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Article

Dynamical Analysis of a Delayed Diffusive Predator–Prey
Model with Additional Food Provided and
Anti-Predator Behavior

Ruizhi Yang, Xiao Zhao and Yong An *

Department of Mathematics, Northeast Forestry University, Harbin 150040, China; yangrz@nefu.edu.cn (R.Y.);
zhaoxiao@nefu.edu.cn (X.Z.)
* Correspondence: anyong@nefu.edu.cn

Abstract: We studied a delayed predator–prey model with diffusion and anti-predator behavior.
Assume that additional food is provided for predator population. Then the stability of the positive
equilibrium is considered. The existence of Hopf bifurcation is also discussed based on the Hopf
bifurcation theory. The property of Hopf bifurcation is derived through the theory of center man-
ifold and normal form method. Finally, we analyze the effect of time delay on the model through
numerical simulations.

Keywords: delay; diffusion; predator–prey; Hopf bifurcation

1. Introduction

The interaction between predator and prey is ordinary and widespread in nature, it
could affect the ecological balance. There exists an interesting phenomena in prey called
anti-predator behavior, that is, adult prey kills young predators in order to overcome the
predation pressure and improve their population density in the future [1–5]. Sometimes,
this behavior may lead to species outbreak and do harm to the stability of the ecosystem.
Hence, providing additional food for predator is a manner to avoid it [6]. Complex
dynamics would be shown if anti-predator behavior happens.

The following predator–prey model (1) was proposed in [7]. In the absence of preda-
tors, the growth of the prey population follows the logistic equation. Assume Holling IV
functional response exists in this system.⎧⎨⎩

dN
dT = rN(1 − N

K )− cNP
(qN2+1)(a+αη1 A)

dP
dT =

b(N+(qN2+1)η1 A)P
(qN2+1)(a+αη1 A)

− mP − η̄NP
(1)

All parameters are positive and their biological description could be found from [7]
as Table 1. In addition to the main food prey u, the predator has additional food sources
A in the model (1). An the term η̄NP represents the anti-predator behavior in prey.
K. D. Prasad et al. [7] investigated various bifurcations of the system (1), including Bogd-
anov–Takens bifurcation, Saddle-node bifurcation, and Hopf bifurcation. They also consid-
ered the global dynamics of this system.

The predator–prey model has important research value in biomathematics; therefore,
many experts have investigated it and obtained plenty of valuable results [8–12]. For
example, time delay is an element that cannot be ignored in population dynamics. In
nature, the development of population is not only related to the current state, but also
related to the past time state, which is often called time delay. Generally, time delay
often causes instability and periodic oscillation. In this paper, we are going to study the
effect of time delay on the model (1), and intend to observe whether some new dynamic
phenomenon happens.

Mathematics 2022, 10, 469. https://doi.org/10.3390/math10030469 https://www.mdpi.com/journal/mathematics
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Table 1. Biological description of parameters in model (1).

Parameter Definition Parameter Definition

T Time r Prey intrinsic growth rate
N Prey population P Predator population
K Carrying capacity of prey c Maximum rate of preda-

tion
b Maximum growth rate of

predator
m Predator mortality rate

q Group defense in prey η̄ Rate of anti-predator be-
havior

η̄1 Effectual ability of the
predators to detect addi-
tional food relative to the
prey

A Quantity of additional
food provided to the
predators

a Normalization coefficient
relating the densities of
prey and predator to the
environment in which
they interact

α Ratio between the han-
dling times towards the
additional food and the
prey

Further, the distribution of prey and predator are usually nonhomogeneous and dif-
ferent concentration levels of them would cause different population movements [13];
then, the diffusion phenomenon occurs. Some scholars provide different approaches of
mathematical modeling of some ecological interaction in the presence of spatial diffu-
sion [14–17]. In [15], the authors considered a predator–prey model with herd behavior and
the cross-diffusion and fear effect, they mainly studied the Turing patterns and Turing–Hopf
bifurcation induced by cross-diffusion. In [17], S. Djilali and S. Bentout studied a diffusive
predator–prey model in the presence of predator rivalry and prey social behavior. They
mainly studied the stability and Hopf bifurcation, and they show the nonhomogeneous
periodic solution induced by diffusion. These works show that the diffusion term often
causes the Turing pattern, spatial non-uniform periodic oscillation and so on.

Inspired by the above works, we incorporate the diffusion term and time delay to the
model (1) and investigate the following model (2). We mainly study the Hopf bifurcation
by the theory of center manifold and normal form method by using time delay as the
bifurcation parameter.⎧⎨⎩

∂N(x,t)
∂t = D1ΔN + rN(1 − N(T−T1)

K )− cNP
(qN2+1)(a+αη1 A)

∂P(x,t)
∂t = D2ΔP +

b(N+(qN2+1)η1 A)P
(qN2+1)(a+αη1 A)

− mP − η̄NP
(2)

where D1 and D2 represents the diffusion coefficients of prey and predator, respectively.
Suppose there exists a time delay T1, which denotes the resource limitation of the prey
logistic equation. It is convenient to non-dimensionalize the model with the transformations
as u = N

a , v = CP
ar , and t = rT. Then, the following model is obtained.⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂u(x,t)
∂t = d1Δu + u(1 − u(t−τ)

γ )− uv
(wu2+1)(1+αε)

, x ∈ (0, lπ), t > 0,
∂v(x,t)

∂t = d2Δv +
β(u+(wu2+1)ε)v
(wu2+1)(1+αε)

− δv − suv, x ∈ (0, lπ), t > 0,
ux(0, t) = vx(0, t) = 0, ux(lπ, t) = vx(lπ, t) = 0, t > 0,
u(x, θ) = u0(x, θ) ≥ 0, v(x, θ) = v0(x, θ) ≥ 0, x ∈ [0, lπ], θ ∈ [−τ, 0].

(3)

where

γ =
K
a

, w = qa2, ε =
η1 A

a
, β =

b
r

, δ =
m
r

, s =
η̄a
r

, d1 =
D1

r
, d2 =

D2

r
.
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All parameters in the model (3) are non-negative. ∂u(x,t)
∂t and ∂v(x,t)

∂t denote the gradient
of prey and predator densities, respectively. The boundary condition is Neumann boundary
condition, based on the hypothesis that the region where prey and predators live is closed
and no prey and predator entering or leaving the region.

In this paper, we mainly study the effect of time delay and diffusion term on the
model (3), such as delay inducing instability, homogeneous or inhomogeneous bifurcating
periodic solutions. The rest of our paper is divided as follows. In Section 2, the local stability
of the equilibrium is studied, some conditions under which Hopf bifurcation occurs are
also derived. The property of Hopf bifurcation is investigated in Section 3 and numerical
simulations are presented in Section 4. At last, we give a short conclusion.

2. Analysis of the Characteristic Equations

The equilibria of system (3) are the roots of the following equations⎧⎨⎩ u(1 − u
γ )− uv

(wu2+1)(1+αε)
= 0,

β(u+(wu2+1)ε)v
(wu2+1)(1+αε)

− δv − suv = 0.
(4)

The existence of positive equilibrium is exactly investigated in [7]. The results are
as follows.

Lemma 1. Ref. [7] For the model (3), the following conclusions about the existence of positive
equilibrium are true.

1. (0, 0) and (γ, 0) are two boundary equilibria.
2. There exists a unique interior equilibrium E1(u1, v1), when β− s(1 + αε) > 0, βε− δ(1 +

αε) ≤ 0 and f (uc) < 0, u1 < γ < u2.
3. There exists two interior equilibria E1(u1, v1) and E2(u2, v2), when β− s(1+ αε) > 0, βε−

δ(1 + αε) ≤ 0 and f (uc) < 0, u1 < u2 < γ.
4. There exists an instantaneous equilibrium Ec(uc, vc), when β− s(1 + αε) > 0, βε− δ(1 +

αε) ≤ 0 and f (uc) = 0, uc < γ .
5. There exists one equilibrium E2(u2, v2) if βε− δ(1 + αε) > 0 and u2 < γ.

where

f (u) =sw(1 + αε)u3 − [βε− δ(1 + αε)]wu2

− [β− s(1 + αε)]u − [βε− δ(1 + αε)],

f ′(u) =3sw(1 + αε)u2 − 2w[βε− δ(1 + αε)]u

− [β− s(1 + αε)],

f ′′(u) =6sw(1 + αε)u − 2w[βε− δ(1 + αε)].

(5)

Proof of Lemma 1. Case 1. For u > 0, suppose βε− δ(1 + αε) ≤ 0, then f ′′(u) > 0 and
f (0) ≥ 0. If β− s(1 + αε) > 0, f (u) = 0 has a local minimum value at uc(uc > 0). Because
by analyzing f ′(u), we know f (u) is decreasing in (0, uc) and increasing in (uc,+∞). When
f (uc) < 0, f (u) has two positive equilibrium written as E1(u1, v1) and E2(u2, v2) with 0 <
u1 < u2; when f (uc) = 0, f (u) has only one positive root Ec(uc, vc). If β− s(1 + αε) ≤ 0,
then f ′(u) ≥ 0 for all u. Thus, f (u) has no positive root in (0,+∞).

Case 2. Suppose βε− δ(1 + αε) > 0, then f (0) < 0 and f ′′(u) = 0 admits a positive
real root ucc. We know f ′(u) is decreasing in (0, ucc) and increasing in (ucc,+∞). If
β− s(1 + αε) > 0, easily know f ′(0) < 0. The equation f (u) = 0 has one positive real root
u2 because its discriminant is either positive or negative. If β− s(1+ αε) ≤ 0, then f ′(0) > 0.
The equation f (u) = 0 has one positive real root u2 and a pair of complex conjugate roots
because its discriminant is always negative. To know the detailed discussion, one can refer
to the literature [7].

3
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Next, suppose the model (3) has a positive equilibrium P = (u0, v0), then analyze
its stability.

Denote
u1(t) = u(·, t), u2(t) = v(·, t), U = (u1, u2)

T ,

X = {u, v2,2(0, lπ) : (ux, vx)|x=0,lπ = 0}, and Cτ := C([−τ, 0], X).

Linearizing the model (3) at P = (u0, v0), it becomes

U̇ = DΔU(t) + L(Ut), (6)

where

D =

(
d1 0
0 d2

)
, dom(DΔ) = {(u, v)T : u, v ∈ C2([0, lπ],R2), ux, vx = 0, x = 0, lπ},

while L : Cτ �→ X is represented as

L(φt) = L1φ(0) + L2φ(−τ),

and φ = (φ1, φ2)
T ∈ Cτ with

L1 =

(
a1 a2
b1 0

)
, L2 =

( − u0
γ 0

0 0

)
,

φ(t) = (φ1(t), φ2(t))T , φ(t)(·) = (φ1(t + ·), φ2(t + ·))T .

a1 :=
2u2

0w(γ− u0)

γ+ u2
0wγ

, a2 :=
u0(u0 − γ)

v0γ
, b1 := −sv0 +

β(u2
0w − 1)(u0 − γ)

γ+ u2
0wγ

(7)

The characteristic equation of model (6) can be known through [18], that is

λy − dΔy − L(eλy) = 0, y ∈ dom(dΔ), y �= 0. (8)

Then, μn = n2/l2 (n = 0, 1, · · · ) are the eigenvalues of

−ϕ′′ = μϕ, x ∈ (0, lπ); ϕ′(0) = ϕ′(lπ) = 0.

and the corresponding eigenfunctions are

ϕn(x) = cos
nπ
l

, n = 0, 1, · · · .

Substituting

y =
∞

∑
n=0

(
y1n
y2n

)
cos

nπ
l

into the Equation (8), we have(
a1 − d1n2

l2 − u0
γ e−λτ a2

b1 − d2n2

l2

)(
y1n
y2n

)
= λ

(
y1n
y2n

)
, n = 0, 1, · · · .

Hence, the characteristic Equation (8) is the same as

Δn(λ, τ) = λ2 + λAn + Bn + (Cn +
λu0

γ
)e−λτ = 0, (9)

4
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where

An = (d1 + d2)
n2

l2 − a1, Bn = d1d2
n4

l4 − a1d2
n2

l2 − a2b1, Cn =
d2u0n2

γl2

Make the following hypothesis,

(H) a1 − u0

γ
< 0, a2b1 < 0. (10)

Then we obtain the following lemma.

Lemma 2. Suppose (H) and τ = 0 hold, then P(u0, v0) is locally asymptotically stable.

Proof of Lemma 2. If τ = 0, Equation (9) turns into

λ2 + (An +
u0

γ
)λ+ Bn + Cn = 0, n ∈ N0. (11)

By direct calculation, we have An + u0
γ > A0 +

u0
γ > 0 and Bn + Cn > B0 + C0 > 0.

That is to say all eigenvalues have negative real parts. Thus, P(u0, v0) is locally asymptoti-
cally stable.

Based on (H), easily to obtain Δn(0, τ) = Bn + Cn > 0. Then the following conclusion
could be established.

Lemma 3. Suppose (H) holds, when n ∈ N0, we know λ = 0 is not a root of Equation (9).

To find the critical values of τ. Suppose iω(ω > 0) is a solution of (9), next

−ω2 + iωAn + Bn + (Cn +
iωu0

γ
)(cosωτ − i sinωτ) = 0.

We obtain {
−ω2 + Bn + Cn cosωτ + u0ω sinωτ

γ = 0,
Anω− Cn sinωτ + u0ω cosωτ

γ = 0,

which leads to

ω4 + (A2
n − 2Bn − u2

0
γ2 )ω

2 + B2
n − C2

n = 0. (12)

Denote z = ω2, then (12) becomes

z2 + (A2
n − 2Bn − u2

0
γ2 )z + B2

n − C2
n = 0, (13)

and its roots are

z± =
1
2
[−(A2

n − 2Bn − u2
0

γ2 )±
√
(A2

n − 2Bn − u2
0

γ2 )
2 − 4(B2

n − C2
n)].

If (H) holds

A2
n − 2Bn − u2

0
γ2 = (d1

n2

l2 − a1)
2 + d2

2
n4

l4 + 2a2b1 −
u2

0
γ2 ,

Bn + Cn = d1d2
n4

l4 − (a1d2 − d2
u0

γ
)

n2

l2 − a2b1 > 0,

5
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Bn − Cn = d1d2
n4

l4 − (a1d2 + d2
u0

γ
)

n2

l2 − a2b1.

Define
G = {n ∈ N0|Equation (13) has positive roots}. (14)

Then the following lemma holds.

Lemma 4. Suppose (H) and G �= ∅ hold, then Equation (9) has a pair of purely imaginary roots
±iω+

n or ±iω−
n (n ∈ G) at

τ
j,±
n = τ0,±

n +
2jπ
ωn

, j ∈ N0, (15)

where

τ0,±
n =

{ 1
ω±

n
arccos(V±

cos), V±
sin ≥ 0;

1
ω±

n
[2π − arccos(V±

cos)], V±
sin < 0.

(16)

and

V±
cos =

γ
(−BnCnγ− Anu0(ω

±
n )2 + Cnγ(ω±

n )2)
C2

nγ
2 + u2

0(ω
±
n )2

,

V±
sin =

ω±
n γ

(−Bnu0 + AnCnγ+ u0(ω
±
n )2)

C2
nγ

2 + u2
0(ω

±
n )2

,

ω±
n =

√
z±.

(17)

Assume λn(τ) = αn(τ) + iωn(τ) is the root of (9), which satisfies αn(τ
j
n) = 0 and

ωn(τ
j
n) = ωn if τ is close to τ

j
n. Calculate the transversality condition.

Lemma 5. If (H) holds, we have

α′n(τ
j
n) =

dλ
dτ

|
τ=τ

j,+
n

> 0, α′n(τ
j
n) =

dλ
dτ

|
τ=τ

j,−
n

< 0, with n ∈ G, j ∈ N0.

Proof of Lemma 5. Differentiate both sides of the Equation (9) with respect to τ, that is

(
dλ
dτ

)−1 =
2λ+ An +

u0
γ e−λτ

(λCn + u0
λ2

γ )e−λτ
− τ

λ
.

By calculation,

Re(
dλ
dτ

)−1
τ=τ

j,±
n

=
A2

n − 2Bn + 2ω2
n − u2

0
γ2

C2
n +

u2
0ω

2
n

γ2
τ=τ

j,±
n

=
±

√
(A2

n − 2Bn − u2
0

γ2 )2 − 4(B2
n − C2

n)

C2
n +

u2
0ω

2
n

γ2

.

Thus α′n(τ
j,+
n ) > 0, and α′n(τ

j,−
n ) < 0.

Assume m �= n, then τ
j
m = τk

n could happen sometimes; however, we ignore that and
only think about

τ ∈ D := {τ j
n : τ

j
m �= τk

n , m �= n, m, n ∈ G, j, k ∈ N0}.

Let τ∗ = min{τ ∈ D}. In conclusion, the following theorem is given.

Theorem 1. In the model (3), if (H) holds, the following statements are true.

1. Suppose G = ∅, τ ≥ 0, then P(u0, v0) is locally asymptotically stable.

6
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2. Suppose G �= ∅, when τ ∈ [0, τ∗), P(u0, v0) is locally asymptotically stable, and it is
unstable when τ∗ < τ < τ∗ + ε for some ε > 0.

3. When τ = τ
j
n (j ∈ N0 ), the system (3) undergoes a Hopf bifurcation. There exists inhomoge-

neous bifurcating periodic solutions for τ ∈ D/{τk
0 : k ∈ N0}.

3. Stability and Direction of Hopf Bifurcation

In this section, we obtain some formulas for determining the property of Hopf bifurca-
tion through the method in [18], the following are detail computation. Fix j ∈ N0, n ∈ G,
make τ̃ = τ

j
n. Assume ũ(x, t) = u(x, τt)− u0 , ṽ(x, t) = v(x, τt)− v0. Then drop the tilde

for the sake of simplicity. The model (3) becomes⎧⎨⎩
∂u
∂t = τ[d1Δu + (u + u0)

(
1 − u(t−1)+u0

γ − v+v0
(w(u+u0)2+1)(1+αε)

)
],

∂v
∂t = τ[d2Δv + (v + v0)

(
β(u+u0+(w(u+u0)

2+1)ε)
(w(u+u0)2+1)(1+αε)

− δ− s(u + u0)
)
],

(18)

with x ∈ (0, lπ), t > 0. Suppose

τ = τ̃ + μ, u1(t) = u(·, t), u2(t) = v(·, t) and U(x, t) = (u1(x, t), u2(x, t))T .

For convenience, we denote Ut(θ) = U(x, t + θ). Under the phase space C1 :=
C([−1, 0], X), (18) could be denoted by

dU(t)
dt

= τ̃DΔU(t) + Lτ̃(Ut) + F(Ut, μ), (19)

where

Lμ(φ) = μ

(
a1φ1(0) + a2φ2(0)− u0

γ φ1(−1)
b1φ1(0)

)
(20)

F(φ, μ) = μDΔφ+ Lμ(φ) + f (φ, μ), (21)

and

f (φ, μ) = (τ̃ + μ)(F1(φ, μ), F2(φ, μ))T ,

F1(φ, μ) = (φ1(0) + u0)

(
1 − φ1(−1) + u0

γ
− φ2(0) + v0

(w(φ1(0) + u0)2 + 1)(1 + αε)

)
− a1φ1(0)− a2φ2(0) +

u0

γ
φ1(−1),

F2(φ, μ) = (φ2(0) + v0)

(
β(φ1(0) + u0 + (w(φ1(0) + u0)

2 + 1)ε)
(w(φ1(0) + u0)2 + 1)(1 + αε)

− δ− s(φ1(0) + u0)

)
− b1φ1(0),

with φ(θ) = (φ1(θ), φ2(θ))
T ∈ C1.

Consider the linear equation

dU(t)
dt

= τ̃DΔU(t) + Lτ̃(Ut). (22)

By the previous analysis, we know the origin (0, 0) is an equilibrium of (18), and
for τ = τ̃, Λn := {iωnτ̃,−iωnτ̃} are eigenvalues of system (22) and the liner functional
differential equation

dz(t)
dt

= −τ̃D
n2

l2 z(t) + Lτ̃(zt). (23)

7
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From Riesz representation theorem [19], a 2 × 2 matrix function ηn(σ, τ̃) −1 ≤ σ ≤ 0
exists, whose entries are of bounded variation such that, then

−τ̃D
n2

l2 φ(0) + Lτ̃(φ) =
∫ 0

−1
dηn(σ, τ)φ(σ),

with φ(θ) ∈ C([−1, 0],R2).
In fact, we can choose

ηn(σ, τ) =

⎧⎨⎩
τE σ = 0,
0 σ ∈ (−1, 0),
−τF σ = −1,

(24)

where

E =

(
a1 − d1

n2

l2 a2

b1 −d2
n2

l2

)
, F =

( − u0
γ 0

0 0

)
. (25)

Let A(τ̃) denote the infinitesimal generators of semigroup included by the solutions
of Equation (23) and A∗ be the formal adjoint of A(τ̃) under the bilinear paring

(ψ, φ) = ψ(0)φ(0)−
∫ 0

−1

∫ σ

ξ=0
ψ(ξ − σ)dηn(σ, τ̃)φ(ξ)dξ

= ψ(0)φ(0) + τ̃
∫ 0

−1
ψ(ξ + 1)Fφ(ξ)dξ.

(26)

with φ(θ) ∈ C([−1, 0],R2), ψ(r) ∈ C([0, 1],R2). Then A(τ̃) and A∗ are a pair of adjoint
operators, see [20]. From the discussion in Section 2, we know ±iωnτ̃ are two simple
purely imaginary characteristic values of A(τ̃) as well as A∗. Suppose P and P∗ are the
center subspace, that is, the generalized eigenspace of A(τ̃) and A∗ associated with Λn,
respectively. Then P∗ is the adjoint space of P and dimP = dimP∗ = 2, see [18].

We can obtain p1(θ) = (1, ξ)Teiωn τ̃θ , p2(θ) = p1(θ) (θ ∈ [−1, 0]) is a basis of A(τ̃)
associated with Λn and q1(r) = (1, η)e−iωn τ̃r, q2(r) = q1(r) (r ∈ [0, 1]) is a basis of A∗
with Λn, where

ξ =
b1

d2
n2

l2 + iωn
, η =

a2

d2
n2

l2 − iωn
.

Let Φ = (Φ1, Φ2), Ψ∗ = (Ψ∗
1, Ψ∗

2)
T , with

Φ1(θ) =
p1(θ) + p2(θ)

2
=

(
Re

(
eiωn τ̃θ

)
Re

(
ξeiωn τ̃θ

) )
, Φ2(θ) =

p1(θ)− p2(θ)

2i
=

(
Im

(
eiωn τ̃θ

)
Im

(
ξeiωn τ̃θ

) )

for θ ∈ [−1, 0],

Ψ∗
1(r) =

q1(r) + q2(r)
2

=

(
Re

(
e−iωn τ̃r)

Re
(
ηe−iωn τ̃r) )

, Ψ∗
2(r) =

q1(r)− q2(r)
2i

=

(
Im

(
e−iωn τ̃r)

Im
(
ηe−iωn τ̃r) )

for r ∈ [0, 1]. Then we can compute by (26),

D∗
1 := (Ψ∗

1, Φ1), D∗
2 := (Ψ∗

1, Φ2), D∗
3 := (Ψ∗

2, Φ1), D∗
4 := (Ψ∗

2, Φ2).

8
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Let (Ψ∗, Φ) = (Ψ∗
j , Φk) =

(
D∗

1 D∗
2

D∗
3 D∗

4

)
and construct a new basis Ψ for P∗ by Ψ =

(Ψ1, Ψ2)
T = (Ψ∗, Φ)−1Ψ∗. Then (Ψ, Φ) = I2. Furthermore, define fn := (β1

n, β2
n) and

c · fn = c1β
1
n + c2β

2
n, for c = (c1, c2)

T ∈ C1, where

β1
n =

(
cos n

l x
0

)
, β2

n =

(
0

cos n
l x

)
.

Therefore, the center subspace of linear Equation (22) is given by PCNC1 ⊕ PSC1 and
PSC1 represents the complement subspace of PCNC1 in C1,

< u, v >:=
1

lπ

∫ lπ

0
u1v1dx +

1
lπ

∫ lπ

0
u2v2dx,

where u = (u1, u2), v = (v1, v2), u, v ∈ X, < φ, f0 >= (< φ, f 1
0 >,< φ, f 2

0 >)T .
Let Aτ̃ be the infinitesimal generator of an analytic semigroup induced by the solution

of linear system (22), then Equation (18) becomes

dU(t)
dt

= Aτ̃Ut + R(Ut, μ), (27)

with

R(Ut, μ) =
{

0, θ ∈ [−1, 0);
F(Ut, μ), θ = 0.

(28)

Through the decomposition of C1, the solution of (19) can be written as

Ut = Φ
(

x1
x2

)
fn + h(x1, x2, μ), (29)

where (
x1
x2

)
= (Ψ,< Ut, fn >),

moreover,
h(x1, x2, μ) ∈ PSC1, h(0, 0, 0) = 0, Dh(0, 0, 0) = 0.

In particular, the solution of (19) on the center manifold is given by

Ut = Φ
(

x1(t)
x2(t)

)
fn + h(x1, x2, 0). (30)

Suppose z = x1 − ix2 and Ψ(0) = (Ψ1(0), Ψ2(0))T , find that p1 = Φ1 + iΦ2, then
we have

Φ
(

x1
x2

)
fn = (Φ1, Φ2)

(
z+z

2
i(z−z)

2

)
fn =

1
2
(p1z + p1z) fn,

and

h(x1, x2, 0) = h(
z + z

2
,

i(z − z)
2

, 0).

Thus, (30) becomes

Ut =
1
2
(p1z + p1z) fn + h(

z + z
2

,
i(z − z)

2
, 0)

=
1
2
(p1z + p1z) fn + W(z, z),

(31)

9
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and

W(z, z) = h(
z + z

2
,

i(z − z)
2

, 0).

Based on [18], z satisfies

ż = iωnτ̃z + g(z, z), (32)

with

g(z, z) = (Ψ1(0)− iΨ2(0)) < F(Ut, 0), fn > . (33)

Assume

W(z, z) = W20
z2

2
+ W11zz + W02

z2

2
+ · · · , (34)

g(z, z) = g20
z2

2
+ g11zz + g02

z2

2
+ · · · , (35)

by Equations (31) and (34), we obtain

ut(0) =
1
2
(z + z) cos

(nx
l

)
+ W(1)

20 (0)
z2

2
+ W(1)

11 (0)zz + W(1)
02 (0)

z2

2
+ · · · ,

vt(0) =
1
2
(ξz + ξz) cos

(nx
l

)
+ W(2)

20 (0)
z2

2
+ W(2)

11 (0)zz + W(2)
02 (0)

z2

2
+ · · · ,

ut(−1) =
1
2
(ze−iωn τ̃ + zeiωn τ̃) cos(

nx
l
) +W(1)

20 (−1)
z2

2
+W(1)

11 (−1)zz +W(1)
02 (−1)

z2

2
+ · · · ,

then

F1(Ut, 0) =
1
τ̃

F1 =α1u2
t (0) + α2ut(0)vt(0) + α3ut(0)ut(−1) + α4u3

t (0)

+α5u2
t (0)vt(0) + O(4),

(36)

F2(Ut, 0) =
1
τ̃

F2 = β1u2
t (0) + β2ut(0)vt(0) + β3u3

t (0) + β4u2
t (0)vt(0) + O(4), (37)

with

α1 =
wu0v0(3 − wu2

0)

(1 + wu2
0)

3(1 + αε)
, α2 =

wu2
0 − 1

(1 + wu2
0)

2(1 + αε)
, α3 = − 1

γ
,

α4 =
wv0(1 − 6wu2

0 + w2u4
0)

(1 + wu2
0)

4(1 + αε)
, α5 =

wu0(3 − wu2
0)

(1 + wu2
0)

3(1 + αε)
, β1 =

wu0v0(wu2
0 − 3)β

(1 + wu2
0)

3(1 + αε)
,

β2 =
β(1 − wu2

0)− s(1 + wu2
0)

2(1 + αε)

(1 + wu2
0)

2(1 + αε)
, β3 =

wv0β(6wu2
0 − w2u4

0 − 1)
(1 + wu2

0)
4(1 + αε)

,

β4 =
wu0β(wu2

0 − 3)
(1 + wu2

0)
3(1 + αε)

.

Hence,

F1(Ut, 0) = cos2(
nx
l
)(

z2

2
χ20 + zzχ11 +

z2

2
χ20) +

z2z
2

χ1 cos
nx
l

+
z2z
2

χ2 cos3 nx
l

+ · · · , (38)

F2(Ut, 0) = cos2(
nx
l
)(

z2

2
ς20 + zzς11 +

z2

2
ς20) +

z2z
2

ς1 cos
nx
l

+
z2z
2

ς2 cos3 nx
l

+ · · · , (39)

10
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< F(Ut, 0), fn > = τ̃(F1(Ut, 0) f 1
n + F2(Ut, 0) f 2

n)

=
z2

2
τ̃

(
χ20
ς20

)
Γ + zzτ̃

(
χ11
ς11

)
Γ +

z2

2
τ̃

(
χ20
ς20

)
Γ +

z2z
2

τ̃

(
κ1
κ2

)
+ · · · .

(40)

with

Γ =
1

lπ

∫ lπ

0
cos3(

nx
l
)dx,

χ20 =
1
2
(α1 + α2ξ + α3e−iτ̃ωn),

χ11 =
1
4

(
2α1 + α2(ξ + ξ̄) + α3(e−iτ̃ωn + eiτ̃ωn)

)
,

χ1 = W1
11(0)(2α1 + α2ξ + α3e−iτ̃ωn) +

1
2

W1
20(0)(2α1 + α2ξ̄ + α3eiτ̃ωn)

+ W2
11(0)α2 +

1
2

W2
20(0)α2 + W1

11(−1)α3 +
1
2

W1
20(−1)α3,

χ2 =
1
4
(
3α4 + α5(2ξ + ξ̄)

)
,

ς20 =
1
2
(β1 + β2ξ),

ς11 =
1
4
(2β1 + β2(ξ + ξ̄)),

ς1 = W1
11(0)(2β1 + β2ξ) + W2

11(0)β2 + W1
20(0)(β1 +

β2ξ̄

2
) + W2

20(0)
β2

2
,

ς2 =
1
4
(3β3 + β4(2ξ + ξ̄)),

κ1 = χ1
1

lπ

∫ lπ

0
cos2(

nx
l
)dx + χ2

1
lπ

∫ lπ

0
cos4(

nx
l
)dx,

κ2 = ς1
1

lπ

∫ lπ

0
cos2(

nx
l
)dx + ς2

1
lπ

∫ lπ

0
cos4(

nx
l
)dx.

(41)

Denote
Ψ1(0)− iΨ2(0) := (γ1 γ2).

Notice that
1

lπ

∫ lπ

0
cos3(

nx
l
)dx = 0, n = 1, 2, 3, · · · ,

then

(Ψ1(0)− iΨ2(0)) < F(Ut, 0), fn >=

z2

2
(γ1χ20 + γ2ς20)Γτ̃ + zz(γ1χ11 + γ2ς11)Γτ̃ +

z2

2
(γ1χ20 + γ2ς20)Γτ̃

+
z2z
2

τ̃[γ1κ1 + γ2κ2] + · · · ,

(42)

g20 = g11 = g02 = 0 can be derived from (33), (35), and (42), with n = 1, 2, 3, · · · . If n = 0,
we have

g20 = γ1τ̃χ20 + γ2τ̃ς20, g11 = γ1τ̃χ11 + γ2τ̃ς11, g02 = γ1τ̃χ20 + γ2τ̃ς20. (43)

and for n ∈ N0, g21 = τ̃(γ1κ1 + γ2κ2).
Now, a complete description for g20 is derived. Next, we need to calculate W20(θ) and

W11(θ) for θ ∈ [−1, 0] because they appear in g21. It follows from (34) that

Ẇ(z, z) = W20zż + W11żz + W11zż + W02zż + · · · ,

11



Mathematics 2022, 10, 469

Aτ̃W(z, z) = Aτ̃W20
z2

2
+ Aτ̃W11zz + Aτ̃W02

z2

2
+ · · · .

Furthermore, by [18], W(z, z) should satisfy

Ẇ(z, z) = Aτ̃W + H(z, z),

where

H(z, z) = H20
z2

2
+ W11zz + H02

z2

2
+ · · ·

= X0F(Ut, 0)− Φ(Ψ,< X0F(Ut, 0), fn > · fn).
(44)

Thus, we have

(2iωnτ̃ − Aτ̃)W20 = H20, − Aτ̃W11 = H11, (−2iωnτ̃ − Aτ̃)W02 = H02, (45)

Noticing that Aτ̃ has only two eigenvalues ±iωnτ̃; therefore, (45) has unique solution
Wij in P∗ given by

W20 = (2iωnτ̃ − Aτ̃)
−1H20, W11 = −A−1

τ̃ H11, W02 = (−2iωnτ̃ − Aτ̃)
−1H02. (46)

From (42), we know that for θ ∈ [−1, 0),

H(z, z) = −Φ(0)Ψ(0) < F(Ut, 0), fn > · fn

=− (
p1(θ) + p2(θ)

2
,

p1(θ)− p2(θ)

2i
)

(
Φ1(0)
Φ2(0)

)
< F(Ut, 0), fn > · fn

=− 1
2
[p1(θ)(Φ1(0)− iΦ2(0)) + p2(θ)(Φ1(0) + iΦ2(0))] < F(Ut, 0), fn > · fn

=− 1
2
[(p1(θ)g20 + p2(θ)g02)

z2

2
+ (p1(θ)g11 + p2(θ)g11)zz + (p1(θ)g02 + p2(θ)g20)

z2

2
] + · · · .

Therefore, by (44), for θ ∈ [−1, 0),

H20(θ) =

{
0 n ∈ N,
− 1

2 (p1(θ)g20 + p2(θ)g02) · f0 n = 0,

H11(θ) =

{
0 n ∈ N,
− 1

2 (p1(θ)g11 + p2(θ)g11) · f0 n = 0,

H02(θ) =

{
0 n ∈ N,
− 1

2 (p1(θ)g02 + p2(θ)g20) · f0 n = 0,

and
H(z, z)(0) = F(Ut, 0)− Φ(Ψ,< F(Ut, 0), fn >) · fn,

H20(0) =

⎧⎪⎪⎨⎪⎪⎩
τ̃

(
χ20
ς20

)
cos2( nx

l ), n ∈ N,

τ̃

(
χ20
ς20

)
− 1

2 (p1(0)g20 + p2(0)g02) · f0, n = 0.
(47)

H11(0) =

⎧⎪⎪⎨⎪⎪⎩
τ̃

(
χ11
ς11

)
cos2( nx

l ), n ∈ N,

τ̃

(
χ11
ς11

)
− 1

2 (p1(0)g11 + p2(0)g11) · f0, n = 0.
(48)

By the definition of Aτ̃ , and from (45), the following equation holds.

Ẇ20 = Aτ̃W20 = 2iωnτ̃W20 +
1
2
(p1(θ)g20 + p2(θ)g02) · fn, − 1 ≤ θ < 0.

12
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Note that p1(θ) = p1(0)eiωn τ̃θ , − 1 ≤ θ ≤ 0. Hence

W20(θ) =
i

2iωnτ̃
(g20 p1(θ) +

g02
3

p2(θ)) · fn + E1e2iωn τ̃θ , (49)

where

E1 =

{
W20(0) n = 1, 2, 3, · · · ,
W20(0)− i

2iωn τ̃
(g20 p1(θ) +

g02
3 p2(θ)) · f0 n = 0.

Using the definition of Aτ̃ by (45) and (49), we have that

− (g20 p1(0) +
g02
3

p2(0)) · f0 + 2iωnτ̃E1 − Aτ̃(
i

2ωnτ̃
(g20 p1(0) +

g02
3

p2(0)) · f0)

− Aτ̃E1 − Lτ̃(
i

2ωnτ̃
(g20 p1(0) +

g02
3

p2(0)) · fn + E1e2iωn τ̃θ)

= τ̃

(
χ20
ς20

)
− 1

2
(p1(0)g20 + p2(0)g02) · f0.

Notice that
Aτ̃p1(0) + Lτ̃(p1 · f0) = iω0 p1(0) · f0,

and
Aτ̃p2(0) + Lτ̃(p2 · f0) = −iω0 p2(0) · f0,

Then for n ∈ N0, we know

2iωnE1 − Aτ̃E1 − Lτ̃E1e2iωn = τ̃

(
χ20
ς20

)
cos2(

nx
l
), n = 0, 1, 2, · · · .

From the above expression, we can obtain that

E1 = τ̃E
(

χ20
ς20

)
cos2(

nx
l
),

where

E =

(
2iωnτ̃ + d1

n2

l2 − a1 +
u0
γ e−2iωn τ̃ −a2

−b1 2iωnτ̃ + d2
n2

l2

)−1

.

By the same way, from (46), we have

−Ẇ11 =
i

2ωnτ̃
(p1(θ)g11 + p2(θ)g11) · fn, − 1 ≤ θ < 0.

That is
W11(θ) =

i
2iωnτ̃

(p1(θ)g11 − p1(θ)g11) + E2.

Similar to the above procedure, we can obtain

E2 = τ̃E∗
(

χ11
ς11

)
cos2(

nx
l
),

where

E∗ =
(

d1
n2

l2 − a1 +
u0
γ −a2

−b1 d2
n2

l2

)−1

.

13
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So far, W20(θ) and W11(θ) have been expressed by the parameters of the system (3).
Hence, g21 can also be expressed. Then, we can calculate the following quantities:⎧⎪⎪⎨⎪⎪⎩

c1(0) = i
2ωn τ̃

(g20g11 − 2|g11|2 − |g02|2
3 ) + 1

2 g21, μ2 = − Re(c1(0))

Re(λ′(τ j
n))

,

T2 = − 1
ωn τ̃

[Im(c1(0)) + μ2 Im(λ′(τ j
n))], β̂2 = 2Re(c1(0)),

ε2 = τ−τ̃
μ2

+ o(τ − τ̃2).

(50)

From [18], we can obtain the system (3) has a family of bifurcating periodic solutions
when μ is near 0 (that is τ near τ̃) with the following representations

Ut(μ, θ) = εRe(p1(θ))eiωn τ̃t · fn + O(ε2),

where μ(ε), the period T(ε), and the nontrivial Floquet exponent of the periodic solutions
are given by

μ(ε) = μ2ε
2 + O(ε3), T(ε) =

2π
ωn

(1 + T2ε
2) + O(ε3), β̂(ε) = β̂2ε

2 + O(ε3).

In particular, we have the following conclusion.

• μ2 determines the directions of the Hopf bifurcation: if μ2 > 0 (respectively, < 0),
then the Hopf bifurcation is forward (respectively, backward), that is, the bifurcating
periodic solutions exists for τ > τ

j
n (respectively, τ < τ

j
n).

• β̂2 determines the stability of the bifurcating periodic solutions on the center manifold:
if β̂2 < 0 (respectively, β̂2 > 0), then the bifurcating periodic solutions are orbitally
asymptotically stable (respectively, unstable).

• T2 determines the period of bifurcating periodic solutions: if T2 > 0 (respectively,
T2 < 0), then the period increases (respectively, decreases).

4. Numerical Simulations

Here, in order to prove the above theoretical results, some numerical simulations are
shown by using Matlab. For the system (3), fix parameters:

d1 = 2, d2 = 2, α = 0.5, β = 0.5, γ = 4,

δ = 0.4, w = 0.3, ε = 0.6, s = 0.01, l = 5.
(51)

Then, we know u0 ≈ 0.4845, v0 ≈ 1.2230, and

a1 − u0

γ
≈ −0.0055 < 0, a2b1 ≈ −0.1286 < 0.

Hence, (H) holds. G = {0, 1} �= ∅. Let n = 0, then τ∗ = τ0
0 ≈ 0.8015 and ω0 ≈ 0.3771

are obtained through calculation. From Theorem 1, P(u0, v0) is stable for τ ∈ [0, τ∗). It is
shown in Figure 1, here τ = 0.5. In Figure 1, we can see that the predator and prey coexist,
and as time goes on, they tend to the positive equilibrium (u0, v0). P(u0, v0) is unstable
and Hopf bifurcation occurs when τ = τ∗. From last section, we have ξ ≈ −0.9796i,
η ≈ −0.9232i. Next,

Φ1(0) =
(

1
0

)
, Φ2(0) ≈

(
0

−0.9796

)
,

Ψ∗
1(0) =

(
1
0

)
, Ψ∗

2(0) ≈
(

0
−0.9232

)
.
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n = 0, through (43), easily know

g20 ≈ 0.1632 + 0.2342i, g11 ≈ 0.0378 − 0.0672i,

g02 ≈ −0.0876 − 0.3686i, g21 ≈ −0.0341 + 0.1860i.

By Lemma 4 and its proof, we obtain

dλ
dτ

≈ 0.0079 + 0.0239i.

Finally, we can calculate the following parameters

μ2 ≈ 1.7199 > 0, β̂2 ≈ −0.0271 < 0, and T2 ≈ −0.2369 < 0.

Thus, the direction of Hopf bifurcation is forward because μ2 > 0. There exists the
locally asymptotically stable bifurcating periodic solutions whose period is decreasing
(see Figure 2). At this moment, τ = 1.3, prey and predator will coexist in the form of
periodic oscillation.

Figure 1. The numerical simulations of system (3) with τ = 0.5 and other parameters is given by (51).
Left: component u . Right: component v.

If we choose other parameters, Hopf bifurcation with period-2 can also occur. For the
system (3), fix parameters

d1 = 2, d2 = 2, α = 0.5, β = 0.5, γ = 4.1,

δ = 0.4, w = 0.3, ε = 0.7, s = 0.01, l = 5.
(52)

Then, we know u0 ≈ 0.4109, v0 ≈ 1.2762, and

a1 − u0

γ
≈ −0.0135 < 0, a2b1 ≈ −0.1141 < 0.

Hence, (H) holds. G = {0, 1} �= ∅. Let n = 0, τ∗ = τ0
0 ≈ 1.4414 and ω0 ≈ 0.3638 are

obtained through calculation. From Theorem 1, P(u0, v0) is stable for τ ∈ [0, τ∗). It is shown
in Figure 3, here τ = 1. In Figure 3, we can see that the predator and prey coexist, and as
time goes on, they tend to the positive equilibrium (u0, v0). P(u0, v0) is unstable and Hopf
bifurcation occurs when τ = τ∗. From last section, we have ξ ≈ −1.0825i, η ≈ −0.7964i.
Next,

Φ1(0) =
(

1
0

)
, Φ2(0) =

(
0

−1.0825

)
,
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Ψ∗
1(0) =

(
1
0

)
, Ψ∗

2(0) =
(

0
−0.7964

)
.

n = 0, through (43), we easily know that

g20 ≈ 0.3125 + 0.5641i, g11 ≈ 0.0668 − 0.0999i,

g02 ≈ −0.1789 − 0.7639i, g21 ≈ −0.3361 − 1.4048i.

By Lemma 4 and its proof, we obtain

dλ
dτ

≈ 0.0112 + 0.0177i.

Finally, we can calculate the following parameters:

μ2 ≈ 15.4938 > 0, β̂2 ≈ −0.3484 < 0, and T2 ≈ 1.1019 > 0.

Prey u Predator v
Figure 2. The numerical simulations of system (3) with τ = 1.3 and other parameters is given by (51).

Thus, the direction of Hopf bifurcation is forward because μ2 > 0. There exists the
locally asymptotically stable bifurcating periodic solutions whose period is increasing (see
Figure 4). At this moment, τ = 1.5, bifurcating periodic solutions with period-2 appears.
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Figure 3. The numerical simulations of system (3) with τ = 1 and other parameters is given by (52).
Left: component u. Right: component v.

Prey u Predator v
Figure 4. The numerical simulations of system (3) with τ = 1.5 and other parameters is given by (52).

5. Conclusions

In this paper, we incorporated time delay and diffusion on the model (1), and studied
the dynamics in a delayed diffusive system with anti-predator and additional food provided
for a predator. By using time delay as a parameter, we mainly studied the local stability
of coexisting equilibrium, the existence of Hopf bifurcation induced by delay, and the
property of Hopf bifurcation by the theory of the center manifold and normal form method.

Compared with the model (1), we prove that under some conditions, time delay can
destabilize the stable equilibrium, and can even lead to the existence of periodic solutions.
Especially, there exists a critical value τ∗. When the time delay is smaller than the critical
value, prey and predator will coexist, and tend toward the coexisting equilibrium, and
are evenly distributed homogeneous in the region; however, when the time delay crosses
the critical value, the coexisting equilibrium is unstable, and Hopf bifurcation occurs. In
this case, the prey and predator may also coexist, but they will coexist in the form of
periodic oscillation. Further, diffusion may also cause inhomogeneous periodic solutions.

17
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Unfortunately, we found the inhomogeneous periodic solution of our model is unstable
and could not be shown through numerical simulations. In a future work, we will conduct
a more general study, using a generalized logistic function, which allows us to study the
Allee effect. That is relevant in several areas of application, namely biology and ecology.
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Abstract: Synthetic drugs are taking the place of traditional drugs and have made headlines giving
rise to serious social issues in many countries. In this work, a synthetic drug transmission model
incorporating psychological addicts with two time delays is being developed. Local stability and
exhibition of Hopf bifurcation are established analytically and numerically by taking the combinations
of the two time delays as bifurcation parameters. The exhibition of Hopf bifurcation shows that it is
burdensome to eradicate the synthetic drugs transmission in the population.

Keywords: synthetic drugs transmission; time delays; Hopf bifurcation; local stability; period
solutions

MSC: 34C23

1. Introduction

In recent years, synthetic drugs which consist of a variety of psychoactive substances
such as cocaine and marijuana compounds, are more and more popular due to the fact
that they mainly appear in public places of entertainment frequented by young people.
Synthetic drugs can bring about serious deleterious effects on a user’s Central Nervous
System (CNS) and make the users excited or inhibited [1]. Therefore, synthetic drugs are
more addictive compared with traditional drugs. On the other hand, the manufacturing
method of synthetic drugs is relatively simple and they are also easy to obtain. Accordingly,
this leads to a sharp rise in the number of synthetic drug users around the globe. In China,
for example, synthetic drug abuse had ranked first by the end of 2017 [2]. It is much worse
that infectious diseases especially the spread of AIDS can be caused by synthetic drug
abuse. In order to maintain social order, it is extremely urgent to control the spread of
synthetic drug abuse.

A mathematical modelling approach has been utilized to solve social issues extensively
since heroin addiction was considered an infectious disease [3]. Liu et al. [4,5] studied a
heroin epidemic model with bilinear incidence rate. Ma et al. [6–8] discussed dynamics
of a heroin model with nonlinear incidence rate. Yang et al. [9,10] considered an age-
structured multi-group heroin epidemic model. There have been also some works about
giving up smoking models [11–16], and drinking abuse models [17–20]. Motivated by the
aforementioned works, some synthetic drug transmission models have been formulated
by scholars. In [21], Das et al. proposed a fractional order synthetic drugs transmission
model and decided stability of the model and formulated the optimal control of the model.
In [22], Saha and Samanta proposed a synthetic drugs transmission model considering
general rate. They proved local and global stability of the model and presented sensitivity
analysis. Taking into account the relapse phenomenon in synthetic drug abuse, Liu et al. [23]
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formulated a delayed synthetic drugs transmission model with relapse and analyzed
stability of the model. Based on the work by Ma et al. [24] and in consideration of the effect
of psychology and time delay, Zhang et al. [25] established the following synthetic drugs
transmission model with time delay:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

dS(t)
dt = A − dS(t)− β1S(t)P(t)− β2S(t)H(t),

dP(t)
dt = β1S(t)P(t) + β2S(t)H(t)− πP(t)− (d + γ)P(t),

dH(t)
dt = πP(t) + θT(t − τ)− σH(t)− dH(t),

dT(t)
dt = γP(t) + σH(t)− θT(t − τ)− dT(t),

(1)

where S(t) denotes the number of the susceptible population at time t, P(t) is the number
of the psychological addicts at time t, H(t) is the number of the physiological addicts at
time t and T(t) is the number of the drug-users in treatment at time t. A is the constant
rate of entering the susceptible population; β1 is the contact rate between the susceptible
population and the psychological addicts; β2 is the contact rate between the susceptible
population and the physiological addicts; d is the natural mortality of all the populations;
π is the escalation rate from the psychological addicts to the physiological addicts; γ is
the treatment rate of the psychological addicts; σ is the treatment rate of the physiological
addicts; θ is the relapse rate of the drug-users in treatment. The symbol τ is the relapse
time period of the drug-users in treatment. Zhang et al. analyzed the effect of the time
delay due to the relapse time period of the drug-users in treatment on the model (1).

Clearly, Zhang et al. considered that a drug-user in treatment usually needs a certain
interval to become a physiological addict again. Likewise, we believe that both the psycho-
logical addicts and the physiological addicts need a period to accept treatment and come off
drugs. In fact, the dynamical model with multiple time delays has been somewhat fruitful.
Kundu and Maitra [26] formulated a three species predator-prey model with three delays
and obtained the critical value of each time delay where the Hopf-bifurcation happened.
Ren et al. [27] proposed a computer virus model with two time delays and found that
a Hopf bifurcation may occur depending on the time delays. Xu et al. [28] investigated
the influence of multiple time delays on bifurcation of a fractional-order neural network
model through taking two different delays as bifurcation parameters. Motivated by the
work above, we investigate the following synthetic drug transmission model with two
time delays:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

dS(t)
dt = A − dS(t)− β1S(t)P(t)− β2S(t)H(t),

dP(t)
dt = β1S(t)P(t) + β2S(t)H(t)− πP(t)− dP(t)− γP(t − τ2),

dH(t)
dt = πP(t) + θT(t − τ1)− σH(t − τ2)− dH(t),

dT(t)
dt = γP(t − τ2) + σH(t − τ2)− θT(t − τ1)− dT(t),

(2)

where τ1 is the time delay due to the relapse time period of the drug-users in treatment
and τ2 is the time delay due to the period that both the psychological addicts and the
physiological addicts need to accept treatment and come off drugs.

The outline of this work is as follows. In the next Section, a series of sufficient criteria
are derived by choosing four different combinations of the two time delays as bifurcation
parameters. Moreover, direction and stability of the Hopf bifurcation are explored under the
case when τ1 ∈ (0, τ10) and τ2 > 0 in Section 3. Numerical simulations are demonstrated
to examine the validity of our theoretical findings in Section 4. Section 5 ends our work.
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2. Positivity and Boundedness of the Solutions

Considering R4
+ = {(z1, z2, z3, z4)|zj ≥ 0, j = 1, 2, 3, 4} and τ = max{τ1, τ2}. The

initial conditions for the model (2) are

S(ϑ) = ξ1(ϑ), P(ϑ) = ξ2(ϑ), H(ϑ) = ξ3(ϑ), T(ϑ) = ξ4(ϑ), (3)

where ξ j(ϑ) ≥ 0, ξ(0) > 0, j = 1, 2, 3, 4; ϑ ∈ [−τ, 0] and (ξ1, ξ2, ξ3, ξ4) ∈ C([−τ, 0],R4
+),

where C([−τ, 0],R4
+) is the Banach Space of continuous functions from [−τ, 0] to R4

+.
It can be observed that all the solutions of the model (2) with the above initial con-

ditions (3) are defined on R4
+ and remain positive ∀t ≥ 0. We prove this by utilizing

provided methods of Bodnar [28] and Yang et al. [29] . For this purpose we present the
following result.

Theorem 1. All the solution of model (2) with the positive initial condition (3) are positive for all
t > 0.

Proof. It is easy to verify for system (2) that by choosing that S(t) = 0 implies that
S′(t) = A > 0 for all t ≥ 0. Hence, S(t) > 0, for all t ≥ 0.

Now, we let τ = max{τ1, τ2}. Suppose that there exists t1 ∈ [0, τ] such that P(t1) = 0
and P′(t1) < 0, and P(t) > 0 for t ∈ [0, t1], and H(t1) > 0, T(t1) > 0, and H(t) > 0,
T(t) > 0 for all t ∈ [0, t1], then we have

P′(t1) = β2S(t1)H(t1)− γP(t1 − τ2),

Note that t1 − τ2 ∈ [−τ2, 0] therefore P′(t1) < 0 not always holds (in this case for any
initial condition). Therefore, we have a contradiction with P′(t1) < 0. Therefore, P(t) > 0
for all t ∈ [0, τ].

Similarly, we assume that there exists t2 ∈ [0, τ] such that H(t2) = 0 and H′(t2) < 0,
and H(t) > 0 for t ∈ [0, t2], and T(t2) > 0, and T(t) > 0 for all t ∈ [0, t2], then we have

H′(t) = πP(t2) + θT(t2 − τ1)− σH(t − τ2).

Then, t2 − τ2 ∈ [−τ2, 0] therefore, H′(t2) < 0 does not always hold, which is a
contradiction. Therefore, H(t) > 0 for all t ∈ [0, τ]. Using the same method we obtain
T(t) > 0 for all t ∈ [0, τ]. Therefore, the solution is positive for t ∈ [0, τ]. By induction, we
can show that the solution is positive for t ∈ [nτ, (n + 1)τ]. Therefore, we deduce that the
solution of the system (2) is positive under the given initial conditions (3) for all t ≥ 0.

Denote N(t) = S(t) + P(t) + H(t) + T(t), then in view of the equations of the
model (2), we obtain

d
dt

N(t) = A − dN(t). (4)

Solving Equation (4), yields

N(t) =
A
d
+ (N(0)− A

d
)e−dt. (5)

Accordingly, for N(0) < A
d , then we can know that N(t) < A

d and limt→∞N(t) = A
d .

Conclusively, the set

Δ = {(S, P, H, T) ∈ R
4
+ : S + P + H + T =

A
d

, S > 0, P > 0, H > 0, T > 0}

is a bounded feasible region as well as positively invariant under the model (2).
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3. Exhibition of the Hopf bifurcation

In this section, we shall explore the impact of the time delay τ1 and τ2 according to
analysis of the distribution of the roots of associated characteristic equations, and using a
similar process about delayed systems in [30–33].

According to the computation by Zhang et al. [25], we conclude that if the basic
reproductive number �0 > 1 then the model (2) is provided with a unique synthetic drug
addiction equilibrium point E∗(S∗, P∗, H∗, T∗), where

S∗ =
(π + d + γ)P∗
β1P∗ + β2H∗

, P∗ =
d[(�0 − 1) + U]

β1 + β2V
,

H∗ =
πP∗ + θT∗

σ+ d
, T∗ =

[d(γ+ π) + dγ]P∗
d(θ + σ+ d)

,

and

U =
Aβ2θ[γ(σ+ d) + πσ]

d2(σ+ d)(θ + σ+ d)(π + d + γ)
,

V =
π

σ+ d
+

θ[γ(σ+ d) + πσ]

d(σ+ d)(θ + σ+ d)
,

�0 =
A[β1(σ+ d) + β2π]

d(σ+ d)(π + γ+ d)
.

The linearized section of the model (2) around the synthetic drug addiction equilibrium
point E∗(S∗, P∗, H∗, T∗) is⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

dS(t)
dt = x11S(t) + x12P(t) + x13H(t),

dP(t)
dt = x21S(t) + x22P(t) + x23H(t) + z22P(t − τ2),

dH(t)
dt = x32P(t) + x33H(t) + z33H(t − τ2) + y34T(t − τ1),

dT(t)
dt = x44T(t) + z42P(t − τ2) + z43H(t − τ2) + y44T(t − τ1),

(6)

with
x11 = −(d + β1P∗ + β2H∗), x12 = −β1S∗, x13 = −β2S∗,

x21 = β1P∗ + β2H∗, x22 = β1S∗ − (π + d), x23 = β2S∗, z22 = −γ,

x32 = π, x33 = −d, z33 = −σ, y34 = θ,

x44 = −d, y44 = −θ, z42 = γ, z43 = σ.

Then, we can obtain the corresponding characteristic equation about the synthetic
drug addiction equilibrium point E∗(S∗, P∗, H∗, T∗) as follows

λ4 + X03λ
3 + X02λ

2 + X01λ+ X00

+ (Y03λ
3 + Y02λ

2 + Y01λ+ Y00)e−λτ1

+ (Z03λ
3 + Z02λ

2 + Z01λ+ Z00)e−λτ2

+ (A02λ
2 + A01λ+ A00)e−λ(τ1+τ2)

+ (B02λ
2 + B01λ+ B00)e−2λτ2

+ (C01λ+ C00)e−λ(τ1+2τ2) = 0, (7)

where

22



Mathematics 2022, 10, 1532

X00 = x11x33x44(x22 + z22),

X01 = −(x22 + z22)(x11x33 + x11x44 + x33x44)− x11x33x44,

X02 = x11x33 + x11x44 + x33x44 + (x22 + z22)(x11 + x33 + x44),

X03 = −(x11 + x22 + x33 + x44 + z22),

Y00 = x11x22x33y44,

Y01 = −y44(x11x22 + x11x33 + x22x33),

Y02 = y44(x11 + x22 + x33), Y03 = −y44,

Z00 = x11x22x44z33,

Z01 = −z33(x11x22 + x11x44 + x22x44),

Z02 = z33(x11 + x22 + x44), Z03 = −z33,

A00 = x11x22(y34z43 + y44z33)− x21y34(x12z43 + x13z42)

+x11(x33y44z22 + x23y34z42),

A01 = x23y34z42 − y44z22(x11 + x33)− (x11 + x22)(y34z43 + y44z33),

A02 = y34z43 + y44(z33 − z22),

B00 = x11x44z22z33, B01 = −z22z33(x11 + x44), B02 = z22z33,

C00 = x11z22(y34z43 + y44z33), C01 = −z22(y34z43 + y44z33).

Case 1. τ1 = τ2 = 0, Equation (7) equals

λ4 + X13λ
3 + X12λ

2 + X11λ+ X10 = 0, (8)

with
X10 = X00 + Y00 + Z00 + A00 + B00 + C00,

X11 = X01 + Y01 + Z01 + A01 + B01 + C01,

X12 = X02 + Y02 + Z02 + A02 + B02,

X13 = X03 + Y03 + Z03.

Following the work by Ma et al. [24] and the Routh-Hurwitz theorem, it can be seen
that if X10 > 0, X13 > 0, X12X13 > X11 and X11X12X13 > X10X2

13 + X2
11, the model (2) is

locally asymptotically stable.

Case 2. τ1 > 0 and τ2 = 0, Equation (7) becomes

λ4 + X23λ
3 + X22λ

2 + X21λ+ X20 + (Y23λ
3 + Y22λ

2 + Y21λ+ Y20)e−λτ1 = 0, (9)

with

X20 = X00 + Z00 + B00, X21 = X01 + Z01 + B01,

X22 = X02 + Z02 + B02, X23 = X03 + Z03,

Y20 = Y00 + A00 + C00, Y21 = Y01 + A01 + C01,

Y22 = Y02 + A02, Y23 = Y03.

Let λ = iς1(ς1 > 0) be a root of Equation (9), then{
(Y21ς1 − Y23ς

3
1) sin(τ1ς1) + (Y20 − Y22ς

2
1) cos(τ1ς1) = X22ς

2
1 − ς4

1 − X20,

(Y21ς1 − Y23ς
3
1) cos(τ1ς1)− (Y20 − Y22ς

2
1) sin(τ1ς1) = X23ς

3
1 − X21ς1.

(10)

It follows from Equation (10) that

ς8
1 + D23ς

6
1 + D22ς

4
1 + D21ς

2
1 + D20 = 0, (11)
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with

D20 = X2
20 − Y2

20,

D21 = X2
21 + 2Y20Y22 − Y2

21,

D22 = X2
22 + 2X20 − 2X21X23 − Y2

22 + 2Y21Y23,

D23 = X2
23 − 2X22 − Y2

23.

Denote ς1 = ϑ1, then

ϑ4
1 + D23ϑ

3
1 + D22ϑ

2
1 + D21ϑ1 + D20 = 0. (12)

Distribution of the roots of Equation (12) has been discussed by Li and Wei [34]. Next,
we suppose that Equation (12) has at least one positive root ϑ10 such that ς10 =

√
ϑ10

ensuring that Equation (9) has a pair of purely imaginary roots ±iς10. For ς10, from
Equation (10), we have

τ10 =
1
ς10

× arccos
[

E21(ς10)

E22(ς10)

]
, (13)

where

E21(ς10) = (Y22 − X23Y23)ς
6
10 + (X23Y21 + X21Y23 − Y20 − X22Y22)ς

4
10

+(X22Y20 − X21Y21 + X20Y22)ς
2
10 − X20Y20,

E22(ς10) = Y2
23ς

6
10 + (Y2

22 − 2Y21Y23)ς
4
10 + (Y2

21 − 2Y20Y22)ς
2
10 + Y2

20.

By Equation (9), one has

[
dλ
dτ

]−1 = − 4λ3 + 3X23λ
2 + 2X22λ+ X21

λ(λ4 + X23λ3 + X22λ2 + X21λ+ X20)

+
3Y23λ

2 + 2Y22λ+ Y21

λ(Y23λ3 + Y22λ2 + Y21λ+ Y20)
− τ

λ
(14)

Further,

Re[
dλ
dτ

]−1
λ=iς10

=
f ′(ϑ10)

E22(ς10)
, (15)

where f (ϑ) = ϑ4
1 + D23ϑ

3
1 + D22ϑ

2
1 + D21ϑ1 + D20 and ϑ10 = ς2

10. It is apparent that if
f ′(ϑ10) �= 0 holds, then the sufficient conditions for the appearance of a Hopf bifurcation at
τ10 are satisfied. In conclusion, we have the following results in accordance with the Hopf
bifurcation theorem in [35].

Theorem 2. If �0 > 1, then E∗(S∗, P∗, H∗, T∗) of the model (2) is locally asymptotically stable
whenever τ1 ∈ [0, τ10); while the model (2) exhibits a Hopf bifurcation near E∗(S∗, P∗, H∗, T∗)
when τ1 = τ10 and a group of periodic solutions appear around E∗(S∗, P∗, H∗, T∗).

Remark 1. Actually, it should be pointed out that the impact of the time delay τ1 has been analyzed
in [25]. In what follows, we shall further analyze the impact of the time delay τ2 and the combinations
of the time delay τ1 and τ2, which has been neglected in [25].

Case 3. τ1 = 0 and τ2 > 0, Equation (7) equals

λ4 + X33λ
3 + X32λ

2 + X31λ+ X30 + (Z33λ
3 + Z32λ

2 + Z31λ+ Z30)e−λτ2 + (B32λ
2 + B31λ+ B30)e−2λτ2 = 0, (16)

with
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X30 = X00 + Y00, X31 = X01 + Y01, X32 = X02 + Y02, X33 = X03 + Y03,

Z30 = Z00 + A00, Z31 = Z01 + A01, Z32 = Z02 + A02, Z33 = Z03,

B30 = B00 + C00, B31 = B01 + C01, B32 = B02.

Multiplying by eλτ2 on left and right of Equation (16), then

Z33λ
3 + Z32λ

2 + Z31λ+ Z30 + (λ4 + X33λ
3 + X32λ

2 + X31λ+ X30)eλτ2 + (B32λ
2 + B31λ+ B30)e−λτ2 = 0. (17)

Let λ = iς2(ς2 > 0) be a root of Equation (17), then{
W31(ς2) cos(τ2ς2)− W32(ς2) sin(τ2ς2) = W33(ς2),

W34(ς2) sin(τ2ς2) + W35(ς2) cos(τ2ς2) = W36(ς2),
(18)

where
W31(ς2) = ς4

2 − (X32 + B32)ς
2
2 + X30 + B30,

W32(ς2) = (X31 − B31)ς2 − X33ς
3
2,

W33(ς2) = Z32ς
2
2 − Z30,

W34(ς2) = ς4
2 − (X32 − B32)ς

2
2 + X30 − B30,

W35(ς2) = (X31 + B31)ς2 − X33ς
3
2,

W36(ς2) = Z33ς
3
2 − Z31ς2.

Then, one has

cos(τ2ς2) =
E31(ς2)

E33(ς2)
, sin(τ2ς2) =

E32(ς2)

E33(ς2)
,

with

E31(ς2) = (Z32 − X33Z33)ς
6
2 + [Z33(X31 − B31) + X33Z31 − Z32(X32 − B32)− Z30]ς

4
2

+[Z30(X32 − B32)− Z31(X31 − B31)]ς
2
2 − Z30(X30 − B30),

E32(ς2) = ς7
2 + [X33Z32 − Z31 − Z33(X32 + B32)]ς

5
2

+[Z33(X30 + B30) + Z31(X32 + B32)− Z32(X31 + B31)− X33Z30]ς
3
2

+[Z30(X31 + B31)− Z31(X30 + B30)]ς2,

E33(ς2) = ς8
2 + (X2

33 − 2X32)ς
6
2 + (X2

32 + 2X30 − B2
32 − 2X31X33)ς

4
2

+(2B30B32 − 2X30X32 + X2
31 − B2

31)ς
2
2 + X2

30 − B2
30.

Then, one can obtain the following relation about ς2

E2
33(ς2)− E2

31(ς2)− E2
32(ς2) = 0. (19)

It can be concluded that if we know all the values of parameters in the model (2), then
all the roots of Equation (19) can be obtained with the help of Matlab software package.
Therefore, we suppose that Equation (19) has at least one positive root ς20 such that
Equation (17) has a pair of purely imaginary roots ±iς20. For ς20, we have

τ20 =
1
ς20

× arccos
[

E31(ς20)

E33(ς20)

]
. (20)

Differentiating Equation (17) with respect to τ2,

[
dλ
dτ2

]−1 = −U31(λ)

U32(λ)
− τ2

λ
, (21)

where
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U31(λ) = 3Z33λ
2 + 2Z32λ+ Z31 + (2B32λ+ B31)e−λτ2

+(4λ3 + 3X33λ
2 + 2X32λ+ X31)eλτ2 ,

U32(λ) = (λ5 + X33λ
4 + X32λ

3 + X31λ
2 + X30λ)eλτ2

−(B32λ
3 + B31λ

2 + B30λ)e−λτ2 .

