a self-correcting phase to the learning process of the model, i.e., sending the output
from the back end to the front end. The feedback mechanism is close to the recursive
learning structure, but the difference is that the parameters of the feedback-based model
are self-correcting, while the parameters of the recursive learning-based model are shared
between modules. In recent years, feedback mechanisms have been gradually applied to
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computer vision tasks [89,90]. Feedback mechanisms are also widely used in SR models due
to their ability to transfer deep information to the front end of the network to help further
the processing of shallow information, which facilitates the reconstruction process from
LR images to HR images. Haris et al. [91] proposed a depth inverse projection network
for super-resolution, using an alternating upsampling and downsampling stage structure
to achieve each stage of error feedback. RBPN [92] was proposed based on DBPN [91]
for video super-resolution tasks, which also introduces a feedback mechanism, with the
difference that RBPN integrates single-frame input and multi-frame input into one, using
an encoder–decoder mechanism to integrate image details. In SFRBN [93], a feedback
module (FB) is proposed, where the output of the previous module is fed back to the next
module as part of its input, enabling the further refinement of low-level information.

3.1.6. Frequency Information-Based Models

In addition to improvements in model volume (increasing width and depth), some
scholars have found that many current models for SR have a common problem: feature
extraction or processing tends to ignore high-frequency information. The SR task is precisely
a process of texture detail reconstruction for LR images, and such a problem can seriously
affect the reconstruction results. Therefore, some SR methods that focus on image frequency
information have been proposed. Qiu et al. [59] proposed an embedded block residual
network in EBRN, which used a recursive approach to the hierarchical processing of features
with different frequencies, with low-frequency information processed by a shallow module
and high-frequency information processed by a deep module, as a way to achieve better
results. Xie et al. [94] proposed a discrete cosine transform-based predictor that partitions
the coefficients of the input image in terms of frequency information, thus implementing
operations of different complexity for different regions, reducing computational effort and
computational complexity. Magid et al. [84] proposed a dynamic high-pass filtering module
(HPF) that dynamically adjusts the convolution kernel weights for different spatial locations,
thus preserving high-frequency information. A matrix multispectral channel attention
(MMCA) module was also proposed, which learns channel attention by transforming
features to the frequency domain through DCT. Kong et al. [95] proposed ClassSR consisting
of Class-Module and SR-Module to classify and super-resolve the input image based on
frequency information. Specifically, the Class-Module first decomposes the image into
small sub-images and classifies their complexity, i.e., smooth regions are more accessible
to reconstruct than textured regions. Then, these small sub-images are fed to different
SR-Module branches for further processing according to different complexity levels.

3.1.7. Sparsity-Based Models

In addition to the recovery of high-frequency information, introducing image sparsity
into CNN also leads to better performance. In SRN [96], an SR model incorporating
sparse coding design was proposed with better performance than SRCNN. Gao et al. [97]
presented a hybrid wavelet convolutional network (HWCN) to obtain scattered feature
maps by predefined scattering convolution and then the sparse coding of these feature
maps, used as the input to the SR model. Wang et al. [98] developed a sparse mask SR
(SMSR) network to improve network inference efficiency by teaching sparse masks to cull
redundant computations. In SMSR [98], “important” and “unimportant” regions are jointly
distinguished by spatial and channel masks, thus skipping unnecessary computations.

3.2. Learning Strategies

Common problems in the training process of SR models based on deep learning
include slow convergence and over-fitting. Solutions to these problems are closely related
to deep learning strategies, such as selecting the loss function, including regularization, or
performing batch normalization. These are critical steps in the training of deep learning
models. The purpose of this section is to introduce common learning strategies and
optimization algorithms used in deep learning.
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3.2.1. Loss Function

Loss functions are used to calculate the error between reconstructed images and
ground truth. The loss function is a crucial factor in determining the performance of the
model and plays a role in guiding the model learning during the training process. A
reasonable choice of the loss function can make the model converge faster on the dataset.
The smaller the value of the loss function, the better the robustness of the model. In order to
better reflect the reconstruction of images, researchers try to use a combination of multiple
loss functions (e.g., pixel loss, texture loss, etc.). In this section, we will study several
commonly used loss functions.

Pixel Loss

Pixel loss is the most popular loss function in image super-resolution tasks, which is
used to calculate the difference between the reconstructed image and ground truth pixels
to make the training process as close to convergence as possible. L1 loss, L2 loss, and
Charbonnier loss are among the pixel-level loss functions:
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where h, w, and c are the height, width, and number of channels of the image, respectively.
ε is a constant (usually set to 10−3) to ensure stable values. In image super-resolution tasks,
many image evaluation metrics involve inter-pixel differences, such as PSNR, so pixel loss
has been a popular loss function in super-resolution. However, pixel loss does not consider
the perceptual quality and texture of the reconstructed image, which can lead to a lack of
reconstructed images with lost high-frequency details; therefore, high-quality reconstructed
images cannot be obtained.

Perceptual Loss

Perceptual loss is commonly used in GAN networks. In order to obtain reconstructed
images with rich high-frequency features, researchers proposed perceptual loss in place of
the L2 loss used previously to calculate inter-pixel differences. Specifically, perceptual loss
is often used to compare two images that look similar but are different, because perceptual
loss compares the perceptual quality and semantic differences between the reconstructed
image and ground truth:
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where hl , wl , and cl denote the height, width, and number of channels of the l-th layer
features, respectively. ∅ denotes the pre-trained network, and ∅(l)(I) denotes the high-level
features extracted from a certain l-th layer of the network.

Content Loss

Content loss was applied early in the field of style migration, and is similar to per-
ceptual loss, using the semantic difference between the generated and content images
compared with the trained classification network, i.e., L2 distance:
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where hl , wl , and cl denote the height, width, and number of channels of the l-th layer
features, respectively. ∅ denotes the pre-trained classification network, and ∅(l)(I) denotes
the high-level features extracted from the l-th layer of the network.

Texture Loss

By obtaining the spatial correlation between the feature maps in the pre-trained
network, texture loss is a modification of perceptual loss as introduced by Gatys et al. to the
field of style migration. Since the reconstructed images possess the same style as ground
truth, texture loss can also be applied in the field of super-resolution [14,99–101]. Texture
loss is mainly achieved by computing the Gram matrix:
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where Gij
(l)(I) is the inner product between vectorized feature maps i and j at the l-th layer,

which captures the tendency of features to appear simultaneously in different parts of the
image. vec() denotes the vectorization operation and ∅i

(l)(I) denotes the i-th channel of
the feature map on the l-th layer of image I. Then, the texture loss is defined as follows:
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Adversarial Loss

Recent research has demonstrated that generative adversarial networks (GANs) per-
form well on image super-resolution tasks. GANs are gradually being applied to computer
vision tasks. A generative adversarial network (GAN) consists of two core parts: generator
and discriminator. It is the generator’s responsibility to create data that do not exist, while
the discriminator is responsible for determining whether the generated data are accurate or
false. After iterative training, the ultimate goal of the generator is to generate data that look
naturally real and are as close to the original data as possible, so that the discriminator can-
not determine the authenticity. The task of the discriminative model is to identify the fake
data as accurately as possible, and the application of GAN in the field of super-resolution
takes the form of SRGAN [102]. The design of the SRGAN loss function is based on the
cross-entropy in pixel loss, which is defined as follows:

LAdversarial (Ix, G, D) =
N

∑
n=1

− log D(G(Ix)), (15)

where G(Ix) is the reconstructed SR image, and G and D represent the generator and
discriminator, respectively. Some MOS tests have shown that SR models trained by a
combination of content loss and adversarial loss perform better in terms of the perceptual
quality of images than SR models that undergo only pixel loss. Still, with reduced PSNR,
research continues on how to integrate GAN into SR models and stabilize the trained GAN.

3.2.2. Regularization

The SR model training process is prone to the over-fitting phenomenon; that is, the
model overlearns the training dataset and has poor generalization ability, resulting in
a high evaluation index of the reconstructed image output on the training set and poor
performance on the test set. The reasons for over-fitting include (1) the small size of the
training dataset, and (2) the high complexity of the model and numerous parameters.
Therefore, the most direct way to avoid overfitting is to increase the size of the training
dataset so that the training set samples are as close as possible to the ground-truth data
distribution. However, this approach does not guarantee the effect and is time-consuming
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and laborious. In deep learning, a common learning strategy used to prevent overfitting
is regularization.

The essence of regularization is to preserve the original features, make the input
dataset smaller than the number of model parameters, and avoid training, in order to obtain
parameters that improve the generalization ability of the model and prevent overfitting. The
common regularization methods [103,104] in deep learning include L1\L2 regularization,
dropout [105–107], early stopping, and data augmentation.

L1\L2 Regularization

L1\L2 regularization is the most commonly used regularization method. It essentially
adds regular terms of L1\L2 parameterization to the loss function to reduce the number of
parameters, acting as a parameter penalty to reduce the complexity of the model and limit
its learning ability.

L1 regularization is defined as follows:

cost = Loss + γ ∑ ‖w‖, (16)

L2 regularization is defined as follows:

cost = Loss + γ ∑ ‖w‖2, (17)

where γ is the hyperparameter that controls the proportion of the control loss term and the
regularization term, and w is the model weight.

Since many parameter vectors in the L1 regularization term are sparse vectors, result-
ing in many parameters being zero after model regularization, L1 regularization is used
when compressing the model in deep learning, while L2 regularization is commonly used
in other cases.

Dropout

Hinton et al. [108] proposed that when the dataset is small, and the neural network
model is large and complex, over-fitting tends to occur during training. To prevent over-
fitting, some of the feature detectors can be stopped in each training batch so that the
model does not rely too much on certain local features, thus improving the generalization
ability and performance of the model. Compared with other regularization methods,
dropout [109] is simpler to implement, has essentially no restrictions on the model structure,
and has good performance on feedforward neural networks, probabilistic models, and
recurrent neural networks, with a wide range of applicability. There are two typical dropout
implementations: vanilla dropout and inverted dropout.

The process of vanilla dropout includes the model being trained by randomly dropping
some neurons with a certain probability p. Then, forward propagation is performed, the
loss is calculated, and backward propagation and gradient update are performed. Finally,
the step of randomly dropping neurons is repeated. However, the selection of neurons is
random for each dropout, and vanilla dropout requires scaling (i.e., multiplying by (1 − p))
the trained parameters at test time, which leads to different results for each test with
the same input, making the model performance unstable and the operation of balancing
expectations too cumbersome. Therefore, vanilla dropout is not widely used.

Inverted dropout is an improved version of vanilla dropout. It is based on the principle
of dropping a portion of neurons with random probability p during the model training
process. Unlike vanilla dropout, it does not process the parameters during the test stage.
Inverted dropout scales the output values by a factor of 1

1−p during forward propagation,
balancing the expectation values and keeping the training and testing processes consistent.

Early Stopping

As the number of training iterations increases, the training error of the model gradually
decreases but the error in the test set increases again. The strategy of stopping the algorithm
when the error on the test set does not improve further within a pre-specified number
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of cycles, at which point the parameters of the model are stored, and the parameter that
minimizes the error on the test set is returned, is called early termination [110,111]. The
early termination method hardly changes the model training parameters and optimization
objectives and does not disrupt the learning process of the model. Due to its outstanding
effectiveness and simplicity, the early termination method is the more commonly used
regularization method.

Data Augmentation

Training with a larger number of datasets is the most direct way to improve model
generalization and prevent over-fitting. Furthermore, data augmentation [112,113] is an
important method to meet the demand of deep learning models for large amounts of data.
In general, the size of a dataset is fixed, and data augmentation increases the amount of
data by manually generating new data. For images, a single image can be flipped, rotated,
cropped, or even Gaussian blurred to generate other forms of images.

3.2.3. Batch Normalization

To address the problem of the data distribution within a deep network changing
during training, Sergey et al. [114] proposed batch normalization (BN) to avoid covariance
shifts within parameters during training. Batch normalization is introduced into the
deep learning network framework as a layer, commonly used after the convolution layer,
to readjust the data distribution. The BN layer divides the input data into batches, a
batch being the number of samples optimized each time, in order to calculate the mean
and variance of the groups, and then normalizes them, since each group determines the
gradient and reduces randomness when descending. Finally, scaling and offset operations
are performed on the data to achieve a constant transformation, and the data recover their
original distribution.

Batch normalization can prevent over-fitting from appearing to a certain extent, which is
similar to the effect of dropout and improves the generalization ability of the model. Meanwhile,
because batch normalization normalizes the mean and variance of parameters in each layer,
it solves the problem of gradient disappearance. It supports the use of a larger learning rate,
which increases the magnitude of gradient dropout and increases the training speed.

3.3. Other Improvement Methods

In addition to the network design strategies mentioned in Section 3.1, this section will
add other design approaches that have further research value.

3.3.1. Knowledge-Distillation-Based Models

Hinton et al. [115] first introduced the concept of knowledge distillation, a model
compression algorithm based on a “teacher–student network”, where the critical problem
is how to transfer the knowledge transformed from a large model (teacher model) to a
small model (student model). Lee et al.[116] proposed a distillation structure for SR, which
was the first time that knowledge distillation was introduced into the super-resolution
domain. Knowledge distillation has been widely used in various computer vision tasks,
and its advantages of saving computational and storage costs have been shown. In [116],
features from the decoder of the teacher network are transferred to the student network in
the form of feature distillation, which enables the student network to learn richer detailed
information. Zhang et al. [117] proposed a network distillation method DAFL applicable to
cell phones and smart cameras in the absence of raw data, using a GAN network to simulate
the raw training data in the teacher network, and using a progressive distillation strategy
to distill more information from the teacher network and better train the student network.

3.3.2. Adder-Operation-Based Models

Nowadays, the convolution operation is a common step in deep learning, and the
primary purpose of convolution is to calculate the correlation between the input features
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and the filter, which will result in a large number of floating-point-valued multiplication
operations. To reduce the computational cost, Chen et al. [118] proposed to use additive
operations instead of multiplication operations in convolutional neural networks, i.e., L1
distance is used instead of convolution to calculate correlation, while L1-norm is used
to calculate variance, and an adaptive learning rate scale change strategy is developed
to speed up model convergence. Due to the superior results produced by AdderNet,
Chen et al. [119] applied the additive operation to the image super-resolution task. In
AdderSR [119], the relationship between adder operation and constant mapping is analyzed,
and a shortcut is inserted to stabilize the performance. In addition, a learnable power
activation is proposed to emphasize high-frequency information.

3.3.3. Transformer-Based Models

In recent years, the excellence of transformer in the field of natural language processing
has driven its application in computer vision tasks. Many transformer-based image pro-
cessing methods have been proposed one after another, e.g., image classification [120,121],
image segmentation [122,123], etc. The advantage of transformer is that self-attention can
model long-term dependencies in images [124] and obtain high-frequency information,
which helps to recover the texture details of images. Yang et al. [101] proposed a texture
transformer network for image super-resolution, where the texture transformer of the
method extracts texture information based on the reference image and transfers it to the
high-resolution image while fusing different levels of features in a cross-scale manner,
obtaining better results compared with the latest methods. Chen et al. [125] proposed
a hybrid attention transformer that improves the ability to explore pixel information by
introducing channel attention into the transformer while proposing an overlapping cross-
attention module (OCAB) to better fuse features from different windows. Lu et al. [126]
proposed an efficient and lightweight super-resolution CNN combined with transformer
(ESRT), where, on the one hand, the feature map is dynamically resized by the CNN part
to extract deep features. On the other hand, the long-term dependencies between similar
patches in an image are captured by the efficient transformer (ET) and efficient multi-
headed attention (EMHA) mechanisms to save computational resources while improving
model performance. The transformer combined with CNN for SwinIR [127] can be used
for super-resolution reconstruction to learn the long-term dependencies of images using
a shifted window mechanism. Cai et al. [128] proposed a hierarchical patch transformer,
which is a hierarchical partitioning of the patches of an image for different regions, for ex-
ample, using smaller patches for texture-rich regions of the image, to gradually reconstruct
high-resolution images.

Transformer-based SR methods are quickly evolving and are being widely adopted
due to their superior results, but their large number of parameters and the required amount
of computational effort are still problems to be solved.

3.3.4. Reference-Based Models

The proposed reference-based SR method alleviates the inherent pathological problem
of SR, i.e., an LR image can be obtained by degrading multiple HR images. RefSR used
external images from various sources (e.g., cameras, video frames, and network images) as
a reference to improve data diversity while conveying reference features and providing
complementary information for the reconstruction of LR images. Zhang et al. [99] proposed
that the previous RefSR suffers from the problem that the reference image is required to
have similar content to the LR image, otherwise it will affect the reconstruction results. To
solve the above problems, SRNTT [99] borrowed the idea of neural texture migration for
semantically related features after matching the features of the LR image and reference
image. In TTSR [101], Yang et al. proposed a texture transformer based on the reference
image to extract the texture information of the reference image and transfer it to the
high-resolution image.

115



Remote Sens. 2022, 14, 5423

4. Analyses and Comparisons of Various Models

4.1. Details of the Representative Models

To describe the performance of the SR models mentioned in Section 3 more intuitively,
16 of these representative models are listed in Table 2, including their PSNR and SSIM
metrics on Set5 [35], Set14 [36], BSD100 [32], Urban100 [37], and Manga109 [46] datasets,
training datasets, and the number of parameters (i.e., model size).

Table 2. PSNR/SSIM comparison on Set5 [35], Set14 [36], BSD100 [32], Urban100 [37], and Manga109 [46].
In addition, the number of training datasets and the parameters of the model are provided.

Models Scale
Set5 Set14 BSD100 Urban100 Manga109

Train Data Param.
PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

SRCNN [18] ×2 36.66/0.9542 32.45/0.9067 31.36 0.8879 29.50/0.8946 35.60/0.9663 T91 + ImageNet 57 K
VDSR [21] ×2 37.53/0.9587 33.03/0.9124 31.90/0.8960 30.76/0.9140 -/- BSD + T91 665 K
DRCN [19] ×2 37.63/0.9588 33.04/0.9118 31.85/0.8942 30.75/0.9133 -/- T91 1.8 M
DRRN [57] ×2 37.74/0.9591 33.23/0.9136 32.05/0.8973 31.23/0.9188 -/- BSD + T91 297 K
CARN [58] ×2 37.76/0.9590 33.52/0.9166 32.09/0.8978 31.92/0.9256 -/- BSD + T91 + DIV2K 1.6 M
EDSR [68] ×2 38.11/0.9601 33.92/0.9195 32.32/0.9013 32.93/0.9351 -/- DIV2K 43 M
ELAN [79] ×2 38.17/0.9611 33.94/0.9207 32.30/0.9012 32.76/0.9340 39.11/0.9782 DIV2K 8.3 M
MSRN [65] ×2 38.08/0.9605 33.74/0.9170 32.23/0.9013 32.22/0.9326 38.82/0.9868 DIV2K 6.5 M
RCAN [81] ×2 38.27/0.9614 34.12/0.9216 32.41/0.9027 33.34/0.9384 39.44/0.9786 DIV2K 16 M
HAN [82] ×2 38.27/0.9614 34.16/0.9217 32.41/0.9027 33.35/0.9385 39.46/0.9785 DIV2K 16.1 M
RDN [64] ×2 38.30/0.9616 34.10/0.9218 32.40/0.9022 33.09/0.9368 39.38/0.9784 DIV2K 22.6 M

NLSN [88] ×2 38.34/0.9618 34.08/0.9231 32.43/0.9027 33.42/0.9394 39.59/0.9789 DIV2K 16.1 M
RFANet [66] ×2 38.26/0.9615 34.16/0.9220 32.41/0.9026 33.33/0.9389 39.44/0.9783 DIV2K 11 M

SAN [83] ×2 38.31/0.9620 34.07/0.9213 32.42/0.9028 33.10/0.9370 39.32/0.9792 DIV2K 15.7 M
SMSR [98] ×2 38.00/0.9601 33.64/0.9179 32.17/0.8990 32.19/0.9284 38.76/0.9771 DIV2K 1 M
ESRT [126] ×2 -/- -/- -/- -/- -/- DIV2K 751 K
TDPN [14] ×2 38.31/0.9621 34.16/0.9225 32.52/0.9045 33.36/0.9386 39.57/0.9795 DIV2K 12.8 M

SwinIR [127] ×2 38.42/0.9623 34.46/0.9250 32.53/0.9041 33.81/0.9427 39.92/0.9797 DIV2K + Flickr2K 12 M

SRCNN [18] ×3 32.75/0.9090 29.30/0.8215 28.41/0.7863 26.24/0.7989 30.48/0.9117 T91 + ImageNet 57 K
VDSR [21] ×3 33.66/0.9213 29.77/0.8314 28.82/0.7976 27.14/0.8279 -/- BSD + T91 665 K
DRCN [19] ×3 33.82/0.9226 29.76/0.8311 28.80/0.7963 27.15/0.8276 -/- T91 1.8 M
DRRN [57] ×3 34.03/0.9244 29.96/0.8349 28.95/0.8004 27.53/0.8378 -/- BSD + T91 297 K
CARN [58] ×3 34.29/0.9255 30.29/0.8407 29.06/0.8034 28.06/0.8493 -/- BSD + T91 + DIV2K 1.6 M
EDSR [68] ×3 34.65/0.9282 30.52/0.8462 27.71/0.7420 29.25/0.8093 -/- DIV2K 43 M
ELAN [79] ×3 34.61/0.9288 30.55/0.8463 29.21/0.8081 28.69/0.8624 34.00/0.9478 DIV2K 8.3 M
MSRN [65] ×3 34.38/0.9262 30.34/0.8395 29.08/0.8041 28.08/0.8554 33.44/0.9427 DIV2K 6.5 M
RCAN [81] ×3 34.74/0.9299 30.65/0.8482 29.32/0.8111 29.09/0.8702 34.44/0.9499 DIV2K 16 M
HAN [82] ×3 34.75/0.9299 30.67/0.8483 29.32/0.8110 29.10/0.8705 34.48/0.9500 DIV2K 16.1 M
RDN [64] ×3 34.78/0.9300 30.67/0.8482 29.33/0.8105 29.00/0.8683 34.43/0.9498 DIV2K 22.6 M

NLSN [88] ×3 34.85/0.9306 30.70/0.8485 29.34/0.8117 29.25/0.8726 34.57 0.9508 DIV2K 16.1 M
RFANet [66] ×3 34.79/0.9300 30.67/0.8487 29.34/0.8115 29.15/0.8720 34.59/0.9506 DIV2K 11 M

SAN [83] ×3 34.75/0.9300 30.59/0.8476 30.59/0.8476 28.93/0.8671 34.30/0.9494 DIV2K 15.7 M
SMSR [98] ×3 34.40/0.9270 30.33/0.8412 29.10/0.8050 28.25/0.8536 33.68/0.9445 DIV2K 1 M
ESRT [126] ×3 34.42/0.9268 30.43/0.8433 29.15/0.8063 28.46/0.8574 33.95/0.9455 DIV2K 751 K
TDPN [14] ×3 34.86/0.9312 30.79/0.8501 29.45/0.8126 29.26/0.8724 34.48/0.9508 DIV2K+Flickr2K 12.8 M

SwinIR [127] ×3 34.97/0.9318 30.93/0.8534 29.46/0.8145 29.75/0.8826 35.12/0.9537 DIV2K + Flickr2K 12 M

SRCNN [18] ×4 30.48/0.8628 27.50/0.7513 26.90/0.7101 24.52/0.7221 27.58/0.8555 T91 + ImageNet 57 K
VDSR [21] ×4 31.35/0.8838 28.01/0.7674 27.29/0.7260 25.18/0.7524 -/- BSD + T91 665 K
DRCN [19] ×4 31.53/0.8854 28.02/0.7670 27.23/0.7233 25.14/0.7510 -/- T91 1.8 M
DRRN [57] ×4 31.68/0.8888 28.21/0.7720 27.38/0.7284 25.44/0.7638 -/- BSD + T91 297 K
CARN [58] ×4 32.13/0.8937 28.60/0.7806 27.58/0.7349 26.07/0.7837 -/- BSD + T91 + DIV2K 1.6 M
EDSR [68] ×4 32.46/0.8968 28.80/0.7876 27.71/0.7420 26.6 /0.8033 -/- DIV2K 43M
ELAN [79] ×4 32.43/0.8975 28.78/0.7858 27.69/0.7406 26.54/0.7982 30.92/0.9150 DIV2K 8.3 M
MSRN [65] ×4 32.07/0.8903 28.60/0.7751 27.52/0.7273 26.04/0.7896 30.17/0.9034 DIV2K 6.5 M
RCAN [81] ×4 32.63/0.9002 28.87/0.7889 27.77/0.7436 26.82/0.8087 31.22/0.9173 DIV2K 16 M
HAN [82] ×4 32.64/0.9002 28.90/0.7890 27.80/0.7442 26.85/0.8094 31.42/0.9177 DIV2K 16.1 M
RDN [64] ×4 32.61/0.9003 28.92/0.7893 27.80/0.7434 26.82/0.8069 31.39/0.9184 DIV2K 22.6 M

NLSN [88] ×4 32.59 0.9000 28.87 0.7891 27.78 0.7444 26.96 0.8109 31.27 0.9184 DIV2K 16.1 M
RFANet [66] ×4 32.66/0.9004 28.88/0.7894 27.79/0.7442 26.92/0.8112 31.41/0.9187 DIV2K 11 M

SAN [83] ×4 32.64/0.9003 28.92/0.7888 27.78/0.7436 26.79/0.8068 31.18/0.9169 DIV2K 15.7 M
SMSR [98] ×4 32.12/0.8932 28.55/0.7808 27.55/0.7351 26.11/0.7868 30.54/0.9085 DIV2K 1 M
ESRT [126] ×4 32.19/0.8947 28.69/0.7833 27.69/0.7379 26.39/0.7962 30.75/0.9100 DIV2K 751 K
TDPN [14] ×4 32.69/0.9005 29.01/0.7943 27.93/0.7460 27.24/0.8171 31.58/0.9218 DIV2K 12.8 M

SwinIR [127] ×4 32.92/0.9044 29.09/0.7950 27.92/0.7489 27.45/0.8254 32.03/0.9260 DIV2K + Flickr2K 12 M
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By comparing them, the following conclusions can be drawn: (1) To better visualize the
performance differences between these models, we selected the number of parameters and
the PSNR metrics of these models on the Set5 dataset and plotted a line graph, as shown in
Figure 8. Usually, the larger the number of parameters, the better the reconstruction results,
but this does not show that increasing the model size will improve the model performance,
which is inaccurate. (2) Without considering the model size, the image super-resolution
used for the transformer models tends to perform well. (3) Lightweight (that is, the number
of parameters is less than 1000 K) and efficient models are in the minority in the field of
image super-resolution, but in the future will become the mainstream direction of research.

Additionally, we list some classical methods, datasets, and evaluation metrics of
remote sensing image super-resolution models in Table 3, sorted by year of publication. In
analyzing the data, we can observe that, on the one hand, research methods in RSISR are
gradually diversifying and have improved in terms of their performance in recent years.
On the other hand, less attention is being paid to research on large-scale remote sensing
super-resolution methods, which represents an area in which research will be challenging.

Table 3. PSNR/SSIM of some representative methods for remote sensing image super-resolution.

Models Method Scale Dataset PSNR/SSIM

LGCnet [22] combination of local and global
Information

×2
UC Merced

33.48/0.9235
×3 29.28/0.8238
×4 27.02/0.7333

RS-RCAN [129] residual channel attention
×2

UC Merced
34.37/0.9296

×3 30.26/0.8507
×4 27.88/0.7707

WTCRR [130] wavelet transform, recursive learning
and residual learning

×2
NWPU-RESISC45

35.47/0.9586
×3 31.80/0.9051
×4 29.68/0.8497

CSAE [131] sparse representation and
coupled sparse autoencoder

×2 NWPU-RESISC45 29.070/0.9343
×3 25.850/0.8155

DRGAN [132] a dense residual generative adversarial
×2

NWPU-RESISC45
35.56/0.9631

×3 31.92/0.9102
×4 29.76/0.8544

MPSR [133] enhanced residual block (ERB) and
residual channel attention group(RCAG)

×2
UC Merced

39.78/0.9709
×3 33.93/0.9199
×4 30.34/0.8584

RDBPN [134] residual dense backprojection network ×4 UC Merced 25.48/0.8027
×8 21.63/0.5863

EBPN [135] enhanced back-projection network(EBPN)
×2

UC Merced
39.84/0.9711

×4 30.31/0.8588
×8 24.13/0.6571

CARS [136] channel attention ×4 Pleiades1A 30.8971/0.9489

FeNet [137] a lightweight feature
enhancement network)

×2
UC Merced

34.22/0.9337
×3 29.80/0.8481
×4 27.45/0.7672

117



Remote Sens. 2022, 14, 5423

Figure 8. Variation of PSNR with the number of parameters.

4.2. Results and Discussion

To visualize the results of our experiments on remote sensing image datasets, we
select classical SR models and present the visualization results (Figure 9) to visually and
comprehensively illustrate their application on remote sensing images. In particular, we
retrain these models and test them based on the WHU-RS19 [40] and RSC11 [44] datasets.

(a) (b) (c) (d)

(e) (f) (g)

Figure 9. Comparison of visual results of different SR methods with ×2 super-resolution on the WHU-
RS19 [40] dataset (square scene). (a) HR. (b) Bicubic. (c) EDSR [68]. (d) RCAN [81]. (e) RDN [64].
(f) SAN [83]. (g) NLSN [88].
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Figure 9 illustrates the comparison of different SR methods for the super-resolution
reconstruction of the WHU-RS19 [40] dataset from remote sensing images. When compared
with the HR images, the results obtained by bicubic interpolation and EDSR [68] all exhibit
a loss of detail and a smoothing effect. NLSN [88] appears to retain high-frequency
information better, with the texture details of the reconstructed images being close to those
of HR images, and the contours of the structures in the images being more clearly defined.

Figure 10 shows the results of the SR method for ×2 super-resolution reconstruction
on a parking lot image in the WHU-RS19 [40] dataset. There are a variety of car colors
present in the scene. Color shifts are observed using both the bicubic interpolation and
RCAN [81] methods. RDN [64] with dense residual blocks provides accurate color results.
The results of all other reconstruction methods are blurry.

The results of the SR method for ×2 super-resolution reconstruction on the WHU-
RS19 [40] dataset from forests are given in Figure 11. Except for SAN [83] and RCAN [81],
all other methods show high color similarity to the HR image. The results of several
attention-based methods are also acceptable in terms of texture features, and the edge
details of the forest are relatively well-defined.

(a) (b) (c) (d)

(e) (f) (g)

Figure 10. Comparison of visual results of different SR methods with ×2 super-resolution on the
WHU-RS19 [40] dataset (parking lot scene). (a) HR. (b) Bicubic.(c) EDSR [68]. (d) RCAN [81].
(e) RDN [64]. (f) SAN [83]. (g) NLSN [88].

Figure 12 shows the results of the SR method for ×2 super-resolution reconstruction
on the port images in the RSC11 [44] dataset. SAN [83] and RDN [64] methods provide
better visual results both in terms of spatial and spectral characteristics. It is easier to
identify objects such as boats in the scene based on the reconstruction results. EDSR [68]
and bicubic interpolation results are blurrier around the edges.

Figure 13 shows the effect of the SR method on the ×2 super-resolution reconstruction
of the residential area images in the RSC [44] dataset. In the reconstruction results of the
CNN-based SR method, some exterior contours of the buildings can be observed, and
useful geometric features are retained. The result of the bicubic interpolation process is
blurrier and lacks some spatial detail features.

Figure 14 shows the results of the SR method for ×2 super-resolution reconstruction on
sparse forest images in the RSC11 [44] dataset. The result generated by NLSN [88] is closer
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to the color characteristics of HR and better preserves the color of the plain land. RDN [64]
retains more texture features and can observe detailed information such as branches and
trunks of trees.

(a) (b) (c) (d)

(e) (f) (g)

Figure 11. Comparison of visual results of different SR methods with ×2 super-resolution on the
WHU-RS19 [40] dataset (forest scene). (a) HR. (b) Bicubic. (c) EDSR [68]. (d) RCAN [81]. (e) RDN [64].
(f) SAN [83]. (g) NLSN [88].

(a) (b) (c) (d)

(e) (f) (g)

Figure 12. Comparison of visual results of different SR methods with ×2 super-resolution on the
RSC11 [44] dataset (port scene). (a) HR. (b) Bicubic. (c) EDSR [68]. (d) RCAN [81]. (e) RDN [64].
(f) SAN [83]. (g) NLSN [88].
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(a) (b) (c) (d)

(e) (f) (g)

Figure 13. Comparison of visual results of different SR methods with ×2 super-resolution on the
RSC11 [44] dataset (residential area scene). (a) HR. (b) Bicubic. (c) EDSR [68]. (d) RCAN [81].
(e) RDN [64]. (f) SAN [83]. (g) NLSN [88].

(a) (b) (c) (d)

(e) (f) (g)

Figure 14. Comparison of visual results of different SR methods with ×2 super-resolution on
the RSC11 [44] dataset (sparse forest scene). (a) HR. (b) Bicubic. (c) EDSR [68]. (d) RCAN [81].
(e) RDN [64]. (f) SAN [83]. (g) NLSN [88].

5. Remote Sensing Applications

Among the most critical factors for success in remote sensing applications, such as
target detection and scene recognition, are high-resolution remote sensing images with
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rich detail. Thus, methods of super-resolution that can be used for remote sensing have
received more attention from researchers. The characteristics of remote sensing images
have been addressed by many researchers in recent years by proposing super-resolution
methods [138–142]. In this section, these methods are divided into two categories: su-
pervised remote sensing image super-resolution and unsupervised remote sensing image
super-resolution, and their characteristics are summarized.

5.1. Supervised Remote Sensing Image Super-Resolution

Most current remote sensing image super-resolution methods use supervised learning,
i.e., LR–HR remote sensing image pairs are used to train models to learn the mapping from
low-resolution remote sensing images to high-resolution remote sensing images.

In [143], a multiscale convolutional network MSCNN is proposed to accomplish re-
mote sensing image feature extraction using convolutional kernels of different sizes to
obtain richer, deeper features. Inspired by DBPN [91] and ResNet [63], Pan et al. proposed
the residual dense inverse projection network (RDBPN) [134], which consists of projection
units with dense residual connections added to obtain local and global residuals, while
achieving feature reuse to provide more comprehensive features for large-scale remote sens-
ing image super-resolution. Lei et al. [144] focused on remote sensing images containing
more flat regions (i.e., more low-frequency features), and proposed coupled-discriminate
GAN (CDGAN). In CDGAN, the discriminator receives inputs from both real HR images
and SR images to enhance the network’s ability to discriminate low-frequency regions
of remote sensing images, and a coupled adversarial loss function is introduced to fur-
ther optimize the network. In [145], a hybrid higher-order attention network (MHAN)
is proposed, including two parts: a feature extraction network and feature refinement
network. Among them, the higher-order attention mechanism (HOA) is used to recon-
struct the high-frequency features of remote sensing images while introducing frequency
awareness to make full use of the layered features. E-DBPN (Enhanced-DBPN) [144] is
a generator network constructed based on DBPN. Enhanced residual channel attention
module (ERCAM) is added to E-DBPN, which has the advantage of not only preserving
the input image original features but also allowing the network to concentrate on the most
significant portions of the remote sensing images, thus extracting features that are more
helpful for super-resolution. Meanwhile, a sequential feature fusion module (SFFM) is
proposed in E-DBPN to process the feature output from different projection units in a
progressive manner. Usually, remote sensing images have a wide range of scene scales and
large differences in object sizes in the scene. To address this characteristic of remote sensing
images, Zhang et al. [146] proposed the multi-scale attention network (MSAN), which
uses a multi-level activation feature fusion module (MAFB) to extract features at different
scales and further fuse them. In addition, a scene adaptive training strategy is proposed to
make the model better adapt to remote sensing images from different scenes. In [147], a
deep recurrent network is proposed. First, the encoder extracts the remote sensing image
features, a gating-based recurrent unit (GRU) is responsible for feature fusion, and finally
the decoder outputs the super-resolution results. To reduce the computation and network
parameters, Wang et al. [148] proposed a lightweight context transformation network
(CTN) for remote sensing images. The context transformation layer (CTL) in this network
is a lightweight convolutional layer, which can maintain the network performance while
saving computational resources. In addition, the context conversion block (CTB) composed
of CTL and the context enhancement module (CEM) jointly complete the extraction and
enhancement of the contextual features of remote sensing images. Finally, the feature
representation is processed by the context aggregation module to obtain the reconstruction
results of remote sensing images. The U-shaped attention connectivity network (US-ACN)
for the super-resolution of remote sensing images proposed by Jiang et al. [149] solves
the problem of the performance degradation of previous super-resolution models on real
images by learning the commonality of the internal features of remote sensing images.
Meanwhile, a 3D attention module is designed to calculate 3D weights by learning channels
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and spatial attention, which is more helpful for the learning of internal features. In addition,
a U-shaped connection is added between the attention modules, which is more helpful
for the learning of attention weights and the full utilization of contextual information.
In [141], self-attention is used to improve the generative adversarial network and its tex-
ture enhancement function is used to solve the problems of edge blurring and artifacts in
remote sensing images. The improved generator based on weight normalization mainly
consists of dense residual blocks and a self-attentive mechanism for feature extraction,
while stabilizing the training process to recover the edge details of remotely sensed images.
In addition, a loss function is constructed by combining L1 parametric, perceptual, and
texture losses, thus optimizing the network and removing remote sensing image artifacts.
In [139], fuzzy kernel and noise are used to simulate the degradation patterns of real remote
sensing images. The discriminator of Unet architecture is used to stabilize the training,
while the residual balanced attention network (RBAN) is proposed to reconstruct the real
texture of remote sensing images.

5.2. Unsupervised Remote Sensing Image Super-Resolution

Despite the fact that the super-resolution method with supervised learning has pro-
duced some results, there are still challenges associated with the pairing of LR–HR remote
sensing images. On the one hand, the current remote sensing imaging technology and the
influence of the external environment cannot meet the demand for high-resolution remote
sensing images; on the other hand, the acquired high-resolution remote sensing images are
processed with ideal degradation (such as double triple downsampling, Gaussian blur, etc.),
and such degradation modes cannot approach the degradation of realistic low-resolution
remote sensing images.

In [150], the generated random noise is first projected to the target resolution to ensure
the reconstruction constraint on the LR input image, and the image is reconstructed using a
generator network to obtain high-resolution remote sensing images by iterative iterations.
In [151], a CycleGAN-based remote sensing super-resolution network is proposed. The
training process uses the output of the degradation network as the input of the super-
resolution network and the output of the super-resolution network as the input of the
degradation network, so as to construct a cyclic loss function and thus improve the network
performance. In [152], the unsupervised network UGAN is proposed. The network feeds
low-resolution remote sensing images directly to the generator network and extracts
features using convolutional kernels of different sizes to provide more information for
the unsupervised super-resolution process. In [153], after training with a large amount of
synthetic data, the most similar model to real degradation is developed, and then a loss
function is derived from the difference between the original low-resolution image of the
remote sensing network and the degraded image of the model.

6. Current Challenges and Future Directions

The models that have achieved excellent results in the field of image super-resolution
in the past are presented in Section 3 and 4. The results of the application of these models
on remotely sensed images show that they have driven the development of image super-
resolution as well as remote sensing image processing techniques. The description of the
methods for the super-resolution of remote sensing images in Section 5 also proves that
this is a promising research topic. However, there are still many unresolved issues and
challenges in the field of image super-resolution. Especially in the direction of the super-
resolution of remote sensing images, on the one hand, remote sensing images, compared
with natural images, are characterized by diverse application scenarios, a large number of
targets, and complex types; on the other hand, external environments such as lighting and
atmospheric conditions can affect the quality of remote sensing images. In this section, we
will discuss these issues and introduce some popular and promising directions for future
research. Remote sensing super-resolution can break through the limitations of technical
level and environmental conditions, contributing to studies of resource development and
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utilization, disaster prediction, etc. We believe that these directions will encourage excellent
work to emerge on the topic of image super-resolution, and further explore the application
of super-resolution methods to remote sensing images, contributing to the advancement of
remote sensing.

6.1. Network Design

A proper network architecture design not only has high evaluation metrics but also
enables efficient learning by reducing the running time and computational resources
required, resulting in an excellent performance. Some promising future directions for
network design are described below.

(1) More Lightweight and Efficient Architecture. Although the proposed deep network
models have shown excellent results on several benchmark datasets and better results
on various evaluation methods, the good performance of the models is determined by
multiple factors, such as the number of model parameters and the resources required for
computation, which determine whether the image super-resolution methods can be applied
in realistic scenarios (e.g., smartphones and cameras, etc.). Therefore, it is necessary to
develop lighter and more efficient image super-resolution network architectures to achieve
higher research value. For example, compressing the model size using techniques such
as network binarization and network quantization is a desirable approach. In the future,
achieving a lightweight and efficient network architecture will be a popular trend in the
field of image super-resolution. In the meantime, the application of the network architecture
to the super-resolution of remote sensing images not only improves the reconstruction
efficiency but also speeds up the corresponding remote sensing image processing.

(2) Combination of Local and Global Information. For image super-resolution tasks, the
integrity of local information makes the image texture more realistic, and the integrity of
global information makes the image content more contextually relevant. Especially for
remote sensing images, the feature details are more severely corrupted compared with
natural images. Therefore, the combination of local and global information will provide
richer features for image super-resolution, which helps in the generation of complete high-
resolution reconstructed images. In the practical application of remote sensing images,
feature-rich high-resolution images play an invaluable role. For example, when using
remote sensing technology for geological exploration, the observation and analysis of
the spectral characteristics of remote sensing images enables the timely acquisition of the
surface conditions for accurate judgment.

(3) Combination of High-frequency and Low-frequency Information. Usually, convolutional
networks are good at extracting low-frequency information, and high-frequency informa-
tion (such as image texture, edge details, etc.) is easily lost in the feature transfer process.
Due to the limitation of the imaging principle of the sensor, the acquired remote sensing
images also occasionally have the problem of blurred edges and artifacts. Improving
the network structure by designing a frequency domain information filtering mechanism,
combining it with a transformer, etc., to retain the high-frequency information in the image
by as much as possible will help in the reconstruction of high-resolution images. When
remote sensing technology is applied to vegetation monitoring, the complete spectral and
textural features in remote sensing images will help improve the classification accuracy
for vegetation.

(4) Real-world Remote Sensing Image Super-resolution. In the process of remote sensing
image acquisition, realistic training samples of LR–HR remote sensing images are often not
obtained due to atmospheric influence and imaging system limitations. On the one hand,
the LR remote sensing images obtained by most methods using ideal degradation modes
(such as double triple downsampling, Gaussian fuzzy kernel, and noise) still have some
differences from the spatial, positional, and spectral information of the real remote sensing
images. Therefore, the methods used to generate images that are closer to the real degraded
remote sensing images are of important research value. On the other hand, unsupervised
super-resolution methods can learn the degradation process of LR remote sensing images
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and reconstruct them in super-resolution without pairwise training samples. Therefore,
research on unsupervised remote sensing image super-resolution methods should receive
more attention so as to cope with some real scenarios of remote sensing image super-
resolution tasks.

(5) Remote Sensing Image Super-resolution across Multiple Scales and Scenes. The scenes of
remote sensing images often involve multiple landscapes, and the target objects in the same
scene vary greatly in size, which presents some challenges to the learning and adaptive
ability of the model. Meanwhile, most current remote sensing image super-resolution
methods use ×2, ×3, and ×4 scale factors. As a consequence, the model should be trained
to learn how to map relationships between LR–HR remote sensing images from multiple
scenes. For the characteristics of target objects in remote sensing images, more attention
should be paid to the research of super-resolution methods with ×8 and larger scale factors,
so as to provide more useful information for remote sensing image processing tasks.

6.2. Learning Strategies

In addition to the network architecture design, a reasonable deep learning strategy
is also an important factor in determining the network performance. Some promising
learning strategy design solutions are presented here.

(1) Loss Function. Most of the previous network models choose MSE loss or L2 loss or
use a weighted combination of loss functions. Most suitable loss functions for image super-
resolution tasks are still to be investigated. Although some new loss functions have been
proposed from other perspectives, such as perceptual loss, content loss, and texture loss,
they have yet to produce satisfactory results regarding their applications in image super-
resolution tasks. Therefore, it is necessary to further explore the balance between image
super-resolution accuracy and perceptual quality to find more accurate loss functions.

(2) Batch Normalization. Batch normalization speeds up model training and has been
widely used in various computer vision tasks. Although it solves the gradient disappear-
ance problem, it is unsatisfactory for image super-resolution in some studies. Therefore,
the normalization techniques suitable for super-resolution tasks need further research.

6.3. Evaluation Methods

Image quality evaluation, as an essential procedure in the process of image super-
resolution based on deep learning, also faces certain challenges. How to propose an
evaluation metric with simple implementation and accurate results still needs to be contin-
uously explored. Some promising development directions to solve the current problem are
presented below.

(1) More Precise Metrics. PSNR and SSIM, as currently popular evaluation metrics, also
have some drawbacks. Although PSNR is a simple algorithm that can be implemented
quickly, because it is a purely objective evaluation method, the calculated results some-
times differ greatly from those obtained by human vision. SSIM measures the quality
of reconstructed images in terms of brightness, contrast, and structure. However, there
are some limitations on the evaluation objects, and for images that have undergone non-
structural distortion (e.g., displacement, rotation, etc.), SSIM cannot evaluate them properly.
Therefore, it is necessary to propose a more accurate image evaluation index.

(2) More Diverse Metrics. As image super-resolution technology continues to advance, it
is used in more fields. In this case, it is inaccurate to use only mainstream evaluation metrics
such as PSNR or SSIM to evaluate reconstruction results. For example, reconstructed images
applied in the medical field tend to focus more on the recovery of detailed areas, and it is
necessary to refer to evaluation criteria that focus on the high-frequency information of the
image. MOS, as a subjective evaluation method, evaluates the results in a manner that is
closer to the visual perception of the human eye, but in practice, it is difficult to implement
this method because it requires a large number of people to participate. There is a need
to propose more targeted evaluation indices for certain characteristics of remote sensing
images in particular. The spatial resolution and spectral resolution of remote sensing
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images play a vital role in practical applications, such as weather forecasting, forestry, and
geological surveying, etc. Thus, to evaluate the quality of reconstructed remote sensing
images, one should consider whether the reconstruction results can optimize a particular
property of these images. In general, the diversification of image evaluation metrics is also
a popular development direction.

7. Conclusions

This paper provides a comprehensive summary of deep-learning-based image super-
resolution methods, including common datasets, image quality evaluation methods, model
reconstruction efficiency, deep learning strategies, and some techniques to optimize net-
work metrics. In addition, the applications of image super-resolution methods in remote
sensing images are comprehensively presented. Finally, although the research on image
super-resolution methods, especially for remote sensing image super-resolution reconstruc-
tion, has made great progress in recent years, significant challenges remain, such as low
model inference efficiency, the unsatisfactory reconstruction of real-world images, and a
single approach to measuring the quality of images. Thus, we point out some promising
development directions, such as more lightweight and effective model design strategies,
remote sensing image super-resolution methods that are more adaptable to realistic scenes,
and more accurate and diversified image evaluation metrics. We believe this review can
help researchers to gain a deeper understanding of image super-resolution techniques and
the application of super-resolution methods in the field of remote sensing image processing,
thus promoting progress and development.
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Abstract: Predicting sea wave parameters such as significant wave height (SWH) has recently been
identified as a critical requirement for maritime security and economy. Earth observation satellite
missions have resulted in a massive rise in marine data volume and dimensionality. Deep learning
technologies have proven their capabilities to process large amounts of data, draw useful insights,
and assist in environmental decision making. In this study, a new deep-learning-based hybrid fea-
ture selection approach is proposed for SWH prediction using satellite Synthetic Aperture Radar
(SAR) mode altimeter data. The introduced approach integrates the power of autoencoder deep
neural networks in mapping input features into representative latent-space features with the fea-
ture selection power of the principal component analysis (PCA) algorithm to create significant fea-
tures from altimeter observations. Several hybrid feature sets were generated using the proposed
approach and utilized for modeling SWH using Gaussian Process Regression (GPR) and Neural
Network Regression (NNR). SAR mode altimeter data from the Sentinel-3A mission calibrated by
in situ buoy data was used for training and evaluating the SWH models. The significance of the
autoencoder-based feature sets in improving the prediction performance of SWH models is inves-
tigated against original, traditionally selected, and hybrid features. The autoencoder–PCA hybrid
feature set generated by the proposed approach recorded the lowest average RMSE values of 0.11069
for GPR models, which outperforms the state-of-the-art results. The findings of this study reveal the
superiority of the autoencoder deep learning network in generating latent features that aid in im-
proving the prediction performance of SWH models over traditional feature extraction methods.

Keywords: significant wave height; deep learning; autoencoder; principal component analysis; SAR;
altimeter; Gaussian process regression

1. Introduction

Wave conditions are important parameters in coastal engineering and the research of
maritime processes. Wave conditions such as wave height and wind speed may assist in
optimizing shipping routes and harvesting times of aquaculture farms. Wave height plays
a crucial influence in energy extraction from waves, sediment movement, harbor design,
and soil erosion. For any practical applications, long-term observed data are necessary.
Methods for determining wave heights include field measurements, theoretical research,
and numerical simulation. In most of these instances, however, there will be no long-term
measurements, making wave height prediction vital.

Recently, satellite-based remote sensing systems including electro-optical, microwave
radiometers, Synthetic Aperture Radar, and altimeters have been providing tremendous
amounts of data about earth. Satellite data collection and processing is being used to
significantly help to make operational decisions in many challenging environmental prob-
lems. For ocean observation from space, satellite imaging systems have demonstrated
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their capability to provide ocean wave spectra at high spatial resolution [1–3]. The Wave
Mode (WM) has been specifically adopted by Envisat, ERS-1/2, and Sentinel-1A/B SARs
to provide information on ocean waves in open ocean [4–7].

Traditionally, SWH retrieval schemes in satellite imagery can be classified into three
categories as described in this section. The first group of algorithms depends on inte-
grating the directional ocean wave spectrum estimated from the SAR spectrum. These
methods require wind information or a first guess for the wave spectra [8–11]. Given that
the relation between the wave spectrum and the SAR spectrum is nonlinear [12], and that
it is not possible to predict the wave height below a certain frequency, estimation of wave
height using this scheme is incomplete [12].

The second group includes empirical algorithms that have emerged since the 2000s.
Empirical models can estimate SWH directly from features computed from SAR images
and/or SAR spectra and do not require prior wave/wind information as in the first scheme.
An example of these models that estimates significant wave height is the C-band WAVE
algorithm called CWAVE. The original CWAVE algorithm has two versions, one that uses
a mean and variance of image intensity (the base model) and one that adds 20 variables
calculated from the image spectrum (the full-spectrum model) [12]. Many versions were
developed for the CWAVE models such as the CWAVE_ERS for ERS-2 wave mode [13],
CWAVE_ENV for Envisat wave mode [14], and other empirical Hs retrieval attempts for
SAR data provided by Sentinel-1A [15,16], Radarsat-2 [17,18], and TerraSAR-X [19].

In the third category, various machine learning (ML) algorithms are employed for
the purpose of wave parameters estimation. Machine and deep learning techniques have
proven high prediction performance in several life fields. For instance, machine learning
has been used for the medical diagnosis of many diseases [20–23], cyberbullying detec-
tion [24], environmental monitoring [25], augmentation of turbulence models [26], man-
agement of vegetated water resources [27,28], and in other applications. In oceanography
and Earth sciences, ML has a diverse range of real-time applications. The primary applica-
tions of machine learning in oceanography include ocean weather and climate prediction,
wave modeling, SWH, and wind speed predictions in regular sea state conditions [29,30]
and in complex sea state conditions [29,31,32]. For instance, the study in [29] developed
an ensemble of neural networks for the prediction of significant wave height from satel-
lite images in an offshore region of a wind farm. The study by Stefanakos [31] integrated
the Fuzzy Inference System with the Adaptive Network-based Fuzzy Inference System
to predict wind and SWH parameters from a nonstationary wave parameters time series.
Classical ML algorithms were used for wave height/wind speed estimation in the study
by Stopa and Mouche [33], in which they implemented the CWAVE using a shallow feed-
forward neural network using SAR images. They tested the full-spectrum model and the
base model, and experimented with a few other parameters in the base model [33]. Collins
et al. in [18] implemented the base and full-spectrum CWAVE models as neural networks
and used Radarsat-2 Fine Quad data. They trained and tested the networks using buoy
observations and investigated as well the effects of incidence angle and polarization. The
common conclusion among the aforementioned studies is that neural networks extend the
ability of retrieving the wave parameters using SAR images under a large range of envi-
ronmental conditions in which SWH estimation is challenging. Although the results of
the aforementioned study are promising, the approach of predicting SWH from satellite
imagery itself is complicated and tedious.

For more than 30 years, satellite radar altimeters have provided comprehensive cov-
erage of wind speed and significant wave height [34]. Numerous applications have made
use of these data, such as offshore engineering design, numerical model validation, wind
and wave climatology, and the analysis of long-term trends in oceanographic wind speed
and wave height. However, the use of altimeter data for modeling SWH received little
attention in the literature. Altimeter data provide several SWH and wind-speed-related
parameters. The significance of these parameters for the prediction of SWH has not yet
been investigated in the literature. Nevertheless, a single study has been found to utilize

134



Remote Sens. 2022, 14, 5569

some altimeter features in the context of SWH prediction. The study of Quach et al. [35] in-
tegrated features from satellite altimeter data with a number of features that were derived
from the modulation spectra of SAR images and developed a deep-learning-based predic-
tion model for SWH. Their results show an improved prediction performance using their
proposed method. Studies in the literature used other dataset types for predicting SWH.
The majority of studies used buoy measurements for modeling SWH [32,36,37], while
some recent studies used satellite imagery and extracted image features and used them
for SWH prediction [12,14,29]. Only few papers have utilized altimeter data features for
SWH forecasting [35]. The investigation of the significance of the entire set of features in al-
timeter data for SWH prediction is considered a gap in the literature. Motivated to fill this
research gap, in this study, we propose a new framework to investigate the significance of
altimeter data features in modeling SWH. Within this framework, a deep-learning-based
feature extraction approach is introduced to extract significant features from SAR mode
satellite altimeter data. The autoencoder deep learning neural network is utilized to ex-
tract latent features from the altimeter data. The autoencoder network has the capability
to map the original input feature into an abstract set of significant latent features. Two
traditional feature extraction approaches are utilized as well to extract extra features: the
Pearson Correlation Coefficient (PCC) Analysis and the PCA. Several hybrid feature sets
are then formed by fusing traditionally extracted and deep-learning-derived features. The
feature sets are used for modeling SWH individually. This study proposes a novel hybrid
approach for extracting significant features from altimeter data for SWH prediction. The
deep learning autoencoder neural network was utilized, separately, and hybridized with
other traditional feature extraction methods uniquely in this study for the prediction of sig-
nificant wave height. To the best of our knowledge, no research has used autoencoders for
SWH prediction in satellite data. Moreover, the hybrid combination of the (autoencoder–
PCA) has not been presented in the literature for wave parameter prediction to data. The
main contributions of the present study are listed as follows:

1. Proposal of a new hybrid deep-learning-based approach for extracting features from
SAR mode satellite altimeter data.

2. Proposal of a new framework to investigate the significance of altimeter data-driven
features for SWH prediction.

3. Utilization of autoencoder deep learning neural network to extract latent features
from the altimeter data.

4. Generation of several feature sets composed of the original data features, tradition-
ally extracted features, deep learning-derived features, and hybrid combinations
from them.

5. Utilization of the generated feature sets to model SWH using the Gaussian Process
Regression and Neural Network Regression algorithms and evaluate the prediction per-
formance.

6. Comparing the prediction performance of the SWH models trained using the basic
and hybrid feature sets.

7. Evaluation of the significance of the proposed features using hypothesis testing.

The paper is structured as follows: Section 2 describes the dataset used in this work,
Section 3 presents the used methods, Section 4 discusses the obtained results, and Section 5
concludes the work.

2. Dataset

The used dataset is satellite records of significant wave height and wind speed mea-
sured by the SENTINEL-3A altimeter. Sentinel-3A is an Earth observation satellite spe-
cialized to oceanography. It is the first of four Sentinel-3 satellites planned as part of the
Copernicus Program. On 16 February 2016, the European Space Agency launched the
Sentinel-3A satellite to measure sea surface topography, temperature, and color with high
accuracy and dependability to support ocean forecasting systems, as well as environmen-
tal and climate monitoring [38]. SAR Radar Altimeter (SRAL) of SENTINEL-3A SLAR is
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a new-generation altimeter that operates in Synthetic Aperture Radar (SAR) mode at all
times [39]. SAR mode is the optimum mode for data recording over open ocean surface
since it is designed to achieve high along-track resolution over generally flat surfaces [39].
A summary of Sentinel-3A altimeter operating characteristics is provided in Table 1. Al-
timetry instrument, exact repeat mission period, orbit parameters such as inclination and
altitude, antenna properties such as frequency and frequency band, latitude coverage, and
operational time for Sentinel-3A are depicted in Table 1.

Table 1. Summary of Sentinel-3A altimeter operating characteristics [40].

Altimetry
Instrument

Revisit
Time

Inclination Frequency
Frequency

Band
Altitude

Latitude
Coverage

Life Time

SRAL 27 days 98.650 13.575 GHz
5.41 GHz

KU
C 814.5 km −78 to 81 2016–ongoing

The dataset used in this study is a subset of the IMOS (Integrated Marine Observ-
ing System, Battery Point, Australia) Surface Waves Sub-Facility Altimeter Wave/Wind
database publicly available through the Australian Ocean Data Network portal (AODN:
https://portal.aodn.org.au/, accessed on 15 August 2022). The IMOS dataset is a large
archive of global significant wave height and wind speed records measured by 13 satellite
altimeters over 33 years from 1985 to 2018 [34]. The altimeters of GEOSAT, ERS-1, TOPEX,
ERS-2, GFO, JASON-1, ENVISAT, JASON-2, CRYOSAT-2, HY-2A, SARAL, JASON-3, and
SENTINEL-3A were used to collect the SWH and wind speed measurements. Values of
significant wave height and wind speed are derived from high-frequency altimeter data
by fitting a functional form to the radar return from the ocean surface through the wave-
form retracking process. Altimeter data in this database were calibrated using a long-term
high-quality wind speed and wave height database measured by in situ buoys from the
National Oceanographic Data Center (NODC). Due to land and ice contamination, and the
quality of the altimeter waveform received by the satellite, altimeter-generated Geophys-
ical Data Records may contain data spikes. Therefore, quality flags were used to specify
the goodness level of the data and aid in quality controlling it. The archive data contains
a series of data flags defined as 1, 2, 3, 4, and 9; these flags represent Good data, Probably
good data, Hardware error, Bad data, and Missing data, respectively [34]. In this study,
only good quality and probably good data are used.

Data of two geographical positions were selected for this study; throughout the paper,
the first position is referred to as P0, while the second location is referred to as P1. Position
P0 is located at 0◦ latitude and 0◦ longitude (0◦N 0◦E), which is a point in the Atlantic
Ocean. This point is called the Null Island and is located where the prime meridian meets
the equator. The Null Island lies in international waters in the Atlantic Ocean, about 600
km off the coast of West Africa in the Gulf of Guinea [41]. Position P1 is located at 0◦
latitude and 1◦ longitude (0◦N 1◦E), which is located as well in the Atlantic Ocean. For P0,
data records were acquired for the period from 26 March 2016 at 09:57:02 Z′ to 11 July 2018
at 09:57:30 Z′. The data file for P0 contains 1008 records. The data of position P1 contain
1033 entries and were acquired from 3 March 2016 at 09:53:25 Z′ to 15 July 2018 at 09:53:46
Z′. For each position, the data file contains 26 variables, as depicted in Table 2. The records
are binned into bins of 1◦ by 1◦. Full data resolution is provided within each bin for the
corresponding latitude and longitude of every 1 Hz measurement [34].
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Table 2. Data variables names and their definitions [34].

Feature Name Feature Description

TIME Time of data acquisition provided as a number referenced to 1985-01-01, 00:00:00 UTC.

LATITUDE The angle that is created when a vector that is perpendicular to an ellipsoidal surface is
drawn from a point on the surface.

LONGITUDE A type of geographic coordinate that indicates the position of a point on the surface of
the Earth with relation to the east–west axis.

BOT_DEPTH Ocean floor depths underwater.
DIST2COAST Distance from the coast.