Thus,

Re[
dλ
dτ2

]−1
λ=iς20

=
Ξ31Π31 + Ξ32Π32

Π2
31 + Π2

32
, (22)

with
Ξ31 = Z31 − 3Z33ς

2
20 + 2B32ς20 sin(τ20ς20) + B31 cos(τ20ς20)

+(X31 − 3X33ς
2
20) cos(τ20ς20)− (2X32ς20 − 4ς3

20) sin(τ20ς20),

Ξ32 = 2Z32ς20 + 2B32ς20 cos(τ20ς20)− B31 sin(τ20ς20)

+(X31 − 3X33ς
2
20) sin(τ20ς20) + (2X32ς20 − 4ς3

20) cos(τ20ς20),

Π31 = (X33ς
4
20 − X31ς

2
20) cos(τ20ς20)− (ς5

20 − X32ς
3
20 + X30ς20) sin(τ20ς20)

+(B32ς
3
20 − B30ς20) sin(τ20ς20) + B31ς

2
20 cos(τ20ς20),

Π32 = (X33ς
4
20 − X31ς

2
20) sin(τ20ς20) + (ς5

20 − X32ς
3
20 + X30ς20) cos(τ20ς20)

+(B32ς
3
20 − B30ς20) cos(τ20ς20)− B31ς

2
20 sin(τ20ς20).

Therefore, if Ξ31Π31 + Ξ32Π32 �= 0 then Re[ dλ
dτ2

]−1
λ=iς20

�= 0. In conclusion, we have the
following theorem.

Theorem 3. If �0 > 1, then E∗(S∗, P∗, H∗, T∗) of the model (2) is locally asymptotically stable
whenever τ2 ∈ [0, τ20); while the model (2) exhibits a Hopf bifurcation near E∗(S∗, P∗, H∗, T∗)
when τ2 = τ20 and a group of periodic solutions appear around E∗(S∗, P∗, H∗, T∗).

Case 4. τ1 > 0 and τ2 ∈ (0, τ20). Let λ = iς1 be a root of Equation (7), then{
W41(ς1) sin(τ1ς1) + W42(ς1) cos(τ1ς1) = W43(ς1),

W41(ς1) cos(τ1ς1)− W42(ς1) sin(τ1ς1) = W44(ς1),
(23)

where

W41(ς1) = Y01ς1 − Y03ς
3
1 + A01ς1 cos(τ2ς1)− (A00 − A02ς

2
1) sin(τ2ς1)

+C01ς1 cos(2τ2ς)− C00 sin(2τ2ς),

W42(ς1) = Y00 − Y02ς
2
1 + A01ς1 sin(τ2ς1) + (A00 − A02ς

2
1) cos(τ2ς1)

+C01ς1 sin(2τ2ς) + C00 cos(2τ2ς),

W43(ς1) = X02ς
2
1 − ς4

1 − X00 + (Z03ς
3
1 − Z01ς1) sin(τ2ς1) + (Z02ς

2
1 − Z00) cos(τ2ς1)

−B01ς1 sin(2τ2ς1) + (B02ς
2
1 − B00) cos(2τ2ς1),

W44(ς1) = X03ς
3
1 − X01ς1 + (Z03ς

3
1 − Z01ς1) cos(τ2ς1)− (Z02ς

2
1 − Z00) sin(τ2ς1)

−B01ς1 cos(2τ2ς1)− (B02ς
2
1 − B00) sin(2τ2ς1).

Based on Equation (23), we obtain

cos(τ1ς1) =
E41(ς1)

E43(ς1)
, sin(τ1ς1) =

E42(ς1)

E43(ς1)
,

where
E41(ς1) = W41(ς1)W44(ς1) + W42(ς1)W43(ς1),

E42(ς1) = W41(ς1)W43(ς1)− W42(ς1)W44(ς1),

E43(ς1) = W2
41(ς1) + W2

42(ς1).
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Then, we have the following relation about ς1

E2
43(ς1)− E2

41(ς1)− E2
42(ς1) = 0. (24)

Similarly, we suppose that Equation (24) has at least one positive root ς1∗ such that
Equation (7) has a pair of purely imaginary roots ±iς1∗. For ς1∗, we have

τ1∗ =
1
ς1∗

× arccos
[

E41(ς1∗)
E43(ς1∗)

]
. (25)

Differentiating Equation (7) with respect to τ1, we have

[
dλ
dτ1

]−1 =
U41(λ)

U42(λ)
− τ1

λ
, (26)

where

U41(λ) = 4λ3 + 3X03λ
2 + 2X02λ+ X01 + (3Y03λ

2 + 2Y02λ+ Y01)e−λτ1

+(−τ2Z03λ
3 + (3Z03 − τ2Z02)λ

2 + (2Z02 − τ2Z01)λ+ Z01 − τ2Z00)e−λτ2

+(−τ2 A02λ
2 + (2A02 − τ2 A01)λ+ A01 − τ2 A00)e−λ(τ1+τ2)

+(−2τ2B02λ
2 + (2B02 − 2τ2B01)λ+ B01 − 2τ2B00)e−2λτ2

+(−2τ2C01λ+ C01 − 2τ2C00)e−λ(τ1+2τ2),

U42(λ) = (Y03λ
4 + Y02λ

3 + Y01λ
2 + Y00λ)e−λτ1

+(A02λ
3 + A01λ

2 + A00λ)e−λ(τ1+τ2) + (C01λ
2 + C00λ)e−λ(τ1+2τ2).

Further
Re[

dλ
dτ1

]−1
λ=iς1∗ =

Ξ41Π41 + Ξ42Π42

Π2
41 + Π2

42
, (27)

with

Ξ41 = X01 − 3X03ς
2
1∗ + Y02ς1∗ sin(τ1∗ς1∗) + (Y01 − 3Y03ς

2
1∗) cos(τ1∗ς1∗)

+((2Z02 − τ2Z01)ς1∗ + τ2Z03ς
3
1∗) sin(τ2ς1∗)

+(Z01 − τ2Z00 − (3Z03 − τ2Z02)ς
2
1∗) cos(τ2ς1∗)

+(2A02 − τ2 A01)ς1∗ sin((τ1∗ + τ2)ς1∗)
+(τ2 A02ς

2
1∗ + A01 − τ2 A00) cos((τ1∗ + τ2)ς1∗)

+2(B02 − τ2B01)ς1∗ sin(2τ2ς1∗) + (2τ2B02ς
2
1∗ + B01 − 2τ2B00) cos(2τ2ς1∗)

−2τ2C01ς1∗ sin((τ1∗ + 2τ2)ς1∗) + (C01 − 2τ2C00) cos((τ1∗ + 2τ2)ς1∗),
Ξ42 = 2X02ς1∗ − 4ς3

1∗ + Y02ς1∗ cos(τ1∗ς1∗)− (Y01 − 3Y03ς
2
1∗) cos(τ1∗ς1∗)

+((2Z02 − τ2Z01)ς1∗ + τ2Z03ς
3
1∗) cos(τ2ς1∗)

−(Z01 − τ2Z00 − (3Z03 − τ2Z02)ς
2
1∗) sin(τ2ς1∗)

+(2A02 − τ2 A01)ς1∗ cos((τ1∗ + τ2)ς1∗)
−(τ2 A02ς

2
1∗ + A01 − τ2 A00) sin((τ1∗ + τ2)ς1∗)

+2(B02 − τ2B01)ς1∗ cos(2τ2ς1∗)− (2τ2B02ς
2
1∗ + B01 − 2τ2B00) sin(2τ2ς1∗)

−2τ2C01ς1∗ cos((τ1∗ + 2τ2)ς1∗)− (C01 − 2τ2C00) sin((τ1∗ + 2τ2)ς1∗),
Π41 = (Y00ς1∗ − Y02ς

3
1∗) sin(τ1∗ς1∗) + (Y03ς

4
1∗ − Y01ς

2
1∗) cos(τ1∗ς1∗)

+(A00ς1∗ − A02ς
3
1∗) sin((τ1∗ + τ2)ς1∗)− A01ς

2
1∗ cos((τ1∗ + τ2)ς1∗)

+C00ς1∗ sin((τ1∗ + 2τ2)ς1∗)− C01ς
2
1∗ cos((τ1∗ + 2τ2)ς1∗),

Π42 = (Y00ς1∗ − Y02ς
3
1∗) cos(τ1∗ς1∗)− (Y03ς

4
1∗ − Y01ς

2
1∗) sin(τ1∗ς1∗)

+(A00ς1∗ − A02ς
3
1∗) cos((τ1∗ + τ2)ς1∗) + A01ς

2
1∗ sin((τ1∗ + τ2)ς1∗)

+C00ς1∗ cos((τ1∗ + 2τ2)ς1∗) + C01ς
2
1∗ sin((τ1∗ + 2τ2)ς1∗).
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Clearly, if Ξ41Π41 + Ξ42Π42 �= 0 then Re[ dλ
dτ1

]−1
λ=iς1∗ �= 0. Then, we have the follow-

ing theorem.

Theorem 4. If �0 > 1 and τ2 ∈ (0, τ20), then E∗(S∗, P∗, H∗, T∗) of the model (2) is locally
asymptotically stable whenever τ1 ∈ [0, τ1∗); while the model (2) exhibits a Hopf bifurcation near
E∗(S∗, P∗, H∗, T∗)when τ1 = τ1∗ and a group of periodic solutions appear around E∗(S∗, P∗, H∗, T∗).

Case 5. τ1 ∈ (0, τ10) and τ2 > 0. Multiplying eλτ on both sides of Equation (7), one can find

Z03λ
3 + Z02λ

2 + Z01λ+ Z00

+ (B02λ
2 + B01λ+ B00)e−λτ2

+ (λ4 + X03λ
3 + X02λ

2 + X01λ+ X00)eλτ2

+ (Y03λ
3 + Y02λ

2 + Y01λ+ Y00)eλ(τ2−τ1)

+ (A02λ
2 + A01λ+ A00)e−λτ1

+ (C01λ+ C00)e−λ(τ1+τ2) = 0, (28)

Let λ = iς2 be a root of Equation (7), then{
W51(ς2) sin(τ2ς2) + W52(ς2) cos(τ2ς2) = W53(ς2),

W54(ς2) cos(τ2ς2) + W55(ς2) sin(τ2ς2) = W56(ς2),
(29)

where
W51(ς2) = X03ς

3
2 + (B01 − X01)ς2 − (Y01ς2 − Y03ς

3
2) cos(τ1ς2)

+(Y00 − Y02ς
2
2) sin(τ1ς2) + C01ς2 cos(τ1ς2)− C00 sin(τ1ς2),

W52(ς2) = ς4
2 − (B02 + X02)ς

2
2 + B00 + X00 + (Y01ς2 − Y03ς

3
2) sin(τ1ς2)

+(Y00 − Y02ς
2
2) cos(τ1ς2) + C01ς2 sin(τ1ς2) + C00 cos(τ1ς2),

W53(ς2) = Z02ς
2
2 − Z00 − A01ς2 sin(τ1ς2)− (A00 − A02ς

2
2) cos(τ1ς2),

W54(ς2) = (B01 + X01)ς2 − X03ς
3
2 + (Y01ς2 − Y03ς

3
2) cos(τ1ς2)

−(Y00 − Y02ς
2
2) sin(τ1ς2) + C01ς2 cos(τ1ς2)− C00 sin(τ1ς2),

W55(ς2) = ς4
2 + (B02 − X02)ς

2
2 − B00 + X00 + (Y01ς2 − Y03ς

3
2) sin(τ1ς2)

+(Y00 − Y02ς
2
2) cos(τ1ς2)− C01ς2 sin(τ1ς2)− C00 cos(τ1ς2),

W56(ς2) = Z03ς
3
2 − Z01ς2 − A01ς2 cos(τ1ς2) + (A00 − A02ς

2
2) sin(τ1ς2).

Accordingly, one has

cos(τ2ς2) =
E51(ς2)

E53(ς2)
, sin(τ2ς2) =

E51(ς2)

E53(ς2)
,

with
E51(ς2) = W51(ς2)W56(ς2)− W53(ς2)W55(ς2),

E52(ς2) = W53(ς2)W54(ς2)− W52(ς2)W56(ς2),

E53(ς2) = W51(ς2)W54(ς2)− W52(ς2)W55(ς2).

Then, one has
E2

53(ς1)− E2
51(ς1)− E2

52(ς1) = 0. (30)

Next, we suppose that Equation (30) has at least one positive root ς2∗ such that
Equation (28) has a pair of purely imaginary roots ±iς2∗. For ς2∗, we have

τ2∗ =
1
ς2∗

× arccos
[

E51(ς2∗)
E53(ς2∗)

]
. (31)
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Differentiating Equation (28) regarding τ2 and substituting λ = iς2∗, we have

Re[
dλ
dτ2

]−1
λ=iς2∗ =

Ξ51Π51 + Ξ52Π52

Π2
51 + Π2

52
, (32)

where

Ξ51 = Z01 − 3Z03ς
2
2∗ + 2B02ς2∗ sin(τ2∗ς2∗) + B01 cos(τ2∗ς2∗)

+(X01 − 3X03ς
2
2∗) cos(τ2∗ς2∗)− (2X02ς2∗ − 4ς3

2∗) sin(τ2∗ς2∗)
+(Y01 − τ1 − (3Y03 − τ1Y02)ς

2
2∗) cos((τ2∗ − τ1)ς2∗)

−((2Y02 − τ1Y01)ς2∗ + τ1Y03ς
3
2∗) sin((τ2∗ − τ1)ς2∗)

+(2A02 − τ1 A01)ς2∗ sin(τ2∗ς2∗) + (τ1 A02ς
2
2∗ + A01 − τ1 A00) cos(τ2∗ς2∗)

+(C01 − τ1C00) cos((τ1 + τ2∗)ς2∗)− τ1C01ς2∗ sin((τ1 + τ2∗)ς2∗),
Ξ52 = 2Z02ς2∗ + 2B02ς2∗ cos(τ2∗ς2∗)− B01 sin(τ2∗ς2∗)

+(X01 − 3X03ς
2
2∗) sin(τ2∗ς2∗) + (2X02ς2∗ − 4ς3

2∗) cos(τ2∗ς2∗)
+(Y01 − τ1 − (3Y03 − τ1Y02)ς

2
2∗) sin((τ2∗ − τ1)ς2∗)

+((2Y02 − τ1Y01)ς2∗ + τ1Y03ς
3
2∗) cos((τ2∗ − τ1)ς2∗)

+(2A02 − τ1 A01)ς2∗ cos(τ2∗ς2∗)− (τ1 A02ς
2
2∗ + A01 − τ1 A00) sin(τ2∗ς2∗)

−(C01 − τ1C00) sin((τ1 + τ2∗)ς2∗)− τ1C01ς2∗ cos((τ1 + τ2∗)ς2∗),
Π51 = (X03ς

4
2∗ − X01ς

2
2∗) cos(τ2∗ς2∗) ∗ −(ς5

2∗ − X02ς
3
2∗ + X00ς2∗) sin(τ2∗ς2∗)

+(Y03ς
4
2∗ − Y01ς

2
2∗) cos((τ2∗ − τ1)ς2∗)− (Y00ς2∗ − Y02ς

3
2∗) sin((τ2∗ − τ1)ς2∗)

+(B02ς
3
2∗ − B00ς2∗) sin(τ2∗ς2∗) + B01ς

2
2∗ cos(τ2∗ς2∗)

+C00ς2∗ sin((τ1 + τ2∗)ς2∗) + C01ς
2
2∗ cos((τ1 + τ2∗)ς2∗),

Π52 = (X03ς
4
2∗ − X01ς

2
2∗) sin(τ2∗ς2∗) ∗+(ς5

2∗ − X02ς
3
2∗ + X00ς2∗) cos(τ2∗ς2∗)

+(Y03ς
4
2∗ − Y01ς

2
2∗) sin((τ2∗ − τ1)ς2∗) + (Y00ς2∗ − Y02ς

3
2∗) cos((τ2∗ − τ1)ς2∗)

+(B02ς
3
2∗ − B00ς2∗) cos(τ2∗ς2∗)− B01ς

2
2∗ sin(τ2∗ς2∗)

+C00ς2∗ cos((τ1 + τ2∗)ς2∗)− C01ς
2
2∗ sin((τ1 + τ2∗)ς2∗).

Then, we can see that if Ξ51Π51 + Ξ52Π52 �= 0 then Re[ dλ
dτ2

]−1
λ=iς2∗ �= 0. Thus, we have

the following theorem.

Theorem 5. If �0 > 1 and τ1 ∈ (0, τ10), then E∗(S∗, P∗, H∗, T∗) of the model (2) is locally
asymptotically stable whenever τ2 ∈ [0, τ2∗); while the model (2) exhibits a Hopf bifurcation near
E∗(S∗, P∗, H∗, T∗) when τ2 = τ2∗ and a group of periodic solutions appear around E∗(S∗, P∗, H∗, T∗).

4. Stability of the Periodic Solutions

In this section, we examine direction and stability of the Hopf bifurcation at τ2∗
for the case τ1 ∈ (0, τ10) and τ2 > 0. Denote v1(t) = S(t) − S∗, v2(t) = P(t) − P∗,
v3(t) = H(t) − H∗, v4(t) = T(t) − T∗, τ2 = τ2∗ + μ and t → (t/τ2). Suppose that
τ10∗ ∈ (0, τ10) < τ2∗ in this section. Thus, the model system (2) becomes Equation (33) in
C = C([−1, 0], R4):

v̇(t) = Lμ(vt) + F(μ, vt), (33)

where

Lμφ = (τ2∗ + μ)

(
L1φ(0) + L2φ(−τ10∗

τ2∗
) + L3φ(−1)

)
, (34)
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and

F(μ, φ) =

⎛⎜⎜⎜⎜⎜⎝
−β1φ1(0)φ2(0)− β2φ2(0)φ3(0)

β1φ1(0)φ2(0) + β2φ2(0)φ3(0)

0

0

⎞⎟⎟⎟⎟⎟⎠, (35)

with

L1 =

⎛⎜⎜⎜⎜⎜⎝
x11 x12 x13 0

x21 x22 x23 0

0 x32 x33 0

0 0 0 x44

⎞⎟⎟⎟⎟⎟⎠, L2 =

⎛⎜⎜⎜⎜⎜⎝
0 0 0 0

0 0 0 0

0 0 0 y34

0 0 0 y44

⎞⎟⎟⎟⎟⎟⎠, L3 =

⎛⎜⎜⎜⎜⎜⎝
0 0 0 0

0 z22 0 0

0 0 z33 0

0 z42 z43 0

⎞⎟⎟⎟⎟⎟⎠.

Thus, there exists η function of ω and μ for ω ∈ [−1, 0] fulfills

Lμφ =
∫ 0

−1
dη(ω, μ)φ(ω). (36)

In fact,

η(ω, μ) = (τ2∗ + μ)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(L1 + L2 + L3), ω = 0,

(L2 + L3), ω ∈ [− τ10∗
τ2∗ , 0),

L2, ω ∈ (−1,− τ10∗
τ2∗ ),

0, ω = −1,

(37)

For φ ∈ C([−1, 0], R4),

A(μ)φ =

⎧⎨⎩
dφ(ω)

dω , −1 ≤ θ < 0,∫ 0
−1 dη(ω, μ)φ(ω), θ = 0,

(38)

R(μ)φ =

{
0, −1 ≤ ω < 0,

F(μ, φ), ω = 0,
(39)

Then system (33) equals

v̇(t) = A(μ)vt + R(μ)vt. (40)

For ξ ∈ C1([0, 1], (R4)∗),

A∗(ξ) =

⎧⎨⎩ − dξ(s)
ds , 0 < s ≤ 1,∫ 0

−1 dηT(s, 0)ξ(−s), s = 0,
(41)

and

〈ξ(s), φ(ω)〉 = ξ̄(0)φ(0)−
∫ 0

ω=−1

∫ ω

χ=0
ξ̄(χ−ω)dη(ω)φ(χ)dχ, (42)

an inner product form is defined in this form with η(ω) = η(ω, 0).
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Denote that Υ(ω) = (1, Υ2, Υ3, Υ4)
Teiς2∗τ2∗ω is the eigenvector of A(0) related with

+iς2∗τ2∗ and Υ∗(s) = U(1, Υ∗
2, Υ∗

3, Υ∗
4)

Teiς2∗τ2∗s is the eigenvector of A∗(0) related with
−iς2∗τ2∗, respectively. Then,

Υ2 =
x13x21 + x23(iς2∗ − x11)

x13(iς2∗ − x22 − z22e−iτ2∗ς2∗) + x12x23
,

Υ3 =
iς2∗ − x11 − x12Υ2

x13
,

Υ4 =
(z42Υ2 + z43Υ3)e−iτ2∗ς2∗

iς2∗ − x44 − y44e−iτ10∗ς2∗
,

Υ∗
2 = − iω0 + l11 + l31v3

l21
,

Υ∗
2 = − iς2∗ + x11

x21
,

Υ∗
3 = − x13 + x23Υ2

iς2∗ + x33 + (z33 + z43Υ∗)eiτ2∗ς2∗
,

Υ∗
4 = Υ∗Υ∗

3, Υ∗ = − y34eiτ10∗ς2∗

iς2∗ + x44 + y44eiτ10∗ς2∗
.

In view of Equation (42), one has

Ū = [1 + Υ2Ῡ∗
2 + Υ3Ῡ∗

3 + Υ4Ῡ∗
4 + (Υ3Ῡ∗

3 + Υ4Ῡ∗
4)e

−iτ10∗ς2∗

+Υ2(z22Ῡ∗
2 + z42Ῡ∗

4)e
−iτ2∗ς2∗ + Υ3(z33Ῡ∗

3 + z43Ῡ∗
4)e

−iτ2∗ς2∗ ]−1. (43)

Next, we can get the coefficients as follows by means of the method proposed in [35]:

Ψ20 = 2τ2∗Ū(Υ∗
2 − 1)(β1Υ2 + β2Υ3),

Ψ11 = τ2∗Ū(Υ∗
2 − 1)(2β1Re{Υ2}+ 2β2Re{Υ3}),

Ψ02 = ḡ20,

Ψ21 = 2τ2∗Ū(Υ∗
2 − 1)[β1(Q

(1)
11 (0)Υ2 +

1
2

Q(1)
20 (0)Ῡ2 + Q(2)

11 (0) +
1
2

Q(2)
20 (0))

+β2(Q
(1)
11 (0)Υ3 +

1
2

Q(1)
20 (0)Ῡ3 + Q(3)

11 (0) +
1
2

Q(3)
20 (0))],

(44)

with
Q20(ω) =

iΨ20

ς2∗τ2∗
Υ(ω) +

iΨ̄02

3ς2∗τ2∗
Ῡ(ω) + J1e2iς2∗τ2∗ω,

Q11(ω) = − iΨ11

ς2∗τ2∗
V(θ) +

iΨ̄11

ς2∗τ2∗
Ῡ(ω) + J2.

where

J1 = 2

⎛⎜⎜⎜⎜⎜⎝
x∗11 −x12 −x13 0

−x21 x∗22 −x23 0

0 −x32 x∗33 y34e−2iς2∗τ10∗

0 −z42e−2iς2∗τ2∗ −z43e−2iς2∗τ2∗ x∗44

⎞⎟⎟⎟⎟⎟⎠

−1

×

⎛⎜⎜⎜⎜⎜⎝
−(β1Υ2 + β2Υ2)

β1Υ2 + β2Υ2

0

0

⎞⎟⎟⎟⎟⎟⎠,

J2 =

⎛⎜⎜⎜⎜⎜⎝
x11 x12 x13 0

x21 x22 + z22 x23 0

0 x32 x33 + z33 y34

0 z42 z33 + z33 x44 + y44

⎞⎟⎟⎟⎟⎟⎠
−1

×

⎛⎜⎜⎜⎜⎜⎝
−(2β1Re{Υ2}+ 2β2Re{Υ3})

2β1Re{Υ2}+ 2β2Re{Υ3}
0

0

⎞⎟⎟⎟⎟⎟⎠,
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with
x∗11 = 2iς2∗ − x11,

x∗22 = 2iς2∗ − x22 − z22e−2iς2∗τ2∗ ,

x∗33 = 2iς2∗ − x33 − z33e−2iς2∗τ2∗ ,

x∗44 = 2iς2∗ − x44 − y44e−2iς2∗τ10∗ (45)

Then,

C1(0) = i
2τ2∗ς2∗

(
Ψ11Ψ20 − 2|Ψ11|2 − |Ψ02|2

3

)
+ Ψ21

2

Λ1 = − Re{C1(0)}
Re{λ′(τ2∗)} ,

Λ2 = 2Re{C1(0)},

Λ3 = − Im{C1(0)}+Λ1 Im{λ′(τ2∗)}
τ2∗ς2∗ ,

(46)

Theorem 6. For system (2), if Λ1 > 0 , then the Hopf bifurcation at τ2∗ is supercritical (subcritical
for Λ1 < 0); if Λ2 < 0, then bifurcating periodic solutions showing around E∗(S∗, P∗H∗, T∗)
are stable (unstable for Λ2 > 0); if Λ3 > 0, then bifurcating periodic solutions showing at
E∗(S∗, P∗H∗, T∗) increase (decrease for Λ3 < 0).

5. Numerical Example

In this section, we shall adopt a numerical example by extracting the same values of
parameters as those in [25] to certify our obtained analytical results in previous sections.
Then, the following numerical example model system is obtained:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

dS(t)
dt = 2 − 0.02S(t)− 0.016S(t)P(t)− 0.028S(t)H(t),

dP(t)
dt = 0.016S(t)P(t) + 0.028S(t)H(t)− 0.05P(t)− 0.095P(t − τ2),

dH(t)
dt = 0.03P(t) + 0.5T(t − τ1)− 0.421H(t − τ2)− 0.02H(t),

dT(t)
dt = 0.095P(t − τ2) + 0.421H(t − τ2)− 0.5T(t − τ1)− 0.02T(t),

(47)

from which one has �0 = 12.3481 > 1 and the unique synthetic drug addiction equilibrium
point E∗(1.3196, 13.6111, 45.6355, 39.4338).

For the case when τ1 > 0 and τ2 = 0, one has ς10 = 1.0902 and τ10 = 9.7367. In line
with Theorem 1, E∗(1.3196, 13.6111, 45.6355, 39.4338) is locally asymptotically stable in the
interval τ1 ∈ [0, τ10 = 9.7367). Figure 1 shows the local asymptotical stability of the model
system (47). Whereas, Figure 2 shows the exhibition of a Hopf bifurcation at τ10 = 9.7367.

For τ1 = 0 and τ2 > 0, we have ς20 = 1.6264 and τ20 = 20.8839 based on some
calculations. It can be observed that the model system (47) is locally asymptotically stable
around E∗(1.3196, 13.6111, 45.6355, 39.4338) when τ2 = 18.6934 < τ20 = 20.8839, which is
depicted in Figure 3. Nevertheless, E∗(1.3196, 13.6111, 45.6355, 39.4338) loses its stability
and the model system (47) experiences a Hopf bifurcation as the value of τ2 crossed τ20.
The loss of stability dynamics of E∗(1.3196, 13.6111, 45.6355, 39.4338) for τ2 = 25.9358 >
τ20 = 20.8839 is shown in Figure 4.
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Figure 1. The time plot of (a) susceptible population, (b) psychological addicts, (c) physiological
addicts and (d) drug-users in treatment for τ1 = 8.2247 < τ10 = 9.7367 with A = 2, d = 0.02,
β1 = 0.016, β2 = 0.028, π = 0.03, γ = 0.095, θ = 0.5 and σ = 0.21.
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Figure 2. The time plot of (a) susceptible population, (b) psychological addicts, (c) physiological
addicts and (d) drug-users in treatment for τ1 = 11.1421 > τ10 = 9.7367 with A = 2, d = 0.02,
β1 = 0.016, β2 = 0.028, π = 0.03, γ = 0.095, θ = 0.5 and σ = 0.21.
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Figure 3. The time plot of (a) susceptible population, (b) psychological addicts, (c) physiological
addicts and (d) drug-users in treatment for τ2 = 18.6934 < τ20 = 20.8839 with A = 2, d = 0.02,
β1 = 0.016, β2 = 0.028, π = 0.03, γ = 0.095, θ = 0.5 and σ = 0.21.
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Figure 4. The time plot of (a) susceptible population, (b) psychological addicts, (c) physiological
addicts and (d) drug-users in treatment for τ2 = 25.9358 > τ20 = 20.8839 with A = 2, d = 0.02,
β1 = 0.016, β2 = 0.028, π = 0.03, γ = 0.095, θ = 0.5 and σ = 0.21.
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For τ1 > 0 and τ2 = 2.5 ∈ (0, τ20) and supposing τ1 as a parameter, we obtain
ς1∗ = 3.2156 and τ1∗ = 1.4096 through some computations. In such a case, the model
system (47) is locally asymptotically stable when τ1 < τ1∗ but as τ1 passes through τ1∗ the
model system (47) exhibits a Hopf bifurcation and the model system (47) loses stability.
This property is depicted in Figures 5 and 6 for τ1 = 1.3785 (<τ1∗) and τ1 = 1.1.4308 (>τ1∗),
respectively.

For τ2 > 0 and τ1 = 1.5 ∈ (0, τ10) and supposing τ2 as a parameter, we get ς2∗ = 0.7849
and τ2∗ = 8.9875. The model system (47) is locally asymptotically stable for τ2 < τ2∗ and
unstable for τ2 > τ2∗. Stability and instability behavior of the model system (47) is presented
in Figures 7 and 8 for different values of τ2, respectively.

In addition, for τ1 = 1.5 ∈ (0, τ10) and τ2 > 0, we obtain λ′(τ2∗) = 0.06568892 −
0.00081555i and C0 = −4.25450964 + 13.07154877i. Thus, we have Λ1 = 64.76753827 > 0,
Λ2 = −8.50901928 < 0 and Λ3 = −1.84550535 < 0. Based on the Theorem 5, we can see
that the Hopf bifurcation at τ2∗ = 8.9875 is supercritical; the bifurcating periodic solutions
showing around E∗(1.3196, 13.6111, 45.6355, 39.4338) are stable, and the bifurcating periodic
solutions showing around E∗(1.3196, 13.6111, 45.6355, 39.4338) are decreasing.
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Figure 5. The time plot of (a) susceptible population, (b) psychological addicts, (c) physiological
addicts and (d) drug-users in treatment for τ1 = 1.3785 < τ1∗ = 1.4096 and τ2 = 2.5 ∈ (0, τ20) with
A = 2, d = 0.02, β1 = 0.016, β2 = 0.028, π = 0.03, γ = 0.095, θ = 0.5 and σ = 0.21.
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Figure 6. The time plot of (a) susceptible population, (b) psychological addicts, (c) physiological
addicts and (d) drug-users in treatment for τ1 = 1.4308 > τ1∗ = 1.4096 and τ2 = 2.5 ∈ (0, τ20) with
A = 2, d = 0.02, β1 = 0.016, β2 = 0.028, π = 0.03, γ = 0.095, θ = 0.5 and σ = 0.21.
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Figure 7. The time plot of (a) susceptible population, (b) psychological addicts, (c) physiological
addicts and (d) drug-users in treatment for τ2 = 8.2943 < τ2∗ = 8.9875 and τ1 = 1.5 ∈ (0, τ10) with
A = 2, d = 0.02, β1 = 0.016, β2 = 0.028, π = 0.03, γ = 0.095, θ = 0.5 and σ = 0.21.

36



Mathematics 2022, 10, 1532

0 200 400 600 800 1000
1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

Time

S
(t

)

(a)

0 200 400 600 800 1000
13.4

13.45

13.5

13.55

13.6

13.65

13.7

13.75

Time

P
(t

)

(b)

0 200 400 600 800 1000
40

42

44

46

48

50

Time

H
(t

)

(c)

0 200 400 600 800 1000
35

36

37

38

39

40

41

42

43

Time
T

(t
)

(d)

Figure 8. The time of (a) susceptible population, (b) psychological addicts, (c) physiological addicts
and (d) drug-users in treatment plot for τ2 = 9.3825 > τ2∗ = 8.9875 and τ1 = 1.5 ∈ (0, τ10) with
A = 2, d = 0.02, β1 = 0.016, β2 = 0.028, π = 0.03, γ = 0.095, θ = 0.5 and σ = 0.21.

6. Conclusions

In this study, a synthetic drug transmission model with two time delays is proposed
by introducing the time delay due to the period that both the psychological addicts and
the physiological addicts need to accept treatment and come off drugs into the formulated
model by in [25]. Through regarding the combinations of the two time delays as bifurcation
parameters, sufficient criteria for local stability and exhibition of Hopf bifurcation are
established. A crucial value point at which a Hopf bifurcation appears is calculated.
Particularly, direction and stability of the model are explored with the aids of the normal
form theory and center manifold theorem. Compared with the work in [25], we not only
consider the impact of the time delay (τ1) due to the relapse time period of the drug-users
in treatment on the model system (2) but also the time delay (τ2) due to the period that
both the psychological addicts and the physiological addicts need to accept treatment and
come off drugs on the model system. The results obtained in this study are supplements of
the work in [25].
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Abstract: As the novel coronavirus pandemic has spread globally since 2019, most countries in
the world are conducting vaccination campaigns. First, based on the traditional SIR infectious
disease model, we introduce a positive feedback mechanism associated with the vaccination rate,
and consider the time delay from antibody production to antibody disappearance after vaccination.
We establish an UVaV model for COVID-19 vaccination with a positive feedback mechanism and
time-delay. Next, we verify the existence of the equilibrium of the formulated model and analyze its
stability. Then, we analyze the existence of the Hopf bifurcation, and use the multiple time scales
method to derive the normal form of the Hopf bifurcation, further determining the direction of
the Hopf bifurcation and the stability of the periodic solution of the bifurcation. Finally, we collect
the parameter data of some countries and regions to determine the reasonable ranges of multiple
parameters to ensure the authenticity of simulation results. Numerical simulations are carried out
to verify the correctness of the theoretical results. We also give the critical time for controllable
widespread antibody failure to provide a reference for strengthening vaccination time. Taking two
groups of parameters as examples, the time of COVID-19 vaccine booster injection should be best
controlled before 38.5 weeks and 35.3 weeks, respectively. In addition, study the impact of different
expiration times on epidemic prevention and control effectiveness. We further explore the impact of
changes in vaccination strategies on trends in epidemic prevention and control effectiveness. It could
be concluded that, under the same epidemic vaccination strategy, the existence level of antibody is
roughly the same, which is consistent with the reality.

Keywords: COVID-19 model; vaccination willingness; failure time of vaccine antibody; Hopf bifurca-
tion; multiple time scales method; normal form

MSC: 34K18; 37L10

1. Introduction

COVID-19 is ravaging the world, affecting 212 countries and territories around the
world [1]. As of February 2022, it had infected more than 400 million people, with a mortal-
ity rate of about 6%. Within months of the coronavirus outbreak, there was effective control
of epidemics in some countries through rigorous screening and quarantine strategies [2].
However, in some other countries, the novel coronavirus pandemic has spread rapidly and
become a serious epidemic. The outbreak has not only affected human survival but also
the global economy [3]. As a result, COVID-19 has become a hot topic in global research
and has received wide attention worldwide.

At present, vaccines are currently the most effective strategy for preventing out-
breaks [4]. However, vaccination varies from country to country around the world [5,6].
Booster shots are becoming widespread in developed economies, but basic immunization
targets are not yet universally met in most emerging economies [7]. Since the outbreak in
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2019, countries have attached great importance to the development of a vaccine. Currently,
more than 160 candidate vaccines against SARS-CoV-2 are being developed globally. Re-
sults from the first human trial of a potential SARS-CoV-2 vaccine have been published [8].
Studies have shown that vaccines against COVID-19 in phase iii clinical trials have good
safety and immunogenicity. However, attention should be paid to adverse reactions and
long-term protection of the vaccine [9]. Among the four published vaccines, the protec-
tive efficacy of the inactivated vaccine was 79.34%, that of the vector vaccine was 62–90%,
and that of the mRNA vaccine was all above 90% [10]. Therefore, there are still uncertainties
about the protective efficacy and immune persistence of vaccines [11]. In the course of our
study, the effectiveness of the vaccine is noteworthy.

In recent years, many scholars have studied the transmission mode of COVID-19 from
different perspectives. In Olaniyi et al.’s study [12], an epidemic model based on a system
of ordinary differential equations is formulated by taking into account the transmission
routes from symptomatic, asymptomatic, and hospitalized individuals. Sensitivities of
the model to changes in parameters are explored, and safe regions at certain threshold
values of the parameters are derived. In addition, two time-dependent control variables,
namely preventive and management measures, are considered to mitigate the damaging
effects of the disease using Pontryagin’s maximum principle. Abdy et al. [13] used fuzzy
parameters to establish the SIR model of COVID-19. In the model analysis, the generation
matrix method was used to obtain the stability of basic regeneration number and the
model equilibrium. The evolution of diseases with extended incubation periods and the
presence of asymptomatic patients such as COVID-19 have been modeled in Bardina’s
research [14]. In Ref. [15], Bardina et al. also developed a SEIR infectious disease model for
COVID-19 based on some common control strategies. Algehyne et al. [16] investigated a
new mathematical SQIR model for COVID-19 by means of four dimensions. In Ref. [17],
Li et al. constructed a new (SEIHRD)-H-3-R-2 diffusion model was constructed in the
literature to generate the most likely scenario of an epidemic. In Ref. [18], Li et al. proved
the effectiveness of the EM algorithm by simulation. Peng et al. [19] plotted the causal cycle
of the COVID-19 transmission transportation system dynamics model and analyzed the
causal feedback loop. In particular, Cadoni et al. [20] investigated in detail how the size and
timescale of the epidemic can be changed by acting on the parameters characterizing the
model. In addition, they further compared the efficiency of different containment strategies
for contrasting an epidemic diffusion.

In the process of COVID-19 vaccination, we believe that there is a time delay between
antibody production and antibody disappearance. At present, some scholars have carried
out certain studies on the COVID-19 epidemic model with time-delay. Yang et al. [21]
considered that there were different infection delays among different populations, and es-
tablished two different types of fractional order (Caputo and Caputo-Fabrizio) COVID-19
models with distributed time-delay. Radha et al. [22] investigated the effect of time delay
in immune response based on the 2019 Universal SEIR model for coronavirus (COVID-
19). Chang et al. [23] introduced the factor of policies and regulations with time-delay,
and constructed an SIHRS model of COVID-19 pandemic with impulse and time-delay
under media coverage. In Ref. [24], Zhu et al. obtained a delayed reaction–diffusion model
that more closely approximates the actual spread of COVID-19 when the epidemic had
entered the normalization stage. In Ref. [25], Yang et al. investigated a novel Susceptible-
Exposed-Infected-Quarantined-Recovered (SEIQR) COVID-19 transmission model with
two delays.

Novel coronavirus is a single-stranded plus strand RNA virus that can constantly
mutate during the outbreak and development. A variety of novel coronavirus strains
emerged in different countries and regions around the world. However, more transmissible
and stealthy strains emerged [26], and questions such as the effectiveness and duration of
vaccines become increasingly prominent [27,28]. In 2020, Beta, Lambda, Delta, Gamma,
and other mutant strains emerged in various parts of the world [29], especially the Delta
variant strain, which rapidly spread around the world and caused a new round of COVID-
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19 outbreaks in many countries and regions, posing great challenges to global epidemic
prevention and control [30,31]. More recently, there has been the Omicron variant, which
appeared in several countries around the world [32]. The transmissibility of the virus also
changes depending on the type of the novel coronavirus variant. The Delta variant is
twice as transmissible as the original [33], and the infection rate of the Omicron variant is
much higher than that of the Delta variant [34]. Therefore, considering the vaccination rate,
failure rate, mortality rate, the time of the wide range of antibody failure and secondary
vaccination rate, and discussing the impact of mutated strains of COVID-19, it is of great
significance for epidemic prevention and control.

Therefore, the motivations of this study are as follows: first, different countries have
different epidemic prevention strategies, population development trends and other indica-
tors, and the epidemic prevention and control effects are also different, so it is of practical
significance to study the impact of COVID-19 vaccination rate, failure rate and secondary
vaccination rate on the epidemic prevention and control effects. Second, vaccination rate is
affected by people’s vaccination willingness, so it is of certain significance to study how vac-
cination willingness affects vaccination rate, and then how it affects the vaccination process.
Third, there is a time delay between the generation of antibodies and the disappearance
of antibodies after vaccination, so it is of great significance for epidemic prevention and
control to provide a critical and controllable time for large-scale antibody failure, and also
provides a reference for future booster vaccination cycle. Fourth, the novel coronavirus
continues to mutate, giving rise to multiple mutated strains with higher transmissibility
and mortality, so it is necessary to discuss the ability to cope with mutant strains under
current control strategies. Based on the above questions, this paper studies a dynamic
vaccination process (U-Va-V) for COVID-19 vaccination, and introduces a positive feedback
mechanism for vaccination rate, taking into account the time delay in the process from
antibody generation to large-scale elimination of antibodies. In this paper, a novel dy-
namic differential equation model of COVID-19 vaccination with time delay is established,
and numerical simulations are carried out using MATLAB.

The innovation of this paper are as follows: first, in this paper, our model is established
by rational analysis. Second, we add the corresponding positive feedback mechanism to
construct a dynamically changing vaccination rate in the process of considering the model
parameters. Third, we include time delay regarding vaccine effectiveness and investigate
the effect of critical time delay on the stability of the model. Finally, the model we built is
generalizable within a reasonable range of parameters.

The remaining sections are arranged as follows: In Section 2, we present a time-delay
differential equation for COVID-19 vaccination, taking into account the time for the large-
scale failure of COVID-19 vaccines in the presence of antibodies. In Section 3, we study
the stability of positive equilibrium and the existence of Hopf bifurcation of the system (1).
In Section 4, we calculate the normal form of Hopf bifurcation of the formulated model
by using the multiple time scales method. In Section 5, we perform data analysis on the
parameters in the model and provide simulation results by substituting relevant parameters
to verify the correctness of theoretical analysis. In addition, the critical time for controllable
widespread antibody failure is given, and the influence of COVID-19 vaccination strategies
and COVID-19 mutant strain on the epidemic prevention and control effect is discussed.
Finally, conclusions are given in Section 6.

2. Mathematical Modeling

In Section 2, we will elaborate the model. The modeling in this paper is based on the
dynamic process of COVID-19 vaccination.

First, we divide and explain the research object. When studying the process, we divide
the sample population into three categories: The first type of sample U is an unvaccinated
group, that is, the first type of population U is unvaccinated and does not have antibodies,
which is recorded as unvaccinated population U. We do not consider that a small number of
people have antibodies against COVID-19, so the second type of sample Va is a vaccinated
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group, that is, the second type of population Va is vaccinated and has antibodies, which
is recorded as the vaccinated population Va . The third type of sample V is the vaccine
ineffective group, that is, the third type of population V has been vaccinated, but the
antibody has disappeared, which is recorded as the ineffective population V .

Then, we briefly analyze the role relationship between the groups. Since COVID-19
antibodies have no maternal genetic characteristics, newborn population B is transferred to
unvaccinated population U. Unvaccinated population U can become vaccinated population
Va by being vaccinated against COVID-19. The vaccinated population Va may become
ineffective population V due to the disappearance of antibodies after a period of time,
and the vaccinated population Va can be inoculated with booster injection to prolong the
time of antibody disappearance. Ineffective population V can also become vaccinated
population Va through secondary vaccination with the COVID-19 vaccine. We assume that
there is a vaccinated population Va that may contract COVID-19 but not die. Thus, we
obtain the relationship between three populations (unvaccinated population (U), vaccinated
population (Va), and ineffective population (V), as shown in Figure 1:

Figure 1. Flow chart for the UVaV model.

In Figure 1, U, Va, V represent the sample numbers of unvaccinated, vaccinated and
antibody disappearance, respectively, and parameters B and d represent natural increase of
population and death rate of the samples, respectively; c is mortality rate due to COVID-19;
α represents the secondary vaccination rate from V to Va; γ is the failure rate from Va to
V; a and b are the positive feedback coefficients and basic vaccination rate in the positive
feedback mechanism from U to Va. We need to emphasize that the parameters involved in
Figure 1 are all normal numbers. Finally, it is important to note that there is Va > V in the
vaccinated population.

Next, we analyze the meaning of time-delay τ. For the process from inoculated
population Va to ineffective population V, we analyze the existence of time delay from
two aspects. On the one hand, the novel coronavirus we are working on is very close to
influenza virus, and the half-life of influenza virus antibodies is only about six months [35].
On the other hand, studies have shown that the half-life of antibodies in patients with mild
new coronations is only 36 days [36]. Therefore, it can be concluded that COVID-19 vaccine
is a non-permanent immune vaccine and has the time τ of the wide range of antibody
failure, that is to say, most recipients (γ) will have the situation of antibody disappearance
after the time τ.

Furthermore, we construct a positive feedback mechanism on vaccine effectiveness to
characterize a dynamic COVID-19 vaccination rate. For a vaccination rate from unvacci-
nated population U to vaccinated population Va, we believe that a COVID-19 vaccination
rate is affected by the willingness of the population to vaccinate. Li et al. [37] conducted a
sample survey of patients in a tertiary hospital in a city, and concluded that worry about
the safety and effectiveness of the vaccine was the main reason of the unwillingness for the
vaccination. In Sarwar et al.’s [38] study, a multi-criteria decision-making method known
as an analytical hierarchical method was applied to determine the COVID-19 vaccination
willingness level of the public. The analysis revealed that the determinants of willingness
to uptake the COVID-19 vaccine were individual decision, vaccine origin, adapting to
change, and perceived barriers’ high obstacles to vaccinating. In Liu et al.’s [39] article,
it was shown that free vaccination significantly increased COVID-19 vaccination rates.
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Referring to the literature above, we use the ratio of the current ineffective population V
and the vaccinated population Va to characterize the effectiveness and safety of COVID-19:
a smaller ratio indicates that the vaccine is more effective and safe, whereas a larger ratio
indicates that the vaccine is less effective. Moreover, we denote the influence factor of the
effectiveness and safety of COVID-19 vaccines as a, and the combined influence of factors
includes vaccine source, vaccine cost, and vaccination barriers as b, and we can regard it as
the basic fixed vaccination rate b for a period of time. To sum up, we construct a positive
feedback mechanism for U to Va in the vaccination rate: a(Va−V)

Va
+ b.

Finally, combined with Figure 1, we give the following dynamic model of COVID-19
vaccination:⎧⎪⎪⎨⎪⎪⎩

U̇(t) = B − (c + d)U(t)− aVa(t)−aV(t)
Va(t)

U(t)− bU(t),

V̇a(t) =
aVa(t)−aV(t)

Va(t)
U(t) + bU(t)− dVa(t)− γVa(t − τ) + αV(t),

V̇(t) = γVa(t − τ)− αV(t)− (c + d)V(t).

(1)

where U, Va, V are descriptive variables; B, a, b, c, d, α, γ are parameters; and τ is the
time-delay. The specific definitions are given in Table 1.

Table 1. Descriptions of variables and parameters in the model (1).

Symbol Descriptions

U Number of unvaccinated individuals without antibodies
Va Number of vaccinated individuals who develop antibodies
V Number of vaccinated individuals whose antibodies failed
B Natural increase of population
a Factor affecting vaccine safety and efficacy
d Natural mortality rate
b Basic fixed vaccination rate
c Mortality rate due to COVID-19
α Conversion rate from V to Va, secondary vaccination rate for COVID-19 vaccine
γ The conversion rate from Va to V, the COVID-19 vaccine failure rate
τ The time-delay between antibody production and antibody disappearance

3. Stability Analysis of Equilibrium and Existence of Hopf Bifurcation

In this section, we consider Equation (1) and determine the existence and stability of
the positive equilibrium. We consider the following assumption:

(H1) b(α+ c + d) + a(α+ c + d − γ) ≥ 0.
When (H1) holds, system (1) has one positive equilibrium P(U∗, V∗

a , V∗), where

U∗ = B
c + d

− B[b(α+ c + d) + a(α+ c + d − γ)]

(c + d)[(α+ c + d)(b + c + d) + a(α+ c + d − γ)]
,

V∗
a =

(α+ c + d)V∗

γ
,

V∗ = Bγ[b(α+ c + d) + a(α+ c + d − γ)]

[(α+ c + d)(b + c + d) + a(α+ c + d − γ)][(c + d)(d + γ) + αd]
.

(2)

We calculate the characteristic equation for equilibrium P(U∗, V∗
a , V∗) as follows:

e−λτ
[

A1λ
2 + B1λ+ C1

]
+ λ3 + D1λ

2 + E1λ+ F1 = 0, (3)
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where

A1 =γ,

B1 =

(
aU∗γ

V∗
a

+ 2cγ+ 2dγ+ bγ+
aγ(V∗

a − V∗)
V∗

a

)
,

C1 =

(
c + d + b +

a(V∗
a − V∗)
V∗

a

)(
aU∗γ

V∗
a

+ γc + γd
)
− aU∗γ

V∗
a

(
a(V∗

a − V∗)
V∗

a
+ b

)
,

D1 =

(
2c + 3d + b + α+

a(V∗
a − V∗)
V∗

a
− aU∗V∗

(V∗
a )

2

)
,

E1 =

(
c + d + b +

a(V∗
a − V∗)
V∗

a

)(
2d − aU∗V∗

(V∗
a )

2 + α+ c

)
+

(
d − aU∗V∗

(V∗
a )

2

)
(α+ c + d)

−
(

a(V∗
a − V∗)
V∗

a
+ b

)(
aU∗V∗

(V∗
a )

2

)
,

F1 =

(
d − aU∗V∗

(V∗
a )

2

)
(α+ c + d)

(
c + d + b +

a(V∗
a − V∗)
V∗

a

)

−
(

a(V∗
a − V∗)
V∗

a
+ b

)[
aU∗V∗

(V∗
a )

2 (α+ c + d)

]
,

with U∗, V∗
a , V∗ are given in Equation (2).

When τ = 0, Equation (3) becomes

λ3 + a1λ
2 + a2λ+ a3 = 0, (4)

where

a1 =− aU∗V∗

(V∗
a )

2 + γ+ 3d + 2c + b +
a(V∗

a − V∗)
V∗

a
+ α,

a2 =γ

(
aU∗

V∗
a

− α

)
+

(
− aU∗V∗

(V∗
a )

2 + 2d + α+ c + γ

)(
c + d + b +

a(V∗
a − V∗)
V∗

a

)

− aU∗V∗

(V∗
a )

2

(
a(V∗

a − V∗)
V∗

a
+ b

)
+ (α+ c + d)

(
d + γ− aV∗U∗

(V∗
a )

2

)
,

a3 =

(
c + d + b +

a(V∗
a − V∗)
V∗

a

)[
(α+ c + d)

(
d + γ− aU∗V∗

(V∗
a )

2

)
+ γ

(
aU∗

V∗
a

− α

)]

−
(

a(V∗
a − V∗)
V∗

a
+ b

)[
aγU∗

V∗
a

+
aU∗V∗

(V∗
a )

2 (α+ c + d)

]
.

According to the Routh–Hurwitz criterion, we consider the following assumption:
(H2) a1 > 0, a3 > 0, a1a2 − a3 > 0.
When (H2) holds, all the roots of Equation (4) have negative real parts, and the

equilibrium P(U∗, V∗
a , V∗) is locally asymptotically stable when τ = 0.

When τ > 0, let λ = iω (ω > 0) be a root of Equation (3). Substituting λ = iω (ω > 0)
into Equation (3) and separating the real and imaginary parts, we have:{

ω2D1 − F1 = −ω2 A1 cos(ωτ) + C1 cos(ωτ) +ωB1 sin(ωτ),
ω3 − E1ω = ωB1 cos(ωτ) +ω2 A1 sin(ωτ)− C1 sin(ωτ).

(5)
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Equation (5) leads to ⎧⎪⎨⎪⎩
cos(ωτ) = m2ω

3+D1m1ω
2−E1m2ω−F1m1

γ(m2
1+m2

2)
,

sin(ωτ) = −m1ω
3+D1m2w2+E1m1ω−F1m2

γ(m2
1+m2

2)
,

(6)

where m1 = −A1ω
2+C1

γ and m2 = B1ω
γ .

Adding the square of two equations of Equation (5) , and let ω2 = z, we can obtain

h(z) = z3 + c2z2 + c1z + c0, (7)

where c2 =
(

D2
1 − 2E1 − A2

1
)
, c1 = −(

2F1D1 − 2A1C1 + B2
1 − E2

1
)
, c0 = F2

1 − C2
1.

We calculate the derivative of h(z) to obtain h′(z) = 3z2 + 2c2z + c1. When Δ =

4(c2)
2 − 12c1 > 0, and letting z̃1, z̃2 be the root of h′(z) = 3z2 + 2c2z + c1 = 0, suppose

z̃1 < z̃2, thus z̃1 =
−2c2+

√
c2

2−3c1
3 and z̃2 =

−2c2−
√

c2
2−3c1

3 .
Therefore, we give the following assumptions:
(H3) c0 < 0, and satisfies Δ ≤ 0 or c1 ≤ 0 or c2 ≥ 0 or h(z̃1) · h(z̃2) ≥ 0.
If (H3) holds, then Equation (7) has only one positive root z1.
(H4) c0 > 0,Δ > 0, c1 > 0, c2 < 0, h(z̃2) < 0 or c0 > 0,Δ > 0, c1 < 0, h(z̃2) < 0.
If (H4) holds, then Equation (7) has two positive roots z2 and z3.
(H5) c0 < 0,Δ > 0, c1 > 0, c2 < 0, h(z̃1) · h(z̃2) < 0.
If (H5) holds, then Equation (7) has three positive roots z4, z5 and z6.
In general, substituting ωk =

√
zk (k = 1, 2, · · ·, 6) into Equation (6), we obtain

τ
(j)
k =

{
1
ωk
[arccos(Pk) + 2jπ], Qk ≥ 0,

1
ωk
[2π − arccos(Pk) + 2jπ], Qk < 0, k = 1, 2, · · ·, 6; j = 0, 1, 2, · · · ,

(8)

where

Qk = sin(ωkτ
(j)
k ) =

−m1ω
3
k + D1m2w2

k + E1m1ωk − F1m2

γ
(
m2

1 + m2
2
) ,

Pk = cos(ωkτ
(j)
k ) =

m2ω
3
k + D1m1w2

k − E1m2ωk − F1m1

γ
(
m2

1 + m2
2
) .

We discuss the number of positive roots of Equation (7) of the characteristic equation
based on the above, and thus synthesize the following Lemma:

Lemma 1. If (H3) or (H4) or (H5) holds, then Equation (3) has a pair of pure imaginary roots
±iωk when τ = τ

(j)
k (k = 1, 2, · · ·, 6; j = 0, 1, 2, · · · ), and all the other roots of Equation (3) have

nonzero real parts.

Furthermore, let λ(τ) = α(τ) + iω(τ) be the root of Equation (3) satisfying α(τ
(j)
k ) = 0,

ω(τ
(j)
k ) = ωk (k = 1, 2, · · ·, 6; j = 0, 1, 2, · · · ). Then, we consider the

transversality condition.
Next, we derive both sides of the characteristic Equation (3) with respect to τ and

solve for

Re(
dτ
dλ

) =
3z2 + 2c2z + c1

B2
1z + (C1 − A1z)2 .

which gives us Re(dλ
dτ )

−1 = Re( dτ
dλ ) . Then, we have the following Lemma:
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Lemma 2. If (H3) or (H4) or (H5) holds, and zk = ω2
k , h′(zk) �= 0, then we have the following

transversality conclusions:

Re(
dλ
dτ

)
−1

∣∣∣∣∣
τ=τ

(k)
j

= Re(
dτ
dλ

)

∣∣∣∣
τ=τ

(k)
j

=
h′(zk)

B2
1zk + (C1 − A1zk)

2 �= 0.

where k = 1, 2, · · ·, 6; j = 0, 1, 2, · · · and A1, B1 and C1 are given in Equation (3).

Based on the above conclusions, Lemmas 1 and 2, we obtain the following Theorem:

Theorem 1. Based on the assumptions (H1) and (H2) hold, we show the conclusion associated
with the equilibrium P(U∗, V∗

a , V∗) of the system (1). If one of three assumptions (H3), (H4),
and (H5) holds, the equilibrium of system (1) undergoes the Hopf bifurcation at τ = τ

(j)
k (k =

1, 2, · · ·, 6; j = 0, 1, 2, · · · ), where τ(j)
k is given by Equation (8), and

(1) If the assumptions (H1) and (H2) and (H3) hold, h(z) has one positive root, then, when
τ ∈ [0, τ(0)1 ), the equilibrium P(U∗, V∗

a , V∗) is locally asymptotically stable, and the equilibrium

P(U∗, V∗
a , V∗) is unstable when τ > τ

(0)
1 .

(2) If the assumptions (H1) and (H2) and (H4) hold, h(z) has two positive roots, we suppose
z2 < z3, then h′(z2) < 0, h′(z3) > 0, note that τ(0)2 > τ

(0)
3 . Then, there exists m ∈ N such

that 0 < τ
(0)
3 < τ

(0)
2 < τ

(1)
3 < τ

(1)
2 < · · · < τ

(m−1)
2 < τ

(m)
3 < τ

(m+1)
3 . When τ ∈ [0, τ(0)3 ) ∪

m⋃
l=1

(τ
(l−1)
2 , τ(l)3 ), the equilibrium P(U∗, V∗

a , V∗) of the system (1) is locally asymptotically stable,

and, when τ ∈ m−1⋃
l=0

(τ
(l)
3 , τ(l)2 ) ∪ (τ

(m)
3 ,+∞), the equilibrium P(U∗, V∗

a , V∗) is unstable.

(3) If the assumptions (H1) and (H2) and (H5) hold, h(z) has three positive roots, and
system (1) will generate stability switches similar to the above case (2).

4. Normal Form of Hopf Bifurcation

In this section, we calculate the normal form of Hopf bifurcation for the system (1)
by using the multiple time scales method. In this paper, τ is the time delay between
vaccination and vaccine failure, which has an important influence on model stability. Thus,
we choose the time-delay τ as a bifurcation parameter, denoting τ = τc + ετε, where τc is
the critical value of Hopf bifurcation give in Equation (8), τε is the disturbance parameter,
and ε is the dimensionless scale parameter. Note that, when τ = τc, the characteristic
Equation (3) has eigenvalue λ = iω, and system (1) undergoes a Hopf bifurcation near
equilibrium P(U∗, V∗

a , V∗).
The system (1) can be written as Ẋ(t) = AX(t) + BX(t − τ) + F(X(t), X(t − τ)), and

let t → t/τ, thus obtaining system (9):

Ẋ = τAX + BτX(t − 1) + τF(X, X(t − 1)). (9)

where A :=
(
aij

)
3×3 =

⎛⎜⎜⎝
aV∗
V∗

a
− a − b − c − d − aV∗U∗

(V∗
a )

2
aU∗
V∗

a

a + b − aV∗
V∗

a
aU∗V∗
(V∗

a )
2 − d α− aU∗

V∗
a

0 0 −(α+ c + d)

⎞⎟⎟⎠,

B =

⎛⎝0 0 0
0 −γ 0
0 γ 0

⎞⎠,
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F(X(t), X(t − τ)) :=

⎛⎝ FU
FVa

FV

⎞⎠

=

⎛⎜⎜⎝
−V∗UVa

(V∗
a )

2 + aUV
V∗

a
− aU∗VaV

(V∗
a )

2 + aV∗U∗V2
a

(V∗
a )

3 − aV∗U∗V3
a

(V∗
a )

4 + aV∗UV2
a

(V∗
a )

3 + aU∗VV2
a

(V∗
a )

3 − aUVaV
(V∗

a )
2

V∗UVa
(V∗

a )
2 − aUV

V∗
a

+ aU∗VaV
(V∗

a )
2 − aV∗U∗V2

a
(V∗

a )
3 + aV∗U∗V3

a
(V∗

a )
4 − aV∗UV2

a
(V∗

a )
3 − aU∗VV2

a
(V∗

a )
3 + aUVaV

(V∗
a )

2

0

⎞⎟⎟⎠.

We suppose h and h∗ are the eigenvector of the corresponding eigenvalue λ =
iωτc,λ = −iωτc, respectively, of system (1) for equilibrium P, and satisfies 〈h∗, h〉 =

(h∗)T · h = 1. By simple calculation, we can obtain:

h :=

⎛⎝ h1
h2
h3

⎞⎠ =

⎛⎜⎜⎜⎜⎝
(

iω+

(
d− aV∗U∗

(V∗
a )2

)
τc+γe−iωτc

)
(iω+(α+c+d)τc)+

(
aU∗
V∗

a
−α

)
γτ2

c e−iω

γe−iω
(

a+b− aV∗
V∗

a

)
τ2

c

iω+(α+c+d)τc
γe−iωτc

1

⎞⎟⎟⎟⎟⎠,

h∗ :=

⎛⎝ h∗1
h∗2
h∗3

⎞⎠ = d1

⎛⎜⎜⎜⎜⎜⎜⎝
1

iω−
(

a+b+c+d− aV∗
V∗

a

)
τc(

aV∗
V∗

a
−a−b

)
τc(

aU∗
V∗

a
−α

)(
iω−

(
a+b+c+d− aV∗

V∗
a

)
τc

)
− aU∗τ2

c
V∗

a

(
aV∗
V∗

a
−a−b

)
(iω−(α+c+d)τc)

(
aV∗
V∗

a
−a−b

)
τc

⎞⎟⎟⎟⎟⎟⎟⎠,

(10)

where

λ = iωτc,

d1 =
(λ− (α+ c + d)τc)

(
aV∗
V∗

a
− a − b

)
γeλτc

v1 + v2 + v3 + v4
,

v1 =

(
−2λ+

(
a + b + c + 2d − aV∗U∗

(V∗
a )

2 − aV∗

V∗
a

)
τc + γeλ

)
(λ− (α+ c + d)τc)

2,

v2 = γτceλ
(
α− aU∗

V∗
a

)
(λ− (α+ c + d)τc),

v3 = γeλ
(

aU∗

V∗
a

− α

)(
λ−

(
a + b + c + d − aV∗

V∗
a

)
τc

)
,

v4 = − aU∗τ2
c γeλ

V∗
a

(
aV∗

V∗
a

− a − b
)

.

We suppose the solution of system (4.1) as follows:

X(t) = X(T0, T1, T2, · · ·) =
∞

∑
k=1

εkXk(T0, T1, T2, · · ·). (11)

The derivative with respect to t is transformed into:

d
dt

=
∂

∂T0
+ ε

∂

∂T1
+ ε2 ∂

∂T2
+ · · · = D0 + εD1 + ε2D2 + · · ·,

where Di =
∂
∂Ti

, i = 0,1,2· · ·.
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Note that

Xi = (Ui, Vai , Vi)
T = Xi

(
t, εt, ε2t, · · ·

)
,

Xi1 = (Ui1, Vai1 , Vi1)
T = Xi

(
t − 1, εt, ε2t, · · ·

)
, i = 1, 2, · · ·.

Then, we can obtain:

Ẋ(t) = εD0X1 + ε2D1X1 + ε3D2X1 + ε2D0X2 + ε3D1X2 + ε3D0X3 + · · ·. (12)

By Taylor expansion of X(t − 1) at Xi
(
t − 1, εt, ε2t, · · ·), we obtain that

X(t − 1) = εX11 + ε2(X21 − D1X11) + ε3(X31 − D1X21 − D2X11) + · · ·, (13)

where Xi1 = Xi(T0 − 1, T1, T2, · · ·), i = 1, 2, 3, · · ·.
We consider that τ is the bifurcation parameter, and we set τ = τc + ετε, where τ

(j)
k is

the critical value of the Hopf bifurcation, τε is the perturbation parameter, and ε is the di-
mensionless parameter. Substituting Equations (11)–(13) into Equation (9), and comparing
the coefficients before ε, we obtain the following equation:

D0U1 − τc(a11U1 + a12Va1 + a13V1) = 0,
D0Va1 − τc(a21U1 + a22Va1 + a23V1) + τcVa11γ = 0,
D0V1 − τca33V1 − τcVa11γ = 0.

(14)

Then, we have the solution of Equation (14):

X1(T1, T2, T3, · · ·) = G(T1, T2, T3, · · ·)eiωτcT0 h + G(T1, T2, T3, · · ·)e−iωτcT0 h. (15)

where h is given in Equation (10).
The expression of the coefficient before ε2 is as follows:

D0U2 − τc(a11U2 + a12Va2 + a13V2)

=− D1U1 + τε(a11U1 + a12Va1 + a13V1)− V∗

(V∗
a )

2 U1Va1τc

+
a

V∗
a

U1V1τc − aU∗

(V∗
a )

2 Va1 V1τc +
aV∗U∗

(V∗
a )

3 V2
a1
τc,

D0Va2 − τc(a21U2 + a22Va2 + a23V2) + τcVa21γ

=− D1Va1 + τc

(
V∗U1Va1

(V∗
a )

2 − aU1V1

V∗
a

+
aU∗Va1 V1

(V∗
a )

2 − aV∗U∗V2
a1

(V∗
a )

3 + γD1Va11

)
+ τε(a21U1 + a22Va1 + a23V1 − γVa11),

D0U2 − τca33V2 − τcγVa21 = −D1V1 + τεa33V1 − τcγD1Va11 + τεγVa11 .

(16)

Substituting Equation (15) into the right-hand side of Equation (16), the coefficient
vector of eiωT0 is denoted by m3. According to the solvability condition, the expression of
∂G
∂T1

can be obtained as follows:
∂G
∂T1

= KτεG, (17)

where K =
a11h1h∗1+a12h2h∗1+a13h3h∗1+a21h1h∗2+a22h2h∗2+a23h3h∗2−γe−iωτc h2h∗2+a33h3h∗3+γe−iωτc h2h∗3

1+γτc(h2h∗3−h2h∗2)e−iωτc
.