SIG0_C Backscatter coefficient for C-band altimetry.
SIG0_C_quality_control Backscatter coefficients quality flags in C-band altimetry.

SIG0_C_num_obs The number of valid C-band altimetry backscatter coefficient measurements at 20 Hz
that make up the 1 Hz measurement.

SIG0_C_std_dev The 1 Hz measurement is comprised of the standard deviation of the data that make up
the 20 Hz C-band altimetry backscatter coefficient.

SIG0_KU Coefficient of backscatter for Ku band altimetry.
SIG0_KU_quality_control Quality flags of backscatter coefficient in Ku-band altimetry.

SIG0_KU_num_obs Amount of all valid 20 Hz Ku-band altimetry backscatter coefficient data used to
calculate the 1 Hz value.

SIG0_KU_std_dev The 1 Hz measurement is based on the standard deviation of the data for the 20 Hz
Ku-band altimetry backscatter coefficient.

SWH_C The height of a significant wave, as measured by uncalibrated C-band altimetry.
SWH_C_quality_control Significant wave height quality flag for C-band altimetry.

SWH_C_num_obs Significant wave height values taken at 20 Hz by C-band altimetry and converted to a
1 Hz scale.

SWH_C_std_dev Standard deviation of significant wave height measured at 1 Hz using C-band altimetry,
based on data collected at 20 Hz.

SWH_KU Significant wave height as measured by uncalibrated Ku-band altimetry.
SWH_KU_CAL The significant wave height was calibrated using the Ku-band altimetry.

SWH_KU_quality_control Flag indicating the quality of the Ku-band altimetry significant wave height data.

SWH_KU_num_obs The number of valid Ku-band altimetry readings of significant wave height that were
used to construct the 1 Hz measurement.

SWH_KU_std_dev The standard deviation of the significant wave height data collected at 20 Hz by
Ku-band altimetry and used to construct the 1 Hz measurement.

UWND Modeling zonal wind speed using ECMWF.
VWND Modeling meridional wind speed using ECMWF.
WSPD Wind speed derived from wind function alone and not calibrated.

WSPD_CAL The wind speed was calibrated based on the wind function.

3. Methods

In this section, the proposed framework and methods used for feature extraction are
presented. Regression algorithms used for SWH modeling and performance evaluation
methods are also provided.

3.1. Proposed Framework

In this study, the proposed framework introduces a hybrid approach for extracting
the significant features for the prediction of SWH from altimeter data. This hybrid ap-
proach combines the features generated by three feature extraction techniques. The Pear-
son Correlation Analysis, Principal Component Analysis algorithms, and Sparse Autoen-
coder deep neural network are utilized to extract the most significant attributes from the
input features. Multiple hybrid feature combinations are introduced and examined for
modeling SWH using Gaussian Process Regression and Neural Network Regression. The
proposed framework is composed of four phases: the data preprocessing phase, feature
sets formation phase, SWR modeling phase, and model evaluation and testing phase. In
the data preprocessing phase, multiple preprocessing steps are conducted to prepare the
data for the feature sets formation phase. In the feature sets formation phase, a number
of basic and hybrid feature sets are created from the input data. Basic sets include the
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ALL-Set, PCC-Set, PCA-Set, and AUT-Set-N. The ALL-Set is composed of all features in
the dataset excluding the response variable to be predicted, namely SWH. Pearson Cor-
relation Coefficients between input features and the response variable are thresholded to
select the features encompassed in the PCC-Set. Features in the PCA-Set are generated
by the PCA algorithm with 95% variance. Autoencoder-driven features are generated by
training a sparse autoencoder neural network by all input features and extracting a spec-
ified number of latent space features from the encoder. Up to three latent features are
derived by the autoencoder network and formed three autoencoder-driven feature sets,
namely AUT-Set-1, AUT-Set-2, and AUT-Set-3. Multiple hybrid feature sets are further
formed using various combinations of the PCC, PCA, and AUT feature sets. Hybrid sets
include the HAT-N and HCAT-N sets. The composition of theses sets is elaborated in the
Results section. In the SWH modeling phase, the training dataset is used for training a
number of Gaussian Process regression and Neural Network regression models. The re-
gression models are validated using a 5-cross validation scheme and tested on a holdout
test set in the final model evaluation and testing phase. The prediction performance of the
SWH models trained on the hybrid feature sets are compared with that trained by the ba-
sic PCC, PCA, and autoencoder feature sets, as well as all input features set. The proposed
framework is presented in Figure 1.

 
Figure 1. Proposed framework of the current study.

3.2. Data Preprocessing

In this phase, multiple data preprocessing steps are conducted to prepare the data for
the feature sets formation phase, as shown in Figure 2. The target/response variable to be
predicted in this work is SWH. The remaining variables are preprocessed to prepare the
input features that will be used for predicting the target. In this study, quality control flags
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for the SWH and SIG0 are discarded, and the remaining features are divided into four cat-
egories: observing condition features, site related features, wind speed features, and mea-
sured features. The features under each category are depicted in Table 3. The measured
features are further categorized according to the frequency band used for data acquisition
into KU-band-related features and C-band features. The SRAL altimeter on Sentinel 3A
uses the KU-band (13.575 GHz, bandwidth 350 MHz) for range measurements. However,
it uses the C-band (5.41 GHz, bandwidth 320 MHz) for ionospheric correction [42]. This is
achieved in the SAR acquisition mode by using bursts of 64 KU-band pulses surrounded
by two C-band pulses [42]. Therefore, in this study, the SWH modeling was conducted
using only the KU-band-measured features along with the other site and observing condi-
tion features.

Figure 2. Preprocessing phase of the proposed framework.

Table 3. Categorization of input features.

Observing Condition Features Site Features
Measured Features

Wind Speed Features
KU-Band Features C-Band Features

TIME DIST2COAST SIG0_KU SIG0_C VWND
LATITUDE BOT_DEPTH SIG0_KU_std_dev SIG0_C_std_dev WSPD

LONGITUDE SIG0_KU_num_obs SIG0_C_num_obs UWND
SWH_KU_num_obs SWH_C_num_obs WSPD_CAL
SWH_KU_std_dev SWH_C_std_dev

In order to maintain close ranges of the input variables, the features are normalized to
have unit standard deviation and zero mean, with the following exceptions. The latitude
and longitude features are replaced by their sine and cosine values after converting them
into angles in the range [0, 2π] rad. Features containing the number of observations are
converted to discrete values in the range [0–3] by subtracting each entry by the features
maximum value. After data normalization, the dataset is subdivided into training and
testing sets with 90:10 training to testing ratio.

3.3. Feature Sets Formation

In this phase, a number of basic and hybrid feature sets are generated and used to
model the SWH. A number of feature extraction and reduction approaches were used to
extract significant features from the input data. The Pearson Correlation Analysis, Princi-
pal Component Analysis, and the autoencoder deep neural network are used for feature
extraction and selection. Three basic feature sets are formed using features extracted from
the all-features set (ALL-Set) by these algorithms: PCC-Set, PCA-Set, and AUT-Sets. The
feature formation phase is depicted in Figure 3.
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Figure 3. The feature formation phase of the proposed framework; + represents the fusion between
feature sets.

3.3.1. Pearson Correlation Analysis

Pearson Correlation Analysis is an approach to find the linear correlation between
two random variables. The Pearson correlation coefficient is considered a measure of de-
pendency between two vectors. PCC between a pair of variables X and Y can be evaluated
using Equation (1). PCC can take values in the range [−1, 1]. Absolute PCC values near 1
mean high linear dependency between variables, while values close to zero show low de-
pendency.

PCC =
cov(X, Y)

2
√

σ(X)σ(Y)
(1)

where, σ(X), σ(Y) are the variance of X and Y, respectively, and cov(X, Y) is the covariance
matrix between X and Y.

In this study, Person Correlation Coefficients between input features and the response
variable are computed and thresholded to select the features encompassed in the PCC-Set.
The selection of the threshold value is data-dependent, as discussed in the Results section.

3.3.2. Principal Component Analysis

Principal component analysis, or PCA, is traditional data analysis approach that gen-
erates a series of the best linear approximations for a given dataset. It is considered
the most widely used method for dimensionality reduction with minimum information
loss [22,43,44]. In this research, the PCA is employed to extract a sequence of uncorrelated
features, or principal components (PCs), from the altimeter observational data. The new
PC features represent linear combinations of the input variables and comprise the major
information contained in the original data. For data matrix Z with m number of variables

and n number of samples given as Z =

⎛⎜⎝v11 v21 · · · vm1
...

. . .
...

v1n v2n · · · vmn

⎞⎟⎠, the PCA algorithm could

generate k uncorrelated features using linear combinations of the input variables. The
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principal components denoted as u1, u2, u3, , . . . ., uk are given in Equation (2), where lij
is the linear combinations coefficient [44].⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1 = l11 v1 + l12 v2 + l13 v3 + . . . + l1m vm =
m
∑

i=1
l1i vi

u2 = l21 v1 + l22 v2 + l23 v3 + . . . + l2m vm =
m
∑

i=1
l2i vi

.

.

.

uk = lk1 v1 + lk2 v2 + lk3 v3 + . . . + lkm vm =
m
∑

i=1
lki vi

(2)

The principal components satisfy two conditions; the retrieved features (u1, u2, u3, . . . , uk)
are uncorrelated, and the first principal component, u1, has the highest variance followed
by u2, etc. The number of extracted features, PCs, is determined based on the Cumulative
Percent Variance (CPV). CPV is used as a threshold to determine the k number of PCs that
covers the required percent of information in the original data. The level of CPV is decided
in advance. In this work, the PCA-Set includes the principal components generated by the
PCA algorithm with a CPV of 95%.

3.3.3. Autoencoder Neural Network

An autoencoder is a deep learning neural network composed of an encoder–decoder
structure, as shown in Figure 4, that learns a compressed version of input data [45]. Ba-
sically, autoencoder networks are used for the reconstruction of input data. The encoder
converts the input to a compressed representation, while the decoder attempts to reverse
the mapping in order to reconstruct the input. The ability of autoencoder network to learn
a compacted representation of the input and deliver it at the encoder end makes it an effec-
tive tool for feature extraction and dimensionality reduction. Autoencoders can map input
information into abstract latent space features, which are more informative and smaller in
size. In this study, an autoencoder is used to generate a set of compact latent features that
capture the most important attributes from the input data. These features are then used as
predictors for the SWH model. Unsupervised sparse autoencoder training is performed in
this study to generate the latent features. The autoencoder objective function is the mean
squared error function with weight regularization, Ωw, and sparsity regularization, Ωsp,
provided in Equation (3) [46]. Sparsity and weight regularization were included in the
objective function to enable the autoencoder to learn representations from a small number
of the training samples. The coefficients β and λ in Equation (3) control the effect of the
sparsity and weight regularizers on the objective function, respectively.

E =
1
S

S

∑
a=1

V

∑
b=1

(xba − x̂ba)
2

︸ ︷︷ ︸
mean squared error

+ λ × Ωw + β × Ωsp (3)

where x is a training example, x̂ is the estimate of the training example, and S and V are
the number of samples and the number of variables in the data, respectively. Ωsp and Ωw
are calculated using the Equations (4) and (5) [46]

Ωw =
1
S

L

∑
l

S

∑
j

V

∑
i

(
w(l)

ji

)2
(4)

Ωsp =
D(1)

∑
i=1

KL (ρ‖ρ̂i) =
D(1)

∑
i=1

ρ log
(

ρ

ρ̂i

)
+ (1 − ρ) log

(
1 − ρ

1 − ρ̂i

)
(5)
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where L is the number of network layers, and w is the weight of a network neuron located
according to the indices i, j, l. ρ̂i is the average activation of the ith network neuron, ρ is the
average of the first layer (D(1)) neurons, and KL (ρ‖ρ̂i) is the Kullback–Leibler divergence
between ρ and ρ̂i [46].

Figure 4. Structure of the autoencoder deep learning neural network; W and b are the weight and
bias of the network neurons.

In this work, to generate the latent features at the encoder end, the autoencoder was
fed by all input features and trained in an unsupervised fashion using the scaled conju-
gate gradient algorithm (SCGA) [47]. The training process ends when either the gradient
reaches a minimum of 1 × 10−6 or the number of epochs approaches 5000. The weight
and sparsity regularizer coefficients were set to λ = 0.001 and β = 0.01, respectively, and
the Logistic Sigmoid function was used as the transfer function of both the encoder and
encoder. These values were selected by experiment as they provide the best autoencoder
performance. After training, the latent features are extracted from the encoder, and the
decoder is discarded. These latent features form the AUT-Sets are used for modeling the
SWH. Up to three latent features are derived by the autoencoder network, forming three
autoencoder-driven feature sets, namely AUT-Set-1, AUT-Set-2, and AUT-Set-3.

3.3.4. Hybrid Feature Set Generation

After generating the PCC-Set, PCA-Set, and AUT-Sets, several hybrid feature sets
were composed by merging features from these basic sets. Hybrid sets that were com-
posed by fusing the features of the PCC-Set, PCA-Set, and AUT-Set-N are demoted through-
out the paper as HCAT–N, where N is the number of autoencoder output features. An-
other group of hybrid feature sets is formed by merging the features in the PCA-Set with
that of the AUT-Set-N. These sets are denoted herein as HAT-N. In this study, N takes
the values 1, 2, and 3. Therefore, there are three HCAT sets and three HAT sets: HCAT-1,
HCAT-2, HCAT-3, HAT-1, HAT-2, and HAT-3. The number of features in each hybrid set
is dependent on the number of features in the basic sets which, itself, is data-dependent.

3.4. SWH Modeling

An accurate prediction of SWH is challenging due to its strong intermittency and in-
stability [48]. Traditional regression models such as regression trees and K-nearest Neigh-
bor (KNN) are insufficient for an accurate prediction of SWH due to the complexity of
the data [29]. On the other, more sophisticated regression algorithms such as the artifi-
cial neural networks and kernel-based models could offer better fits to this problem. The
Gaussian Processes is a kernel-based algorithm that provides flexible models that could
work well with such data due to its capability of defining distributions over functions [49].
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Therefore, the Gaussian Process Regression and neural network regression are utilized for
modeling SWH using altimeter data. Multiple GPR models with various kernel functions
were trained using the training set associated with each of the basic and hybrid sets. Ker-
nels utilized for the GPR models include the Exponential, Squared Exponential, Rational
Quadratic, and Matern functions.

3.4.1. Gaussian Process Regression

Gaussian Process Regression is a Bayesian approach to regression that is nonparamet-
ric. GPR computes the probability distribution for all admissible data-fitting functions [50].
Using the training data, the posterior probability is obtained, and then the predictive pos-
terior distribution on the points of interest is computed. In GPR, we begin by assuming a
Gaussian process prior, f(x), which may be characterized by a mean function, m(x), and
covariance function, k(x, x′), for every input x. Expressions of m and k are given by Equa-
tions (6)–(8) [50].

f(x) ∼ GP(m, k) (6)

m(x) =
1
4

x2 (7)

k
(
x, x′

)
= e(−

1
2 (x−x′)2) (8)

Specifically, a Gaussian process is comparable to an infinite-dimensional multivariate
Gaussian distribution in which all sets of dataset labels are jointly Gaussian distributed. By
selecting the mean and covariance functions, we can include previous knowledge about
the space of functions into this GP prior. During model selection, the shape of the mean
function and covariance kernel function in the GP prior are chosen and tweaked. The
mean function can be zero or equals the mean of the training dataset. There are numerous
alternatives for the covariance kernel function. In this work, multiple kernel functions are
used for modeling the SWH using each feature set. The Exponential, Squared Exponential,
Matern, Quadratic, and Rational Quadratic kernel functions are used.

3.4.2. Neural Network Regression

The neural network used for the SWH regression in this study is a narrow feed-
forward NN with one hidden fully connected layer and one fully connected output layer.
This architecture was selected to accommodate the limited number of input features and
data size. The hidden layer contains 10 neurons and is followed by a ReLu activation func-
tion. The first hidden layer is connected to the training data (the input feature matrix).
Each input is multiplied with a weight and then added to a bias at each neuron in the fully
connected layer. The output from this layer passes to the activation function and then to
the final fully connected layer, which produces the predicted response as the NN output.

3.5. Model Evaluation and Testing

After the GPR and NNR models are trained using the training set associated with
each of the feature sets individually, the models are evaluated in a 5-fold cross-validation
scheme to reduce potential overfitting. The trained models are then assessed using a hold-
out set. The prediction performance of the trained models is assessed using the root mean
square error (RMSE) and the coefficient of determination R2.

The RMSE is a measure of how far the predicted values and the true values in a
dataset differ from one another. The mathematical expression of the RMSE is given by
Equation (9).

RMSE =

√
∑n

i=1(PVi − TVi)
2

n
(9)

where PVi and TVi represent the predicted and true values of the ith observation of n samples.
The coefficient of determination is a measure of the amount of variation in the depen-

dent variable that can be accounted for by the predictors in a regression analysis. R2 is an
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indicator of how well a model fits a dataset. The value of R2 can be anywhere from zero
to one. R2 can be calculated using the formula of Equation (10);

R2 = 1 − RSS/TSS (10)

where RSS = ∑n
i=1(yi − ŷi )

2 represent the sum of squares of residuals, and TSS = ∑n
i=1(yi − y )2

is the total sum of squares, respectively. The true target of the ith sample is denoted as y,
the true observations mean is y , and ŷi is the predicted value of the target.

4. Results and Discussion

According to the proposed framework, the input features were preprocessed, and
multiple feature selection techniques were used to generate several combination sets of
features. In the experiment conducted within the proposed framework, the SWH is mod-
eled using the KU-band features. The KU-band-measured features along with the observ-
ing condition features, site-related features, and wind speed features are used to form the
feature sets. These sets are used individually to model the SWH measured by the altime-
ters KU frequency band. Table 4 illustrates the KU-band-based features used in this study.

Table 4. KU-band-based features used for modeling KU-based SWH.

KU-Band-Based Features

TIME
LATITUDE (sine and cosine): LATSINE, LATCOSINE
LONGITUDE (sine and cosine): LONGSINE, LONGCOSINE
DIST2COAST
BOT_DEPTH
SIG0_KU
SIG0_KU_std_dev
SIG0_KU_num_obs
SWH_KU_num_obs
SWH_KU_std_dev
VWND
WSPD
UWND
WSPD_CAL

4.1. Feature Sets Formation

In this work, the calibrated SWH measured using the altimeters KU frequency band,
SWH_KU_CAL, is considered the response variable. The KU-based features depicted in
Table 4 are used to form the basic and hybrid feature sets in this experiment. The ALL-
Set is composed of 16 features which represent all KU-based features except the target
variable and the noncalibrated version of it. To create the PCC-Set, Pearson correlation
coefficients between the input features and the target variable were calculated. Table 5
depicts the absolute values of the PCC for each input feature. Normally, SWH is highly
correlated with itself and its noncalibrated version. However, the recorded |PCC| val-
ues for the other predictors are less than 0.6. For both positions P0 and P1, the calibrated
and noncalibrated wind speed based on the wind function predictors, WSPD_CAL and
WSPD, record the highest correlation with the target, followed by the VWND, and then
the KU-altimeter backscatter coefficient, SIG0_KU. It was noticed that the correlation be-
tween the target and the rest of the predictors is low (less than 0.1); therefore, the absolute
correlation coefficients between the input features and the SWH_CAL were thresholded
with a value of 0.1. Thus, the PCC-Set is formulated from the features that satisfy the
criterion |PCC| ≥ CCt. The features included in the PCC-Set for P0 and P1 and their
correlation values are highlighted in gray in Table 5. The SIG0_KU, VWND, WSPD_CAL,
SWH_KU_std_dev, SIG0_KU_std_dev, and WSPD are included in the PCC-Set of both po-
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sitions P0 and P1. However, it was noticed that for P1, the TIME variable achieved a PCC
of 0.1, and therefore, it was included in the PCC-Set of this position.

Table 5. Absolute values of Pearson correlation coefficients between SWH_KU_CAL and the KU-
based features for positions P0 and P1; The features included in the PCC-Set and their correlation
values are highlighted in gray.

Position P0 Position P1

Feature |PCC| Feature |PCC|

SWH_KU_CAL 1 SWH_KU_CAL 1
TIME 0.0163990439235463 TIME 0.102288865532865
SWH 0.999999732870120 SWH 0.999999542438490

SIG0_KU 0.336577351930497 SIG0_KU 0.445150343609593
UWND 0.082578003464963 UWND 0.0603089207682942
VWND 0.395006371045506 VWND 0.451649290833774

WSPD_CAL 0.455941025835115 WSPD_CAL 0.579889225755999
SWH_KU_std_dev 0.173924815008291 SWH_KU_std_dev 0.371314384227738
SIG0_KU_std_dev 0.188570572892636 SIG0_KU_std_dev 0.209765508152799

DIS2COAST 0.0120031039897664 DIS2COAST 0.0702488522142944
BOT_DEPTH 0.00854422341173639 BOT_DEPTH 0.0184796601456242

WSPD 0.457591377033189 WSPD 0.579140739443493
LATSINE 0.00510651233370158 LATSINE 0.000559112294287260

LATCOSINE 0.000914880701032926 LATCOSINE 0.0223517634977151
LONGSINE 0.00209464350081526 LONGSINE 0.0108063236584730

LONGCOSINE 0.0185392818790396 LONGCOSINE 0.00620089102115493
SWH_KU_num_obs 0.0204934366118391 SWH_KU_num_obs 0.00454090475465734
SIG0_KU_num_obs 0.0204934366118391 SIG0_KU_num_obs 0.00454090475465734

As the TIME feature records different PCC values for P0 and P1, we further investi-
gate the correlation behavior between the TIME feature and the target variable for seven
geographical positions. Table 6 presents the |PCC| values for the TIME feature for the
tested positions, the number of observations, and the time period over which the records
were collected for each position. It is observable from Table 6 that the TIME feature gener-
ally records low correlation with the SWH. For, P1, P3, and P4, the correlation coefficient
equals roughly 0.1. Therefore, for the PCC threshold used in this work, the TIME feature
is included in the PCC-Set of these positions. However, the PCC values for P0, P2, P5,
and P6 are 10 times lower than the other positions, and thus the TIME feature is discarded
from the corresponding PCC-Set.

Table 6. Absolute values of Pearson correlation coefficients between SWH_KU_CAL and the TIME
feature for seven geographical positions; # DP is the number of data points (observations).

Position P0 P1 P2 P3 P4 P5 P6

Location (0◦N 0◦E) (0◦N 0◦E) (0◦N 2◦E) (0◦N 3◦E) (0◦N 4◦E) (0◦N 5◦E) (0◦N 6◦E)

Period of
Acquisition

26 March
2016–11 July
2018

3 March
2016–15 July
2018

7 March
2016–5 July
2018

11 March
2016–9 July
2018

1 March
2016–13 July
2018

19 March
2016–4 July
2018

9 March
2016–8 July
2018

# DP 1008 1033 1006 999 1034 1017 1089
|PCC| 0.01639 0.10228 0.06201 0.12204 0.12279 0.08812 0.02018

To generate the PCA features, the PCA algorithm was fed with the ALL-Set, and the
CPV was set to 95%. The PCA-Set contains the principal components that explain 95% of
the variance. It was found that for both positions P0 and P1, the PCA-Set contains the first
principle component only, which captures 95% of the variance contained in the data.

The autoencoder-derived feature sets were generated through feeding a sparse au-
toencoder by the ALL-Set. By setting the number of latent features output from the en-
coder end into a number less than the number of features in the ALL-Set, the autoencoder
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network was utilized as a latent-feature generator and a dimensionality reduction tool.
The number of latent features output from the autoencoder, N, was set to 1, 2, and 3.
Therefore, three autoencoder sets are generated: AUT-Set-1, AUT-Set-2, and AUT-Set-3.
The autoencoder was trained in an unsupervised manner over 5000 epochs with the set-
tings depicted previously in the Methods section. The performance of the autoencoder
is measured using the mean squared error with weight and sparsity regularizers (MSE-
WSR). Table 7 shows the starting and stopping values of the gradient and the MSE-WSR
values for positions P0 and P1 when N equals 1, 2, and 3. It is observable from Table 8
that the MSE-WSR decreases with increasing the number of output features. Increasing
the number of output features helps including more details from the original data, which
aids in reducing the output cost. However, increasing the number of latent features would
not guarantee better prediction performance of the regression model. Therefore, the maxi-
mum number of output features from the encoder was selected to be 3. This setting helped
reduce the computational load and time, and it was proved by experiment to be sufficient
to enhance the regression model performance. It is also noticed that the values of the gra-
dient and MSE are the highest at the beginning of the training process and the lowest at the
stopping, which is a normal result of algorithm learning. The behavior of the autoencoder
performance against the training epochs is depicted in Figure 5, which shows sample plots
of the autoencoder performance in Experiment 1 for N = 1 at P0 and P1.

Table 7. Autoencoder performance in generating latent features from original input features for
positions P0 and P1; # denotes the number of features.

Position
# Output
Features

MSE-WSR Gradient

Initial Stopped Initial Stopped

P0
1 3.71 × 103 40 138 0.076
2 3.71 × 103 3.22 178 0.031
3 3.71 × 103 1.66 200 1.16

P1
1 3.79 × 103 34.7 182 0.14
2 3.79 × 103 3.07 100 0.035
3 3.79 × 103 2.03 246 0.079

Table 8. Feature sets used for modeling SWH_KU_CAL using Positions P0 and P1 data. # F denotes
the number of features included in the feature set.

Position P0 Position P1

Feature Set # F Included Features Feature Set # F Included Features

ALL-Set 16

TIME, SIG0_KU, UWND,
VWND, WSPD_CAL,

SWH_KU_std_dev,
SIG0_KU_std_dev, DIS2COAST,
BOT_DEPTH, WSPD, LATSINE,

LATCOSINE, LONGSINE,
LONGCOSINE,

SWH_KU_num_obs,
SIG0_KU_num_obs.

ALL-Set 16

TIME, SIG0_KU, UWND,
VWND, WSPD_CAL,

SWH_KU_std_dev,
SIG0_KU_std_dev, DIS2COAST,
BOT_DEPTH, WSPD, LATSINE,

LATCOSINE, LONGSINE,
LONGCOSINE,

SWH_KU_num_obs,
SIG0_KU_num_obs.

PCC-Set 6
SIG0_KU, VWND, WSPD_CAL,

SWH_KU_std_dev,
SIG0_KU_std_dev

PCC-Set 7
TIME, SIG0_KU, VWND,

WSPD_CAL, SWH_KU_std_dev,
SIG0_KU_std_dev.

PCA-Set 1 First principal component
explaining 95% of data variance. PCA-Set 1 First principal component

explaining 95% of data variance.

AUT-Set-1 1 Single latent feature output from
the encoder AUT-Set-1 1 Single latent feature output from

the encoder
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Table 8. Cont.

Position P0 Position P1

Feature Set # F Included Features Feature Set # F Included Features

AUT-Set-2 2 Two latent features output from
the encoder AUT-Set-2 2 Two latent features output from

the encoder

AUT-Set-3 3 Three latent features output from
the encoder AUT-Set-3 3 Three latent features output from

the encoder

HCAT-1 8
Hybrid set composed by fusing

the features in PCC-Set, PCA-Set,
and AUT-Set-1

HCAT-1 9
Hybrid set composed by fusing

the features in PCC-Set, PCA-Set,
and AUT-Set-1

HCAT-2 9
Hybrid set composed by fusing

the features in PCC-Set, PCA-Set,
and AUT-Set-2

HCAT-2 10
Hybrid set composed by fusing

the features in PCC-Set, PCA-Set,
and AUT-Set-2

HCAT-3 10
Hybrid set composed by fusing

the features in PCC-Set, PCA-Set,
and AUT-Set-3

HCAT-3 11
Hybrid set composed by fusing

the features in PCC-Set, PCA-Set,
and AUT-Set-3

HAT-1 2
Hybrid set composed by fusing

the features in PCA-Set and
AUT-Set-1

HAT-1 2
Hybrid set composed by fusing

the features in PCA-Set and
AUT-Set-1

HAT-2 3
Hybrid set composed by fusing

the features in PCA-Set and
AUT-Set-2

HAT-2 3
Hybrid set composed by fusing

the features in PCA-Set and
AUT-Set-2

HAT-3 4
Hybrid set composed by fusing

the features in PCA-Set and
AUT-Set-3

HAT-3 4
Hybrid set composed by fusing

the features in PCA-Set and
AUT-Set-3

Hybrid feature sets were formed by merging features from the basic feature sets. Ta-
ble 8 depicts the features in the basic and hybrid feature sets and their number of features
used for SWH_KU_CAL modeling for Positions P0 and P1.

The performance of the GPR and NNR models trained individually by the basic and
hybrid sets for modeling SWH_KU_CAL is depicted in Tables 9 and 10. Table 9 shows
the RMSE and R2 values for the regressors trained on position P0 data, while Table 10
presents the regression performance for position P1. For position P0, the results show
that GPR models recorded higher prediction performance than the NNR models for all
feature sets. It was noticed that the basic feature sets generally yielded lower regression
performance than the hybrid sets. It is noticeable that GPR models trained by the HAT
sets recorded higher performance than the other hybrid sets. The best GPR model records
the highest R2 value of 0.92 and an RMSE value of 0.11724. This model has a Rational
Quadratic kernel and was trained by the HAT-2 set. The second-best GPR model recorded
an R2 value of 0.91 and was trained by the hybrid set HAT-1. On the other hand, the NNR
model trained on the AUT-Set-2 set recorded the highest performance, followed by the
HAT-2-based model over the other NNR models. The best models are highlighted in dark
gray, and the second-best performance regressor is highlighted in light gray in Tables 9
and 10.
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(A) 

(B) 

Figure 5. Autoencoder performance during the training process with N = 1 for (A) P0, (B) P1.

Table 9. SWH_KU_CAL prediction performance of GPR and NNR models trained on KU-based
feature combination sets for Position P0; Best models are highlighted in dark gray, and the second-
best performance regressor is highlighted in light gray; # denotes the number of features.

Position: P0 GPR NNR

Feature Set # F RMSE R2 Kernel Function RMSE R2

ALL-Set 16 0.29262 0.41 Rational Quadratic 0.31634 0.32
PCA-Set 1 0.12792 0.87 Rational Quadratic 0.29677 0.31
PCC-Set 6 0.31881 0.36 Matern 5/2 0.33156 0.31

AUT-Set-1 1 0.20963 0.73 Squared Exponential 0.31853 0.37
HAT-1 2 0.12188 0.91 Squared Exponential 0.33354 0.36

HCAT-1 8 0.29877 0.38 Rational Quadratic 0.2625 0.52
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Table 9. Cont.

Position: P0 GPR NNR

Feature Set # F RMSE R2 Kernel Function RMSE R2

AUT-Set-2 2 0.12985 0.9 Rational Quadratic 0.24259 0.64
HAT-2 3 0.11724 0.92 Rational Quadratic 0.2601 0.6

HCAT-2 9 0.32058 0.32 Rational Quadratic 0.29551 0.4
AUT-Set-3 3 0.14791 0.89 Squared Exponential 0.31347 0.49

HAT-3 4 0.13112 0.8 Rational Quadratic 0.27078 0.13
HCAT-3 10 0.39404 0.23 Squared Exponential 0.33302 0.45

Table 10. SWH_KU_CAL prediction performance using GPR and NNR trained by various feature
combinations for Position P1; # denotes the number of features.

Position: P1 GPR NNR

Feature Set # F RMSE R2 Kernel Function RMSE R2

ALL-Set 16 0.25525 0.44 Exponential 0.27248 0.36
PCA-Set 1 0.11961 0.86 Rational Quadratic 0.22502 0.49
PCC-Set 7 0.24238 0.4 Rational Quadratic 0.24024 0.41

AUT-Set-1 1 0.17635 0.64 Rational Quadratic 0.2258 0.33
HAT-1 2 0.10414 0.89 Squared Exponential 0.20098 0.6

HCAT-1 9 0.23234 0.47 Exponential 0.22728 0.49
AUT-Set-2 2 0.1046 0.87 Exponential 0.19511 0.54

HAT-2 3 0.1113 0.85 Matern 5/2 0.1889 0.58
HCAT-2 10 0.23529 0.31 Exponential 0.2236 0.38

AUT-Set-3 3 o.12272 0.84 Exponential 0.18277 0.65
HAT-3 4 0.13351 0.82 Matern 5/2 0.19522 0.61

HCAT-3 11 0.2367 0.37 Exponential 0.22549 0.41

Figure 6 illustrates the goodness of fit of the SWH predictions generated for the test
set by the best GPR and NNR models trained on P0 data. The plots of Figure 6 show the
predicted versus true values of the response, SWH_KU_CAL, and the residuals for the
best GPR and NNR models highlighted in dark gray in Table 9. It is clear that the GPR
model predictions are closer to the diagonal line, which represents the perfect prediction,
than those predicted by the NNR. This observation is consistent with the high R2 value of
the GPR model and is confirmed by the residual plot. The residuals of the GPR predictions
range between [−0.3, 0.3], while it ranges from [−0.8 to 0.7] for the NNR predictions.

For position P1, it is clear from Table 9 that the GPR model trained on the HAT-1 set
achieved the highest performance compared with the NNR based on the highest R2. The
second-best performance is recorded by the AUT-Set-2-based GPR model with an expo-
nential kernel. On the other hand, the best NNR model recorded 0.65 for the coefficient
of determination and was trained by the AUT-Set-3. The second-best performer was the
HAT-3-based NNR model. Similarly to P0, the GPR models achieved higher performance
that the NNR. It is observed that the regressors trained on the PCC-Set, and the hybrid
features based on it, the HCAT sets, suffered from poor performance. This could be in-
terpreted as a result of the low correlation between the predictors in the PCC-Set and the
target, which hindered the improvement of the model performance, even after fusing the
PCC, PCA, and AUT features together. It was also noticed that the HAT sets provides
better regression performance than the PCA-Set and the AUT sets. This indicates the im-
proving impact of the autoencoder features on the prediction performance when added to
the PCA features.
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(A)                                                    (B) 

Figure 6. Testing prediction performance of the best performing regressors trained on the KU-based
features of P0 data. (A) Predicted versus true SWH; (B) residuals versus predicted SWH; upper row:
GPR model based on HAT-2; lower row: NNR model based on AUT-Set-2.

Figure 7 presents the goodness of fit of the SWH predictions generated by the best
GPR and NNR models trained on P1 data. The plots of Figure 7 illustrate the predicted
versus true values of the response, SWH_KU_CAL, and the residuals for the best GPR
and NNR models on the test set. It is clear that the predictions are scattered roughly
symmetrically around the diagonal line for both GPR and NNR. The predictions of the
GPR model are closer to the diagonal line than the NNR predictions. This observation is
reflected in the residual plots, which show the difference between the true and predicted
target. The error in the predictions with respect to the SWH true values ranges between
[−0.3, 0.4] for the GPR model and [−0.6, 0.5] for the NNR model. The performance plots
of Figure 5 reveal the superiority of the GPR model over the NNR.
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(A) (B) 

Figure 7. Testing prediction performance of the best performing regressors trained on the KU- based
features of P1 data. (A) Predicted versus true SWH; (B) residuals versus predicted SWH; upper row:
GPR model based on HAT-1; lower row: NNR model based on AUT-Set-3.

To summarize the findings of the current research, the prediction performance of the
first and second-best regressors recorded by the GPR and NNR models for position P0 and
P1 is presented in Table 11. The highest average RMSEs obtained over the two positions
are 0.11069 and 0.21268 for the GPR and NNR models, respectively. It was noticed that
The GPR models provides better prediction performance than the NNR models in terms
of RMSE and R2 metrics for both positions. This observation was further proved by the
residual plots of the regression models. It was noticed that the HAT feature sets boosted
the GPR model performance over that trained by the basic PCA or AUT feature sets indi-
vidually. In contrast, pure autoencoder features yielded better performance of the NNR
models over that of NNR models trained individually by the basic as well as the hybrid
sets. Moreover, it was observed that the HCAT sets yielded lower prediction performance
than the AUT sets and HAT sets for both the GPR and NNR. This observation could be
referred to the low correlation of the original predictors in the PCC-Set with the response
variable. Adding such features to the PCA and autoencoder-derived features hindered the
significant improvement of the model performance. It was shown that the autoencoder-
derived features aid in providing improved prediction performance of the GPR and NNR
models over the basic feature sets.
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Table 11. Summary of the performance of best SWH regression models for position P0 and P1; #
denotes the number of features.

Position Rank
GPR NNR

Features Set # F RMSE R2 Feature Set # F RMSE R2

P0
1 HAT-2 3 0.11724 0.92 AUT-Set-2 2 0.24259 0.64
2 HAT-1 2 0.12188 0.91 HAT-2 3 0.2601 0.6

P1
1 HAT-1 2 0.10414 0.89 AUT-Set-3 3 0.18277 0.65
2 AUT-Set-2 2 0.1046 0.87 HAT-3 4 0.19522 0.61

To discuss the results from the sea area (site) perspective, the PCC analysis showed
that the DIST2COAST, BOT_DEPTH, LONGITUDE, and LATITUDE-related features are
not significant with respect to SWH from the correlation perspective for both positions
P0 and P1 (these features recorded very low PCC values). The observation that could be
made here is that these site-related features do not contribute significantly to SWH mea-
surements. However, the measured features showed generally higher PCC values than
the site-related features, and thus could effectively affect to SWH measurements. The
measured features, especially the wind speed, are characterized by their intermittent and
stochastic nature. Moreover, the data of the two used positions were collected over dif-
ferent times, and the two positions are approximately 69 miles apart to the east, which
means that the two sites had different sea states at the time of data acquisition. Such vari-
ations would interpret the difference in the best feature sets of the two positions (HAT-2
for P0 versus HAT-1 for P1 for the GPR and AUT_Set-2 versus AUT-Set-3 for the NNR).
Nonetheless, the best feature sets for both sites were based on the autoencoder-derived
features, which reveal the effectiveness of this technique in extracting significant features
from the original data features. The autoencoder-derived features even improved the pre-
diction performance when combined with the PCA features (in the HAT feature set).

4.2. Hypothesis Testing for Feature Significance

In order to reinforce the findings of the current study, the significance of the features
included in the feature sets that yielded the highest prediction performance of the GPR
and NNR is examined using hypothesis testing. In the present study, the ANOVA F-
statistics test was utilized to identify the significance of the features included in the HAT-2
and AUT-Set-2 feature sets of P0 data as well as the features of HAT-1 and AUT-Set-3 fea-
tures of P1. In this test, the input features are used to model the response variable using
a linear regression model and determine the significance of the predicted model coeffi-
cients through statistical metrics, namely the F-value and p-value. The null hypothesis of
the test, H0, assumes that there is no relationship between the response variable, SWH,
and the input features i.e., all dependent variable coefficients are zero. On the other hand,
the alternative hypothesis, H1, implies that the model is accurate if there is at least one
instance where any of the dependent variable coefficients are nonzero. The outcomes of
the ANOVA Test of the significance of the aforementioned four feature sets in predicting
the SWH are depicted in Table 12. The significance level is considered 0.05 for the p-value.
The values obtained for both the F-value and the p-value indicate that there is a significant
association between the response variable, SWH, and the input predictors for all feature
sets. Therefore, the Null hypothesis can be rejected, and the significance of the examined
autoencoder-derived features and hybrid features is confirmed.
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Table 12. Outcomes of ANOVA Test of Autoencoder-based features significance in predicting the
SWH using P0 and P1 data.

Position Feature Set Feature Symbol Test F-Value Test p-Value

P0
HAT-2

F1 27.9 8.19 × 10−7

F2 30.70119 4.08 × 10−8

F3 49.92715 3.46 × 10−12

AUT-Set-2
F1 11.57716 0.0007
F2 43.37607 8.15 × 10−11

P1

HAT-1
F1 7.9 0.004
F2 7.3 0.006

AUT-Set-3
F1 464.4652 4.75 × 10−82

F2 17.44876 3.27 × 10−5

F3 23.47258 1.5 × 10−6

The prediction performance of the SWH regression model trained on the feature sets
generated using the proposed deep-learning-based approach is further evaluated against
the state of the art. Numerous research studies have addressed the problem of SWH pre-
diction from satellite data from different perspectives and using various types of satellite
data. In order to have a meaningful benchmarking, only studies that tackled the problem
of SWH prediction using the IMOS Surface Waves Sub-Facility dataset are considered for
comparison. The IMOS Surface Waves Sub-Facility dataset is a recent dataset that was
published in 2019 and has received slight coverage in the literature. Only a single recent
study was found to use the IMOS dataset for the prediction of SWH. The study by Quach
et al. [35] investigated the use of deep learning to predict significant wave height from a
dataset created from collocations between the Sentinel-1SAR and altimeter satellites obser-
vations from the IMOS dataset. Quach et al. integrated features from the IMOS altimeter
data with a number of CWAVE features that were derived from the SAR image modula-
tion spectra and developed a deep-learning-based regression model for SWH prediction.
The results of that study show an improved RMSE of the deep learning model of 0.26. In
our study, we employed the autoencoder deep learning network to generate significant
features from the altimeter observations for the prediction of SWH using GPR and NNR.
The proposed deep-learning-based feature generation method yielded average RMSE val-
ues of 0.11069 and 0.21268 for the GPR and NNR models, respectively. Therefore, the
deep-learning-based SWH modeling approach proposed in the present study provides
improved prediction performance over the state of the art.

5. Conclusions

In this research, we introduced a framework to extract features from SAR mode al-
timeter data using a hybrid deep-learning-based approach for the prediction of SWH. The
proposed approach is based on the proficiency of the autoencoder neural network in rep-
resenting input features in the latent space. The proposed framework is composed of four
phases: data preprocessing, feature sets formation, SWR modeling, and model evaluation
and testing. After the data were preprocessed, a number of basic feature sets were created
from the input data. The basic sets include the ALL-Set, PCC-Set, PCA-Set, and AUT-Set-
N. Multiple hybrid feature sets were further formed using various combinations of the
PCC, PCA, and AUT feature sets, as well as the HAT, and HCAT sets. These sets were used
for modeling SWH using the GPR and NNR. The regression models were validated using
a 5-cross validation scheme and tested on a holdout test set. The prediction performance of
the SWH models trained on the hybrid feature sets are compared with that trained by the
basic PCC, PCA, and autoencoder-driven feature sets as well as all input features set. The
results show that hybridizing the PCA and AUT feature sets yielded improved prediction
performance for the GPR models, while pure autoencoder-derived features boasted the
performance of the NNR models. The significance of the autoencoder-based pure and hy-
brid feature sets was proven through hypothesis testing. The presented results reveal the

153



Remote Sens. 2022, 14, 5569

significance of the autoencoder-derived features in improving the performance of SWH
prediction from altimeter data. In general, the findings of this study reveal the superi-
ority of the autoencoder deep learning network in generating latent features that aid in
improving SWH prediction performance over traditional feature extraction methods.
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Abstract: The success of deep learning and the segmentation of remote sensing images (RSIs) has
improved semantic segmentation in recent years. However, existing RSI segmentation methods have
two inherent problems: (1) detecting objects of various scales in RSIs of complex scenes is challenging,
and (2) feature reconstruction for accurate segmentation is difficult. To solve these problems, we
propose a deep-separation-guided progressive reconstruction network that achieves accurate RSI
segmentation. First, we design a decoder comprising progressive reconstruction blocks capturing
detailed features at various resolutions through multi-scale features obtained from various receptive
fields to preserve accuracy during reconstruction. Subsequently, we propose a deep separation
module that distinguishes various classes based on semantic features to use deep features to detect
objects of different scales. Moreover, adjacent middle features are complemented during decoding to
improve the segmentation performance. Extensive experimental results on two optical RSI datasets
show that the proposed network outperforms 11 state-of-the-art methods.

Keywords: digital surface model; multimodal; multi-scale supervision; feature separation; recon-
struction refinement

1. Introduction

Semantic segmentation aims to semantically classify the pixels in an image [1]. In
remote sensing, semantic segmentation is crucial in several applications, such as scene
understanding [2], land cover classification [3], and urban planning [4]. Owing to the
success of deep learning (DL) and the promising results obtained on multiple semantic
segmentation benchmarks containing natural images [5–7], semantic segmentation of
remote sensing images (RSIs) increasingly adopts DL approaches [8–10]. However, an
RSI is substantially larger than a typical natural image for computer vision applications;
it contains objects of different sizes and shows complex scenes. Moreover, during data
acquisition, the tilted perspective of RSIs can lead to scale variations in objects captured at
different distances [11,12], exacerbating problems related to multi-scale changes.

With the continuous development of DL, convolutional neural networks have ushered
in a new era of computer vision. The full convolution was proposed by Long et al. [13]
to replace a fully connected layer with a convolutional layer in a classification network.
However, decoding relies on the deep semantic features obtained from upsampling to
obtain an output prediction map. Accordingly, using U-shaped architectures, Ronneberger
et al. [14] and Vijay et al. [15] proposed UNet and SegNet, respectively, which use upsam-
pling and continuous convolutions to complete decoding; each layer splices features from
the encoding stage. The method of supplementing the features extracted from the encoder
to the decoder is also often used in the later semantic segmentation methods, enhancing
the complementarity of features in a different phase. Inspired by the above methods,
Jiang et al. [16] proposed RedNet in 2018 with the same decoding approach, obtaining
intermediate prediction maps at each stage to supervise the network at different resolutions.
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Moreover, Chen et al. [17] used the splicing of deep semantic features with shallow features
and upsampling for the prediction map. This study proposed the idea of atrous convolu-
tion to expand the receptive field in the convolution process. Meanwhile, Chen et al. [18]
proposed the feature separation and aggregation models for fusing multimodal features
and fully exploring the characteristics of different stages. However, the architecture of
the decoder makes it simple to fully use the features extracted by the encoder. In addi-
tion, Yu et al. [19] used deep features from two encoder branches to construct prediction
maps during decoding for fast inference and the real-time performance of the proposed
method. Xu et al. [20] used an attention mechanism and multi-branch parallel architecture
to build lightweight networks for real-time segmentation. Such structures helped obtain
representations of objects at different scales. For the multimodal data, Zhou et al. [21]
and Seichter et al. [22] used RGB and depth multimodal data to complete the semantic
segmentation task of indoor scenes. The proposed network followed the encoder–decoder
architecture combined with the last three high-level features of the encoder to construct
the prediction map, which was simple in structure. However, this approach failed to make
full use of shallow features. Some details need to be included in the refactoring process.
Hu et al. [23] used five decoder blocks with the same encoding structure and applied
upsampling to each block to restore the resolution of the prediction map. This is one of the
most widely used architectures in semantic segmentation in recent years. Middle feature
streams are deployed in multimodal data to deal with fused features, which can enhance
the representation of multimodal features. In addition, researchers have widely favored
multimodal data in different fields [24–26]. In particular, to handle quality variations across
multimodality RSI datasets, Zheng et al. [27] use a DSM (Digital Surface Model) as auxil-
iary information to improve the segmentation performance of the model on single-modal
data. Nevertheless, the method only applies self-attention to the deepest feature, and the
structure of the decoder is relatively simple. Thus, it fails to detect the object in the complex
scene. Similarly, Ma et al. [28] used powerful encoding features with a transformer to
extract multimodality information. In this approach, the transformer is fully combined
with CNN to deal with multi-scale features.

Most networks for tasks such as semantic segmentation have encoder–decoder architec-
tures. Common encoders include VGG [29], ResNet [30] and, recently, the transformer [31].
However, the feature extraction ability of these encoders is limited to some extent. In par-
ticular, network performance improvements depend on how to handle the above features
and, most importantly, how to reconstruct the features in the decoder. For developing
decoders, different architectures have been devised; however, the bottom-up approach is
typically used after feature extraction. A typical decoder is UNet [14], which is the basis for
several subsequently developed networks. Various studies [32] have performed a fusion of
features with different scales after extraction to improve feature reconstruction. In such
methods, the decoder contains common convolutional and upsampling layers. Although
its implementation is simple, this type of decoder lacks efficiency. Moreover, the features
extracted by the encoder contain different levels of meaning at different resolutions. That
is, current methods cannot take advantage of these features. How to reconstruct features
efficiently and cooperate with each other is crucial in the design model.

To solve the abovementioned problems, we propose a deep-separation-guided pro-
gressive reconstruction network (DGPRNet) comprising a deep separation module (DSEM)
for semantic segmentation of RSIs. In particular, to improve feature reconstruction, we
design a progressive reconstruction block (PRB) based on atrous spatial pyramid pooling
(ASPP) [33] with multiple convolutional layers combining various receptive fields for refac-
toring characteristics at each resolution. Unlike other methods based on upsampling to
increase the resolution [34], the PRBs use deconvolution to adjust the resolution, increasing
through each block until the input image is solved. Moreover, to enhance the forward
guidance of deep semantic features to shallow layers, the proposed deep separation module
(DSEM) processes semantic features such that pixels of the same class are clustered, whereas
the separation between pixels from different classes is maximized. The prediction map is
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multi-supervised. Thus, the expression ability of deep semantic features is enhanced, and
the PRB provides positive feedback.

The study’s contributions are as follows:

1. A PRB based on ASPP [33] was embedded in the decoder to strengthen the feature
reconstruction and reduce the error in this process. Five features with different
resolutions were processed serially using atrous convolution layers with different
ratios, and the feature resolution was expanded by deconvolution to obtain the
decoding output of each block.

2. The proposed DSEM processed the last three semantic features from the decoder
to emphasize semantic information to use deep semantic features. Intraclass sep-
aration was minimized, while interclass separation was maximized. Meanwhile,
multi-supervision was applied to DGPRNet for segmentation, improving the recon-
struction ability of each module.

3. Experiments on two RSI datasets showed that the proposed model outperforms
11 state-of-the-art methods, including current semantic segmentation methods.

2. Proposed DGPRNet

Figure 1 shows the architecture of the proposed DGPRNet. In particular, the archi-
tecture comprised symmetric ResNet-50 [30] backbones for feature extraction and the
novel decoder consisting of PRBs and DSEM for processing semantic features. As seen
in Figure 1, the DGPRNet adopts an encoder–decoder architecture. The two symmetric
ResNet-50 backbones constituted the encoder processing input images by extracting fea-
tures at five different resolutions from RGB (red–green–blue)/DSM (digital surface model)
RSIs. According to the features extracted by the encoder, the adjacent modules from [35]
were used between features F2, F3, and F4 for feature aggregation. During decoding, in-
spired by ASPP [33], we used the proposed PRBs to reconstruct and combine the features
at various resolutions, and each PRB provided a prediction map at the corresponding
resolution. The DSEM classified the last three deep semantic features. Finally, we obtained
the prediction map from five scales.

Figure 1. Overall architecture of the proposed DGPRNet. The network includes four stages: encoding,
feature aggregation, decoding, and semantic separation.

2.1. Encoder

RGB and DSM images contained unreliable information and objects of different sizes
due to the complexity of real scenes and the diversity of RSIs. In particular, feature
extraction was essential in existing image semantic segmentation methods based on DL.
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We used ResNet-50 as the encoder to obtain five features with different resolutions, Ri and
Di, i ∈ {1, 2, 3, 4, 5}, from the RGB and DSM images, respectively, and fused the features by
simple pixel-wise addition [36–39], obtaining feature Fi. Shallow features contained details
such as object boundaries, and deep features reflected semantic information such as the
class and location of an object. RSIs contained various objects of different sizes. In particular,
detecting these objects is crucial. Moreover, we used the module from [34] to aggregate
multi-scale information. We retained the original information of the shallowest and deepest
features and only used the features of the middle three resolutions to obtain the aggregated
representation of adjacent features. The aggregated features were supplemented with
features at the corresponding resolution. The encoder was formulated as follows:

Fi = Conv(Ri ⊕ Di), (1)⎧⎨⎩
F3 = ACCO(F2, F3, F4)
F2 = F2 ⊗ Conv(F3)⊕ Conv(F3)
F4 = F4 ⊗ Conv(F3)⊕ Conv(F3),

(2)

where ⊕ denotes pixel-wise addition, ⊗ denotes pixel-wise multiplication, and Conv repre-
sents a convolutional layer with batch normalization and rectified linear unit activation.
Subsequently, the aggregated representation of an object at different resolutions can be
obtained. In this way, multi-scale objects can be accurately detected.

2.2. PRB

Universal networks work well on all datasets. Therefore, a critical problem in applying
DL to computer vision is reconstructing the features extracted by the encoder according to
the characteristics of a specific dataset, and finally providing an accurate prediction map.
Therefore, we proposed the PRB (shown in Figure 2), where the encoder extracted features
with different resolutions. Based on ASPP, we used dilated convolutions with different
rates in series to enlarge the receptive field at each resolution. In each block, objects of
different sizes and those with different dimensions were detected at different resolutions.

Figure 2. Architecture of the proposed PRB.

After the encoded features were obtained, the PRB reconstructed the features at each
resolution. In [33], ASPP modules were deployed at the bottom of the network, acting
on the deepest semantic features to expand the receptive field. However, the intended
effect was limited. Based on ASPP, we expanded the receptive field in each layer during
decoding to detect objects at different resolutions. Specifically, the PRB contained four
convolutional layers with different dilation rates. Moreover, the features were serially
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transferred between convolutional layers. Then, they were concatenated in parallel for
feature aggregation under different receptive fields. Moreover, upsampling enables us to
increase the resolution of features [31]. Inspired by deconvolution, we merged upsampling
and feature aggregation into one step, and a dropout layer was added to prevent overfitting.
The PRB was formulated as follows:

Di = Cat(Fi, Di+1), (3)⎧⎨⎩
Di,c1 = Conv(Di)
Di,c2 = Conv(Di,c1)
Di,c3 = Conv(Di,c2),

(4)

⎧⎨⎩
Di,d2 = DConv(Di, 2)
Di,d3 = DConv(Cat(Di,d2, Di,c2), 3)
Di,d4 = DConv(Cat(Di,d3, Di,c3), 4),

(5)

Di = DeConv(Dropout(Cat(Di,c3, Di,d2, Di,d3, Di,d4), 0.5)), (6)

where Cat, DConv, and DeConv denote concatenation, a dilated convolutional layer, and a
deconvolutional layer, respectively, and i ∈ {1, 2, 3, 4, 5}, with Di+1 being omitted for i = 5
in Equation (3).

2.3. DSEM

Deep semantic features represent the mapping of an image onto a semantic space.
Moreover, the feature representation of pixels belonging to a class in complex scenes showed
high variability, and RSIs corresponded to complex scenes. Consequently, different objects
might be classified into the same class in some cases. To increase the classification accuracy,
we proposed the DSEM that modeled intraclass and interclass features to strengthen
their distinguishability and reduce ambiguity. First, high-level semantic feature map Di,
i ∈ {3, 4, 5} was processed by a 1 × 1 convolutional layer to obtain feature maps α, β,
γ ∈ RC×H×W . Then, the features were processed to obtain different expressions within and
between classes. The DSEM was formulated as follows:{

intra = So f tmax(R(α)× T(R(β)))× R(γ)
intra = F(intra) + Di,

, (7)

{
inter = So f tmax(T(R(Di))× R(Di))
inter = F(inter)× Di + Di,

, (8)

Pi = (inter + intra)⊗ Di, (9)

where R denotes a resizing function from RC×H×W to RC×HW , T is the transposition from
RC×HW to RHW×C, F denotes the inverse mapping of R, and × denotes matrix multiplication.

The original semantic features were combined with the weights for intraclass and
interclass features to obtain a deep separation prediction with higher resolution and more
detailed feature classification performance while reducing feature redundancy. We applied
the DSEM to features of the last three resolutions obtained from decoding. The network
simultaneously performed prediction at five resolutions during training and supervised
the network. Hence, the reconstruction ability during decoding was strengthened by
integrating the DSEM.

2.4. Loss Function

We used binary cross-entropy as the loss function between the prediction map and the
segmentation ground truth. The obtained prediction maps at five resolutions were resized
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to the dimension of the ground truth to calculate the loss. Given the five prediction maps,
the binary cross-entropy loss function was defined as follows:

Loss =
5

∑
i=1

BCE(Pi, GT), (10)

where GT and P denote the ground truth and a prediction map, respectively. During testing,
P1 is the segmentation result of DGPRNet.

3. Experiments and Results

3.1. Datasets and Performance Indicators

The Potsdam [40] and Vaihingen [41] RSI datasets were used in semantic segmentation
experiments to verify the performance of the proposed DGPRNet. The Potsdam dataset
contains 38 patches of 6000 × 6000 pixels, in our experiments, we considered 17 patches
for training (2_10, 3_10, 3_11, 3_12, 4_11, 4_12, 5_10, 5_12, 6_8, 6_9, 6_10, 6_11, 6_12,
7_7, 7_9, 7_11, 7_12) and 7 patches for testing (2_11, 2_12, 4_10, 5_11, 6_7, 7_8, 7_10).
Furthermore, the Vaihingen dataset comprised 33 images with pixels of 2494 × 2064. We
split the 16 patches for training (1, 3, 5, 7, 13, 17, 21, 23, 26, 32, 37) and 5 patches for testing
(11, 15, 28, 30, 34). For evaluation, we used the average pixel accuracy of each class and
the average intersection over union as performance indicators. Moreover, the intersection
over union was applied between the prediction and target regions to obtain the optimal
segmentation weight. Therefore, the intersection over union was the main indicator for
training and evaluating different methods on the two RSI datasets.

3.2. Implementation Details

The experimental platform was implemented in Ubuntu 20.04 using the PyTorch 1.9.1
environment, and the network was trained on a computer equipped with an NVIDIA Titan
V graphics card and 12 GB of memory. Owing to the large size of the original RSIs, the
patches of input RGB and DSM images were scaled to 256 × 256 pixels. Finally, we obtained
35,972 slices for training, 4032 slices for validation, and 252 slices for testing on Potsdam.
Moreover, we obtained 17,656 slices for training, 412 slices for validation, and 111 slices
for testing on Veihingen. The pretrained ResNet-50 was used as the backbone for feature
extraction. Considering the dataset characteristics and training time, training proceeded
over 300 epochs on the Vaihingen dataset and over 100 epochs on the Potsdam dataset. We
used stochastic gradient descent with a momentum of 0.9, weight decay of 0.9, batch size of
10, and learning rate of 5 × 10−4 for optimization. Moreover, we used a poly strategy [42]
to adjust the learning rate during training. The training process of the model on the two
datasets took approximately 32 h, and the test time was 73 min and 6 min, respectively, on
Potsdam and Vaihingen, including the model inference time and the concatenation from
slices into high-resolution remote sensing images.

3.3. Comparison with State-of-the-Art Methods
3.3.1. Quantitative Evaluation

In particular, Tables 1 and 2 list the performance indicators obtained by applying
various methods on the two RSI semantic segmentation datasets. Table 3 summarizes the
comparison results of all models in terms of flops and parameters, including the method
based on Transformer [43]. The proposed DGPRNet outperformed the comparison methods
on the Potsdam and Vaihingen datasets, and the indicators verified the high detection
performance of the proposed method. Moreover, the DGPRNet detection of the class car on
the two datasets was remarkable, confirming correct object detection in challenging scenes.
Compared with existing methods, DGPRNet showed outstanding results in three classes,
namely impervious surfaces, buildings, and cars, on the Vaihingen dataset. In addition,
both mAcc and mIoU outperformed the best indicators in the comparisons. In particular,
the IoU indicator of DGPRNet in the impervious surface and building outperformed the
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participating methods by 0.52% (SA-Gate) and 0.96% (ACNet). Especially for the class car,
DGPRNet reached 92.30% and 84.84% in Acc and IoU indicators, which exceeded 8.03% and
6.77% compared with SA-Gate. In addition, the overall indicators mAcc and mIoU reached
90.43% and 82.36%, respectively, increasing by 1.81% and 1.69% compared to SA-Gate.
Furthermore, on the Potsdam dataset, the DGPRNet outperformed the comparison methods
in almost all classes except for low vegetation, tree, and clutter on the classification accuracy.
Similarly, IoU in car and cluster reached 92.46% and 47.02%, respectively, compared with
more than 2.03% and 3.48% for ACNet and Deeplabv3+. The accuracy on the class car
exceeded HRCNet by 2.09% and reached 96.03%. In terms of overall performance, the
proposed DGPRNet achieved mAcc of 85.69% and mIoU of 77.69%, increasing by 1.27%
and 1.79% compared to the SA-Gate and RedNet, respectively. The improvement in
the overall indicators of the proposed method in the small category can be explained as
follows: by complementing each other at different resolutions, the aggregate representation
information of a specific category at multiple scales can be obtained, greatly improving
the accuracy and IoU on the small objects. Therefore, the improvement in this category is
particularly significant.

Table 1. Quantitative results of the proposed DGPRNet and 11 state-of-the-art methods on the
Vaihingen dataset. The values in bold indicate the best scores in the evaluation matrix.

FCN-
8S

[13]

U-Net
[14]

SegNet
[15]

DeepLabv3+
[17]

BiseNetV2
[19]

HRCNet
[20]

RedNet
[16]

ACNet
[23]

SA-
Gate
[18]

TSNet
[21]

ESANet
[22]

DCSwin
[43]

Ours

Imp.surf Acc 89.66 91.68 89.88 90.06 90.56 91.62 91.49 91.95 90.99 87.93 92.09 91.40 91.55
IoU 79.71 80.90 80.93 81.11 80.97 81.60 84.62 85.34 85.70 78.98 85.18 84.45 86.22

Building Acc 93.22 89.84 90.88 87.04 91.24 91.72 94.81 95.45 93.85 95.81 94.93 95.29 95.80
IoU 86.80 86.50 86.54 82.70 86.69 88.01 91.07 91.82 91.72 91.47 91.16 91.30 92.78

Low
veg.

Acc 75.83 77.97 78.66 76.65 74.68 79.24 78.67 78.64 84.95 71.62 75.72 79.02 81.27
IoU 64.33 65.91 64.07 64.44 63.66 67.38 66.59 66.87 68.68 57.03 65.48 66.26 68.62

Tree
Acc 89.22 91.30 88.96 88.60 91.66 90.55 91.41 91.20 89.06 94.26 92.35 89.85 91.22
IoU 75.58 77.86 75.96 76.64 76.54 78.58 78.27 78.55 79.15 81.26 77.65 77.54 79.34

Car
Acc 45.12 75.80 43.93 42.51 63.75 70.69 59.77 83.12 84.27 67.63 75.92 81.51 92.30
IoU 40.16 71.22 43.16 43.10 61.80 68.73 56.06 76.81 78.07 66.86 70.11 73.47 84.84

mAcc 78.61 79.75 78.46 76.97 82.38 84.76 83.23 88.07 88.62 83.54 86.20 87.41 90.43
mIoU 69.32 71.34 70.13 69.49 73.93 76.86 75.32 79.88 80.67 75.12 77.92 78.60 82.36

Table 2. Quantitative results of the proposed DGPRNet and 11 state-of-the-art methods on the
Potsdam dataset.

FCN-
8S

[13]

U-Net
[14]

SegNet
[15]

DeepLabv3+
[17]

BiseNetV2
[19]

HRCNet
[20]

RedNet
[16]

ACNet
[23]

SA-
Gate
[18]

TSNet
[21]

ESANet
[22]

DCSwin
[43]

Ours

Imp.surf Acc 89.47 90.03 90.18 91.57 90.12 90.03 92.19 91.32 85.84 85.22 91.38 91.66 92.76
IoU 79.77 80.27 80.46 82.49 80.58 81.68 82.83 82.74 80.64 76.85 82.92 82.28 83.33

Building Acc 90.69 88.71 90.21 91.78 88.88 90.87 93.61 93.83 93.65 91.85 93.69 92.92 93.94
IoU 83.60 82.92 84.18 87.59 83.70 85.75 90.13 90.06 88.51 86.65 89.82 89.12 91.26

Low
veg.

Acc 85.13 85.82 85.88 87.36 87.68 88.17 87.00 86.16 86.46 88.52 87.10 87.31 87.12
IoU 71.12 71.60 71.63 73.63 71.55 73.18 73.22 73.53 72.71 67.98 73.16 74.48 74.46

Tree
Acc 82.86 84.06 82.49 85.45 81.11 82.02 83.00 86.03 85.70 78.75 82.48 84.46 85.84
IoU 71.23 72.05 70.68 73.32 71.55 71.32 71.77 72.87 72.89 67.49 70.81 73.23 73.80

Car
Acc 91.02 93.89 93.15 93.89 93.14 93.94 93.36 93.79 92.18 78.22 93.08 96.31 96.03
IoU 81.53 90.24 89.72 90.04 89.17 89.82 90.08 90.43 89.39 76.85 88.53 90.12 92.46

Clutter
Acc 49.05 50.30 51.76 53.80 50.66 56.72 56.74 54.51 62.70 37.49 55.68 56.01 58.48
IoU 36.49 36.26 37.21 43.54 36.35 40.03 43.51 41.65 40.59 30.85 43.38 43.37 47.02

mAcc 78.61 82.13 82.28 83.97 81.93 83.63 84.32 84.27 84.42 76.68 83.90 84.61 85.69
mIoU 69.32 72.22 72.31 75.10 71.86 73.63 75.26 75.21 74.12 67.78 74.77 75.43 77.05

3.3.2. Qualitative Evaluation

Figure 3 shows the segmentation results obtained using DGPRNet and 11 state-of-the-
art methods. Examples of multiple scenes were included, such as scenes with objects of
different scales (clutter), small objects (car), large objects (building), low contrast with the
background, and blurred boundaries. In general, the qualitative results show that DGPRNet
has improved scene adaptability and reconstruction accuracy compared to similar methods.
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In the visual contrast result, the area marked by the red rectangle shows the place that
differs the most. Some methods could not precisely locate the objects of clutter because
the object was usually located in a complex scene with different sizes. As shown in the
first to fifth lines of Figure 3, the clutter can be accurately located in many complex scenes
compared with other models. As the classes with the largest proportion in the dataset,
the detection results of the proposed method for buildings are accurate and the edges are
smooth, as shown in the second, third, sixth, and seventh rows in Figure 3. Compared
with other methods, there are fewer cases of incomplete detection. The key problem to
be solved in this study is to accurately segment the small objects (car) in the dataset. As
seen from the fifth to the ninth rows of Figure 3, the segmentation result of the class car
is more precise than that of other models. The qualitative results showed that DGPRNet
better adapted to different scenes and reconstructed features with higher accuracy than
similar methods. Moreover, DGPRNet performed highly in various complex scenes and
detected small objects and the object’s edges better than the other evaluated methods.

Table 3. The comparison on flops and parameters in all methods.

Flops (GMac) Params (M)

FCN8s 74.55 134.29
UNet 55.93 26.36

SegNet 18.3 53.56
DeepLabv3+ 32.45 59.33

BiseNet 3.23 3.63
HRCNet 30.28 62.71
RedNet 21.17 81.95
ACNet 26.41 116.6

SA-Gate 41.23 110.85
TSNet 34.27 41.8

ESANet 10.15 45.42
DCSwin 34.4 118.39

Ours 55.39 142.82

Figure 3. Comparison of segmentation results from different methods.
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3.4. Ablation Study

To verify the effectiveness of the adopted modules, we conducted a comparative
experiment on two datasets. Table 4 lists the comparison of the ablation indicators.

Table 4. Ablation study on the Vaihingen and Potsdam datasets.

Vaihingen Potsdam

mAcc mIoU mAcc mIoU

Baseline 84.49 76.66 83.72 74.79
W/o DSM 89.67 81.07 84.89 75.88
W/o PRB 88.50 80.73 84.54 74.82

W/o DSEM 87.14 78.84 80.81 69.85
Ours 90.43 82.36 85.69 77.05

3.4.1. Effect of Modal DSM

The effectiveness of multimodal data was verified. In this regard, the DSM data were
removed and represented as w/o DSM in Table 4. The ablation results show that the scores
of the model in the single modal are slightly lower than those in the multimodal data. The
results indicate that DSM modal data can indeed improve the performance of the model
from another perspective.

3.4.2. Effects of Module PRB

The w/o PRB indicates the scheme implemented without the PRB module. In the
decoding part, we replaced the PRB module with the convolution block combined with
3 × 3 convolutional layers + BN + ReLU to verify the effectiveness of the PRB module.
Figure 4 shows the prediction map. The scheme without the PRB module performed lower
than the full model. For example, the detection area of the building in the first, second,
and fourth rows is discontinuous. Furthermore, a clutterer was present with incorrect
classification in the third and fourth rows. The above comparison diagram also verifies that
the PRB module reduces the feature reconstruction error in the process of network decoding
and plays a crucial role in network inference. Compared with the full model, the ablation
indicators mAcc and mIoU of PRB decreased by 1.93% and 1.63% on the Vaihingen dataset
and 1.15% and 2.23% on the Potsdam dataset, respectively. The above results demonstrate
the importance of the PRB module from both qualitative and quantitative perspectives.

Figure 4. Ablation performance comparisons with the effect of PRB.

3.4.3. Effects of Module DSEM

Similarly, we verified the effectiveness of DSEM and the multi-supervision strategy.
We removed the DSEM and multi-supervision strategy of the last three layers of semantic
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features and used the scheme w/o DSEM to represent it. The performance of the scheme
w/o DSEM was low. As shown in Table 4, compared with the full model, the DSEM
scheme decreased the two indicators by 3.29% and 3.52% in the Vaihingen dataset and
4.88% and 7.2% in the Potsdam dataset, respectively. Moreover, from the perspective of
visualization, if no further exploration of the deep feature exists between classes, the first
and second lines of Figure 5 are confused with building and clutter. Similarly, a category
misclassification will be present in the third and fourth lines. Hence, we concluded that this
module considerably facilitated the reconstruction ability of the network decoding layer.
The module improved the specification effect on the deep semantic features and helped the
decoding module enhance reconstruction under different resolutions.

Figure 5. Ablation performance comparisons with the effect of DSEM.

4. Conclusions

This study proposed a novel network framework called DGPRNet for semantic seg-
mentation of remote sensing images by exploring inter and intraclass relationships in deep
features and decreasing feature reconstruction loss in the decoder. First, adjacent intermedi-
ate features were complemented before decoding to improve the expression of multi-scale
features. Second, PRB was developed and deployed at five stages in the decoder to capture
detailed features obtained from different receiving fields at multiple resolutions, reducing
error and maintaining accuracy during reconstruction. Finally, the proposed DSEM distin-
guished and aggregated interclass and intraclass features based on semantic features to
leverage deep features in detecting objects with different scales. Experimental results on
two RSI datasets showed that DGPRNet outperformed 11 state-of-the-art methods.
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Abstract: The evaporation duct height (EDH) can reflect the main characteristics of the near-surface
meteorological environment, which is essential for designing a communication system under this
propagation mechanism. This study proposes an EDH prediction network with multi-layer perception
(MLP). Further, we construct a multi-dimensional EDH prediction model (multilayer-MLP-EDH)
for the first time by adding spatial and temporal “extra data” derived from the meteorological
measurements. The experimental results show that: (1) compared with the naval-postgraduate-
school (NPS) model, the root-mean-square error (RMSE) of the meteorological-MLP-EDH model
is reduced to 2.15 m, and the percentage improvement reached 54.00%; (2) spatial and temporal
parameters can reduce the RMSE to 1.54 m with an improvement of 66.96%; (3) the multilayer-MLP-
EDH model can match measurements well at both large and small scales by attaching meteorological
parameters at extra height, the error is further reduced to 1.05 m, with 77.51% improvement compared
with the NPS model. The proposed model can significantly improve the prediction accuracy of the
EDH and has great potential to improve the communication quality, reliability, and efficiency of
ducting in evaporation ducts.

Keywords: maritime communication; evaporation duct; deep learning; multi-dimensional
prediction model

1. Introduction

An atmospheric duct is a unique phenomenon in the lower atmosphere, and elec-
tromagnetic waves can experience less attenuation in the trapped layer by limiting the
spread of the wavefront from spherical to cylindrical expansion, where the waves are bent
by atmospheric refraction [1,2]. A long-range transmission in microwave bands can also
be realized. Namely, microwave radio signals may refract in the lower layers of Earth’s
atmosphere and propagate far beyond the line of sight [3]. This feature may be appropri-
ate for communications at sea [4], while the public land mobile network (PLMN) [5,6] is
limited due to the special meteorological conditions and terrain features [7,8]. Moreover,
communication systems using evaporation ducts are expected to become an important
means of the sixth-generation communication system until we further understand its
distribution characteristics.

As a strong negative vertical humidity gradient near the sea surface, the evaporation
duct exists due to the moisture content rapidly decreasing with increasing altitude [9,10].
Dramatic effects may be applied to the microwave communication system while transmit-
ting in the ducting layer, especially for frequencies above 1 GHz [11], which may meet the
demand for large-bandwidth, high-speed, and long-range applications [12]. The evapora-
tion duct frequently occurs over the ocean and the occurrence in the South China Sea (SCS)
exceeds 75% [13]. However, the spatial and temporal refractivity variations significantly
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affect shipboard communication performances at sea and near shore [4,14,15]. As a result,
communication effects may experience several disadvantages, including a specific time
loss (about 25% in the SCS based on the above statistical characteristic of the evaporation
duct) and an available low antenna height with minimal effects on any land–land or ship-
based system, etc., constraining it from becoming a convenient and widely used maritime
communication. Therefore, the prerequisite for communication using evaporation ducts
is the accurate prediction of transmission effects, which relies on two critical components:
the atmospheric refractive condition and the prediction in the given environment [16]. The
evaporation duct height (EDH) is the characteristic parameter of the refractivity profile.
The accurate prediction of the EDH has special significance in the practical design of the
evaporation duct communication system and the instrument parameters. The EDH can
be directly measured [17,18] and evaluated by numerous methods [19–21] and theoretical
models [9,22–26]. The directly measured method may take lots of time and effort, and the
latter two methods can calculate from meteorological detection at a certain height, but the
accuracy needs further improvement. Therefore, a focus topic in the present and the future
is to maximize the use of measurement datasets and to improve the prediction accuracy
of EDH.

Presently, “artificial intelligent (AI) enhanced operation” has become one of the hotspot
directions [14,27–30]. The combination of AI and the analysis of evaporation ducts has also
boosted the accuracy of EDH prediction. In modeling construction, Yan et al., propose a
numerical profiling method that adopts the artificial neural network and training data from
the remote sensing data and the naval postgraduate school (NPS) model [14]. Zhao et al.,
propose a method based on a multi-layer perception (MLP) of five hidden layers to predict
the EDH, and the applicability in different areas is analyzed [28]. In short-term prediction,
Zhao et al., constructed an EDH prediction model based on a long short-term memory
network [29]. In addition, Mai et al., introduced the Darwinian evolutionary algorithm and
compared the accuracy with the neural network in EDH prediction [30].

In this paper, deep learning methods are utilized to improve the prediction accu-
racy of the EDH so that the communication system can be better designed and operated.
Furthermore, we construct a multi-dimensional EDH prediction model for the first time
by blending with spatial and temporal “extra data” during meteorological detection [31].
Section II describes the background and previous EDH prediction method and Section III
describes the modeling process of the proposed model. Finally, predictions of the proposed
model and the theoretical method are compared with the measurements; the effectiveness
has also been verified.

2. Background and Methods

2.1. Evaporation duct Diagnosis

The refraction in the atmosphere refers to the bending characteristics while the elec-
tromagnetic wave propagates in the medium, and the degree can be measured by the
refraction index n

n =
c
v

(1)

where c and v are the propagation speed of the electromagnetic wave in free space and the
medium, respectively.

Radio refractivity N (N-unit) is usually used in the troposphere to reflect the cor-
responding spatial structure characteristics. According to the ITU-R Recommendation
P.453-14 [32]

N = (n − 1)× 106 =
77.6

T
×
(

P +
4810e

T

)
(2)

where P is the atmospheric pressure (hPa), T is the absolute temperature (K), and e is the
water vapor pressure (hPa).
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For the convenience of considering the curvature of the Earth, the modified refractivity
M (M-unit) is often utilized as [9,10]

M = N +
z
re

× 106 ≈ N + 0.157z (3)

dM
dz

=
dN
dz

+ 0.157 (4)

where z is the height above the ground (m) and re is Earth’s radius (the average Earth
radius is 6371 km).

Electromagnetic waves are bent towards the ground by atmospheric refraction, while
the vertical gradient of modified refractivity becomes negative (dM/dz < 0). Signals can
refract and propagate over the horizon with matching frequencies and angles.

2.2. Theoretical Models of EDH

Based on the Monin–Obukhov similarity theory [33,34], the vertical profile of mean
wind speed U(m/s), potential temperature θ (K), and specific humidity q (kg/kg) in the
surface layer can be calculated. At present, the extensively utilized numerical methods
in the evaporation duct prediction include the Paulus–Jeske (PJ) model [22], the Musson–
Gauthier–Bruth (MGB) model [23], the Babin–Young–Carton (BYC) model [9], the NPS
model [24], and the surface heat budget of the arctic ocean experiment (SHEBA) model [26]
are extensively utilized at present. An evaporation duct’s modified refractivity (M-profile)
can be defined by a limited number of meteorological factors, such as pressure and tempera-
ture at the sea surface, relative humidity, temperature, and wind speed at a certain altitude.

The comparison between the BYC model, the NPS model, and the SHEBA model are
listed in Table 1. During the calculation, the scale parameters and the thermodynamically
roughness height of the sea surface are defined by the COARE algorithm [33], and the
profile stability functions calculate the wind speed and temperature under stable conditions.

Taking the NPS model as an example, the advanced air–sea flux algorithm COARE
3.0 is adopted, keeping good consistency with the measured results [35]. The input pa-
rameters are used to determine the modified refractivity profile, and the altitude with
minimum value is the EDH. The vertical profile of air temperature T and specific humidity
q at altitude z can be calculated as [24]:

T(z) = T0 +
θ∗
κ

[
ln
(

z
z0t

)
− ψh

( z
L

)]
− Γdz (5)

q(z) = q0 +
q∗
κ

[
ln
(

z
z0t

)
− ψh

( z
L

)]
(6)

where θ∗ and q∗ are the characteristic scales of potential temperature and specific humidity,
respectively; ψh is stability functions; z0t is thermodynamic roughness height; Γd is the dry
adiabatic decline rate; κ is Karman constant; L is the Monin–Obukhov length.

According to theoretical models, the EDH can be calculated with meteorological
parameters at the sea surface and at a certain height. The calculation function can be
expressed as

EDH = FTheoretical(Th0 , Ph0 , Th1 , Uh1 , RHh1 , h1) (7)

where Th0 and Ph0 are the pressure and temperature at the sea surface h0, respectively,
RHh1 , Th1 , and Uh1 are the relative humidity, temperature, and wind speed at the altitude
h1, respectively.
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2.3. Analysis of Transmission Effects

For long distance transmission in the microwave band, the main transmission mech-
anisms are normal propagation close to the Earth’s surface and troposcatter propaga-
tion [36,37]. Anomalous propagation of transmission in the ducting layer may apply to
communication systems over the ocean, signals may experience less attenuation under
appropriate conditions.

The spatial and temporal distribution of meteorological parameters is uneven, leading
to the changes of transmission effect changes with the variation of the evaporation duct.
As a result, extra propagation loss among the designed communication system may be
incurred. To analyze the influence of the variation of evaporation ducts quantitatively,
a communication link was designed with the antenna heights fixed at 10 m. A specific
position in the Pacific Ocean (30.0◦N, 130.0◦W) was selected, where the annual refractivity
was 346.68 N-units [32]. The transmission loss diagram at 12 GHz with a distance of
0–500 km is shown in Figure 1. To perform the propagation curves corresponding to the
typical EDH varied from 6 m to 18 m, the parabolic equation toolbox (PETOOL) [38,39]
with the parabolic equation (PE) method [40,41] has been applied.

Figure 1. The transmission loss diagram at 12 GHz with a distance of 0–500 km.

In Figure 1, the path loss curves varied considerably with different EDH. Path losses
increase with the EDH fixed at 6 m and lower than the antenna height, resulting in a
poor communication effect. Significant improvement of channel conditions arises when
the EDH is between 16 m and 18 m and the path loss fluctuates around 150 dB. Overall,
the transmission loss fluctuates with the increase of the EDH. Especially in the range of
10–12 m, a 1 m variation in the height may lead to an increase in the path loss at 500 km of
16.92 dB to 34.00 dB, which brings much uncertainty to the operation of the communication
system. This is roughly the same as the results of [38,42].

3. Datasets and Methodology

3.1. Modeling Data
3.1.1. MAGIC Datasets

To verify the prediction accuracy of existing models and to explore a better method,
we use measured meteorological data from the ship-based marine ARM GCSS Pacific
cross-section intercomparison (GPCI) investigation of clouds (MAGIC) field campaign. The
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ship-based MAGIC field campaign, with the marine-capable second ARM mobile facility
(AMF2) deployed, lasted for nearly 200 days between Los Angeles, California and Honolulu,
Hawaii, which provided high-resolution measured datasets of clouds, precipitation, and
marine boundary layer (MBL) [43,44]. The ship completed 20 round trips from October
2012 to September 2013. Lots of instruments were deployed to measure meteorological
parameters aboard the ship throughout the campaign: a Vaisala weather station, an inertial
navigational location and attitude system, an infrared SST autonomous radiometer (ISAR),
radiosondes, etc. [44].

The meteorological parameters of the MAGIC datasets collected in this paper mainly
include temperature, pressure, relative humidity, wind speed, and direction measured
by the marine meteorological system (MARMET) at approximately 27 m above sea level;
the sea surface skin temperature (SSST) measured by the ISAR; the ship location by a
navigation system. The time resolution of the MARMET and the ISAR devices is 1 min.
The time distribution of the sounding data collected from MAGIC datasets is shown
in Figure 2.

Figure 2. The spatial and temporal distribution of MAGIC measurements.

In addition, standard radiosondes (Vaisala model MW-31, SN E50401) were launched
at 1 m to measure the vertical profiles of temperature, pressure, relative humidity, and
wind speed and direction. Meteorological data at different altitudes were also collected
using the Vaisala radiosonde (MW-31), with 0.5 Hz vertical resolution at fixed times [31].
As a result, 571 sets of radiosonde data were formed.

3.1.2. Data Processing

Using the boat measurements of the MARMET and ISAR devices at the sea surface and
27 m above sea level and the radiosonde-collected data during their ascent, we can obtain
meteorological parameters for at least seven altitudes at each geographic location. The sea
surface relative humidity (RH) was set at 98% [43]. As shown in Table 2, the measured
datasets are preprocessed before modeling, with invalid datasets removed.

Table 2. The dataset preprocessing process.

Serial Number Invalid Datasets Number

1 NaN in the dataset 60 sets of data

2 0 in the dataset 18 sets of data

3 All measured altitudes fixed at 1 m 22 sets of data

In addition, we selected 476 effective datasets from 571 collections of radiosonde
sounding data. Then, the modified refractivity index at seven layers can be obtained based
on the effective meteorological datasets. A least-squares curve fit was applied to each
of the 476 measurements. Furthermore, we got the M-refractivity profile by a log-linear
function [9,10,45].

M = f0h − f1 ln(h + 0.001) + f2 (8)
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where M is the modified refractivity (M-units) and h is the altitude (m). f 0, f 1, and f 2 are
coefficients that can be calculated for a least-squares best fit. The constant 0.001 was used
to prevent the curve from blowing up at zero altitudes [9,10].

Figure 3 shows the calculating process of the EDH, modified refractivity M for every
0.1 m between the surface and 40 m altitude based on MAGIC datasets, and the height at
which the minimum M is achieved is the EDH.

Figure 3. The calculating method of the EDH.

3.1.3. Reliability Assessment of Theoretical Models

Meteorological parameters, including the pressure and temperature at the surface,
the relative humidity, the temperature, the wind speed in the air, and the altitude, will
be considered in the calculation of the evaporation duct characteristics using theoretical
models [24]. The statistical root-mean-square error (RMSE) of the EDH predictions of
the BYC model, the NPS model, and the SHEBA model based on the MAGIC datasets
are described in Table 3. The minimum RMSE is 4.52 m by the NPS model. Let x and
y represent measured EDH and predicted EDH of the NPS model, and the fitting line is
y = 0.42x + 5.52, far from the evaluation criteria y = x, as shown in Figure 4.

Table 3. The statistical RMSEs of three theoretical methods.

Models BYC Model NPS Model SHEBA Model

RMSEs 4.72 m 4.52 m 4.79 m

Figure 4. The EDH fitting line by the MAGIC datasets and inverted by the NPS model.
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The EDH calculated by the NPS model does not match the measured data well.
According to Figure 1, the RMSE exceeds 4 m, which may lead to a transmission loss error
of more than 100 dB, which may bring significant deviation to the receiving effect of the
transmission system.

3.2. Modeling Method

Theoretical models are generally based on the Monin–Obukhov similarity theory and
are constrained by some basic physical boundary layer assumptions [3]. On the contrary,
the neural network training prediction method can be derived entirely from original data.
Therefore, it is more suitable for the natural atmospheric environment and will not be
constrained by theoretical assumptions.

Considering that MAGIC has special characteristics from other similar experiments:
(1) the experimental positions were spatially repeatable (the ship completed 20 round trips);
(2) the radiosonde data were concentrated at several hours (it launched every 6 h); (3) the
experiment instruments were set at multilayers, which have great data background both
in time and space. Therefore, combine the experimental data with the neural network
by adding the spatial data, such as latitude, longitude, and meteorological parameters in
multilayers, and the temporal data, such as experiment time, to construct new datasets as
training input for the prediction model.

Artificial intelligence originated in the 20th century and has been used in various
industries, but it is seldom used in EDH prediction [27–30]. MLP is a kind of artificial
neural network (ANN) with a forward structure [46–48] that maps a group of input vectors
to a group of output vectors. The MLP consists of multiple layers and their neurons are
fully connected to the next layer. It has a high nonlinear global function and powerful
adaptive and self-learning ability, which is suitable for finding the characteristics of EDH
prediction data in multi-dimensions. Here, the MLP model is considered to implement the
construction of the training network.

3.2.1. Principle of the MLP

The MLP has universal approximation property [46]. Theoretically, an MLP network
composed of a linear output layer and at least one hidden layer with activation functions
can describe any function from a finite dimensional space to another with arbitrarily high
precision with sufficient hidden neurons supplied. Each node in the MLP is the neuron with
a nonlinear activation function, except the input node. MLP is an extension of perceptron,
which overcomes the weakness of not recognizing linear non-fractional data.

Compared with the single-layer perceptron, the hidden layer of MLP changes from
one to multiple. The training purpose of MLP is to make the network approximate the
function that needs to be fitted. During the training process, the information is carried out
from the input layer to the hidden layers and then to the output layer. The input layer is
responsible for receiving the characteristics of the training data and is connected to the
hidden layer with weight parameters. In contrast, the output layer is the target value
that the training is expected to achieve through the hidden layers to realize the nonlinear
mapping of the input space.

A typical MLP training process is as follows: (1) the weights are randomly allocated;
(2) the neural network is activated by using all features of the training datasets from
the input layer and then the output value is obtained through forwarding propagation;
(3) the error is calculated between the output and the target value and the weight is updated
by backpropagation; (4) the training is repeated until the output error is lower than the
established standard. The trained MLP network can accept new input datasets at the end
of this process.

3.2.2. Modeling

The essence of prediction is complex regression function construction and a multi-
dimensional EDH prediction model can be constructed with the “extra data” in the experi-
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ment. The essence of MLP is also a nonlinear function mapping from input vector to output,
similar to the model we tried to train. The advantages of MLP in learning and in processing
nonlinear global data may solve the regression problem of meteorological characteristics.
With a reasonable network structure and hyperparameters combined with enough training
data, the performance of MLP can be excellent compared with the theoretical model.

While constructing the complete dataset of the MLP model, spatial data, temporal
data, and meteorological data at multiple altitudes, including temperature, pressure, wind
speed, and RH at the data measurement location of the MAGIC field campaign, were
collected as a set of modeling data. To complete a comprehensively trained network for the
validation of testing datasets and the generality of the method, we should select the training
dataset that would cover the main features of the total dataset. A commonly accepted
hold-out approach [49] is a 7:3 ratio between the training and the testing set. Namely, the
training and the testing set proportion is 70% and 30% of the total dataset. Therefore, the
first 334 groups of data in about 12 round trips were selected and randomly reordered as
training datasets. The remaining 142 groups of data were used as a testing dataset.

By classifying and selecting the corresponding parameter information with the train-
ing datasets, meteorological-MLP-EDH, spatial-MLP-EDH, temporal-MLP-EDH, spatial–
temporal-MLP-EDH, and multilayer-MLP-EDH models were constructed. The modeling
process is shown in Figure 5.

Figure 5. The modeling processes.
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(1) Meteorological-MLP-EDH

As a comparison with the theoretical models, the meteorological-MLP-EDH model
takes the temperature (T) and the pressure (P) at the sea surface (h0); temperature, wind
speed (U), and RH in the air (h1); measured altitudes in each training dataset as the input
parameters. The mapping output is the corresponding EDH and the calculation function
can be expressed as

EDH = FMeteorological(Th0 , Ph0 , Th1 , Uh1 , RHh1 , h1) (9)

(2) Spatial-MLP-EDH

The spatial data such as latitude and longitude may positively affect the prediction
results of the experiment ship completing 20 round trips. The input vector of the spatial-
MLP-EDH model takes the same parameters as the meteorological-MLP-EDH model.
Furthermore, the spatial parameters of the experimental positions with latitude (λ) and
longitude (ϕ) in the MAGIC campaign are also used as additional information to supply
the feature of the selected meteorological parameters on a complete path.

EDH = FSpatial(λ, ϕ, Th0 , Ph0 , Th1 , Uh1 , RHh1 , h1) (10)

(3) Temporal-MLP-EDH

The radiosonde data were collected every 6 h in the MAGIC campaign. The temporal
information may have a positive effect on prediction accuracy. With the measured time
(UT), new datasets can be collected to construct the temporal-MLP-EDH model, implying
the feature of the selected meteorological parameters at the specific time.

EDH = FTemporal(UT, Th0 , Ph0 , Th1 , Uh1 , RHh1 , h1) (11)

(4) Spatial–Temporal-MLP-EDH

The spatial–temporal-MLP-EDH model is a three-dimensional regression function
consisting of spatial–temporal information and meteorological parameters at a single layer
at sea surface and air. The input values supply the feature of selected meteorological
parameters at a specific time on a complete path.

EDH = FSpatial−Temporal(λ, ϕ, UT, Th0 , Ph0 , Th1 , Uh1 , RHh1 , h1) (12)

(5) Multilayer-MLP-EDH

In addition, we constructed a four-dimensional regression function multilayer-MLP-
EDH with meteorological parameters located on another layer. The sensitivity and accuracy
of predicted results have been explored. The input vector mainly consists of spatial–
temporal information and meteorological parameters at multiple layers with the altitudes
of h0, h1, and h2, which implies the feature of selected meteorological parameters over a
wide vertical range at a specific time on a complete path.

EDH = FMultilayers(λ, ϕ, UT, Th0 , Ph0 , Th1 , Uh1 , RHh1 , h1, Th2 , Uh2 , RHh2 , h2) (13)

During the modeling process, the design of MLP and the selection of corresponding
parameters will also greatly influence the prediction accuracy of the training data, so
the related parameters need to be adjusted systematically. The section for MLP design
mainly includes the activation function, loss function, optimization algorithm, and network
structure [50].

(1) Activation Function

In the hidden layer of MLP, the activation function is to introduce nonlinear changes
to enhance the approximation ability of the neural network [28]. It uses differentiable
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functions and a back-propagation algorithm for effective learning. The most commonly
used activation functions include rectified linear unit (ReLU), logistic sigmoid function,
radial basis function (RBF), etc. In this paper, ReLU was used so that it can be tuned
in a biomimetic way. The problem of gradient explosion and gradient disappearance is
avoided by more efficient gradient descent and backpropagation [51]. ReLU function can
be expressed as

ReLU(x) = max(0, x) (14)

where x is the input data that the neuron received.

(2) Loss Function

In addition to the activation function, the loss function also needs to be defined to
evaluate the difference between the output of the current network and the expected result.
The network will update the weight parameter automatically according to the difference so
that the whole network can fit the nonlinear mapping relationship as much as possible.

The general loss function mainly includes mean squared error (MSE), cross-entropy
(CE), etc. The CE function is usually chosen when facing the problem of image classification
and recognition. MSE is mainly used to deal with data prediction and inversion, as in this
paper, and its calculation function is

MSE =
1
n

n

∑
i=1

(
yi − yp

i

)2
(15)

where n is the dataset number, yi is the measured EDH, and yp
i is the predicted EDH.

(3) Optimization Algorithm

The original intention of the optimization algorithm is to define the parameters to be
optimized, to create the objective function, to set the learning rate, etc. Then, the descent
gradient is calculated and iterated according to the gradient.

Stochastic gradient descent with momentum (SGDM) and adaptive moment estimation
(Adam) are the most commonly used optimization algorithms [52]. SGDM can reach the
optimal global solution, but it has strict requirements on the learning rate and is easy to stop
at the saddle point, which is suitable for reliable initialization parameters. Meanwhile, with
the progress of training, the speed of the SGDM method will slow down and the learning
rate needs to be manually adjusted. Sometimes, it will converge to the optimal local value
and the training results will also be affected. Adam has the advantages of fast speed, small
memory requirements, and adaptive learning rates for different parameters. It is good at
handling sparse gradients and non-stationary objects and is more suitable for large datasets
and high-dimensional spaces to be processed in this paper. Using the Adam function will
eventually converge to the optimal global value by automatically adjusting the learning
rate. Therefore, the Adam function is finally selected as the optimization algorithm given
the inversion problem to be solved in this paper. The initial learning rate is set as 0.0001.

(4) Network Structure

MLP introduces one-to-multiple hidden layers based on the single-layer neural net-
work; the appropriate hidden layers can be selected according to the original intention.

For the data input module, the hold-out method [49] was used to randomly divide the
476 sets of measurements into fixed mutually exclusive datasets; the proportion is 70% in
the training set and 30% in the testing set. To avoid the impact of deviations introduced
in the partitioning process, we tried to maintain the spatial and temporal consistency of
the training and the testing set. The first 334 groups of data in about 12 round trips were
selected and randomly reordered as training datasets and the remaining 142 groups of data
were used as a testing dataset.

The selection of hyperparameters is complicated and engineering work and network
hyperparameters, including the hidden layers, the number of neurons in each layer, the
batch size, and the number of training epochs, are introduced during the modeling process.
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The number of hidden layers is essential to the hyperparameter in the MLP design, which
is directly related to the function approximation capability of the network. However,
excessive hidden layers may lead to overfitting by learning extra characteristics of the
training datasets. Therefore, in the parameter adjustment experiment, we explored the
parameter ranges during the parameter selection: the number of hidden layers (1-8) and
the number of neurons per hidden layer (1-300). In the end, we selected an MLP with four
hidden layers by a large number of computer experiments; the neurons in each layer were
100, 50, 20, and 5, respectively.

When constructing the EDH prediction model, it is necessary to consider that its
design performs well on training data and can generalize on new input datasets. A deep
learning model with too many parameters and few training datasets is easily overfitting
during the training progress. The specific performance of overfitting is as follows: the
loss function of the model is small in the training data and the prediction accuracy is high;
however, the loss function of the testing data is relatively large and the prediction accuracy
is low. In deep learning, regularization strategies are designed to reduce test errors, which
may come at the expense of increasing training errors.

(1) Early stopping

The regularization strategy most commonly used in deep learning is called early
stopping. When the training has sufficient representation ability and even overfits the
model, the training error will gradually decrease with time, but the verification error will
rise as a consequence. The early stopping strategy means storing a copy of the model
parameters after each validation error improvement. The algorithm terminates when the
validation error does not improve further within a predetermined number of cycles.

(2) L2 regularization

L2 regularization is one of the means to prevent overfitting. The model complexity is
controlled by limiting the parameter range space, thus overfitting can be avoided. In this
paper, L2 regularization is adopted for the convenience of derivation and optimization.

(3) Dropout

Dropout can be a choice for training deep neural networks. The concept of dropout
makes the model more generalized by stopping the activation of a particular neuron with a
certain probability, thus it will not fully connect to local features. In addition, the interaction
between neurons in the hidden layer can be reduced.

4. Results and Discussion

To evaluate the accuracy and improvement of the prediction model, we introduced
three evaluating standards as follows: (1) bias, which reflects the deviation from the
measurements; (2) variance, which reflects the stability and robustness of the prediction
model; (3) improvement, which reflects the enhancement compared with the original model.
Meanwhile, three performance indexes were also introduced to measure better the bias of
multi-dimensional EDH prediction models: the RMSE, the mean absolute error (MAE), and
the coefficient of determination (R2). In addition, the variance of prediction error (Var) and
the improvement (σ) are also used to assess the accuracy of predictions. The definitions
and characteristics of these indexes are listed in Table 4.
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Table 4. Equation and characteristics of the performance criteria.

Index Definition Characteristic

MAE MAE = 1
n

n
∑

i=1

∣∣∣yi − yp
i

∣∣∣
Evaluate the absolute deviation between
the predicted value yp

i and measured value
yi, it is not susceptible to extreme values,
where n is the number of samples.

R2
R2 = 1 −

n
∑

i=1
(yi−yp

i )
2

n
∑

i=1
(yi−yi)

2

yi =
1
n

n
∑

i=1
yi

Evaluate the conformance of fitting the
estimated regression equation, it indicates
the degree of linear correlation between the
predicted and measured value.

Var Var = E(e − E(e))2

e = yi − yp
i

Evaluate the deviation of the prediction
error e and the stability of the accuracy of
the predictions.

σ σ =
(

RMSENPS−RMSEMLP
RMSENPS

)
× 100%

Evaluate the percentage improvement of
the MLP model compared with the
prediction results of the NPS model, where
RMSENPS and RMSEMLP are the RMSE of
the NPS model and the improved model
based on MLP, respectively.

4.1. Generalization Performance of Spatial–Temporal Models Based on MLP

In order to better analyze the robustness of the trained model, testing datasets were
used for prediction accuracy analysis. Meanwhile, the number of floating-point operations
(FLOPs) is utilized to compare the computational load of the algorithm, considering that
the number of input parameters used for models (9)–(13) is different [53]. The analysis
results are shown in Figures 6 and 7 and Table 5.

FLOPs = (2I − 1)O (16)

where I and O are the input and output neuron numbers.
It can be seen that:

(1) In Figure 6a, the trained meteorological-MLP-EDH model with the same input pa-
rameters as the NPS model has a better-matched degree with the measured data. The
RMSE decreases from 4.67 m to 2.15 m and the percentage improvement reaches
54.00%. In addition, the MAE and variance all improve, while the coefficient of de-
termination R2 remains at a low level with the promotion of the MLP. The RMSE of
the meteorological-MLP-EDH model exceeds 2 m so that the maximum variation of
transmission loss at 500 km could exceed 120 dB, according to Figure 1.

(2) The prediction curve of the model fits much closer to the measurements by contin-
uously adding spatial information (such as latitude and longitude) and temporal
information (such as UT). The blue bar in the diagram, which symbolizes abso-
lute deviation, gradually decreases. While the RMSE in Figure 6d has been greatly
improved, the RMSE of the spatial-MLP-EDH, the temporal-MLP-EDH, and the
spatial–temporal-MLP-EDH is 1.84 m, 1.75 m, and 1.54 m, and the coefficient R2 has
also made furtherly progress. The corresponding percentage improvement reached
60.53%, 62.53%, and 66.96%, respectively. Notably, introducing spatial and tempo-
ral parameters has little effect on the variation results. In Figure 6 and Table 5, the
spatial–temporal-MLP-EDH essentially agrees with the measured EDH, but it still
fails to match the local maximum.

(3) The statistical results in Figure 7 show the deviation variation of the abovementioned
models. The box of each frequency represents the upper and the lower quartiles of the
deviations and the horizontal line in the middle of the box is the median of deviations.
The black line connected with the colored box shows the confidence interval of the
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deviations. Diamond symbols of corresponding colors represent outliers that deviate
from the confidence range. The variation range of each model changes on a small scale,
but the median value of deviation changes from -1.57 m of the meteorological-MLP-
EDH model to 0.13 m of the spatial–temporal-MLP-EDH model, which is essentially
in agreement with the measurements on a large scale.

Figure 6. Generalization performance of the EDH prediction models based on MLP.

Figure 7. Statistical results of EDH prediction models based on MLP.
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Overall, the model has excellent generalization ability after training 70% of the original
datasets and maintains good consistency in the testing datasets. Overall, the EDH predic-
tion model based on MLP can maintain good consistency with the measurements at a large
scale. However, a significant difference exists when predicting small-scale fluctuations,
such as local maximum and minimum. Moreover, an optimization model with low bias
and variance is always preferable based on MLP.

The training and testing datasets were collected from 20 repeated trips along one path
and the experiment time was covered diurnal cycles. With the spatial parameters of the
experimental positions with latitude and longitude and temporal parameters every 6 h
in the MAGIC campaign introduced, the prediction accuracy of the model is gradually
improved, indicating that the spatial and temporal variability is significant. By extracting
much more “hidden information” from “extra data” in the training process, the spatial
variability of the three-dimensional geographic information and the temporal variability of
the diurnal cycles are repeatedly learned and memorized based on the MLP method. With
the constructed multi-dimensional deep learning model, the geographic and time domain
feature can be extracted, which supplies an improvement in EDH prediction.

4.2. Generalization Performance of Multilayer Model Based on MLP

The RMSE of the spatial–temporal-MLP-EDH model has improved to 1.54 m and
the parameters as a coefficient of determination and variance of prediction error still
have room for improvement. Adding the temperature, RH, and wind speed at an addi-
tional height, new datasets with the original parameters may improve prediction accuracy.
The comparison results with measured data, EDH predicted by the NPS model, and the
multilayer-MLP-EDH model are shown in Figure 8.

Figure 8. Generalization performance of the multilayer-MLP-EDH model.

The variance achieves another reduction with meteorological parameters in multilay-
ers and decreases to 1.02 m. The trained model can match the trend of measurements at a
large scale; meanwhile, the maximum and minimum values of the measurements at a small
scale can also become significantly matched. According to statistical analysis, the RMSE
of the multilayer-MLP-EDH method reached 1.05 m and the improvement percentage
reached 77.51%, compared with the NPS model. Furthermore, the computational load
of this algorithm (FLOPs) is 2.27 times as much as the meteorological-MLP-EDH model,
which reached 8.64 × 1013.

The overall trend of predicted EDH by NPS differs significantly from the measure-
ments, mainly because air–sea coupling conditions limit the NPS model. The prediction
accuracy is hard to maintain when the air–sea temperature difference (ASTD) is greater
than 0 [14]. Table 6 shows the statistical RMSEs in stable and unstable conditions, and the
prediction error of the NPS model increases when ASTD > 0. The multilayer-MLP-EDH
method is maintained in RMSE, which reflects the consistency of the proposed method in
dealing with different conditions.
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Table 6. The statistical RMSEs in different conditions.

Models ASTD > 0 ASTD < 0

NPS-EDH 5.31 m 4.60 m

Multilayer-MLP-EDH 1.07 m 1.05 m

As shown in Figure 9, the fitting line between the predicted and the measured data
changes from y = 0.42 x + 5.52 of the NPS model to y = 0.93 x + 0.99, close to y =x. Therefore,
this method has better operability by setting meteorological instruments at two different
heights (the cabin and the deck, for instance). The EDH predicted error could reach nearly
1 m combined with the sea surface meteorological parameters.

Figure 9. Scatter plot of measured EDH against modeled EDH using the multilayer-MLP-EDH model.

The predicted RMSE of EDH of the theoretical method is 4.67 m, which may lead
to the uncertainty range of path loss exceeding 120 dB at the 500 km transmission range.
For instance, as shown in Figure 1, the path loss can increase from the original design of
179.12 dB at a predicted EDH of 11 m to exceed 300 dB at a true EDH of nearly 6 m. This
state will leave the transmission system in an unstable situation. However, a significant
improvement arises when single-layer models based on MLP become involved. The
predicted deviation of EDH decreases to 1.54–2.15 m, corresponding to a path loss variation
from 162.20 to 213.12dB. The prediction accuracy of the evaporation duct channel continues
to improve with multilayers. Furthermore, the uncertainty of path loss is reduced by
16.92 dB on the single-layer models. Therefore, the multilayer-MLP-EDH model can be
essential in designing a communication system using the evaporation duct.

Table 7 provides a summary and comparison of the performance of EDH prediction,
with the AI method introduced. From the comparison results, the four-dimensional regres-
sion function multilayer-MLP-EDH with meteorological parameters located on another
layer proposed in this paper has the advantage of extracting the spatial–temporal infor-
mation and the meteorological parameters at multiple altitudes in the training process. At
the same time, a wider application range, higher precision, and model generalization are
also achieved. Furthermore, the proposed model has great potential for enhancing the
communication quality, reliability, and efficiency of ducting in evaporation ducts.
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Table 7. Comparison of different models in EDH prediction.

Ref. Modeling Category Modeling Datasets
AI Method and

Features
Network Structure Prediction Results

[14]

Long-term

The calculated reults
based on the NPS

model and the
remote sensing

dataset

Artificial neural
network

A 5-15-24
feedforward

backpropagation
network

1.91 m in the RMSE
for air–sea

temperature
difference < 0, and

9.43 m for the
difference > 0

[28]

Observation of
experimental

datasets in the
northern hemisphere

MLP with
rectified linear unit
activation function

A five-hidden-layer
network with

neurons of 50, 30, 20,
10, and 5 in each

layer

An enhancement
between 80.82% and

93.77% compared
with the PJ model

[29]

Short-term

Observation of
experimental

datasets in the
northern hemisphere

Long short-term
memory network

One hidden layer
with 50 neurons

0.72 m in the
average RMSE

[30]

High resolution
meteorological

sounding balloon
data at a sea area
near the equator

Darwinian
evolutionary

algorithm

The evolutionary
process of selection

based on A grid
search method

0.2248 m in the RMSE

This work Long-term MAGIC datasets in
the Pacific Ocean

MLP with
spatial–temporal
information and
meteorological
parameters at

multiple altitudes
introduced

A four-hidden-layer
network with

neurons of 100, 50, 20,
and 5 in each layer

1.05 m in the RMSE

5. Conclusions

Low altitude atmospheric refractive conditions significantly affect the performance of
shipboard communications at sea and near shore [12]. The accurate prediction of the EDH
is thus crucial in the demonstration, design, development, operation, and maintenance
management of the communication system under this mechanism. Based on the MLP deep-
learning method, the multidimensional deep-learning model was proposed to improve
the prediction accuracy of EDH. First, the meteorological-MLP-EDH model was designed,
which improved the prediction accuracy by 54.00%, with the same input parameters
as the NPS model. The spatial–temporal-MLP-EDH model has gone one step further
by superimposing the spatial–temporal “extra data” in the experiment. As a result, it
can be essentially in agreement with measurements at large scales and the predicted
RMSE is 1.54 m, with a 66.96% percentage improvement compared with the NPS model.
Lastly, the multilayer-MLP-EDH model with the temperature, RH, and wind speed at an
additional height was trained, significantly matching measurements at large and small
scales. According to statistical results, the predicted RMSE can reach 1.05 m and the
percentage improvement reached 77.51%.

The proposed model in this paper can break through the limitations of theoretical
models by extracting much more “hidden information” from “extra data” in the training
process, significantly improving EDH prediction accuracy. As a result, the proposed model
has great potential for enhancing the communication quality, reliability, and efficiency of
ducting in evaporation ducts.

The models constructed in this paper are based on 476 sets of MAGIC data in the Pacific
Ocean; the training and testing datasets are limited to a sea area of 21.2197◦N, 33.6001◦N,
118.3299◦W, 157.7416◦W at specific experimental time intervals. Future experiments should
be performed to more completely validate the models. In addition, measurements should be
made at comprehensive coverage, massive data acquisition, and high spatial and temporal
resolution to improve the constructed model. Furthermore, the distribution of EDH in high
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precision, detailed resolution, and broad coverage with the improved proposed model
would be valuable to the communication system using evaporation ducts over the ocean.
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Abstract: This paper proposes a lightweight model combined with data augmentation for vehicle
detection in an intelligent sensor system. Vehicle detection can be considered as a binary classifi-
cation problem, vehicle or non-vehicle. Deep neural networks have shown high accuracy in audio
classification, and convolution neural networks are widely used for audio feature extraction and
audio classification. However, the performance of deep neural networks is highly dependent on
the availability of large quantities of training data. Recordings such as tracked vehicles are limited,
and data augmentation techniques can be applied to improve the overall detection accuracy. In our
case, spectrogram augmentation is applied on the mel spectrogram before extracting the Mel-scale
Frequency Cepstral Coefficients (MFCC) features to improve the robustness of the system. Then
depthwise separable convolution is applied to the CNN network for model compression and mi-
grated to the hardware platform of the intelligent sensor system. The proposed approach is evaluated
on a dataset recorded in the field using intelligent sensor systems with microphones. The final
frame-level accuracy achieved was 94.64% for the test recordings and 34% of the parameters were
reduced after compression.

Keywords: depthwise separable convolutional neural networks; spectrogram augmentation; sound
detection; vehicle detection

1. Introduction

Vehicle detection and identification(VDI) systems are in growing demand as devel-
opment of information and communication technology [1] increases, and the need for
sophisticated signal processing and data analysis techniques is becoming increasingly
apparent [2]. A growing number of novel applications such as smart navigation, traffic
monitoring and transportation infrastructure monitoring have been accompanied by a
corresponding improvement in overall system performance and efficiency [3]. Accurate
and rapid detection of moving vehicles is fundamental in these applications.

Vehicle detection aims to detect a vehicle passing by a deployed sensor. Vehicle de-
tection and classification systems are mainly based on ultrasonic sensors, acoustic sensors,
infrared sensors, inductive loops, magnetic sensors, video sensors, laser sensors and mi-
crowave radars [4]. Currently, video sensors and image detection techniques are frequently
adopted for vehicle detection [5,6]. However, these image-based methods require the
camera to be placed directly towards the road, and the lens cannot be blocked. In our
scenario, the sensors are mostly placed in the field or forests, where vehicles may come
from all directions and objects such as weeds and trees are likely to disturb the view.

Acoustic communications are attractive because they do not require extra hardware
on either transmitter and receiver sides, which facilitates numerous tasks in IoT and other
applications [7]. Therefore, in our intelligent sensor system, the acoustic signals are collected
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using acoustic sensors and processed on the chips. The vehicle detection task can be solved
as an acoustic event classification task. Vehicle detection and identification using features
extracted from vehicle audio with supervised learning have been widely explored, such as
support vector machine classifiers, k-nearest neighbor classifiers, Gaussian mixture models,
hidden Markov models, etc. [3].

Recently, deep neural networks have shown promising results in many pattern recog-
nition applications [8], such as acoustic event classification. The vehicle detection task
can be considered as a binary acoustic event classification of a vehicle or a non-vehicle.
Deep neural networks are powerful pattern classifiers which enable the networks to learn
the highly nonlinear relationships between the input features and the output targets [9].
Convolutional neural networks (CNNs) have also been widely used for remote sensing
recognition tasks [10–12] and acoustic event classification tasks [13], as CNNs have shared-
weight architecture based on convolution kernels which is efficient in extracting acoustic
features for acoustic classification.

Many feature extraction techniques have been studied for analyzing acoustic charac-
teristics over decades, including temporal domain, frequency domain, cepstral domain,
wavelet domain and time-frequency domain [14]. Mel frequency cepstral coefficients
(MFCC), a kind of cepstral domain feature, are widely used for acoustic classification [15].
Recent works exploring CNN-based approaches have shown significant improvements
over hand-crafted feature-based methods such as MFCC [16–21]. In our practical applica-
tion, the locations of the sensors deployed are different, and therefore the distances between
the sensors and road are uncertain. MFCCs are relatively independent of the absolute signal
level [22]; thus, MFCCs are appropriate for vehicle detection in our case as the amplitudes
of the vehicle signals vary with the distance between the sensors and roads.

However, the performance of deep neural networks is highly dependent on the avail-
ability of large quantities of training data in order to learn a nonlinear function from input
to output that generalizes well and yields high classification accuracy on unseen data [23].
The recordings for vehicles of specific types are limited, such as an armored vehicle. To
solve this problem, data augmentation is applied to the original recordings to generate
more samples for training. Data augmentation is a common strategy adopted to increase
the quantity of training data, avoid overfitting and improve robustness of the models [24].
Commonly used strategies for acoustic data augmentation are vocal tract length pertur-
bation, tempo perturbation, speed perturbation [24], time shifting, pitch shifting, time
streching [25] and spectrogram augmentation [26].

After a neural network for vehicle detection is trained, it has to be migrated to the
hardware platform where the computation cost and battery life is limited. Typical ap-
proaches include linear quantization of network weights and inputs [27] and a reduction in
the number of parameters [28]. Depthwise separable convolutions are a form of factorized
convolutions which factorize a standard convolution into a depthwise convolution and
a 1 × 1 convolution called a pointwise convolution [29]. The computational cost can be
reduced using depthwise separable convolution with only a small reduction in accuracy.

This paper aims to solve a practical issue for vehicle detection by using a lightweight
CNN model for acoustic classification. To summarize, the main contributions of this paper
are as follows:

1. A spectrogram augmentation method is applied to the mel spectrogram of the acoustic
signals to improve the robustness of the proposed model.

2. A CNN classification model is trained on the original data and the augmented samples
to achieve a high classification accuracy of each frame.

3. Depthwise separable convolution is applied to the original CNN network for model
compression. The lightweight model can be migrated to the chips of the intelligent
sensor system and realize the task of real-time vehicle detection.

The paper is organized as follows: Section 2 describes the materials and methods
including both hardware structure and algorithm implementation. Section 3 presents the
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detailed results of the experiments. Section 4 discusses the experiment results. Section 5
presents the conclusion of this paper.

2. Materials and Methods

This section describes the system hardware structure, data collection method, dataset
description, feature extraction, data augmentation, two-stage detection method and ex-
periment setup. The codes for the experiments including feature extraction, spectro-
gram augmentation and deep neural network structures are published in the Github
website: https://github.com/chaoyiwang09/Vehicle-Detection-CNN.git (accessed on 23
August 2022).

2.1. System Hardware Structure

Our implemented system can be divided into the four modules according to their
functions: microphone array (MA), preprocessing and sampling (P and S) module, real-time
data processing and acquisition (P and A) module and transmission module [30]. Four
microphone arrays are used to collect the acoustic signal in the deployed area. The collected
acoustic signals are then sampled in the P and S module to obtain four simultaneous
digital signals by the synchronized filters and amplifiers [31]. The detection algorithm is
implemented on the digital signal processors (DSP) chip of the real-time P and A module.
The detection results are finally transmitted to a terminal device through radio frequency.
The diagram of the system hardware process is shown in Figure 1.

Figure 1. The diagram of the system hardware architecture.

Four ADMP504 MEMS microphones which are produced by Analog Devices are
placed uniformly on the main circuit board. The device for AD sampling is MAXIM
MAX11043, a 4-channel 16-bit simultaneous ADC [32]. The DSP chip, ASDP21479 is used
for real-time data processing and acquisition. The printed circuit board layout is shown
in Figure 2. A more detailed description of the hardware structure implemented in the
modules can be found in [31].

2.2. Dataset

The acoustic signals are collected with microphone arrays in the intelligent sensor
system deployed in the field. The vehicle recorded includes a small wheeled vehicle, a
large wheeled vehicle and a tracked vehicle. The sensors are deployed 30 m, 50 m, 80 m
and 150 m away from the road for the small wheeled vehicle. For the tracked vehicle and
the large wheeled vehicle, the sensors are deployed 200 m, 250 m and 300 m away from
the road. The length of road is 700 m, 350 m on each side of the microphone arrays. The
recording scene is illustrated in Figure 3.

All the recordings are collected at a sample rate of 8k and a bit rate of 16 bits. For each
experiment, the start time and end time of the vehicle are recorded. Therefore, the acoustic
signals can be truncated by the start time and the end time. The signals of duration from
the start time and end time are labeled as 1 for vehicle, while the remaining parts of the
signals are labeled as 0 for non-vehicle. There are overall 445 recordings in the dataset;
191 recordings are non-vehicle, the average duration of which are about 104 s. A total of
91 recordings are from the small wheeled vehicle, 101 recordings are from the large wheeled
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vehicle, and 62 recordings are from the tracked vehicle, and the average duration of them
are 40 s, 70 s and 150 s, respectively. The dataset composition is shown in Table 1.

Figure 2. The system hardware circuits layout.

Figure 3. The recording scene.

Table 1. The dataset composition.

Vehicle Type Avg Duration (s) Distance (m) Recording Num Overall Num

small wheeled vehicle 40

30 25

9150 25
80 25

150 16

large wheeled vehicle 70
200 45

101250 46
300 10

tracked vehicle 150
200 21

62250 21
300 10

non-vehicle 104 / 191 191

2.3. Feature Extraction

Mel-scale frequency cepstral coefficients (MFCC) features are extracted as the input
features for the binary classifier. MFCC is widely used in acoustic tasks such as voice
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activity detection [33]. The diagram of MFCC extraction is illustrated in Figure 4. The steps
of MFCC extractions are:

1. Pre-emphasis is used to compensate and amplify the high-frequency part from the
acoustic signal [34]. This is calculated by:

s′(n) = s(n)− α · s(n − 1) (1)

where α = 0.97 in our case, s(n) is the input acoustic signal, and s′(n) is the output signal.
2. The signals are split into short parts by windowing. In our case, the window length

of each frame is set to 200 milliseconds, the window step is 200 milliseconds, and
no overlap is applied to each frame. A rectangular window is chosen for short time
Fourier Transformation.

3. Mel filter banks are applied and a logarithm is taken to the extracted mel frequency
features. The mel cepstral coefficients are calculated as follows for a given f in Hz:

Mel( f ) = 2595 · log 10(1 + f /700) (2)

4. Discrete cosine transformation is applied.
5. The zeroth cepstral coefficient is replaced with the log of the total frame energy.
6. Delta, a first order difference calculation and double-delta, a second order difference

calculation, are finally calculated.

Figure 4. The diagram of MFCC extraction.

For each frame, 13 cepstral coefficients are extracted, and the output dimension of
one frame is 39-dimensional after the delta step. Overall 100,000 samples are kept for the
training set, the duration of which is about 5.6 h. A total of 20,000 samples are extracted
for the validation set, and 20,000 samples are extracted for the test set. For the training set,
validation set, and training set, half of the features are labeled as vehicle, and the others are
labeled as non-vehicle.

2.4. Data Augmentation

Data augmentation is a strategy to increase the diversity of available data and make
it possible to train models without collecting new data [35]. Our augmentation method
is applied to the mel spectrogram domain. Frequency masks are applied to the mel
spectrogram. Frequency masking is applied so that f consecutive mel frequency channels
[ f0, f0 + f ) are masked, where f is first chosen from a uniform distribution from 0 to the
frequency mask parameter F, and f0 is chosen from [0, v − f ); v is the number of mel
frequency channels [26]. The mean value and standard deviation of the mel spectrogram of
the training data are calculated. Then, the frequency masking coefficient X is generated
with a Gaussian distribution of the same mean value and standard deviation of the original
training set. The formulas can be written as:

Mel( fm) = X, f0 ≤ fm < f0 + f (3)

where f ∼ U (0, F), f0 ∼ U (0, v − f ), F is a frequency mask parameter, v is the number of
mel frequency channels, X ∼ N (μ, σ2), μ is the mean value, and σ is the standard deviation
of the mel spectrogram in the training data.

195



Remote Sens. 2022, 14, 4848

We mainly apply the masking procedure on the frequency domain rather than the time
domain because the environment noise such as wind noise has a large influence on some
specific frequency bands, and we aim to increase the robustness against environment noise
and expect the system to detect correctly even if a frequency band is masked or interrupted.

Figure 5 shows the original and masked log mel spectrogram of a recording. The upper
figure is the original log mel spectrogram, and the lower is the masked log mel spectrogram.
For the augmented data, the cepstral features ranging from 512 Hz to 1024 Hz are masked.
After the log result of the mel spectrogram is calculated and discrete cosine transform is
applied to the log-mel spectrogram, augmented MFCC features are calculated. Then, the
augmented data are appended to the original training data. Finally 100,000 samples are
augmented, and there are overall 200,000 samples in the training set.

Figure 5. The original log-mel spectrogram of a vehicle recording and the masked log-mel spectrogram.

2.5. Depthwise Separable Convolution

Depthwise separable (DS) convolutions are a form of factorized convolutions which
factorize a standard convolution into a depthwise convolution and a 1 × 1 convolution
called a pointwise convolution [29]. The key insight is that different filter channels in
regular convolutions are strongly coupled and may involve plenty of redundancy [36].