50



Mathematics 2022, 10, 1583

τε is a small disturbance parameter, and it has little effect on the high order. Thus,
we only consider its effect on the linear part. We suppose the solution of Equation (16) is
as follows:

U2 = g1e2iωτcT0 G2 + g1e−2iωτcT0 G2
+ l1GG,

Va2 = g2e2iωτcT0 G2
+ g2e−2iωτcT0 G2

+ l2GG,

V2 = g3e2iωτcT0 G2 + g3e−2iωτcT0 G2
+ l3GG.

(18)

Substituting Equation (18) into Equation (16), we obtain:⎛⎝ g1
g2
g3

⎞⎠ =
A∗

2
|A2|

⎛⎝ y1
1

y1
2

y1
3

⎞⎠,

⎛⎝ l1
l2
l3

⎞⎠ =
A∗

3
|A3|

⎛⎝ y2
1

y2
2

y2
3

⎞⎠, (19)

where

y1
1 = − V∗

(V∗
a )

2 h1h2 +
a

V∗
a

h1h3 − aU∗

(V∗
a )

2 h2h3 +
aV∗U∗

(V∗
a )

3 h2
1,

y1
2 =

V∗

(V∗
a )

2 h1h2 − a
V∗

a
h1h3 +

aU∗

(V∗
a )

2 h2h3 − aV∗U∗

(V∗
a )

3 h2
1,

y1
3 = 0.

y2
1 =

V∗

(V∗
a )

2

(
h1h2 + h1h2

)
− a

V∗
a

(
h1h3 + h1h3

)
+

aU∗

(V∗
a )

2

(
h2h3 + h2h3

)
− 2aV∗U∗

(V∗
a )

3 h1h1,

y2
2 = − V∗

(V∗
a )

2

(
h1h2 + h1h2

)
+

a
V∗

a

(
h1h3 + h1h3

)
− aU∗

(V∗
a )

2

(
h2h3 + h2h3

)
+

2aV∗U∗

(V∗
a )

3 h1h1,

y2
3 = 0.

Ak =

⎛⎝xk
11 xk

12 xk
13

xk
21 xk

22 xk
23

xk
31 xk

32 xk
33

⎞⎠
A∗

k =

⎛⎝ xk
22xk

33 − xk
32xk

23 −xk
21xk

33 + xk
31xk

23 xk
21xk

32 − xk
31xk

22
−xk

12xk
33 + xk

32xk
13 xk

11xk
33 − xk

31xk
13 −xk

11xk
32 + xk

31xk
12

xk
12xk

23 − xk
22xk

13 −xk
11xk

23 + xk
21xk

13 xk
11xk

22 − xk
21xk

12

⎞⎠
|Ak| = xk

11

(
xk

22xk
33 − xk

32xk
23

)
− xk

12

(
xk

21xk
33 − xk

31xk
23

)
+ xk

13

(
xk

21xk
32 − xk

31xk
22

)
, k = 1, 2, 3.

with

x1
11 = a + b + c + d − aV∗

V∗
a

+ iω, x1
12 =

aV∗U∗

(V∗
a )

2 , x1
13 = − aU∗

V∗
a

,

x1
21 =

aV∗

V∗
a

− a − b, x1
22 = d − aV∗U∗

(V∗
a )

2 + iω+ γe−iωτc , x1
23 =

aU∗

V∗
a

− α,

x1
31 = 0, x1

32 = −γe−iωτc , x1
33 = α+ c + d + iω,

x2
11 = a + b + c + d − aV∗

V∗
a

+ 2iω, x2
12 =

aV∗U∗

(V∗
a )

2 , x2
13 = − aU∗

V∗
a

,

x2
21 =

aV∗

V∗
a

− a − b, x2
22 = d − aV∗U∗

(V∗
a )

2 + 2iω+ γe−2iωτc , x2
23 =

aU∗

V∗
a

− α,
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x2
31 = 0, x2

32 = −γe−2iωτc , x2
33 = α+ c + d + 2iω,

x3
11 =

aV∗

V∗
a

− a − b − c − d, x3
12 = − aV∗U∗

(V∗
a )

2 , x3
13 =

aU∗

V∗
a

,

x3
21 = a + b − aV∗

V∗
a

, x3
22 =

aV∗U∗

(V∗
a )

2 − d − γ, x3
23 = α− aU∗

V∗
a

,

x3
31 = 0, x3

32 = γ, x3
33 = −α− c − d.

The expression of the coefficient before ε3 is:

D0U3 − τc(a11U3 + a12Va3 + a13V3)

=− D1U2D2U1 + τε(a11U2 + a12Va2 + a13V2)− V∗

(V∗
a )

2 (U1Va1τε + U1Va2τc + U2Va1τc)

+
a

V∗
a
(U1V1τε + U1V2τc + U2V1τc)− aU∗

(V∗
a )

2 (Va1 V1τε + Va1 V2τc + Va2 V1τc)− aV∗U∗

(V∗
a )

4 V3
a1
τc

+
aV∗U∗

(V∗
a )

3

(
V2

a1
τε + 2Va1 Va2τc

)
+

aV∗

(V∗
a )

3 U1V2
a1
τc +

aU∗

(V∗
a )

3 V2
a1

V1τc − a

(V∗
a )

2 U1Va1 V1τc,

D0Va3 − τc(a21U3 + a22Va3 + a23V3) + τcVa31γ

=− D1Va2 − D2Va1 + τε(a21U2 + a22Va2 + a23V2) +
V∗

(V∗
a )

2 (U1Va1τε + U1Va2τc + U2Va1τc)

− a
V∗

a
(U1V1τε + U1V2τc + U2V1τc) +

aU∗

(V∗
a )

2 (Va1 V1τε + Va1 V2τc + Va2 V1τc) +
aV∗U∗

(V∗
a )

4 V3
a1
τc

− aV∗U∗

(V∗
a )

3

(
V2

a1
τε + 2Va1 Va2τc

)
− aV∗

(V∗
a )

3 U1V2
a1
τc − aU∗

(V∗
a )

3 V2
a1

V1τc +
a

(V∗
a )

2 U1Va1 V1τc

+ τcγD1Va21 + τcγD2Va11 − τεγ(Va21 − D1Va11),

D0V3 − τca33V3 − τcγVa31

=− D1V2D2V1 + τεa33V2 − τcγ(D1Va21 + D2Va11) + τεγ(Va21 − D1Va11).

(20)

Substituting Equations (15), (18) and (19) into the right-hand side of Equation (20),
and m4 denotes the coefficient vector of eiωT0 . According to the solvability condition
〈h∗, m4〉 = 0 , and noting that τ2

ε is small enough for small unfolding parameter τε, we
ignore the term τ2

ε G. Then, we have:

∂G
∂T2

= HG2G, (21)

where

H =
τc

(
h∗1 − h∗2

)
∑4

i=1 Hi

1 + τcγe−iωτc h2

(
h∗3 − h∗2

) ,

H1 = − V∗

(V∗
a )

2

(
h1l2 + g2h1 + h2l1 + h2G

)
+

a
V∗

a

(
h1l3 + h1g3 + h3l1 + h3G

)
,

H2 = − aU∗

(V∗
a )

2

(
h2l3 + h2g3 + h3l2 + h3g2

)
+

2aV∗U∗

(V∗
a )

3

(
h2l2 + h2g2

)
,

H3 = −3aV∗U∗

(V∗
a )

4 h2
2h2 +

aV∗

(V∗
a )

3

(
2h1h2h2 + h1h2

2

)
,

H4 =
aU∗

(V∗
a )

3

(
2h2h2h3 + h2

2h3

)
− a

(V∗
a )

2

(
h1h2h3 + h1h2h3 + h1h2h3

)
,
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where gk ( k = 1, 2, 3 ) and lk ( k = 1, 2, 3 ) are given in Equation (19), and hj ( j = 1, 2, 3 )
and h∗j ( j = 1, 2, 3 ) are given in Equation (10).

Letting G �→ (G/ε), we can obtain the normal form of Hopf bifurcation of system (1) as:

Ġ = KτεG + HG2G, (22)

where K is given in Equation (17), and H is given in Equation (21).
Letting G = reiθ and substituting it into Equation (22), and we can obtain the normal

form of the Hopf bifurcation in polar coordinates:{
ṙ = Re(K)τεr + Re(H)r3,
θ̇ = Im(K)τε + Im(H)r2,

(23)

where K is expressed in Equation (17), and H is expressed in Equation (21).
According to the normal form of the Hopf bifurcation by polar coordinates, we just

need to consider the first equation by system (23). Thus, there is the following theorem:

Theorem 2. For system (23), when Re(K)τε
Re(H)

< 0, there is a nontrivial fixed point r =√
−Re(K)τε

Re(H)
< 0, and system (1) has periodic solution:

(1) If Re(K)τε < 0, then the periodic solution reduced on the center manifold is unstable.
(2) If Re(K)τε > 0, then the periodic solution reduced on the center manifold is stable.

5. Numerical Simulations

In this section, since different countries have different prevention and control strategies
and basic national conditions, there are some differences in the parameters values taken
in the corresponding models. We will complete the numerical simulations in two parts:
the first part is the parameters analysis to estimate the required parameters range in the
model and select two sets of parameters values within a reasonable parameters range;
the second part is the numerical simulations and parameters discussion, using the two
sets of reasonable parameters selected in the first part as an example and MATLAB for
numerical simulations. In addition, based on the COVID-19 variant strains, the effect of
each parameter on the critical time τ

(0)
1 is discussed.

5.1. Parameter Analysis

In this part, we estimate some parameters used in numerical simulations to make
them closer to the actual parameters. Then, we give estimates of natural birth rate Br,
disease-related death rate c, and natural death rate d. At the same time, we also made some
reasonable assumptions about the large range of failure rate γ, the weight factor a, the fixed
vaccination rate b, and the secondary vaccination rate α.

First, for the natural birth rate, we select the natural birth rate of some countries in a
certain year of Central Intelligence Agency (CIA) as the study data, and after excluding the
outliers, we analyze the range of natural birth rate values roughly: Br ∈ (0.770, 1.250). Then,
from the perspective of time change, we specifically analyze the change of natural birth
rate Br in China in recent years by using the data from the National Bureau of Statistics of
the People’s Republic of China (NBSPRC) as an example, and obtain that its mean value is
within a reasonable interval. Analyze the world natural birth rate Br from two dimensions
of region and time. Finally, we consider the population base as unit 1, and the natural
increase of population B and the natural birth rate Br are numerically equal. Thus, the birth
rate B = 1.120% is selected as the simulations parameter.

Second, for COVID-19 disease-related mortality c, we select the data of Johns Hopkins
University (https://coronavirus.jhu.edu/map.html, accessed on 12 December 2021) to
observe the mortality due to illness, and then we find that different countries have large
fluctuations. Therefore, we select some representative countries in a balanced way and
analyze the value range of disease-related mortality c. Here, the data mean is used as the
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parameters in the next section, and the disease-related mortality c = 4.6550% is obtained
with general significance. It is important to note that the model applies equally to other
reasonable values of the parameter c.

Next, as for the natural mortality rate d, the natural mortality rate of a country can
be influenced by many aspects and varies greatly from country to country in practice.
Therefore, when analyzing the natural mortality rate d, we select data from different
countries in a balanced way for the analysis, and we take the data from the Intelligent
Data Platform (https://mobile.hellobi.com, accessed on 14 December 2021) as an example,
and excluding the abnormal mortality data in that year, we consider a reasonable interval
for the natural mortality rate d: d ∈ (4.5500, 14.5000). For a better fit, the birth rate Br refers
to the data from National Bureau of Statistics of the People’s Republic of China (NBSPRC),
so the mortality rate is also selected partially from NBSPRC, as shown in Figure 2. Due
to the large range of intervals, we select d = 0.6904% and d = 1.4170% for subsequent
numerical simulations.
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Figure 2. Annual natural mortality d in a low mortality country.

Finally, for parameters without numerical support, we select parameters values in
the way of reasonable assumptions to carry out numerical simulations in the next section.
In this model, for other assumed parameters, the model has stability and can give the
model conclusion under reasonable parameters.

For large-range failure rate γ, the large-range is a catch-all term. Here, we believe
that a failure rate greater than 0.5 and less than 1 is identified as a large-scale failure rate.
In the future numerical simulations, we will take the vicinity of γ = 0.67 as an example
for simulations.

As for the impact factor a and the fixed vaccination rate b, the values of a and b are
greatly influenced by personal subjective consciousness and are also related to the publicity
and encouragement policies of a country or region, but the relationship between a and b
should be guaranteed: a + b ≤ 1. In the following simulations, we take both a and b near
0.5 as an example.

For the secondary vaccination rate α, we can make assumptions, the significance
of which is to study the epidemic prevention and control effects under different sec-
ondary vaccination rate α. In the simulations, we take α near 0.9 as an example for
numerical simulations.

In summary, the two groups of parameters used in the simulations results in the next
section are as follows:

I : B = 0.0112, d = 0.0069, c = 0.04655,γ = 0.675, a = 0.49, b = 0.5, α = 0.9.
I I : B = 0.0112, d = 0.01417, c = 0.04655,γ = 0.685, a = 0.49, b = 0.5, α = 0.92.
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5.2. Numerical Simulation Results

In this section, we take the two groups of parameters given in Section 5.1 as examples
for numerical simulations, and analyze the epidemic prevention and control effects in the
sense of this group of parameters, and then provide a critical time τ

(0)
1 for controllable

widespread antibody failure, which provides a reference for the inoculation time of booster
injection. In order to explore the effect of different epidemic prevention and control
measures, we discuss the influence of fixed vaccination rate b, secondary vaccination
rate α and failure rate γ on the critical time τ

(0)
1 of controllable widespread antibody

failure. Finally, considering the frequent mutation of COVID-19 virus, we analyze the
impact on epidemic prevention and control from the disease-related mortality rate c of the
mutated strains.

For the first group parameters I:

B = 0.0112, d = 0.0069, c = 0.04655,γ = 0.675, a = 0.49, b = 0.5, α = 0.9.

Obviously, the assumption (H1) holds, system (1) only has one nonnegative equi-
librium P. After calculation, the assumption (H2) holds. Thus, the equilibrium P =
(U∗, V∗

a , V∗) ≈ (0.016079, 0.231125, 0.163626) is locally asymptotically stable when τ = 0.
Using MATLAB, we can obtain ω0 = 0.005233, Q0 ≈ 0.225625, P0 ≈ 0.947214, τ(0)1 ≈

38.2901 by plugging parameters group I into Equations (6)–(8). According to Theorem 1,
the equilibrium P is locally asymptotically stable at τ ∈ [0, τ(0)1 ), and the Hopf bifurcation

occurs near the equilibrium P when τ = τ
(0)
1 . Then, we obtain Re(K) > 0, Re(H) < 0 from

Equations (17) and (21). Thus, according to Theorem 2, the system (1) has forward periodic
solution and the bifurcating periodic solution is stable when τε > 0.

When τ=0, we choose the initial value (0.02,0.2,0.2) and the equilibrium P of system (1)
is locally asymptotically stable (see Figure 3).

When τ = 6 ∈
(

0, τ(0)1

)
, we choose initial values (0.015, 0.12, 0.2), and the equilibrium

P of system (1) is locally asymptotically stable (see Figure 4).
When τ = 38.4 > τ

(0)
1 = 38.2901 is near τ(0)1 , we choose initial values (0.012, 0.232, 0.162),

and system (1) has stable forward periodic solution near the equilibrium P (see Figure 5).
It can be seen from Figures 3–5, and the equilibrium P of system (1) is locally asymp-

totically stable when τ ∈ [0, τ(0)1 ) as shown in Figures 3 and 4. The periodic solution of

system (1) near equilibrium P is stable when τ is near τ(0)1 as shown in Figure 5. The equi-

librium P of system (1) is unstable when τ ∈ (τ
(0)
1 ,+∞).
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Figure 3. When τ = 0, the equilibrium P of system (1) is locally asymptotically stable.
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Figure 4. When τ = 4, the equilibrium P of system (1) is locally asymptotically stable.

Figure 5. When τ = 38.4, the periodic solution of system (1) near equilibrium P is stable.

Remark 1. Under the first group parameters I, it can be found by numerical simulations that
the time τ = 0 of the wide range of antibody failure, that is, most people produce antibodies after
vaccination and lose them in a short time. As the secondary vaccination rate α in the parameter
is ideal, system (1) at this time is also stable, and the epidemic can be maintained even when the
vaccine cost is high. When τ ∈ [0, τ(0)1 ), the shorter the time τ of the wide range of antibody failure
is, the faster the antibody tends to stabilize, which also indicates that the number of secondary
vaccinations is bigger, and the cost of controlling the epidemic is higher, but finally stabilizes near
the equilibrium P. When τ > τ

(0)
1 is near τ(0)1 , the time τ of the wide range of antibody failure will

change in a small range, and the antibody presence level will also show periodic changes. At this time,
the epidemic prevention and control effect are controllable. When τ ∈ (τ

(0)
1 ,+∞), the antibody

distribution level cannot be controlled effectively. The fluctuation range of antibody distribution
increases with the increase of time. According to the actual situation, the effectiveness of vaccines
will have a certain period of time; generally, there is no permanent effective situation. Therefore,
the time τ of a wide range of antibody failure is finite. Although there are periods when the antibody
level is ideal, there are also periods when the antibody level is low. In this case, the antibody level
cannot be controlled to be stable, and the low antibody level may lead to the outbreak of the epidemic,
and the epidemic prevention and control effect are not ideal. Based on the above analysis, we can
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conclude that the optimal time τ(0)1 = 38.2901 of controllable widespread antibody failure, which
provides a reference for the second vaccination time of COVID-19 vaccine in medicine.

Next, we consider a group of parameters with higher mortality. In order to compare with the
first group parameters I, we also idealize the secondary vaccination rate α, and select the secondary
vaccination rate α under the future vaccination level. For the second group parameters I I:

B = 0.01231, d = 0.01417, c = 0.04655,γ = 0.685, a = 0.49, b = 0.5, α = 0.92.

Obviously, the assumption (H1) holds, substituting these parameters values into Equation (2),
we obtain that system (1) only has one nonnegative equilibrium P = (U∗, V∗

a , V∗) ≈ (0.017375,
0.198918, 0.138938). After calculation, the assumption f

¯
(H2) holds. Thus, the equilibrium P is

locally asymptotically stable when τ = 0.

When τ = 0, we choose the initial values (0.01, 0.1, 0.2), and the equilibrium P of
system (1) is locally asymptotically stable (see Figure 6).
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Figure 6. When τ=0, the equilibrium P of system (1) is locally asymptotically stable.

Substituting these parameters’ values into Equation (7), we obtain c0 ≈ −0.000081, c1 ≈
0.254617, c2 ≈ 1.033500. By derivation of Equation (7), Δ ≈ 1.217044, z̃1 ≈ −0.505131, z̃2 ≈
−0.872863, we further calculate h(z̃1) ≈ 0.006119, h(z̃2) ≈ −0.099943. It satisfies as-
sumption (H4). Using MATLAB, according to Equations (7) and (8), we obtain ω1 ≈
0.017865, Q0 ≈ 0.62373, P0 ≈ 0.78164, τ(0)1 ≈ 35.2992.

Thus, according to Theorem 1, the equilibrium P is locally asymptotically stable when
τ ∈ [0, τ(0)1 ), and the Hopf bifurcation occurs near the equilibrium P when τ

(0)
1 . According

to Equation (17), Equation (21), and Theorem 2, we conclude that Re(K) > 0, Re(H) < 0;
thus, system (1) has a forward periodic solution and the bifurcating periodic solution is
stable when τε > 0.

When τ = 6 ∈ [0, τ(0)1 ), we choose the initial value (0.01, 0.2, 0.2), and the equilibrium
P of system (1) is locally asymptotically stable (see Figure 7).
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Figure 7. When τ = 6, the equilibrium P of system (1) is locally asymptotically stable.

When τ = 35.5 > τ
(0)
1 = 35.2992, we choose the initial value (0.01, 0.2, 0.15), the

model (1) has a stable forward periodic solution near the equilibrium P (see Figure 8).

Figure 8. When τ = 35.5, the periodic solution of system (1) near equilibrium P is stable.

It can be seen from Figures 6–8, the equilibrium P of system (1) is locally asymptotically
stable as shown in Figures 6 and 7. The equilibrium P of system (1) is unstable when
τ ∈ (τ

(0)
1 ,+∞). The equilibrium P of system (1) exhibits periodic fluctuation and bifurcates

stable periodic solutions when τ approaches the critical time τ
(0)
1 as shown in Figure 8.

With the increase of τ, the fluctuation tendency of the system (1) at the same time level
also increases.

Remark 2. According to the above numerical simulations, it can be found that, when the time
τ < τ

(0)
1 of the wide range of antibody failure, it will eventually stabilize to the same antibody

presence level after a certain time. According to our analysis, the smaller the time delay τ is,
the faster it tends to be stable. However, according to the actual situation, the smaller the failure
time is, the more total inoculated doses will increase, resulting in the increase of epidemic prevention
cost, and ultimately maintain the same epidemic effect. Therefore, the ideal situation of epidemic
prevention and control is that antibody levels are stable and controllable, the validity of vaccines is
longer, and the cost of epidemic prevention can be saved and the cost of epidemic prevention can be
reduced. When τ ∈ (τ

(0)
1 ,+∞) and τ varies in a small range near τ(0)1 , the antibody levels will

show periodic changes, but the overall situation of epidemic prevention and control is roughly stable.
When τ > τ

(0)
1 , the antibody presence level is high and low, and epidemic prevention and control is

uncertain, which may lead to the outbreak of epidemic at the low antibody presence level.
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Remark 3. In the process of numerical simulations, we take the first group parameters I and the
second group parameters II as examples and give the critical time τ(0)1 of controllable widespread
antibody failure of 38.5 weeks and 35.3 weeks, respectively, which can provide a reference for the
vaccination time of COVID-19 vaccine booster injection in medical aspect to prolong the time of
antibody disappearance.

Through the analysis of the simulations results of the two groups of parameters data,
the antibody presence level is used to measure the epidemic prevention and control effect.
Taking the time of six weeks of the wide range of antibody failure in the simulations as
an example, the three groups population is roughly stable at 0.016, 0.231, and 0.164 (unit:
million) for the first group parameters I, while the three groups population is stable at
0.017, 0.624, and 0.139 (unit: million) for the second group parameters II, and the propor-
tions of antibody are 56.34% and 56.21%, respectively. It can be concluded that, under the
same epidemic vaccination strategy, the existence level of antibody is roughly the same,
which is consistent with the reality.

In terms of the critical time τ
(0)
1 for controllable widespread antibody failure, the group

with lower mortality has better critical time τ
(0)
1 for controllable widespread antibody

failure than the group with higher mortality. The shorter the time τ of the wide range
of antibody failure, the more vaccinations per person, the higher the cost of quarantine,
and the greater the impact on normal life. Through the above theoretical analysis, we can
know that the antibody existence level will be the same if the antibody failure time τ is
appropriately increased within the critical time τ for controllable widespread antibody
failure. Therefore, we can achieve the ideal of epidemic prevention and control through
more effective and longer-lasting vaccines.

Next, we discuss the impact of different epidemic prevention and control strategies on
the epidemic prevention and control. We use the combination of discrete and continuous
variables to investigated the influence on the critical time τ

(0)
1 of controllable widespread

antibody failure. We will discuss the effects of validity factor a, fixed vaccination rate b,
failure rate γ, and disease-related mortality c on the critical time τ

(0)
1 in detail below. Finally,

the impact of a sudden increase in disease-related mortality c and antibody failure rate γ
due to the emergence of a mutant strain of COVID-19 is analyzed.

We first analyze the impact factor a on vaccine effectiveness on the vaccination
rate, and thus affect the critical time τ

(0)
1 of controllable widespread antibody failure

in system (1), and add the secondary vaccination rate α of a discrete case as shown in
Figure 9:
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Figure 9. The influence of positive feedback factor a on the critical time τ
(0)
1 .
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In Figure 9, it observes that the increase of influence factor a has a significant pro-
moting effect on the critical time τ

(0)
1 , and the promoting relationship between them is

approximately linear. Therefore, in the context of this discussion, we can promote the safety
and effectiveness of COVID-19 vaccines by strengthening publicity, so as to improve the
impact of vaccine effectiveness on vaccination, which also provides some suggestions for
future epidemic prevention and control.

When other parameters are fixed, the influence of fixed vaccination rate b in the
continuous case and secondary vaccination rate α in the discrete case on the critical time
τ
(0)
1 is investigated in Figure 10.
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Figure 10. Influence of fixed vaccination rate b (continuous case) and secondary vaccination rate α

(discrete case) on the critical time τ
(0)
1 .

In Figure 10, we find that the critical time τ
(0)
1 will be suppressed by fixed vaccination

rate b in a linear manner. In comparison with Figure 9, in order to increase the vaccination
rate of COVID-19, to improve the final antibody presence level, and to promote the critical
time τ

(0)
1 , we should properly regulate the vaccination strategy from two aspects: on the one

hand, we should appropriately improve the role of effectiveness in vaccination willingness;
on the other hand, the fixed vaccination rate b brought about by other factors should be
appropriately reduced.

As the COVID-19 virus continues to mutate, it has created multiple mutated strains
with higher transmissibility and mortality. Then, we consider the effects of the failure rate
γ (see Figure 11) and mortality rate c (see Figure 12) on the critical time τ

(0)
1 .
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Figure 11. The influence of continuous antibody failure rate γ and discrete secondary vaccination

rate α on the critical time τ
(0)
1 .
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From Figure 11, it can be concluded that the smaller the antibody failure rate γ is,
the larger the critical time τ

(0)
1 is. The influence of failure rate γ on the critical time τ

(0)
1

decreases with the increase of failure rate γ. When the failure rate γ > 0.68, the effect of γ
on τ

(0)
1 is almost zero. When the failure rate γ < 0.68, the smaller γ is, the more obvious

the effect of increasing the critical time τ
(0)
1 is. Therefore, from the perspective of epidemic

control, we have confirmed the need to reduce the vaccine’s own failure rate γ from the
perspective of epidemic control.
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Figure 12. The influence of continuous secondary vaccination rate α and discrete mortality rate c on

the critical time τ
(0)
1 .

In the case of the COVID-19 mutant strains, the mutant strains cause a spike in
antibody failure rate γ. If the failure rate γ of the primary antibody is less than 0.68, the γ

surge will cause the shortening of the critical time τ
(0)
1 . If the failure rate γ of the original

antibody is high, the effect of γ surge may be relatively small. Therefore, we should keep τ

at a distance τ
(0)
1 to prevent the risk of uncertainty due to mutant strains.

From Figure 12, comparing the influence of disease mortality rate c and secondary
vaccination rate α on the critical time τ

(0)
1 , we can find that the influence of disease mortality

rate c on the critical time τ
(0)
1 is significantly higher than that of secondary vaccination rate

α on the critical time τ
(0)
1 .

From the perspective of the COVID-19 mutant strains, the COVID-19 mutant strains
may cause discrete changes in disease mortality rate c. We consider the effect of the discrete
change of c on τ

(0)
1 in Figure 12. Small changes in disease mortality rate c caused by the

mutated strains may lead to large changes in the critical time τ(0)1 of controllable widespread
antibody failure, leading to instability in the vaccination system. After a certain period of
time, antibody levels rise and fall, and the COVID-19 mutated strains may trigger a new
outbreak. Therefore, we should pay attention to the variation trend of mutant strains and
change the inoculation strategy in time when necessary. Before it becomes a mainstream
mutant strain, countermeasures should be taken to ensure the effect of epidemic prevention
and control.

Remark 4. According to Figures 9–12, we find that the secondary vaccination rate α has a turning
point α0 around 0.91. In a certain range before α0, as shown in Figures 9 and 10, the increase of the
secondary vaccination rate α leads to the decrease of the critical time τ(0)1 , and the closer it is to 0.91,
the less the effect is. In a certain range after α0, the increase of secondary vaccination rate α will
increase the critical time τ(0)1 , and the change relationship between the two is approximately linear,
as shown in Figures 11 and 12.
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6. Conclusions

In this paper, an UVaV vaccination model with time-delay was constructed for COVID-
19 vaccination based on the transmission characteristics of COVID-19 vaccine antibodies.
Compared with the traditional SIR model, this paper paid more attention to the presence
of antibodies in the population and the vaccination situation of vaccines. At the same
time, the effect of vaccination intention on vaccination rate was added into the model. We
also analyzed the existence and stability of equilibrium, and studied the existence and
stability of the Hopf bifurcation associated with existing equilibrium. Then, we derived
the normal form of the Hopf bifurcation in the vaccination model by using the multiple
time scales method. Finally, according to the parameters estimations and the data given
in the literature, it was divided into two groups of parameters. One group is the small
natural mortality parameters, and the other is the natural mortality parameters. Numerical
simulations were carried out to verify the correctness of the theoretical analysis.

In [40], Lu et al. studied the impact of critical treatment time on epidemic prevention
and control. In this paper, we considered the impact of the large-scale failure time of
critical antibodies on epidemic prevention and control from the perspective of failure time.
Numerical simulations showed that, when the time τ < τ

(0)
1 of the wide range of antibody

failure was obtained in the sense of two parameters, after a certain time, the antibody
would eventually approach the same level of existence, and the epidemic prevention and
control effects were basically the same. Different failure time τ would produce different
critical time τ

(0)
1 ; the shorter the failure time τ, the faster the critical time τ

(0)
1 . However,

the shorter the lapse, the greater the total number of vaccinations. Obviously, on the one
hand, frequent vaccination would inevitably bring a great impact on people’s life and
work, but also seriously hindered the development of society and the country; on the other
hand, frequent vaccinations increased the cost of prevention. When τ changed in a small
range near τ(0)1 , we believed that the antibody level changed periodically and the epidemic

prevention and control situation was under control. When τ > τ
(0)
1 , the antibody presence

level was high and low, and there was a risk of causing a new epidemic. Therefore, taking
these two groups of parameters as examples, we gave the critical time τ

(0)
1 of controllable

widespread antibody failure of 38.5 weeks and 35.3 weeks, respectively, and the stability of
the system would be greatly affected before and after the critical time τ

(0)
1 . This provided a

medical reference for the time of COVID-19 vaccine booster injection to prolong the time of
antibody disappearance.

In addition, according to Wang’s et al. [41] research, the protection rate, the infection
rate, and the average quarantine time had a significant impact on the prevention and the
control of the epidemic. We discussed the impact of different vaccination strategies on
the time τ

(0)
1 for controllable widespread antibody failure, and considered the influence of

COVID-19 mutated strains on epidemic prevention and control. We also provided some
suggestions for epidemic prevention and control from the perspective of mathematical
model and dynamic property analysis as follows:

(1): In the positive feedback mechanism, the effect factor a on vaccine effectiveness had
a significant promoting effect on the critical time τ

(0)
1 . We can increase the impact of vaccine

effectiveness on vaccination by increasing awareness about the safety and effectiveness of
COVID-19 vaccines.

(2): In the positive feedback mechanism, the relatively fixed vaccination rate b inhib-
ited the critical time τ

(0)
1 . Combined with (1), vaccination strategies were appropriately

regulated from two aspects: on the one hand, the role of effectiveness in vaccination inten-
tion was appropriately increased; on the other hand, the fixed vaccination rate b brought
about by other factors should be appropriately reduced.

(3): Considered that the mutant strains of COVID-19 may cause a sudden increase in
the antibody failure rate γ and thus reduced the critical time τ

(0)
1 . In addition, the smaller

the failure rate γ is, the more obvious the effect of critical time is. Therefore, from the
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perspective of model sensitivity, we confirmed the necessity of reducing vaccine failure
rate γ.

(4): Considered that mutated strains of COVID-19 may caused mutations in disease-
related mortality c. A small change in disease-related mortality c may cause a large change
in the critical time τ

(0)
1 , which may change the system (1) stability. We should pay attention

to the variation trend of mutant strains and change the inoculation strategy in time when
necessary. Before the mutated strains cause a new outbreak, analysis showed that we can
take measures such as vaccination boosters to reduce vaccine failure rates, thus reducing
mortality due to disease and ensuring that the outbreak is within manageable limits.

Author Contributions: Writing—original draft preparation: X.A., X.L., Y.D. and H.L.; writing—
review and funding acquisition: X.A., X.L. and Y.D.; methodology and supervision: X.A. and Y.D. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Heilongjiang Provincial Natural Science Foundation
of China (Grant No. LH2019A001) and College Students Innovations Special Project funded by
Northeast Forestry University of China (No. 202110225003).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The authors confirm that the data supporting the findings of this study
are available within the article.

Acknowledgments: Authors are thankful to the handling editor and reviewers for their valuable
comments and suggestions.

Conflicts of Interest: All authors declare no conflict of interest in this paper.

References

1. Maramattom B.V.; Bhattacharjee, S. Neurological complications with COVID-19: A contemporaneous review. Ann. Indian Acad.
2020, 23, 468–476. [CrossRef] [PubMed]

2. Zhao, D.H.; Lin, H.J.; Zhang, Z.R. Evidence-based framework and implementation of China’s strategy in combating COVID-19.
Risk Manag. Healthc. Policy 2020, 13, 1989–1998. [CrossRef] [PubMed]

3. Atalan, A. Is the lockdown important to prevent the COVID-19 pandemic? Effects on psychology, environment and economy-
perspective. Ann. Med. Surg. 2012, 56, 38–42. [CrossRef] [PubMed]

4. Acharya, S.R.; Moon, D.H.; Shin, Y.C. Assessing attitude toward COVID-19 vaccination in South Korea. Front. Psychol. 2021,
12, 694151. [CrossRef] [PubMed]

5. Chakraborty, C.; Sharma, A.R.; Bhattacharya, M.; Agoramoorthy, G.; Lee, S.S. Asian-origin approved COVID-19 vaccines and
current status of COVID-19 vaccination program in Asia: A critical analysis. Vaccines 2021, 9, 600. [CrossRef]

6. Tagoe, E.T.; Sheikh, N.; Morton, A.; Nonvignon, J.; Sarker, A.R.; Williams, L.; Megiddo, I. COVID-19 vaccination in lower-middle
income countries: National stakeholder views on challenges, barriers and potential solutions. Front. Public Health 2021, 9, 709127.
[CrossRef]

7. Van De Pas, R.; Van De Pas, M.A.; Ravinetto, R.; Srinivas, P.; Ochoa, T.J. COVID-19 vaccine equity: A health systems and policy
perspective. Expert Rev. Vaccines 2021, 21, 25–36. [CrossRef]

8. Zhu, F.; Li, Y.; Guan, X.; Hou, L.; Wang, W.; Li, J.X.; Wu, S.P.; Wang, B.S.; Wang, Z.; Wang, L.; et al. Safety, tolerability and
immunogenicity of a recombinant adenovirus type-5 vectored COVID-19 vaccine: A dose-escalation, open-label, non-randomised,
first-in-human trial. Lancet 2020, 395, 1845–1854. [CrossRef]

9. Zhu, Y.; Wei, Y.; Sun, C.; He, H. Development of vaccines against COVID-19. Prev. Med. 2021, 33, 143–148.
10. Hodgson, S.H.; Mansatta, K.; Mallett, G.; Harris, V.; Emary, K.R.W.; Pollard, A.J. What defines an efficacious COVID-19 vaccine?

A review of the challenges assessing the clinical efficacy of vaccines against SARS-CoV-2. Lancet Infect. Dis. 2021, 21, E26–E35.
[CrossRef]

11. Grubaugh, N.D.; Hanage, W.P.; Rasmussen, A.L. Making sense of mutation: What D614G means for the COVID-19 pandemic
remains unclear. Cell 2020, 182, 794–795. [CrossRef] [PubMed]

12. Olaniyi, S.; Obabiyi, O.S.; Okosun, K.O.; Oladipo, A.T.; Adewale, S.O. Mathematical modelling and optimal cost-effective control
of COVID-19 transmission dynamics. Eur. Phys. J. Plus 2020, 135, 938. [CrossRef] [PubMed]

13. Abdy, M.; Side, S.; Annas, S.; Nur, W.; Sanusi, W. A SIR epidemic model for COVID-19 spread with fuzzy parameter: The case of
Indonesia. Adv. Differ. Equations 2021, 2021, 105. [CrossRef] [PubMed]

14. Bardina, X.; Ferrante, M.; Rovira, C. A stochastic epidemic model of COVID-19 disease. Aims Math. 2020, 5, 7661–7677. [CrossRef]

63



Mathematics 2022, 10, 1583

15. He, S.B.; Peng, Y.X.; Sun, K.H. SEIR modeling of the COVID-19 and its dynamics. Nonlinear Dynam. 2020, 101, 1667–1680.
[CrossRef] [PubMed]

16. Algehyne, E.A.; Din, R.U. On global dynamics of COVID-19 by using SQIR type model under nonlinear saturated incidence rate.
Alex. Eng. J. 2021, 60, 393–399. [CrossRef]

17. Li, N.; Wang, Z.Y.; Pei, Z. Sequential resource planning decisions in an epidemic based on an innovative spread model. IEEE T.
Autom. Sci. Eng. 2022, 19, 677–691. [CrossRef]

18. Li, M.Y.; Zhang, Y.J.; Zhou, X.H. Analysis of transimission pattern of COVID-19 based on EM algorithm and epidemiological
data. Acta Math. Appl. Sin. 2020, 43, 427–439.

19. Chong, P.Y.; Yin, H. System dynamics simulation on spread of COVID-19 by traffic and transportation. J. Traf. Trans. Eng. 2020,
20, 100–109.

20. Cadoni, M.; Gaeta, G. Size and timescale of epidemics in the SIR framework. Phys. D 2020, 411, 132626. [CrossRef]
21. Yang, L.L.; Su, Y.M.; Zhuo, X.J. Comparison of two different types of fractional-order COVID-19 distributed time-delay models

with real data application. Int. J. Mod. Phys. B 2021, 35, 2150219. [CrossRef]
22. Radha, M.; Radha, S. A study on COVID-19 transmission dynamics: Stability analysis of SEIR model with Hopf bifurcation for

effect of time delay. Adv. Differ. Equ. 2020, 1, 523. [CrossRef] [PubMed]
23. Chang, X.H.; Wang, J.R.; Liu, M.X.; Jin, Z.; Han, D. Study on an SIHRS model of COVID-19 pandemic with impulse and time

delay under media coverage. IEEE Access 2021, 9, 49387–49397. [CrossRef] [PubMed]
24. Zhu, C.C.; Zhu, J. Dynamic analysis of a delayed COVID-19 epidemic with home quarantine in temporal-spatial heterogeneous

via global exponential attractor method. Chaos Solitons Fract. 2021, 143, 110546. [CrossRef] [PubMed]
25. Yang, F.F.; Zhang, Z.Z. A time-delay COVID-19 propagation model considering supply chain transmission and hierarchical

quarantine rate. Adv. Differ. Equ. 2021, 1, 191. [CrossRef]
26. Hossain, M.K.; Hassanzadeganroudsari, M.; Apostolopoulos, V. The emergence of new strains of SARS-CoV-2. What does it

mean for COVID-19 vaccines? Expert Rev. Vaccines 2021, 20, 635–638. [CrossRef]
27. Tartof, S.Y.; Slezak, J.M.; Fischer, H.; Hong, V.; Ackerson, B.K.; Ranasinghe, O.N.; Frankland, T.B.; Ogun, O.A.; Zamparo, J.M.;

Gray, S.; et al. Effectiveness of mRNA BNT162b2 COVID-19 vaccine up to 6 months in a large integrated health system in the
USA: A retrospective cohort study. Lancet 2021, 398, 1407–1416. [CrossRef]

28. Jara, A.; Undurraga, E.A.; Gonzalez, C.; Paredes, F.; Fontecilla, T.; Jara, G.; Pizarro, A.; Acevedo, J.; Leo, K.; Leon, F.; et al.
Effectiveness of an inactivated SARS-CoV-2 vaccine in Chile. N. Engl. J. Med. 2021, 385, 875–884. [CrossRef]

29. Xiao, L.L.; Zhang, Y.; Hu, X.W.; Liu, T.; Liu, Y. Analysis of global prevalence of SARS-CoV-2 varia. Chin. J. Front. Health Quar.
2022, 45, 10–12.

30. Shi, Q.F.; Gao, X.D.; Hu, B.J. Research progress on characteristics, epidemiology and control measure of SARS-CoV-2 delta voc.
Chin. J. Nosocomiol. 2021, 31, 3703–3707.

31. Raman, R.; Patel, K.; Ran, K. COVID-19: Unmasking emerging SARS-CoV-2 variants, vaccines and therapeutic strategies.
Biomolecules 2021, 11, 993. [CrossRef] [PubMed]

32. Darvishi, M.; Rahimi, F.; Talebi, B.A. SARS-CoV-2 lambda (C.37): An emerging variant of concern. Gene. Rep. 2021, 25, 101378.
[CrossRef] [PubMed]

33. Choi, J.Y.; Smith, D.M. SARS-CoV-2 variants of concern. Yonsei Med. J. 2021, 62, 961–968. [CrossRef] [PubMed]
34. Mohapatra, R.K.; Tiwari, R.; Sarangi, A.K.; Sharma, S.K.; Khandia, R. Twin combination of omicron and delta variants triggering a

tsunami wave of ever high surges in COVID-19 cases: A challenging global threat with a special focus on the Indian subcontinent.
J. Med. Virol. 2022, 94, 1761–1765. [CrossRef] [PubMed]

35. Zhao, X.H.; Ning, Y.L.; Chen, M.I.C.; Cook, A.R. Individual and population trajectories of influenza antibody titers over multiple
seasons in a tropical country. Am. J. Epidemiol. 2018, 187, 135–143. [CrossRef] [PubMed]

36. Ibarrondo, F.J.; Fulcher, J.A.; Yang, O.O. Rapid decay of Anti-SARS-CoV-2 antibodies in persons with mild COVID-19. N. Engl. J.
Med. 2020, 383, 1085–1087. [CrossRef] [PubMed]

37. Li, J.; Ao, N.; Yin, J.H. Willingness for COVID-19 vaccination and its influencing factors among outpatient clinic attendees in
Kunming city. China J. Public Health 2021, 37, 411–414.

38. Sarwar, A.; Nazar, N.; Nazar, N.; Qadir, A. Measuring vaccination willingness in response to COVID-19 using a multi-criteria-
decision-making method. Hum. Vaccines 2021, 17, 1–8. [CrossRef]

39. Liu, R.G.; Liu, Y.X.; Nicholas, S.; Leng, A.L.; Maitland, E.; Wang, J. COVID-19 vaccination willingness among Chinese adults
under the free vaccination policy. Vaccines 2021, 9, 292. [CrossRef]

40. Lu, H.f.; Ding, Y.T.; Gong, S.L.; Wang, S.S. Mathematical modeling and dynamic analysis of SIQR model with delay for pandemic
COVID-19. Math. Biosci. Eng. 2021, 18, 3197–3214. [CrossRef]

41. Wang, J.W.; Cui, Z.W; Dong, S. Simulation of COVID-19 propagation and transmission mechanism and intervention effect based
on generalized SEIR model. Sci. Technol. Rev. 2020, 38, 130–138.

64



Citation: Liu, X.; Ding, Y. Stability

and Numerical Simulations of a New

SVIR Model with Two Delays on

COVID-19 Booster Vaccination.

Mathematics 2022, 10, 1772. https://

doi.org/10.3390/math10101772

Academic Editor: Alicia Cordero

Barbero

Received: 20 April 2022

Accepted: 20 May 2022

Published: 23 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Stability and Numerical Simulations of a New SV IR Model
with Two Delays on COVID-19 Booster Vaccination

Xinyu Liu and Yuting Ding *

Department of Mathematics, Northeast Forestry University, Harbin 150040, China; lxy_lucky@nefu.edu.cn
* Correspondence: dingyt@nefu.edu.cn

Abstract: As COVID-19 continues to threaten public health around the world, research on specific
vaccines has been underway. In this paper, we establish an SVIR model on booster vaccination with
two time delays. The time delays represent the time of booster vaccination and the time of booster
vaccine invalidation, respectively. Second, we investigate the impact of delay on the stability of
non-negative equilibria for the model by considering the duration of the vaccine, and the system
undergoes Hopf bifurcation when the duration of the vaccine passes through some critical values.
We obtain the normal form of Hopf bifurcation by applying the multiple time scales method. Then,
we study the model with two delays and show the conditions under which the nontrivial equilibria
are locally asymptotically stable. Finally, through analysis of official data, we select two groups of
parameters to simulate the actual epidemic situation of countries with low vaccination rates and
countries with high vaccination rates. On this basis, we select the third group of parameters to
simulate the ideal situation in which the epidemic can be well controlled. Through comparative
analysis of the numerical simulations, we concluded that the most appropriate time for vaccination is
to vaccinate with the booster shot 6 months after the basic vaccine. The priority for countries with
low vaccination rates is to increase vaccination rates; otherwise, outbreaks will continue. Countries
with high vaccination rates need to develop more effective vaccines while maintaining their coverage
rates. When the vaccine lasts longer and the failure rate is lower, the epidemic can be well controlled
within 20 years.

Keywords: COVID-19 epidemic; booster vaccination; two delays; Hopf bifurcation; numerical
simulations

MSC: 34K18

1. Introduction

1.1. Research Background

At present, the Coronavirus Disease 2019 (COVID-19) epidemic has not been com-
pletely controlled. The virus (SARS-CoV-2) is highly contagious, spreads by a wide range
of routes, and constantly mutates as it spreads, making COVID-19 difficult to control [1].
Since there is no specific treatment for COVID-19, promoting a scale-up of vaccination and
building herd immunity is the most effective measure to control the epidemic.

It has always been a hot topic to study the impact of vaccines on the spread of infectious
diseases by analyzing the dynamic characteristics of the system [2–7]. Among them, De la
Sen et al. [4] and Thater et al. [5] proposed different SEIR models of disease transmission for
vaccination and developed optimal vaccination strategies. Scherer et al. [6] calculated the
threshold vaccination rate to eradicate an infection, and they explored the impact of vaccine-
induced immunity that diminishes over time. Many researchers also considered vaccines
in their models of COVID-19 epidemics. For example, Yang et al. [8] studied vaccination
control in an epidemic model with time delay and applied it to COVID-19. These studies
all have shown that vaccination has a significant effect on the control of diseases.
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However, the level of neutralizing antibodies decreases over time, and the protec-
tive effect of the vaccine diminishes, which also needs to be considered in the model of
COVID-19. For example, the SVIR model developed by Duan et al. [9] takes into account
that vaccines lose their protective properties over time, allowing vaccinated individuals to
become susceptible again. Wald et al. [10] suggest it is necessary to reduce SARS-CoV-2
transmission and infection through enhanced vaccination. This suggests that an additional
vaccination regime, called booster immunization, is needed to restore immunity in previ-
ously vaccinated populations. Salvagno et al. [11] found a significant decrease in antibodies
6 months after basic vaccination, which is consistent with the need for a vaccine booster.
However, few studies have considered the COVID-19 booster vaccine in mathematical
models, so we believe that dynamic analysis of the impact of the COVID-19 booster vaccine
on epidemic control is needed at present.

There is always a considerable difference between the actual behavior of disease and
the response of its mathematical model. In 1979, Cooke proposed the theory of “time delay”
in his study of infectious disease transmission, which made the model more realistic [12].
Since then, many researchers have tried to take time delays into account in their models.
Zhai et al. [13] studied studies a SEIR epidemic model with time delay and vaccination
control. In the infectious disease model for COVID-19, many studies consider a single
time delay. For example, Rong et al. [14] studied the effect of delay in diagnosis on the
transmission of COVID-19.

Much research shows two delays can reflect the actual problem more clearly. For in-
stance, Song et al. [15] studied a new SVEIRS infectious disease model with pulse and
two time delays. In the study of Jiang et al. [16], a SVEIRS epidemic model with two
time delays and a nonlinear incidence rate was developed, and they analyzed the dynamic
behavior of the model under pulse vaccination. An SEIR epidemic model with two time
delays and pulse vaccination was formulated in the study of Gao et al. [17]. However, there
are few infectious disease models studying the novel coronavirus that consider two delays.
Considering the characteristics of COVID-19 and vaccination, we believe that two time
delays can better solve the problems existing in the actual COVID-19 epidemic; that is, we
need to give booster shots at intervals after the basic vaccination and take into account
the fact that the vaccine does not provide permanent immunity and will lose effectiveness
some time after vaccination. Therefore, there are two time delays which cannot be ignored.

The stability of epidemic models and Hopf bifurcation analysis have always been the
focus of this kind of epidemic model. In ref [18], Zhang et al. analyzed the stability and
Hopf bifurcation of an SVEIR epidemic model with vaccination and multiple time delays.
The paper [19] written by Chen et al. mainly addressed stability analysis and estimation
of the domain of attraction for the endemic equilibrium of a class of susceptible–exposed–
infected–quarantine epidemic models. Li et al. [20] studied the stability and bifurcation
analysis of an SIR epidemic model with logistic growth and saturation processing. In the
study of Goel et al. [21], a time-delayed SIR epidemic model with a logistic growth of
susceptibles was proposed and analyzed mathematically. The stability behavior of the
model was analyzed for two equilibria: the disease-free equilibrium and the endemic
equilibrium. Further, they investigated the stability behavior, demonstrating the occurrence
of oscillatory and periodic solutions through Hopf bifurcation concerning every possible
grouping of two time delays as the bifurcation parameter.

1.2. Research Motivation

The research motivation of this paper is as follows. There have been mass vaccine
injections worldwide, but the level of antibodies in the receptor decreases over time, and
the protective effect of the vaccine diminishes, so we also need to strengthen immunity
to enhance the body’s ability to resist SARS-CoV-2. In such cases, increasing the number
of vaccinations is a measure to improve the level of immunity and increase protection.
Therefore, the booster shot we are considering is a dose of vaccine that is administered again
after the completion of the COVID-19 vaccine by antibody resolution in order to maintain
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immunity to COVID-19. Currently, the third dose of inactivated COVID-19 vaccine is the
main booster vaccination in the world. The first and second doses of the COVID-19 vaccine
are commonly referred to as basic vaccines. If the basic vaccine protection effect is still good,
early booster vaccination wastes resources; if the interval between booster vaccination and
basic vaccination is too long, it can cause the failure of herd immunity, and the epidemic
will be out of control.

Thus, we first want to study the most appropriate time to give a booster vaccine.
Therefore, we create a mathematical model that takes into account both basic and booster
vaccination. Second, since the efficacy of the vaccine is unknown, we also consider the
effect of the duration of the booster vaccine on the timing of the booster vaccination. We
aim to develop a vaccine approach that can effectively help control the COVID-19 epidemic
through dynamic analysis of the model that takes these two time delays into account. Third,
different countries have different vaccine coverage rates and levels of concern. Our goal is
to select different parameter groups to simulate the epidemic in different countries and to
give the vaccination time requirements for epidemic control. At the same time, we select a
set of ideal parameters that represent that the epidemic can be well controlled and compare
them to the actual parameters to study what efforts we still need to make at present.

The structure of this paper is as follows. In Section 2, we establish an SVIR booster
vaccination model with two time delays. In Section 3, we analyze the existence and stability
of non-negative equilibria and discuss the existence of Hopf bifurcation. We deduce the
normal form of Hopf bifurcation in Section 4. In Section 5, we give some numerical
simulations and get the conclusion of strengthening inoculation time. Finally, conclusions
and suggestions are given in Section 6.

2. Mathematical Modeling

Different from the traditional infectious disease model, we redefined the cabin so
that our model could better depict the relationship between basic vaccination and booster
vaccination in order to study the role of booster vaccine in epidemic control. We divided
COVID-19 susceptible people into two groups. One group involves people who have
received basic but not booster shots (S), and the other group involves people who have
completed all vaccinations (V); both groups are at risk of contracting COVID-19 through
contact with infected people or other means and becoming infected (I). However, it should
be noted that the infection rate of the susceptible in V is much lower than that of the
susceptible in S. Some of the infected I will die of the disease, while others will recover (R)
after treatment. However, their vaccine will be ineffective to varying degrees according to
their conditions [22]. For people such as the elderly or those with underlying diseases who
have recovered, the antibodies produced by the vaccine are almost completely disabled,
and they need a basic injection to regain active antibodies. This group of people will
become S. Otherwise, people who maintain some antibody activity in their bodies just
need a booster shot to increase their resistance to SARS-CoV-2. They become V.

Taking all these factors into account, we get the concrete conversion between the four
cabins shown in Figure 1.

Figure 1. SVIR Model diagram.

Table 1 shows specific definitions of variables and parameters. In this table, all
parameters and variables are positive.
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Table 1. Description of variables and parameters in the model

Symbol Description

S Number of susceptible persons who have received basic but not booster shots
V Number of susceptible persons who have completed all vaccinations
I Number of patients affected
R Number of recovered persons
Λ Inoculation rate of basic vaccine
α Transition rate from S to I
β Transition rate from V to I
γ1 Transition rate from S to V
γ2 Transition rate from V to S
μ Transition rate from I to R; the cure rate of infected persons
σ1 Transition rate from R to S
σ2 Transition rate from R to V
c National case fatality rate of COVID-19
d Natural death rate of population
τ1 Time-delay for people who received the basic vaccine to receive the booster vaccine
τ2 Time-delay from people getting booster vaccination to their antibodies disappearing

For COVID-19 vaccines, susceptible people develop antibodies after vaccination,
but the vaccine cannot provide long-term protection according to the background in
Section 1.1. We assume that in our model, the basic vaccine’s activity declines over time,
but will become ineffective only if a person gets sick. Since the booster vaccine is only a
supplement to the basic vaccine, the dose is less than the basic vaccine. We assume that over
a long period, the potency of the antibody produced by the booster vaccine will gradually
decline until it disappears. We define the time delay of the booster vaccine’s failure in our
model as τ2. At the same time, as considered in Section 1.2, to keep the epidemic under
control and to maximize the use of resources, those who receive only the basic vaccine
need to receive booster shots after a certain time delay, as indicated by τ1. In general,
the duration of the vaccine’s effective protection must be longer than the interval between
vaccinations, so we specify τ2 > τ1 in our model. Therefore, we construct the following
differential equation:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS(t)
dt

=Λ− γ1S(t − τ1) + γ2V(t − τ2)− αS(t)I(t) + σ1R(t)− dS(t),

dV(t)
dt

=γ1S(t − τ1)− γ2V(t − τ2)− βV(t)I(t) + σ2R(t)− dV(t),

dI(t)
dt

=αS(t)I(t) + βV(t)I(t)− μI(t)− (c + d)I(t),

dR(t)
dt

=μI(t)− σ1R(t)− σ2R(t)− dR(t).

(1)

The meanings of variables and parameters are given in Table 1. Timely booster vacci-
nations prevent inadequate antibody levels in individuals, which could lead to increased
infection rates and the situation of the epidemic being out of control. Therefore, it is partic-
ularly important to choose the right timing for booster vaccination to control the epidemic.

3. Stability Analysis of Equilibria and Existence of Hopf Bifurcation

In this section, System (1) is considered. Obviously, System (1) has three equilibria:

E1 = (S1, V1, 0, 0), E2l =
(
S2l , V2l , I2l , R2l

)
, l = 1, 2 (2)

where S1 = Λ
γ1−ξ+d , V1 = ξΛ

(γ1−ξ+d)γ2
, with ξ = γ1γ2

γ2+d , and R21 =
−Γ1−

√
Γ2

2 −4Γ1Γ3
2Γ1

,

R22 =
−Γ1+

√
Γ2

2 −4Γ1Γ3
2Γ1

, S2l = b − e f − egR2l , V2l = f + gR2l , I2l = aR2l , with a = σ1+σ2+d
μ ,
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b = μ+c+d
α , e = β

α , f = Λ−bd
d−ed , g = μd+(c+d)(σ1+σ2+d)

μ(ed−d) , Γ1 = βag, Γ2 = dg − σ2 + β f a + γ2g +

egγ1, Γ3 = d f + γ2 − γ1(b − e f ).
For equilibria E1, E2l , we consider the following assumption:

Hypothesis 1 (H1). γ1 − ξ + d > 0.

When (H1) holds, the equilibrium E1 exists and is non-negative.

Hypothesis 2 (H2). Γ1 < 0, Γ2 > 0, Γ3 < 0 or Γ1 < 0, Γ2 > 0, Γ3 > 0.

When (H2) holds, the equilibrium E21 exists and is positive.

Hypothesis 3 (H3). Γ1 < 0, Γ2 > 0, Γ3 < 0 or Γ1 < 0, Γ2 < 0, Γ3 > 0 .

When (H3) holds, the equilibrium E22 exists and is positive. We calculate the basic
reproduction number R0, the number of the suspected individuals who are infected by the
same infectious individual, and can estimate the infectiousness of an infectious disease.
According to System (1), we can get the new infections matrix F and the transition matrix V .

F =

⎡⎢⎢⎣
0
0

αS(t)I(t) + βV(t)I(t)
0

⎤⎥⎥⎦,V =

⎡⎢⎢⎣
−Λ + γ1S(t)− γ2V(t)− σ1R(t) + dS(t) + αS(t)I(t)
−γ1S(t) + γ2V(t) + βV(t)I(t)− σ2R(t) + dV(t)

μI(t) + cI(t) + dI(t)
−μI(t) + σ1R(t) + σ2R(t) + dR(t)

⎤⎥⎥⎦.

Then, we make F0 represent the derivative of F at E1 and V0 represent the derivative
of V at E1:

F0 =

⎡⎢⎢⎣
0 0 0 0
0 0 0 0
0 0 αS1 + βV1 0
0 0 0 0

⎤⎥⎥⎦, V0 =

⎡⎢⎢⎣
γ1 + d −γ2 αS1 −σ 1
−γ1 γ2 + d βV1 −σ 2

0 −ε μ+ c + d 0
0 −γ1 −μ σ1 + σ2 + d

⎤⎥⎥⎦.

We can obtain:

F0V−1
0 =

⎡⎢⎢⎢⎣
0 0 0 0
0 0 0 0
0 0 αS1+βV1

μ+c+d 0
0 0 0 0

⎤⎥⎥⎥⎦.

The maximum eigenvalue of F0V−1
0 is the basic regeneration number of System (1):

R0 = ρ(F0V−1
0 ) =

αS1 + βV1

μ+ c + d
.

Transferring the equilibria Ek, (k = 1, 21, 22) to the origin point: S̃ = S − Sk, Ṽ =
V − Vk, Ĩ = I − Ik, R̃ = R − Rk and linearizing System (1) around them. Renewedly
denoting S̃, Ṽ, Ĩ, R̃ as S, V, I, R, we obtain the following model:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS
dt

=− γ1S(t − τ1) + γ2V(t − τ2)− αSI + σ1R − dS − αSk I − αSIk,

dV
dt

=γ1S(t − τ1)− γ2V(t − τ2)− βVI − βVk I − βVIk + σ2R − dV,

dI
dt

=αSI + αSk I + αSIk + βVI + βVk I + βVIk − μI − (c + d)I,

dR
dt

=μI − σ1R − σ2R − dR.

(3)

69



Mathematics 2022, 10, 1772

We can get the characteristic equation of the linearized system (1) as follows:

σ1e−λτ1
(
λ3 + B1λ

2 + C1λ+ D1

)
+ σ2e−λτ2

(
λ3 + B2λ

2 + C2λ+ D2

)
+λ4 + A3λ

3 + B3λ
2 + C3λ+ D3 = 0,

(4)

where

B1 = σ1 + σ2 + 3d + μ+ c + βIk − αSk − βVk,

C1 = (σ1 + σ2 + d)(2d + μ+ c + βIk − αSk − βVk) + (d + μ+ c)βIk + d(d + μ+ c − αSk − βVk),

D1 = (σ1 + σ2 + d)[(d + μ+ c)βIk + d(d + μ+ c − αSk − βVk)− μσ1βIk − μσ2βIk],

B2 = σ1 + σ2 + 3d + μ+ c + αIk − αSk − βVk,

C2 = (σ1 + σ2 + d)(2d + μ+ c + αIk − αSk − βVk) + d(d + μ+ c − αSk − βVk) + (d + μ+ c)αIk,

D2 = (σ1 + σ2 + d)[(d + μ+ c)αIk + d(d + μ+ c − αSk − βVk)− μσ1αIk − μσ2αIk],

A3 = σ1 + σ2 + 4d + μ+ c + αIk + βIk − αSk − βVk,

B3 =(σ1 + σ2 + d)(3d + μ+ c + αIk + βIk − αSk − βVk) + [(d + αIk)(2d + μ+ c + βIk − αSk − βVk)

+(d + βIk)(d + μ+ c − αSk − βVk) + β2 IkVk + α2 IkSk

]
,

C3 =(σ1 + σ2 + d)[(d + αIk)(2d + μ+ c + βIk − αSk − βVk) + (d + βIk)(d + μ+ c − αSk − βVk)

+β2 IkVk + α2 IkSk

]
+ α2 IkSk(d + βIk)− μσ1αIk − μσ2βIk,

D3 = α2 IkSk(d + βIk)(σ1 + σ2 + d)− μσ1

(
αβI2

k + αdIk

)
− μσ2

(
αβI2

k + βdIk

)
, k = 1, 21, 22.

3.1. Analysis for Disease-Free Equilibrium E1
3.1.1. The Case for τ1 = 0, τ2 = 0

Firstly, we consider R0 < 1. The characteristic equation of the linearized system (1)
about E1 is as follows:

(λ+ μa)(λ+ μ+ c + d − βV1 − αS1)
[(

(λ+ d)2 + (λ+ d)σ1e−λτ1 + (λ+ d)σ2e−λτ2
)]

= 0. (5)

When τ1 = 0, τ2 = 0, it turns to

(λ+ σ1 + σ2 + d)(λ+ μ+ c + d − βV1 − αS1)(λ+ d)(λ+ d + σ1 + σ2) = 0. (6)

Obviously, all the roots of Equation (6) have negative real parts due to R0 < 1, σ1 >
0, σ2 > 0, d > 0. We can conclude the disease-free equilibrium E1 is locally asymptotically
stable when τ1 = 0, τ2 = 0.

When R0 > 1, Equation (6) has a positive root. Thus, the disease-free equilibrium E1
is unstable when τ1 = 0, τ2 = 0.

3.1.2. The Case for τ1 = 0, τ2 > 0

When τ2 > 0, for equilibrium E1, we simply need to think about the following equation

(λ+ d)2 + (λ+ d)σ1 + (λ+ d)σ2e−λτ2 = 0. (7)

To discuss the existence of Hopf bifurcation for E1, we assume that λ = iω1 (ω1 > 0)
is a pure imaginary root of Equation (7). Substituting it into Equation (7) and separating
the real and imaginary parts, we obtain:{

γ2ω1 sin(ω1τ2) + dγ2 cos(ω1τ2) = ω2
1 − d2 − dγ1

dγ2 sin(ω1τ2)− γ2ω1 cos(ω1τ2) = ω1(2d + γ1)
(8)
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Equation (8) derives to:⎧⎪⎨⎪⎩
sin(ω1τ2) =

ω3
1−(d2+dγ1)ω1+(2d2γ2+dγ1γ2)ω1

γ2(ω2
1+d2)

,

cos(ω1τ2) =
−(dγ2+γ1γ2)ω

2
1−d3γ2−d2γ1γ2

γ2(ω2
1+d2)

.
(9)

Adding the square of two equations in Equation (8) and letting z = ω2
1, we get

h(z) = z2 + c1z + c0 = 0, (10)

where c1 =
[
(2d + γ1)

2 − γ2
2 − 2

(
d2 + dγ1

)]
, c0 =

(
d2 + dγ1

)2 − d2γ2
2.

Therefore, we show the following assumptions:

Hypothesis 4 (H4). c0 < 0;

Hypothesis 5 (H5). c2
1 − 4c0 > 0, c1 < 0, c0 > 0;

Hypothesis 6 (H6). c2
1 − 4c0 < 0, c0 > 0 or c2

1 − 4c0 > 0, c1 > 0, c0 > 0.

Under (H4), Equation (10) has the unique positive root z1. If (H5) holds, Equation (10)
has two positive roots: z2 and z3(z2 < z3). Under (H6), Equation (10) has no root. Substi-
tuting ω1k =

√
zk(k = 1, 2, 3) into Equation (9), we get the expression of τ2:

τ
(j)
2k =

{
1

ω1k
[arccos(Pk) + 2jπ], Qk ≥ 0,

1
ω1k

[2π − arccos(Pk) + 2jπ], Qk < 0, k = 1, 2, 3 j = 0, 1, 2, · · · ,
(11)

where Qk = sin(ω1kτ
(j)
2k ), Pk = cos(ω1kτ

(j)
2k ).

If R0 < 1, when τ2 = τ
(j)
2k ( k = 1, 2, 3; j = 0, 1, 2, · · · ), then Equation (7) has a pair of

pure imaginary roots ±iω1k, and all the other roots of Equation (7) have nonzero real parts.
Furthermore, let λ(τ) = α(τ) + iω1(τ) be the root of Equation (7) satisfying α(τ

(j)
k ) = 0,

ω(τ
(j)
k ) = ω1k ( k = 1, 2, 3; j = 0, 1, 2, · · · ). Thus, zk = ω2

1k, h′(zk) �= 0, where h′(z) is the
derivative of h(z) with respect to z. Then, we have the following transversality condition:

Re(
dτ
dλ

)

∣∣∣∣τ=τ
(j)
2k

= Re(
dλ
dτ

)−1
∣∣∣∣τ=τ

(j)
2k

=
h′

(
ω2

1k
)

γ2
2
(
ω2

1k + d2
) �= 0, k = 1, 2, 3 j = 0, 1, 2, · · · .

Lemma 1. If R0 < 1 holds, the equilibrium E1 is stable and undergoes Hopf bifurcation at
τ = τ

(j)
2k ( k = 1, 2, 3; j = 0, 1, 2, · · · ), where τ(j)

2k is given by Equation (11). Further, we denote
the stable region of E1 as I.