Depthwise convolution with one filter per input channel can be written as:

Ĝk,l,m = ∑
i,j

K̂i,j,m × Fk+i−1,l+j−1,m (4)

where K̂ is the depthwise convolution kernel of size Dp
K × M, and mth filter in K̂ is applied

to mth channel in a feature map F to produce the mth channel of the filtered output feature
map Ĝ.

The standard convolutions have the computational cost of:

Dp
K × M × N × Dp

F (5)

where DK is the kernel size, p = 1 for 1-dimensional convolution, p = 2 for 2-dimensional
convolution, M is the number of input channels, N is the number of output channels, and
DF is the spatial width.

The depthwise separable convolutions have the cost of :

Dp
K × M × Dp

F + M × N × Dp
F (6)
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Therefore, after applying depthwise separable convolutions, we obtain the reduction
in computation of:

1/N + 1/Dp
K (7)

2.6. Two-Stage Detection Method

The older version of the algorithm in our system for vehicle detection is based on a
two-stage detection method by log-sum detection and subspace-based target detection
(SBTD) [32].

The first stage is to compare the log-sum energy of the high-frequency part of the
acoustic signal and the low-frequency part of the acoustic signal [32]. If the log-sum energy
of the high-frequency part is less than the low-frequency part, a result of non-vehicle is
returned. Otherwise, the program will proceed to the next stage, subspace-based target
detection (SBTD). The steps of the subspace-based target detection(SBTD) are:

1. Estimate the covariance matrix R̂:

R̂ =
1
L

XXH (8)

where X is the received signal, and H denotes the Hermitian transpose.
2. Obtain the eigenvalues λ of the covariance matrix R̂ by eigenvalue decomposition.
3. Estimate the number of acoustic emissions K by the eigenvalues of the matrix R̂,

according to some signal number estimation criterion such as minimum description
length (MDL) [37].

4. Estimate the total signal power:

P̂S =

K
∑

i=1
λi − KλK+1

M
(9)

where K is the number of acoustic emissions, and M is the number of channels.
5. Estimate the noise power:

P̂N =

K
∑

i=K+1
λi + KλK+1

M
(10)

6. Compute the SNR by SNR = 10 log(P̂S/P̂N). If the estimated SNR is larger than the
threshold T, we regard it as a target invasion, otherwise we consider it as non-target.

The result of the two-stage detection method is compared with the new proposed
method in Section 3.

2.7. Experiment Setup

The two-stage detection method is set up as a baseline system. The optimal threshold
for the SBTD stage of the two-stage detection method is decided by maximum likelihood
criterion. The calculated optimal threshold is 9.9 dB.

For the proposed deep learning method, the dimension of the input matrix for training
is 200, 000 × 39, with 100, 000 × 39 original features and 100, 000 × 39 augmented features.
For each feature, cepstral mean and variance normalization [38] is applied for feature
normalization and avoiding gradient exploding.

To train a model, a cross-entropy loss function is chosen, and stochastic gradient
descent is used as the optimizer [39]. The batch size is 128. Dropout layers are applied to
the fully connected layer to avoid overfitting [40]. Each model is trained for 100 epochs.
The learning rate is set to 0.01 constantly.

A fully connected neural network is built for comparison. The deep neural network
has three hidden layers. A ReLU activation function and a random dropout of 0.2 for
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regularization are applied in each layer. The framework structure of the fully connected
neural network is shown in Table 2.

Table 2. The fully-connected neural network structure.

Layer Parameters

Fully Connected 39 × 64
Relu -

Dropout 0.2
Fully Connected 64 × 32

Relu -
Dropout 0.2

Fully Connected 32 × 8
Relu -

Dropout 0.2
Fully Connected 8 × 2

The CNN architecture is comprised of three convolution layers with two max-pooling
layers between the three convolution layers and two fully connected layers for the output.
The input channel numbers for the first, second and third convolution layers are 1, 16 and
32 respectively; the output channels are 16, 32 and 16, and the kernel sizes are 3, 3 and 3.
For each layer, the stride and padding sizes are all set to 1. The kernel sizes for max pooling
are 2. The framework structure of the CNN is shown in Table 3.

Table 3. The CNN structure.

Layer Parameters

Conv1d 1 × 16 × 3
Max Pooling 2

Conv1d 16 × 32 × 3
Max Pooling 2

Conv1d 32 × 16 × 3
Flatten -

Fully Connected 144 × 16
Relu -

Dropout 0.3
Fully Connected 16 × 2

A depthwise separable CNN architecture is trained for comparison with the same
parameter settings as the original CNN structure. The convolution steps are replaced with
depthwise separable convolution.

3. Results

3.1. Detection Accuracy

The frame-level accuracy and performance of the proposed method are evaluated on
the test set of the vehicle recordings.

The training loss and validation loss of the DS CNN are shown in Figure 6. Figure 6A
shows the training loss for each iteration, and Figure 6B shows the validation loss for each
epoch. The decaying trends for the loss function of the training set and the validation set
are consistent. The batch size is 128, and there are overall 100 epochs and 156,250 iterations.
It can be seen that the loss function starts to converge at the 60th epoch, and therefore it
is reasonable to choose the 100th epoch to stop training. Figure 7A shows the accuracy of
the validation set for each epoch of the DS CNN. The confusion matrix of the DS CNN is
illustrated in Figure 7B. The precision rate is 92.87%, the recall rate is 96.70%, and the false
alarm rate is 7.42%.
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Figure 6. (A) The training loss vs. iteration; (B) the validation loss vs. epoch.

Figure 7. (A) The accuracy of the validation data vs. epoch; (B) the confusion matrix of the DS CNN.

The frame-level classification results of the proposed models are given in Table 4. The
accuracy of our baseline system, two-state detection is 93.65%. The classification accuracy
results for the DNN, the CNN and the depthwise separable CNN models, are 89.88%,
93.02% and 92.58%, respectively. The accuracy results with data augmentation for the
DNN, the CNN and the depthwise separable CNN models, are 92.14%, 95.11% and 94.64%,
respectively. It can be seen that the classification accuracy is improved with augmentation.

Table 4. The overall detection accuracy of each model.

Framework Classification Accuracy (%)

Two-stage Detection 93.65
DNN 89.88
CNN 93.02

DS CNN 92.58
DNN (Spec Augmentation) 92.14
CNN (Spec Augmentation) 95.11

DS CNN (Spec Augmentation) 94.64

To test the models’ ability to detect different types of vehicle, a test was conducted on
different types of vehicles separately, and the result is shown in Table 5. The numbers in the
brackets of the first column are the numbers of vehicle recordings of different types. All the
accuracy results are in frame-level. The traditional subspace-based target detection method
has high accuracy towards the large wheeled vehicle and the tracked vehicle because the
two types of vehicles make louder sounds when starting, leading to a higher SNR, and
the threshold is optimized for these cases. However, the traditional method does not have
a good performance for the small wheeled vehicle, as it makes a lower sound, especially
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when the sensors are placed far from the moving target, causing a low SNR. The DS CNN
structure outperform the traditional method on both recall rate and false alarm rate.

Table 5. The ability to detect different types of vehicle of the models.

Method Two-Stage DNN CNN DS CNN DNN CNN DS CNN

Remark (9.9 dB) without SpecAug with SpecAug

SWV(91) 74.09 85.93 87.55 86.11 86.94 90.01 89.45
LWV(101) 96.45 90.41 93.88 93.63 93.01 96.06 95.58
TV(62) 96.81 91.01 94.48 94.28 93.49 96.36 95.93
Recall rate(254) 96.61 89.62 94.31 93.61 92.91 96.98 96.70
False alarm rate 9.31 9.86 8.27 8.45 8.63 6.76 7.42

3.2. Complexity Calculation

In the original CNN structure, there are three layers of CNN networks. According to
Equations (5) and (6), the computation cost, C , for the first convolution layer is:

C = Dp
K × M × N × Dp

F = 31 × 1 × 16 × 11 = 48 (11)

The computation cost for the first depthwise separable convolution layer is:

C = Dp
K × M × Dp

F + M × N × Dp
F = 31 × 1 × 11 + 1 × 16 × 11 = 19 (12)

According to Equation (7), the computation ratio, R, is:

R = 1/N + 1/Dp
k = 1/16 + 1/31 = 19/48 = 39.58% (13)

The computation costs including the remaining two layers are shown in Table 6. It can
be seen that overall cost is reduced 61.96%in the convolution steps.

Table 6. The computation cost of each convolution layer.

Convolution Layer Original Cost DS Cost Reduction Rate(%)

1 48 19 60.42
2 1536 560 63.54
3 1536 608 60.42
All 3120 1187 61.96

According to Table 7, the overall parameter number is 5538 for the original CNN
network, and the parameter number is 3654 after applying the depthwise separable CNN.
The number of parameters reduced by 34.02% with only a small reduction of accuracy of
0.47%.

Table 7. The number of parameters of each model.

Model Number of Parameters

DNN 4922
CNN 5538

DS CNN 3654

4. Discussion

The final model migrated to the chips of the sensors is the depthwise separable CNN.
The model is lightweight and can be run efficiently on the chips of the sensors. For each
frame, the average processing time is about 20 ms; thus, the real-time rate for each frame
is 10%. The remaining computational resources can be utilized for other functions such
as direction of arrival. The other reason for choosing a depthwise separable convolution
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network is to prolong the battery life. The intelligent sensor system has to be placed
outdoors in the field over weeks. Therefore, the power consumption has to be limited.
There is a trade-off between accuracy and model size, and finally the decrease in the
accuracy is totally acceptable.

Figure 8 shows the signal and actual detection result of a sample. Figure 8A is the
original time-domain signal of a large wheeled vehicle sample. Figure 8B shows some
detection errors exist near the border region between the silence part and vehicle moving
stage. Figure 8C shows the detection result after applying a smoothing function. Figure 8D
represents the ground truth. The recorded moving time of the vehicle is from the 16th
second to the 89th second. It can be seen that most classification errors occur at the
border region between the silence part and the vehicle moving stage. This can be solved
subsequently using a moving window to smooth. The detection algorithm is processed
once every 200 milliseconds for each frame, and the detection result is transmitted every 1 s
through the transmission module. Therefore, the following strategy is taken for smoothing:
the final detection result follows the majority results of the five frames over a second.

Figure 8. Example of the original signal of a recording and its detection results: (A) the original signal
of a recording; (B) the detection result of the recording; (C) the smoothed result; (D) the detection
ground truth.

Other classification errors occur when strong environment noise such as wind noise
exists, and the distance between sensors and the vehicle is too long. In such cases, the signal-
to-noise ratio becomes low, especially for a small wheeled vehicle, and the classification
accuracy becomes affected. In the future, we intend to solve this problem by exploring
signal processing methods including filtering and signal enhancement.

5. Conclusions

This paper proposes a CNN architecture with spectrogram augmentation for vehicle
detection. A fully connected network and convolution neural networks are compared, and
the CNN structure outperforms the other one. The depthwise separable CNN structure re-
duces the computational cost. Spectrogram augmentation also shows a huge improvement
in the overall model performance. Experiments show that the DS CNN increases the recall
rate of detection and reduces the false alarm rate simultaneously compared with the older
two-stage method. The accuracy, recall rate and false alarm rate are 94.64%, 96.70% and
7.42%. Finally, the trained model is migrated to the chips of our intelligent sensor systems.
The lightweight CNN model can be run efficiently on the these systems. Experiments
show the structure has a robust and efficient performance on the sensors. In the future,
we intend to discover some practical signal processing methods including filtering and a
deep-learning-based signal denoising method to make the system more robust to wind
noise and enhance the SNR.
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Abbreviations

The following abbreviations are used in this manuscript:

MFCC Mel Frequency Cepstral Coefficients
DNN Deep Neural Network
DS Depthwise Separable
CNN Convolution Neural Network
SBTD Subspace-Based Target Detection
SNR Signal-to-Noise Ratio
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Abstract: Live fuel moisture content (LFMC) is an important index used to evaluate the wildfire
risk and fire spread rate. In order to further improve the retrieval accuracy, two ensemble models
combining deep learning models were proposed. One is a stacking ensemble model based on LSTM,
TCN and LSTM-TCN models, and the other is an Adaboost ensemble model based on the LSTM-TCN
model. Measured LFMC data, MODIS, Landsat-8, Sentinel-1 remote sensing data and auxiliary data
such as canopy height and land cover of the forest-fire-prone areas in the Western United States,
were selected for our study, and the retrieval results of different models with different groups of
remote sensing data were compared. The results show that using multi-source data can integrate the
advantages of different types of remote sensing data, resulting in higher accuracy of LFMC retrieval
than that of single-source remote sensing data. The ensemble models can better extract the nonlinear
relationship between LFMC and remote sensing data, and the stacking ensemble model with all
the MODIS, Landsat-8 and Sentinel-1 remote sensing data achieved the best LFMC retrieval results,
with R2 = 0.85, RMSE = 18.88 and ubRMSE = 17.99. The proposed stacking ensemble model is more
suitable for LFMC retrieval than the existing method.

Keywords: live fuel moisture content; deep learning; ensemble learning; multi-source remote sensing

1. Introduction

Live fuel moisture content (LFMC) is the ratio of vegetation water content to its dry
weight [1]. The research shows that there is a clear correlation between the probability of
fire and LFMC [2,3], which is an important index affecting the occurrence probability and
propagation rate of forest wildfire. To put it another way, accurate and dynamic retrieval
of LFMC is extremely valuable to realize the fire risk assessment and spatial modeling of
fire behavior [4]. Remote sensing satellite can provide large-scale, multi-band and near-
real-time image data, which makes remote sensing technology one of the main methods
to estimate LFMC on a large scale [5]. The method of estimating LFMC based on optical
remote sensing data is the most widely studied [6–8]. MODIS optical remote sensing data
are commonly used in the early stage. Myoung et al. [9] developed an empirical model
function of LFMC using an aqua-enhanced vegetation index based on MODIS satellite
data for wildfire risk assessment in Southern California. Carmine et al. [10] developed a
new spectral index, the perpendicular moisture index (PMI), which is sensitive to LFMC
based on MODIS satellite data. The experimental results show that PMI had a linear
relationship with LFMC, and the highest R2 was 0.87. Landsat-8 can provide higher spatial
resolution than MODIS, which has been introduced to estimate LFMC in recent years.
Considering the complexity of upper tree canopy and lower grass canopy, Quan et al. [11]
predicted the forest FMC of a two-layer canopy structure in Southwest China by coupling a
radiative transfer model and a Landsat-8 product. Mbulisi et al. [5] used Landsat-5 and
Landsat-8 data to quantitatively retrieve vegetation canopy FMC in six study areas based
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on PROSAIL and PROGeoSAIL radiative transfer models. These methods based on optical
remote sensing depend on the absorption characteristics of leaf water at near-infrared
(NIR) or short-wave infrared (SWIR) wavelengths [12]. Optical and infrared reflectance are
highly sensitive to vegetation characteristics such as canopy structure [13] and leaf area
index [14,15], and so these models are often only applicable for very specific sites, and the
generalization ability of different regions is limited [16,17].

The wavelength of microwave remote sensing is longer than that of optical remote
sensing by four orders of magnitude. Microwaves can penetrate the clouds and en-
ter the vegetation canopy, which enables microwave remote sensing to acquire the dy-
namic changes in vegetation moisture better than optical remote sensing [18–20]. In re-
cent years, the prediction ability of active microwave remote sensing technology repre-
sented by synthetic aperture radar (SAR) for fire-related variables has been verified [21,22].
Wang et al. [20] coupled the soil backscatter linear model with the vegetation backscatter
water cloud model, achieving forest FMC retrieval based on Sentinel-1 SAR data and a
better performance than that obtained using Landsat-8 data and empirical methods.

Different remote sensing data have different sensitivities to vegetation water and
biomass, and the effect of single-source remote sensing data retrieval of LFMC is limited.
Using multi-source remote sensing data to estimate LFMC can avoid the limitations of
single-source remote sensing data and provide more comprehensive data for extracting
the parameters required for LFMC retrieval [23]. Deep learning can approach the complex
nonlinear relationship between various biological, geophysical parameters and remote
sensing data through multi-layer learning [24,25], which provides a data-driven alternative
for large-scale LFMC retrieval. Rao et al. [19] performed LFMC retrieval based on a
long short-term memory (LSTM) network with fused data, i.e., Landsat-8 data, SAR data,
terrain, slope and other auxiliary variables. The retrieval of fused data achieved R2 = 0.63,
RMSE = 25%, which is better than that of single-source remote sensing data (R2 = 0.44,
RMSE = 31.8%). Zhu et al. [26] proposed the LFMC retrieval architecture TempCNN-LFMC
based on temporal convolutional networks (TCNs). With MODIS, altitude, slope and other
auxiliary data as the input fused data, the retrieval achieved R2 = 0.64, RMSE = 22.74%.
The above research shows that the fused data are helpful in improving the performance of
LFMC retrieval.

A single model cannot completely extract the features of remote sensing variables in
LFMC. To improve the accuracy of LFMC retrieval, it is worthwhile to combine multiple
models to extract the features of multi-source remote sensing in time and space dimensions
at the same time [25]. Therefore, based on deep learning and ensemble learning methods,
this study discusses the LFMC retrieval performance using multi-source remote sensing
data. The contents of this study include the following aspects:

(1) We explore the advantages of LFMC retrieval utilizing multi-source remote sensing
data obtained from combing MODIS, Landsat-8, Sentinel-1 and auxiliary data such as
canopy height and land cover as data sources, which can provide more comprehensive
data and avoid the limitations of single-source remote sensing data.

(2) We propose a LFMC retrieval model integrating the LSTM and TCN, which exploits
the long-time memory capability of LSTM and the superior feature extraction capabil-
ity of TCN, and finally performs better than LSTM and the TCN alone.

(3) Based on LSTM, TCN and TCN-LSTM models, two ensemble models (the stacking and
Adaboost ensemble models) are designed, and the advantages of stacking ensemble
model are confirmed by comparative experiments.

2. Data and Methods

2.1. Study Area

The Western United States was selected as the study area (shown in Figure 1), where
wildfires occurred frequently. This area covers more than 3.7 million square kilometers,
containing different climates and terrains. The vegetation types are abundant, including
broadleaf deciduous forests, needleleaf evergreen forests, shrublands, grasslands and
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sparse vegetation areas, which made it an ideal area for studying LFMC prediction methods.
Considering the integrity and generality of the data, the selected study period was from
1 January 2015 to 31 December 2018.

Figure 1. Geographical location of study area and sample point distribution.

2.2. Research Data
2.2.1. LFMC Data

The National Fuel Moisture Database (NFMD) [27] is a web-based query system. There
have been over 200,000 actual measurements of fuel moisture data since 1977. The database
regularly updates monitored fuel moisture data, covering 976 samples mainly located
in the Western United States, each covering an area of 5 acres. The measurements were
taken in the mid-afternoon and on dry days with no dew or precipitation. In this paper,
133 representative samples were selected, and the specific location is marked by circular
points in Figure 1. During the study period, the value of LFMC varied from 16% to 320%,
which covers the common water state of live fuels.

2.2.2. MODIS Data

The MODIS data came from MODIS Terra and Aqua joint observation of the MCD43A4
product [28]. The product was the nadir bidirectional reflectance distribution function
(BRDF)-adjusted reflectance (NBAR) data, the spatial resolution of which is 500 m. BRDF
was fitted using 16-day Terra and Aqua MODIS data and applied to the original reflectance
to obtain NBAR. In this study, Band1–Band7 of NBAR reflectivity data were selected as the
model input.

In addition, snow cover will lead to abnormal reflectivity. Thus, the snow pixels
need to be deleted. The MODIS snow product (MOD10A2-V6) [29] was used to determine
whether there was snow. MOD10A2 is a snow cover product synthesized every eight days
from the first day of each year. In MOD10A2, if a pixel is classified as snow on any day of
the eight days, the pixel is identified as snow.

2.2.3. Landsat Data

Landsat data came from the 16-day surface reflectance data of Landsat-8 [30], which
are Level 1T products with a spatial resolution of 30 m. There is a strong correlation between
the normalized difference water index (NDWI) and LFMC [31]. Considering that water
mainly absorbs the energy of near-infrared (NIR) and short-wave infrared (SWIR) spectral
regions, the original band reflectances of red, green, blue, near-infrared and short-wave
infrared channels were selected to directly reflect the change in water [32]. The normalized
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difference vegetation index (NDVI) is a simple, effective and empirical measurement of
surface vegetation, and it is also a key factor affecting the prediction of LFMC [33]. The
near-infrared vegetation index (NIRV) is an indicator of vegetation biomass level because it
is related to carbon assimilation of photosynthesis, so it may help to separate the effects of
biomass and LFMC on Sentinel-1 backscattering [34]. To sum up, three vegetation indexes,
NDWI, NDVI and NIRV, and the original band reflections of red, green, blue, near-infrared
and short-wave infrared channels were selected from Landsat-8 data.

2.2.4. Sentinel-1 Data

Sentinel-1 is a 5.4 GHz C-band synthetic aperture radar (SAR) with a 12-day revisit
cycle in the Western United States. The Sentinel-1 data used in this study were derived
from the ground-range detector (GRD) data of Sentinel-1, and the data were collected
in the wide-strip mode of interferometric measurement with vertical–vertical (VV) and
vertical–horizontal (VH) polarization on land [35]. Since the microwave signal has a longer
wavelength, is less sensitive to atmospheric conditions, is not susceptible to cloud pollution
and can detect deeper vegetation canopy, the microwave remote sensing data can provide
more continuous global observation [36]. At the same time, the absorption and scattering of
the microwave signal by the surface (including vegetation and soil) is mainly determined
by the microwave backscatter σ [37], and microwave backscatter is mainly affected by the
moisture content, so the microwave signal is sensitive to vegetation water content [38].
Therefore, in this paper, σVV , σVH and σVV − σVH were used as the microwave input for
the model.

2.2.5. Auxiliary Data

Seven kinds of static auxiliary data were chosen to help the model learn the radiative
transfer process between time-varying input and LFMC. The specific data can be divided
into the following three categories:

The first category is soil data, including silt, sand and clay content, which was used to
control the sensitivity of microwave backscattering to soil moisture, so that the retrieval
model could separate vegetation-related information from microwave backscattering. The
soil data come from the North American soil map of Liu et al. [39].

Vegetation canopy water content has a certain sensitivity in the near-infrared and short-
wave infrared bands [5], and the sensitivity of different vegetations to remote sensing data is
also different. The canopy height measured by the Global Laser Altimeter System lidar [40]
and the land cover information of 300 m spatial resolution obtained by GLOBCOVER [41]
were selected as the second auxiliary data.

The third category is terrain data; considering that the local incidence angle will affect
the parameterization of backward scattering on vegetation water [37], it was necessary
to use the elevation and slope of the National Elevation Dataset [42] to help the model
calibrate the local terrain.

Table 1 summarizes all the inputs used in the model.

Table 1. Input variables of LFMC retrieval model.

MODIS Landsat-8 Sentinel-1 Auxiliary Variables

Band1 red σVV Silt content
Band2 green σVH Sand content
Band3 blue σVV − σVH Clay content
Band4 NIR Canopy height (m)
Band5 SWIR Land cover
Band6 NDWI Altitude (m)
Band7 NDVI Slope (◦)

NIRV
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2.3. Data Process

Given the presence of numerous vegetation species at certain sample points and the
lack of information on the abundance of these species, directly averaging the LFMCs of
different species will result in significant inaccuracies. We adopted the same strategy as [19],
excluding sampling points with multiple species unless the LFMCs of multiple species
were similar during the research period (Pearson r between any two species ≥ 0.5). Thus,
2934 samples from 133 sampling points were included in total (shown in Figure 1).

Because the spatial and temporal resolutions of MODIS, Landsat-8 and Sentinel-1
are not the same, spatial and temporal consistency processing was needed. The remote
sensing variable data of the sample points were extracted by the Google Earth Engine
(GEE) according to the latitude and longitude coordinates. According to the latitude and
longitude coordinates, the spatial synchronization of ground data and remote sensing data
could be realized. The remote sensing data were unified to the resolution of 250 m using
bilinear interpolation.

The sampling period of live fuel samples in each location was roughly one month, so
the time series input was linearly interpolated to the end of each month to ensure that the
data had the same time phase. The maximum changes in MODIS, Landsat-8 and Sentinel-1
data were only 2.3%, 6.7% and 3.0%, respectively. It can be considered that the interpolation
operation had little effect on the input data.

2.4. Dataset

In this work, three-fold cross-validation was used to test the model. To ensure that the
performance of the model was tested on samples that were completely different from the
training sample points by separating data by sample points, the data were first stratified
randomly sampled into training and test sets by a ratio of 2:1 to ensure that the distribution
of land cover types in the training and test sets remained the same. This implies that
the training set was made up of data from two-thirds of the locations (89 sample points),
while the test set was made up of data from the remaining one-third (44 sample points).
In addition, the training set was divided into three folds, two for training and one for
validation. Finally, the results presented in the paper were calculated based on the estimated
value of the test set.

2.5. LFMC Retrieval Models
2.5.1. TCN-LSTM Model

LSTM can effectively deal with the dynamic dependence of complex long-term time
series. The TCN has simple structure and strong feature extraction ability. Combined with
the ability of TCN feature extraction and LSTM long-time series memory, the TCN-LSTM
network is designed to predict the LFMC. The structure of the TCN-LSTM network is
shown in Figure 2.

 

Figure 2. Structure of TCN-LSTM model.
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The retrieval process is as follows:

(1) Firstly, the LFMC data and selected input variables (x1, . . . , xn) are fed into the TCN.
The features of remote sensing variables and LFMC are extracted through the causal
convolution layer contained in the TCN.

(2) Then, multiple LSTM layers combined with the dropout mechanism are used for
prediction, which can prevent over fitting.

(3) Through the flatten layer, the output matrix is compressed into one dimension to
facilitate the connection of the later dense layer.

(4) The nonlinear relationship is mapped to the output space through the dense layer to
achieve the LFMC prediction results.

2.5.2. Stacking Ensemble Model

In order to further improve the performance of LFMC retrieval, a two-layer stacking
ensemble model integrating LSTM, TCN and TCN-LSTM was further proposed. The model
structure is shown in Figure 3.

 

Figure 3. Structure of stacking model.

The first layer extracts the features from the original split dataset through three basic
learners. The basic learners of the stacking model should be “accurate but different”, that is,
the prediction accuracy of each basic learner is required to be high, and the types of basic
learners should also be diverse. So, LSTM, the TCN and TCN-LSTM were introduced as
the base learners. In order to avoid over fitting, a simple linear regression (LR) was selected
as the meta-learner of the second layer.

2.5.3. Adaboost Ensemble Model

Unlike stacking ensemble, Adaboost ensemble trains several weak learners based on
different training subsets randomly selected from the original training dataset. Adaboost
ensemble is based on homogeneous integration, which is composed of the same type of
basic learners. In this work, the TCN-LSTM model was selected as the weak learner to
construct the Adaboost ensemble model. Figure 4 shows the structure of the Adaboost
ensemble model.

In each training process, the initial weights are assigned to the samples at first, and
the weights are updated after each iteration. The samples with a high error rate obtain
higher weights, which makes the algorithm focus on the samples that are more difficult
to learn. The sample weight is adjusted to Dn, and passed to the next weak learner Gn
for better prediction. Therefore, the features extracted by G1 are transmitted to G2, and
then the features estimated with high error can be corrected in the transmission process,
which is helpful to improve the prediction accuracy. At last, the weighted average method
is utilized to obtain the strong learner HM, the output of which is the final prediction result.
Considering the computational efficiency, the number of TCN-LSTM, that is, the number of
iterations t, was set to 3.
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Figure 4. Structure of Adaboost ensemble model.

2.5.4. Model Settings

There are three basic models, LSTM, the TCN and TCN-LSTM. Table 2 lists the archi-
tectures of these models. In the ensemble models, the same architectures were used. All the
proposed models estimated LFMC for each month using input variables of three previous
months. Although predicting one month averaged LFMC value can be error-prone due
to the variations in LFMC, we were constrained by the temporal resolution of the remote
sensing data.

Table 2. The architectures of the used basic prediction models.

LSTM TCN TCN-LSTM

Layer Output Shape Layer Output Shape Layer Output Shape

LSTM (32,4,10) Conv1D (32,365,64) Conv1D (32,4,32)
LSTM (32,4,10) AvgPool (32,182,64) Conv1D (32,4,32)
LSTM (32,10) Conv1D (32,182,64) MaxPool (32,2,32)
Dense (32,1) AvgPool (32,60,64) Flatten (32,64)

Conv1D (32,60,64) RepeatVector (32,1941,64)
MaxPool (32,15,64) LSTM (32,1941,10)
Flatten (32,960) LSTM (32,1941,10)
Dense (32,256) LSTM (32,10)
Dense (32,1) Dense (32,1)

3. Experiments and Results

3.1. Experimental Setup

The hardware environment of the experiments was: CPU: Intel (R) Core (TM) i7-8565U,
Memory: 8 GB. The software environment was: Windows 10 64 operating system, deep
learning framework Tensorflow2.3.0 and python 3.7. Adam optimizer was used, and the
parameters were the default values. The batch size was 32, the learning rate was 0.01, and
the epoch was 300. In order to avoid over fitting, early stopping based on the loss of the
validation set was used [43], and patience was 30.

3.2. Evaluating Indicator

Bias, determination coefficient R2, root mean square error (RMSE) and unbiased root
mean square error (ubRMSE) between estimated and measured LFMCs were chosen to
quantitatively evaluate the performance of the models. When R2 was closer to 1 and the
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RMSE value was lower, the model accuracy was higher and the model was more accurate.
The calculations of RMSE and ubRMSE are shown in Formulas (1) and (2):

RMSE =

√√√√ 1
N

N

∑
i
(LFMCi,m − LFMCi,e)

2 (1)

ubRMSE =

√√√√ 1
N

N

∑
i
(LFMCi,m − LFMCi,e −

(
LFMCm − LFMCe

)
)

2 (2)

where N is the number of measurements; LFMCi,m and LFMCi,e are the ith measured
and estimated LFMC, respectively; LFMCm and LFMCe are the averages of measured and
estimated LFMC, respectively.

3.3. Comparison of Different Deep Learning Models

The performances of three different models, LSTM, the TCN and TCN-LSTM, with
different remote sensing data were compared. The retrieval results are shown in Figure 5.

(a) 

(b) 

(c) 

Figure 5. Evaluation indicators of LFMC retrieval results based on LSTM, TCN and TCN-LSTM.
(a) Bias; (b) R2; (c) RMSE and ubRMSE. S represents Sentinel-1 data, L represents Landsat8 data, M
represents MODIS data.
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By comparing and analyzing the results in Figure 5 and Table 3, it can be concluded that:

Table 3. Evaluation results of LFMC retrieval results based on LSTM, TCN and TCN-LSTM.

Data Model Bias (%) R2 RMSE (%) ubRMSE (%)

S
LSTM −9.39 0.38 37.07 35.86
TCN −7.42 0.42 35.97 35.2

TCN-LSTM −5.93 0.44 34.81 34.3

L
LSTM −3.93 0.51 32.67 32.43
TCN −3.8 0.54 31.58 31.35

TCN-LSTM −3.12 0.60 25.83 25.64

M
LSTM −7.39 0.52 33.01 32.17
TCN −5.04 0.55 31.39 30.98

TCN-LSTM −4.74 0.62 25.11 24.66

L+S
LSTM −7.06 0.60 26.32 25.35
TCN −4.83 0.67 23.05 22.54

TCN-LSTM −4.81 0.72 22.78 22.31

M+S
LSTM −4.76 0.62 25.33 24.88
TCN −4.53 0.68 22.43 21.97

TCN-LSTM −4.05 0.75 22.21 21.71

M+L+S
LSTM −6.53 0.73 24.39 23.5
TCN −5.03 0.76 23.03 22.48

TCN-LSTM −4.66 0.81 21.73 19.93

(1) The bias of all the three models was negative, indicating that all the models under-
estimated LFMC as a whole. The TCN-LSTM model had the lowest bias among all
the models on the same dataset. The bias of Sentinel-1 was the largest, and that of
Landsat-8 was the lowest. Although microwave remote sensing (Sentinel-1) is more
penetrating due to its high sensitivity to surface moisture, it is difficult to distinguish
between vegetation and bare soil backscatter only using microwave remote sensing
data, which leads to higher bias. The multi-source remote sensing data fuse the mi-
crowave remote sensing and optical remote sensing together, which can be essentially
seen as the integration of the microwave backscattering characteristics and optical
characteristic. Therefore, the retrieval performances of multi-source remote sensing
data were higher than those of the single-source remote sensing data.

(2) The R2, RMSE and ubRMSE of the TCN-LSTM model were also better than those of
the LSTM and TCN models. The retrieval accuracy of the TCN-LSTM model with all
three kinds of remote sensing data was the highest at R2 = 0.81, RMSE = 21.73 and
ubRMSE = 19.93, which means that TCN-LSTM can incorporate the advantages of
LSTM and the TCN and effectively extract the features of multi-source remote sensing.

A comparison with the retrieval results of references is shown in Table 4; the TCN-
LSTM model with multi-source remote sensing achieved the best results for LFMC retrieval.
Compared with the best results of the existing method [20], R2 and RMSE were improved
by 26.56% and 4.44%, respectively.

Table 4. Comparison of different LFMC retrieval methods.

Method R2 RMSE (%)

LSTM (Landsat+SAR) [19] 0.63 25
TempCNN-LFMC (MODIS+Auxiliary data) [20] 0.64 22.74

TCN-LSTM model 0.81 21.73
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3.4. Comparison of Different Ensemble Learning Models

Table 5 shows the performance comparison of different ensemble learning models with
different remote sensing data. It can be seen that the performances of two ensemble learning
models with all three kinds of remote sensing data were better than with other data. The
retrieval results for LFMC based on the stacking ensemble model with MODIS, Landsat-8
and Sentinel-1 are the best. This is mainly due to the integration of the advantages of three
different models. While the Adaboost ensemble model only uses one kind of basic learner,
its performance was poorer than that of the stacking ensemble model.

Table 5. Performances of different ensemble learning models.

Data

Stacking Adaboost

Bias
(%)

R2 RMSE (%) ubRMSE (%)
Bias
(%)

R2 RMSE (%) ubRMSE (%)

S −5.75 0.53 31.87 31.35 −4.59 0.53 31.62 31.29
L −3.35 0.7 23.26 23.21 −1.65 0.65 23.6 23.54
M −4.55 0.74 23.82 23.39 −4.16 0.68 22.53 22.14

L+S −1.55 0.81 19.96 19.95 −2.61 0.76 22 21.31
M+S −1.43 0.81 19.86 19.81 −2.7 0.8 20.5 20.32

M+L+S −0.542 0.85 18.88 17.99 −0.563 0.83 19.7 18.8

Together with Table 3, it was found that with different groups of remote sensing data,
the trend in the performances of the single model and the ensemble model was almost the
same. The more data used, the better the performance. Additionally, based on multi-source
data (M+L+S), compared with the TCN-LSTM model, the R2, RMSE and ubRMSE of the
stacking ensemble model realized an improvement of 4.9%, 15.1% and 10.8%, respectively.

4. Discussion

4.1. Explanation of Estimated LFMC Value

In general, when using Landsat-8, Sentinel-1 and MODIS for LFMC retrieval, the
estimated value is higher than the measured value, and the linear fitting is good when the
LFMC is low. With the increase in LFMC, the estimated value is lower than the actual value,
the points are discrete, and the overall correlation is high [44]. Figure 6 shows the LFMC
retrieval results and measured values based on two ensemble learning models combined
with MODIS, Landsat-8 and Sentinel-1. We can see that two proposed ensemble learning
models underestimated high LFMC values (>120%), and there was a systematic bias for
phenological periods with high LFMC values. This can be partly explained by the limited
sensitivity of the optical sensing data to wet vegetation and the tendency of the proposed
method to globally optimize the solution at the cost of underestimation at high values.
Similar underestimations have been observed in other studies using physical or data-driven
methods [45]. However, such underestimation is not significant when considering the cause
of the fire hazard or behavior [46]. Experience has shown that when LFMC is high (>120%),
the probability of fire occurrence is comparatively low, or fire movement through this area
is limited, so this has less of an impact on fire managers, who might use this model to
assess LFMC.

The proposed models also overestimated low values (<30%), which may have been due
to the presence of dead combustibles, such as grass fuel [47] and leaf litter. Nevertheless, the
magnitude of the positive bias was very small (as shown in Figure 6). Moreover, when the
LFMC value is lower than 60%, the likelihood of fire occurrence increasing dramatically [48].
So, if the LFMC value is less than 30%, fire managers will be more aggressive with the
estimated results. The impact introduced by the minor error on fire managers who may
use the model is limited to the extent that this is overestimated in the range (<30%).
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Figure 6. LFMC retrieval results based on MODIS, Landsat-8 and Sentinel-1. The gray dotted line
and the black dotted line represent the 1:1 line and the 120% fire risk based on level of moisture,
respectively, and the red dotted line is the fitting line of the model retrieval results.

4.2. Advantages of Multi-Source Remote Sensing Data and Ensemble Learning

Due to the different shortcomings of different remote sensing data, as expected, the
LFMC retrieval results with all the Landsat-8, Sentinel-1 and MODIS remote sensing data
are much higher than those of other data when using the same model, which can be
attributed to the fact that multi-source remote sensing data can reduce the uncertainty of
single-source data and provide more valuable features derived from the complementarity
of different data.

Furthermore, the ensemble learning method comprises several basic learners together
to obtain better performance. The Adaboost ensemble model is a sequential ensemble
technique, in which the final prediction is based on the weighted average results of three
weak learners (TCN-LSTM) trained on different training subsets, while the stacking en-
semble model combines three parallel basic learners (LSTM, TCN and TCN-LSTM) in the
first layer to extract abundant features, and then concatenates straightforward logistic
regression as the second learner. Three different basic learners combined with sequential
concatenation operation produced better features and an improved retrieval performance
over the Adaboost ensemble model.

To summarize, the combination of multi-source data fusion and ensemble learning
can significantly improve retrieval performance and provide considerable potential for
accurate LFMC estimation.

4.3. Limitations of the Proposed Method with Processed Data

As we all know, the estimation of LFMC using remote sensing data (such as optical
and microwave data) has the same issue since remote sensing data are dependent not only
on LFMC but also on other bio- and geophysical characteristics [26]. Previous studies tried
to find the empirical relationships or physical models between LFMC and other factors. De-
spite the satisfactory results of these methods, carefully handcrafted input variables chosen
based on our understanding of radiative transfer processes must be selected; additionally,
corresponding field data are needed, making these models challenging to generalize and
operationalize on large-scale sites.

In our work, we introduced deep learning to capture the complicated nonlinear
relationship among the LFMC and the remote sensing data, hoping to avoid the selection of
carefully handcrafted input variables and the collection of corresponding field data, making
it easier to realize large-scale LFMC estimation. The results demonstrate that this method
performs admirably in large-scale sites (133 sampling points) with diverse vegetations,
while during the data processing, considering the time resolution of remote sensing data
and the frequency of measured LFMC, we interpolated the data to the end of each month,
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which means the time resolution was one month, resulting in the misrepresentation of daily
or weekly fluctuations in LFMC. However, this limitation would be solved by gathering
data with a smaller resolution.

Furthermore, we are all aware that the kind of vegetation has a direct impact on
various remote sensing data [19,26]. Here, we simply delegated the task of classifying
vegetation types implicitly to the deep learning model. Figure 7 presents the RMSEs of
LFMC retrieval results of different vegetations, demonstrating that the RMSEs of four
single-vegetations are often lower than that of mixed vegetations. In particular, the worst
predictions were made for mixed shrub–grassland. This suggests that our previous strategy
of selecting sample points makes sense, and that using the selected samples to train the
model is beneficial in improving the accuracy of the predictions. Nevertheless, a fully
data-driven model would very likely result in mistakes if detailed vegetation distribution
data were not included. In practical application, a feasible option is to collect more data
and then create more advanced models.

Figure 7. RMSEs of LFMC retrieval results for different vegetations.

Finally, while it is widely acknowledged that deep learning is a data-driven nonlinear
model with high automated learning and generalization capabilities that have the potential
to be applied to other regions, the efficacy of its application in other locations requires more
data for validation.

5. Conclusions

In this study, a TCN-LSTM model was firstly designed to improve the effect of feature
extraction, and further, two ensemble models were proposed based on the TCN-LSTM
model to achieve more accurate retrieval of LFMC. Considering the different shortcomings
of separate Landsat-8, Sentinel-1 and MODIS remote sensing data, all the three data were
utilized together to obtain higher performance. The results of the experiments on the LFMC
data from the Western United States show that the stacking ensemble model with all three
remote sensing data achieved the best performance. The proposed stacking ensemble
model was trained on historical data, which can automatically extract the nonlinear corre-
lation between remote sensing data and LFMC. This enabled the proposed model’s good
generalization ability. Our model is data-driven, which means it has the potential to realize
significant accuracy in LFMC estimation for other locations with appropriate training data.
Meanwhile, our results reveal that our proposed models had a mixture of predictions with
low and high amounts of bias. We believe this is because different vegetations are not
explicitly considered. We will study and improve our model on more available data in
the future.
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Abstract: A key part of interpreting, visualizing, and monitoring the surface conditions of remote-
sensing images is enhancing the quality of low-light images. It aims to produce higher contrast,
noise-suppressed, and better quality images from the low-light version. Recently, Retinex theory-
based enhancement methods have gained a lot of attention because of their robustness. In this
study, Retinex-based low-light enhancement methods are compared to other state-of-the-art low-light
enhancement methods to determine their generalization ability and computational costs. Different
commonly used test datasets covering different content and lighting conditions are used to compare
the robustness of Retinex-based methods and other low-light enhancement techniques. Different
evaluation metrics are used to compare the results, and an average ranking system is suggested to
rank the enhancement methods.

Keywords: low-light image enhancement; retinex theory; deep learning; remote-sensing

1. Introduction

Low-light enhancement methodologies try to recover buried details, remove the
noise, restore the color details, and increase the dynamic range and contrast of the low-
light images. Low light has inescapable effects on remote monitoring equipment and
computer vision tasks. Low signal-to-noise ratio (SNR) causes severe noise in low-light
imaging and makes it difficult to extract features for interpreting remote-sensing via
computer vision tasks, whereas the performance of computer vision tasks entirely depends
on accurate feature extraction [1]. Remote-sensing image enhancement has a wide range of
applications in object detection [2,3], object tracking [4–7], video surveillance [8,9], military
applications, daily life [10–14], atmospheric sciences [15], driver assistance systems [16],
and agriculture. Earth is continuously being monitored by analyzing the images taken
by satellites. Analyzing remotely taken images to help in fire detection, flood prediction,
and understanding other environmental issues. Low-light enhancement of these images
is playing a vital role in understanding these images in a better way. Even the accuracy
of other remote sensing algorithms, such as classification and object detection, depends
entirely on the image’s quality. In the literature, different methodologies exist for enhancing
such degraded low-light images. Retinex theory-based enhancement methods are widely
accepted among these enhancement methodologies due to their robustness. The main
purpose of this study is to compare the Retinex-based methods with other non-Retinex-
based enhancement methods experimentally. For comparison, we have categorized all
the enhancement methods into two major groups (i.e., Retinex-based and non-Retinex-
based methods). The Retinex group includes classical and deep learning-based Retinex
enhancement methods. Meanwhile, the non Retinex group includes histogram equalization,
gamma correction, fusion, and deep learning-based enhancement methods.

According to Retinex theory [17], an image can be decomposed into reflectance and
illumination component. The reflectance component is considered an intrinsic component
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of the image and remains consistent under any lighting condition, whereas the illumination
component represents the different lighting conditions. Later on, different Retinex theory
based methods, such as single-scale retinex (SSR), [18] multiscale retinex with color restora-
tion (MSRCR) [19], simultaneous reflectance and illumination estimation (SRIE) [20], and
low-light illumination map estimation (LIME) [21] were developed for low-light enhance-
ment. These methods produce promising results but may require fine-tuning of parameters
and may fail to decompose the image correctly into reflectance and illumination parts.
Wei et al. is the first one to introduce a real low/normal-light LOw-Light (LOL) dataset
and Retinex theory-based deep network (Retinex-Net) in [22]. Retinex-Net comprises
Decom-Net for decomposing the image into reflectance and illumination parts and an
Enhance-Net for illumination adjustment. Later on, different Retinex theory-based deep
learning methods were developed for low-light image enhancement algorithm [22–25].

Non-Retinex method such as histogram equalization is one of the simplest methods
for enhancing low-light images. It flattens the distribution of pixel values throughout
the image to improve contrast. In addition, using entire histogram information may over
brighten some regions of the image, deteriorate its visual quality and introduce some arti-
facts in it. Different histogram-based methods such as local histogram equalization [26] and
dynamic histogram equalization [27] were introduced to address these issues. However,
these methods require higher computation power, the quality of the output depends on
the fine-tuning of parameters, and in case of severe noise, it may produce artifacts. On
the other hand, gamma correction based methods [28–30] apply the pixel-wise nonlinear
operation to enhance the image. The main drawback of these methods is that each pixel
is considered an individual entity, and their relationship with neighbor pixels is entirely
ignored. Due to this, the output may be inconsistent with real scenes. Lore et al. [31] is the
first to propose a learning-based enhancement network named LLNet using a synthetic
dataset. Later on, different low-light training datasets (e.g., LOL [22], SID [32], SICE [33],
VV (https://sites.google.com/site/vonikakis/datasets (accessed on 7 July 2021)), TM-
DIED (https://sites.google.com/site/vonikakis/datasets (accessed on 7 July 2021)), and
LLVIP [34]) were developed in order to assist the development of learning-based architec-
tures [35–38].

Wang et al. [39] present a technical evaluation of different methods for low-light
imaging. Most of the methods reviewed are classical, and comparing evaluations on five
images is quite unfair. Later on, Qi et al. , in [40], provide an overview of low-light
enhancement techniques, whereas the quantitative analysis of a few methods only on the
synthetic dataset (without noise) is provided. Noise is the most critical part of low-light
enhancement and a single synthetic low-light dataset cannot compare performance. In [41],
Li et al. propose a low-light image and video dataset to examine the generalization of
existing deep learning-based image and video enhancement methods. In sum, low-light
enhancement has a wide range of applications and is one of the most important image
processing fields. To the best of our knowledge, no such study paper is present in the
literature mentioned above that extensively provides the technical evaluation of low-light
enhancement methods.

The main purpose of this research is to fairly compare the performance of Retinex-
based enhancement methods with non-Retinex enhancement methods on a wide range of
test datasets covering different contents and lighting conditions. For a fair comparison, the
experimental evaluation criteria are defined first, and then all the methods are compared
based on the criteria. In addition, an average ranking system is suggested to rank the
enhancement methods based on their robustness. Computational complexity analysis of
methods is also carried out on four different image sizes for real-time application. This
experimental comparison and suggested ranking system of enhancement methods help the
research community to understand their shortcomings and to design more robust models
in the future.

The main contribution of this research can be summarized as follows:
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• A comprehensive literature review is presented for Retinex-based and non-Retinex
methods.

• A detailed experimental analysis is provided for a variety of Retinex-based and non-
Retinex methods on a variety of publicly available test datasets using well-known
image quality assessment metrics. Experimental results provide a holistic view of this
field and provide readers with an understanding of the advantages and disadvantages
of existing methodologies. In addition, the inconsistency of commonly used evaluation
metrics is pointed out.

• An analysis of the computational effectiveness of enhancement methods is also con-
ducted on images of different sizes. As a result of this computation cost, we can
determine which enhancement methods are more suitable for real-time applications.

• Publicly available low-light test datasets were ranked based on experimental analysis.
In developing more robust enhancement methods, the reader will benefit from this
ranking of benchmarking test datasets.

The rest of the paper is organized as follows. Section 2 presents the relevant back-
ground knowledge of non-Retinex-based, and Retinex-based classical and advanced low-
light enhancement methodologies. Section 3 presents the objectives of overall paper. In
Section 4, experimental setup is defined, a detailed discussion of the qualitative, quanti-
tative, and computational analysis of the classical and advanced low-light enhancement
methodologies are provided. Section 5, reports the challenges and the future trends. Finally,
the conclusion is drawn in Section 6.

2. Fundamentals

A thorough review of the literature related to Retinex-based and non-Retinex-based
classical and advanced learning-based low-light enhancement methods is presented in this
section. The following subsections contain literature on each of the categories mentioned above.

2.1. Retinex-Based Methods

Classical Retinex-based methods: The Retinex theory was developed by Land after
he studied the human retina-and-cortex system in detail [17]. According to the presented
theory, an image can be decomposed into two parts: reflectance and illumination. Re-
flectance is considered an intrinsic property and remains the same regardless of the lighting
condition. Illumination is determined by the intensity of light. The following representation
can be used to explain it:

S(x, y) = R(x, y) ◦ I(x, y), (1)

where S, R and I represent the source image, reflectance and illumination, respectively
and the operator ◦ denotes the element-wise multiplication between R and I. As time
progressed, different implementations of Retinex theory were proposed in the literature.
Path-based implementation of the Reinex [42–47] uses different geometry to calculate the
relative brightness of adjacent pixels to obtain the reflection component. Marini and Rizzi
proposed a biologically inspired implementation of Retinex for dynamic adjustment and
color constancy in their article [45]. In [44], the authors examine the different path-wise
approaches in detail and propose a mathematical formula to analyze these approaches.
It is worth noting that the number of paths has a significant impact on the accuracy of
the results. As a result, these path-wise implementations of Retinex theory suffer from
a high degree of dependency on the path and sampling noise, as well as a high cost of
computation when fine-tuning parameters.

The new method, random spray Retinex (RSR), was developed by Provenzi after
replacing the paths with 2-D pixels sprays in [48]. When paths are replaced with 2-D
random points distributed across the image, it is possible to determine the locality of
color perception. Even though this approach is faster, the spray radius, radial density
function, number of sprays, and pixels per spray must be adjusted. Jobson et al. , in [18],
used a single-scale Retinex (SSR) to implement Retinex for color constancy, and lightness
and color rendition of grayscale images. It is not possible for the SSR to provide both
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dynamic range compression (small scale) and tonal rendition (large scale) simultaneously.
However, it can only perform one of these tasks. Later, the authors of SSR extended their
idea to multiscale retinex with color restoration (MSRCR) [19]. As a result of MSRCR,
dynamic range compression, color consistency, and tonal rendition can be provided. SSR
and MSRCR both improve lighting and scene restoration for digital images, but halo
artifacts are visible near edges [49]. The majority of Retinex-based algorithms ignore the
illumination component and only extract the reflection component as an enhanced result,
but this results in unnaturalness. Enhancing an image is not just about enhancing details
but also about maintaining its natural appearance. To solve the unnatural appearance,
Wang et al. [50] make three contributions: (1) lightness-order-error metrics are proposed
to measure objective quality, (2) bright-pass filters decompose images into reflectance and
illumination, and (3) bi-log transformations to map illumination while maintaining the
balance between details and naturalness.

Zosso et al. reviewed Retinex-based methods and classified them into five broad
categories in [51]. Additionally, a two-step non-local unifying framework is proposed to
enhance the results and address the Retinex problem. In the first step, a quasi gradient
filter is obtained which satisfies gradient-sparsity and gradient-fidelity prior constraints.
As a second step, additional constraints are applied to the calculated quasi-gradient filter
in order to make it fit the reflectance data. Guo et al. devised a method named low-
light illumination map estimation (LIME) [21] to estimate the illumination of each pixel
first; then, apply a structure to that illumination map and use it as the final illumination
map. A variational based framework (VF) was introduced for Retinex for the first time
by Kimmel et al. [52]. In accordance with previous methods, the objection function is
based on the assumption that the illumination field is smooth. On the other hand, this
model lacks information regarding reflectance. Later on, different variational approaches
to Retinex theory are presented [53–55]. In [56], a total variational model (TVM) for Retinex
is proposed, assuming spatial smoothness of illumination and piecewise continuity of
reflection. In order to minimize TVM, a split Bregman iteration is used. VF and TVM differ
primarily in that TVM also takes into account reflection.

Fu et al. proposed a linear domain probabilistic method for simultaneous illumination
and reflectance estimation (PM-SIRE) [49]. By using an alternating direction multiplier
method, maximum a posteriori (MAP) is employed to estimate illumination and reflectance
effectively. Later, Fu et al. presented a weighted variational model for simultaneous il-
lumination and reflectance estimation (WV-SIRE) [20]. A WV-SIRE model is capable of
preserving more details about the estimated reflectance as well as suppressing noise more
effectively than a log-transformed model. The PM-SIRE and WV-SIRE both assume that illu-
mination changes smoothly over time, which may lead to incorrect illumination estimation.
Based on the luminous source, different surfaces are illuminated in different directions.

A fusion-based method for enhancing weakly illuminated images is proposed in [57].
This fusion method decomposes a weakly illuminated image into a reflectance map and an
illumination map. By using sigmoid and adaptive histogram equalization functions, the
illumination map is further decomposed into luminance-improved and contrast-enhanced
versions, and two weights are designed for each. Finally, an enhanced image is obtained
by combining the luminance-improved and contrast-improved versions with their corre-
sponding weights in a multi-scale manner. For the purpose of preserving intrinsic and
extrinsic priors, Cai et al. proposed a joint intrinsic-extrinsic prior (JieP) model [58]. In
JieP, shape prior is used to preserve structure information, texture prior is used to estimate
illumination with fine details, and illumination prior is used to capture luminous infor-
mation. Ying et al. [59] simulate the camera response model (CRM) by investigating the
relationship between two different exposure images and use the illumination estimation
to estimate the exposure ratio map. Later, the CRM and exposure ratio map are used to
produce the enhanced image. According to the CRM algorithm, some dark parts of the
body, such as the hair, are misinterpreted as dark backgrounds, and they are over-enhanced
as well.
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Advanced Retinex-based methods: The robustness of Retinex theory makes it appli-
cable to deep learning methods as well. Wei et al. were the first to combine the idea of
Retinex theory with deep learning by proposing the Retinex-Net network. Retinex-Net
consists of a Decom-Net for decomposing the image into reflectance and illumination
parts and an Enhance-Net for adjusting illumination. Furthermore, they introduce a real
low/normal-light Low-Light (LOL) dataset [22]. As a further development of the Retinex
theory, Zhang et al. proposed the kindling the darkness (KinD) network in [36]. There are
three components of KinD: layer decomposition, reflectance restoration, and illumination
adjustment. As a result of layer decomposition, the input image is divided into reflectance
and illumination elements, the reflectance part is improved by reflecting restoration and
the illumination part is smoothed piece-by-piece by illumination adjustment. By combin-
ing the outputs of the reflectance and illumination modules, the final result is achieved.
Artifacts, overexposure, and uneven lighting are common problems with KinD outputs.
For mitigating these effects, Zhange et al. proposed an improved version of KinD in [60].
This improved version of KinD implements a multi-scale illumination attention module,
known as KinD++. KinD++ has improved the quality of output images, but it has a lower
computational efficiency than KinD. In [61], a Retinex-based real-low to real-normal net-
work (R2RNet) was proposed. R2RNet consists of a decomposition network, a denoise
network, and a relight network, each of which is trained separately using decomposition
loss, denoise loss, and relight loss, respectively. As a result of decomposition, illumina-
tion and reflectance maps are produced. The denoise-net uses the illumination map as
a constraint to reduce the noise in the reflectance map, and the relight-net utilizes the
denoised illumination map and reflectance map in order to produce an enhanced output.
It is noteworthy that three separately trained networks are utilized to solve the low-light
enhancement problem, which is not an optimal strategy. Decomposing an image into
illumination and reflectance is a computationally inefficient process. Retinex-based transfer
functions were introduced by Lu and Zhange in [23] to solve this decomposition problem.
As opposed to decomposing the image, the network learn the transfer function to obtain
the enhanced image. Liu et al. [62] introduces reference free Retinex-inspired unrolling
with architecture search (RUAS) to reduce computational burden and construct lightweight
yet effective enhancement. First, RAUS exploits the intrinsic underexposed structure of
low-light images; then, it unrolls the optimization process to establish a holistic propaga-
tion model. Wang et al. [63] presents paired seeing dynamic scene in the dark (SDSD)
datasets. A self-supervised end-to-end framework based on Retinex is also proposed in
order to simultaneously reduce noise and enhance illumination. This framework consists
of modules for progressive alignment, self-supervised noise estimation, and illumination
map prediction. With progressive alignment, temporal information is utilized to produce
blur-free frames, self-supervised noise estimation estimates noise from aligned feature
maps of the progressive module, and illumination estimation estimates illumination maps
consistent with frame content.

Retinex theory is also used in semi-supervised and zero-shot learning-based tech-
niques for enhancing low light visibility. In Zhang et al. [24], a self-supervised maximum
entropy Retinex (ME-Retinex) model is presented. In the ME-Retinex model, a network
for enhancing image contrast is coupled with a network for re-enhancing and denois-
ing. Zhao et al. [64] proposed a zero-reference framework named RetinexDIP that draws
inspiration from the concept of a deep image prior (DIP). The Retinex decomposition is
carried out in a generative manner in RetinexDIP. From random noises as input, RetinexDIP
generates both reflectance and illumination maps simultaneously, and enhances the illumi-
nation map resulting from this process. The proposed model generalizes well to various
scenes, but producing an illumination map requires hundreds of iterations. This iterative
learning approach consumes a lot of time to produce optimized results. The robust retinex
decomposition network (RRDNet) is a three-branch zero-shot network that is proposed
in RRDNet [25] to decompose low-light input images into illumination, reflectance, and
noise. RRDNet weights are updated by a zero-shot scheme using a novel non-reference
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loss function. In the proposed loss function, there are three components: the first part
reconstructs the image, the second part enhances the texture of the dark region, and the
third part suppresses noise in the dark regions. Qu et al. , in [65], segmented an image
into sub-images, applied deep reinforcement learning to learn the local exposure for each
sub-image and finally adversarial learning is applied to approximate the global aesthetic
function. It is also proposed to learn discriminators asynchronously and reuse them as
value functions.

2.2. Non-Retinex Methods

Histogram equalization (HE) [66] is one of the earlier methods used for enhancing the
dynamic range of low-light images. It is a well-known method due to its simplicity. When
the entire image histogram is balanced, the visual quality of the image is deteriorated,
false contours are introduced, and annoying artifacts are introduced into the image [67].
As a result, some uniform regions become saturated with very bright and very dark
intensities [68]. Gamma correction [69] is a non-linear classical technique that is used for
image enhancement. It increases the dark portion of the image while suppressing the bright
portion. During gamma correction, each pixel is treated as an individual. It is possible that
some regions of the image will be under- or over-enhanced due to a single transformation
function used for each pixel.

In later years, deep learning has been applied to my field of study. Lore et al. [31]
were the first one to use a stacked sparse based autoencoder approach called LLNet for
joint enhancement and noise reduction. There is evidence that deeper networks perform
better than non-deeper networks; however, deeper networks suffer from gradient vanishing
problems. To use a deeper network and solve the gradient vanishing problem, Tao et al.
in LLCNN [70] proposed a special module to utilize multiscale feature maps for low-light
enhancement. A multi-branch low-light enhancement network (MBLLEN) is designed by
Lv et al. in [71] to extract features of different levels, enhance these multi-level features,
and fuse them in order to produce an enhanced image. Additionally, Lv et al. also
propose a novel loss function that takes into account the structure information, context
information, and regional differences of the image. Wang et al. , in [72], propose the
global illumination-aware and detail-preserving network (GLADNet). In the first step,
GLADNet uses an encoder-decoder network to estimate the global illumination and then
reconstructs the details lost during the rescaling process. The major disadvantage of LLNet,
LLCN, MBBLEN and GLADNet is that they were trained on synthetically darkened and
noise-added datasets. Chen et al. [32] used a Unet based pipeline for enhancing and
denoising extremely low-light images using the RAW training see-in-the-dark (SID) dataset.
This Unet-based pipeline is designed specifically for images in RAW format. Practically,
the most common image format is sRGB. The majority of previous methods have used
pixel-wise reconstruction losses and failed to provide effective regularization of the local
structure of the image, which in turn undermines the network’s performance. The pixel-to-
pixel deterministic mapping results in improperly exposed regions, introduces artifacts,
and fails to describe the visual distance between the reference and the enhanced image.
A flow-based low-light enhancement method (LLFlow) has been proposed by Wang et
al. [38] to address this pixel-to-pixel mapping issue. It is possible to map multi-modal
image manifolds into latent distributions using the normalizing flow. Effectively enhanced
manifolds can be constructed using the latent distribution.

Getting low-light and normal-light images paired can be difficult, expensive, or im-
practical. An unpaired low-light enhancement method called EnlightenGAN is proposed by
Jiang et al. [73] to eliminate the need for paired training datasets. A global-local discrimina-
tor structure and an easy-to-use attention U-net generator are proposed in EnlightenGAN.
By designing the attention U-net only to enhance the dark regions more, the image is neither
overexposed nor underexposed. A dual global-local discriminator strategy contributes to
the balance between local and global enhancement of low-light images. Xiong et al. [74]
considered low-light enhancements as two subtasks: illumination enhancement and noise
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reduction. A two-stage framework referred to as decoupled networks is proposed for
handling each task. In decoupled networks, there are two encoder-decoder architectures,
the first architecture enhances illumination, and the second architecture suppresses noise by
taking the original input along with the enhanced output from stage one. To facilitate unsu-
pervised learning, an adaptive content loss and pseudo triples are proposed. Xia et al. [75]
used two images of the scene taken in quick succession (with and without a flash) to
generate a noise-free and accurate display of ambient colors. Using a neural network, an
image taken without flash is analyzed for color and mood, while an image taken with a
flash is analyzed for surface texture and details. One of the major disadvantages of this
method is that paired images with and without flash are not generally available.

The camera sensors on mobile phones perform poorly in low-light conditions. An
improved face verification method using a semisupervised decomposition and recon-
struction network is proposed in [76] to improve accuracy for low-light images of faces.
Yang et al. [77] proposes a deep semi-supervised recursive band network (DRBN) to ad-
dress the decreased visibility, intensive noise, and biased color of low-light images. DRBN
learns in two stages, the first stage involves learning the linear band representation by
comparing low- and normal-light images, and the second stage involves recomposing the
linear band representation from the first stage to fit the visual properties of high-quality
images through adversarial learning. Further improvement of the DRBN is impeded
by the separation of supervised and unsupervised modules. Qiao et al. [78] further
improved DRBN performance by introducing a joint training based semi-supervised al-
gorithm. Wu et al. [79] proposed the lightweight two stream method to overcome the
limitations of the training data due to sample bias and the hurdle of the large number
of parameters in real-time deployment. Additionally, a self-supervised loss function is
proposed to overcome the sample bias of the training data.

Guo et al. [80] proposes zero-reference deep curve estimation (Zero-DCE) rather than
performing image-to-image mapping. In order to preserve the contrast of the neighboring
pixels, Zero-DCE creates high-order curves from low-light images and then adjusts low-
light images pixel-by-pixel using these high-order curves. It is superior to existing GAN-
based methods since it does not require paired or unpaired data for its training. Enhanced
images are produced with four non-reference loss functions: spatial consistency loss,
exposure control loss, color constancy loss, and illumination smoothness loss. The re-design
and reformulation of the network structure were subsequently carried out by Li et al. , who
introduced Zero-DCE++, which is an accelerated and lighter version of Zero-DCE.

3. Objectives of Experimental Study

This research study aims to address the following questions:

1. It has been noted that although there have been a large number of algorithms de-
veloped for low-light enhancement, Retinex theory-based models are gaining more
attention due to their robustness. Retinex theory is even used in deep learning-based
models. Specifically, this paper attempts to compare the performance of Retinex
theory-based classical and deep learning low-light enhancement models with other
state-of-the-art models.

2. Several low-light enhancement methods perform well on some test datasets but fail
in real-world scenarios. An extensive range of real-world images should be used to
test the robustness of the low-light enhancement models. As a means of assessing
the robustness of enhancement methods in real-world scenarios, various test datasets
spanning a wide range of lighting conditions and contents need to be selected, and
the performance of Retinue-based models needs to be compared with that of other
enhancement techniques on these test datasets.

3. The trend of real-time cellphone night photography is increasing day by day. There-
fore, analyzing the computational costs associated with low-light enhancement meth-
ods is necessary. Comparison of not only the parameters of these methods but also the
processing time for the images of four different sizes (i.e., 400× 600 × 3, 640 × 960 × 3,
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2304× 1728× 3 and 2848× 4256× 3) is required. A computational analysis of different
sizes of images will enable the researchers to determine whether the computational
cost increases linearly or exponentially as the image size increases.

4. The quality of low-light enhancement methods needs to be evaluated using a vari-
ety of image quality assessment (IQA) methods. Every metric aims to identify the
particular quality of the predicted image. The LOE measures the naturalness of the
image, whereas the information entropy measures the information contained in the
image. What is the most effective method of comparing the robustness of low-light
enhancement methods when comparing results based on these evaluation metrics?

4. Quantitative and Qualitative Analysis

This subsections of this section present the experimental setup for farily comparing
the methods, qualitative, quantitative comparison, and computational cost analysis of
enhancement methods. In addition, it also discusses the evaluation metrics and test
datasets.

4.1. Experimental Criteria for Enhancement Methods Comparison

To conduct a fair comparison to analyze the enhancement methods generalization, we
have selected the nine different publicly available test datasets widely used in the literature for
comparing the performance of enhancement methods [64,73,81]. The selected datasets include
LIME [21], LOL [22], DICM [82], VV (https://sites.google.com/site/vonikakis/datasets
(accessed on 7 July 2021)), MEF [83], NPE [50], LSRW [61], SLL [84] and ExDark [85]. The
main purpose of selecting these different nine test datasets is to cover diversified scenes,
camera devices, lighting conditions (i.e., weak lighting, under exposure, twilight, dark),
and contents. In summary, each test dataset covers a different aspect of low-lighting,
scene or content. Therefore, these test datasets are useful to compare the performance of
enhancement methods from different aspects.

The four most commonly used no-reference metrics for the quantitative evalua-
tion of low-light enhancement methods are used. These metrics include entropy [86],
BRISQUE [87], NIQE [88], and LOE [50]. The entropy measures the information content
of an image. a higher value of entropy indicates richer details and a higher contrast level
of an image. Blind/referenceless image spatial quality evaluator (BRISQUE) is another
commonly used model to quantify the quality of low-light enhancement methods. It does
not compute the distortion specific feature, but instead it uses the scene statistics to quantify
the loss of naturalness in an image due to the presence of distortion. BRISQIE uses a space
vector machine (SVM) regressor to predict the quality of the image. Natural image quality
evaluator (NIQE) quantifies the quality of the distorted image by measuring the distance of
natural scene statistic (NSS) feature model and the multivariate Gaussian (MVG) feature
model of distorted image. Lightness order error (LOE) is designed to measure the order of
lightness. The order of lightness represents the direction of the light source and helps to
quantify the naturalness preservation. LOE can be defined as follows:

LOE =
1

m ∗ n

m

∑
x=1

n

∑
y=1

(U(Q(i, j), Q(x, y))⊕ U(Qr(i, j), Qr(x, y))), (2)

where U(x, y) is a unit step function. It returns 1 if x > y and returns 0 otherwise. m, n
represents height and width of the image, respectively. Moreover, Q(i, j) and Qr(i, j) are
maximum values among the three color channels at location (i, j) for the original image
and enhanced image, respectively.

In this study, the performance of 17 Retinex-based methods and 17 non-Retinex will
be compared. We consider the publicly available codes and recommended settings of these
methods to have a fair comparison. The higher value of entropy indicates better quality
and for the other three methods (i.e., LOE, NIQE, and BRISQUE) lower values of entropy
indicate the better image quality. To show a better understanding the comparison, average
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ranking has been suggested to enhancement methods based on these IQA methods. For
example, the enhancement methods that got the highest average score of entropy on all test
datasets are given rank 1 and vice versa. Similarly, the enhancement methods show the
lowest average score according to LOE or NIQE or BRISQUE are assigned rank 1 and the
highest average score is assigned the highest rank. Rank 1 indicates the best performance
and the rank with higher value indicates the worst performance.

In addition, we compare the computational complexity of classical methods on images
of four different sizes. The classical codes computational complexity is computed on CPU,
whereas those of deep learning-based methods on NVIDIA Titan Xp GPU.

4.2. Qualitative Evaluation of Enhancement Methods

In this section, we provide a detailed description of the qualitative evaluation of
enhancement methods. The comparative visual results of the top ten classical and advanced
methods on six publicly available test datasets are shown in Figures 1 and 2, respectively.
These figures’ first to sixth columns indicate the enhancement results of different methods
on LIME, LARW, DICM, ExDark, LOL, and SLL datasets, respectively. For simplicity, deep
learning and classical methods are discussed one by one. It is encouraged to zoom in to
compare the results.

Zero-shot learning-based methods (i.e., ZeroDCE and RetinexDIP) produce darker and
noisy images compared to other methods. The results of GLADNet, TBEFN, and LLFlow
are more realistic, sharper, less noisy, and have accurate color rendition. The output images
of MBLLEN are over-smoothed and darker but less dark than ZeroDCE. GLADNet, TBEFN,
LLFlow, MBLLEN, and KinD are trained on paired data. The supervised learning-based
models achieved the appropriate restoration of color and textures, noise suppression, and
better generalization. However, no method has produced good results on all the datasets.
For example, GLADNet results on DICM are too noisy and produce artifacts on the ExDark
image. Similarly, strange artifacts on DICM images are produced by TBEFN. LLFLow
produces greenish color around the edges of LSRM image. As it can be seen, StableLLVE
has a lighter washed-out effect and smoothed edges on all the results. KinD results look
realistic, but some parts of the image look too dark, such as the background chairs in the
LOL image. SS-Net produces a good result on the VV test image but produces poor results
on DICM and ExDark. Moreover, the strange pattern, missing color information, and other
details can be observed easily on the ExDark image. The results of Retinex-based methods
(i.e., TBEFN, KinD, SS-Net, RetinexDIP) look more natural and real.

The classical methods (i.e., CVC, DHE, BIMEF, IAGC, and AGCWD) shown in the
Figure 2 belong to the non-Retinex category, and PM-SIRE, WV-SRIE, JieP, EFF, and NPE
belongs to Retinex theory. If we closely observe their visual results, one thing that is
common among majority of these methods is noise. Except for BIMEF and EFF, most
results can easily observe noise. The average brightness of BIMEF is too low and does not
enhance the overall image. On the other hand, EFF produces higher brightness results,
but the image’s details are not too sharp. CVC and IAGC do not accurately render the
color information, making their results look black and white. Although some classical
methods’ results quality is good, their results are still darker than deep learning-based
methods. The results produced by BIMEF, IAGE, and CVC are darker as compared to
other classical methods. Over-enhancement, severe noise and loss of color information can
be seen in the results of DHE. The results of CVC are not only darker but also lost color
information. AGCWD produces low contrast and less bright images, and some parts of
the image are too dark (for example background buildings in the LIME test image and the
background wall in the LOL test image). Gamma correction-based methods (i.e., AGCWD
and IAGC) enhance some parts of the image while darker parts become darker. Strange
artifacts around the fire can be easily seen in the IAGC result on the ExDark image.
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Figure 1. A visual representation of results from top ten deep learning methods on six datasets.
The rows are showing the results produced by different algorithms, whereas the columns are
showing datasets.
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Figure 2. A visual representation of results from top ten classical methods on six datasets. The rows
are showing the results produced by different algorithms, whereas the columns are showing datasets.
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The results of Retinex-based methods (NPE and WV-SIRE) enhance the image’s bright-
ness, contrast, and sharpness, but fail to suppress the noise. The major issue with the
majority of traditional methods is noise suppression. Histogram-based methods work to
balance the histogram of the image to increase the brightness and contrast, but there is no
such mechanics to remove the noise. Meanwhile, gamma correction-based methods treat
each pixel individually and fail to exploit their relationship with neighbor pixels, which
results in different artifacts and noise. In contrast, Retinex theory-based methods create
different algorithms for successfully decomposing low-light images into reflectance and
illumination components. In the case of severe noise, decomposing the image becomes
difficult. The noise is not considered a major factor in any of these approaches. Therefore,
noise dominates the visual results of these methods. When Figures 1 and 2 are compared,
it is evident that deep learning-based methods produce brighter, sharper, cleaner, and
higher contrast results. There is still some noise in some results, but compared to traditional
methods, it is very low. Contrary to this, traditional visual results have many shortcomings.
For example, some results have a lower average brightness, a lesser contrast level, a lesser
degree of sharpness, failure to remove noise, and serious color shifts. Some of them enhance
the image and the noise associated with it.

4.3. Quantitative Comparison of Enhancement Methods

Four non-reference evaluation metrics were used for the quantitative comparison.
There are two reasons for using no-reference-based IQA metrics: (1) the majority of widely
used test datasets are no-reference, and (2) unsupervised methods are emerging. Metrics
adopted for evaluation include NIQE [88], BRISQUE [87], LOE [50], and Entropy. Low
NIQE, BRISQIE, and LOE values indicate better image quality. In contrast, higher values
of entropy indicate richer information. Tables 1–4 provide quantitative results for these
metrics. Red indicates the best scores obtained on each dataset, while blue and green
indicate the second and third best scores. The LOE indicates that non-Retinex methods
perform better, whereas the other three metrics show that performance is uniform across
both categories (i.e., Retinex and non-Retinex). Each method is evaluated by four metrics.
There is no winner on all four metrics. To determine which method generalizes well,
the enhancement methods score on all test data is averaged. The last column of the
aforementioned tables represents the average score of enhancement methods on all test
datasets. Based on averaged score, ranking number is assigned to each method and we
summarize these rankings in Figure 3. Ranking 1 goes to the method with the best average
score, and ranking 31 to the method with the worst average score. Different metrics rank
enhancement methods differently. For instance, AGCWD ranked first according to LOE
metric, whereas the same method is ranked as fifth, eighteenth, and twenty-ninth according
to BRISQIE, NIQE, and entropy, respectively. Instead of analyzing the enhancement
methods based on different metrics, we have taken the average of the ranking assigned
based on the mentioned metrics and discussed the results of this average ranking.
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Table 1. Quantitative comparison of enhancement algorithms on nine test datasets using LOE metric.
A lower value of the LOE metric indicates better performance. The first, second, and third best scores
are highlighted with red, blue, and green colors, respectively.

Methods

Datasets
LIME LOL DICM VV MEF NPE LSRW SLL ExDark Average

N
on

-R
et

in
ex

M
et

ho
ds

HE [89] 290.280 423.910 283.980 280.750 406.930 184.590 122.84 753.990 408.76 358.222
DHE [27] 7.663 22.227 75.608 21.013 7.852 23.974 13.930 10.177 138.049 35.610

BPDHE [68] 6.960 125.046 14.936 4.110 5.480 7.643 5.985 382.146 134.774 76.342
CVC [90] 99.386 286.840 135.324 91.217 97.464 131.478 124.946 324.260 189.896 164.534

CLAHE [91] 183.094 397.432 386.183 209.867 224.280 379.588 242.572 504.013 252.236 308.807
AGCWD [29] 10.075 0.1325 57.482 14.777 6.046 31.432 1.463 6.132 137.990 31.932

IAGC [92] 63.028 170.190 53.502 55.943 66.710 41.488 77.123 278.054 165.790 113.600
BIMEF [93] 136.898 141.159 239.271 102.891 155.616 225.588 117.777 480.848 237.563 212.589

MBLLEN [71] 122.188 302.577 176.580 79.013 131.243 123.871 168.128 484.809 190.384 207.076
GLADNet [72] 123.603 349.720 285.239 145.034 199.632 203.488 204.887 518.189 262.524 254.702

DLN [81] 132.594 264.065 404.673 325.572 189.831 - 176.527 528.411 212.723 -
Zero-DCE [80] 135.032 209.426 340.803 145.435 164.262 312.392 219.127 539.673 315.084 280.775

Exposure Correction [94] 242.461 438.420 362.552 220.876 275.476 314.833 288.659 588.132 307.881 349.604
StableLLVE [95] 134.130 267.686 476.374 192.262 198.069 394.811 179.101 344.573 248.400 287.660
LightenNet [96] 681.834 387.204 772.380 328.510 896.201 714.390 930.978 924.638 636.000 698.788
White-box [97] 90.876 125.682 195.516 124.115 96.704 120.687 84.279 370.972 135.606 156.695

LLFlow [38] 365.530 367.153 563.765 300.058 430.534 538.078 685.344 764.261 445.274 511.808

R
et

in
ex

-b
as

ed
M

et
ho

ds

LIME [21] 559.618 404.114 818.660 460.440 618.480 870.215 434.485 1103.98 575.987 649.553
NPE [50] 300.505 317.399 264.604 352.294 344.953 257.010 435.676 293.158 358.018 327.889
JieP [58] 249.137 314.798 287.305 137.026 292.798 305.435 216.597 690.829 345.754 323.818

PM-SIRE [49] 113.631 73.558 152.779 113.031 166.640 104.945 143.945 189.09 193.194 142.148
WV-SRIE [20] 106.308 83.806 162.224 69.480 210.261 155.683 131.724 236.846 220.823 158.856
MSRCR [19] 842.029 1450.95 1185.11 1280.68 973.893 1252.07 893.216 1211.11 676.415 1115.43

CRM [59] 271.652 21.818 450.102 174.751 285.250 534.275 119.712 619.537 352.672 314.419
EFF [98] 136.898 141.159 239.271 102.891 155.616 255.588 117.777 480.848 237.563 207.512

pmea [99] 491.663 725.647 477.792 318.569 679.002 610.183 418.046 1005.66 529.189 595.511
RetinexNet [22] 472.189 770.105 636.160 391.745 708.250 838.310 591.278 950.895 548.905 679.456

KinD [36] 214.893 434.595 261.771 134.844 275.474 241.221 379.899 479.139 308.869 303.412
RetinexDIP [64] 767.042 1084.35 852.782 396.417 926.948 1099.39 572.429 1283.77 633.489 856.197

RRDNet [25] 72.917 21.438 261.429 168.601 100.735 - 136.011 380.747 1.100 -
KinD++ [60] 573.877 720.025 493.882 258.744 629.841 - 727.695 555.363 484.989 -

IBA [100] 14.657 0.1616 445.574 169.714 12.823 364.810 137.727 21.758 284.333 179.613
Self-supervised Network [24] 241.639 322.628 737.847 282.273 311.342 581.691 261.280 467.892 333.842 412.349

TBEFN [23] 289.754 464.947 617.100 271.871 419.666 527.675 386.583 859.878 389.558 492.160

Average 178.196 342.070 387.311 227.201 313.656 378.930 286.698 548.053 320.401 -
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Table 2. Quantitative comparison of enhancement algorithms on nine test datasets using NIQE
metric. A lower value of the NIQE metric indicates better performance. The first, second, and third
best scores are highlighted with red, blue, and green colors, respectively.

Methods

Datasets
LIME LOL DICM VV MEF NPE LSRW SLL ExDark Average

N
on

-R
et

in
ex

M
et

ho
ds

Input 4.357 6.748 4.274 3.524 4.263 3.717 5.391 5.358 5.128 4.800
HE [89] 3.884 8.413 3.850 2.662 3.870 3.535 3.963 6.438 4.752 4.685

DHE [27] 3.914 8.987 3.780 2.648 3.518 3.510 3.626 6.292 4.518 4.610
BPDHE [68] 3.827 NaN 3.786 2.857 3.902 3.531 3.935 NaN 4.727 -

CVC [90] 4.029 8.014 3.823 2.692 3.636 3.498 4.127 5.828 4.662 4.535
CLAHE [91] 3.907 7.268 3.792 2.784 3.606 3.461 4.581 5.756 4.734 4.490
AGCWD [29] 4.032 7.528 3.868 2.970 3.629 3.544 3.733 5.660 4.582 4.434

IAGC [92] 3.951 7.418 4.015 3.012 3.652 3.598 3.963 5.740 4.557 4.494
BIMEF [93] 3.859 7.515 3.845 2.807 3.329 3.540 3.879 5.747 4.514 4.397

MBLLEN [71] 4.513 4.357 4.230 4.179 4.739 3.948 4.722 3.979 4.478 4.329
GLADNet [72] 4.128 6.475 3.681 2.790 3.360 3.522 3.397 5.066 3.767 4.009

DLN [81] 4.341 4.883 3.789 3.228 4.022 - 4.419 4.376 4.415 -
Zero-DCE [80] 3.769 7.767 3.567 3.216 3.283 3.582 3.720 5.998 3.917 4.381

Exposure Correction [94] 4.215 7.886 3.588 3.078 4.456 3.414 3.820 4.942 4.357 4.443
StableLLVE [95] 4.234 4.372 4.061 3.420 3.924 3.486 4.367 4.185 4.053 3.984
LightenNet [96] 3.731 7.323 3.539 2.995 3.350 3.407 3.583 5.453 4.025 4.209
White-box [97] 4.598 7.819 4.630 3.558 4.622 4.004 4.314 7.138 5.534 5.202

LLFlow [38] 3.956 5.445 3.765 3.026 3.441 3.498 3.564 4.722 4.094 3.944

R
et

in
ex

-b
as

ed
M

et
ho

ds

LIME [21] 4.109 8.129 3.860 2.494 3.576 3.658 3.655 6.372 4.588 4.542
NPE [50] 3.578 8.158 3.736 2.471 3.337 3.426 3.576 5.771 4.220 4.337
JieP [58] 3.719 6.872 3.678 2.765 3.390 3.522 4.015 5.622 4.215 4.260

PM-SIRE [49] 4.050 7.506 3.978 3.010 3.450 3.531 3.984 5.435 4.383 4.410
WV-SRIE [20] 3.786 7.286 3.898 2.849 3.474 3.450 3.826 5.453 4.241 4.310
MSRCR [19] 3.939 8.006 3.948 2.814 3.688 3.780 3.872 5.574 4.904 4.573

CRM [59] 3.854 7.686 3.801 2.617 3.264 3.562 3.721 6.008 4.525 4.391
EFF [98] 3.859 7.515 3.845 2.807 3.329 3.540 3.879 5.747 4.514 4.390

pmea [99] 3.843 8.281 3.836 2.573 3.431 3.598 3.694 6.237 4.296 4.493
RetinexNet [22] 4.597 8.879 4.415 2.695 4.410 4.464 4.150 7.573 4.551 5.142

KinD [36] 4.763 4.709 4.150 3.026 3.876 3.557 3.543 4.450 4.340 3.956
RetinexDIP [64] 3.735 7.096 3.705 2.496 3.245 3.638 4.081 5.8828 4.234 4.297

RRDNet [25] 3.936 7.436 3.637 2.814 3.508 - 4.126 5.524 4.010 -
KinD++ [60] 4.385 4.616 3.804 2.660 3.738 - 3.354 5.090 4.343 -

IBA [100] 4.062 7.884 3.723 3.310 3.536 3.630 3.728 5.837 4.273 4.490
Self-supervised Network [24] 4.819 3.753 4.717 3.548 4.351 4.602 4.061 5.400 4.048 4.310

TBEFN [23] 3.954 3.436 3.503 2.884 3.227 3.292 3.478 4.648 3.621 3.511

Average 3.935 6.728 3.889 2.956 3.698 3.626 3.933 5.409 4.403 -
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Table 3. Quantitative comparison of enhancement algorithms on nine test datasets using entropy [86]
metric. A higher value of the entropy metric indicates better performance. The first, second, and
third best scores are highlighted with red, blue, and green colors, respectively.

Methods

Datasets
LIME LOL DICM VV MEF NPE LSRW SLL ExDark Average

N
on

-R
et

in
ex

M
et

ho
ds

Input 6.148 4.915 6.686 6.715 6.075 7.017 5.415 5.616 5.744 6.023
HE [89] 7.342 7.184 7.221 7.383 7.118 7.756 6.874 6.662 6.708 7.113

DHE [27] 7.097 6.749 7.141 7.225 6.913 7.512 6.531 6.741 6.613 6.930
BPDHE [68] 6.610 5.932 6.968 6.977 6.420 7.348 6.260 5.191 6.188 6.413

CVC [90] 6.875 6.409 7.055 7.216 6.755 7.402 6.318 6.549 6.465 6.772
CLAHE [91] 6.764 5.679 7.088 7.056 6.583 7.408 6.033 6.591 6.302 6.595
AGCWD [29] 6.792 6.415 6.925 7.021 6.648 7.398 6.394 6.278 6.248 6.666

IAGC [92] 6.991 6.247 7.015 7.193 6.878 7.351 6.318 6.698 6.554 6.782
BIMEF [93] 7.006 6.145 7.029 7.243 6.898 7.311 6.516 6.452 6.464 6.760

MBLLEN [71] 7.164 7.303 7.255 7.333 7.081 7.386 7.236 7.197 7.132 7.240
GLADNet [72] 7.502 7.356 7.404 7.447 7.408 7.452 7.393 7.581 7.250 7.412

DLN [81] 7.121 7.277 7.250 7.535 7.255 - 7.202 7.576 7.129 -
Zero-DCE [80] 7.166 6.531 7.224 7.572 7.093 7.402 7.035 6.545 6.932 7.042

Exposure Correction [94] 7.112 7.244 7.256 6.962 6.955 7.531 7.039 7.247 6.907 7.142
StableLLVE [95] 7.227 6.625 7.010 7.385 7.241 7.042 6.846 7.439 7.129 7.090
LightenNet [96] 7.234 6.119 7.263 7.411 7.308 7.398 7.599 6.130 6.688 6.990
White-box [97] 5.984 5.925 6.051 5.475 5.391 7.380 6.352 5.460 5.275 5.914

LLFlow [38] 7.468 7.462 7.425 7.565 7.366 7.564 7.343 7.304 7.125 7.394

R
et

in
ex

-b
as

ed
M

et
ho

ds

LIME [21] 7.315 7.129 6.946 7.395 7.139 7.332 7.279 6.418 6.582 7.031
NPE [50] 7.368 6.971 7.208 7.550 7.405 7.446 7.318 6.418 6.772 7.139
JieP [58] 7.087 6.443 7.218 7.457 7.104 7.427 6.794 6.473 6.631 6.943

PM-SIRE [49] 7.006 6.322 7.084 7.309 6.894 7.404 6.696 6.325 6.441 6.812
WV-SRIE [20] 6.999 6.348 7.088 7.401 6.942 7.386 6.663 6.190 6.463 6.812
MSRCR [19] 6.563 6.841 6.677 6.957 6.455 6.762 6.895 5.936 6.319 6.605

CRM [59] 6.487 4.971 6.640 6.559 6.203 7.026 5.494 6.068 5.921 6.115
EFF [98] 7.006 6.145 7.029 7.243 6.898 7.311 6.516 6.452 6.464 6.760

pmea [99] 7.284 6.824 7.220 7.479 7.273 7.449 7.074 6.638 6.725 7.088
RetinexNet [22] 7.489 7.233 7.413 7.575 7.448 7.463 7.243 7.385 7.273 7.379

KinD [36] 7.388 7.017 7.211 7.498 7.328 7.435 7.209 7.408 6.905 7.251
RetinexDIP [64] 6.974 5.375 7.214 7.557 6.661 7.381 6.352 6.213 6.668 6.678

RRDNet [25] 6.646 5.457 7.142 7.275 6.453 - 6.775 6.077 6.426 -
KinD++ [60] 7.486 7.065 7.332 7.627 7.463 - 7.316 7.452 7.034 -

IBA [100] 5.905 4.913 6.826 7.255 5.749 7.035 7.146 5.465 6.971 6.420
Self-supervised Network [24] 7.497 7.404 6.675 7.298 7.469 6.997 7.397 7.484 7.296 7.253

TBEFN [23] 7.436 6.875 7.328 7.507 7.383 7.366 7.047 7.519 7.313 7.292

Average 7.000 6.481 7.072 7.247 6.904 7.340 6.798 6.605 6.659 -
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Table 4. Quantitative comparison of enhancement algorithms on nine test datasets using BRISQUE
metric. A lower value of the BRISQUE metric indicates better performance. The first, second, and
third best scores are highlighted with red, blue, and green colors, respectively.

Methods

Datasets
LIME LOL DICM VV MEF NPE LSRW SLL ExDark Average

N
on

-R
et

in
ex

M
et

ho
ds

Input 25.142 21.929 28.115 29.380 29.066 26.673 32.726 25.304 34.015 28.401
HE [89] 21.411 39.559 25.359 18.937 25.313 25.444 28.219 40.015 29.034 28.985

DHE [27] 22.336 37.866 25.993 24.380 21.466 27.008 26.477 38.248 28.951 28.719
BPDHE [68] 21.728 NaN 25.0972 25.183 22.345 26.425 25.129 NaN 27.417 -

CVC [90] 22.589 27.101 24.620 21.766 19.285 25.693 26.808 29.007 26.979 25.126
CLAHE [91] 23.274 29.463 24.248 23.480 22.701 25.368 29.570 31.579 28.543 26.825
AGCWD [29] 21.964 28.421 24.725 23.961 19.420 26.4117 23.367 29.740 26.161 25.276

IAGC [92] 24.314 24.058 27.026 26.617 21.843 26.044 23.854 32.813 27.429 26.211
BIMEF [93] 23.135 27.651 26.811 22.542 20.220 25.504 24.077 34.982 27.910 26.174

MBLLEN [71] 30.386 23.078 31.603 35.076 32.389 29.423 30.328 22.103 29.012 29.127
GLADNet [72] 22.286 26.073 26.253 24.068 22.908 24.969 22.802 33.754 24.765 25.657

DLN [81] 27.715 28.985 26.914 29.782 28.378 - 33.597 26.798 31.187 -
Zero-DCE [80] 23.334 30.305 30.653 30.786 25.484 30.159 25.827 36.572 26.761 29.568

Exposure Correction [94] 27.483 28.357 29.847 31.694 29.597 26.768 26.391 28.632 32.520 29.204
StableLLVE [95] 28.885 32.194 28.150 28.295 28.475 25.662 30.563 25.850 27.749 28.367
LightenNet [96] 19.523 28.062 28.791 23.502 21.469 27.667 25.144 28.055 25.924 26.077
White-box [97] 28.807 31.721 33.212 35.733 33.599 26.671 25.081 39.450 37.429 32.862

LLFlow [38] 22.856 29.709 25.072 23.157 25.673 25.392 22.011 28.041 26.133 25.649

R
et

in
ex

-b
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ed
M
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ds

LIME [21] 23.572 33.973 27.137 25.394 25.158 28.576 27.658 35.829 28.704 28.986
NPE [50] 22.506 33.858 25.493 24.654 22.320 24.986 27.195 33.861 28.452 27.539
JieP [58] 22.193 27.087 23.633 22.941 21.214 25.498 23.421 30.207 25.309 24.914

PM-SIRE [49] 24.659 27.694 27.597 24.287 24.321 27.342 25.345 30.014 26.676 26.635
WV-SRIE [20] 24.181 27.611 27.698 24.434 22.088 25.760 24.700 28.281 26.750 25.894
MSRCR [19] 19.384 30.345 25.799 19.282 19.091 24.189 25.789 30.300 25.415 24.957

CRM [59] 23.477 29.599 26.601 22.368 20.716 25.726 24.396 37.723 28.733 26.939
EFF [98] 23.135 27.651 26.811 22.542 20.220 25.504 24.077 34.982 27.910 26.174

pmea [99] 21.390 32.913 25.832 24.972 21.756 26.358 25.358 38.132 28.321 27.874
RetinexNet [22] 26.101 39.586 26.656 22.459 26.036 29.086 29.021 41.506 30.170 30.565

KinD [36] 26.773 26.645 30.696 28.887 30.438 27.753 26.763 30.539 29.256 28.872
RetinexDIP [64] 21.723 19.679 25.199 25.338 23.605 26.671 25.081 32.618 32.175 26.296

RRDNet [25] 24.499 26.834 29.621 23.396 17.750 - 27.100 29.205 27.606 -
KinD++ [60] 20.025 25.086 27.852 28.164 30.024 - 26.973 34.978 31.775 -

IBA [100] 24.336 31.117 32.103 34.646 23.748 29.933 25.826 32.537 26.639 29.569
Self-supervised Network [24] 30.192 19.768 29.529 30.183 28.355 29.159 26.205 32.016 27.990 27.901

TBEFN [23] 25.720 17.346 23.606 23.651 24.435 24.0355 22.929 30.676 25.064 23.968

Average 23.009 27.752 27.267 25.841 24.312 26.621 26.280 31.267 28.425 -

The red line in Figure 3 represents the average ranking achieved by enhancement
methods on all test datasets. The average ranking puts GLADNet, TBEFN, and LLFlow in
first, second, and third, respectively. GLADNet generalizes well despite being trained on
5000 synthetic images using L1 loss. Retinex-based methods TBEFN, WV-SIRE, JieP, and
KinD also generalized well and received the 2nd, 4th, 5th, and 6th rankings, respectively.
TBEFN [23] is trained on a mixture of 14,531 patches collected from SICE [33] and LOL [22]
datasets using SSIM, total variation, and VGG loss. KinD is based on Retinex theory and
trained on LOL. A self-supervised network and a zero-shot-based Retinex method (i.e., self-
supervised network and RetinexDIP) ranked 12th and 21st, respectively. MBLLEN is also a
supervised learning-based networks and ranked 10th. Meanwhile, MBLLEM is a multi-
branch fusion network trained on the PASCAL VOC dataset [101]. Zero-shot learning-based
methods such as Zero-DCE got 19th. Among all deep learning-based methods, the top
six methods are supervised learning-based methods. It is also worth noticing that among
the top ten methods, five are Retinex-based methods and 5 are non-Retinex methods.
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4.4. Computational Complexity Analysis of Enhancement Methods

The computational complexity analysis of classical methods and deep learning-based
methods is presented in Tables 5 and 6, respectively. The analysis is conducted on four
different test datasets (i.e., LOL, LSRW, VV, and SID). Tables 5 and 6 report the average time
taken and the resolution of a single image for each dataset. For each of these tables, red,
blue, and green colors are used to indicate the best, second best, and third best performance,
respectively. Results shown in Table 5 have been obtained using a CPU, while results
shown in Table 6 have been obtained using an NVIDIA Titan Xp GPU. HE has the shortest
runtime of all classical methods. HE just takes around 20.3ms to process an image of
resolution 2848 × 4256 × 3. The majority of HE-based methods, such as BPDHE, WAHE,
LDR, CVC, and BiHE, are time-efficient, except for DHE. DHE continuously divides an
image into several sub-histogram units in order to avoid leaving a dominant portion in
newly created sub-histograms. Due to the continual dividing process, this method is the
slowest of all the HE-based methods mentioned. Gamma correction-based methods also
have good computational efficiency. IAGC takes relatively longer than other methods
because it truncates an image’s cumulative distribution function (CDF) and adaptively
corrects each truncated CDF.

Furthermore, Retinex-based methods are more computationally expensive than HE
and gamma correction-based methods. NPE, PM-SIRE, and WV-SRIE are among the
Retinex-based methods that experience significant increases in computation costs with
increasing image size. These methods are computationally inefficient due to their iterative
approach to finding the optimal solution and use of Gaussian filtering operations. The
efficiency of deep learning-based methods depends on the number of parameters that are
used. Zero-DCE is the fastest deep learning-based method due to its simplest network
architecture and fewer parameters. The majority of deep learning-based methods’ average
runtime is between 1.7 ms and 2.57 s. RRDNet iteratively minimizes the error to produce the
final enhanced output. The number of iterations varies for different inputs. The iteratively
solving the problem makes it the slowest among all the networks. RetinexDIP is another
zero-shot learning-based method and performs 300 iterations on each input to produce the
final output. The iteratively solving problem makes RetinexDIP and RRDNet the slowest
methods. A scatter plot of methods’ performance versus time taken on CPU and GPU
is shown in Figures 4 and 5, respectively. We consider CPU methods with less than 1s
processing time and GPU methods with less than 0.5s. Methods closer to the origin have a
lower computational cost and better performance.
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Figure 3. Different IQA metrics are used to rank the enhancement methods. Rank values range from
1 to 31. A rank value of 1 indicates the highest performance based on a particular IAQ method, and a
rank value of 1 indicates the worst performance. The average rank is shown in red.

Figure 4. Avg. ranking versus Time is shown for each enhancement method. Only the methods
take less than 1 s on CPU (Intel(R) Core(TM) i7-6700 CPU @ 3.40 GHz 3.41 GHz) with 16 GB RAM
to process the image of size 400 × 600 × 3 is shown in the figure. Red dots represent non-Retinex
methods, while blue dots represent Retinex methods.

Figure 5. Avg. ranking versus Time is shown for each enhancement method. Only the methods take
less than 0.5 s on GPU (NVIDIA Titan Xp GPU) to process the image of size 400 × 600 × 3 is shown in
the figure. Red dots represent non-Retinex methods, while blue dots represent Retinex methods.

238



Remote Sens. 2022, 14, 4608

Table 5. Computational time of classical methods in terms of seconds on CPU is reported. The
red, blue, and green colors are used to indicate the best, second best, and third best performance,
respectively.

Methods

Image Size
400 × 600 × 3 640 × 960 × 3 2304 × 1728 × 3 2848 × 4256 × 3 Avg.

N
on

-R
et

in
ex

M
et

ho
ds

HE [89] 0.00079 0.0014 0.0071 0.0203 0.00742
DHE [27] 23.590 59.625 409.628 1253.897 436.685

BPDHE [68] 0.078 0.338 1.630 3.318 1.341
CVC [90] 0.086 0.230 1.150 3.533 1.250

CLAHE [91] 0.00033 0.00099 0.0058 0.0226 0.00743
AGCWD [29] 0.031 0.053 0.344 1.079 0.377

IAGC [92] 0.038 0.155 1.025 2.253 0.867
BIMEF [93] 0.123 0.359 1.811 5.101 1.848

Exposure Correction [94] 0.721 0.778 0.903 18.501 5.226
LightenNet [96] 3.091 7.126 45.990 137.835 48.510

LLFlow [38] 24.740 60.022 363.281 1403.92 462.991

R
et

in
ex

-b
as

ed
M

et
ho

ds

LIME [21] 0.090 0.296 1.506 4.650 1.635
NPE [50] 13.061 31.025 213.168 648.832 226.522
JieP [58] 0.646 0.874 2.307 6.597 2.606

PM-SIRE [49] 0.402 1.340 28.948 28.423 14.778
WV-SRIE [20] 0.915 3.136 40.701 182.267 56.755
MSRCR [19] 0.322 0.704 2.787 8.531 3.086

CRM [59] 0.166 0.436 2.626 8.134 2.840
EFF [98] 0.136 0.407 1.973 5.422 1.984

pmea [99] 0.646 0.874 2.307 6.597 2.606
IBA [100] 0.032 0.0829 0.512 1.385 0.503

Table 6. The computation time (seconds) and number of parameters (millions) for deep learning-
based methods on GPUs (NVIDIA TITAN Xp) are reported. The red, blue, and green colors are used
to indicate the best, second best, and third best performance, respectively.

Methods
Image Size

400 × 600 × 3 640 × 960 × 3 2304 × 1728 × 3 2848 × 4256 × 3 Avg. Parameters.

N
on

-R
et

in
ex

StableLLVE [95] 0.0047 0.005 0.0076 0.097 0.028 4.310 M
MBLLEN [71] 0.240 0.327 1.601 8.133 2.575 0.450 M
GLADNet [72] 0.147 0.161 0.676 2.772 0.939 0.930 M
White-box [97] 6.040 6.483 9.833 15.200 9.389 8.560 M

DLN [81] 0.009 0.015 0.058 0.197 0.070 0.700 M
Zero-DCE [80] 0.0025 0.0026 0.021 0.043 0.017 0.079 M

R
et

in
ex

RetinexNet [22] 0.155 0.162 0.591 1.289 0.549 0.440 M
KinD [36] 0.334 0.604 3.539 5.213 2.423 0.255 M

RetinexDIP [64] 33.924 37.015 63.443 112.545 61.732 0.707 M
RRDNet [25] 59.479 128.217 893.0 3003.5 1021.1 0.128 M
KinD++ [60] 0.337 0.857 5.408 19.746 6.587 8.275 M

Self-supervised Net [24] 0.022 0.054 0.366 1.212 0.414 0.485 M
TBEFN [23] 0.171 0.166 0.550 0.887 0.444 0.490 M

4.5. Difficulty Analysis of Test Datasets

Results of enhancement methods have also been used to rank the nine test datasets.
The last row of Tables 1–4 shows the average score of different enhancement methods on
the test datasets based on LOE, NIQE, Entropy, and BRISQUE, respectively. Figure 6 shows
the difficulty rank for each dataset across IQA methods. A red line shows the average of all
rankings in Figure 6. As determined by the average ranking score, VV is the easiest test
dataset, while SLL is the most challenging. SLL is the synthetic dataset with severe noise
added. There is too much noise to remove and produce better results. Meanwhile, VV has
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a lower noise level, making it the easiest dataset. LOL and ExDark are the second and third
most difficult datasets. A test dataset’s difficulty level is determined by its noise level. The
higher the noise level, the harder it is to recover color details and other information.

Figure 6. Each test dataset has been ranked based on its difficulty. Rank values range from 1 to 9. A
lower rank indicates less difficulty, a higher rank indicates more difficulty.

4.6. Evaluation IQA methods

To analyze the objective quality of different enhancement methods, we have used
LOE, NIQE, Entropy, and BRISQUE as described in Tables 1–4, respectively. We can easily
identify the differences in the evaluations of these metrics if we compare their values
among themselves. The best result was produced by the BPDHE enhancement method,
according to LOE and NIQE, whereas BRISQUE evaluated MSRCR and Entropy evaluated
GLADnet as best methods. Each metric measures a different aspect of the predicted image,
which makes their results different. To easily depict and analyze the overall performance
of enhancement methods, we have suggested the average rank from 1 to 31 (depending on
how many methods are compared) to compare their performance. The best performance
is ranked 1, and the worst performance is ranked 31. These rankings can be seen in
Figure 3, where the x-axis represents the enhancement methods, and the y-axis represents
the ranking. Green, dotted black, blue, and yellow lines in Figure 3 show the rankings of
enhancement methods based on LOE, NIQE, BRISQUE, and Entropy metrics, respectively.
Moreover, the red line in Figure 3 represents the average of all the rankings mentioned
earlier (given based on different metrics). The best method can be chosen based on this
average ranking system.

5. Discussion

In this section, we summarize the results obtained and the findings of the overall paper.

i The enhancement methods are evaluated using four evaluation metrics. No method
has emerged as the clear winner on all four metrics (LOE, entropy, NIQE, BRISQUE).
This is due to the fact that each evaluation method measures a different aspect of
enhancement methods (e.g., LOE measures naturalness, entropy measures informa-
tion content, and NIQE measures distortion). A suggested average ranking system
is found to be the most reliable method of comparing the overall performance of
enactment methods.

ii In the average ranking system, it has been observed that the three most success-
ful enhancement methods (GLADNet, TBEFN, LLFlow) are based on supervised
learning. Among the top ten methods, five are based on Retinex. In comparison to
classical, advanced self-supervised, and zero-short learning methods, supervised
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learning is more effective. Denosing is the most challenging part in enhancement.
Noise can be observed in the visual results of outperforming methods.

iii There is no Retinex-based method among the top three fastest methods. As a
result of the image decomposition, these methods are more time consuming. As
the size of the image increases, the computational time of classical Retinex-based
methods increases dramatically. Zero-DCE is the fastest learning-based method,
taking approximately 0.017 s to process an image of size 2848 × 4256 × 3. However,
it ranks 20th in terms of performance. GLADNet, on the other hand, is ranked first,
but it takes approximately 2.772 s to process an image of the same size.

iv The average ranking of all enhancement methods is observed in a broader sense.
The results indicate that five methods in the top ten are based on Retinex theory (i.e.,
TBEFN, WV-SRIE, JieP, KinD, and PM-SIRE). The remaining five fall into different
categories (i.e., HE, gamma correction, deep learning). When it comes to real-world
scenarios, Retinex theory algorithms are more robust. In contrast, decomposing
the image into illumination and reflectance makes them more computationally
intensive and, therefore, slower. Computational complexity is the bottleneck for
their development in real-world scenarios.

6. Conclusions

In this study, we present an experimental comparison of Retinex-based methods with
other non-Retinex methods on nine diversified datasets. According to this study, five out of
the top 10 methods are based on Retinex. Researchers are aiming to develop methods that
can be generalized and produce enhanced, denoised, color rendered results in real time.
Based on the comparisons, ZeroDCE is considered to be the fastest method for processing
high-resolution images within 17 milliseconds. However, ZeroDCE ranked 19th and its
results were darker and noisy. In contrast, Retinex-based methods have a greater degree
of robustness and generalization. The decomposition of the image is a time-consuming
process and is a bottleneck in the processing time of Retinex-based methods. Based on the
overall ranking, supervised learning methods (e.g., GLADNet, TBEFN, LLFLow) perform
better than all other methods. Training images for GLADNet and patches for TBEFN
are 5000 images and 14,531 patches, respectively. Both GLADNet and TBEFN are able to
generalize well due to their large training data, as well as their Unet architecture which
makes them more efficient as compared to other heavy network designs. Moreover, this
research evaluated the results of enhancement methods on four different metrics and
suggested a method for ranking enhancement methods according to their performance.
This research study may help the research community develop more robust and lightweight
models for real-time photography and video shooting.
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Abstract: When conducting land cover classification, it is inevitable to encounter foggy conditions,
which degrades the performance by a large margin. Robustness may be reduced by a number of
factors, such as aerial images of low quality and ineffective fusion of multimodal representations.
Hence, it is crucial to establish a reliable framework that can robustly understand remote sensing
image scenes. Based on multimodal fusion and attention mechanisms, we leverage HRNet to extract
underlying features, followed by the Spectral and Spatial Representation Learning Module to extract
spectral-spatial representations. A Multimodal Representation Fusion Module is proposed to bridge
the gap between heterogeneous modalities which can be fused in a complementary manner. A
comprehensive evaluation study of the fog-corrupted Potsdam and Vaihingen test sets demonstrates
that the proposed method achieves a mean F1score exceeding 73%, indicating a promising performance
compared to State-Of-The-Art methods in terms of robustness.

Keywords: semantic segmentation; attention mechanism; robust deep learning; remote sensing;
data fusion

1. Introduction

Computer vision has emerged as a powerful and labor-saving tool for automatic
scene parsing of remote sensing images (RSIs). Land cover classification (LCC) of aerial
imagery, which is also known as semantic labeling or segmentation, assigns a class label to
each pixel in RSIs. As an integral part of computer vision, semantic segmentation plays
a pivotal role in remote sensing for rapid and accurate detection. A considerable amount
of literature has been published concerning applications like landslide extraction [1], road
extraction [2], collapsed building detection [3], and so on. Semantic segmentation models
can be summarized into three categories [4], namely FCNets [5] which yield a coarse
feature map directly from the low-resolution representation, UNets [6] which perform high-
resolution recovery from the downsampled representation as well as HRNets [4] which
retain the high-resolution representation during all procedures. Despite plenty of research
exploring semantic segmentation based on natural scene images (NSIs), there is still a lack
of scientific literature specifically focusing on robust remote sensing in foggy conditions.

RSIs with fog are distinguished from NSIs by a number of challenging characteristics
that may result in decreased classification robustness. It is believed that there exist two
major challenges when it comes to LCC with fog. First, model robustness is susceptible to
fog corrupted RSIs, which refer to a series of issues [7], including intra-class heterogeneity,
inter-class homogeneity, geometric size diversity, and so on. In terms of intra-class hetero-
geneity, the models tend to classify objects with distinctive appearances as disparate species;
they may belong to the identical yet [8]. For instance, various materials and structures
may lead to different appearances and textures. Whereas, fog-covered objects affiliated
with diverse species frequently exhibit close characteristics when they are made up of
the same material. The concrete building and the impervious surface in Figure 1 appear
similar. Models assume they belong to the same class by mistake accidentally, which is
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inter-class homogeneity. Additionally, objects under fog exhibit geometric size diversity
and only a robust model can capture multi-scale attributes in RSIs. Overall, RSIs with
low quality can exert negative impacts on classification robustness. Second, when dealing
with dense fog, a single sensor is not always effective. It is difficult for a single optical
camera to classify objects robustly when they are partially obscured. Figure 1 illustrates
the failing cases, such as the shadow of buildings, fog coverage, and cars parked under
the trees. The optical input is rich in semantic details, while Digital Surface Model (DSM)
provides discriminative height information. It is imperative to excavate informative cues
from multimodal inputs.

Figure 1. Challenges associated with robust LCC in the areas covered with fog. The first row is the
fog corrupted image and the second row is the corresponding ground truth (GT).

To address the listed challenges of LCC in foggy conditions, we propose a framework
with superior robustness based on attention mechanisms and multimodal fusion. We
adopt HRNet as the backbone. Through compiling representations from all the high-to-low
resolution streams in parallel, HRNet is robust to intra-class heterogeneity and geometric
size diversity. The proposed Spectral and Spatial Representation Learning (SSRL) module
probes into the relationship between spectral channels and spatial locations to improve
robustness to intra-class heterogeneity. Thus, the output representation is gifted with
semantic information and spatial accuracy. The introduced Multimodal Representation
Fusion Module (MRFM) investigates the fusion of multimodal remote sensing data to learn
the boundary connectivity and contour closure in RSIs to cope well with object occlusion
and inter-class homogeneity issues. In summary, the main contributions are as follows:

• Based on multimodal fusion and attention mechanisms, we propose a robust end-to-
end model that can fuse the optical and DSM input for LCC.

• Adopting HRNet as the backbone, we propose and incorporate SSRL and MRFM into
the framework. To enhance the semantic information, a lightweight SSRL is inserted to
capture the long-range dependencies and explore the interactions between various spec-
tral channels. MRFM is employed for the effective fusion of multimodal remote sensing
data. All the components cooperate and contribute to the classification robustness.

• We conduct an ablation study to evaluate the effectiveness of the proposed framework,
including functions of different modules and modal inputs.
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• We compare our model with SOTA methods to demonstrate the robustness against
natural noise.

2. Related Work

There is a large volume of published studies describing how to conduct LCC. Most
publications concentrate on accuracy instead of robustness, which is also vital in daily
application. Thus far, several studies investigating robustness are predominantly associated
with NSIs, such as scenes in ImageNet, Cityscape, BDD100k, and so on. Nonetheless, there
is still a lack of relevant research focusing on LCC robustness. RSIs captured in foggy
conditions are characterized by low quality, which poses challenges to robustness. This
paper aims to design a robust model which can improve the classification performance in
harsh environments. Our work refers to LCC, model robustness, and multimodal fusion.
This section discusses the related work from these three perspectives.

2.1. Land Cover Classification

LCC actually refers to semantic segmentation of land covers using computer vision.
There has been a great deal of research into semantic segmentation focusing on classification
accuracy. Conventional segmentation algorithms are normally put forward on the premise
of basic image attributes, e.g., grey-scale mutations are utilized to detect edges. Comparable
grey scale values are partitioned into several regions according to the predefined criteria.
However, it is extremely complex to detect boundaries when there exist substantial grey-
scale changes. Considerable evidence has accumulated to show that deep learning-based
models are more suitable for the semantic segmentation of NSIs. These models can usually
be divided into three groups [4], namely, FCNet [5] type, UNet [6,9] type, and HRNet [4]
type. FCNets learn the representation from high to low resolution in series to extract coarse
feature maps. This group includes models like Deeplab [10], DenseASPP [11], PSPNet [12],
and so on. UNets learn the encoded low-resolution representation and then recover to the
high-resolution representation. Analogous models are DeepLabV3+ [13], SegNet [14], and
so on. Moreover, ref. [9] inserts a cascaded dilated convolution in UNet to capture objects of
diverse shapes, which is an effective approach to enhance robustness to multi-scale issues.
Different from [9], we alleviate the influence of diverse shapes by adopting HRNet as the
backbone because it retains a high-resolution representation throughout the process [15].

2.2. Model Robustness

Although neural networks are highly accurate for classification, they are not always
as robust as human beings while actually applied [16]. Ref. [16] suggests that building
multimodal and multitasking systems based on multi-sensor fusion is indispensable for
robust decisions. Noises are categorized into three main groups [17], mainly adversarial
noises, systematic noises, and natural noises. By comparing the robustness of three types
of models, ref. [17] shows that CNN is more robust under natural noise and systematic
noise, while Transformer is more robust against adversarial noise. Adversarial noise is
the result of ambiguous decision-making at boundaries due to the limited training dataset
and the inability to cover the whole sampling space. A small perturbation will always
lead to completely distinct results. Ref. [18] constructed ImageNet-P and ImageNet-C
datasets on top of ImageNet to facilitate researchers to evaluate and test the corruption
and perturbation robustness. Based on this work, ref. [19] investigates the robustness of
semantic segmentation. Researchers find that the Atrous Spatial Pyramid Pooling module
significantly improves robustness, while the generalization performance depends heavily
on the corruption degrees. Furthermore, there are some recent works on the adversarial
noise robustness of Visual Transformers (ViTs). Ref. [20] found that shallow features in ViTs
enable it to possess a better generalization than CNN, thus, better coping with adversarial
noise. Meanwhile, the ensemble operation of CNN and ViTs can also improve the model
robustness [21].
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2.3. Attention Mechanism

A large and growing body of literature has investigated the role of attention mecha-
nism [22] in deep visual models. Ref. [23] proposes an efficient channel module to explore
the cross-channel interactions without dimension reduction. Ref. [24] designs a global
context module to model the long-range dependencies with significantly less computation.
There is a consensus among researchers that multi-head attention in ViTs[25] has acquired
SOTA due to the uniform representation. Swin transformer [26] is capable of modeling
input of different scales flexibly and the complexity is linear with input sizes. SETR [27]
presents a multi-level feature fusion module to classify each pixel at a fine-grained level.
Segformer [28] removes the complex position encoding binding a lightweight multi-layer
perceptron to output feature maps of various sizes. Volo [29] introduces a novel outlook
attention to grasp both coarse and fine-grained representations.

2.4. Multimodal Fusion

Data collected by a single sensor are often flawed and multi-sensor fusion is fun-
damental for accurate and robust decisions. Ref. [30] put forward a top-down pyramid
fusion architecture for multimodal fusion. It is lightweight and can extract complemen-
tary features from multi-sources. Ref. [31] proposes a new and lightweight depth fusion
transformer network for LCC, with different backbones extracting features from various
inputs. Ref. [32] explores the pros and cons of early fusion along with late fusion to show
that they all can utilize the complementarity of multimodal inputs. To calibrate features
of the current modality from spatial and channel dimensions, ref. [33] has developed a
Cross-Modal Feature Rectification Module for feature extraction. A multimodal fusion
module was proposed in [15] to explore complementary features of heterogeneous inputs.
In contrast, our method exploits the discriminate representation of each input from the
perspective of the channel and spatial location before multimodal fusion, which greatly
enhances the robustness of low-quality RSIs.

Overall, most studies remain narrow in focusing only on NSIs instead of RSIs. RSIs
are characteristic of challenges of high resolution, multi-scales, class imbalance, occlusion,
and so on. The attention mechanism is capable of capturing long-range dependencies. We
extend ideas from deep learning and RGB-D semantic segmentation as well as an attention
mechanism to establish a practical framework that can robustly classify land covers in
foggy conditions.

3. Core of the Framework

3.1. Overview

The overall framework is illustrated in Figure 2. HRNetV2-W48 is adopted as the back-
bone for feature extraction. UperHead from [34] serves as the decoder. Each batch combines
an Optical image (XRGB ∈ R

C×H×W) with the corresponding DSM (XDSM ∈ R
1×H×W),

which contains the height information of land covers. H and W denote the height and
width of RSIs, respectively. There is a considerable amount of noise in low-quality RSIs.
We intend to design SSRL in such a manner that it would extract useful and discriminate
representation efficiently without incurring excessive computational costs. Conventional
methods simply aggregate two modalities without obtaining complementary features
effectively. By contrast, MRFM, which is dedicated to multimodal fusion, exploits the
complementarity between heterogeneous data. The backbone and decoder can be replaced
by the other models. We will dig into the detailed design of HRNet, SSRL, and MRFM in
Sections 3.2–3.4, respectively.
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Figure 2. (a) Illustration of the proposed framework for LCC in foggy conditions. The input consists
of a pair of the optical image and DSM. UperHead is selected as the decoder. (b) Detailed design
of SSRL, which is composed of Spectral Attention and Spatial Attention modules. C and C∗ are
different channel numbers. (c) The framework of MRFM is to explore the complementarity of
heterogeneous inputs.

3.2. Backbone

Low-quality RSIs collected under fog suffer from the issues of intra-class heterogeneity
and diverse geometric shapes, which impairs classification robustness. LCC is actually
a dense pixel prediction task that requires a strong backbone with powerful modeling
capability. Semantic segmentation networks are often constructed based on encoder-
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decoder architecture, where ResNet [35] is usually applied as the encoder. It is characterized
by the accurate prediction of the spatial location at the low-level stage but is limited by a
small receptive field that lacks consistent semantic information. This could lead to blurry
classification. At the high-level stage, the network possesses a larger receptive field to
make fine semantic predictions, but is deficient in the global representation. Consequently,
conventional CNNs are susceptible to the above issues which are attributed to a loss of
spatial details with the degradation of resolution.

HRNet is composed of four parallel branches pertaining to different resolutions. They
constantly exchange information across multiple scales. High-resolution representations
contain more spatial details, while the low-resolution representations are more capable of
fine-grained classification. By maintaining a high-resolution representation, HRNet can
generate spatially accurate feature maps that contain semantic information abundantly.
Accordingly, HRNet-W48 is selected as our backbone for robust semantic segmentation. It
can learn discriminative and distinct representations efficiently. Furthermore, HRNet is
capable of integrating both local and global features with multiple scales, thereby increasing
robustness in the presence of fog corruptions.

The hierarchical structure of HRNet is illustrated in Figure 3, which consists of 4 multi-
resolution branches, each with resolutions of 1/4, 1/8, 1/16, 1/32. Each branch can be
partitioned into 4 stages, and the output channel number of each branch is C, 2C, 4C, 8C. Be-
tween each stage, there are blocks of multi-resolution fusion which consist of a 3 × 3 stride
convolution integrating with a 1 × 1 upsampling layer, represented by the crossed lines.
The fusion module serves as a mechanism for transferring feature information between
branches of different resolutions. HRNet can be applied to semantic segmentation by
accessing a 1 × 1 convolution for mixing and merging the representations from four branch
outputs to align channel numbers. Detailed convolution parameters are shown in Table 1
where parameters for each stage are in the form [a × a, nC] × b × c. ‘[]’ represents the
residual connection unit. Parameters a,b represent kernel size and duplication times of
the residual unit separately. c means to repeat entire modularized part c times. Four basic

blocks like
[

3 × 3, nC
3 × 3, nC

]
accompanying with fusion modules constitute each branch

of HRNet.

Figure 3. Overview of the backbone HRNet. HRNet maintains high-resolution representations and
exchanges information throughout branches by means of 1 × 1 and 3 × 3 convolution. It can cope
well with intra-class heterogeneity and multi-scale issues in RSIs with fog.
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Table 1. Detailed HRNET specifications about every stage and channels.

Downsp. Rate Stage1 Stage2 Stage3 Stage4

4×
⎡⎣ 1 × 1, 64

3 × 3, 64
1 × 1, 256

⎤⎦× 4 × 1
[

3 × 3, C
3 × 3, C

]
× 4 × 1

[
3 × 3, C
3 × 3, C

]
× 4 × 1

[
3 × 3, C
3 × 3, C

]
× 4 × 3

8×
[

3 × 3, 2C
3 × 3, 2C

]
× 4 × 1

[
3 × 3, 2C
3 × 3, 2C

]
× 4 × 4

[
3 × 3, 2C
3 × 3, 2C

]
× 4 × 3

16 ×
[

3 × 3, 4C
3 × 3, 4C

]
× 4 × 4

[
3 × 3, 4C
3 × 3, 4C

]
× 4 × 3

32 × [
3 × 3, 8C
3 × 3, 8C

]
× 4 × 3

3.3. Spectral and Spatial Representation Learning

Generally, RSIs captured in foggy conditions are of low quality, with a significant
amount of noise existing in heterogeneous inputs. Merely incorporating encoded represen-
tations into the decoder will bring excess redundancy to the network, which reduces the
classification robustness. There have been some proposals to enhance semantic features
through an attention mechanism. The non-local operation proposed by [22] can obtain the
attention map corresponding to a specific query tensor for modeling the global context. Af-
ter rigorous experiments in [24], researchers argue that the gap between attention activation
maps corresponding to different query locations is narrow, illustrating the non-necessity of
query weights. In addition, ViT [25] can also enhance the semantic information through
multi-head attention. It is featured with numerous parameters, high complexity as well
as overfitting. This computationally intensive approach, however, ignores the correlation
between various spectral channels. Additionally, the channel attention mechanism [23,36]
has also been proposed to explore the interaction between different channels. Nevertheless,
simply regarding 2D images as 1D disrupts the dependencies between different positions,
which reduces the robustness in capturing long-range relationships. Inspired by CBAM [37],
we propose SSRL which is composed of Spectral Attention and Spatial Attention. Spectral
attention is to explore interdependencies between different spectral channels, thereby im-
proving semantic representations. Spatial attention is to capture long-range dependencies.
Thus, SSRL can generate a global context and acquire correlations between various pixels
and spectral channels to improve the robustness of intra-class heterogeneity.