3.1.3. The Case for τ1 > 0, τ2 > 0

With the above analysis, we choose τ2 = τ2∗ ∈ I as a parameter; the characteristic
equation of system (1) is rewritten as follows:

(λ+ d)2 + (λ+ d)σ1e−λτ1 + (λ+ d)σ2e−λτ2∗ = 0.

Letting λ = iω̃1 (ω̃ > 0) be the root of the above equation, then separating the real
and imaginary parts for the above equation, we get{

ω̃2
1 − d2 − γ2ω̃1 sin(ω̃1τ2∗)− dγ2 cos(ω̃1τ2∗) = γ1ω̃1 sin(ω̃1τ1) + dγ1 cos(ω̃1τ1),

2dω̃1 − dγ2 sin(ω̃1τ2∗) + γ2ω̃1 cos(ω̃1τ2∗) = dγ1 sin(ω̃1τ1)− γ1ω̃1 cos(ω̃1τ1),
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which leads to

F1(ω̃1) =ω̃4
1 +

(
2d2 − γ2

1 + γ2
2

)
ω̃2

1 + d4 − d2γ2
1 + d2γ2

2

− 2
(
ω̃2

1 − d2
)[

γ2 sin
(
ω̃1τ2∗)

)
ω̃1 + dγ2 cos(ω̃1τ2∗)

]
+ 4dω̃1[γ2ω̃1 cos(ω̃1τ2∗)− dγ2 sin(ω̃1τ2∗)].

(12)

Suppose

Hypothesis 7 (H7). d4 − 2γ2d3 − (
γ2

1 − γ2
2
)
d2 < 0. Then, we have F1(0) < 0 and F1(∞) > 0.

Hence, F1(ω̃1) = 0 has definite positive roots ω̃1k, k = 0, 1, 2. For every fixed ω̃1k, there
is a sequence of τ1 defined by:

τ
(j)
1k =

{
1

ω̃1k
[arccos(P1k) + 2jπ], Q1k ≥ 0,

1
ω̃1k

[2π − arccos(P1k) + 2jπ], Q1k < 0, k = 1, 2 j = 0, 1, 2, · · · ,
(13)

where⎧⎪⎨⎪⎩
Q1k

Δ
= sin

(
ω̃1τ

(j)
1k

)
=

ω̃1[ω̃2
1−d2−γ2 sin(ω̃1τ2∗)ω̃1−dγ2 cos(ω̃1τ2∗)]+d[2dω̃1+γ2ω̃1 cos(ω̃1τ2∗)−dγ2 sin(ω̃1τ2∗)]

γ1(ω̃2
1+d2)

,

P1k
Δ
= cos

(
ω̃1τ

(j)
1k

)
=

d[ω̃2
1−d2−γ2 sin(ω̃1τ2∗)ω̃1−dγ2 cos(ω̃1τ2∗)]−ω̃1[2dω̃1+γ2ω̃1 cos(ω̃1τ2∗)−dγ2 sin(ω̃1τ2∗)]

γ1(ω̃2
1+d2)

.

Lemma 2. Let τ1∗ = minτ(j)
1k , i = 0, 1, 2, j = 0, 1, 2, · · · , when τ1 = τ1∗, Equation (12) has a

pair of purely imaginary roots ±iω̃1 for τ2 ∈ I. Assume Re( dτ
dλ )

∣∣∣∣τ=τ
(j)
1k

�= 0. Thus, the equilibrium

E1 is locally asymptotically stable when τ1 ∈ [0, τ1∗) .

Theorem 1. For equilibrium E1, we have the following conclusions.
When (H1) does not hold or R0 > 1 holds, equilibrium E1 is unstable; When (H1) and R0 < 1 hold,

(1) τ1 = 0, τ2 = 0

Equilibrium E1 is locally asymptotically stable;

(2) τ1 = 0, τ2 > 0

(a) If (H4) holds, h(z) has only one positive root z1, when τ1 ∈ [0, τ(0)21 ), the equilibrium
E1 is locally asymptotically stable;

(b) If (H5) holds, h(z) has two positive roots z2 and z3, then we suppose z2 < z3, and we

get h′(z2) < 0, h′(z3) > 0. Then ∃m ∈ N, which can make 0 < τ
(0)
23 < τ

(0)
22 <

τ
(1)
23 < τ

(1)
22 < · · · < τ

(m)
23 < τ

(m+1)
23 . When τ ∈ (0, τ(0)23 ) ∪ m⋃

l=1
(τ

(l−1)
22 , τ(l)23 ),

the equilibrium E1 of the model is locally asymptotically stable. When

τ ∈ m−1⋃
l=0

(τ
(l)
23 , τ(l)22 ) ∪ (τ

(m)
23 ,+∞), the equilibrium E1 is locally asymptotically unstable.

(3) τ1 > 0, τ2 > 0

Under (H7), the equilibrium E1 of system (1) is locally asymptotically stable when τ1 ∈ [0, τ1∗) for
the chosen τ2∗ based on Lemma 2.
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3.2. Analysis for Endemic Equilibrium E2l

3.2.1. The Case for τ1 = 0, τ2 = 0

When R0 > 1 and (H2) or (H3) holds, the equilibrium E1 is unstable and the other
equilibrium E2l for System (2) exists and is positive. For the equilibrium E2l , Equation (4) is
transformed into the following form when τ1 = τ2 = 0:

λ4 + a1λ
3 + a2λ

2 + a3λ+ a4 = 0, (14)

where
a1 = A3 + γ1 + γ2, a2 = B3 + B1γ1 + B2γ2,

a3 = C3 + C1γ1 + C2γ2, a4 = D3 + D1γ1 + D2γ 2.

According to the Routh–Hurwitz criterion, we show the following hypothesis:

Hypothesis 8 (H8). a1a2 − a3 > 0, a3(a1a2 − a3) > a2
1a4, a4 > 0.

If (H8) is satisfied, all eigenvalues of Equation (14) have negative real parts, the equi-
librium E2l of model (1) is locally asymptotically stable when τ1 = τ2 = 0.

Lemma 3. For equilibrium E2l , if R0 > 1 and (H8) holds, equilibrium E2l is locally asymptotically
stable. Further, when R0 < 1 or (H8) does not hold, equilibrium E2l is unstable when τ1 = τ2 = 0.

3.2.2. The Case for τ1 = 0, τ2 > 0

Similarly to the analysis of E1, for the equilibrium E2l , the characteristic equation
Equation (4) becomes the following form when τ1 = 0 and τ2 > 0:

λ4 + q1λ
3 + q2λ

2 + q3λ+ q4 + γ2e−λτ2
(
λ3 + B2λ

2 + C2λ+ D2

)
= 0, (15)

where
q1 = A3 + γ1, q2 = B3 + B1γ1, q3 = C3 + C1γ1, q4 = D3 + D1γ 1.

Assuming that λ = iω2(ω2 > 0) is a pure imaginary root of Equation (15), substituting
it into Equation (15) and separating the real and imaginary parts, we have:⎧⎪⎨⎪⎩

ω2
4 − q2ω2

2 + q4 = γ2

(
B2ω2

2 − D2

)
cos(ω2τ2) + γ2

(
ω2

3 − C2ω2

)
sin(ω2τ2),

−q1ω2
3 + q3ω2 = γ2

(
−B2ω2

2 + D2

)
sin(ω2τ2) + γ2

(
ω2

3 − C2ω2

)
cos(ω2τ2).

(16)

Thus,⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
sin(ω2τ2) =

(−q1ω2
3 + q3ω2

)(−B2ω2
2 + D2

) − (
ω2

4 − q2ω2
2 + q4

)(−ω2
3 + C2ω2

)
γ2(−B2ω22 + D2)

2 + γ2(−ω23 + C2ω2)
2 ,

cos(ω2τ2) = −
(
ω2

4 − q2ω2
2 + q4

)(−B2ω2
2 + D2

)
+

(−q1ω2
3 + q3ω2

)(−ω2
3 + C2ω2

)
γ2(−B2ω22 + D2)

2 + γ2(−ω23 + C2ω2)
2 .

(17)

Add the square of the two equations in Equation (17) and let z = ω2
2. So we get:

h(z) = z4 + c1z3 + c2z2 + c3z + c4 = 0, (18)
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where
c1 = −2q2 + q2

1 − γ2
2,

c2 = q2
2 + 2q4 − 2q1q3 − γ2

2

(
B2

2 − 2C2

)
,

c3 = −2q2q4 + q2
3 − γ2

2

(
−2B2D2 + C2

2

)
,

c4 = q2
4 − γ2

2D2
2.

We hypothesize that Equation (18) has l(l = 1, 2, 3, 4.) positive roots and mark as
z1 > z2 > z3 > z4. Substituting ω2l =

√
zl into Equation (17), we get the expression of τ:

τ
(j)
22,l =

{
1
ω2l

[arccos(P22,l) + 2jπ], Q22,l ≥ 0,
1
ω2l

[2π − arccos(P22,l) + 2jπ], Q22,l < 0,
(19)

where Q22,l = sin(ω2lτ
(j)
22,l), P22,l = cos(ω2lτ

(j)
22,l).

Thus, we have the transversality condition:

Re
(

dλ
dτ

)−1
∣∣∣∣∣
τ=τ

(j)
22,l

= Re
(

dτ
dλ

)∣∣∣∣
τ=τ

(j)
22,l

=
h′

(
ω2

2l
)

γ2
2

[(
B2ω

2
2l − D2

)2
+

(
ω3

2l − C2ω2l
)2

] �= 0(j = 0, 1...).

Under this condition, we get the minimum critical deley τ = τ22,l , and we suppose
equilibrium E2l is stable in region I’ when τ1 = 0 and τ2 > 0.

3.2.3. The Case for τ1 > 0, τ2 > 0

For equilibrium E2l , similar to the analysis of E1, we choose τ2 = τ22∗ ∈ I’ as a
parameter and let λ = iω̃2(ω̃2 > 0) be a pure imaginary root of characteristic equation
Equation (4) and substitute it into this equation. Then, separating the real part and the
imaginary part, we have:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ω̃4
2 − B3ω̃

2
2 + D3 + γ2 cos(ω̃2τ22∗)

(
−B2ω̃

2
2 + D2

)
+ γ2 sin(ω̃2τ22∗)

(
−ω̃3

2 + C2ω̃2

)
= −γ1

(
−B1ω̃

2
2 + D1

)
cos(ω̃2τ1)− γ1

(
−ω̃3

2 + C1ω̃2

)
sin(ω̃2τ1),

− A3ω̃
3
2 + C3ω̃2 + γ2 cos(ω̃2τ22∗)

(
−ω̃3

2 + C2ω̃2

)
− γ2 sin(ω̃2τ22∗)

(
−B2ω̃

2
2 + D2

)
= γ1

(
−B1ω̃

2
2 + D1

)
sin(ω̃2τ1)− γ1

(
−ω̃3

2 + C1ω̃2

)
cos(ω̃2τ1).

(20)

Then, we can obtain:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sin(ω̃2τ1) =[
ω̃4

2 − B3ω̃
2
2 + D3 − γ2 cos(ω̃2τ22∗)

(
B2ω̃

2
2 − D2

) − γ2 sin(ω̃2τ22∗)
(
ω̃3

2 − C2ω̃2
)](

ω̃3
2 − C1ω̃2

)
γ1

[(−B1ω̃
2
2 + D1

)2
+

(−ω̃3
2 + C1ω̃2

)2
]

−
[−A3ω̃

3
2 + C3ω̃2 − γ2 cos(ω̃2τ22∗)

(
ω̃3

2 − C2ω̃2
)
+ γ2 sin(ω̃2τ22∗)

(
B2ω̃

2
2 − D2

)](
B1ω̃

2
2 − D1

)
γ1[

(−B1ω̃
2
2 + D1

)2
+

(−ω̃3
2 + C1ω̃2

)2 .

cos(ωτ1) =[
ω̃4

2 − B3ω̃
2
2 + D3 − γ2 cos(ω̃2τ22∗)

(
B2ω̃

2
2 − D2

) − γ2 sin(ω̃2τ22∗)
(
ω̃3

2 − C2ω̃2
)](

B1ω̃
2
2 − D1

)
γ1

[(−B1ω̃
2
2 + D1

)2
+

(−ω̃3
2 + C1ω̃2

)2
]

+

[−A3ω̃
3
2 + C3ω̃2 − γ2 cos(ω̃2τ22∗)

(
ω̃3

2 − C2ω̃2
)
+ γ2 sin(ω̃2τ22∗)

(
B2ω̃

2
2 − D2

)](
ω̃3

2 − C1ω̃2
)

γ1

[(−B1ω̃
2
2 + D1

)2
+

(−ω̃3
2 + C1ω̃2

)2
] .

(21)

Adding the square of two equations in (20), we have:
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F2(ω̃2) =
(
ω̃4

2 − B3ω̃
2
2 + D3

)2
+

(
−A3ω̃

3
2 + C3ω̃2

)2
+ γ2

2

(
−B2ω̃

2
2 + D2

)2
+ γ2

2

(
−ω̃3

2 + C2ω̃2

)2

+ 2γ2 cos(ω̃2τ22∗)
[(

D2 − B2ω̃
2
2

)(
ω̃4

2 − B3ω̃
2
2 + D3

)
+

(
C2ω̃2 − ω̃3

2

)(
C3ω̃2 − A3ω̃

3
2

)]
+ 2γ2 sin(ω̃2τ22∗)

[(
C2ω̃2 − ω̃3

2

)(
ω̃4

2 − B3ω̃
2
2 + D3

)
−

(
D2 − B2ω̃

2
2

)(
C3ω̃2 − A3ω̃

3
2

)]
− γ1

2
(
−B1ω̃

2
2 + D1

)2 − γ1
2
(
−ω̃3

2 + C1ω̃2

)2
= 0.

(22)

Then, we give the following assumption:

Hypothesis 9 (H9). D2
3 + γ2

2D2
2 + 2γ2D2D3 − γ1

2D2
1 < 0

Under (H9), we can deduce F2(0) < 0 and F2(∞) > 0. Thus, F2(ω̃2) = 0 must have a
positive root. We assume there are l positive roots of F2(ω̃2) = 0 and denote as ω̃2l .

τ
(j)
12,l =

{
1
ω̃2l

[arccos(P12,l) + 2jπ], Q12,l ≥ 0,
1
ω̃2l

[2π − arccos(P12,l) + 2jπ], Q12,l < 0,
(23)

where

Q12,l =

[
ω̃4

2 − B3ω
2
0 + D3 + γ2 cos

(
ω̃2τ

∗
1
)(

D2 − B2ω̃
2
2
)
+ γ2 sin

(
ω̃2τ

∗
1
)(

C2ω̃2 − ω̃3
2
)](

ω̃3
2 − C1ω̃2

)
γ1

[(−B1ω̃
2
2 + D1

)2
+

(−ω̃3
2 + C1ω̃2

)2
]

+

[
C3ω̃2 − A3ω̃

3
2 + γ2 cos

(
ω̃2τ

∗
1
)(

C2ω̃2 − ω̃3
2
) − γ2 sin

(
ω̃2τ

∗
1
)(

D2 − B2ω̃
2
2
)](

D1 − B1ω̃
2
2
)

γ1[
(−B1ω̃

2
2 + D1

)2
+

(−ω̃3
2 + C1ω̃2

)2 ,

P12,l =

[
ω̃4

2 − B3ω̃
2
2 + D3 + γ2 cos

(
ω̃2τ

∗
1
)(

D2 − B2ω̃
2
2
)
+ γ2 sin

(
ω̃2τ

∗
1
)(

C2ω̃2 − ω̃3
2
)](

B1ω̃
2
2 − D1

)
γ1

[(−B1ω
2
0 + D1

)2
+

(−ω̃3
2 + C1ω̃2

)2
]

+

[
C3ω̃2 − A3ω̃

3
2 + γ2 cos

(
ω̃2τ

∗
1
)(

C2ω̃2 − ω̃3
2
) − γ2 sin

(
ω̃2τ

∗
1
)(

D2 − B2ω̃
2
2
)](

ω̃3
2 − C1ω̃2

)
γ1

[(−B1ω̃
2
2 + D1

)2
+

(−ω̃3
2 + C1ω̃2

)2
] .

Let τ12∗ = minτ(j)
12,l , j = 0, 1, 2, . . . ; when τ1 = τ12∗, Equation (22) has a pair of purely

imaginary roots ±iω12∗. Assume

Hypothesis 10 (H10). Re
(

dλ
dτ1

)−1
∣∣∣∣
τ1=τ12∗

�= 0

Under (H10), the equilibrium E2l is locally asymptotically stable when τ1 ∈ [0, τ12∗)
and τ2 = τ22∗.

Theorem 2. For equilibrium E2l , we have the following conclusions.
If (H2) or (H3) holds, the equilibrium E21 or E22 of the model is positive. Under this condition, we
consider the following case.

(1) τ1 = 0, τ2 = 0

Based on Lemma 3, if R0 > 1 and (H8) holds, equilibrium E2l is locally asymptotically stable.
If R0 < 1 or (H8) does not hold, equilibrium E2l is unstable.

(2) τ1 = 0, τ2 > 0

(a) If h(z) of Equation (18) has no positive root, the equilibrium E2l is locally asymptoti-
cally stable when τ2 > 0;
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(b) If h(z) only has one positive root z1, in System (1) Hopf bifurcation occurs at E2l

when τ2 = τ
(j)
22,1 and h′(z1) > 0. We get ∀0 < τ2 < τ

(0)
22,1, the equilibrium E2l is

asymptotically stable, and when ∀ τ2 > τ
(0)
22,1, the equilibrium E2l is unstable;

(c) If h(z) has two positive roots z1, z2, in System (1) Hopf bifurcation occurs at E2l

when τ2 = τ
(j)
22,1 and τ2 = τ

(j)
22,2. We assume z2 < z1, we get h′(z1) > 0, h′(z2) < 0.

Thus, assuming τ
(0)
22,1 < τ

(0)
22,2, there exists k, which makes: 0 < τ

(0)
22,1 < τ

(0)
22,2 <

τ
(1)
22,1 < τ

(1)
22,2 < · · · < τ

(k)
22,1 < τ

(k+1)
22,1 . When τ2 ∈

[
0, τ(0)22,1

)
∪ ⋃k

i=1 (τ
(i−1)
22,2 , τ(i)22,1),

the equilibrium is locally asymptotically stable. When τ1 ∈ ⋃k−1
i=0 (τ

(i)
22,1, τ(i)22,2) ∪

(τ
(k)
22,1,+∞), the equilibrium is unstable;

(d) If h(z) has three positive roots z1, z2, z3, in System (1) Hopf bifurcation occurs at

E2l when τ2 = τ
(j)
22,l , (l = 1, 2, 3). We assume z3 < z2 < z1, so we have h′(z1) >

0, h′(z2) < 0, h′(z3) > 0. Similar to the analysis of (c), the equilibrium E2l switches
between stability and instability with the increase of τ1. Finally, the equilibrium
is unstable.

(e) If h(z) has four positive roots z1, z2, z3 and z4, in System (1) Hopf bifurcation occurs

at E2l when τ2 = τ
(j)
22,l , (l = 1, 2, 3, 4). Assuming that z4 < z3 < z2 < z1, we can

obtain h′(z1) > 0, h′(z2) < 0, h′(z3) > 0, h′(z4) < 0. Similar to the analysis of (c),
the equilibrium E2l switches between stability and instability with the increase of τ2.
Finally, the equilibrium is unstable.

(3) τ1 > 0, τ2 > 0

Under (H9) and (H10), the equilibrium E2l of system (1) is locally asymptotically stable when
τ1 ∈ [0, τ12∗) for the chosen τ22∗ under the stable conditions of (1) and (2).

4. Normal Form of Hopf Bifurcation

In this section, we derive the normal form of Hopf bifurcation for System (1) by using
the multiple time scales method. We consider the delay for people having COVID-19
booster vaccination and the delay of vaccine failure. In order to find the most appropriate
and effective booster vaccination time, we consider the time-delay τ1 as a bifurcation
parameter. Let τ1=τc + ετε, where τc is the critical value of Hopf bifurcation given in
Equation (13) or Equation (23), τε is the disturbance parameter, and ε is the dimensionless
scale parameter. Assuming that when τ1=τc, the characteristic equation Equation (4) has a
pair of pure imaginary roots λ = ±iωk at which System (1) undergoes Hopf bifurcation at
equilibrium Ek = (Sk, Vk, Ik, Rk), k = 1, 21, 22. The details of the calculation of the normal
form are in the Appendix A, and the normal form is as follows:

Ġ = MkτεG1 + HkG2
1Ḡ1, (24)

where Mk, Hk are given in Equation (A9) and Equation (A14).
Let G = γeiθ and substitute it into Equation (A15), we can obtain the normal form of

Hopf bifurcation in polar coordinates:{
ṙ = Re(Mk)τεr + Re(Hk)r3,
θ̇ = Im(Mk)τε + Im(Hk)r2.

(25)

Then, we have the theorem as follows.

Theorem 3. If Re(Mk)τε
Re(Hk)τc

< 0 holds (k = 1, 21, 22), System (1) has nontrivial fixed point r∗ =√
−Re(Mk)τε

Re(Hk)τc
, so System (1) has a periodic solution around the equilibrium Ek:

(1) If Re(Mk)τε < 0, the periodic solution of System (1) is unstable.
(2) If Re(Mk)τε > 0, the periodic solution of System (1) is stable.
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5. Numerical Simulations

In this section, we carry out numerical simulations to verify our theoretical analysis.
In order to simulate the optimal time of booster vaccination both in countries with low
vaccination rates and high vaccination rates, we choose two groups of actual parameters
under different vaccination rates according to official data. We also study the impact
of vaccine effectiveness on the epidemic by adding a third set of parameters. Then, we
calculate the equilibria and critical values of time delay through MATLAB. After that, we
simulate the change of the epidemic with different booster vaccination times. According to
the results, we give the conclusion on the most suitable booster vaccination time and give
some reasonable suggestions for epidemic control.

5.1. Determination for Parameter Values

In this section, we use statistical methods to analyze the values of parameters according
to the actual data obtained from several official websites. Then, we select three groups of
parameters with the highest research significance.

(1) COVID-19 mortality rate: c

Based on data from the official website of The World Health Organization (https:
//www.who.int/, accessed on 14 March 2022), we can obtain the COVID-19 mortality rates
of different countries. In order to ensure that the data can reflect the average, we take
representative data and eliminate outliers. Finally, we screen the death rates due to disease
for 29 countries. According to the data, we make a bar chart, which is presented in Figure 2.

Figure 2. COVID-19 mortality rates of 29 countries.

From Figure 2, it is easy to find that the COVID-19 mortality rates of these countries
are mostly in the range of 0.0008 to 0.001, so we choose the mean value of 0.0009 as the
value of c.

(2) Cure rate: μ

We obtained the cure rates of COVID-19 in different countries from the website of
the WHO. By eliminating the missing values and outliers, we obtain the cure rates of 62
countries (such as the USA, Japan, Germany, Austria, Italy, Canada, South Africa, France
and so on) and plot the scatter diagram in Figure 3.

As for cure rates μ, we can clearly see that it is almost at the same level through the
dotted line in Figure 3, so we figure out the average rate of 62 countries: 0.861 as the value
of μ.

(3) Infection rate: α, β

Infection rates can vary from country to country because of the spread of the disease
and the level of government concern. In addition, while antibodies are produced in
vaccinated people, an immune barrier is not yet fully formed. So they also have some rate
of transmission, but obviously, the people who get the booster vaccine have a lower rate of
infection than the people who just get the basic vaccine. We consult the relevant data from
the Centers for Disease Control and Prevention (https://www.cdc.gov/coronavirus/2019
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-ncov/index.html, accessed on 14 March 2022) and determine the values or range of α and
β in light of the actual situation. Then, we choose α = 0.007 and β = 0.0002.

(4) Re-vaccination rate: σ1, σ2

Figure 3. Cure rates of COVID-19 of 62 countries.

As we mentioned in the modeling, the level of antibody production after vaccination
depends on the individual [22]. For people such as the elderly or those with underlying
diseases who have recovered, the antibodies produced by the vaccine are almost completely
disabled, and they need a basic injection to regain active antibodies at a conversion rate of
σ1 from R to S. In addition, some people still have some antibody activity in their bodies,
and they only need to inject enhancers to increase their resistance to SARS-CoV-2 at a
conversion rate of σ2 from R to V. We think the difference is related to the age structure of
the infected person (see Figure 4).

Figure 4. Age structure of recovered people.

We find that recovered people between 20 and 50 years old account for 61% of the
total, and we assume that this group has better physical fitness than other age groups. So
we consider σ2

σ1
= 1.6, and choose σ1 = 0.2, σ = 0.32.

(5) Natural mortality rate: d

In order to find the value of natural mortality rate d, we select population data from the
National Bureau of Statistics (http://www.stats.gov.cn/enGliSH/, accessed on 14 March
2022) from 2006 to 2019, and we forecast a natural mortality rate d = 0.00707 in 2022 based
on trends (see Figure 5).
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Figure 5. Natural mortality rate.

(6) Basic vaccination rate: Λ

Due to limited vaccine resources in some countries or insufficient attention to the
epidemic, vaccination rates vary significantly among countries. We classify countries in
terms of high and low vaccination rates and discuss the impact of booster vaccination on
epidemic control in both groups.

As we can see in Figures 6 and 7, we classify the data provided by the WHO and
select reasonable data to draw scatter plots. For countries with low vaccination rates, we
find vaccination rates are around 0.8, so we select Λ = 0.8 for the first set of parameters.
For countries with high vaccination rates, in which people recognize the effectiveness of
vaccines for epidemic control, vaccination rates reach 10, so we select Λ = 10.

Figure 6. The basic vaccination rates of 24 countries with low vaccination rates.

Figure 7. The basic vaccination rates of 23 countries with high vaccination rates.

(7) Booster vaccination rate: γ1

For booster vaccination, although the vaccination process is still going on and the rate
of booster vaccination is still a variable, we can still analyze it based on the available data
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from the WHO because the level of national interest in vaccines does not change very much
(see Figures 8 and 9).

Figure 8. The booster vaccination rates of 24 countries with low vaccination rates.

Figure 9. The booster vaccination rates of 29 countries with high vaccination rates.

It is clear that the low booster vaccination rate is between 0.4 and 0.5, so we choose γ1 =
0.45 as the booster vaccination rate for countries with low vaccination rates. In Figure 9,
an average of 0.864 is selected as the booster vaccination rate for countries with high
vaccination rates.

(8) The failure rate of booster vaccination: γ2

As for γ2, since the booster vaccine has just been developed, there is no exact failure
rate and expiry time. Therefore, we refer to other vaccine-related data from the official
website and select γ2 = 0.25 as the failure rate of vaccines in countries with high vaccination
rates and γ2 = 0.5 as the failure rate of vaccines in countries with low vaccination rates,
according to some experts’ prediction of the effectiveness of COVID-19 booster vaccines.
To study the impact of a lower vaccine failure rate on epidemic control, we select γ2 = 0.15
in the third group of parameters. This is consistent with the fact that the higher the failure
rate, the less willing people are to be vaccinated.

Based on the above consideration, we take the following two groups of parameters
(our parameters are all dimensionless):
(I): Λ = 0.8, d = 0.00707, μ = 0.861, c = 0.0009, α = 0.007, β = 0.0002,γ1 = 0.45,γ2 = 0.5,
σ1 = 0.2, σ2 = 0.32;
(II): Λ = 10, d = 0.00707, μ = 0.861, c = 0.0009, α = 0.007, β = 0.0002,γ1 = 0.864,γ2 =
0.25, σ1 = 0.2, σ2 = 0.32;
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(III): Λ = 10, d = 0.00707, μ = 0.861, c = 0.0009, α = 0.007, β = 0.0002,γ1 = 0.864,γ2 =
0.15, σ1 = 0.246, σ2 = 0.22.

Parameter (I) simulates countries with low vaccination rates and low vaccine effective-
ness, probably due to limited national resources and low level of development; Parameter
(II) simulates countries with high vaccination rates and average vaccine effectiveness, which
is consistent with the current reality of most countries; In order to study methods that can
better control the epidemic, we select a third group of parameters (III), which reduced the
failure rate compared with the second group of parameters.

5.2. Simulations and Verification

For the group of parameters (I):
Λ = 0.8, d = 0.00707, μ = 0.861, c = 0.0009, α = 0.007,
β = 0.0002,γ1 = 0.45,γ2 = 0.5, σ1 = 0.2, σ2 = 0.32.

This represents countries with low vaccination rates. We calculate the disease-free equi-
librium E1 = [59.95, 53.20, 0, 0]. Under this group of parameters, R0 < 1, so equilibria E2l
do not exist, and E1 = [59.95, 53.20, 0, 0] is locally asymptotically stable when τ1 = τ2 = 0
according to Theorem 1 and Theorem 2. When τ1 > 0, τ2 = 0, h(z) only has one positive
root, and ω11 = 0.0724, sin(ω11τ

(0)
21 ) = 0.1448, cos(ω11τ

(0)
21 ) = −0.9141, τ(0)21 = 37.62. We

choose τ2 = τ2∗ = 24 and substitute it into Equations (12) and (13); we get ω̃11 = 0.3814,
sin(ω̃11τ

(0)
11 ) = 0.5218, cos(ω̃11τ

(0)
11 ) = 0.8530, τ(0)11 = 1.44. If (H5) holds, the equilibrium E1

is locally asymptotically stable when τ1 ∈ [0, τ1∗) .
When τ2∗ = 24 ∈ (0, τ(0)21 ) = (0, 37.62), τ1∗ = 1 ∈ (0, τ(0)11 ) = (0, 1.44), the equilibrium

E1 is locally asymptotically stable according to Theorem 1; τ2∗ = 24 means the vaccine
will fail 24 months after injection and τ1∗ = 1 means that people begin to inject booster
vaccinations after 1 month to cope with the decrease of vaccine effectiveness. We choose
initial values [50, 50, 10, 10] and picture the number of people in different cabins changing
over time in Figure 10.
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Figure 10. When τ2∗ = 24, τ1∗ = 1, equilibrium E1 of System (1) is locally asymptotically stable.

The figure above shows that when the vaccine is available for two years, people who
get a booster vaccine within a month of getting the basic vaccine can get rid of all infections
within 20 months. In other words, herd immunity is achieved before the vaccine wears off.
S and V will stabilize after 400 months, and the epidemic will completely disappear.

Remark 1: Our simulations show that for low-coverage countries, when the vaccine is valid for two
years, people need to receive the booster vaccine promptly within one and a half months of receiving
the basic vaccine. After 1.5 months, an outbreak will occur. Further, the faster people are vaccinated,
the more effectively the epidemic is contained. However, it became clear that getting a booster vaccine
after a month would not meet the requirements of the vaccine for the human body. Most of these
countries are currently experiencing outbreaks. This is consistent with our simulation results.

For the group of parameters (II):
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Λ = 10, d = 0.00707, μ = 0.861, c = 0.0009, α = 0.007,
β = 0.0002,γ1 = 0.864,γ2 = 0.25, σ1 = 0.2, σ2 = 0.32.

This represents the situation for countries with high vaccination rates and average vaccine
effectiveness. We find R0 > 1, so equilibrium E21 make sense and is [104.47, 688.37, 255.14,
367.79]. Equilibrium E1 is unstable. Substituting this group of parameters into Equation (14),
(H6) is satisfied, so equilibrium E21 is locally asymptotically stable when τ1 = τ2 = 0
according to Theorem 2. When τ1 = 0, τ2 > 0, h(z) only has one positive root, and ω21 =

0.0805, τ(0)22,1 = 28.50. Selecting τ2∗ = 25, we obtain ω̃21 = 0.2157, sin(ω̃21τ
(0)
12,1) = 0.8118,

cos(ω̃21τ
(0)
12,1) = −0.5840, τ(0)12,1 = 10.17. Substituting the parameters (II) into Equations (A9)

and (A14), we have Re(Mk) > 0, Re(Hk) < 0. According to Theorem 3, we can deduce
τε > 0, Re(Mk)τε > 0; the periodic solution is stable. This means that the epidemic will
fluctuate greatly over time, and people’s means of controlling the epidemic have no obvious
effect on controlling the epidemic. However, there will not be a sudden increase in the
number of infected people at a certain moment, and the epidemic situation will not be
uncontrollable.

Considering the vaccine developed at present is not an instantaneous failure, and
vaccines cannot be administered in a short time, τ1 = τ2 = 0 is impossible.

According to existing medical research, we believe that the validity period of the
vaccine is 23–32 months, so we choose τ2∗ = 25 as the validity period of a booster vaccine.
Our purpose is to study the impact of different booster vaccine inoculation times on the
epidemic situation. Through our simulation under this set of parameters, we find two
important time nodes—6 months and 10 months—to get booster vaccination after basic
vaccination. Vaccination after 10 months will lead to an outbreak, which is consistent with
our theoretical analysis. Vaccination within six months makes a difference in the epidemic
compared to the situation in which people get vaccinated after 6 months.

When τ2∗ = 25, τ1∗ = 7 that means the vaccine will expire after 25 months and booster
vaccination will be carried out after 7 months. We still choose [100, 500, 200, 300] as the
initial values; the epidemic situation is shown in Figure 11.
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Figure 11. τ2∗ = 25, τ1∗ = 7, equilibrium E21 of System (1) is locally asymptotically stable.

While the vaccine is still valid for 25 months, people getting booster shots within 7
months will have an overall increase in infections for 500 months, meaning that the number
of infections will be high for a long time. This situation can only keep the epidemic under
control but does not reduce the number of infected people.

When τ2∗ = 25 ∈ (0, τ(0)22,1) = (0, 28.5), τ1∗ = 6 ∈ (0, τ(0)12,1) = (0, 10.17) that means the
vaccine expire after 25 months, and we inject the booster vaccine after 6 months; we choose
[100, 500, 200, 300] as the initial values (see Figure 12).
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Figure 12. τ2∗ = 25, τ1∗ = 6, equilibrium E21 of System (1) is locally asymptotically stable.

We can see that the epidemic has fluctuated over 500 months. This is consistent
with our reality. Currently, we are required to get a booster shot six months after the
basic vaccine. Even then, the epidemic does not disappear completely. There are periodic
fastigiums in the number of infections. However, by vaccinating we can prevent the number
of infections from increasing or staying high and stabilize the epidemic over many years.
That is, the booster vaccination has a positive effect on the development of the epidemic,
and the trend will be better with the booster vaccination in time.

Remark 2: This means that under this set of parameters, people will inevitably live with the virus
for a long time, and a booster vaccination at the right time will only have a temporary effect on
reducing the number of infections.

For the group of parameters (III):
Λ = 10, d = 0.00707, μ = 0.861, =̧0.0009, α = 0.007,
β = 0.0002,γ1 = 0.864,γ2 = 0.15, σ1 = 0.246, σ2 = 0.22.

This set of parameters represents the ideal situation in which the outbreak can be well con-
tained. We find R0 > 1, so equilibrium E21 makes sense and is [100.92, 812.57, 169.97, 309.34].
Equilibrium E1 is unstable. Substituting this group of parameters into Equation (14), (H6) is
satisfied, so equilibrium E21 is locally asymptotically stable when τ1 = τ2 = 0 according to
Theorem 2. When τ1 = 0, τ2 > 0, h(z) only has one positive root, and ω21 = 0.0576,
τ
(0)
22,1 = 38.78. Selecting τ2∗ = 32, we obtain ω̃21 = 0.1152, sin(ω̃21τ

(0)
12,1) = 0.7078,

cos(ω̃21τ
(0)
12,1) = −0.7064, τ(0)12,1 = 20.44. Substituting the parameters (II) into Equations (A9)

and (A14), we have Re(Mk) > 0, Re(Hk) < 0. According to Theorem 3, we can deduce
τε > 0, Re(Mk)τε > 0, which means under this set of parameters, if the equilibrium E21 is
unstable, a stable Hopf bifurcation periodic solution will appear. This means that although
there will not be a large number of people infected with the novel coronavirus and the
number of cases will surge, people’s methods are still ineffective, and people need to find
better ways to control the epidemic.

When τ2∗ = 32 ∈ (0, τ(0)22,1) = (0, 38.78), τ1∗ = 6 ∈ (0, τ(0)12,1) = (0, 20.44) that means the
vaccine expires after 32 months and people inject the booster vaccine after 6 months, we
choose [100, 1000, 200, 300] as the initial values (see Figure 13).
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Figure 13. τ2∗ = 32, τ1∗ = 6, equilibrium E21 of System (1) is locally asymptotically stable.

Figure 13 shows a declining trend in the number of infections under the third set of
parameters, which stabilizes and approaches almost zero after two decades. This suggests
that when the validity of the vaccine is increased to 32 months and the vaccine failure rate
is reduced to 0.15, people who receive the booster vaccine 6 months after the basic vaccine
can control the outbreak more effectively without long-term coexistence with the virus. In
other words, if the vaccine is effective enough, we can expect to be free of COVID-19 by
2042 or earlier. However, this is a relatively ideal situation because many factors in reality
can cause the values of parameters in the model to change at any time, and our simulation
is based on only a set of constant parameters.

To make the simulation results closer to reality, we can change the value of parameters
in real-time according to the actual situation of the epidemic development and use our
model to predict the development of the epidemic under different factors such as infection
rate, cure rate and vaccine effectiveness. We can provide ideas for the country to control
the epidemic by analyzing the simulation results.

When τ2∗ = 32, τ1∗ = 14.5 that means the vaccine expires after 32 months, but people
inject the booster vaccine after 14.5 months; we choose [100, 1000, 200, 300] as the initial
values (see Figure 14).
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Figure 14. τ2∗ = 32, τ1∗ = 14.5, equilibrium E21 of System (1) is locally asymptotically stable.

Remark 3: Comparing Figure 13 with Figure 14, it can be found that when the booster vaccination
time is 14.5 months, although the system fluctuation trend becomes smaller and the number of
infected people also decreases, it takes longer for the system to stabilize than when the booster
vaccination time is 6 months. As shown in Figure 14, the system is not stable after 500 months,
which has a bad impact on the country’s economy and development. Therefore, it is necessary to
implement the booster vaccine as soon as the effectiveness of the vaccine is certain.
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5.3. Analysis of Simulations

Based on the above simulations, we have the following conclusions:
(1) When the time of vaccine expiration is determined, the less time people have

between a basic vaccine and a booster, the better the outbreak will be contained in both
low and high coverage countries, and when the time of booster vaccination exceeds the
critical value, System (1) will be unstable and the epidemic will be out of control. The
critical time for the booster vaccination is 1.4 months for countries with low vaccination
rates and 10.17 months for countries with high vaccination rates. It is clear that increasing
vaccination rates have had a positive impact on epidemic control.

(2) We select the parameters (I) and (II) closest to the current epidemic situation,
and the simulation results are consistent with the real situation. Due to limited vaccine
resources or other reasons, some countries have low vaccination rates. For them, booster
vaccination is not completed effectively and on time. As for the critical time of 1.44 months
in our simulation results, it is impossible to complete in reality. We look at the epidemic
status of most countries with low vaccination rates and found that most of them are in an
uncontrolled state of the epidemic, which is consistent with our simulations. For countries
with high vaccination rates, we found that the critical time for booster vaccination is
10.17 months, which can be achieved in reality. Given the physical demands of vaccination,
most countries require people to receive the booster vaccine promptly 6 months after
receiving the basic vaccine. In our simulations, 6 months is also considered to be the most
suitable optimal time for booster vaccination. In this case, there will be some fluctuations
in the current epidemic, but the number of infections will not be at a high level all the
time, and people will be able to control the epidemic within a certain range and eventually
stabilize it. When the inoculation time is 7 months, although the epidemic does not fluctuate
greatly in the near stage and eventually tends to stabilize, the number of infected people will
remain at a high level. This means that under the second set of parameters, the effectiveness
of the vaccine will not be enough to eliminate the epidemic, and even if people are actively
vaccinated and have high vaccination rates, they will inevitably live with COVID-19 for a
long time.

(3) Due to the short development time of the vaccine, its effectiveness is still unclear.
In our numerical simulations, different parameters are used to study the impact of vaccine
effectiveness on the epidemic. We choose parameters (III) to simulate a better epidemic
scenario. Compared with the groups of parameters (I) and (II), the third group has a higher
vaccination rate and lower vaccine failure rate, the basal shot is less likely to fail, and the
proportion of recovered patients who retain antibodies from the basal shot increased.
Through our simulation, we found that under the third set of parameters, when the validity
of the vaccine is 32 months and the booster vaccination time is controlled within 20 months,
the number of infections decreased and eventually approached zero, the system stabilized,
and the epidemic almost disappeared. Changing the timing of the booster vaccine, we
found that when the booster vaccine is given at 6 months, the epidemic could be virtually
eliminated by 2042. Even though the parameters can change over time in the real world,
and this is an ideal situation for us to simulate with a constant set of parameters, we can
still conclude that the longer the interval between actual vaccinations, the longer it takes
for the epidemic to stabilize. Therefore, considering the economic level of the country
and the requirements of the vaccine for the human body, we believe that under the third
group of parameters we selected, timely vaccination after 6 months is the ideal epidemic
control means.

Compared with the second group of parameters (II), the failure rate of the third group
(III) of enhanced vaccines is reduced, the validity period is longer, and the epidemic can be
effectively controlled, or even almost disappear. Under the second set of parameters (II),
the vaccine is not effective enough, and the epidemic continues. This shows the importance
of vaccine effectiveness in controlling outbreaks. In order to better control the epidemic,
we need to work to develop a more effective vaccine.

85



Mathematics 2022, 10, 1772

(4) In our simulations above, we select parameters consistent with the current epidemic
situation in 2022 and obtain simulation results consistent with the real situation. In fact,
our simulations can change with reality, which means that our models are very broad.
For example, if a country wants to study epidemic prevention and control strategies for
itself, we can bring in the country’s data, take into account the comprehensive strength of
the country and the requirements of economic development, analyze the data and select
reasonable parameters for simulation to obtain the best time for strengthening vaccination
and provide targeted strategies for epidemic control. Our model can also simulate the
situation as the virus mutates by changing the infection rate α and β. Global vaccination
is still ongoing, so vaccination rates are constantly changing, and we can change the
vaccination rates in the parameters to change our conclusions in real-time. Once the
parameters are determined, we can calculate the corresponding critical booster timing and
make recommendations that are appropriate to the current epidemic situation.

5.4. Recommendations for Countries

(i) For countries with low vaccination rates:

Based on our simulations, it is clear that good control of the epidemic requires people
to get the booster vaccine within 1.5 months of getting the basic vaccine. However, a
1.5-month interval between basic and booster vaccination is not feasible in real life given
the requirements of the vaccine for people’s health conditions. That means it is very
difficult to control COVID-19 in these countries. Therefore, we call on countries with low
vaccination rates to increase their vaccination rates as soon as possible so that people pay
enough attention to COVID-19;otherwise, it will be difficult to control the epidemic.

(ii) For countries with high vaccination rates:

(1) It is clear that timely booster vaccination has a positive impact on controlling the out-
break. Controlling booster vaccination time within a critical period (10.2 months) can make
sure the epidemic is under control. Considering the requirements of booster vaccination on
the body, we believe that 6 months is the most appropriate time for booster vaccination.

(2) In countries that are already able to get the majority of people who get the basic
vaccine on time to get the booster vaccine 6 months later, we can see that there is an upper
bound in the number of infections in those countries, which means that the epidemic is
contained, and the number of infections does not peak all the time. However, the epidemic
is not completely under control. In these countries, the epidemic is cyclical at this stage,
with the number of cases going up and down. However, when we improve the effectiveness
of the vaccine, which means the duration of the vaccine is longer and the failure rate of
the vaccine is lower, the epidemic will be better controlled. The number of cases tends to
decrease and almost stabilize after 20 years. So we suggest that research into an effective
vaccine should continue, both to increase its longevity and to reduce the vaccine failure rate.

(3) Considering that the virus is still mutating, we suggest that countries make timely
policy changes based on the real-time situation of the epidemic.

6. Conclusions

In this paper, we have established an SVIR model on booster vaccination with two
time delays to study the most suitable time for booster vaccination. We have studied
the impact of the timing of booster vaccination and the expiration of booster vaccine
on outbreaks. We studied the stability of the equilibria of System (1) and determine
the stability and direction of the periodic bifurcation solution using the multi-time scale
method and obtain the standard form of Hopf bifurcation. Then we have carried out some
numerical simulations to verify the analytic results and give some reasonable suggestions
to control the epidemic.

We have found that high vaccination rates are necessary for the current epidemic
situation and that current vaccines are not effective as a specific method of controlling the
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epidemic. As well as improving vaccination rates, there are other measures that need to be
taken, such as reducing social interaction. Further, we have specific recommendations for
different countries as well.
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Appendix A

System (3) can be written as:

X′(t) = AX(t) + BX(t − τ1) + CX(t − τ2) + F[X(t), X(t − τ1), X(t − τ2)], (A1)

where X(t) = (Sk, Vk, Ik, Rk)
T , X(t − τ1) = (Sk(t − τ1), Vk(t − τ1), Ik(t − τ1), Rk(t − τ1))

T ,
X(t − τ2) = (Sk(t − τ2), Vk(t − τ2), Ik(t − τ2), Rk(t − τ2))

T , and

A =

⎛⎜⎜⎝
−αIk − d 0 −αSk σ 1

0 −d − βIk −βVk σ 2
αIk βIk αSk + βVk − μ− c − d 0
0 0 μ −σ1 − σ2 − d

⎞⎟⎟⎠,

B =

⎛⎜⎜⎝
−γ1 0 0 0
γ1 0 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎠, C =

⎛⎜⎜⎝
0 γ2 0 0
0 −γ2 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎠, F =

⎛⎜⎜⎝
−α SI
−β VI

αSI + β VI
0

⎞⎟⎟⎠.

We suppose hk = (hk1, hk2, hk3, hk4)
T is the eigenvector of the linear operator cor-

responding to the eigenvalue iω, and let hk
∗ = (h∗k1, h∗k2, h∗k3, h∗k4)

T be the normalized
eigenvector of the adjoint operator of the linear operator corresponding to the eigenvalues
−iω satisfying the inner product < hk

∗, hk >= 1, with h∗kj = dkh̃∗kj. By a simple calculation,
we can obtain:
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hk3 = 1,

hk4 =
μ

iω+ σ1 + σ2 + d
,

hk2 =
(iω− αS∗ − βV∗ + μ+ c + d)

(
iω+ d + αI∗ + γ1e−iωτ1

)
γ2γ1e−iω(τ1+τ2) − (iω+ d + αI∗ + γ1e−iωτ1)(iω+ d + βI∗ + γ2e−iωτ2)

+
αS∗γ1e−iωτ1 − (

σ1γ1e−iωτ1 +
(
iω+ d + αI∗ + γ1e−iωτ1

)
σ2

)
hk4

γ2γ1e−iω(τ1+τ2) − (iω+ d + αI∗ + γ1e−iωτ1)(iω+ d + βI∗ + γ2e−iωτ2)
,

hk1 =
−(iω− αS∗ − βV∗ + μ+ c + d) + βI∗hk2

−αI∗ ,

h̃∗k3 = 1,

h̃∗k1 =

(−iω+ d + αI∗ + γ1e−iωτ1
)
(−βI∗)− αI∗γ2e−iωτ2

γ2γ1e−iω(τ1+τ2) − (−iω+ d + αI∗ + γ1e−iωτ1)(−iω+ d + βI∗ + γ2e−iωτ2)
,

h̃∗k2 =
γ1e−iωτ1βI∗ + αI∗

(−iω+ d + βI∗ + γ2e−iωτ2
)

(−iω+ d + αI∗ + γ1e−iωτ1)(−iω+ d + βI∗ + γ2e−iωτ2)− γ2γ1e−iω(τ1+τ2)
,

h̃∗k4 =
σ1h̃∗k1 + σ2h̃∗k2

−iω+ σ1 + σ2 + d
,

(A2)

where dk =
1

hk1 h̃∗k1+hk2 h̃∗k2+hk3 h̃∗k3+hk4 h̃∗k4

, (k = 1, 21, 22, j = 1, 2, 3, 4.).

X(t) can be written as:

X(t) = X(T0, T1, T2, · · · ) =
∞

∑
k=1

εkXk(T0, T1, T2, · · · ), (A3)

X′(t) can be written as:

X′(t) =dX(t)
dt

= ε
dX1

dt
+ ε2 dX2

dt
+ ε3 dX3

dt
+ · · ·

=ε(
∂X1

∂T0
+ ε

∂X1

∂T1
+ ε2 ∂X1

∂T2
) + ε2(

∂X2

∂T0
+ ε

∂X2

∂T1
) + ε3 ∂X3

∂T0
+ · · ·

=εD0X1 + ε2D1X1 + ε3D2X1 + ε2D0X2 + ε3D1X2 + ε3D0X3 + · · · .

(A4)

where Di =
∂
∂Ti

(i = 1, 2, 3, · · · ) is a differential operator.
Since we are more concerned about the influence of booster vaccination time, we take

τ1 as the bifurcation parameter. We let τ1 = τc + ετε, where τc is the critical time delay given
in Equation (13) or Equation (23), τε is the disturbance parameter and ε is the dimensionless
scale parameter. Using Taylor expansion of X(t − τ2) and X(t − τ1), respectively, we have:

X(t − τ2) =εX1,τ2 + ε2(X2,τ2 − D1X1,τ2) + ε3(X3,τ2 − D1X2,τ2 − D2X1,τ2) + · · · ,

X(t − τ1) = = εX1,τc + ε2X2,τc + ε3X3,τc − ε2τεD0X1,τc − ε3τεD0X2,τc − ε2τcD1X1,τc

− ε3τεD1X1,τc − ε3τcD2X1,τc − ε3τcD1X2,τc + · · · ,

(A5)

where Xj,τ2 = Xj(T0 − τ2, T1, T2, · · · ), Xj,τc = Xj(T0 − τc, T1, T2, · · · ), j=1,2,3. Then, we
substitute Equations (A3)–(A5) into Equation (A1). For the ε-order terms, we have:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

D0S1 + γ1S1,τc − γ2V1,τ2 − σ1R1 + dS1 + αS1 I∗ + αS∗ I1 = 0,

D0V1 − γ1S1,τc + γ2V1,τ2 + βV1 I∗ + βV∗ I1 − σ2R1 − dV1 = 0,

D0 I1 − αS1 I∗ − αS∗ I1 − βV1 I∗ − βV∗ I1 + μI1 + cI1 + dI1 = 0,

D0R1 − μI1 + σ1R1 + σ2R1 + dR1 = 0.

(A6)
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Since ±iω∗
k (k = 1, 2) are the eigenvalues of the linear part of Equation (A1), the solution of

Equation (A6) can be expressed in the following form:

X1(T1, T2, T3, · · · ) = G(T1, T2, T3, · · · )eiω∗
k T0 hk + Ḡ(T1, T2, T3, · · · )e−iω∗

k T0 h̄k, k = 1, 2. (A7)

where hk is given in Equation (A2).
For the ε2-order terms, we obtain:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D0S2 + γ1S2,τc − γ2V2,τ2 − σ1R2 + dS2 + αS2 I∗ + αS∗ I2

= −D1S1 + γ1(τεD0S1,τc + τcD1S1,τc)− γ2D1V1,τ2 − αS1 I1,

D0V2 − γ1S2,τc + γ2V2,τ2 + βV2 I∗ + βV∗ I2 − σ2R2 − dV2

= −D1V1 − γ1(τεD0S1,τc + τcD1S1,τc) + γ2D1V1,τ2 − βV1 I1,

D0 I2 − αS2 I∗ − αS∗ I2 − βV2 I∗ − βV∗ I2 + μI2 + cI2 + dI2 = −D1 I1 + αS1 I1 + βV1 I1,

D0R2 − μI2 + σ1R2 + σ2R2 + dR2 = −D1R1.

(A8)

Then we substitute Equation (A7) into the right side of Equation (A8) and mark the
coefficient before eiωT0 as vector m1. In accordance with the solvability condition: <
h∗k , m1 >= 0, we can obtain the expression of ∂G

∂T1
:

∂G
∂T1

= MkτεG, (A9)

where Mk =
γ1iω(hk1 h̃∗k1−hk1 h̃∗k2)

1+γ2e−iωτ2(hk2 h̃∗k1−hk2 h̃∗k2)+γ1τce−iωτc(hk1 h̃∗k2−hk1 h̃∗k1)
, k = 1, 2.

We assume the solution of Equation (A8) is the following form:

S2,k =gk1e2iωkτcT0 G2 + ḡk1e−2iωkτcT0 Ḡ2 + lk1GḠ,

V2,k =gk2e2iωkτcT0 G2 + ḡk2e−2iωkτcT0 Ḡ2 + lk2GḠ,

I2,k =gk3e2iωkτcT0 G2 + ḡk3e−2iωkτcT0 Ḡ2 + lk3GḠ,

R2,k =gk4e2iωkτcT0 G2 + ḡk4e−2iωkτcT0 Ḡ2 + lk4GḠ.

(A10)

Substituting them into Equation (A8), we can solve the expression of g1, g2, g3, g4, l1, l2, l3, l4
from the following equations.⎡⎢⎢⎣

(2iω+ η1) −γ2e−iωτ2 αS∗ −σ1
−γ1e−iωτc (2iω+ η2) βV∗ −σ2

0 −αI∗ − βI∗ (2iω+ η3) 0
0 0 −μ (2iω+ η4)

⎤⎥⎥⎦
⎡⎢⎢⎣

g1
g2
g3
g4

⎤⎥⎥⎦ =

⎡⎢⎢⎣
−αh1h3
−βh2h3

αh2h3 + βh1h3
0

⎤⎥⎥⎦, (A11)

⎡⎢⎢⎣
η1 −γ2 αS∗ −σ1
−γ1 η2 βV∗ −σ2

0 −αI∗ − βI∗ η3 0
0 0 −μ η4

⎤⎥⎥⎦
⎡⎢⎢⎣

l1
l2
l3
l4

⎤⎥⎥⎦ =

⎡⎢⎢⎣
−αh1h̄3 − αh̄1h3
−βh̄2h3 − βh2h̄3

αh1h̄3 + αh̄1h3 + βh̄2h3 + βh2h̄3
0

⎤⎥⎥⎦, (A12)

where
η1 = γ1e−iωτc − d + αI∗, η2 = γ2e−iωτ2 + βI∗ − d,

η3 = −αS∗ − βV∗ + μ+ c + d, η4 = σ1 + σ2 + d.
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For ε3-term, we have:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D0S3 + γ1S3,τc − γ2V3,τ2 − σ1R3 + dS3 + αS3 I∗ + αS∗ I3
= −D2S1 − D1S2 + γ1(τεD0S2,τc + τcD1S1,τc + τεD1S1,τc + τcD2S1,τc)
−γ2

(
D2V1,τ2 + D1V2,τ2

) − α(S2 I1 + S1 I2),
D0V3 − γ1S3,τc + γ2V3,τ2 + βV3 I∗ + βV∗ I3 − σ2R3 − dV3

= −D1V2 − D2V1 − γ1(τεD0S2,τc + τcD1S1,τc + τεD1S1,τc + τcD2S1,τc)
+γ2

(
D2V1,τ2 + D1V2,τ2

) − β(V2 I1 + V1 I2),
D0 I3 − αS3 I∗ − αS∗ I3 − βV3 I∗ − βV∗ I3 + μI3 + cI3 + dI3

= −D2 I1 − D1 I2 + α(S1 I2 + S2 I1) + β(V1 I2 + V2 I1),
D0R3 − μI3 + σ1R3 + σ2R3 + dR3

= −D1R2 − D2R1.

(A13)

We substitute Equations (A7), (A9) and (A10) into the right expression of Equation (A13)
and note the coefficient of eiωkT0 as vector m2. According to solvability condition <
h∗k , m2 >= 0, we have the expression of ∂G

∂T2
. Since τ2

ε has less impact on normal form,
we can ignore the τ2

ε G term. Thus, we can obtain:

∂G
∂T2

= HkG2Ḡ, (A14)

where

Hk =
∂G1
∂T2

=
α
(
h1l3 + h̃1g3 + h3l1 + h̃3g1

)(
h̃∗3 − h̃∗1

)
+ β

(
h2l3 + h̃2g3 + h3l2 + h̃3g2

)(
h̃∗3 − h̃∗2

)
1 + γ2

(
h2h̄∗1 − h2h̄∗2

)
e−iwτ2 + γ1τce−iωτc

(
h1h̄∗2 − h1h̄∗1

) .

Then, we let G → G/ε. Therefore, we get the normal form of Hopf bifurcation for
System (1):

Ġ = MkτεG1 + HkG2
1Ḡ1, (A15)

where Mk, Hk are given in Equation (A9) and Equation (A14).
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Abstract: In this article, we propose a mathematical model for insect outbreaks coupled with wildfire
disturbances and an optimization model for finding suitable wildfire frequencies. We use a refined
Holling II function as a model for the nonlinear response of fire frequency against trees and insects.
The results show that for the tree–insect–wildfire model, there is a coexistence equilibrium in the
system. Sensitivity analysis is performed to determine the effect of wildfire on trees in the optimization
model. The results show that forest fires have a significant impact on the equilibrium mechanism of
tree–insect coexistence. Numerical simulations suggest that in some areas of high fire intensity, there
may be positive feedback between disturbances from wildfires and insect outbreaks. The result is
consistent with the present theory in this field.

Keywords: forest fire; tree–beetle system; stability; sensitivity analysis; optimal control

MSC: 34C23; 35K57

1. Introduction

Disturbance interactions are receiving increasing attention in today’s ecological stud-
ies [1,2]. Ecologists now have a much better understanding of individual disturbances,
recognizing that natural ecosystems are affected by many types of natural disturbances,
and studies have found significant interactions between these disturbances [3]. These
disturbances are divided into natural and anthropogenic. Natural disturbances include
wildfires, hurricanes, insect pests, diseases, floods, droughts, etc. Anthropogenic distur-
bances include artificial logging, water pollution, air pollution, etc. Among them, wildfires
and pests are the two main natural disruptions of forest grassland. The synergistic relation-
ship between wildfires and insects has been clearly described in previous studies. The study
concluded that the massive tree mortality caused by insect outbreaks was an important
cause of subsequent wildfires [4]. Correspondingly, the damage and death caused by the
fire will produce focus trees that attract more beetles [5]. In separate studies, McHugh [6]
and Cunningham [7] followed tree mortality and beetle infestation in a forest for three years
following a wildfire and found that fire damage resulted in a higher probability of beetle
attacks on trees. Similar results have been found in other studies of wildfires and pests
(Bradley and Tueller [8]). However, some other studies have shown that beetles do not pri-
oritize attacking trees with fire-damaged trunks, but that focal trees have a higher success
rate of attack when beetle numbers are low (Elkin and Reid [9]). Furthermore, Sanchez-
Martinez and Wagner [10] found that bark beetle numbers are at low levels regardless of
the number of trees in the forest, including a large number of trees destroyed by wildfire.
These results confirm the complexity of the link between insects and fire when assessed on a
long-term and large-scale basis. Fleming et al. [11] took a statistical approach to examine the
interaction between spruce budworm damage and forest fire risk. In their paper, they use a
GIS overlay of the fire and spruce budworm histories in Ontario in order to define polygons
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with unique histories of forest fire and insect damage. McHugh et al. [12] measured insect
abundance in several burned stands in Northern Arizona and found that trees targeted
by insects had more canopy damage from fires compared to trees that were not targeted.
Santoro et al. [13] found increased post-fire populations of the pine engraver (Ips pini)
despite also measuring increased insects. Bebi et al. [14] found that forests burned in 1879
during the spruce beetle explosion were less affected by the infestation than old-growth
forests that had not been burned in the 1940s. Historically, insect pests and wildfires have
had a predominant impact on evolutionary progression in the forests of the American West.
In the last 100 years, fire suppression has led to larger and more serious wildfire and insect
outbreaks. In the year 2002, more than 50,000 acres of land in three northeastern provinces
of China were damaged by wildfires and about 800,000 acres were damaged by insects
such as bark beetles and pine wood nematodes. The relationship between fires and insect
outbreaks is often described as a mutual and synergistic one. Although there are underlying
feedbacks between these two natural disturbances, consensus on responses is lacking in
the accepted papers, with some published studies recording substantial impacts on fires
and burning from trees killed by beetles, while others report none or diminished impacts.
The temporal dynamics of the B. Chen Charpentier model is consistent with the assumed
two-stage model of beetle demography (also known as the binary theory) [15] and is able
to fit the existing data. In particular, the model consists of the thoughts of the classical
model described and developed by Safranyik [16]. The optimal control model is sufficiently
accurate to allow an analytical characterization of the dynamic behavior. At the same time,
this model extends the tree–beetle system model to include average wildfire disturbance
and its interaction dynamics with insect outbreaks. Fire can simultaneously slay beetles
and trees and can also diminish the defenses of surviving trees against beetle invasion.

The structure of this paper is as follows: In Section 2, based on the work of refer-
ence [17], a tree–beetle–fire model is considered. The threshold value of boundary equilib-
rium point stability is obtained, and the internal equilibrium point global stability is proved.
In Section 3, the optimal control strategy of wildfire frequency is considered by optimizing
and rewriting the model to find the appropriate frequency of wildfire occurrence to mini-
mize the damage to trees. Using the optimization model to simulate the reported forest fire
data from State Forestry Administration 2004 to 2017 and predict the development trend of
a forest area after the occurrence of forest fires. The sensitivity analysis is used to identify
the intensity of forest fires in Section 4, and the results show that the frequency of forest
fires had a great influence on the tree–insect coexistence mechanism.

2. Deterministic Model for Tree–Beetle–Fire System

In this section, based on the work of reference [17], we describe the formulation of
the deterministic model for the tree–beetle–fire system introduced. Positive feedback may
occur between forest fires and beetle outbreaks, which will enhance the frequencies and
severities of these two types of naturally occurring disturbances so that it includes the
mortality of trees caused by fire. By considering an ordinary differential equation model,
we propose the following{

dV
dt = rvV(1 − V

Kv
− fk

B
r+B )− P V

Kv
MvV,

dB
dt = rbB(1 − B

Ke
)− αB

1+βB − MbP V
Kv

MvV.
(1)

The variables are V and B, indicating a number of vulnerable trees and mountain pine
beetles in each tree. The constant rv is the inherent percentage of growth of vulnerable
trees (1/time) and the constant rb is the inherent percentage of growth of vulnerable beetles
(1/time). Kv represents the carrying capacity of the system. Ke is the carrying capacity
of the beetles per tree. α represents the defense rate of the pine tree, and β represents
the reciprocal of beetle density. When the pine tree is saturated with defense, fk is the
fraction of trees killed by successful attacks and r represents the threshold value of the
number of beetles successfully attacked (beetles per tree). The special relationship models
the reality that the increased death rate of trees due to beetle existence is linearly related
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to B when the beetle population is small, and it reaches saturation at fk when the beetle
population is extremely high. As described above, the equation is an extension of the
logistic type of growth, which includes the host pine’s defense against the beetle, described
by the Holling II functional response. The constant Mv represents the percentage of
trees lost/damaged in the fire. The constant Mb represents the effect of forest fires on
beetles, and c is the defense parameter of fire weakening pine against beetles. The term
0 ≤ P( V

Kv
) ≤ 1 is the frequency of fire or probability of fire, and we assume that it is

proportional to the population of trees within the forest. The constant P is a measure of
the average intensity of vegetation feedback to the fire for different thermogenic properties
and 0 < fk < 1, 0 < Mv < 1, 0 < c < 1, 0 < Mb < 1, t > 0. We define

v =
V
Kv

, b =
B

Kv
, r1 =

rb
rv

, β1 = βK2
e , K = fkKe, mv =

MvP
Kv

, mb =
Mb MvP

Kv
, α f =

α(1 − cMv)Ke

rv
, (2)

which then can be rewritten as (1 + mv) < mb, mb > mv{
dv
dt = v(1 − v − Kb

r+Keb − mvv),
db
dt = b[r1(1 − b)− α f

1+β1b − mbv].
(3)

The parameters of the above two systems are all positive.

Existence and Stability of Equilibrium

In this subsection, we demonstrate the existence of the equilibria. According to the
biological meaning, we need all equilibria to be nonnegative. By using system (3), the
equilibrium satisfies the following equations:{

v(1 − v − Kb
r+Keb − mvv) = 0,

b[r1(1 − b)− α f
1+β1b − mbv] = 0.

(4)

Consequently, we can immediately calculate that system (4) has only one boundary
equilibrium E0 = ( 1

mv+1 , 0).
We next consider the coexistence equilibrium E∗ = (v∗, b∗) such that v∗ > 0, b∗ > 0 .

By using the first equation of system (4), we obtain

v =
r + (Ke − K)b

(1 + mv)(r + Keb)
. (5)

Substituting (5) into the second equation of system (4), we obtain

H(b) = c1b3 + c2b2 + c3b + c4 = 0, (6)

where

c1 = −β1Ker1(1 + mv),

c2 = [Kmb − rr1(1 + mv)]β1 + Ke[(1 + mv)(−1 + β1)r1 − mbβ1],

c3 = (1 + mv)[−Keα f + r1[Ke + r(−1 + β1)] + mb(K − Ke − rβ1)],

c4 = r[(r1 − α f )(1 + mv)− mb].

Suppose (r1 − α f )(1 + mv) > mb, then H(0) > 0. Since β1, Ke, r1, mv > 0, then c1 < 0
and H(+∞)) = −∞. From the real continuation method, there exist b∗ > 0 and H(b∗) = 0.
Since 0 < fk < 1 and Ke fk = K, then Ke − K > 0, hence

v =
r + (Ke − K)b∗

(1 + mv)(r + Keb∗)
> 0.
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Summarizing the above discussions, when (r1 − α f )(1 + mv) > mb, the system (3) has
at least one coexistence equilibrium E∗ = (v∗, b∗).

In the following, we consider the stability of the equilibria. To determine the local
stability of these equilibria, we consider the Jacobian matrix of system (3):

J =

⎛⎝ 1 − 2v − bK
r+Keb − 2mvv KeKvb

(r+Keb)2 − Kv
r+Keb

−mbb r1(1 − 2b)− mbv +
bα f β1

(1+bβ1)2 − α f
1+bβ1

⎞⎠. (7)

The Jacobian matrix of system (3) at E0 = ( 1
mv+1 , 0) is

J0 =

(
m1 m2
n1 n2

)
.

where m1 = −1 < 0, m2 = − K
r(1+mv)

, n1 = 0, n2 = r1 − α f − mb
1+mv

. The eigenvalues of

J0 : |λE − J0| = λ2 − TR1 + DET1 = 0, can be determined by{
TR1 = n2 + m1,
DET1 = −m2n1 + m1n2 = m1n2.

Summing up the above discussions, we obtain the following Theorem 1.

Theorem 1. Let r1, mb, α f , mv, K, r be positive parameters. Then we have

(1) If (r1 − α f )(1 + mv) < mb, boundary equilibrium E0 of system (3) is local asymptotically stable.

(2) If (r1 − α f )(1 + mv) > mb, boundary equilibrium E0 of system (3) is unstable.

Remark 1. Let r1 > α f . Defining threshold R∗ =
(r1−α f )(1+mv)

mb
. Then if R∗ < 1 boundary

equilibrium E0 is asymptotically stable; if R∗ > 1, and boundary equilibrium E0 is unstable,
coexistence equilibrium E∗ exists.

Remark 2.

R∗ =
(r1 − α f )(1 + mv)

mb

=
1

mb
[(r1 − αKe

mv
) + (r1 − αKe

rv
+

αrcK2
e

rvP
)mv +

αrcK2
e

rvP
m2

v].

Defining mb = (r1 − αKe
mv

) + (r1 − αKe
rv

+ αrcK2
e

rvP )mv +
αrcK2

e
rvP m2

v. The properties of R∗ can be seen
in Figure 1.

0 5 10 15 20 25 30 35 40
0

5

10

15
x 10

10

m
v

m
b

R*>1

R*<1

Figure 1. The properties of the threshold R∗.
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In the following, we consider the properties of E∗ = (v∗, b∗). The Jacobian matrix of
system (3) at E∗ = (v∗, b∗) is

J1 =

(
p1 p2
s1 s2

)
.

where p1 = −(1 + mv)v∗ < 0, p2 = − Krv∗
(r+Keb∗)2 < 0, s1 = −mbb∗ < 0, s2 = r1(1 − 2b∗)

− α f
(1+β1b∗)2 − mbv∗. Take the eigenvalues of J1 can be determined by |λE − J1| = λ2 −

TR2 + DET2 = 0, where {
TR2 = s2 + p1,
DET2 = −p2s1 + p1s2.

Summarizing the above discussions, we obtain the following Theorem 2.

Theorem 2. Let r1, mb, α f , mv, K, r, Ke be positive parameters and R∗ > 1.

(1) If s2 < p2s1
p1

, coexistence equilibrium E∗ of system (3) is local asymptotically stable.

(2) If p2s1
p1

< s2 < 0, coexistence equilibrium E∗ of system (3) is unstable.

In order to verify the asymptotic stability of the forest fire-forest beetle outbreak model
system, numerical simulation is performed on the model (3). Using the parameter value
in [16]: mb = 366.75, mv = 75, β1 = 156.9398, α f = 699.3189, r1 = 33.75, r = 9.1, K = 1467,
and c = 0.5, rv = 0.08, Ke = 1956, Kv = 100, P = 0.1, α = 0.04086, we obtain positive
equilibrium points (v∗, b∗) ≈ (0.00334654, 0.799878). These parameter values satisfy the
conditions of the theorem analyzed above. The above analysis shows that the system is
asymptotically stable, as shown in Figure 2. The figure on the left shows the tree’s endemic
state for fire, and the figure on the right shows the beetle’s endemic state for fire.
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Figure 2. Tree’s and beetle’s endemic state.

Next we derive some basic properties of solutions to system (3), such as the nonex-
istence of limit cycles. According to the biological setting of the model described above,
we define

Ω = {(v, b) : v > 0, b > 0}. (8)

Then, we have

Theorem 3. Let Ω be defined as in system (3), suppose that r1 > α f β1, system (3) has no periodic
orbits in Ω.

Proof of Theorem 3. We define Ω = 1
vb > 0, then we have{

QF � 1
vb [v(1 − v − Kb

r+Keb − mvv)],
QG � 1

v [r1(1 − b)− α f
1+β1b − mbv].

(9)
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an easy computation yields that

∂QF
∂v

=
1
b
(−1 − mv) < 0, b ∈ Ω.

and
∂QG
∂b

=
1
v
(−r1 +

α f β1

(1 + β1)2 ) <
1
v
(−r1 + α f β1).

Suppose that r1 > α f β1, then ∂QG
∂b < 0. For (v, b) ∈ Ω, we have

∂QF
∂v

+
∂QG
∂b

< 0.

Therefore, the Dulac criterion can be applied to system (3) in Ω and there exist no peri-
odic orbits in Ω. According to the above analysis, E∗ is globally approaching stability.

According to Theorems 2 and 3, we have the following Theorem 4:

Theorem 4. Suppose R∗ > 1 and r1, mb, α f , mv, K, r, Ke are positive parameters. If r1 > α f β1,
then the internal positive equilibrium point is globally asymptotically stable.

3. Optimal Control Strategy

There are potential interactions between insect outbreaks and wildfire disturbances in
forests. Wildfires are a potential threat to tree growth, and they also kill beetles. Therefore,
it is an optimization problem to find the suitable frequency of wildfire so that there is little
damage to trees and the beetles can be destroyed. Optimization has always played a critical
part in the management of forests and pests in the design and operation. In the paragraphs
below, we discuss optimal control strategies for wildfire frequency. The mv in system (3) is
set to be time-dependent mv(t), describing the time-varying wildfire intensity, and there
exists mv such that 0 ≤ mv(t) ≤ mv. Within the fixed time [0, T] with T > 0, the constraint
set reads

U = {mv(t)|0 ≤ mv(t) ≤ mv, 0 ≤ t ≤ T, mv(t) are Lebesgue measurable}. (10)

The optimal objectives are to minimize the number of insects and the wildfire fre-
quency. We rewrite system (3) as{

dv
dt = v(1 − v − Kb

r+Keb − mvv),
db
dt = b[r1(1 − b)− α1

1+β1b +
α2mv

1+β1b − α3mvv].
(11)

The quadratic optimal objective function reads:

J(mv) =
∫ T

0
(

1
2

b2(t) +
1
2

m2
v(t))dt

with b(0) = b0, v(0) = v0. The optimal control problem rewrites

J∗(m∗∗
v (·)(t)) = min

mv(t)∈U
J(mv(t)). (12)

Using the method in [18], we check the existence of optimal control mv(t) by satisfied
H1–H4 the following:

Hypothesis 1 (H1). The set of state and control variables are nonempty;

Hypothesis 2 (H2). The set U of the control variables is closed and convex;
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Hypothesis 3 (H3). The right side of each equation in control problem (11) is continuous with
a bounded sum of controls and states above, which can be written as a linear function of U with
coefficients depending on time and state [19];

Hypothesis 4 (H4). There exists constants α1, α2, α3 > 0 such that the integrand L(mv(t)) of
the objective functional J is convex and satisfied.

The Hypothesis H4 can be obtained since L(mv(t)) = 1
2 (b

2(t) + m2
v(t)). Using the

Hypothesis (H1–H4), we have

Theorem 5. For the optimal control problem (10)–(12), there exists an optimal control m∗∗
v such

that J∗(m∗∗
v (·)(t)) = min

mv(t)∈U
J(mv(t)).

We give the Hamiltonian function to obtain the minimum value of (12).

H =
1
2
(b2 + m2

v) + λ1[v(1 − v − Kb
r + Keb

− mvv)] + λ2[b(r1(1 − b)− α1

1 + β1b
+

α2mv

1 + β1b
− α3mvv)].

Using Pontryagin’s Maximum Principle, the optimal solution of (10)–(12) can be
obtained as follows ⎧⎪⎨⎪⎩

∂H
∂mv

|(m∗∗
v ,λ1,λ2,t) = 0,

∂λ1
∂mv

|(m∗∗
v ,λ1,λ2,t) = −λ̇1,λ1 = 0,

∂λ2
∂mv

|(m∗∗
v ,λ1,λ2,t) = −λ̇2,λ2 = 0.

Theorem 6. The optimal control of (10)–(12) is given by

m∗∗
v = min {mv, max {λ1vb + λ2α3vb − λ2α2b2

1 + β1b
, 0}}. (13)

where λ1,λ2 are the adjoint variables satisfying (13).

Proof of Theorem 6. By Pontryagin’s Maximum Principle, finding the optimal control
of (10)–(12) is equivalent to minimizing the following Hamiltonian function H above.
The optimal control

∂H
∂mv

|(m∗∗
v ,λ1,λ2,t) = 0 gives m∗∗

v − λ1vb − λ2α3vb + λ2α2b2

1+β1b = 0, where the adjoint vari-
ables are satisfied. Furthermore,

λ̇1 = − ∂H
∂b |(m∗∗

v ,λ1,λ2,t) = −b + λ1vKr
(r+Keb)2 − λ2[r1 − r1b − α1

(1+β1b)2 +
α2mv

(1+β1b)2 − α3mvv]

λ̇2 = − ∂H
∂b |(m∗∗

v ,λ1,λ2,t) = −λ1(1 − 2v − Kb
r+Keb − mv) + λ2α3mv and the transversality

conditions λ1(T) = 0,λ2(T) = 0.
Moreover, since m∗∗

v ∈ U, using the lower and upper bounds of mb(t), the optimal
m∗∗

v can be characterized by (13).

On the basis of model (11), we discuss the influence of different mv on the model.
We define α1 = αKe

rv
, α2 = αcKe

rv
, α3 = Mb. Using the wildfire and beetle data from some

provinces in China (Heilongjiang, Jilin, Inner Mongolia. et al. [20]). With these data,
the averages of these parameters from 2004 to 2017 are obtained for 11 provinces, see
Table 1. The curves in Figure 3 show the influence of mv on trees and beetles. Figure 4
magnifies the function image of beetle time to see the change trend of the beetle more clearly.
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Table 1. The parameter and values to be used in the model (11).

Parameter Mv rv mv α1 α2

Beijing 0.764572 0.048204 158.611171 1657.993 828.9964
Tianjin 0.445343 0.021843 203.882824 3658.925 1829.463
Hebei 0.154946 0.023128 66.995922 3455.703 1727.852
Shanxi 0.252996 0.036412 69.4821260 2194.957 1097.479

Inner Mongoria 0.561737 0.045826 122.5812760 1744.046 872.0231
Liaoning 0.337569 0.016873 200.0673550 4736.759 2368.379

Jilin 0.38393 0.006038 635.8630730 13236.66 6618.332
Heilongjiang 0.239552 0.008569 279.546910 9326.556 4663.278

Shandong 0.524125 0.024039 218.031458 3324.691 1662.345
Henan 0.258396 0.046559 55.498005 1716.561 858.2804
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Figure 3. Effects of mv on trees and beetles. Shanxi mv = 69.48, Inner Mongoria mv = 122.58,
Liaoning mv = 200.06, Heilongjiang mv = 279.54, Jilin mv = 635.86.
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Figure 4. Local view of effects of mv on beetles in Figure 3.

Sensitivity Analysis and Numerical Simulations

In this section, we first use (11) to simulate the reported forest fire data from 2004 to
2017 and predict the development trend of the forest area after the occurrence of a forest fire.
Then, we conduct a sensitivity analysis for some critical parameters, perform the numerical
simulation for optimal control, and search for some valid control and preventive measures.
The forest area data of forest fires are extracted from the State Forestry Administration (See
Table 2).
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Table 2. Annual forest area data of forest fires in each province (unit: ten thousand hectares).

Year 2004 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

Shanxi 0.18412 0.1013 0.3149 0.0499 0.6372 0.048 0.2145 0.076 0.0814 0.0272 0.0299
Inner Mongoria 0.51265 1.5358 1.7764 0.9129 0.1741 0.4464 0.0826 0.595 0.3847 0.1622 2.4805

Liaoning 0.04303 0.1249 0.1424 0.0404 0.0577 0.0374 0.0143 0.1045 0.1922 0.1706 0.0802
Jilin 0.03272 0.0445 0.0351 0.0084 0.024 0.0178 0.0063 0.0134 0.0541 0.0123 0.045

Heilong jiang 18.55472 1.8402 9.9819 1.3779 0.1741 0.1046 0.0106 0.0301 0.0787 0.064 0.0883
Hebei 0.13467 0.033 0.0443 0.0221 0.2169 0.2112 0.0422 0.1168 0.0471 0.0573 0.1157

Based on the data of the forest fire area in Table 2, we calculate v and the parameter
Kv = 100 in the model (11). For numerical simulation, most parameters of (11) were
obtained from the literature. The influence trend of forest fires on forest areas in six
provinces (Heilongjiang, Jilin, Liaoning, etc.) was predicted by fitting (11) with the data
from 2004 to 2017. A numerical simulation shows that the model (11) with reasonable
parameter values agrees well with the measured data. From 2004 to 2017, the area of forest
fires in the same province decreased year by year. In order to better study the impact
of forest fire on forest trees, we conduct a study. The key parameters are analyzed by
sensitivity; Figure 5a–f show the forecast figures of Shanxi, Inner Mongolia, Liaoning, Jilin,
Heilongjiang and Hebei, respectively.

With the help of model (11), we fit it to the data from 2004 to 2017 to predict the
dynamics of trees and insects in the presence of fire (Figure 5). A numerical simulation
shows that model (11) and reasonable parameter values can match the reported data well.
From 2004 to 2017, the area of forest affected by fires decreased year by year and stabilized.
Then, the rationality of the parameters selected by the model (11) is verified.

The accuracy of the original data or the stability of the optimal solution when the
system changes is an important step in model optimization [21]. In the process of model
optimization, sensitivity analysis is the most commonly used test method. Sensitivity
analysis can quickly identify a few key factors from a large number of parameters and
input states in the power system, but usually, it is not necessary to calculate the sensitivity
coefficient of each parameter, and only those parameters with great uncertainty can be
selected for sensitivity analysis. Based on the sensitivity analysis results of the tree–beetle–
fire model, it is shown that the intensity of forest fire is the key factor in controlling and
predict the mechanism of tree–beetle coexistence. To better understand the impact of fire
on forests and insects, we conduct a study by analyzing the impact of key parameters mv
in sensitivity characterization.
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Figure 5. Predicted tendency of forest fire in HeiLongJiang, Inner Mongolia, JiLin, etc. (a) Number of
forests in ShanXi. (b) Number of forests in LiaoNing. (c) Number of forests in JiLin. (d) Number of
forests in Inner Mongolia. (e) Number of forests in HeiLongJiang. (f) Number of forests in HeBei.

The specific steps of the sensitivity coefficient algorithm are as follows. We consider
function ˙y(t) = f (t, y, p), the absolute sensitivity of variable yi to parameter P:

Si(t) =
∂yi(t.P)

∂P
, i = v, b.

We denote the relative sensitivity of a variable to a parameter:

si(t) =
∂yi(t.P)

∂P
P
yi

, i = v, b,

the absolute sensitivity equation of parameter Si:

Ṡi =
∂ f
∂y

Si +
∂ f
∂p

, i = v, b.

Next, the sensitivity of forest fire frequency and the impact of forest fires on trees
to various variables in the system is discussed through sensitivity analysis and relative
sensitivity analysis. The sensitivity equation of the system contains four equations for
parameter mv.⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

v̇ = v(1 − v − Kb
r+Keb − mvv),

ḃ = b[r1(1 − b)− α1
1+β1b +

α2mv
1+β1b − α3mvv],

Ṡv = Sv(1 − 2v − Kb
r+Keb − 2mvv)− Sb

Krv
r+Keb − v2,

Ṡb = Sb(r1 − 2r1b − α1
(1+β1b)2 +

α2mv
(1+β1b)2 − α3mvv)− Svα3mvb + α2b

1+β1b − α3vb.

(14)

The Rk-4 method was used to calculate the system, and the sensitivity and relative sen-
sitivity analysis of forest fire intensity and the impact of forest fires on trees were obtained.
The conclusions obtained can reflect the impact intensity of each variable in the system, as shown
in the figure.
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As shown in Figures 6 and 7, both the sensitivity and relative sensitivity of mv to v(t)
show a trend less than 0, indicating that the increase in mv will lead to the decrease in v(t),
and when t = 10, Sv = −1.109 < 10−6 < 0, mvSv

v = −0.02485 < 0. That means that when
mv increases by 10%, trees will decrease by 0.2485%. The sensitivity and relative sensitivity
of mv to b(t) show a trend greater than 0, indicating that the increase in mv will lead to
the decrease in b(t). When b(t), Sb = 0.001797 > 0 and mvSb

v = 0.2593 > 0. That means
that when mv increases by 10%, beetles will increase by 2.593%. Ecologically speaking, we
assume that the beetle–tree system has been exposed to sequential fires of constant intensity.
This means that a sufficiently intense fire will result in a large number of trees being burned
and weaken the defenses of living trees, thus allowing beetle epidemics (beetle outbreaks)
to become established in the forest. With our results, there may be positive feedback
between disturbances between wildfires and insect outbreaks, which would enhance the
frequency and severity of forest damage from these two natural disturbances. This situation
is consistent with current theories in the field.
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Figure 6. Sensitivity of mv(t) to v(t) and b(t).
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Figure 7. Relative sensitivity of mv(t) to v(t) and b(t).

4. Discussion

We present mathematical models with generalizations that provide a basis for explor-
ing the disturbance effects of wildfires and insect outbreaks on forests. Current research
reports show that there is a lack of proof of the global stability of the model, as well as
analysis and fitting of actual data; see [17]. In Section 2, we prove the coexistence equilib-
rium is globally stable under certain conditions. In this paper, the tree–insect–fire model
is optimized and rewritten. The optimal control strategy for the frequency of wildfire
occurrence is discussed. In order to find the appropriate wildfire occurrence frequency
and reduce the loss of trees. Based on the forest fire data from 2004 to 2017 provided by
the State Forestry Administration, the development trend of a forest area after a forest
fire is predicted. The sensitivity analysis is used to identify the frequency and intensity of
forest fires, and the results show that the frequency of forest fires greatly influenced the
tree–insect coexistence mechanism, or to be more precise, when the beetle–tree system is
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exposed to continuous fires of constant intensity. Intense fires will result in the burning of
large amounts of forest and, in the process, also weaken the defense systems of living trees,
thus allowing beetle epidemics to become established in the forest, which is consistent with
the subsequent research theory in Reference [17].
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Abstract: A mathematical model for studying the nonlinear response of the endwall of a narrow
channel filled with a viscous fluid to the vibration of the channel’s upper wall was formulated. The
channel, formed by two parallel, rigid walls, was investigated. The right end-channel wall was
supported by a nonlinear spring. At the end of the left channel, the fluid flowed into a cavity with
constant pressure. The upper channel wall oscillated according to a given law. As a result of the
interaction between the endwall and the upper wall via a viscous fluid, the forced, nonlinear oscilla-
tions of the channel endwall arose. The fluid motion was considered in terms of the hydrodynamic
lubrication theory. The endwall was studied as a spring-mass system with a nonlinear cubic restoring
force. The coupled hydroelasticity problem was formulated, and it was shown that the problem
under consideration was reduced to a single equation in the form of the Duffing equation. The
nonlinear hydroelastic response of the end wall was determined by means of the harmonic balance
method. The results of numerical experiments on nonlinear hydroelastic response behavior and a
comparison with the case when the support spring is linear were presented. The obtained results
are of a fundamental nature and can be used in modeling various devices and systems that have
narrow channels filled with viscous fluid and are subjected to vibrations on one side of the channel.
For example, coolant pipes are subjected to vibrations from the engine. Of particular interest is the
application of the presented solution to the mathematical modeling of nano- and micro-spacecraft
systems with fluids since the proposed decision allows for the consideration of some boundary effects,
which is important for nano- and micro-spacecraft due to their small size.

Keywords: hydroelastic response; viscous fluid; nonlinear oscillations

MSC: 74F10

1. Introduction

Mechanical systems, which are elastic structures that interact with a fluid, are currently
actively used in mechanical engineering and aircraft-building. Such structures can be
systems of rigid bodies on an elastic suspension [1,2] or linear, or nonlinear, plates and
shells, with or without geometrical irregularity [3–5]. In particular, Indeitsev et al. [1]
studied the interaction of a vibrating stamp supported by a spring and an ideal fluid with a
free surface located in a plane of an infinitely long channel of small depth. A study of the
longitudinal oscillations of the plate excited by an oncoming flow of a viscous fluid in a
channel with parallel walls was carried out by Kurzin et al. [2] Kurzin et al. considered the
case when the plate’s end is fixed on a spring and the plate itself performs forced transverse
oscillations. The influence of a liquid’s viscosity leads to the complete damping of the free
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vibrations of such elastic structural elements over time, which allows us to consider only
the forced vibrations arising from various causes.

There are a fair number of publications devoted to studying the interaction of fluid and
elastic elements. For example, in [6], Bochkarev et al. carried out experimental studies to
determine the natural frequencies of the oscillations of rectangular plates that interact with
the free surface of water. For this, various types of supports at the ends of the plates were
considered. Amabile et al. [7,8] engaged in research on the state of shells that contained a
flow of an inviscid and incompressible fluid. For example, the response of such shells to
harmonic excitation in the spectral vicinity of one of the lowest natural frequencies was
studied in [7], and the stability of a circular, cross-sectional cylindrical shell with hinged
ends was studied in [8] using the Galerkin method. The effect of viscous structural damping
was introduced in [8] to account for energy dissipation.

Numerical modeling of the stability of the gap between two shells was carried out
in [9,10] using the finite element method for different values of the stiffness of the outer
shell and the fluid flow parameters. A mathematical model was considered to predict the
hydroelastic response of a mechanical system consisting of a multilayer, circular plate that
forms the wall of a narrow channel filled with viscous fluid [11]. Kondratov et al. [12]
constructed a mathematical model for the two-dimensional problem of the hydroelastic
interaction between the channel wall and the end seal through a pulsating layer of a viscous
fluid. The end seal was considered as a linear elastic suspension.

Kheiri et al. [13] studied the dynamics and stability of a pipe conveying fluid in the
case when the restrained end supports of the pipe are flexible. Barman et al. [14] studied
the effect of an elastic bottom in the interaction of a two-layer fluid with a caisson-type,
multi-chamber, porous breakwater fitted with a perforated frontwall. In addition, Barman
et al. [14] showed that shear force and bottom deflection, and accordingly the elastic
parameters of the seafloor, affect wave scattering.

The evaluation of the Duffing equation parameters is one of the most important
tasks that should be resolved for solving the above problems. There are a number of
works that are devoted to the experimental determination of the parameters of the Duffing
equation, for example [15,16]. However, the experimental data must be processed by
numerical methods, and this introduces an additional error in determining the values of
the parameters.

In the model proposed in this work, the damping coefficient is determined analytically
from the solution of the coupled hydroelasticity problem. This coefficient is determined
by the physical parameters of the liquid and the geometric dimensions of the channel.
However, there are no studies of the hydroelastic response of the channel endwall sus-
pended on a nonlinear spring due to the interaction of the endwall with the vibrating wall
of the channel through the viscous fluid that fills it. At the same time, the solution to this
theoretical problem is required to solve such practical problems as studying the vibrations
of bellows made of nonlinear materials or located on a nonlinear foundation; studying the
oscillations of sensitive elements of pressure sensors (piezoelectric elements) mounted on a
non-linear substrate; the study and control of the state of the channel with liquid according
to the parameters of the vibration of its mechanical seal; etc. For example, the results of
the proposed theoretical study can be useful for such problems as the hydroelastic analysis
of a moored, floating, and submerged flexible, porous plate [17], the investigation of the
effect of a flexible, floating plate on the dynamics of fluid flow over a mild slope [18], the
analysis of the hydroelastic response of a moored, floating, flexible plate [19], etc. [20–23].
The future perspective is the application of the presented solution to the mathematical
modeling of nano- and micro-spacecraft systems with fluids. Such an application is related
to space sustainability, which is a new topic that involves knowledge in different fields
aimed at the conscious use of space and its transportations and facilities for future life in
space and on new planets [24].
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Thus, it can be noted that the problem that is proposed in the paper for a solution is
relevant to modern practical problems of technology and therefore requires a solution. This
fact determines the scientific novelty and relevance of this study.

2. Problem Statement

Consider a narrow channel formed by two parallel, rigid walls (Figure 1). The channel-
wall dimensions in the plan are 2� × b. The center of the Cartesian coordinate system
xyz is located at the center of the inner surface of the lower fixed wall. We are studying
a two-dimensional problem, so the change in the hydrodynamic parameters of the fluid
along the y axis is neglected, which is equivalent to condition 2� << b.

 
Figure 1. Scheme of a two-dimensional channel with an endwall supported by a spring.

The upper-channel wall oscillates in the direction of the z-axis according to a given
harmonic law. The initial distance between the upper and lower walls is δ0, and, since
the channel is narrow, 2� >> δ0. The channel is completely filled with a viscous fluid, the
compressibility of which is neglected. The amplitude of the oscillations of the upper wall
is zm << δ0. At the left end of the channel, it is assumed that the pressure p0 is constant,
which is equivalent to the free outflow of fluid into a large cavity. Starting at this point in
time, the value of this pressure is taken as the reference value and set equal to zero. The
right channel-end is a mechanical seal in the form of a rigid wall supported by a spring
with rigid cubic nonlinearity. That means the spring has the nonlinear characteristic of the
restoring force, which changes symmetrically depending on its tension–compression, and
the spring stiffness increases during compression. The rigid wall at the end of the right
channel can move in the direction of the axis with the amplitude xm << �. At the right end,
we assume that the fluid flow rate coincides with the flow rate due to its displacement by
the endwall, so no leaks are present. Moreover, we take into account that the transient
processes decay due to the viscosity of the liquid. So, we study the steady, nonlinear, forced
vibrations of the endwall of the channel, i.e., the anharmonic vibrations [25,26].

It should be noted that, since the problem is symmetrical about the Oy axis, it is
sufficient to consider this problem in the two-dimensional case. This approach is widely
used in solving practical problems.

Let the law of motion of the upper wall be harmonic, and it can be expressed in the
following form:

z = zm fz(ωt), fz(ωt) = sin(ωt), (1)

where ω is the frequency of harmonic oscillations, and t is the time.
The equations of motion for a viscous fluid in the narrow channel are the Navier–Stokes

equations and the continuity equation, written for a plane problem of hydromechanics [27,28]:

∂ux
∂t + ux

∂ux
∂x + uz

∂ux
∂z = − 1

ρ
∂p
∂x + ν

(
∂2ux
∂x2 + ∂2ux

∂z2

)
,

∂uz
∂t + ux

∂uz
∂x + uz

∂uz
∂z = − 1

ρ
∂p
∂z + ν

(
∂2uz
∂x2 + ∂2uz

∂z2

)
,

∂ux
∂x + ∂uz

∂z = 0,

(2)

where ux, uz are the projections of the fluid velocity vector on the coordinate axes, p is the
pressure, ρ is the density, and ν is the fluid kinematic viscosity.
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The boundary conditions of Equation (2) are the non-slip conditions for the liquid at
the upper and lower walls of the channel. They are expressed in the coincidence of the
velocities of the fluid and the channel walls:

ux = 0, uz = 0 at z = 0,
ux = 0, uz =

dz∗
∂t at z = z∗,

(3)

For the right and left channels, two different types of conditions should be formulated.
The first one is the condition that the pressure at the left end coincides with the reference
value of pressure. The second is the condition that the fluid flow rate at the channel end
coincides with the flow rate because of its displacement by the endwall. These conditions
can be written as follow:

p = p0 = 0 at x = −�,∫ z∗
0 uxdz = δ0

dx∗
dt at x = x∗,

(4)

where z∗ is the motion predetermined law of the upper channel wall, x∗ is the motion law
of the channel endwall, and p0 is the reference pressure value.

Note that the wall displacements in the x and z directions are represented as x∗ =
� + xm fx(ηt) and z∗ = δ0 + zm fz(ωt) in expressions (3) and (4). Additionally, η is the
characteristic frequency of the nonlinear oscillations of the endwall.

The equation of motion for the endwall as a nonlinear spring-mass system has the
following form:

m
d2x
dt2 + n1x + n3x3 = b

∫ z∗

0
p|x=x∗dz, (5)

where m is the endwall mass, n1 is the coefficient of rigidity of the support spring attached
to the linear term, and n3 > 0 is the stiffness coefficient of the support spring attached to the
nonlinear cubic term.

3. Determination of Endwall Response

Let us introduce the dimensionless variables and small parameters of the problem:

ψ = δ0
� << 1, λ = zm

δ0
<< 1, ξ = x

� , ζ = z
δ0

, ux = zmω
ψ Uξ ,

uz = zmωUζ , p = p0 +
ρνzmω

δ0ψ2 P,
(6)

where ψ, λ are the small parameters that characterize the problem; also, we will consider
that, in the formulation under consideration, xm/� << 1 and xmψ/zm = O(1).

Studying the equations of fluid dynamics, we take into account those for narrow gaps;
as follows from the theory of hydrodynamic lubrication [27,28], the motion of the fluid can
be considered as creeping; that is, the inertial terms in these equations can be neglected.
Then, taking into account the variables (6), Equation (2) has the form

− ∂P
∂ξ + ψ2 ∂2Uξ

∂ξ2 +
∂2Uξ

∂ζ2 = 0,

− ∂P
∂ζ + ψ2

[
ψ2 ∂2Uζ

∂ξ2 +
∂2Uζ

∂ζ2

]
= 0,

∂Uξ

∂ξ +
∂Uζ

∂ζ = 0.

(7)

The boundary conditions for Equation (7) in dimensionless variables (5), according to
Equations (3) and (4), are written as follows:

Uξ = Uζ = 0 at ζ = 0,
Uξ = 0, Uζ =

1
ω

d fz(ωt)
dt at ζ = 1 + λ fz(ωt),

P = 0 at ξ = −1,∫ 1+λ fz
0 Uξdζ = xmψ

zm
1
ω

d fx(ηt)
dt at ξ = 1 + (xm/�) fx(ηt).

(8)
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Note that there are regular perturbations in the proposed formulation of the problem.
This means that each subsequent term of the asymptotic decomposition in a small parameter
will be significantly lesser than the previous ones. Additionally, that will be true in the
entire range of changes in the problem’s independent variables and physical parameters.
Using this approach, we have, in Equation (7) and the boundary conditions (8), ψ = o(1),
λ = xm/� = o(1), xmψ/zm = O(1), and the terms at λ, xm/�, ψ, and ψ2 can be omitted [29].
As a result, for the case of creeping fluid motion in a narrow channel, we obtain the
following equations for its dynamics:

− ∂P
∂ξ +

∂2Uξ

∂ζ2 = 0,
∂P
∂ζ = 0,

∂Uξ

∂ξ +
∂Uζ

∂ζ = 0.

(9)

Taking into account the above remarks, the boundary conditions (8) have the following
form:

Uξ = Uζ = 0 at ζ = 0,
Uξ = 0, Uζ =

1
ω

d fz(ωt)
dt at ζ = 1,

P = 0 at ξ = −1,∫ 1
0 Uξdζ = xmψ

zm
1
ω

d fx(ηt)
dt at ξ = 1.

(10)

According to the second equation in Equation (9), the pressure does not depend on
the coordinate ζ. Therefore, Equation (5), taking into account Equation (6), is written as

m
d2x
dt2 + n1x + n3x3 = δ0bρνzmω(δ0ψ

2)
−1

P|ξ=1. (11)

Solving Equation (9) with boundary conditions (10), we find that

Uξ =
ζ2−ζ

2
∂P
∂ξ ,

Uζ =
1

12
∂2P
∂ξ2

(
3ζ2 − 2ζ3),

P = 6
ω

d f (ωt)z
dt

(
ξ2 − 1

) − 12
(

1
ω

d fz(ωt)
dt + xmψ

zm
1
ω

d fx(ηt)
dt

)
(ξ + 1).

(12)

Then, the pressure in the channel cross-section at its right end is equal to

P|ξ=1 = −24
(

1
ω

d fz(ωt)
dt

+
xmψ

zm

1
ω

d fx(ηt)
dt

)
. (13)

Taking into account Equation (13), we write Equation (11) as

m
d2x
dt2 + Kx

dx
dt

+ n1x + n3x3 = −Kz
dz
dt

(14)

and taking into account the predetermined law of the movement of the upper wall (1), this
equation can be written in the following form:

m
d2x
dt2 + Kx

dx
dt

+ n1x + n3x3 = −zmωKz cosωt, (15)

where Kx = 24b�ρν/δ0 and Kz = 24b�2ρν/δ2
0 are the damping coefficients due to the

viscous fluid influence.
The multiplier −zmω represents the amplitude of the vibration velocity of the upper

channel wall. The right side of Equation (15) is the driving force, which varies according to
the harmonic law with amplitude −zmωKz. Therefore, Equation (15) is the Duffing oscillator
equation. Furthermore, we assume that the vibration velocity amplitude zmω is set on the
basis of a velocity of 1 m/s, i.e., zmω = k ·1 (m/s), where k is the coefficient determining
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vibration overload by speed. It is known [25,26] that the solution of the Duffing equation
for small oscillation amplitudes and damping coefficients is an anharmonic oscillation.

As is known [25,26], the Duffing equation (Equation (15)) can be solved using the
harmonic balance method. Further study is limited by the research of the main hydroelastic
response of the channel endwall at a frequency close to the driving force frequency. The
frequency of the forced vibrations of the endwall is assumed to be equal to the frequency of
the driving force in this method, and the desired solution is represented as a harmonic one,
that is η ≈ ω and x = xmcos(ωt − ϕ). When we perform the linearization procedure for
Equation (15) by the harmonic balance method [25,26], we obtain the following algebraic
system:

xm
(
n1 − mω2) + 3

4 n3x3
m = −zmωKz cos ϕ,

Kxωxm = −zmωKz sin ϕ.
(16)

Squaring the right and left parts of these equations and then adding them, we obtain
an equation for determining the primary hydroelastic response of the endwall:((

n1 − mω2
)
+

3
4

n3x2
m

)2
x2

m + (Kxωxm)
2 = (zmωKz)

2. (17)

From Equation (17), taking into account our previous remarks, we can write the
primary hydroelastic response of the channel endwall, which is supported on the spring
with cubic nonlinearity and performs nonlinear oscillations with the frequency of the
driving force, i.e., its nonlinear amplitude-frequency response:

xm =
kKz/m√

(ω2∗ −ω2)
2 + (Kxω/m)2

, ω2∗(xm) = (n1/m) + (3/4)x2
mn3/m, (18)

which, by solving it for ω, can be reduced to the form:

ω2 = ω2∗ −
1
2

(
Kx

m

)2
±

√(
kKz

xmm

)2
−ω2∗

(
Kx

m

)2
− 1

4

(
Kx

m

)4
. (19)

The first term ω∗ in Equation (19) defines the so-called skeletal curve, which cor-
responds to the Duffing equation, from which the damping term and driving force are
excluded, i.e., for the problem under consideration, in Equation (15) (or in Equation (19))
Kz = Kx = 0 is set. In other words, the skeletal curve is the curve of the natural undamped
oscillations of a nonlinear conservative system with cubic nonlinearity.

In addition, from Equation (16), the phase characteristic of the considered channel
wall can be obtained:

tgϕ =
Kxω/m
ω2∗ −ω2 . (20)

The right and left parts of expression (18) include the amplitude of the endwall
vibrations, making it difficult to use this expression directly. However, the nonlinear
hydroelastic response can be constructed numerically using expression (19). Note that we
have the case of supporting the endwall of the channel on a linear spring for which n3 = 0.
In this case, the endwall will undergo harmonic oscillations excited by the vibration of the
upper wall of the channel, and expression (18) will be a linear amplitude characteristic that
unambiguously connects the amplitude and frequency of the oscillations of the endwall.

Some numerical experiments were conducted to illustrate the results obtained. The
nonlinear and linear hydroelastic responses of the channel endwall were calculated accord-
ing to (19) and (18) for zmω = 1 m/s, k = 1.5 with the following geometric and physical–
mechanical parameters: � = 0.1 m, δ0 = 0.05 m, b = 0.5 m, m = 0.5 kg, n1 = 107 kg/s2, n3 = 9
× 1012 kg/(m2s2), ρ = 1.84 × 103 kg/m3, and ν = 2.53 × 10−4 m2/s. The calculated curves
of the hydroelastic response of the channel wall are shown in Figure 2.
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Figure 2. Hydroelastic response of the channel wall: 1: linear support spring: black line (n3 = 0),
2: spring with strong cubic nonlinearity: red line (n3 > 0); the dotted line shows the skeletal curve ω;

A and B—frequencies at which the amplitudes of nonlinear oscillations can change abruptly; green
lines with arrows—directions of amplitude change.

4. Discussion

As can be seen from the presented calculations, the curvature of the amplitude charac-
teristic at the primary resonance is observed when the cubic nonlinearity of the end-support
spring is considered. Moreover, the constructed mathematical model makes it possible to
determine the frequencies at which the amplitudes of nonlinear oscillations can change
abruptly. As shown in Figure 2, these frequencies are in the range between points A and
B. A jump change in the oscillations’ amplitude of the endwall is observed at these points
when the frequency of oscillations of the upper wall changes. It is known [25,26] that the
lower part of the nonlinear hydroelastic response curve between points A and B is unstable.
Arrows indicate the directions of the jumps in amplitude. An increase in the amplitude of
the vibration velocity of the upper wall will lead to a rise in the range of these frequencies.

To verify the constructed mathematical model, the experimental results obtained by
Jiao et al. [23] can be used. Jiao et al. studied the longitudinal vibrations of the bellows,
considering the damping properties of a viscous fluid in a linear formulation using the
following parameters:

� = 0.05 m, δ0 = 0.0065 m, b = 0.038π m, n1 = 10.13 × 103 kg/s2, ρ = 9.03 × 102 kg/m3, ν = 10−4 m2/s.

The calculated theoretical value of the damping factor in the longitudinal direction
is equal to Kx = 2 Ns/m (see Formula (15)) for a system with the parameters presented
above. The experimentally determined damping coefficient in the longitudinal direction
was 3.547 Ns/m.

Furthermore, the linear hydroelastic response of the bellows was calculated using
Formula (18), assuming n3 = 0, to reduce the proposed model to a linear one. The calculation
result is shown in Figure 3.
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Figure 3. Hydroelastic response of the channel wall. The theoretical curve is based on experimental
data [23].

The experimental data presented above were obtained at a resonance frequency of
200 Hz, as stated in [23]. The resonant frequency calculated according to the proposed
model is equal to 201.3 Hz. So, theoretical and experimental results are in good agreement
for the linear case.

The above comparison shows that the proposed model is quite adequate for the
process under study and expands the possibility of its use in the case when taking into
account the nonlinear properties of the bellows material.

Thus, the proposed model can evaluate vibrations of sensitive elements mounted on
nonlinear elastic foundations and those in contact with a layer of viscous fluid, as used, for
example, in pressure sensors.

5. Conclusions

Since the developed mathematical model is fundamental in nature, it can be used in
modeling various devices and systems which have narrow channels filled with a viscous
fluid and which are subjected to vibrations on one side of the channel.

For example, the mathematical model developed can be used in the aerospace field
to model the dynamics of fluid-based angular rate sensors [30], for instance, for the rate-
integrating gyroscope, when we are considering the nonlinearity of the end seal (bellows)
of the sensor cavity where the float is located.

Another example would be coolant pipes that are subjected to vibration from the
engine. Of particular interest is the application of the presented solution to the mathematical
modeling of nano- and micro-spacecraft systems with fluids since the proposed model
allows the consideration of some boundary effects, which is important for nano- and
micro-spacecraft due to their small size.

Thus, in this paper, a new mathematical model for studying nonlinear hydroelastic
oscillations of a channel endwall supported by a spring with strong cubic nonlinearity
is proposed. It is shown that, for a narrow channel filled with a viscous incompressible
fluid, the equation of motion for its endwall is reduced to the Duffing equation, with the
damping coefficient determined by the viscosity of the fluid and the geometric dimensions
of the channel.
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Abstract: In this paper, a new kind of mathematical modeling is studied by providing a five-
compartmental system of differential equations with respect to new hybrid generalized fractal-
fractional derivatives. For the first time, we design a model of giving up smoking to analyze its
dynamical behaviors by considering two parameters of such generalized operators; i.e., fractal dimen-
sion and fractional order. We apply a special sub-category of increasing functions to investigate the
existence of solutions. Uniqueness property is derived by a standard method based on the Lipschitz
rule. After proving stability property, the equilibrium points are obtained and asymptotically stable
solutions are studied. Finally, we illustrate all analytical results and findings via numerical algorithms
and graphs obtained by Lagrangian piece-wise interpolation, and discuss all behaviors of the relevant
solutions in the fractal-fractional system.

Keywords: hybrid fractal-fractional derivative; smoking model; approximate solution; stability;
sensitivity analysis; Lagrangian piece-wise interpolation

MSC: 34A08; 65P99; 49J15

1. Introduction

Smoking has always been one of the known causes of many human diseases, which
threatens the physical health of a large part of the world’s population (both smokers and
non-smokers). The impact of tobacco abuse, especially cigarettes, on different parts of the
human body can be seen so clearly that one of its primary effects is the death of more
than 5,000,000 people per year. If we want to make a comparison between smokers and
non-smokers, we can refer to the results of medical reports in hospitals around the world,
in which the rate of heart attacks and the prevalence of lung cancer in smokers compared
to non-smokers are more than 70% and 10%, respectively. Even based on the reports of
WHO, the lifespan of non-smokers has been reported to be 10 to 13 years longer than that
of smokers. Smoking in the short term can cause bad breath, yellowing of teeth, wrinkled
skin, persistent cough, and high blood pressure. In the long term, this bad habit causes
dangerous diseases such as stomach ulcers, heart diseases and cancers such as lung, mouth
and gums, and throat.
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Due to the widespread use of tobacco among teenagers and even children, every year
the World Health Organization requests researchers and doctors to study its effects on
people’s health and present the results in the form of detailed reports and charts and tables.
Recently, using the data and numerical results of such studies, researchers have done
mathematical modeling of the process of smoking in various statistical societies, and using
mathematical algorithms and computer calculations, they are trying to provide methods
to control and optimize the outputs. In this direction, researchers turned to mathematical
tools and models, and tried to simulate the dynamics of processes and phenomena with the
help of differential equations (ordinary and partial) and to get accurate solutions by solving
them. Zaman [1] in 2011 designed a model of giving up smoking and analyzed the system
qualitatively. In 2008, Sharomi et al. [2] proposed a system of curtailing smoking in the form
of four differential equations and investigated stable and unstable solutions. After that,
Alkhudhari et al. [3] suggested a four-compartmental system of smoking and checked the
effect of smokers on temporary quitters based on the equlibrium criteria. Rahman et al. [4]
studied an age-structured model of giving up smoking and conducted an optimal analysis.
In addition, in another work, Rahman et al. [5] extended their model of giving up smoking
by considering the harmonic mean incidence rate. Other full studies can be found in this
regard such as Refs. [6,7].

Due to the weakness of classical operators, generalized fractional operators (Caputo–
Fabrizio [8] and Atangana–Baleanu [9]) quickly attracted the attention of many researchers.
The non-locality property of the new operators along with their memory property nar-
rowed the field to classical operators such as Riemann–Liouville and Caputo [10]. Of
course, there were still those who used classical operators for their modeling to study the
dynamics of smoking. For instances, Erturk et al. [11] constructed a five-compartmental
fractional giving up smoking model (based on the standard model [12]) via the singular
Caputo derivative, and by using the MSGDT method, derived the approximate solutions
and lastly, compared their results with the data obtained by the Runge–Kutta algorithm.
Zeb et al. [13] gave another fractional model of such a phenomena and analyzed it via the
HAM technique. Finally, the giving up smoking and smoking cessation models have been
evaluated with various parameters and control tools in different mathematical models with
new nonsingular operators, among which we can refer to the research articles published in
Refs. [14–16].

More recently, another class of hybrid two-parametric operators was given by Atan-
gaga, for which we can derive more accurate numerical outputs in comparison to both
fractional and integer-order operators [17,18]. Due to the effect of fractal dimension and
fractional order in the final result, these operators are called “Fractal-Fractional Operators".
In the structure of these operators, the role of fractal derivative is essential, and by consid-
ering the kernels, these operators divide into three types called the Power law, exponential
decay law, and generalized Mittag–Leffler law-type fractal-fractional operators. For more
information, one can refer to [17,18]. The effectiveness and efficiency of new operators in
obtaining accurate results can be seen in a large number of relevant studies [19–29].

To state the contribution of our work, as we said above, we know that the classical
standard time-derivatives are local operators and have some weaknesses in the prediction
of the dynamics of a phenomenon. Even a well-known fractional derivative such as the
Caputo–Liouville has its own limitations. Since its kernel has a weak memory effect in
comparison to the newly-defined fractal-fractional derivatives, this type of derivative
cannot precisely describe the full effect of the memory. Hence, due to the strong memory
effect, complex dynamics, and non-locality of the generalized hybrid fractal-fractional
operators, our main objective in the present research is to use the novel two-parametric
power-law type (κ1,κ2)-fractal-fractional derivative to model the giving up smoking
efficiently. In addition, dynamics of the supposed fractal-fractional model is predicted by a
numerical scheme with respect to two fractional and fractal parameters continuously for
which we can analyze some behaviors of the system accurately.
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The rest of the paper is organized as follows. Section 2 deals with preliminaries and
Section 3 describes the extended model. Mathematical analysis is carried out in Section 4,
whereas in Section 6, the numerical simulations are done based on the algorithms derived
in Section 5. Section 7 concludes the paper.

2. Preliminaries

In this section, we recall some basic definitions and theorems about fixed point theory
and fractal-fractional calculus that are needed in the sequel.

Let Φ denotes a family of non-decreasing functions φ : [0, ∞) → [0, ∞) such that

∞

∑
m=1

φm(t) < ∞, ∀ t > 0,

and
φ(t) < t, ∀ t > 0.

Definition 1 ([30]). Let X be a metric space, ψ : X 2 → R+ ∪ {0}, and V : X → X be a selfmap.

(1) V is called ψ-φ-contraction if for each z1, z2 ∈ X ,

ψ(z1, z2)d(Vz1,Vz2) ≤ φ(d(z1, z2)),

where d denotes the metric function.
(2) V is called ψ-admissible if ψ(z1, z2) ≥ 1 gives ψ(Vz1,Vz2) ≥ 1.

Now, we will state two theorems in relation to the existence of a fixed point for such
special contractions, which is used in the following sections.

Theorem 1 ([30]). Assume that (X , d) is a complete metric space, ψ : X ×X → R, φ ∈ Φ, and
V : X → X is an ψ-φ-contraction such that

(1) V is ψ-admissible;
(2) There is z0 ∈ X such that ψ(z0,Vz0) ≥ 1;
(3) For every sequence {zn} in X with zn → z and ψ(zn, zn+1) ≥ 1 for all n ≥ 1, we have

ψ(zn, z) ≥ 1 for all n ≥ 1.

Then, V has at least a fixed point.

In addition, the following theorem is another theorem that is used for existence results
in the sequel.

Theorem 2 (Leray–Schauder [31]). Assume that X is a Banach space, A is a convex, bounded
and closed set in X , G is an open subset of A such that 0 ∈ G, and Y : Ḡ → A is a compact and
continuous map. Then either:

(i) There is z ∈ Ḡ such that Y(z) = z, or;
(ii) There are z ∈ ∂G and α ∈ (0, 1) so that z = αY(z).

Now, we recall fractal-fractional operators.

Definition 2 ([17]). Let a, b ∈ R with a < b. Assume that a continuous real-valued function V is
a fractal differentiable on (a, b) from the dimension κ2. Then the power-law type (κ1,κ2)-fractal-
fractional derivative of V in the Riemann–Liouville sense is defined by

FFPD
κ1,κ2
a,t V(t) = 1

Γ(n −κ1)

d
dtκ2

∫ t

a
(t− u)n−κ1−1V(u)du, (n − 1 < κ1,κ2 ≤ n ∈ N),

where t ∈ (a, b) and
dV(u)
duκ2

= limt→u
V(t)− V(u)
tκ2 − uκ2

is the fractal derivative.
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If κ2 = 1, then FFPD
κ1,κ2
a,t reduces to the Riemann–Liouville fractional derivative

RLVD
κ1
a,t of order κ1.

Definition 3 ([17]). Let a, b ∈ R with a < b. Assume that the real-valued function V is continuous
on (a, b). The power-law type (κ1,κ2)-fractal-fractional integral of V is defined by

FFPI
κ1,κ2
a,t V(t) = κ2

Γ(κ1)

∫ t

a
uκ2−1(t− u)κ1−1V(u)du, (1)

where t ∈ (a, b).

3. Description of the Giving up Smoking Model

This section is devoted to introducing a new generalized version of the giving up
smoking model conducted by Singh, Kumar, Al Qurashi, and Baleanu in [14]. The total
population in this model is illustrated by N (t) at every time t ∈ [0, T]. This general class
N (t) is divided into five subclasses; i.e., we have three types of smokers, such as potential,
occasional, and heavy smokers denoted by P(t), O(t) and H(t), respectively. In addition,
we have two other groups such as temporary quitters denoted by Q(t) and those smokers
who quit permanently denoted by R(t). Therefore, N (t) = P(t) +O(t) +H(t) +Q(t) +
R(t). By the above assumptions, the mentioned model is designed by:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dP(t)

dt
= υ− ϑP(t)−ωP(t)O(t),

dO(t)

dt
= −ϑO(t) +ωP(t)O(t)− γO(t)H(t),

dH(t)

dt
= (−(ϑ+ θ) + γO(t))H(t) + ζQ(t),

dQ(t)

dt
= −(ϑ+ ζ)Q(t) + θ(1 − q)H(t),

dR(t)

dt
= −ϑR(t) + qθH(t).

(2)

In view of the widespread use of tobacco among teenagers and children coupled
with the weakness of classical and generalized fractional operators in description of such
phenomena, by considering the effect of fractal dimension and fractional order in the
final result on modeling dynamical systems, the above model is extended by replacing
the classical time-derivative with the generalized new hybrid (κ1,κ2)-fractal-fractional
derivative as follows⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

FFPD
κ1,κ2
0,t P(t) = υ− ϑP(t)−ωP(t)O(t),

FFPD
κ1,κ2
0,t O(t) = −ϑO(t) +ωP(t)O(t)− γO(t)H(t),

FFPD
κ1,κ2
0,t H(t) = (−(ϑ+ θ) + γO(t))H(t) + ζQ(t),

FFPD
κ1,κ2
0,t Q(t) = −(ϑ+ ζ)Q(t) + θ(1 − q)H(t),

FFPD
κ1,κ2
0,t R(t) = −ϑR(t) + qθH(t),

(3)

subject to initial conditions

P(0) = P0 ≥ 0, O(0) = O0 ≥ 0, H(0) = H0 ≥ 0,

Q(0) = Q0 ≥ 0, R(0) = R0 ≥ 0,
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where FFPD
κ1,κ2
0,t is the power-law type (κ!,κ2)-fractal-fractional derivative with κ1,κ2

∈ (0, 1].
In (3), we have some non-negative parameters that we here aim to introduce:

(1) ω: the contact rate between the potential smokers and smokers who smoke occasionally;
(2) γ: the rate of contact between occasional smokers and heavy smokers;
(3) ζ: the rate at which temporary quitters return back to smoking;
(4) ϑ: the rate of natural death;
(5) θ: the rate of giving up smoking;
(6) (1 − q): (at a rate θ) the fraction of smokers who temporarily give up smoking;
(7) q: (at a rate θ) the remaining fraction of smokers who give up smoking forever;
(8) υ: the rate of becoming a potential smoker.

The main point of difference of our contribution about the model derived in Ref. [14]
is that the first equation in Ref. [14] is somehow confusing and ineffective. Therefore, one
of our major contributions is to modify it with the constant influx of potential smokers.

4. Mathematical Analysis

In this section, the existence of unique solution, stability analysis for the fractal-
fractional operator, equilibrium point, sensitivity analysis and asymptotic stability analysis
are carried out.

4.1. Existence of Solutions

In real cases, the existence of such dynamical systems is an important question before
every analysis and simulation. To answer such a question, we apply fixed point theory. We
guarantee this existence in this section. For conducting a qualitative analysis, we consider
the Banach space X = U5, where U = C(J,R), and the norm

‖Λ‖X = ‖(P ,O,H,Q,R)‖X = max
{|P(t)|+ |O(t)|+ |H(t)|+ |Q(t)|+ |R(t)| : t ∈ J

}
.

At first, the model (3) can be rewritten by follows⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V1
(
t,P(t),O(t),H(t),Q(t),R(t)

)
= υ− ϑP(t)−ωP(t)O(t),

V2
(
t,P(t),O(t),H(t),Q(t),R(t)

)
= −ϑO(t) +ωP(t)O(t)− γO(t)H(t),

V3
(
t,P(t),O(t),H(t),Q(t),R(t)

)
= (−(ϑ+ θ) + γO(t))H(t) + ζQ(t),

V4
(
t,P(t),O(t),H(t),Q(t),R(t)

)
= −(ϑ+ ζ)Q(t) + θ(1 − q)H(t),

V5
(
t,P(t),O(t),H(t),Q(t),R(t)

)
= −ϑR(t) + qθH(t).

(4)

Hence, it becomes⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

RLVD
κ1
0,tP(t) = κ2t

κ2−1V1
(
t,P(t),O(t),H(t),Q(t),R(t)

)
,

RLVD
κ1
0,tO(t) = κ2t

κ2−1V2
(
t,P(t),O(t),H(t),Q(t),R(t)

)
,

RLVD
κ1
0,tH(t) = κ2t

κ2−1V3
(
t,P(t),O(t),H(t),Q(t),R(t)

)
,

RLVD
κ1
0,tQ(t) = κ2t

κ2−1V4
(
t,P(t),O(t),H(t),Q(t),R(t)

)
,

RLVD
κ1
0,tR(t) = κ2t

κ2−1V5
(
t,P(t),O(t),H(t),Q(t),R(t)

)
.

(5)
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By (5), we can write a mini-compact system of IVPs (3) as⎧⎨⎩
RLVD

κ1
0,tΛ(t) = κ2t

κ2−1V(
t, Λ(t)

)
, κ1,κ2 ∈ (0, 1],

Λ(0) = Λ0,
(6)

where

Λ(t) =
(P(t),O(t),H(t),Q(t),R(t)

)T , Λ0 =
(P0,O0,H0,Q0,R0

)T , (7)

and

V(
t, Λ(t)

)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V1
(
t,P(t),O(t),H(t),Q(t),R(t)

)
,

V2
(
t,P(t),O(t),H(t),Q(t),R(t)

)
,

V3
(
t,P(t),O(t),H(t),Q(t),R(t)

)
,

V4
(
t,P(t),O(t),H(t),Q(t),R(t)

)
,

V5
(
t,P(t),O(t),H(t),Q(t),R(t)

)
.

(8)

By properties of the hybrid (κ1,κ2)-fractal-fractional integral, the solution of the
mini-compact system of IVP (6) is given by

Λ(t) = Λ(0) +
κ2

Γ(κ1)

∫ t

0
uκ2−1(t− u)κ1−1V(

u, Λ(u)
)

du. (9)

Now, we extend the above compact (κ1,κ2)-fractal-fractional integral equation to a
system of (κ1,κ2)-fractal-fractional integral equations as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P(t) = P0 +
κ2

Γ(κ1)

∫ t

0
uκ2−1(t− u)κ1−1V1

(
u,P(u),O(u),H(u),Q(u),R(u)

)
du,

O(t) = O0 +
κ2

Γ(κ1)

∫ t

0
uκ2−1(t− u)κ1−1V2

(
u,P(u),O(u),H(u),Q(u),R(u)

)
du,

H(t) = H0 +
κ2

Γ(κ1)

∫ t

0
uκ2−1(t− u)κ1−1V3

(
u,P(u),O(u),H(u),Q(u),R(u)

)
du,

Q(t) = Q0 +
κ2

Γ(κ1)

∫ t

0
uκ2−1(t− u)κ1−1V4

(
u,P(u),O(u),H(u),Q(u),R(u)

)
du,

R(t) = R0 +
κ2

Γ(κ1)

∫ t

0
uκ2−1(t− u)κ1−1V5

(
u,P(u),O(u),H(u),Q(u),R(u)

)
du.

(10)

Our aim in this step is to transform the problem (3) into a fixed point problem. Define
Y : X → X by

Y(Λ(t)) = Λ(0) +
κ2

Γ(κ1)

∫ t

0
uκ2−1(t− u)κ1−1V(

u, Λ(u)
)

du, (11)

for each t ∈ J and Λ ∈ X .

Theorem 3. There are κ : R×R → R, V ∈ C(J× X ,X ) and an increasing function φ ∈ Φ
such that
(H1) for any Λ1, Λ2 ∈ X and t ∈ J,∣∣V(t, Λ1(t))− V(t, Λ2(t))

∣∣ ≤ δφ
(|Λ1(t)− Λ2(t)|

)
,
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where δ =
Γ(κ2 +κ1)

Tκ2+κ1−1Γ(κ2 + 1)
, and κ

(
Λ1(t), Λ2(t)

) ≥ 0.

(H2) There is Λ0 ∈ X such that for all t ∈ J,

κ
(
Λ0(t),Y

(
Λ0(t)

)) ≥ 0,

and the inequality
κ
(
Λ1(t), Λ2(t)

) ≥ 0,

implies that
κ
(Y(

Λ1(t)
)
,Y(

Λ2(t)
)) ≥ 0,

for any Λ1, Λ2 ∈ X and t ∈ J.
(H3) For every sequence {Λn}n≥1 in X converging to Λ and for each t ∈ J,

κ
(
Λn(t), Λn+1(t)

) ≥ 0,

gives
κ
(
Λn(t), Λ(t)

) ≥ 0.

Then, there is at least a solution for the fractal-fractional hybrid model of giving up smoking (3).

Proof. Let Λ1 and Λ2 belong to X with κ
(
Λ1(t), Λ2(t)

) ≥ 0 for each t ∈ J. In this case, the
Euler Beta function gives

∣∣Y(
Λ1(t)

) −Y(
Λ2(t)

)∣∣ ≤ κ2

Γ(κ1)

∫ t

0
uκ2−1(t− u)κ1−1∣∣V(

u, Λ1(u)
) − V(

u, Λ2(u)
)∣∣du

≤ κ2δ

Γ(κ1)

∫ t

0
uκ2−1(t− u)κ1−1φ

(∣∣Λ1(u)− Λ2(u)
∣∣)du

≤ κ2δφ
(‖Λ1 − Λ2‖X

)
Γ(κ1)

∫ t

0
uκ2−1(t− u)κ1−1du

≤ κ2δTκ2+κ1−1B(κ2,κ1)

Γ(κ1)
φ
(‖Λ1 − Λ2‖X

)
= φ

(‖Λ1 − Λ2‖X
)
.

Thus, ∥∥Y(Λ1)−Y(Λ2)
∥∥X ≤ φ

(‖Λ1 − Λ2‖X
)
.

Now, for each Λ1, Λ2 ∈ X , we define a function ψ : X ×X → [0,+∞) as

ψ(Λ1, Λ2) =

⎧⎨⎩1 if κ
(
Λ1(t), Λ2(t)

) ≥ 0,

0 otherwise,

Then, for every Λ1, Λ2 ∈ X , we will obtain

ψ(Λ1, Λ2)d
(Y(Λ1),Y(Λ2)

) ≤ φ
(
d(Λ1, Λ2)

)
.

Hence, Y is an ψ− φ−contraction. To show that Y is ψ−admissible, let Λ1, Λ2 ∈ X
be arbitrary with ψ(Λ1, Λ2) ≥ 1. From property of ψ, it yields

κ
(
Λ1(t), Λ2(t)

) ≥ 0.

Then, the condition (H2) gives

κ
(Y(

Λ1(t)
)
,Y(

Λ2(t)
)) ≥ 0.
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Once again, by property of ψ, we follow that ψ
(Y(

Λ1
)
,Y(

Λ2
)) ≥ 1. Therefore, Y is

ψ−admissible on X .
The condition (H2) ensures the existence of Λ0 ∈ X , which satisfies

κ
(
Λ0(t),Y

(
Λ0(t)

)) ≥ 0,

for each t ∈ J. Evidently, ψ
(
Λ0,Y(

Λ0
)) ≥ 1,

Now, suppose that {Λn}n≥1 is a sequence defined in X converging to Λ and for all
n ≥ 1, ψ

(
Λn, Λn+1

) ≥ 1. From the property of ψ, we obtain

κ
(
Λn(t), Λn+1(t)

) ≥ 0.

Thus, the condition (C3) gives us that

κ
(
Λn(t), Λ(t)

) ≥ 0.

This implies ψ
(
Λn, Λ

) ≥ 1 for all n ≥ 1. Thus the item (3) of Theorem 1 is valid.
Therefore, Theorem 1 is valid. In consequence, Y has a fixed point Λ∗ ∈ X . Hence
Λ∗ =

(P∗,O∗,H∗,Q∗,R∗)T is a solution of the fractal-fractional model of giving up
smoking (3).

Theorem 4. Let V ∈ C(J×X ,X ).
(D1) There are K ∈ L1(J, [0,+∞)) and an increasing function B ∈ C([0,+∞), (0,+∞))

provided that ∣∣B(t, Λ(t))
∣∣ ≤ K(t)B

(|Λ(t)|), ∀t ∈ J, and Λ ∈ X ;

(D2) There is b > 0 such that

b > Λ0 +
Tκ2+κ1−1Γ(κ2 + 1)

Γ(κ2 +κ1)
K∗

0 B(b), (12)

where K∗
0 = sup

t∈J
|K(t)|.

Then, there is a solution for the fractal-fractional model of giving up smoking (3).

Proof. To complete the proof, we consider Y defined in (11), and the closed ball

NL = {Λ ∈ X : ‖Λ‖X ≤ L}.

The continuity of V implies that of Y . Now, by (D1) and for Λ ∈ NL, we estimate

∣∣Y(
Λ(t)

)∣∣ ≤ |Λ(0)|+ κ2

Γ(κ1)

∫ t

0
uκ2−1(t− u)κ1−1∣∣V(

u, Λ(u)
)∣∣du

≤ Λ0 +
κ2

Γ(κ1)

∫ t

0
uκ2−1(t− u)κ1−1K(u)B

(|Λ(u)|)du

≤ Λ0 +
κ2Tκ2+κ1−1B(κ2,κ1)

Γ(κ1)
K∗

0 B
(‖Λ‖X

)
≤ Λ0 +

Tκ2+κ1−1Γ(κ2 + 1)
Γ(κ2 +κ1)

K∗
0 B(L).

Consequently, we get

‖YΛ‖X ≤ Λ0 +
Tκ2+κ1−1Γ(κ2 + 1)

Γ(κ2 +κ1)
K∗

0 B(L) < +∞. (13)
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Thus, Y is uniformly bounded on X . Next, we choose arbitrarily t, τ ∈ [0, T] with
t < τ and Λ ∈ NL. By

V∗ = sup
(t,Λ)∈J×NL

∣∣V(t, Λ(t))
∣∣ < +∞,

we find∣∣Y(
Λ(τ)

) −Y(
Λ(t)

)∣∣ =

∣∣∣∣ κ2

Γ(κ1)

∫ τ

0
uκ2−1(t− u)κ1−1V(

u, Λ(u)
)
du

− κ2

Γ(κ1)

∫ t

0
uκ2−1(t− u)κ1−1V(

u, Λ(u)
)
du

∣∣∣∣
≤ κ2V∗

Γ(κ1)

∣∣∣∣ ∫ τ

0
uκ2−1(t− u)κ1−1du−

∫ t

0
uκ2−1(t− u)κ1−1du

∣∣∣∣
≤ κ2V∗B(κ2,κ1)

Γ(κ1)

(
τκ2+κ1−1 − tκ2+κ1−1

)
=

V∗Γ(κ2 + 1)
Γ(κ2 +κ1)

(
τκ2+κ1−1 − tκ2+κ1−1

)
. (14)

Note that from the above computations, the right-hand side of (14) is not dependent
on Λ and also converges to 0 as t → τ. So

‖Y(
Λ(τ)

) −Y(
Λ(t)

)‖X → 0,

as t → τ, which shows the equicontinuity of Y . By referring to the Arzelà–Ascoli theorem,
Y is compact on NL. Now, Theorem 2 is valid on Y . We have one of the consequences (i)
or (ii). We know that from (D2), there exists b > 0 such that

Λ0 +
Tκ2+κ1−1Γ(κ2 + 1)

Γ(κ2 +κ1)
K∗

0 B(b) < b. (15)

Then, we consider
G = {Λ ∈ X : ‖Λ‖X < b}.

By assuming the existence of Λ ∈ ∂G and α ∈ (0, 1) such that Λ = αY(Λ), we
can write

b = ‖Λ‖X = α‖YΛ‖X < Λ0 +
Tκ2+κ1−1Γ(κ2 + 1)

Γ(κ2 +κ1)
K∗

0 B
(‖Λ‖X

)
< Λ0 +

Tκ2+κ1−1Γ(κ2 + 1)
Γ(κ2 +κ1)

K∗
0 B(b) < b,

by (15). However, this is impossible. Thus (ii) does not hold and by Theorem 2, Y has a
fixed point in G which is considered as a solution of the fractal-fractional model of giving
up smoking (3).

4.2. Unique Solution

To prove the uniqueness of the solution in the model of giving up smoking (3), we use
the Lipschitz property under the functions Vi, (i = 1, . . . 5) defined by (4).