Spectral Attention is illustrated in the upper half of Figure 2b. It is constructed for
acquiring the spectral-level representation weight �spe(�spe ∈ R

C×1×1). SSRL firstly trans-
forms the dimension of XRGB or XDSM (XRGB ∈ R

C×H×W or XDSM ∈ R
C×H×W) to 1× 1×C

(C is the channel number) using a global average pooling layer (GAP). The compressed
tensor is fed into MLP (Wmlp) to compute the interaction between k adjacent channels.
The MLP consists of two one-dimensional convolution layers with kernel size 1 and k,
denoted as Conv1D_1(W1D_1) and Conv1D_k(W1D_k), respectively. Conv1D_1 is applied
for the dimension reduction, converting the channel number from C to C∗. The same
learnable weight values are shared among channels, where the efficiency is significantly
improved because only k values are noted. Detailed formulas about Spectral Attention are
as the following:

�spe = σ

(
Wmlp

1
WH

W,H

∑
i=1,j=1

Xij

)
(1)

Wmlp(x) = W1D_k[FMish(W1D_1(x))] (2)

FMish(y) = x · tanh(ln(1 + ey)) (3)

In Equation (1), σ is the sigmoid activation function. Local cross-channel attention
interaction coverage is adaptively and dynamically adjusted according to the input channel
numbers. There is a nonlinear mapping between the total number of channels C and the
kernel size k of Conv1D. k increases with the number of channels. odd means to select the
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nearest odd number. Fspe means the feature map acquired through the Spectral Attention.
The specific correspondence is as follows:

k = ψ(C) =
∣∣∣∣ log 2(C)

2
+

1
2
· 1

1 + e−C +
1
2

∣∣∣∣
odd

(4)

Fspe = �spe ⊗ X (5)

Spatial Attention is illustrated in the lower panel of Figure 2b. This part is constructed
for acquiring the spatial-level weight �spe (�spe ∈ R

HW×HW). Through the linear transfor-
mation of �spa, we can get three weight matrixes Wq, Wk, Wv. By calculating the interaction
between positions (softmax operation, Equation (6)), the long range dependencies �spa can
be captured. Finally, the feature map Fspa after Spectral Attention and Spatial Attention is
obtained through matrix multiplication.

�spa =
exp

(〈
WqFspe, WkFspe

〉)
∑
m

exp
(〈

WqFspe, WkFspe
〉) (6)

Fspa = Wc[�spa ⊗ (WvFspe)] (7)

3.4. Multimodal Representation Fusion Module

RSIs are collected by satellites or drones far from the ground, which will inevitably
cause pixel loss owing to the atmosphere and clouds. Meanwhile, the terrestrial environ-
ment is a three-dimensional space and there exist complicated interactions between land
covers. The quality of RSIs with fog is low as some of the land covers will be obscured by
fog, resulting in a single optical sensor failing. This phenomenon reduced the classification
robustness by a large margin. DSM built with lidar will not suffer from this. We fuse
multiple inputs by designing an effective MRFM to explore the respective characteristics of
each modality. Different from the early and late fusion strategy in [32], we exploit semantic
representation of different modalities through the cross attention mechanism. This can
improve robustness to inter-class homogeneity and object occlusion issues.

The structure of MRFM is illustrated in Figure 2c. Red and green dashed boxes in
Figure 2c function as context modeling and transform respectively. We extract the coarse
representation �DSM from DSM since it contains the height information of each land cover.
Firstly, utilizing 1 × 1 convolution (Wv) with softmax in Equation (8) to obtain the global
semantic key weight from DSM in the batch, this step is to obtain the coarse correlation
feature maps between different locations. Np signifies the number of all pixels. j is for
pixel indexing. Then, the computational cost is reduced by bottleneck. r is the reduction
coefficient, which is set to 16 by default. Layer Normalization and GELU activation
functions are integrated which enable a faster convergence as well as a stable training
process. This step plays a role of transform in exploring channel-wise features while
Channel Embedding (WCE) can enhance the nonlinearity as well as reduce the dimension.
Finally, the linked adaptive average pooling layer (AAP) is utilized for the late fusion. γ,
β in FLN are trainable vectors, which is for affine transformation and ε is for numerical
stability. E and Var mean expectation and standard deviation separately. We extract the fine-
grained feature map from RGB input as a result of the abundant semantic features in this
modality. Like non-local operation [22], we obtain the RGB feature weight �RGB through
linear transformation and softmax. To exploit the complementary representation, we fuse
both modalities using matrix multiplication accompanied by the residual connection. We
likewise incorporate the residual structure into MRFM to make it easier for information to
flow between layers, including providing feature reuse during forwarding propagation and
mitigating the gradient vanishing phenomenon during backward propagation. Adding
the original DSM input, dependencies between different positions obtained from DSM are
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fused with the exhaustive global information obtained from the optical so that each coarse
position in DSM has an element-wise corresponding response generated.

α(j) =
eWvXDj

∑
Np
m=1 eWvXDm

(8)

FGELU(x) = 0.5x
(

1 + tanh
[√

2/π
(

x + 0.044715x3
)])

(9)

FLN(x) =
x − E[x]√
Var[x] + ε

∗ γ + δ (10)

�DSM = AAP〈FLN{FGelu[WCE

Np

∑
j=1

α(j)XDj]}〉 (11)

�RGB =
exp

(〈
WqXRGB, WkXRGB

〉)
∑
m

exp
(〈

WqXRGB, WkXRGB

〉) (12)

FMRFM = �RGB ⊗�DSM + XDSM (13)

3.5. Loss Function

From the analysis in Section 4.1, we can observe that the class imbalance issue exists
in the ISPRS dataset. The proportion of impervious surface is sixteen times higher than the
vehicle which is the tail class. Many deep models are heavily biased towards the dominant
class during the training process and fail to classify the tail classes instead. Drawing on an
extensive range of sources, we propose a unified loss function for our framework following
a series of studies like [38,39]. Three elements constitute the unified loss. It is generalized
for RSIs with long-tail class imbalance. FC, FT, and CE in Equation (14) stand for the
modified focal loss [40], focal Tversky loss [41], and cross-entropy loss [42], respectively. f
refers to the final loss originating from [38], whose input is the prediction result of MRFM.
aux is the auxiliary loss employed to supervise the coarse object area estimation of SSRL
output. x stands for the input data and ygt is the ground truth. ypred is the prediction
output values. back denotes the background class. gt, pred, and coar are ground truth,
prediction, and coarse feature map, respectively.

Luni f ied = αL
f

F̃C
+ (1 − α)L

f
F̃T

+ λ ∑
x∈{rgb,d}

L aux
CE

(
ycoar

pred, ygt

)
(14)

L
f

F̃C
=

1
Nc + 1

[
Nc

∑
j=1

δLCE + (1 − δ)(1 − yback
pred)

γ1LCE] (15)

L
f

F̃T
=

1
Nc + 1

[
Nc

∑
j=1

(1 − DSC(xj))1−γ2 + (1 − DSC(xback))] (16)

DSC(x) =
TP + ε

TP + δFN + (1 − δ)FP + ε
(17)

LCE = −
Nc

∑
j=1

[ygtlog(ypred) + (1 − ygt)log(1 − ypred)] (18)

α (e.g., 0.5) is designed to balance the relative weights of the final loss while λ is the weight
for auxiliary bootstrap loss. Nc is the number of classes. δ is the threshold parameter (e.g.,
0.7) related to the proportion of positive and negative samples. γ controls the degree of
down-weighting of easy samples while enhancing the rare. γ1|γ2 are 2 and 0.75 by default.
ε is the small number for numerical stability in DSC, which acts similarly to the Tversky
index to control the optimizing for output imbalance.
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4. Experiment

4.1. Dataset Overview

ISPRS provided true orthophotos (TOP) of Potsdam and Vaihingen for model training
and validation, whose resolutions are 6000 × 6000 and average 2500 × 2500, respectively.
Ground sampling distance (GSD) is 5 cm and 9 cm. We need to eliminate the Image Index
7–10 in Potsdam dataset due to the error in GT. Each TOP has six classes: car, low vegetation,
tree, building, impervious surface, and cluttered background. We split both datasets into
the training, test, and validation sets according to the ratios of 0.8, 0.1, and 0.1. DSM, which
is acquired through lidars, contains the height information for land covers in 32-bit floating
type. In addition to DSM, we use RGB and IRRG optical bands of Potsdam and Vaihingen
for training and inference. nDSM is the normalized DSM which supplies the height of each
pixel accompanied by ground elevation subtracted.

In order to intuitively observe the composition of different classes, we pull out all
pixels from GT for an exploratory data analysis. Class proportions are shown in Figure 4.
In both datasets, the ratios of each class are similar, with the proportion of cars being the
smallest, less than 2%. The volume of buildings along with impervious surfaces, which
are difficult to distinguish, is between 26% and 28%. Potsdam has a proportion of low
vegetation that is 8.92% higher than the number of trees, whereas the difference between
the two classes in Vaihingen is only 2.35%.

Figure 4. Illustrations about the composition of each class in ISPRS datasets.

4.2. Implementation Details

ISPRS datasets consist of high-resolution RSIs. Limited by GPU memory, we crop
the optical image into 512 × 512 for model training and inference. In view of reducing
overfitting, we augment the training set. Each pair of the image and the corresponding GT
are rotated in arbitrary directions. Basic attributes such as contrast, brightness, saturation,
and so on are randomly set for the augmentation. Reflection padding is conducted at the
edges after cropping, this adjustment is particularly effective for urban complexes like
buildings. Details are inevitably lost when cropping randomly, hence the symmetry of the
buildings is well preserved by adopting reflection padding. Figure 5 illustrates samples for
two datasets.

The hardware and software environment is listed in Table A1. We choose HRNet-W48
as the backbone, whose four branches yield feature maps (R1, D1∼ R4, D4) with 1/4, 1/8,
1/16, 1/32 of the original size. UPerHead [34] is selected as the decoder. The learning
rate is set to 0.00006 with the AdamW optimizer. The weight decay is 2 × 10−2 and the
power of poly optimization strategy is 1. A mixed precision scheme is employed to reduce
memory usage. The model is trained for 40k iterations loaded with weight pretrained on
the ImageNet.
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Figure 5. Illustrations about samples of Potsdam and Vaihingen dataset. Augmented means the image
after the augmentation operation.

4.3. Test Set Transformation

The original dataset was captured in normal weather conditions. It is necessary to
augment the test set for robustness evaluation. Inspired by the generation of corrupted
ImageNet data sets in [18], we also render the corrupted RSIs test set with different degrees
of fog and average the classification results for judging the robustness performance. We
model the fog corruption through a diamond square algorithm which is to create a weighted
heat map blended with the clean image. Thus, we can acquire corrupted test sets of
Potsdam and Vaihingen, which are employed to measure the classification robustness
in clean and foggy conditions. Corrupted samples are displayed in Figure 6, with fog
generated corresponding to five levels of severity. This facilitates the robustness evaluation
in various foggy conditions. Evaluation values are averaged over all five severity levels.
As can be observed from Figure 6, the fog-covered region is indistinguishable from the
actual scenario.

Figure 6. Illustrations of five severity levels of fog rendered the ISPRS dataset. First row: Potsdam.
Second row: Vaihingen

4.4. Metrics

Metrics like overall accuracy (OA), F1score (F1score) are selected to evaluate the classifi-
cation accuracy. Following the robustness evaluation in [18,19], we take Corruption degra-
dation (CD) and relative corruption degradation (rCD) into consideration for measuring
LCC robustness. Specifically, metrics for accuracy evaluation are defined in Equation (19)
to Equation (21). TP, FP, TN, FN represent true positive, false positive, true negative,
and false negative classifications, respectively. Higher F1score and OA indicate a better
classification accuracy.
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Precision =
TP

TP + FP
Recall =

TP
TP + FN

(19)

OA =
TP + TN

TP + FP + TN + FN
(20)

F1score = 2 × Precision × Recall
Precision + Recall

(21)

From Equation (22) to Equation (24), re f stands for the baseline which is regarded as
a reference model in the ablation and comparison experiments. D refers to the degree of
degradation. S signifies obtaining the mean value across different corruption degrees. f is

the selected model. Clean and F represents clean and corrupted datasets. D̃F
s, f means that

we acquire the average degradation value using model f on RSIs across different degrees
of fog corruption.

D = 1 − F1score (22)

CD f
F =

D̃ f
s,F

D̃re f
s,F

× 100% (23)

rCD f
F =

D̃ f
s,F − D f

clean

D̃re f
s,F − Dre f

clean

× 100% (24)

CD is a measure of absolute robustness. CD greater than 100% indicates a decline
in robustness compared to the reference. The part over 100% represents the degradation
in performance. To evaluate the relative robustness, rCD takes the performance on the
clean dataset into account. Based on the reference, it is a proportional measure of the
degradation in robustness relative to the clean data. When rCD < 100%, it indicates that
the performance degradation in foggy conditions is less than that of the corresponding
reference value compared with the clean. When CD or rCD > 100%, it means that model is
not as robust as the reference. Robustness is better when both values are lower.

5. Result

5.1. Impact of Different Modules

To verify the effectiveness of each component, we conduct an ablation study on
Vaihingen by removing or replacing the original part. From the qualitative visualization in
Figure 7, it can be noted that when SSRL is added alone, the model can enhance capturing
the global context and semantic features for classifying land cover edges. However, owing
to the lack of height information, it is tough to grasp the correlation in the vertical space
precisely (e.g., car in the box in Figure 7d). When MRFM is incorporated, the model
can obtain the complementary information of multiple modalities, yet boundary labeling
is coarse due to the absence of semantic representation details. The integration of both
increases the model robustness and allows it to classify various land covers in foggy
conditions more accurately.

In Tables 2–7, � indicates the element that we incorporate on top of the baseline. Values
in the fog column refer to the average value across five severity levels of fog corruption.
We first illustrate the effectiveness of each constituent. To demonstrate the robustness and
accuracy of HRNet-W48, ResNet50 is selected for comparison in view of the comparable
size. H and R in Tables 2–4 correspond to HRNet and ResNet respectively. When only
SSRL is integrated, we directly transfer the Optical and DSM feature maps following
convolutional layers into the decoder. When only MRFM is available, we exclude SSRL
and transfer both modalities into MRFM. U and C in loss column represent the Unified
loss and Cross-entropy loss. ImpSur f ∗ and LowVeg∗ signify the impervious surface and
low vegetation.
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Table 7. Quantitative evaluation of rCD on clean and fog corrupted variants of the Vaihingen test
set in ablation study about using different input data evaluated. Our framework is regarded as the
reference and lower rCD indicates an improvement of robustness in the presence of fog corruption.
The highest rCD is bold.

Method rCD for Per-Class F1score (%)
Mean rCD (%) rCD for OA (%)

Optical DSM Imp Surf* Building Low Veg* Tree Car

� 112.56 69.44 115.40 93.08 127.37 105.98 136.18
� 133.76 81.49 166.94 146.25 144.21 134.98 132.04

� � 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Figure 7. Illustrations about some ablation results of each component in the framework. In this case,
optical images are corrupted by fog, which belongs to severity level 2.

Combining Tables 2–4 with Figure 8, we observe that the incorporation of SSRL alone
could improve the accuracy, but for impervious surface (CD = 145.23%, rCD = 105.12%)
and low vegetation (CD = 119.53%, rCD = 135.26%), values of both exceed 100% and
robustness is still inferior to the others. In the absence of effective multimodal fusion,
SSRL is more biased towards the regular shape and small objects in Vaihingen. Moreover,
the addition of MRFM is conducive to the improvement of robustness. Misclassification
result of tail-end distributed cars (F1score = 64.08%, CD = 131.45%) manifests if just cross-
entropy loss function is utilized. When compared with the Unified loss, F1score is reduced
by 8.59%, while CD is increased by 31.45%, indicating that UFL improves the robustness of
imbalanced distributed objects (F1score = 72.67%).

5.2. Impact of Multimodal Fusion

We also perform an ablation study with different inputs to investigate the improvement
of robustness under multimodal fusion. � represents the input modality. In the case of
single modal input, the original multimodality is replaced by the identical modal input.
From Tables 5–7, we can conclude that utilizing a single modality alone is less effective
than multimodal fusion. When using DSM alone, the model performs poorly because
DSM contains fewer semantic features compared with the optical. There is an 8.35% and
35.95% performance loss compared to the corresponding result of the optical input. Fusing
multimodalities improves accuracy and robustness in foggy environments. Compared to
the single optical modal input, the accuracy is 5.9% higher and rCD is 36.18% lower. From
Figure 9, we can observe that our model is capable of classifying edges of the cars robustly
in dense fog.
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Figure 8. Radar plot visualization of the ablation study results. The first in top two is the classification
result when different modules are integrated into the backbone. The second is about different inputs.
Based on the radar plots regarding CD and rCD, the smaller envelope range is indicative of a model
that is more robust on a fog-corrupted test set.

Figure 9. Comparing the LCC results across different corruption levels. 1st column displays the clean
image and ground truth. Others are images with fog of various severity levels, accompanied by the
corresponding semantic labeling result. From left to right, the fog intensity increases gradually.
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6. Discussion

To further elucidate the model robustness, we select some existing SOTA methods
to conduct a comparison experiment on the Potsdam dataset. Models in the experiment
can be grouped into CNNs and Transformers. Specifically, CNN-based models contain
FCN [5], UNet [6], PSPNet [12], DeepLabV3+[13], CCNet [43], OCRNet [44], TRM [15], and
Transformer-based models include SETR [27], Segmenter [45], and Segformer [28]. To en-
sure that models in the experiment have comparable parameters, we adopt ResNet101 [35]
as the backbone for FCN, UNet, PSPNet, DeepLabV3+, and CCNet. TRM, OCRNet, and
our framework are built on top of HRNet-W48 [4]. Encoder backbones selected for SETR,
Segmenter, and Segformer are DeiT-B [46], DeiT-B, and MiT-B5 [28], respectively. Thus,
the parameter of each model is around 70–90M in size. To utilize multimodal data, we stack
the optical and DSM inputs in the channel dimension for all models excluding ours.

Results obtained from Figures 10 and 11 and Table 8 show that Transformers perform
better compared to CNNs on the clean test set with comparable sizes. However, the robust-
ness of most ViTs is significantly reduced on the fog corrupted test set, with the exception of
Segformer. There is a coarse classification of cars and edges in the box regions. Multimodal
fusion allows our model to precisely learn the hierarchical features of inter-modal and the
relationship between neighboring objects and the global. In this way, edges and interiors
can be accurately classified. Compared to our previously proposed algorithm TRM, the ac-
curacy and robustness LCC have been improved as a result of SSRL and MRFM, which
enhance the ability to capture semantic information in low-quality images with a more
effective data fusion approach. Specifically speaking, the F1score on the corrupted dataset
improved by 1.3%, while there is a reduction of over 3% on both CD and rCD.

Clutter/Background Building Low Vegetation Car Tree Impervious 
surfaces

Figure 10. Qualitative comparisons between different methods applied to semantic segmentation of
RSIs. The optical image is corrupted by the third severity level of fog.
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Clutter/Background Building Low Vegetation Car Tree Impervious 
surfaces

Figure 11. Qualitative comparisons between different methods applied to semantic segmentation of
RSIs. The optical image is corrupted by the fourth severity level of fog.

It can be concluded from Tables 8–10 that performance on the clean and fog corrupted
test set varies significantly with regard to different models, whereas CD and rCD results are
generally stable. ViTs perform better than CNNs on the clean test set (Segformer is 0.31%
better on the Mean F1score and 0.71% better on OA), which can be attributed to the capability
of capturing global information. However, in terms of robustness, CNNs represented by
OCRNet are stronger than the best-performing ViTs (OCRNet’s CD decreased by 0.36% and
rCD decreased by 2.23% in the mean F1score compared to Segformer), which is attributable
to the fact that ViTs require more sophisticated training strategies with data augmentation.
We are able to achieve a balance between accuracy and robustness compared to several
SOTAs, as shown in Figure 12, where our model encircles a relatively smaller area (CD
decreases by 3.96% and rCD decreases by 2.87% on OA compared to OCRNet). The balanced
classification result of each class also reflects the robustness. This illustrates the effectiveness
of the proposed framework in generalizing and handling with class imbalance.

Figure 12. Radar plot for the robust performance of several SOTAs on the Potsdam test set. The enve-
lope area of a robust model should be small and balanced. Although ViTs can boost the performance,
CNNs manifest stronger robustness compared with ViTs.
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Table 10. Quantitative evaluation of rCD on clean and fog corrupted variants of Potsdam test set
about different SOTA methods. FCN is regarded as the reference and values lower than 100%
represent an improvement in the robust performance compared to the reference. The minimum in
each column is in bold.

Method
rCD for Per-Class F1score (%)

Mean rCD (%) rCD for OA (%)
Imp Surf* Building Low Veg* Tree Car

FCN [5] 100.00 100.00 100.00 100.00 100.00 100.00 100.00
UNet [6] 85.18 81.12 96.53 79.33 78.30 83.55 88.63

PSPNet [12] 90.38 90.93 93.76 83.52 84.89 88.49 94.55
DeepLabV3+ [13] 72.50 79.01 67.30 73.48 80.03 74.85 65.02

CCNet [43] 86.37 90.35 89.48 76.52 86.83 85.92 84.85
OCRNet [44] 63.43 65.93 69.75 72.16 64.25 66.76 52.27

SETR [27] 57.96 86.97 101.64 75.14 93.77 82.21 66.36
Segmenter [45] 80.44 77.06 96.85 70.95 88.47 82.55 59.79
SegFormer [28] 63.89 65.30 88.72 73.04 59.96 68.99 54.85

TRM [15] 61.74 57.17 91.62 72.71 61.69 67.74 53.21
Ours 64.52 62.18 88.72 73.76 54.13 67.31 49.40

7. Conclusions

This study set out to design a robust model for LCC. The framework utilizes multi-
modal fusion and attention mechanisms to achieve a robust segmentation of RSIs in foggy
conditions. We transfer heterogeneous data into HRNet, which serves as the backbone to
maintain the high-resolution representation. Incorporating MRFM into the framework can
exploit cross-modal complementary fusion. SSRL is deployed for exploring the correlations
between different channels and positions. Unified loss helps to mitigate class imbalance
issues. Multiple experiment analyses reveal that the proposed model has superior robust-
ness on the fog-corrupted Potsdam and Vaihingen test sets. In addition, this study has also
confirmed that in terms of robustness, ViTs are often inferior to CNNs in the presence of
natural noises. Overall, this study highlights the importance of multimodal fusion and
attention mechanisms for enhancing segmentation robustness. Our future research plans to
investigate this topic further by combining ViTs with more fundamental attributes of RSIs.
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Abbreviations

The following abbreviations are used in this manuscript:

RSIs Remote Sensing Images
NSIs Natural Scene Images
LCC Land Cover Classification
SSRL Spectral and Spatial Representation Learning
MRFM Multimodal Representation Fusion Module
DSM Digital Surface Model
SOTA State Of The Art
CNN Convolution Neural Network
ViT Visual Transformer
TOP True Ortho Photos
GSD Ground Sampling Distance
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OA Overall Accuracy
CD Corruption Degradation
rCD Relative Corruption Degradation
GT Ground Truth
ISPRS International Society for Photogrammetry and Remote Sensing

Appendix A

Table A1. Experiment Environment.

Software Software Version Hardware Hardware Version

CUDA 10.2 CPU i7-5930K CPU @ 3.50 GHz
cuDNN 7.6 GPU 2 × Titan XP(12G)
Pytorch 1.7 RAM 64 GB
Fast.ai 2.2.2 HARD DISK Toshiba SSD 2T
Wandb 0.1.20 SYSTEM Ubuntu 18.0.4
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Abstract: Atmospheric turbulence-degraded images in typical practical application scenarios are
always disturbed by severe additive noise. Severe additive noise corrupts the prior assumptions
of most baseline deconvolution methods. Existing methods either ignore the additive noise term
during optimization or perform denoising and deblurring completely independently. However,
their performances are not high because they do not conform to the prior that multiple degradation
factors are tightly coupled. This paper proposes a Noise Suppression-based Restoration Network
(NSRN) for turbulence-degraded images, in which the noise suppression module is designed to
learn low-rank subspaces from turbulence-degraded images, the attention-based asymmetric U-NET
module is designed for blurred-image deconvolution, and the Fine Deep Back-Projection (FDBP)
module is used for multi-level feature fusion to reconstruct a sharp image. Furthermore, an improved
curriculum learning strategy is proposed, which trains the network gradually to achieve superior
performance through a local-to-global, easy-to-difficult learning method. Based on NSRN, we achieve
state-of-the-art performance with PSNR of 30.1 dB and SSIM of 0.9 on the simulated dataset and
better visual results on the real images.

Keywords: noise suppression deblurring; curriculum learning; image reconstruction; turbulence
degradation

1. Introduction

Under long-range imaging conditions such as ground-based space-target imaging
and long-range air-to-air and air-to-ground military reconnaissance imaging, the captured
images are always affected by atmospheric turbulence [1]. Restoration of these degraded
images into sharp images requires efficient post-processing. It is generally believed that due
to the long distance and the uncontrollable imaging environment, atmospheric turbulence
degradation is a coupled degradation process with multiple factors [2]. Imaging is not only
affected by turbulence blur caused by atmospheric turbulence [2–7], but also by motion
blur caused by the relative motion of the camera [8,9] and defocus blur caused by lens
aberration [10] during exposure. Moreover, the images are also disturbed by severe additive
noise [2]. Therefore, the core problem of the restoration of images degraded by atmospheric
turbulence is image deblurring in the case of noise interference.

Image deblurring, which is essentially the process of obtaining a potentially sharp
image, has been addressed in several ways. Deblurring methods can be classified into
blind deblurring [11,12] and non-blind deblurring [13,14] depending on whether the blur
kernel is known. Non-blind deblurring requires prior knowledge of the blur kernel (point
spread function) and blur parameters. However, in practical applications, the point spread
function (PSF) cannot be obtained, and a single blurred image is usually the only input data
obtainable. Therefore, in practical applications, blind deblurring is much more common
than non-blind deblurring.

Traditional blind deblurring methods usually represent the blurring of the entire image
as a single, unified model. The standard procedure for these methods is to estimate the blur
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kernel before non-blind deconvolution. Regularization priors [15,16] need to be introduced
in this process due to the ill-posed nature of the problem. A popular approach is to add
image priors such as sparse priors [17–20], Principal Component Analysis (PCA) [21], and
gradient priors [22–24] in a MAximum Posterior framework (MAP). This method usually
uses iterative alternating steps to complete the optimal solution of the equation. The first
step estimates blur kernels, and the second step estimates potentially sharp images. Since
the assumption based on traditional methods has deviated from the actual scene prior,
these methods can only be applied to the restoration of single-mechanism-degraded and
less degraded images (such as motion blur). In practical applications, images, especially
turbulence-degraded images, are often affected by various degradation factors. Therefore,
the above methods have difficulty achieving the expected effect.

It is difficult to design a regularization prior that is suitable for practical application
scenarios and that can be optimally solved. Therefore, the use of deep neural networks
to learn the intrinsic features of images from degraded images and to use these features
to reconstruct sharp images has become a research hotspot in recent years, with grati-
fying results in practical application scenarios [2,25,26]. Such methods usually require
designing an End-to-End (E2E) deep neural network model, which can be divided into
two parts. The first part is an encoder for learning features from degradation, while the
second part is a decoder for reconstructing sharp images [27,28]. Most existing neural
network-based methods can only deal with a single mode of degradation, such as image
de-moiré [29], denoising [30,31], JPEG artifact removal [32], deblurring [33–35], etc., or use
only one model to complete the restoration of multiple single-mode degraded images [26].
However, degraded images in atmospheric turbulence environments are often affected
by the coupling of various degradation factors, especially severe additive random noise,
which greatly increases the sample space dimension of the input data. As the intensity of
the noise increases, the performance of the above neural network-based methods decreases.
Therefore, the impact of noise on the model has received more and more attention in the
industry [36–38]. The denoiser prior [36,37] is an efficient solution to this problem and is
split into two independent subtasks: denoising and deblurring.

We consider turbulence degradation to be a coupled degradation of multiple factors
that are difficult to be decoupled individually [38]. Based on this idea, we propose a Noise
Suppression-based Restoration Network (NSRN) for turbulence-degraded images that
consists of a shallow feature extraction module, a noise reduction module, an asymmetric U-
NET network, and a sub-network for image reconstruction. The noise suppression module
is designed to learn low-rank subspaces from turbulence-degraded images. The attention-
based Asymmetric U-NET (AU-NET) module is designed for blurred image deconvolution,
and the FDBP is designed to fuse multi-level features for degraded-image reconstruction.
The NSRN is based on the prior that additive noise and blur are tightly coupled and that the
entire network is inseparable. To make the noise suppression module pay more attention
to the removal of additive noise and to overcome the problem that the model is difficult
to train in the case of heavy noise, a curriculum learning strategy (i.e., local-to-global
and easy-to-difficult) is introduced into the NSRN. Therefore, the proposed method has
the advantage of being robust to noise when used for blind deblurring of atmospheric
turbulence-degraded images. The main contributions of this paper are as follows:

(1) For the tightly coupled priors of additive noise and blur, a noise suppression-based
neural network model is designed for restoration of turbulence-degraded images.
It achieves image deconvolution while suppressing additive noise to benefit the
restoration of turbulence-degraded images.

(2) A local-to-global and easy-to-difficult curriculum learning strategy is proposed to
ensure that the proposed neural network first focuses on noise suppression and then
removes blur to achieve the reconstruction of turbulence-degraded images.

(3) A multi-scale fusion module and a non-local attention-based noise suppression mod-
ule are designed and used in the NSRN so that the proposed network denoises
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through multi-scale and multi-level non-local information fusion while preserving
the image’s intrinsic information.

(4) The back-projection idea [39] is introduced and combined with the U-NET for the
final refined reconstruction of the image.

The remainder of this paper is organized as follows. Research related to this paper
is introduced in Section 2. In Section 3, the motivation and rationality of this method are
analyzed from the physical meaning, and the detailed design process of NSRN is given.
In Section 4, the construction protocol of the experimental data and the training method of
the model are introduced, and a comparative experimental analysis of the model is carried
out. Finally, Section 5 summarizes the conclusions of this study.

2. Related Work

Atmospheric turbulence-degraded images have severe noise and random blurring.
The restoration of such degraded images is still a very difficult problem [40,41]. In this
section, we introduce previous work related to the solving of this problem.

2.1. Model-Based Image Restoration

A model-based method regards image restoration as the inverse problem of image
degradation and then designs the restoration and optimization objective function through
the degradation model of the image. To obtain the objective function, these methods guide
the maximum a posteriori probability through some assumed priors, such as incident light
and reflectance regularizer [15], sparsity and gradients [16–18,22–24], group sparsity, and
low-rank priors [42]. In particular, the method proposed in [43] simultaneously considers
both internal and external non-local self-similarity priors to offer mutually complementary
information. Plug-and-Play (PnP) regularization [44–46] has been a hot research topic in
recent years. In PnP regularization, proximal mapping of the Alternating Direction Method
of the Multiplier (ADMM) algorithm can be regarded as a single denoising step and used
as an off-the-shelf denoiser [47] for image reconstruction [44]. In [45], a tuning-free PnP
approximation algorithm is proposed that can automatically determine internal parameters
such as penalty parameters, denoising strength, and termination time. PnP has achieved
great empirical success; however, its theoretical convergence is not fully understood even
for the simple linear denoiser [46].

2.2. End-to-End CNN-Based Methods

The powerful representation learning ability of a Convolutional Neural Network
(CNN) can be exploited to learn intrinsic features in degraded images, and then the restored
images can be reconstructed by these intrinsic features [2,25–28,30,48–50]. Gao et al. [2]
developed a stacked encoder–decoder for single-frame image restoration and adopted a
curriculum learning strategy to ensure the convergence of the network. Chen et al. [28,38]
developed a noise suppression module to address the restoration of images disturbed by
severe noise. In [30], residual learning was used to remove multiple types of noise and to
obtain more detailed information. In [48], CNN was used for text-image deblurring for the
first time. An encoder–decoder network with symmetric skip connections proposed for
image restoration in [49]. Based on regional similarity, a region-based restoration algorithm
named path-restore was proposed in [27]. An Attention-guided Denoising convolutional
neural Network (ADNet) [31] is a model that can be used for the restoration of images
degraded by multiple factors. MemNet [50] is an extended memory model that effectively
utilizes multi-layer features for image restoration. Attention mechanisms have also been
successfully applied to image restoration [25,26].

2.3. Plug-and-Play with Deep CNN Denoiser

Recent work reports the state-of-the-art performance of PnP-based algorithms using
pre-trained deep neural networks as denoisers in many imaging applications. Zhang et al.
trained a set of fast and efficient CNN denoisers and integrated them into a model-based
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optimization method to solve other inverse problems [37]. They further trained a highly
flexible and efficient CNN denoiser and plugged it in as a module in an iterative algorithm
based on semi-quadratic splitting to solve various image restoration problems [36]. In the
Multiple Self-Similarity Network (MSSN) model [51], a recurrent neural network-based
PnP denoising prior is designed, and self-similar matching is performed using a multi-head
attention mechanism. A prior-based deep generative network was proposed in [52] for
nonlinear blind image deconvolution. The Denoising Prior-driven Deep Neural Network
(DPDNN) [53] is a denoising-based image restoration algorithm whose iterative process is
expanded into a deep neural network consisting of multiple denoising modules interleaved
with back-projection modules to ensure consistency of observations.

Traditional PnP-based algorithms have high computational and memory requirements
and are not suitable for large-scale environments. Thus, an incremental variant of the
widely used PnP-ADMM algorithm was proposed in [54]; it can be used in environments
involving a large number of measurements. To ensure the convergence of the resulting iter-
ative scheme obtained by PnP-based methods, an enhanced convergent PnP algorithm [55]
has been proposed. Moreover, the rank-one network [56] is an efficient image restoration
framework that combines traditional rank-one decomposition and neural networks. Al-
though PnP ADMM has proven effective in many applications, it requires manual tuning
of some parameters and a large number of iterations to converge [57]. Furthermore, PnP is
a non-convex framework for which current theoretical analysis is insufficient even for the
most basic problems such as convergence [58].

3. Proposed Method

3.1. Motivation

Most of the existing reconstruction algorithms for turbulence-degraded images are
based on an ideal image degradation model for which the image is degraded by blur and
additive noise, expressed as:

f (x, y) = g(x, y) ∗ h(x, y) + n(x, y), (1)

where g(x, y) is the original image before degradation, f (x, y) is the observed image, ∗
is the convolution, h(x, y) is the PSF of atmospheric turbulence, and n(x, y) is the noise
function and is usually set to be Gaussian white noise. However, real-space target images
are affected by various degradation factors such as turbulence blur, out-of-focus blur,
and atmospheric noise. This multi-factor coupling degradation can be expressed as [2]:

f (x, y) = O(g(x, y) ∗ h(x, y) ∗ k(x, y) + ζ(x, y)) + n(x, y), (2)

where ζ(x, y) is the noise during the transmission of a given target image in space, h(x, y)
is the PSF of atmospheric turbulence, k(x, y) is the PSF of the disturbance, n(x, y) is the
sensor system noise, and O(·) is adaptive optics correction. It can be seen that the space
target image is affected by atmospheric turbulence blur and various noises. These factors
are overlapping and coupled and cannot be simply expressed as a linear combination
relationship. Therefore, the degradation of the coupling of multiple factors is the most
important feature of the spatial target image, which makes restoration of the spatial target
image more difficult.

The PnP method considers that the degradation factors of the image include noise-free
degradation and additive noise [36]. The restored model is expressed as:

ĝ = arg min
g

1
2
‖ f − τ(g)‖2 + λR(z) +

μ

2
‖z − g‖2. (3)
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The solution of this equation can be decomposed into the following two alternate
iterative steps by half-quadratic splitting [59]:

gk = arg min
g

‖ f − τ(g)‖2 + μ‖g − zk−1‖2

zk = arg min
z

μ

2
‖z − gk‖2 + λR(z) ,

(4)

where τ(·) represents a two-dimensional convolution, z is the auxiliary variable, and μ
and λ are the penalty parameters, respectively. Thus, in Equation (4), the first term is
deblurring, and the second term is additive noise removal. Therefore, the preconditions
for this method to be effective are that the degradation process of the image conforms to
Equation (1), and the noise level in each iteration is known. Directly training an E2E deep
neural network is an easy solution to solve the image restoration problem of the degraded
model described by Equation (2). However, for this type of method, our studies [2,28,38,60]
and related studies [61] all show that E2E-based methods have great difficulty in model
training, and the restored images are visually unnatural and prone to artifacts.

Our motivation is to solve the multi-factor-coupled degraded image restoration prob-
lem by combining these two ideas and exploiting their advantages. We tried training deep
deblurring neural networks with multi-task regularization and achieved good restoration
results, as reported in [62]. In this paper, we design a deep neural network with two
modules of denoising and reconstruction to restore severely degraded images. Our method
incorporates the task decomposition idea of PnP and reduces the difficulty of the problem
by decomposing complex tasks into sub-tasks, which makes the proposed method both
have the advantages of E2E and avoid the assumption that multiple degeneracy factors
need to be linearly separable. Further, multi-factor weak decoupling is achieved through
regularization constraints to better restore complex degraded images.

3.2. Proposed Network Model

Instead of trying to express the reconstruction of blur-degraded images as an analytical
expression, we design a network model for turbulence-degraded image reconstruction
based on the fact that the degradation of multi-factor coupling is inseparable, as shown in
Figure 1. The main components of the proposed model include a Multi-Scale Denoising
Block (MSDB), a Self-Attention Dense connection Block (SADB) for suppressing noise and
preserving more detailed information, and an attention-based asymmetric U-NET module.
In this way, the intrinsic features of the image can be extracted from the coupled degraded
image by the model, and the image can be reconstructed using these intrinsic features.
Further, two FDBPs are used to fuse these intrinsic features and reconstruct sharp images.
The proposed restoration reconstruction model can be expressed as:

f̂ = F2(F1(R(SM( fp)⊕ SA( fp)⊕ fp) + fp) + fp) (5)

CAT CAT CAT

Input Image Output Image

3x3 CONVMSDB

SADB U-NET1x1 CONV

FDBP

Figure 1. The proposed deep neural network model for the reconstruction of turbulence-degraded images.

Here, f̂ is the reconstructed sharp image, fp represents the result of the front-end
preprocessing of the input-degraded image, SM(·) represents MSDB, SA(·) represents
SADB, R(·) is for AU-NET, and F(·) is for FDBP. The proposed model first performs shallow
feature extraction and denoising on the input image, and then the fused features are used as
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the input of U-Net. To ensure the reconstructed image has the same information distribution
as the original one, this paper uses long skip connections to pass shallow features to the
refined reconstruction layer. Thus, the entire model is still an E2E deep convolutional neural
network. To make MSDB and SADB in the model mainly focus on removing image noise
while the rest of the modules focus on image deblurring, a curriculum learning strategy
from local-to-global learning is introduced. For details, see Section 3.3.

3.2.1. MSDB

The main task of this module is to achieve noise suppression by extracting multi-
degree features from noisy images and reconstructing noise-free image features. As shown
in Figure 2, the encoder of MSDB consists of two multi-scale convolutional layers, each of
which consists of three-scale convolutions with kernels of 3× 3, 5× 5, and 7× 7, respectively.
The extracted multi-scale features are connected and then passed through a dimensionality
reduction fusion layer with a convolution kernel of 1 × 1 to obtain the high-level features
of the degraded image. The decoder of MSDB consists of four dilated convolutional layers,
and each dilated convolution is followed by ReLU activation and batch normalization.
Dilated convolution has shown good performance in image denoising [62] because it is
more beneficial to use contextual information to reconstruct sharp images, and it can
increase the receptive field while avoiding the loss of downsampling information. The scale
factors of the four dilated convolutional layers of MSDB are 1, 2, 2, and 1, respectively.

CAT CAT

3x3 CONV

5x5 CONV 1x1 CONV

CAT

Dilat CONV

7x7 CONV BNReLU

Figure 2. The MSDB in the NSRN model.

3.2.2. SADB

The idea of non-local was used in image denoising in BM3D [47] with remarkable
success. To this day, the latest state-of-the-art methods still use non-local as a basic strat-
egy [37,51]. The randomness of noise makes it easier to achieve noise removal by collab-
orative filtering of correlated regions. In our designed SADB, the self-attention mecha-
nism [63,64] is introduced to realize non-locality. As shown in Figure 3, given an input
tensor X = (H, W, C), two 1 × 1 convolutions in parallel are used to change its shape to
(HW, C) and (C, HW). Then, multiply these two matrices to get the (HW, HW) matrix
and use the softmax activation to get the weighted (HW, HW) matrix. Then, multiply the
feature (C, HW) matrix with the weighted (HW, HW) matrix to get the (C, HW) matrix.
After changing its shape to (H, W, C), it is added to the initial feature map, and finally,
the feature map with weight redistribution is obtained. Non-local attention can be ex-
pressed as:

x̂i = wsoftmax(< wxi · wxj >)(wxi) + xi (6)

where x is the input feature, x̂ is the feature after non-local attention processing, and
<·> represents the inner product; wx represents a one-dimensional linear embedding,
implemented in this work by a convolution of 1 × 1.
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Figure 3. The SADB in the NSRN model (⊗ denotes matrix multiplication, and ⊕ denotes element-
wise addition).

Almost all denoising methods are based on the prior assumption that noise is high-
frequency and sparse. Therefore, these algorithms tend to blur the image while removing
noise. In the proposed SADB, the dense connection is adopted to solve this problem. SADB
takes the weighted feature map as an input and passes it to each subsequent convolutional
layer in turn, and dense transmission is also performed between the convolutional layers.
This allows the feature map information to flow efficiently, which not only avoids the
vanishing gradient but also reduces the depth of the network and allows the network to
converge faster. The proposed SADB can better utilize the context information of each layer
and retain more image details while removing noise.

3.2.3. AU-NET

Noise-suppressed feature maps are obtained after MSDB and SADB. To further extract
effective features from degraded images and reconstruct a sharp image, an attention-
based asymmetric U-Net is designed. It uses dilated convolution and batch normalization
techniques in the first two layers of encoders to further suppress high-frequency noise in
feature maps. Further, under the constraint of the loss function, the encoder has greater
modeling ability, which means that its encoding efficiency is higher, and the encoded
features are beneficial to the output of the decoder. Further, we use a channel attention
mechanism to assign weights to the outputs of the encoder and decoder so that the features
of the outputs are more beneficial to the subsequent reconstruction work.

To reduce the information loss caused by fixed downsampling and upsampling, a con-
volution with stride two is used for downsampling, and a transposed convolution is used
for upsampling. Compared with the widely used pooling and interpolation, convolution
not only achieves the same downsampling and upsampling effect but also makes the
whole process learnable, especially when using the backpropagation algorithm to learn
more accurate parameters. Furthermore, the corresponding encoders and decoders are
connected by skipping to make the information flow better from shallow layers to deep
layers, avoiding a vanishing gradient. Due to the use of noise-reduction processing in the
encoding stage and the channel attention mechanism used at the end of encoding and
decoding, the entire structure is no longer symmetric, so it is called an attention-based
asymmetric U-Net, as shown in Figure 4.

Skip Connection
3x3Conv

r=2 dilated Conv

strided Conv

trans Conv

channel Attention

Figure 4. The attention-based asymmetric U-Net in the proposed model.
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3.2.4. FDBP

The reconstruction of AU-Net is based on high-level features, and there is a potential
risk of insufficient reconstruction of detailed texture information. To enhance the presenta-
tion ability of the network and restore clearer images, an FDBP is designed. Back-projection
has been successfully applied in image super-resolution tasks [39], where it has been shown
to have good reconstruction capabilities for texture details. Inspired by it, we design FDBP,
which projects high-resolution features into low-resolution space through a downsampling
unit, then projects low-resolution features into high-resolution space through an upsam-
pling module, and finally guides network learning by the error between the old and new
high-resolution features. The main operations in our designed FDBP are defined as:

up sample : xl = (xl−1 ∗ kl)↑s, (7)

down sample : xl = (xl−1 ∗ kl)↓s, (8)

residual : el = x1 − xl−1, (9)

up residual sample : xl = (xl−1 ∗ kl)↑s, (10)

output : xl = x0 + xl , (11)

where x0 represents the feature after convolution of the input, and x ∗ k is the convolution
of 3 × 3. To enhance the flow of information and keep the reconstructed features consistent,
we use two FDBP operations. The FDBP module we designed is shown in Figure 5 and can
capture multi-scale context information well and downsample the feature map to a small
space to save memory and speed up network training.

3x3Conv
Skip Connection

residual

down sample up sample up residual sample output

Figure 5. The FDBP for reconstruction in the model.

3.3. Curriculum Learning Strategy

Due to the randomness of various types of noise, the spatial dimension of the samples
of multi-factor-coupled degraded images is very large, and its representation learning
is very difficult. Therefore, a complex neural network needs to be designed to achieve
its restoration. In such cases, due to the complexity of the problem and the scale of
the parameters, the learning difficulty of the neural network is increased. Curriculum
learning [65–67] is considered an effective way to address this problem. Aiming at the
difficulty of multi-factor-coupled image restoration, a systematic curriculum learning
strategy from local-to-global network and from easy-to-difficult data learning is designed.

3.3.1. Local-to-Global Network Learning

Multi-task decomposition is helpful to reduce the difficulty of the restoration of multi-
factor-coupled images. Although the restoration of turbulence-degraded images is difficult
to simply decompose into multiple independent tasks [60], we design the NSTR neural
network based on the weak assumption that images are mainly affected by additive noise
and turbulence blur. Since MSDB and SADB are primarily good at noise suppression, these
two modules are trained separately. First, a new training set is constructed by adding
Gaussian noise and Poisson noise to the blurred images, and the blurred images without
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noise are used as labels. Then, the output components are plugged into MSDB and SADB,
respectively. Finally, MSDB and SADB are pre-trained to obtain weight parameters.

After completing the training of MSDB and SADB, their weights are transferred to
the overall network model. This transfer learning strategy enables NSRN to have a certain
ability to suppress noise from the beginning. To preserve the noise suppression ability
of MSDB and SADB in the overall training of NSRN, the learning rate should be set to
a small value. In our experiments, the overall learning rate is set to 0.1. By fine-tuning
the learning rate, the proposed network not only maintains noise suppression effectively
but also focuses a lot of attention on image deconvolution reconstruction. This kind of
curriculum learning strategy of first local and then global features not only reduces the
learning difficulty of the whole model but also avoids strict task decomposition.

3.3.2. Easy-to-Difficult Data Curriculum Learning

The main reason for the difficulty in restoring turbulence-blurred images is the high
dynamics of turbulent flow, which results in a large spatial distribution of samples. We
find it extremely difficult to train the network directly with severely turbulence-degraded
images. Therefore, the easy-to-difficult learning strategy is used to train the NSRN network.
By setting the value of the atmospheric coherence length r, data with different degrees
of blur can be obtained. In this paper, three r values are used to obtain data with mild,
moderate, and severe blur, respectively. First, initial network training is performed via the
weight initialization method provided by He [68], and then the network is sequentially
trained using datasets with varying degrees of blur from mild to severe. After the mild
set converges, its weights are saved and used for weight initialization for training on the
blurrier datasets. Through this easy-to-difficult training strategy, the proposed network
can eventually learn more complex mappings and achieve better results.

NSRN uses the L1 loss function for training. The inputs to train the local modules
MSDB and SADB are noisy blurred images, and the labels are blurred images without noise.
The input to train the entire model is degraded images, and the labels are sharp images.
The loss function in the network can be formulated as:

L(Θ) =
1
N

N

∑
i=1

‖ŷ − y‖1, (12)

where ‖·‖1 can restore better texture information. PyTorch was used to implement the
proposed network model, and the whole network was trained using GTX 1080Ti under
Ubuntu 16. The image block size used for training is 32 × 32, and the default setting for the
batch size is 64. Since the input and output images of the network have the same resolution,
any image resolution can be used in testing. To make the network converge faster, a learning-
rate decay strategy is used; that is, the initial learning rate is set to 0.001 and decays to 0.5 times
the previous learning rate every 50 epochs. Overall training used 250 epochs. A Mean
Squared Error loss function (MSE) is used, and the Adam optimizer is used to constrain
gradient descent. The learning algorithm of the proposed NSRN is shown in Algorithm 1.
The experimental convergence curve of Algorithm 1 is shown in Figure 6. The restoration of
mildly degraded images is less difficult, and the model converges well. As shown in Figure 6a,
both training accuracy and validation accuracy converge to better positions. Both moderate
degradation and severe degradation converge to low error levels due to the curriculum
learning strategy (see Figure 6b,c). In moderate degradation, the validation curve indicates
slight overfitting. In severe degradation, the validation curve indicates oscillation at the
beginning and convergence after 125 epochs. The training time is 8.5 min/per epoch. When
the test image size is 384 × 384 pixels, the inference time is 0.24 s/frame.
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a b c

Figure 6. Convergence curves: (a) mildly degraded; (b) moderately degraded; and (c) severely degraded.

Algorithm 1 Systematic curriculum learning algorithm for NSRN
Require:

B: number of MSDB and SADB training;
D = {D1, D2, Dn}: NSRN training set;
w0:weight initialization.

Ensure:
NSRN(w): parameters of NSRN.

1: Begin:
/* local-to-global learning */

2: MSDB learning: sm(ws) = Sm( fp(B)), where ws is the parameter of MSDB
3: SADB learning: sA(wA) = SA( fp(B)), where wA is the parameter of SADB

/* easy-to-difficult learning */
4: Initialize MSDB in NSRN with ws
5: Initialize SADB in NSRN with wA
6: for each Di do
7: NSRN learning: NSRN (wi) = F2(F1(R(SM( fp)⊕ SA( fp)⊕ fp) + fp) + fp)
8: end for
9: Initialize NSRN with wn

10: Train NSRN with all training data D
11: Output: NSRN

4. Experiments and Discussions

4.1. Dataset

There are few public real-space target images, and ground-truth labels of degraded
images are also difficult to obtain. Therefore, degraded image simulation is used to
obtain training data to verify the effectiveness of the proposed method. The 3D models
used to obtain images of simulated space objects are from STK (Satellite Tool Kit) [69],
which provides various satellite models and turbulence degradation models. The reflected
sunlight of space objects is refracted by atmospheric turbulence, which makes the images
observed by ground-based telescopes blurred. This turbulence blur can be represented by
the following model [28].

h(u, v) = e{−3.44( λ f U
r )

5/3} (13)
where U =

√
u2 + v2 is the frequency, (u, v) is the unit pulse, λ is the wavelength, f is the

optical focal length, and r is the atmosphere coherence length. It can be seen that the larger
the r, the stronger the atmospheric motion and the blurrier the image. Therefore, different
degrees of turbulence blurred images can be generated by changing the size of r.

To obtain more diverse training data, clear satellite images with different attitude an-
gles are obtained by rotating the 3D satellite model from STK. The acquired images are data-
enhanced, including rotating 90, 180, and 270 degrees and flipping horizontally and verti-
cally. Images are then blurred using the atmospheric turbulence long-exposure degradation
function shown in Equation (13). By setting different r values in [0, 0.02], blurred image
datasets with three levels contained in three subsets—mildly degraded (r ∈ [0.005, 0.01)),
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moderately degraded (r ∈ [0.005, 0.015)), and severely degraded (r ∈ [0.005, 0.02])—can be
obtained. During atmospheric turbulence imaging, the turbulence blurring is also mixed
with photon noise, dark noise, reset noise, and readout noise. These noises mainly obey
Gaussian and Poisson distributions, so we add Gaussian noise and Poisson noise to the
blurred image. The value range of the parameter of Gaussian noise is [35, 42], and the
value range of the parameter of Poisson noise is [4, 7]. The real degradation model is
expressed as:

f (x, y) = g(x, y) ∗ h(x, y) + n(x, y) + p(x, y), (14)

where f is the observed image, g is the original image, h is the PSF atmospheric turbulence,
n represents Gaussian noise, and p represents Poisson noise. To ensure the generalization
ability of the model and encourage the restoration model to learn the blur degradation
mode and the corresponding restoration mode, we adopt the strategy of training on small
images and verifying and testing on large images.

We cut the image at 20-pixel intervals to generate 32 × 32 image patches and then
discarded samples in which more than 90% of the patches were black background area,
resulting in 117,300 image patches for training the model. Some of the generated training
samples are shown in Figure 7. A total of 56 large images that are not used to for the
training set are used as the test set, and some test samples are shown in Figure 8. We
also collected 17 real-world turbulence-degraded images from public sources as a test set,
as shown in Figure 9. Detailed information about the dataset is show in Table 1. The spatial
resolutions of the large images in the table are not uniform, and their ranges is [256 × 256,
1024 × 1024].

Figure 7. Some training data. From left to right: clear; mildly degraded; moderately degraded; and
severely degraded.

Table 1. Composition details of dataset.

Number of Large Images Number of Image Patches

Training set
mild 1358 117,300

moderate 1358 117,300
severe 1358 117,300

Validation set
mild 100 /

moderate 100 /
severe 100 /

Simulated test set
mild 56 /

moderate 56 /
severe 56 /

Real test set / 17 /
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Figure 8. Some simulated data for testing. From left to right: clear; mildly degraded; moderately
degraded; and severely degraded.

Figure 9. Some real-world turbulence-degraded data for testing.

4.2. Metrics for Evaluation and Methods for Comparison

The simulated images have labels, so the performance evaluation of the algorithm can
be carried out by combining subjective methods and objective metrics. For objective metrics,
peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) are used to evaluate
the restoration performance of each algorithm. For subjective metrics, the quality of the
restored image is evaluated by human vision and the reference images. Moreover, for real
images, due to the lack of reference images, only subjective evaluation and no-reference
metrics can be used. In this paper, the no-reference evaluation metrics used are Brenner,
Laplacian, SMD, Variance, Energy, Vollath, and Entropy. The calculation methods of these
no-reference metrics can be found in [70].

Gao [2] conducted extensive analysis on traditional restoration methods for spatial
images. The experimental results show that the traditional methods are not ideal for remov-
ing turbulence blur, so the proposed method is not compared using traditional methods.
To better analyze and evaluate the performance of this method, some representative deep
learning methods are selected for comparative experiments, namely Gao [2], Chen [38],
Mao-30 [49], MemNet [50], CBDNet [48], ADNet [31], DPDNN [53], and DPIR [36]. For ab-
solute fairness, for all comparison methods, we use the parameters given in the original
text and train them with the training set of this paper.
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4.3. Ablation Experiment

Our proposed model (Figure 1) uses an asymmetric U-NET as the backbone. To verify
the effectiveness of the proposed model, an ablation experiment is performed. In this
experiment, the backbone U-NET is named Model1, and Model1 to Model6 are formed
by plugging MSDB, SADB, FDBP, and curriculum learning strategy (TNRS) into Model1,
as shown in Table 2. When training models Model1–Model5, three training subsets with
different blur degrees are directly merged as the final training set. Model6 is trained using
the steps shown in Algorithm 1. The trained model is tested on three different degraded
images; the results of the objective evaluation metric are shown in Table 2, and the partially
restored images are shown in Figure 10.

Table 2. Performance of models with different components (The best results are shown in bold fonts).

Model1 Model2 Model3 Model4 Model5 Model6

U-Net
√ √ √ √ √ √

MSDB
√ √ √ √

SADB
√ √ √ √

FDBP
√ √

TNRS
√

PSNR
mild 29.2092 29.8803 29.8666 30.0160 30.0587 30.1817

moderate 27.9264 28.2895 28.0992 28.2989 28.3944 28.6400
severe 25.9631 27.2224 27.1046 27.6352 27.8129 28.0169

SSIM
mild 0.8889 0.8923 0.8869 0.9001 0.8911 0.9035

moderate 0.8430 0.8649 0.8757 0.8685 0.8701 0.8732
severe 0.7052 0.8363 0.8218 0.8325 0.8341 0.8545

Model1
PSNR:23.50,SSIM:0.55

Model3
(PSNR:23.76,SSIM:0.74)

Model2
(PSNR:23.43;SSIM:0.57)

Model4
(PSNR:24.49,SSIM:0.77)

Model5
(PSNR:24.84,ssim:0.79)

Model6
(PSNR:25.01,SSIM:0.81))

Figure 10. Restoration of severe turbulence blur using different modules (The red boxes represent
the focus region).

It can be seen from Table 2 that: (1) Model1, which only contains the backbone U-NET,
lacked sufficient representation power to learn intrinsic features from degraded images and
reconstruct images well. (2) The PSNR of Model2 obtained by plugging MSDB into Model1
was significantly improved because MSDB enables U-NET to have better global and local
information presentation capabilities. However, the PSNR of Model3 obtained by plugging
SADB into Model1 decreased, but the image details are richer. (3) Model4 was obtained by
plugging MSDB and SADB into Model1. Compared with Model1, Model2, and Model3,
both the PSNR and the SSIM significantly improved in Model4. This is because Model4
has stronger noise suppression performance. (4) Model5, obtained by plugging FBPR
into Model4, obtained more consistent results. (5) Model6 (NSRN) added the curriculum
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learning algorithm to Model5 to train the network. The performance of Model6 was further
improved compared to Model5, which proves that the proposed model does have better
generalization ability, and it is easier to capture the mapping relationship between sharp
images and low-resolution images. Moreover, from the restored images of each model in
Figure 10, the results of Model 6 have the best visual effect, and the edges and textures
are clearer.

4.4. Experiments and Comparative Analysis of Simulated Images

(1) Model for mild degradation
We use the trained model for restoration experiments on test data with mild degra-

dation, and the resulting averages of objective evaluation metrics are shown in Table 3.
It can be seen that for PSNR, Mao, CBDNet, ADNet, DPDNN, DPIR, and the proposed
method all achieve very good results. These methods all have more complex network
models, so they have better presentation ability. For SSIM, DPDNN, DPIR, and our method
have significantly better performance than the remaining methods, which shows that the
method based on noise suppression has a better ability to restore textual details. Compared
to the second-ranked method, our method improves PSNR by 0.16 and improves SSIM
by 0.036. An example set of restored results is shown in Figure 11. It can be seen that for
mildly degraded images, almost all methods achieve better visual effects.

Table 3. Average PSNR and SSIM of different state-of-the-art methods on mild degradation (The best
results are shown in bold fonts).

Methods PSNR SSIM

Gao 27.5423 0.8337
Chen 28.0156 0.8431
Mao 29.3903 0.8387

MemNet 27.8413 0.8295
CBDNet 29.4395 0.8596
ADNet 29.7430 0.8828

DPDNN 30.0122 0.8999
DPIR 29.7316 0.8932
Ours 30.1817 0.9035

Gao
PSNR:24.27,SSIM:0.80

Chen
(PSNR:25.49,SSIM:0.87)

Mao
(PSNR:27.75,SSIM:0.86)

MemNet
(PSNR:25.51,SSIM:0.72)

CBDNet
(PSNR:27.48,SSIM:0.89)

ADNet
(PSNR:28.89,SSIM:0.91)

DPDNN
(PSNR:28.89,SSIM:0.91)

DPIR
(PSNR:28.68,SSIM:0.90)

OUR
(28.78,SSIM:0.91)

Figure 11. Restoration using different state-of-the-art methods on mild turbulence blur (The red
boxes represent the focus region).
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(2) Model for moderate degradation
The test results of all models on the moderately degraded dataset are shown in

Table 4. It can be seen that for PSNR, DPIR, DPDNN, and Mao achieve competitive results.
However, our method has the best performance and is nearly 0.3 higher than the second-
ranked method, indicating that the proposed method does have a strong representation
of learning ability by introducing modules such as FBPR. On SSIM, the best method is
DPDNN, and our method is close to DPDNN. The restoration results of different methods
on a typical moderately degraded image are shown in Figure 12. It can be seen that the
visual effects of images restored by DPDNN, DPIR, Mao, and our method are similar.
However, in contrast, DPDNN has sharper edges in some regions, and our method is
more consistent.