Lemma 1. Let the functions P ,O,H,Q,R,P∗,O∗,H∗,Q∗,R∗ ∈ U = C(J,R) and assume that
(P1) ‖P‖ ≤ γ1, ‖O‖ ≤ γ2, ‖H‖ ≤ γ3, ‖Q‖ ≤ γ4, ‖R‖ ≤ γ5 for some positive constants
γ1,γ2,γ3,γ4,γ5.

Then, the functions V1,V2,V3,V4,V5 defined by (4) satisfy the Lipschitz property with respect
to the corresponding components if

δ1 = ϑ+ωγ2, δ2 = ϑ+ωγ1 + γγ3,
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δ3 = ϑ+ θ + γγ2, δ4 = ϑ+ ζ, δ5 = ϑ. (16)

Proof. We begin with function V1. For other solution functions, the proof is similar. For
any functions P ,P∗ ∈ U = C(J,R), we get∥∥V1

(
t,P(t),O(t),H(t),Q(t),R(t)

) − V1
(
t,P∗(t),O∗(t),H∗(t),Q∗(t),R∗(t)

)∥∥
=

∥∥(
ϑ− ϑP(t)−ωP(t)O(t)

) − (
ϑ− ϑP∗(t)−ωP∗(t)O(t)

)∥∥
≤ (

ϑ+ω‖O(t)‖)∥∥P(t)−P∗(t)
∥∥

≤ (
ϑ+ωγ2‖

)∥∥P(t)−P∗(t)
∥∥

= δ1
∥∥P(t)−P∗(t)

∥∥.

This shows that V1 is a Lipschitz function with respect to P with the Lipschitz constant
δ1 > 0. By continuing similar proofs, we see that the functions V2,V3,V4,V5 are Lipschitiz
with respect to the corresponding components with the Lipschitz constants δ2, δ3, δ4, δ5 > 0,
respectively.

Theorem 5. By considering the condition (P1), the fractal-fractional model of giving up smok-
ing (3) has a unique solution if

Tκ2+κ1−1Γ(κ2 + 1)
Γ(κ2 +κ1)

δi < 1, i ∈ {1, . . . , 5}. (17)

Proof. Let us consider the fact that the conclusion is not to be held. That is, there exists an-
other solution. Assume that

(P∗,O∗,H∗,Q∗,R∗) is another solution with initial condition(P0,O0,H0,Q0,R0
)

such that by (10), we have

P∗(t) = P0 +
κ2

Γ(κ1)

∫ t

0
uκ2−1(t− u)κ1−1V1

(
u,P∗(u),O∗(u),H∗(u),Q∗(u),R∗(u)

)
du,

O∗(t) = O0 +
κ2

Γ(κ1)

∫ t

0
uκ2−1(t− u)κ1−1V2

(
u,P∗(u),O∗(u),H∗(u),Q∗(u),R∗(u)

)
du,

H∗(t) = H0 +
κ2

Γ(κ1)

∫ t

0
uκ2−1(t− u)κ1−1V3

(
u,P∗(u),O∗(u),H∗(u),Q∗(u),R∗(u)

)
du,

Q∗(t) = Q0 +
κ2

Γ(κ1)

∫ t

0
uκ2−1(t− u)κ1−1V4

(
u,P∗(u),O∗(u),H∗(u),Q∗(u),R∗(u)

)
du,

R∗(t) = R0 +
κ2

Γ(κ1)

∫ t

0
uκ2−1(t− u)κ1−1V5

(
u,P∗(u),O∗(u),H∗(u),Q∗(u),R∗(u)

)
du.

Now, we can estimate

∣∣P(t)−P∗(t)
∣∣ ≤ κ2

Γ(κ1)

∫ t

0
uκ2−1(t− u)κ1−1

∣∣∣V1
(
u,P(u),O(u),H(u),Q(u),R(u)

)
−V1

(
u,P∗(u),O∗(u),H∗(u),Q∗(u),R∗(u)

)∣∣∣ du

≤ κ2

Γ(κ1)
δ1

∥∥P −P∗∥∥ ∫ t

0
uκ2−1(t− u)κ1−1 du

≤ Tκ2+κ1−1Γ(κ2 + 1)
Γ(κ2 +κ1)

δ1
∥∥P −P∗∥∥.

This gives [
1 − Tκ2+κ1−1Γ(κ2 + 1)

Γ(κ2 +κ1)
δ1

]∥∥P −P∗∥∥ ≤ 0.
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Then from (17), it follows that
∥∥P − P∗∥∥ = 0, and accordingly P = P∗. Similarly,

we get [
1 − Tκ2+κ1−1Γ(κ2 + 1)

Γ(κ2 +κ1)
δ2

]∥∥O −O∗∥∥ ≤ 0,

which gives that
∥∥O −O∗∥∥ = 0, and so O = O∗. By the same arguments, we obtain[

1 − Tκ2+κ1−1Γ(κ2 + 1)
Γ(κ2 +κ1)

δ3

]∥∥H−H∗∥∥ ≤ 0.

Therefore,
∥∥H−H∗∥∥ = 0, and so H = H∗. In a similar way, we immediately get[

1 − Tκ2+κ1−1Γ(κ2 + 1)
Γ(κ2 +κ1)

δ4

]∥∥Q−Q∗∥∥ ≤ 0,

and [
1 − Tκ2+κ1−1Γ(κ2 + 1)

Γ(κ2 +κ1)
δ5

]∥∥R−R∗∥∥ ≤ 0,

The last two inequalities give
∥∥Q−Q∗∥∥ = 0 and

∥∥R−R∗∥∥ = 0, respectively. Thus,
Q = Q∗ and R = R∗. Consequently, we find that(P ,O,H,Q,R)

=
(P∗,O∗,H∗,Q∗,R∗).

This shows that the fractal-fractional model of giving up smoking (3) has a unique
solution.

4.3. Stability Criterion

In this section, we aim to study the stability property based on the definition of Ulam–
Hyers. This definition has applicable significance since it states that if we are studying an
Ulam–Hyers stable system then we do not have to obtain the exact solution. Therefore,
by proving the stability of the solutions of the given system, we can confidently focus on
its approximate solutions in the next sections. More precisely, we are here to study the
stability property for solutions of the fractal-fractional model of giving up smoking (3). The
main focus is on the Ulam–Hyers and Ulam–Hyers–Rassias stability. For more information,
we refer to Refs. [32,33].

Definition 4. The fractal-fractional model of of giving up smoking (3) is Ulam–Hyers stable
if there are real constants MVi > 0, i ∈ {1, . . . , 5} such that for all Li > 0 and for all(P∗,O∗,H∗,Q∗,R∗) ∈ X satisfying⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∣∣∣FFPDκ1,κ2
0,t P∗(t)− V1

(
t,P∗(t),O∗(t),H∗(t),Q∗(t),R∗(t)

)∣∣∣ < L1,∣∣∣FFPDκ1,κ2
0,t O∗(t)− V2

(
t,P∗(t),O∗(t),H∗(t),Q∗(t),R∗(t)

)∣∣∣ < L2,∣∣∣FFPDκ1,κ2
0,t H∗(t)− V3

(
t,P∗(t),O∗(t),H∗(t),Q∗(t),R∗(t)

)∣∣∣ < L3,∣∣∣FFPDκ1,κ2
0,t Q∗(t)− V4

(
t,P∗(t),O∗(t),H∗(t),Q∗(t),R∗(t)

)∣∣∣ < L4,∣∣∣FFPDκ1,κ2
0,t R∗(t)− V5

(
t,P∗(t),O∗(t),H∗(t),Q∗(t),R∗(t)

)∣∣∣ < L5,

(18)

125



Mathematics 2022, 10, 4369

there is
(P ,O,H,Q,R) ∈ X satisfying the fractal-fractional hybrid model of giving up smoking (3)

such that ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∣∣∣P∗(t)−P(t)
∣∣∣ ≤ MV1 L1,∣∣∣O∗(t)−O(t)
∣∣∣ ≤ MV2 L2,∣∣∣H∗(t)−H(t)
∣∣∣ ≤ MV3 L3,∣∣∣Q∗(t)−Q(t)
∣∣∣ ≤ MV4 L4,∣∣∣R∗(t)−R(t)
∣∣∣ ≤ MV5 L5, ∀t ∈ J.

(19)

Definition 5. The fractal-fractional model of giving up smoking (3) is generalized Ulam–Hyers
stable if there are real constants MVi ∈ C(R+,R+), (i ∈ {1, . . . , 5}) with MVi (0) = 0 such that
for all Li > 0 and for all

(P∗,O∗,H∗,Q∗,R∗) ∈ X satisfying (18), there is
(P ,O,H,Q,R) ∈

X as a solution of the fractal-fractional hybrid model of giving up smoking (3) such that⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∣∣∣P∗(t)−P(t)
∣∣∣ ≤ MV1(L1),

∣∣∣O∗(t)−O(t)
∣∣∣ ≤ MV2(L2),∣∣∣H∗(t)−H(t)

∣∣∣ ≤ MV3(L3),
∣∣∣Q∗(t)−Q(t)

∣∣∣ ≤ MV4(L4),∣∣∣R∗(t)−R(t)
∣∣∣ ≤ MV5(L5), ∀t ∈ J.

Note that Definition 4 is obtained from Definition 5.

Remark 1. Notice that
(P∗,O∗,H∗,Q∗,R∗) ∈ X is called a solution for inequalities (4) if and

only if there are �1,�2,�3,�4,�5 ∈ C([0, T],R) (depending on P∗,O∗,H∗,Q∗,R∗, respectively)
so that for each t ∈ J,
(i)

∣∣�i(t)
∣∣ < Li, (i ∈ {1, . . . , 5}),

(ii) We have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

FFPD
κ1,κ2
0,t P∗(t) = V1

(
t,P∗(t),O∗(t),H∗(t),Q∗(t),R∗(t)

)
+ �1(t),

FFPD
κ1,κ2
0,t O∗(t) = V2

(
t,P∗(t),O∗(t),H∗(t),Q∗(t),R∗(t)

)
+ �2(t),

FFPD
κ1,κ2
0,t H∗(t) = V3

(
t,P∗(t),O∗(t),H∗(t),Q∗(t),R∗(t)

)
+ �3(t),

FFPD
κ1,κ2
0,t Q∗(t) = V4

(
t,P∗(t),O∗(t),H∗(t),Q∗(t),R∗(t)

)
+ �4(t),

FFPD
κ1,κ2
0,t R∗(t) = V5

(
t,P∗(t),O∗(t),H∗(t),Q∗(t),R∗(t)

)
+ �5(t).

Definition 6. The fractal-fractional model of giving up smoking (3) is Ulam–Hyers–Rassias stable
with respect to the functions βi, (i ∈ {1, . . . , 5}), if there are constants 0 < M(Vi ,βi)

∈ R so that
for each Li > 0 and for each

(P∗,O∗,H∗,Q∗,R∗) ∈ X satisfying⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∣∣∣FFPDκ1,κ2
0,t P∗(t)− V1

(
t,P∗(t),O∗(t),H∗(t),Q∗(t),R∗(t)

)∣∣∣ < L1β1(t),∣∣∣FFPDκ1,κ2
0,t O∗(t)− V2

(
t,P∗(t),O∗(t),H∗(t),Q∗(t),R∗(t)

)∣∣∣ < L2β2(t),∣∣∣FFPDκ1,κ2
0,t H∗(t)− V3

(
t,P∗(t),O∗(t),H∗(t),Q∗(t),R∗(t)

)∣∣∣ < L3β3(t),∣∣∣FFPDκ1,κ2
0,t Q∗(t)− V4

(
t,P∗(t),O∗(t),H∗(t),Q∗(t),R∗(t)

)∣∣∣ < L4β4(t),∣∣∣FFPDκ1,κ2
0,t R∗(t)− V5

(
t,P∗(t),O∗(t),H∗(t),Q∗(t),R∗(t)

)∣∣∣ < L5β5(t),

(20)
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there is
(P ,O,H,Q,R) ∈ X satisfying the fractaional-fractal hybrid model of giving up smok-

ing (3) such that ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∣∣∣P∗(t)−P(t)
∣∣∣ ≤ L1M(V1,β1)

β1(t),∣∣∣O∗(t)−O(t)
∣∣∣ ≤ L2M(V2,β2)

β2(t),∣∣∣H∗(t)−H(t)
∣∣∣ ≤ L3M(V3,β3)

β3(t),∣∣∣Q∗(t)−Q(t)
∣∣∣ ≤ L4M(V4,β4)

β4(t),∣∣∣R∗(t)−R(t)
∣∣∣ ≤ L5M(V5,β5)

β5(t), ∀t ∈ J.

Definition 7. The fractal-fractional model of giving up smoking (3) is generalized Ulam–Hyers–
Rassias stable with respect to βi, (i ∈ {1, . . . , 5}), if there are constants 0 < M(Vi ,βi)

∈ R so that
for each

(P∗,O∗,H∗,Q∗,R∗) ∈ X satisfying⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∣∣∣FFPDκ1,κ2
0,t P∗(t)− V1

(
t,P∗(t),O∗(t),H∗(t),Q∗(t),R∗(t)

)∣∣∣ < β1(t),∣∣∣FFPDκ1,κ2
0,t O∗(t)− V2

(
t,P∗(t),O∗(t),H∗(t),Q∗(t),R∗(t)

)∣∣∣ < β2(t),∣∣∣FFPDκ1,κ2
0,t H∗(t)− V3

(
t,P∗(t),O∗(t),H∗(t),Q∗(t),R∗(t)

)∣∣∣ < β3(t),∣∣∣FFPDκ1,κ2
0,t Q∗(t)− V4

(
t,P∗(t),O∗(t),H∗(t),Q∗(t),R∗(t)

)∣∣∣ < β4(t),∣∣∣FFPDκ1,κ2
0,t R∗(t)− V5

(
t,P∗(t),O∗(t),H∗(t),Q∗(t),R∗(t)

)∣∣∣ < β5(t),

there is
(P ,O,H,Q,R) ∈ X satisfying the fractal-fractional hybrid model of giving up smoking (3)

such that ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∣∣∣P∗(t)−P(t)
∣∣∣ ≤ M(V1,β1)

β1(t),∣∣∣O∗(t)−O(t)
∣∣∣ ≤ M(V2,β2)

β2(t),∣∣∣H∗(t)−H(t)
∣∣∣ ≤ M(V3,β3)

β3(t),∣∣∣Q∗(t)−Q(t)
∣∣∣ ≤ M(V4,β4)

β4(t),∣∣∣R∗(t)−R(t)
∣∣∣ ≤ M(V5,β5)

β5(t), ∀t ∈ J.

Remark 2. Notice that
(P∗,O∗,H∗,Q∗,R∗) ∈ X is called a solution for inequalities (5) if and

only if there are �1,�2,�3,�4,�5 ∈ C([0, T],R) (depending on P∗,O∗,H∗,Q∗,R∗, respectively)
such that for each t ∈ J,
(i)

∣∣�i(t)
∣∣ < Liβi(t), (i ∈ {1, . . . , 5}),

(ii) We have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

FFPD
κ1,κ2
0,t P∗(t) = V1

(
t,P∗(t),O∗(t),H∗(t),Q∗(t),R∗(t)

)
+ �1(t),

FFPD
κ1,κ2
0,t O∗(t) = V2

(
t,P∗(t),O∗(t),H∗(t),Q∗(t),R∗(t)

)
+ �2(t),

FFPD
κ1,κ2
0,t H∗(t) = V3

(
t,P∗(t),O∗(t),H∗(t),Q∗(t),R∗(t)

)
+ �3(t),

FFPD
κ1,κ2
0,t Q∗(t) = V4

(
t,P∗(t),O∗(t),H∗(t),Q∗(t),R∗(t)

)
+ �4(t),

FFPD
κ1,κ2
0,t R∗(t) = V5

(
t,P∗(t),O∗(t),H∗(t),Q∗(t),R∗(t)

)
+ �5(t).
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Theorem 6. If the condition (P1) holds, then the fractal-fractional model of giving up smoking (3)
is Ulam–Hyers and generalized Ulam–Hyers stable such that

Tκ2+κ1−1Γ(κ2 + 1)
Γ(κ2 +κ1)

δi < 1, i ∈ {1, . . . , 5},

where δi’s are defined by (16).

Proof. Let L1 > 0 and P∗ ∈ U be arbitrary so that∣∣∣FFPDκ1,κ2
0,t P∗(t)− V1

(
t,P∗(t),O∗(t),H∗(t),Q∗(t),R∗(t)

)∣∣∣ < L1.

Then, in view of Remark 1, we can find a function �1(t) satisfying

FFPD
κ1,κ2
0,(t) P∗(t) = V1

(
t,P∗(t),O∗(t),H∗(t),Q∗(t),R∗(t)

)
+ �1(t),

with |�1(t)| ≤ L1. It follows that

P∗(t) = P0 +
κ2

Γ(κ1)

∫ t

0
uκ2−1(t− u)κ1−1V1

(
u,P∗(u),O∗(u),H∗(u),Q∗(u),R∗(u)

)
du

+
κ2

Γ(κ1)

∫ t

0
uκ2−1(t− u)κ1−1

�1(u)du.

By using Theorem 5, let P ∈ U be a unique solution of the fractal-fractional model of
giving up smoking (3). Then P(t) is given by

P(t) = P0 +
κ2

Γ(κ1)

∫ t

0
uκ2−1(t− u)κ1−1V1

(
u,P(u),O(u),H(u),Q(u),R(u)

)
du.

Then∣∣P∗(t)−P(t)
∣∣ ≤ κ2

Γ(κ1)

∫ t

0
uκ2−1(t− u)κ1−1

× ∣∣V1
(
u,P∗(u),O∗(u),H∗(u),Q∗(u),R∗(u)

)
−V1

(
u,P(u),O(u),H(u),Q(u),R(u)

)∣∣ du

+
κ2

Γ(κ1)

∫ t

0
uκ2−1(t− u)κ1−1|�1(u)|du

≤ Tκ2+κ1−1Γ(κ2 + 1)
Γ(κ2 +κ1)

δ1
∥∥P∗ − P∥∥ +

Tκ2+κ1−1Γ(κ2 + 1)
Γ(κ2 +κ1)

L1.

Hence, we get

∥∥P∗ − P∥∥ ≤ Tκ2+κ1−1Γ(κ2 + 1)
Γ(κ2 +κ1)− Tκ2+κ1−1Γ(κ2 + 1)δ1

L1.

If we let MV1 =
Tκ2+κ1−1Γ(κ2 + 1)

Γ(κ2 +κ1)− Tκ2+κ1−1Γ(κ2 + 1)δ1
, then we obtain

∥∥P∗ − P∥∥ ≤
MV1 L1. Again, we find that∥∥O∗ −O∥∥ ≤ MV2 L2,

∥∥H∗ −H∥∥ ≤ MV3 L3,
∥∥Q∗ −Q∥∥ ≤ MV4 L4,∥∥R∗ −R∥∥ ≤ MV5 L5,
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where

MVi =
Tκ2+κ1−1Γ(κ2 + 1)

Γ(κ2 +κ1)− Tκ2+κ1−1Γ(κ2 + 1)δi
, (i ∈ {2, . . . , 5}).

Thus, the Ulam–Hyers stability of the fractal-fractional model of giving up smoking (3)
is fulfilled. Now, set

MVi (Li) =
Tκ2+κ1−1Γ(κ2 + 1)Li

Γ(κ2 +κ1)− Tκ2+κ1−1Γ(κ2 + 1)δi
, (i ∈ {1, . . . , 5}).

Thus, MVi (0) = 0. Hence, the generalized Ulam–Hyers stability is satisfied for the
mentioned model (3).

Theorem 7. Assume that the condition (P1) holds and,
(P2) There are increasing functions βi ∈ C([0, T],R) and Ωβi > 0 (i ∈ {1, . . . , 5}) such

that for each t ∈ J,

FFPI
κ1,κ2
0,t βi(t) < Ωβiβi(t), (i ∈ {1, . . . , 5}). (21)

Then, the fractal-fractional model of giving up smoking (3) is Ulam–Hyers–Rassias and
generalized Ulam–Hyers–Rassias stable.

Proof. For each constant L1 > 0 and for each P∗ ∈ U satisfying∣∣∣FFPDκ1,κ2
0,t P∗(t)− V1

(
t,P∗(t),O∗(t),H∗(t),Q∗(t),R∗(t)

)∣∣∣ < L1β1(t),

we can find the function �1(t) such that

FFPD
κ1,κ2
0,(t) P∗(t) = V1

(
t,P∗(t),O∗(t),H∗(t),Q∗(t),R∗(t)

)
+ �1(t),

with
∣∣�1(t)

∣∣ < L1β1(t). It follows that

P∗(t) = P0 +
κ2

Γ(κ1)

∫ t

0
uκ2−1(t− u)κ1−1V1

(
u,P∗(u),O∗(u),H∗(u),Q∗(u),R∗(u)

)
du

+
κ2

Γ(κ1)

∫ t

0
uκ2−1(t− u)κ1−1

�1(u)du.

By using Theorem 5, let P ∈ U be a unique solution of the fractal-fractional model of
giving up smoking (3). Then P(t) is formulated as

P(t) = P0 +
κ2

Γ(κ1)

∫ t

0
uκ2−1(t− u)κ1−1V1

(
u,P(u),O(u),H(u),Q(u),R(u)

)
du.

Then, by (21), we get

∣∣P∗(t)−P(t)
∣∣ ≤ κ2

Γ(κ1)

∫ t

0
uκ2−1(t− u)κ1−1

× ∣∣V1
(
u,P∗(u),O∗(u),H∗(u),Q∗(u),R∗(u)

)
−V1

(
u,P(u),O(u),H(u),Q(u),R(u)

)∣∣ du

+
κ2

Γ(κ1)

∫ t

0
uκ2−1(t− u)κ1−1β1(u)du

≤ L1Ωβ1β1(t) +
Tκ2+κ1−1Γ(κ2 + 1)

Γ(κ2 +κ1)
δ1

∥∥P∗ − P∥∥.
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Accordingly, it gives

∥∥P∗ − P∥∥ ≤ L1Γ(κ2 +κ1)Ωβ1

Γ(κ2 +κ1)− Tκ2+κ1−1Γ(κ2 + 1)δ1
β1(t).

If we let

M(V1,β1)
=

Γ(κ2 +κ1)Ωβ1

Γ(κ2 +κ1)− Tκ2+κ1−1Γ(κ2 + 1)δ1
,

then, we obtain
∥∥P∗ − P∥∥ ≤ L1M(V1,β1)

β1(t). In a similar way, we also have∥∥O∗ −O∥∥ ≤ L2M(V2,β2)
β2(t),

∥∥H∗ −H∥∥ ≤ L3M(V3,β3)
β3(t),∥∥Q∗ −Q∥∥ ≤ L4M(V4,β4)

β4(t),
∥∥R∗ −R∥∥ ≤ L5M(V5,β5)

β5(t),

where

M(Vi ,βi)
=

Γ(κ2 +κ1)Ωβi

Γ(κ2 +κ1)− Tκ2+κ1−1Γ(κ2 + 1)δi
, (i ∈ {2, . . . , 5}).

Therefore, the fractal-fractional model of giving up smoking (3) is Ulam–Hyers–Rassias
stable. If Li = 1, (i ∈ {1, . . . , 5}), then the fractal-fractional model of giving up smoking
(3) is generalized Ulam–Hyers–Rassias stable.

4.4. Equilibrium Points

When

FFPD
κ1,κ2
0,t P(t) = FFPD

κ1,κ2
0,t O(t) = FFPD

κ1,κ2
0,t H(t) = FFPD

κ1,κ2
0,t Q(t) = FFPD

κ1,κ2
0,t R(t) = 0,

we can find the following results from the fractal-fractional model of giving up smoking (3).

Theorem 8. The fractal-fractional model of giving up smoking (3) has at most three equilibrium
points, namely the smoking-free equilibrium point

(
υ
ϑ , 0, 0, 0, 0

)
and smoking equilibrium points⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(
υ

ϑ+ωŌ , υ
ϑ+ωŌ , ωυ−ϑ2−ϑωŌ

γϑ+γωŌ , (ϑ+θ)
ζ H̄, qθ

ϑ H̄
)

,

and(
υ
ϑ , υ

ϑ+ωŌ , ωυ−ϑ2−ϑωŌ
γϑ+γωŌ , θ(1−q)

(ϑ+ζ)
H̄, qθ

ϑ H̄
)

.

Proof. Let (P̄ , Ō, H̄, Q̄, R̄) denote the equilibrium point for the fractal-fractional model of
giving up smoking (3). When Ō = H̄ = Q̄ = R̄ = 0, then from the first equation in (3), we
find that

P̄ =
υ

ϑ
,

whereas, if Ō �= 0, H̄ �= 0, Q̄ �= 0, R̄ �= 0, then, we obtain

P̄ =
υ

ϑ+ωŌ ,

which is substituted into the second equation in (3) to give

H̄ =
ωυ− ϑ2 − ϑωŌ

γϑ+ γωŌ .

Consequently, it follows trivially from the remaining subsequent equations that

Q̄ =
(ϑ+ θ)

ζ
H̄ or Q̄ =

θ(1 − q)
(ϑ+ ζ)

H̄ & R̄ =
qθ
ϑ
H̄,

and it completes the proof.
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4.5. Time-Dependent Basic Reproduction Number

In view of the derivation of the model in Equation (3), the basic reproduction num-
ber, henceforth denoted as R0 is expected to define the expected number of secondary
cases produced, in a completely potential population, by a typical smoking individual [34].
Therefore, the progression from O to H and failure to quit smoking are not considered to
be new cases, but rather the progression of a smoking individual through various compart-
ments. Hence, the following results are stated. Moreover, time-dependent variations in the
transmission potential of infectious diseases are of practical importance. Consequently, in
Ref. [35] it is reported that time-dependent reproduction number R(t) measures the disease
transmissibility, which can be estimated over the course of disease progression. Thus, R(t)
has been particularly useful for monitoring epidemic trends by measuring the progress
of interventions over time and for providing parameters for mathematical phenomena.
Hence, by following [36], one can find the following results.

Theorem 9. The time-dependent basic reproduction number for the fractal-fractional model of
giving up smoking (3) is

R(t) =
S(t)
S(0)R0, where, R0 =

ωυ

ϑ2 .

Proof. It suffices to derive the R0. Then, the remaining part of the proof is followed easily.
The respective vectors for the rate of appearance of new smokers and transfer of individuals
in the model (3) are

F =

⎛⎜⎜⎜⎜⎝
ωPO

0
0
0
0

⎞⎟⎟⎟⎟⎠ & V =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ϑP +ωPO − υ

ϑO + γOH

(ϑ+ θ)H− γO(t)H(t)− ζQ(t)

(ϑ+ ζ)Q(t)− θ(1 − q)H(t)

ϑR(t)− qθH(t).

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Based on the smoking compartments, i.e., O,H,Q and free-smoking equilibrium, we
find that

F =

⎛⎜⎜⎜⎝
ωυ
ϑ 0 0

0 0 0

0 0 0

⎞⎟⎟⎟⎠ & V =

⎛⎜⎜⎜⎝
ϑ 0 0

0 (ϑ+ θ) −ζ

0 −θ(1 − q) (ϑ+ ζ)

⎞⎟⎟⎟⎠.

It gives

V−1 =
1

ϑ[(ϑ+ θ)(ϑ+ ζ)− ζθ(1 − q)]

⎛⎜⎜⎜⎝
(ϑ+ θ)(ϑ+ ζ)− ζθ(1 − q) 0 0

0 ϑ(ϑ+ ζ) ϑθ(1 − q)

0 ϑζ ϑ(ϑ+ ζ)

⎞⎟⎟⎟⎠.

Thus, by Ref. [37], the basic reproduction number is followed easily.

4.6. Sensitivity Analysis

In view of theorem 9, one can see that the sensitivity analysis of R(t) depends mainly
on R0. Thus, in what follows, the analysis is therefore curtailed to the sensitivity of R0. By
recalling that the sensitivity analysis enables us to predict which parameters have a high
impact on the basic reproduction number [38], one of the main objectives is therefore to
suggest strategies to ensure that the necessary control measures are taken to stop smoking
and prevent a possible increase in the number of smokers in the future. Such attempts are,
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of course, attained in the direction of supporting the efforts of lowering the value of the
basic reproduction number. Considering that there are many negative conditions brought
about by smoking, together with the challenge of completely eliminating the smoking
epidemic in a population in a short time, attempts to reduce the spread of smoking are
therefore very important. Thus, lowering the value R0 is one of the most fundamental
issues, as it possesses a major influence on the effect of parameters on the change of R0.
To this end, we will evaluate the influence aspects of the parameters that affect R0 by
determining the normalized forward sensitivity index of it [38]. Starting with the first to
the last parameter listed under model in Equation (2), the normalized forward sensitivity
index of the variable R0 yields the following results.

Theorem 10. The parameters γ, ζ, ϑ, q are likely to bring about the decrease in the time-dependent
basic reproduction number.

Proof. It follows trivially through R0 that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂R0
∂ω × ω

R0
=

∂
[
ωυ
ϑ2

]
∂ω × ω

ωυ
ϑ2

= υ
ϑ2

ϑ2

ωυ = ω−1 > 0,

∂R0
∂γ × γ

R0
=

∂
[
ωυ
ϑ2

]
∂γ × γ

ωυ
ϑ2

= 0,

∂R0
∂ζ × ζ

R0
=

∂
[
ωυ
ϑ2

]
∂ζ × ζ

ωυ
ϑ2

= 0,

∂R0
∂ϑ × ϑ

R0
=

∂
[
ωυ
ϑ2

]
∂ϑ × ϑ

ωυ
ϑ2

= −2 < 0,

∂R0
∂θ × θ

R0
=

∂
[
ωυ
ϑ2

]
∂θ × θ

ωυ
ϑ2

= 0,

∂R0
∂q × q

R0
=

∂
[
ωυ
ϑ2

]
∂q × q

ωυ
ϑ2

= 0,

∂R0
∂υ × υ

R0
=

∂
[
ωυ
ϑ2

]
∂υ × υ

ωυ
ϑ2

= ϑ−1 > 0,

which concludes the proof.

4.7. Asymptotically Stability Analysis

To investigate the local asymptotic stability for the fractal-fractional model of giving
up smoking (3), one requires the Jacobian matrix [39] computed at the equilibrium points
and associated characteristic equation. Let E := (P̄ , Ō, H̄, Q̄, R̄). Thus, the non-zero entries
of the Jacobian matrix are

J(E)(1,1) = −(ϑ+ωŌ), J(E)(1,2) = −ωP̄ , J(E)(2,2) = ωP̄ − ϑ− γH̄,

J(E)(3,2) = γH̄, J(E)(3,3) = −(θ + ϑ), J(E)(3,4) = ζ, J(E)(4,3) = −θ(q − 1),

J(E)(4,4) = −(ϑ+ ζ), J(E)(5,3) = qθ, J(E)(5,5) = −ϑ,

and the associated characteristic equation [40] is

λ5 − a4λ
4 − a3λ

3 − a2λ
2 − a1λ− a0 = 0,

where,

132



Mathematics 2022, 10, 4369

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a4 = γŌ − 5ϑ− ζ − γH̄ − θ −ωŌ +ωP̄ ,

a3 = 4Ōγϑ− 4ϑζ − 10ϑ2 − H̄γθ − 4H̄γϑ− H̄γζ − 4θϑ+ Ōγζ − Ōωθ + P̄ωθ

−4Ōωϑ+ 4P̄ωϑ− Ōωζ + P̄ωζ − qθζ + Ō2γω− H̄Ōγω− ŌP̄γω,

a2 = 6Ōγϑ2 − 6ϑ2ζ − 10ϑ3 − 6H̄γϑ2 − 6θϑ2 − 6Ōωϑ2 + 6P̄ωϑ2 + 3Ōγϑζ − 3Ōωθϑ

+3P̄ωθϑ− 3Ōωϑζ + 3P̄ωϑζ − 3qθϑζ + 3Ō2γωϑ+ Ō2γωζ − 3H̄γθϑ− 3H̄γϑζ

−H̄Ōγωθ − 3H̄Ōγωϑ− H̄Ōγωζ − 3ŌP̄γωϑ− ŌP̄γωζ − H̄γqθζ − Ōωqθζ + P̄ωqθζ,

a1 = 4Ōγϑ3 − 4ϑ3ζ − 5ϑ4 − 4H̄γϑ3 − 4θϑ3 − 4Ōωϑ3 + 4P̄ωϑ3 − 3H̄γθϑ2 − 3H̄γϑ2ζ

+3Ōγϑ2ζ − 3Ōωθϑ2 + 3P̄ωθϑ2 − 3Ōωϑ2ζ + 3P̄ωϑ2ζ − 3qθϑ2ζ + 3Ō2γωϑ2

−3H̄Ōγωϑ2 − 3ŌP̄γωϑ2 + 2Ō2γωϑζ − 2H̄Ōγωθϑ− 2H̄Ōγωϑζ − 2ŌP̄γωϑζ − 2H̄γqθϑζ

−2Ōωqθϑζ + 2P̄ωqθϑζ − H̄Ōγωqθζ,

a0 = Ōγϑ4 − ϑ4ζ − ϑ5 − H̄γϑ4 − θϑ4 − Ōωϑ4 + P̄ωϑ4 − H̄γθϑ3 − H̄γϑ3ζ + Ōγϑ3ζ

−Ōωθϑ3 + P̄ωθϑ3 − Ōωϑ3ζ + P̄ωϑ3ζ − qθϑ3ζ + Ō2γωϑ3 + Ō2γωϑ2ζ − H̄Ōγωϑ3

−ŌP̄γωϑ3 − H̄Ōγωθϑ2 − H̄Ōγωϑ2ζ − ŌP̄γωϑ2ζ − H̄γqθϑ2ζ − Ōωqθϑ2ζ

+P̄ωqθϑ2ζ − H̄Ōγωqθϑζ.

Thus, if

(a) 5ϑ+ ζ + θ > ωυ
ϑ ,

(b) qθζ + 4ϑζ + 10ϑ2 + 4θϑ > (θ + 4ϑ+ ζ)ωυ
ϑ ,

(c) 6ϑ2ζ + 10ϑ3 + 6θϑ2 + 3qθϑζ > (6ϑ2 + 3θϑ+ 3ϑζ + qθζ)ωυ
ϑ ,

(d) 4ϑ2ζ + 5ϑ3 + 4θϑ2 + 3qθϑζ > (4ϑ2 + 3θϑ+ 3ϑζ + 2qθζ)ωυ
ϑ ,

(e) ϑ2ζ + ϑ3 + θϑ2 + qθϑζ > (ϑ2 + θϑ+ ϑζ + qθζ)ωυ
ϑ ,

in that case, the smoking-free equilibrium point is locally stable if the equilibrium points
are positive [41].

Similarly, one finds that if

(a)
5ϑ+ ζ + γH̄+ θ +ωŌ > γŌ +ωP̄ ,

(b) ⎧⎨⎩4Ōωϑ+ Ōωζ + qθζ + H̄Ōγω+ ŌP̄γω+ 4ϑζ + 10ϑ2 + H̄γθ

+4H̄γϑ+ H̄γζ + 4θϑ+ Ōωθ > 4Ōγϑ+ Ōγζ + P̄ωθ + 4P̄ωϑ+ P̄ωζ + Ō2γω,

(c) ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

6ϑ2ζ + 10ϑ3 + 6H̄γϑ2 + 6θϑ2 + 6Ōωϑ2 + 3Ōωθϑ+ 3Ōωϑζ + 3qθϑζ

+3H̄γθϑ+ 3H̄γϑζ + H̄Ōγωθ + 3H̄Ōγωϑ+ H̄Ōγωζ + 3ŌP̄γωϑ+ ŌP̄γωζ

+H̄γqθζ + Ōωqθζ > 6Ōγϑ2 + 6P̄ωϑ2 + 3Ōγϑζ + 3P̄ωθϑ+ 3P̄ωϑζ + 3Ō2γωϑ,

+Ō2γωζ + P̄ωqθζ,
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(d) ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4ϑ3ζ + 5ϑ4 + 4H̄γϑ3 + 4θϑ3 + 4Ōωϑ3 + 3H̄γθϑ2 + 3H̄γϑ2ζ

+3Ōωθϑ2 + 3Ōωϑ2ζ + 3qθϑ2ζ + 3H̄Ōγωϑ2 + 3ŌP̄γωϑ2

+2H̄Ōγωθϑ+ 2H̄Ōγωϑζ + 2ŌP̄γωϑζ − 2H̄γqθϑζ

+2Ōωqθϑζ + H̄Ōγωqθζ > 4Ōγϑ3 + 4P̄ωϑ3

+3Ōγϑ2ζ + 3P̄ωθϑ2 + 3P̄ωϑ2ζ + 3Ō2γωϑ2

+2Ō2γωϑζ + 2P̄ωqθϑζ,

(e) ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϑ4ζ + ϑ5 + H̄γϑ4 + θϑ4 + Ōωϑ4 + H̄γθϑ3 + H̄γϑ3ζ

+Ōωθϑ3 + Ōωϑ3ζ + qθϑ3ζ + H̄Ōγωϑ3 + ŌP̄γωϑ3 + H̄Ōγωθϑ2

+H̄Ōγωϑ2ζ + ŌP̄γωϑ2ζ + H̄γqθϑ2ζ + Ōωqθϑ2ζ + H̄Ōγωqθϑζ

> Ōγϑ4 + P̄ωϑ4 + Ōγϑ3ζ + P̄ωθϑ3 + P̄ωϑ3ζ + Ō2γωϑ3

+Ō2γωϑ2ζ + P̄ωqθϑ2ζ,

then the smoking equilibrium point is locally stable if the equilibrium points are posi-
tive [41].

Lemma 2. The time-dependent basic reproduction number R(t) < 1 is globally stable in X ,
whereas, if R(t) > 1, the unique smoking equilibrium point is globally asymptotically stable in the
interior of X .

Proof. The proof of lemma 2 is similar to the proof established in [42].

5. Numerical Algorithm

In this section, we describe the numerical algorithm for the fractal-fractional model of
giving up smoking (3). To do this, we apply the technique based on the fractal-fractional
derivative operator [18]. To begin this process, we note that the system of fractal-fractional
derivatives in the Riemann–Liouville sense in Equation (3) can be converted to⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

RLD
κ1
0,tP(t) = κ2τ

κ2−1[υ− ϑP(t)−ωP(t)O(t)],

RLD
κ1
0,tO(t) = κ2τ

κ2−1[−ϑO(t) +ωP(t)O(t)− γO(t)H(t)],

RLD
κ1
0,tH(t) = κ2τ

κ2−1[(−(ϑ+ θ) + γO(t))H(t) + ζQ(t)],

RLD
κ1
0,tQ(t) = κ2τ

κ2−1[−(ϑ+ ζ)Q(t) + θ(1 − q)H(t)],

RLD
κ1
0,tR(t) = κ2τ

κ2−1[−ϑR(t) + qθH(t)].

(22)

By applying the Riemann–Liouville fractional integral on both sides of equation in
(22) one obtains
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P(t) = P(0) +
κ2

Γ(κ1)

∫ t

0
ικ2−1(t − ι)κ1−1[υ− ϑP(ι)−ωP(ι)O(ι)]dι,

O(t) = O(0) +
κ2

Γ(κ1)

∫ t

0
ικ2−1(t − ι)κ1−1[−ϑO(ι) +ωP(ι)O(ι)− γO(ι)H(ι)]dι,

H(t) = H(0) +
κ2

Γ(κ1)

∫ t

0
ικ2−1(t − ι)κ1−1[(−(ϑ+ θ) + γO(ι))H(ι) + ζQ(ι)]dι,

Q(t) = Q(0) +
κ2

Γ(κ1)

∫ t

0
ικ2−1(t − ι)κ1−1[−(ϑ+ ζ)Q(ι) + θ(1 − q)H(ι)]dι,

R(t) = R(0) +
κ2

Γ(κ1)

∫ t

0
ικ2−1(t − ι)κ1−1[−ϑR(ι) + qθH(ι)]dι.

(23)

Using a new approach at tn+1, (where n denotes the denotes the number of sub-
intervals) we discretize the mentioned Equation (23) for t = tn+1, and we get⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P(tn+1) = P0 +
κ2

Γ(κ1)

∫ tn+1

0
ικ2−1(tn+1 − ι)κ1−1[υ− ϑP(ι)−ωP(ι)O(ι)]dι,

O(tn+1) = O0 +
κ2

Γ(κ1)

∫ tn+1

0
ικ2−1(tn+1 − ι)κ1−1[−ϑO(ι) +ωP(ι)O(ι)− γO(ι)H(ι)]dι,

H(tn+1) = H0 +
κ2

Γ(κ1)

∫ tn+1

0
ικ2−1(tn+1 − ι)κ1−1[(−(ϑ+ θ) + γO(ι))H(ι) + ζQ(ι)]dι,

Q(tn+1) = Q0 +
κ2

Γ(κ1)

∫ tn+1

0
ικ2−1(tn+1 − ι)κ1−1[−(ϑ+ ζ)Q(ι) + θ(1 − q)H(ι)]dι,

R(tn+1) = R0 +
κ2

Γ(κ1)

∫ tn+1

0
ικ2−1(tn+1 − ι)κ1−1[−ϑR(ι) + qθH(ι)]dι.

(24)

Approximating the obtained integrals in Equation (24), we obtain⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P(tn+1) = P0 +
κ2

Γ(κ1)

n

∑
i=0

∫ ti−1

ti

ικ2−1(tn+1 − ι)κ1−1[υ− ϑP(ι)−ωP(ι)O(ι)]dι,

O(tn+1) = O0 +
κ2

Γ(κ1)

n

∑
i=0

∫ ti−1

ti

ικ2−1(tn+1 − ι)κ1−1[−ϑO(ι) +ωP(ι)O(ι)− γO(ι)H(ι)]dι,

H(tn+1) = H0 +
κ2

Γ(κ1)

n

∑
i=0

∫ ti−1

ti

ικ2−1(tn+1 − ι)κ1−1[(−(ϑ+ θ) + γO(ι))H(ι) + ζQ(ι)]dι,

Q(tn+1) = Q0 +
κ2

Γ(κ1)

n

∑
i=0

∫ ti−1

ti

ικ2−1(tn+1 − ι)κ1−1[−(ϑ+ ζ)Q(ι) + θ(1 − q)H(ι)]dι,

R(tn+1) = R0 +
κ2

Γ(κ1)

n

∑
i=0

∫ ti−1

ti

ικ2−1(tn+1 − ι)κ1−1[−ϑR(ι) + qθH(ι)]dι.

(25)

Applying the Lagrangian piece-wise interpolation [43] to each functions⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ικ2−1(tn+1 − ι)κ1−1[υ− ϑP(ι)−ωP(ι)O(ι)],

ικ2−1(tn+1 − ι)κ1−1[−ϑO(ι) +ωP(ι)O(ι)− γO(ι)H(ι)],

ικ2−1(tn+1 − ι)κ1−1[(−(ϑ+ θ) + γO(ι))H(ι) + ζQ(ι)],

ικ2−1(tn+1 − ι)κ1−1[−(ϑ+ ζ)Q(ι) + θ(1 − q)H(ι)],

ικ2−1(tn+1 − ι)κ1−1[−ϑR(ι) + qθH(ι)],

(26)
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we find⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ικ2−1(tn+1 − ι)κ1−1[υ− ϑP(ι)−ωP(ι)O(ι)]

=
ι−ti−1
ti−ti−1

tκ2−1
i [υ− ϑP(ti)−ωP(ti)O(ti)]

− ι−ti
ti−ti−1

tκ2−1
i−1 [υ− ϑP(ti−1)−ωP(ti−1)O(ti−1)],

ικ2−1(tn+1 − ι)κ1−1[−ϑO(ι) +ωP(ι)O(ι)− γO(ι)H(ι)]

=
ι−ti−1
ti−ti−1

tκ2−1
i [−ϑO(ti) +ωP(ti)O(ti)− γO(ti)H(ti)]

− ι−ti
ti−ti−1

tκ2−1
i−1 [−ϑO(ti−1) +ωP(ti−1)O(ti−1)− γO(ti−1)H(ti−1)],

ικ2−1(tn+1 − ι)κ1−1[(−(ϑ+ θ) + γO(ι))H(ι) + ζQ(ι)]

=
ι−ti−1
ti−ti−1

tκ2−1
i [(−(ϑ+ θ) + γO(ti))H(ti) + ζQ(ti)]

− ι−ti
ti−ti−1

tκ2−1
i−1 [(−(ϑ+ θ) + γO(ti−1))H(ti−1) + ζQ(ti−1)],

ικ2−1(tn+1 − ι)κ1−1[−(ϑ+ ζ)Q(ι) + θ(1 − q)H(ι)]

=
ι−ti−1
ti−ti−1

tκ2−1
i [−(ϑ+ ζ)Q(ti) + θ(1 − q)H(ti)]

− ι−ti
ti−ti−1

tκ2−1
i−1 [−(ϑ+ ζ)Q(ti−1) + θ(1 − q)H(ti−1)],

ικ2−1(tn+1 − ι)κ1−1[−ϑR(ι) + qθH(ι)] =
ι−ti−1
ti−ti−1

tκ2−1
i [−ϑR(ti) + qθH(ti)]

− ι−ti
ti−ti−1

tκ2−1
i−1 [−ϑR(ti−1) + qθH(ti−1)].

(27)

Consequently,

P(tn+1) = P0 +
κ2

Γ(κ1)

n

∑
i=0

∫ ti−1

ti

ικ2−1(tn+1 − ι)κ1−1[
ι− ti−1

ti − ti−1
tκ2−1
i [υ− ϑP(ti)−ωP(ti)O(ti)]

− ι− ti
ti − ti−1

tκ2−1
i−1 [υ− ϑP(ti−1)−ωP(ti−1)O(ti−1)]]dι,

O(tn+1) = O0 +
κ2

Γ(κ1)

n

∑
i=0

∫ ti−1

ti

ικ2−1(tn+1 − ι)κ1−1[−ϑO(ι) +ωP(ι)O(ι)− γO(ι)H(ι)]dι

=
ι− ti−1

ti − ti−1
tκ2−1
i [−ϑO(ti) +ωP(ti)O(ti)− γO(ti)H(ti)]

− ι− ti
ti − ti−1

tκ2−1
i−1 [−ϑO(ti−1) +ωP(ti−1)O(ti−1)− γO(ti−1)H(ti−1)]dι,

H(tn+1) = H0 +
κ2

Γ(κ1)

n

∑
i=0

∫ ti−1

ti

ικ2−1(tn+1 − ι)κ1−1[(−(ϑ+ θ) + γO(ι))H(ι) + ζQ(ι)]dι

=
ι− ti−1

ti − ti−1
tκ2−1
i [(−(ϑ+ θ) + γO(ti))H(ti) + ζQ(ti)] (28)

− ι− ti
ti − ti−1

tκ2−1
i−1 [(−(ϑ+ θ) + γO(ti−1))H(ti−1) + ζQ(ti−1)]dι,

Q(tn+1) = Q0 +
κ2

Γ(κ1)

n

∑
i=0

∫ ti−1

ti

ικ2−1(tn+1 − ι)κ1−1[−(ϑ+ ζ)Q(ι) + θ(1 − q)H(ι)]dι
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=
ι− ti−1

ti − ti−1
tκ2−1
i [−(ϑ+ ζ)Q(ti) + θ(1 − q)H(ti)]

− ι− ti
ti − ti−1

tκ2−1
i−1 [−(ϑ+ ζ)Q(ti−1) + θ(1 − q)H(ti−1)]dι,

R(tn+1) = R0 +
κ2

Γ(κ1)

n

∑
i=0

∫ ti−1

ti

ικ2−1(tn+1 − ι)κ1−1[−ϑR(ti) + qθH(ti)]dι

− ι− ti
ti − ti−1

tκ2−1
i−1 [−ϑR(ti−1) + qθH(ti−1)]dι.

The equations in (28) are equivalent to⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

P(tn+1) = P0 +
κ2(Δt)κ1

Γ(κ1+2) ∑n
i=0 tκ2−1

i [υ− ϑP(ti)−ωP(ti)O(ti)]

× [(n + 1 − i)κ1(n − i + 2 +κ1)− (n − i)κ1(n − i + 2 + 2κ1)]

− tκ2−1
i−1 [υ− ϑP(ti−1)−ωP(ti−1)O(ti−1)]

× [(n + 1 − i)κ1+1 − (n − i)κ1(n − i + 1 +κ1)],

(29)

and⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

O(tn+1) = O0 +
κ2(Δt)κ1

Γ(κ1+2) ∑n
i=0 tκ2−1

i [−ϑO(ti) +ωP(ti)O(ti)− γO(ti)H(ti)]

× [(n + 1 − i)κ1(n − i + 2 +κ1)− (n − i)κ1(n − i + 2 + 2κ1)]

− tκ2−1
i−1 [−ϑO(ti−1) +ωP(ti−1)O(ti−1)− γO(ti−1)H(ti−1)]

× [(n + 1 − i)κ1+1 − (n − i)κ1(n − i + 1 +κ1)],

(30)

and ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

H(tn+1) = H0 +
κ2(Δt)κ1

Γ(κ1+2) ∑n
i=0 tκ2−1

i [(−(ϑ+ θ) + γO(ti))H(ti) + ζQ(ti)]

× [(n + 1 − i)κ1(n − i + 2 +κ1)− (n − i)κ1(n − i + 2 + 2κ1)]

− tκ2−1
i−1 [(−(ϑ+ θ) + γO(ti−1))H(ti−1) + ζQ(ti−1)]

× [(n + 1 − i)κ1+1 − (n − i)κ1(n − i + 1 +κ1)],

(31)

and ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Q(tn+1) = Q0 +
κ2(Δt)κ1

Γ(κ1+2) ∑n
i=0 tκ2−1

i [−(ϑ+ ζ)Q(ti) + θ(1 − q)H(ti)]

× [(n + 1 − i)κ1(n − i + 2 +κ1)− (n − i)κ1(n − i + 2 + 2κ1)]

− tκ2−1
i−1 [−(ϑ+ ζ)Q(ti−1) + θ(1 − q)H(ti−1)]]

× [(n + 1 − i)κ1+1 − (n − i)κ1(n − i + 1 +κ1)],

(32)

and ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

R(tn+1) = R0 +
κ2(Δt)κ1

Γ(κ1+2) ∑n
i=0 tκ2−1

i [−ϑR(ti) + qθH(ti)]

× [(n + 1 − i)κ1(n − i + 2 +κ1)− (n − i)κ1(n − i + 2 + 2κ1)]

− tκ2−1
i−1 [−ϑR(ti−1) + qθH(ti−1)]]

× [(n + 1 − i)κ1+1 − (n − i)κ1(n − i + 1 +κ1)].

(33)
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We refer to equations in (29)–(33) as the numerical scheme for the solutions of the
fractal-fractional model of giving up smoking (3).

6. Simulations and Discussion

Simulation and discussion on the behavior of the fractal-fractional model of giving
up smoking (3) are implemented in this section according to the parameters computed in
Ref. [14]. Based on this source, we assume υ = 0.2, ϑ = 0.04, γ = 0.3, ζ = 0.25, ω = 0.23,
θ = 2, q = 0.4. The initial values are:

P0 = 0.60301, O0 = 0.24000, H0 = 0.10628, Q0 = 0.03260, R0 = 0.01811.

As a first step, to compare the best fitting parameters with our assumption parame-
ters [14], we regenerate the total population (N = P +O +H+Q+R) by adding white
Gaussian noise. Then, we apply the well-known least square technique for the regenerated
total population and find the curve of best fit for the new data. The comparative results
including the approximate N (t) by the Adams–Bashforth technique (blue dashed line),
regenerated N (t) with noise (blue dots), and the curve of best fit for the new data (red line)
are graphically represented in Figure 1. From this graphical illustration, we can observe
the great agreement between the Adams–Bashforth solution of N (t) and the curve of best
fit created from the regenerated data with white Gaussian noise. In addition, obtained
root mean square error for the best fit, which is a criterion to see the goodness of the fit, is
produced as 0.3198.

Figure 1. Comparison between the approximate total population N (t) with noise data and curve of
best fit.

In Figure 2, we illustrate the obtained dynamics of all five state functions P ,O,H,Q,R
via the numerical technique introduced in Section 5.
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Figure 2. Behaviors of five sub-classes under fractal-fractional order κ1 = κ2 = 1.00.

In Figures 3–7, we illustrate the behaviors of five state functions P(t),O(t),H(t),Q(t),
R(t), respectively, when the Adams–Bashforth technique is applied under the fractal-
fractional orders κ1 = κ2 = 0.95, 0.96, 0.97, 0.98, 1.00. From these illustrations, we can
observe that while the fractal-fractional order gets closer to the integer case, the density of
each state function is increasing at about the same rate. In addition, it can be said that the
fractal-fractional orders have an effect on the trajectories regarding converging to a more
stable case.

In Figures 8–11, the behaviors of approximate solutions of some pairs of the state
functions such as a) P(t)−O(t), b) P(t)−R(t), c) O(t)−H(t), and d) H(t)−Q(t) under
the integer-order are graphically illustrated where the time t ∈ [0, 150] and step size h = 0.1.

In Figures 12–14, to observe the effects of contact rates on the sub-classes, we illustrate
the behaviors of approximate solutions of state functions P(t), H(t) and Q(t) versus the
different values of contact rates γ,ω, ζ.

From Figure 12, we can observe that decreasing the contact rate between occasionally
smokers and heavy smokers (γ) has a positive effect on the population of potential smokers
P ; that is, the density of the potential smokers is decreasing at about the same rate. Similarly,
when the contact rate between the potential smokers and occasional smokers (ω) decreases,
from Figure 13, we can see that the population of heavy smokers H also decreases. Figure 14
shows us that increasing the contact rate between heavy smokers and temporary quitters
who return back to smoking (ζ), has an effect on decreasing the population of temporary
quitters who return back to smoking Q.

Figure 3. Behaviors of P(t).
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Figure 4. Behaviors of O(t).

Figure 5. Behaviors of H(t).

Figure 6. Behaviors of Q(t).
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Figure 7. Behaviors of R(t).

Figure 8. Behaviors of pair of sub-classes P(t)−O(t).

Figure 9. Behaviors of pair of sub-classes P(t)−R(t).

Figure 10. Behaviors of pair of sub-classes O(t)−H(t).
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Figure 11. Behaviors of pair of sub-classes H(t)−Q(t).

Figure 12. Effects of contact rates on state functions: P(t) versus γ.

Figure 13. Effects of contact rates on state functions: H(t) versus ω.
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Figure 14. Effects of contact rates on state functions: Q(t) versus ζ.

7. Conclusions

In this research, a new mathematical model of giving up smoking was designed by
defining a five-compartmental system of differential equations based on the new hybrid gen-
eralized fractal-fractional derivatives. The properties of solutions to this fractal-fractional
model of giving up smoking were discussed from several points of view. A special sub-class
of increasing functions along with a special kind of contractions was used to complete the
existing section about the solutions.Steady-state analysis was conducted for this model
and we derived a numerical scheme for the fractal-fractional model of giving up smoking
by terms of fractal and fractional parameters. In other words, we derived approximate
solutions of the system (3) via the Adams–Bashforth method and simulated the behaviors
of each sub-classes from several aspects such as variations of fractal-fractional dimension-
orders. From the illustrated results, we can see that by increasing the fractal-fractional
orders, the density of each sub-population also increases. We also observed and discussed
the effects of contact rates γ,ω, ζ on the behaviors of sub-classes in Section 6. All the ap-
proximate results and calculations are obtained with the help of MATLAB version R2019A.
These simulations and graphs show that if we control the contact rate in each sub-class, then
we can obtain significant results in reducing the number of people who quit smoking. New
directions can be extended by considering other generalized kernels in the fractal-fractional
operators in future research projects.
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Abstract: In this paper, a diffusive predator–prey model with a memory effect in predator and anti-
predator behaviour in prey is studied. The stability of the coexisting equilibrium and the existence
of Hopf bifurcation are analysed by analysing the distribution of characteristic roots. The property
of Hopf bifurcation is investigated by the theory of the centre manifold and normal form method.
Through the numerical simulations, it is observed that the anti-predator behaviour parameter η, the
memory-based diffusion coefficient parameter d, and memory delay τ can affect the stability of the
coexisting equilibrium under some parameters and cause the spatially inhomogeneous oscillation of
prey and predator’s densities.
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1. Introduction

The predator–prey model has attracted the attention of many scholars [1–3].
Traditional predator–prey models often label animals as predator and prey; this is based
on the assumptions that predators feed on prey [4–6]. However, sometimes, anti-predator
behaviour in prey may occur [7,8]. Experiments show that anti-predator behaviour in
prey can be divided into two cases [9]: (a) morphological changes or through changes in
behaviour [10,11] or (b) the preys attack their predators [12,13].

B. Tang and Y. Xiao [9] proposed the following model:{
du
dt = ru(1 − u

K )− βuv
a+u2 ,

dv
dt = μβuv

a+u2 − cv − ηuv.
(1)

All the parameters are positive. r, K, β, a, μ, and c represent the growth rate, carrying
capacity, capture rate, handling time, conversion rate, and death rate, respectively. The
term ηuv represents the anti-predator behaviour in prey. The function response βu

a+u2 is the
simplified Monod–Haldane function, which is also called the Holling type IV functional
response. They mainly studied the bifurcations, including saddle–node bifurcation, Hopf
bifurcation, homoclinic bifurcation, and a Bogdanov–Takens bifurcation of codimension 2,
and showed that anti-predator behaviour is a benefit for the prey population [9].

Motivated by the work of [9], some scholars have studied the predator–prey models
using anti-predator behaviour [14–17]. Wang et al. studied a predator–prey model with
a stage structure for the prey and anti-predator behaviour and mainly focused on the
stability and Hopf bifurcation [15]. J. Liu and X. Zhang considered a delayed reaction–
diffusion predator–prey model with anti-predator behaviour and a Holling II functional
response [16]. They mainly studied the Turing instability and Hopf bifurcation. R. Yang
and J. Ma studied a diffusive predator–prey model with anti-predator behaviour and a
Beddington–DeAngelis functional response and showed that the Turing instability induced
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by diffusion and Hopf bifurcation were induced by time delay [17]. Although it is shown in
the literature [16,17] that there may be spatially inhomogeneous periodic solutions caused
by time delay, no examples of spatially inhomogeneous periodic solutions are provided in
numerical simulations.

In the real world, prey and predators are not static in space and they often engender
self-diffusion. Therefore, many scholars use a reaction diffusion equation to describe the
growth law of populations [18,19]. In addition, smart predators also have memory effect
and cognitive behaviour [20]. For example, blue whales migrate by memory. Another
example is that animals in polar regions usually determine their spatial movement by
judging their footprints, which record the history of species’ distributions and movements,
including time delay. Obviously, highly developed animals can even remember their
historical distribution or cluster of species in space. Great progress has been made in the
implicit integration of spatial cognition or memory [21–23]. Some scholars have studied
spatial memory in population models by introducing an additional delayed diffusion
term [24–26]. In [22], the authors studied a memory-based reaction–diffusion equation with
nonlocal maturation delay and a homogeneous Dirichlet boundary condition and mainly
considered the local stability and Hopf bifurcation. In [25], Song et al. provided a normal
form theory for Turing–Hopf bifurcation in the general reaction–diffusion equation with
memory-based diffusion and a nonlocal reaction. In [26], Song et al. obtained the normal
form of the Hopf bifurcation in the predator–prey model with a memory effect.

In this paper, assuming the predator has spatial-memory diffusion, we study the
following model:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u(x, t)
∂t

= d1Δu + ru(1 − u
K
)− βuv

a + u2 ,

∂v(x, t)
∂t

= −d∇(v∇u(t − τ)) + d2Δv +
μβuv
a + u2 − cv − ηuv, x ∈ Ω, t > 0

∂u(x, t)
∂ν̄

=
∂v(x, t)

∂ν̄
= 0, x ∈ ∂Ω, t > 0

u(x, θ) = u0(x, θ) ≥ 0, v(x, θ) = v0(x, θ) ≥ 0, x ∈ Ω̄, θ ∈ [−τ, 0].

(2)

where d1 and d2 are self-diffusion parameters. The term −d∇(v∇u(t − τ)) is the memory-
based diffusion effect. d is the memory-based diffusion co-efficient and the time delay
τ > 0 is the averaged memory period of the predator. If we assume the region the prey
and predator live in is closed, then the Neumann boundary condition is used. For the
convenience of calculation, we use Ω = (0, lπ). As far as we know, no one has studied
the model (2) at present. The aim of this paper is to study the effect of the memory delay,
the memory-based diffusion, and the anti-predator behaviour on the model (2) from the
perspective of stability and Hopf bifurcation.

The paper is arranged as follows. In Section 2, we studied the stability and the existence
of Hopf bifurcation. In Section 3, we analysed the property of Hopf bifurcation. In Section 4,
we provide some numerical simulations. In Section 5, we obtain a short conclusion.

2. Stability Analysis

The existence of equilibria has been studied in [9]. For the sake of completeness, we
just provide the following lemma; the proof is available in [9].

Lemma 1. The existence of equilibria for model (2) is as follows.

• The model (2) always has two boundary equilibriums (0, 0) and (K, 0).
• Case I: aη − βμ ≥ 0. The model (2) always has no positive equilibrium.
• Case II: aη − βμ < 0.

� Subcase I: The model (2) always has no positive equilibrium when f (uc) > 0.
� Subcase II: The model (2) has two positive equilibria (u−, v−) and (u+, v+) when

f (uc) < 0 and f (K) > 0.
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� Subcase III: The model (2) has a unique positive equilibrium (u−, v−) when f (uc) < 0
and f (K) ≤ 0.

� Subcase IV: The model (2) has a unique positive equilibrium (u−, v−)=(u+, v+) when
f (uc) = 0.

where uc =
−c+

√
c2−3η(aη−βμ)

3η , f (uc) = 1
27η2

(
2c3 + 9cη(2aη + βμ)− 2

(
c2 + 3η(−aη + βμ)

)3/2
)

,

f (u) = u3η + cu2 + u(aη − βμ) + ac = 0, u± =
−c+

√
A(cos[ θ3 ]±

√
3sin[ θ3 ])

3η , v± =
r(K−u±)(a+u2±)

Kβ ,

A = c2 − 3η(ηa − βμ), B = c(ηa − βμ)− 9ηac, T =
(2Ac−3ηB)

2
√

A3
, θ = arccos[T].

In the following, we just assume the model (2) has a positive equilibrium E∗(u∗, v∗).
In particular, the model (2) may have two positive equilibria. Then, we can use the same
method to study the property for different positive equilibria. The linear system of (2) at
E∗(u∗, v∗) is

∂u
∂t

(
u(x, t)
u(x, t)

)
= J1

(
Δu(t)
Δv(t)

)
+ J2

(
Δu(t − τ)
Δv(t − τ)

)
+ L

(
u(x, t)
v(x, t)

)
, (3)

where

J1 =

(
d1 0
0 d2

)
, J2 =

(
0 0

−dv∗ 0

)
, L =

(
α1 α2
β1 0

)
,

and α1 = − ru∗
K(a+u2∗)

(
a − 2Ku∗ + 3u2∗

)
, α2 = − u∗β

a+u2∗
< 0, β1 = v∗

(
(a−u2∗)βμ

(a+u2∗)
2 − η

)
.

The characteristic equations are:

λ2 + κnλ+ νn +  ne−λτ = 0, n ∈ N0, (4)

where

κn = (d1 + d2)μn − α1, νn = −α2β1 − α1d2μn + d1d2μ
2
n,  n = −α2dv∗μn, μn =

n2

l2 .

2.1. τ = 0

The characteristic Equations (4) are:

λ2 + κnλ+ νn +  n = 0, n ∈ N0, (5)

where νn +  n = −α2β1 − (α2dv∗ + α1d2)μn + d1d2μ
2
n. We propose the following hypothesis:

Hypothesis 1 (H1).

aη − βμ < 0, K <
a + 3u2∗

2u∗
, η <

(
a − u2∗

)
βμ

(a + u2∗)
2 .

In particular, in (H1), K < a+3u2∗
2u∗ implies α1 < 0, and η <

(a−u2∗)βμ

(a+u2∗)
2 implies β1 > 0. We

should notice that u∗ is related to parameter η, so η <
(a−u2∗)βμ

(a+u2∗)
2 is very complicated. Then

we can obtain the following theorem.

Theorem 1. For system (2) with τ = 0, E∗(u∗, v∗) is locally stable under (H1).

2.2. τ > 0

Assume (H1) holds and let iω (ω > 0) be a solution of (4), then:

−ω2 + κniω+ νn +  n(cosωτ − isinωτ) = 0.

149



Mathematics 2023, 11, 556

We can obtain cosωτ = ω2−νn
 n

, sinωτ = κnω
 n

> 0 under hypothesis (H1). It leads to:

ω4 +
(
κ2

n − 2νn

)
ω2 + ν2

n −  2
n = 0. (6)

Let p = ω2, then (6) becomes:

p2 +
(
κ2

n − 2νn

)
p + ν2

n −  2
n = 0, (7)

and the roots of (7) are p±n = 1
2 [−

(
κ2

n − 2νn
) ± √

(κ2
n − 2νn)

2 − 4(ν2
n −  2

n)]. By direct com-
putation, we have: ⎧⎪⎨⎪⎩

κ2
n − 2νn = (d2

1 + d2
2)μ

2
n − 2α1d1μn + α2

1 + 2α2β1,

νn −  n = d1d2
n4

l4 + (α2dv∗ − α1d2)μn − α2β1,

and νn +  n > 0 under hypothesis (H1). Define η± =
−(α2dv∗−α1d2)±

√
(α2dv∗−α1d2)2−4d1d2(−α2β1)

2d1d2
,

d∗ = α1d2
α2v∗ +

2
v∗

√
− b1d1d2

α2
, and S = {n| n2

l2
∈ (η−, η+), n ∈ N0}. Then:⎧⎪⎨⎪⎩

νn −  n > 0, for d ≤ d∗, n ∈ N0,

νn −  n > 0, for d > d∗, n /∈ S,

νn −  n < 0, for d > d∗, n ∈ S.

(8)

The existence of purely imaginary roots of Equation (4) can be divided into the following
two cases.

Case 1: α2
1 + 2α2β1 > 0. We can obtain κ2

n − 2νn > α2
1 + 2α2b1 > 0. For d > d∗ and n ∈ S, then

Equation (4) has a pair of purely imaginary roots ±iω+
n at τ j,+

n for j ∈ N0 and n ∈ S. Otherwise,
Equation (4) does not have characteristic roots with zero real parts.

Case 2: α2
1 + 2α2β1 < 0. Divide this case into the following two subcases.

• For d ≤ d∗ and n ∈ S1 := {n|κ2
n − 2νn < 0,

(
κ2

n − 2νn
)2 − 4(ν2

n −  2
n) > 0, n ∈ N0}, then

Equation (4) has two pairs of purely imaginary roots ±iω±
n at τ

j,±
n for j ∈ N0 and n ∈ S1.

Otherwise, Equation (4) does not have characteristic roots with zero real parts.
• For d > d∗ and n ∈ S2 := {n|κ2

n − 2νn < 0,
(
κ2

n − 2νn
)2 − 4(ν2

n −  2
n) > 0, n ∈ N0, n /∈ S}, then

Equation (4) has two pairs of purely imaginary roots ±iω±
n at τ j,±

n for j ∈ N0 and n ∈ S1. For
d > d∗ and n ∈ S, then Equation (4) has a pair of purely imaginary roots ±iω+

n at τ j,+
n for j ∈ N0

and n ∈ S. Otherwise, Equation (4) does not have characteristic roots with zero real parts.

Where

ω±
n =

√
p±n , τ

j,±
n =

1
ω±

n
arccos(

(ω±
n )2 − νn

 n
) + 2jπ. (9)

Define M = {τ j,+
n or τ

j,−
n |. Equation (4) has purely imaginary roots ±iω+

n or ± iω−
n when

τ = τ
j,+
n or τ j,−

n }.

Lemma 2. Assume (H1) holds. Then, Re( dλ
dτ )|τ=τ

j,+
n

> 0, Re( dλ
dτ )|τ=τ

j,−
n

< 0 for τ j,±
n ∈ S and j ∈ N0.

Proof. By (4), we have:

(
dλ
dτ

)−1 =
2λ+ κn

 nλe−λτ
− τ

λ
.

Then:

150



Mathematics 2023, 11, 556

[Re(
dλ
dτ

)−1]
τ=τ

j,±
n

= Re[
2λ+ κn

 nλe−λτ
− τ

λ
]
τ=τ

j,±
n

= [
1

κ2
nω2 + (νn −ω)2

(2ω2 + κ2
n − 2νn)]τ=τ

j,±
n

= ±[
1

κ2
nω2 + (νn −ω)2

√
(κ2

n − 2νn)2 − 4(ν2
n −  2

n)]τ=τ
j,±
n

.

Therefore, Re( dλ
dτ )|τ=τ

j,+
n

> 0, Re( dλ
dτ )|τ=τ

j,−
n

< 0.

Denote τ∗ = min{τ0,±
n | τ0,±

n ∈ M}.

Theorem 2. For the model (2), assume (H1) holds.

• E∗(u∗, v∗) is locally stable for τ > 0 when M = ∅.
• E∗(u∗, v∗) is locally stable for τ ∈ [0, τ∗) when M �= ∅.
• E∗(u∗, v∗) is unstable for τ ∈ (τ∗, τ∗ + ε) for some ε > 0 when M �= ∅.

• τ = τ
j,+
n (τ = τ

j,−
n ), j ∈ N0, τ j,±

n ∈ M are Hopf bifurcation points.

3. Property of Hopf Bifurcation

By the algorithm in [26], we provide the normal form of Hopf bifurcation as follows.
The detail computation is provided in Appendix A.

ż = Bz +
1
2

(
B1z1ε

B̄1z2ε

)
+

1
3!

(
B2z2

1z2ε

B̄2z1z2
2ε

)
+ O(|z|ε2 + |z4|), (10)

where
B1 = 2iω̃ψTφ, B2 = B21 +

3
2
(B22 + B23).

By coordinate transformation z1 = ω1 − iω2, z2 = ω1 + iω2, and ω1 = ρcosξ, ω2 = ρsinξ, the
normal form (10) can be rewritten as:

ρ̇ = K1ερ+ K2ρ
3 + O(ρε2 + |(ρ, ε)|4), (11)

where K1 = 1
2 Re(B1), K2 = 1

3! Re(B2).
From [26], we have the following theorem:

Theorem 3. If K1K2 < 0(> 0), the Hopf bifurcation is supercritical (subcritical) and the bifurcating periodic
solutions is stable (unstable) for K2 < 0(> 0).

4. Numerical Simulations

Fix the following parameters:

c = 0.05, r = 0.5, a = 1, μ = 0.8, β = 0.4, K = 3, d1 = 0.1, d2 = 0.2, l = 2. (12)

4.1. The Effect of Anti-Predator Behaviour
We know that the system (2) has a positive equilibrium when η ≤ 0.1560. Especially, the

system (2) has a unique positive equilibrium (u−, v−) when η ≤ 0.0153 (Figure 1 left) and has two
positive equilibria, (u−, v−) and (u+, v+), when 0.0153 < η < 0.1560 (Figure 1 right). However,
when η ≈ 0.1560, (u−, v−) and (u+, v+) coincide into one positive equilibrium (Figure 1 right).

Through analysis, we can obtain (u+, v+), which is always unstable when it exists. Then, we
mainly study the dynamics at (u−, v−). The parameters α1 and β1 with parameter η at (u−, v−)
are provided in Figure 2. It shows that (u−, v−) is always unstable when τ = 0 and anti-predator
behaviour parameter η is larger than some critical value. To guarantee assumption (H1) is true,
α1 < 0 and β1 > should hold.

The bifurcation diagram of system (2) with parameter η when d = 0.7 is provided in Figure 3
left. When parameter η increases, the stability interval of (u−, v−) becomes smaller. This implies that
increasing the anti-predator behaviour parameter η is not beneficial to the uniform distribution of
predator and prey and will cause inhomogeneous oscillations of the population’s density.
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Figure 1. The existence of positive equilibrium with parameter η.
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Figure 2. α1 and β1 with parameter η at (u−, v−).
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4.2. The Effect of Memory-Based Diffusion
We also provide the bifurcation diagram of system (2) with parameter d when η = 0.01

(Figure 3 right). When parameter d < d∗, (u−, v−) is always stable. When we increase parame-
ter d until d > d∗, the Hopf bifurcating curves emerge. When parameter d increases, the stability
interval of (u−, v−) becomes smaller. This implies that increasing the memory-based diffusion coeffi-
cient parameter d is not beneficial to the uniform distribution of predators and prey when d > d∗ and
will cause spatial oscillations of the population’s density.
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0,�

Τ1
0,�

Stable region
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Τ
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Figure 3. Bifurcation diagram of system (2) with parameter η (Left) and d (Right).

4.3. The Effect of Memory Delay
Especially, we choose η = 0.01, then (u−, v−) ≈ (0.1658, 1.2134) is the unique positive equi-

librium. From direct calculation, we have α2
1 + 2α2β1 ≈ −0.0446 < 0, and d∗ ≈ 0.5452. Choose

d = 0.7 > d∗, then S2 = {1}, S = {2}, τ∗ = τ0,+
1 ≈ 7.3983 < τ0,+

2 ≈ 10.0126 < τ0,−
1 ≈ 21.1518 and

K1 ≈ 0.04689 > 0, K2 ≈ −0.0708 < 0. Then (u−, v−) is locally stable when τ ∈ [0, τ∗) (Figure 4)
and unstable when τ > τ∗. We can see from Figure 4 that when the time delay is less than the
critical value, the density of the prey and predator will be evenly distributed in space and tend to the
coexisting equilibrium. In addition, the stable bifurcating periodic orbits with mode-1 and exists for
τ > τ∗ (Figure 5). At this time, when the time delay is greater than the critical value, the density of
prey and predator will produce periodic oscillation and the spatial distribution is uneven. This means
that the delay in the averaged memory period of the predator may affect the stability of (u−, v−) and
induce the spatial oscillations of the population’s density under some parameters.

Prey u(x, t) Predator v(x, t)

Figure 4. The numerical simulations of system (2) with d = 0.7 and τ = 7.
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Prey u(x, t) Predator v(x, t)

Figure 5. The numerical simulations of system (2) with d = 0.7 and τ = 8. The time scale of the top
two figures is from 0 to 12,000. The time scales of the two figures below are from 11,800 to 12,000.

5. Conclusions

We incorporate the predator’s memory effect and the prey’s anti-predator behaviour into a
predator–prey model. We mainly study the stability of the coexisting equilibrium and memory
delay inducing Hopf bifurcation. Through the method in [26], we provide the normal form of
Hopf bifurcation at the coexisting equilibrium that can be used to determine the direction and
stability of the bifurcating period solutions. Through numerical simulations, we obtain that the anti-
predator behaviour parameter η can affect the existence and stability of the coexisting equilibrium.
Furthermore, increasing the anti-predator behaviour parameter η is not beneficial to the stability
of the coexisting equilibrium and will cause spatial inhomogeneous periodic oscillation of the prey
and predator’s densities. In addition, the memory-based diffusion coefficient parameter d can also
affect the stability of the coexisting equilibrium when it is larger than the critical value d∗. At last,
the memory delay has the destabilizing effect on the coexisting equilibrium and induces spatial
inhomogeneous periodic oscillation of prey and predator’s densities.
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Appendix A. Computation of Normal Form

In this section, we use the algorithm in [26] to compute the normal form of the Hopf bifurcation.
We denote the critical value of the Hopf bifurcation as τ̃ and that Equation (4) has a pair of purely
imaginary roots: ±iωn. Let ū(x, t) = u(x, τt)− u∗ and v̄(x, t) = v(x, τt)− v∗. Drop the bar, (2) can
be written as:⎧⎪⎪⎨⎪⎪⎩

∂u
∂t

= τ

[
d1Δu + r(u + u∗)

(
1 − u + u∗

K

)
− β(u + u∗)(v + v∗)

a + (u + u∗)2

]
,

∂v
∂t

= τ

[
−d∇((v + v∗)∇(u(t − 1) + u∗)) + d2Δv +

μβ(u + u∗)(v + v∗)
a + (u + u∗)2 − c(v + v∗)− η(u + u∗)(v + v∗)

]
.

(A1)

Define the real-valued Sobolev space X =
{

U = (u, v)T ∈ W2,2(0, lπ)2, ( ∂u
∂x , ∂v

∂x )|x=0,lπ = 0
}

,
the inner product:

[U, V] =
∫ lπ

0
UTVdx, for U, V ∈ X,

and C = C([−1, 0];X). Set τ = τ̃ + ε, where ε is small perturbation. Then system (A1) is rewritten as

dU(t)
dt

= d(ε)Δ(Ut) + L(ε)(Ut) + F(Ut, ε), (A2)

where for ϕ = (ϕ,ϕ2)
T ∈ C, d(ε)Δ, L(ε) : C → X, F : C×R2 → X. They are defined as:

d(ε)Δ(ϕ) = d0Δ(ϕ) + Fd(ϕ, ε), L(ε)(ϕ) = (τ̃ + ε)Aϕ(0),

F(ϕ, ε) = (τ̃ + ε)

(
f (φ(1)(0) + u∗, φ(2)(0) + v∗)
g(φ(1)(0) + u∗, φ(2)(0) + v∗)

)
− L(ε)(ϕ),

and
d0Δ(ϕ) = τ̃ J1ϕxx(0) + τ̃ J2ϕxx(−1),

Fd(ϕ, ε) = −d(τ̃ + ε)

(
0

φ
(1)
x (−1)φ(2)x (0) + φ

(1)
xx (−1)φ(2)(0)

)
+ ε

(
d1φ

(1)
xx (0)

−dv∗φ(1)xx (−1) + d2φ
(2)
xx (0)

)
.

Denote L0(ϕ) = τ̃Aϕ(0) and rewrite (A2) as:

dU(t)
dt

= d0Δ(Ut) + L0(Ut) + F̃(Ut, ε), (A3)

where: F̃(ϕ, ε) = εAϕ(0) + F(ϕ, ε) + Fd(ϕ, ε). The characteristic equation for the linearized equation
dU(t)

dt = d0Δ(Ut) + L0(Ut) is Γ̃n(λ) = det
(

M̃n((λ))
)
, where

M̃n((λ) = λI2 + τ̃μnD1 + τ̃e−λμnD2 − τ̃A. (A4)

The eigenvalue problem:

−z(x)′′ = νz(x), x ∈ (0, lπ); z(0)′ = z(lπ)′ = 0,

has eigenvalues μn and normalized eigenfunctions:

zn(x) =
cos nx

l
||cos nx

l ||2,2
=

{
1

lπ n = 0,√
2

lπ cos nx
l n �= 0,

(A5)

Set β(j)
n = zn(x)ej, j = 1, 2, where e1 = (1, 0)T and e2 = (0, 1)T . Define ηn(θ) ∈ BV([−1, 0],R2),

such that: ∫ 0

−1
dηn(θ)φ(θ) = Ld

0(ϕ(θ)) + L0(ϕ(θ)), ϕ ∈ C,

C = C([−1, 0],R2), C∗ = C([0, 1],R2∗), and:

< ψ(s), ϕ(θ) >= ψ(0)ϕ(0)−
∫ 0

−1

∫ θ

0
ψ(ξ − θ)dηn(θ)ϕ(ξ)dξ, ψ ∈ C∗, ϕ ∈ C. (A6)
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Let
∧

= {iω̃,−iω̃}, the eigenspace P, and corresponding adjoint space P∗. Decompose
C = P ⊕ Q, where Q = {ϕ ∈ C :< ψ, ϕ >= 0, ∀ψ ∈ P∗}. Choose Φ(θ) = (φ(θ), φ̄(θ)),
Ψ(θ) = col(ψT(s), ψ̄T(s)), where:

φ(θ) = φeiω̃θ :=
(

φ1(θ)
φ2(θ)

)
, ψ(s) = ψe−iω̃s :=

(
ψ1(s)
ψ2(s)

)
,

φ =

(
1

1
α2
(−α1 + d1μn + iω̃)

)
, ψ = M

(
1
α2

d2μn+iω̃

)
,

and

M =

(
− α1l2 − d1n2 − d2n2 − α2dv∗e−iω̃n2τ̃ − 2il2ω̃

d2n2 + il2ω̃

)−1

.

Then, φ(θ) and ψ(s) are the bases of P and P∗, respectively. Furthermore, such that
< φ,ψ >= I2.

By direct computation, we have:

f20 =

(
f (1)20

f (2)20

)
, f11 =

(
f (1)11
f (2)11

)
, f02 =

(
f (1)02

f (2)02

)
,

f30 =

(
f (1)30

f (2)30

)
, f21 =

(
f (1)21
f (2)21

)
, f12 =

(
f (1)12
f (2)12

)
, f03 =

(
f (1)03

f (2)03

)
,

where f (1)20 = − 2u∗(−3a+u2∗)v∗β
(a+u2∗)

3 − 2r
K , f (1)11 =

(−a+u2∗)β
(a+u2∗)

2 , f (1)02 = 0, f (1)30 =
6(a2−6au2∗+u4∗)v∗β

(a+u2∗)
4 ,

f (1)21 = − 2u∗(−3a+u2∗)β
(a+u2∗)

3 , f (1)12 = 0, f (1)03 = 0, f (2)20 =
2(−3au∗+u3∗)v∗βμ

(a+u2∗)
3 , f (2)11 = −η +

(a−u2∗)βμ
(a+u2∗)

2 , f (2)02 = 0,

f (2)30 = − 6(a2−6au2∗+u4∗)v∗βμ
(a+u2∗)

4 , f (2)21 =
2(−3au∗+u3∗)βμ

(a+u2∗)
3 , f (2)12 = 0, f (2)03 = 0. We can computation the

following parameters:

A20 = f20φ1(0)2 + f02φ2(0)2 + 2 f11φ1(0)φ2(0) = A02,

A11 = 2 f20φ1(0)φ̄1(0) + 2 f02φ2(0)φ̄2(0) + 2 f11(φ1(0)φ̄2(0) + φ̄1(0)φ2(0)),

A21 = 3 f30φ1(0)2φ̄1(0) + 3 f03φ2(0)2φ̄2(0) + 3 f21

(
φ1(0)2φ̄2(0) + 2φ1(0)φ̄1(0)φ2(0)

)
+ 3 f12

(
φ2(0)2φ̄1(0) + 2φ2(0)φ̄2(0)φ1(0)

)
,

(A7)

Ad
20 = −2dτ

(
0

φ1(0)(−1)φ2(0)(0)

)
= Ād

02, Ad
11 = −2dτ

(
0

2Re[φ1(−1)φ̄2(0)]

)
,

and Ãj1 j2 = Aj1 j2 − 2μn Ad
j1 j2 for j1, j2 = 0, 1, 2, j1 + j2 = 2. In addition, h0,20(θ) = 1

lπ (M̃0(2iω̃))−1

A20e2iω̃θ , h0,11(θ) = 1
lπ (M̃0(0))−1 A11, h2n,20(θ) = 1

2lπ (M̃2n(2iω̃))−1 Ã20e2iω̃θ , h2n,11(θ) =
1

lπ (M̃2n(0))−1 Ã11.

S2(φ(θ), hn,q1q2 (θ)) = 2φ1h(1)n,q1q2 f20 + 2φ2h(2)n,q1q2 f02 + 2(φ1h(2)n,q1q2 + φ2h(1)n,q1q2 ) f11,

S2(φ̄(θ), hn,q1q2 (θ)) = 2φ̄1h(1)n,q1q2 f20 + 2φ̄2h(2)n,q1q2 f02 + 2(φ̄1h(2)n,q1q2 + φ̄2h(1)n,q1q2 ) f11,

Sd,1
2 (φ(θ), h0,11(θ)) = −2dτ̃

(
0

φ1(−1)h(2)0,11(0)

)
, Sd,1

2 (φ̄(θ), h0,11(θ)) = −2dτ̃

(
0

φ̄1(−1)h(2)0,20(0)

)
,

Sd,1
2 (φ(θ), h2n,11(θ)) = −2dτ̃

(
0

φ1(−1)h(2)2n,11(0)

)
, Sd,1

2 (φ̄(θ), h2n,20(θ)) = −2dτ̃

(
0

φ̄1(−1)h(2)2n,20(0)

)
,

Sd,2
2 (φ(θ), h2n,11(θ)) = −2dτ̃

(
0

φ1(−1)h(2)2n,11(0)

)
− 2dτ̃

(
0

φ2(0)h
(1)
2n,11(−1)

)
,

Sd,2
2 (φ̄(θ), h2n,20(θ)) = −2dτ̃

(
0

φ̄1(−1)h(2)2n,20(0)

)
− 2dτ̃

(
0

φ̄2(0)h
(1)
2n,20(−1)

)
,
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Sd,3
2 (φ(θ), h2n,11(θ)) = −2dτ̃

(
0

φ2(0)h
(1)
2n,11(−1)

)
, Sd,3

2 (φ̄(θ), h2n,20(θ)) = −2dτ̃

(
0

φ̄1(0)h
(2)
2n,20(−1)

)
.

Then, we have:

B21 =
3

2lπ
ψT A21,

B22 =
1

lπ
ψT(S2(φ(θ), h0,11(θ)) + S2(φ̄(θ), h0,20(θ))) +

1
2lπ

ψT(S2(φ(θ), h2n,11(θ)) + S2(φ̄(θ), h2n,20(θ))),

B23 =− 1
lπ

μnψ
T(Sd,1

2 (φ(θ), h0,11(θ)) + Sd,1
2 (φ̄(θ), h0,20(θ)))

+
1

2lπ
ψT ∑

j=1,2,3
b(j)

2n (S
d,j
2 (φ(θ), h2n,11(θ)) + Sd,j

2 (φ̄(θ), h2n,20(θ))),

where b(1)2n = −μn, b(2)2n = −2μn, b(3)2n = −4μn.
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Abstract: A reaction-diffusion predator-prey model with the dormancy of predators is considered
in this paper. We are concerned with the long-time behaviors of the solutions of this system. We
divided our investigations into two cases: for the ODEs system, we study the existence and stability
of the equilibrium solutions and derive precise conditions on system parameters so that the system
can undergo Hopf bifurcations around the positive equilibrium solution. Moreover, the properties
of Hopf bifurcation are studied in detail. For the reaction-diffusion system, we are able to derive
conditions on the diffusion coefficients so that the spatially homogeneous Hopf bifurcating periodic
solutions can undergo diffusion-triggered instability. To support our theoretical analysis, we also
include several numerical results.

Keywords: predator-prey interactions; dormancy of predators; stability; hopf bifurcations; diffusion-
induced instability
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1. Introduction

Interactions between predator and prey can generate rich dynamics and have engaged
numerous investigators’ attention. In the existing literature, the following homogeneous
diffusive predator-prey model has been extensively considered:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂U
∂s

= D1ΔU + AU
Å

1 − U
N

ã
− BUV

C + U
, x ∈ Ω, s > 0,

∂V
∂s

= D2ΔV +
EUV

C + U
− FV, x ∈ Ω, s > 0,

∂U
∂ν

=
∂V
∂ν

= 0, x ∈ ∂Ω, s ≥ 0,

U(x, 0) = U(x0), V(x, 0) = V(x0), x ∈ Ω,

(1)

where Ω is an open bounded domain in RN with N ≥ 1; ν is the outer unit normal to
the boundary ∂Ω, which is assumed to be sufficiently smooth; U(s, t) and V(s, t) are the
population densities of the prey and the predator at time s and position x ∈ Ω, respectively;
D1 and D2 are the diffusion coefficients of U and V, respectively; A, B, C, E, F are all of the
positive constants; A is the intrinsic growth rate; N is the carrying capacity; B and E are
the strength of the relative effect on the two species in the interaction; U/(C + U) is the
functional response of the predator to the prey density; C is the “saturation” effect; and F is
the death rate of V.

Then, by a non-dimensionalized change of variables (see also [1]):

t = As, u =
U
C

, v =
BV
EC

, d1 =
D1

A
, d2 =

D2

A
, k =

N
C

, m =
E
A

, θ =
F
A

,
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we can reduce the system (1) to the simplified dimensionless form as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂u
∂t

= d1Δu + u
Å

1 − u
k

ã
− muv

1 + u
, x ∈ Ω, t > 0,

∂v
∂t

= d2Δv +
muv
1 + u

− θv, x ∈ Ω, t > 0,
∂u
∂ν

=
∂v
∂ν

= 0, x ∈ ∂Ω, t ≥ 0,

u(x, 0) = u(x0), v(x, 0) = v(x0), x ∈ Ω,

(2)

where u and v are the scaled densities of the prey and predator, respectively; u(1 − u/k)
is the growth rate of u in the absence of the predator; θ is the death rate of the predator;
mu/(1+ u) is the functional response determining the predator’s consumption of the prey’s
abundance; k is the fraction of the prey’s biomass, which can be transformed into the
predator’s biomass; and d1 and d2 are the diffusion coefficients of u and v, respectively.

System (2) and the like have been studied extensively in the existing literature. For
example, for the corresponding ODE system of (2), Hsu [2] showed that the local stability
of the positive equilibrium solution can also indicate its global asymptotic stability. In [3],
Hsu and Shi studied the relaxation oscillations of (2), while in [4], Cheng observed that the
periodic solution of the ODEs in system (2) is unique and stable. For the reaction-diffusion
system of system (2), in [5], Ko and Ryu not only studied the existence of non-constant
positive equilibrium solutions but also investigated the local existence of periodic solutions.
In [1], Yi, Wei, and Shi performed steady-state bifurcation and Hopf bifurcation analysis of
the system. In [6], Peng and Shi considered global steady-state bifurcations of the system,
and their results proved that the global bifurcation of steady-state solutions comprises
bounded loops .

In this paper, we mainly consider the following reaction-diffusion predator-prey
system with dormancy:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u
∂t

= d1Δu + u
Å

1 − u
k

ã
− muv

1 + u
, x ∈ Ω, t > 0,

∂v
∂t

= d2Δv +
μmuv
1 + u

+ αw − θv, x ∈ Ω, t > 0,
∂w
∂t

= d3Δw +
(1 − μ)muv

1 + u
− αw, x ∈ Ω, t > 0,

∂u
∂ν

=
∂v
∂ν

=
∂w
∂ν

= 0, x ∈ ∂Ω, t ≥ 0,

u(x, 0) = u(x0), v(x, 0) = v(x0), w(x, 0) = w(x0), x ∈ Ω,

(3)

where μ ∈ (0, 1), α > 0, m > 0, θ > 0, d1 > 0, d2 > 0, and d3 ≥ 0; w is the predator’ density
with a dormant state or resting eggs; μ and 1 − μ denote the proportion of reproduction
effects on predators between active and dormant states, respectively; and α stands for the
hatching of dormant predators or the average dormancy period.

In [7], Kuwamura showed that the hatching of resting eggs can keep the popula-
tion dynamics stable when the switching between non-resting and resting eggs is sharp.
In [8], Kuwamura, Nakazawa, and Ogawa studied the stationary and oscillatory diffusion-
induced instabilities of the constant equilibrium solutions.

For system (3), we are mainly interested in the influence of the dormancy of the
predators on the dynamics of the system. In particular, we focus on the diffusion-induced
instability of the Hopf bifurcating periodic solutions of the system, which is less understood
for this particular model in the existing literature [9–18]. We shall prove that from suitable
conditions on the diffusion rates d1, d2, d3, the spatially homogeneous periodic solution
can undergo diffusion-induced instability and can induce the new spatiotemporal patterns
emerging consequently. We would like to remark that for the system without the dormancy
of predators (e.g., system (2)), Yi, Wei, and Shi proposed that under suitable conditions,
once the periodic solution is stable with respect to the ODEs, it is still stable with respect to
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the PDEs; thus, there is no diffusion-induced instability of the periodic solutions. Based on
this, we shall present a quite interesting difference between the system with the dormancy
of predators and the system without the dormancy of predators.

The rest of this paper is organized in the following way. In Section 2, we consider the
dynamics of the ODEs system; in Section 3, we consider the diffusion-induced instability of
the periodic solutions bifurcating from Hopf bifurcations; in Section 4, we present some
numerical simulations to illustrate our theoretical analysis; and in Section 5, we draw
some conclusions.

2. The Dynamical Behaviors of the Kinetic System

In this section, we consider the following kinetic system:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

du
dt

= u
Å

1 − u
k

ã
− muv

1 + u
,

dv
dt

=
μmuv
1 + u

+ αw − θv,
dw
dt

=
(1 − μ)muv

1 + u
− αw.

(4)

2.1. The Auxiliary System: The Predator-Prey System without Dormancy of Predators

To begin with, we consider the following kinetic system of system (2):

du
dt

= u
Å

1 − u
k

ã
− muv

1 + u
,

dv
dt

=
muv
1 + u

− θv. (5)

System (5) has a trivial solution (0, 0), a semi-trivial solution (k, 0), and a unique
positive equilibrium solution under certain conditions stated below.

We now state the following results on system (5) due to Hsu [2] (see also [1]):

Lemma 1 ([1,2]). The following conclusions hold true:

1. Suppose that either m ≤ θ or
mk

1 + k
≤ θ < m holds. Then, system (5) has no positive

equilibrium solutions; in this case, (0, 0) is unstable, while (k, 0) is globally asymptotically stable;

2. Suppose that
mk

1 + k
> θ holds. Then, system (5) has a unique positive equilibrium solution

(τ, vτ), where

τ :=
θ

m − θ
, vτ :=

τ(k − τ)
kθ

. (6)

In this case, both (0, 0) and (k, 0) are unstable, (τ, vτ) is globally asymptotically stable if either

0 < k ≤ 1 and τ ∈ (0, k) or k > 1 and τ ∈
Å

k − 1
2

, k
ã

holds, while (τ, vτ) is unstable if

k > 1 and λ ∈
Å

0,
k − 1

2

ã
. In particular, the loss of the stability of (τ, vτ) leads to a Hopf

bifurcation at τ =
k − 1

2
.

2.2. The Predator-Prey Model with Dormancy of Predators

In this subsection, we study the predator-prey system with dormancy, which is sys-
tem (4). Clearly, system (4) has (0, 0, 0) and (k, 0, 0) as its equilibrium solutions. We have the
following results:

Theorem 1. The following conclusions hold true:

1. (0, 0, 0) is always unstable in (4).

2. (k, 0, 0) is locally asymptotically stable in (4) when θ >
mk

1 + k
, while it is unstable when

θ <
mk

1 + k
.
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Proof. The Jacobian matrix of system (4) evaluated at (0, 0, 0) is given by

J(0, 0, 0) :=

⎡⎣1 0 0
0 −θ α
0 0 −α

⎤⎦,

which has three eigenvalues: β1 = 1 > 0, β2 = −θ < 0, β3 = −α < 0. Thus, (0, 0, 0) is
unstable with respect to (4).

The Jacobian matrix of system (4) evaluated at (k, 0, 0) is given by

J(k, 0, 0) :=

⎡⎢⎢⎢⎢⎢⎣
−1 − mk

1 + k
0

0
μmk
1 + k

− θ α

0
mk(1 − μ)

1 + k
−α

⎤⎥⎥⎥⎥⎥⎦.

The characteristic equation of J2(k, 0, 0) is given by

(β+ 1)
ï
β2 +

(
α− μmk

1 + k
+ θ

)
β+ α

Å
θ − mk

1 + k

ãò
= 0. (7)

If θ >
mk

1 + k
, for (k, 0, 0), all of the eigenvalues of (7) have negative real parts. Thus,

(k, 0, 0) is stable.

If θ <
mk

1 + k
< m, then (7) has a positive eigenvalue. Thus, (k, 0, 0) is unstable.

Clearly, if (τ, vτ) is a positive equilibrium solution of (5), then (τ, vτ , wτ) is a positive
equilibrium solution of (4), where

τ :=
θ

m − θ
, vτ :=

τ(k − τ)
kθ

, wτ :=
τ(1 − μ)(k − τ)

kα
. (8)

Then, by Lemma 1, we have the following results on the existence of positive equilib-
rium solution of system (4).

Theorem 2. Suppose that
mk

1 + k
> θ holds. Then, system (4) has a unique positive equilibrium

solution (τ, vτ , wτ), which is defined by (8).

Next, we study the stability of (τ, vτ , wτ) in system (4).
We choose α as the bifurcation parameter. Linearizing system (4) at (τ, vτ , wτ), we

obtain its Jacobian matrix:

J(α) :=

⎡⎣ −A −θ 0
μB (μ− 1)θ α

(1 − μ)B (1 − μ)θ −α

⎤⎦, (9)

where
A :=

τ(2τ + 1 − k)
k(1 + τ)

, B :=
k − τ

k(1 + τ)
. (10)

The characteristic equation of J(α) is

β3 + M2(α)β2 + M1(α)β+ M0(α) = 0, (11)

where

M0(α) := αθB, M1(α) : = A
(
α+ (1 − μ)θ

)
+ μθB, M2(α) := α+ (1 − μ)θ + A. (12)
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To study the stability of (τ, vτ , wτ), by Appendix of [19] (see also Lemma 2 below), we
need to know the signs of M0(α), M1(α), M2(α) and M2(α)M1(α) − M0(α).

We make the following assumptions:

(H) Suppose that either (1): 0 < k ≤ 1 and τ ∈ (0, k) or (2): k > 1 and τ ∈
Å

k − 1
2

, k
ã

holds

so that (τ, vτ) is stable in system (5).

Under assumption (H), we have A > 0 and B > 0. Thus, M0(α) > 0, M1(α) > 0, and
M2(α) > 0 for all α > 0 and μ ∈ (0, 1).

Thus, to study the stability of (τ, vτ , wτ), it remains to study the sign of M2(α)M1(α) −
M0(α), which takes the following form:

M2(α)M1(α) − M0(α) = Aα2 + ρ1α+ ρ0, (13)

where

ρ1 := A2 + θ(1 − μ)
[
2A − B

]
, ρ0 := θ

[
(1 − μ)θ + A

][
(1 − μ)A + μB

]
. (14)

Clearly, under assumption (H), we have ρ0 > 0. We now consider the sign of ρ1.
We can check that

2A − B =
4τ2 + (3 − 2k)τ − k

k(1 + τ)
,

which has a unique positive root, denoted by τ̂, which is given by

τ̂ :=
2k − 3 +

√
4k2 + 4k + 9
8

. (15)

It can be directly checked that

τ̂ ∈
⎧⎨⎩(0, k), if 0 < k ≤ 1,Å

k − 1
2

, k
ã

, if k > 1.
(16)

Clearly, 2A − B < 0 for τ ∈ (0, τ̂), while 2A − B > 0 for τ > τ̂.
Then, for any τ ∈ [τ̂, k), μ ∈ (0, 1) and θ > 0, ρ1 > 0. Therefore, for any α > 0,

M2(α)M1(α) − M0(α) > 0. By Appendix of [19], (τ, vτ , wτ) is locally asymptotically stable
in system (4).

In what follows, we study the case when τ ∈ (τ0, τ̂) so that 2A − B < 0, where

τ0 :=

⎧⎨⎩0, if 0 < k ≤ 1,
k − 1

2
, if k > 1.

(17)

If we regard A and B as the functions of τ, we can check that A = A(τ) is increasing
and B = B(τ) is decreasing in τ. Moreover, A − B < 0 for τ ∈ (τ0, τ̂).

One can check that for any τ ∈ (τ0, τ̂), ρ1 = 0 (resp., ρ1 < 0) is equivalent to

μ = μ̂(τ) :=
A2

θ(2A − B)
+ 1, (resp., μ < μ̂(τ)). (18)

Then, we have

μ̂′(τ) =
2AA′(A − B) + A2B′

θ(2A − B)2 < 0. (19)
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When τ → τ̂, 2A − B → 0−, A2 → A2(τ̂) �= 0, then μ̂(τ) → −∞ as τ → τ̂; When
τ → τ+0 , since A2 → 0, 2A − B �= 0, we have μ̂(τ) → 1 as τ → τ+0 . Then, for any τ ∈ (τ0, τ̂),
we have μ̂(τ) ∈ (−∞, 1). Since μ̂′(τ) < 0, a unique τ∗ ∈ (τ0, τ̂) exists such that

μ̂(τ)

⎧⎪⎨⎪⎩
∈ (0, 1), if τ ∈ (τ0, τ∗),
= 0, if τ = τ∗,
∈ (−∞, 0), if τ ∈ (τ∗, τ̂).

(20)

If τ ∈ [τ∗, τ̂), then for any μ ∈ (0, 1), it always holds true that μ > μ̂(τ), which means
that ρ1 > 0. Thus, M2(α)M1(α) − M0(α) > 0 for any α > 0, (τ, vτ , wτ) is locally stable in
system (4).

If τ ∈ (τ0, τ∗), then μ̂(τ) ∈ (0, 1). Therefore, for any μ ∈ (0, 1), a unique τμ ∈ (τ0, τ∗)
exists, satisfying ⎧⎪⎨⎪⎩

μ̂(τ) > μ, if τ ∈ (τ0, τμ),
μ̂(τ) = μ, if τ = τμ,
μ̂(τ) < μ, if τ ∈ (τμ, τ∗),

(21)

or equivalently ⎧⎪⎨⎪⎩
ρ1 < 0, if τ ∈ (τ0, τμ),
ρ1 = 0, if τ = τμ,
ρ1 > 0, if τ ∈ (τμ, τ∗).

Then, for any τ ∈ [τμ, τ∗), (τ, vτ , wτ) is locally stable in system (4).
Next, we assume the case of τ ∈ (τ0, τμ), in which ρ1 < 0. Regarding M2(α)M1(α) −

M0(α) = α2 + ρ1α+ ρ0 as the quadratic function τ, we can obtain its discriminant

Δα := θ2B2μ2 + 2θB(2θA − θB − A2)μ+ A4 − 2θA2B − 4θ2 AB + θ2B2. (22)

Assume that for some θ > 0, we have Δα < 0. Then, for any α > 0, we have
M2(α)M1(α) − M0(α) = α2 + ρ1α+ ρ0 > 0. Hence, for any α > 0, (τ, vτ , wτ) is locally stable
in system (4).

Assume that for some θ > 0, we have Δα > 0. Then, M2(α)M1(α) − M0(α) = Aα2 +
ρ1α+ ρ0 = 0 has two distinct positive solutions given by

α1 :=
−ρ1 −

√
Δα

2A
> 0, α2 :=

−ρ1 +
√

Δα

2A
> 0. (23)

Thus, for any α ∈ (0, α1) ∪ (α2, ∞), we have M2(α)M1(α) − M0(α) = Aα2 + ρ1α +
ρ0 > 0. Then, (τ, vτ , wτ) is locally stable in system (4). While if α ∈ (α1, α2), we have
M2(α)M1(α) − M0(α) = Aα2 + ρ1α+ ρ0 < 0. Then, (τ, vτ , wτ) is unstable in system (4).

We are now in the position to state the stability results of (τ, vτ , wτ):

Theorem 3. Suppose that either 0 < k ≤ 1 but τ ∈ (0, k) or k > 1 but τ ∈
Å

k − 1
2

, k
ã

holds

so that (τ, vτ) is stable in system (5). Let τ̂, τ0, τ∗, and τμ be defined in (16), (17), (20) and (21),
respectively. Then, we have τ0 < τμ < τ∗ < τ̂ < k. In particular,

1. Suppose that τ ∈ (τ0, τμ) holds. Let Δα be defined by (22).

(a) If, additionally, Δα < 0, then for any α > 0, (τ, vτ , wτ) is locally asymptotically stable
in system (4);

(b) If, additionally, Δα > 0, then for any α ∈ (0, α1) ∪ (α2,+∞), (τ, vτ , wτ) is locally
asymptotically stable in (4), while for α ∈ (α1, α2), (τ, vτ , wτ) is unstable in system (4).

2. Suppose that τ ∈ [τμ, k) holds. Then, for any α > 0, (τ, vτ , wτ) is locally asymptotically
stable in system (4).
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Remark 1.

1. We would like to remark that it is analytically demanding to analyze the sign of Δα. Indeed,
we need to resort to numerical simulations to determine when Δα > 0 or Δα < 0. It is found
from numerical simulations that for some θ, we have Δα < 0, while for the other θ, Δα > 0;

2. We assume that either 0 < k ≤ 1 but τ ∈ (0, k) or k > 1 but τ ∈
Å

k − 1
2

, k
ã

holds so that

(τ, vτ) is stable in system (5). However, for case of 2(b), when α ∈ (α1, α2), (τ, vτ , wτ) is
unstable. From this, we can see a difference between the system without dormancy and the
system with dormancy.

Theorem 4. Suppose that either 0 < k ≤ 1 but τ ∈ (0, k) or k > 1 but τ ∈
Å

k − 1
2

, k
ã

holds, so

that (τ, vτ) is stable in system (5). Let τ ∈ (τ0, τμ) and Δα > 0 so that α1 and α2 are well-defined.
Then, at α = α, the Hopf bifurcation around (τ, vτ , wτ) occurs. Moreover, at α = α, the Hopf
bifurcating periodic solution is stable and the bifurcation direction is forward if Re(c1(α)) < 0,
while the Hopf bifurcating periodic solution is unstable and the bifurcation direction is backward if
Re(c1(α)) > 0, where α = α1 or α2, and Re(c1(α)) is defined by (26).

Proof. 1. The proof of the existence of Hopf bifurcations at α = α1 and α2. By the
aforementioned analysis, at α = α1 and α2, we have M2(α)M1(α) − M0(α) = 0. Thus,
at α = α1 and α2, the eigenvalue problem has a pair of purely imaginary roots and a
negative root. Furthermore, according to Theorem 3, we have

M′
1(α1)M2(α1) + M1(α1)M′

2(α1) − M′
0(α1) < 0,

M′
1(α2)M2(α2) + M1(α2)M′

2(α2) − M′
0(α2) > 0.

Therefore, by the Hopf bifurcation theorem, at α = α1 and α2, the Hopf bifurcation
around (τ, vτ , wτ) occurs.

2. Now, we derive conditions to determine the bifurcation direction and the stability
of the periodic solutions.

By Theorem A.1 of [19] (or see also Lemma 2 below), the bifurcation direction (forward
or backward) and the stability/instability of the periodic solutions can be determined by
the sign of Re(c1(α))(2αA + ρ1), where α = α1 or α2, and ρ1 is defined in (14).

By using the framework of Theorem A.1 of [19], we need to calculate the term Re(c1(α)).
To that end, we define the matrix P in the following way:

P(α) =

Ñ
1 0 1

p21 p22 p23
p31 p32 p33

é
, (24)

where

p21(α) :=− A
θ

, p22(α) := −
√

M1(α)
θ

, p23(α) :=
α+ (1 − μ)θ

θ
, p31(α) :=

A
θ

,

p32(α) :=
√

M1(α)(A − θ(1 − μ))
αθ

, p33(α) := − (α+ (1 − μ)θ)(A + α) + μθB
αθ

.

Then, we can calculate

h1(α, y1, y2, y3) =
(

p22 p33 − p23 p32
)
g1 + p32g2 − p22g3

det(P)
,

h2(α, y1, y2, y3) =
(

p31 p23 − p21 p33
)
g1 +

(
p33 − p31

)
g2 +

(
p21 − p23

)
g3

det(P)
,

h3(α, y1, y2, y3) =
(

p21 p32 − p22 p31
)
g1 − p32g2 + p22g3

det(P)
,

(25)
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where the determinant of P denotes as det(P) and

g1 :=
(y1 + y3)2

k
− m(y1 + y3)(p21y1 + p22y2 + p23y3)

1 + y1 + y3
,

g2 :=
μm(y1 + y3)(p21y1 + p22y2 + p23y3)

1 + y1 + y3
,

g3 :=
(1 − μ)m(y1 + y3)(p21y1 + p22y2 + p23y3)

1 + y1 + y3
,

and y1, y2, y3 denote the transformation from the variables u, v, w. Then, by (A.17) in
Appendix of [19], we have

Re(c1(α)) =
1

16
√

M1(α)

(
(h1)y1y1 (h2)y1y1 − (h1)y1y1 (h1)y1y2 + (h2)y1y1 (h2)y1y2

)
+

1
16

(
(h1)y1y1y1 + (h2)y1y1y2

)
+

1
8M2(α)

(h3)y1y1

(
(h1)y1y3 + (h2)y2y3

)
+

M2(α)
16

(
M2(α)2 + 4M1(α)

) (h3)y1y1

(
(h1)y1y3 − (h2)y2y3

)
+

M2(α)
8
(

M2(α)2 + 4M1(α)
) (h3)y1y2

(
(h1)y2y3 + (h2)y1y3

)
+

√
M1(α)

8
(

M2(α)2 + 4M1(α)
) (h3)y1y1

(
(h2)y1y3 + (h1)y2y3

)
−

√
M1(α)

4
(

M2(α)2 + 4M1(α)
) (h3)y1y2

(
(h1)y1y3 − (h2)y2y3

)
,

(26)

where h1, h2, and h3 are defined in (25).
By Theorem A.1 of [19] (see also Lemma 2 below), we can draw the following conclu-

sions: at α = α1, the bifurcating periodic solution is unstable and the bifurcation occurs for
α ∈ (α1 − ε, α1) for sufficiently small ε > 0 if Re(c1(α1)) > 0, and the bifurcating periodic
solution is stable and the bifurcation occurs for α ∈ (α1, α1 + ε) for sufficiently small ε > 0
if Re(c1(α1)) < 0 holds. On the other hand, at α = α2, the bifurcating periodic solution
is unstable and the bifurcation occurs for α ∈ (α2, α2 + ε) for sufficiently small ε > 0 if
Re(c1(α2)) > 0, and the bifurcating periodic solution is stable and the bifurcation occurs for
α ∈ (α2 − ε, α2) for sufficiently small ε > 0 if Re(c1(α2)) < 0 holds.

Remark 2.

1. It is analytically demanding to obtain a explicit expression of Re(c1(α)), and we shall resort to
numerical tools to calculate it in the part of numerical simulations;

2. For simplicity, we denote (up(t), vp(t), wp(t)), and P by the Hopf bifurcating periodic solution
and its minimum period.

3. Diffusion-Induced Instability of the Bifurcating Periodic Solutions

In this section, we shall consider diffusion-induced instability of the periodic solutions
obtained in the last section. About diffusion-induced instability, we can see [20].
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3.1. Preliminaries

We recall the following results of [19] on diffusion-induced instability of the bifurcating
periodic solutions for the general reaction-diffusion system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u1

∂t
= d1Δu1 + f1(α, u1, u2, u3), x ∈ Ω, t > 0,

∂u2

∂t
= d2Δu2 + f2(α, u1, u2, u3), x ∈ Ω, t > 0,

∂u3

∂t
= d3Δu3 + f3(α, u1, u2, u3), x ∈ Ω, t > 0,

∂νu1 = ∂νu2 = ∂νu3 = 0, x ∈ ∂Ω,

(27)

where f1, f2, f3 ∈ C3, and for any α > 0, (0, 0, 0) is always the constant equilibrium
solution; d1 > 0, d2 > 0, and d3 > 0; Ω := {�y : y ∈ Ω∗} is star-shaped centered by
the origin; 0 < � < ∞; and Ω∗ is a bounded domain in Rn (n ≥ 1) with sufficiently smooth
boundary ∂Ω∗.

The ODE system of system (27) is given by:

du1

dt
= f1(α, u1, u2, u3),

du2

dt
= f2(α, u1, u2, u3),

du3

dt
= f3(α, u1, u2, u3), (28)

where fi (i = 1, 2, 3) are defined in (27).
The linearized operator of (28) at (α, 0, 0, 0) can be evaluated as follows:

J(α) :=

Ñ
a11(α) a12(α) a13(α)
a21(α) a22(α) a23(α)
a31(α) a32(α) a33(α)

é
, (29)

where aij(α) := ∂ fi(α, 0, 0, 0)/∂uj, for i, j = 1, 2, 3. Rewrite the system (28) in the following
form: Ñ

u′
1

u′
2

u′
3

é
= J(α)

Ñ
u1
u2
u3

é
+

Ñ
g1(α, u1, u2, u3)
g2(α, u1, u2, u3)
g3(α, u1, u2, u3)

é
,

where ′ := d/dt, and for δ = 1, 2, 3,

gδ(α, u1, u2, u3) =
1
2

Å 3

∑
k=1

∂2 fδ
∂u2

k
+ 2 ∑

1≤i<j≤3

∂2 fδ
∂ui∂uj

ã

+
1
6

Å 3

∑
k=1

∂3 fδ
∂u3

k
+ 3

3

∑
1≤i<j≤3

Å
∂2 fδ

∂u2
i ∂uj

+
∂2 fδ

∂ui∂u2
j

ã
+ 6

∂3 fδ
∂u1∂u2∂u3

ã
+ o,

where o is the higher order terms of gδ(α, u1, u2, u3).
The eigenvalue problem of J(α) is governed by the following equation:

μ3 + M2(α)μ2 + M1(α)μ+ M0(α) = 0, (30)

where

M2(α) :=−
3

∑
i=1

aii(α), M1(α) :=
3

∑
i=1

Aii(α), M0(α) := −det(J(α)), (31)

where aij(α) is defined in (29), Aij(α) represents the algebraic cofactor of aij(α), and det(·) is
the determinant of a matrix.

In [19], Wang and Yi obtained the following results:
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Lemma 2. Assume that there exists a positive α, such that M0(α) > 0, M1(α) > 0, M2(α) > 0,
and that

M1(α)M2(α) − M0(α) = 0, M1(α)M′
2(α) + M′

1(α)M2(α) − M′
0(α) �= 0. (32)

Then, we have

1. For α ∈ (α, α+ ε), the steady state (0, 0, 0) is locally asymptotically stable, while it is unstable
for α ∈ (α− ε, α) provided that

M1(α)M′
2(α) + M′

1(α)M2(α) − M′
0(α) > 0,

where ε > 0 is the sufficiently small number.
2. For α ∈ (α, α+ ε), the steady state (0, 0, 0) is unstable, while it is locally asymptotically stable

for α ∈ (α− ε, α) provided that

M1(α)M′
2(α) + M′

1(α)M2(α) − M′
0(α) < 0,

where ε > 0 is the sufficiently small number.
3. At α = α, near (0, 0, 0), system (28) will experience Hopf bifurcations. The Hopf bifurcating

periodic solution is stable if Re(c1(α)) < 0, while it is unstable if Re(c1(α)) > 0. The
bifurcation direction is backward if

Re(c1(α))
Å

M1(α)M′
2(α) + M′

1(α)M2(α) − M′
0(α)
ã
< 0,

while the bifurcation direction is forward if

Re(c1(α))
Å

M1(α)M′
2(α) + M′

1(α)M2(α) − M′
0(α)
ã
> 0,

where c1(α) denotes the first Lyapunov coefficient and Re(c1(α)) represents the real parts of c1(α).

Moreover, Wang and Yi [19] also provide conditions on d1, d2, d3 so that diffusion-
induced instability of the periodic solutions occurs, which methods and theories base
on [21–25].

Lemma 3. Let α be fixed to be sufficiently close to α such that (up
1 (t), up

2 (t), up
3 (t)) is a stable

bifurcating periodic solution of system (28) described in Lemma 2. Then, (up
1 (t), up

2 (t), up
3 (t)) is

unstable in system (27) if the constant � is sufficiently large, and

M1(α)
Å(

a11(α)Q(α) − 1
)
d1 +

(
a22(α)Q(α) − 1

)
d2 +

(
a33(α)Q(α) − 1

)
d3

ã
+

Å
M2(α)Q(α) + 1

ãÅ
A11(α)d1 + A22(α)d2 + A33(α)d3

ã
> 0,

(33)

where

Q(α) :=
√

M1(α)
M1(α) + M2

2(α)
Im(c1(α))
Re(c1(α))

− M2(α)
M1(α) + M2

2(α)
. (34)

3.2. Diffusion-Induced Instability of the Periodic Solutions for Predator-Prey System

In this subsection, we shall utilize the abstract contents in preliminaries to study
the diffusion-induced instability of the periodic solution (up(t), vp(t), wp(t)) as defined in
Section 2.

Suppose that either (1): 0 < k ≤ 1 and τ ∈ (0, k) or (2): k > 1 and τ ∈
Å

k − 1
2

, k
ã

holds

so that (τ, vτ) is stable in system (5).

168



Mathematics 2023, 11, 1875

Let τ ∈ (τ0, τμ) and Δα > 0 so that α1 and α2 are well-defined. Then, at α = α1
and α = α2, the Hopf bifurcation around (τ, vτ , wτ) occurs. Moreover, we assume that
Re(c1(α1)) < 0 (resp., Re(c1(α2)) < 0) so that the periodic solution which bifurcating from
Hopf bifurcating at (α1, τ, vτ) (resp., (α2, τ, vτ)) is orbitally asymptotically stable.

According to Lemma 3, to study the diffusion-induced instability of the periodic
solution (up(t), vp(t), wp(t)), we need to compute Im(c1(α)), where α = α1 or α2. Then,
by using the method in Appendix of [19], we can obtain

Im(c1(α)) =
1

32
√

M1(α)

(
(h1)2

y1y1
− (h2)2

y1y1
+ 2(h1)y1y2 (h2)y1y1

)
− 1

16
√

M1(α)

((
(h1)y1y1 + (h1)y2y2

)2
+

(
(h2)y1y1 + (h2)y2y2

)2)
− 1

96
√

M1(α)

Å(
(h1)y1y1 − (h1)y2y2 − 2(h2)y1y2

)2
+

(
(h2)y1y1 − (h2)y2y2 + 2(h1)y1y2

)2
ã

+
1

8M2(α)
(h3)y1y1

(
(h2)y1y3 − (h1)y2y3

)
+

1
16

(
(h2)y1y1y1 − (h1)y1y1y2

)
+

M2(α)
16(M2(α)2 + 4M1(α))

(h3)y1y1

(
(h2)y1y3 + (h1)y2y3

)
− M2(α)

8(M2(α)2 + 4M1(α))
(h3)y1y2

(
(h1)y1y3 − (h2)y2y3

)
−

√
M1(α)

8(M2(α)2 + 4M1(α))
(h3)y1y1

(
(h1)y1y3 + (h2)y2y3

)
−

√
M1(α)

4(M2(α)2 + 4M1(α))
(h3)y1y2

(
(h2)y1y3 + (h1)y2y3

)
.

(35)

Then, from Lemma 3, we now state our main results.

Theorem 5. Let α be fixed to be close to α, where α = α1 or α2, and Re(c1(α)) < 0 so that
(up(t), vp(t), wp(t)) is stable in the kinetic system (4). Then, (up(t), vp(t), wp(t)) is able to experience
diffusion-induced instability provided that the constant � is large enough and

M1(α)
Å(− AQ(α) − 1

)
d1 +

(
(μ− 1)θQ(α) − 1

)
d2 −

(
αQ(α) + 1

)
d3

ã
+ (M2(α)Q(α) + 1)

Å
d2 Aα+ d3θ(A(1 − μ) + μB)

ã
> 0,

(36)

where A, B, M1(α), M2(α) are set in (9) and (11); moreover,

Q(α) :=
√

M1(α)
M1(α) + M2(α)2

Im(c1(α))
Re(c1(α))

− M2(α)
M1(α) + M2(α)2 ,

where Re(c1(α)) is described in (26).

Remark 3. It is analytically demanding to obtain a explicit expression of Re(c1(α)), Im(c1(α)) and
Q(α). We shall resort to numerical tools to calculate it in the part of numerical simulations.

4. Numerical Examples

In this section, we present some numerical examples. We divided our numerical
simulations into two parts: “larger”μ (μ is very close to 1) and “smaller”μ (μ is very close
to 0).

Case 1 (“larger”μ). We set m = 100, θ = 10, k = 1.1, and μ = 0.8. In this case, we have

α1 = 8.8542, α2 = 132.771, Re(c1(α1)) = −11.6638 < 0, Re(c1(α2)) = −14.3536 < 0.
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By Theorem 4, at α = 8.8542 and α = 132.771, the supercritical Hopf bifurcation occurs
around (τ, vτ , wτ) = (0.1111, 0.01, 0.1769). That is, the bifurcating periodic solution, denoted
by (up(t), vp(t), wp(t)), is stable in the ODEs system.

At α = α1 = 8.8542,

Re(c1(α1))
(

M1(α1)M′
2(α1) + M′

1(α1)M2(α1) − M′
0(α1)

)
< 0,

which indicates that Hopf bifurcation direction is backward. Set α = 8.7542, Ω = (0, 1000),
u0(x) = τ + 0.001, v0(x) = vτ + 0.001, w0(x) = wτ + 0.0001.

Firstly, we set d1 = d2 = d3 = 1. Numerical simulation shows that (up(t), vp(t), wp(t))
remains stable in the diffusive system. No diffusion-induced instability of (up(t), vp(t), wp(t))
occurs (see Figure 1).

(a) u(x,t) (b) v(x,t) (c) w(x,t)

Figure 1. When d1 = d2 = d3, (up(t), vp(t), wp(t)) remains stable in the diffusive system (3).

Secondly, we set d1 = 1, d2 = 5, d3 = 30; Ω = (0, 1000); u0(x) = τ + 0.001 sin(x),
v0(x) = vτ + 0.001 sin(3x), w0(x) = wτ + 0.001 sin(0.005x). By Theorem 5, (up(t), vp(t), wp(t))
becomes diffusion-induced unstable in diffusive system (3). This is demonstrated by
Figure 2.

(a) u(x,t) (b) v(x,t) (c) w(x,t)

Figure 2. (up(t), vp(t), wp(t)) becomes diffusion-induced unstable, and the emerging spatiotemporal
patterns can be observed.

At α = α2 = 132.771, we have

Re(c1(α2))
Å

M1(α2)M′
2(α2) + M′

1(α2)M2(α2) − M′
0(α2)

ã
> 0,

which implies that the bifurcating direction is forward. Then, we choose α = 132.871,
Ω = (0, 1000), u0(x) = τ + 0.001, v0(x) = vτ + 0.001, w0(x) = wτ + 0.0001. In this case,
there is a stable periodic solution in the system (4) and denoted by (up(t), vp(t), wp(t)).

First, we set d1 = d2 = d3 = 1. Ω = (0, 1000), u0(x) = τ + 0.001 sin(x),
v0(x) = vτ + 0.001 sin(3x), w0(x) = wτ + 0.0001 sin(0.5x). In this case, (up(t), vp(t), wp(t))
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remains stable in system (3). No diffusion-induced instability of (up(t), vp(t), wp(t)) occurs.
This is demonstrated by Figure 3.

(a) u(x,t) (b) v(x,t) (c) w(x,t)

Figure 3. For d1 = d2 = d3, (up(t), vp(t), wp(t)) is still stable in system (3).

Secondly, we set d1 = 1, d2 = 5, d3 = 30, Ω = (0, 1000), u0(x) = τ + 0.001 sin(x),
v0(x) = vτ + 0.001 sin(3x), w0(x) = wτ + 0.0001 sin(0.005x). In this case, by theorem 5,
(up(t), vp(t), wp(t)) becomes diffusion-induced unstable in system (3). This is demonstrated
by Figure 4.

(a) u(x,t) (b) v(x,t) (c) w(x,t)

Figure 4. (up(t), vp(t), wp(t)) becomes diffusion-induced unstable, and the emerging spatiotemporal
patterns can be simulated.

Case 2 (“smaller”μ). We set m = 100, θ = 10, k = 1.1 and μ = 0.1. In this case, we have

α1 = 1.1589, α2 = 636.1936, Re(c1(α1)) = −0.4907 < 0, Re(c1(α2)) = −14.3536 < 0.

According to Theorem 4, at α = α1 or α = α2, the supercritical Hopf bifurcation occurs
around (τ, vτ , wτ) = (0.1111, 0.01, 0.1042). That is, the bifurcating periodic solution, denoted
by (up(t), vp(t), wp(t)), is asymptotically stable in the ODEs system.

At α = α1 = 1.1589,

Re(c1(α1))
(

M1(α1)M′
2(α1) + M′

1(α1)M2(α1) − M′
0(α1)

)
< 0,

which indicates that the Hopf bifurcation direction is backward. Set α = 1.0589,
Ω = (0, 1000), u0(x) = τ + 0.001, v0(x) = vτ + 0.001, and w0(x) = wτ + 0.0001. System (4)
has a stable periodic solution, denoted by (up(t), vp(t), wp(t)).

First, we set d1 = d2 = d3 = 1. Ω = (0, 1000). No diffusion-induced instability of
(up(t), vp(t), wp(t)) occurs. This is demonstrated by Figure 5.
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(a) u(x,t) (b) v(x,t) (c) w(x,t)

Figure 5. When d1 = d2 = d3, (up(t), vp(t), wp(t)) remains stable in system (3).

Secondly, we set d1 = 1, d2 = 5, d3 = 30. Ω = (0, 1000), and u0(x) = τ + 0.001 sin(x),
v0(x) = vτ + 0.001 sin(3x), w0(x) = wτ + 0.001 sin(0.005x). By Theorem 5, (up(t), vp(t), wp(t))
becomes diffusion-induced unstable and the emerging spatiotemporal patterns can be
found. This is demonstrated by Figure 6.

(a) u(x,t) (b) v(x,t) (c) w(x,t)

Figure 6. (up(t), vp(t), wp(t)) becomes diffusion-induced unstable, and the emerging spatiotemporal
patterns are observed.

At α = α2, we have

Re(c1(α2))
Å

M1(α2)M′
2(α2) + M′

1(α2)M2(α2) − M′
0(α2)

ã
> 0,

which confirms that the Hopf bifurcation is forward. We set α = 636.2936, Ω = (0, 1000),
u0(x) = τ + 0.001, v0(x) = vτ + 0.001, w0(x) = wτ + 0.0002. Then, the kinetic system (4)
possesses a periodic solution (up(t), vp(t), wp(t)), which is stable.

First, we set d1 = d2 = d3 = 1. Ω = (0, 1000). The diffusion-induced instability of
(up(t), vp(t), wp(t)) cannot be found. This is demonstrated by Figure 7.

(a) u(x,t) (b) v(x,t) (c) w(x,t)

Figure 7. When d1 = d2 = d3, (up(t), vp(t), wp(t)) remains stable in system (3).
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Secondly, let d1 = 1, d2 = 5, d3 = 30. Ω = (0, 1000), and u0(x) = τ + 0.001 sin(x),
v0(x) = vτ + 0.001 sin(3x), w0(x) = wτ + 0.001 sin(0.005x). By Theorem 5, (up(t), vp(t), wp(t))
becomes diffusion-induced unstable and the emerging spatiotemporal patterns can be
observed. This is demonstrated by Figure 8.

(a) u(x,t) (b) v(x,t) (c) w(x,t)

Figure 8. (up(t), vp(t), wp(t)) becomes diffusion-induced unstable, and the emerging spatiotemporal
patterns can be observed.

5. Concluding Remarks

In this paper, a homogeneous diffusive predator-prey system with the dormancy of
predators is mainly considered. It concentrates on the diffusion-induced instability of the
Hopf bifurcating periodic solutions.

Without regard to the dormancy effect, the predator-prey system is a system with
two components. Motivated by [2,3], we choose the first component τ of the positive
equilibrium solution (τ, vτ) as the bifurcation parameter. We assume that the unique
positive equilibrium solution of the system (the 2-component predator-prey system) is
stable with respect to the corresponding ODEs system, say

either 0 < k ≤ 1 but τ ∈ (0, k), or k > 1 but τ ∈
Å

k − 1
2

, k
ã

holds so that (τ, vτ) is stable in system (5). By [2], (τ, vτ) is globally asymptotically stable in
system (5).

In the presence of the dormancy effect, the predator-prey system becomes a system
with 3-components. Our results indicated that for some θ, if Δα > 0, then for suitable τ
and α (say, τ ∈ (τ0, τμ), α = α1 and α = α2), the ODEs predator-prey system might exhibit
temporal oscillations. This suggests that the dormancy effects can favor the emergence
of temporal oscillatory patterns. Precisely, the smaller μ (the modeling the strengthen of
the dormancy effect) is, the larger stability range of τ is. At α = α1 and α = α2, Hopf
bifurcations around (τ, vτ , wτ) occur. By calculating the first Lyapunov coefficients, we can
derive conditions to determine the stability of the periodic solutions.

When diffusions are introduced into the predator-prey system with dormancy, we can
deduce the reaction-diffusion equations with the 3-components system. Referring to the
abstract results in [19], we are able to expound some precise conditions on the diffusion
coefficients to determine the diffusion-induced instability of the periodic solutions.
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Abstract: In this paper, we deduce a predator–prey model with discrete time in the interior of R2
+

using a new discrete method to study its local dynamics and Neimark–Sacker bifurcation. Compared
with continuous models, discrete ones have many unique properties that help to understand the
changing patterns of biological populations from a completely new perspective. The existence and
stability of the three equilibria are analyzed, and the formation conditions of Neimark–Sacker bifurca-
tion around the unique positive equilibrium point are established using the center manifold theorem
and bifurcation theory. An attracting closed invariant curve appears, which corresponds to the
periodic oscillations between predators and prey over a long period of time. Finally, some numerical
simulations and their biological meanings are given to reveal the complex dynamical behavior.

Keywords: predator–prey model; Neimark–Sacker bifurcation; refuge

MSC: 26D15; 33C20; 33C47; 33E20; 60E05

1. Introduction

Theoretical ecology aims to give reasonable explanations for the interactions among
biological populations in nature with the help of dynamical models to predict the distribu-
tion and population structure of communities. Since the pioneers Lotka [1] and Volterra [2]
constructed the famous Lotka–Volterra ecosystem model [3], the use of mathematical
models to explain complex ecological properties has been common in biology (see [4–8]).
Among them, predator–prey systems, which can explain predation relationships, have
been intensively studied and made great progress in the 1980s [9,10].

Brauer, F. and Sanchez, D. A. studied a predator–prey system with constant harvest and
storage rates. They found novel dynamical properties, such as the stability of equilibrium
points and existence of limit loops [11]. There are many predator–prey systems related
to the Allee effect and fear effect [12–14]. These articles not only give the stability of the
equilibrium point and bifurcation categories but, more importantly, describe the influence
of the Allee effect and fear effect on the final density of the population. In addition,
the dynamic predation behavior of predators in ecosystems strongly depends on functional
responses.

One of the most common functional responses in predator–prey systems is the well-
known Holling type-II response. Kuznetsov, Y.A. studied a food chain model composed of
logistic prey and Holling type II predators and superpredators and gave several types of
bifurcations with their chaotic behaviors [15]. Aziz-Alaoui, MA. and Okiye, MD. presented
a two-dimensional predator–prey food chain continuous model with a Holling type-II
response. They concluded with global stability of the coexisting interior equilibrium using
a Lyapunov function [16].

In natural predator–prey interactions, failure to protect prey is likely to cause their
extinction, which is detrimental to biodiversity. Chen, LD., Chen, LJ., Xie, XD. proposed a
Leslie–Gower predator–prey model incorporating a prey refuge, where the analysis showed
that increasing the amount of refuge increased prey densities [17]. Therefore, models that
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consider prey refuges can more accurately respond to interspecific relationships in nature
than can general models.

In the ecological community, many populations do not vary in numbers continuously.
Therefore, it is particularly important to study discrete models. A discrete model has
multiple periodic bifurcations, chaotic properties and generate periodic orbits, while a
continuous one produces only simple S-shaped curves [18,19]. Normally, the discretization
method given by Euler is used in most studies [20,21]. Since the accuracy of the Euler
method is determined by the step size, it has low accuracy and stability. However, the semi-
discrete method can achieve higher accuracy and stability with suitable choices of schemes.