Gao
(PSNR:23.19,SSMI:0.64)

Chen
(PSNR:24.41,SSIM:0.77)

Mao
(PSNR:26.59,SSIM:0.84)

MemNet
(PSNR:25.25,SSIM:0.65)

CBDNet
(PSNR:25.79,SSIM:0.70)

ADNet
(PSNR:26.46,SSIM:0.85)

DPDNN
(PSNR:26.29.SSIM:0.86)

DPIR
(PSNR:26.60,SSIM:0.83)

OUR
(PSNR:26.86,SSIM:0.86)

Figure 12. Restoration using different state-of-the-art methods on moderate turbulence blur (The red
boxes represent the focus region).

Table 4. Average PSNR and SSIM of different state-of-the-art methods on moderate degradation (The
best results are shown in bold fonts).

Methods PSNR SSIM

Gao 25.8558 0.7643
Chen 26.9923 0.8297
Mao 28.3321 0.8446

MemNet 26.4702 0.7480
CBDNet 27.7382 0.7817
ADNet 28.1007 0.8472

DPDNN 28.3600 0.8766
DPIR 28.3519 0.8284
Ours 28.6400 0.8732
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(3) Model for severe degradation
The results of objective evaluation metrics of all restoration models on the severely

degraded image test set are shown in Table 5. It can be seen that our method has obvious
advantages in this dataset: the PSNR is higher than the second-ranked method by nearly
0.2, and the SSIM is higher than the second-ranked method by 0.007. Further, for PSNR,
our method is the only one that exceeds 28. Our method is also the only method that shows
the best performance in both metrics, which shows that for severely degraded images with
severe noise and severe blur, the method that can specifically deal with the noise is more
competitive. The restoration results of different methods on a typical severely degraded
image are shown in Figure 13. From the visual effect, our method restores more texture
details and has obvious advantages.

Gao
(PSNR:23.76,SSIM:0.74)

Chen
(PSNR:24.49,SSIM:0.79)

Mao
(PSNR:25.00,SSIM:0.77)

MemNet
(PSNR:23.50,SSIM:0.55)

CBDNet
(PSNR:0.24.63,SSIM:0.77 )

ADNet
(PSNR:24.39,SSIM:0.63)

DPDNN
(PSNR:24.98,SSIM:0.79)

DPIR
(PSNR:24.52,SSIM:0.79)

OUR
(PSNR:25.01,SSIM:0.81)

Figure 13. Restoration using different methods on severe turbulence blur (The red boxes represent
the focus region).

Table 5. Average PSNR and SSIM of different state-of-the-art methods on severe degradation (The
best results are shown in bold fonts).

Methods PSNR SSIM

Gao 26.7512 0.7934
Chen 27.1416 0.8250
Mao 27.1224 0.8190

MemNet 26.1868 0.7288
CBDNet 27.4253 0.8471
ADNet 27.1676 0.8346

DPDNN 27.8129 0.8431
DPIR 27.6249 0.8376
Ours 28.0169 0.8545
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In general, the proposed method, DPDNN, and DPIR are the most competitive meth-
ods, while the Gao, Mao, and Chen models are too small to represent the huge sample space
spanned by severely degraded images. This shows that a network that can restore heavily
noisy and blurred severely degraded images not only needs sufficient representation ability
but also some mechanism for learning features, such as attention. Moreover, as the model
becomes more complex, the generalization ability and restoration ability of the network
model can be improved by separately processing blur and noise.

To better compare the performance of each algorithm under different noise levels,
an image is randomly selected from the test set and then mixed with different levels of
noise for restoration experiments. As seen in Figure 14, DPIR and our method have similar
performance on SSIM. DPDNN also has good performance when the noise intensity is
greater than 35. Moreover, our method has the best PSNR at almost all noise levels.

a b c

Figure 14. Results of different noise levels: (a) Test image; (b) SSIM; (c): PSNR.

4.5. Experiments and Comparative Analysis of Real Images

The results of the non-reference evaluation metrics of the restoration results obtained
by all the compared methods on real data are shown in Table 6, and the restoration
results on real data are shown in Figure 15. There was still a big difference between the
simulated training data and the real image distribution, and all methods encountered
cross-domain problems. However, under the same conditions, our method is the best in
these numerical experiments and these evaluation metrics. Of course, the reliability of the
no-reference evaluation and the consistency with human vision require further research [24].
The proposed method has a certain enhancement of texture and edges, so metrics such
as upper edge and gradient have weak advantages over other methods. As shown in
Figure 15, due to the weak network representation ability of the methods of Gao [2] and
Mao [49], the restored image is still blurred. The rest of the methods can provide visually
pleasing restoration. The visual effect restored by the method of Chen [38] is close to
our method, indicating that our method has excellent performance for the restoration of
severely degraded images. This is because it treated additive noise and blur degradation
separately and designed special modules to denoise and perform blur deconvolution.

Table 6. Results of non-reference evaluation metrics on real test data (The best results are shown in
bold fonts).

Method Brenner (xe6) Laplacian SMD (xe4) Variance (xe7) Energy (xe6) Vollath (xe7) Entropy

ADNet 27.36 346.52 53.9847 17.477 19.42 17.05 2.58
CBDNet 23.07 310.00 49.80 17.42 16.85 17.06 2.51

Chen 27.62 419.92 56.31 17.57 19.92 17.13 2.68
Gao 24.45 231.94 52.34 17.41 16.53 17.05 2.61
Mao 16.71 220.832 43.61 16.83 12.48 16.58 2.32

MemNet 21.23 314.55 48.71 16.41 15.96 16.08 2.52
Zhang 19.26 242.84 46.14 17.85 13.90 17.55 2.49

DPDNN 15.65 183.75 42.31 16.31 11.29 16.07 2.57
Ours 32.54 493.77 58.98 18.13 23.47 17.61 2.41
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Gao Chen Mao

MemNet CBDNet ADNet

DPDNN DPIR OUR

Figure 15. Restoration using different methods on real turbulence blur (The red boxes represent the
focus region).

5. Conclusions

Atmospheric turbulence-blurred images are usually observed at long distances and
contain severe noise. Therefore, the restoration of atmospheric turbulence-degraded images
includes two tasks: deblurring and denoising. Although deblurring and denoising belong
to the same underlying visual tasks, their internal principles are different. Denoising
removes high-frequency noise in images, while deblurring using deconvolution to obtain
high-frequency information from blurred images. Based on this knowledge, we design
a deep neural network model for the restoration of atmospheric turbulence-degraded
images based on curriculum learning. Noise suppression of degraded images is achieved
by designing a dedicated denoiser without enforcing fully decoupled denoising and de-
blurring. The experimental results demonstrate the effectiveness of our method. However,
the restoration of real turbulence-degraded images is still an open problem. The design of
a GAN [71] model based on the ideas proposed in this paper to improve the restoration of
real images will be the direction and focus of future research.
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Abstract: Sea surface temperature (SST) is one of the most important and widely used physical
parameters for oceanography and meteorology. To obtain SST, in addition to direct measurement,
remote sensing, and numerical models, a variety of data-driven models have been developed with a
wealth of SST data being accumulated. As oceans are comprehensive and complex dynamic systems,
the distribution and variation of SST are affected by various factors. To overcome this challenge and
improve the prediction accuracy, a multi-variable long short-term memory (LSTM) model is proposed
which takes wind speed and air pressure at sea level together with SST as inputs. Furthermore,
two attention mechanisms are introduced to optimize the model. An interdimensional attention
strategy, which is similar to the positional encoding matrix, is utilized to focus on important historical
moments of multi-dimensional input; a self-attention strategy is adopted to smooth the data during
the training process. Forty-three-year monthly mean SST and meteorological data from the fifth-
generation ECMWF (European Centre for Medium-Range Weather Forecasts) reanalysis (ERA5) are
collected to train and test the model for the sea areas around China. The performance of the model
is evaluated in terms of different statistical parameters, namely the coefficient of determination,
root mean squared error, mean absolute error and mean average percentage error, with a range of
0.9138–0.991, 0.3928–0.8789, 0.3213–0.6803, and 0.1067–0.2336, respectively. The prediction results
indicate that it is superior to the LSTM-only model and models taking SST only as input, and confirm
that our model is promising for oceanography and meteorology investigation.

Keywords: sea surface temperature; mutual information; LSTM; self-attention; interdimensional attention

1. Introduction

Sea surface temperature (SST) is the one of the most important and widely used
parameters in the analysis of global climate change. It is also used as boundary conditions or
assimilation information in the analysis of atmospheric circulation anomalies, atmospheric
models, and sea–air coupled models [1]. In addition, SST constitutes important basic data
for aquaculture industry environmental assurance [2].

Although observations of SST have a history of more than 200 years, it was not until
1853 when the Brussels International Conference on Nautical Meteorology decided to start
the collection of global SST data and standardize the organization and analysis of SST
data. In recent decades, SST observation has transitioned through bucket observation
measurements, Engine Room Intake (ERI) observations, ship-sensing observations, and
satellite remote-sensing observations [3]. The uneven spatial and temporal distribution of
observations need to be solved to obtain long-term, accurate global SST information. For
this purpose, the reanalysis takes advantage of data assimilation techniques to integrate SST
data from various sources and types of observations with numerical forecast products [4].
A number of reanalysis products that provide accurate forecasts across broad spatial and
temporal scales have been released. In recent years, there has been a large volume of
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published studies comparing the products from different aspects. In 2013, Baololqimuge
summarized several commonly used SST observation methods and introduced four sets
of SST data including the Hadley Centre Sea Ice and Sea Surface Temperature data set
(HadISST), the International Comprehensive Ocean-Atmosphere Data Set (ICOADS), Ex-
tended Reconstructed Sea Surface Temperature (ERSST) and Optimum Interpolation Sea
Surface Temperature Analysis (OISSTA) in detail [3]. In the same year, Jiang conducted a
comparative statistical analysis of six different SST products [5]. In 2020, Wang compared
the applicability of three sets of reanalysis data around China [6].

The traditional methods for predicting ocean elements are divided into three main
categories: numerical models, artificial experience and statistical prediction [4]. Numerical
models are obtained under parametric conditions for physical processes in the ocean
and are more suited to large sea areas and long-term SST prediction [7]. Furthermore,
the computational requirements for ocean simulations are immense and require high-
performance computing (HPC) facilities [8]. Artificial empirical and statistical prediction
methods are more affected by parameter settings and the degree of human cognition.

Over the years, with the development, launch, and application of a series of satel-
lites for oceanology and meteorology, satellite data have been increasing in magnitude.
Additionally, the improvements in ocean models together with increased computational
capabilities led to a number of reanalysis data [8]. The accumulation of a large amount
of data on marine environmental elements has laid the foundation for data-driven meth-
ods [9]. These models abandon the subjectivity of traditional machine learning that requires
experts to design and create feature extractors through experiments; they automatically
and objectively extract useful information from data. Thus, they bring new opportunities
for intelligent analysis and mining of marine data.

SST prediction can essentially be regarded as a time-series regression problem. The
traditional models for time-series prediction, such as autoregressive (AR), moving average
(MA), the autoregressive integrated moving average model (ARIMA) and the regression
model by machine learning, including support vector regression (SVR) [10], and multi-layer
perceptron (MLP) have been widely used in SST prediction [11]. An atmospheric reflection
Grey model was proposed to predict long-term SST [12]. More recent attention has focused
on the deep learning models, which originated from the artificial neural network (ANN). In
2006, Hinton proposed the concept of deep learning, which promoted the implementation
of a number of deep learning projects [13]. A recurrent neural network (RNN) is a deep
model developed for modeling sequential data [14]. The RNN introduces hidden states to
extract features from sequential data and convert them to outputs. Hochreiter proposed
the long short-term memory (LSTM) model, which introduces the forgetting gate and the
memory gate [15]. In 2017, Zhang first adopted the LSTM model to predict SST. In the
same year, based on the convolutional LSTM (ConvLSTM) model [16], Xu proposed a
sequence-to-sequence (Seq2Seq)-based regional sea level temperature anomaly prediction
model [17]. In 2018, Yang introduced spatial information with the LSTM model to build a
model for SST prediction, and applied it effectively in the SST data set of coastal China [18].
In 2019, Zhu applied the LSTM-RNN to SST prediction and constructed a model for SST
time-series variation in the western Pacific sea area [19]. LSTM was applied to predict SST
and high-water temperature occurrence [2]. The temporal convolutional network (TCN)
was applied to obtain large-scale and long-term SST prediction [20]. LSTM was applied to
short and midterm daily SST prediction for the Black Sea [21].

To date, a number of researchers have attempted to combine different models together
to predict SST. A numerical model is combined with neural networks to predict site-
specific SST [22]. In 2019, Xiao combined LSTM and AdaBoost for medium-and long-term
SST prediction [23]. Later, to fully capture the information of SST across both space
and time, the author combined the convolutional network with LSTM as the building
block to predict SST [24]. He combined the seasonal-trend decomposition using loess
(STL) and LSTM to predict SST [25]. Deep learning neural networks were combined with
numerical estimators for daily, weekly, and monthly SST prediction [7]. To enhance the
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performance, a hybrid system which combines machine learning modes using residual
forecasting was developed [26]. Jahanbakht designed an ensemble of two staked DNNs
that used air temperature and SST to predict SST [27]. To forecast multi-step-ahead SST, a
hybrid empirical model and gated recurrent unit was proposed [28]. Accuracy comparable
to existing state of the art can be achieved by combining automated feature extraction
and machine learning models [8]. Pedro evaluated the accuracy and efficiency of many
deep learning models for time-series forecasting and show LSTM and CNN are the best
alternatives [29].

LSTM has some advantages in sequence modeling owing to its long-time memory
function; it is relatively simple to implement and solves the problem of gradient disappear-
ance and gradient explosion that exists in the long sequence training process. However, it
has disadvantages in parallel processing and always takes longer to train. A transformer,
based on attention mechanisms, was proposed, which is parallelized and can significantly
reduce the model’s training time [30]. Li enhanced the locality and overcame the memory
bottleneck on the transformer for a the time-series prediction problem [31]. Furthermore,
an SST prediction model based on deep learning with an attention mechanism was pro-
posed [32]. A transformer neural network based on self-attention was developed, which
showed superior performance than other existing models, especially at larger time inter-
vals [33]. The degrees of effect on the prediction result of the information at previous time
steps differ; therefore, the addition of an attention mechanism can assign different levels
of attention to the model enabling it to automatically handle the importance of different
information [34].

Inspired by transformer’s self-attention and positional encoding, the main contribu-
tions of this work can be summarized as follows:

1. The determining factors affecting SST distribution and variation, in other words,
the input of the LSTM prediction model, is selected by the correlation analysis of
mutual information.

2. To focus on important historical moments and important variables, a special matrix,
that is similar to the position coding matrix, is obtained by multiplying the multi-
dimensional data by a weight matrix W (where W is obtained by network training).

3. The input data are smoothed using a self-attention mechanism during the training process.

The remainder of this paper is organized as follows. Section 2 first presents the
correlation analysis of SST and meteorological data based on mutual information, and then
describes the proposed model combining LSTM with attention mechanism. The study
area and data sets used, implementation detail, and experimental results are introduced in
Section 3. Validation of the model and comparison of its performance with other models
are presented in Section 4. Finally, Section 5 concludes this paper and outlines future plans.

2. Methodology

The ocean is a comprehensive and complex dynamic system, and many factors affect
the distribution and variation of SST. In the process of multivariate time-series model
building, when the dimensionality of the input variables increases to a certain degree, the
accuracy of parameter estimation decreases, which significantly decreases the prediction
accuracy of the model and generates a dimensional disaster. In addition, the number of
learning samples required for training increases exponentially with the dimensionality,
whereas in practice the samples available for training are often very limited. By contrast,
the model input with an excessive number of irrelevant, redundant, or useless variables,
tends to obscure the role of the important variables eventually leading to poor prediction
results [35].

Therefore, to identify valid inputs for SST prediction models based on deep learning,
it is necessary to analyze the correlation between SST and meteorological and marine
factors that may affect SST distribution and variation. On the one hand, by analyzing
the correlation between input variables and output variables, the relevant variables that
contribute most to the model prediction can be identified. On the other hand, by analyzing
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whether there is some type of dependency between the input variables, redundant variables
can be eliminated.

The present study involves the overall research plan shown in Figure 1. First, we used
reanalysis data to construct a database of marine environmental elements, including SST,
pressure, wind speed, solar irradiation, latitude, and longitude. Then, we perform quality
analysis and corresponding preprocessing according to the analysis result. Because SST is
affected by several factors simultaneously, to build a deep learning model, we determine
the effective input of the model by analyzing the correlation among the influencing factors
based on mutual information. Then, a hybrid model combining LSTM and attention
mechanism is introduced. Subsequently, we evaluate the accuracy of the model for the
surrounding sea areas of China.

 

Figure 1. General flow chart of SST prediction based on a hybrid model combining LSTM and attention.

2.1. Correlation Analysis

In general, correlation is used to describe the closeness of the relationship between
variables. Correlations include asymmetric causal and driving relationships, as well as
symmetric correlations. Among the traditional statistical methods, the Pearson correlation
coefficient, Spearman correlation coefficient, and Kendall correlation coefficient are com-
monly utilized [35]. The Pearson correlation coefficient is used to measure the degree of
linear correlation between two variables and requires the corresponding variables to be
bivariate normally distributed. The Spearman correlation coefficient is used to analyze a
linear correlation using the rank order of two variables; it does not require the distribution
of the original variables and is a nonparametric statistical method [36]. The Kendall corre-
lation coefficient is an indicator used to reflect the correlation of categorical variables and is
applicable to the case where both variables are ordered categorically.

Commonly applied methods of correlation analysis of multivariate data include Cop-
ula analysis, random forest, XGBoost, and mutual information analysis [37]. The definition
of mutual information is derived from the concept of entropy in information theory, which
is often also called information entropy or Shannon entropy. Entropy expresses the degree
of uncertainty in the values of random variables in a numerical form, thus describing the
magnitude of information content of variables.

Based on the definition of probability density of data, mutual information is a widely
used method to describe the correlation of variables. This is because there is no special
requirement for the distribution of data types, and it can be used for both linear and
nonlinear correlation analysis [35].

The information entropy of discrete random variables is defined as

H(x) = −
N

∑
i=1

p(xi) log(p(xi)) (1)

where N is the number of samples and p(xi) is the frequency of xi in the data sets.
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The mutual information of variable X and variable Y is defined as

I(X, Y) =
�

pXY(x, y) log
pXY(x, y)

pX(x)pY(y)
dxdy (2)

where pXY(x, y) is the joint probability density of X and Y, pX(x) and pY(y) are the marginal
probability density of X and Y, respectively.

According to the definition, when two variables X and Y are independent of each
other or completely unrelated, their mutual information equals to 0, which implies that
there is no jointly owned information between the two variables. When X and Y are highly
dependent on each other, the mutual information will be large.

In practical problems, the joint probability density of the variables (X, Y) is usually
not known, and the variables X and Y are generally discrete. Therefore, the histogram
method is commonly used. It discretizes the values of continuous variables by dividing the
bins in the range of variables, putting different values of variables into different bins, then
counting their frequencies, and subsequently performing calculation using the formula of
discrete information entropy. However, determining the range size of each bin is difficult,
and it usually requires repeated calculations to obtain the optimal solution.

Another commonly used method is called k-nearest neighbor estimation, which was
first proposed in 1987 [38]. In 2004, the mutual information calculation method for comput-
ing two continuous random variables was proposed [39].

I(1)(X, Y) = ψ(k)− 〈
ψ(nx + 1) + ψ

(
ny + 1

)〉
+ ψ(N) (3)

I(2)(X, Y) = ψ(k)− 1/k − 〈
ψ(nx) + ψ

(
ny
)〉

+ ψ(N) (4)

where 〈〉 is the mean value symbol and ψ is the Digamma function calculated by the
following iterative formula

ψ(1) = −0.5772516
ψ(x + 1) = ψ(x) + 1/x

(5)

The results obtained by the two calculation methods are similar in most cases. How-
ever, in general, the first method has smaller statistical errors and larger systematic errors,
and the second method is more suitable for the calculation of high-dimensional mutual
information quantity.

The calculation time of k-nearest neighbor mutual information estimation mainly
depends on the sample size, while it is less affected by the dimensionality of variable.
Moreover, in general, the smaller the value of k is, the larger is the statistical error and the
smaller is the systematic error. Usually, k is taken as 3.

2.2. Model Architecture

LSTM has been widely used in SST time-series prediction. However, the LSTM
network requires a long training time because of the lack of parallelization ability. Further,
the degree of effect at different time steps on the prediction result are different and varies
dynamically with time. This cannot be handled by using LSTM exclusively. Inspired by the
attention mechanism used in natural language processing, we added the attention structure
into our model to enable it to automatically focus on important historical moments and
important variables.

As Figure 2 shows, the model consists of five components. In addition to the necessary
input and output module, a multivariate LSTM module is applied to capture the feature
information in the time-series data. Integrating multi-dimensional information itself is
difficult, because it is impossible to determine which dimension plays a more important role
on the results. In addition, the importance of information tends to fluctuate with the time
steps. Therefore, it is crucial to solve the problem reasonably linking multi-dimensional
input data together to retain useful data and eliminate interfering data. The coefficient
matrix W (green part) is determined in a way similar to positional encoding in the attention
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mechanism. In the blue part, whether the data are true is questioned. A self-attention
approach is used to observe the difference between the true and predicted values of the
adjacent data; based on this, the data in the current time step is fine-tuned. The weight
of the data in the current time step is adjusted to make it closer to the true value in the
next iteration.

Figure 2. Structural diagram of the attention-based LSTM model.

2.2.1. Interdimensional Attention Strategy

One of the major advantages of a transformer network is that, for a single isolated
data point, it not only mines that data point’s information but also integrates multiple data
together through positional encoding to mine the information between data. This approach
is most suitable for text processing tasks, where a certain association between contexts exists
and words are encoded in a uniform manner. However, single-dimensional time-series
prediction tasks cannot be realized through this method. In case of SST prediction, owing to
the scarcity of data, specific time-stamped information is often erased and only time-course
data are retained as a set of information for any consecutive 12 months, rather than a fixed
set of information for each month. The variation trend of the data differs for different
starting months, even showing totally opposite trends, as illustrated in Figure 3. Moreover,
determining the degree of correlation between the data from January 2010 and January
2011 is difficult. Therefore, positional encoding is not possible with only one-dimensional
time-series data.

 

Figure 3. Variation trend of SST in a sliding window.

Note that SST at a specific location can be affected by various factors, including the
wind speed, air pressure, and solar radiation, to varying degrees, and the general prediction
algorithm, which often uses only the temperature data, has significant limitations. SST at
a specific place has an implicit relationship with the meteorological factors with a high
probability, which can be described by the following equation

Tpred = k · T + v · u10 + . . . (6)

where the coefficients k, v, and so on are unknown weight vectors, and their values cannot
be directly determined on the basis of experience. The main problem is the possible contra-
diction and inconsistency of importance between parameters. Moreover, the parameters
may vary with time steps. For example, the weight of temperature may be set to 0.8 and
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that of wind speed to 0.2 in January; however, in February, the temperature weight may
become 0.7 and the wind speed weight may change to 0.3. Therefore, their values can only
be obtained on the basis of the training of the neural network. For each time step, there is a
matrix of corresponding coefficient matrix (ki vi, . . . ). Each coefficient vector is shown in
the following equation.

k = [k1, k2, · · · kn] (7)

where n is the length of time series. Together, these vector coefficients form the W matrix
shown in Figure 2.

In this way, during the network training process, the W matrix gradually reveals
the implicit connections between these different dimensional data. This combining of
data of different dimensions produces an effect similar to the position encoding matrix in
a transformer.

2.2.2. Self-Attention Smoothing Strategy

The adverse effects of inevitable systematic errors (e.g., temperature measurement
errors, local temperature anomalies, weather anomalies at the time of temperature measure-
ment, and human causes), can be reduced by requiring each data point to be self-conscious,
as illustrated in Figure 4.

Figure 4. Self-attention smoothing strategy.

As shown in Figure 5, to determine whether it is smooth and fits the simulated curve,
we need to calculate the relationship between the data at Tt, Tt−1 and Tt+1. In specific
implementations, the degree of fitting is judged by the difference between the predicted
and actual values at the current time step is whether around the difference at the preceding
and following time step or not. If it is smooth and fits the curve well enough, then the data
are more reliable and the corresponding parameter k or v is increased accordingly (blue
circle in Figure 4). If it is not smooth or does not fit the curve well enough (green circle in
Figure 4), the data may be abnormal and the corresponding parameter k or v is reduced by
a factor of 10%. A suitable value can be found after several training iterations.

 

Figure 5. Specific execution process of self-attention smoothing.
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2.3. Evaluation Metrics

The performance and reliability of the model are evaluated in terms of the statistics of
the coefficient of determination (R2), RMSE, mean absolute error (MAE), and mean average
percentage error (MAPE). They are defined as Equations (8)–(11), respectively. Here, yi
represents the true SST values, ŷi represents the predicted SST values, m is the length of the
test data sets, and yi is the mean value of the true SST.

R2 = 1 −

m
∑

i=1
(ŷi − yi)

2

m
∑

i=1
(yi − yi)

2
(8)

R2 is in the range [0, 1]; 0 indicates that the model is poorly fitted, while 1 indicates
that the model is error free. In general, the larger the R2 is, the better the model.

RMSE =

√
1
m

m

∑
i=1

(yi − ŷi)
2 (9)

MAE =
1
m

m

∑
i=1

|ŷi − yi| (10)

MAPE =
100%

m

m

∑
i=1

∣∣∣∣ ŷi − yi
yi

∣∣∣∣ (11)

The RMSE, MAE and MAPE range in [0, +∞); 0 indicates that the predicted value
exactly matches the true value, and the larger the error, the larger the value.

3. Model Implementation and Experiment Results

3.1. Study Area and Data Sets

The study area focuses on the sea areas around China (Figure 6); the specific locations
and representative characteristics are shown in Table 1. The distribution and variation
of SST depend on multiple meteorological elements. For example, solar radiation has a
heating effect on the sea surface. Wind is the direct driver of the upper ocean circulation,
which is an important factor to determine the flow of the upper layer and affects the
distribution of SST [19].

This study considers the temporal and spatial resolution of the data and the complete-
ness of the environmental variables fully, then the fifth-generation ECMWF (European
Centre for Medium-Range Weather Forecasts) reanalysis (ERA5) is selected to construct a
multi-physical field data set of marine environmental elements for the sea areas around
China. ERA5 provides hourly, daily and monthly estimates for a large number of atmo-
spheric, ocean-wave and land-surface quantities [40].

Table 1. Longitude and latitude range and characteristics of study areas.

ID Ocean Region
Range Average Depth

(m)
Characteristics

Longitude (E◦) Latitude (N◦)

1 Bohai Sea and North Yellow Sea 119~125 37~41 18 Nearly closed
2 South Yellow Sea 119~125 31~37 44 Semi-closed
3

East China Sea
121~125 29~31

370 Marginal sea
4 119~125 25~29
5

Taiwan Strait
119~121 24~25

60 Narrow strait6 117~120 22~24
7 South China Sea 106~125 5~21 1212 Open sea area
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Figure 6. Location of the seven sea areas around China.

The temporal resolution of the data used in this study is monthly and the data sets
cover the period 1979–2021. The spatial resolution in latitude and longitude is 0.25◦. As
illustrated in Table 2, in addition to SST data, data on meteorological factors including
wind speed, sea surface pressure, and sea surface solar radiation have been collected.

Table 2. Variables affecting SST distribution and variation.

Parameters Name Unit

SST Sea surface temperature K
u10 Eastward component of the 10 m wind m/s
v10 Northward component of the 10 m wind m/s
msl Mean sea level pressure Pa
ssr Surface net solar radiation J/m2

ssrc Surface net solar radiation clear sky J/m2

str Surface net thermal radiation J/m2

strc Surface net thermal radiation clear sky J/m2

ssrd Surface solar radiation downward J/m2

ssrdc Surface solar radiation downward clear sky J/m2

strd Surface solar radiation downwards J/m2

strdc Surface thermal radiation downward clear sky J/m2

3.2. Implementation Detail

As shown in Table 2, the data sets consist of various parameters that have different
units and ranges of values; thus, data normalization is necessary. The min-max normaliza-
tion is utilized to scale the data between 0 and 1,

zi =
xi − xmin

xmax − xmin
(12)

where xi is the original data, xmin and xmax are the minimum and maximum of the original
data, respectively.

Then, to transform the time series into input–output pairs required for model training,
a sliding window with a fixed length is used as shown in Figure 7. In this study, the model
receives an instance with a sliding window of length 12 as input and performs one-step
predictions. The resulting samples are divided into training, validation, and test sets in a
ratio of 6:1:2.

299



Remote Sens. 2022, 14, 4737

 

Figure 7. Sliding window procedure to obtain input–output pair of data sets.

As shown in Table 3, the training rate is improved by using a batch training method,
with each batch containing 40 sample data sets. In addition, a random dropout layer is
added after each layer of the LSTM network with a dropout rate setting as 0.1 to avoid
overfitting. Next, the root mean squared error (RMSE) is chosen as the loss function for
training, and the Adam algorithm is used to train the network. The number of maximum
iterations (epoch) is set to 400.

Table 3. Key parameters of the model and training process.

Key Parameters Model Methods or Values

Length of training data sets 300
Length of validation data sets 50

Length of testing data sets 100
Architecture of the model Attention + LSTM + Dense

Input dimension 12 × 4
Output dimension 1

No. of neural of hidden layer 80
Optimizer Adam

Epoch 400
Batch size 40
Dropout 0.1

Loss function RMSE

All experiments are implemented using Keras 2.2.4 with TensorFlow 1.15.0 on a
computer with an Intel i9-10900K CPU and an additional NVIDIA GeForce RTX 2080S GPU.

3.3. Experiment Results
3.3.1. SST Distribution and Variation

From Figures 8–10, it can be concluded that the latitudinal distribution of SST is obvi-
ous, i.e., the South China Sea has a lower latitude and a higher temperature all year round.
The annual variation, except for the South China Sea, shows a pattern of synchronous
change with the temperature, i.e., the highest in August and the lowest in January.

3.3.2. Correlation of SST with Other Meteorological Factors

In this study, mutual information is selected as a tool to analyze the correlations
between different environmental factors and SST, which is further required for selecting
the effective input variable for building a deep learning prediction model.

The mutual information of SST with each influencing factor was calculated using
k-nearest neighbor-based mutual information, as shown in Figure 11. The figure indicates
that, overall, the wind speed (u10, v10) and air pressure at sea level (msl) correlate more
strongly with SST in different seas compared to radiation-related environmental variables.
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(a) (b)  

  
 

(c) (d)  

Figure 8. SST distribution of sea areas surrounding China in (a) March, (b) June, (c) September, and
(d) December in 2021.

Figure 9. Variation of monthly mean SST for different sea areas around China during 1979–2021.
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Figure 10. Statistics of monthly mean SST including minimum, maximum, and mean value for
different parts of China’s Surrounding Seas during 1979–2021.

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Figure 11. Cont.
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(g) 

 

Figure 11. Heat map of mutual information for each meteorological variable and SST for the seas
around China in different months (a) Bohai Sea and north part of Yellow Sea, (b) South part of Yellow
Sea, (c) Part 1 (ID:3 in Table 1) of East China Sea, (d) Part 2 (ID:4 in Table 1) of East China Sea, (e) Part
1(ID:5 in Table 1) of Taiwan Strait, (f) Part 2(ID:5 in Table 1) of Taiwan Strait, and (g) South China Sea.

3.3.3. SST Prediction Results

The last 100 samples (about 8 years from 2014 to 2021) in the data sets are applied to
test the model. The one-month ahead monthly mean SST prediction results of the sea areas
around China are shown in Figure 12. The blue line represents the true values. Additionally,
the red dot and the filled areas in the figure represent the average prediction results and the
corresponding standard deviation for five runs. What should be noted is that the resolution
of y axis is different for different regions.

Overall, the prediction results reveal a same trend between the true and predicted SST.
However, for all regions, larger bias appears at the local extremums, because the model
trained on the training data sets cannot capture the extremums of the test data sets. As SST
of southern part of China, especially South China Sea, keeps high (approximately 300 K) all
year round and fluctuates less, the model performs better.

To test the stability of the model, statistics including R2, RMSE, MAE, and MAPE for
five runs are presented in Table 4 and Figure 13. From the perspective of RMSE, MAE and
MAPE, the model performs better in the southern parts of the surrounding seas of China,
especially the South China Sea, for which the SST varies less and maintains a high value all
year round. The error of some isolated point probably leads to higher RMSE, MAE and
MAPE. The fluctuation for region 5 (Taiwan Strait) is the smallest, which may indicate that,
for narrow strait areas, we can trust the result more from arbitrary initialization conditions.

Table 4. Comparison of R2, RMSE, MAE and MAPE for seven study areas (average for five runs).

Region ID R2 RMSE MAE MAPE

1 0.9910 0.7551 0.6211 0.2170
2 0.9829 0.8789 0.6803 0.2336
3 0.9827 0.7547 0.5936 0.2029
4 0.9827 0.5120 0.4100 0.1382
5 0.9727 0.6515 0.5065 0.1711
6 0.9649 0.5666 0.4531 0.1521
7 0.9138 0.3928 0.3213 0.1067
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Figure 12. Cont.
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(d) 

 
(e) 

 
(f) 

Figure 12. Cont.
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(g) 

Figure 12. SST prediction results of the sea areas around China (a) Bohai Sea and north part of Yellow
Sea, (b) South part of Yellow Sea, (c) Part 1 (ID:3 in Table 1) of East China Sea, (d) Part 2 (ID:4 in
Table 1) of East China Sea, (e) Part 1(ID:5 in Table 1) of Taiwan Strait, (f) Part 2(ID:5 in Table 1) of
Taiwan Strait and (g) South China Sea.

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 13. The distribution of the evaluation index for five runs: (a) RMSE, (b) R-squared, (c) MAE
and (d) MAPE.
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4. Discussion

4.1. Performance Comparison with Other Models

Table 5 shows the performance comparison of two other models with the model
considering attention mechanism and taking both SST and meteorological factors as inputs.
One of the models is the LSTM model taking SST only as input, and the other model takes
SST and meteorological factors as inputs without considering attention mechanism. The
boldface items in the table represent the best performance. The hyper-parameters affecting
the training process are the same for the models.

Table 5. Comparison of RMSE between different models.

Region ID
LSTM Only with

SST Only as Input
LSTM Only Our Model

1 1.0157 0.9226 0.7551
2 1.0302 0.8657 0.8789
3 1.0481 0.7853 0.7547
4 0.8388 0.7301 0.5120
5 1.2139 0.8768 0.6515
6 0.7678 0.6487 0.5666
7 0.4140 0.4018 0.3928

It can be seen from the results that our model achieves the best performance for most
regions. For the South China sea areas, three models show similar performance. Thus,
it enables researchers to use the simple LSTM-only model with SST only as input for
predicting SST in southern regions of China when there are insufficient meteorological data
or computing resources.

4.2. Overfitting Issue Varification

To test if the trained model has overfitting issue, we have done another experiment
to validate the generalization capability of the model. The forty-three-year (1979–2021)
monthly mean SST and meteorological time-series data from ERA5 are used to train and
validate the model. Then, the eight-year (1971–1978) data sets are fed into the trained model.

The prediction results shown in Figure 14 are the average for five runs, which verify
the applicability and effectiveness of model. The black and red line represent the true
values average prediction results.

  
(a) 

Figure 14. Cont.
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(b) 

  
(c) 

  
(d) 

  
(e) 

Figure 14. Cont.

308



Remote Sens. 2022, 14, 4737

  
(f) 

  
(g) 

Figure 14. Evaluation of the generalization ability of the model. (a) Bohai Sea and north part of
Yellow Sea, (b) South part of Yellow Sea, (c) Part 1 (ID:3 in Table 1) of East China Sea, (d) Part 2 (ID:4
in Table 1) of East China Sea, (e) Part 1(ID:5 in Table 1) of Tai-wan Strait, (f) Part 2(ID:5 in Table 1) of
Taiwan Strait and (g) South China Sea.

5. Conclusions

SST is a significant physical parameter used in the analysis of the ocean and climate.
This study developed a data-driven model for predicting one-month ahead monthly mean
SST by combining interdimensional and self-attention mechanism with neural networks.
After correlation analysis by mutual information, SST and other meteorological factors
including wind speed and air pressure were selected as the input of the prediction model.
The interdimensional attention enabled the model to focus on important historical moments
and important variables while the self-attention mechanism was utilized to smooth the data
in the training process. Forty-three-year monthly mean SST and meteorological time-series
data from ERA5 of ECMWF were collected to train the model and test its performance for
the sea areas around China. The evaluation criteria of R2, RMSE, MAE and MAPE indicate
that the predicted results met the requirement for oceanography and meteorology studies.

During experiment, we find that, in most cases, other meteorological factors contribute
to the predicted results, but these data, especially the wind speed, are not as stable as SST
data and are prone to anomalies. The model is unable to reduce its coefficients quickly
enough, thus leading to a longer training process eventually

Overall, the performance of the model on SST prediction is promising. Future work
involves further optimization of the model and investigation of its applicability for other
ocean physical parameters such as sea surface salinity, and ocean water temperature
underneath the surface.
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Abstract: Remote sensing images with high temporal and spatial resolutions play a crucial role in land
surface-change monitoring, vegetation monitoring, and natural disaster mapping. However, existing
technical conditions and cost constraints make it very difficult to directly obtain remote sensing
images with high temporal and spatial resolution. Consequently, spatiotemporal fusion technology
for remote sensing images has attracted considerable attention. In recent years, deep learning-based
fusion methods have been developed. In this study, to improve the accuracy and robustness of deep
learning models and better extract the spatiotemporal information of remote sensing images, the
existing multi-stream remote sensing spatiotemporal fusion network MSNet is improved using dilated
convolution and an improved transformer encoder to develop an enhanced version called EMSNet.
Dilated convolution is used to extract time information and reduce parameters. The improved
transformer encoder is improved to further adapt to image-fusion technology and effectively extract
spatiotemporal information. A new weight strategy is used for fusion that substantially improves the
prediction accuracy of the model, image quality, and fusion effect. The superiority of the proposed
approach is confirmed by comparing it with six representative spatiotemporal fusion algorithms
on three disparate datasets. Compared with MSNet, EMSNet improved SSIM by 15.3% on the CIA
dataset, ERGAS by 92.1% on the LGC dataset, and RMSE by 92.9% on the AHB dataset.

Keywords: spatiotemporal fusion; dilated convolution; improved transformer encoder; global
correlation information

1. Introduction

Remote sensing images are generated by various types of satellite sensors, such as
the Moderate Resolution Imaging Spectroradiometer (MODIS), Landsat-equipped sensors,
and Sentinel. MODIS sensors are usually installed on Terra and Aqua satellites, which
can circle the earth in half a day or one day, and the data obtained by them have superior
time resolution. However, the spatial resolution of MODIS data (i.e., rough image) is
very low, and accuracy can reach only 250–1000 m [1]. By contrast, data (fine image)
acquired by Landsat have higher spatial resolution (15–30 m) and capture sufficient surface-
detail information, but temporal resolution is very low because it takes 16 days to circle the
earth [1]. In practical applications, we often need remote sensing images with high temporal
and spatial resolution. For example, images with high temporal and spatial resolutions can
be used for research in the fields of heterogeneous regional surface change [2,3], vegetation
seasonal monitoring [4], real-time natural disaster mapping [5], and land-cover changes [6].
Unfortunately, current technical and cost constraints, coupled with the existence of such
noise as cloud cover in some areas, make it challenging to directly obtain remote sensing
products with high temporal and spatial resolution, and a single high-resolution image
cannot meet practical needs. In order to meet these lacunae, spatiotemporal fusion has
attracted considerable attention. In spatiotemporal fusion, two types of images are fused
together, with the aim of obtaining images with high spatiotemporal resolution [7,8].
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Existing spatiotemporal fusion methods can generally be subdivided into four categories:
unmixing-based, reconstruction-based, dictionary pair learning-based, and deep learning-based.

Unmixing-based methods unmix the spectral information at the predicted moment, and
then use the unmixed result to predict the unknown high spatial and temporal resolution
image. Multi-sensor multi-resolution image fusion (MMFN) [9] was the first fusion method to
apply the idea of unmixing. MMFN reconstructs the MODIS and Landsat images separately:
first, the MODIS image is spectrally unmixed, and then the mixed result is spectrally reset on
the Landsat image to obtain the final reconstruction result. Wu et al. considered the issue of
nonlinear time-varying similarity and spatial variation in spectral unmixing, improved MMFN,
and obtained a new spatiotemporal fusion method, STDFA [10], which also achieved good
fusion results. A variable spatiotemporal data-fusion algorithm, FSDAF [11], has also been
proposed, which combines the unmixing method, spatial interpolation, and spatiotemporal
adaptive fusion algorithm (STARFM) to create a new algorithm that is computationally
inexpensive, fast, and accurate, and performs well in heterogeneous regions.

The core idea of the reconstruction-based algorithm is to calculate the weights of
similar adjacent pixels in the spectral information in the input and then add them. STARFM
was the first method to be used for reconstruction for fusion [8]. In STARFM, the reflection
changes of pixels between the rough image and the fine image should be continuous, and
the weights of adjacent pixels can be calculated to reconstruct a surface-reflection image
with high spatial resolution. In light of STARFM’s large number of computations and
the need to improve the reconstruction effect for heterogeneous regions, Zhu et al. made
improvements and proposed an enhanced version of STARFM called ESTARFM [12]. They
use two different coefficients to deal with the weights of adjacent pixels in homogeneous
and heterogeneous regions, achieving a better effect. Inspired by STARFM, the spatiotem-
poral adaptive algorithm for mapping reflection changes (STAARCH) [13] also achieves
good results. Overall, the difference between these algorithms lies in how the weights of
adjacent pixels are calculated. Although these algorithms generally have good results, they
are unsuitable for data that change too much too quickly.

Dictionary learning-based methods mainly learn the correspondence between two
types of remote sensing images to perform prediction. The sparse representation-based
spatiotemporal reflection fusion method (SPSTFM) [14] may be the first fusion method to
successfully apply dictionary learning. In SPSTFM, the coefficients of low-resolution im-
ages and high-resolution images should be the same, and the super-resolution ideas in the
field of natural images are introduced into spatiotemporal fusion. Images are reconstructed
by establishing correspondences between low-resolution images. However, in practical
situations, the same coefficients may not be applicable to some of the data obtained under
the existing conditions [15]. Wei et al. studied the explicit mapping between low-resolution
images and proposed a new fusion method based on dictionary learning and utilizing
compressive sensing theory, called compressive sensing spatiotemporal fusion (CSSF) [16],
which improves the accuracy of the prediction results noticeably, but the training time
also increases considerably, while the efficiency decreases. In this regard, Liu et al. pro-
posed an extreme learning machine called ELM-FM for spatiotemporal fusion [17], which
considerably reduces time and improves efficiency.

As deep learning has gradually been applied in various fields in recent years, deep
learning-based spatiotemporal fusion methods of remote sensing have also advanced. For
example, Song et al. proposed STFDCNN [18] for spatiotemporal fusion using a convo-
lutional neural network. In STFDCNN, the image-reconstruction process is considered
a super-resolution and nonlinear mapping problem. A super-resolution network and a
nonlinear mapping network are constructed through an intermediate resolution image,
and the final fusion result is obtained through high-pass modulation. STFDCNN achieved
good results. Liu et al. proposed a two-stream CNN, StfNet [19], for spatiotemporal fusion.
They effectively extracted and fused spatial details and temporal information using spatial
consistency and temporal dependence, and achieved good results. On the basis of spatial
consistency and time dependence, Chen et al. introduced a multiscale mechanism for
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feature extraction and proposed a spatiotemporal remote sensing image-fusion method
based on multiscale two-stream CNN (STFMCNN) [20]. Jia et al. proposed a new deep
learning-based two-stream convolutional neural network [21], which fuses the temporal
variation information with the spatial detail information by weight, which enhances its
robustness. Furthermore, Jia et al. adopted various prediction methods for phenological
change and land-cover change, and proposed a spatiotemporal fusion method based on
hybrid deep learning to combine satellite images with differing resolutions [22]. Tan et al.
proposed DCSTFN [23] to derive high spatiotemporal remote sensing images using CNNs
based on the methods of convolution and deconvolution combined with the fusion method
of STARFM. However, in light of the loss of information in the reconstruction process of
the deconvolution fusion method, Tan et al. increased the input of the a priori moment and
added a residual coding block, using a composite loss function to improve the learning
ability of the network, and an enhanced convolutional neural network EDCSTFN [24] was
proposed for spatiotemporal fusion. In addition, CycleGAN-STF [25] introduces other
ideas in the visual field into spatiotemporal fusion. It achieves spatiotemporal fusion
through image generation of CycleGAN. CycleGAN is used to generate a fine image at the
predicted time, the real image is used at the predicted time to select the closest generated
image, and finally FSDAF is used for fusion. Other fusion methods are applied in specific
scenarios. For example, STTFN [26], a CNN-based model for spatiotemporal fusion of
surface-temperature changes, uses a multiscale CNN to establish a nonlinear mapping
relationship and a spatiotemporal continuity weight strategy for fusion, achieving good
results. DenseSTF [27], a deep learning-based spatiotemporal data-fusion algorithm, uses
a block-to-point modeling strategy and model comparison to provide rich texture details
for each target pixel to deal with heterogeneous regions, and achieves very good results.
Furthermore, with the development of transformer models [28] in the natural language
field, many researchers have introduced the concept into the vision field as well, e.g., vision
transformer (ViT) [29], data-efficient image transformer (DeiT) [30], conditional position
encoding visual transformer (CPVT) [31], transformer-in-transformer (TNT) [32], and con-
volutional vision transformer (CvT) [33] can be used for image classification. In addition,
there are the Swin transformer [34] for image classification, image segmentation, and object
detection, and texture transformer [35] for general image superclassification. These variants
have been gradually introduced into the spatiotemporal fusion of remote sensing. For
example, MSNet [36] is a new method obtained by introducing the original transformer
and ViT into spatiotemporal fusion, learning the global temporal correlation information
of the image through the transformer structure, using the convolutional neural network
to establish the relationship between input and output, and finally obtain a good effect.
SwinSTFM [37] is a new method that introduces the Swin transformer and combines linear
spectral mixing theory, which finally improves the quality of generated images. There
is also MSFusion [38], which introduces texture transformer into spatiotemporal fusion,
which has also achieved quite good results on multiple datasets.

Existing spatiotemporal fusion algorithms perform a certain amount of information
extraction and noise processing during the fusion process, but there remain certain lacunae.
First, the acquisition and processing of suitable datasets is not easy. Owing to the existence
of noise, the data that can be directly used for research are insufficient. In deep learning,
the size of the dataset affects the learning ability during reconstruction: achieving good
reconstruction with small datasets is a major challenge. Second, the same fusion model can
have different prediction performance on different datasets, and the model is not robust.
Furthermore, the features extracted only by the CNN are not sufficient, and an increase of
the network depth will also result in potential feature loss.

In order to address the aforementioned challenges, this study improves MSNet and
proposes an enhanced version of the spatiotemporal fusion method of multi-stream remote
sensing images called EMSNet. In EMSNet, the input image adopts the original scale size,
and the rough image is no longer scaled to fully extract the temporal information and
reduce the loss. The main contributions of this paper are summarized as follows.
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(1) The number of prior input images required by the model is reduced from five to
three, which achieves better results with less input, so that even a dataset with a small
amount of data can reconstruct images with better effects.

(2) The transformer encoder structure is introduced and its projection method improved to
obtain the improved transformer encoder (ITE), which adapts the remote sensing spa-
tiotemporal fusion, effectively learns the relationship between local and global informa-
tion in rough and fine images, and effectively extracts temporal and spatial information.

(3) Dilated convolution is used to extract temporal information, which expands the
receptive field while keeping the parameter quantity unchanged and fully extracts a
large amount of temporal feature information contained in the rough image.

(4) A new feature-fusion strategy is used to fuse the features extracted by the ITE and
dilated convolution based on their differences from real predicted images in order to
avoid introducing noise.

The rest of the article has the following structure. The overall structure of EMSNet and
its internal specific modules and weight strategies are introduced in Section 2. Experimental
results are described in Section 3, along with the datasets used. Section 4 dis-cusses the
performance of EMSNet. Finally, conclusions are provided.

2. Methods

2.1. EMSNet Architecture

Figure 1 shows the overall structure of EMSNet, where Mi(i = 1, 2) represents the
MODIS image at time ti, Li represents the Landsat image at time ti, and Pre_L2 represents
the prediction result of the fused image at time t2 based on time t1. Rectangles of different
colors represent different operations, including convolution, dilated convolution, activation
function ReLU, and various operations inside the improved transformer encoder (ITE).
EMSNet is an end-to-end structure, which can be divided into three parts:

a. ITE-related modules, used to extract temporal change information and spatial texture
detail features and learn local and global correlation information;

b. an extraction network composed of convolution and dilated convolution, used to
establish a nonlinear relationship between input and output, while fully extracting
the features of time information;

c. a weight strategy, used to calculate the corresponding weight according to the differ-
ence between the features obtained in the above two parts and the real prediction
map for final fusion.

A detailed description of each module can be found in Sections 2.2–2.4.
In this study, three images of the same size are used as input, a pair of MODIS-Landsat

images at a priori time t1 and a MODIS image at prediction time t2. The overall procedure
of EMSNet is as follows:

(1) First, we subtract M1 from M2 to get M12, which represents the change area within
two times and provides time-change information. We input into the feature-extraction
network composed of convolution and dilated convolution, and then fully extract the
time information contained in it.

(2) Second, we add M12 and L1 to the ITE to extract the rich temporal information and
spatial texture detail information, and simultaneously learn the connection between
the local and the global information.

(3) Inspired by ResNet [39], in DenseNet [40], as the network depth increases, the temporal
and spatial information in the input image may be lost during transmission. Therefore,
we add L1 as the residual to the temporal variation information obtained in the first step
to supplement the spatial details that may be lost in the subsequent fusion process.

(4) Finally, the results obtained in the second and third steps are calculated by calculating
the difference with L2 to obtain their respective weights, so as to fuse and reconstruct
the final prediction map Pre_L2.
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Figure 1. EMSNet architecture.

The structure of EMSNet can be represented by Equation (1) below:

Pre_L2 = W(T(M12 + L1), E(M12) + L1) (1)

Here, T represents the ITE module, E represents the time information-extraction
network composed of convolution and dilated convolution, and W represents the weight
strategy adopted in this study.

2.2. Improved Transformer Encoder

Transformer [28], as a kind of attention mechanism, is well suited not only to the
field of natural language but also to the field of vision. Inspired by the application of the
transformer in MSNet [36] and the cancellation of position encoding in CPVT [31] and
CvT [33], in this study, the transformer encoder applied to remote sensing spatiotempo-
ral fusion is further improved, the MLP part for classification is canceled, and position
encoding is canceled. In addition, the convolutional projection method is used to replace
the original linear projection method in the transformer, and a new structure, as shown
in Figure 2 below, is obtained, called the improved transformer encoder (ITE), which is
mainly used to learn temporal variation information and spatial texture details. Through
the above operations, it is ensured that the input and output are of the same dimension,
which facilitates subsequent fusion and reconstruction.

Figure 2 is the ITE structure diagram, in which the yellow part represents the convolu-
tion projection operation and the blue box and its interior represent the specific operation
part of ITE. As can be seen from the figure, this study projects the input information di-
rectly through the convolution operation, and the overlap between the convolution blocks
and the convolution blocks effectively strengthens the connection between the blocks.
Consequently, the ITE strengthens the correlation between local information and global
information, removing the need for the position encoding required by the linear projection
method, thus making it more suitable for the spatiotemporal fusion method. The ITE is also
composed of alternate multi-head attention mechanisms and feedforward parts. It will be
normalized before each input to the submodule, and there will be residual connections after
each block. The multi-head self-attention mechanism is a series of SoftMax and linear opera-
tions, and the input data will gradually change the dimensions during the propagation and
training process to adapt to match these operations. The feedforward portion is composed
of linear, Gaussian error linear unit (GELU), and random deactivation dropout, where
GELU is used as the activation function. In practical applications, for different amounts
of data, when learning global time-varying information, ICTE with different depths are
required to learn more accurately. Nx in the figure represents the depth value.
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Figure 2. Structure of improved transformer encoder (ITE).

In this study, the ITE is used as a module for learning time-varying information and
spatial texture detail. Compared with the previous MSNet, it further expands the learning
range of the transformer encoder for remote sensing.

2.3. Dilated Convolution

In order to extract the time information contained in M12 and establish the mapping
relationship between input and output, this study proposes a seven-layer neural network
mainly composed of dilated convolution as a feature extraction network. The key feature
of dilated convolution is that different sizes of receptive fields can be obtained after setting
different dilation rates, so as to extract effective information at multiple scales. Compared
with ordinary convolution operations, dilated convolution will not increase the number
of redundant parameters. Figure 3 shows the proposed dilated convolution-based neural
network and the receptive fields under different dilation rates.

 

Figure 3. Neural network based on dilated convolution and receptive fields with different dilation rates.

The right side of the dotted line in Figure 3 shows the architecture of the seven-
layer neural network, which consists of one layer of convolution, three layers of dilated
convolution, and three layers of ReLU. The convolution operation is used to convert the
original M12 into a multidimensional nonlinear tensor, and the convolution kernel adopts
the size of 3 × 3; the dilated convolution is used to effectively extract the temporal features
in the M12, the basic convolution kernel is of the same size i.e., 3 × 3, and an expansion rate
of 2, 3, and 4 is set in turn for three consecutive layers of dilated convolution. The left side of
the dotted line is the schematic diagram of the receptive field under various expansion rates.
When the dilation rate is 1, dilated convolution is no different from ordinary convolution.
When the dilation rate increases, the receptive field also gradually increases, which enables
it to better learn the feature information at various scales, and simultaneously guarantee
the number of parameters taken during its operation will not increase [41].
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Each dilated convolution operation can be defined as:

Φ(x) = wi ∗ x + bi (2)

Here, x represents the input, “∗“ represents the dilated convolution operation, wi
represents the weight of the current convolutional layer, and bi represents the current offset.
The output channels of the three convolution operations are 32, 16, and 1 in sequence. After
the convolution, the ReLU operation is used to make the features non-linear and avoid
network overfitting [42]. The ReLU operation can be defined as:

ReLU(x) = max(0, x) (3)

2.4. Weight Strategy

After feature extraction by the ITE and dilated convolutional neural network, plus
residual L2 for supplementary information, two distinct features are obtained. The differ-
ence between the prediction graphs is calculated by weight for final fusion, and the specific
weight strategy can be defined as:

Pre_L2 = W(T(M12 + L1), E(M12) + L1) = αT(M12 + L1) + β(E(M12) + L1) (4)⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
α =

1
|T(M12+L1)−L2|

1
|T(M12+L1)−L2|+

1
|(E(M12)+L1)−L2|

β =
1

|(E(M12)+L1)−L2|
1

|T(M12+L1)−L2|+
1

|(E(M12)+L1)−L2|

(5)

Here, T represents the ITE module, and E represents the temporal information extrac-
tion network composed of convolution and dilated convolution.

2.5. Network Training

During the entire training process of the model, the loss calculation is performed
on the prediction results of the entire model, so as to continuously adjust the learning
parameters during the backpropagation process to obtain better convergence results. When
calculating the difference between the predicted result and the real value, the smooth L1
loss function, namely Huber loss [43], is chosen, which can be defined as L:

S(Li) =
H

∑
m=1

W

∑
n=1

Li(m, n) (6)

L = loss(Pre_L2, L2) =
1
N

⎧⎨⎩
1
2 (S(Pre_L2)− S(L2))

2, i f |S(Pre_L2)− S(L2)| < 1

|S(Pre_L2)− S(L2)| − 1
2 , otherwise

(7)

where H represents the height of the image, W represents the width of the image, Li
represents the input image, and S represents for the pixel sum formula.

3. Experiments and Results

3.1. Datasets

Three separate datasets were employed to test the robustness of EMSNet.
The first study area was the Coleambally Irrigation Area (CIA) in southern New

South Wales (NSW, Australia, 34.0034◦E, 145.0675◦S) [44]. The dataset was acquired from
October 2001 to May 2002 and comprises 17 pairs of MODIS–Landsat images. The Landsat
images are all from Landsat-7 ETM+, and the MODIS images are MODIS Terra MOD09GA
Collection 5 data. The CIA dataset includes six bands and an image size of 1720 × 2040.

The second study area is the Lower Gwydir Watershed (LGC) in northern New
South Wales (NSW, 149.2815◦E, 29.0855◦S), Australia [44]. The dataset was acquired from
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April 2004 to April 2005 and comprises 14 pairs of MODIS–Landsat images. All Landsat im-
agery is from Landsat-5TM, and the MODIS imagery is MODIS Terra MOD09GA Collection
5 data. The LGC dataset contains six bands and the image size is 3200 × 2720.

The third study area is the Alu Horqin Banner (AHB) region (43.3619◦N, 119.0375◦E)
in the central Inner Mongolia Autonomous Region of northeastern China, which has many
circular pastures and farmland [45,46]. Li Jun et al., collected 27 cloud-free MODIS–Landsat
image pairs from 30 May 2013 to 6 December 2018, a time span of more than 5 years. The area
has experienced substantial phenological changes owing to the growth of crops and other
types of vegetation. The AHB dataset contains six bands and the image size is 2480 × 2800.

In this study, all images of the three datasets are combined according to a prior time
and a prediction time. Each set of training data has four images, including two pairs of
MODIS–Landsat images. The image size of each pair of MODIS-Landsat is the same, and
the spatial resolution is 16:1. When combining the data, the data with the same time span
between the prior moment and the predicted moment are given priority as the experimental
data. In addition, for the training of the network, the images of the three datasets are all
adjusted to a size of 1200 × 1200. Figures 4–6 show the MODIS–Landsat image pairs
obtained on two different dates for the three datasets. During the experiment process,
the three datasets were input into EMSNet for training, 70% of the dataset was used for
training, 15% was used for validation, and 15% was used as the final test set for evaluating
the fusion and reconstruction ability of the model.

Figure 4. Composite MODIS (Top row) and Landsat (Bottom row) image pairs on 7 October (a,c) and
16 October (b,d) 2001 on the CIA [44] dataset. The CIA dataset focuses on noteworthy phenological
changes in irrigated farmland.
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Figure 5. Composite MODIS (top row) and Landsat (bottom row) image pairs on 29 January (a,c)
and 14 February (b,d) 2005 from the LGC [44] dataset. The LGC dataset focuses on changes in land
cover types after the flood.

321



Remote Sens. 2022, 14, 4544

 
Figure 6. Composite MODIS (top row) and Landsat (bottom row) image pairs on 21 June (a,c) and
7 July (b,d) 2015 from the AHB [45,46] dataset. The AHB focuses on noteworthy phenological changes
in the pasture.

3.2. Evaluation

We evaluated the proposed spatiotemporal fusion method by comparing it with FSDAF,
STARFM, DCSTFN, STFDCNN, StfNet, and the previous MSNet under the same criteria.

As in the case of MSNet, six evaluation metrics are used. The first indicator is the
spectral angle mapper (SAM) [47], which can measure the spectral distortion of the fusion
result. It can be defined as follows:

SAM =
1
N

N

∑
n=1

arccos
∑K

j=1 = (Lk
i Pre_Lk

i )√
∑K

j=1 (Lk
i )

2
∑K

j=1 (Pre_Lk
i )

2
(8)
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where N represents the total number of pixels in the predicted image, K represents the total
number of bands, Pre_Li represents the prediction result, Pre_Lk

i represents the prediction
result of the kth band, and Lk

i represents the true value of the Lk
i band. A small SAM

indicates a better result.
The second metric was the root mean square error (RMSE), which is the square root

of the MSE and is used to measure the deviation between the predicted image and the
observed image. It reflects a global depiction of the radiometric differences between the
fusion result and the real observation image, which is defined as follows:

RMSE =

√√√√√ H
∑

m=1

W
∑

n=1
(Li(m, n)− Pre_Li(m, n))2

H × W
(9)

where H represents the height of the image, W represents the width of the image, L
represents the observed image, and Pre_Li represents the predicted image. The smaller the
value of RMSE, the closer the predicted image is to the observed image.

The third indicator was erreur relative global adimensionnelle de synthèse (ER-
GAS) [48], which measures the overall integration result. It can be defined as:

ERGAS = 100
h
l

√√√√ 1
K

K

∑
i=1

[RMSE(Lk
i )

2/(μk)
2] (10)

where h and l represent the spatial resolution of Landsat and MODIS images respectively;
Lk

i represents the real image of the kth band; and μk represents the average value of the kth
band image. When ERGAS is small, the fusion effect is better.