In this paper, we modify a continuous predator–prey model with the prey refuge
effect using a semi-discrete method in Section 2. In Section 3, we determine the existence
and stability of three equilibria and focus on the local dynamics about the unique positive
equilibrium point. In Section 4, we study Neimark–Sacker bifurcation when bifurcation
parameter γ varies in a small neighborhood of the positive equilibrium point. In Section 5,
some numerical simulations for Neimark–Sacker bifurcation are given by phase diagrams
to verify our results. Finally, our conclusions and biological meanings are given in Section 6.

2. Preliminaries and Notation

Ghosh J., Sahoo B. and Poria S. constructed a predator–prey model with a logical
growth rate and prey refuge in the presence of additional food for predator based on the
Holling type-II functional response, which is given as follows [22].⎧⎨⎩

dN
dT = rN

(
1 − N

K

)
− c′(1−c)e1 NP

a+h2e2 A+h1e1 N
dP
dT = b((1−c)e1 N+e2 A)P

a+h2e2 A+h1e1 N − mP

where F(N) =
c′(1−c)e1 N

a+h2e2 A+h1e1 N is the functional response in the presence of prey refuge c and
additional food for predator A. N and P indicate the biomass of the prey and predator,
respectively. e1 and h1 represent the ability of the predator to detect prey and the handling
time of the predator per prey item, respectively. e2 and h2 denote the ability to detect
additional food and the handling time of additional food biomass, respectively. r and K,
respectively, represent the intrinsic growth rate and environmental carrying capacity of the
prey.

To simplify the parameters, we denote x = e1h1
a N, y = c′e1

ar P, α = h2
h1

, ξ = e2h1 A
a ,

β = b
h1r , δ = m

r , and t = rT. Subsequently, the simplified model is given by [22]:⎧⎨⎩
dx
dt = x

(
1 − x

γ

)
− (1−c)xy

1+αξ+x
dy
dt = β((1−c)x+ξ)y

1+αξ+x − δy
(1)

Based on the model (1) already constructed by Ghosh J., Sahoo B. and Poria S. and
the significant work given by Gladkov, S.O. who demonstrated a method for obtaining
any dynamic equations describing various biological systems, including considering the
heterogeneous distribution of populations [23], we used the semi-discrete method [24,25]
for model (1) modification.

We divide the continuous time t into small parts (i.e., t ∈ [n , n + 1) , n ∈ N+) and
integrate over the unit time period.∫ n+1

n

1
x(t)

dx(t) =
∫ n+1

n

[
x(t)

(
1 − x(t)

γ

)
− (1 − c)x(t)y(t)

1 + αξ + x(t)

]
dt

ln xn+1 − ln xn = xn

(
1 − xn

γ

)
− (1 − c)xnyn

1 + αξ + xn
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Using the same discrete method in the second equation, we obtained the following
discrete-time system: ⎧⎨⎩ xn+1 = xne1− xn

γ − (1−c)yn
1+αξ+xn

yn+1 = yne
β(1−c)xn+ξ

1+αξ+xn −δ
(2)

3. Existence and Stability of Equilibria

Initially, the existence and stability of the equilibrium points of system (2) are analyzed.
By calculating system (2), clearly, trivial and boundary equilibria E1 = (0, 0), E2 = (γ, 0) are
obtained. In the following research, we focus on studying the local dynamics around the unique
positive equilibrium point E3 = (x∗, y∗) =

(
δ+(αδ−β)ξ
β(1−c)−δ

,
(

1+αξ+x∗
1−c

)(
1 − x∗

γ

) )
.

The Jacobi matrix of the linear system of (2) at any equilibrium point (x, y) can be
obtained as

J(x, y) =

⎛⎜⎜⎝
(

1 + x
(
− 1

γ + (1−c)y
(1+αξ+x)2

))
e
(

1− x
γ− (1−c)y

1+αξ+x

)
− (1−c)x

1+αξ+x e
(

1− x
γ− (1−c)y

1+αξ+x

)
((1−c)(1+αξ)−ξ)βy

(1+αξ+x)2 e
(
((1−c)x+ξ)β

1+αξ+x −δ
)

e
(
((1−c)x+ξ)β

1+αξ+x −δ
)

⎞⎟⎟⎠
Now, we give some dynamical properties about three equilibria.

Theorem 1. The following results hold for system (2):

(i) The trivial equilibrium E1 is a saddle point if and only if βξ
1+αξ < δ, and it is a source if and

only if βξ
1+αξ > δ.

(ii) The boundary equilibrium E2 is a sink if and only if β((1−c)γ+ξ)
1+αξ+γ < δ, it is a saddle point

if and only if β((1−c)γ+ξ)
1+αξ+γ > δ, and transcritical bifurcation occurs at E2 if and only if

β((1−c)γ+ξ)
1+αξ+γ = δ.

Proof. (i) First, the Jacobian matrix of (2) at point E1 = (0, 0) is given by:

J(E1) =

(
e 0

0 e
βξ

1+αξ−δ

)

Then, eigenvalues of J(E1) are λ1 = e > 1 and λ2 = e
βξ

1+αξ−δ. Therefore, E1 is a saddle
point if and only if βξ

1+αξ < δ, and it is a source if and only if βξ
1+αξ > δ.

(ii) Secondly, the Jacobian matrix of (2) at point E2 = (γ, 0) is given by:

J(E2) =

⎛⎝ 0 − (1−c)γ
1+αξ+γ

0 e
β((1−c)γ+ξ)

1+αξ+γ −δ

⎞⎠
Then, eigenvalues of E2 = (γ, 0) are λ1 = 0 < 1 and λ2 = e

β((1−c)γ+ξ)
1+αξ+γ −δ. Therefore, E2

is a sink if and only if β((1−c)γ+ξ)
1+αξ+γ < δ, it is a saddle point if and only if β((1−c)γ+ξ)

1+αξ+γ > δ,

and transcritical bifurcation occurs at E2 if and only if β((1−c)γ+ξ)
1+αξ+γ = δ.

Next, we study the dynamics of system (2) at its unique positive internal equilibrium
point E3 = (x∗, y∗) =

(
δ+(αδ−β)ξ
β(1−c)−δ

,
(

1+αξ+x∗
1−c

)(
1 − x∗

γ

) )
.

Theorem 2. The following results hold for system (2):
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(i) The positive equilibrium E3 is a sink if⎧⎪⎪⎪⎨⎪⎪⎪⎩
4 + 2x∗

γ

(
γ−x∗

1+αξ+x∗ − 1
)
+ β(1−c)((1−c)(1+αξ)−ξ)x∗y∗

(1+αξ+x∗)3 > 0

c < 1 − ξ
1+αξ

x∗
γ

(
γ−x∗

1+αξ+x∗ − 1
)
+ β(1−c)((1−c)(1+αξ)−ξ)x∗y∗

(1+αξ+x∗)3 < 0

(ii) The positive equilibrium E3 is a saddle point if⎧⎨⎩ c < 1 − ξ
1+αξ

4 + 2x∗
γ

(
γ−x∗

1+αξ+x∗ − 1
)
+ β(1−c)((1−c)(1+αξ)−ξ)x∗y∗

(1+αξ+x∗)3 < 0

(iii) The positive equilibrium E3 is a source if⎧⎪⎪⎪⎨⎪⎪⎪⎩
4 + 2x∗

γ

(
γ−x∗

1+αξ+x∗ − 1
)
+ β(1−c)((1−c)(1+αξ)−ξ)x∗y∗

(1+αξ+x∗)3 > 0

c < 1 − ξ
1+αξ

x∗
γ

(
γ−x∗

1+αξ+x∗ − 1
)
+ β(1−c)((1−c)(1+αξ)−ξ)x∗y∗

(1+αξ+x∗)3 > 0

(iv) Transcritical bifurcation occurs at E3 if⎧⎨⎩ c = 1 − ξ
1+αξ

−2 < x∗
γ

(
γ−x∗

1+αξ+x∗ − 1
)
< 0

(v) Flip bifurcation occurs at E3 if⎧⎨⎩ 4 + 2x∗
γ

(
γ−x∗

1+αξ+x∗ − 1
)
+ β(1−c)((1−c)(1+αξ)−ξ)x∗y∗

(1+αξ+x∗)3 = 0

−4 < x∗
γ

(
γ−x∗

1+αξ+x∗ − 1
)
< −2

(vi) Neimark–Sacker bifurcation occurs at E3 if⎧⎨⎩
x∗
γ

(
γ−x∗

1+αξ+x∗ − 1
)
+ β(1−c)((1−c)(1+αξ)−ξ)x∗y∗

(1+αξ+x∗)3 = 0

−4 < x∗
γ

(
γ−x∗

1+αξ+x∗ − 1
)
< 0

Proof. The Jacobian matrix J(x∗, y∗) of system (2) is given by:

J(x∗, y∗) =

⎛⎝ x∗
γ

(
γ−x∗

1+αξ+x∗ − 1
)
+ 1 − (1−c)x∗

1+αξ+x∗
((1−c)(1+αξ)−ξ)βy∗

(1+αξ+x∗)2 1

⎞⎠
The characteristic polynomial of J(x∗, y∗) is given by:

P(λ) = λ2 −
(

2 +
x∗

γ

(
γ− x∗

1 + αξ + x∗
− 1

))
λ+

x∗

γ

(
γ− x∗

1 + αξ + x∗
− 1

)
+

β(1 − c)((1 − c)(1 + αξ)− ξ)x∗y∗

(1 + αξ + x∗)3 + 1

Then, eigenvalues of J(x∗, y∗) are

λ1 =
1 + M +

√
(1 − M)2 + 4BC

2
, λ2 =

1 + M −
√
(1 − M)2 + 4BC

2
,

where M = 1 + x∗
γ

(
γ−x∗

1+αξ+x∗ − 1
)

and BC = − β(1−c)((1−c)(1+αξ)−ξ)x∗y∗

(1+αξ+x∗)3 .
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(i) E3 is a sink with the eigenvalues |λ1| < 1 and |λ2| < 1, which is equivalent to BC < 0,
2M − BC + 2 > 0, and 1 − M + BC > 0.

(ii) E3 is a saddle point with the eigenvalues |λ1| < 1 and |λ2| > 1 (|λ1| > 1 and |λ2| < 1),
which is equivalent to BC < 0 and 2M − BC + 2 < 0.

(iii) E3 is a source with the eigenvalues |λ1| > 1 and |λ2| > 1, which is equivalent to
2M − BC + 2 > 0, BC < 0, and 1 − M + BC < 0.

(iv) Transcritical bifurcation occurs with the eigenvalues λ1 = 1, |λ2| < 1 or λ2 = 1,
|λ1| < 1, which is equivalent to BC = 0 and |M| < 1.

(v) Flip bifurcation occurs with the eigenvalues λ1 = −1, |λ2| < 1 or λ2 = −1, |λ1| < 1,
which is equivalent to 2M − BC + 2 = 0 and |M + 2| < 1.

(vi) Neimark–Sacker bifurcation occurs with the eigenvalues λ1λ2 = 1 and |λ1 + λ2| < 2,
which is equivalent to M − BC = 1 and |M + 1| < 2.

In practical biological applications, we can artificially control whether the system ends
up being stable or unstable based on inequalities of the variables given in Theorems 1 and 2,
which means that the biomass of predators and prey can be regulated. Therefore, this is
significant for predicting future biomass trends of populations and for taking conservation
measures in advance for endangered species to maintain biodiversity.

4. Neimark–Sacker Bifurcation at (x0, y0)

Bifurcation is a phenomenon in nonlinear dynamical systems where a small pertur-
bation of a parameter can cause a sudden qualitative change in its dynamic behavior.
From bifurcations, several consequences can be obtained, such as the emergence of periodic
probits and limit cycles. In this section, we study the Neimark–Sacker bifurcation at (x0, y0).

To simplify the system for ease of study, we assume that the parameter A = 0, which
means that zero additional food biomass and only the influence of prey refuge c on the
model is considered. Then, system (2) turns into system (3):⎧⎨⎩ xn+1 = xne1− xn

γ − (1−c)yn
1+αξ+xn

yn+1 = yne
β(1−c)xn+ξ

1+αξ+xn −δ
(3)

Its positive equilibrium (x∗, y∗) turns into (x0, y0) =
(

δ
β(1−c)−δ

, 1+x0
1−c

(
1 − x0

γ

))
.

In this section, we discuss how system (3) undergoes Neimark–Sacker bifurcation
around its positive equilibrium (x0, y0) when γ is chosen as a bifurcation parameter.
The necessary conditions for Neimark–Sacker bifurcation to occur are given by the follow-
ing curve:

S =

{
(c, β, δ) ∈ R

3
+ : γ = γ∗ = δ+ β(1 − c) + δ(β(1 − c)− δ)

(β(1 − c)− δ)2 + (β(1 − c)− δ)
, |D| < 2

}
(4)

where

D =
x∗

γ

(
γ− x∗

1 + x∗ − 1
)
+ 2.

4.1. Existence Condition of Neimark–Sacker Bifurcation at (x0, y0)

The Jacobian matrix J(x0, y0) of system (3) is given by:

J(x0, y0) =

⎛⎝(
1 + δ

β(1−c)

)(
1 − δ

γ(β(1−c)−δ)

)
− δ

β
γ(β(1−c)−δ)

γ(1−c) 1

⎞⎠
The characteristic polynomial of J(x0, y0) is given by:
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Q(λ) = λ2 −
((

1+
δ

β(1 − c)

)(
1− δ

γ(β(1 − c)− δ)

)
+1

)
λ+

(
1+

δ

β(1 − c)

)(
1− δ

γ(β(1 − c)− δ)

)
− δ(γ(β(1 − c)− δ)− δ)

βγ(c − 1)

For the emergence of Neimark–Sacker bifurcation around positive equilibrium (x0, y0)
of system (3), two roots of Q(λ) must be complex conjugates with a unit modulus. Therefore,
it is easy to obtain the bifurcation parameter γ∗ = δ+β(1−c)+δ(β(1−c)−δ)

(β(1−c)−δ)2+(β(1−c)−δ)
.

Consider parameter γ with a small perturbation ε, i.e., γ = γ∗ + ε, where |ε|�1 and
γ∗ = δ+β(1−c)+δ(β(1−c)−δ)

(β(1−c)−δ)2+(β(1−c)−δ)
, then system (3) becomes

⎧⎨⎩ xn+1 = xne1− xn
γ∗+ε

− (1−c)yn
1+xn

yn+1 = yne
β(1−c)xn

1+xn −δ
(5)

The characteristic equation of J
(

δ
β(1−c)−δ

, 1+x0
1−c

(
1 − x0

γ∗+ε

))
is given by:

λ2 + p(ε)λ+ q(ε) = 0 ,

where

p(ε) =
(

1 +
δ

k + δ

)(
1 − δ

(γ∗ + ε)k

)
+ 1

q(ε) =
(

1 +
δ

k + δ

)(
1 − δ

(γ∗ + ε)k

)
− δ((γ∗ + ε)k − δ)

β(c − 1)(γ∗ + ε)

k = β(1 − c)− δ.

The roots of characteristic equation of J
(

δ
β(1−c)−δ

, 1+x0
1−c

(
1 − x0

γ∗+ε

))
are

λ1 =
p(ε) + i

√
4q(ε)− p(ε)2

2
, λ2 =

p(ε)− i
√

4q(ε)− p(ε)2

2

Additionally,

|λ1,2| =
√

q(ε) ,
d|λ1,2|

dε
|ε=0 =

δk(k + 1)2

(k + δ)(k + 2δ+ δk)
> 0

We require that, when ε = 0, p(0) �= 0, 1, i.e., δk
(k+δ)(k+2δ+δk) �= 1, 2. Therefore,

λn
1,2 �= 1, n = 1, 2, 3, 4.

The transversal condition at (x0, y0) is given by

d|λ1|2
dε

|ε=0 =

(
λ1

dλ2

dε
+ λ2

dλ1

dε

)
|ε=0

= − δ2m2

2k
1
γ∗3 +

δ(mβ(c − 1)(m + 2)− 2k)
2kβ(c − 1)

1
γ∗2 − δ2m2

2k2
1
γ∗ +

δ2m2

2k
,

where m = k+2δ
k+δ .

If d|λ1|2
dε |ε=0 �= 0, then Neimark–Sacker bifurcation will occur at (x0, y0).
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4.2. The Direction of Neimark–Sacker Bifurcation at (x0, y0)

We consider the translations xn = xn − x0, yn = yn − y0 for shifting (x0, y0) to the
origin. Through calculating, we obtain⎧⎪⎨⎪⎩ xn+1 = (xn + x0)e

1− (xn+x0)
γ∗+ε

− (1−c)(yn+y0)
1+(xn+x0) − x0

yn+1 = (yn + y0)e
β(1−c)(xn+x0)

1+(xn+x0)
−δ − y0

(6)

Expanding (6) up to the third order at the origin using a Taylor series, we obtain(
xn+1
yn+1

)
=

(
a11 a12
b11 b12

)(
xn
yn

)
+

(
f (xn, yn)
g(xn, yn)

)
, (7)

where
f (xn, yn)= a13xn

3 + a14xn
2 + a15xn yn + a16xn

2yn + a17xn yn
2 + a18yn

2 + a19yn
3 + O

(
(|xn|+|yn|)3

)
g(xn, yn)=b13xn

3 + b14xn
2 + b15xn yn + b16xn

2yn + O
(
(|xn|+ |yn|)3

)
a1 = y0(c−1)

(x0+1)2 , a2 = y0(c−1)
(x0+1)3 , a3 = y0(c−1)

(x0+1)4 , b1 = x0(1−c)
(x0+1)2 , b2 = x0(1−c)

(x0+1)3 , b3 = x0(1−c)
(x0+1)4 ,

a11 =
(

1 + δ
k+δ

)(
1 − δ

k(γ∗+ε)

)
, a12 = − δ

β , b11 = (γ∗+ε)k−δ
(γ∗+ε)(1−c) , b12 = 1,

a13 = 1
2

(
1

(γ∗+ε)
+ a1

)2
+ a2 − x0

((
1

(γ∗+ε)
+a1

)(
1
6

(
1

(γ∗+ε)
+ a1

)2
+ 1

2 a2

)
+a3+

1
2 a2

(
1

(γ∗+ε)
+a1

))
a14 =− 1

(γ∗+ε)
−a1+x0

(
1
2

(
1

(γ∗+ε)
+ a1

)2
+a2

)
, a15 = −x0

(
a1
y0
+ c−1

x0+1

(
1

(γ∗+ε)
+ a1

))
+ c−1

x0+1 ,

a16 = − a1
y0

− c−1
x0+1

(
1

(γ∗+ε)
+a1

)
+ x0

(
a2
y0
+ a1

2y0

(
1

(γ∗+ε)
+ a1

)
+ a3(c−1)

2 +
(

a1
2y0

+ c−1
3(x0+1)

(
1

(γ∗+ε)
+a1

)
− c−1

x0+1

(
1
6

(
1

(γ∗+ε)
+ a1

)2
+ 1

2 a2

))(
1

(γ∗+ε)
+ a1

))
,

a17 = a1(c−1)
2y0

− x0

(
a2(c−1)

2y0
+ c−1

x0+1

(
a1

2y0
+ c−1

3(x0+1)

(
1

(γ∗+ε)
+ a1

)
+ a1(c−1)

6y0

(
1

(γ∗+ε)
+ a1

)))
,

a18 = x0(c−1)2

2(x0+1)2 , a19 = x0(c−1)3

6(x0+1)3 ,

b13 =−y0

(
β
(

b3+
a2
y0

)
+ β2

2

(
b1+

c−1
x0+1

)(
b2 +

a1
y0

)
+β

(
β2

6

(
b1+

c−1
x0+1

)2
+ β

2

(
b2+

a1
y0

))(
b1+

c−1
x0+1

))
,

b14 = y0

(
β2

2

(
b1 +

c−1
x0+1

)2
+ β

(
b2 +

a1
y0

))
, b15 = −β

(
b1 +

c−1
x0+1

)
,

b16 = β2

2

(
b1 +

c−1
x0+1

)2
+ β

(
b2 +

a1
y0

)
Next, by using the center manifold theorem and normal form theories, the direction of

Neimark–Sacker bifurcation at (x0, y0) is given.

Ψ = −Re

(
(1 − 2λ1)λ

2
2

1 − λ1
θ11θ20

)
− 1

2
|θ11|2 − |θ02|2 + Re(λ2θ21)

where the parameters θ02, θ11, θ20 and θ21 are determined by coefficients in (7).

Theorem 3. If Ψ �= 0, then the unique positive equilibrium point (x0, y0) of system (3) undergoes
Neimark–Sacker bifurcation when the bifurcation parameter γ varies in a small neighborhood of
γ∗ = δ+β(1−c)+δ(β(1−c)−δ)

(β(1−c)−δ)2+(β(1−c)−δ)
. Additionally, if Ψ < 0, then the curve generates attraction near the

equilibrium point for ε > 0. Furthermore, if Ψ > 0, then the curve generates repulsion near the
equilibrium point for ε < 0.

Proof. Now, let

η =
p(0)

2
, τ =

√
4q(0)− p(0)2

2
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The invertible matrix T is given by

T =

(
a12 0

η − a11 −τ

)
Using the following translation(

xn
yn

)
=

(
a12 0

η − a11 −τ

)(
un
vn

)
Then, (7) turns into(

un+1
vn+1

)
=

(
η −τ
τ η

)(
un
vn

)
+

(
P(un, vn)
Q(un, vn)

)
where

P(un, vn) = l11u3
n + l12u2

n + l13unvn + l14u2
nvn + l15unv2

n + l16v2
n + l17v3

n + O
(
(|un|+ |vn|)3

)
Q(un, vn) = l21u3

n + l22u2
n + l23unvn + l24u2

nvn + l25unv2
n + l26v2

n + l27v3
n + O

(
(|un|+ |vn|)3

)
l11 = a2

12a13 + a12a16(η − a11) + a17(η − a11)
2 + a19(η−a11)

3

a12
,

l12 = a12a14 + a15(η − a11) +
a18(η−a11)

2

a12
, l13 = −a15τ − 2a18τ(η−a11)

a12
,

l14 = −a12a16τ − 2a17τ − 3a19τ(η−a11)
2

a12
, l15 = a17τ

2 + 3a19τ
2(η−a11)
a12

,

l16 = a18τ
2

a12
, l17 = − a19τ

3

a12
,

l21 = 1
τ

(
a2

12a13(η−a11)+a12a16(η−a11)
2+a17(η−a11)

3+ a19(η−a11)
4

a12
−b13a3

12−b16a2
12(η−a11)

)
,

l22 = 1
τ

(
a12a14(η − a11) + a15(η − a11)

2 + a18(η−a11)
3

a12
− b14a2

12 − b15a12(η − a11)

)
,

l23 = −a15(η − a11)− 2a18(η−a11)
a12

+ b15a12 ,

l24 = −a12a16(η − a11)− 2a17(η − a11)− 3a19(η−a11)
3

a12
+ b16a2

12 ,

l25 = a17τ(η − a11) +
3a19τ(η−a11)

2

a12
, l26 = a18τ(η−a11)

a12
, l27 = − a19τ

2(η−a11)
a12

According to the normal form theories related to bifurcation analysis, we require the
following quantity at (u, v, ε) = (0, 0, 0):

Ψ = −Re

(
(1 − 2λ1)λ

2
2

1 − λ1
θ11θ20

)
− 1

2
|θ11|2 − |θ02|2 + Re(λ2θ21)

where
θ20 = 1

8 (Puu − Pvv + 2Quv + i(Quu − Qvv − 2Puv))

θ11 = 1
4 (Puu + Pvv + i(Quu + Qvv))

θ02 = 1
8 (Puu − Pvv + 2Quv + i(Quu − Qvv + 2Puv))

θ21 = 1
16 (Puuu + Puvv + Quuv + Qvvv + i(Quuu + Quvv − Puuv − Pvvv))

Puuu = 6l11 , Puu = 2l12 , Puv = l13 , Puuv = 2l14 , Puvv = 2l15 , Pvv = 2l16 , Pvvv = 6l17 ,
Quuu = 6l21 , Quu = 2l22 , Quv = l23 , Quuv = 2l24 , Quvv = 2l25 , Qvv = 2l26 ,

Qvvv = 6l27

5. Numerical Simulation

In this section, numerical simulations are presented to verify the theories given above.
Since our model is difference equations, and the iterative expressions are already given,
there is no need to create novel calculations, such as interpolation methods in the case
of differential equations. We assume that (β, c, δ) = (0.2, 0.3, 0.08) and γ ∈ (3.3, 3.7),
then system (3) undergoes Neimark–Sacker bifurcation around its positive equilibrium
(x0, y0) = (1.3333333, 2.0759193) when γ passes through the critical value γ∗ = 3.2345912.
At (β, c, δ, ε) = (0.2, 0.3, 0.08, 3.2345912), the eigenvalues of system (3) are λ1 = 0.9893238+
0.1457338i and λ2 = 0.9893238 − 0.1457338i with |λ1| = |λ2| = 1.
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From Figure 1, it can be seen that the model has a limit loop at (x0, y0) as γ changes,
which means that the biomass of predators and prey will eventually form a cycle. From
Figure 2, it is clear that, when γ is chosen as the bifurcation parameter, (x0, y0) of system (3)
is locally focused when γ < γ∗. Furthermore, when γ > γ∗, there exist attracting closed
invariant curves.

We assume that the parameters β and δ are constant during the increasing of γ, which
means that the growth rate of prey and the death rate of predators are unchangeable.
Since γ is proportional to the refuge parameter c (4), it is clear that, with the improvement
of refuge ability, the quantitative relationship between predator and prey changes from
constant to regular periodic.

Figure 1. Invariant circles in response to the relationship between predator and prey biomass from
the Neimark–Sacker bifurcation with (x0, y0) = (1.3333333, 2.0759193) and bifurcation parameter γ
varying from 3.3846 to 3.6246.
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Figure 2. Phase diagrams of system (3) with parameters (β, c, δ) = (0.2, 0.3, 0.08) and (x0, y0) =

(1.3333333, 2.0759193) and with different values of γ.
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6. Conclusions

Our work deals with the study of the local dynamical properties of a predator–prey
system with discrete time (2) and Neimark–Sacker bifurcation associated with the pe-
riodic solution of system (3) improved by system (2). We proved that system (2) has
three equilibria, and we provided their dynamical properties. Particularly, we focused
on the stability and bifurcation situations of its unique positive equilibrium (x∗, y∗) =(

δ+(αδ−β)ξ
β(1−c)−δ

,
(

1+αξ+x∗
1−c

)(
1 − x∗

γ

) )
and presented a specific form of resolution and proof.

In addition, we proved that system (3) undergoes Neimark–Sacker bifurcation
around its interior fixed point (x0, y0) when the bifurcation curve is given as S ={
(c, β, δ)∈R3

+ : γ = γ∗ = δ+β(1−c)+δ(β(1−c)−δ)

(β(1−c)−δ)2+(β(1−c)−δ)
, |D| < 2

}
, where D = x∗

γ

(
γ−x∗
1+x∗ − 1

)
+2.

In order to verify the theoretical discussion, we also provided a numerical simulation at
(x0, y0) when the parameter is varied in a small neighborhood of γ = γ∗. When γ > γ∗,
there exist attracting closed invariant curves from the positive equilibrium, which indicates
that predators and prey can coexist under the periodic oscillations for an extended period
of time.

In biology, with the improvement of refuge ability c, the quantitative relationship
between predator and prey changes from constant to regular periodic, which means that
slight growth of the refuge ability c destroys the original balance and better explains
population attributes in nature. It appears that prey refuges not only ensure that prey do
not become extinct but also promote interactions with predators and enhance population
activity on a periodic scale. Therefore, we can precisely change the biological density
of predators and prey to achieve the desired goal by regulating the number of refuge
parameters c in relation to other variables according to one’s needs.

In subsequent work, other parameters can be considered for bifurcation studies to
obtain conclusions of different biological significance. Alternatively, other discrete methods
can be used to improve the model.
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Abstract: In this paper, we propose a diffusive predator–prey model with a strong Allee effect and
nonlocal competition in the prey and a fear effect and gestation delay in the predator. We mainly study
the local stability of the coexisting equilibrium and the existence and properties of Hopf bifurcation.
We provide bifurcation diagrams with the fear effect parameter (s) and the Allee effect parameter (a),
showing that the stable region of the coexisting equilibrium increases (or decreases) with an increase
in the fear effect parameter (s) (or the Allee effect parameter (a)). We also show that gestation delay
(τ) can affect the local stability of the coexisting equilibrium. When the delay (τ) is greater than the
critical value, the coexistence equilibrium loses its stability, and bifurcating periodic solutions appear.
Whether the bifurcated periodic solution is spatially homogeneous or inhomogeneous depends on
the fear effect parameter (s) and the Allee effect parameter (a). These results show that the fear effect
parameter (s), the Allee effect parameter (a), and gestation delay (τ) can be used to control the growth
of prey and predator populations.

Keywords: delay; Hopf bifurcation; predator–prey; Allee effect

MSC: 34K18; 35B32

1. Introduction

Scholars have long been committed to using mathematical methods to explain and
predict biological phenomena [1–4]. The analysis of predator–prey models is a research
subject that has recently attracted considerable attention [5–8] from mathematicians and
biologists. In order to better describe the law of changes in a population, many scholars
have used differential equations to build predator–prey models and have introduced
different parameters in order to consider biological factors. Considering that the internal
mating of a population affects the law of change in that population when the population
density is low, W. Allee proposed the famous Allee effect [9]. If the population density is
too sparse, then mating between populations becomes difficult, and Allee effects may occur
when the population density is under a specific threshold. Thus, Allee effects are strongly
related to the vulnerability of populations to extinction [10–12]. For example, if pressure
from the harvesting of bluefin tuna (Thunnus thynnus) is too strong, the population will
collapse [11]. At a very small population size, the probability of finding an acceptable mate
for some endangered species, such as lakapo (Strigos habroptilus), is very low [11].

The earliest single-population model exhibiting the Allee effect is as follows [13]:

du(t)
dt

= r1u(t)
(

1 − u(t)
K

)
(u(t)− a0),

Mathematics 2023, 11, 1996. https://doi.org/10.3390/math11091996 https://www.mdpi.com/journal/mathematics
189



Mathematics 2023, 11, 1996

where u(t) represents the density of prey at time t, and r1 and K are the prey’s intrin-
sic growth rate and carrying capacity, respectively. The parameter a0 denotes the Allee
threshold, and the term (u(t)− a0) denotes the Allee effect. It must be noted that the Allee
threshold is the critical population size or density below which the per capita population
growth rate becomes negative. A strong Allee effect is an Allee effect at the Allee threshold.
Whether the Allee effect is weak or strong depends on the opposing strengths of positive
and negative density dependence. After the introduction of this model, many researchers
began to pay attention to predator–prey models with strong Allee effects.

In nature, the influence of predators on prey species is not mediated only by simple
predatory behavior. Since the prey has memory, the presence of predators has an inevitable
impact on the behavior and psychology of the prey. For example, when a predator appears,
the prey will be vigilant and will stop eating and breeding. This indirect effect on prey
populations is known as the fear effect, and it is found widely in nature. Many researchers
have focused on predator–prey models with the fear effect [14–16]. However, these models
describe the prey as having a fear effect in connection with the predator, which affects the
growth law of the prey. In nature, predators also have fear effects. For example, scientists
have used the barking of dogs on a tape to simulate a scene of fear in raccoons. In this way,
raccoons reduce their frequency and time of foraging; this protects the raccoons’ prey to
maintain a balance in the ecosystem. In [17], T. Liu et al. proposed a predator–prey model
with a fear effect on the predator and a strong Allee effect on the prey:⎧⎨⎩

du(t)
dt = r1u(t)

(
1 − u(t)

K

)
(u(t)− a0)− λu(t)v(t)

1+kv(t) ,
dv(t)

dt = r2v(t)
1+kv(t)

(
1 − v(t)

qu(t)

)
.

(1)

where u(t) and v(t) represent the densities of the prey and predator, respectively; and r1,
K, a0, λ, k, r2, and q are the prey’s intrinsic growth rate, the carrying capacity, the strong
Allee effect, the capture rate, a measure of the fear effect, the predator’s intrinsic growth
rate, and a measure of food quality for the predator, respectively. More explanations of
the parameters can be found in [17]. By setting ũ = u

K , ṽ = v
Kq , t̃ = t

Kr1
, a = a0

K , c = λqK
r1

,
s = kqK, and r = r2

r1K and dropping “˜”, model (1) is changed into⎧⎨⎩
du(t)

dt = u(t)
(
(1 − u(t))(u(t)− a)− cv(t)

1+sv(t)

)
,

dv(t)
dt = rv(t)

1+sv(t)

(
1 − v(t)

u(t)

)
.

(2)

The authors mainly studied model (2) from the perspective of bifurcation, such as Hopf
bifurcation and Bogdanov–Takens bifurcation [17]. Research has shown that increasing the
fear effect on the predator is conducive to protecting prey populations.

We assume that the concentration distribution of species is uniform in model (2),
but this is not always the actual situation in nature. In real nature, due to widespread
self-diffusion phenomena, few populations of species have a homogeneous spatial distribu-
tion [18–20]. This is precisely because of the existence of diffusion phenomena; population
models often show some more abundant dynamic phenomena, such as spatially inhomoge-
neous periodic solutions, spatial patterns, etc. In addition, time delays also exist [21–23],
such as time delays in maturity, gestation, and predation. Time delays often affect the
stability of the constant steady-state solution, and they cause periodic oscillations in the
population density. Therefore, we introduce self-diffusion and time delay into model (2)
as follows.⎧⎪⎪⎨⎪⎪⎩

∂u(x, t)
∂t

= d1Δu(x, t) + u(x, t)
(
(1 − u(x, t))(u(x, t)− a)− cv(x, t)

1 + sv(x, t)

)
,

∂v(x, t)
∂t

= d2Δv(x, t) +
rv(x, t)

1 + sv(x, t)

(
1 − v(x, t − τ)

u(x, t − τ)

)
.

(3)
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where d1, d2 > 0 represent the self-diffusion coefficients of the prey and predator, respec-
tively, and τ is the gestation delay in the predator. The growth law of the predator (the
second equation in (3)) can be considered a logistic growth law, where (u(t − τ) is the
carrying capacity of the environment. An increase in density of predators at time t already
exists for predators at time t − τ, where τ is the gestation time of predators. Therefore,
the negative feedback of the density of the predator at time t is related to the relationship
between the predator and the prey at time t − τ.

In nature, animals in the same area usually compete for a common but limited resource;
due to the depletion of resources, intraspecies competition effects should depend on the
average population density in the neighborhood of the current location. In [24,25],
the author suggested that internal competition within the population is often spatially
inhomogeneous and measured this effect by weighting and integration, modifying the
u
K as 1

K
∫

Ω G(x, y)u(y, t)dy. G(x, y) is a kernel function. In [26], Geng et al. studied Hopf,
Turing, double-Hopf, and Turing–Hopf bifurcations of a diffusive predator–prey model
with nonlocal competition. In [27], Liu et al. studied a diffusive predator–prey model with
nonlocal competition and time delay. These works show that spatially inhomogeneous
bifurcating periodic solutions are stable, in contrast to models without nonlocal competition.
A predator–prey model with nonlocal competition can produce complex dynamics, such as
spatiotemporal patterns and stably spatially inhomogeneous periodic solutions [26–29].

Based on the above considerations, we introduce nonlocal competition among prey
into model (3) as follows.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u(x, t)
∂t

= d1Δu(x, t) + u(x, t)
(
(1 −

∫
Ω

G(x, y)u(y, t)dy)(u(x, t)− a)− cv(x, t)
1 + sv(x, t)

)
,

∂v(x, t)
∂t

= d2Δv(x, t) +
rv(x, t)

1 + sv(x, t)
(1 − v(x, t − τ)

u(x, t − τ)
), x ∈ Ω, t > 0

∂u(x, t)
∂ν̄

=
∂v(x, t)

∂ν̄
= 0, x ∈ ∂Ω, t > 0

u(x, θ) = u0(x, θ) ≥ 0, v(x, θ) = v0(x, θ) ≥ 0, x ∈ Ω̄, θ ∈ [−τ, 0].

(4)

The integral term
∫

Ω G(x, y)u(y, t)dy in the first equation of (4) accounts for nonlocal
competition among the prey individuals. The kernel function is of the following form:

G(x, y) =
1
|Ω| =

1
lπ

, x, y ∈ Ω,

which can be regarded as a measurement of the competition pressure at location x from
the individuals at another location (y), which is widely used by some scholars [26–28]. The
region Ω = (0, lπ) with l > 0 is used for the convenience of calculation. In this case, the
strength of the competition among all prey individuals is the same across the habitat.

The aim of this paper is to consider the dynamics of model (4) from the perspective of
stability and Hopf bifurcation and to study the effects of the Allee effect and fear effect on
population growth law using numerical simulation. This article is structured as follows. In
Section 2, we analyze the stability of the coexisting equilibrium and the existence of Hopf
bifurcation. In Section 3, we analyze the properties of Hopf bifurcation. In Section 4, we
perform some numerical simulations and analyze the results. In Section 5, we provide a
brief conclusion.

2. Stability Analysis

In [17], the authors found that system (4) had no less than one equilibrium, which was
noted as E∗(u∗, v∗). We can obtain the concrete form of u∗ by calculating the positive root
of the following equation:

su3 − (as + s − 1)u2 + (as + c − a − 1)u + a = 0 = 0. (5)
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For the completeness of the article, we provide the following lemma and a numerical
simulation (see Figure 1). In Figure 1, we can see that with the increase in parameter
a, the two positive equilibrium points degenerate into one positive equilibrium point.
However, when parameter a is greater than a certain critical value, the positive equilibrium
point disappears.

u1�a�

u2�a�

0.1 0.2 0.3 0.4 0.5
a

0.2

0.4

0.6

0.8

Population density

Figure 1. Positive roots of (5) with a under the following parameter settings: s = 0.1, c = 0.1, and
r = 0.25.

Lemma 1. If support (H1) holds, the following results are true for system (4).
1. If c < a(1 − s) or c > a(1 − s) + 1, s(a + 1) > 1:
(a). If D < 0, there are two distinct positive equilibria;
(b). If D = 0,
(ib). if A > 0, there exists a unique positive equilibrium;
(iib). if A = 0, there exists no positive equilibrium;

(c). If D > 0, there exists no positive equilibrium.
2. If c ≥ a(1 − s), s(a + 1) ≤ 1, there exists no positive equilibrium.

A = (as + s − 1)2 − 3s(as + c − a − 1),

B = −(as + s − 1)(as + c − a − 1)− 9as,

C = (as + c − a − 1)2 + 3a(as + s − 1),

D = −B2 − 4AC.

(6)

According to [17], (u2, v2) is always the saddle point under this set of parameters. We
mainly study the stability and Hopf bifurcation of the equilibrium ((u1, v1)) in the following.

We linearize system (4) at E∗(u∗, v∗):

∂

∂t

(
u(x, t)
u(x, t)

)
= D

(
Δu(x, t)
Δv(x, t)

)
+ L1

(
u(x, t)
v(x, t)

)
+ L2

(
u(x, t − τ)
v(x, t − τ)

)
+ L3

(
û(x, t)
v̂(x, t)

)
, (7)

where

D =

(
d1 0
0 d2

)
, L1 =

(
a1 a2
0 0

)
, L2 =

(
0 0
b1 −b1

)
, L3 =

(
â 0
0 0

)
,

a1 = (1 − u∗)u∗ > 0, a2 = − cu∗
(1 + su∗)2 < 0, b1 =

r
1 + su∗

> 0, â = −u∗(u∗ − a) < 0, (8)
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and û = 1
lπ

∫ lπ
0 u(y, t)dy.

Then, the characteristic equations of (7) are

λ2 + Pnλ+ Qn + (Rn + b1λ)e−λτ = 0, n ∈ N0, (9)

where

P0 = −â − a1, Q0 = 0, R0 = −(â + a1 + a2)b1,

Pn = (d1 + d2)
n2

l2 − a1, Qn = d2
n2

l2

(
d1

n2

l2 − a1

)
,

Rn = b1

(
d1

n2

l2 − (a1 + a2)

)
, n ∈ N.

(10)

Let τ = 0; Equation (9) becomes

λ2 + (Pn + b1)λ+ Qn + Rn = 0, n ∈ N0. (11)

We make the following hypothesis:

(H1) Pn + b1 > 0, Qn + Rn > 0, for n ∈ N0.

Under this hypothesis (H1), E∗(u∗, v∗) is locally asymptotically stable when τ = 0.
Next, we will discuss the case of τ > 0.

Lemma 2. If support (H1) holds, the following results are true for Equation (9):
1. There exists a pair of purely imaginary roots: ±iω+

n at τ j,+
n for j ∈ N0 and n ∈ W1;

2. There are two pairs of purely imaginary roots: ±iω±
n at τ j,±

n for j ∈ N0 and n ∈ W2;
3. There exists no purely imaginary root for n ∈ W3,

where ±iω±
n , τ j,±

n , W1, W2, and W3 are defined in (14) and (15).

Proof. Let iω (ω > 0) be a solution of Equation (9). Then,

−ω2 + iωPn + Qn + (Rn + b1iω)(cosωτ − isinωτ) = 0, n ∈ N0.

Obviously, cosωτ = ω2(Rn−b1Pn)−QnRn
R2

n+b2
1ω

2 , sinωτ =
ω(PnRn−b1(ω

2−Qn))
R2

n+b2
1ω

2 . This leads to

ω4 +ω2
(

P2
n − 2Qn − b2

1

)
+ Q2

n − R2
n = 0, n ∈ N0. (12)

Let z = ω2; then, (12) becomes

z2 + z
(

P2
n − 2Qn − b2

1

)
+ Q2

n − R2
n = 0, n ∈ N0. (13)

Let Hn = P2
n − 2Qn − b2

1, Jn = Qn + Rn, and Kn = Qn − Rn. Then, z± = 1
2 [−Hn ±√

H2
n − 4JnKn] are the roots of (13). If (H1) holds, Jn > 0 (n ∈ N0). Then, we can obtain

H0 = (â + a1)
2 − b2

1,

Hk =

(
a1 − d1

k2

l2

)2

+ d2
2

k4

l4 − b2
1, for k ∈ N

K0 = b1(â + a1 + a2) < 0,

Kk = d1d2
k4

l4 − (b1d1 + a1d2)
k2

l2 + (a1 + a2)b1, for k ∈ N.
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We define

S1 = {n|Kn < 0, n ∈ N0},

S2 = {n|Kn > 0, Hn < 0, H2
n − 4JnKn > 0, n ∈ N},

S3 = {n|Kn > 0, H2
n − 4JnKn < 0, n ∈ N},

(14)

and

ω±
n =

√
z±n , τ

j,±
n =

⎧⎨⎩
1
ω±

n
arccos(V(n,±)

cos ) + 2jπ, V(n,±)
sin ≥ 0,

1
ω±

n

[
2π − arccos(V(n,±)

cos )
]
+ 2jπ, V(n,±)

sin < 0.

V(n,±)
cos =

(ω±
n )2(b2Pn + Rn)− MnRn

R2
n + b2

1(ω
±
n )2

, V(n,±)
sin =

ω±
n

(
PnRn + Qnb2 + b1(ω

±
n )2)

R2
n + b2

1(ω
±
n )2

.

(15)

It is easy to verify the conclusion in Lemma 2.

Lemma 3. Support (H1) is satisfied. Then, Re( dλ
dτ )|τ=τ

j,+
n

> 0, Re( dλ
dτ )|τ=τ

j,−
n

< 0 for n ∈
S1 ∪ S2 and j ∈ N0.

Proof. According to (9), we have

(
dλ
dτ

)−1 =
2λ+ Pn + b1e−λτ

(Rn + b1λ)λe−λτ
− τ

λ
.

Then,

[Re(
dλ
dτ

)−1]
τ=τ

j,±
n

= Re[
2λ+ Pn + b1e−λτ

(Rn + b1λ)λe−λτ
− τ

λ
]
τ=τ

j,±
n

= [
1

R2
n + b2

1ω
2
(2ω2 + P2

n − 2Qn − b2
1)]τ=τ

j,±
n

= ±[
1

R2
n + b2

1ω
2

√
(P2

n − 2Qn − b2
1)

2 − 4(Q2
n − R2

n)]τ=τ
j,±
n

.

Therefore, Re( dλ
dτ )|τ=τ

j,+
n

> 0, Re( dλ
dτ )|τ=τ

j,−
n

< 0.

We denote τ∗ = min{τ0
n | n ∈ S1 ∪ S2}.

Naturally, we have the following theorem.

Theorem 1. Assume that (H1) holds; then, the following statements are true for system (4).
1. E∗(u∗, v∗) is locally asymptotically stable for τ > 0 when S1 ∪ S2 = ∅;
2. E∗(u∗, v∗) is locally asymptotically stable for τ ∈ [0, τ∗) when S1 ∪ S2 �= ∅;
3. E∗(u∗, v∗) is unstable for τ ∈ (τ∗, τ∗ + ε) for some ε > 0 when S1 ∪ S2 �= ∅;
4. Hopf bifurcation occurs at (u∗, v∗) when τ = τ

j,+
n (τ = τ

j,−
n ), j ∈ N0, n ∈ S1 ∪ S2.

Because stability switching is a highly concerned dynamic phenomenon [30–32], we pro-
vide the following remark about stability switching.

Remark 1. According to lemma 3, we know that Re( dλ
dτ )|τ=τ

j,+
n

> 0, Re( dλ
dτ )|τ=τ

j,−
n

< 0. If

W2 �= ∅ and there exist τ∗ = τ0,+
n1 < τ0,−

n1 , τ∗ = τ0,+
n1 < τ0,+

n2 < τ0,−
n2 < τ0,−

n1 , τ∗ = τ0,+
n1 <

τ0,+
n2 < · · · < τ0,+

nj < τ0,−
nj < · · · < τ0,−

n2 < τ0,−
n1 , or other alternating forms of τ j,±

n . Then,
stability switching may exist.
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3. Properties of Hopf Bifurcation

From [33,34], we learned how to analyze the properties of Hopf bifurcation. For
fixed j ∈ N0 and n ∈ S1 ∪ S2, we define τ̃ = τ

j,±
n . Let ū(x, t) = u(x, τt) − u∗ and

v̄(x, t) = v(x, τt)− v∗. By ignoring the bar, (4) becomes⎧⎪⎪⎨⎪⎪⎩
∂u
∂t

= τ[d1Δu + (u + u∗)
(

1 − 1
lπ

∫ lπ

0
(u(y, t) + u∗)dy

)
(u + u∗ − a)− c(v + v∗)

1 + s(v + v∗)
],

∂v
∂t

= τ[d2Δv +
r(v + v∗)

1 + s(v + v∗)

(
1 − v(t − 1) + v∗

u(t − 1) + u∗

)
].

(16)

Then, we rewrite (16) in the following form:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂u
∂t

=τ[d1Δu + a1u + a2v − âû + α1u2 + (a − 2u∗)uû + α2uv + α3v2 + α4uv2 + α5v3] + h.o.t.,

∂v
∂t

=τ[d2Δv − ησv + b1u(t − 1)− b1v(t − 1) + β1u2(t − 1) + β2u(t − 1)v + β3u(t − 1)v(t − 1) + β4vv(t − 1)

+ β5u3(t − 1) + β6u2(t − 1)v + β7u(t − 1)v2 + β8u2(t − 1)v(t − 1)] + h.o.t.,

(17)

where α1 = 1 − u∗, α2 = − c
(1+su∗)2 , α3 = csu∗

(1+su∗)3 , α4 = cs
(1+su∗)3 , α5 = − cs2u∗

(1+su∗)4 , β1 =

− r
u∗(1+su∗) , β2 = r

u∗(1+su∗)2 , β3 = r
u∗(1+su∗) , β4 = − r

u∗(1+su∗)2 , β5 = r
u2∗(1+su∗)

, β6 =

− r
u2∗(1+su∗)2 , β7 = − rs

u∗(1+su∗)3 , and β8 = − r
u2∗(1+su∗)

.

We define a space, X :=
{
(u, v)T : u, v ∈ H2(0, lπ), (ux, vx)|x=0,lπ = 0

}
, which is

called real-valued Sobolev. XC is the complexification of X, which has the form XC :=
X ⊕ iX = {u + iv| u, v ∈ X}. Then, we define the inner product: < ũ, ṽ >:=

∫ lπ
0 u1v1dx +∫ lπ

0 u2v2dx, where ũ = (u1, u2)
T ∈ XC, ṽ = (v1, v2)

T ∈ XC.
We define the phase space, C := C([−1, 0], X), which is with the sup norm. Then,

we have ϕt ∈ C , ϕt(σ) = ϕ(t + σ) for σ ∈ [−1, 0]. To define the subspace of C , we
made the following definitions: α

(1)
n (u) = (γn(u), 0)T , α(2)n (u) = (0,γn(u))T , and αn =

{α(1)n (u), α(2)n (u)}, where {α(i)n (u)} is an orthonormal basis of X. Then, we define the
subspace of C as Bn := span{< ϕ(·), α(j)

n > α
(j)
n |ϕ ∈ C , j = 1, 2}, n ∈ N0. For θ ∈ [−1, 0]

and ϕ ∈ C , the 2 × 2 matrix function (ηn(θ, τ̃)) can satisfy the following: −τ̃D n2

l2 ϕ(0) +

τ̃L(ϕ) =
∫ 0
−1 dηn(θ, τ)ϕ(θ). Then, Equation (18) defines the bilinear form on C ∗ × C for

ψ ∈ C , φ ∈ C ∗.

(φ,ψ) = φ(0)ψ(0)−
∫ 0

−1

∫ θ

ξ=0
φ(ξ − θ)dηn(θ, τ̃)ψ(ξ)dξ, (18)

Let τ = τ̃ + μ. When μ = 0, the characteristic equation of the system has a pair
of purely imaginary roots (±iωn0 ), and the system undergoes Hopf bifurcation at (0, 0).
Assume that A represents the infinitesimal generators of the semigroup, and A∗ represents
the formal adjoint of A under the bilinear form (18).

We define

δ(n0) =

{
1 n0 = 0,
0 n0 ∈ N.

(19)

Let ηn0(0, τ̃) = τ̃[(−n2
0/l2)D + L1 + L3δ(nn0)], ηn0(−1, τ̃) = −τ̃L2, and ηn0(σ, τ̃) = 0

for σ ∈ [−1, 0]. We define p(θ) = p(0)eiωn0 τ̃θ (θ ∈ [−1, 0]) as the eigenfunction of A(τ̃)

for iωn0 τ̃, and q(ϑ) = q(0)e−iωn0 τ̃ϑ (ϑ ∈ [0, 1]) is the eigenfunction of A∗ for iωn0 τ̃. Let
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p(0) = (1, p1)
T , q(0) = M(1, q2), where p1 = 1

a2
(iωn0 + d1n2

0/l2 − a1 − âδ(n0)), q2 =
a2

iωn0+b1eiωn0 +d2n2/l2
, and M = (1 + p1q2 + τ̃q2b1(1 − p1)e−iωn0 τ̃)−1. Then, (16) becomes

dU(t)
dt

= (τ̃ + μ)DΔU(t) + (τ̃ + μ)[L1U(t) + L2U(t − 1) + L3Û(t)] + F(μ, Ut, Ût), (20)

where

F(φ, μ) = (τ̃ + μ)

⎛⎜⎜⎝
α1φ1(0)2 − (2u∗ − β)φ1(0)φ̂1(0) + α2φ1(0)φ2(0) + α3φ2(0)2 + α4φ

3
1(0)

+α5φ
2
1(0)φ2(0) + α6φ1(0)φ2

2(0) + α7φ
3
2(0)

β1φ
2
1(−1) + β2φ1(−1)φ2(−1) + β3φ

2
2(−1) + β4φ

3
1(−1) + β4φ

2
1(−1)φ2(−1)

+β6φ1(−1)φ2
2(−1) + β7φ

3
2(−1)

⎞⎟⎟⎠ (21)

for φ = (φ1, φ2)
T ∈ C and φ̂1 = 1

lπ

∫ lπ
0 φdx. Then, we decompose the space (C ) as

C = P ⊕ Q, where P = {zpγn0(x) + z̄ p̄γn0(x)|z ∈ C}, Q = {φ ∈ C |(qγn0(x), φ) =
0, and (q̄γn0(x), φ) = 0}. Then, (21) is rewritten as Ut = z(t)p(·)γn0(x) + z̄(t) p̄(·)γn0(x) +
ω(t, ·), and Ût =

1
lπ

∫ lπ
0 Utdx, where

z(t) = (qγn0(x), Ut), ω(t, θ) = Ut(θ)− 2Re{z(t)p(θ)γn0(x)}. (22)

We found that ż(t) = iωn0 τ̃z(t) + q̄(0) < F(0, Ut), βn0 >. Then, C0 and ω can have the
following form near (0, 0):

ω(t, θ) = ω(z(t), z̄(t), θ) = ω20(θ)
z2

2
+ω11(θ)zz̄ +ω02(θ)

z̄2

2
+ · · · . (23)

We restrict the system to C0 such that ż(t) = iωn0 τ̃z(t) + g(z, z̄). Let g(z, z̄) = g20
z2

2 +

g11zz̄ + g02
z̄2

2 + g21
z2 z̄
2 + · · · . By direct computation, we have

g20 = 2τ̃M(ς1 + q2ς2)I3, g11 = τ̃M( 1 + q2 2)I3, g02 = ḡ20,

g21 = 2τ̃M[(κ11 + q2κ21)I2 + (κ12 + q2κ22)I4],

where I2 =
∫ lπ

0 γ2
n0
(x)dx, I3 =

∫ lπ
0 γ3

n0
(x)dx, I4 =

∫ lπ
0 γ4

n0
(x)dx, ς1 = (a − 2u∗)δn0 +

(α1 + p1(α2 + α3 p1)), ς2 = e−2iτωn
(
β1 + 2β8 + eiτωn(β2 + 2β3β4)p1

)
,  1 = 1

4 (2α1 + 2(a −
2u∗)δn0 + 2α3 p̄1 p1 + α2( p̄1 + p1)),  2 = 1

4 e−iτωn(2eiτωn(β1 + 2β8) + (β2 + 2β3β4) p̄1 +

e2iτωn(β2 + 2β3β4)p1), κ11 = 2W(1)
11 (0)(2α1 + a(1 + δn0) − 2u∗(1 + δn0) + α2 p1) +

2 W(2)
11 (0)(α2 + 2α3 p1) + W(1)

20 (0)(2α1 + a(1 + δn0)− 2u∗(1 + δn0) + α2 p̄1)+ W(2)
20 (0)(α2 +

2α3 p̄1), κ12 = 2e−iτωnW(2)
11 (0)(β2 + 2β3β4) + eiτωnW(2)

20 (0)(β2 + 2β3β4) +

2e−iτωnW(1)
11 (−1)

(
2β1 + 4β8 + eiτωn(β2 + 2β3β4)p1

)
+ W(1)

20 (−1)(2eiτωn(β1 + 2β8) +

(β2 + 2β3β4) p̄1), κ21 = 1
2 p1(3α5 p̄1 p1 + α4(2p̄1 + p1)), κ22 = 1

2 e−2iτωn (e3iτωnβ7 p2
1 + p̄1(β6 +

3β3β4 p1) + eiτωn(3β5 + β8 p̄1 + 2β8 p1 + 2β7 p̄1 p1) + e2iτωn p1(2β6 + 3β3β4( p̄1 + p1))).
Next, for θ ∈ [−1, 0], we compute W20 and W11 to obtain g21. According to (22),

we have
ω̇ = U̇t − żpγn0(x)− ˙̄zp̄γn0(x) = Aω+ H(z, z̄, θ), (24)

where

H(z, z, θ) = H20(θ)
z2

2
+ H11(θ)zz + H02(θ)

z2

2
+ · · · . (25)

By comparing the coefficients of (23) with those of (24), we have

(A − 2iωn0 τ̃I)ω20 = −H20(θ), Aω11(θ) = −H11(θ). (26)
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Then, we have

ω20(θ) =
−g20

iωn0 τ̃
p(0)eiωn0 τ̃θ − ḡ02

3iωn0 τ̃
p̄(0)e−iωn0 τ̃θ + E1e2iωn0 τ̃θ ,

ω11(θ) =
g11

iωn0 τ̃
p(0)eiωn0 τ̃θ − ḡ11

iωn0 τ̃
p̄(0)e−iωn0 τ̃θ + E2,

(27)

where E1 = ∑∞
n=0 E(n)

1 , E2 = ∑∞
n=0 E(n)

2 ,

E(n)
1 = (2iωn0 τ̃ I −

∫ 0

−1
e2iωn0 τ̃θdηn0(θ, τ̄))−1 < F̃20, βn >,

E(n)
2 = −(

∫ 0

−1
dηn0(θ, τ̄))−1 < F̃11, βn >, n ∈ N0,

< F̃20, βn >=

⎧⎪⎪⎨⎪⎪⎩
1

lπ F̂20, n0 �= 0, n = 0,
1

2lπ F̂20, n0 �= 0, n = 2n0,
1

lπ F̂20, n0 = 0, n = 0,
0, other,

< F̃11, βn >=

⎧⎪⎪⎨⎪⎪⎩
1

lπ F̂11, n0 �= 0, n = 0,
1

2lπ F̂11, n0 �= 0, n = 2n0,
1

lπ F̂11, n0 = 0, n = 0,
0, other,

and F̂20 = 2(ς1, ς2)
T , F̂11 = 2( 1,  2)

T .
Thus, we can obtain

c1(0) =
i

2ωnτ̃
(g20g11 − 2|g11|2 − |g02|2

3
) +

1
2

g21, μ2 = − Re(c1(0))
Re(λ′(τ̃)) ,

T2 = − 1
ωn0 τ̃

[Im(c1(0)) + μ2Im(λ′(τ j
n))], β2 = 2Re(c1(0)).

(28)

Theorem 2. The following results are true for any critical value (τ j
n (n ∈ S, j ∈ N0)).

1. If μ2 > 0 (or <0), the Hopf bifurcation is forward (or backward);
2. If β2 < 0 (or >0), the bifurcating periodic solutions on C0 are orbitally asymptotically stable

(or unstable);
3. If T2 > 0 (or T2 < 0), the period increases (or decreases).

4. Numerical Simulations

To analyze the influence of the fear effect parameter (s), the strong Allee effect parameter
(a), and gestation delay (τ) on model (4), we performed the following numerical simulations.

We fixed
c = 0.1, r = 0.25, d1 = 0.5, d2 = 0.1, l = 1.5.

The existence of a positive equilibrium is provided in Figure 1. Obviously, the equilib-
rium (u2, v2) is unstable through the following analysis, so we pay attention to the stability
of the equilibrium (u1, v1), which is positive. The bifurcation diagrams of model (4) with
parameters s and a are provided in Figures 2 and 3, respectively. In Figure 2, we can observe
that increasing parameter s can increase the stable region of the equilibrium and eliminate
the periodic oscillation. In Figure 3, we find that increasing parameter a can decrease the
stable region of the equilibrium and induce periodic oscillation.

If we choose a = 0.05 and s = 0.1, then model (4) has two coexisting equilibria:
(u1, v1) ≈ (0.9029, 0.9029) and (u2, v2) ≈ (0.0559, 0.0559). By direct calculation, the
hypothesis (H1) holds for (u1, v1) and does not hold for (u2, v2). Therefore, we mainly
analyze the coexisting equilibrium (u1, v1). By direct computation, we have S1 = {0, 1, 2}
and S2 = S3 = ∅, as well as τ∗ = τ0

1 ≈ 5.9478 < τ0
0 ≈ 6.1053. Theorem 1 shows that the

coexisting equilibrium (u1, v1) is locally asymptotically stable if τ ∈ [0, τ∗) (Figure 4). For
model (4), Hopf bifurcation occurs if τ = τ∗. According to Theorem 2, we have

μ2 ≈ 16.1916 > 0, β2 ≈ −0.6295 < 0, T2 ≈ 0.5672 > 0.
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Therefore, when τ > τ∗, the bifurcating periodic solutions are stably spatially inhomo-
geneous (Figure 5). When we continue to increase parameter τ, the bifurcating periodic
solutions are still stably spatially inhomogeneous (Figure 6).

0.1 0.2 0.3 0.4 0.5
s

6.0
6.5
7.0
7.5
8.0
8.5
9.0

Τ
Τ0�s�

Τ1�s�

Τ2�s�

Stable region

Hopf-Hopf bifurcation point

1 2 3 4 5
s

10

20

50

100

200

500

1000

Τ

Figure 2. Bifurcation diagram for s and τ with a = 0.05 at the coexisting equilibrium (u1, v1).
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6.2

Τ
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Τ1
0�a�

Τ2
0�a�

Stable region

Hopf-Hopf bifurcation point

0.1 0.2 0.3 0.4 0.5
a

6.

8.

10.

12.

Τ

Figure 3. Bifurcation diagram for a and τ with s = 0.1 at the coexisting equilibrium (u1, v1).

(a) (b)

Figure 4. Numerical simulations for model (4) when τ = 5.92 < τ0
1 and for the initial values of

u0(x) = u∗ + 0.001cosx, v0(x) = v∗ − 0.001cosx. (a) Prey. (b) Predator.
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(a)

(c)

(b)

(d)

Figure 5. Numerical simulations for model (4) when τ = 6.05 ∈ (τ0
1 , τ0

0 ) and for the initial values of
u0(x) = u∗ + 0.001cosx, v0(x) = v∗ − 0.001cosx. (a,c) Prey. (b,d) Predator.

(a)

(c)

(b)

(d)

Figure 6. Numerical simulations for model (4) when τ = 6.2 > τ0
1 and for the initial values of

u0(x) = u∗ + 0.001cosx, v0(x) = v∗ − 0.001cosx. (a,c) Prey. (b,d) Predator.

If we choose a = 0.2 and s = 0.1, then model (4) has two coexisting equilibria:
(u1, v1) ≈ (0.8811, 0.8811) and (u2, v2) ≈ (0.2290, 0.2290). By direct calculation, the
hypothesis (H1) holds for (u1, v1) and does not hold for (u2, v2). Therefore, we mainly
analyzed the coexisting equilibrium (u1, v1). By direct computation, we have S1 = {0, 1, 2}
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and S2 = S3 = ∅, as well as τ∗ = τ0
0 ≈ 5.8910 < τ1

0 ≈ 5.9517. Theorem 1 shows that the
coexisting equilibrium (u1, v1) is locally asymptotically stable if τ ∈ [0, τ∗). For model (4),
Hopf bifurcation occurs if τ = τ∗. Theorem 2 shows that

μ2 ≈ 43.8547 > 0, β2 ≈ −1.6464 < 0, T2 ≈ 10.3338 > 0.

Thus, when τ > τ∗, the bifurcating periodic solutions are stably spatially homogeneous
(Figure 7). When we continue to increase parameter τ, the bifurcating periodic solutions
are still stably spatially homogeneous (Figure 8).

(a) (b)

(c) (d)

Figure 7. Numerical simulations for model (4) when τ = 5.92 ∈ (τ0
0 , τ0

1 ) and for the initial values of
u0(x) = u∗ + 0.001cosx, v0(x) = v∗ − 0.001cosx. (a,c) Prey. (b,d) Predator.

(a)

(c)

(b)

(d)

Figure 8. Numerical simulations for model (4) when τ = 6.05 > τ0
1 and for the initial values of

u0(x) = u∗ + 0.001cosx, v0(x) = v∗ − 0.001cosx. (a,c) Prey. (b,d) Predator.
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5. Conclusions and Discussion

In this work, we propose a delayed self-diffusive predator–prey model with a strong
Allee effect on the prey and a fear effect on the predator. Unlike [17], in this paper, we
added a time delay, self-diffusion, and nonlocal competition to the model, which makes
the model more consistent with actual situations in nature and leads to homogeneous and
inhomogeneous periodic solutions. By analyzing the eigenvalue spectrum, we studied the
local stability of the coexisting equilibrium and the existence of Hopf bifurcation. By using
the method of the center manifold theorem and the normal form method, we investigated
the properties of Hopf bifurcation.

Next, we will discuss the influences of the fear effect and the strong Allee effect.
The following conclusions can be drawn. Increasing the fear effect on the predator is
beneficial to the uniform distribution of the prey and predator populations in space because
the stable region of coexistence increases with the increase in the fear effect, and with
the increase in the fear effect, a spatially inhomogeneous periodic solution appears first.
However, when the fear effect is greater than a critical value, a spatially homogeneous
periodic solution appears. However, increasing the strong Allee effect on the prey is
not beneficial to the stability of the coexisting equilibrium because the stable region of
coexistence decreases with the increase in the strong Allee effect. Whether the bifurcated
periodic solution is spatially homogeneous or inhomogeneous depends on the strong Allee
effect and the fear effect because with the increase in the strong Allee effect (or fear effect),
a spatially inhomogeneous periodic solution appears first. However, when the strong
Allee effect (or fear effect) is greater than a critical value, a spatially homogeneous periodic
solution appears.

The main findings show that a strong Allee effect and the fear effect can be used to
control the growth of prey and predator populations. For example, we could produce
predation risk and affect the reproduction of sparrows by broadcasting their natural en-
emies’ sounds (such as those of magpies, shrikes, sparrow eagles, etc.) during sparrows’
entire breeding season. In this way, we can protect sparrows from direct killing and ensure
that any effects on reproduction will only be ascribed to fear; this is the direction of our
future research. Moreover, we found a Hopf–Hopf bifurcation point in the course of our
research, which complicates the dynamic behavior of predator–prey systems and also
requires further investigation.

However, questions remains as to whether emulating fear during an entire breeding
season of a species is realistic, whether doing so would have other damaging consequences
on the behavior of the species, and whether it would result in the species becoming
acquainted with such sounds and no longer feeling fear (if the sounds perpetuate without
any predation, the prey might consider that there is no danger after a while). This is also
worth further research, especially in cooperation with biological experts.
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