The fourth index was the structural similarity (SSIM) index [49], which is used to
measure the similarity of two images. It can be defined as:

SSIM =
(2μPre_Li μLi + c1)(2σPre_Li Li + c2)

(μ2
Pre_Li

+ μ2
Li
+ c1)(σ

2
Pre_Li

+ σ2
Li
+ c2)

(11)

where μPre_Li represents the mean value of the predicted image, μLi represents the mean
value of the real observation image, σPre_Li Li represents the covariance of the predicted
image Pre_Li and the real observation image Li, σ2

Pre_Li
represents the variance of the

predicted image Pre_Li, σ2
Li

represents the variance of the real observation image Li, and
c1 and c2 are constants used to maintain stability. The value range of SSIM is [−1, 1]. The
closer the value is to 1, the more similar are the predicted image and the observed image.

The fifth index is the correlation coefficient (CC), which is used to indicate the correla-
tion between two images. It can be defined as:

CC =

N
∑

n=1
(Pre_Ln

i − μL̂i
)(Ln

i − μLi )√
N
∑

n=1
(Pre_Ln

i − μL̂i
)2

√
N
∑

n=1
(Ln

i − μLi )
2

(12)

The closer the CC is to 1, the greater the correlation between the predicted image and
the real observation image.

The sixth indicator is the peak signal-to-noise ratio (PSNR) [50]. It is defined indirectly
by the MSE, which can be defined as:

MSE =
1

HW

H

∑
m=1

W

∑
n=1

(Li(m, n)− Pre_Li(m, n))2 (13)
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Then PSNR can be defined as:

PSNR = 10· log10(
MAX2

Li

MSE
) (14)

where MAX2
Li

is the maximum possible pixel value of the real observation image Li. If each
pixel is represented by an 8-bit binary value, then MAXLi

is 255. Generally, if the pixel
value is represented by B-bit binary, then MAXLi

= 2B − 1. PSNR can evaluate the quality
of the image after reconstruction. A higher PSNR means that the predicted image quality
is better.

3.3. Parameter Settings

For the improved transformer encoder, the number of heads is set to 9, and the depth
is set according to the data volume and characteristics of the three datasets: CIA is 20,
LGC is 5, and AHB is 20. The size of the patch input into it is 240 × 240. The ordinary
convolution as well as the three-layer dilated convolution in the dilated convolutional
neural network each use a 3 × 3 convolution kernel. The dilation rates are 2, 3, and 4,
and the number of channels is 32, 16, and 1. The initial learning rate is set to 0.0008, the
optimizer adopts Adam, and the weight decay is set to 1 × 10−6. EMSNet was trained on
two Windows 10 Professional editions, each with 64 GB memory, an Intel Core i9-9900K @
3.60 GHz×16 CPU, and an NVIDIA Geforce RTX 2080 Ti.

3.3.1. Subjective Evaluation

In order to visualize the experimental results, Figures 7–13 show the experimental
results of FSDAF, STARFM, DCSTFN, STFDCNN, StfNet, MSNet, and the proposed im-
proved EMSNet on each of three datasets. GT in the figure represents the real observed
image, while Proposed is the proposed EMSNet method.

 

Figure 7. Entire prediction results for the target Landsat image (16 October 2001) in the CIA dataset.
Comparison methods include FSDAF [11], STARFM [8], DCSTFN [23], STFDCNN [18], StfNet [19],
and MSNet [36], which are represented by (b–g) in the figure respectively. (a) represents the ground
truth (GT), and (h) represents the proposed method.
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Figure 8. Specific prediction results for the target Landsat image (16 October 2001) in CIA dataset.
Among them, the white framework is the prominent difference of the results obtained by each method.
Comparison methods include FSDAF [11], STARFM [8], DCSTFN [23], STFDCNN [18], StfNet [19],
and MSNet [36], which are represented by (b–g) in the figure respectively. (a) represents the ground
truth (GT), and (h) represents the proposed method.

 

Figure 9. Comprehensive prediction results for the target Landsat image (14 February 2005) in LGC
dataset. Comparison methods include FSDAF [11], STARFM [8], DCSTFN [23], STFDCNN [18],
StfNet [19], and MSNet [36], which are represented by (b–g) in the figure respectively. (a) represents
the ground truth (GT), and (h) represents the proposed method.
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Figure 10. Specific prediction results for the target Landsat image (14 February 2005) in LGC dataset.
Among them, the grey framework is the prominent difference of the results obtained by each method.
Comparison methods include FSDAF [11], STARFM [8], DCSTFN [23], STFDCNN [18], StfNet [19],
and MSNet [36], which are represented by (b–g) in the figure respectively. (a) represents the ground
truth (GT), and (h) represents the proposed method.

 

Figure 11. Complete prediction results for the target Landsat image (7 July 2015) in AHB dataset.
Comparison methods include FSDAF [11], STARFM [8], DCSTFN [23], STFDCNN [18], StfNet [19],
and MSNet [36], which are represented by (b–g) in the figure respectively. (a) represents the ground
truth (GT), and (h) represents the proposed method.
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Figure 12. First specific prediction results for the target Landsat image (7 July 2015) in AHB dataset.
Among them, the white framework is the prominent difference of the results obtained by each method.
Comparison methods include FSDAF [11], STARFM [8], DCSTFN [23], STFDCNN [18], StfNet [19],
and MSNet [36], which are represented by (b–g) in the figure respectively. (a) represents the ground
truth (GT), and (h) represents the proposed method.

 

Figure 13. Second specific prediction results for the target Landsat image (7 July 2015) in AHB
dataset. Among them, the white framework is the prominent difference of the results obtained by
each method. Comparison methods include FSDAF [11], STARFM [8], DCSTFN [23], STFDCNN [18],
StfNet [19], and MSNet [36], which are represented by (b–g) in the figure respectively. (a) represents
the ground truth (GT), and (h) represents the proposed method.
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Figure 7 shows the overall prediction result on the CIA data set, while Figure 8 shows
a cropped part of the prediction result enlarged. Visually, FSDAF, STARFM, and DCSTFN
are less accurate than other methods in predicting phenological changes. For example, in
the overall results in Figure 7, the black areas of these methods are noticeably less than
those contained in GT. The prediction effects in the box in Figure 8 are also quite different.
Relatively speaking, the prediction results obtained by the method based on deep learning
are better, but the prediction map of StfNet is a bit blurry and the effect is not good. The
results of STFDCNN and MSNet are relatively good, but those of our proposed method are
better. Thus, Figure 8 shows that the results obtained by the proposed method are closer to
the ground truth in terms of clarity and accuracy.

Figure 9 illustrates the overall prediction result on the LGC dataset, while Figure 10
illustrates the cropped and enlarged result of a portion of the prediction. In general, the
performance of each algorithm is relatively stable, but there are differences in the specific
spectral information and the processing of heterogeneous regions. It can be seen from the
black box in the enlarged area in the lower right corner of Figure 10 that the prediction
accuracy of the spectral information in DCSTFN and StfNet is lower than other methods,
and the other methods have achieved good results, but the effect obtained by the proposed
method is closer to the actual value. In addition, the proposed method also predicts the
information of curved river channels with high heterogeneity under the black box, which
no other method except for FSDAF can. Compared with the proposed method, FSDAF is
closer to the real value. The method has achieved good results in spectral information and
the processing of heterogeneous regions.

Figure 11 shows the overall prediction result on the AHB data set, while Figures 12 and 13
show some cropped and enlarged results. On the whole, the prediction results of STARFM
are not accurate enough in the processing of spectral information, and there is considerable
ambiguous spectral information. DCSTFN fails to accurately predict the results, and fails to
effectively extract information for datasets with a large number of heterogeneous regions
and time information. The results obtained by StfNet are relatively good, such as in the
spatial details between rivers, but there is still a large gap between the overall and the real
value. In addition, although the prediction results of FSDAF are much better than STARFM
in the processing of spectral information, there are still shortcomings compared with the real
values. While STFDCNN and MSNet achieve better results, the spatial details and spectral
time information are relatively adequate, but the proposed method achieves better results,
with the spatial details and spectral information being closer to the real values. Locally,
in Figure 12, in a large number of continuous phenological change areas, the proposed
method has a noticeable improvement compared with the previous MSNet. Furthermore,
compared with other methods, the processing of boundary information is also better, and
is closest to the true value. In Figure 13, for the prediction of a large number of circular
pasture areas, FSDAF, STARFM, DCSTFN, and StfNet failed at accurate prediction, which
must be due to the complex spatial distribution and too much time-varying information
on the AHB dataset, which led to the limited learning ability of the model, and the results
obtained were not ideal. STFDCNN has achieved good results with the previous MSNet,
but there is still insufficient boundary information. The proposed method thus achieves
the best prediction effect, in the prediction of phenological change information as well as
the boundary processing between circular pastures.

3.3.2. Objective Evaluation

Six evaluation indicators are used to objectively evaluate various algorithms and the
proposed method. Tables 1–3 present the quantitative evaluation of the prediction results
obtained by various methods on three datasets, including global indicators SAM and
ERGAS as well as local indicators RMSE, SSIM, PSNR, and CC. Furthermore, the optimal
value of each indicator is marked in bold.
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Table 1. Quantitative assessment of various spatiotemporal fusion methods for CIA dataset.

Evaluation Band
Method on CIA

FSDAF DCSTFN STARFM STFDCNN StfNet MSNet Proposed

SAM all 0.23875 0.21556 0.23556 0.21402 0.21614 0.19209 0.00114
ERGAS all 3.35044 3.07221 3.31676 3.14461 3.00404 2.94471 0.45234

RMSE

band1 0.01365 0.01059 0.01306 0.01076 0.00956 0.01009 0.00051
band2 0.01415 0.01256 0.01366 0.01236 0.01271 0.01132 0.00044
band3 0.02075 0.01922 0.02055 0.01792 0.02121 0.01724 0.00032
band4 0.04619 0.04377 0.04899 0.04100 0.05001 0.03669 0.00079
band5 0.06031 0.05655 0.06153 0.05900 0.05302 0.04898 0.00026
band6 0.05322 0.04690 0.05278 0.05389 0.04500 0.04325 0.00067

avg 0.03471 0.03160 0.03509 0.03249 0.03192 0.02793 0.00050

SSIM

band1 0.90147 0.94678 0.91699 0.95517 0.94190 0.95050 0.99996
band2 0.91899 0.93652 0.92325 0.93812 0.94340 0.95149 0.99998
band3 0.85786 0.88428 0.86290 0.87329 0.89950 0.91156 0.99999
band4 0.76070 0.79776 0.74636 0.78318 0.84868 0.86248 0.99995
band5 0.66598 0.70744 0.66011 0.72789 0.74118 0.76460 0.99999
band6 0.66168 0.72121 0.66323 0.73555 0.74068 0.76257 0.99997

avg 0.79445 0.83233 0.79548 0.83553 0.85256 0.86720 0.99997

PSNR

band1 37.29537 39.50404 37.68327 39.36680 40.38939 39.92510 65.81463
band2 36.98507 38.01703 37.29114 38.16128 37.91972 38.92643 67.09016
band3 33.65821 34.32276 33.74247 34.93560 33.46842 35.27141 69.83863
band4 26.70854 27.17708 26.19858 27.74355 26.01829 28.70879 62.06650
band5 24.39249 24.95152 24.21822 24.58366 25.51175 26.19920 71.78578
band6 25.47784 26.57641 25.55050 25.37055 26.93525 27.28095 63.47700

avg 30.75292 31.75814 30.78070 31.69357 31.70714 32.71865 66.67879

CC

band1 0.80138 0.79672 0.79845 0.84521 0.83428 0.84448 0.99951
band2 0.79873 0.81009 0.79319 0.83720 0.83156 0.84929 0.99978
band3 0.83290 0.84688 0.82554 0.87373 0.87264 0.87787 0.99996
band4 0.88511 0.89683 0.86697 0.91181 0.90546 0.92743 0.99997
band5 0.76395 0.79363 0.74894 0.78783 0.84732 0.84784 0.99999
band6 0.76036 0.80739 0.75144 0.76502 0.84588 0.83826 0.99996

avg 0.80707 0.82526 0.79742 0.83680 0.85619 0.86420 0.99986

Table 2. Quantitative assessment of various spatiotemporal fusion methods for LGC dataset.

Evaluation Band
Method on LGC

FSDAF DCSTFN STARFM STFDCNN StfNet MSNet Proposed

SAM all 0.08411 0.08354 0.08601 0.06792 0.09284 0.06335 0.00035
ERGAS all 1.93861 1.91167 1.92273 1.80392 2.03970 1.68639 0.13248

RMSE

band1 0.00763 0.00763 0.00729 0.00719 0.00824 0.00585 0.00006
band2 0.00913 0.00870 0.00907 0.00843 0.01167 0.00712 0.00006
band3 0.01279 0.01258 0.01256 0.01151 0.01353 0.00969 0.00006
band4 0.02383 0.02332 0.02295 0.02102 0.02971 0.01864 0.00006
band5 0.02830 0.02679 0.02607 0.02251 0.02284 0.02159 0.00006
band6 0.02197 0.02072 0.02181 0.01673 0.02054 0.01425 0.00006

avg 0.01727 0.01662 0.01662 0.01457 0.01775 0.01286 0.00006

SSIM

band1 0.97422 0.97455 0.97355 0.98460 0.97464 0.98558 0.99999
band2 0.96698 0.96918 0.96495 0.98209 0.96062 0.98031 0.99999
band3 0.94456 0.94632 0.94152 0.97475 0.94162 0.96954 0.99999
band4 0.92411 0.93283 0.91759 0.96417 0.91455 0.96393 0.99999
band5 0.89418 0.90416 0.88558 0.95539 0.91215 0.95239 0.99999
band6 0.88485 0.90337 0.87789 0.95259 0.90154 0.95087 0.99999

avg 0.93148 0.93840 0.92684 0.96893 0.93419 0.96710 0.99999
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Table 2. Cont.

Evaluation Band
Method on LGC

FSDAF DCSTFN STARFM STFDCNN StfNet MSNet Proposed

PSNR

band1 42.35483 42.34734 42.73997 42.86245 41.68016 44.65345 84.25491
band2 40.79034 41.20550 40.85222 41.48586 38.65611 42.95050 85.06363
band3 37.86428 38.00486 38.02099 38.77733 37.37629 40.27059 83.84853
band4 32.45760 32.64622 32.78532 33.54859 30.54336 34.59058 84.47622
band5 30.96416 31.44212 31.67671 32.95179 32.82613 33.31671 84.01371
band6 33.16535 33.67016 33.22812 35.52920 33.74927 36.92082 84.00084

avg 36.26610 36.55270 36.55056 37.52587 35.80522 38.78378 84.27631

CC

band1 0.93627 0.92666 0.92935 0.94611 0.94664 0.96138 0.99999
band2 0.93186 0.93379 0.92880 0.94530 0.93566 0.95800 0.99999
band3 0.93549 0.93512 0.93516 0.95262 0.95539 0.96499 0.99999
band4 0.96360 0.96585 0.96287 0.97181 0.96125 0.97591 0.99999
band5 0.95527 0.95492 0.95222 0.97545 0.97048 0.97890 0.99999
band6 0.95313 0.95738 0.95214 0.97285 0.97164 0.97924 0.99999

avg 0.94594 0.94562 0.94342 0.96069 0.95684 0.96974 0.99999

Table 3. Quantitative assessment of various spatiotemporal fusion methods for AHB dataset.

Evaluation Band
Method on AHB

FSDAF DCSTFN STARFM STFDCNN StfNet MSNet Proposed

SAM all 0.16991 0.23877 0.29277 0.18583 0.25117 0.14677 0.01297
ERGAS all 2.80156 4.03380 4.46147 4.25224 3.86535 2.90661 0.81967

RMSE

band1 0.00039 0.00081 0.00251 0.00096 0.00112 0.00047 0.00007
band2 0.00044 0.00215 0.00235 0.00092 0.00081 0.00051 0.00007
band3 0.00067 0.00363 0.00358 0.00117 0.00118 0.00064 0.00007
band4 0.00109 0.00187 0.00590 0.00124 0.00201 0.00103 0.00006
band5 0.00126 0.00208 0.00408 0.00183 0.00177 0.00122 0.00006
band6 0.00136 0.00225 0.00263 0.00200 0.00198 0.00126 0.00007

avg 0.00087 0.00213 0.00351 0.00135 0.00148 0.00085 0.00006

SSIM

band1 0.99895 0.99459 0.96538 0.99205 0.98927 0.99822 0.99998
band2 0.99877 0.96845 0.96977 0.99293 0.99500 0.99805 0.99998
band3 0.99741 0.91914 0.93438 0.98947 0.98965 0.99740 0.99998
band4 0.99616 0.98506 0.92038 0.99419 0.98248 0.99631 0.99999
band5 0.99382 0.98085 0.94190 0.98371 0.98464 0.99388 0.99999
band6 0.99129 0.97145 0.96825 0.97625 0.97636 0.99226 0.99998

avg 0.99607 0.96992 0.95001 0.98810 0.98623 0.99602 0.99998

PSNR

band1 68.18177 61.87013 52.01008 60.34502 59.00582 66.48249 83.62824
band2 67.04371 53.35105 52.56484 60.68929 61.8316 65.80339 83.61930
band3 63.49068 48.79810 48.93197 58.63694 58.55977 63.88021 83.56309
band4 59.22553 54.57435 44.58211 58.13169 53.95486 59.77506 84.23956
band5 58.02282 53.65469 47.79106 54.74701 55.05539 58.28599 83.87554
band6 57.35352 52.93719 51.60634 53.96601 54.06602 58.02322 83.56037

avg 62.21967 54.19759 49.58107 57.75266 57.07891 62.04173 83.74768

CC

band1 0.84000 0.78227 0.71181 0.80368 0.49726 0.86845 0.99570
band2 0.85657 0.76351 0.74545 0.86845 0.38062 0.89114 0.99795
band3 0.84979 0.79147 0.81230 0.83576 0.27147 0.88345 0.99918
band4 0.53986 0.40161 0.34009 0.58944 0.37556 0.60303 0.99893
band5 0.79576 0.52206 0.76553 0.83580 0.62926 0.85320 0.99972
band6 0.80288 0.47565 0.76492 0.80338 0.61085 0.85154 0.99975

avg 0.78081 0.62276 0.69002 0.78942 0.46083 0.82514 0.99854

Tables 1–3 present the quantitative evaluation results of several existing fusion meth-
ods and the proposed method on the CIA, LGC, and AHB datasets, respectively. In each
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table, it can be seen that the proposed method achieves the optimal value on the global
indicators and all local indicators.

4. Discussion

Through the experiments, it can be seen that whether it is on the CIA dataset with
phenological changes in regular areas or on the AHB dataset with phenological changes
with a large number of irregular areas and a large number of heterogeneous areas, our
proposed method is better at prediction. Similarly, for LGC datasets, which are mainly
land cover-type changes, the proposed method is better at prediction than traditional
methods and other deep learning-based methods in the processing of temporal information
and high-frequency spatial details. The time information and high-frequency file texture
information are processed more appropriately because of the combination of ITE and
dilated convolution in EMSNet. More importantly, the refined ITE can further expand
the range of learning in the remote sensing field, and can fully extract the spatiotemporal
information contained in the input image.

It is worth noting that for datasets with different amounts of data and different
characteristics, the depth of the improved transformer encoder (ITE) should also be different
to better fit the datasets. Table 4 lists the average evaluation values of the prediction results
obtained without the ITE and with the ITE with different depths, where the optimal value
is shown in bold. The depth being 0 indicates that the ITE has not been introduced. It can
be seen that when the depth is not introduced, the experimental results are relatively poor.
As the depth changes, the results obtained vary. The best experimental results are obtained
when the depth of the CIA dataset is 20, the depth of the LGC dataset is 5, and the depth of
the AHB dataset is 20.

Table 4. Average evaluation values of ITEs of various depths on the three datasets.

Database Depth SAM ERGAS RMSE SSIM PSNR CC

CIA

0 0.223768 3.144353 0.032796 0.844214 31.477961 0.819219

5 0.001597 0.530676 0.000550 0.999948 67.018571 0.999620

10 0.001182 0.473233 0.000473 0.999971 68.362024 0.999807

15 0.001394 0.509978 0.000639 0.999960 64.859474 0.999776

20 0.001142 0.452341 0.000499 0.999974 66.678786 0.999863

LGC

0 0.082166 1.939385 0.016704 0.943749 36.315476 0.948030

5 0.000352 0.132476 0.000061 0.9999982 84.276309 0.9999989

10 0.000367 0.139728 0.000069 0.9999979 83.319692 0.9999987

15 0.000378 0.153687 0.000092 0.9999976 81.181723 0.999998

20 0.000638 0.287639 0.000476 0.999885 77.511986 0.999900

AHB

0 0.082166 1.939385 0.016704 0.943749 36.315476 0.748201

5 0.013112 0.826490 0.000066 0.999982 83.686718 0.998556

10 0.013106 0.825792 0.000066 0.999982 83.680289 0.998557

15 0.013102 0.828641 0.000066 0.999982 83.625675 0.998539

20 0.012967 0.819673 0.000065 0.999983 83.747684 0.998540

The bold in the table indicates the optimal value at different ITE depths.

In addition, the difference between the original linear projection method of the trans-
former encoder and the improved convolution projection method was also determined.
Table 5 lists the global indicators and average evaluation values of the prediction results
obtained under various projection methods, where the optimal value is shown in bold. It
can be seen that on the three datasets, the convolutional projection method is selected, and
the ITE after position encoding is removed achieves better results.
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Table 5. Average evaluation values of ICTEs of various project methods on the three datasets.

Database Project Method SAM ERGAS RMSE SSIM PSNR CC

CIA
line 0.001142 0.452660 0.000500 0.999966 65.565960 0.999462

conv 0.001141 0.452341 0.000499 0.999974 66.678786 0.999863

LGC
line 0.000352 0.133565 0.000070 0.999990 82.659593 0.999984

conv 0.000351 0.132476 0.000061 0.999998 84.276309 0.999999

AHB
line 0.013024 0.823650 0.000066 0.999896 81.265960 0.990570

conv 0.012967 0.819673 0.000065 0.999983 83.747684 0.998540

Furthermore, the last six layers of the network for extracting time information in
Figure 3 include three layers of dilated convolution and three layers of ReLU. This paper
also conducts a comparative experiment on the three layers of dilated convolution op-
erations. Table 6 lists the different result evaluations obtained when using convolution
and dilated convolution. Among them, “conv” in the difference column means to replace
the above-mentioned three layers of dilated convolution with three layers of convolution;
“conv_dia” means that the above-mentioned three layers of dilated convolution remain
unchanged, and “conv&conv_dia” means that the abovementioned three layers of dilated
convolution are replaced by a three-layer alternating operation of convolution, dilated con-
volution and convolution. It can be seen that when the subsequent operations of extracting
time information are all dilated convolutions, the implementation effect is better.

Table 6. Average evaluation values of various convolution operations on the three datasets.

Database Difference SAM ERGAS RMSE SSIM PSNR CC

CIA

conv 0.001491 0.549008 0.000593 0.999953 66.089266 0.999672

conv_dia 0.001142 0.452341 0.000499 0.999974 66.678786 0.999863

conv&conv_dia 0.101984 2.197340 0.015059 0.943943 37.726046 0.963180

LGC

conv 0.000365 0.136848 0.000064 0.9999980 83.841604 0.9999988

conv_dia 0.000352 0.132476 0.000061 0.9999982 84.276309 0.9999989

conv&conv_dia 0.050764 1.532304 0.010584 0.975687 40.476035 0.980252

AHB

conv 0.012998 0.826653 0.000066 0.999982 83.658194 0.998290

conv_dia 0.012967 0.819673 0.000065 0.999983 83.747684 0.998540

conv&conv_dia 0.091340 2.057066 0.000496 0.998751 66.825864 0.921079

Although the proposed method has achieved good results, there are issues worthy
of further exploration. First, in order to fully expand the learnable range of the ITE, the
original input of a larger MODIS image has been used. Although dilated convolution is
used to reduce the number of parameters, compared with MSNet, the number of parameters
in this study is quite high. Table 7 presents the fusion model of deep learning and the
number of parameters that the proposed method needs to learn. It can be seen that the
proposed method needs the largest number of parameters, which means that compared
with other methods, it requires more training time and equipment with larger memory
during training. Considering the cost of learning, a way to obtain better results with a
smaller model is a direction worthy of future research. Second, the refined ITE shows very
good performance, but further improvements to adapt it to remote sensing spatiotemporal
fusion can be researched in future. Furthermore, improving the fusion effect while avoiding
the fusion strategy introduced by noise is also worthy of further study.
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Table 7. Number of parameters for different deep learning methods.

Method DCSTFN STFDCNN StfNet MSNet Proposed

Parameter 445,889 114,562 36,866

depth = 5 521,064 depth = 5 3,673,617

depth = 10 978,764 depth = 10 7,329,217

depth = 20 1,894,164 depth = 20 14,640,417

5. Conclusions

In this study, the effectiveness of EMSNet in three research areas with diverse charac-
teristics is evaluated. Its performance enhancement is found to be mainly because of the
following reasons:

1. The projection method of the original transformer encoder is improved to adapt to the
fusion of remote sensing space and time, which further expands the learning range of
the improved transformer encoder, effectively learns the connection between the local
and the global information in the remote sensing image, and uses its own attention
mechanism to fully extract the spatiotemporal information in remote sensing images.

2. Dilated convolution is used to expand the receptive field to adapt to the original input
of larger size, while keeping the number of learned parameters unchanged, effectively
extracting time information and balancing the increase in parameters brought about
by the improved transformer encoder.

3. A unique residual structure and a differentiated weight fusion method are used
to supplement the lost information and reduce the introduction of noise in the
fusion process.

Experiments show that on the CIA and AHB datasets with noteworthy phenological
changes and the LGC dataset with mainly land cover-type changes, EMSNet is better
than other models using three and five original images for fusion and gives more stable
prediction results on each dataset. Although EMSNet achieves good results, there are
still many areas worth further research in the future. First, the application of transformer-
related structures in the field of remote sensing spatiotemporal fusion will be further
studied. Second, compared with other methods, the method proposed in this paper needs
to learn significantly more parameters. How to achieve better fusion effect with smaller
model and lower learning cost is also a focus of future research. Third, although the three
datasets used in this paper cover a variety of phenological changes and land-cover changes,
there are still regional types that are not included. For example, datasets containing changes
in urban areas will also be discussed in the future.
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Abstract: In an effort to address the problem of the insufficient accuracy of existing orbital angular
momentum (OAM) detection systems for vortex optical communication, an OAM mode detection
technology based on an attention pyramid convolution neural network (AP-CNN) is proposed. By
introducing fine-grained image classification, the low-level detailed features of the similar light
intensity distribution of vortex beam superposition and plane wave interferograms are fully utilized.
Using ResNet18 as the backbone of AP-CNN, a dual path structure with an attention pyramid is
adopted to detect subtle differences in the light intensity in images. Under different turbulence
intensities and transmission distances, the detection accuracy and system bit error rate of basic CNN
with three convolution layers and two full connection layers, i.e., ResNet18 and ResNet18, with a
specified mapping relationship and AP-CNN, are numerically analyzed. Compared to ResNet18,
AP-CNN achieves up to a 7% improvement of accuracy and a 3% reduction of incorrect mode
identification in the confusion matrix of superimposed vortex modes. The accuracy of single OAM
mode detection based on AP-CNN can be effectively improved by 5.5% compared with ResNet18
at a transmission distance of 2 km in strong atmospheric turbulence. The proposed OAM detection
scheme may find important applications in optical communications and remote sensing.

Keywords: orbital angular momentum; mode detection; fine-grained image classification; attention
pyramid; atmospheric turbulence

1. Introduction

Vortex beams with spiral phase structures have been used extensively in information
transmission, radar imaging and rotational target detection, since Allen first investigated
the Laguerre-Gaussian vortex beam and its orbital angular momentum (OAM) in 1992 [1].
Theoretically, there are infinite kinds of eigenstates; different eigenstates are orthogonal to each
other, which is quite important in terms of improving communication capacity and imaging
resolution in remote sensing. Multiplexing different OAM beams can effectively avoid the
crosstalk between different modes in a channel, providing a new communication dimension
that is no longer limited to amplitude, phase, frequency and polarization, thereby greatly
improving the communication capacity [2,3]. In free-space OAM communication systems, the
receiver needs to demodulate the OAM beam to recover the information sequence. Traditional
OAM demodulation techniques, such as spatial light modulators, the diffraction method, the
cylindrical lens method, plane wave interferometry and spherical wave interferometry, are
based on optical hardware and have been researched extensively [4–7]. The OAM beam is
pre-processed by optical hardware to obtain optical pattern features that can be distinguished
by the naked eye [8]. However, on account of the high cost and the limited processing
capability of optical hardware, high-performance transmission cannot be guaranteed with a
cost-effective vortex optical communication system.

In recent years, with the rapid increase in computing power, OAM mode recognition
based on deep learning has attracted growing attention. Some researchers have studied
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OAM mode recognition based on neural networks. Krenn et al. proposed a self-organizing
competitive neural network (SOM) based OAM mode recognition which verified the feasi-
bility of machine learning in vortex optical communication systems for the first time [9].
They built a long-distance vortex optical communication system on the sea between the
Canary Islands, achieving a recognition accuracy of 91.67%, which verified the possibility
of the use of vortex beams for long-distance information transmission [10]. Deep neural net-
work (DNN)-based recognition of different OAM modes is proposed in [11]. Convolutional
neural networks (CNNs) are proposed in OAM mode recognition by Doster et al. [12];
that method achieved a mode recognition accuracy of up to 99%, which is far superior
to the traditional methods. In addition, the CNN-based mode identification method is
robust in terms of the influence of turbulence intensity, data size, sensor noise and pixels.
Such research has paved the way for the application of CNN in OAM mode detection.
Subsequently, many achievements in OAM mode recognition have been realized based
on CNNs [13,14].

In 2017, Zhang et al. compared the performance of a K nearest neighbor neural
network, a plain Bayesian classifier, a Back Projection artificial neural network and a CNN
as OAM mode classifiers under different turbulence conditions. They observed that CNN
yielded the best results [15]. The same authors improved the original LeNet-5 network
and proposed a decoder scheme that could simultaneously implement OAM mode and
turbulence intensity recognition [16]. OAM mode recognition technology combined with
turbo channel coding is proposed in [17]; this approach effectively improved the recognition
accuracy and reliability of communication transmission.

Similarly, many scholars have worked on niche applications of OAM mode detection.
In 2018, Zhao et al. applied a CNN to learn a received OAM light intensity map under
different tilt angles by adding a view-pooling layer. They also used a hybrid data collection
technique to improve the performance [18]. Misaligned hyperfine OAM mode recognition
was carried out in [19]. Machine learning based the recognition of fractional optical vortex
modes in atmospheric environment was studied by Cao et al. [20]. When the marked
data sample was insufficient, an OAM mode recognition method based on Conditional
Generative Adversarial Networks (CGAN) was proposed to improve the recognition
accuracy [21]. A Diffractive Deep Neural Network (D2NN) was utilized in OAM mode
recognition in [22], eliminating the need for a CCD camera to capture images and pass
them to a computer, making the communication rate independent of the hardware and
neural network computation rate.

The above research was dedicated to training and identifying the OAM light distributions
captured by CCD cameras; however, some other researchers have performed transformations
on the vortex beam before training to highlight the characteristics of different modes. In
2018, Radon transform was introduced to preprocess a light intensity distribution map of an
OAM beam to obtain more clearly distinguishing features [23]. A mode recognition technique
based on coherent light interference at the receiver side to obtain more obvious recognition
features was reported in [24]. A SVM-based single-mode recognition method was proposed
in [25], using the relationship between the amount of OAM beam receiving the effect of
atmospheric turbulence distortion and the topological charge number as an artificial feature
of the design. A joint scheme combining the Gerchberg–Saxton (GS) algorithm and CNN
(GS-CNN) to achieve the efficient recognition of the multiplexing LG beams was proposed
in [26]. A technique to measure the OAM of light based on the petal interference patterns of
modulated vortex beams and an unmodulated incident Gaussian beam reflected by a spatial
light modulator was reported in [27].

In light of the aforementioned studies, it may be stated that most research has focused
on OAM mode detection by neural networks, CNNs or CNN-based combination methods,
preprocessing transform before network training, and OAM mode detection in misaligned or
tilt angles special cases. However, in practical applications, there are many different multi-
modes superpositions of OAM beams corresponding to quite similar light intensity maps,
such as OAM = {−2, 3, −5} and OAM = {1, −2, 3, −5,}, OAM= {4, −4} and OAM= {2, −6}, etc.
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Additionally, for a single mode vortex beam with a large topological charge, the number of
fringes in the interferogram is large. Because the area of the device that collects the image at
the receiving end is certain, it is difficult to determine when the number of interference fringes
is large, which will further affect the accuracy of OAM mode recognition.

To solve these problems, an OAM mode recognition technique based on an attention
pyramid convolutional neural network (AP-CNN) is proposed in this paper. Fine-grained
image classification [28] is introduced to make full use of low-level detailed information of
a similar intensity in superimposed vortex beams and the dense fringes of a plane wave
interfergram of a single-mode vortex beam with a large topological charge. A top-down
feature path and a bottom-up attention path structure, combined with an attention pyramid,
is adopted to improve the OAM mode recognition accuracy and reduce the bit error rate
(BER) for indistinguishable intensity distributions.

The remainder of this paper is arranged as follows. The OAM mode recognition
technical framework based on AP-CNN is described in Section 2. In Section 3, numerical
results and discussions of different transmission conditions are presented to compare the
recognition accuracy and bit error ratio. Section 4 is devoted to the conclusion.

2. Materials and Methods

2.1. Principle of AP-CNN

The principles of the AP-CNN [29,30] and the fine-grained image classification algo-
rithm [28] used in this paper are shown in Figure 1. Figure 1a illustrates the dual-path
algorithm structure, Figure 1b presents the attention pyramid, and Figure 1c illustrates
the region of interest (ROI) pyramid. The blue border represents the feature map, and the
orange border represents the channel/space attention.

Figure 1. Structure of the AP-CNN for OAM mode recognition. (a) dual-path algorithm structure,
(b) attention pyramid, (c) ROI pyramid.

First, the AP-CNN network takes an image as input and generates a feature pyramid
network (FPN) and an attention pyramid [31] to enhance representations by improving on
the CNN to obtain a dual-path algorithm structure, including a top-down feature path and a
bottom-up attention path. The FPN [29] is used on the top-down path to extract features at
different scales. Then, an additional attention hierarchy is introduced to further enhance the
structure, including a spatial attention pyramid

{
A(s)

n , A(s)
n+1, . . . , A(s)

n+N−1

}
for locating dis-

criminative regions at different scales, and a channel attention path
{

A(c)
n , A(c)

n+1, . . . , A(c)
n+N−1

}
for adding channel correlations in another bottom-up path and transferring local information
from the lower pyramid level to the higher pyramid level.

For the spatial attention pyramid, each building block takes the feature map of the
corresponding layer Fk as input and generates the spatial attention mask A(s)

k . The feature
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map Fk first passes through a 3 × 3 deconvolution layer with only one output channel
to compress the spatial information. Each element of the spatial attention mask A(s)

k is
normalized to be in the range of 0 to 1 using the sigmoid function, expressed as:

A(s)
k = σ(vc ∗ Fk) (1)

where σ denotes the sigmoid function, vc denotes the convolution kernel, and ∗ denotes
the deconvolution with the fixed convolution kernel. For the channel attention path, the
channel attention can be obtained by passing the global average pooling layer and two fully
connected layers in the corresponding feature layer of the feature pyramid. The channel
attention mask formula is given by,

A(c)
k = σ(W2 · ReLu(W1 · GAP(Fk))) (2)

where GAP represents the global average pooling layer, W1 and W2 represent the weight
matrices of the two fully connected layers. The learned attention is used to weight the
feature Fk to obtain F′

k, which is used for classification as follows,

F′
k = Fk · (A(s)

k ⊕ A(c)
k ) (3)

where ⊕ represents the broadcasting addition operation on semantics. Spatial attention
tensor and channel attention tensor have different shapes, and the plus operator must be of
broadcast type.

In the second step, after obtaining the spatial attention pyramid, the ROI pyramid
continues to be generated by the region suggestion generator of adaptive non maximum
suppression (NMS) [32] in a weakly supervised manner. The purpose of the Region
Proposal Network (RPN) [33] is to select a frame that may contain a target. In essence, it is
based on the unclassified target detector of the sliding window; it inputs an image of any
scale and obtains a candidate frame with a predetermined size and scale. The general RPN
network is mostly applied to the single- or multi-scale convolution network feature map.
Multiple sizes and aspect ratios are preset to locate objects of different sizes and shapes. On
the basis of RPN theory, AP-CNN uses a spatial attention mask as an anchor score and uses
weak supervision to select the distinguishing area. According to the convolution receptive
field of each pyramid layer, AP-CNN selects the corresponding recommended area with a
preset size and aspect ratio for each pyramid layer, applies adaptive NMS to the selected
area after calculating the score, reduces redundancy by eliminating overlapping, and
maintains visual integrity by combining related areas. Figure 2 shows the workflow of the
weak supervision area suggestion generator in the OAM mode detection task. Compared
with the soft mechanism of setting the threshold on a feature map, the adaptive region
suggestion generator based on the ROI can explicitly show distinguishable regions with
high response values in the light intensity distribution of OAM modes.

Figure 2. Workflow of the weakly supervised region proposal generator.

In the third step, for each layer of the pyramid, after selecting the ROI based on the region
proposal generator and constructing the region pyramid Rall = {Rn, Rn+1, . . ., Rn+N−1},
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AP-CNN performs ROI-guided refinement of the feature map at the bottom of the pyramid Bn
to improve the classification accuracy in the refinement stage. The first part is the ROI-guided
drop block regularization [34], AP-CNN randomly selects an ROI joint Rs from the constructed
N-layer region of the interesting pyramid Rall = {Rn, Rn+1, . . ., Rn+N−1} based on the drop
block selection probability of each layer Pall = {Pn, Pn+1, . . ., Pn+N−1}. Then the information
region rs is randomly selected with equal probability Rs and processed to the same sampling
rate as the feature map at the bottom of the pyramid Bn to obtain the mask M by setting the
activation of the information region to zero,

M(i, j) =
{

0, (i, j) ∈ rs
1, otherwise

(4)

Apply the mask M on the low-level feature map Bn and normalize it to obtain the
desired feature map Dn,

Dn = Bn ∗ M ∗ Count(M)/Count_ones(M) (5)

where Count( ) and Count_ones( ) represent the total number of elements and the total number
of elements with the value of 1, respectively. The second part is the ROI-guided amplification
operation, where the AP-CNN combines all ROI regions at the pyramid level to obtain the
minimum enclosing rectangle of the input image in a weakly supervised manner,

tx1 = min(∀x ∈ Rall), ty1 = min(∀y ∈ Rall)
tx2 = max(∀x ∈ Rall), ty2 = max(∀y ∈ Rall)

(6)

where tx1, ty1 represent the minimum coordinates of the x- and y-axes of the merged
bounding box and tx2, ty2 represent the maximum coordinates of the x- and y-axes of the
merged bounding box. The calibration area is then extracted from Dn and enlarged to the
same size Dn to obtain the enlarged feature map.

Separate classifiers are set up for the original and refinement stages for their respective
pyramids, and the final classification results are taken as the average of the predicted values
in the original stage and the predicted values in the refinement stage.

2.2. Recognizing OAM Modes Based on AP-CNN

Figure 3 displays the light intensity distributions of two similar superposition mode
vortex beams of OAM= {1, −2, 3, −5} and OAM= {−2, 3, −5}. The ROI, localized from
low to high level, are slow shown. This approach can be used to identify the ROI located
on different pyramid levels, and more detailed information can be captured at the low
levels to distinguish different OAM modes. Compared with high-level image semantic
information, after thinning image features, this low-level information is very helpful to
improve the accuracy of OAM mode detection.

The CCD camera at the receiving end captures the light intensity distribution of the
vortex beam after atmospheric turbulence and inputs it into the AP-CNN to detect the
OAM mode and retrieve the transmitted data. Here, we use the ResNet18 network as the
backbone of the AP-CNN. The ResNet18 structure used in this paper differs slightly from
the official ResNet18 [35] structure, as described below:

(1) The size of the input light intensity map is 128 × 128 × 3. To avoid the problems of the
low resolution of the final feature map after multiple downsampling and the serious
loss of semantic information, the maximum pooling layer of stage0 is removed.

(2) To reduce the number of model parameters, the 7 × 7 convolutional kernel of stage0
is replaced by a 3 × 3 convolution kernel.
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Figure 3. Regions of interest localized by AP-CNN at different levels for different OAM modes.

The structure of the modified ResNet18 is shown in Table 1.

Table 1. Modified ResNet18 network structure.

Network Layer Output Feature Map Size ResNet18

conv1 128 × 128 3 × 3, 64
conv2_x 64 × 64

[
3 × 3, 64
3 × 3, 64

]
× 2

conv3_x 32 × 32
[

3 × 3, 128
3 × 3, 128

]
× 2

conv4_x 16 × 16
[

3 × 3, 256
3 × 3, 256

]
× 2

conv5_x 8 × 8
[

3 × 3, 512
3 × 3, 512

]
× 2

1 × 1 Average pooling + full
connected + softmax

The OAM mode recognition algorithm AP-CNN consists of two parts: the backbone
network ResNet18 and the refinement network, as shown in Figure 4. The size of the
simulated light intensity distribution map of the OAM beam is set to 128 × 128 and is input
into the ResNet18 network for training. Firstly, it is input into stage0 for pre-processing,
and only the features are extracted (64 convolutional kernels with a size of 3 × 3 and a step
size of 2), and the 128 × 128 feature map is output. Then, the feature map is fed into the
next four layers of residual blocks, which reduces the size of the input feature map by half
compared to the original size and doubles the number of channels. Next, the output feature
maps of the third, fourth, and fifth layers of ResNet18 are denoted as B3, B4, B5, respectively,
for subsequent building of the feature pyramid, as shown in Figure 4. Further refinement
is carried out at the B3 level of the pyramid. We respectively assign anchors with single
scales of 18, 36, and 72 and a 1:1 ratio for each pyramidal level and choose the top 5, 3, and
1 anchors with the highest activation values as potential refinement candidates. For the
adaptive NMS, the cutoff threshold is set to 0.05, the merge threshold to 0.9, and the drop
block probability to {30%, 30%, 0%}.
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Figure 4. Connection between ResNet18 and the refinement network.

During AP-CNN training, the initial learning rate is set to 0.01, decreasing by 10%
for every 20 iterations; as such, a total of 100 epochs are trained. The random gradient
descent algorithm with a momentum coefficient of 0.9 and a minipatch of 16 is used for
parameter optimization, and the weight attenuation is set to 5 × 10−4. The experimental
operating system is windows, the programming language of the algorithm part is python,
and the deep learning framework is pytorch. The software versions are shown in Table 2.
The graphics card we used was an RTX2060.

Table 2. Software used in experiments.

Software Edition

Windows Windows10 (21H2)

Python 3.7

Pytorch 1.7.1

Torchvision 0.8.2

CUDA 11.0.2

CuDNN 11.2

2.3. Performance Evaluation Index

The OAM mode detection performance of the network is evaluated by two indicators:
detection accuracy and BER. The detection accuracy is defined as the ratio of the number
of correct OAM mode detection samples to the total number of vortex light intensity
distributions on the test set, determined using Equation (7):

Accuracy =

M
∑

m=1
f (m)

M
(7)

where M represents the total number of light intensity distribution maps of vortex light
and m represents the OAM mode. f (m) is 1 when the identification is correct and 0 when it
is wrong.

BER and the symbol error rate (SER) are commonly used to evaluate the probability
of transmission errors in communication systems. The SER is defined as the probability
of a symbol transmission error, i.e., the ratio of the number of erroneous symbols at the
receiving end to the total number of transmitted symbols:

SER =
M

∑
i=1

[pi(1 − p(si|si))] (8)
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where M represents the number of symbol types, pi denotes the probability of transmitting
each symbol with the value 1/M, and p(si|si) represents the correct conditional probability
density detected by the receiver in a certain OAM mode.

p(si|si) =
1√
π

∫ +∞

−∞
exp(hT − ηsi ,si GLpath

√
γβ)

M

∏
k=1,k 
=i

[1 − 0.5er f c(hT − ηsj ,si GLpath
√

γβ)]dhT (9)

where si represents the OAM mode and hT , G, Lpath are constants, representing the power
detection threshold, the average gain of the receiver, and the path loss, respectively. The
value of p(si|si) is theoretically mainly determined by signal-to-noise ratio γβ at the
receiving end and the helical spectral distribution.

The relationship of BER with the SER is as follows:

BER = SER/(log2 M) (10)

In our simulation experiments, the eight OAM superposition modes are one-to-one,
corresponding to the octal symbols. At the receiving end, by identifying the light intensity
distribution, the code word sequence is obtained by inversion. This is then compared with
the theoretical code word sequence, while the ratio of the number of wrong code words to
the total number of code words is the BER.

3. Results and Discussion

3.1. Simulation Data Set Construction

In order to verify the performance of the AP-CNN in OAM mode detection for similar
distributions of multi-mode vortex beams, four pairs of OAM modes, namely, {1, −2} and
{1, −2, −5}, {1, −2, 3, −5} and {−2, 3, −5}, {4, −4} and {2, −6}, {6, −6} and {9, −3}, are
selected, as shown in Figure 5. The light intensity distributions in four columns are similar
to each other. In addition, in order to test the detection performance of a single-mode
vortex beam with a large topological charge interfering with the plane wave, a plane wave
interferogram dataset of a single-mode vortex beam is constructed, choosing eight types of
samples with large topological charges, i.e., ±17,±18,±19,±20, as shown in Figure 6.

Figure 5. Light intensity distribution of a similar multi-mode OAM beam.

The wavelength of the OAM communication system is 0.6328 μm and the beam waist
radius is 0.3 m. For the comparison experiments under different turbulent conditions, the
transmission distance is fixed and six different atmospheric refractive index structure constants,
C2

n, are selected: 1.0 × 10−14m−2/3, 3.0 × 10−14m−2/3, 5.0 × 10−14m−2/3, 1.0 × 10−13m−2/3,
3.0× 10−13m−2/3 and 5.0× 10−13m−2/3. For comparison experiments at different transmission
distances, the C2

n is fixed and six different transmission distances are chosen: 500 m, 1000 m,
1500 m, 2000 m, 2500 m, and 3000 m. When simulating the atmospheric turbulence channel,
the power spectrum inversion method is used to decimate the transmission distance in order
to obtain ten phase screens with certain intervals. For each transmission condition, 2000 light
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intensity maps are generated for each OAM mode. In this way, a total of 16,000 light intensity
distribution maps are included in the hybrid dataset. This is then divided into a training and a
test set at a ratio of 8:2 (12,800 images in the training set and 3200 images in the test set).

Figure 6. Plane wave interferogram of single-mode vortex beam with large topological charge.

3.2. Analysis of Multi-Mode OAM Mode Recognition Based on AP-CNN

In order to compare the performance of the AP-CNN with that of ResNet18, the OAM
recognition accuracy, confusion matrix, and BER of both models are numerically analyzed in
this section. Variations in OAM mode recognition accuracy are shown in Figures 7 and 8 under
different turbulence intensities for transmission distances 2000 m and 3000 m, respectively.

  
Figure 7. Accuracy of OAM mode recognition based on ResNet18 at different turbulence intensities
(a) transmission distance: 2000 m (b) transmission distance: 3000 m.

  
Figure 8. Accuracy of OAM mode recognition based on AP-CNN under different turbulence intensi-
ties. (a) transmission distance: 2000 m (b) transmission distance: 3000 m.

As shown, the detection accuracy increases gradually with an increase in the training
epoch. Additionally, the comparisons show that the detection accuracy increases significantly
more slowly in strong turbulence than in weak ones. When the turbulence is strong, the training
process becomes more problematic because the image suffers more serious distortion. Taking a
transmission distance of 2000 m as an example, as shown in Figure 7, after 100-times training in
medium turbulence (C2

n = 1.0× 10−14m−2/3, C2
n = 3.0× 10−14m−2/3, C2

n = 5.0× 10−14m−2/3),
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ResNet18 can still achieve an OAM mode detection accuracy of more than 96.9%, whereas under
strong turbulence C2

n = 3.0× 10−13m−2/3 and C2
n = 5.0× 10−13m−2/3), the detection accuracy

decrease to 91.7% and 87.3%, respectively. The detection accuracy is further reduced from
87.3% to 83.2% when the transmission distance is increased to 3000 m under strong turbulence
(C2

n = 5.0× 10−13m−2/3). In other words, the greater the turbulence intensity and the farther
the transmission distance, the lower the detection accuracy.

A comparison of Figures 7 and 8 reveals that the accuracy of OAM mode recognition
based on AP-CNN is superior to that of ResNet18. When the turbulence is weak, the opti-
mization effect of the AP-CNN is minimal, while when the turbulence is strong, it is more
obvious. For example, when the transmission distance is 2000 m for C2

n = 3.0 × 10−14m−2/3,
as shown in Figure 8, the accuracy of OAM mode recognition based on the AP-CNN can
reach up to 98.1% after 100 training epochs, which is only a 0.6% improvement compared with
ResNet18. Additionally, under these circumstances, the optimization effect is not obvious.
Meanwhile, when C2

n = 3.0 × 10−13m−2/3, the recognition accuracy based on ResNet18 is
only 92.1%. The accuracy of OAM mode recognition based on AP-CNN, on the other hand, is
significantly improved, and the recognition accuracy of the best model reaches 94.4%, showing
an improvement of about 2.3%.

When the transmission distance is large, the improvement of the recognition accuracy
based on AP-CNN is limited in a highly turbulent environment. For example, when
C2

n = 5.0 × 10−13m−2/3, the accuracy of OAM mode recognition based on the AP-CNN
can reach up to 90.5% after 100 training epochs when the transmission distance is 2000 m,
which is about a 3.1% improvement compared to ResNet18, as shown in Figure 8. However,
when the transmission distance extends to 3000 m, the recognition accuracy of the best
model can only reach 84.2% after AP-CNN, i.e., 1.2% higher than ResNet18. The reason
for this is that in strong turbulence, when the distance is too great, the transmission of the
OAM beam is greatly affected by the turbulent disturbance distortion. The light intensity
distribution captured by the CCD camera at the receiving end is seriously distorted, and
the image features used for recognition are compromised. Therefore, even if the AP-
CNN introduces an attention mechanism to mine the underlying image details, it cannot
significantly improve the accuracy of OAM mode recognition.

The confusion matrixes of superimposed vortex beams using ResNet18 and AP-CNN, with
a transmission distance is 2000 m and when atmospheric refractive index structure constant
C2

n = 5.0 × 10−13m−2/3, are given in Figure 9. The results show that {1, −2, 3, −5} has a
16% probability of being incorrectly identified as {−2, 3, −5}, {1, −2} has a 10% probability
of being incorrectly identified as {1, −2, −5}, and {2, −6} has an 11% probability of being
incorrectly identified as {4, −4}. In contrast, in the APP-CNN network, the accuracy of OAM
mode detection improves by up to 7%, and the related incorrect identification rate is reduced
by up to 3%, which confirms the necessity of designing similar OAM superposition mode
datasets. The accuracy improvement and decrease of incorrect identifications may vary with
the transmission conditions.

Figure 9. Confusion matrix (a) by ResNet18 (b) by AP-CNN.

346



Remote Sens. 2022, 14, 4618

Assuming the signal-to-noise ratio at the receiver side of the OAM communication
system γB = 10dB, the system BER can be calculated based on the recognition accuracy.
When the transmission distance is 2000 m, the demodulation performance of the CNN
demodulator, ResNet18 demodulator, ResNet18 demodulator with a specified mapping
relationship, and the AP-CNN demodulator under six different turbulence intensities C2

n
and transmission distances, expressed as BER at the receiver end, are shown in Figure 10.

C

Figure 10. Performance comparison of four OAM demodulators with (a) atmospheric refractive
index structure constant C2

n (b) transmission distance.

It can be seen from Figure 10 that when the turbulence intensity and transmission distance
are certain, ResNet18 can mine more OAM intensity map information due to the presence of
more convolution layers compared to CNN. Additionally, the BER of the OAM communication
system is lower when using the ResNet18 demodulator compared to the CNN demodulator.
The CNN structure used here consists of three convolution layers and two full connection layers.
Each convolution network layer is composed of a convolutional layer, a batch normalization
layer, and a maxpool layer. The layers are connected by a rectified linear unit (Relu), and each
layer uses dropout. The dropout probability is set to 0.3. The convolutional layers of the first,
second, and third convolution network layers contains 16 kernels of size 5 × 5, 32 kernels of
size 3 × 3, and 64 kernels with size of 3 × 3, respectively. The maxpool layer size of the three
convolution network layers is 2 × 2 and the step size is 2; the difference is more obvious in
a strong turbulence environment (C2

n > 1.0× 10−13m−2/3). Both the ResNet18 demodulator
combined with specified mapping and the AP-CNN demodulator are optimized based on
the ResNet18 demodulator, and both have lower BER than the ResNet18 demodulator. When
C2

n ≤ 3.0× 10−13m−2/3, the BER using the AP-CNN demodulator is lower than that using the
ResNet18 demodulator combined with the specified mapping. However, when the turbulence
is quite strong (e.g., C2

n = 5.0× 10−13m−2/3), the BER using the AP-CNN demodulator is higher
than that of the ResNet18 demodulator with the specified mapping relationship. The reason for
this is that the two optimization schemes (specifying the mapping relationship and introducing
the attention pyramid) do not go in the same direction, as shown in Figure 11.

3.3. Analysis of Single-Mode OAM Mode Detection Based on AP-CNN

The detection accuracies of OAM mode with the ResNet18 network and AP-CNN are
shown in Table 2 after 100 training cycles under different turbulence intensities and transmission
distances. It can be concluded that the stronger the turbulence, the lower the accuracy of OAM
detection. In addition, it can be seen from the data in Table 3 that no matter whether the
transmission distance is 2000 m or 3000 m, under different turbulence intensities, AP-CNN has
improved accuracy compared with ResNet18. In strong turbulence (C2

n = 5.0 × 10−13m−2/3):
the detection accuracy of AP-CNN is 85.2%, a 1.3% improvement compared with ResNet18,
whereas in medium turbulence conditions (C2

n = 5.0 × 10−14m−2/3), the detection accuracy
of AP-CNN has a 3.4% improvement compared with ResNet18 at the transmission distance of
3000 m. When the transmission distance is reduced to 2000 m, the detection accuracy of AP-
CNN shows 5.5% and 4.3% improvements compared with ResNet18 at C2

n = 3.0× 10−13m−2/3

and C2
n = 5.0 × 10−13m−2/3, respectively. It should be emphasized that when the transmission
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distance is long and there is strong turbulence, the light intensity distribution captured at the
receiving end is damaged (because the vortex beam is greatly affected by the turbulent distortion
during transmission), and the AP-CNN detection rate cannot be significantly improved.

Figure 11. Comparison of the optimization direction of the AP-CNN and specified mapping relationship.

Table 3. Detection accuracy comparison of single mode OAM mode using ResNet18 and AP-CNN.

Cn2/(m−2/3)
ResNet18 AP-CNN

2000 m 3000 m 2000 m 3000 m

1.0 × e−14 100.0% 100.0% 100.0% 100.0%
3.0 × e−14 98.9% 98.5% 99.2% 99.8%
5.0 × e−14 97.2% 92.4% 98.3% 95.8%

1.0 × e−13 93.5% 89.8% 96.6% 93.5%
3.0 × e−13 85.9% 84.2% 91.4% 87.1%
5.0 × e−13 84.6% 83.9% 88.9% 85.2%

A comparison of the demodulation performance of CNN, ResNet18, ResNet18 com-
bined with plane wave interference, and AP-CNN combined with plane wave interference
with a 2000 m transmission distance under six different turbulence intensities is shown
in Figure 12a. The performance of the communication link under different transmission
distances when C2

n = 5.0 × 10−14m−2/3 is compared in Figure 12b.

  

Figure 12. Performance of four OAM demodulators for detecting single-mode vortex light (a) under
different turbulence intensities and (b) different transmission distances.

It can be seen from Figure 12 that no matter which demodulation scheme is adopted,
when the transmission distance is fixed, the stronger the turbulence, the lower the accuracy
of the OAM mode detection at the receiving end. When the turbulence intensity is constant,
the longer the transmission distance, the lower the OAM mode detection rate. The detection
accuracy of the CNN demodulator with three convolutional layers, a simple structure, and
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no plane wave interference is low. The ResNet18 has a more complex network structure,
including 17 layers of convolution, and has a stronger ability to mine light intensity in-
formation. However, it directly identifies the light intensity distribution of single-mode
vortex light without interference. Although its detection accuracy is improved compared
with that of CNN, it is still not satisfactory. After plane wave interference, the plane wave
interferogram collected at the receiving end has more distinguishable characteristics, and
the OAM mode detection accuracy of the ResNet18 demodulator is significantly improved
compared with no interference. The AP-CNN adds a dual-path structure combined with an
attention pyramid after the ResNet18 network. As such, the OAM mode detection accuracy
is further improved compared to that of ResNet18. This reveals that the dual path with an
attention pyramid is beneficial for single mode detection accuracy.

3.4. Dicussions

In this work, an AP-CNN OAM mode detection method was described. By adding
a dual path network with an attention pyramid to the backbone ResNet18, the AP-CNN
network was constructed. The effects of turbulence intensity and transmission distance on
the improvement of OAM mode detection accuracy were numerically analyzed.

We first studied the performance of the AP-CNN on multi-mode OAM mode detec-
tion with similar light intensity distributions. Comparisons of AP-CNN with ResNet18
under different degrees of atmospheric turbulence and transmission distances verified
the improvement of the recognition accuracy due to the presence of a dual path structure
with attention pyramid. The results reveal that the recognition accuracy increased to some
extent with increasing turbulence intensity.

The demodulator performance of the CNN with three convolution layers and two full
connection layers, i.e., ResNet18, ResNet18 + Specify mapping and AP-CNN, on a multi-
mode vortex beam are studied. When C2

n ≤ 3.0 × 10−13m−2/3, the BER using AP-CNN
demodulator was lower than with the other three methods.

In addition, OAM mode detection in single mode with a large topological charge
was simulated under medium and strong turbulence intensities, i.e., C2

n ranges from
1.0 × 10−14 to 5.0 × 10−13 at 2000 m and 3000 m transmission distances. A comparison
between ‘ResNet18′and ‘ResNet18 + coherent’ verified the effect of plane wave interference.
The single mode recognition by AP-CNN showed an accuracy improvement of up to
5.5% compared with ResNet18 when C2

n = 3.0 × 10−13m−2/3 at a 2000 m transmission
distance, indicating that the former detection method has strong detailed extraction and
learning capabilities for dense interference fringes of single mode vortex beams with large
topological charges.

4. Conclusions

In this paper, an OAM mode recognition technique based on AP-CNN is proposed.
Utilizing ResNet18 as the backbone of the AP-CNN, a dual-path algorithm structure,
including a top-down feature path and a bottom-up attention path, is added. Based on the
dual-path algorithm structure combined with the attention pyramid, low-level detailed
information of the similar light intensity map is fully utilized. In our simulated experiments,
the size of the light intensity distribution map of the OAM beam was set to 128 × 128 and
was input into the ResNet18 network for training. Then, the output feature maps of the third,
fourth, and fifth layers of ResNet18 were selected to build a pyramidal hierarchy. After
supervised training with a large OAM communication dataset with different turbulence
conditions, the recognition accuracy and the BER were numerically determined. The
simulation results showed that the AP-CNN achieved greatly improved OAM mode
detection accuracy and demodulation performance compared with the ResNet18 network.
When the turbulence was weak, the optimization effect of AP-CNN was not obvious, i.e.,
a 0.6% improvement, while when the turbulence was strong, the optimization was clear,
with an improvement of about 2.3%. The OAM detection accuracy of the AP-CNN was
up to 5.5% higher than that of ResNet18 at 2 km with strong turbulence. This technique
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has significant applications in communication, target detection, and radar imaging. Due
to the limitations of experimental conditions, our research was only based on a simulated
intensity distribution dataset, and light intensity information was collected without phase
information. The training and analysis of the real turbulence OAM communication data
under different conditions, as well as the phase information, will be the focus of future
work by our team.
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